
USENIX Association

March 16–18, 2016
Santa Clara, CA, USA

Proceedings of the 13th USENIX
Symposium on Networked Systems Design

and Implementation (NSDI ’16)

Conference Organizers

Program Co-Chairs
Katerina Argyraki, EPFL
Rebecca Isaacs, Google

Program Committee
Aditya Akella, University of Wisconsin—Madison
Mohammad Alizadeh, Massachusetts Institute of

Technology
Mona Attariyan, Google
Hari Balakrishnan, Massachusetts Institute of

Technology
Mahesh Balakrishnan, Yale University
Aruna Balasubramanian, Stony Brook University
Sujata Banerjee, HP Labs
Paul Barford, University of Wisconsin—Madison and

comScore
Ranjita Bhagwan, Microsoft Research India
Nathan Bronson, Facebook
Paolo Costa, Microsoft Research
Paul Francis, Max Planck Institute for Software Systems

(MPI-SWS)
Monia (Manya) Ghobadi, Microsoft Research
Shyam Gollakota, University of Washington
Jon Howell, Google
Kyle Jamieson, Princeton University
Srikanth Kandula, Microsoft
Brad Karp, University College London
S. Keshav, University of Waterloo
Changhoon Kim, Barefoot Networks
Ramakrishna Kotla, Amazon
Jinyang Li, New York University
David Lie, University of Toronto

Kate C.-J. Lin, Academia Sinica, Taiwan
Wyatt Lloyd, University of Southern California
Jay Lorch, Microsoft Research
Ratul Mahajan, Microsoft Research
Prateek Mittal, Princeton University
Thomas Moscibroda, Microsoft Research
David Oran, Cisco Systems
Oriana Riva, Microsoft Research
Vyas Sekar, Carnegie Mellon University
Siddhartha Sen, Microsoft Research
Srinivasan Seshan, Carnegie Mellon University
Ankit Singla, ETH Zürich
Jonathan Smith, University of Pennsylvania
Alex Snoeren, University of California, San Diego
Kobus Van der Merwe, University of Utah
Laurent Vanbever, ETH Zürich
Matt Welsh, Google

Poster Session Co-Chairs
Aruna Balasubramanian, Stony Brook University
Laurent Vanbever, ETH Zürich

Steering Committee
Paul Barham, Google
Nick Feamster, Georgia Institute of Technology
Casey Henderson, USENIX Association
Arvind Krishnamurthy, University of Washington
Brian Noble, University of Michigan
Jennifer Rexford, Princeton University
Mike Schroeder
Alex C. Snoeren, University of California, San Diego

External Reviewers
Nishanth Chandran
Yu-han (Tiffany) Chen
Mike Freedman
Brighten Godfrey
Peter Iannucci
Eddie Kohler

Ravi Netravali
Amy Ousterhout
Jonathan Perry
Anirudh Sivaraman
John Wilkes

NSDI ’16: 13th USENIX Symposium
on Networked Systems Design and Implementation

March 16–18, 2016
Santa Clara, CA

Message from the Program Co-Chairs . vii

Wednesday, March 16, 2016
Network Architectures and Protocols
An Industrial-Scale Software Defined Internet Exchange Point .1
Arpit Gupta and Robert MacDavid, Princeton University; Rüdiger Birkner, ETH Zürich; Marco Canini,
Université catholique de Louvain; Nick Feamster and Jennifer Rexford, Princeton University; Laurent Vanbever,
ETH Zürich

XFabric: A Reconfigurable In-Rack Network for Rack-Scale Computers .15
Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Rowstron, Hugh Williams, and Xiaohan Zhao,
Microsoft Research

Be Fast, Cheap and in Control with SwitchKV .31
Xiaozhou Li and Raghav Sethi, Princeton University; Michael Kaminsky, Intel Labs; David G. Andersen,
Carnegie Mellon University; Michael J. Freedman, Princeton University

Bitcoin-NG: A Scalable Blockchain Protocol .45
Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse, Cornell University

Exploring Cross-Application Cellular Traffic Optimization with Baidu TrafficGuard 61
Zhenhua Li, Tsinghua University and Baidu Mobile Security; Weiwei Wang, Baidu Mobile Security; Tianyin Xu,
University of California, San Diego; Xin Zhong, Tsinghua University and Baidu Mobile Security; Xiang-Yang
Li, Tsinghua University, University of Science and Technology of China, and Illinois Institute of Technology;
Yunhao Liu, Tsinghua University; Christo Wilson, Northeastern University; Ben Y. Zhao, University of
California, Santa Barbara

Content Delivery
Efficiently Delivering Online Services over Integrated Infrastructure .77
Hongqiang Harry Liu, Microsoft Research; Raajay Viswanathan, University of Wisconsin—Madison;
Matt Calder, Microsoft; Aditya Akella, University of Wisconsin—Madison; Ratul Mahajan, Jitendra Padhye,
and Ming Zhang, Microsoft Research

Scalable and Private Media Consumption with Popcorn .91
Trinabh Gupta, The University of Texas at Austin and New York University; Natacha Crooks, The University
of Texas at Austin and Max Planck Institute for Software Systems (MPI-SWS); Whitney Mulhern, New York
University; Srinath Setty, Microsoft Research; Lorenzo Alvisi, The University of Texas at Austin; Michael
Walfish, New York University

Speeding up Web Page Loads with Shandian .109
Xiao Sophia Wang and Arvind Krishnamurthy, University of Washington; David Wetherall, University of
Washington and Google

Polaris: Faster Page Loads Using Fine-grained Dependency Tracking .123
Ravi Netravali and Ameesh Goyal, MIT CSAIL; James Mickens, Harvard University; Hari Balakrishnan,
MIT CSAIL

CFA: A Practical Prediction System for Video QoE Optimization .137
Junchen Jiang and Vyas Sekar, Carnegie Mellon University; Henry Milner, University of California, Berkeley;
Davis Shepherd, Conviva; Ion Stoica, University of California, Berkeley, Conviva, and Databricks; Hui Zhang,
Carnegie Mellon University and Conviva

Thursday, March 17, 2016
Wireless I
Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions .151
Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and Joshua R. Smith, University of Washington

Decimeter-Level Localization with a Single WiFi Access Point .165
Deepak Vasisht, MIT CSAIL; Swarun Kumar, Carnegie Mellon University; Dina Katabi, MIT CSAIL

A Scalable Multi-User Uplink for Wi-Fi .179
Adriana B. Flores, Sadia Quadri, and Edward W. Knightly, Rice University

BeamSpy: Enabling Robust 60 GHz Links Under Blockage .193
Sanjib Sur, Xinyu Zhang, and Parmesh Ramanathan, University of Wisconsin—Madison; Ranveer Chandra,
Microsoft Research

Flexible Networks
Compiling Path Queries .207
Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker, Princeton University

Simplifying Software-Defined Network Optimization Using SOL .223
Victor Heorhiadi and Michael K. Reiter, University of North Carolina at Chapel Hill; Vyas Sekar, Carnegie
Mellon University

Paving the Way for NFV: Simplifying Middlebox Modifications Using StateAlyzr .239
Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Abhashkumar, and Aditya Akella,
University of Wisconsin—Madison

Embark: Securely Outsourcing Middleboxes to the Cloud .255
Chang Lan, Justine Sherry, Raluca Ada Popa, and Sylvia Ratnasamy, University of California, Berkeley;
Zhi Liu, Tsinghua University

Dependability and Monitoring
BUZZ: Testing Context-Dependent Policies in Stateful Networks .275
Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar, Carnegie Mellon University

Minimizing Faulty Executions of Distributed Systems .291
Colin Scott and Aurojit Panda, University of California, Berkeley; Vjekoslav Brajkovic, International Computer
Science Institute; George Necula, University of California, Berkeley; Arvind Krishnamurthy, University of
Washington; Scott Shenker, University of California, Berkeley, and International Computer Science Institute

FlowRadar: A Better NetFlow for Data Centers .311
Yuliang Li and Rui Miao, University of Southern California; Changhoon Kim, Barefoot Networks; Minlan Yu,
University of Southern California

Sibyl: A Practical Internet Route Oracle .325
Ítalo Cunha, Universidade Federal de Minas Gerais; Pietro Marchetta, University of Napoli Federico II;
Matt Calder, Yi-Ching Chiu, and Brandon Schlinker, University of Southern California; Bruno V. A. Machado,
Universidade Federal de Minas Gerais; Antonio Pescapè, University of Napoli Federico II; Vasileios Giotsas,
University of California, San Diego/CAIDA; Harsha V. Madhyastha, University of Michigan; Ethan Katz-Bassett,
University of Southern California

VAST: A Unified Platform for Interactive Network Forensics .345
Matthias Vallentin, University of California, Berkeley; Vern Paxson, University of California, Berkeley, and
International Computer Science Institute; Robin Sommer, International Computer Science Institute and
Lawrence Berkeley National Laboratory

Resource Sharing
Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics .363
Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and Ion Stoica, University of
California, Berkeley

Cliffhanger: Scaling Performance Cliffs in Web Memory Caches .379
Asaf Cidon and Assaf Eisenman, Stanford University; Mohammad Alizadeh, MIT CSAIL; Sachin Katti,
Stanford University

FairRide: Near-Optimal, Fair Cache Sharing .393
Qifan Pu and Haoyuan Li, University of California, Berkeley; Matei Zaharia, Massachusetts Institute of
Technology; Ali Ghodsi and Ion Stoica, University of California, Berkeley

HUG: Multi-Resource Fairness for Correlated and Elastic Demands .407
Mosharaf Chowdhury, University of Michigan; Zhenhua Liu, Stony Brook University; Ali Ghodsi
and Ion Stoica, University of California, Berkeley, and Databricks Inc.

Friday, March 18, 2016
Distributed Systems
Consensus in a Box: Inexpensive Coordination in Hardware .425
Zsolt István, David Sidler, and Gustavo Alonso, ETH Zürich; Marko Vukolić, IBM Research—Zürich

StreamScope: Continuous Reliable Distributed Processing of Big Data Streams .439
Wei Lin and Haochuan Fan, Microsoft; Zhengping Qian, Microsoft Research; Junwei Xu, Sen Yang,
and Jingren Zhou, Microsoft; Lidong Zhou, Microsoft Research

Social Hash: An Assignment Framework for Optimizing Distributed Systems Operations
 on Social Networks .455
Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, and Aaron Adcock, Facebook;
Herald Kllapi, University of Athens; Michael Stumm, University of Toronto

The Design and Implementation of the Warp Transactional Filesystem .469
Robert Escriva and Emin Gün Sirer, Cornell University

BlowFish: Dynamic Storage-Performance Tradeoff in Data Stores .485
Anurag Khandelwal, Rachit Agarwal, and Ion Stoica, University of California, Berkeley

In-Network Processing
Universal Packet Scheduling .501
Radhika Mittal, Rachit Agarwal, and Sylvia Ratnasamy, University of California, Berkeley; Scott Shenker,
University of California, Berkeley, and International Computer Science Institute

Maglev: A Fast and Reliable Software Network Load Balancer .523
Danielle E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher,
Ardas Cilingiroglu, and Bin Cheyney, Google Inc.; Wentao Shang, University of California, Los Angeles;
Jinnah Dylan Hosein, SpaceX

Enabling ECN in Multi-Service Multi-Queue Data Centers .537
Wei Bai, Li Chen, and Kai Chen, Hong Kong University of Science and Technology; Haitao Wu, Microsoft

DFC: Accelerating String Pattern Matching for Network Applications .551
Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, Kyoungsoo Park, and Dongsu Han, Korea Advanced
Institute of Science and Technology (KAIST)

(Friday March 18, continues on next page)

Security and Privacy
Diplomat: Using Delegations to Protect Community Repositories .567
Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin Cappos, New York University

AnonRep: Towards Tracking-Resistant Anonymous Reputation .583
Ennan Zhai, Yale University; David Isaac Wolinsky, Facebook, Inc.; Ruichuan Chen, Nokia Bell Labs; Ewa Syta,
Yale University; Chao Teng, Facebook, Inc.; Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)

Mind the Gap: Towards a Backpressure-Based Transport Protocol for the Tor Network 597
Florian Tschorsch and Björn Scheuermann, Humboldt University of Berlin

Sieve: Cryptographically Enforced Access Control for User Data in Untrusted Clouds 611
Frank Wang, MIT CSAIL; James Mickens, Harvard University; Nickolai Zeldovich and Vinod Vaikuntanathan,
MIT CSAIL

Earp: Principled Storage, Sharing, and Protection for Mobile Apps .627
Yuanzhong Xu, Tyler Hunt, Youngjin Kwon, and Martin Georgiev, The University of Texas at Austin;
Vitaly Shmatikov, Cornell Tech; Emmett Witchel, The University of Texas at Austin

Wireless II
iCellular: Device-Customized Cellular Network Access on Commodity Smartphones 643
Yuanjie Li, University of California, Los Angeles; Haotian Deng and Chunyi Peng, The Ohio State University;
Zengwen Yuan, Guan-Hua Tu, Jiayao Li, and Songwu Lu, University of California, Los Angeles

Diamond: Nesting the Data Center Network with Wireless Rings in 3D Space .657
Yong Cui and Shihan Xiao, Tsinghua University; Xin Wang, Stony Brook University; Zhenjie Yang and
Chao Zhu, Tsinghua University; Xiangyang Li, Tsinghua University and University of Science and Technology
of China; Liu Yang, Beijing University of Posts and Telecommunications; Ning Ge, Tsinghua University

Ripple II: Faster Communication through Physical Vibration .671
Nirupam Roy and Romit Roy Choudhury, University of Illinois at Urbana–Champaign

PhyCloak: Obfuscating Sensing from Communication Signals .685
Yue Qiao, Ouyang Zhang, Wenjie Zhou, Kannan Srinivasan, and Anish Arora, The Ohio State University

Message from the
NSDI ’16 Program Co-Chairs

A warm welcome to NSDI ‘16! We are delighted to continue the NSDI tradition and share with you the latest and
greatest research on network systems. This year’s program features new ways to deliver content, respect user privacy,
improve network dependability and flexibility, and share network resources, as well as some very exciting new wire-
less technologies. Moreover, this year’s Operational Systems Track—which describes experience with real, deployed
networks—features work on distributed stream processing, software load balancing, cellular traffic optimization,
and social networks.

We received 225 submissions and accepted 45 papers. Our Program Committee consisted of 42 members with a mix
of research and industry experience. We completed two rounds of reviews: in the first round, each paper received 3
reviews; the 101 papers that advanced to the second round received at least two more reviews. Once the reviewing
process was over, the committee engaged in online discussion and selected 72 papers that were discussed further at
the PC meeting.

It has been a great pleasure working with many other people to put this program together. We would firstly, and
most importantly, like to thank the authors of all submitted papers for choosing to send work of such high calibre
to NSDI. Thanks also to the Program Committee for their professionalism, diligence and enthusiasm, and special
thanks to Aruna Balasubramanian and Laurent Vanbever for serving as poster chairs, as well as to Srikanth Kan-
dula and Laurent (again), for graciously agreeing to a last-minute request to take on extra reviewing load. We are
also very grateful to the USENIX staff, especially Casey and Michele, whose helpfulness knows no bounds. Finally,
NSDI wouldn’t be what it is without the attendees, so thank you very much for being here. We hope you enjoy the
conference!

Katerina Argyraki, EPFL
Rebecca Isaacs, Google
NSDI ’16 Program Co-Chairs

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) vii

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 1

An Industrial-Scale Software Defined Internet Exchange Point

Arpit Gupta�, Robert MacDavid�, Rüdiger Birkner†,
Marco Canini�, Nick Feamster�, Jennifer Rexford�, Laurent Vanbever†

�Princeton University †ETH Zürich �Université catholique de Louvain
http://sdx.cs.princeton.edu/

Abstract
Software-Defined Internet Exchange Points (SDXes)
promise to significantly increase the flexibility and func-
tion of interdomain traffic delivery on the Internet. Unfor-
tunately, current SDX designs cannot yet achieve the scale
required for large Internet exchange points (IXPs), which
can host hundreds of participants exchanging traffic for
hundreds of thousands of prefixes. Existing platforms are
indeed too slow and inefficient to operate at this scale, typ-
ically requiring minutes to compile policies and millions
of forwarding rules in the data plane.

We motivate, design, and implement iSDX, the first
SDX architecture that can operate at the scale of the
largest IXPs. We show that iSDX reduces both policy
compilation time and forwarding table size by two orders
of magnitude compared to current state-of-the-art SDX
controllers. Our evaluation against a trace from one of the
largest IXPs in the world found that iSDX can compile
a realistic set of policies for 500 IXP participants in less
than three seconds. Our public release of iSDX, complete
with tutorials and documentation, is already spurring early
adoption in operational networks.

1 Introduction
Software-Defined Networking (SDN) has reshaped the
design of many networks and is poised to enable new ca-
pabilities in interdomain traffic delivery. A natural place
for this evolution to occur is at Internet exchange points
(IXPs), which are becoming increasingly prevalent, partic-
ularly in developing regions. Because many Autonomous
Systems (ASes) interconnect at IXPs, introducing flexi-
ble control at these locations makes it easier for them to
control how traffic is exchanged in a direct, and more fine-
grained way. In previous work [14], we offered an initial
design of a Software-Defined Internet Exchange Point
(SDX) and showed how introducing SDN functionality at
even a single IXP can catalyze new traffic-management ca-
pabilities, ranging from better inbound traffic engineering
to application-specific peering and server load balancing.

Since we introduced SDX [13], many organizations
and networks have built different versions of this con-
cept [4, 14, 22, 23, 35]. Yet, many of these deployments

remain relatively small-scale or limited in scope because
current switch hardware cannot support large forwarding
tables, and because efficiently combining the policies of
independently operated networks as routes and policies
change presents a significant scaling challenge.

In this paper, we tackle these scalability challenges with
the design and implementation of iSDX, an industrial-
scale SDX that can support interconnection for the largest
IXPs on the Internet today. We design mechanisms that
allow the number of participants, BGP routes, and SDN
policies to scale, even for the limited table sizes of today’s
switches. We develop algorithms for compiling traffic
control policies at the scale and speed that networks that
such an IXP would require. We have implemented these
algorithms in Ryu [31], a widely used SDN controller. We
have released our implementation to the public with doc-
umentation and tutorials; one large government agency
has tested iSDX with hardware switches and is using our
controller as the basis for a deployment.

In the design and implementation of iSDX, we address
two scalability challenges that are fundamental to any
SDX design. The first challenge relates to how the control
plane combines the policies of individual networks into
forwarding entries in the data plane. Compiling traffic
control policies expressed in a higher-level policy lan-
guage to forwarding table entries can be slow, since this
process involves composing the policies of multiple par-
ticipants into a single coherent set of forwarding-table
entries. This slow process is exacerbated by the fact that
any change to BGP routing may change forwarding be-
havior; existing SDX designs trigger recompilation every
time a BGP best route changes, which is not tractable in
practice. The main scalability challenge thus involves ef-
ficiently composing the policies of individual participants,
and ensuring that the need to recompile the forwarding ta-
ble entries is completely decoupled from (frequent) BGP
routing changes.

To scale the control plane, we introduce a new design
that exploits the fact that each participant expresses its
SDN policy independently, which implies that each par-
ticipant can also compile its SDN policies independently,
as well. This change enables more aggressive compres-

2 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

sion of the forwarding tables than is possible when all
of the policies are compressed together and also allows
for participant policies to be compiled in parallel. As a
result, iSDX compiles the forwarding tables two orders of
magnitude faster than the existing approaches; the tables
are also two orders of magnitude smaller, making them
suitable for practical hardware-switch deployments.

The second challenge relates to the data plane: the
number of forwarding table entries that might go into
the forwarding table at an IXP switch can quickly grow
unacceptably large. Part of the challenge results from
the fact that the policies that each network writes have to
be consistent with the BGP routes that each participant
advertises, to ensure that an SDN policy cannot cause
the switch to forward traffic on a path that was never
advertised in BGP. This process significantly inflates the
number of forwarding table entries in the switch and is a
considerable deployment hurdle. Large industrial-scale
IXPs can have over 700 participants exchanging traffic for
hundreds of thousands of prefixes; combined with the fact
that each of these participants may now introduce policies
for specific traffic flows, the number of forwarding table
entries quickly becomes intractable. Although our initial
design [14] reduced the size of the forwarding tables, we
show that the size of these tables remained prohibitively
large for industrial-scale deployments.

To address the data-plane challenge, we introduce an
efficient encoding mechanism where the IXP fabric for-
wards the packet based on an opaque tag that resides in
the packet’s destination MAC field. This tag explicitly
encodes both the next-hop for the packet and the set of
ASes that advertise BGP routes for the packet’s destina-
tion, thus making it possible to remove this information
from the switch tables entirely. This separation prevents
BGP routing updates from triggering recomputation and
recompilation of the forwarding table entries. Using fea-
tures in OpenFlow 1.3 that support matching on fields
with arbitrary bitmasks, we significantly reduce the size
of this table by grouping tags with common bitmasks.

In summary, we present the following contributions:

• The design and implementation of iSDX, the first
SDX controller that scales to large industrial-scale
IXPs. We devised new mechanisms for distributing
control-plane computation, compressing the forward-
ing tables, and responding to BGP routing changes,
reducing the compilation time and forwarding table
size by several orders of magnitude. (Sections 3–5)

• A public, open-source implementation of iSDX on
Github [16]; the system is based on Ryu, a widely
used SDN controller, and is accompanied with tuto-
rials and instructions that have already helped spur
early adoption. (Section 6)

• An extensive evaluation of iSDX’s scalability char-
acteristics using a trace-driven evaluation from one
of the largest IXPs in the world. Our evaluation
both demonstrates that iSDX can scale to the largest
IXPs and provides insight into specifically how (and
to what extent) each of our optimizations and algo-
rithms helps iSDX scale. (Section 7)

We survey related work in Section 8 and conclude in
Section 9 with a discussion of open issues in SDX design
and avenues for future work.

2 SDX: Background & Scaling Challenges
We begin with a background on our previous SDX de-
signs [14, 35] and a demonstration that these designs can-
not scale to industrial IXPs.

2.1 Background
Brief overview of SDX. An SDX is an IXP consisting
of a programmable SDN fabric, coupled with a BGP
route server (which allows IXP participants to exchange
reachability information via BGP) and an SDN controller
(which allows participants to override default BGP rout-
ing behavior with more fine-grained SDN policies). The
SDX controller provides each participant AS with the ab-
straction of a dedicated switch that it can program using
match-action policies to control traffic flows. Participants
may express SDN policies on both their inbound and out-
bound traffic; the SDX controller ensures that no SDN
policy results in traffic being forwarded to a neighboring
AS that did not advertise a BGP route for the prefix that
matches the packet’s destination IP address.

Each participant runs an SDN control application on
the central controller and has its border router exchange
BGP update messages with the IXP’s route server. The
SDN controller combines the SDN policies from all par-
ticipants, reconciles the resulting policy with the BGP
routing information, and computes and installs the result-
ing forwarding table entries in the IXP fabric. To avoid
having forwarding entries for all prefixes, our original
SDX design relied on the participants’ border routers to
tag packets entering the IXP fabric with a forwarding
equivalence class of destination prefixes with the same
forwarding action. For backwards compatibility, the tag
was the destination MAC address, set in response to the
border router sending an ARP query for the next-hop IP
address from the BGP route advertisement. The SDX
route server computed a different (virtual) next-hop IP ad-
dress for each equivalence class of prefixes to trigger the
border router to use a common MAC address for packets
sent to the group of destination IP addresses.
Example operation. Figure 1a shows an example topol-
ogy with five participants; Figure 1b shows the routes
advertised to A and B and the BGP routes that they select

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 3

AS C

P1,P2,
P3,P4

P1,P2,P3,
P4,P5

P4,P5

Control
Plane

IXP
Fabric

AS D

AS EAS B
router

AS A
router

announces

announces

announces

(a) Example Topology

A B
P1 C, D C, D
P2 C, D C, D
P3 C, D C, D
P4 C, D, E C, D, E
P5 D, E D, E

(b) Reachability and Next Hops (in bold) for AS A and AS B

Figure 1: An example with five IXP participants. Two partici-
pants AS A and AS B have outbound policies. The other three
advertise five IP prefixes to both these participants.

for each prefix (in bold). Both A and B express outbound
policies. To ensure that SDN policies cause the IXP to for-
ward traffic in a way that is consistent with the advertised
BGP routes, the SDX controller augments each outbound
policy with the reachability information. Intuitively, aug-
mentation restricts forwarding policies so that traffic is
forwarded only on paths that correspond to BGP routes
that the participant has learned.

For example, suppose that A has the following out-
bound policies:
dPort=443→ fwd(C)

dPort=22→ fwd(C)

dPort=80∧sIp=10/24→ fwd(D)

dPort=80∧sIp=40/24→ fwd(D)

These policies forward traffic based on values of packet
header fields, overriding BGP behavior. For instance, the
first policy specifies HTTPS traffic (dPort=443) should
be forwarded to C. Without augmentation, A would also
forward the HTTPS traffic destined for prefix P5 to C,
even though C never advertised a path for P5 to A. In our
example, A’s policies are then augmented as follows:
dIp ∈ {P1,P2,P3,P4}∧dPort=443→ fwd(C)

dIp ∈ {P1,P2,P3,P4}∧dPort=22→ fwd(C)

dIp ∈ {P1,P2,P3,P4,P5}∧dPort=80∧sIp=10/24→ fwd(D)

dIp ∈ {P1,P2,P3,P4,P5} ∧ dPort=80∧ sIp=40/24 → fwd(D)

Augmentation enforces that the destination IP (dIp)
matches one of the prefixes that either C or D announces
to A, therefore ensuring congruence with BGP routing.
Observe that a straightforward realization of this policy
requires one distinct match-action rule for each of the five
prefixes. Hence, the augmented policies would result in

18 forwarding rules instead of the four rules necessary to
implement the original policy.

Similarly, if B’s outbound policy is:
dPort=443→ fwd(E)

the SDX controller augments the policy, doubling the
number of necessary rules, as follows:
dIp ∈ {P4,P5}∧dPort=443→ fwd(E)

To better illustrate the scalability challenge, we capture
the expansion of the switch forwarding tables using an
augmentation matrix (Figure 2, left matrix). In this matrix,
a row labeled as SDNX ,Y refers to an SDN policy written
by X that results in traffic being forwarded to Y , while
columns refer to IP prefixes. The value of an element
(i, j) indicates the number of forwarding table entries
(i.e., match-action rules) in participant i’s policy where
prefix j appears. Similarly, BGPX ,Y indicates whether X
selects Y as the next hop for some BGP-advertised prefix,
and element (i, j) is 1 if participant A selects the route
advertised by B for the prefix corresponding to column j.

For example, the element in row SDNA,C and column
P1 reflects the fact there are two forwarding table en-
tries that correspond to prefix P1: one for traffic with
dPort=443 and one for traffic with dPort=22. The
same applies for columns P2, P3, and P4. We can deter-
mine the total number of forwarding table entries (and
the number contributed by each participant) by summing
up the corresponding elements in the matrix. We will
use this notation to describe compression techniques (and
their effects) throughout the paper.
Previously developed compression techniques. Intu-
itively, the number of forwarding rules increases as the
number of SDX participants with outbound policies in-
creases (more rows) and as forwarding policies are de-
fined for additional prefixes (more columns). To limit the
number of forwarding rules, the original SDX design [14]
identified the Minimum Disjoint Set (MDS) of prefixes
(columns) with the same SDN policies and grouped each
equivalent set into a Forwarding Equivalence Class (FEC).
In the rest of this paper, we refer to this algorithm as MDS
compression. For instance, in the preceding example, pre-
fixes P1,P2,P3 belong to the same FEC, as indicated by
the boldface entries in the left matrix in Figure 2. MDS
compression reduces the number of forwarding table en-
tries by assigning a virtual next-hop to each FEC, rather
than to each individual prefix. Figure 2 also depicts the
number of forwarding table entries before and after MDS
compression. In particular, MDS compression reduces
the number of columns from the total number of prefixes
(5) to the number of FECs (3).

2.2 Existing SDX Designs Do Not Scale
In this section, we show that existing SDX designs do
not scale to the demands of industrial-scale IXPs. We
explore two different state-of-the-art SDX designs: (1) an

3

4 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Policy CompressionAugmentation Composition Compilation

Control Plane Updates Data Plane Updates

P1 P2 P3 P4 P5

SDNA,C 2 2 2 2 0

SDNA,D 2 2 2 2 2

SDNB,E 0 0 0 1 1

BGPA,D 1 1 1 1 0

BGPA,E 0 0 0 0 1

BGPB,C 1 1 1 0 0

BGPB,E 0 0 0 1 1

{P1, P2, P3} P4 P5

SDNA,C 2 2 0

SDNA,D 2 2 2

SDNB,E 0 1 1

BGPA,D 1 1 0

BGPA,E 0 0 1

BGPB,C 1 0 0

BGPB,E 0 1 1

PolA
PolB

Policies

BGP

13
5

23
7

4
1

Total Outbound Rules of A
Total Outbound Rules of B

Forwarding Actions of B

Forwarding Actions of A

Forwarding Equivalence

Figure 2: Matrix representation of AS A and AS B’s outbound policies after augmentation and policy compression, as well as the
stages of compression and composition in the original SDX design; the composition stage is grey to indicate that the iSDX eliminates
this stage entirely.

100 200 300 400 500

Participants

103

104

105

106

107

108

109

Fo
rw

ar
di

ng
Ta

bl
e

E
nt

rie
s

Unoptimized
MDS SDX-Central

iSDX
Optimal

(a) Number of Forwarding Table Entries.

100 200 300 400 500

Participants

0

8000

16000

24000

32000

Fl
ow

-M
od

s

MDS SDX-Central
Unoptimized

iSDX

(b) Data-Plane Update Rate.

Figure 3: Existing SDX designs can require to maintain millions of forwarding entries (left) and update 10,000s of updates per
second (right). Such numbers are far from current hardware capabilities. As an illustration, the dashed line highlights the hardware
capabilities of state-of-the-art SDN switches [26].

unoptimized SDX that does not compress policies, such as
that used by Google’s Cardigan SDX [38]; (2) a simple,
centralized SDX controller that applies MDS compres-
sion, as in our previous work [14]. We also preview the
results from this paper, showing that our new architecture,
iSDX, reduces the compilation time, number of forward-
ing table entries, and data-plane update rate by more than
two orders of magnitude, thus making operation in an
industrial-scale IXP practical. In each case, we evalu-
ate the time to compute the forwarding table entries, the
number of forwarding table entries, and the rate at which
changes in BGP routing information induce changes in
the forwarding table entries. We use a real BGP trace
from one the largest IXPs in the world for this evaluation.
Section 7 provides details about our experiment setup.

Unoptimized Centralized MDS-SDX [14] iSDX
Time (s) 4572.15 1740.93 2.82

Table 1: Median time (for 60 trials) to compute forwarding
table entries for an IXP with 500 participants. The iSDX column
shows the results for this paper.

Existing SDX designs can take minutes to compute
forwarding table entries. Table 1 shows the median
time over 60 trials to compute forwarding table entries
for an IXP with 500 participants for two state-of-the-art
SDX designs, as well as for iSDX, the design that we
present in this paper. iSDX reduces the average time to

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 5

compute forwarding table entries from 30 minutes to less
than three seconds.
Existing SDX designs can require millions of forward-
ing table entries. Figure 3a shows how the number of
forwarding table entries increases as the number of par-
ticipants increases from 100 to 500. MDS compression
reduces the number of entries by an order of magnitude,
but the forwarding table is still too large for even the most
high-end hardware switches, which have about 100,000
TCAM entries [26]. The iSDX design ensures that the
number of forwarding table entries is approximately the
number of SDN policies that each participant expresses
(shown as “optimal” in Figure 3a), thus allowing the num-
ber of forwarding table entries to be in the tens of thou-
sands, rather than tens of millions.
Existing SDX designs require hundreds of thousands
updates per second to the data plane. Figure 3b shows
the worst-case data-plane update rate that an SDX con-
troller must sustain to remain consistent with existing
BGP updates. The update rates of existing designs are sev-
eral orders of magnitude above what even top-of-the-line
hardware switches can support [26] (i.e., about 2,500 up-
dates per second). In constrast, iSDX usually eliminates
forwarding table updates in response to BGP updates.

3 Design of an Industrial-Scale SDX
We introduce the design of an industrial-scale SDX
(iSDX), which relies on two principles to reduce com-
pilation time, the number of forwarding table entries, and
forwarding table update rates.

3.1 Partition Control-Plane Computation

Problem: Considering all policies together reduces
opportunities for compression. Centralized SDX con-
trollers perform control-plane computations for all IXP
participants. Doing so not only forces the controller to
process a large single combined policy, it also creates
dependencies between the policies of individual IXP par-
ticipants. For example, a change to any participant’s
inbound policy triggers the recompilation of the policies
of all participants who forward traffic to that participant.
This process requires significant computation and also
involves many (and frequent) updates to the forwarding
table entries at the IXP switch.
Solution: Partition computation across participants.
We solve this problem by partitioning the control-plane
computation across participants. Doing so ensures that
participant policies stay independent from each other. In
addition, partitioning the computation enables more effi-
cient policy compression by operating on smaller state,
reducing both computation time and data plane state. Par-
titioning the control-plane computation among partici-
pants also enables policy compilation to scale out as the

Policy CompressionAugmentation Compilation

Control Plane Updates Data Plane Updates

P1 P2 P3 P4 P5

SDNA,C 2 2 2 2 0

SDNA,D 2 2 2 2 2

BGPA,D 1 1 1 1 0

BGPA,E 0 0 0 0 1

{P1, P2, P3, P4} P5

SDNA,C 2 0

SDNA,D 2 2

BGPA,D 1 0

BGPA,E 0 1

BGP

Policy A
4
1

23
7

8
3

Forwarding Actions of A

Total Outbound Rules of A
Total Outbound Rules of B

Figure 4: Partitioning the Control-Plane Computation.

number of IXP participants and routes grows. Section 4
details this approach.

3.2 Decouple BGP and SDN Forwarding

Problem: Frequent BGP updates trigger recompila-
tion. Coupling BGP and SDN policies during compilation
inflates the number of resulting forwarding table entries
and also implies that any change to BGP routing triggers
recompilation of the forwarding table entries, which is
costly. Our previous design partially addressed this prob-
lem, but this design still requires millions of flow rules in
the data plane as shown in Figure 3a. Additionally, our
previous approach to reduce the number of forwarding
table entries increases the forwarding table update rates,
since any change in BGP routing may affect how entries
are compressed.

Solution: Encode BGP reachability information in a
separate tag. We address this problem by encoding all
information about BGP best routes (and corresponding
next hops) into the destination MAC addresses, which
reduces the number of forwarding table entries, as well as
the number of changes to the forwarding table when BGP
routes change. Section 5 discusses our approach in detail.

4 Partitioning Control-Plane Computation
To achieve greater compression of the rule matrix, we
need to reduce the constraints that determine which pre-
fixes belong to the same FEC. Rather than computing
one set of equivalence classes for the entire SDX, iSDX
computes separate FECs for each participant. We first
discuss how partitioning by participant reduces the size of
the rule matrices and, as a side benefit, allows for faster
computation. We then describe how we use multiple
match-action tables and ARP relays to further improve
scalability, setting the stage for further optimizations in
Section 5.

4.1 Partitioning the FEC Computation
Figure 4 shows similar compression and compilation steps
as the ones done in Figure 2, with the important distinction
that it takes place on behalf of participant A only; similar
operations take place on behalf of other participants. Fig-

5

6 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

IXP Fabric

IXP Controller

C1’s Router

C2’s Router

A’s Router

e
a

match
dstmac

modify
dstmac

Inbound Table

… …

C C2
VMAC-1

Packet

e
a

match
srcmac, VMAC

modify
dstmac

Outbound Table

… …

SRC_A CVMAC-1

C’s ControllerA’s Controller

A C

e
a

match
inport

mod srcmac
and forward

Input Table

inport_A

… …
SRC_A

e
a

match
dstmac

write dstmac,
output packet

Output Table

… …

C1

C2

Fwd C1

Fwd C2

C1_MAC

C2_MAC

Forwarding RulesSteering Rules

A’s Outbound Rules C’s Inbound Rules

Fabric Manager

Figure 5: Distributing forwarding rules and tags.

ure 4 highlights two important benefits of partitioning the
computation of FEC across participants:

• Computing separately for each participant reduces
the number of next-hops, leading to a smaller number
of larger forwarding equivalence classes. In Figure 4,
the number of columns reduces from five to two.

• The computational complexity of computing FECs
is proportional to the number of rows times the num-
ber of columns in the rule matrix. Now, each rule
matrix is smaller, and the computation for different
participants can be performed in parallel.

In practice, the SDX controller could compute the FECs
for each participant, or each participant could run its own
controller for computing its own FECs. In the rest of the
paper, we assume each participant runs its own controller
for computing its FECs.

4.2 Distributing Forwarding Rules & Tags
In addition to computing the FECs for each participant,
the iSDX must realize these policies in the data plane.
Decomposing the IXP fabric into four tables: To for-
ward traffic correctly, an SDX must combine the inbound
and outbound policies for all of the participants. Repre-
senting the combination of policies in a single forwarding
table, as in an OpenFlow 1.0 switch, would be extremely
expensive. Some existing SDN controllers perform this
type of composition [25, 33]—essentially computing a
cross product of the constituent policies—and, in fact, our
original SDX followed this approach [14]. Computing
the cross product leads to an explosion in the number of
rules, and significant recomputation whenever one of the
participant policies changes.

Fortunately, modern switches have multiple stages of
match-action tables, and modern IXPs consist of multiple
switches. The iSDX design capitalizes on this trend. The
main challenge is to determine how to most effectively
map policies to the underlying tables.

A strawman solution would be to use a two-table
pipeline, where packets first enter an outbound table im-

plementing outbound policies for the participant where
the traffic originates, followed by an inbound table that
applies inbound policies for the participant that receives
the traffic as it leaves the IXP fabric. Using only two
tables, however, would mean that some of these tables
would need to be much larger; for example, the outbound
table would need to represent the cross product of all in-
put ports and outbound policies. Additionally, using only
two tables makes it more difficult to scale-out the iSDX
as the number of participants grows.

As such, our design incorporates an input table, which
handles all the incoming traffic and tags it with a new
source MAC address based on the packet’s incoming port,
so that packets can be multiplexed to the outbound table.
As the packet leaves the iSDX, it passes through an output
table, which looks up the packet’s tag in the destination
MAC field and both performs the appropriate action and
rewrites the packet’s destination MAC address. Separate
input and output tables provide a cleaner separation of
function between the modules that write to each table,
avoid cross-product explosion of policies, and facilitates
scale-out by allowing the inbound and outbound tables to
reside on multiple physical switches in the IXP infrastruc-
ture. (Such scale-out techniques are beyond of the scope
of this paper.)

Figure 5 shows how the IXP fabric forwards a packet,
while distributing the compilation and compression of
policies across separate tables. Based on the destination
IP address of the packet, suppose that AS A’s controller
selects a route to the packet’s destination via AS D; this
route will correspond to a next-hop IP address. AS A’s
controller will make a BGP announcement advertising
this path. AS A’s router will issue an ARP query for the
advertised next-hop IP address, and then AS A’s controller
will respond via the ARP relay setting a virtual MAC ad-
dress (in Figure 5, “VMAC-1”) as the packet’s destination
MAC address.

When the packet enters the IXP fabric, the input table
matches on the packet’s incoming port and rewrites the

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 7

source MAC address to indicate that the packet arrived
from AS A (“SRC A”). If A has an outbound policy, the
packet will match on (“SRC A”), and the outbound ta-
ble will apply an outbound policy. If A has no outbound
policy for this packet, the input table forwards the packet
directly to the inbound table without changing the des-
tination MAC. This bypass is not strictly necessary but
avoids an additional lookup for packets that do not have a
corresponding outbound policy. A’s outbound policy thus
overwrites default BGP forwarding decision and modifies
the destination MAC address to “C”. The inbound table
rewrites the tag to correspond to the final disposition of
the packet (“C1” or “C2”), which is implemented in the
output table. The output table also rewrites the tag to the
receiver’s physical MAC address before forwarding.

Reducing ARP traffic overhead. Partitioning the FEC
computation reduces the number of FECs per participant,
but may increase the total number of FECs across all
participants (i.e., the number of columns across all rule
matrices). To reduce the size of the forwarding tables,
each data packet carries a tag (i.e., a virtual MAC address)
that identifies its FEC. The participant’s border router
learns the virtual MAC address through an ARP query
on the BGP next-hop IP address of the associated routes.
The use of broadcast for ARP traffic, combined with the
larger number of next-hop IP addresses, could overwhelm
the border routers and the IXP fabric. In fact, today’s
IXPs are already vulnerable to high ARP overheads [5].

Fortunately, we can easily reduce the overhead of ARP
queries and responses, because each participant needs to
learn about only the virtual MAC addresses for its own
FECs. As such, the SDX can turn ARP traffic into unicast
traffic by installing the appropriate rules for handling
ARP traffic in switches. In particular, each participant’s
controller broadcasts a gratuitous ARP response for every
virtual next-hop IP address it uses; rules in the IXP’s
fabric recognize the gratuitous ARP broadcasts and ensure
that they are forwarded only to the relevant participant’s
routers. Participants’ routers can still issue ARP queries
to map IP addresses to virtual MAC addresses, but the
fabric intercepts these queries and redirects them to an
ARP relay to avoid overwhelming other routers.

5 Decoupling SDN Policies from Routing
To ensure correctness, any SDX platform must combine
SDN policies with dynamic BGP state: which participants
have routes to each prefix (i.e., valid next-hop ASes for
a packet with a given destination prefix), as well as the
next-hop AS to use for each prefix (i.e., the outcome of
BGP decision process). The large number of prefixes and
participants creates scalability challenges with respect
to forwarding table sizes and update rates, before SDN
policies even enter the equation.

5.1 Idea: Statically Encode Routing
To reduce the number of rules and updates, we develop a
new encoding scheme that is analogous to source routing:
The IXP fabric matches on a tag that is provisioned by a
participant’s SDX controller. To implement this approach,
we optimize the tag that the fabric uses to forward traffic
(as described in Section 4) to carry information about both
the next-hop AS for the packet (as determined by the best
BGP route) and the ASes who have advertised routes to
the packet’s destination prefix. If no SDN policy matches
a packet, iSDX can simply match on the next-hop AS
bits of the tag to make a default forwarding decision. As
before, the sender discovers this tag via ARP.

To implement default forwarding, the IXP fabric main-
tains static entries for each next-hop AS which forward
to participants based upon the next-hop AS bits of the tag.
When the best BGP routes change, the entries need not
change, rather the next-hop AS bits of the tags change.

To account for changes in available routes, SDN poli-
cies that reroute to some participant X confirm whether
X has advertised a route before forwarding. The method
of checking for X in the tags is static, meaning that in
contrast to our previous design [14], BGP updates induce
zero updates in the IXP switch data plane. Instead, BGP
updates result in tag changes, and the participant’s border
router learns these dynamic tags via ARP.

5.2 Encoding Next-Hop and Reachability
We now describe how iSDX embeds both the next-hop
AS (i.e., from the best BGP route) and the reachability
information (i.e., the set of ASes that advertise routes to
some prefix) into this tag.

5.2.1 Next-hop encoding

The next-hop information denotes the default next-hop
AS for a packet, as determined by BGP. In the example
from Section 2.1, A’s next-hop AS for traffic to P1 as de-
termined by the best BGP route is D. iSDX allocates bits
from the tag (i.e., the virtual MAC, which is written into
the destination MAC of the packet’s header) to denote this
next-hop. If no SDN policy overrides this default, iSDX
applies a default priority prefix-based match on these
bits to direct traffic to the corresponding next-hop.1 This
approach reduces the forwarding table entries in a partici-
pant’s outbound table, since additional entries for default
BGP forwarding no longer need to be represented as dis-
tinct entries in the forwarding table. Encoding the next
hop information in this way requires lg(N) bits, where N
is the number of IXP participants. At a large IXP with
up to 1024 participants, ten bits can encode information
about default next-hop ASes, leaving 37 bits.2

1The OpenFlow 1.3 standard supports this feature [27], which is
already implemented in many hardware switches (e.g., [26, 28]).

2One of the 48 bits in the MAC header is reserved for multicast.

7

8 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Reachability Next Hop

VMAC
C D

Outbound Table

&& dPort=443

&& dPort=22

&& dPort=80 && sIP=10/24

&& dPort=80 && sIP=40/24

Match Modify DstMac

Output Table

Match Action

Fwd(C)

Fwd(D)

Fwd(E)

A's Border Router

P1

P2

P3

P4

P5

Prefix VMAC

IXP Fabric

Input
Table

Inbound
Table

Figure 6: How AS A’s controller uses reachability encoding to reduce the number of flow rules.

5.2.2 Reachability encoding

We now explain how to encode reachability information
into the remaining 37 bits of the destination MAC address.
We first present a strawman approach that illustrates the
intuition before describing the scalable encoding.

Strawman encoding. Suppose that for a given tag, the
i-th bit is 1 if that participant learns a BGP route to the
corresponding prefix (or prefixes) via next-hop AS i. Such
an encoding would allow the IXP fabric to efficiently
determine whether some participant could forward traffic
to some next-hop AS i, for any i at the IXP. Considering
the example in Section 2.1, A’s outbound policies are:
dMac = XX1X...X∧dPort=443→ fwd(C)

dMac = XX1X...X∧dPort=22→ fwd(C)

dMac = XXX1X..X∧dPort=80∧sIp=10/24→ fwd(D)

dMac = XXX1X..X∧dPort=80∧sIp=40/24→ fwd(D)

where X stands for a wildcard match (0 or 1). This en-
coding ensures correct interoperation with BGP, yet we
use just four forwarding table entries, which is fewer than
the 18 required using augmentation (from the original
example in Section 2).

Figure 6 explains how this approach reduces the num-
ber of forwarding table entries in the switch fabric. When
a packet arrives, its virtual MAC encodes both (1) which
ASes have advertised a BGP route for the packet’s des-
tination (“reachability”) and (2) the next-hop participant
corresponding to the best BGP route (“next hop”). Sup-
pose that a packet is destined for P1 from A; in this case,
A’s border router will affix the virtual MAC as shown.
If that virtual MAC does not match any forwarding ta-
ble entries in the outbound table, the packet will simply
be forwarded to the appropriate default next hop (in this
case, D) based on the next-hop encoding. This process
makes it possible for the switch to forward default BGP
traffic without installing any rules in the outbound table,
significantly reducing the size of this table.

Hierarchical encoding. The approach consumes one bit
per IXP participant, allowing at most for only 37 IXP
participants. To encode more participant ASes in these
37 bits, we divide this bitspace hierarchically. Suppose
that an IXP participant has SDN policies that refer to
N other IXP participants (i.e., possible next-hop ASes).
Then, all of these N participants need to be efficiently

IXP Fabric

Central Services

IXP Controller

BGP Relay

ARP Relay

Participant Controller

ARP Handler

BGP Handler

RIBs

Fabric Manager

BGP Updates

ARP Requests

Forwarding Table Entries

Update Handler

Policy Compression Library

Figure 7: Implementation of iSDX. It has five main modules:
(1) IXP controller, (2) participant SDN controller, (3) ARP relay,
(4) BGP relay, and (5) fabric manager.

encoded in the 37-bit space, B. We aim to create W
bitmasks {B1,B2, . . . ,BW} that minimize the total number
of forwarding table entries, subject to the limitations of
the total length of the bitmask.

Given M prefixes and N IXP participants, we begin
with M bitmasks, where each bitmask encodes some set
of participants that advertise routes to some prefix pi.
We greedily merge pairs of sets that have at least one
common participant, and we always merge two sets if one
is a subset of the other. Iterating over all feasible merges
has worst-case complexity O(M2); and there may be as
many as M − 1 merge actions in the worst case. Each
merge has complexity O(N), which gives us an overall
worst-case running time complexity of O(M3N).

Given 37 spare bits in the destination MAC for reacha-
bility encoding, if a participant has defined SDN policies
for more that 37 participants who advertise the same pre-
fix, then the number of bits required to encode the reach-
ability information will exceed 37. Our analysis using a
dataset from one of the largest IXPs in the world found
that the maximum number of participants advertising the
same prefix was only 27, implying that largest bitmask
that this encoding scheme would require is 27 bits. There
were 62 total bitmasks, meaning 6 bits are required to
encode the ID of a bitmask, requiring a total of 33 bits
for the encoding. Using a different (or custom) field in
a packet header might also be possible if these numbers
grow in the future.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 9

6 Implementation
We now describe an implementation of iSDX, as shown
in Figure 7. Our Python-based implementation has about
5,000 lines of code. Source code and tutorials are publicly
available on Github [16]. We have also provided instruc-
tions for deploying iSDX on hardware switches [17]; one
large government agency has successfully done so with
the Quanta LY2 switch [28]. About 300 students used an
earlier version of iSDX in the Coursera SDN course [8].

The fabric manager is based on Ryu [31]. It listens
for forwarding table modification instructions from the
participant controllers and the IXP controller and installs
the changes in the switch fabric. The fabric manager ab-
stracts the details of the underlying switch hardware and
OpenFlow messages from the participant and the IXP con-
trollers and also ensures isolation between participants.

The IXP controller installs forwarding table entries
in the input and output tables in the switch fabric via
the fabric manager. Because all of these rules are static,
they are computed only at initialization. Moreover, the
IXP controller handles ARP queries and replies in the
fabric and ensures that these messages are forwarded to
the respective participants’ controllers via ARP relay.

The BGP relay is based on ExaBGP [11] and is similar
to a BGP route server in terms of establishing peering ses-
sions with the border routers. Unlike a route server, it does
not perform any route selection. Instead, it multiplexes
all BGP routes to the participant controllers.

Each participant SDN controller computes a com-
pressed set of forwarding table entries, which are installed
into the inbound and outbound tables via the fabric man-
ager, and continuously updates the entries in response
to the changes in SDN policies and BGP updates. The
participant controller receives BGP updates from the BGP
relay. It processes the incoming BGP updates by select-
ing the best route and updating the RIBs. We developed
APIs to use either of MongoDB [24], Cassandra [2] and
SQLite [34] for storing participants’ RIBs. We used the
MongoDB (in-memory) for the evaluation in Section 7.
The participant controller also generates BGP announce-
ments destined to the border routers of this participant,
which are sent to the routers via the BGP relay.

Each participant controller’s update handler deter-
mines whether the inbound and outbound tables need to
be updated, as well as whether new gratuitous ARP mes-
sages must be sent to the participant’s border routers to
update any virtual destination MAC addresses. The con-
troller receives ARP requests from the participant’s border
routers via the ARP handler and determines the corre-
sponding ARP reply. The controller also receives SDN
policy updates from the network operators in the form of
addition and removal lists. Both the update handler and
the ARP handler use a policy compression library that we

MDS NH Encoding Reachability Encoding
iSDX-D � � �

iSDX-N � � �

iSDX-R � � �

Table 2: Three distributed SDX Controllers.

implemented, which provides the mapping between IP
prefixes and virtual next-hop IPs (corresponding to best
BGP routes), and between virtual next-hop IPs and virtual
destination MAC addresses (i.e., an ARP table).

7 Evaluation
We now demonstrate that iSDX can scale to the forward-
ing table size, data plane update rate, and control plane
computation requirements of an industrial-scale IXP. Ta-
ble 2 summarizes the three different iSDX designs that
we compare to previous approaches: iSDX-D applies
the same MDS compression technique as in our previous
work [14], but with tables distributed across participants;
iSDX-N additionally encodes the next-hop AS in the tag;
and iSDX-R encodes both the next-hop AS and BGP
reachability information in the tag.

Table 3 summarizes our results: iSDX reduces the num-
ber of forwarding table entries for an industrial-scale
IXP by three orders of magnitude as compared to an un-
optimized, centralized SDX design; and by more than
two orders of magnitude over the state-of-the-art SDX
design [14]. This section explains these results in detail.

7.1 Experiment Setup
We use data sets from one of the largest IXPs worldwide,
which interconnects more than 600 participants, who peer
with one another via a BGP route server [29]. We had ac-
cess to the RIB table dump collected from the IXP’s route
server on August 8, 2015 for 511 IXP participants. These
datasets contain a total of 96.6 million peering (i.e., non-
transit) routes for over 300,000 distinct prefixes. We also
use a trace of 25,676 BGP update messages from these
participants to the route server for the two hours following
the collection of this RIB table dump (the participants’
RIBs are naturally not perfectly aligned, since dumping
a BGP table of about 36 GB from the router takes about
fifteen minutes). Our data set does not contain any user
data or any personal information that identifies individual
users. We run our experiments on a server installed at this
IXP configured with 16 physical cores at 3.4 GHz and
128 GB of RAM.

This IXP does not use a programmable IXP fabric, so
we assume how participants might specify SDN policies,
as described in Section 2.1. Specifically, each participant
has between one to four outbound policies for each of
10% of the total participants. The number of policies
and set of participants are chosen uniformly at random.
Our sensitivity analysis on this percentage shows that our

9

10 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

iSDX
Unoptimized Centralized MDS-SDX [14] iSDX-D iSDX-N iSDX-R

Number of Forwarding Table Entries 68,476,528 21,439,540 763,000 155,000 65,250
Policy Compression Time (s) N/A 297.493 0.0629 0.111 2.810

Table 3: Summary of evaluation results for iSDX with 500 IXP participants. Note that compression times for iSDX are per-participant,
since each participant can compile policies in parallel; even normalizing by this parallelization still yields significant gains.

100 200 300 400 500

Participants

0

150000

300000

450000

600000

750000

Fo
rw

ar
di

ng
Ta

bl
e

E
nt

rie
s iSDX-D

iSDX-N
iSDX-R

Figure 8: Number of forwarding table entries.

results are influenced in magnitude but the underlying
trends remain. Note that this setup is more taxing than
the one in our previous work [14] where only 20% of
the total participants had any SDN policies at all. We
also evaluate iSDX’s performance for smaller IXPs by
selecting random subsets of IXP participants (ranging
from 100 to 500 ASes) and considering only the RIB
information and BGP updates for those participants. We
also repeated experiments using public RIB dumps and
BGP updates collected by RIPE’s RIS servers from 12
other IXPs [30]. As the observed workload was much
smaller in this case, we omit these results for brevity.

7.2 Steady-State Performance
We first evaluate the steady-state performance of iSDX.
To do so, we use the RIB dumps to initialize the SDX
controller (multiple of them for the distributed case) and
evaluate the overall performance in terms of the efficiency
of data-plane compression, and the time to compile poli-
cies and compress them into smaller forwarding tables.

Efficiency of compression. Figure 8 shows the number
of forwarding table entries for the three distributed con-
trollers: iSDX-D, iSDX-N, and iSDX-R. The number
of forwarding table entries increases with the increas-
ing number of IXP participants. Each of our techniques
progressively improves scalability. We observe that the
number of forwarding table entries for iSDX-R is very
close to the lower bound (i.e., best case), where the num-
ber of forwarding table entries is equal to the number of
SDN policies.

We also explore the effects of distributing the control
plane computation on the ability of iSDX to perform

100 200 300 400 500

Participants

100

101

102

103

104

105

N
um

be
ro

fN
ex

tH
op

s

Centralized Distributed

Figure 9: Number of virtual next-hop IP addresses for central-
ized and distributed control planes. Results for distributed iSDX
do not depend on encoding or compression approach.

100 200 300 400 500

Participants

100

101

102

103

104

105

106

Ti
m

e
(m

s)

MDS SDX-Central
iSDX-D

iSDX-N
iSDX-R

Figure 10: Time to perform policy compression.

MDS compression. The results are shown in Figure 9.
Given 500 participants, partitioning the control plane re-
duces the number of next hop entries for the border router
from 25,000 to 360. This reduction mitigates the load
on the border routers, since the number of virtual next
hop IP addresses reflects the number of ARP entries each
participant’s border router must maintain.

Time to perform policy compression. Figure 10 shows
the compression time for each controller; this time domi-
nates control-plane computation but only occurs at initial-
ization. The Centralized MDS-SDX operates on a large
input rule matrix, and thus requires nearly five minutes to
compress policies. iSDX-D distributes the computation
across participants, reducing compression time by three
orders of magnitude. iSDX-R takes longer than iSDX-
D and iSDX-N controllers. For 500 participants, policy
compression takes about three seconds.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 11

103 104 105

Updated Flow Rules/s

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

Ti
m

e
Unoptimized MDS SDX-Central

Figure 11: Rate at which forwarding table entries are updated.

7.3 Runtime Performance
After iSDX initializes, we replay a two-hour trace of
BGP updates from one of the largest IXPs in the world
to evaluate the runtime performance of iSDX compared
to other SDX designs. We focus on how iSDX reduces
the number of forwarding table updates induced by BGP
updates and policy changes, as well as the corresponding
increase in gratuitous ARP traffic, which is the cost we
pay for increased forwarding table stability.

Forwarding table updates in response to routing. Fig-
ure 11 shows the cumulative distribution of the number
of updated forwarding table entries per second the SDX
must process for a BGP update stream coming from all
511 participants at the IXP. MDS compression, which is
used in iSDX-D and iSDX-N, significantly increases the
rate of updates to the forwarding table in comparison to
an unoptimized SDX; this result makes sense because any
change to forwarding is more likely to trigger a change to
one of the encoded forwarding table entries. With iSDX-R,
there are never updates to the forwarding table entries in
response to BGP updates.

Update latency in response to BGP updates. We aim to
understand how quickly iSDX-R can update forwarding
information when BGP updates arrive. For iSDX-R, this
update time effectively amounts to computing updated
virtual next-hop IP and MAC addresses, since iSDX-R
never needs to update the IXP fabric forwarding table
entries in response to BGP updates. We evaluate update
latency with two experiments. First, we vary the frac-
tion of IXP participants to which each IXP participant
forwards with SDN policies. For example, if the frac-
tion is 1, each participant has between one and four SDN
forwarding policies (at random) for every other SDN par-
ticipant. Figure 12a shows this result; in all cases, the
median update latency in response to a BGP update is
less than 10 ms, and the 95th percentile in the worst case
is less than 20 ms. Even when we perform simultaneous
compilation of all 511 participants on just three servers

0.2 0.4 0.6 0.8 1.0

Fraction of Participants

0

4

8

12

16

20

Ti
m

e
(m

s)

(a) Compute time for increasing forwarding actions.

20 40 60 80 100

Update Rates

0

8

16

24

32

40

Ti
m

e
(m

s)

(b) Compute time for increasing sustained rates of BGP updates.

Figure 12: Latency of iSDX-R updates in response to BGP
update streams.

at the IXP, the median update time is only 52 ms, well
within practical requirements.

To understand how iSDX-R behaves when it receives
larger update bursts, we evaluate the update latency for
increasing sizes of BGP update bursts. We vary the num-
ber of BGP updates per second from 20 to 100 and send
a constant stream of updates at this rate for five minutes,
tracking the latency that the iSDX requires to process
the updates. (Although a table reset would presumably
cause a very large update burst, the fastest sustained BGP
update rate we observed in the trace was only about 35
BGP updates per second.) Figure 12b shows this result.
For example, for a rate of 100 BGP updates per second,
the median update latency is about 8 ms and the 95th
percentile is percentile is about 45 ms.

Gratuitous ARP overhead. Recall that SDX relies on
gratuitous ARP to update virtual destination MAC ad-
dresses when forwarding behavior changes, often in lieu
of updating the forwarding table itself. A centralized
SDX control plane sends this ARP response to all IXP
participants, but a distributed SDX can send this response
only to the border router whose route changed. Figure 13
shows the distribution of the rate at which a participant’s
border router receives gratuitous ARP messages from the
IXP controller in response to BGP routing changes, for
both the centralized design (i.e., centralized MDS) and the

11

12 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

100 101 102 103 104

Number of Gratuitous ARPs

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

Ti
m

e
Distributed Centralized

Figure 13: Rate at which a participant’s border router receives
gratuitous ARPs.

distributed one (i.e., iSDX); these rates are independent
of which encoding the iSDX uses.

8 Related Work

Ongoing SDX Projects. Software-defined IXPs have
been gaining momentum in the past few years [3, 22, 39],
and limited real-world deployments are beginning to
emerge. Yet, these existing deployments have focused on
either smaller IXPs or on forwarding traffic for a partial
routing table. Our original SDX [14] work introduced
mechanisms for applying SDN policies to control interdo-
main traffic flow at an IXP and introduced some simple
mechanisms for forwarding table compression; yet its
capability for compressing and updating forwarding ta-
bles cannot meet either the scale or speed demands of
the largest industrial IXP. Google’s Cardigan SDX con-
troller has been deployed in a live Internet exchange in
New Zealand [4, 35]. Cardigan does not use any of the
compression techniques that we use in either SDX or
iSDX. As a result, we expect that the size of Cardigan’s
forwarding tables would be similar to the “unoptimized”
results that we present in Section 2—orders of magni-
tude too large for use with hardware switches in large
IXPs. Control Exchange Points [21] propose to intercon-
nect multiple SDN IXPs to provide QoS services to the
participants and is less concerned with the design of an
individual SDN-based IXP.

Distributed SDN controllers. HyperFlow [37],
Onix [20], and Devolved Controllers [36] implement dis-
tributed SDN controllers that maintain eventually consis-
tent network state partitioning computation across multi-
ple controllers such that each operates on less state. Kan-
doo [15] distributes the control plane for scalability, pro-
cessing frequent events in highly replicated local control
applications and rare events in a central location. Several
distributed controllers focus on fault-tolerance [6, 10, 19].
In contrast to these systems, each participant controller
in iSDX operates independently and requires no state
synchronization. iSDX’s partitioning is first and fore-

most intended to achieve more efficient compression of
forwarding table entries; other benefits, such as parallel
computation and fault tolerance, are incidental benefits.
Techniques for data-plane scalability. Other work
seeks to address the problem of small forwarding tables
in hardware. Data-plane scaling involves (1) rule parti-
tioning [40], where data plane rules are partitioned across
multiple switches and incoming traffic is steered to load
balance across these switches; and (2) caching [18, 32],
which stores forwarding table entries for only a small
number of flows in the data plane. These techniques are
orthogonal to the compression that iSDX uses. Labeling
packets for FIB compression has been applied in various
contexts, such as MPLS [9], Fabric [7], LISP [12], and
Shadow Macs [1]. These techniques all reduce the num-
ber of forwarding table entries in certain routers, often
by pushing complex policies to the edge of the network.
These techniques generally apply in the wide area, and
cannot be directly applied to an IXP topology, although
some of the techniques are analogous.

9 Conclusion
Software-Defined Internet Exchange Points (SDXes) are
poised to reshape interdomain traffic delivery on the In-
ternet, yet realizing this vision ultimately requires the
design and implementation of an SDX that can scale to
(and beyond) the largest industrial IXPs on the Internet
today. To address this challenge, we developed iSDX,
the first SDX controller that scales to large industrial
IXPs. We demonstrated how the principles of modular-
ity and decoupling are necessary to scale the control and
the data planes. The specific approaches we suggest—
partitioning and compression—are applicable in various
settings where where composition of forwarding policies
is required (e.g., SDN WAN). We have released a pub-
lic, open-source implementation of iSDX on Github [16],
along with tutorials and instructions that have helped cat-
alyze early adoption. Our evaluation shows that iSDX re-
duces both forwarding table size and the time to compute
these entries by several orders of magnitude—enough
to make iSDX practical for real operation. Using BGP
routing updates from a route server at one of the world’s
largest IXPs, we showed that iSDX can support industrial-
scale operation.
Acknowledgments. We thank our shepherd Dave Oran,
Bryan Larish, Jamie Brown, Inder Monga, Rick Porter,
Glenn Gardner, Marc Pucci, David Jorm, and the anony-
mous reviewers for the feedback and comments. This
research was supported by National Science Foundation
Awards CNS-1539920, CNS-1409056, and a research
contract with the Laboratory for Telecommunications
Sciences. This research was also supported by Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram under the ENDEAVOUR project (grant agreement
644960).

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 13

References
[1] AGARWAL, K., DIXON, C., ROZNER, E., AND CARTER,

J. Shadow macs: Scalable label-switching for commodity
ethernet. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking (New York, NY,
USA, 2014), HotSDN ’14, ACM, pp. 157–162. (Cited on
page 12.)

[2] APACHE CASSANDRA. http://cassandra.
apache.org/. (Cited on page 9.)

[3] ATLANTICWAVE-SDX. https://itnews.fiu.
edu/wp-content/uploads/sites/8/2015/
04/AtlanticWaveSDX-Press-Release_
FinalDraft.pdf. (Cited on page 12.)

[4] BAILEY, J., PEMBERTON, D., LINTON, A., PELSSER,
C., AND BUSH, R. Enforcing rpki-based routing policy
on the data plane at an internet exchange. HotSDN, ACM.
(Cited on pages 1 and 12.)

[5] BOTEANU, V., BAGHERI, H., AND PELS, M. Minimizing
arp traffic in the ams-ix switching platform using openflow.
(Cited on page 7.)

[6] CANINI, M., KUZNETSOV, P., LEVIN, D., AND SCHMID,
S. A Distributed and Robust SDN Control Plane for Trans-
actional Network Updates. In INFOCOM (2015). (Cited
on page 12.)

[7] CASADO, M., KOPONEN, T., SHENKER, S., AND

TOOTOONCHIAN, A. Fabric: A retrospective on evolving
sdn. In Proceedings of the First Workshop on Hot Topics in
Software Defined Networks (New York, NY, USA, 2012),
HotSDN ’12, ACM, ACM, pp. 85–90. (Cited on page 12.)

[8] COURSERA SDN COURSE, 2015. https://www.
coursera.org/course/sdn1. (Cited on page 9.)

[9] DAVIE, B. S., AND REKHTER, Y. MPLS: technology and
applications. San Francisco, 2000. (Cited on page 12.)

[10] DIXIT, A., HAO, F., MUKHERJEE, S., LAKSHMAN, T.,
AND KOMPELLA, R. Towards an elastic distributed sdn
controller. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(New York, NY, USA, 2013), HotSDN ’13, ACM, ACM,
pp. 7–12. (Cited on page 12.)

[11] EXABGP. https://github.com/
Exa-Networks/exabgp. (Cited on page 9.)

[12] FARINACCI, D., FULLER, V., MEYER, D., AND LEWIS,
D. The locator/id separation protocol (lisp). Internet
Requests for Comments, January 2013. http://www.
rfc-editor.org/rfc/rfc6830.txt. (Cited on
page 12.)

[13] FEAMSTER, N., REXFORD, J., SHENKER, S., CLARK,
R., HUTCHINS, R., LEVIN, D., AND BAILEY, J. Sdx:
A software defined internet exchange. Open Networking
Summit (2013). (Cited on page 1.)

[14] GUPTA, A., VANBEVER, L., SHAHBAZ, M., DONO-
VAN, S. P., SCHLINKER, B., FEAMSTER, N., REXFORD,
J., SHENKER, S., CLARK, R., AND KATZ-BASSETT, E.
SDX: A Software Defined Internet Exchange. In ACM SIG-
COMM (Chicago, IL, 2014), ACM, pp. 579–580. (Cited
on pages 1, 2, 3, 4, 6, 7, 9, 10 and 12.)

[15] HASSAS YEGANEH, S., AND GANJALI, Y. Kandoo: A
framework for efficient and scalable offloading of control
applications. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks (New York, NY,
USA, 2012), HotSDN ’12, ACM, ACM, pp. 19–24. (Cited
on page 12.)

[16] ISDX GIHUB REPO. https://github.com/
sdn-ixp/iSDX. (Cited on pages 2, 9 and 12.)

[17] ISDX HW TEST INSTRUCTIONS. https:
//github.com/sdn-ixp/iSDX/tree/master/
examples/test-ms/ofdpa. (Cited on page 9.)

[18] KATTA, N., ALIPOURFARD, O., REXFORD, J., AND

WALKER, D. Infinite cacheflow in software-defined net-
works. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking (New York, NY,
USA, 2014), HotSDN ’14, ACM, ACM, pp. 175–180.
(Cited on page 12.)

[19] KATTA, N., ZHANG, H., FREEDMAN, M., AND REX-
FORD, J. Ravana: Controller fault-tolerance in software-
defined networking. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Re-
search (New York, NY, USA, 2015), SOSR ’15, ACM,
pp. 4:1–4:12. (Cited on page 12.)

[20] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN, R., IWATA,
Y., INOUE, H., HAMA, T., AND SHENKER, S. Onix:
A distributed control platform for large-scale production
networks. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation (Berke-
ley, CA, USA, 2010), OSDI’10, USENIX Association,
pp. 1–6. (Cited on page 12.)

[21] KOTRONIS, V., DIMITROPOULOS, X., KLÖTI, R., AGER,
B., GEORGOPOULOS, P., AND SCHMID, S. Control ex-
change points: Providing qos-enabled end-to-end services
via sdn-based inter-domain routing orchestration. (Cited
on page 12.)

[22] LIGHTREADING. Pica8 Powers French TOUIX SDN-
Driven Internet Exchange, June 2015. http://ubm.
io/1Vc0SLE. (Cited on pages 1 and 12.)

[23] MAMBRETTI, J. Software-defined network exchanges
(SDXs) and software-defined infrastructure (SDI), June
2014. Presentation at the Workshop on Prototyping and
Deploying Experimental Software Defined Exchanges
(SDXs). (Cited on page 1.)

[24] MONGODB. https://www.mongodb.org/. (Cited
on page 9.)

[25] MONSANTO, C., REICH, J., FOSTER, N., REXFORD,
J., AND WALKER, D. Composing software-defined net-
works. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (Berkeley,
CA, USA, 2013), nsdi’13, USENIX Association, pp. 1–14.
(Cited on page 6.)

13

14 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[26] NOVISWITCH 1132. http://noviflow.
com/wp-content/uploads/2014/09/
NoviSwitch-1132-Datasheet.pdf. (Cited
on pages 4, 5 and 7.)

[27] Openflow 1.3 specifications. http://bit.ly/
1eyrkxY. (Cited on page 7.)

[28] QUANTAMESH BMS T3048-LY2.
http://www.qct.io/Product/
Networking/Bare-Metal-Switch/
QuantaMesh-BMS-T3048-LY2-p55c77c75c159.
(Cited on pages 7 and 9.)

[29] RICHTER, P., SMARAGDAKIS, G., FELDMANN, A.,
CHATZIS, N., BOETTGER, J., AND WILLINGER, W. Peer-
ing at peerings: On the role of ixp route servers. In Pro-
ceedings of the 2014 Conference on Internet Measurement
Conference (New York, NY, USA, 2014), IMC ’14, ACM,
pp. 31–44. (Cited on page 9.)

[30] RIPE. Ris raw data, 2015. https://www.ripe.
net/analyse/internet-measurements/
routing-information-service-ris/
ris-raw-data. (Cited on page 10.)

[31] RYU SDN FRAMEWORK. http://osrg.github.
io/ryu/. (Cited on pages 1 and 9.)

[32] SARRAR, N., UHLIG, S., FELDMANN, A., SHERWOOD,
R., AND HUANG, X. Leveraging zipf’s law for traffic
offloading. ACM SIGCOMM Computer Communication
Review 42, 1 (January 2012), 16–22. (Cited on page 12.)

[33] SMOLKA, S., ELIOPOULOS, S., FOSTER, N., AND

GUHA, A. A Fast Compiler for NetKAT. In ICFP (2015).
(Cited on page 6.)

[34] SQLITE. https://www.sqlite.org/. (Cited on
page 9.)

[35] STRINGER, J., PEMBERTON, D., FU, Q., LORIER,
C., NELSON, R., BAILEY, J., CORREA, C., AND ES-
TEVE ROTHENBERG, C. Cardigan: Sdn distributed rout-
ing fabric going live at an internet exchange. In Computers
and Communication (ISCC), 2014 IEEE Symposium on
(June 2014), IEEE, pp. 1–7. (Cited on pages 1, 2 and 12.)

[36] TAM, A.-W., XI, K., AND CHAO, H. Use of devolved
controllers in data center networks. In Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2011 IEEE
Conference on (April 2011), IEEE, pp. 596–601. (Cited
on page 12.)

[37] TOOTOONCHIAN, A., AND GANJALI, Y. Hyperflow: A
distributed control plane for openflow. In Proceedings of
the 2010 Internet Network Management Conference on
Research on Enterprise Networking (Berkeley, CA, USA,
2010), INM/WREN’10, USENIX Association, USENIX
Association, pp. 3–3. (Cited on page 12.)

[38] WHYTE, S. Project CARDIGAN An SDN Con-
trolled Exchange Fabric. https://www.nanog.
org/meetings/nanog57/presentations/
Wednesday/wed.lightning3.whyte.sdn.
controlled.exchange.fabric.pdf, 2012.
(Cited on page 4.)

[39] WORKSHOP ON PROTOTYPING AND DEPLOYING

EXPERIMENTAL SOFTWARE DEFINED EXCHANGES.
https://www.nitrd.gov/nitrdgroups/
images/4/4d/SDX_Workshop_Proceedings.
pdf. (Cited on page 12.)

[40] YU, M., REXFORD, J., FREEDMAN, M. J., AND WANG,
J. Scalable flow-based networking with difane. SIG-
COMM Computer Communication Review 40, 4 (August
2010), 351–362. (Cited on page 12.)

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 15

XFabric: A Reconfigurable In-Rack Network for Rack-Scale Computers

Sergey Legtchenko
Microsoft Research

Nicholas Chen
Microsoft Research

Daniel Cletheroe
Microsoft Research

Antony Rowstron
Microsoft Research

Hugh Williams
Microsoft Research

Xiaohan Zhao∗

Microsoft Research

Abstract
Rack-scale computers are dense clusters with hundreds
of micro-servers per rack. Designed for data center
workloads, they can have significant power, cost and per-
formance benefits over current racks. The rack network
can be distributed, with small packet switches embed-
ded on each processor as part of a system-on-chip (SoC)
design. Ingress/egress traffic is forwarded by SoCs that
have direct uplinks to the data center. Such fabrics are
not fully provisioned and the chosen topology and uplink
placement impacts performance for different workloads.

XFabric is a rack-scale network that reconfigures the
topology and uplink placement using a circuit-switched
physical layer over which SoCs perform packet switch-
ing. To satisfy tight power and space requirements in the
rack, XFabric does not use a single large circuit switch,
instead relying on a set of independent smaller circuit
switches. This introduces partial reconfigurability, as
some ports in the rack cannot be connected by a cir-
cuit. XFabric optimizes the physical topology and man-
ages uplinks, efficiently coping with partial reconfigura-
bility. It significantly outperforms static topologies and
has a performance similar to fully reconfigurable fabrics.
We demonstrate the benefits of XFabric using flow-based
simulations and a prototype built with electrical cross-
point switch ASICs.

1 Introduction

There is a trend in large-scale data centers towards higher
per-rack server density. While a typical compute rack to-
day is composed of 40 to 50 blade servers interconnected
through a Top of Rack (ToR) switch, hardware ven-
dors increasingly propose energy-efficient, high density
micro-servers, designed for data center workloads [17,
27, 35]. Rack-scale computers, such as AMD SeaMi-
cro [44], HP Moonshot [1] and Boston Viridis [8] are up

∗ while on internship from UCSB.

to rack-scale high density clusters of micro-servers with
tight integration of the network, storage and compute.
For example, the Boston Viridis supports hundreds of
SoCs in one standard data center rack. Rack-scale com-
puters are optimized for commodity data center work-
loads and have significant power, cost and performance
benefits over traditional racks [4, 21, 22, 38] and attract
increasing research interest [5, 6, 14, 16, 39, 42].

Higher server density requires a redesign of the in-rack
network. A fully provisioned 40 Gbps network with 300
SoCs would require a ToR switch with 12 Tbps of bisec-
tion bandwidth within a rack enclosure which imposes
power, cooling and physical space constraints. For ex-
ample, the peak power draw (for power, compute, stor-
age and networking) is limited by the power distribution
used in data centers and the amount of heat that the in-
rack cooling is able to dissipate and is around 9-16 kW
for a typical high density rack today [3]. To address these
challenges, some proposed designs replace a ToR switch
by a “distributed fabric” where the packets forwarding is
done by the servers. If the system uses SoCs then a small
packet switch can be embedded on the server’s SoC. For
example, Boston Viridis uses the Calxeda EnergyCore
SoC which has an embedded packet switch supporting
eight 10 Gbps lanes. Each SoC is connected to a subset
of SoCs in the rack, forming a multi-hop, bounded de-
gree topology, e.g. mesh or torus. Each SoC forwards
in-rack traffic from other SoCs and ingress/egress traffic
is tunneled through a set of SoCs that have direct uplinks
to the data center network.

Distributed fabrics are cost effective, but lack the flex-
ibility of a fully provisioned network. Bisection band-
width and end-to-end latency in the rack are a function
of the network topology, and the best topology depends
on the expected workload. Ingress/egress traffic is for-
warded through multiple hops in the rack to an uplink,
interfering with in-rack traffic. Lack of flexibility leads
to suboptimal performance and complicates the design.
For example, the HP Moonshot has three independent

1

16 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

networks with different topologies within the same en-
closure: a radial fabric for ingress/egress traffic, and
multi-hop storage and 2D torus fabrics for in-rack traffic.

XFabric is a rack-scale network that maintains the
benefits of a distributed fabric but allows workload-
specific reconfigurability of the topology and uplinks.
XFabric is organized as a packet-switched network run-
ning over a physical circuit-switched network that allows
the physical topology of the fabric to be dynamically re-
configured. This could be achieved by using a single
large circuit switch that would provide full reconfigura-
bility, so any two SoC ports in the rack can be directly
connected. However, XFabric needs to operate within
the space and power limitations of the rack.

To achieve this, XFabric uses partial reconfigurabil-
ity. It partitions the physical layer into a set of smaller
independent circuit switches such that each SoC has a
port attached to each partition. Packets can be routed
between the partitions by the packet switches embedded
in the SoCs. The partitioning significantly reduces the
circuit switch port requirements enabling a single cross-
point switch ASIC to be used per partition. This makes
XFabric deployable in a rack at reasonable cost.

However, the challenge is that the fabric is no longer
fully reconfigurable, as SoC ports attached to different
crosspoint switch ASICs cannot be connected directly.
XFabric uses a novel topology generation algorithm that
is optimized to generate a topology and determine which
circuits should be established per partition. It also gen-
erates the appropriate forwarding tables for each SoC
packet switch. The algorithm is efficient, and XFabric
can instantiate topologies frequently, e.g. every second
at a scale of hundreds of SoCs, if required. Additionally,
it is able to place uplinks to the data center enabling them
to be efficiently reconfigured.

XFabric uses insights from extensive work on re-
configurable data center-scale networks that enable dy-
namically reconfigurable network links between ToR
switches [13, 20, 23, 24, 41, 47]. Similar to prior work,
e.g. OSA [13] and FireFly [24], the topology is recon-
figured at the physical layer, and network traffic is for-
warded through multiple hops over the reconfigurable
topology. XFabric differs in that it has been designed
to operate at a rack-scale with SoCs that have embedded
packet switches with multiple ports. It neither relies on
wireless technology that cannot be used in the rack, nor
requires a single large circuit switch. Designed for cost-
effective in-rack deployments, XFabric sacrifices full re-
configurability for partial reconfigurability and demon-
strates that this still provides good performance.

We have a prototype cluster, which uses 27 servers em-
ulating SoCs and an XFabric network built with custom
32-port switches using low cost commodity crosspoint
switch ASICs. We evaluate XFabric using this prototype

and a flow-based simulator at larger scale. The results
show that under realistic workload assumptions, the per-
formance of XFabric is up to six times better than a static
3D-Torus topology at rack scale. We also show it pro-
vides comparable performance to a fully reconfigurable
network while consuming five times less power.

The rest of the paper is organized as follows. Sec. 2
motivates our design and Sec. 3 provides an overview
of XFabric. Sec. 4 details the algorithms used by the
controller. Sec. 5 describes our current implementation
of XFabric. Sec. 6 evaluates the performance of XFabric.
Finally, Sec. 7 and 8 present related work and conclude.

2 Partial Reconfigurability

Reconfigurable networks have been traditionally pro-
posed at data center scale [13,20,23,24,41,47]. In these
networks, each ToR has d reconfigurable ports and the
set of d ToRs to which each ToR is directly connected is
dynamically adapted to match the traffic demand. This
has been implemented either with wireless (e.g. RF-
based or free-space optics) [23, 24] or Optical Circuit
Switches (OCS) [13, 20, 41, 47]. In the latter case, all
d ports of all the n ToRs are connected to the same OCS
that acts as a circuit switch with n× d ports: any port
can be connected to any port of any ToR and the network
topology is fully reconfigurable.

XFabric is focused on providing reconfigurability at
the rack-scale, which has unique challenges because of
the additional constraints due to physical space, power
and cooling limitations. At the densities that can po-
tentially be achieved using SoCs, the number of ports is
high. If the switch functionality is distributed across the
SoCs and a distributed network fabric is used, the num-
ber of ports required will be even higher. For example,
a fully reconfigurable distributed fabric with 256 SoCs
and 6 ports per SoC for in-rack communication requires
1,536 ports. This port count is too high to use a sin-
gle crosspoint switch ASIC. It is possible to build a cir-
cuit switch implemented as a folded Clos network with
multiple crosspoint switches, however, a folded Clos to
support n× d ports requires 5× n× d ports to be provi-
sioned [13], which, for this example setup would require
5×256×6 = 7,680 ports.

Fitting this in the rack can be challenging, but pow-
ering and cooling it will be hard. The per-port power
draw ranges from 0.14 W for a typical optical circuit
switch [11] to 0.28 W for a 10 Gbps electrical circuit
switch [12]. The switches would consume between 1.3
to 2.6 kW, representing a significant fraction of the power
provisioned for a high density rack today [3]. Given that
as we increase density the compute and storage power re-
quirements will also increase we need to manage power

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 17

Controller
Generate
topology

RackSoC S1

SoC S2

Uplinks
to

data center
Chassis

Control
plane

Estimate
demand

Configure
Data plane

Uplink crosspoint

Internal
crosspoint

Figure 1: XFabric architecture, d = 6, l = 4 and c = 6.

resources carefully. A fully reconfigurable fabric is prob-
ably not acceptable.

In the rest of the paper, we refer to a circuit switch
that is of a scale that can be implemented using a single
crosspoint switch ASIC as simply a crosspoint switch,
while one that is implemented as a folded Clos network
of multiple crosspoint switches as a Clos circuit switch.

XFabric exploits the observation that full reconfigura-
bility is not necessary. XFabric provides a partially re-
configurable fabric in which each SoC port can be con-
nected to a subset of the SoC ports in the rack. XFabric
has d independent physical networks each with a single
circuit switch. Each SoC has a port attached to each of
the d networks. This means that each SoC port can be
connected to any other SoC. Hence, for 256 SoCs with 6
ports per SoC we would need 6 crosspoint switches each
with 256 ports. Currently, commodity 160-port electrical
crosspoint switches capable of switching 10 Gbps links
are available [12]. We believe that a single crosspoint
switch ASIC could be built to support approximately 350
ports. This is compared to requiring 7,680 ports for a
full folded Clos circuit switch at this scale, requiring 22
crosspoint switch ASICs at 350 ports per ASIC.

Partial reconfigurability performs better in terms of
cost and power. In terms of power, if we used a 256-
port electrical crosspoint switch then for 256 SoCs with
six 10 Gbps ports, XFabric would require 0.4 kW versus
a fully reconfigurable fabric using a folded Clos circuit
switch that would require 2.2 kW. In terms of cost, the
per port cost is approximately $3, hence XFabric would
have a cost of about $4.6K, while a fully reconfigurable
fabric would cost $23K.

Partial reconfigurability limits the physical network
topologies that can be instantiated, which potentially
impacts performance. In the next section we describe
XFabric in detail, and in Section 6 empirically show that
the impact on performance is minimal.

3 XFabric Architecture Overview

The XFabric architecture combines a packet-switched
layer 2 operating over a circuit-switched layer 1. It is
assumed that each SoC has an embedded packet switch
and exposes d ports for internal rack communication e.g.
d = 6 [46]. Each of these ports is reconfigurable and is
connected to a crosspoint switch called an internal cross-
point. Figure 1 shows the architecture, with d = 6. There
are six internal crosspoints, and we highlight for SoCs S1
and S2, the links to each of the six internal crosspoints,
which could be done on printed circuit board (PCB).

Each rack has l uplinks from the rack to the data cen-
ter network to carry traffic for destinations outside the
rack. The value of l is a function of the expected use for
the rack; the Boston Viridis chassis has four 10 Gbps up-
links for 48 SoCs [8]. Each SoC has one uplink port to
handle ingress/egress traffic to destinations outside the
rack in addition to the d internal rack communication
ports. Each SoC uplink port is connected to an uplink
crosspoint which has a set of ports connected to the data
center network. For example, in Figure 1 there are 4 up-
links. In operation, the SoCs that do not have their uplink
port connected to one of the l external links tunnel their
ingress/egress traffic to a SoC which is connected.

XFabric ensures that all d ports on each of the n SoCs
are connected to other SoCs and all the l uplinks are con-
nected to SoC uplink ports. We assume that each cross-
point has s ports, and that s = n. Due to the fact that
a crosspoint with n SoCs connected can establish n/2
circuits, we assume that n is even. While our design is
not fundamentally restricted to electrical circuit switch-
ing, this technology offers several benefits. Crosspoint
ASICs are commodity low cost components [12, 50, 54]
which are compact and have a low reconfiguration la-
tency. For example, the M21605 crosspoint switch ASIC
has 160 12.5 Gbps ports, is available in a 45 mm pack-
age and has a maximum reconfiguration latency of only
70 ns [12]. Uplink crosspoints connect SoCs’ uplink
ports directly to the data center network which requires
the uplink crosspoint to support the PHY used outside
the rack. The d internal ports can use the same or dif-
ferent PHY depending on the SoC implementation. It
could be standard, e.g. backplane Ethernet [53] or pro-
prietary [46], for example to reduce power consumption.

At layer 2, packets are forwarded by the SoCs over
the instantiated physical topology using multi-hop rout-
ing. Packet switching operates independently from cir-
cuit switching, i.e. circuits are not established on a per-
packet or per-flow basis. The physical topology recon-
figuration is performed every interval t, where t is in the
order of seconds. This removes the XFabric reconfigu-
ration logic from the data path, simplifying the design
and is motivated by the observation that circuits only

3

18 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

need to be reconfigured when the workload traffic pattern
changes sufficiently to make reconfiguration beneficial.
Layer 2 packet switching over layer 1 circuit switching
forms the data plane of XFabric.

XFabric is managed by an in-rack controller that re-
ceives from each SoC estimates of its traffic demand to
other SoCs and the uplink. Figure 1 shows the work-
flow of the controller. Periodically, it aggregates the in-
formation received from the SoCs into a rack-scale de-
mand matrix and computes a new topology optimized for
the demand. It then instantiates the topology in the data
plane by establishing new circuits at the physical layer
and updates the layer 2 forwarding tables. We assume
that the packet switches on the SoCs support function-
ality to allow them to program their forwarding tables,
e.g. OpenFlow [40]. The topology generation algorithm
is lightweight and operates within the limitations im-
posed by the partially reconfigurable fabric, only produc-
ing topologies that can be instantiated by the network.

The SoC on which the controller executes needs to
be connected to a micro-controller associated with each
crosspoint ASIC through a control plane shown in dotted
lines in Figure 1. Our current prototype supports Ether-
net and USB control planes and we assume that a small
fraction (e.g. 3) have their uplink ports connected to this
network rather than an uplink crosspoint. The controller
is designed to use only soft state and the reconfiguration
process is resilient to the failure of the controller. If the
controller fails then the network will be left in a consis-
tent state and the controller can be started on another SoC
which is connected to the control plane.

4 XFabric Configuration

XFabric needs to determine the mapping of the uplinks to
SoCs and the internal fabric topology. The uplink map-
ping is performed first, because ingress/egress traffic in-
duces load on the internal fabric while routed to the SoCs
with external uplinks. Before describing the uplink map-
ping and internal topology generation algorithms, we de-
scribe how XFabric estimates the traffic demand.

4.1 Traffic Demand Estimation
For internal traffic, each SoC maintains a vector of length
n and records the total number of bytes sent to each SoC
in the rack. For external traffic, the SoC maintains two
values, Ti and Te, the total number of bytes sent and re-
ceived, respectively. Periodically, this information is sent
to the controller through the data plane and the counters
are reset, and we call these demand vectors.

The controller maintains two vectors vi and ve of size
n for ingress/egress traffic in which vi[S] is the number
of bytes sent and ve[S] the number of bytes received by

S during the interval. The controller aggregates the de-
mand vectors into an n × n demand matrix, dm, such
that dm[S1,S2] represents a demand weight from S1 to
S2, maintained using a weighted average.

4.2 Uplink Configuration Algorithm
The uplink configuration selects l SoCs that will be di-
rectly connected to the data center network and to which
other SoCs need to tunnel their external traffic.

Conceptually, the controller partitions the n SoCs in
the rack into l sets and places an uplink on one of the
SoCs in each set. This SoC acts as a gateway to the data
center network for the rest of the SoCs in the set. The
controller aims to balance traffic between uplinks using
the demand vectors vi and ve. Ideally, the aggregate ex-
ternal traffic demand is the same across all sets and for
each set, the uplink is placed on the SoC with heaviest
external traffic demand.

The placement algorithm operates in two stages. First,
for each of the l uplinks, it selects the SoC S that has
the highest demand Dext [S] = vi[S]+ ve[S] and no uplink
and places the uplink on S. In the second stage, the al-
gorithm determines the sets of SoCs associated to each
uplink. This is done by ordering SoCs without uplinks
by their Dext and iteratively assigning the SoC with high-
est demand to the set with the least aggregate demand.
Ordering SoCs by demand ensures that SoCs with high
demand will be fairly balanced across sets. Once all the
SoCs have been assigned, source and destination SoCs
for all external traffic are known. Based on this knowl-
edge, the algorithm builds a traffic matrix dmu in which
dmu[S1,S2] is the ingress (and dmu[S2,S1] the egress)
traffic demand between a SoC S1 and its uplink placed on
S2. The algorithm then creates a matrix dmall which is a
sum of dmext and dm. This matrix is used by the topology
generation algorithm to optimize the in-rack topology to
both internal and external traffic.

4.3 Topology Generation Algorithm
This phase computes a topology optimized for dmall by
reducing the hop count between SoCs with high demand.

Forwarding high bandwidth traffic through multiple
hops consumes bandwidth per link and incurs load on
each SoC packet switch it traverses. Lower hop count
thus results in lower link load and less resources spent
on forwarding, improving network goodput [13]. For la-
tency sensitive traffic, such as in-memory storage using
RDMA [18], reducing the round trip time is important.
A one hop latency of 1 microsecond versus a four hop
latency of 4 microseconds is significant.

Conceptually, for each pair of SoCs in the rack, the al-
gorithm assigns a weight based on their relative demand.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 19

Input:
socs ← SoC list[n]
dmall ← demand matrix
port map ← XbarToSoCPortMapping[c]

Output:
PacketForwardingTables
CircuitAssignment circuits[c]

1 topo ← Disconnected Topology(socs)
2 SoC pairs ← Order By Demand(socs,dmall)
3 xbar map ← To Xbar(SoC pairs, port map)
4 while SoC pairs �=∅ do
5 partition count ← 0
6 foreach soc in socs do
7 part[soc] = {soc}
8 partition count ← partition count +1
9 foreach pair in SoC pairs do

10 if part[pair.src] �= part[pair.dest] then
11 xbars ← xbar map[pair]
12 xbar ← Best Ranked(xbars,SoC pairs)
13 xbars[xbar].Add Circuit({pair.src, pair.dest})
14 topo.Add Undirected Edge(pair.src, pair.dest)
15 Merge(part[pair.src], part[pair.dest])
16 partition count = partition count −1
17 foreach p in SoC pairs do
18 if xbar map.Con f lict(p, pair,xbar) then
19 xbar map[p].Remove(xbar)
20 if xbar map[p] =∅ then
21 xbar map.Remove(p)
22 SoC pairs.Remove(p)
23 else if p = pair then
24 SoC pairs.Reinsert(p, p.demand)
25 if partition count = 1 then
26 break
27 return {topo.ComputeForwardingTables(), circuits}
Algorithm 1: XFabric topology generation algorithm.

It then iteratively computes disjoint maximum weight
spanning trees until all SoC ports in the rack have been
assigned. The resulting topology is a union of maximum
weight spanning trees and has three key properties. First,
by construction it is fully connected, i.e., there exists a
path between each pair of SoCs. Second, it maximizes
resource usage as all ports are assigned. Finally, as span-
ning trees are of maximum weight, SoC pairs with heavy
traffic demand are satisfied in priority. A key challenge is
to support partial reconfigurability and to do this within
the constraints imposed by the physical topology.

Algorithm 1 describes the process in detail. The al-
gorithm inputs are a list of SoCs and crosspoint ports
to which each is attached (socs and port map, which
are initialized at boot time) and the demand matrix
dmall . It starts by initializing three data structures: topo,
SoC pairs and xbar map (lines 1 to 3). The first is a
fully disconnected topology in which each SoC in the
rack is represented by a vertex and to which edges will be
greedily added. We define the demand between a pair of
SoCs {S1,S2} as D{S1,S2} = dmall [S1][S2]+dmall [S2][S1]
and SoC pairs is a list of all pairs of SoCs that can be
connected through each crosspoint, ordered by their de-
mands in descending order (highest first). The last is a

dictionary that associates each pair of SoCs to a set of
crosspoints through which they can be connected. Ini-
tially, each pair of SoCs can be connected through any of
the d crosspoints.

The main loop (lines 4 to 26) performs a sequence of
spanning tree computations and stops when no more SoC
pairs can be connected (line 4). The maximum weight
computation is based on Kruskal’s algorithm [32]: it
starts with a set of partitions, one for each SoC (lines 5 to
8), and greedily reduces the number of partitions by con-
necting the two SoCs that are not in the same partition
and have the highest demand (line 10). This results in
two partitions being merged as their SoCs are no longer
disconnected (lines 15-16). If only one partition remains,
all SoCs are connected by a maximum weight spanning
tree (line 25-26).

In order to connect a pair of SoCs, the algorithm se-
lects one of the crosspoints through which the connec-
tion can be made (lines 11-12). Crossbar ports cannot
be reused for multiple circuits simultaneously, therefore
connecting a pair of SoCs {S1, S2} through a crosspoint
C implies that S1 or S2 can no longer be connected to
other SoCs through C. It means that establishing a circuit
in C negatively impacts its ability to satisfy remaining de-
mand. In order to select a crosspoint in which connecting
S1 to S2 has the least negative impact, a ranking between
the crosspoints is performed (line 12). The ranking func-
tion computes the aggregate demand of all connections
between S1, S2 to any other SoC that has a free port in
C. This represents the demand that C would not be able
to satisfy if {S1, S2} was established, hence the cross-
point with the lowest value is selected. At that point,
both the pair of SoCs and the crosspoint have been deter-
mined and the corresponding undirected edge and circuit
are added (lines 13-14). Finally, the algorithm updates
SoC pairs and xbar map (lines 17 to 24). It removes
C from all the pairs in xbar map that can no longer be
connected through C (line 18-19). If the SoC pair can
no longer be connected through any of the crosspoints,
it is removed from SoC pairs (lines 21 to 22). As two
SoCs can be connected through multiple crosspoints at
the same time, the pair that has just been connected is
not removed from the SoC pairs but reinserted after the
last pair that has some unsatisfied demand (line 24). That
way, if all pairs with demand have been connected, the
algorithm can add secondary direct connections between
high demand pairs, increasing the bandwidth.

The algorithm executes in polynomial time and once
all circuits have been assigned, the topology is optimized
for dmall . The algorithm has the property that in addition
to computing an optimized topology, it also finds the cir-
cuit assignment that instantiates that topology in the par-
tially reconfigurable fabric. The result of the algorithm
is a set of forwarding tables derived from the computed

5

20 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

topology and the circuit assignment that is merged with
the uplink circuit assignment. The controller uses this
information to reconfigure the data plane.

4.4 Reconfiguration

To instantiate a new topology, the XFabric controller
needs to update the circuit switches (layer 1) and ensure
all forwarding tables in each SoC are updated (layer 2).
This cannot be achieved instantaneously, and can lead to
instability during the update interval. The goal of recon-
figuration is to minimize this window of instability.

We considered two general approaches. Inspired by
SWAN [25], we experimented with incrementally chang-
ing the physical topology to ensure that packets can be
successfully routed. This requires identifying a set of in-
termediate topologies, and then moving traffic off links
that are to be reconfigured and then stepping through
multiple different intermediate configurations. This ap-
proach leads to larger reconfiguration periods: the time
taken to reconfigure is approximately constant and in-
dependent of the number of links being reconfigured,
so migrating through x intermediate topologies takes x
times the reconfiguration delay. Hence, we adopted the
approach of performing a single reconfiguration.

Before triggering the reconfiguration, the controller
sends new circuit assignments to every circuit switch
through the control plane and new forwarding state to the
SoCs through the data plane. Each circuit switch receives
a map packet composed of a list of port mappings and a
bitmap to indicate which ports need to be reconfigured.
The micro-controller on the switch loads the circuit as-
signments into a set of registers on the crosspoint ASIC
and acknowledges the controller, but does not instanti-
ate the circuits. The physical topology must remain un-
changed at this stage as the controller has no out-of-band
mechanism to communicate with the SoCs. Each SoC re-
ceives its new forwarding tables together with the MAC
address of the SoC that will be connected to each of its
ports and a unique 64-bit version number for the config-
uration. This is efficiently encoded so the forwarding ta-
ble, plus all the other information for a XFabric with 512
SoCs is less than 1 KB. Each SoC runs a process that
receives and stores the update, but again does not repro-
gram any forwarding tables. Once all the SoCs have ac-
knowledged the update information, all circuit switches
and SoCs are ready for the reconfiguration.

The controller triggers the reconfiguration by trans-
mitting a reconfigure packet to each circuit switch
through the control plane. When received, the micro-
controller on the circuit switch reprograms its crosspoint
ASIC to the configuration specified in the map. At this
point the physical network (layer 1) has been reconfig-
ured, but the forwarding tables at the SoCs have not yet

been updated. Once every circuit switch has acknowl-
edged, the controller uses a simple flood-based mech-
anism to trigger the use of the new forwarding tables
on each SoC. It sends on each of its ports a reconfig-
uration message which includes the new configuration
version number. If a SoC with an old forwarding table
receives the reconfiguration message, it starts using the
new one and issues a reconfiguration message on all its
ports. SoCs with new forwarding tables ignore reconfig-
uration messages. This process ensures rapid reconfigu-
ration, in the worst case the number of rounds will be the
diameter of the network.

It is essential that the data plane rapidly converges to
a consistent state, even if the controller fails during the
process. In particular, if the failure occurs after sending
out a reconfigure to a subset of the circuit switches,
the physical topology could be left in an inconsistent
state. To address this, we ensure that each circuit switch
that receives a reconfigure and has not yet reconfig-
ured broadcasts the message through the control plane.

A failure of the controller before the broadcast of the
reconfiguration in the data plane could lead to stale for-
warding state at layer 2. To avoid this, we allow the
SoCs to locally trigger the update of the forwarding ta-
bles. It does this by monitoring the local MAC addresses
of SoCs attached to its ports: if a packet is received from
a different MAC address than expected the SoC flushes
the current forwarding table and uses the new one. After
this local update, the SoC broadcasts a reconfiguration
message, ensuring that the new forwarding state is prop-
agated despite the failure of the controller.

During the reconfiguration of the switches any packets
in flight at the switch can be corrupted or lost. However,
thanks to the low switching latency of electrical cross-
point ASICs (see Section 3), we observe the packet loss
to be low in practice (see Section 6) and rely on end-to-
end transport protocols to recover from the packet loss.

5 XFabric Implementation

We have built a prototype XFabric platform, consist-
ing of a set of seven electrical circuit switch units and
27 servers, each configured with eight 1 Gbps Ethernet
NICs and a single Intel Xeon E5520 8-core 2.27GHz
CPU running Windows Server 2008 R2 Enterprise. Each
server emulates a SoC with an embedded packet switch
that has six NIC ports for in-rack traffic. One NIC port is
used as an uplink port and the last port is connected to a
ToR switch for debug and experiment control.

Each circuit switch unit has 32 ports and each server is
connected to all 7 circuit switches. Six serve as internal
crosspoints and the last one is an uplink crosspoint with
four uplinks (l = 4). The switches use the Analog De-
vices ADN4605 asynchronous fully non-blocking cross-

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 21

point switch ASIC [51]. Currently, they are connected
to the servers using standard Ethernet cables, hence we
need transceivers to convert the signal to and from the
ASIC to 1000Base-T which is supported by the servers.
This has significant cost and power overhead implica-
tions and is due to using standard servers instead of SoCs
in the prototype platform. Each crosspoint ASIC is man-
aged by an ARM Cortex-M3 micro-controller that con-
figures it via an SPI serial bus and transceivers through
I2C. The current design does not support 10 Gbps links,
but we are in the process of designing a version with
160 10 Gbps ports using the Macom M21605 crosspoint
ASIC [12]. In the experiments we use USB 1.1 to com-
municate with the control plane due to lack of spare
Ethernet ports per server. Ethernet is supported by our
switches and improves control plane latency by about an
order of magnitude compared to USB.

The packet switch emulation is done in software,
which allows us to understand the full functionality re-
quired before implementing it in hardware. The emulator
uses two kernel drivers and a user-level process, and im-
plements an OpenFlow-like API that provides access to
the forwarding table, and callbacks on certain conditions.
It binds to the six NIC ports used for internal traffic and
the port used for the uplink. It also provides a virtualized
NIC, to which an unmodified TCP/IP stack is bound to
allow unmodified applications to be run on the testbed.

6 Evaluation

In this section we evaluate XFabric. First, we compare
the performance of a reconfigurable fabric to static phys-
ical topologies. Then, we evaluate the efficiency of the
algorithms used in XFabric. Finally, we show the bene-
fits and overheads of XFabric dynamic reconfiguration.

In the experiments we evaluate XFabric using the pro-
totype described in Section 5. In order to allow us to
evaluate XFabric at scale we also use a simple flow-based
simulator. We start by describing the fabric topologies,
workloads and metrics used during the evaluation.

6.1 Topologies
We compare against three different topologies, two static
and one dynamic. The first static topology is a 3D
Torus (3DTorus). This topology has been widely used in
HPC [15, 48] and has been proposed in data centers [2],
in particular at rack scale [44]. It has the highest path
length and lowest bisection bandwidth, but has a high
disjoint path diversity and low cabling complexity.

The second one is a static random topology (Random).
Random topologies have also been proposed for use in
data centers [45] and are known to be “expander” graphs
with high bisection bandwidth and low diameter.

We also use a dynamic reconfigurable network (OSA)
inspired by OSA. In this network the topology is config-
ured using the topology generation algorithm proposed
in [13]. Our goal is to compare against the topology gen-
eration algorithm and we do not simulate additional fea-
tures, such as the flexible link capacity described in [13].
Our implementation of the algorithm uses the same graph
library as OSA [33]. This network uses a Clos circuit
switch to which all the internal ports of all the SoCs are
connected, so it is fully reconfigurable.

For the simulation results, unless otherwise stated, we
assume the rack contains 343 SoCs each with d = 6 in-
ternal ports per SoC and one uplink port. In all cases we
assume that the number of ports for the internal cross-
points is s = n and for the uplink crosspoint s = n+ l. We
assume there are six internal crosspoints (as d = 6), and
one uplink crosspoint with l = 8. Unless otherwise stated
the uplinks are uniformly distributed across the SoCs and
each SoC sends ingress/egress traffic to its nearest uplink
in terms of path length.

We use 343 SoCs as it allows us to compare against a
3D Torus of size 73 = 343. This is a challenge for XFab-
ric, as a crosspoint with n ports establishes n/2 circuits
so, if n is odd, one port cannot be connected to any other
port on the same crosspoint. So, we will end up with 6
unused ports across all the SoCs. In practice, XFabric
uses an even number of SoCs to avoid this issue. To han-
dle the odd n configurations we form three pairs of cross-
points and in each pair statically connect a random SoC
of one crosspoint to a different SoC in the second cross-
point. This means these static circuits are never reconfig-
ured and results in strictly worse performance compared
to allowing them to be reconfigured.

6.2 Workloads

We selected two workloads with well-identified traffic
patterns, both based on real-world measurements.
Production cluster workload. This is a trace of 339
servers running a production workload in a mid-sized
enterprise data center [7]. The data was collected over
a period of 6.8 days and contains per-TCP-flow infor-
mation including the source and destination IP address,
the number of bytes transferred and a mapping from the
servers’ hostnames to the IP addresses of their NICs. We
group flows based on source and destination hostnames.
Flows in which the source or destination IP address does
not correspond to a known hostname are considered as
uplink traffic. The traffic is clustered, with heavy com-
munication between servers with common hostname pre-
fixes, and many-to-one traffic patterns: servers with a
common hostname prefix often exchange traffic with a
specific server with a different hostname prefix. This is
consistent with the patterns described in [30].

7

22 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0
1
2
3
4
5
6

Production LiveJournal

3DTorus
Random
XFabric
OSA

Pa
th

 le
ng

th
(#

ho
ps

) Lower is
better

(a) Path length

0

0.5

1

1.5

2

2.5

3

Production LiveJournal

3DTorus
Random
XFabric
OSA

Pa
th

 d
iv

er
sit

y (
#d

isj
oi

nt
pa

th
s)

Higher is
better

(b) Average path diversity

0.1

1

10

100

Production LiveJournal

3DTorus
Random
XFabric
OSA

%
 o

f t
ot

al
 fl

ow
s

Lower is
better

(c) Bottleneck link load

Figure 2: Performance summary of different fabrics for Production and LiveJournal workloads.

LiveJournal. Distributed platforms such as Pregel [34]
or Tao [9] enable efficient processing of large graphs by
partitioning the graph across a set of SoCs such that each
SoC is assigned a set of vertices from the original graph.
To generate a graph processing workload we use a trace
collected from LiveJournal in December 2006 [36]. It in-
cludes 95.4% of users at that time, representing 5.2 mil-
lion nodes and 48.7 million edges with an average edge
degree of 18.7 edges per node. We shard the vertices
into partitions using METIS, an offline graph partition-
ing algorithm [31] to uniformly partition the graph while
minimizing traffic between partitions. There is one parti-
tion per SoC and we assume that the computation makes
progress by message passing along the edges of the par-
titioned graph. The traffic is proportional to the number
of the social graph edges between SoCs and is modeled
as a constant bit rate over time.

For both workloads we map the workload onto the
SoCs randomly. We also explored topology-aware work-
load placement using heuristic-based approaches for the
static topologies [10]. For these we found that topology-
aware placement always performs better than the ran-
dom placement, but was always worse than the topol-
ogy generated by XFabric. In practice, topology-aware
placement is not easily feasible, and would often re-
quire migrating data between servers and is challenging
to achieve dynamically. Due to lack of space, we only
present results for random placement.

In the simulations each workload is mapped into a sin-
gle traffic matrix tm such that for each pair of SoCs it
stores the number of bytes sent and received between
these SoCs. For the production trace, to scale beyond
339 SoCs, we augment the original trace by duplicating
a random set of SoCs with non-zero traffic. For experi-
ments with less than 339 SoCs, we subsample the trace
by taking a random subset of the SoCs that have traffic.

6.3 Metrics

Across the experiments we use a number of metrics:
Path length. For each packet, we measure the path
length from source to destination in number of hops.

Fabric # ports Cost Power draw
Clos Circuit Switch 10,290 $30.9K 2.9 kW
XFabric 2,058 $6.2K 0.6 kW

Table 1: Estimated cost & power, 343 SoCs, 6 ports/SoC.

Since each hop adds a delay while forwarding traffic, this
metric is a proxy for end-to-end latency.
Path diversity. This metric accounts for the fault tol-
erance of the topology, it measures the number of dis-
joint shortest paths that exist for each packet. Two paths
are disjoint if they share no common link. Therefore, if
there are k shortest paths for all the flows in the topol-
ogy, k − 1 links can fail without impacting the average
path length of the traffic. Route diversity also improves
traffic load balancing allowing traffic to be spread across
disjoint shortest paths.
Bottleneck link load. The metric measures the conges-
tion within the topology by measuring the link load on
the most congested link in the topology.

6.4 XFabric Performance

The two static topologies, 3D Torus and Random, do not
require any additional hardware other than the switching
functionality provided in the SoCs. Both the OSA and
XFabric require additional ASICs to enable the recon-
figurability. Any benefit obtained from being reconfig-
urable needs to be offset against the increased overheads
this induces. Table 1 shows the number of ports required
and the estimated cost and power consumption for XFab-
ric and OSA assuming $3 per port and 0.28 W per port
for 343 SoCs. OSA is a fully reconfigurable fabric sup-
porting 2,058 ports, thus using a folded Clos. XFabric re-
quires d crosspoint ASICs with n ports, connecting each
SoC to each of the d crosspoints. This has a significant
benefit in terms of cost and power.

This first simulation experiment evaluates the relative
performance of the four topologies using the two work-
loads. For each configurable fabric we take the global
demand matrix tm and optimize the network for tm. Fig-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 23

0
1
2
3
4
5
6

2 8 32 128

Pa
th

 le
ng

th
 (#

ho
ps

)

Skew (cluster size)

OSA XFabric

3D Torus Random

(a) Clustered workload

0
1
2
3
4
5
6

2 4 8 16 32 64 128 256

OSA XFabric

3D Torus Random

Skew (#random destinations/SoC)

Pa
th

 le
ng

th
 (#

ho
ps

)

(b) Random destinations workload

Figure 3: Impact of traffic skew on path length

ure 2(a) shows the average path length achieved by all
the fabrics. Across both workloads the reconfigurable
fabrics, XFabric and OSA, achieve shorter average path
lengths than the static topologies. For Production, XFab-
ric has an average path length of only 1.06 hops, which is
6 times less than 3D Torus and 3.7 times less than Ran-
dom. For the LiveJournal workload, the path length for
the reconfigurable fabrics is also lower but not by such a
margin. As we will demonstrate later, the reason is due
to the traffic skew. The LiveJournal workload has a lower
skew. Comparing the performance of OSA and XFabric,
we see for the Production workload that they both pro-
vide comparable performance. Notably for LiveJournal,
even though OSA has a fully reconfigurable fabric it per-
forms worse than XFabric. Having more flexibility in the
fabric is insufficient, you also need an algorithm that can
reconfigure the fabric to exploit the full flexibility.

Figure 2(b) shows the path diversity for all four fab-
rics with both workloads. These results show that the
reconfigurable fabrics instantiate topologies with lower
path diversity. The path length reduction benefits being
shown in Figure 2(a) are achieved at the expense of re-
ducing path diversity, shorter path lengths offer less op-
portunity for forwarding through different links. The 3D
Torus has the highest path diversity, but also has the high-
est path length. This is an interesting trade-off where
reconfigurability can provide benefit. Lowering path di-
versity can impact resilience to failure, and it also lowers
the aggregate bandwidth available on the shortest paths
between two SoCs. For reconfigurable fabrics, a link or
SoC failure can be overcome by calculating a new topol-
ogy that minimizes the impact of the failure. XFabric
also can link multiple ports between the same SoCs, so
providing multiple 1-hop links between two SoCs, and

hence increase the aggregate bandwidth.
To understand this further, Figure 2(c) shows the num-

ber of flows that traverse each link. A flow from a to b
is routed over the set of shortest paths in the topology
between a and b and is registered on each link in the
path. To achieve this each flow is split into f subflows
of constant size, where f is much larger than the num-
ber of paths. The simulator estimates path congestion
by counting the number of flows registered on the most
loaded link in a path. To place a subflow, the simulator’s
transport layer checks if multiple shortest paths exist. If
so two are randomly selected, and the simulator places
the flow on the least congested one. This simulates traffic
routing though multiple paths for any workload on top of
any topology. Furthermore, the flow routing scheme en-
sures a good load balance of the traffic across links [37].
Figure 2(c) shows the percentage of flows that traverse
the bottleneck link for each workload and topology. The
most congested links on all topologies for both work-
loads have approximately the same load, except for the
3D Torus that benefits from its high path diversity.

The trade-off between path length and diversity also
impacts the total network load across all links. The load
imbalance across links is reduced when path diversity is
high: in the 3D Torus the load is better balanced across
links due to load balancing across multiple paths. How-
ever, because of the higher path length, the overall total
load on links in the network is higher. The other topolo-
gies have a lower average total network link load than the
3D Torus, but a higher skew. However, XFabric aggres-
sively reduces path length without significantly increas-
ing load skew because optimization leads to links being
shared across fewer source destination pairs.

We now focus on the performance of XFabric with
Production, our most realistic workload, to evaluate the
performance of uplink placement. Figure 4(b) shows the
path length of the ingress/egress traffic in the fabric be-
fore it reaches a gateway SoC with an attached uplink.
It shows that XFabric efficiently places uplinks on SoCs
with heavy ingress/egress traffic: the path length is on
average reduced by 32% compared to the Random topol-
ogy and 37% compared to the 3DTorus.

Finally, we vary the number of SoCs in the fabric
to evaluate performance at different scales. Figure 4(a)
shows the average path lengths for XFabric, Random and
3D Torus topologies when the number of SoCs is varied.
In the worst case, for 512 SoCs, the average path length
between SoCs in the rack is 1.6 hops only, showing that
optimizing the topology at up to rack-scale is beneficial.

Reconfigurable fabrics perform better for workloads
with high traffic skew. To understand this more we per-
form a parameter sweep across different traffic skews us-
ing two synthetic workloads. For the first, called clus-
tered, we partition the SoCs into clusters and each SoC

9

24 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0
1
2
3
4
5
6
7

27 64 125 512

XFabric
Random
3DTorus

Fabric size (#SoCs)

Av
g.

pa
th

 le
ng

th
 (#

ho
ps

)

(a) Path length vs. network size

0

0.5

1

1.5

2

2.5

3

Pa
th

le
ng

th
 (#

ho
ps

)

Random XFabric3DTorus

(b) Uplink placement

Figure 4: Scalability and uplink placement performance.

communicates with all other SoCs in the same cluster.
We vary the number of SoCs per cluster between 2 and
343. Intuitively, this results in a set of traffic matrices in
which the traffic skew grows as cluster size drops. Fig-
ure 3(a) shows the path length as a function of the cluster
size for XFabric and OSA with the clustered workload.
The cluster size has no impact on static topologies be-
cause no reconfiguration is performed. When the skew
is high, reconfigurable topologies are able to more effi-
ciently optimize for the skew, up to the point when most
of the traffic is sent through 1 hop. As the cluster size
increases, the traffic pattern shifts to an all-to-all pattern
and performance of reconfigurable fabrics becomes com-
parable to a Random topology. Notably, there is almost
no difference between XFabric and OSA.

We run a second experiment with a different workload
to evaluate the impact of the traffic pattern on path length.
For this workload, called random destinations, each SoC
sends traffic to a random set of k SoCs in the rack. For
low values of k, the workload is very skewed and as it
increases the workload progressively adopts an all-to-all
traffic pattern. However, this results in a less clustered
workload, even when traffic is very skewed. Figure 3(b)
shows the path length as a function of the number of des-
tinations per SoC for all fabrics. We observe the same
trend as for the clustered workload, with both OSA and
XFabric outperforming static topologies by up to a factor
of 3.5 when the skew is high.

6.5 XFabric Prototype Performance

So far we evaluated the benefits of XFabric at scale us-
ing our simulator. In the next experiment we use our

prototype platform to evaluate the dynamic reconfigura-
tion performance of XFabric. Frequent XFabric recon-
figuration is beneficial as it improves the responsiveness
of the fabric to changes in traffic load, improving perfor-
mance. However, too frequent reconfiguration induces
overheads at the packet switching layer as it may result
in packet loss. The reconfiguration of the crosspoints at
layer 1 is not synchronized with layer 2. Too frequent
packet loss can have a negative impact on the throughput
at the transport layer, particularly if TCP is used.

We have created a test framework that uses unmodified
TCP and replays flow-level traces derived from the Pro-
duction workload. The framework opens a new socket
for each flow and starts six flows per SoC concurrently,
operating as a closed loop per SoC, so when one flow fin-
ishes the next is started on the SoC. In each experiment
we configure the network as a 3D Torus and do not allow
the network to reconfigure for the first 2 minutes. Unless
otherwise stated the flow size is selected from the distri-
bution of flow sizes in the Production workload, which
is a typical heavy tailed distribution with a small number
of elephant flows and a high number of mice flows, and
an average flow size of 9.3 MB.

We first evaluate the impact of reconfiguration fre-
quency on performance. We generate a trace with
250,000 flows and vary the reconfiguration period of
XFabric between t = 0.1 to 480 seconds until the trace
run is completed. Figure 5(a) shows the average path
length of each packet as a function of the reconfiguration
period. As expected, decreasing the reconfiguration pe-
riod reduces the path length. When reconfigured every
30 seconds or less, XFabric achieves more than a 25%
reduction in path length compared to the 3D Torus. The
path length is reduced by approximately 37% (from 2.05
to 1.28 hops) for a reconfiguration interval of a second or
less. This shows that even at small scale, reconfiguring
the topology significantly reduces path length.

In order to understand how reconfiguring the fabric
impacts goodput, Figure 5(b) shows the average comple-
tion time as a function of the reconfiguration interval. For
each run we define completion time as the execution time
from 2 minutes (when reconfiguration is enabled) to the
end of the trace. The completion time for the 3D Torus
is denoted by the red line and is constant as it does not
reconfigure. We can see that for XFabric, shorter path
length also reduces completion time, because each flow
uses less network resources, increasing overall goodput.
The completion time is reduced by 20% compared to
the 3D Torus for a reconfiguration interval of 1 second.
When reconfigured every 100 ms, the completion time
increases compared to the 1 second interval, despite the
path length being similar for both intervals. This shows
the trade-off between the benefit of reconfiguration ver-
sus potential impact of packet loss on the transport layer.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 25

0

0.5

1

1.5

2

2.5

0.1 1 10 100 1000

Pa
th

 le
ng

th
 (#

ho
ps

)

Reconfiguration period (sec)

XFabric
3D Torus

(a) Path length

400
420
440
460
480
500
520
540
560

0.1 1 10 30 60 120 240 480
Reconfiguration period (sec)

Co
m

pl
et

io
n

tim
e

(s
ec

)

3DTorus

(b) Completion time

0

0.5

1

1.5

2

2.5

0 10 20

Pa
th

 le
ng

th
 (#

ho
ps

)

Skew (cluster size)

XFabric- Mice flows only
XFabric
3D Torus

Skewed Uniform

(c) Impact of workload skew on path length

Figure 5: Prototype performance.

We now explore the impact of traffic skew on perfor-
mance. We set the reconfiguration period to 1 second
and generate a set of traces in which SoCs are divided
into clusters of fixed size c, with c = 2 to c = 27. Each
trace has 250,000 flows and for each SoC, the destina-
tion of each flow is randomly selected in the correspond-
ing cluster. Hence for c = 27 the traffic is uniform, and
traffic skew increases as cluster size drops. Figure 5(c)
shows the average path length as a function of the cluster
size. As expected, for XFabric the path length is lower
when the skew is high. In the extreme, when c = 2, the
average path length is 1.02, which is more than a factor of
2 better compared to the 3D Torus. Notably, XFabric still
has a 35% lower path length than the 3D Torus when the
traffic is uniform. This is because many elephant flows
live long enough to benefit from reconfiguration.

To quantify the impact of elephant flows, we gener-
ate a set of traces in which all flows are smaller than the
median value from the Production flow size distribution.
Each trace has 17 million flows with an average flow size
of 129 KB and a maximum of 365 KB. SoCs are divided
into clusters as previously but each SoC sends sequences
of ten short flows to destinations in its cluster. Each SoC
thus has a relatively stable flow rate, but per-destination
traffic is bursty, which can be compared to real traffic
patterns [43]. Figure 5(c) shows that when the traffic is
skewed, XFabric is still able to accurately estimate the
demand without elephant flows because each SoC has a
limited number of destinations and the traffic pattern is
predictable. However, as the traffic gets uniform, XFab-
ric progressively loses the ability to accurately estimate
the demand and the path length becomes comparable to
the static topology.

6.6 Reconfiguration Overheads

We now look at the overheads associated with XFab-
ric reconfiguration. In the first experiment we calcu-
late the average execution time across five runs for OSA
and XFabric to generate a new topology for topology
sizes ranging from 27 to 1024 SoCs. Figure 6(a) shows
the time taken for OSA normalized to XFabric. In all

cases XFabric significantly outperforms OSA. For 512
SoCs and below, XFabric generates topologies in less
than 700ms, while for 1024 SoCs, the topology is gener-
ated in about 3 seconds. This shows that XFabric is able
to optimize any rack-scale topology fast enough for dy-
namic reconfiguration in seconds or less. In comparison,
it takes OSA about 20.5 seconds for the largest topolo-
gies, which is over 6 times longer.

The next experiment measures the end-to-end recon-
figuration latency of XFabric. At the beginning, XFabric
is configured as a 3D Torus and runs an all-to-all work-
load for 60 seconds to allow it to reach steady state. The
controller then generates a new topology and reconfig-
ures the data plane. Figure 6(b) shows the CDF of re-
configuration delays; each data point is the time taken
for each server to have pushed a new forwarding table
into the local packet switch from when the first cross-
point ASIC was reconfigured. Figure 6(b) shows that all
servers are reconfigured within 11 ms. The latency for
each micro-controller attached to the crosspoint ASIC to
internally reconfigure it is approximately 40 microsec-
onds. This delay is currently dominated by two factors,
first the latency of the control plane interface which uses
USB 1.1 and has a 1 ms delay, combined with the fact
that the current prototype controller sequentially com-
municates with each of the micro-controllers, hence the
last crosspoint ASIC is reconfigured 8 ms after the first.
This latency would be removed if the controller used an
Ethernet-based control plane.

We now measure the packet loss rate due to reconfig-
uration in the data plane. We run 5 experiments with
the first workload described in Section 6.5 and a recon-
figuration period set to 1 second. We count all Ethernet
frames sent and received through each NIC on each SoC.
Ethernet frames that are corrupted due to reconfiguration
fail the CRC check and are dropped on the receiver be-
fore being counted. Hence the difference between the
total number of frames sent and received by all SoCs ac-
counts for the loss. We conservatively assume that all lost
frames are due to reconfiguration. The average loss rate
is 0.69 frames per full-duplex link per reconfiguration.
The crosspoint ASICs we use have a switching time of

11

26 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1

2

3

4

5

6

7

10245123436427

OS
A

ex
ec

ut
io

n
tim

e
(n

or
m

al
ize

d
to

 X
Fa

br
ic)

#SoCs per topology

XFabric

(a) Topology generation time

0

0.2

0.4

0.6

0.8

1

0 5 10 15CD
F

of
 re

co
nf

ig
ur

at
io

ns

Circuit reconfiguration delay (ms)

(b) Reconfiguration time

Figure 6: Reconfiguration overheads.

20 ns [51], which is the time to transmit 3 bytes at 1 Gbps
and 25 bytes at 10 Gbps. With a minimal Ethernet frame
size of 64 bytes [28], we expect the worst case loss on
a full-duplex link to be 4 frames per reconfiguration for
both 1 and 10 Gbps.

7 Related Work

The XFabric design is heavily influenced by the Calxeda
SoC design, the first publicly available SoC that incor-
porates a packet switch. This SoC also explicitly pro-
visioned ports for internal communication and a sin-
gle Ethernet uplink port per SoC and we assumed this
model for XFabric. We believe that this is a likely de-
sign point for other SoCs. Calxeda unfortunately col-
lapsed, but we believe that other chip vendors will likely
move in this direction. For example, the Xeon-D pro-
cessor designed by Intel [52] is a low-power SoC with
two 10 Gbps ports per SoC. Oracle recently announced
their next-generation SPARC design with two 56 Gbps
Infiniband controllers co-located with the CPU on sili-
con [26]. However, currently none of these designs yet
supports embedded packet switches.

Optical Circuit Switching (OCS) has been proposed to
establish physical circuits between ToR switches at the
data center scale [20, 47]. They rely on MEMS-based
switches and have high reconfiguration latency. To ad-
dress latency sensitive traffic, c-Through and Helios rely
on a separate packet switched network. Mordia [41]
routes latency sensitive traffic through circuits by time-
sharing the circuits between servers in a rack. XFabric
differs from these architectures because they do not route
packets over multiple circuits when a direct circuit is not
available. The closest to our proposal is OSA [13] that

allows multi-hop data forwarding between ToRs (servers
in a rack use traditional packet switching). However,
OSA does not address the issue of scaling beyond a sin-
gle circuit switch and assumes all ToRs have all reconfig-
urable ports connected to the same switch. Compared to
OSA, XFabric addresses a set of challenges unique to the
rack scale. It reduces the space and power consumed by
the reconfigurable fabric by using several smaller cross-
point ASICs and deals with uplink management.

Halperin et al. [23] propose to augment standard data
center networks with wireless flyways used to decongest
traffic hotspots. Zhou et al. [49] improve the technique
by bouncing the signal off the data center ceiling to over-
come physical obstacles. However, the wireless technol-
ogy has a set of physical constraints (e.g. signal interfer-
ence) due to which only a subset of the links are reconfig-
urable while the rest of the traffic is still routed through
the traditional network. FireFly [24] is a data center level
architecture in which the physical layer is supported by
lasers reflected using large ceiling mirrors. However, this
technique is hard to leverage inside a rack.

In HPC, Kamil et al. uses an optical circuit switch to
interconnect packet switches, which can then be pooled
to increase available bandwidth between heavily com-
municating servers [29]. This work differs from XFab-
ric as it considers one large circuit switch for all packet
switches and leverages the high predictability of HPC
workloads to compute efficient topologies.

AN3 [19] performs virtual circuit switching and al-
lows speculative circuit establishment supported by cus-
tom switches implemented in FPGA. This system differs
from our work as it establishes circuits at layer 2 of the
network and operates over a static physical topology.

8 Conclusion

Emerging hardware trends and server densities are go-
ing to challenge the usual approach of connecting all the
servers in a rack to a single ToR switch. One explored so-
lution is to disaggregate the packet-switching functional-
ity across SoCs. Based on the observation that different
network topologies support different workloads we pro-
pose XFabric, a dynamically reconfigurable rack-scale
fabric. It differs from prior work by addressing specific
requirements that arise at rack scale, dealing with power
and space constraints and managing uplink to the data
center network. A prototype XFabric implementation
demonstrates the reconfiguration benefits and shows that
partial reconfigurability achieves the performance of full
reconfigurability at lower cost and power consumption.

Acknowledgments
We are grateful to the anonymous reviewers, and in par-
ticular to our shepherd S. Keshav, for their feedback.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 27

References

[1] HP Moonshot System: The World’s First Software-
Defined Server -Family guide, Jan. 2014.

[2] ABU-LIBDEH, H., COSTA, P., ROWSTRON, A.,
O’SHEA, G., AND DONNELLY, A. Symbiotic
Routing in Future Data Centers. ACM SIGCOMM
Computer Communication Review 41, 4 (2011),
51–62.

[3] AFCOM. Data center Standards. http://bit.

ly/1KPoZOZ.

[4] Amazon joins other web giants trying to design its
own chips. http://bit.ly/1J5t0fE.

[5] ASANOVIC, K., AND PATTERSON, D. FireBox:
A Hardware Building Block for 2020 Warehouse-
Scale Computers. In USENIX FAST (2014).

[6] BALAKRISHNAN, S., BLACK, R., DONNELLY,
A., ENGLAND, P., GLASS, A., HARPER, D.,
LEGTCHENKO, S., OGUS, A., PETERSON, E.,
AND ROWSTRON, A. Pelican: A Building Block
for Exascale Cold Data Storage. In Proceedings of
the 11th USENIX conference on Operating Systems
Design and Implementation (2014), USENIX As-
sociation, pp. 351–365.

[7] BALLANI, H., JANG, K., KARAGIANNIS, T.,
KIM, C., GUNAWARDENA, D., AND O’SHEA,
G. Chatty Tenants and the Cloud Network Sharing
Problem. In Proceedings of the 10th USENIX con-
ference on Networked Systems Design and Imple-
mentation (2013), USENIX Association, pp. 171–
184.

[8] BOSTON. Boston Viridis Data Sheet. http://

download.boston.co.uk/downloads/9/3/2/

932c4ecb-692a-47a9-937d-a94bd0f3df1b/

viridis.pdf.

[9] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS, J.,
GIARDULLO, A., KULKARNI, S., LI, H., ET AL.
Tao: Facebooks Distributed Data Store for the So-
cial Graph. In USENIX ATC (2013).

[10] BURKARD, R., PARDALOS, P., AND PITSOULIS,
L. The Quadratic Assignment Problem. In
Handbook of Combinatorial Optimization (1998),
Kluwer Academic Publishers, pp. 241–338.

[11] Calient S320 Optical Circuit Switch Datasheet.
http://www.calient.net/download/

s320-optical-circuit-switch-datasheet/.

[12] Macom M21605 Crosspoint Switch Specifica-
tion. http://www.macom.com/products/

product-detail/M21605/.

[13] CHEN, K., SINGLA, A., SINGH, A., RA-
MACHANDRAN, K., XU, L., ZHANG, Y., WEN,
X., AND CHEN, Y. OSA: An Optical Switching
Architecture for Data Center Networks with Un-
precedented Flexibility. IEEE/ACM Transactions
on Networking (TON) 22, 2 (2014), 498–511.

[14] COSTA, P., BALLANI, H., RAZAVI, K., AND
KASH, I. R2C2: A Network Stack for Rack-Scale
Computers. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Commu-
nication (2015), ACM, pp. 551–564.

[15] CRAY. CRAY XT3 Datasheet. http://

www.craysupercomputers.com/downloads/

CrayXT3/CrayXT3_Datasheet.pdf.

[16] DAGLIS, A., NOVAKOVIC, S., BUGNION, E.,
FALSAFI, B., AND GROT, B. Manycore Network
Interfaces for In-Memory Rack-Scale Computing.
In Proceecidings of the 42nd International Sympo-
sium in Computer Architecture (2015), no. EPFL-
CONF-207612.

[17] Dell PowerEdge c5220 Microserver.
http://www.dell.com/us/business/p/

poweredge-c5220/pd.

[18] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON,
O., AND CASTRO, M. FARM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implemen-
tation, NSDI (2014), vol. 14.

[19] ERIC CHUNG, ANDREAS NOWATZYK, TOM RODE-
HEFFER, CHUCK THACKER, AND FANG YU. AN3:
A Low-Cost, Circuit-Switched Datacenter Net-
work. Tech. Rep. MSR-TR-2014-35, March 2014.

[20] FARRINGTON, N., PORTER, G., RADHAKRISH-
NAN, S., BAZZAZ, H. H., SUBRAMANYA, V.,
FAINMAN, Y., PAPEN, G., AND VAHDAT, A. He-
lios: a Hybrid Electrical/Optical Switch Architec-
ture for Modular Data Centers. ACM SIGCOMM
Computer Communication Review 41, 4 (2011),
339–350.

[21] Intel, Facebook Collaborate on Future Data Center
Rack Technologies. http://intel.ly/MRpOM0.

[22] Google Ramps Up Chip Design. http://ubm.io/
1iQooNe.

13

28 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[23] HALPERIN, D., KANDULA, S., PADHYE, J.,
BAHL, P., AND WETHERALL, D. Augmenting
Data Center Networks with Multi-Gigabit Wireless
Links. In ACM SIGCOMM Computer Communica-
tion Review (2011), vol. 41, ACM, pp. 38–49.

[24] HAMEDAZIMI, N., QAZI, Z., GUPTA, H.,
SEKAR, V., DAS, S. R., LONGTIN, J. P., SHAH,
H., AND TANWER, A. FireFly: a Reconfigurable
Wireless Data Center Fabric using Free-Space Op-
tics. In Proceedings of the 2014 ACM conference
on SIGCOMM (2014), ACM, pp. 319–330.

[25] HONG, C.-Y., KANDULA, S., MAHAJAN, R.,
ZHANG, M., GILL, V., NANDURI, M., AND
WATTENHOFER, R. Achieving High Utilization
with Software-Driven WAN. In ACM SIGCOMM
Computer Communication Review (2013), vol. 43,
ACM, pp. 15–26.

[26] Oracles Sonoma Processor. http://www.

hotchips.org/archives/2010s/hc27/.

[27] HP ProLiant m800 Server Cartridge. http://

bit.ly/1JxM9Zr.

[28] IEEE. 802.3-2012 IEEE Standard for Ether-
net. http://standards.ieee.org/findstds/

standard/802.3-2012.html.

[29] KAMIL, S., PINAR, A., GUNTER, D., LIJEWSKI,
M., OLIKER, L., AND SHALF, J. Reconfigurable
Hybrid Interconnection for Static and Dynamic Sci-
entific Applications. In Proceedings of the 4th
international conference on Computing frontiers
(2007), ACM, pp. 183–194.

[30] KANDULA, S., SENGUPTA, S., GREENBERG, A.,
PATEL, P., AND CHAIKEN, R. The Nature of Data
Center Traffic: Measurements & Analysis. In Pro-
ceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference (2009), ACM,
pp. 202–208.

[31] KARYPIS, G., AND KUMAR, V. Multilevel Algo-
rithms for Multi-Constraint Graph Partitioning. In
Supercomputing (1998).

[32] KRUSKAL, J. B. On the Shortest Spanning Subtree
of a Graph and the Traveling Salesman Problem.
Proceedings of the American Mathematical society
7, 1 (1956), 48–50.

[33] LEMON Graph Library. http://lemon.cs.

elte.hu/trac/lemon.

[34] MALEWICZ, G., AUSTERN, M. H., BIK, A. J.,
DEHNERT, J. C., HORN, I., LEISER, N., AND

CZAJKOWSKI, G. Pregel: a System for Large-
Scale Graph Processing. In SIGMOD (2010).

[35] Microservers Powered by Intel. http:

//www.intel.com/content/www/us/en/

servers/microservers.html.

[36] MISLOVE, A., MARCON, M., GUMMADI, K. P.,
DRUSCHEL, P., AND BHATTACHARJEE, B. Mea-
surement and Analysis of Online Social Networks.
In IMC (2007).

[37] MITZENMACHER, M. The Power of Two Choices
in Randomized Load Balancing. Parallel and Dis-
tributed Systems, IEEE Transactions on 12, 10
(2001).

[38] How Microsoft Designs its Cloud-Scale Servers.
http://bit.ly/1HKCy27.

[39] NOVAKOVIC, S., DAGLIS, A., BUGNION, E.,
FALSAFI, B., AND GROT, B. Scale-Out NUMA.
ACM SIGARCH Computer Architecture News 42, 1
(2014), 3–18.

[40] OpenFlow Specification. http://

archive.openflow.org/documents/

openflow-spec-v1.1.0.pdf.

[41] PORTER, G., STRONG, R. D., FARRINGTON, N.,
FORENCICH, A., SUN, P., ROSING, T., FAIN-
MAN, Y., PAPEN, G., AND VAHDAT, A. In-
tegrating Microsecond Circuit Switching into the
Data Center. In ACM SIGCOMM 2013 Conference,
SIGCOMM’13, Hong Kong, China, August 12-16,
2013 (2013), D. M. Chiu, J. Wang, P. Barford, and
S. Seshan, Eds., ACM, pp. 447–458.

[42] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S.,
CHIOU, D., CONSTANTINIDES, K., DEMME, J.,
ESMAEILZADEH, H., FOWERS, J., GOPAL, G. P.,
GRAY, J., ET AL. A Reconfigurable Fabric for Ac-
celerating Large-Scale Data Center Services. In
Computer Architecture (ISCA), 2014 ACM/IEEE
41st International Symposium on (2014), IEEE,
pp. 13–24.

[43] ROY, A., ZENG, H., BAGGA, J., PORTER, G.,
AND SNOEREN, A. C. Inside the Social Net-
work’s (Datacenter) Network. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication (2015), ACM, pp. 123–
137.

[44] SEAMICRO, A. AMD SeaMicro SM15000 Fabric
Compute Systems. http://www.seamicro.com/
sm15000.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 29

[45] SINGLA, A., HONG, C.-Y., POPA, L., AND GOD-
FREY, P. B. Jellyfish: Networking Data Centers
Randomly. In NSDI (2012), vol. 12, pp. 17–17.

[46] SUDAN, K., BALAKRISHNAN, S., LIE, S., XU,
M., MALLICK, D., LAUTERBACH, G., AND BAL-
ASUBRAMONIAN, R. A Novel System Architec-
ture for Web-Scale Applications using Lightweight
CPUs and Virtualized I/O. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE
19th International Symposium on (2013), IEEE,
pp. 167–178.

[47] WANG, G., ANDERSEN, D. G., KAMINSKY, M.,
PAPAGIANNAKI, K., NG, T., KOZUCH, M., AND
RYAN, M. c-Through: Part-Time Optics in Data
Centers. ACM SIGCOMM Computer Communica-
tion Review 41, 4 (2011), 327–338.

[48] WWW.HPCRESEARCH.NL. IBM BlueGene P&Q.
http://www.hpcresearch.nl/euroben/

Overview/web12/bluegene.php.

[49] ZHOU, X., ZHANG, Z., ZHU, Y., LI, Y., KUMAR,
S., VAHDAT, A., ZHAO, B. Y., AND ZHENG, H.
Mirror Mirror on the Ceiling: Flexible Wireless

Links for Data Centers. ACM SIGCOMM Com-
puter Communication Review 42, 4 (2012), 443–
454.

[50] Analog Devices ADN4612. http:

//www.analog.com/media/en/

technical-documentation/data-sheets/

ADN4612.pdf.

[51] Analog Devices ADN4605. http:

//www.analog.com/en/products/

switches-multiplexers/

digital-crosspoint-switches/adn4605.

html.

[52] Intel Xeon Processor D-1500 Family Prod-
uct Brief. http://www.intel.com/

content/www/us/en/processors/xeon/

xeon-processor-d-brief.html.

[53] 10GBase-KR FEC Tutorial. http://www.

ieee802.org/802_tutorials/06-July/

10GBASE-KR_FEC_Tutorial_1407.pdf.

[54] Vitesse VSC3144. https://www.vitesse.com/
products/product/VSC3144.

15

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 31

Be Fast, Cheap and in Control with SwitchKV

Xiaozhou Li1, Raghav Sethi1, Michael Kaminsky3, David G. Andersen2, Michael J. Freedman1

1Princeton University, 2Carnegie Mellon University, 3Intel Labs

Abstract
SwitchKV is a new key-value store system design that
combines high-performance cache nodes with resource-
constrained backend nodes to provide load balancing in
the face of unpredictable workload skew. The cache
nodes absorb the hottest queries so that no individual
backend node is over-burdened. Compared with previous
designs, SwitchKV exploits SDN techniques and deeply
optimized switch hardware to enable efficient content-
based routing. Programmable network switches keep
track of cached keys and route requests to the appropri-
ate nodes at line speed, based on keys encoded in packet
headers. A new hybrid caching strategy keeps cache
and switch forwarding rules updated with low overhead
and ensures that system load is always well-balanced
under rapidly changing workloads. Our evaluation re-
sults demonstrate that SwitchKV can achieve up to 5×
throughput and 3× latency improvements over traditional
system designs.

1 Introduction
In pursuit of meeting aggressive latency and through-
put service level objectives (SLOs) for Internet services,
providers have increasingly turned to in-memory [32, 35]
or flash-based [2] key-value storage systems as caches or
primary data stores. These systems can offer microsec-
onds of latency and provide throughput hundreds to thou-
sands of times that of the hard-disk-based approaches
of yesteryear. The choice of flash vs DRAM comes
with important differences in throughput, latency, persis-
tence, and cost-per-gigabyte. Recent advances in SSD
performance, including new hardware technologies such
as NVMe [34], are opening up new points in the design
space of storage systems that were formerly the exclusive
domain of DRAM-based systems. However, no single
SSD is fast enough, and scale-out designs are necessary
both for capacity and throughput.

Dynamic load balancing is a key challenge to scal-
ing out storage systems under skewed real-world work-
loads [3, 5, 7]. The system performance must not become
bottlenecked due to unevenly partitioned load across
cluster nodes. Conventional static data partitioning tech-
niques such as consistent hashing [23] do not help with

dynamic load imbalance caused by skewed and rapidly-
changing key popularity. Load balancing techniques that
reactively replicate or transfer hot data across nodes often
introduce performance and complexity overheads [24].

Prior research shows that a small, fast frontend cache
can provide effective dynamic load-balancing by directly
serving the most popular items without querying the
backend nodes, making the load across the backends
much more uniform [13]. That work proves that the
cache needs to store only the O(n log n) hottest items to
guarantee good load balance, where n is the total number
of backend nodes (independent of the number of keys).

Unfortunately, traditional caching architectures such
as the look-aside Memcached [15] and an on-path look-
through small cache [13] suffer a major drawback when
using a frontend cache for load balancing, as shown in
Table 1. In these architectures, clients must send all read
requests to the cache first. This approach imposes high
overhead when the hit ratio is low, which is the case when
the cache is small and used primarily for load balancing.
Some look-aside systems (Fig. 1a) make the clients re-
sponsible for handling cache misses [15], which further
increases the system overhead and tail latency. Other de-
signs that place the cache in the frontend load-balancers
(Fig. 1b) [13] are vulnerable to the frontend crashes.

SwitchKV is a new cluster-level key-value store ar-
chitecture that can achieve high efficiency under widely
varying and rapidly changing workloads. As shown in
Fig. 1c, SwitchKV uses a mix of server classes, where
specially-configured high-performance nodes serve as
fast, small caches for data that is hash partitioned across
resource-constrained backend nodes. At the heart of
SwitchKV’s design is an efficient content-based rout-
ing mechanism that uses software-defined networking
(SDN) techniques to serve requests with minimal over-
head. Clients encode keys into packet headers and send
the requests to OpenFlow switches. These switches
maintain forwarding rules for all cached items, and route
requests directly to the cache or backend nodes as appro-
priate based on the embedded keys.

SwitchKV achieves high performance by moving the
cache out of the data path and by exploiting switch hard-
ware that has already been optimized to match (on query
keys) and forward traffic to the right node at line rate with

1

32 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Backend Nodes

Client

Cache

(a) Look-aside

Load Balancer

Backend Nodes

Client

Cache

(b) On-path look-through

CacheOpenFlow SwitchesController

Backend Nodes

Client

(c) SwitchKV

Figure 1: Different cache architectures.

Look-aside On-path look-through SwitchKV

Clients’ responsibilities handle cache misses nothing (transparent) encode keys in packet headers
Cache load 100% queries 100% queries cache hits (likely <40% queries)
Latency with cache miss three machine transits two machine transits one machine transit
Failure points switches load balancer, switches switches
Cache update involves cache, backends cache, backends cache, backends, switches
Cache update rate limit high high low (<10K/s in switch hardware)

Table 1: Comparison of different cache architectures.

low latency. All responses return within one round-trip,
and there is no overhead for the significant volume of
queries for keys that are not in the cache. SwitchKV can
scale-out by adding more cache nodes and switches, and
is resilient to cache crashes.

The benefits of using OpenFlow switches come at a
price: the update rate of forwarding rules in hardware is
much lower than that of in-memory caches. Our solution
includes an efficient hybrid cache update mechanism that
minimizes the cache churn, while still reacting quickly to
rapid changes in key popularity. Backends send periodic
reports to the cache nodes about their recent hot keys as
well as instant reports about keys that suddenly become
very popular. Cache nodes maintain query statistics for
the cached keys, add or evict the appropriate keys when
they receive reports, and instruct SDN controllers to up-
date switch forwarding rules accordingly.

Our SwitchKV prototype uses low-power backend
nodes. The same design principles and evaluation results
also apply to clusters with more powerful backends, by
using high-end cache servers [26] that can keep the same
order of performance gap between cache and backends.

The main contributions of this paper are as follows:
• The design of a new cost-effective, large-scale, persis-

tent key-value store architecture that exploits SDN and
switch hardware capabilities to enable efficient cache-
based dynamic load balancing with content routing.
• An efficient cache update mechanism to meet the chal-

lenges imposed by switch hardware and small cache
size, and to react quickly to rapid workload changes.
• Evaluation and analysis that shows SwitchKV can

handle the traffic characteristics of modern cloud ap-
plications more efficiently than traditional systems.

2 Background and Related Work
Clustered Key-Value Stores. Their simple APIs (e.g.,
get, put, delete) form a fundamental building block
of modern cloud services. Given the performance re-
quirements, some systems keep data entirely in mem-
ory [35, 38], with disks used only for failure recov-
ery; others put a significant fraction of data in cache to
achieve high hit ratio [32]. Systems that aggressively use
DRAM are often more expensive and power-hungry than
those that use flash storage.

Meanwhile, SSDs are becoming faster, as hard-
ware [34] and software stacks [27, 39] for flash storage
become optimized. With a proper design, SSD-based
key-value store clusters can be a cost-effective way to
meet the SLOs of many cloud services.

Load Balancing. Key-value workloads for cloud appli-
cations are often skewed [3, 7]. Many cloud services fur-
ther experience unpredictable flash crowds or adversarial
access patterns [22]. These all pose challenges to scaling
out SSD-based key-value clusters, because the service
quality is often bottlenecked by the performance of over-
loaded nodes. For example, a web server may need to
contact 10s to 100s of storage nodes with many sequen-
tial requests when responding to a page request [32], and
the tail latency can significantly degrade the service per-
formance at large scale [10].

Good load balancing is necessary to ensure that the
cluster can meet its performance goals without substan-
tial over-provisioning. Consistent hashing [23] and vir-
tual nodes [9] help balance the static load and space
utilization, but are unable to balance the dynamic load
with skewed query distributions. Traditional dynamic

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 33

load balancing methods either use the “power of two
choices” [31] or migrate data between nodes [6, 24, 40].
Both are limited in their ability to deal with large skew,
are usually too slow to handle rapid workload changes,
and often introduce consistency challenges and system
overhead for migration or replication.

Caching can be an effective dynamic load balancing
technique for hash partitioned key-value clusters [4, 13].
A frontend cache can absorb the hottest queries and make
the load across the backends less skewed. Fan et al. [13]
prove that the size of the cache required to provide good
load balance is only O(n log n), where n is the total num-
ber of backend nodes. This theoretical result inspired the
design of SwitchKV.

Caching Architectures. Look-aside [15] and on-path
look-through [13] are the two typical caching architec-
tures, shown in Fig. 1 and compared in Table 1. When the
cache is small, the hit ratio is usually low (e.g., <40%).
This is enough to ensure good load balance, but creates
serious overhead in both traditional architectures. The
cache is required to process all queries, including those
for keys that are not cached, wasting substantial system
I/O and network bandwidth in the process.

A cache miss in a look-aside architecture results in an
additional round-trip of latency, as the query must be sent
back to the client with a cache miss notification, and then
resent to the backend. Look-through architectures reduce
this latency by placing the cache in the on-path load bal-
ancer, however, the cache still must process each incom-
ing request to determine whether to forward or serve it.
Additionally, the load balancers become new critical fail-
ure points, which are far less reliable and durable than
network switches [16].

3 SwitchKV Design
The primary design goal of SwitchKV is to remove re-
dundant components on the query path such that latency
can be minimized for all queries, throughput can scale
out with the number of backend nodes, and availability
is not affected by cache node failures.

The key to achieving this goal is the observation that
specialized programmable network switches can play a
key role in the caching system. Switch hardware has
been optimized for decades to perform basic lookups at
high speed and low cost. This simple but efficient func-
tion is a perfect match to the first step of a query process-
ing: determine whether the key is cached or not.

The core of our new architectural design is an effec-
tive content-based routing mechanism. All clients, cache
nodes, and backend nodes are connected with OpenFlow
switches, as shown in Fig. 1c. Clients encode keys in
query packet headers, and send packets to the cluster
switch. Switches have forwarding rules installed, includ-

ing exact match rules for each cached key and wildcard
rules for each backend, to route queries to the right node
at line rate. Table 1 summarizes the significant benefits
of this new architecture over traditional ones.

Exploiting SDN and fast switch hardware benefits sys-
tem performance, efficiency and robustness. However,
it also adds complexity and limitations. The switches
have limited rule space and a relatively slow rule update
rate. Therefore, cached keys and switch forwarding rules
must be managed carefully to realize the full benefits of
this new architecture. The rest of this section describes
SwitchKV’s query-processing flow and mechanisms to
keep the cache up-to-date.

3.1 Content Routing for Queries
We first describe how SwitchKV handles client queries,
assuming both cache and switch forwarding rules are in-
stalled and up-to-date. The process of updating cache
and switch rules will be discussed in Section 3.2.

Query operations are performed over UDP, which has
been widely used in large-scale, high-performance in-
memory key-value systems for low latency and low over-
head [28, 32]. Because UDP is connectionless, queries
can be directed to different servers by switches with-
out worrying about connection states. With a well-
provisioned network, packet loss is rare [32], and sim-
ple application-driven loss recovery is sufficient to ensure
both reliability and high throughput [28].

3.1.1 Key Encoding and Switch Forwarding

An essential system component to enable content-based
routing is the programmable network switches that can
install new per cached key forwarding rules on the fly.
These switches can use both TCAM and L2/L3 tables for
packet processing. The TCAM is able to perform flexible
wildcard matches, but it is expensive and power hungry
to include on switches. Thus, the size of the TCAM table
is usually limited to a few thousand entries [25, 37].1 The
L2 table, however, matches only on destination MAC ad-
dresses; it can be more cost-effectively implemented in
switches and is more power-efficient. Modern commod-
ity switches support 128K [37] or more L2 entries. These
sizes may be insufficient for environments where a large
percentage of data must be cached, but is a large enough
cache size to ensure good load balancing in SwitchKV.

Key Encoding in Packet Headers. Because MAC ad-
dresses have more bits for key encoding and switches
usually have large enough L2 tables to store forwarding
rules for all cached keys, clients encode query keys in the
destination MAC addresses of UDP packets. The MAC

1Some high-end switches advertise larger TCAM table (e.g., 125K
to 1 million entries [33]), albeit at higher cost and power consumption.
Such capabilities would not meaningfully change our design, as our
design primarily relies on exact-match rules.

3

34 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

L2 Table
exact match per cached key

exact match per node address

TCAM Table
wildcard match per backend

Ingress port

Egress port

Packet-In

Packet-Out

miss

hit

Figure 2: Packet flow through a switch.

consists of a small prefix and a hash of the key, com-
puted by the same consistent hashing used to partition
the keyspace across the backends.

The prefix is used to identify the packet as being a
request destined for SwitchKV, and to let the switches
distinguish different types of queries. Only get queries
coming directly from the clients may need to be for-
warded to the cache nodes. Other types of queries should
be forwarded to the backends, including put queries,
delete queries, and get queries from a cache node due
to cache misses. Therefore, get queries from the clients
use one prefix, and all other queries use a different one.

In order to forward queries to the appropriate backend
nodes, each client tracks the mapping between keyspace
partitions and the backend nodes, and encodes identifiers
of backends for the query keys into the destination IP
addresses. This mapping changes only when backend
nodes are added or removed, so client state synchroniza-
tion has very low overhead.

Finally, the client’s address and identity information is
stored in the packet payload so that the node that serves
the request knows where to send responses.

Switch Forwarding. There are three classes of rules
in switches, which are used to forward get queries for
the cached keys to the cache nodes, other queries to
the backends, and non-query packets (e.g., query re-
sponses, cache updates) to the destination node respec-
tively. Fig. 2 shows the packet flow through a switch.
The L2 table stores exact match rules on destination
MAC addresses for each cached key and each cache and
backend node. The TCAM table stores wildcard match
rules on destination IP addresses for each backend node.

The L2 table is set to have a higher priority. A switch
will first look for an exact match in the L2 table and will
forward the packet to an egress port if either the packet
was addressed directly to a node or it is a get query for
a cached key. If there is no match in the L2 table, the
switch will then look for a wildcard match in the TCAM
and forward the packet to the appropriate backend node.

Below are the detailed switch forwarding rules:
• Exact match rules in L2 table for all cached keys. We

use pre1 to denote the prefix for get queries from
clients. For each cached key in cache node:

match:<mac_dst = pre1-keyhash>
action:<port_out = port_cache_node>

client switch cache backend

get cached object

get query with cache miss (rare)

1

4

2 3

MAC Headers: pre1 keyhash pre2 keyhash client MAC

get un-cached object

put/delete cached object

2

3

1

4

2

3

1

4

4

5

1

6

2 3

Figure 3: Query packets flows and destination MAC addresses.
Internal messages for cache consistency during put or delete
operations are not included. A cache miss only occurs due to
key hash collision or temporarily outdated switch rules.

• Exact match rules in L2 table for all clients, cache
nodes, and backends. For each node:

match:<mac_dst = mac_node>
action:<port_out = port_node>

• Wildcard match rules in TCAM table for all backend
nodes. For each backend node:

match:<ip_dst/mask = id_node>
action:<port_out = port_backend_node>

3.1.2 Query Flow Through the System

A main benefit of SwitchKV is that it can send queries to
the appropriate nodes with minimal overhead, especially
for queries on uncached keys which make up most of the
traffic. Fig. 3 shows the possible packet flows of queries.

Handle Read Requests. SwitchKV targets read-heavy
workloads, so the efficiency of handling read requests is
critical to the system performance. Switches route get
queries to the cache or backends based on match results
in the forwarding tables. When it receives a get query,
the cache or backend node will look for the key in its
local store, either in memory or SSD. The backend will
send a reply message with the destination MAC set as the
client address. The cache node will also reply if the key
is found. This reply will be forwarded back to the client.

In most cases, queries sent to the cache node will hit
the cache, because queries for keys not in the cache were
filtered out by the switches. However, it is possible for
a cache node to receive a get query but not find the key
in its local in-memory store. This may occur due to a
small delay in rule removal from the switch, or a rare
hash collision with another key. When this happens, the
cache node must forward the packet to the backends. To
do so, the cache will send the query packet back to the
switch, with the appropriate destination MAC address

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 35

prefix (e.g., from pre1 to pre2 in Fig. 3). This prevents
the packet from matching the same L2 rule in switches
again, so that the query can be forwarded to the appro-
priate backend node via a wildcard match in TCAM.

Handle Write Requests. Clients send put and delete
queries with a MAC prefix that is different from the pre-
fix of get queries (as shown in Fig. 3), so that the packets
will not trigger a rule in the L2 table of switches, and will
be forwarded directly to the backends. When a backend
node receives a put or delete query for a key, it will
update its local data store and reply to the client.

Each backend node keeps track of which keys in its
local store are also being cached. If a put or delete
request for a cached key arrives, the backend will send
messages to update the cache node before replying to the
clients. The cache node is then responsible for commu-
nicating the update to the network controller for switch
rule updates. This policy ensures that data items in the
cache and backends are consistent to the client, but al-
lows temporary inconsistency between cached keys and
switch forwarding rules. The next section describes the
detailed mechanism of cache update and consistency.

3.2 Hybrid Cache Update
As our goal is to build a system that is robust for (nearly)
arbitrary workloads, the limited forwarding rule update
rate poses challenges for the caching mechanism. Since
each cache addition or eviction requires a switch rule
installation or removal, the rule update rate in switches
directly limits the cache update rate, which affects how
quickly SwitchKV can react to workload distribution
changes. Though switches are continuously being op-
timized to speed up their rule update and some switches
can now achieve 12K updates per second [33], they are
still too slow to support traditional caching strategies that
insert each recently-visited key to the cache.

To meet this new challenge, we designed new hybrid
cache update algorithms and protocols to minimize un-
necessary cache churn. The cache update mechanism
consists of three components: 1) Backends periodically
report recent hot keys to the cache nodes. 2) Back-
ends immediately report keys that suddenly become very
hot to the cache nodes. 3) Cache nodes add selected
keys from reports and evict appropriate keys when nec-
essary, and they instruct the network controller to make
corresponding switch rule updates through REST APIs.
Cache addition is prioritized over eviction in order to
react quickly to sudden workload distribution changes
at the cost of some additional buffer switch rule space.
Fig. 4 shows our cache update mechanism at a high level.

3.2.1 Update with Periodic Hot Key Report

In most caching systems, a query for a key that is not
in the cache would bring that key into cache and evict

Cache Backend

switch rule update Top-k <key, load> list

(periodic)

fetch-request <key>

fetch-reply <key, value>

update for consistency
(see section 3.2.4)

(instant)

bursty hot <key, value>

Controller

Figure 4: Cache update overview.

another key if the cache is full. However, many recently
visited keys are not hot and will not be accessed again in
the near future. This would result in unnecessary cache
churn, which would harm the performance of SwitchKV
because its cache update rate is limited.

Instead, we use a different approach to add objects to
the cache less aggressively. Each backend node main-
tains an efficient top-k load tracker to track recent pop-
ular keys. Backend nodes periodically (e.g., every sec-
ond) report their recent hot keys and loads to the cache
nodes. Each cache node maintains an in-memory data
store and frequency counter for the cached items with the
same load metric. The cache node keeps a load threshold
based on the load statistics of cached keys. Upon re-
ceiving the reports, the cache node selects keys whose
loads are above the threshold to add to the cache. It
sends fetch requests for the selected keys to the corre-
sponding backend nodes to get the values. It then updates
the cache and instructs the network controller to update
switch rules based on the received fetch responses.
Time-segmented Top-K Load Tracker. Each backend
node maintains a key-load list with k entries to store its
approximated hottest k keys and their loads. It also keeps
a local frequency counter for the recently visited keys,
so that it can know what are the most popular keys and
how frequently they are queried. A backend node cannot
afford to keep counters for all keys in memory. Instead,
since only information about hot keys is needed, we can
use memory-efficient top-k algorithms to find frequent
items in the query stream [8].

To keep track of recent hot keys, we segment the query
stream into separate intervals. At the end of each inter-
val, the frequency counter extracts the top-k list of its
current segment, then clears itself for the next segment.
The key-load list is updated by the top-k list of the new
segment using weighted average. Suppose the frequency
of key x in the new segment is f x , and the current load
of x is L′x , then the new load of x is

Lx = α · f x + (1 − α) · L′x , (1)
where α represents the degree of weighting decrease. A
higher α discounts previous load faster. Only keys in the
new top-k list will be kept in the new updated key-load
list. L′x is zero for keys not in the previous key-load list.

5

36 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 1 Update Frequency Counter
1: function SeeQuery(x)
2: if x is not tracked in the counter then
3: if the counter is not full then
4: create a bucket with f = 1 if not exists
5: add x to the first bucket; return
6: y ← first key of first bucket, the least visited key
7: replace y with x and keep the same frequency
8: Update(x)
9: function Update(x) // key x is tracked in the counter

10: 〈b, f 〉 ← current 〈bucket, frequency〉 of x
11: if next bucket of b has frequency f + 1 then
12: move x to the next bucket
13: else if x is the only key of b then
14: increase frequency of b to f + 1
15: else move x to a new bucket with frequency f + 1
16: if b is empty then delete b

The frequency counter uses a “space-saving algo-
rithm” [30] to track the heavy hitters of the query stream
in each time segment and approximate the frequencies
of these keys. Fig. 5 shows the data structure of the fre-
quency counter.

f1 f2 f3 f4buckets

keys x1 x2 x3 x4 x5 x6 x7

Figure 5: Structure of top-k frequency counter.

The counter consists of a linked list of buckets, each
with a unique frequency number f . The buckets are
sorted by their frequency in increasing order (e.g., f1 <
f2). Each bucket has a linked list of keys that have been
visited for the same number of times, f . Keys in the
same bucket are sorted by their most recent visited time,
with newest key at the tail of the list. With this struc-
ture, getting a list of top-k hot keys and their load is
straightforward. For example, the top-5 list in Fig. 5 is
[〈x7, f4〉 〈x6, f3〉 〈x5, f3〉 〈x4, f2〉 〈x3, f1〉].

The counter has a configurable size limit N , which is
the maximum number of keys it can track. Algorithm 1
describes how to update the counter. When processing
(e.g., create, delete, move) buckets and keys, the orders
described above are always maintained. The counter re-
quires O(N) memory, and has O(1) running time for each
query. To reduce the computational overhead, we can
randomly sample the query packets, and only update the
counter for a small fraction of the queries. Sampling can
provide a good approximation of the ranking of heavy
hitters in highly skewed workloads.
Cache Adds Selected Keys from Reports. The cache
also tracks the load for all cached keys. In order to be
comparable with the load of reported keys, it must keep
the same parameters (e.g., time segment interval, average
weights, sampling rate) with the tracker in the backends.

Cache nodes update a load threshold periodically based
on the loads of cached keys, and send fetch queries for
the reported keys with load higher than the threshold.

Too big of a threshold would prevent caching hot keys,
while a too small of one would cause frequent unneces-
sary cache churn. To compute a proper load threshold in
practice, the cache samples a certain number of key loads
and uses the load at a certain rank (e.g., 10th percentile
from the lowest) as the threshold value. This process runs
in the background periodically, so it does not introduce
overhead to serving queries or updating cached data.

3.2.2 Update for Bursty Hot Keys

Periodic reports can update the cache effectively with
low communication and memory overhead, but cannot
react quickly when some keys suddenly become popular.
In addition to periodic reports, the backends also send in-
stant reports to the cache to report bursty queries, so that
those queries can be offloaded to the cache immediately.

Each backend maintains a circular log to track the re-
cently visited keys, and a hash table that keeps only en-
tries for keys currently in the log and tracks the number
of occurrence of these keys. As shown in Fig. 6, when
a key is queried, it is inserted into the circular log, with
the existing key at that position evicted. The hash table
updates the count of the keys accordingly and adds or
deletes related entries when necessary. If the count of
a key exceeds a threshold and the node’s overall load is
also above a certain threshold, the key and its value are
immediately sent and added to the cache. The size of
the circular log and hash table could be small (e.g., a few
hundreds of entries), which introduces little overhead to
query processing.

y

pos
0 N-1

Query for x: insert x evict y

count [x] + +
count [y] - -
pos = (pos + 1) mod N

Figure 6: Circular log and counter.

3.2.3 Handle Burst Change with Rule Buffer

The distribution changes in real-world workloads are not
constant. Sudden changes in the key popularity may lead
a large number of cache updates in a short period of
time. In traditional caching algorithms, a cache addition
when the cache is full would also trigger a cache evic-
tion, which in SwitchKV would mean that each addition
involves two forwarding rule updates in the switch. As a
result, the cache would only able to add keys at half of
the switch update rate on average.

In order to react quickly to sudden workload changes,
we prioritize cache addition over eviction. Cache evic-
tions and switch rule deletion requests are queued and
executed after cache additions and rule installations un-
til a maximum delay is reached. In this way, we can

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 37

put or delete response
4

put or delete request
1

Cache

Backend

update request
2

update response
3

cached keys

Figure 7: Updates to keep cache consistency.

reduce the required peak switch update rate for bursty
cache updates to half, so that new hot keys can be added
to cache more quickly. For example, if the switch update
rate limit is 2000 rules per second, and the maximum de-
lay for rule deletions is one second, then the cache can
update at 1000 keys/second on average, and a maximum
of 2000 keys/second for a short period (one second).

To allow delay in switch rule deletions, a rule buffer
must be reserved in the L2 table. The size of this buffer
is the maximum switch update rate times the duration of
maximum delay. In the example above, the switch should
reserve space for at least 2000 rules, which is small com-
pared to the available L2 table size in switches.

Delaying rule deletion may result in stale forwarding
rules in the L2 table. The stale rules will produce a
temporary cache miss for some queries, as shown in the
lower right block of Fig. 3. The miss overhead is small,
however, because the evicted or deleted keys are (by def-
inition) less likely to be frequently visited.

3.2.4 Cache Consistency
SwitchKV always guarantees consistent responses to
clients. As a performance optimization, it allows tempo-
rary inconsistency between switch forwarding rules and
cached keys, which (as described above) can introduce
temporary overheads for a small number of queries, but
never causes inconsistent data access.

In traditional cache systems such as Memcached [15],
when a client sends a put or delete request, it will also
send a request to the cache to either update or invali-
date the item if it is in cache. The cache in SwitchKV
is small and it is possible that most requests are for un-
cached keys, so forwarding each put or delete request
to the cache introduces unnecessary overhead.

The backends avoid this overhead by tracking, in-
memory, which keys in its local store are currently
cached. The backend only updates the cache when it re-
ceives requests for one of these cached keys. Keys are
added to the set whenever the backend receives a fetch
request, or sends an instant hot object detected by the
circular-log counter. When the cache evicts a key, or de-
cides not to add the item from a fetch response or in-
stant report, it sends a message to the backend so that the
backend can remove this key from its cached key set.

We use standard leasing mechanisms to ensure consis-
tency when there are cache or backend failures or net-
work partitions [17]. Backends grant the cache a short-
term lease on each cached key. The cache periodically

renews its leases and only return a cached value while
the lease is still valid. When a backend receives a put or
delete request for a cached key, it will send an update
request to the cache, as shown in Fig. 7, and will wait for
the response or until the lease expires before it replies to
the client. We choose to update the cached data rather
than invalidate it for a put request to reduce the cache
churn and rule update burden on switches.

3.3 Local Storage and Networking
Optimizing the single-node local performance of cache
and backends is not our primary goal, and has been ex-
tensively researched [27, 28, 39]. Nevertheless, we made
several design choices on local storage and networking
to maximize the potential performance of each server,
which we discuss here.

3.3.1 Parallel Data Access

Exploiting the parallelism of multi-core systems is crit-
ical for high performance. Many key-value systems use
various concurrent data structures so that all cores can
access the shared data in parallel [11, 14, 32]. However,
they usually scale poorly with writes and can introduce
significant overhead and complexity to our cache update
algorithms that require query statistics tracking.

Instead, SwitchKV partitions the data in each cache
and backend node based on key hash. Each core has ex-
clusive access to its own partition, and runs its own load
trackers. This greatly improves both the concurrency and
simplicity of the local stores. Prior work [14, 29, 41] ob-
served that partitioning may lower the performance when
the load across partitions is imbalanced. In SwitchKV,
however, backend nodes do not face high skew in key
popularity. By exploiting CPU caches and packet burst
I/O, a cache node that serves a small number of keys can
handle different workload distributions [28].

3.3.2 Network Stack

SwitchKV uses Intel® DPDK [21] instead of standard
socket I/O, which allows our user-level libraries to con-
trol NICs, modify packet headers, and transfer packet
data with minimal overhead [28].

Since each core in the cache and backend nodes has
exclusive access to its own partition of data, we can have
the NIC deliver each query packet to the appropriate RX
queue based on the key. SwitchKV can achieve this by
using Receive Side Scaling (RSS) [12, 20] or Flow Di-
rector (FDir) [28, 36].2 Both methods require informa-
tion about the key in packet headers for the NIC to iden-
tify which RX queue should the packet be sent to. This
requirement is automatic in SwitchKV where key hashes
are already part of the packet header.

2Our prototype uses RSS. FDir enables more flexible control of the
network stack, but it is not supported in the Mellanox NICs that we use.

7

38 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

3.4 Cluster Scaling
To scale system performance, the cluster will require
multiple caches and OpenFlow switches. This section
briefly sketches a design (not yet implemented) for a
scale-out version of SwitchKV.

Multiple Caches. We can increase SwitchKV’s total
system throughput by deploying additional cache nodes.
As each individual node can deliver high throughput be-
cause of its small dataset size (especially when keys fit
within its L3 cache), we do not replicate keys across
nodes and instead simply partition the cache across the
set of participating nodes.3 Each cache node is responsi-
ble for multiple backends, and each backend reports only
to its dedicated cache node. As such, we do not require
any cache coherency protocols between the cache nodes.

If the mapping between backends and cache nodes
changes, the relevant backends will delete their cached
items from their old cache nodes, and then report to the
new ones. If the change is due to a cache crash, the net-
work controller will detect the failed node and delete all
forwarding rules to it.

Network Scaling. To scale network throughput, we can
use the well-studied multi-rooted fat-tree [1, 19]. Such
an architecture may require exact match rules for cached
keys to be replicated at multiple switches. This approach
may sacrifice performance until the rule updates com-
plete, but does not compromise correctness (the back-
ends may need to serve the keys temporarily).

On the other hand, if the switching bottleneck is in
terms of rule space (as opposed to bandwidth), then each
switch must be configured to store only rules for a subset
of the backend nodes, i.e., we partition the backends, and
thus the rule space, across our switches. In this case,
queries for keys in a backend node must be sent through
a switch associated with that key’s backend (i.e., that has
the appropriate rules); that switch can be identified easily
by the query packets’ destination IP addresses.

4 Evaluation
In this section, we demonstrate how our new architecture
and algorithms significantly improve the overall perfor-
mance of a key-value storage cluster under various work-
loads. Our experiments answer three questions:
• How well does a fast small cache improve the cluster

load balance and overall throughput? (§4.2)
• Does SwitchKV improve system throughput and la-

tency compared to traditional architectures? (§4.3)
• Can SwitchKV’s new cache update mechanism react

quickly to workload changes? (§4.4)

3Note that while we are very concerned about load amongst our
backend nodes, our cache nodes have orders-of-magnitude higher per-
formance, and thus the same load-balancing concerns do not arise.

Client

Mellanox
ConnectX-3 EN

Xeon Server 1

Cache

Mellanox
ConnectX-3 EN

40 GbE

40 GbE

40 GbE

40 GbE

Pica8 P-3922
(OVS 2.3)

40GBASE-CR4

Emulated Backends

Mellanox
ConnectX-3 EN

Mellanox
ConnectX-3 EN

Xeon Server 3

40GBASE-CR4

Ryu controller

40GBASE-CR4

40GBASE-CR4

OpenFlow

Xeon Server 2

Xeon Server 4

Emulated Backends

Figure 8: Evaluation platform.

Our SwitchKV prototype is written in C/C++ and runs
on x86-64 Linux. Packet I/O uses DPDK 2.0 [21]. In
order to minimize the effects of implementation (rather
than architectural) differences, we implemented the look-
aside and look-through caches used in our evaluation
simply by changing the query data path in SwitchKV.

4.1 Evaluation Setup

Platform. Our testbed consists of four server machines
and one OpenFlow switch. Each machine is equipped
with dual 8-core CPUs (Intel® Xeon® E5-2660 proces-
sors @ 2.20 GHz), 32 GB of total system memory, and
one 40Gb Ethernet port (Mellanox ConnectX-3 EN) that
is connected to one of the four 40GbE ports on a Pica8
P-3922 switch. Fig. 8 diagrams our evaluation platform.
One machine serves as the client, one machine as the
cache, and two machines emulate many backends nodes.

We derived our emulated performance from experi-
mental measurements on a backend node that fits our
target configuration: an Intel® Atom™ C2750 proces-
sor paired with an Intel® DC P3600 PCIe-based SSD.
On this SSD-based target backend, we ran RocksDB [39]
with 120 million 1KB key-value pairs, and measured its
performance against a client over a 1Gb link. The back-
end could serve 99.4K queries per second on average.

Each emulated backend node in our experiments runs
its own isolated in-memory data structures to serve
queries, track workloads, and update the cache. It has
a configurable maximum throughput enforced by a fine-
grained rate limiter.4 The emulated backends do not store
the actual key-value pairs due to limited memory space.
Instead, they reply to the client or update the cache with
a fake random value for each key. In most experiments
(except Fig. 14), we emulate a total of 128 backend nodes
in the two server machines, and limit each node to serve
at most 100K queries per second. Table 2 summarize the
default experiment settings unless otherwise specified.

4Since it is hard to predict the performance bottleneck at a backend
node if its load is skewed, we assume backends have a fixed throughput
limit as measured under uniform workloads.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 39

Number of backend nodes 128
Max throughput of each backend 100 KQPS
Workload distribution Zipf (0.99)
Number of items in cache 10000

Table 2: Default experiment settings unless otherwise specified

Workloads and Method. We evaluate both skewed and
uniform workloads in our experiments, and focus mainly
on skewed workloads. Most skewed workloads use a
non-uniform key popularity that follows a Zipf distribu-
tion of skewness 0.99, which is the same that used by
YCSB [7]. The request generator uses approximation
techniques to quickly generate workloads with a Zipf dis-
tribution [18, 28]. The keyspace size is 10 billion, so
each of the 128 backend nodes is responsible for serving
approximately 78 million unique keys. The mapping of
a given key to a backend is decided by the key hash. We
use fixed 16-byte keys and 128-byte values.

Most experiments (except Fig. 12) use read-only
workloads, since SwitchKV aims to load balance read
requests. All write requests have to be processed by the
backends, so they cannot be load balanced by the cache.

To find the maximum effective system throughput, the
client tracks the packet loss rate, and adjusts its sending
rate every 10 milliseconds to keep the loss rate between
0.5% to 1%. This self-adjusted rate control enables us to
evaluate the real-time system performance.

Our server machines can send packets at 28 Mpps, but
receive at only 15 Mpps. To avoid the system being bot-
tlenecked by the client’s receiving rate, the backends and
cache node fully process all incoming queries, but send
only half of the responses back to the client. The client
doubles its receiving rate before computing the loss rate.

4.2 Load Balancing with a Small Cache
We first evaluate the effectiveness of introducing a small
cache for reducing load imbalances.

Fig. 9 shows a snapshot of the individual backend node
throughput with caching disabled under workloads of
varying skewness. We observe that the load across the
backend nodes is highly imbalanced.

Fig. 10 shows how caching affects the system through-
put. Under uniform random workload, the backends total
throughput can reach near the maximum capacity (128
backends × 100 KQPS). However, when the workload
is skewed, the system throughput without the cache is
bottlenecked by the overloaded node and significantly re-
duced. Adding a small cache can help the system achieve
good load balance across all of nodes: A cache with only
10,000 items can improve the system’s overall through-
put by 7× for workloads with Zipf skewness of 0.99.

Fig. 11 investigates how different numbers of cached
items affect the system throughput. The backends’ load
quickly becomes well balanced as the number of cached

0
50

100 zipf-0.9

0
50

100

T
h

ro
u

g
h

p
u

t
(K

Q
P
S

)

zipf-0.95

0
50

100 zipf-0.99

Figure 9: Throughput of each backend node without cache un-
der workloads with different Zipf skewness. Node IDs (x-axis)
are sorted according to their throughput.

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

0
5

10
15
20

T
h

ro
u

g
h

p
u

t
(M

Q
P
S

)

Backends (without cache)

Backends (with 1000 items in cache)

Backends (with 10000 items in cache)

Cache (1000 items)

Cache (10000 items)

Figure 10: System throughput with and without the use of a
cache. Figure illustrates the portion of total throughput handled
by the cache and that by backend nodes.

1 10 100 1000
Number of items in cache

0
5

10
15
20
25

T
h

ro
u

g
h

p
u

t
(M

Q
P
S

) total tput (zipf-0.99)

total tput (zipf-0.9)

backends tput (zipf-0.99)

backends tput (zipf-0.9)

1000020000 40000

Figure 11: System throughput as cache size increases. Even a
modest-sized cache of 10,000 items achieves significant gains.

0.0 0.2 0.4 0.6 0.8 1.0
Write ratio

0
5

10
15
20

T
h

ro
u

g
h

p
u

t
(M

O
P
S

)

total tput (uniform write)

total tput (skewed write)

backends tput (uniform write)

backends tput (skewed write)

Figure 12: System throughput with different write ratio.

items grows to 1000. Then, the system throughput con-
tinues to grow as more items are cached, but the bene-
fits from increased cache size diminish (as one expects
given a Zipf workload). The system would require sig-
nificantly more memory at the cache node or many more
cache nodes to further increase the hit ratio. We choose
to cache 10,000 items for the rest of the experiments.

Fig. 12 plots the systems throughput with different
write ratios and write workloads. We assume the back-
end nodes have the same performance for read and write
operations, and use two types of write workload: write
queries uniformly distributed across all keys and write
queries according to the same Zipf 0.99 distribution as
read queries. Write workloads cannot be balanced by

9

40 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0 2 4 6 8 10 12 14
Throughput (MQPS)

0
50

100
150
200
250
300

La
te

n
cy

 (
¹
s)

Throughput limit (>1% of packets are dropped)

99th percentile latency

Average latency

(a) Queries for cached keys with Zipf 0.99 workloads.

0 2 4 6 8 10 12 14
Throughput (MQPS)

0
100
200
300
400
500
600

La
te

n
cy

 (
¹
s) AverageLook-aside

Look-through

SwitchKV

0 2 4 6 8 10 12 14
Throughput (MQPS)

99th Percentile

(b) Queries for uncached keys with uniform workloads.

0 5 10 15 20
Throughput (MQPS)

0
100
200
300
400
500
600

La
te

n
cy

 (
¹
s) AverageLook-aside

Look-through

SwitchKV

0 5 10 15 20
Throughput (MQPS)

99th Percentile

(c) Zipf 0.99 workloads with 10000 items in cache.

Figure 13: End-to-end latency as a function of throughput.

the cache, so the system throughput with skewed write
workload quickly decreases as the write ratio increases.
With the uniform write workload, load across the back-
ends is always uniform, so increasing the write ratio only
decreases the effective throughput of the cache.

4.3 Benefits of the New Architecture
This section compares the system performance between
SwitchKV and traditional look-aside and on-path look-
through architectures. As summarized in Table 1, com-
pared to traditional architectures in which the cache
handles all queries first, the cache in SwitchKV is
only involved when the requested key is already cached
(with high likelihood), and thus uncached items are
served with only a single machine transit. As a result,
we expect SwitchKV to have both lower latency and
higher throughput than traditional architectures, which
is strongly supported by our experimental results.

Latency. We first compare the average and 99th per-
centile latency of different architectures, as shown in
Fig. 13. To measure the end-to-end latency, the client
tags each query packet with the current timestamp.
When receiving responses, the client compares the cur-
rent timestamp and the previous timestamp echoed back
in the responses. To measure latency under different
throughputs, we disable the client’s self rate adjustment,
and manually set different send rates.

Fig. 13a shows the latency when the client only sends
queries for keys in the cache. In all three architectures,

0 200 400 600 800 1000 1200 1400
Number of backend nodes

0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(M

Q
P
S

)

bottlenecked by the cache throughput

load becomes imbalanced

Max capacity

SwitchKV (testbed)

Look-aside (testbed)

Backends capacity

SwitchKV (simulation)

Look-aside (simulation)

Figure 14: System throughput scalability as the number of
backend nodes increases, for SwitchKV and look-aside archi-
tecture with Zipf 0.99 workload and at most 10000 items in
cache. On-path look-through has the same throughput as look-
aside. Each backend node is rate limited at 50K queries per
second, cache is rate limited at 5 million queries per second.
Look-through has similar performance to look-aside.

the queries will be forwarded to the cache by the switch
and the cache reply directly to the client. Accordingly,
they have the same latency for cache hits.

Fig. 13b shows the latency when the client generates
uniform workloads and the cache is empty, which re-
sults in all queries missing the cache. Look-aside has the
highest latency because it takes three machine transits
(cache→client→backend) to handle a cache miss. Look-
through also has high latency because it takes two ma-
chine transits (cache→backend) to handle a cache miss.
In comparison, queries for uncached keys in SwitchKV
cache will directly go to the backend nodes.

Fig. 13c shows the overall latency for a Zipf 0.99
workload and 10000-item cache. As shown in Fig. 10,
about 38% of queries will hit the cache under these set-
tings. The average latency is within the range of cache
hits and cache misses. The 99th percentile latency is
about the same as cache miss latency. As all queries must
go through the cache in look-aside and look-through ar-
chitectures, we cannot collect latency measurements be-
yond the 14 million QPS mark for them, as the cache is
unable to handle more traffic. This result illustrates one
of the major benefits of the SwitchKV design: requests
for uncached keys are simply not sent to the cache, allow-
ing a single cache node to support more backends (higher
aggregate system throughput).

Throughput. We then compare the full system through-
put under a Zipf 0.99 workload as the number of back-
end nodes increase, for different architectures. For each
architecture, the cache node stores at most 10000 items.

In order to emulate more backend nodes in this exper-
iment, we scale down the rate capacity of each backend
node to at most 50K queries per second, and limit the
cache to serve at most 5 million queries per second. The
performance improvement ratio of SwitchKV to other ar-
chitectures will be the same as long as the performance
ratio of the cache to a backend node is 100:1. To achieve
the maximum system throughput, the cache may store

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 41

fewer items when it becomes the performance bottleneck
as the backend cluster size increases.

Fig. 14 shows the experiment results. The throughput
of the look-aside architecture is bottlenecked quickly by
the cache capacity when the number of backend nodes
increases to 64, while the throughput of SwitchKV can
scale out to much larger cluster sizes. When the num-
ber of backend nodes goes beyond 400, the throughput
begins to drop below the maximum system capacity, be-
cause the cache is insufficient for providing good load
balance for such a cluster. To retain linear scalability as
the cluster grows, we would need to have a more power-
ful cache node or increase the number of cache nodes.

Less skewed workloads will yield better scalability for
SwitchKV, but will hit the same performance bottleneck
for both look-aside and look-through architectures. Due
to space constraints, we omit these results.

4.4 Cache Updates
This section evaluates the effectiveness of SwitchKV’s
hybrid cache-update mechanisms. In these experiments,
we keep the workload distribution (Zipf 0.99) the same,
and change only the popularity of each key. The work-
load generator in the client actually generates key indices
with fixed popularity ranks. We change the query work-
loads by changing the mapping between indices and key
strings. We use three different workload change patterns:
1. Hot-in: Move N cold keys to the top of the popularity

ranks, and decrease the ranks of other keys accord-
ingly. This change is radical, as cold keys suddenly
become the hottest ones in the cluster.

2. Hot-out: Move N hottest keys to the bottom of the
popularity ranks, and increase the ranks of other keys
accordingly. This change is more moderate, since the
new hottest keys are most likely already in the cache
if N is smaller than the cache size.

3. Random: Replace N random keys in the top K hottest
keys with cold keys. We typically set K to the cache
size. This change is typically moderate when N is
not large, since the probability that most of the hottest
keys are changed at once is low.
A note about our experimental infrastructure, which

affects SwitchKV’s performance under rapid workload
changes: The Pica8 P-3922 switch’s L2 rule update is
poorly implemented. The switch performs an unneces-
sary linear scan of all existing rules before each rule in-
stallation, which makes the updates very slow as the L2
table grows. We benchmark the switch and find it can
only update about 400 rules/second when the there are
about 10K existing rules, which means the cache can
only update 200 items/second on average. Some other
switches can update their rules much faster (e.g., 12K
updates/second [33]). Though still too slow to support
the update rate needed by traditional caching algorithms,

Figure 15: Throughput with hot-in workload changes, i.e.,
change 200 cold keys into the hottest keys every 10 seconds.

these switches would provide much higher performance
with SwitchKV under rapidly changing workloads.

All experiments use Zipf 0.99 workloads and a 10000-
item-sized cache. Each experiment begins with a pre-
populated cache containing the top 10,000 hot items.
Each backend node sends reports to the cache as fol-
lows: its top five hot keys every second, and keys that
were visited more than eight times within the last two
hundred queries instantly. The choice of parameters for
periodic and instant updates is flexible, determined by
the performance goals, cache size, and update rate limit.
For example, the size and threshold of the ring counter
for instant reports determines when a key is hot enough
to be immediately added to the cache. A threshold that
is too low may cause unnecessary cache churn, while a
threshold that is too high may make the cache slow to re-
spond to bursty workload changes. We omit a sensitivity
analysis of these parameters due to space limits. We also
compare SwitchKV with a traditional update method, in
which backends try to add every queried key to the cache.

We first evaluate system throughput under the hot-in
change pattern. Since this is a radical change, we do not
expect it to happen frequently. Thus, we move 200 cold
keys to the top of the popularity ranks every ten seconds.
Fig. 15 shows the system throughput over time. A tradi-
tional cache update method has very poor performance,
as it performs many cache updates for recently-visited
yet non-hot keys. With periodic top-k reports alone, a
backend’s hot keys are not added to the cache until its
next report (once per second). The throughput is reduced
to less than half after the workload changes, and recovers
in 1-2 seconds. The bottom subfigure shows SwitchKV’s
throughput using its complete cache update mechanism,
which includes the instant hot key reports. The new hot
keys are immediately added to the cache, resulting in a
lower performance drop and a much faster recovery af-
ter a sudden workload change. This demonstrates that
SwitchKV is robust enough to meet the SLOs even with
certain adversarial changes in key popularity.

11

42 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 16: Throughput with hot-out workload changes, i.e.,
move out 200 hottest keys every second.

Figure 17: Throughput with random workload changes, i.e.,
replace 200 out of the top 10000 keys every second.

Our next experiment evaluates SwitchKV’s through-
put under a hot-out change pattern. Every second, the
200 hottest keys suddenly go cold, and we thus increase
the popularity ranks of all other keys accordingly. As
shown in Fig. 16, the complete update mechanism can
handle this change well. With instant reports only and no
periodic reports, the system cannot achieve its maximum
throughput: the circular log counter can detect only very
hot keys, not the keys just entering the bottom of the top-
10000 hot-key list. These keys are only added to cache as
they further increase in their popularity when more of the
hottest keys move out. Note that this gap becomes par-
ticularly apparent as the system reaches its steady state
50 seconds into the experiment; at this point, none of the
pre-populated cached keys remain in the cache.

Fig. 17 shows the throughput with a random change
pattern, in which we randomly replace 200 keys in the
top 10000 popular keys every second. The complete up-
date mechanism is able to handle the workload changes.
There are occasionally short-term small performance
drops, which occur when the hottest keys are replaced.
The throughput would be lower, however, if SwitchKV
were to omit either its instant or periodic reports.

Fig 18 shows the effectiveness of SwitchKV’s rule
buffer in handling bursty workload changes (see §3.2.3).
The maximum delay for cache eviction and rule deletion
is set to 2 seconds. With a switch rule buffer and prior-
itizing rule installation, the 600 new keys can be added
to the cache within 1.5 seconds. Without the rule buffer,
this installation time would double. The rule buffer thus

Figure 18: Throughput with hot-in workload changes with 600
new hottest keys every time, which requires 1200 rule updates
and will take the switch at least three seconds to finish them.

Figure 19: Throughput with different workload change pat-
terns as a function of change rate.

reduces any throughput impact and allows faster recov-
ery during bursty workload changes.

Fig. 19 shows the average throughput with different
change patterns and rates. The switch can update 400
rules per second, which can support 200 cache updates
per second. The system throughput is near maximum
for random and hot-out change patterns when the change
rate is within 200 keys per second, and then goes down
as the change rate increases. Throughput drops quickly
under increasing hot-in changes, as the cache is less ef-
fective when more of the hottest keys change every sec-
ond. Once all patterns change more than 10000 of the
hottest keys per second, all three patterns yield similar
throughput, as all patterns replace the entire cache every
second. Still, even at this point the cache can still keep up
to 200 of current hot keys, and most of the hottest keys
are likely to added to the cache from the instant reports,
so throughput is still much higher (by 3×) than that of
the system lacking a cache. The performance under fast
changing workloads would be higher with switches that
can update their rules faster.

5 Conclusion
SwitchKV is a scalable key-value storage system that can
maintain efficient load balancing under widely varying
and rapidly changing real-world workloads. It achieves
high performance in a cost effective manner, both by
combining fast small caches with new algorithm design,
and by exploiting SDN techniques and switch hardware.
We demonstrate SwitchKV can meet the service-level
objectives for throughput and latency more efficiently
than traditional systems.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 43

Acknowledgments
The authors are grateful to Hyeontaek Lim, Anuj Kalia,
Sol Boucher, Conglong Li, Nanxi Kang, Xin Jin, Lin-
peng Tang, Aaron Blankstein, Haoyu Zhang, our shep-
herd Jinyang Li and the anonymous NSDI reviewers for
their constructive feedback. This work was supported
by National Science Foundation Awards CSR-0953197
(CAREER) and CCF-0964474, and by Intel via the In-
tel Science and Technology Center for Cloud Computing
(ISTC-CC).

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In Proceed-
ings of the ACM SIGCOMM Conference on Data Com-
munication, 2008.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. Fawn: A fast array of
wimpy nodes. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, 2009.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale Key-
value Store. In Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE Joint International Confer-
ence on Measurement and Modeling of Computer Sys-
tems, 2012.

[4] A. Bestavros. Www traffic reduction and load balanc-
ing through server-based caching. IEEE Parallel Distrib.
Technol., 5(1), Jan. 1997.

[5] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.
Patterson. Characterizing, Modeling, and Generating
Workload Spikes for Stateful Services. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SOCC),
2010.

[6] Y. Cheng, A. Gupta, and A. R. Butt. An in-memory object
caching framework with adaptive load balancing. In Pro-
ceedings of the Tenth European Conference on Computer
Systems, 2015.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM Symposium on Cloud
Computing, 2010.

[8] G. Cormode and M. Hadjieleftheriou. Finding frequent
items in data streams. Proc. VLDB Endow., 1(2), Aug.
2008.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with cfs. In
Proceedings of the Eighteenth ACM Symposium on Op-
erating Systems Principles (SOSP), 2001.

[10] J. Dean and L. A. Barroso. The tail at scale. Commun.
ACM, 56(2), Feb. 2013.

[11] B. Debnath, S. Sengupta, and J. Li. Flashstore: High
throughput persistent key-value store. Proc. VLDB En-
dow., 3(1-2), Sept. 2010.

[12] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: Exploiting parallelism to scale software
routers. In Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles (SOSP), 2009.

[13] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small
Cache, Big Effect: Provable Load Balancing for Ran-
domly Partitioned Cluster Services. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (SOCC),
2011.

[14] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3:
Compact and concurrent memcache with dumber caching
and smarter hashing. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implemen-
tation (NSDI), 2013.

[15] B. Fitzpatrick. Distributed Caching with Memcached.
Linux J., 2004(124):5–, Aug. 2004. ISSN 1075-3583.

[16] P. Gill, N. Jain, and N. Nagappan. Understanding network
failures in data centers: Measurement, analysis, and im-
plications. In Proceedings of the ACM SIGCOMM Con-
ference on Data Communication, 2011.

[17] C. Gray and D. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency.
In Proceedings of the Twelfth ACM Symposium on Oper-
ating Systems Principles (SOSP), 1989.

[18] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, 1994.

[19] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM Conference on Data
Communication, 2009.

[20] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
A gpu-accelerated software router. In Proceedings of the
ACM SIGCOMM Conference, 2010.

[21] Intel Data Plane Development Kit (DPDK). http://

dpdk.org/.

[22] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
crowds and denial of service attacks: Characterization
and implications for cdns and web sites. In Proceedings
of the 11th International Conference on World Wide Web
(WWW), 2002.

[23] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of
the Twenty-ninth Annual ACM Symposium on Theory of
Computing (STOC), 1997.

[24] M. Klems, A. Silberstein, J. Chen, M. Mortazavi, S. A.
Albert, P. Narayan, A. Tumbde, and B. Cooper. The ya-
hoo!: Cloud datastore load balancer. In Proceedings of
the Fourth International Workshop on Cloud Data Man-
agement (CloudDB), 2012.

[25] D. Kreutz, F. Ramos, P. Esteves Verissimo,

13

44 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

C. Ẽsteve Rothenberg, S. Azodolmolky, and S. Uh-
lig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1), Jan. 2015.

[26] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kamin-
sky, D. G. Andersen, O. Seongil, S. Lee, and P. Dubey.
Architecting to achieve a billion requests per second
throughput on a single key-value store server platform.
In Proceedings of the 42Nd Annual International Sympo-
sium on Computer Architecture, 2015.

[27] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT:
A Memory-efficient, High-performance Key-value Store.
In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP), 2011.

[28] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
Mica: A holistic approach to fast in-memory key-value
storage. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation
(NSDI), 2014.

[29] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of
the 7th ACM European Conference on Computer Systems
(EuroSys), 2012.

[30] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
Computation of Frequent and Top-k Elements in Data
Streams. In Proceedings of the 10th International Con-
ference on Database Theory (ICDT), 2005.

[31] M. Mitzenmacher. The power of two choices in random-
ized load balancing. IEEE Trans. Parallel Distrib. Syst.,
12(10), Oct. 2001.

[32] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2013.

[33] NoviSwitch. http://noviflow.com/products/

noviswitch/.
[34] NVM Express. http://www.nvmexpress.org/.
[35] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The Case for RAMClouds: Scalable
High-performance Storage Entirely in DRAM. SIGOPS
Oper. Syst. Rev., 43(4):92–105, Jan. 2010.

[36] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris.
Improving network connection locality on multicore sys-
tems. In Proceedings of the 7th ACM European Confer-
ence on Computer Systems (EuroSys), 2012.

[37] Pica8. http://www.pica8.com/.
[38] Redis. http://redis.io/.
[39] RocksDB. http://rocksdb.org/.
[40] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,

A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store:
Fine-grained elastic partitioning for distributed transac-
tion processing systems. Proc. VLDB Endow., 8(3), Nov.
2014.

[41] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP), 2013.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 45

Bitcoin-NG: A Scalable Blockchain Protocol∗

Ittay Eyal Adem Efe Gencer Emin Gün Sirer Robbert van Renesse
Cornell University

Abstract
Cryptocurrencies, based on and led by Bitcoin, have
shown promise as infrastructure for pseudonymous on-
line payments, cheap remittance, trustless digital as-
set exchange, and smart contracts. However, Bitcoin-
derived blockchain protocols have inherent scalability
limits that trade off between throughput and latency,
which withhold the realization of this potential.

This paper presents Bitcoin-NG (Next Generation), a
new blockchain protocol designed to scale. Bitcoin-NG
is a Byzantine fault tolerant blockchain protocol that is
robust to extreme churn and shares the same trust model
as Bitcoin.

In addition to Bitcoin-NG, we introduce several novel
metrics of interest in quantifying the security and effi-
ciency of Bitcoin-like blockchain protocols. We imple-
ment Bitcoin-NG and perform large-scale experiments
at 15% the size of the operational Bitcoin system, us-
ing unchanged clients of both protocols. These exper-
iments demonstrate that Bitcoin-NG scales optimally,
with bandwidth limited only by the capacity of the indi-
vidual nodes and latency limited only by the propagation
time of the network.

1 Introduction
Bitcoin has emerged as the first widely-deployed, de-
centralized global currency, and sparked hundreds of
copycat currencies. Overall, cryptocurrencies have gar-
nered much attention from the financial and tech sec-
tors, as well as academics; achieved wide market pen-
etration in underground economies [38]; reached a $12B

∗The authors are supported in part by AFOSR grants FA2386-
12-1-3008, F9550-06-0019, by the AFOSR MURI Science of Cy-
ber Security: Modeling, Composition, and Measurement as AFOSR
grant FA9550-11-1-0137, by NSF grants CNS-1601879, 0430161,
0964409, 1040689, 1047540, 1518779, 1561209, and CCF-0424422
(TRUST), by ONR grants N00014-01-1-0968 and N00014-09-1-0652,
by DARPA grants FA8750-10-2-0238 and FA8750-11-2-0256, by
MDCN/iAd grant 54083, and by grants from Microsoft Corporation,
Facebook Inc., and Amazon.com.

market cap; and attracted close to $1B in venture cap-
ital [15]. The core technological innovation power-
ing these systems is the Nakamoto consensus proto-
col for maintaining a distributed ledger known as the
blockchain. The blockchain technology provides a de-
centralized, open, Byzantine fault-tolerant transaction
mechanism, and promises to become the infrastructure
for a new generation of Internet interaction, including
anonymous online payments [14], remittance, and trans-
action of digital assets [16]. Ongoing work explores
smart digital contracts, enabling anonymous parties to
programmatically enforce complex agreements [31, 56].

Despite its potential, blockchain protocols face a sig-
nificant scalability barrier [51, 36, 19, 5]. The maximum
rate at which these systems can process transactions is
capped by the choice of two parameters: block size and
block interval. Increasing block size improves through-
put, but the resulting bigger blocks take longer to propa-
gate in the network. Reducing the block interval reduces
latency, but leads to instability where the system is in
disagreement and the blockchain is subject to reorganiza-
tion. Bitcoin currently targets a conservative 10 minutes
between blocks, yielding 10-minute expected latencies
for transactions to be encoded in the blockchain. The
block size is currently set at 1MB, yielding only 1 to 3.5
transactions per second for Bitcoin for typical transac-
tion sizes. Proposals for increasing the block size are
the topic of heated debate within the Bitcoin commu-
nity [47].

In this paper, we present Bitcoin-NG, a scalable
blockchain protocol, based on the same trust model as
Bitcoin. Bitcoin-NG’s latency is limited only by the
propagation delay of the network, and its bandwidth is
limited only by the processing capacity of the individual
nodes. Bitcoin-NG achieves this performance improve-
ment by decoupling Bitcoin’s blockchain operation into
two planes: leader election and transaction serialization.
It divides time into epochs, where each epoch has a sin-
gle leader. As in Bitcoin, leader election is performed

46 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

randomly and infrequently. Once a leader is chosen, it is
entitled to serialize transactions unilaterally until a new
leader is chosen, marking the end of the former’s epoch.

While this approach is a significant departure from
Bitcoin’s operation, Bitcoin-NG maintains Bitcoin’s se-
curity properties. Implicitly, leader election is already
taking place in Bitcoin. But in Bitcoin, the leader is in
charge of serializing history, making the entire duration
of time between leader elections a long system freeze.
In contrast, leader election in Bitcoin-NG is forward-
looking, and ensures that the system is able to continually
process transactions.

Evaluating the performance and functionality of new
consensus protocols is a challenging task. To help per-
form this quantitatively and provide a foundation for
the comparison of alternative consensus protocols, we
introduce several metrics to evaluate implementations
of Nakamoto consensus. These metrics capture perfor-
mance metrics such as protocol goodput and latency, as
well as various aspects of its security, including its ability
to maintain consensus and resist centralization.

We evaluate the performance of Bitcoin-NG on a large
emulation testbed consisting of 1000 nodes, amount-
ing to over 15% of the current operational Bitcoin net-
work [41]. This testbed enables us to run unchanged
clients, using realistic Internet latencies. We com-
pare Bitcoin-NG with the original Bitcoin client, and
demonstrate the critical trade-offs inherent in the original
Bitcoin protocol. Controlling for network bandwidth, re-
ducing Bitcoin’s latency by decreasing the block interval
and improving its throughput by increasing the block size
both yield adverse effects. In particular, fairness suffers,
giving large miners an advantage over small miners. This
anomaly leads to centralization, where the mining power
tends to be concentrated under a single controller, break-
ing the basic premise of the decentralized cryptocurrency
vision. Additionally, mining power is lost, making the
system more vulnerable to attacks. In contrast, Bitcoin-
NG improves latency and throughput to the maximum al-
lowed by network conditions and node processing limits,
while avoiding the fairness and mining power utilization
problems.

In summary, this paper makes three contributions.
First, it outlines the Bitcoin-NG scalable blockchain pro-
tocol, which achieves significantly higher throughput and
lower latency than Bitcoin while maintaining the Bit-
coin trust assumptions. Second, it introduces quantita-
tive metrics for evaluating Nakamoto consensus proto-
cols. These metrics are designed to ground the ongoing
discussion over parameter selection in Bitcoin-derived
currency. Finally, it quantifies, through large-scale ex-
periments, Bitcoin-NG’s robustness and scalability.

2 Model and Goal
The system is comprised of a set of nodes N connected
by a reliable peer-to-peer network. Each node can poll
a random oracle [6] as a random bit source. Nodes can
generate key-pairs, but there is no trusted public key in-
frastructure.

The system employs a cryptopuzzle system, defined
by a cryptographic hash function H. The solution to
a puzzle defined by the string y is a string x such that
H(y|x) — the hash of the concatenation of the two —
is smaller than some target. Each node i has a limited
amount of compute power, called mining power, mea-
sured by the number of potential puzzle solutions it can
try per second. A solution to a puzzle constitutes a proof
of work, as it statistically indicates the amount of work a
node had to perform in order to find it.

At any time t, a subset of nodes B(t)⊂ N are Byzan-
tine and behave arbitrarily, controlled by a single adver-
sary. The other nodes are honest — they abide by the
protocol. The mining power of each node i is m(i). The
mining power of the Byzantine nodes is less than 1/4 of
the total compute power at any given time:

∀t : ∑
b∈B(t)

m(b)<
1
4 ∑

n∈N

m(n)

because proof-of-work blockchains, Bitcoin-NG in-
cluded, are vulnerable to selfish mining by attackers
larger than 1/4 of the network [25].

Nakamoto Consensus
The nodes are to implement a replicated state machine
(RSM) [33, 50]. Properties of the system can be com-
pared to those of classical consensus [46]:

Termination There exists a time difference function
∆(·) such that, given a time t and a value 0 < ε < 1,
the probability is smaller than ε that at times t ′, t ′′ >
t +∆(ε) a node returns two different states for the
machine at time t.

Agreement There exists a time difference function ∆(·)
such that, given a 0 < ε < 1, the probability that at
time t two nodes return different states for t −∆(ε)
is smaller than ε .

Validity If the fraction of mining power of Byzantine

nodes is bounded by f , i.e., ∀t : ∑b∈B(t) m(b)
∑n∈N m(n) < f ,

then the average fraction of state machine transi-
tions that are not inputs of honest nodes is smaller
than f .

3 Bitcoin and its Blockchain Protocol
Bitcoin is a distributed, decentralized crypto-currency [7,
8, 9, 43], which implicitly defined and implemented

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 47

Nakamoto consensus. Bitcoin uses the blockchain pro-
tocol to serialize transactions of the Bitcoin currency
among its users. The replicated state machine maintains
the balances of the different users, and its transitions are
transactions that move funds among them. This state ma-
chine is managed by the system nodes, called miners.

Each user commands addresses, and sends Bitcoins
by forming a transaction from her address to another’s
address and sending it to the nodes. More explicitly, a
transaction is from the output of a previous transaction
to a specific address. An output is spent if it is the in-
put of another transaction. A client owns x Bitcoins at
time t if the aggregate of unspent outputs to its address
is x. Transactions are protected with cryptographic tech-
niques that ensure only the rightful owner of a Bitcoin
address can transfer funds from it. Miners accept trans-
actions only if their sources have not been spent, thereby
preventing users from double-spending their funds. The
miners commit the transactions into a global append-
only log called the blockchain.

The blockchain records transactions in units of blocks.
Each block includes a unique ID, and the ID of the pre-
ceding block. The first block, dubbed the genesis block,
is defined as part of the protocol. A valid block contains
(1) a solution to a cryptopuzzle involving the hash of
the previous block, (2) the hash (specifically, the Merkle
root) of the transactions in the current block, which have
to be valid, and (3) a special transaction, called the coin-
base, crediting the miner with the reward for solving the
cryptopuzzle. This process is called Bitcoin mining, and,
by slight abuse of terminology, we refer to the creation
of blocks as block mining. The specific cryptopuzzle is
a double-hash of the block header whose result has to be
smaller than a set value. The problem difficulty, set by
this value, is dynamically adjusted such that blocks are
generated at an average rate of one every ten minutes.

Mining When a miner creates a block, she is compen-
sated for her efforts with Bitcoins. This compensation
includes a per-transaction fee paid by the users whose
transactions are included, as well as an amount of new
Bitcoins that did not exist before.

Forks Any miner may add a valid block to the chain
by simply publishing it over an overlay network to all
other miners. If multiple miners create blocks with the
same preceding block, the chain is forked into branches,
forming a tree. Other miners may subsequently add new
valid blocks to any of these branches. When a miner
tries to add a new block after an existing block, we say
it mines on the existing block. If this block is a leaf of a
branch, we say he mines on the branch.

To resolve forks, the protocol prescribes on which
chain the miners should mine. The criterion is that the
winning chain is the heaviest one, that is, the one that

required (in expectancy) the most mining power to gen-
erate. All miners add blocks to the heaviest chain of
which they know, with random tie-breaking. We note
that choosing a longest branch at random is suggested
by Eyal and Sirer [25]. The operational client currently
chooses the first branch it has heard of, making it more
vulnerable in the general case. The heaviest chain a node
knows is the serialization of RSM inputs it knows, and
hence describes the RSM’s state. The formation of forks
is undesirable, as they indicate that there is no globally-
agreed RSM state.

Branches and blocks outside the main chain are called
pruned (and not orphans, as is common in informal dis-
cussions, since they have a parent in the block tree).
Transactions in pruned blocks are ignored. They can be
placed in the main chain at any later time, unless a con-
tradicting transaction (that spends the same outputs) was
placed there in the meantime.

Block dissemination over the Bitcoin overlay network
takes seconds, whereas the average mining interval is ten
minutes. Therefore, accidental bifurcation occurs on av-
erage about once every 60 blocks [18].

We are now ready to describe Bitcoin-NG.

4 Bitcoin-NG
Bitcoin-NG is a blockchain protocol that serializes trans-
actions, much like Bitcoin, but allows for better latency
and bandwidth without sacrificing other properties.

The protocol divides time into epochs. In each epoch,
a single leader is in charge of serializing state machine
transitions. To facilitate state propagation, leaders gener-
ate blocks. The protocol introduces two types of blocks:
key blocks for leader election and microblocks that con-
tain the ledger entries. Each block has a header that con-
tains, among other fields, the unique reference of its pre-
decessor; namely, a cryptographic hash of the predeces-
sor header.

We detail the operation of the protocol in this section
and explain its incentive system in Section 5.

4.1 Key Blocks and Leader Election
Key blocks are used to choose a leader. Like a Bitcoin
block, a key block contains the reference to the previ-
ous block (either a key block or a microblock, usually
the latter), the current Unix time, a coinbase transaction
to pay out the reward, a target value, and a nonce field
containing arbitrary bits. As in Bitcoin, for a key block
to be valid, the cryptographic hash of its header must be
smaller than the target value. Unlike Bitcoin, a key block
contains a public key that will be used in subsequent mi-
croblocks.

As in Bitcoin, for a miner to generate a key block, it
must iterate through nonce values until the crypto-puzzle
condition is met. Consequently, the interval between

48 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

sig𝐵𝐵sig𝐴𝐴 sig𝐴𝐴

10 minutes
10 seconds

sig𝐴𝐴 PK𝐵𝐵PK𝐴𝐴

fees 60%40%

Figure 1: Structure of the Bitcoin-NG chain. Mi-
croblocks (circles) are signed with the private key match-
ing the public key in the last key block (squares). Fee is
distributed 40% to the leader and 60% to the next one.

consecutive key blocks is exponentially distributed. To
maintain a set average rate, the difficulty is adjusted by
deterministically changing the target value based on the
Unix time in the key block headers.

In case of a fork, just as in Bitcoin, the nodes pick
the branch with the most work, aggregated over all key
blocks, with random tie breaking.

4.2 Microblocks
Once a node generates a key block it becomes the leader.
As a leader, the node is allowed to generate microblocks
at a set rate smaller than a predefined maximum. The
maximum rate is deterministic, and can be much higher
than the average interval between key blocks. The size
of microblocks is bounded by a predefined maximum.
Specifically, if the timestamp of a microblock is in the fu-
ture, or if its difference with its predecessor’s timestamp
is smaller than the minimum, then the microblock is in-
valid. This bound prohibits a leader (malicious, greedy,
or broken) from swamping the system with microblocks.

A microblock contains ledger entries and a header.
The header contains the reference to the previous block,
the current Unix time, a cryptographic hash of its ledger
entries, and a cryptographic signature of the header. The
signature uses the private key that matches the public key
in the latest key block in the chain. For a microblock to
be valid, all its entries must be valid according to the
specification of the state machine, and the signature has
to be valid. Figure 1 illustrates the structure.

Note that microblocks do not affect the weight of the
chain, as they do not contain proof of work. This is crit-
ical for keeping the incentives aligned, as explained in
Section 5.

4.3 Confirmation Time
When a miner generates a key block, he may not have
heard of all microblocks generated by the previous
leader. If microblock generation is frequent, this can
be the common case on leader switching. The result
is a short microblock fork, as illustrated in Figure 2.
Such a fork is observed by any node that receives the

𝐵𝐵1 𝐵𝐵2𝐴𝐴2

𝐴𝐴3

𝐵𝐵𝐴𝐴1𝐴𝐴

𝐴𝐴4

Figure 2: When microblocks are frequent, short forks
occur on almost every leader switch.

to-be-pruned microblock (blocks A3 and A4 in the fig-
ure) before the new key block (block B in the figure). It
is resolved once the key block propagates to that node.
Therefore, a user that sees a microblock should wait for
the propagation time of the network before considering
it in the chain, to make sure it is not pruned by a new key
block.

4.4 Remuneration
To motivate mining, a leader is compensated for her ef-
forts by the protocol. Remuneration is comprised of two
parts. First, each key block entitles its generator a set
amount. Second, each ledger entry carries a fee. This
fee is split by the leader that places this entry in a mi-
croblock, and the subsequent leader that generates the
next key block. Specifically, the current leader earns 40%
of the fee, and the subsequent leader earns 60% of the
fee, as illustrated in Figure 1. The choice of this distribu-
tion is explained in Section 5.

In practice, the remuneration is implemented by hav-
ing each key block contain a single coinbase transaction
that mints new coins and deposits the funds to the current
and previous leaders. As in Bitcoin, this transaction can
only be spent after a maturity period of 100 key blocks,
to avoid non-mergeable transactions following a fork.

4.5 Microblock Fork Prevention
Since microblocks do not require mining, they can be
generated cheaply and quickly by the leader, allowing
it to split the brain of the system, publishing differ-
ent replicated-state-machine states to different machines.
This allows for double spending attacks, where different
nodes believe the same coins were spent with different
transactions.

To demotivate such behavior, we use a dedicated
ledger entry that invalidates the revenue of fraudulent
leaders. Past work has used such entries in different
contexts [22, 4, 13]. In Bitcoin-NG, the entry is called
a poison transaction, and it contains the header of the
first block in the pruned branch as a proof of fraud. The
poison transaction has to be placed on the blockchain
within the maturity window of the misbehaving leader’s
key block, and before the revenue is spent by the mali-
cious leader. Besides invalidating the compensation sent
to the leader that generated the fork, a poison transaction
grants the current leader a fraction of that compensation,

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 49

e.g., 5%. The choice of this value is explained in Sec-
tion 5.

Only one poison transaction can be placed per cheater,
even if the cheater creates many forks. The cheater’s rev-
enue that is not relayed to the poisoner is lost.

5 Security Analysis

5.1 Incentives
This section describes how miners with capacity smaller
than 1/4 of the total network are incentivized to follow
the protocol. Specifically, miners are motivated to (1)
include transactions in their microblocks, (2) extend the
heaviest chain, and (3) extend the longest chain. Unlike
in Bitcoin, the latter two points are not identical.

Heaviest Chain Extension The motivation for extend-
ing the heaviest chain is the same as in Bitcoin. Since
the honest majority will extend the heaviest chain, it will
remain the main chain with high probability. A dishon-
est majority may arbitrarily switch to any branch and
win [32]. A minority choosing to mine on another branch
will not catch up with an honest majority, therefore it will
mine on the main chain to ensure its revenues. We there-
fore argue that the guarantees of Bitcoin-NG are similar
to those of Bitcoin [40] with respect to the Termination
and Agreement properties of Nakamoto consensus.

Microblocks carry no weight, not even as a secondary
index. If they did, it would increase the system’s vul-
nerability to selfish mining [24, 44, 49]. In selfish min-
ing, an attacker withholds blocks it has mined and pub-
lishes them judiciously to obtain a superior presence in
the main chain. If microblocks carried weight, an at-
tacker could keep secret microblocks and gain advantage
by mining on microblocks unpublished to anyone else.

We conclude that Bitcoin-NG does not introduce a
new vulnerability to selfish mining strategies, and so
Bitcoin-NG is resilient to selfish mining against attack-
ers with less than 1/4 of the mining power. We therefore
argue that the guarantees of Bitcoin-NG are similar to
those of Bitcoin with respect to the validity property of
Nakamoto consensus.

Transaction Inclusion A leader earns 40% of a trans-
action’s revenue by placing it in a microblock. However,
he could potentially improve his revenue by secretly try-
ing to earn 100% of the fee. To do so, first, the leader
creates a microblock with the transaction, but does not
publish it. Then, he tries to mine on top of this se-
cret microblock, while other miners mine on older mi-
croblocks. If the leader succeeds in mining the subse-
quent key block, he obtains 100% of the transaction fees.
Otherwise, he waits until the transaction is placed in a
microblock by another miner and tries to mine on top of
it.

Consider a miner whose mining power ratio out of
all mining power in the system is α . Denote by rleader
the revenue of the leader from a transaction, leaving
(1− rleader) for the next miner. In Bitcoin-NG, we have
rleader = 40%. The value of rleader has to be such that
the average revenue of a miner trying the above attack
is smaller than his revenue placing the transaction in a
public microblock as it should:

Win 100%︷ ︸︸ ︷
α ×100%+

Lose 100%, but mine after txn︷ ︸︸ ︷
(1−α)×α × (100%− rleader)< rleader ,

therefore rleader > 1− 1−α
1+α−α2 . Assuming the power of

an attacker is bounded by 1/4 of the mining power, we
obtain rleader > 37%, hence rleader = 40% is within range.

Longest Chain Extension To increase his revenue
from a transaction, a miner could avoid the transaction’s
microblock and mine on a previous block. Then he
would place the transaction in its own microblock and
try mining the subsequent key block. His revenue in this
case must be smaller than his revenue by mining on the
transaction’s microblock as prescribed:

Place in
microblock︷ ︸︸ ︷

rleader +

Mine next
key block︷ ︸︸ ︷

α(100%− rleader)<

Mine on existing
microblock︷ ︸︸ ︷

100%− rleader ,

therefore rleader <
1−α
2−α . Assuming the power of an at-

tacker is bounded by 1/4 of the mining power, we obtain
rleader < 43%, hence rleader = 40% is within range.

Optimal Network Assumption Incentive compatibil-
ity cannot be maintained in Bitcoin-NG for an attacker
larger than about 29%. For larger attackers, the inter-
section of the two conditions is empty. But this limit
does not come into play in the general case, where
Bitcoin-NG, like Nakamoto’s blockchain with random
tie breaking [25], are secure only against attackers
smaller than 23.2% [49] due to selfish mining attacks.

However, under optimal network assumptions, Bit-
coin’s blockchain is more resilient than Bitcoin-NG: As-
suming a zero latency network where an attacker cannot
rush messages — i.e., receive a message and send its own
such that other nodes receive the attacker’s message be-
fore the original one — Bitcoin is believed to be secure
against selfish mining attackers of size up to almost 1/3.

Bypassing Fee Distribution We note that a user can
circumvent the 40− 60% transaction fee distribution by
paying no transaction fee, and instead paying the current
leader directly, using the coinbase address of the leader’s
key block. However, a user does not gain a significant ad-
vantage by doing so. As we have seen above, paying only
the current leader increases the direct motivation of the
current leader to place the transaction in a microblock,
but reduces the motivation of future miners to mine on

50 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

this microblock. Moreover, if the leader does not include
the transaction before the end of its epoch, subsequent
leaders will have no motivation to place the transaction.

Other motives for fee manipulation, such as paying a
large fee to encourage miners to choose a certain branch
after a fork, apply to Bitcoin as well as Bitcoin-NG, and
are outside the scope of this work.

5.2 Other concerns
Wallet Security The possibility of placing a poison
transaction allows an attacker that obtains a leader’s pri-
vate key to revoke his revenue retroactively and earn a
small amount. However, such an attacker is better off
trying to steal the full leader’s revenue when it becomes
available, therefore the introduction of the poison trans-
action does not add a significant vulnerability.

Censorship Resistance A central goal of Bitcoin is to
prevent a malicious discriminating miner from dropping
a user’s transactions. Censorship resistance is not im-
pacted by the frequent microblocks of Bitcoin-NG.

First, we note that a leader’s absolute power is lim-
ited to his epoch of leadership. A malicious leader can
perform a DoS attack by placing no transactions in mi-
croblocks. Similarly, a benign leader that crashes dur-
ing his epoch of leadership will publish no microblocks.
Their influence ends once the next leader publishes his
key block. The impact of such behaviors is therefore
similar to that in Bitcoin, where nodes may mine empty
blocks, but rarely do.

Assuming an honest majority and no backlog, a user
will have her transaction placed in the first block gener-
ated by an honest miner. Since at least 3/4 of the blocks
are generated by honest miners, the user will have to wait
for 4/3 blocks on average, or 13.33 minutes. Key block
intervals can be set to a rate that would reduce censorship
to the minimum allowed by the network without incur-
ring prohibitive deterioration of other metrics.

Resilience to Mining Power Variation Following Bit-
coin’s success, hundreds of alternative currencies were
created [57], most with Bitcoin’s exact blockchain struc-
ture, and many with the same proof-of-work mechanism.
To maintain a stable rate of blocks, different instances of
the blockchain tune their proof of work difficulty at dif-
ferent rates: Bitcoin once every 2016 blocks – about 2
weeks, Litecoin [37] every 2016 blocks (produced at a
higher rate) – about 3.5 days, and Ethereum [56] on ev-
ery block – about 12 seconds. However, whichever ad-
justment rate is chosen, these protocols are all sensitive
to sudden mining power drops. Such drops happen when
miners are incentivized to stop mining due to a drop in
the currency’s exchange rate, or to mine for a different
currency that becomes more profitable due to a change
in mining difficulty or exchange rate of either currency.

3 4
1

2’

2

3’ 4’ 5’ 6’

5 6 7

7’ 8’

Figure 3: Key block fork. Blocks B and C have the
same chain weight, and the fork is not resolved until key
block D is published.

Such changes are especially problematic for small alt-
coins. When their value rises, they observe a rapid rise in
mining power, and subsequently a drop in mining power
once the difficulty rises. Then, since the difficulty is high,
the remaining miners need a longer time to generate the
next block, potentially orders of magnitude longer.

In Bitcoin-NG, difficulty adjustments can create a sim-
ilar problem; however, it only affects key blocks. Mi-
croblocks are generated at the same constant rate. As a
consequence, in case of a sudden mining power drop,
Bitcoin-NG’s censorship resistance is reduced, as key
blocks are generated infrequently. If a malicious miner
becomes a leader, it will generate microblocks until an
honest leader finds a key block. Nevertheless, transaction
processing continues at the same rate, in microblocks.
Additionally, even until the difficulty is tuned to a correct
value, the ratio of time during which malicious miners
are leaders remains proportional to their mining power.

Forks When issuing microblocks at a high frequency,
Bitcoin-NG observes a fork almost on every key block
generation, as the previous leader keeps generating mi-
croblocks until it receives the key block (Figure 2).
These forks are resolved quickly — once the new key
block arrives at a node, it switches to the new leader.
In comparison, when running Bitcoin at such high fre-
quency, forks are only resolved by the heaviest chain ex-
tension rule, and since different miners may mine on dif-
ferent branches, branches remain extant for a longer time
compared to Bitcoin-NG.

Bitcoin-NG may also experience key block forks,
where multiple key blocks are generated after the same
prefix of key blocks, as shown in Figure 3. This rarely
happens, due to the low frequency and quick propagation
of the small key blocks. The duration of such a fork may
be long, lasting until the next key block. The result is
therefore infrequent, but long, key block forks.

Although such long forks are undesirable, they are not
dangerous. The knowledge of the fork is propagated
through the network, and once it reaches the nodes, they
are aware of the undetermined state. All transactions that
appear only on one branch are therefore uncertain until
one branch gains a lead.

Double Spending Double-spending attacks remain a
vulnerability in Bitcoin-NG, though to a lesser extent
than in Bitcoin.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 51

Consider a Nakamoto blockchain and a Bitcoin-
NG blockchain with the same bandwidth, where the
Nakamoto block interval is the same as the key-block
interval. A double-spending attacker publishes a trans-
action tA, receives a service from a merchant, and pub-
lishes an alternative conflicting transaction tB. A mer-
chant that requires very high confidence should wait for
several Nakamoto blocks, or an equivalent number of
Bitcoin-NG key blocks. With lower confidence require-
ments, the guarantees of the protocols differ.

In Nakamoto’s blockchain, blocks are infrequent, and
transactions are collected by miners until they find a
block. Until that time, a transaction tA can be replaced by
another transaction tB without cost. Publication of con-
flicting transactions with different destinations is prohib-
ited by the standard Bitcoin software, which also warns
the user of conflicting transactions propagating in the
network [30].

In contrast, in Bitcoin-NG, microblocks are frequent,
and so a leader commits to a transaction by placing it in
a microblock. It cannot place tB without forming a fork
and subsequently losing all of its prize from its leader-
ship epoch via a poison transaction.

Other attacks are still possible, where a miner mines
before the microblock of transaction tA and later places
a conflicting tB. Here, the attacker loses the fees of
all transactions in pruned microblocks, but this may be
worthwhile since the loot from the double-spend can be
arbitrarily high. An attacker can mine to prune the chain
in advance, and then place a conflicting transaction, or
try to prune after the fact.

Reasoning about such attacks calls for a formaliza-
tion of the attacker’s incentives and power. We defer
formal analysis that quantifies the security guarantees of
Bitcoin-NG and Nakamoto’s blockchain to future work.
In practice, merchants perform risk analysis to choose a
strategy appropriate for their business.

6 Metrics
We now detail novel metrics by which blockchains can
be evaluated. These metrics are designed to evaluate the
unique properties of Nakamoto consensus.

Consensus Delay Intuitively, consensus delay is the
time it takes for a system to reach agreement. We start
by defining, for a specific execution and time, how long
back nodes have to look to find a point where they agree
on the state.

In a specific execution of an algorithm, given a time t
and a ratio 0 < ε ≤ 1, the ε point consensus delay is the
smallest time difference ∆ such that at least ε · |N | of
the nodes at time t report the same state machine transi-
tion prefix up to time t −∆. An example for the Bitcoin
protocol is illustrated in Figure 4.

Δ1

𝑎𝑎:

𝑏𝑏: 3

𝑐𝑐:

1

2 31

Δ2

𝑡𝑡2𝑡𝑡1
21

2

Figure 4: Point-consensus delay example with three Bit-
coin nodes a, b, and c that generate blocks at heights 1, 2,
and 3 (explosions) and learn that these blocks are in the
main chain (clouds). Intervals ∆1 and ∆2 are the 50%-
point consensus delays at times t1 and t2, respectively:
At least a majority of the nodes at ti agree on the history
until ti −∆i.

The consensus delay is the best point-consensus-delay
the system achieves for a certain fraction of the time, on
average. More formally, the (ε,δ) consensus delay of a
system is the δ -percentile ε-point-consensus-delay. For
example, if 90% of the time, 50% of the nodes agree on
the state of the state machine 10 seconds ago (but not less
than that), then the (50%,90%)-consensus delay is 10
seconds.

Fairness We calculate two ratios: (1) the ratio of tran-
sitions not coming from the largest miner with respect
to all transitions, and (2) the ratio of mining power not
owned by the largest miner with respect to all mining
power. We call the ratio of these ratios the fairness.

Optimally the fairness is 1.0: The largest miner and
the non-largest miners’ representation in the transitions
set should be the same as their respective mining powers.

Mining Power Utilization The security of a proof-of-
work system derives from the mining power used to se-
cure it; that is, the mining power an attacker has to out-
run to obtain disproportionate control. The mining power
utilization is the ratio between the mining power that
secures the system and the total mining power. Min-
ing power wasted on work that does not appear on the
blockchain accounts for the difference.

Subjective Time to Prune Due to the probabilistic na-
ture of Nakamoto consensus, a node may learn of a state
machine transition and subsequently learn that this tran-
sition has not occurred – that it was pruned from history.
This is the case with pruned branches in Bitcoin.

The δ time to prune is the δ -percentile of the differ-
ence between the time a node learns about a transition
that will eventually be pruned, and the time it learns that
this transition has not occurred. This implies what time a
user has to wait to be confident a transition has occurred.
Note that this metric only considers transitions that are
eventually pruned. Figure 5 illustrates an example with
the Nakamoto Blockchain.

52 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Time to prune

3 4
1

2’
0

𝑡𝑡 Time to win

2
3’

Figure 5: A fork in the blockchain with blocks drawn at
their generation times, on a time X axis. Subjective time
to prune is measured from when a node learns of a block
in a branch until it realizes what the main chain is. Time
to win is measured from the creation time of a block until
the last time a node generated a conflicting block.

Time to Win The δ time to win is the δ percentile of
the difference between the first time a node believes a
never-to-be-pruned-transition has occurred and the last
time a (different) node disagrees, believing an alternative
transition has occurred. It is zero if there are no disagree-
ments, or if the latter time is earlier. Figure 5 illustrates
an example for the Bitcoin protocol.

7 Experimental Setup
We evaluate Bitcoin and Bitcoin-NG with 1000-node ex-
periments running in real time on an emulated network.

Implementation For Bitcoin we run the standard
client (release 0.10.0), hereinafter Bitcoin, with minimal
instrumentation to log sufficient information.

We implemented all Bitcoin-NG elements that are sig-
nificant for a performance analysis in the absence of an
adversary, by modifying the standard Bitcoin client (re-
lease 0.10.0). We did not implement the fee distribu-
tion and the microblock signature check. Both elements
have negligible impact on performance — fee distribu-
tion requires about one fixed point operation per trans-
action and signature checking adds several milliseconds
per microblock.

Simulated Mining The time it takes a miner to find
a solution follows a geometric probability distribution,
which can be approximated as an exponential distribu-
tion due to the improbability of a success in each guess
and the rate of guessing.

In our experiments we replace the proof of work mech-
anism with a scheduler that triggers block generation at
different miners with exponentially distributed intervals.

Mining Power The probability of mining a block is
proportional on average to the mining power used for
solving the cryptopuzzle. Since blocks are generated
at average set intervals and the total amount of min-
ing power is large, the interval between block genera-
tion events of a small miner is extremely large. A single
home miner using dedicated hardware is unlikely to mine
a block for years [54].

0

10%

20%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ra
tio

 o
f

 M
in

in
g

Po
w

er

Mining Pools (Descending Mining Power)

Figure 6: Error bars represent the 75th, 50th and 25th
percentiles of the corresponding batch.

Consequently, mining power tends to centralize in the
form of industrial mining and open mining pools. In-
dustrial miners are companies that operate large-scale
mining facilities. Smaller miners that run private min-
ing rigs typically join forces and form mining pools. All
members of a pool work together to mine each block,
and share their revenues when one of them successfully
mines a block.

To reflect in our setup the varying power of miners,
we examined the hash power distribution among Bitcoin
mining entities. The information we require for the anal-
ysis, the identity of the entities generating each block,
is voluntarily provided by miners. We used a public
API [10] to gather this information for the year ending
on August 31, 2015. We note that about 9% of the blocks
are unidentified. We considered each such block as gen-
erated by a different individual miner.

For each week of the year, we calculate the weekly
mining power of each entity, and assign rank 1 to the
largest weekly mining power, rank 2 to the second
largest, and so on. Figure 6 shows the weekly mining
power of each entity by rank up to 20. Bars of the same
shade at different ranks show the distribution of a spe-
cific week. Each batch of bars represents the collection
of ratios for the nth highest block generating pool. We
note that the ranks of different entities is not preserved
throughout the weeks. The y-axis represents the weekly
ratio of blocks generated by a pool.

To model the size distribution of mining entities, we
approximate it with an exponential distribution with an
exponent of −0.27. It yields a 0.99 coefficient of deter-
mination compared with the medians of each rank.

Network The structure of Bitcoin’s overlay network
is complicated, and much of it is intentionally hidden
to preserve Bitcoin’s security against denial of service
(DoS) and to maintain participants’ privacy. (Other
work [29, 41] discusses details on the peer-to-peer net-
work.) Nodes do not reveal their neighbors, but provide
superset of nodes they have discovered. Many of the
nodes are hidden behind firewalls making it difficult to
even estimate the full size of the network. The latency
among nodes is unknown. Moreover, for many of the
metrics that we measure, a critical measure is the time it

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 53

 0
 5

 10
 15
 20
 25
 30
 35
 40

20k 40k 60k 80k 100k

Pr
op

ag
at

io
n

La
te

nc
y

[s
ec

]

Block Size [Byte]

Percentile 75
Percentile 50
Percentile 25

Figure 7: In our system, block propagation time grows
linearly with block size. This qualitatively matches the
linear relation observed in measurements of the opera-
tional Bitcoin network [18].

takes between the generation of a block by some miner
and the time at which another miner starts mining on it.
The block not only has to be propagated and verified by
the second miner, but that second miner must also prop-
agate the details to its mining hardware. In the case of
mining pools with many distant worker miners, this may
incur a non-negligible delay.

Lacking an existing model of the system, we construct
a random network by connecting each node to at least 5
other nodes, chosen uniformly at random. We measured
the latency to all visible Bitcoin nodes from a single van-
tage point on April 7th, 2015, and created a latency his-
togram. We then set the latency among each pair of
nodes in the experiments based on this histogram. The
bandwidth is set to about 100kbit/sec among each pair of
nodes.

To verify the validity of our setup and topology, we
compare Bitcoin’s propagation properties in our setup
and in the operational system. We perform experiments
with different block sizes while changing the block fre-
quency so that the transaction-per-second load is con-
stant. Figure 7 shows a linear relation between the block
size and the propagation time, similar to the linear re-
lation measured in the Bitcoin operational network by
Decker and Wattenhofer [18].

No Transaction Propagation The goal of this work is
to optimize the consensus mechanism of the Blockchain.
However, when generating blocks at high frequencies,
the overhead of filling in the blocks by generating and
propagating transactions becomes a dominant factor with
Bitcoin’s current implementation. This is not an inherent
property of Bitcoin’s protocol, or of a Blockchain proto-
col in general. To reduce the noise caused by the transac-
tion generation and propagation mechanism, we reduce
transaction handling to the minimum. Before starting an
experiment, we initialize the blockchain with artificial
transactions and top up the mempools (the data struc-
ture storing yet-to-be-serialized transactions) of all nodes

with the same set of transactions. The transactions are of
identical size; the operational Bitcoin system as of today,
at 1MB blocks every 10 minutes, has a bandwidth of 3.5
such transactions per second.

8 Evaluation
We evaluate Bitcoin-NG and compare it with Bitcoin in
two sets of experiments, varying block frequency and
block size.

Overall, the experiments show that it is possible to
improve Bitcoin’s consensus delay and bandwidth by
tuning its parameters, but its performance deteriorates
dangerously on all security-related metrics. Bitcoin-NG
qualitatively outperforms Bitcoin, as it suffers no such
deterioration, while enjoying superior performance in al-
most all metrics across the entire measured range. The
bandwidth of Bitcoin-NG is only limited by the process-
ing speed of the individual nodes, as higher throughput
does not introduce key-block forks. The consensus delay
is determined directly by the network propagation time,
because in the common case all nodes agree on the main
chain once they receive the latest key block.

In the experiments that follow, we choose the 90th
percentile. Lower percentiles maintain the same trends,
and very low percentiles show excellent performance –
there is always a small subset of nodes that has the cor-
rect chain. However, with higher percentiles, the results
are lost in the noise. With 1000 nodes and at high per-
centiles, e.g., 99%, we are measuring the 10th slowest
node. Since there are always a few nodes that lag be-
hind, either consistently or temporarily, the results then
are dominated by this random behavior, and the trends
are not visible.

We measure the metrics we introduced by instantiat-
ing them to Nakamoto’s blockchain and to Bitcoin-NG
as follows.

Consensus delay We take the (90%,90%)-consensus
delay based on block generation times. Point-con-
sensus-delay for Bitcoin is illustrated in Figure 4.
As mentioned in Section 5, a user who requires
high confidence (e.g., 99%) will not gain better la-
tency with Bitcoin-NG, and must wait for several
key blocks to accept a transaction as completed.
The guarantees in such cases are similar to those
of Bitcoin with the same block interval as Bitcoin-
NG’s key-block interval.

Fairness We calculate the proportion of (1) the ratio of
blocks in the main chain not generated by the largest
miner with respect to all blocks in the main chain,
and (2) the ratio of blocks not generated by the
largest miner with respect to all generated blocks.

Mining power utilization We calculate the proportion
between the aggregate work of the main chain

54 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0
 50

 100
 150
 200
 250
 300
 350
 400

0.01 0.1 1

Ti
m

e
to

 P
ru

ne
 [s

ec
]

(p
er

ce
nt

ile
 9

0)

Block Frequency [1/sec]

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0.01 0.1 1

Ti
m

e
to

 W
in

 [s
ec

]
(p

er
ce

nt
ile

 9
0)

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1

M
in

in
g

Po
w

er
 U

til
iz

at
io

n

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1

Fa
irn

es
s

 1

 10

 100

 0.01 0.1 1

Co
ns

en
su

s
La

te
nc

y
[s

ec
]

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0.01 0.1 1

Tr
an

sa
ct

io
n

Fr
eq

ue
nc

y
Bitcoin

Bitcoin-NG

Figure 8: Reducing latency.

blocks and all blocks. In Bitcoin-NG, difficulty is
only accrued in key blocks, so microblock forks do
not reduce mining power utilization.

Time to prune For each node and for each branch, we
measure the time it took for the node to prune this
branch. This is the time between the receipt of the
first branch block and the receipt of the main chain
block that is longer than this branch (Figure 5). We
take the 90th percentile of all samples.

Time to win We take the 90th percentile of the time
from the generation of each main-chain block to the
last time another miner generates a block that is not
its descendant (Figure 5).

Experiments We run multiple experiments with differ-
ent parameters. The figures show the average value for
each group of measurements with error bars marking the
extreme values. The sampled values are shown as mark-
ers.

For each execution we run for 50-100 Bitcoin blocks
or Bitcoin-NG microblocks. We perform multiple short
runs since all transactions are preloaded for each ex-
ecution. The mean key-block interval in our experi-
ments is 10 seconds, so each experiment includes leader
changes. We do not consider cases where key-block
forks occur, since in reality one would choose a much
larger key-block interval, e.g., 10 minutes, making key-
block forks extremely rare (more rare than with the op-
erational Bitcoin system).

8.1 Block Frequency
First, we run experiments targeted at improving the con-
sensus delay. For Bitcoin, we vary the frequency of block
generation by reducing the proof-of-work difficulty. For
Bitcoin-NG, keeping the key block generation at one ev-
ery 100 seconds, we vary the frequency of microblock
generation. For each frequency, we choose the block
size (microblock size for Bitcoin-NG) such that the pay-
load throughput is identical to that of Bitcoin’s opera-
tional system, that is, one 1MB block every 10 minutes.
Figure 8 shows the results.

We confirm that the bandwidth, measured as transac-
tion frequency, is close to 3.5, the operational Bitcoin
rate of for such transactions. In our experiments, Bit-
coin’s bandwidth is smaller than that of Bitcoin-NG, giv-
ing Bitcoin an advantage with respect to the other met-
rics.

As expected, a higher block frequency reduces Bit-
coin’s consensus latency as transactions are placed in the
ledger at a higher frequency. Time to prune improves
significantly as block frequency increases. Nevertheless,
Bitcoin’s frequent forks leave it with higher consensus
latency and time to prune than Bitcoin-NG. We note that
although they can be made arbitrarily rare, key block
forks do occur. Such key-block forks are only resolved
once one branch has more key blocks than the others, re-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 55

sulting in a long time to prune if key block intervals are
long.

Bitcoin’s mining power utilization drops quickly as
frequency increases, tending towards 1/4, the size of the
largest miner. At the extreme, block generation is so
fast that by the time a miner learns of a block generated
by another miner, that other miner has generated more
blocks. Then, only the largest miner generates main
chain blocks, and the other miners catch up. This also
implies the deterioration of fairness, as forks are likely to
be resolved by the largest miner extending its preferred
branch. As miners struggle to catch up with the leading
pack, slow miners mine on old blocks and the time to win
metric increases.

Since contention in Bitcoin-NG is limited to key block
generation, forks remain rare despite high frequencies
of microblocks. Increasing the microblock frequency
achieves reduction of both consensus delay and time to
prune. All other metrics are unaffected and remain at the
optimal level.

In the low-frequency experiments of Bitcoin-NG, we
observe a slight mining power utilization decrease and
time to prune increase. This is an artifact of the exper-
imental setup. We run the experiments over a set num-
ber of blocks, therefore these low contention experiments
run for an extended period, enough to observe key block
forks. Note, however, that a realistic Bitcoin-NG imple-
mentation can space the key blocks much further apart
without affecting performance. Then, due to their small
size, key-block forks are highly unlikely, even more so
than with standard blocks of Nakamoto’s blockchain at
the same rate, due to the small size of the key blocks.

8.2 Block Size
To study bandwidth scalability, we run experiments with
different block sizes. We use high frequencies, simi-
lar to those of Ethereum [12], setting Bitcoin’s block
frequency to 1/10sec and Bitcoin-NG’s microblock fre-
quency to 1/10sec and key block frequency to 1/100sec.
Figure 9 shows the result.

As expected, the transaction frequency increases with
block size; the horizontal line shows the operational Bit-
coin rate.

Large blocks take longer to verify and propagate.
Therefore, although block frequency is constant, the time
it takes for a miner to learn of a new block is longer, and
so the chance for forks increases.

These experiments demonstrate the expected trade-off
between bandwidth and latency. Consensus latency in-
creases due to forks, as it takes longer to choose the main
chain. The time to win also increases, as blocks take
longer to catch up with the larger blocks, as does time to
prune due to the many forks.

 0
 50

 100
 150
 200
 250
 300

1280 2.5k 5k 10k 20k 40k 80k

Ti
m

e
to

 P
ru

ne
 [s

ec
]

Block Size [Byte, log scale]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1280 2.5k 5k 10k 20k 40k 80k

Ti
m

e
to

 W
in

 [s
ec

]
(p

er
ce

nt
ile

 9
0)

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1280 2.5k 5k 10k 20k 40k 80k

M
in

in
g

Po
w

er
 U

til
iz

at
io

n
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

1280 2.5k 5k 10k 20k 40k 80k

Fa
irn

es
s

 0

 50

 100

 150

 200

 250

1280 2.5k 5k 10k 20k 40k 80k

Co
ns

en
su

s
La

te
nc

y
[s

ec
]

 0
 2
 4
 6
 8

 10
 12
 14

1280 2.5k 5k 10k 20k 40k 80k

Tr
an

sa
ct

io
n

Fr
eq

ue
nc

y

Bitcoin
Bitcoin-NG

Figure 9: Increasing throughput.

While this trade-off may be acceptable, allowing for
some hunt for a sweet spot on the trade-off curve, the
real problem pertains to security. The forks cause signif-
icant mining power loss, reaching about 80% at Bitcoin’s

56 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

bandwidth (though at a higher block frequency), making
the system vulnerable to attackers that are much smaller.

Even more detrimental is the reduction in fairness.
Even a minor degradation in fairness is dangerous, since
it provides incentives to miners to avoid losses by join-
ing forces to enjoy the advantage of mining in a larger
pool. This leads to centralization of the mining power,
obviating Bitcoin’s security properties.

Bitcoin-NG demonstrates qualitative improvement,
suffering no significant degradation in the security-
related metrics of fairness and mining power. Under
heavy load, however, the clients are approaching their
processing capacity, making it hard for them to keep up,
and we observe degradation in consensus latency and
time to prune.

9 Related Work
Model As in Bitcoin [43] and enhancements
thereof [56, 51, 36], the goal of Bitcoin-NG is to
implement an RSM in an open system. The exact
assumptions and guarantees are explored in different
works [11, 40, 26]. Our model is similar to those of
Aspnes et al. [2] and Garay et al. [26], and our definition
of Nakamoto Consensus is similar to that of Garay
et al. [26]. These are different from the model and
goal of classical Byzantine fault tolerant RSMs. The
latter, by and large, (1) assume static or slow-to-change
membership, allowing for quorum systems and recon-
figurations thereof, and (2) do not guarantee fairness
of representation of honest parties in the state machine
transitions.

The problem of leader election was apparently first
formulated and solved in 1977 by Gerard LeLann [34].
In 1982, Hector Garcia-Molina addressed the problem in
a distributed system that admits failures [27]. Since then
leader election has been extensively used to improve the
performance of distributed systems (e.g., [20, 42]). In
these classical consensus protocols, the leader’s role is to
propose decisions that have to be confirmed by a quorum.
This can be compared to blockchain protocols where the
block of a leader (as defined here) is confirmed in retro-
spect by subsequent blocks of subsequent leaders.

GHOST The GHOST protocol of Sompolinsky et
al. [51] improves on Bitcoin’s scalability by changing its
chain selection rule. While, in Bitcoin, the chain with the
most work (accumulated over all chain blocks, based on
their proofs of work) is the main chain, with GHOST, at
a fork, a node chooses the side whose sub-tree contains
more work (accumulated over all sub-tree blocks). The
benefit is that the heaviest sub-tree choice takes into ac-
count proof of work that does not end up in the main
chain. Thus, GHOST improves both fairness and the
mining power utilization under high contention.

However, in GHOST, blocks on pruned subtrees only
affect the selection rule at the branch point. The Bitcoin-
NG protocol maintains a small fork rate at high band-
width and throughput, allowing for better mining power
utilization and fairness. Moreover, to use GHOST in an
operational system, a challenge remains. In Bitcoin, at
any given time, at least one node knows what the main
chain is since it knows all of its blocks. In GHOST,
this is not the case, and it is possible that no single node
has enough information to determine which is the main
chain. Our technical report [23] provides an example.

One solution to finding the true main chain in GHOST
is to propagate all blocks, or all block headers [51].
However, this exposes the system to denial-of-service at-
tacks, as a malicious node can overwhelm the network
with low-difficulty blocks. There may be heuristics to
avoid the security danger; we do not address this ques-
tion, but have evaluated the system by implementing it,
propagating all blocks. Under these conditions, GHOST
performs worse than Bitcoin as the overhead of propa-
gating all blocks outweighs the benefits of the chain se-
lection rule. Nevertheless, a practical implementation of
GHOST, overcoming remaining challenges, can be used
to complement Bitcoin-NG and allow for a higher fre-
quency of key blocks.

Inclusive Blockchains Lewenberg et al. [36] replace
the blockchain structure with a directed acyclic graph.
There still is a main chain, but its blocks may refer to
pruned branches to include their transactions. Analysis
demonstrates considerable improvement of fairness and
mining power utilization. Bitcoin-NG achieves optimal
fairness and mining power utilization. Using Bitcoin-NG
with an inclusive blockchain to increase key block fre-
quency may prove problematic: Decommissioned lead-
ers could retroactively introduce transactions and have
them included by the current leader. This could allow for
DoS and double-spending attacks.

Faster Bitcoin Significant effort by Bitcoin’s core de-
velopers is put into improving the performance of the
Bitcoin client and technical aspects of its protocol. While
this work can provide significant improvement and en-
able better scaling, it does not eliminate the inherent lim-
itation that stems from forks forming at high rates.

Stathakopoulou et al. suggest reducing propagation
delay in the Bitcoin network [53]. However, their
suggestions imply significant compromises on security.
First, they have nodes propagate transaction inventories
before they know the actual transactions in each inven-
tory; this allows an attacker to swamp the network at no
cost by publishing transaction IDs for non-existent trans-
actions. Second, they form a network by having nodes
prefer connections with close neighbors — exactly the
opposite of the current security-oriented algorithm.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 57

Improving the efficiency of the client [1, 45, 55] can
improve propagation time and reduce the collision win-
dow (time before A hears B found a block). However, the
improvement is limited — a processing speed increase of
x% (e.g., x = 200% with [55]) allows for block size in-
crease of x% at the same fork rate. Bitcoin-NG provides
a qualitative improvement that removes the fork rate de-
pendency on block size or rate.

Corallo [17] has built a centralized fast relay for Bit-
coin, parallel to the standard peer-to-peer network. It
significantly improves network throughput and latency
but increases centralized control and reduces fairness —
miners outside the fast relay are at a disadvantage.

Off-chain solutions An alternative to improving the
bandwidth and latency of the blockchain is to perform
transactions off the chain. This basic premise appar-
ently originated in Hearn and Spilman’s two-point chan-
nel protocol [28]. The Lightning network [48] and du-
plex micropayment channels [19] allow for payment net-
works layered on top of a blockchain. The security and
privacy guarantees of such payment networks differ from
those of Bitcoin; as an extreme example, if the nodes
performing transactions over a channel crash, all their
transactions are lost, as they were never stored in the
blockchain. Moreover, the efficacy of such solutions de-
pends on properties of the emergent payment network, its
topology, the amount of value locked in payment chan-
nels, as well as the protocol’s ability to discover and use
payment paths. Overall, these solutions may be suitable
for targeted use cases where the additional layer may re-
duce the number of transactions seen at the lower layers,
but, unlike Bitcoin-NG, they do not address the funda-
mental problem of scaling a Nakamoto-consensus RSM.

Another proposition for improving performance is that
of federated chains, known as side chains [4], where
transactions can move coins from one chain to another.
Sidechains provide extensibility, as different chains can
offer different features. However, their contribution for
efficiency is limited, as they incur high latencies for
crossing chains; moreover, when the payor has funds on
one sidechain and the payee would like to spend them on
another, the funds have to cross the main chain in order
to get the value to their intended destination.

Analysis Given a cryptopuzzle difficulty and a topol-
ogy, Sompolinsky et al. [52] calculate upper and lower
bounds for the growth rate of the Bitcoin main chain.
This analysis can be translated to the expected forking
frequency at different difficulty levels when there are ex-
actly two miners. Our experiments target a larger number
of miners, modeled according to Bitcoin’s operational
system, that tune difficulty arbitrarily to reach a target
main chain extension rate.

Miller and Jansen [39] describe a methodology for
evaluating a large-scale Bitcoin blockchain system on a
single machine using an event-driven simulator. To fa-
cilitate manageable experiment times, they replace time-
consuming cryptographic operations with a delay of an
appropriate length. In our experiments, we run the
original operational client directly on the operating sys-
tem, emulating only the network properties and mining
events.

Incentives Incentive compatibility has been a key is-
sue in the investigation of cryptocurrencies. Babaioff
et al. [3] suggest a mechanism to motivate transaction
propagation. Lewenberg et al. [35] propose an alterna-
tive to the chain structure to motivate the participation
of badly-connected miners. Eyal [21] shows that a nat-
ural incentive system deters the formation of large open
mining pools.

10 Conclusion
As Bitcoin and related cryptocurrencies have become
surprisingly popular, they have hit scalability limits. The
technical debate to improve scalability has been ham-
pered by a perceived inherent trade-off between perfor-
mance metrics and security goals of the system. Con-
sequently, the discussions have become acrimonious,
long-term solutions have seemed elusive, and the current
sentiment has centered around short-term, incremental,
compromise solutions.

Bitcoin-NG shows that it is possible to improve the
scalability of blockchain protocols to the point where the
consensus latency is limited solely by the network di-
ameter and the throughput bottleneck lies only in node
processing power. Such scaling is key in allowing for
blockchain technology to fulfill its promise of imple-
menting trustless consensus for a variety of demanding
applications including payments, digital asset transac-
tions, and smart contracts — at global scale.

Acknowledgments The authors thank Ayush Dubey,
Gregory Maxwell, Malte Möser, Weijia Song, the pa-
per’s shepherd Jay Lorch, and the anonymous review-
ers for their comments on earlier versions of this
manuscript.

58 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

References
[1] ANDRESEN, G. O(1) block propagation.

https://gist.github.com/gavinandresen/

#file-blockpropagation-md, retrieved July. 2015.

[2] ASPNES, J. Randomized protocols for asynchronous consensus.
Distributed Computing 16, 2-3 (2003), 165–175.

[3] BABAIOFF, M., DOBZINSKI, S., OREN, S., AND ZOHAR, A.
On Bitcoin and red balloons. In ACM Conference on Electronic
Commerce (Valencia, Spain, 2012), pp. 56–73.

[4] BACK, A., CORALLO, M., DASHJR, L., FRIEDENBACH, M.,
MAXWELL, G., MILLER, A., POELSTRA, A., TIMN, J., AND
WUILLE, P. Enabling blockchain innovations with pegged
sidechains. http://cs.umd.edu/projects/coinscope/

coinscope.pdf, 2014.

[5] BAMERT, T., DECKER, C., ELSEN, L., WATTENHOFER, R.,
AND WELTEN, S. Have a snack, pay with Bitcoins. In Peer-
to-Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on (2013), IEEE, pp. 1–5.

[6] BELLARE, M., AND ROGAWAY, P. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In Proceedings
of the 1st ACM conference on Computer and communications se-
curity (1993), ACM, pp. 62–73.

[7] BITCOIN COMMUNITY. Bitcoin source. https://github.

com/bitcoin/bitcoin, retrieved Mar. 2015.

[8] BITCOIN COMMUNITY. Protocol rules. https://en.

bitcoin.it/wiki/Protocol_rules, retrieved Sep. 2013.

[9] BITCOIN COMMUNITY. Protocol specification. https://

en.bitcoin.it/wiki/Protocol_specification, retrieved
Sep. 2013.

[10] BLOCKTRAIL. BlockTrail API. https://www.blocktrail.

com/api/docs#api_data, retrieved Sep. 2015.

[11] BONNEAU, J., MILLER, A., CLARK, J., NARAYANAN, A.,
KROLL, J. A., AND FELTEN, E. W. Research perspectives on
Bitcoin and second-generation cryptocurrencies. In Symposium
on Security and Privacy (San Jose, CA, USA, 2015), IEEE.

[12] BUTERIN, V. A next generation smart contract & decen-
tralized application platform. https://www.ethereum.org/

pdfs/EthereumWhitePaper.pdf/, retrieved Feb. 2015, 2013.

[13] BUTERIN, V. Slasher: A punitive proof-of-stake algo-
rithm. https://blog.ethereum.org/2014/01/15/

slasher-a-punitive-proof-of-stake-algorithm/,
January 2015.

[14] CNNMONEY STAFF. The Ashley Madison hack...in 2 min-
utes. http://money.cnn.com/2015/08/24/technology/

ashley-madison-hack-in-2-minutes/, retrieved
Sep. 2015.

[15] COINDESK. Bitcoin venture capital. http://www.coindesk.
com/bitcoin-venture-capital/, retrieved Sep. 2015.

[16] COLORED COINS PROJECT. Colored Coins. http://

coloredcoins.org/, retrieved Sep. 2015.

[17] CORALLO, M. High-speed Bitcoin relay network.
http://sourceforge.net/p/bitcoin/mailman/

message/31604935/, November 2013.

[18] DECKER, C., AND WATTENHOFER, R. Information propagation
in the Bitcoin network. In IEEE P2P (Trento, Italy, 2013).

[19] DECKER, C., AND WATTENHOFER, R. A fast and scalable pay-
ment network with Bitcoin Duplex Micropayment Channels. In
Stabilization, Safety, and Security of Distributed Systems - 17th
International Symposium, SSS 2015, Edmonton, AB, Canada, Au-
gust 18-21, 2015, Proceedings (2015), Springer, pp. 3–18.

[20] DWORK, C., LYNCH, N. A., AND STOCKMEYER, L. J. Con-
sensus in the presence of partial synchrony. J. ACM 35, 2 (1988),
288–323.

[21] EYAL, I. The miner’s dilemma. In IEEE Symposium on Security
and Privacy (2015), pp. 89–103.

[22] EYAL, I., BIRMAN, K., AND VAN RENESSE, R. Cache serial-
izability: Reducing inconsistency in edge transactions. In 35th
IEEE International Conference on Distributed Computing Sys-
tems (2015), pp. 686–695.

[23] EYAL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE,
R. Bitcoin-ng: A scalable blockchain protocol. arXiv preprint
arXiv:1510.02037 (2015).

[24] EYAL, I., AND SIRER, E. G. Bitcoin is broken.
http://hackingdistributed.com/2013/11/04/

bitcoin-is-broken/, 2013.

[25] EYAL, I., AND SIRER, E. G. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Secu-
rity (2014).

[26] GARAY, J. A., KIAYIAS, A., AND LEONARDOS, N. The Bit-
coin backbone protocol: Analysis and applications. In Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques (2015), pp. 281–310.

[27] GARCIA-MOLINA, H. Elections in a distributed computing sys-
tem. Computers, IEEE Transactions on 100, 1 (1982), 48–59.

[28] HEARN, M., AND SPILMAN, J. Rapidly-adjusted (mi-
cro)payments to a pre-determined party. https://en.

bitcoin.it/wiki/Contract, retrieved Sep. 2015.

[29] HEILMAN, E., KENDLER, A., ZOHAR, A., AND GOLDBERG,
S. Eclipse attacks on Bitcoin’s peer-to-peer network. In 24th
USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015. (2015), pp. 129–144.

[30] KARAME, G. O., ANDROULAKI, E., AND CAPKUN, S. Double-
spending fast payments in bitcoin. In Proceedings of the 2012
ACM Conference on Computer and Communications Security
(2012), CCS ’12, ACM, pp. 906–917.

[31] KOSBA, A., MILLER, A., SHI, E., WEN, Z., AND PAPAMAN-
THOU, C. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. Cryptology ePrint Archive,
Report 2015/675, 2015. http://eprint.iacr.org/.

[32] KROLL, J. A., DAVEY, I. C., AND FELTEN, E. W. The eco-
nomics of Bitcoin mining or, Bitcoin in the presence of adver-
saries. In Workshop on the Economics of Information Security
(2013).

[33] LAMPORT, L. Using time instead of timeout for fault-tolerant
distributed systems. ACM Transactions on Programming Lan-
guages and Systems 6, 2 (Apr. 1984), 254–280.

[34] LE LANN, G. Distributed systems-towards a formal approach.
In IFIP Congress (1977), vol. 7, Toronto, pp. 155–160.

[35] LEWENBERG, Y., BACHRACH, Y., SOMPOLINSKY, Y., ZOHAR,
A., AND ROSENSCHEIN, J. S. Bitcoin mining pools: A cooper-
ative game theoretic analysis. In Proceedings of the 2015 Inter-
national Conference on Autonomous Agents and Multiagent Sys-
tems (2015), International Foundation for Autonomous Agents
and Multiagent Systems, pp. 919–927.

[36] LEWENBERG, Y., SOMPOLINSKY, Y., AND ZOHAR, A. Inclu-
sive block chain protocols. In Financial Cryptography (Puerto
Rico, 2015).

[37] LITECOIN PROJECT. Litecoin, open source P2P digital currency.
https://litecoin.org, retrieved Nov. 2014.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 59

[38] MEIKLEJOHN, S., POMAROLE, M., JORDAN, G.,
LEVCHENKO, K., MCCOY, D., VOELKER, G. M., AND
SAVAGE, S. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 Internet
Measurement Conference, IMC 2013, Barcelona, Spain, October
23-25, 2013 (2013), pp. 127–140.

[39] MILLER, A., AND JANSEN, R. Shadow-Bitcoin: Scalable sim-
ulation via direct execution of multi-threaded applications. IACR
Cryptology ePrint Archive 2015 (2015), 469.

[40] MILLER, A., AND JR., L. J. J. Anonymous Byzantine consensus
from moderately-hard puzzles: A model for Bitcoin. https://
socrates1024.s3.amazonaws.com/consensus.pdf, 2009.

[41] MILLER, A., LITTON, J., PACHULSKI, A., GUPTA, N., LEVIN,
D., SPRING, N., AND BHATTACHARJEE, B. Preprint: Discover-
ing Bitcoins public topology and influential nodes. http://cs.
umd.edu/projects/coinscope/coinscope.pdf, 2015.

[42] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. Egali-
tarian Paxos. In ACM Symposium on Operating Systems Princi-
ples (2012).

[43] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.
http://www.bitcoin.org/bitcoin.pdf, 2008.

[44] NAYAK, K., KUMAR, S., MILLER, A., AND SHI, E. Stub-
born mining: Generalizing selfish mining and combining with
an eclipse attack. IACR Cryptology ePrint Archive 2015 (2015),
796.

[45] PAZMIÑO, J. E., AND DA SILVA RODRIGUES, C. K. Simply
dividing a Bitcoin network node may reduce transaction verifi-
cation time. The SIJ Transactions on Computer Networks and
Communication Engineering (CNCE) 3, 2 (February 2015), 17–
21.

[46] PEASE, M. C., SHOSTAK, R. E., AND LAMPORT, L. Reaching
agreement in the presence of faults. J. ACM 27, 2 (1980), 228–
234.

[47] PECK, M. E. Adam Back says the Bitcoin fork is a coup.
http://spectrum.ieee.org/tech-talk/computing/

networks/the-bitcoin-for-is-a-coup, Aug 2015.

[48] POON, J., AND DRYJA, T. The Bitcoin Lightning Net-
work. http://lightning.network/lightning-network.

pdf, February 2015. Draft 0.5.

[49] SAPIRSHTEIN, A., SOMPOLINSKY, Y., AND ZOHAR, A. Opti-
mal selfish mining strategies in Bitcoin. CoRR abs/1507.06183
(2015).

[50] SCHNEIDER, F. B. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing Surveys
22, 4 (Dec. 1990), 299–319.

[51] SOMPOLINSKY, Y., AND ZOHAR, A. Accelerating Bitcoin’s
transaction processing. fast money grows on trees, not chains. In
Financial Cryptography (Puerto Rico, 2015).

[52] SOMPOLINSKY, Y., AND ZOHAR, A. Secure high-rate trans-
action processing in Bitcoin. In Financial Cryptography and
Data Security - 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers
(2015), pp. 507–527.

[53] STATHAKOPOULOU, C. A faster Bitcoin network. Tech. rep.,
ETH, Zürich, January 2015. Semester Thesis, supervised by C.
Decker and R. Wattenhofer.

[54] SWANSON, E. Bitcoin mining calculator. http://www.

alloscomp.com/bitcoin/calculator, retrieved Sep. 2013.

[55] THE BITCOIN COMMUNITY. Release notes, bitcoin 0.12.0.
https://github.com/bitcoin/bitcoin/blob/0.12/

doc/release-notes.md, Feb 2012.

[56] THE ETHEREUM COMMUNITY. Ethereum white paper. https:
//github.com/ethereum/wiki/wiki/White-Paper, re-
trieved July. 2015.

[57] WIKIPEDIA. List of cryptocurrencies. https:

//en.wikipedia.org/wiki/List_of_cryptocurrencies,
retrieved Oct. 2013.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 61

Exploring Cross-Application Cellular Traffic Optimization
with Baidu TrafficGuard

Zhenhua Li 1,2, Weiwei Wang 2, Tianyin Xu 3, Xin Zhong 1,2

Xiang-Yang Li 1,4,5, Yunhao Liu 1, Christo Wilson 6, Ben Y. Zhao 7

1 Tsinghua University 2 Baidu Mobile Security 3 University of California San Diego
4 University of Science and Technology of China 5 Illinois Institute of Technology

6 Northeastern University 7 University of California Santa Barbara

Abstract
As mobile cellular devices and traffic continue their rapid
growth, providers are taking larger steps to optimize
traffic, with the hopes of improving user experiences
while reducing congestion and bandwidth costs. This
paper presents the design, deployment, and experiences
with Baidu TrafficGuard, a cloud-based mobile proxy
that reduces cellular traffic using a network-layer VPN.
The VPN connects a client-side proxy to a centralized
traffic processing cloud. TrafficGuard works transpar-
ently across heterogeneous applications, and effectively
reduces cellular traffic by 36% and overage instances
by 10.7 times for roughly 10 million Android users in
China. We discuss a large-scale cellular traffic analysis
effort, how the resulting insights guided the design of
TrafficGuard, and our experiences with a variety of traf-
fic optimization techniques over one year of deployment.

1 Introduction
Mobile cellular devices are changing today’s Internet
landscape. Growth in cellular devices today greatly out-
paces that of traditional PCs, and global cellular traffic is
growing by double digits annually, to an estimated 15.9
Exabytes in 2018 [4]. This growing traffic demand has
led to significant congestion on today’s cellular network-
s, resulting in bandwidth caps and throttling at major
wireless providers. The challenges are more dramatic
in developing countries, where low-capacity cellular net-
works often fail to deliver basic quality of service needed
for simple applications [40, 41, 44].

While this is a well known problem, only recently have
we seen efforts to address it at scale. Google took the
unprecedented step of prioritizing mobile-friendly sites
in its search algorithm [9]. This will likely spur further
efforts to update popular websites for mobile devices.
Recent reports estimate that most enterprise webpages
are designed for PCs, and only 38% of webpages are
mobile-friendly [24]. More recently, Google released

Request

Middleboxes

Internet Parent
Proxy

TrafficGuard

Cellular Data Network

Response

User
App

Collaborative
Mobile App
(Child Proxy)

…

Original
Response

User Device

?✔ ✘

Figure 1: Architectural overview of TrafficGuard.

details on their Flywheel proxy service for compressing
content for the Chrome mobile browser [29].

Competition in today’s mobile platforms has led to nu-
merous “walled-gardens,” where developers build their
own suites of applications that keep users within their
ecosystem. The ongoing trend limits the benefits of
application-specific proxies, even ones with user bases
as large as Google Chrome [29, 18, 25, 21, 42, 43, 36].
In contrast, an alternative approach is to transparently
intercept and optimize network traffic across all apps at
the OS/network layer. Although some examples of this
approach exist [16, 17, 6, 15], little is known about their
design or impact on network performance.

This paper describes the design, deployment, and ex-
periences with Baidu TrafficGuard, a third-party cellular
traffic proxy widely deployed for Android devices in
China 1. As demonstrated in Figure 1, TrafficGuard is a
cloud-based proxy that redirects traffic through a VPN to
a client-side mobile app (http://shoujiweishi.baidu.com).
It currently supports all Android 4.0+ devices, and does
not require root privileges. Inside the cloud, a series of
software middleboxes are utilized to monitor, filter, and
reshape cellular traffic. TrafficGuard was first deployed
in early 2014, and its Android app has been installed by

1Cellular data usage in Asia differs from that of US/European net-
works, in that HTTP traffic dominates 80.4% of cellular traffic in China
and 74.6% in South Korea [62]. In comparison, HTTPS accounts for
more than 50% of cellular traffic in the US [56, 47, 54].

62 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

roughly 10 million users. The average number of daily
active users is around 0.2 million.

In designing a transparent mobile proxy for cellular
traffic optimization, TrafficGuard targets four key goals:
• First, traffic optimization should not harm user experi-

ences. For example, image compression through pixel
scaling often distorts webpage and UI (user interface)
rendering in user apps. Similarly, traffic processing
should not introduce unacceptable delays.

• Second, our techniques must generalize to different
apps, and thus proprietary APIs or data formats should
be avoided. For example, Flywheel achieves signifi-
cant traffic savings by transcoding images to the WebP
format [27]. Though WebP offers high compression,
not all apps support this format.

• Third, we wish to limit client-side resource consump-
tion, in terms of memory, CPU, and battery. Note
that the client needs to collaborate well with the cloud
using a certain amount of resources.

• Finally, we wish to reduce system complexity, re-
source consumption, and monetary costs on the cloud
side. In particular, the state information maintained
for each client should be carefully determined.
In this paper, we document considerations in the de-

sign, implementation, and deployment of TrafficGuard.
First, we analyze aggregate cellular traffic measurements
over 110K users to understand the characteristics of
cellular traffic in China. This gave us insights on the
efficacy and impact of traditional data compression, as
well as the role of useless content like broken images in
cellular traffic. Second, we adopt a lightweight, adaptive
approach to image compression, where more consider-
ate compression schemes are constructed to achieve a
sweet spot on the image-quality versus file-size trade-
off. This helps us achieve traffic savings comparable
to Flywheel (27%) at roughly 10%–12% of the compu-
tation overhead. Third, we develop a customized VPN
tunnel to efficiently filter users’ unwanted traffic, includ-
ing overnight, background, malicious, and advertisement
traffic. Finally, we implement a cloud-client paired prox-
y system, and integrate best-of-breed caching techniques
for duplicate content detection. The cloud-client paired
design allows us to finely tune the tradeoff between traf-
fic optimization and state maintenance.

TrafficGuard is the culmination of these efforts. For
installed users, it reduces overall cellular traffic by an
average of 36%, and instances of traffic overage (i.e.,
going beyond the users’ allotted data caps) by 10.7 times.
Roughly 55% of users saw more than a quarter reduction
in traffic, and 20% of users saw their traffic reduced by
half. TrafficGuard introduces relatively small latency
penalties (median of 53 ms, mean of 282 ms), and has
little to no impact on the battery life of user devices.

Internet RNCGGSN SGSN

Traffic
Guard

BTS
BTS

Figure 2: Potential integration of TrafficGuard into a 3G
cellular carrier. Integration for 4G would be similar.

While already successful in its current deployment,
TrafficGuard can achieve even higher efficiency if cellu-
lar carriers (are willing to) integrate it into their infras-
tructure. As demonstrated in Figure 2, carriers could
deploy TrafficGuard between the GGSN (Gateway G-
PRS Support Node) and SGSN (Serving GPRS Support
Node). Then the optimized traffic is further transferred
to the RNC (Radio Network Controller) and BTS (Base
Transceiver Station). This would greatly simplify both
the cloud-side and client-side components of Traffic-
Guard, and further reduce latency penalties for users.

Finally, we note that while Baidu does not have an
internal IRB (institutional review board [13]) review pro-
cess, all reasonable steps were taken at Baidu to protect
user privacy during this study. All users who participated
in the study opted-in as volunteers with informed con-
sent, and full traffic traces were limited to one week of
measurements (all other datasets are anonymized logs).
Wherever possible, analysis was limited to anonymized
metadata only. When necessary, content analysis was
done on aggregate data, and fully decoupled from any
user identifiers or personally identifiable information.

2 State-of-the-Art Systems
This section briefly surveys state-of-the-art mobile traffic
proxy systems. As listed in Table 1, we compare seven
systems with TrafficGuard. We focus on five of the most
important and ubiquitous features supported by these
systems: 1) image compression, 2) text compression, 3)
content optimization, 4) traffic filtering, and 5) caching.
In each case, we highlight the strengths of different ap-
proaches, as well as the shortcomings, which motivated
our design of TrafficGuard.

Since most mobile traffic proxy systems are closed-
source, we rely on a variety of methods to determine their
features. The implementation of Google Flywheel is
described in [29]. For Opera Turbo, UCBrowser (proxy),
and QQBrowser (proxy), we are able to uncover most of
their features through carefully controlled experiments.
Specifically, we set up our own web server, used these
proxies to browse our own content hosted by the server,
and carefully compared the data sent by the server with
what was received by our client device. Unfortunately,
Opera Max, Microsoft Data Sense, and Onavo Extend

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 63

Table 1: Comparison of state-of-the-art mobile traffic proxy systems. “?” means unknown.
System Image Compression Text Compression Content Optimization Traffic Filtering Caching

Google Flywheel Transcoding to WebP Yes Lightweight error page Safe Browsing Server-side
Opera Turbo Transcoding to WebP Yes Pre-executing JavaScript Ad blocking ?
UCBrowser Pixel Scaling Yes No Ad blocking ?
QQBrowser Transcoding to WebP Yes No Ad blocking ?

Opera Max [17] Transcoding PNG Yes No Restricting overnight ?(China’s version) to JPEG traffic
Microsoft

Data Sense ? Yes No Restricting background ?traffic, and ad blocking

Onavo Extend Transcoding PNG and Yes No No Client-sidelarge GIF to JPEG

Adaptive quality
reduction

Attempting to discard
useless content

Restricting overnight and Server-side,
TrafficGuard No background traffic, ad and VBWC

blocking, Safe Browsing on both sides

use encrypted proxies, and thus we can only discover a
subset of their implementation details.

First, we examine the image compression techniques.
Three systems transcode images to WebP, which effec-
tively reduces network traffic [29]. However, this only
works for user apps that support WebP (e.g., Google
Chrome). Similarly, Opera Max and Onavo Extend
transcode PNGs to JPEGs, and Onavo Extend also
transcodes large GIFs to JPEGs. Taking a different ap-
proach, UCBrowser rescales large images (> 700× 700
pixels) to small images (< 150× 150 pixels). Although
rescaling reduces traffic, it could harm user experiences
by significantly degrading image qualities. In contrast
to these systems, TrafficGuard uses an adaptive quality
reduction approach that is not CPU intensive, reduces
traffic across apps, and generally does not harm user
experiences (see § 5.1).

Second, we find that all the seven systems compress
textual content, typically with gzip. However, our large-
scale measurement findings (in § 3.2.2) reveal that the
vast majority of textual content downloaded by smart-
phone users is very short, meaning that compression
would be ineffective. Thus, TrafficGuard does not com-
press texts, since the CPU overhead of decompression is
not worth the low (1.36%) HTTP traffic savings.

Third, we explore the content optimization strategies
employed by mobile traffic proxies. We define content
optimization as attempts to reduce network traffic by
altering the semantics or functionality of content. For
example, Flywheel replaces HTTP 404 error pages with
a lightweight version. More aggressively, Opera Turbo
executes JavaScript objects at the proxy, so that clients
do not need to download and execute them. Although
this can reduce traffic, it often breaks the original func-
tionality of websites and user apps, e.g., in the controlled
experiments we often noticed that JavaScript functions
like onscroll() and oninput() were not properly executed
by Opera Turbo. Rather than adopt these approaches,
TrafficGuard validates HTTP content and attempts to
discard useless content like broken images (see § 5.2).

Fourth, we observe that many of the target systems
implement traffic filtering. Four systems block advertise-
ments, plus Flywheel using Google Safe Browsing [8] to
block malicious content. Opera Max attempts to restrict
apps’ traffic usage during the night, when users are likely
to be asleep. Microsoft Data Sense takes things a step
further by also restricting traffic from background apps,
under the assumption that apps which are not currently
interactive should not be downloading lots of data. We
discover that all these filtering techniques are beneficial
to users (see § 3.2.4), and thus we incorporate all of them
into TrafficGuard (see § 5.3).

Finally, we study the caching strategies of existing sys-
tems. Flywheel maintains a server-side cache of recently
accessed objects, while Onavo Extend maintains a local
cache (of 100 MB by default). In contrast, TrafficGuard
adopts server-side strategies by maintaining a cache at
the proxy (see § 4.2), as well as implementing Value-
based Web Caching (VBWC) between the client and
server (see § 5.4). Although we evaluated other sophisti-
cated caching strategies (see Appendix A), we ultimately
chose VBWC because it offers excellent performance
and is straightforward to implement.

3 Measuring Cellular Traffic
In this section, we present a large-scale measurement
study of cellular traffic usage by Android smartphone
users. Unlike prior studies [37, 46, 52, 39, 34, 62], our
analysis focuses on content and metadata. Using this
dataset, we identify several key performance issues and
tradeoffs that guide the design of TrafficGuard.

3.1 Dataset Collection
The ultimate goal of TrafficGuard is to improve smart-
phone users’ experiences by decreasing network usage
and filtering unwanted content. To achieve this goal, we
decided to take a measurement-driven methodology, i.e.,
we first observed the actual cellular traffic usage patterns
of smartphone users, and then used the data to drive our
design and implementation decisions.

3

64 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Table 2: General statistics of our collected TGdataset.
Collection period 03/21 – 03/27, 2014

Unique users 111,910
Total requests 162M
Dataset size 1324 GB (100%)

Non-HTTP traffic (plus TCP/IP) 259 GB (19.6%)
HTTP traffic (plus TCP/IP) 1065 GB (80.4%)

HTTP header traffic 107 GB (8.1%)
HTTP body traffic 875 GB (66.1%)

When we first deployed TrafficGuard between Jan. 5–
Mar. 31, 2014, the system only monitored users’ cellular
traffic; it did not filter or reshape traffic at all. We
randomly invited users to test TrafficGuard from ∼100M
existing mobile users of Baidu. We obtained informed
consent from volunteers by prominently informing them
that full traces of their cellular traffic would be collected
and analyzed. We assigned a unique ClientToken to each
user device that installed the mobile app of TrafficGuard.

We used two methods to collect packet traces from
volunteers. For an HTTP request, the TrafficGuard ap-
p would insert the ClientToken into the HTTP header.
The TrafficGuard cloud would then record the request,
remove the injected header, complete the HTTP request,
and store the server’s response. However, for non-HTTP
requests (most of which are HTTPS), it was not possible
for the TrafficGuard cloud to read the injected Client-
Token (we did not attack secure connections via man-in-
the-middle). Thus, the TrafficGuard app locally recorded
the non-HTTP traffic, and uploaded it to the cloud in a
batch along with the ClientToken once per week. These
uploads were restricted to WiFi 2, in order to avoid
wasting volunteers’ cellular data traffic. In both cases,
we also recorded additional metadata like the specific
app that initiated each request, and whether that app was
working in the foreground or background.

We collected packet traces from volunteers for one
week, between Mar. 21–27, 2014. In total, this dataset
contains 320M requests from 0.65M unique ClientTo-
kens. However, we observe that many user devices in
the dataset only used their cellular connections for short
periods of time. These short-term users might have
good WiFi availability, or might be using their cellular
connections but did not (remember to) run the mobile
app of TrafficGuard. To avoid bias, we focus on the
traces belonging to 111,910 long-term users who used
their cellular connections in at least four days during
the collection period. This final dataset is referred to as
TGdataset, whose general statistics are listed in Table 2.

2Certainly TrafficGuard also has the capability of helping mobile
users save WiFi traffic, just like what Google Flywheel does. However,
at the moment TrafficGuard only targets at saving cellular traffic for
two reasons. First, WiFi users generally do not care about the traffic
usage since they do not pay for their Internet access in terms of traffic
usage. Second, proxy-based traffic saving inevitably leads to latency
penalty and thus would impact WiFi users’ experiences.

Table 3: Statistics of HTTP content in TGdataset.
Type % of % of Size (KB)

Requests HTTP Traffic Median Mean
Image 32% 71% 5.7 15.5
Text 49% 15.7% 0.2 2.2

Octet-stream 10% 5.5% 0.4 3.8
Zip 8.1% 5.1% 0.5 4.3

Audio & Video 0.03% 2.6% 407 614
Other 0.87% 0.1% 0.3 0.7

3.2 Content Analysis
Below, we analyze the content and metadata contained in
TGdataset. In particular, we observe that today’s cellular
traffic can be effectively optimized in multiple ways.

3.2.1 General Characteristics
We begin by presenting some general characteristics of
TGdataset. As listed in Table 2, 80.4% of TGdataset is
HTTP traffic, most of which corresponds to the bodies of
HTTP messages. This finding is positive for two reasons.
First, it means content metadata (e.g., Content-Length
and Content-Type) is readily available for us to analyze.
Second, it is clear that the TrafficGuard system will be
able to analyze and modify the vast majority of cellular
traffic, since it is in plaintext.

Table 3 presents information about the types of HTTP
content in TGdataset. We observe that images are the
second most frequent type of content, but consume 71%
of the entire HTTP traffic. Textual content is the most
frequent, while non-image binary content accounts for
the remainder of HTTP traffic. We manually analyzed
many of the octet-streams in our dataset and found that
they mainly consist of software and video streams.

3.2.2 Size and Quality of Content
Next, we examine the size and quality of content in
TGdataset, and relate these characteristics to the com-
pressibility of content.

Images. Four image types dominate in our dataset:
JPEG, WebP, PNG, and GIF. Certainly, all four types of
images are already compressed. However, we observe
that 40% of images are large, which we define as images
of w×h pixels such that w×h≥ 250000∧w≥ 150∧h≥
150 (refer to § 5.1 for more details of image categoriza-
tion). Some images even have over 4000×4000 pixels
(exceeding 10 MB in size) in extreme cases.

More importantly, we observe that many JPEGs have
high quality factors (QFs). QF determines the strength
of JPEG’s lossy-compression algorithm, with QF = 100
causing minimal loss but a larger file size. The median
QF of JPEGs in TGdataset is 80 while the average is 74.
Such high-quality images are unnecessary for most cellu-
lar users, considering their limited data plans and screen
sizes. This presents us with an optimization opportunity
that TrafficGuard takes advantage of (see § 5.1).

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 65

Table 4: Validity and usefulness of images.

Type % of % of Image Size (KB):
Requests Image Traffic Median Mean

Correct 87% 95.9% 5.4 14.8
Broken 10.6% 3.2% 0.13 3.2
Blank 2.3% 0.57% 0 0

Incomplete 0.1% 0.21% 0.01 5.0
Inconsistent 0.04% 0.16% 4.8 33

Textual content. The six most common types of
textual content in TGdataset are: JSON, HTML, PLAIN,
JavaScript, XML, and CSS. Compared with images, tex-
tual content is much smaller: the median size is merely
0.2 KB. Compressing the short texts with the size less
than 0.2 KB (e.g., with gzip, bzip2, or 7-zip) cannot
decrease their size; in fact, the additional compression
metadata may even increase the size of such textual data.

Surprisingly, we find that compressing the other, larg-
er half (> 0.2 KB) of textual content with gzip brings
limited benefits — it only reduced the HTTP traffic of
texts by 8.7%, equal to 1.36% (= 8.7%×15.7%) of total
HTTP traffic. Similarly, using bzip2 and 7-zip could not
significantly increase the compression rate. However,
decompressing texts on user devices does necessitate
additional computation and thus causes battery overhead.
Given the limited network efficiency gains and the toll on
battery life, we opt to not compress texts in TrafficGuard,
unlike all other systems as listed in Table 1.
Other content. For the remaining octet-stream, zip, au-
dio & video content, we find that compression provides
negligible benefits, since almost all of them are already
compressed (e.g., MP3 and VP9). Although it is possible
to reduce network traffic by transcoding, scaling, or re-
ducing the quality of multimedia content [42], we do not
explore these potential optimizations in this work.

3.2.3 Content Validation
Delving deeper into the content downloaded by our vol-
unteers, we discover a surprisingly high portion of use-
less content, particularly broken images. We define an
image to be broken if it cannot be decoded by any of
the three widely used image decoders: imghdr [12],
Bitmap [23], and dwebp [7]. As shown in Table 4, 10.6%
of images in TGdataset are broken, wasting 3.2% of all
image traffic in our dataset (their average size is much
smaller than that of correct images). Note that we also
observe a small fraction of blank and incomplete images
that we can decode, as well as a few inconsistent images
that are actually not images, but we do not consider to
obey our strict definition of correctness.

3.2.4 Traffic Filtering
As we note in § 2, existing mobile traffic proxies have
adopted multiple strategies for traffic filtering. In this
section, we investigate the potential of four particular
filtering strategies by analyzing TGdataset.

Overnight traffic. Prior studies have observed that
many smartphones generate data traffic late at night, even
when users are not using the devices [52, 39, 34]. If
we conservatively assume that our volunteers are asleep
between 0–6 AM, then 11.4% of traffic in our dataset can
potentially be filtered without noticeable impact on users.
Based on this finding, we implemented a feature in Traf-
ficGuard that allows users to specify a night time period
during which cellular traffic is restricted (see § 5.3).

Background traffic. Users expect foreground apps to
consume data since they are interactive, but background
apps may also consume network resources. Although
this is expected in some cases (e.g., a user may stream
music while also browsing the web), undesirable data
consumption by background apps has become such a
common complaint that numerous articles exist to help
mitigate this problem [58, 3, 2, 10]. In TGdataset, we
observe that 26.7% of cellular traffic is caused by back-
ground apps. To this end, we implemented dual filters in
TrafficGuard specifically designed to reduce the network
traffic of background apps (see § 5.3).

Malicious traffic. A recent measurement study of
Google Play reveals that more than 25% of Android
apps are malicious, including spammy, re-branded, and
cloned apps [59]. We compare all the HTTP requests in
TGdataset against a proprietary blacklist containing 29M
links maintained by major Internet companies (including
Baidu, Google, Microsoft, Symantec, Tencent, etc.), and
find that 0.85% of requests were issued for malicious
content. We addressed this issue in TrafficGuard by
filtering out HTTP requests for blacklisted URLs.

Advertisement traffic. In addition to malicious con-
tent, we also find that 4.15% of HTTP requests in TG-
dataset were for ads. We determined this by comparing
all the requested HTTP URLs in our dataset against a
proprietary list of 102M known advertising URLs (sim-
ilar to the well-known EasyList [1]). Ad blocking is a
morally complicated practice, and thus we give Traffic-
Guard users the choice of whether to opt-in to ad filter-
ing. Users’ configuration data reveal that the majority
(67%) of users have chosen to block ads. On the other
hand, we did get pushback from a small number of ad-
vertisers; when this happened, usually we would remove
the advertisers from our ad block list after verification.

3.2.5 Caching Strategies
Finally, we explore the feasibility of two common
caching strategies. Unfortunately, we find neither tech-
nique offers satisfactory performance, which motives us
to implement a more sophisticated caching strategy.

Name-based. Traditional web proxies like Squid [61]
implement name-based caching of objects (i.e., objects
are indexed by their URLs). However, this approach

5

66 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

is known to miss many opportunities for caching [38,
57, 51]. To make matters worse, we observe that over
half of the content in TGdataset is not cacheable by
Squid due to HTTP protocol issues. This situation is
further exacerbated by the fact that many start-of-the-art
HTTP libraries do not support caching at all [50]. Thus,
although TrafficGuard uses Squid in the back-end cloud,
we decided to augment it with an additional, object-level
caching strategy (known as VBWC, see § 5.4).
HTTP ETag. The HTTP ETag [11] was introduced in
HTTP/1.1 to mitigate the shortcomings of named-based
caching. Unfortunately, the effectiveness of ETag is still
limited by two constraints. First, as ETags are assigned
arbitrarily by web servers, they do not allow clients to
detect identical content served by multiple providers.
This phenomenon is called content aliasing [55]. We ob-
serve that 14.16% of HTTP requests in TGdataset are for
aliased content, corresponding to 7.28% of HTTP traffic.
Second, we find that ETags are sparsely supported: only
5.76% of HTTP responses include ETags.

4 System Overview
Our measurement findings in § 3.2 provide useful guide-
lines for optimizing cellular traffic across apps. Addi-
tionally, we observe that some techniques used by prior
systems (e.g., text compression) are not useful in prac-
tice. These findings guide the design of TrafficGuard for
optimizing users’ cellular traffic.

This section presents an overview of TrafficGuard,
which consists of a front-end mobile app on users’ de-
vices and a set of back-end services. Below, we present
the basic components of each end, with an emphasis on
how these components support various traffic optimiza-
tion mechanisms. Additional details about specific traffic
optimization mechanisms are explained in § 5.

4.1 Mobile App: The Client-side Support
The TrafficGuard mobile app is comprised of a user inter-
face and a child proxy. The user interface is responsible
for displaying cellular usage statistics, and allows users
to configure TrafficGuard settings. The settings include
enabling/disabling specific traffic optimization mecha-
nisms, as well as options for specific mechanisms (the
details are discussed in § 5). We also leverage the user
interface to collect feedback from users, which help us
continually improve the design of TrafficGuard.

The child proxy does the real work of traffic optimiza-
tion on the client side. It intercepts incoming and out-
going HTTP requests at the cellular interface, performs
computations on them, and forwards (some) requests to
the back-end cloud via a customized VPN tunnel. As
shown in Figure 3, the client-side VPN tunnel is imple-
mented using the TUN virtual network-level device [26]
that intercepts traffic from or injects traffic to the TCP/IP

Traffic
Counting

TCP/IP
Stack

Android
User Space

Linux
Kernel

Physical
NIC

TUN

User
App

Cellular Data
Network

Malicious
Blacklist

IP
Analysis

Background
Traffic Filtering

TCP

UDP

HTTP
Local Filtering of
Malicious Links

Traffic
Redirection

OtherTCP
Analysis

Pass

Value-based
Web CachingCached

Content

Value
Table Traffic

Counting

IP
Analysis

Background
Traffic Filtering

TCP

UDP

HTTP

Traffic
Injection

OtherTCP
Analysis

Handling
outbound

traffic

Handling
inbound

traffic

Local Filtering of
Advertisements

Ad
Blacklist

Results of
Global Filtering

Pass

Figure 3: Basic design of the child proxy.

stack. HTTP GET requests 3 are captured by the child
proxy, encapsulated, and then sent to the back-end cloud
for further processing. Accordingly, the child proxy is
responsible for receiving responses from the back-end.

The mobile app provides client-side support for traffic
optimization. First, it allows users to monitor and restrict
cellular traffic at night and from background apps in a
real-time manner. Users are given options to control how
aggressively TrafficGuard filters these types of traffic.
Second, it provides local filtering of malicious links and
unwanted ads using two small blacklists of the most
frequently visited malicious and advertising URLs. Re-
quests for malicious URLs are dropped; users are given
a choice of whether to enable ad blocking, in which case
requests for ad-related URLs are also dropped.

Third, the child proxy acts as the client-side of a value-
based web cache [55] (VBWC, see § 5.4 for details).
At a high level, the child proxy maintains a key-value
store that maps MD5 hashes to pieces of content. The
back-end cloud may return “VBWC Hit” responses to
the client that contain the MD5 hash of some content,
rather than the content itself. In this case, the child proxy
retrieves the content from the key-value store using the
MD5 hash, and then locally constructs an HTTP re-
sponse containing the cached content. The reconstructed
HTTP response is then returned to the corresponding
user app. This process is fully transparent to user apps.

4.2 Web Proxy: The Back-end Support
As shown in Figure 4, the cloud side of TrafficGuard
consists of two components: a cluster of parent proxy
servers that decapsulate users’ HTTP GET requests and
fetch content from the Internet; and a series of software
middleboxes that process HTTP responses.

3 Non-GET HTTP requests (e.g., POST, HEAD, and PUT) and non-
HTTP requests do not benefit from TrafficGuard’s filtering and caching
mechanisms, so the child proxy forwards them to the TCP/IP stack for
regular processing. Furthermore, TrafficGuard makes no attempt to
analyze SSL/TLS traffic for privacy reasons.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 67

Internet

Parent
Proxy

 Global
Filtering of

Malicious LinksHTTP
GET

(original) HTTP GET
(encapsulated)

Pass

Content
Validation

Correct Image
Compression

Traffic
Transforming

Internet

Value
Table

Hit

Miss

Useless

Squid Proxy
HTTP Response

Software Middleboxes

Original
Response

Malicious
Blacklist

Value-based
Web Caching

HTTP
Decapsulation

 Global
Filtering
of AdsPass

Ad
BlacklistFail Fail

 HTTP
GET

Figure 4: Cloud-side overview of TrafficGuard. HTTP requests are generally processed from left to right by a cluster
of parent proxy servers and a series of software middleboxes implemented on top of Nginx.

Once an HTTP GET request sent by the child proxy is
received, the parent proxy decapsulates it and extracts
the original HTTP GET request. Next, middleboxes
compare the original HTTP GET request against large
blacklists of known malicious and ads-related URLs.
Note that this HTTP GET request has passed the client-
side filtering with small blacklists. Together, this two-
level filtering scheme prevents TrafficGuard users from
wasting memory loading large blacklists on their own
devices. If a URL hits either blacklist, it is reported back
to the mobile app so the user can be notified.

An HTTP request that passes the blacklist filters is
forwarded to a Squid proxy, which fetches the requested
content from the original source. The Squid proxy im-
plements name-based caching of objects using an LRU
(Least Recently Used) scheme, which helps reduce la-
tency for popular objects. Once the content has been re-
trieved by Squid, it is further processed by middleboxes
that validate content (§ 5.2) and compress images (§ 5.1).

Lastly, before the content is returned to users, it is
indexed by VBWC (§ 5.4). VBWC maintains a separate
index of content for every active user, which contains the
MD5 hash of each piece of content recently downloaded
by that user. For a given user, if VBWC discovers that
some content is already indexed, it returns that MD5 in a
“VBWC Hit” response to the mobile app, instead of the
actual content. As described above, the child proxy then
constructs a valid HTTP response message containing
the cached content. Otherwise, the MD5 is inserted into
the table and the actual content is sent to the user.

5 Mechanisms
This section presents the details of specific traffic opti-
mization mechanisms in TrafficGuard. Since many of
the mechanisms include user-configurable parameters,
we gathered users’ configuration data between Jul. 4–
Dec. 27, 2014. This dataset is referred to as TGconfig.

5.1 Image Compression
Overview. Image compression is the most importan-
t traffic-reduction mechanism implemented by Traffic-
Guard, since our TGdataset shows that cellular traffic

is dominated by images. Based on our observation that
the majority of JPEGs have quality factors (QFs) that
are excessively high for display on smartphone screens,
TrafficGuard adaptively compresses JPEGs by reducing
their QFs to an acceptable level. Additionally, Traf-
ficGuard transcodes PNGs and GIFs to JPEGs with an
acceptable QF. Note that TrafficGuard does not transcode
PNGs with transparency data or animated GIFs, to avoid
image distortion. TrafficGuard ignores WebP images,
since they are already highly compressed.

TrafficGuard’s approach to image compression has
three advantages over alternative strategies. First, as
JPEG is the dominant image format supported by almost
all (>99% to our knowledge) user apps, TrafficGuard
does not need to transcode images back to their original
formats on the client side. Second, our approach costs
only 10%–12% as much CPU as Flywheel’s WebP-based
transcoding method (see § 6.3). Finally, our approach
does not alter the pixel dimensions of images. This
is important because many UI layout algorithms (e.g.,
CSS) are sensitive to the pixel dimensions of images, so
rescaling images may break webpage and app UIs.

Categorizing Images. The challenge of implementing
our adaptive QF reduction strategy is deciding how much
to reduce the QFs of images. Intuitively, the QFs of large
images can be reduced more than small images, since the
resulting visual artifacts will be less apparent in larger
images. Thus, following the approach of Ziproxy [28]
(an open-source HTTP proxy widely used to compress
images), we classify images into four categories accord-
ing to their width (w) and height (h) in pixels:

• Tiny images contain < 5000 pixels, i.e., w×h < 5000.

• Small images include images with less than 50000
pixels (i.e., 5000 ≤ w×h < 50000), as well as “slim”
images with less than 150 width or height pixels (i.e.,
w×h ≥ 5000∧ (w < 150∨h < 150)).

• Mid-size images contain less than 250000 pixels, that
is 50000 ≤ w×h < 250000∧w ≥ 150∧h ≥ 150.

• Large images contain no less than 250000 pixels, that
is w×h ≥ 250000∧w ≥ 150∧h ≥ 150.

7

68 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

A
v
g
.
S

S
IM

QF (Quality Factor)

Large
Mid-size

Small
Tiny

Figure 5: Average SSIM
corresponding to consecu-
tive QFs.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

A
v
g
.
C

o
m

p
re

s
s
io

n
 R

a
ti
o

QF (Quality Factor)

Large
Mid-size

Small
Tiny

Figure 6: Average com-
pression ratio correspond-
ing to consecutive QFs.

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

Tiny Small Mid-size Large

A
v
g

.
S

S
IM

Image Category

ImgQFHigh
ImgQFMiddle

ImgQFLow

Figure 7: Average SSIM
corresponding to the three
QF schemes.

 0

 10

 20

 30

 40

 50

 60

 70

Tiny Small Mid-size Large

A
v
g
.
C

o
m

p
re

s
s
e
d
 S

iz
e
 (

K
B

)

Image Category

Original
ImgQFHigh

ImgQFMiddle
ImgQFLow

Figure 8: Average com-
pressed size corresponding
to the three QF schemes.

QF Reduction Scheme. After images are divided
into the above four categories, we need to determine a
proper QF (reduction) scheme for transcoding images in
each category. Our goal is to maximize compression by
reducing QF, while also minimizing the reductions of
user-perceived image quality. To measure quality, we
use Structural Similarity (SSIM) [60], which assesses the
visual similarity between a compressed image and the
original (1 means the two images are identical). Quan-
titatively, we calculate the SSIM and compression ratio
(= Size of images after compression

Size of images before compression) corresponding to consec-
utive QFs, based on all the correct images in TGdataset.
The results are plotted in Figure 5 and Figure 6.

Specifically, we define a QF scheme ImgQFScheme
= {T , S, M, L} to mean that tiny, small, mid-size, and
large images are compressed to QF = T , S, M, and
L, respectively. In practice, we constructed three QF
schemes that vary from high compression, less quality
to low compression, high quality: ImgQFLow = {30,
25, 25, 20}, ImgQFMiddle = {60, 55, 50, 45}, and
ImgQFHigh = {90, 90, 85, 80}. We then compressed
all the correct images in TGdataset using each scheme to
evaluate their impact on image quality and size.

Figure 7 examines the impact of each QF scheme
on image quality. Prior work has shown that image
compression with SSIM ≥ 0.85 is generally considered
acceptable by users [29]. As shown in Figure 7, all
three QF schemes manage to stay above the 0.85 quality
threshold for small, mid-size, and large images. The
two cases where image quality becomes questionable
concern tiny images, which are the hardest case for any
compression strategy. Overall, these results suggest that
in most cases, even the aggressive ImgQFLow scheme
will produce images with an acceptable level of fidelity.

Figure 8 examines the image size reduction enabled
by each QF scheme, as compared to the original images.
As expected, more aggressive QF schemes provide more
size reduction, especially for large images.

User Behavior. The mobile app of TrafficGuard allows
users to choose their desired QF scheme. Users must
select a scheme after they install TrafficGuard. The
data in TGconfig reveal that 95.4% of users selected the
ImgQFMiddle scheme. Also, qualitative feedback from

TrafficGuard users suggests that they are satisfied with
the quality of images while using the system.

5.2 Content Validation
As mentioned in § 3.2.3, TrafficGuard users encounter a
non-trivial amount of broken images when using apps.
The back-end cloud of TrafficGuard naturally notices
most broken images during the image analysis, transcod-
ing, and compression process. In these cases, the cloud
simply discards the broken image and sends a “Broken
Warning” response to the client. From the requesting
app’s perspective, broken images appear to be missing
due to a network error, and are handled as such.

5.3 Traffic Filtering
In this section, we present the implementation details
of the four types of filters employed by TrafficGuard.
Most traffic filtering in our system occurs on the client
side (in the child proxy), including first-level filtering
of malicious URLs and ads, and throttling of overnight
and background traffic. Only second-level filtering of
malicious URLs and ads occurs on the cloud side.

Restricting overnight traffic. The mobile app of
TrafficGuard automatically turns the user’s cellular data
connection off between the hours of t1 and t2, which are
configurable by the user. This feature is designed to halt
device traffic during the night, when the user is likely to
be asleep. TrafficGuard pops-up a notification just before
t1, alerting the user that her cellular connection will be
turned off in ten seconds. Unless the user explicitly
cancels the action, her cellular data connection will not
be resumed until t2. According to TGconfig, nearly 20%
of users have enabled the overnight traffic filter, and 84%
of them adopt the default night duration of 0–6 AM.

Throttling background traffic. To prevent malicious
or buggy apps from draining users’ limited data plan-
s, TrafficGuard throttles traffic from background app-
s. Specifically, the TrafficGuard app has a configurable
warning bound (B1) and a disconnection bound (B2),
with B2 � B1. TrafficGuard also maintains a count c
of the total bytes transferred by background apps. If c
increases to B1, TrafficGuard notifies the user that back-
ground apps are consuming a significant volume of traf-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 69

fic. If c reaches B2, another notification is created to alert
the user that her cellular data connection will be closed
in ten seconds. Unless the user explicitly cancels this
action or manually re-opens the cellular data connection,
her cellular data connection will not be resumed. After
the user responds to the B2 notification, c is reset to zero.

According to TGconfig, 97.6% of users have enabled
the background traffic filter, indicating that users actually
care about background traffic usage. Initially, we set
the default warning bound B1 = 1.0 MB. However, we
observed over 57% of users decreased B1 to 0.5 MB, in-
dicating that they wanted to be reminded of background
traffic usage more frequently. Conversely, the initial
disconnection bound was B2 = 5 MB, but 69% of users
raised B2 to 20 MB, implying that the initial default set-
ting was too aggressive. Based on this implicit feedback,
we changed the default values of B1 and B2 to 0.5 MB
and 20 MB. In comparison, Microsoft Data Sense only
maintains a disconnection bound (B2) to restrict back-
ground traffic, and there is no default value provided.

Two-level filtering of malicious links and ads. To
avoid wasting cellular traffic on unwanted content, Traf-
ficGuard always prevents users from accessing malicious
links, while giving users the choice of whether to opt-in
to ad blocking. In § 4.1 and § 4.2, we have presented
high-level design of the two-level filtering. Here we talk
about two more nuanced implementation issues.

The first issue is about the sizes of the local, small
blacklists. Both lists have to be loaded in memory by the
child proxy for quick searching, so they must be much
shorter than the cloud-side large blacklists (which con-
tain 29M malicious URLs and 102M ads-related URLs).
To balance memory overhead with effective local traffic
filtering, we limit the maximum size of the local black-
lists to 40 MB. Consequently, the local blacklists usually
contain around 1M links in total, which we observe are
able to identify 72%–78% of malicious and ads links.

The second issue concerns updates to blacklists. As
mentioned in § 3.2.4, the large blacklists are maintained
by an industrial union that typically updates them once
per month. Accordingly, the TrafficGuard cloud auto-
matically creates updated small blacklists and pushes
them to mobile users.

5.4 Value-based Web Caching (VBWC)
Early in 2003, Rhea et al. proposed VBWC to overcome
the shortcomings of traditional HTTP caching [55]. The
key idea of VBWC is to index objects by their hash
values rather than their URLs, since an object may have
many aliases. VBWC has a much better hit rate than
HTTP caching because it handles aliased content. How-
ever, prior to TrafficGuard, VBWC has not been widely
deployed in practice due to two problems: 1) the com-
plexity of segmenting an object into KB-sized blocks and

choosing proper block boundaries; 2) its incompatibility
with the HTTP protocol, since VBWC requires that the
proxy and the client maintain significant state informa-
tion, i.e., a mapping from hash values to cached content.

Reducing complexity. To determine whether Traffic-
Guard’s VBWC implementation should segment content
into blocks (and if so, at what granularity), we conduct
trace-driven simulations using the content in TGdataset.
Specifically, we played back each user’s log of request-
s, and inserted the content into VBWC using 8 KB,
32 KB, 128 KB, and full content segmentation strategies.
To determine segment boundaries, we ran experiments
with simple fixed-size segments [55] and variable-sized,
Rabin-fingerprinting based segments [53]. We also ex-
amined the handprinting-based approach that combines
Rabin-fingerprinting and deterministic sampling [48].

Through these simulations, we discovered that 13% of
HTTP requests would hit the VBWC cache if we stored
content whole, i.e., with no segmentation. Surprisingly,
even if we segmented content into 8 KB blocks using the
Rabin-fingerprinting (the most aggressive caching strat-
egy we evaluated), the hit rate only increased to 15%.
The handprinting-based approach exhibited similar per-
formance to Rabin-fingerprinting when a typical number
(k = 4) of handprint samples are selected, while incurring
a bit lower computation overhead. By carefully analyz-
ing the cache-hit results, we find that the whole-content
hashing is good enough for two reasons: 1) images dom-
inate the size of cache-hit objects in TGdataset; 2) there
are almost no partial matches among images. Thus, we
conclude that a simple implementation of content-level
VBWC is sufficient to achieve high hit rates.

Addressing incompatibility. As discussed above,
VBWC is incompatible with standard HTTP clients and
proxies. Fortunately, we have complete control over the
TrafficGuard system, particulary the cloud-client paired
proxies, which enabled us to implement VBWC. The
front-end child proxy takes care of encapsulating HTTP
requests from user apps and decapsulating responses
from the back-end cloud, meaning that VBWC is trans-
parent to user apps. In practice, the mobile app of Traf-
ficGuard maintains a 50-MB content cache on the clien-
t’s file system, along with an in-memory table mapping
content hashes to filenames that is a few KB large.

Ideally, every change to the cloud-side mapping table
triggers a change to the client-side mapping table accord-
ingly. But in practice, for various reasons (e.g., network
packet loss) this pair of tables may be different at some
time, so we need to synchronize them with proper over-
head. In TrafficGuard, the client-side mapping table is
loosely synchronized with the cloud-side mapping table
on an hourly basis, making the synchronization traffic
negligible and VBWC mostly effective.

9

70 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 200

 400

 600

 800

 1000

 None
Traffic Filtering

Content Validation

Image Compression

VBWC

T
ra

ff
ic

 U
s
a
g
e
 (

G
B

)

HTTP
Non-HTTP

Figure 9: Total cellular traffic usage
optimized by each mechanism.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Reduction Ratio of Cellular Traffic (%)

Figure 10: Distribution of users’
cellular traffic reduction ratios.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

D
a

ta
 C

a
p

 U
s
a

g
e

 w
/

T
G

 (
%

)

Data Cap Usage w/o TG (%)

Figure 11: Users’ cellular traffic
usage relative to their data caps.

6 Evaluation
In this section, we evaluate the traffic reduction, system
overhead, and latency penalty brought by TrafficGuard.

6.1 Data Collection and Methodology
We evaluate the performance of TrafficGuard using both
real-system logs and trace-driven simulations. We col-
lect working logs from TrafficGuard’s back-end cloud
servers between Dec. 21–27, 2014, which include traces
of 350M HTTP requests issued from 0.6M users, as well
as records of CPU and memory utilization over time on
the cloud servers. We refer to this dataset as TGworklog.

On the other hand, as the client-side traffic optimiza-
tion mechanisms mainly help users reduce traffic by sup-
pressing unwanted requests, it is not possible to accurate-
ly record the corresponding saved traffic (which never
occurred in reality). Instead, we rely on trace-driven sim-
ulations using TGdataset to estimate the client-side and
overall traffic savings. In addition, we report real-world
traffic reduction results using TGworklog in Appendix B,
which mainly record the cloud-side traffic savings.

6.2 Traffic Reduction
Client-side. First, we examine the effectiveness of
TrafficGuard’s client-side mechanisms at reducing traf-
fic. In TGdataset, 11.4% of cellular traffic is transferred
at night, and according to TGconfig, 20% of users have
enabled overnight traffic filtering. Thus, we estimate that
users eliminate 2.3% (= 11.4%×20%) of cellular traffic
using the overnight traffic filter.

Moreover, we observe that 1% of users in TGdataset
regularly exceed the disconnection bound B2 = 20 MB
per day of background traffic. The resulting overage
traffic amounts to 5.33% of cellular traffic. In TGconfig,
97.6% of users have enabled background traffic filtering.
Therefore, we estimate that the background traffic fil-
ter reduces cellular traffic by 5.2% (= 5.33%× 97.6%).
Note that this background traffic saving is an under-
estimation, since we do not take the potential effect of
B1 (= 0.5 MB, the warning bound) into account.

Additionally, in TGdataset malicious content accounts
for 0.8% of HTTP traffic while ads account for 4%.
According to TGconfig, 67% of users have chosen to

drop ads. Consequently, after all malicious content and
unwanted ads are filtered, 3.48% (= 0.8%+4%×67%)
of HTTP traffic can be saved. This is equal to 2.8%
(= 3.48%×80.4%) of total cellular traffic.

Overall. Next, we evaluate how much traffic Traf-
ficGuard is able to reduce overall through trace-driven
simulations. Specifically, we play back all the requests
in TGdataset, and record how many bytes are saved
by each mechanism: traffic filtering, content validation,
image compression, and VBWC. As shown in Figure 9,
TrafficGuard is able to reduce HTTP traffic by 43% and
non-HTTP traffic by 7.4% when all four mechanisms are
combined. In summary, the overall cellular traffic usage
is reduced by 36%, from 1324 GB to 845 GB.

As expected, image compression is the most important
mechanism when used in isolation. 38% of the image
traffic is reduced by our implemented adaptive quality
reduction approach. In other words, our approach saves
a comparable portion (27%= 38%×71%) of HTTP traf-
fic as compared to Flywheel’s WebP-based transcoding
method, at a small fraction of the CPU cost (see § 6.3).

To understand how traffic savings are spread across
users, we plot the distribution of cellular traffic reduction
ratios for our users in Figure 10. We observe that 55%
of users saved over a quarter of cellular traffic, and 20%
users saved over a half (most of whom benefit a lot from
traffic filtering and VBWC). These results demonstrate
that most users received significant traffic savings.

Using TrafficGuard’s built-in user-feedback facility,
we asked users to report their cellular data caps. 95% of
the long-term volunteers in TGdataset reported their caps
to us. Using this information, we plot Figure 11, which
shows the percentage of each user’s data cap that would
be used with and without TrafficGuard (again, based
on trace-driven simulations). We observe that 58.2%
of users exceed their usage caps under normal circum-
stances, and that TrafficGuard grants significant practical
benefits for these users, e.g., users who would normally
be using 200%–300% of their allocation (and thus pay
overage fees) are able to stay below 100% usage with
TrafficGuard. Overall, TrafficGuard reduces the number
of users who exceed their data caps by 10.7 times.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 71

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

U
ti
liz

a
ti
o

n
 (

%
)

Hour

Memory
CPU

Figure 12: CPU and memory
overhead of the back-end servers.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Hour

WebP-based Transcoding

TrafficGuard Image Compression

Figure 13: CPU overhead of differ-
ent image compression strategies.

 0

 5

 10

 15

 20

 0 5 10 15 20

B
a

n
d

w
id

th
 (

M
b

p
s
)

Hour

Outbound
Inbound

Figure 14: Inbound and outbound
bandwidth for back-end servers.

Table 5: Top-10 applications served by TrafficGuard,
ordered by popularity and by greatest traffic reduction.

By User Ratio (UR) By Traffic Saving Ratio (TSR)
App Name UR TSR App Name UR TSR

WeChat 74% 22% Android Browser 0.11% 84%
QQ 66% 22% Zhihu Q&A 0.15% 81%

Baidu Search 29% 21% iAround 0.03% 63%
Taobao 23% 42% No.1 Store 0.26% 61%

QQBrowser 22% 27% Baidu News 0.45% 57%
Sogou Pinyin 20% 12% Tiexue Military 0.01% 56%

Baidu Browser 16% 30% WoChaCha 0.34% 54%
Toutiao News 14% 22% Mogujie Store 0.91% 53%
Sohu News 10% 30% Koudai Store 0.26% 53%
QQ Zone 10% 33% Papa Photo 0.02% 52%

At last, we wonder how TrafficGuard’s traffic reduc-
tion gains are spread across user apps. Table 5 lists the
top-10 apps ordered by popularity (the fraction of users
with the app) as well as by the fraction of traffic elimi-
nated. We observe that TrafficGuard is able to eliminate
12%–42% of traffic for popular apps, but that the apps
with the greatest traffic savings (52%–84%) tend to be
unpopular. This indicates that the developers of popu-
lar apps may already be taking steps to optimize their
network traffic, while most unpopular apps can hardly
become mobile-friendly in the near future.

6.3 System Overhead
Cloud-side overhead. The major cost of operating
TrafficGuard lies in provisioning back-end cloud servers
and supplying them with bandwidth. TrafficGuard has
been able to support ∼0.2M users who send ∼90M re-
quests per day using only 23 commodity servers (HP Pro-
Liant DL380). The configuration of each server is: 2*4-
core Xeon CPU E5-2609 @2.50GHz, 4*8-GB memory,
and 6*300-GB 10K-RPM SAS disk (RAID-6).

Figure 12 illustrates the CPU/memory utilization of
cloud servers on a typical day. Mainly thanks to our
lightweight image compression strategy, the CPU uti-
lization stays below 40%. Further, to compare the com-
putation overhead of our image compression strategy
with Flywheel’s WebP-based transcoding (based on the
cwebp [5] encoder), we conduct offline experiments on
two identical server machines using 1M correct images
randomly picked from TGdataset as the workload. Im-

ages are compressed one by one without intermission.
The results in Figure 13 confirm that the computation
overhead (= average CPU utilization × total running
time) of TrafficGuard image compression is only a small
portion (10%–12%) of that of WebP-based transcoding.

Memory utilization is typically >90% since content is
in-memory cached whenever possible. Using a higher
memory capacity, say 1 TB per server, can accelerate the
back-end processing and thus decrease the corresponding
latency penalty. Nonetheless, as shown in Figure 16,
the back-end processing latency constitutes only a minor
portion of the total latency penalty, so we do not consider
extending the memory capacity in the short term.

Figure 14 reveals the inbound/outbound bandwidth for
back-end servers. Interestingly, we observe that a back-
end server uses more outbound bandwidth than inbound,
though inbound traffic has been optimized. This happens
because the back-end has a 38% cache hit rate (with 4 TB
of disk cache), so many objects are downloaded from the
Internet once but then downloaded by many clients.

Client-side overhead. The client-side overhead of
TrafficGuard comes from three sources: memory, com-
putation, and battery usage. The memory usage is mod-
est, requiring 40 MB for local blacklists, and 10–20 MB
for the VBWC mapping table. Similarly, while run-
ning on a typical (8-core ARM CPU @1.7GHz) Android
smartphone, TrafficGuard’s single-core CPU usage is
generally below 20% when the cellular modem is active,
and almost zero when the network is inactive.

To understand the impact of TrafficGuard on battery
life, we record the battery power consumption of it-
s mobile app when the child proxy is processing data
packets. As shown in Figure 15, its working-state bat-
tery power is 93 mW on average, given that the bat-
tery capacity of today’s smartphones lies between 5–20
Wh and their working-state battery power lies between
500 mW and a few watts [35, 45]. We also conduct
micro-benchmarks to examine specific facets of Traffic-
Guard’s battery consumption (see Appendix C for detail-
s). Micro-benchmark results illustrate that TrafficGuard
can effectively reduce the battery consumption of user
apps by optimizing their traffic.

11

72 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

C
D

F

Battery Power (mW)

Minimum power = 5 mW

Median power = 81 mW

Average power = 93 mW

Maximum power = 424 mW

Figure 15: Distribution of client-
side battery power consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Latency (msec)

Back-End Processing
Client-Side Processing

Content Fetch
RTT to the Back-End

Total

Figure 16: Latency for each phase
content processing and retrieval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Latency (msec)

Inbound
All

Outbound

Figure 17: Latency for clients’ pro-
cessing data packets.

6.4 Latency Penalty
As TrafficGuard forwards HTTP GET requests to a back-
end proxy rather than directly to the source, it may add
response latency to clients’ requests. In addition, client-
side packet processing by the child proxy also brings
extra latency. To put the latency penalty into perspective,
first, we note three mitigating factors that effectively
reduce latency: 1) TrafficGuard filters out ∼10.3% of
requests locally, which eliminates all latency except for
client-side processing; 2) the ∼21.2% of traffic that is
not owing to HTTP GET requests is delivered over the
Internet normally, thus only incurring the latency penalty
for client-side processing; and 3) 38% of HTTP GET
requests hit the back-end Squid cache, thus eliminating
the time needed to fetch the content from the Internet.

Next, to understand TrafficGuard’s latency penalty in
the worst-case scenario (unfiltered HTTP GETs that do
not hit the Squid cache), we examine latency data from
TGworklog. Figure 16 plots the total latency of requests
that go through the TrafficGuard back-end and miss the
cache, as well as the individual latency costs of four
aspects of the system: 1) processing time on the client
side, 2) processing time in the back-end, 3) time for the
back-end to fetch the desired content, and 4) the RTT
from the client to the back-end. Figure 16 shows that
both client-side processing and back-end processing add
little delay to requests. Instead, the majority of delay
comes from fetching content, and the RTT from clients
to the back-end cloud. Interestingly, Figure 17 reveals
that the average processing time of an outbound packet is
longer than that of an inbound packet, although outbound
packets are usually smaller than inbound packets. This is
because the client-side filtering of malicious links and
ads is the major source of client-side latency penalty.

In the worst-case scenario, we see that TrafficGuard
does add significant latency to user requests. If we
conservatively assume that clients can fetch content with
the same latency distribution as Baidu’s servers, then
TrafficGuard adds 131 ms of latency in the median case
and 474 ms of latency in the average case. However, if
we take into account the three mitigating factors listed at
the beginning of this section (which all reduce latency),

the median latency penalty across all traffic is reduced to
merely 53 ms, and the average is reduced to 282 ms.

7 Conclusion
Traffic optimization is a common desire of today’s cel-
lular users, carriers, and service developers. Although
several existing systems can optimize the cellular traffic
for specific apps (typically web browsers), cross-app sys-
tems are much rarer, and have not been comprehensively
studied. In this paper, we share our design approach and
implementation experiences in building and maintaining
TrafficGuard, a real-world cross-app cellular traffic opti-
mization system used by 10 million users.

To design TrafficGuard, we took a measurement-
driven methodology to select optimization strategies that
are not only high-impact (i.e., they significantly reduce
traffic) but also efficient, easy to implement, and com-
patible with heterogenous apps. This methodology led to
some surprising findings, including the relative ineffec-
tiveness of text compression. Real-world performance
together with trace-driven experiments indicate that our
system meets its stated goal of reducing traffic (by 36%
on average), while also being efficient (23 commodi-
ty servers are able to handle the entire workload). In
the future, we plan to approach cellular carriers about
integrating TrafficGuard into their networks, since this
will substantially decrease latency penalties for users and
simplify the overall design of the system.
Acknowledgments. We wish to thank the following
people for their contributions to the system or the pa-
per. Changqing Han, Junyi Shao, Xuefeng Luo, Min
Guo, Cheng Peng, Tianwei Wen, and Zhefu Jiang helped
develop the system. Yuxuan Yan and Jian Chen helped
evaluate the client-side latency penalty and battery con-
sumption. Our shepherd Matt Welsh guided the prepara-
tion of the camera-ready paper.

This work is supported by the High-Tech R&D
(“863 – China Cloud”) Program of China under grant
2015AA01A201, China NSF under grants 61432002
and 61471217, NSF under grants IIS-1321083, ECCS-
1247944, CNS-1526638 and CNS-1319019, and CCF-
Tencent Open Fund under grant IAGR20150101.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 73

References
[1] Adblock Plus EasyList for ad blocking. http://easylist.

adblockplus.org.

[2] Android OS background data increase since 4.4.4 update.
http://forums.androidcentral.com/moto-
g-2013/422075-android-os-background-
data-increase-since-4-4-4-update-please-
help.html.

[3] Android OS is continuously downloading something in the
background. http://android.stackexchange.
com/questions/28100/android-os-is-
continuously-downloading-something-in-
the-background-how-can-i.

[4] Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update 2014-2019 White Paper. http://www.
cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-
vni/white_paper_c11-520862.html.

[5] cwebp – Compress an image file to a WebP file.
http://developers.google.com/speed/webp/
docs/cwebp.

[6] Data Sense for Windows Phone apps. http:
//www.windowsphone.com/en-us/how-to/wp8/
connectivity/use-data-sense-to-manage-
data-usage.

[7] dwebp – Decompress a WebP file to an image file.
http://developers.google.com/speed/webp/
docs/dwebp.

[8] Google Safe Browsing. http://developers.google.
com/safe-browsing.

[9] Google to websites: Be mobile-friendly or get buried in search re-
sults. http://mashable.com/2015/04/21/google-
mobile-search-2/#UbuurRKFaPqU.

[10] How to Minimize Your Android Data Usage and Avoid Overage
Charges. http://www.howtogeek.com/140261/how-
to-minimize-your-android-data-usage-and-
avoid-overage-charges.

[11] HTTP ETag. http://en.wikipedia.org/wiki/HTTP_
ETag.

[12] imghdr – Determine the type of an image. http://docs.
python.org/2/library/imghdr.html.

[13] Institutional review board (IRB). https://en.wikipedia.
org/wiki/Institutional_review_board.

[14] Netequalizer Bandwidth Shaper. http://www.
netequalizer.com.

[15] Onavo Extend for Android. http://www.onavo.com/
apps/android_extend.

[16] Opera Max. http://www.operasoftware.com/
products/opera-max.

[17] Opera Max, China’s version. http://www.oupeng.com/
max.

[18] Opera Turbo mobile web proxy. http://www.opera.com/
turbo.

[19] Packeteer WAN Optimization Solutions. http://www.
bluecoat.com/packeteer.

[20] Peribit WAN Optimization. http://www.juniper.net.

[21] QQBrowser. http://browser.qq.com.

[22] Riverbed Networks. http://www.riverbed.com.

[23] System.Drawing.Bitmap class in the .NET Framework.
http://msdn.microsoft.com/library/system.
drawing.bitmap(v=vs.110).aspx.

[24] The State Of Digital Experience Delivery, 2015.
https://www.forrester.com/The+State+Of+
Digital+Experience+Delivery+2015/fulltext/-
/E-RES120070.

[25] UCBrowser. http://www.ucweb.com.

[26] Universal TUN/TAP device driver. http://www.kernel.
org/doc/Documentation/networking/tuntap.
txt.

[27] WebP: A new image format for the Web. http://
developers.google.com/speed/webp.

[28] Ziproxy: the HTTP traffic compressor. http://ziproxy.
sourceforge.net.

[29] AGABABOV, V., BUETTNER, M., CHUDNOVSKY, V., COGAN,
M., GREENSTEIN, B., MCDANIEL, S., PIATEK, M., SCOTT,
C., WELSH, M., AND YIN, B. Flywheel: Google’s Data Com-
pression Proxy for the Mobile Web. In Proc. of NSDI (2015),
USENIX, pp. 367–380.

[30] AGARWAL, B., AKELLA, A., ANAND, A., BALACHANDRAN,
A., CHITNIS, P., MUTHUKRISHNAN, C., RAMJEE, R., AND
VARGHESE, G. EndRE: An End-System Redundancy Elimina-
tion Service for Enterprises. In Proc. of NSDI (2010), USENIX,
pp. 419–432.

[31] ANAND, A., GUPTA, A., AKELLA, A., SESHAN, S., AND
SHENKER, S. Packet Caches on Routers: The Implications of
Universal Redundant Traffic Elimination. In Proc. of SIGCOMM
(2008), ACM, pp. 219–230.

[32] ANAND, A., MUTHUKRISHNAN, C., AKELLA, A., AND RAM-
JEE, R. Redundancy in Network Traffic: Findings and Implica-
tions. In Proc. of SIGMETRICS (2009), ACM, pp. 37–48.

[33] ANAND, A., SEKAR, V., AND AKELLA, A. SmartRE: An Archi-
tecture for Coordinated Network-wide Redundancy Elimination.
In Proc. of SIGCOMM (2009), ACM, pp. 87–98.

[34] AUCINAS, A., VALLINA-RODRIGUEZ, N., GRUNENBERGER,
Y., ERRAMILLI, V., PAPAGIANNAKI, K., CROWCROFT, J.,
AND WETHERALL, D. Staying Online While Mobile: The
Hidden Costs. In Proc. of CoNEXT (2013), ACM, pp. 315–320.

[35] CARROLL, A., AND HEISER, G. An Analysis of Power Con-
sumption in a Smartphone. In Proc. of USENIX ATC (2010).

[36] CUI, Y., LAI, Z., WANG, X., DAI, N., AND MIAO, C.
QuickSync: Improving Synchronization Efficiency for Mobile
Cloud Storage Services. In Proc. of MobiCom (2015), ACM,
pp. 592–603.

[37] FALAKI, H., LYMBEROPOULOS, D., MAHAJAN, R., KANDU-
LA, S., AND ESTRIN, D. A First Look at Traffic on Smartphones.
In Proc. of IMC (2010), ACM, pp. 281–287.

[38] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
transfer protocol – HTTP/1.1, 1999.

[39] HUANG, J., QIAN, F., MAO, Z., SEN, S., AND SPATSCHECK,
O. Screen-Off Traffic Characterization and Optimization in
3G/4G Networks. In Proc. of IMC (2012), ACM, pp. 357–364.

[40] ISAACMAN, S., AND MARTONOSI, M. Low-Infrastructure
Methods to Improve Internet Access for Mobile Users in Emerg-
ing Regions. In Proc. of WWW (2011), ACM, pp. 473–482.

[41] JOHNSON, D., PEJOVIC, V., BELDING, E., AND VAN STAM,
G. Traffic Characterization and Internet Usage in Rural Africa.
In Proc. of WWW (2011), ACM, pp. 493–502.

13

74 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[42] LI, Z., HUANG, Y., LIU, G., WANG, F., ZHANG, Z.-L., AND
DAI, Y. Cloud Transcoder: Bridging the Format and Resolution
Gap between Internet Videos and Mobile Devices. In Proc. of
NOSSDAV (2012), ACM, pp. 33–38.

[43] LI, Z., JIN, C., XU, T., WILSON, C., LIU, Y., CHENG, L.,
LIU, Y., DAI, Y., AND ZHANG, Z.-L. Towards Network-level
Efficiency for Cloud Storage Services. In Proc. of IMC (2014),
ACM, pp. 115–128.

[44] LI, Z., WILSON, C., XU, T., LIU, Y., LU, Z., AND WANG, Y.
Offline Downloading in China: A Comparative Study. In Proc.
of IMC (2015), ACM, pp. 473–486.

[45] LIU, Y., XIAO, M., ZHANG, M., LI, X., DONG, M., MA, Z.,
LI, Z., AND CHEN, S. GoCAD: GPU-assisted Online Content
Adaptive Display Power Saving for Mobile Devices in Internet
Streaming. In Proc. of WWW (2016), ACM.

[46] LUMEZANU, C., GUO, K., SPRING, N., AND BHATTACHAR-
JEE, B. The Effect of Packet Loss on Redundancy Elimination
in Cellular Wireless Networks. In Proc. of IMC (2010), ACM,
pp. 294–300.

[47] NAYLOR, D., SCHOMP, K., VARVELLO, M., LEONTIADIS,
I., BLACKBURN, J., LOPEZ, D., PAPAGIANNAKI, K., RO-
DRIGUEZ, P., AND STEENKISTE, P. multi-context TLS (mcTL-
S): Enabling Secure In-Network Functionality in TLS. In Proc.
of SIGCOMM (2015), ACM, pp. 199–212.

[48] PUCHA, H., ANDERSEN, D., AND KAMINSKY, M. Exploiting
Similarity for Multi-Source Downloads Using File Handprints. In
Prof. of NSDI (2007), USENIX.

[49] QIAN, F., HUANG, J., ERMAN, J., MAO, Z., SEN, S., AND
SPATSCHECK, O. How to Reduce Smartphone Traffic Volume
by 30%? In Proc. of PAM (2013), Springer, pp. 42–52.

[50] QIAN, F., QUAH, K., HUANG, J., ERMAN, J., GERBER, A.,
MAO, Z., SEN, S., AND SPATSCHECK, O. Web Caching on
Smartphones: Ideal vs. Reality. In Proc. of MobiSys (2012),
ACM, pp. 127–140.

[51] QIAN, F., SEN, S., AND SPATSCHECK, O. Characterizing
Resource Usage for Mobile Web Browsing. In Proc. of MobiSys
(2014), ACM, pp. 218–231.

[52] QIAN, F., WANG, Z., GAO, Y., HUANG, J., GERBER, A.,
MAO, Z., SEN, S., AND SPATSCHECK, O. Periodic Transfers
in Mobile Applications: Network-wide Origin, Impact, and Op-
timization. In Proc. of WWW (2012), ACM, pp. 51–60.

[53] RABIN, M. Fingerprinting by Random Polynomials. Technical
Report TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

[54] RAO, A., KAKHKI, A., RAZAGHPANAH, A., TANG, A.,
WANG, S., SHERRY, J., GILL, P., KRISHNAMURTHY, A.,
LEGOUT, A., MISLOVE, A., AND CHOFFNES, D. Using the
Middle to Meddle with Mobile. Tech. Report NEU-CCS-2013-
12-10, CCIS, Northeastern University.

[55] RHEA, S., LIANG, K., AND BREWER, E. Value-based Web
Caching. In Proc. of WWW (2003), ACM, pp. 619–628.

[56] SHERRY, J., LAN, C., POPA, R., AND RATNASAMY, S. Blind-
Box: Deep Packet Inspection over Encrypted Traffic. In Proc. of
SIGCOMM (2015), ACM, pp. 213–226.

[57] SPRING, N., AND WETHERALL, D. A Protocol-Independent
Technique for Eliminating Redundant Network Traffic. In Proc.
of SIGCOMM (2000), ACM, pp. 87–95.

[58] VERGARA, E., SANJUAN, J., AND NADJM-TEHRANI, S. K-
ernel Level Energy-efficient 3G Background Traffic Shaper for
Android Smartphones. In Prof. of the 9th International Wireless
Communications and Mobile Computing Conference (IWCMC)
(2013), IEEE, pp. 443–449.

[59] VIENNOT, N., GARCIA, E., AND NIEH, J. A Measurement
Study of Google Play. In Proc. of SIGMETRICS (2014), ACM,
pp. 221–233.

[60] WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E.
Image Quality Assessment: From Error Visibility to Structural
Similarity. IEEE Transactions on Image Processing 13, 4 (2004),
600–612.

[61] WESSELS, D. Squid: The Definitive Guide. O’Reilly Media,
Inc., 2004.

[62] WOO, S., JEONG, E., PARK, S., LEE, J., IHM, S., AND PARK,
K. Comparison of Caching Strategies in Modern Cellular Back-
haul Networks. In Proc. of MobiSys (2013), ACM, pp. 319–332.

[63] ZHAI, E., CHEN, R., WOLINSKY, D. I., AND FORD, B. An
Untold Story of Redundant Clouds: Making Your Service De-
ployment Truly Reliable. In Proc. of HotDep (2013), ACM.

[64] ZHAI, E., CHEN, R., WOLINSKY, D. I., AND FORD, B. Head-
ing Off Correlated Failures through Independence-as-a-Service.
In Proc. of OSDI (2014), USENIX, pp. 317–334.

A Performance Analysis of Cross-App RE
Techniques and VBWC

In this appendix, we discuss alternative caching strate-
gies to VBWC, and motivate our ultimate selection of
VBWC for TrafficGuard. A common approach to op-
timizing cross-app cellular traffic is called redundan-
cy elimination (RE) that removes repeated data transfer
[57, 31, 33, 32, 30, 46, 62, 49, 63, 64]. It can be deployed
in ISP middleboxes [14, 19, 20, 22], on Internet router-
s [31], or in an end-to-end manner (i.e., EndRE [30]).

RE relies on a pair of synchronized packet caches
deployed at each end of a network path [57]. At one
end, the sender (e.g., the parent proxy in TrafficGuard)
compresses data packets by replacing sequences of bytes
that have appeared in previous packets with fixed-size
pointers. At the other end, the receiver (e.g., the child
proxy in TrafficGuard) decodes data packets by follow-
ing the pointers and replacing compressed data with the
cached original data.
Informed Marking RE. Lumezanu et al. point out that
TCP/IP packet loss (also including the cases of packet
disorder and retransmission) can considerably degrade
the performance of RE in cellular networks, and thus
propose the enhanced Informed Marking RE algorith-
m [46]. To quantitatively understand the effect of In-
formed Marking RE, we conduct trace-driven simula-
tions based on TGdataset. The simulation results indi-
cate that merely 4.6% of HTTP traffic and 1.5% of non-
HTTP traffic can be saved.
EndRE vs. VBWC. EndRE (i.e., end-to-end RE)
usually runs above the transport layer, so it is immune
to TCP/IP packet loss. Following the design principle
in [30], we simulate EndRE on TGdataset, and observe
that as high as 10.2% of HTTP traffic can be saved —
even better than the savings of VBWC (9%).

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 75

 0

 500

 1000

 1500

 2000

 2500

 3000

 None
Content Validation

Image Compression

VBWC

T
ra

ff
ic

 U
s
a

g
e

 (
G

B
)

HTTP
Non-HTTP

Figure 18: Real-world cellular traffic us-
age optimized by each mechanism.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Reduction Ratio (%)

Cellular Traffic
HTTP Traffic

Figure 19: Distribution of real-world
traffic reduction ratios across users.

Unfortunately, EndRE incurs much higher complexi-
ty in terms of implementation, computation, and cache
maintenance. First, it is fairly straightforward to imple-
ment VBWC (refer to § 5.4), but implementing EndRE is
not simple. Second, a poorly-provisioned EndRE client
needs 60 MB of memory [30], which is even larger
than the total client-side memory overhead (< 60 MB)
of TrafficGuard. Even worse, the server-side memory
overhead of EndRE can be hundreds of times higher
than that of VBWC. Third, EndRE needs to maintain
simultaneous TCP connections to guarantee cache con-
sistency [30], while VBWC uses soft-state and is robust
to temporary cache inconsistency.
Collaborative Caching. By conducting a week-long
measurement of 3G traffic at a large cellular ISP in South
Korea, Woo et al. observe that simple TCP-level RE can
save 27%–42% of traffic with a collaborative cache of
512 GB [62]. However, such saving ratios can only be
acquired at a centralized vantage point in the cellular
backhaul networks, rather than an end point from a cel-
lular user’s perspective. In fact, the dataset collected by
Woo et al. does not contain the identifiers (e.g., IMEI or
IMSI) of user devices, thus making the per-user analysis
of traffic saving impossible.

B Real-world Traffic Reduction Results
As mentioned in § 6.1, the real-world working logs of
TrafficGuard (i.e., TGworklog) do not include the detailed
information of filtered traffic (since they never occurred
in reality). In other words, TGworklog mainly records
the known traffic reduction results on the cloud side,
through the traffic optimization mechanisms of content
validation, image compression, and VBWC.

Meanwhile, as we note in § 4.1, the mobile app of
TrafficGuard provides the user with an interface for dis-
playing various cellular usage statistics, particularly the
traffic saving statistics. Here the traffic saving statistics
are also extracted from the real-world working logs of

TrafficGuard, so they are less than the overall traffic
savings studied in § 6.2.

As shown in Figure 18, HTTP traffic is reduced by
33%, while non-HTTP traffic cannot be reduced since
non-HTTP traffic is not forwarded and processed by the
back-end servers of TrafficGuard. In total, 26% of cellu-
lar traffic is reduced according to TGworklog.

In detail, we plot the distribution of real-world cel-
lular/HTTP traffic reduction ratios across users in Fig-
ure 19. We observe that 38% of users saved over a
quarter of HTTP traffic, and 10% of users saved over a
half. In comparison, 29% of users saved over a quarter of
cellular traffic, and merely 2.5% users saved over a half.

C Micro-Benchmark Results of Traffic-
Guard’s Battery Consumption

To understand specific facets of TrafficGuard’s bat-
tery consumption, we conduct micro-benchmarks on the
client side with three popular, diverse user apps: the
stock Android Browser, WeChat (the most popular app
in China, similar to WhatsApp), and Youku (China’s
equivalent of YouTube). In each case, we drove the app
for five minutes with and without TrafficGuard enabled
while connected to a 4G network.

Figures 20, 21, and 22 show the battery usage in each
experiment. Meanwhile, Figures 23, 24, and 25 depict
the corresponding CPU usage; Figures 26, 27, and 28
plot the corresponding memory usage. All these results
reveal that in cases where TrafficGuard can effectively
reduce network traffic (e.g., while browsing the web), it
also saves battery life or has little impact on battery life,
because the user app needs to process less traffic; accord-
ingly, TrafficGuard does not increase CPU/memory us-
age on the whole. However, in cases where TrafficGuard
can hardly reduce any traffic (e.g., Youku video stream-
ing), it reduces battery life and increases CPU/memory
usage. Thus, we are planning to improve the design of
TrafficGuard, in order that it can recognize and bypass
the traffic from audio/video streams.

15

76 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

B
a
tt
e
ry

 U
s
a
g
e
 (

m
A

h
)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

Figure 20: Battery usage of An-
droid Browser with and without
TrafficGuard (abbreviated as TG).

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

B
a

tt
e

ry
 U

s
a

g
e

 (
m

A
h

)

Time (second)

WeChat (w/o TG)
WeChat + TG

Figure 21: Battery usage of
WeChat with and without Traffic-
Guard.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

B
a
tt
e
ry

 U
s
a
g
e
 (

m
A

h
)

Time (second)

Youku (w/o TG)
Youku + TG

Figure 22: Battery usage of Y-
ouku with and without Traffic-
Guard.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

C
P

U
 U

s
a
g
e
 (

%
)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

Figure 23: CPU usage of Android
Browser w/ and w/o TrafficGuard.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

C
P

U
 U

s
a

g
e

 (
%

)

Time (second)

WeChat (w/o TG)
WeChat + TG

Figure 24: CPU usage of WeChat
with and without TrafficGuard.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

C
P

U
 U

s
a
g
e
 (

%
)

Time (second)

Youku (w/o TG)
Youku + TG

Figure 25: CPU usage of Youku
with and without TrafficGuard.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

Figure 26: Memory usage of An-
droid Browser with and without
TrafficGuard.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Time (second)

WeChat (w/o TG)
WeChat + TG

Figure 27: Memory usage of
WeChat with and without Traffic-
Guard.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Time (second)

Youku (w/o TG)
Youku + TG

Figure 28: Memory usage of Y-
ouku with and without Traffic-
Guard.

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 77

Efficiently Delivering Online Services over Integrated Infrastructure

Hongqiang Harry Liu Raajay Viswanathan Matt Calder Aditya Akella

Ratul Mahajan Jitendra Padhye Ming Zhang

Microsoft University of Wisconsin–Madison USC

Abstract— We present Footprint, a system for deliver-
ing online services in the “integrated” setting, where the
same provider operates multiple elements of the infras-
tructure (e.g., proxies, data centers, and the wide area
network). Such integration can boost system efficiency
and performance by finely modulating how traffic enters
and traverses the infrastructure. But fully realizing its
benefits requires managing complex dynamics of service
workloads. For instance, when a group of users are di-
rected to a new proxy, their ongoing sessions continue
to arrive at the old proxy, and this load at the old proxy
declines gradually. Footprint harnesses such dynamics
using a high-fidelity model that is also efficient to solve.
Simulations based on a partial deployment of Footprint
in Microsoft’s infrastructure show that, compared to the
current method, it can carry at least 50% more traffic and
reduce user delays by at least 30%.

1 Introduction
The emergence of cloud computing is reshaping how
online services and content are delivered. Historically,
the three types of infrastructure required for service
delivery—i) data centers (DC) that host application logic
and state; ii) edge proxies that terminate TCP or HTTP
connections and cache content close to users; iii) wide
area networks (WAN) that connect DCs and proxies—
were owned and operated by different organizations (Fig-
ure 1a). But now, large cloud providers such as Ama-
zon, Google, and Microsoft operate all three types of
infrastructures for their own and their customers’ ser-
vices [6, 7, 9] (Figure 1b). Infrastructure integration
is also ongoing for massively-popular service providers
such as Facebook as they leverage their scale to amortize
infrastructure cost [8], and for large ISPs as they begin
offering content distribution services [10].

Infrastructure integration allows one to take a holis-
tic view of the system to improve both performance and
efficiency. For instance, the state of the WAN (e.g. resid-
ual capacity of proxy-to-DC path) can be factored into
deciding which proxies serve which users.

But to our knowledge, current systems for deliver-
ing online services do not take such a holistic view.
Many such systems were designed for the traditional set-

Figure 1: Online service delivery infrastructures.

ting [13, 4, 11, 29]. Even those that operate in integrated
settings fail to leverage its unique opportunities. For ex-
ample, currently, in Microsoft’s network [14], WAN traf-
fic engineering (TE) operates independently, with no ad-
vance knowledge of load placed on it by edge proxies
and has no ability to steer load to a different proxy or DC
to relieve hotspots. At the same time, the edge proxies
have no knowledge of WAN TE. When they select DCs
for a user session, they need to know the quality of the
WAN paths to different DCs. They do so by probing the
paths, which is akin to looking in the rear view mirror:
it can detect congestion only after it occurs and cannot
guarantee congestion-freedom when load is moved.

This paper describes Footprint, a system for deliver-
ing services that exploits the opportunities offered by the
integrated context. Using an SDN-like centralized con-
trol model, it jointly coordinates all routing and resource
allocation decisions, to achieve desired objectives. It de-
cides how to map users to proxies, proxies to DC(s), and
traffic to WAN paths, and configures all components used
for service delivery, including network switches, proxies,
load balancers, and DNS servers to achieve this mapping.

While it is not surprising that coordination among sys-
tem components (e.g., joint optimization of WAN TE and
proxy load management) can help, we show that fully re-
alizing the potential of infrastructure integration requires
faithful modeling of system dynamics. A major issue is
that after we change system configuration, its impact is
not immediate but manifests only gradually.

The reason is that ongoing user sessions will continue
to use the proxy that they picked at session start. Thus,
when the controller changes the proxy (or the DC) map-
ping for a group of users, traffic from those users will
not move immediately. Instead, the load on the second

78 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

proxy (or the second DC) will increase as new sessions
arrive and that on the first proxy (or DC) will decrease
as old sessions depart. The system model and control
algorithms must correctly account for this lag. Tradi-
tional network TE controllers such as SWAN [18] and
B4 [19] do not have to deal with this lag, since they op-
erate at packet granularity, and the impact of a configu-
ration change is immediate.

In this paper, we illustrate the modeling challenge us-
ing data from Microsoft’s service-delivery infrastructure,
and we devise techniques to address it. To capture tem-
poral variations, we model system load and performance
as a function of time. Solving time-based models can be
intractable (e.g., time is continuous), but we show how
all load and performance constraints can be met by con-
sidering a small number of time points. The basic issue
tackled by our model—gradual impact of configuration
changes—arises in many other systems as well, such as
session-based load balancers, middleboxes, and even tra-
ditional CDNs. Our model is flexible and can be adapted
to improve the efficiency of these systems too.

In addition to the modeling challenge, we address a
number of practical issues to design a scalable and robust
system. For example, we need to estimate the latency
to various edge proxies from different user groups in a
scalable manner. We will discuss these issues, and our
solutions for them in more detail later in the paper.

We implement our model and other techniques in a
Footprint prototype. This prototype is deployed fully in a
modest-sized testbed, and its monitoring aspects are de-
ployed in Microsoft’s infrastructure. We evaluate Foot-
print using these deployments and trace-driven simula-
tions. We find that it enables the infrastructure to carry at
least 50% more traffic, compared to Microsoft’s current
method that does not coordinate the selection of proxies,
DCs, and WAN paths. At the same, it improves user per-
formance by at least 30%. We also show that Footprint’s
system model is key to achieving these gains.

2 Background and Motivation
Figure 1 shows a high-level view of online service de-
livery infrastructure. DCs, which usually number O(10),
host application logic and hard state. Users connect to
DCs via edge proxies. The proxies help boost perfor-
mance by terminating TCP and HTTP connections (com-
ing over possibly lossy last mile paths) close to the user
and by caching some content (so it does not need to be
fetched from a distant DC).

In the traditional architecture, the DCs, the edge prox-
ies and the WAN that connects them are operated by dif-
ferent entities. For example, the DCs may be owned by
a hosting service, the edge proxies may be owned by
a company like Akamai and various ISPs may provide
connectivity between the DCs, and to the edge proxies.

Figure 2: Spatial modulation via joint coordination. (a)
Path between P2 and DC2 is congested. (b) WAN TE
alone cannot resolve this congestion because other paths
between P2 and DC2 have low available capacity. (c)
Congestion is resolved when user-to-proxy mapping and
WAN TE are done jointly, moving users to other proxies
with uncongested paths to DCs.

As discussed earlier, large cloud providers like Microsoft
and Google, are moving toward a more integrated archi-
tecture, where a single entity owns and operates the DCs,
the WAN connecting the DCs, and the edge proxies.

Regardless of the architecture, any online service de-
livery system makes three decisions for user requests:
(i) selecting the proxy for the request (ii) selecting the
DC(s) for user sessions at a proxy, and (iii) selecting
WAN path(s) for traffic between proxies and DCs.

In the traditional setting, the three decisions are made
largely independently of one another, and typically with-
out the benefit of global knowledge. A third-party like
Akamai makes a decision about which proxy the user
selects, and which DC the request will be served from.
Various ISP routing policies decide how the traffic flows
between the DCs and the proxies.

Even in an integrated online service provider (OSP),
these decisions are often made independently. For exam-
ple, in Microsoft’s FastRoute system, anycast routing is
used to direct clients to nearby proxies [14]. The proxies
independently decide which DCs to route the request to,
and the WAN TE is performed independently as well.

In this paper, we argue for making service-delivery de-
cisions jointly. Joint decisions can significantly improve
efficiency, not only because of global information, but
also by offering new knobs that were previously unavail-
able. For example, consider Figure 2, where congestion
appears between P2 and DC2. In the traditional setting,
WAN TE cannot change how traffic enters and exits the
network as that is determined by proxy and DC selection.
To relieve congestion, it must rearrange how traffic flows
within the network. However, sometimes that may not
be sufficient (Figure 2b). Joint decisions can “spatially
modulate” the traffic (i.e., change where it enters or exits
the WAN) by simultaneously controlling the proxy and
DC selection. As shown in Figure 2c, such spatial mod-
ulation can help relieve congestion.

Spatial modulation is especially helpful when a large
fraction of WAN traffic is for user-facing services. This
situation holds for large cloud providers; they have a
separate WAN for non-user-facing traffic [18, 19]) To

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 79

Figure 3: Overview of Footprint.

evaluate the benefit of spatial modulation in practice,
we analyze traces from Microsoft’s infrastructure, which
runs WAN TE and service delivery controller indepen-
dently [14]. We identified congestion events in the WAN
as those where the utilization of at least one link is over
80% during a 5 minute window. We find that all of
these events could be resolved using spatial modulation
of service traffic. We also repeated the study by artifi-
cially scaling traffic by 50%: the number of congestion
events went up by 1200% (because our WAN is heav-
ily utilized), but all of them could still be resolved. This
advantage of spatial modulation underlies the efficiency
and performance improvements of Footprint (§7).

While joint decisions can help, we will see that accu-
rate modeling of system dynamics is necessary to realize
its benefits. Next, we provide an overview of the Foot-
print architecture, and outline key challenges.

3 Overview of Design and Challenges
Figure 3 shows an overview of Footprint. The controller
is bootstrapped with infrastructure and service profiles.
Infrastructure profile describes the topology, capacity in
terms of multiple resources (e.g., CPU, memory, band-
width), and latency of each component. A service’s pro-
file describes which proxies and DCs host it—not all ser-
vices may be hosted everywhere—and any constraints
on mapping users to proxies and DCs (e.g., Chinese
users must be served from China). When running, the
controller gets up-to-date information on system health,
workload, and user-to-proxy delays. Periodically, or af-
ter a failure, the controller computes and deploys new
system configuration based on this information. This
configuration determines, for the next period, how user
requests map to proxies, which DCs are used by proxies,
and which WAN paths are used.

Our design must address three categories of chal-
lenges: obtaining the necessary inputs, computing the
desired configuration, and implementing the computed
configuration. We provide a brief overview of these chal-
lenges in this section. Future sections provide more de-
tail, with a focus on the system model.

Obtaining dynamic inputs: In addition to static in-
puts such as WAN topology, the controller needs up-to-
date information about user-to-proxy delays, the load on
the system (i.e. load on WAN links, data center and
proxy utilization), and information about system health

Figure 4: Session affinity results in gradual load
changes in session routing on top of server overlays.

(e.g. which links or proxies have failed). We have scal-
able infrastructure in place to collect the needed informa-
tion about WAN and proxy load and health [30].

A key challenge lies in scalably collecting information
about user-to-proxy delays. We address it in two ways.
First, we group users into groups—a user group (UG) is
a set of users that are expected to have similar relative
latencies to edge proxies (e.g., because they are proxi-
mate in Internet topology). Second, we measure delays
between UGs and proxies in a probabilistic manner. §5
describes these aspects in more detail.

Computing the configuration: We initially believed
that we could compute system configurations using a
linear program (LP) similar to TE controllers such as
SWAN [18]. However, we realized that the Footprint con-
troller faces qualitatively different problems. The key
issue is that service sessions last longer than individual
packets and these sessions stick to their originally cho-
sen proxies and DCs during their lifetime.

More specifically, online services rely on DNS to di-
rect different users to different proxies—IP addresses of
the desired proxies are returned when the user looks up
the name of the service. The mapping of name to IP
addresses is changed to move load from one proxy to an-
other. The problem is that DNS changes cannot change
traffic distribution instantaneously. In addition to DNS
mappings being cached at the LDNS servers for the TTL
duration, there are two other problems. First, DNS map-
pings may be cached at the client well beyond the TTL
value (e.g., many browsers will not look up the same
hostname again within a tab, as long as the tab is open).
Second, persistent TCP connections used by HTTP 1.1
and 2.0 can last well beyond DNS TTL as well.

This caching means that even after the Footprint con-
troller updates a DNS mapping to point a UG to a new
proxy, the traffic from ongoing sessions from that UG
continues to arrive at the old proxy. The proxy must con-
tinue to send traffic from ongoing sessions to the same
DC. Otherwise, those sessions may be abruptly termi-
nated whenever system configuration is changed (e.g.,
every 5 minutes).

Session stickiness makes it harder to compute robust
system configurations compared to traditional TE. For
instance, in Figure 4(a), traffic from R1 to R4, is ini-

3

80 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300

C
D

F

Session Life Time (Second)
 (a)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5F
ra

ct
io

n
 o

f
P

re
-

ex
is

ti
n

g
 s

es
si

o
n

s

Time (Minute)
 (b)

Figure 5: Session life time.

tially routed via R2. When the link R2-R4 is congested,
TE controller configures R1 to forward the traffic via
R3. This change is near instantaneous, and more impor-
tantly, largely transparent to the applications. However,
the Footprint controller does not have this luxury. Fig-
ure 4(b) shows an example. Initially, a group of users
(UG) use proxy P1 to access the service S hosted in the
data center (DC). When the path P1-DC is congested,
we need to reroute the traffic via P2. This can be done
by changing the DNS mapping; i.e. the name for service
S resolves to the IP address of proxy P2. However this
change only affects new user sessions, and traffic from
old sessions continues to arrive at P1.

The severity of the problem is illustrated in Fig-
ure 5(a). Using data logged across all our proxies, it
shows the CDF of the lifetime of TCP connections for
the Bing search service. We see that 5% of the connec-
tions last longer than 100 seconds. In our current imple-
mentation, Footprint adjusts DNS mappings every 5 min-
utes. Since new HTTP sessions arrive roughly uniformly
in a five minute interval, a large fraction TCP connec-
tions continue to send data to the “old” proxy after the
mapping is updated. Figure 5(b) shows that the num-
ber of sessions that are still active as a function of time.
Even if the DNS mapping is changed at the end of the
5 minute period, over 20% of the sessions will continue
to send data to the previous proxy. The previous proxy
must continue to handle this “old” traffic, and send it to
the same DC as before.

We deal with this challenge by incorporating session
lifetime and workload migration dynamics into our sys-
tem model, as described in the next section. The reader
may wonder why we simply do not kill the old connec-
tions, which would obviate the need for modeling tem-
poral behavior. But, as shown above, a large number
of “old” connections are active on each epoch bound-
ary. It is unacceptable to kill so many connections every
five minutes. We may alleviate the problem by updating
system configuration less frequently (e.g., an hour). But
we need our system to be responsive and react quickly
to demand bursts (e.g., flash crowds) and faster updates
lead to greater efficiency [18]. We may also alleviate the
problem by updating the client code to gracefully handle
changes to proxy mappings. But Footprint must accom-
modate a large number of already-deployed applications.

Implementing the computed configuration: The
computed configuration is implemented by updating
DNS mappings, proxy-to-DC mappings, and weights on
WAN paths. One issue that we face here is that changing
UG-to-proxy mappings (e.g., in response to WAN con-
gestion) can force user traffic onto paths with unknown
capacities. While we monitor UG-to-proxy path delays,
we are not reliably aware of path capacities. We thus pre-
fer that UGs continue to use current paths to the extent
possible. To ensure this, Footprint uses load balancers at
network edge that can forward user requests to remote
proxies. These load balancers allow us to decouple how
users reach our infrastructure and how their traffic flows
internally. We omit details due to lack of space.

4 System Model
The Footprint controller periodically decides how re-
quests and responses from each UG are going to traverse
the infrastructure. For example, in Figure 3, suppose it
makes a fraction of sessions from UG2 go through edge
proxy P2 and data center DC1, it also simultaneously
computes how to route request traffic in network from
P2 to DC1 and response traffic from DC1 to P2.

The controller computes how to assign new sessions
from each UG to a collection of end-to-end paths (or e2e-
paths) which includes two “servers”—an edge proxy y
and datacenter c—and two WAN paths—request and re-
sponse paths between y and c.

Each network path is a pre-configured tunnel, i.e., a se-
ries of links from the source to destination switch; there
are usually multiple tunnels between a source-destination
pair. Once a session is assigned to an e2e-path, it will
stick to the assigned proxy and DC; the WAN paths taken
by the traffic may change.

The assignments from sessions to e2e-path impacts
system efficiency as well as the latency experienced by
users. The controller must enable the infrastructure to ac-
commodate as much workload as possible, while ensur-
ing that the proxies, DCs and network paths are not over-
loaded and that traffic prefers low-latency paths. The key
to meeting these goals is to model the load on resources
with high fidelity, which we do as described below.

4.1 Preliminaries
Table 1 shows key notations in our model, including its
inputs and outputs. The outputs contain routing decisions
for two types of traffic. The first type is unsettled edge
traffic due to new user sessions for services hosted on the
edge proxies. Here, the routing decision wθ ,g denotes the
fraction of new sessions from UG g assigned to e2e-path
θ . The second type is settled traffic, due to existing edge
sessions that stick to their servers and all non-edge traf-
fic carried by the WAN. Here, the routing decision ωp,s,d
denotes the fraction of non-edge (i.e., non-service) traffic

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 81

Inputs
g A user group (UG)
a j

g Session arrival rate of g in jth epoch
q(t) CDF of session lifetime
θ An e2e-path

Θg E2e-paths that can selected by UG g

e A “server” on an e2e path:
i.e. an edge proxy or a datacenter

p, l p: network path; l: a network link
bwl Bandwidth of link l

Ps,d
All network paths that starts from server s
and ends with server d

ξ ′
s,d Non-edge traffic demand from s to d

hθ ,g Latency experienced by g when going through θ

α A resource (e.g. CPU, memory etc.)
at an edge proxy or a datacenter

Mα,e Capacity of resource α at (e)
creq, crsp Bandwidth consumption of a request, response

T Length of an epoch
Intermediate variables

µα,z(t) Resource α’s utilization on z
nθ ,g(t) Number of sessions on θ from g
ne,g(t) Number of sessions on e from g: ∑∀θ :e∈θ nθ ,g(t)
aθ ,g(t) Session arrival rate on θ from g
ae,g(t) Session arrival rate on e from g: ∑∀θ :e∈θ aθ ,g(t)
ξs,d(t) Traffic of settled sessions s to d

f (t) CCDF of session lifetime
Outputs

wθ ,g Weight of new sessions of UG g on θ
ωp,s,d Weight of traffic from s to d on network path p

Table 1: Key notations in Footprint model.

from source s to destination d assigned to network path
p. Note that s and d represent WAN endpoints connected
to datacenters, edge proxies, or neighboring ISPs. For in-
stance, for non-edge traffic s and d may be a neighboring
ISP and a datacenter; for service request traffic generated
from UGs, s is the proxy, while d is the datacenter.

Constraints: Because the sessions from g can only be
assigned to a subset of e2e-paths Θg whose proxies are
close enough to g, and similarly traffic from s to d can
only traverse a subset of network paths Ps,d that connect
s and d, we have the following constraints on routing:

∀g : ∑∀θ wθ ,g = 1, if θ /∈ Θg, then wθ ,g = 0 (1)

∀s,d : ∑∀p ωp,s,d = 1, if p /∈ Ps,d , then ωp,s,d = 0 (2)

Before describing the system model based on which
we compute these routing decisions, we list the assump-
tions made in our modeling.

Assumptions: We assume that a DC is involved in
serving each user request. This assumption does not im-
ply that there is no caching or local logic at the proxy;
it just means that the request cannot be completely ful-
filled by the proxy. All our services require personalized
responses based on state that is only maintained in DCs.
It is straightforward to modify our model when used with
services where this behavior does not hold.

We assume that the session arrival rate for a user group
g in j-th epoch a j

g, is known and fixed. In §5, we describe

how arrival rate is estimated. We have empirically veri-
fied that the arrival rate is fixed during each epoch, as the
epoch length that we use (5 minutes) is short. Our model
can be extended to account for errors in the estimated ar-
rival rate [22]. Similarly, we assume that the distribution
of session lifetimes, denoted by q(t), is known.

We model proxies and datacenters as monolithic enti-
ties, ignoring their internal structure (and hence we refer
to them as “servers”). Without this simplifying assump-
tion, the model will become intractable as there will be
too many individual servers.

For ease of exposition, we assume that the infrastruc-
ture supports only one type of service. This service
generates request-response traffic, and the average band-
widths consumed by requests and responses is known
(creq, cresp). We define the capacity Mα,e of resource α
(e.g., CPU, memory) of server e in terms of number of
sessions. That is, we say that the CPU on a proxy can
handle a certain number of sessions. We assume that this
number is known, and fixed for a given α and a given
e. Since links can be viewed as a “server” with a sin-
gle resource—bandwidth—we will occasionally lever-
age this view to simplify notation. We can extend our
model to multiple services and a more detailed view of
resource and bandwidth consumption [22].

Finally, we assume the system’s objective is to find
end-to-end paths that minimize user delays. We do not
consider properties such as throughput or loss rate, but
we model the impact of high utilized resources on delay.

4.2 Temporal system dynamics
To model resource utilization, we first model the number
of active sessions consuming that resource. Let z denote
any element of an end-to-end path - a “server” or a link.
The number of active sessions on z is:

nz(t) = ∑
∀g

∑
∀θ :e∈θ

nθ ,g(t) (3)

where, nθ ,g(t) is the number of active sessions from UG g
on e2e-path θ at time t, and thus nz(t) is the total number
of active sessions on element z. nθ ,g(t) evolves with time,
as new sessions arrive and old ones depart.

Consider epoch k, which lasts from time t ∈ [kT,(k+
1)T], where T is the epoch length. At the beginning of
the epoch (t = kT), there are nold

θ ,g(kT) pre-existing ses-
sions that will terminate per the pattern defined by the
distribution of session life time. Simultaneously, new
sessions will continuously arrive, some of which termi-
nate inside the current epoch and others will last beyond
the epoch. At any given time, the total number of ses-
sions in the epoch is:

nθ ,g(t) = nnew
θ ,g (t)+nold

θ ,g(t) (4)

We must faithfully model how nnew
θ ,g (t) and nold

θ ,g(t) evolve
with time to provide high performance and efficiency.

5

82 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300

P
ro

b
ab

il
it

y
 o

f
 S

es
si

o
n
 A

li
v
en

es
s

Time (Second)
 (a)

 0
 10
 20
 30
 40
 50

 0 100 200 300

F
(t

)

Time (Second)
 (b)

Ori.
Appx.’

 0
 10
 20
 30
 40
 50

 0 100 200 300

G
(t

 -
 T

)

Time (Second)
 (c)

 0
 10
 20
 30
 40
 50

 0 100 200 300

G
(t

 -
 2

T
)

Time (Second)
 (d)

Figure 6: The pattern functions derived from the session life time distribution of Bing in an epoch. The time (x-axis)
on each graph is relative to the start of the epoch.

New sessions: The new session arrival rate on θ from
UG g is:

∀θ ,g : aθ ,g = ag ×wθ ,g (5)

Recall that ag is the total arrival rate of sessions from UG
g, and we assume it to be fixed within an epoch.

At any given time t within the epoch k, nnew
θ ,g (t) is the

sum of the number of sessions which arrived in interval
[kT , t] and are still alive at t. From the session life time
CDF distribution q(t ′), we can easily derive f (t ′) = 1−
q(t ′), which is probability that a session is still alive after
duration t ′ since it started. Figures 5(a) and 6(a) show
examples of q(t ′) and f (t ′), respectively.

Therefore, at any given time τ ∈ [kT, t], the number
of new sessions that arrived in the interval [τ , τ +∆τ]
is aθ ,g ×∆τ . Among these sessions, there will be f (t −
τ)aθ ,g ×∆τ sessions left at time t. When ∆τ → 0:

nnew
θ ,g (t) =

∫ t

kT
f (t − τ)×aθ ,gdτ = aθ ,g ×

∫ t−kT

0
f (τ)dτ (6)

= aθ ,g ×F(t − kT)

where F(t) =
∫ t

0 f (τ)dτ , which represents the number of
sessions alive at t assuming unit arrival rate. Figure 6(b)
shows F(t), obtained from Figure 6(a).
Pre-existing sessions: At time t in epoch k, the number
of pre-existing sessions that arrived in epoch j (j < k) is:

nold, j
θ ,g (t) =

∫ (j+1)T

jT
f (t − τ)×a j

θ ,gdτ (7)

= a j
θ ,g ×

∫ t− jT

t−(j+1)T
f (τ)dτ = a j

θ ,g ×G(t − jT)

where a j
θ ,g is the observed arrival rate in epoch j and

G(t) = F(t)−F(t −T). Therefore, the total number of
pre-existing sessions is:

nold
θ ,g(t) =

k−1

∑
j=0

a j
θ ,g ×G(t − jT) (8)

Figures 6(c) and (d) show examples of G(t − jT) in two
epochs prior to current one, i.e., j = (k − 1)T and j =
(k−2)T , respectively when T = 300 seconds.

Server utilization: Given the number of active ses-
sions, the utilization of resource α on server e is:

µα,e(t) =
ne(t)
Mα,e

, (9)

Combining Eqns. 3, 4, 6, 8, and 9, the utilization of a
resource α on server e is:

Figure 7: Penalty function.

µα,e(t) =
F(t − kT)×ae,g +∑k−1

j=0 G(t − jT)×a j
e,g

Mα,e
(10)

Link utilization: To model link utilization, we account
for non-edge traffic and the fact that requests and re-
sponses consume different amounts of bandwidth, creq
and crsp, respectively.

An e2e-path θ contains a request path θreq from UG
to DC and a response path θrsp from DC to UG. Thus,
the total edge traffic load generated by new sessions on a
network link l is:

µ ′
bw,l(t) =

∑∀θ :l∈θreq nnew
θ (t)creq +∑∀θ :l∈θrsp nnew

θ (t)crsp

bwl
(11)

Pre-existing sessions stick to their originally assigned
servers, but the WAN paths they use can be adjusted. All
such sessions from site s to site d generates traffic de-
mand ξs,d :

ξs,d(t) = ∑
∀g
[∑
∀θ :s,d∈θreq

nold
θ ,g(t)creq + ∑

∀θ :s,d∈θrsp

nold
θ ,g(t)crsp] (12)

Links are shared by edge and non-edge traffic. Let ξ ′
s,d

be the traffic demand from source router s to destination
router d, the link load by non-edge traffic on link l is:

µ ′′
bw,l(t) =

∑∀s,d ∑∀p:l∈p[ξs,d(t)+ξ ′
s,d]×ωp,s,d

bwl
(13)

Thus, the total utilization of network link l should be:
µbw,l(t) = µ ′

bw,l(t)+µ ′′
bw,l(t) (14)

4.3 Optimization objective
Equations 10 and 14 model the impact of routing deci-
sions on resource utilization. For computing the final
decisions, resource utilization is only half of the story.
Our goal is not to exclusively minimize utilization, as
that can come at the cost of poor performance if user ses-
sions start traversing long paths. Similarly, the goal is

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 83

not to exclusively select shortest paths, as that may cause
overly high utilization that induces delays for users.

To balance the two concerns, as is common in TE
systems, we penalize high utilization in proportion to
expected delay it imposes [1]. Figure 7 shows the
piece-wise linear approximation of the penalty function
P(µα,e) we use. The results are not sensitive to the exact
shape—which can differ across resource types—as long
as the function has monotonically non-decreasing slope.

Thus, our objective function is:

min. ∑
∀α,e

∫ T

0
P(µα,e(t))dt + ∑

∀g,θ

∫ T

0
hg,θ ng,θ (t)dt (15)

The first term integrates utilization penalty over the
epoch, and the second term captures path delay. The
variable hg,θ represents the total latency when sessions
of UG g traverse e2e-path θ . It is the sum of UG-to-
proxy and WAN path delays.

4.4 Solving the model
Minimizing the objective under the constraints above
will assign values to our output variables. However, our
model uses continuous time and we must ensure that the
objective is limited at all possible times. To tractably
guarantee that, we make two observations. First, nnew

θ ,g (t)
monotonically increases with time and is also concave.
The concavity is valid if only dF(t)

dt = f (t) is monotoni-
cally non-increasing with t, which is always true because
f (t) is a CCDF (complementary cumulative distribution
function). Hence, we can use a piecewise linear con-
cave function F ′(t) that closely upper-bounds F(t). For
instance, the red, dashed line in Figure 6b shows a two-
segment F ′(t) we use for Bing.

The second observation is that nold
θ ,g(t) is monotoni-

cally decreasing and convex, e.g. Figure 5(b). The con-
vexity depends on both the shape of f (t) and the length
of epoch T we choose. We found the convexity of nold

θ ,g(t)
is valid for all the services in our infrastructure. This, in
this paper, we assume for simplicity that nold

θ ,g(t) is always
convex. Otherwise, one can may use a piecewise linear
function to upper-bound nold

θ ,g(t).
Therefore, when we use F ′(t) instead of F(t), from

Eqn. 10 we derive:

µα,e(t)≤ µ̄α,e(t) =
F ′(t − kT)ae,g +∑k−1

j=0 G(t − jT)a j
e,g

Mα,e
(16)

where µ̄α,e(t) is upper-bounding µα,e(t) all the time, so
that we can limit µα,e(t) by limiting µ̄α,e(t).

Since ∑k−1
j=0 G(t − jT) is also convex with time t, and

let τ1, . . . ,τm, where τ1 = 0,τm = T , be the conjunc-
tion points of linear segments in F ′(t), µ̄α,e(t) becomes
a piecewise convex function and each convex piece i
(1 ≤ i ≤ m − 1) has boundary τi and τi+1. Because
the maximum value of a convex function must be on

the boundary, the maximum value of convex piece i in
µ̄α,e(t) happens on either t = τi or t = τi+1. Hence, over-
all, the maximum value of µ̄α,e(t) always happens at a
collection of particular moments which are τ1, . . . ,τm.
Formally, we have:

µ̄max
α,e = max{µ̄α,e(τi)|i = 1, . . . ,m} (17)

Similarly, for link utilizations and number of sessions,
we also have:

µ̄max
bw,l = max{µ̄bw,l(τi)|i = 1, . . . ,m} (18)

n̄max
θ ,g = max{n̄θ ,g(τi)|i = 1, . . . ,m} (19)

where µ̄bw,l(t) and n̄θ ,g(t), similar to µ̄α,e(t), is also de-
rived from replacing F(t) with F ′(t) in Eqns. 14 and 3.

Therefore, we can transfer our original objective func-
tion Eqn. 15 into following formulation:

min. ∑
∀α,e

P(µ̄max
α,e)×T + ∑

∀g,θ
hg,θ n̄max

g,θ ×T (20)

We can now obtain an efficiently-solvable LP com-
bining the new objective in Eqn 20 with constraints in
Eqns. 1–5 and 16–19. The penalty function P(µ) can
also be encoded using linear constraints [15].

5 Footprint Design
We now describe the design of Footprint in more detail.

Defining UGs: We start with each /24 IP address prefix
as a UG because we find experimentally that such users
have similar performance. In the presence of eDNS,
where LDNS resolvers report users’ IP addresses when
querying our (authoritative) DNS servers, this defini-
tion of UGs suffices. However, eDNS is not widely de-
ployed and our DNS servers tend to see only resolvers’
(not users’) addresses. This lack of visibility means
that we cannot map /24 prefixes that share LDNS re-
solvers to entry point(s) independently. Thus, we merge
non-eDNS UGs that share LDNS resolvers, using IP-to-
LDNS mapping from our entry point performance mon-
itoring method (described below). We find that such
mergers hurt a small minority of users; 90% of the time,
when two /24 prefixes have the same LDNS, their rela-
tive performance to top-3 entry points is similar.

Entry point performance monitoring: We leverage
client-side application code to monitor performance of
UGs to different entry points. Our measurement method
borrows ideas from prior work [24, 5]. After a query
finishes, the user requests a URL from current and alter-
native entry points. It then reports all response times to
a measurement server, which allows us to compare entry
points head-to-head, without worrying about differences
across users (e.g., home network performance).

However, because there can be O(100) entry points,
requesting that many URLs will take a long time and

7

84 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

place undue burden on users. We thus perform measure-
ments with a small probability and limit each to three re-
quests. Each URL has the form http://<guid>.try<k>

.service.footprint.com/monitor, where guid is a
globally unique identifier and k ∈ (1..3).

What sits behind monitor is a service-specific transac-
tion. For a browsing-type service (e.g., search or social
networking) it may correspond to downloading its typi-
cal Web page; for a video streaming service, large objects
may be downloaded. This way, the response time reflects
what users of the service experience.

The measurement mechanics are as follows. Because
of the GUID, the URL hostname does not exist in DNS
caches and each request triggers a lookup at our DNS
server. We resolve the name based on the user’s UG and
k. For k=1, we resolve to the current-best entry point;
for k=2, to a randomly selected entry point from the ten
next best; and for k=3, to a random selection from the
remaining entry points. Each response-time triplet yields
the relative performance of the best and two other entry
points. Aggregating across triplets and users provides a
view of each entry point’s performance for each UG.

This view is more up-to-date for better entry points
for a UG as they are sampled from a smaller set (of 10).
When a UG’s entry point is changed, it is likely mapped
to another nearby entry point; up-to-date view of such
entry points is important, which would be hard to obtain
with unbiased sampling of all entry points.

Finally, we learn the mapping from users’ IP addresses
to LDNS resolvers by using GUIDs to join the logs at
HTTP transaction servers (which see users’ addresses)
and DNS servers (which see resolver addresses).

Clustering UGs: After LDNS-based grouping, we get
O(100K) UGs, which poses a scaling problem for our LP
solver. To reduce the number of UGs, we aggregate UGs
at the start of each epoch. For each UG, we rank all entry
points in decreasing order of performance and then com-
bine into virtual UGs (VUG) all UGs that have the same
entry points in the top-three positions in the same order.
We formulate the model in terms of VUGs. The perfor-
mance of a VUG to an entry point is the average of the
aggregate, weighted by UGs’ number of sessions. For
our infrastructure, this clustering creates O(1K) VUGs,
and we observe only a marginal decline in efficiency
(≈3%) due to our inability to map individual UGs.

System workload: The controller estimates the work-
load for the next epoch using workload information from
previous epochs. DNS servers report the arrival rates of
new sessions for each UG and each service; proxies re-
port on resource usage and departure rate of sessions; and
network switches that face the external world report on
non-edge traffic matrix (in bytes/second). Edge work-
load is captured in terms of all resource(s) that are rel-

evant for allocation (e.g., memory, CPU, traffic). We
use exponentially weighted moving average (EWMA)
to estimate workload for the next epoch. We also use
linear regression to infer per-session resource consump-
tion (e.g., CPU cycles) for each service, using overall re-
source usage and number of active sessions per service.

System health: When failures occur, health monitor-
ing services at proxy sites and DCs inform the controller
how much total site capacity is lost (not which servers).
This information granularity suffices because the con-
troller does not allocate sessions to individual servers at
a site and relies on local load balancers for that. In con-
trast, network failures are exposed at link-level, so that
the controller can determine network paths.

Because it may take a few seconds for the controller to
react to server or link failures (§7.4), instead of waiting
for the controller to update the configuration, load bal-
ancers and routers react to failures immediately by mov-
ing traffic away from failed components. Such move-
ments can cause transient congestion in our current de-
sign, which we plan to address in the future using for-
ward fault correction (FFC) [23].

Robustness to controller failures: To make the sys-
tem robust to controller or hosting-DC failures, we run
multiple controllers in three different DCs in different ge-
ographic regions. All dynamic information required for
the optimization (e.g., system workload) is reported to
all controllers in parallel. The controllers elect a unique
leader using ZooKeeper [33]. Only the leader computes
the new system configuration and updates the infrastruc-
ture, which ensures that updated system state is not in-
consistent even if different controllers happen to have
different views of the current workload (e.g., due to de-
lays in updating information at a given controller). When
the leader fails, a new leader is elected. The new leader
can immediately start computing new system configura-
tions as it already has all the requisite inputs.

6 Footprint Prototype
We have implemented the Footprint design outlined
above. The client-side functionality for entry point per-
formance monitoring is a JavaScript library that can be
used with any Web service. This library is invoked af-
ter page load completes, so that it does not interfere with
user experience. When fetching a URL in JavaScript,
we cannot separate DNS lookup and object download
times. To circumvent this limitation, before fetching the
URL, we fetch a small object from the same hostname.
Then, because of DNS caching, the response time of the
URL does not include DNS lookup time. In cases where
the browser supports the W3C Resource Timing API, we
use the precise object fetch time. We implemented the
DNS server-side functionality by modifying BIND [3]

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 85

and proxy functionality using Application Request Rout-
ing [2], which works with unmodified Web servers. We
use Mosek [26] to solve the LP.

Timely processing of monitoring data is critical. A
particularly onerous task is the real-time join between
HTTP and DNS data, to know which endpoints our
JavaScript has measured and to attach detailed network
and geographic information to each measurement. To
help scale, we build our processing pipeline on top of
Microsoft Azure Event Hub and Stream Analytics.

To scale the computation of new configurations, we
limit the number of e2e-paths that a VUG can use.
Specifically, we limit each VUG to its best three en-
try points—the ones on which VUG was clustered—
each load balancer to three proxies, and each source-
destination switch pair to six paths (tunnels) in the WAN.
In our benchmarks, these limits speed computation by
multiple orders of magnitude, without noticeably impact-
ing system efficiency or performance.

We deployed a prototype of Footprint in a modest-
sized testbed. This environment emulates a WAN with
eight switches and 14 links, three proxy sites, and two
DCs. Proxy sites and DCs have one server each. We
have 32 PCs that act as UGs and repeatedly query a ser-
vice hosted in the DC. UG to entry point delays are con-
trolled using a network emulator.

The monitoring aspects of Footprint, but not the con-
trol functionality, are also deployed in Microsoft’s ser-
vice delivery infrastructure. This allow us to collect data
from O(100) routers, O(50) edge sites, and O(10) DCs
worldwide. The JavaScript library is randomly included
in 20% of Bing user requests. We use the data from this
deployment to drive simulations to evaluate Footprint.

7 Experimental Evaluation
We evaluate Footprint along several dimensions of in-
terest. First, we use the testbed to show the viability
and value of jointly controlling all types of infrastructure
components. It is not intended to shed light on efficiency
and performance of Footprint in a real deployment. To
assess those aspects, we conduct large-scale simulations
based on data gathered using the monitoring deployment
of Footprint in our production environment.

7.1 Testbed results
We use a simple experiment on our testbed to demon-
strate the value of spatial traffic modulation. In this ex-
periment, we recreate the example in Figure 2. Recall
that in this example the WAN gets congested such that no
path between the entry point P2 and DC2 is congestion-
free. We create such congestion by injecting non-edge
traffic that uses those paths.

Figure 8 shows the results. It plots the response time
for UGs that are originally mapped to P2 and DC2,

Figure 8: Testbed experiment: WAN congestion.

with Footprint and with WAN TE alone. WAN TE es-
timates the WAN traffic matrix based on recent history
and routes traffic to minimize link utilization while us-
ing short paths [18]. We see that soon after congestion
occurs, Footprint spatially modulates the traffic such that
UGs’ performance is restored. But WAN TE is unable to
resolve congestion and performance issues as it cannot
change UGs’ proxy and DC selections.

7.2 Efficiency and performance
To understand the efficiency and performance of Foot-
print at scale, we conduct detailed simulations using data
from Microsoft’s service delivery infrastructure. Our
simulations use a custom, fluid-level simulator.

7.2.1 Methodology and data

To understand the benefit of Footprint’s joint optimiza-
tion, we compare it to a system similar to Microsoft’s
current approach, where i) anycast routing is used to map
UGs to their best proxy; ii) each edge proxy indepen-
dently chooses the closest DC for its user sessions based
on up-to-date delay measurements; and iii) WAN TE pe-
riodically configures network paths based on observed
traffic, to minimize maximum link utilization [18]. In
our simulations, the control loops, for DC selection at
each proxy and for WAN TE, run independently every
5 minutes. To mimic anycast routing, we use our moni-
toring data to map UGs to the best proxy, which enables
a fair comparison by factoring out any anycast subop-
timality [5]. We also assume that proxies are not the
bottleneck, to remove the impact of anycast routing’s in-
ability to evenly balance load across proxies, which a
different user-to-proxy mapping system may be able to
achieve. Abusing terminology, we call this system Fas-
tRoute, even though the FastRoute paper [14] discusses
only user-to-proxy mapping and not WAN TE.

We drive simulations using the following data: i)
timestamps of new sessions obtained from system logs;
ii) distribution of session lifetimes; iii) UG to entry point
performance data from our monitoring deployment; iv)
propagation latencies and capacities of all links in the
WAN; v) server capacities at the edge proxies and data
centers; vi) non-edge traffic carried by the WAN; and vii)

9

86 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Aggregate Sessions Outgoing Bandwidth

0
0.2
0.4
0.6
0.8

1

Proxy

C
D

F

0
0.2
0.4
0.6
0.8

1

Proxy

C
D

F

(a) NA (b) EU

Figure 9: Distribution of bandwidth and sessions across
proxies. User sessions are mapped to the closest proxy.
Bandwidth per proxy is measured as aggregate band-
width of all directly attached links.

1% 5%
0

1

2

3

4

1
1.56

1.94
2.32

N
or

m
al

iz
ed

Tr
af

fic
Sc

al
e FastRoute

Footprint

1% 5%
0

1

2

3

4

1
1.5

2.18
2.55

N
or

m
al

iz
ed

Tr
af

fic
Sc

al
e FastRoute

Footprint

(a) NA (b) EU

Figure 10: Efficiency of FastRoute and Footprint for
SLO1 (excess traffic on overloaded components).

per-session resource consumption (e.g., CPU) estimated
using linear regression over the number active sessions.

We show results for North America (NA) and Europe
(EU) separately. The infrastructure in the two continents
differs in the numbers of proxies, DCs, and the richness
of network connectivity. The NA infrastructure is bigger
by about a factor of two. The results below are based
on one week’s worth of data from August 2015. Results
from other weeks are qualitatively similar.

To provide a sense of system workload, Figure 9
shows the distribution of closest user sessions and net-
work bandwidth across proxies. Since proxies are not
bottlenecks in our experiments, network congestion is a
key determiner of performance. While it can occur in
the middle of the network as well, congestion occurs
more often on links close to the proxies because fewer
routing alternatives are available in those cases. We see
that, in aggregate, network bandwidth and user sessions
of proxies are balanced; more bandwidth is available be-
hind proxies that receive more sessions.

7.2.2 Efficiency

We quantify efficiency of a service-delivery system us-
ing congestion-free scale—maximum demand that it can
carry without causing unacceptable congestion that vio-
lates service-level objectives (SLOs). We consider two
definitions of unacceptable congestion: i) SLO1: across
all epochs, the amount of traffic in excess of compo-

1% 5%
0

1

2

3

4

0.66
1

1.78 1.99

N
or

m
al

iz
ed

Tr
af

fic
Sc

al
e

FastRoute
Footprint

1% 5%
0

1

2

3

4

0.82 0.91

1.99 2.11

N
or

m
al

iz
ed

Tr
af

fic
Sc

al
e

FastRoute
Footprint

(a) NA (b) EU

Figure 11: Efficiency of FastRoute and Footprint for
SLO2 (total traffic on overloaded components).

nent capacities should be less than a threshold; ii) SLO2:
across all epochs, the total traffic traversing overloaded
(i.e., load greater than capacity) components should be
less than a threshold. The difference in the two SLOs
is that when traffic traverses an overloaded component,
SLO1 considers only the fraction in excess of the ca-
pacity, but SLO2 considers all traffic passing through
it. We study multiple congestion thresholds and compute
congestion-free scale by iterating over demands that are
proportionally scaled versions of the original demand.

Figure 10 shows the congestion-free scale for Fas-
tRoute and Footprint with SLO1 for two different conges-
tion thresholds. For confidentiality, we report all traffic
scales relative to the congestion-free scale of FastRoute
with SLO1 at 1% threshold. We see that Footprint carries
at least 93% more traffic when the congestion threshold
is 1% and 50% more traffic when the threshold is 5%.

These efficiency gains can be understood with respect
to the spatial modulation enabled by joint coordination
in Footprint. While on average the load on the proxy is
proportional to its network bandwidth (Figure 9), at dif-
ferent times of the day, different regions are active and
get congested. By making joint decisions, Footprint can
more easily divert traffic from currently active proxies to
those in other regions.

Figure 11 shows that Footprint’s efficiency gains hold
for SLO2 as well, which considers total traffic travers-
ing overloaded components. For 1% and 5% congestion
thresholds, Footprint can carry, respectively, 170% and
99% more traffic than FastRoute.

7.2.3 Performance

We quantify performance of user sessions using end-to-
end path delays. We study its contributing factors: ex-
ternal (UG-to-proxy) delay, propagation delay inside the
WAN, and queuing-induced delays. Queuing delay is
quantified using utilization, per the curve in Figure 7.
Figure 12 shows the performance of the two system for
traffic scales that correspond to 35% and 70% of the
congestion-free scale of FastRoute for SLO1. Each bar
stacks from bottom three factors in the order listed above.

We see that even when the traffic demand is low
(35%), Footprint has 46% (for NA) lower delay. At this

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 87

Queuing WAN External

FastRoute Footprint
0

20

40

60

80

D
el

ay
[m

s]

FastRoute Footprint
0

20

40

60

80

D
el

ay
[m

s]

(a) NA (0.35×) (b) NA (0.7×)

FastRoute Footprint
0

10

20

30

D
el

ay
[m

s]

FastRoute Footprint
0

10

20

30
D

el
ay

[m
s]

(c) EU (0.35×) (d) EU (0.7×)

Figure 12: Delays in the two systems.

scale, the infrastructure is largely under-utilized. The de-
lay reduction of Footprint stems from its end-to-end per-
spective. In contrast, FastRoute picks the best proxy for
a UG and the best DC for the proxy. The combination
of the two might not represent the best e2e path. Such
a path may be composed of a suboptimal UG-to-proxy
path but a much shorter WAN path. This effect can be
seen in the graph, where the external delays are slightly
higher but the sum of external and WAN delay is lower.

When the traffic demand is high (70%), both systems
have higher delay. For FastRoute, most of the additional
delay stems from queuing as traffic experiences highly
utilized resources. Footprint is able to reduce queuing
delay by being better able to find uncongested (albeit
longer) paths. Overall, the end-to-end delay of Footprint
is at least 30% lower than FastRoute.

7.3 Impact of system model
To isolate the impact of the system model of Footprint,
we compare it to two alternatives that also do joint
optimization but without the detailed temporal model-
ing of workload. The efficiency of these alternatives
also represents a bound on what existing coordination
schemes [16, 20, 28, 12] can achieve when extended to
our setting of jointly determining the proxy, WAN path,
and DC mappings for user sessions.
• JointAverage Instead of modeling temporal dynam-

ics, based on session lifetimes, JointAverage uses Little’s
law [21] to estimate the number of active sessions as a
function of session arrival rate. If the session arrival rate
at a proxy is A per second and the average session life-
time is 10 seconds, on average the proxy will have 10×A
active sessions. These estimates are plugged into an LP
that determines how new sessions are mapped to proxies
and DCs and how traffic is forwarded in the WAN.
• JointWorst To account for session dynamics, Joint-

Worst makes a conservative, worst-case assumption

JointAverage
JointWorst

Footprint
0

1

2

3

1.48
1.18

2.3

N
or

m
al

iz
ed

Tr
af

fic
Sc

al
e

JointAverage
JointWorst

Footprint
0

0.2
0.4
0.6
0.8

1

0.16
0.35 0.37

N
or

m
al

iz
ed

Tr
af

fic
Sc

al
e

(a) Unscaled (b) 10× scaled

Figure 13: Efficiency of different system models for dif-
ferent average session lifetimes on NA infrastructure.

−200 −100 0 100 200
0

0.2

0.4
0.6

0.8
1

Estimated - Actual Link Utilization [%]

Fr
ac

tio
n

of
lin

ks JointAverage
JointWorst
Footprint

Figure 14: Fidelity of modeling. CDF of modeled and
observed link utilization.

about load on infrastructure components. Specifically,
it assumes that new sessions arrive before any old ses-
sions depart in an epoch. Since we do not do admission
control, it is not the case that traffic that is estimated,
per this model, to overload the infrastructure is rejected.
Instead, the optimization spreads traffic to minimize uti-
lization that is predicted by this model. This model will
do well if it overestimates the traffic on each component
by a similar amount.

For NA infrastructure, figure 13(a) compares these
two models with Footprint using SLO1 at 5% conges-
tion threshold—the configuration for which Footprint had
least gain over FastRoute. We see that Footprint is sub-
stantially more efficient. It carries 56% and 96% more
traffic than JointAverage and JointWorst.

We find that the gains of Footprint actually stem from
its ability to better model load that will be placed on dif-
ferent infrastructure components. To demonstrate it, Fig-
ure 14 plots the distribution of estimated minus actual
utilization for WAN links for each model. We see that
JointAverage tends to underestimate utilization and Joint-
Worst tends to overestimate it. With respect to appropri-
ately spreading load through the infrastructure, neither
over- nor under-estimation is helpful.

We also find that, if sessions were much longer, Joint-
Worst performs better because its conservative assump-
tion about existing sessions continuing to load the infras-
tructure becomes truer. On the other hand, JointAver-
age gets worse because it ignores the impact of existing
sessions altogether, which hurts more when sessions are
longer. This is illustrated in Figure 13(b), which shows

11

88 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0 2 4 6 8 10
0

20
40
60
80

100

Churn [%]

C
D

F
ov

er
ep

oc
hs

Figure 15: Churn in UG to proxy performance.

the impact on efficiency with average session lifetime
multiplied by 10. Because of its modeling fidelity, the
benefit of Footprint is not dependent on session lifetime,
however, and it is able to provide gains even for these
abnormally long sessions.

7.4 Computation time
We measured the time Footprint controller takes to com-
pute system configurations, which includes converting
inputs to an LP, solving it, and converting the output
to system variables. On an Intel Xeon CPU (E5-1620,
3.70GHz) with 16 GB RAM and using Mosek v7, this
time for NA and EU infrastructure is 5 and 0.6 seconds
respectively. This level of performance is acceptable
given that epochs are much longer (5 minutes). With-
out clustering of UGs, the running time was greater than
20 minutes for both NA and EU.

7.5 Preliminary experience
We make two observations based on the deployment of
Footprint’s monitoring components in Microsoft’s infras-
tructure. First, we quantify the fraction of UGs for which
the best proxy changes across epochs. If this fraction is
substantial, optimal user-to-proxy mapping would move
large amounts of WAN traffic, which is better done in
coordination with WAN-TE, rather than independently.

Figure 15 shows the fraction of UGs, weighed by their
demand, for which the best proxy changes across epochs.
On average, this fraction is 5%. It means that a user-
to-proxy mapping control loop, operating independently,
could move this high a fraction of traffic on the WAN.
Joint coordination helps make such movements safely.
(In Footprint, since we consider WAN-internal capacity
and performance as well, the traffic moved is lower, un-
der 1% in our simulations.)

Second, an unexpected advantage of Footprint’s con-
tinuous monitoring is that we can discover and circum-
vent issues in Internet routing that hurt user performance.
We have found several such events. In one case, users in
the middle of the NA started experiencing over 130 ms
round trip delay to a proxy on the west coast, while
the historical delay was under 50 ms. In another case,
the difference in the delay to reach two nearby prox-
ies in Australia, was over 80 ms. Debugging and fixing
such issues requires manual effort, but Footprint can au-
tomatically restore user performance in the meanwhile.

Anycast-based systems such as FastRoute cannot do that.

8 Related Work
Our work builds on two themes of prior work.

Content distribution systems: Content and service
delivery has been an important problem in the Internet
for almost two decades. Akamai [25] developed the first
large-scale solution, and we borrow several of its con-
cepts such as using edge proxies to accelerate perfor-
mance and mapping users to proxies based on path per-
formance and proxy load. Since then, researchers have
developed sophisticated techniques to tackle this general
problem known as replica selection [13, 4, 11, 29]. So-
lutions tailored to specific workloads (e.g., video) have
also been developed [27, 17].

Most of these works target the traditional context in
which the WAN is operated separately from the proxy
infrastructure. We target the increasingly common inte-
grated infrastructure context, which provides a new op-
portunity to jointly coordinate routing and resource allo-
cation decisions.

Coordinating decisions: Other researchers have noted
the downside of independent decisions for network rout-
ing and content distribution. Several works [16, 20, 28,
12] consider coordinating ISP routing and DC selection
through limited information sharing; PECAN develops
techniques to coordinate proxy selection and external
(not WAN) paths between users and proxies [31]; EN-
TACT balances performance and the cost of transit traffic
for an online service provide [32].

Our work differs from these efforts in two ways. First,
it includes the full complement of jointly selecting prox-
ies, DCs, and network paths. But more importantly, prior
works ignore workload dynamics that arise from ses-
sion stickiness. Consequently, the best case result of ap-
plying their techniques to our setting will approach the
JointWorst or JointAverage scheme (§7.3) because, mod-
ulo session stickiness, these two schemes optimally map
workload to infrastructure elements. We showed that, be-
cause it accounts for workload dynamics, Footprint out-
performs these schemes. Extending information-sharing
techniques to account for such workload dynamics is an
interesting avenue for future work.

9 Conclusions
Our work pushes SDN-style centralized control to in-
frastructure elements beyond networking devices. In do-
ing so, we found that, to maximize efficiency and per-
formance, we must handle complex workload dynamics
that stem from application behaviors. This challenge will
likely emerge in other systems that similarly push the
limits of SDN, and the approach we take in Footprint may
inform the design of those systems as well.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 89

Acknowledgments We thank the Microsoft engineers
who helped with data acquisition and prototype deploy-
ment, including Sreenivas Addagatla, Sorabh Gandhi,
Daniel Gicklhorn, Nick Holt, Jon Mitchell, David
Schmidt, Prasad Tammana, and Ed Thayer. We also
thank the NSDI reviewers and our shepherd, Laurent
Vanbever, for feedback that helped improve the pa-
per. Raajay and Aditya were supported in part by Na-
tional Science Foundation (grants CNS-1302041, CNS-
1330308 and CNS-1345249) and the Wisconsin Institue
of Software-Defined Datacenters of Madison.

References
[1] G. Appenzeller, I. Keslassy, and N. McKeown. Siz-

ing router buffers. In SIGCOMM, 2004.

[2] Application request routing. http://en.
wikipedia.org/wiki/Application_
Request_Routing.

[3] BIND. https://www.isc.org/
downloads/bind/.

[4] S. Buchholz and T. Buchholz. Replica placement
in adaptive content distribution networks. In ACM
symposium on Applied computing, 2004.

[5] M. Calder, E. Katz-Bassett, R. Mahajan, and J. Pad-
hye. Analyzing the Performance of an Anycast
CDN. In IMC, 2015.

[6] Amazon CloudFront. http://aws.amazon.
com/cloudfront/.

[7] Windows Azure CDN. http://azure.
microsoft.com/en-us/services/cdn/.

[8] Facebook CDN. https://gigaom.com/
2012/06/21/like-netflix-facebook-
is-planning-its-own-cdn/.

[9] Google CDN. https://cloud.google.
com/storage/.

[10] Level3 CDN. http://www.level3.com/
en/products/content-delivery-
network/.

[11] Y. Chen, R. H. Katz, and J. D. Kubiatowicz. Dy-
namic replica placement for scalable content deliv-
ery. In Peer-to-peer systems, 2002.

[12] D. DiPalantino and R. Johari. Traffic engineering
vs. content distribution: A game theoretic perspec-
tive. In INFOCOM, 2009.

[13] J. Elzinga and D. W. Hearn. Geometrical solutions
for some minimax location problems. Transporta-
tion Science, 6(4):379–394, 1972.

[14] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu,
Y. Chen, and O. Surmachev. Fastroute: A scalable
load-aware anycast routing architecture for modern
cdns. In NSDI, 2015.

[15] B. Fortz, J. Rexford, and M. Thorup. Traffic
engineering with traditional IP routing protocols.
Comm. Mag., 40(10), 2002.

[16] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feld-
mann, B. Maggs, J. Rake, S. Uhlig, and R. Weber.
Pushing CDN-ISP collaboration to the limit. SIG-
COMM CCR, 43(3), 2013.

[17] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica,
J. Jiang, V. Sekar, and H. Zhang. C3: Internet-
scale control plane for video quality optimization.
In NSDI, 2015.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achiev-
ing high utilization with software-driven WAN. In
SIGCOMM, 2013.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software de-
fined wan. In SIGCOMM, 2013.

[20] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chi-
ang. Cooperative content distribution and traffic
engineering in an ISP network. In SIGMETRICS,
2009.

[21] Little’s law. https://en.wikipedia.org/
wiki/Little’s_law.

[22] H. Liu, R. Viswanathan, M. Calder, A. Akella,
R. Mahajan, J. Padhye, and M. Zhang. Effi-
ciently delivering online services over integrated
infrastructure. Technical Report MSR-TR-2015-
73, 2015.

[23] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang,
and D. Gelernter. Traffic engineering with forward
fault correction. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages
527–538, New York, NY, USA, 2014. ACM.

[24] R. Maheshwari. How LinkedIn used PoPs and
RUM to make dynamic content download 25%
faster. https://engineering.linkedin.
com/performance/how-linkedin-
used-pops-and-rum-make-dynamic-
content-download-25-faster, June
2014.

13

90 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[25] Cloud computing services and content distribution
network (CDN) provider — akamai. https://
www.akamai.com.

[26] Mosek ApS. https://mosek.com/.

[27] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Se-
shan, and H. Zhang. Practical, real-time centralized
control for cdn-based live video delivery. In SIG-
COMM, 2015.

[28] S. Narayana, J. W. Jiang, J. Rexford, and M. Chi-
ang. To coordinate or not to coordinate? wide-area
traffic management for data centers. In CoNEXT,
2012.

[29] L. Qiu, V. N. Padmanabhan, and G. M. Voelker.
On the placement of web server replicas. In IN-
FOCOM, 2001.

[30] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang,
and A. Arefin. A network-state management ser-
vice. In SIGCOMM, 2014.

[31] V. Valancius, B. Ravi, N. Feamster, and A. C. Sno-
eren. Quantifying the benefits of joint content and
network routing. In SIGMETRICS, 2013.

[32] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu,
R. Mahajan, and B. Christian. Optimizing cost and
performance in online service provider networks.
In NSDI, 2010.

[33] Apache zookeeper. https://zookeeper.
apache.org/.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 91

Scalable and private media consumption with Popcorn
Trinabh Gupta∗† Natacha Crooks∗‡ Whitney Mulhern† Srinath Setty§ Lorenzo Alvisi∗ Michael Walfish†

∗UT Austin †NYU ‡MPI-SWS §Microsoft Research

Abstract. We describe the design, implementation, and
evaluation of Popcorn, a media delivery system that hides
clients’ consumption (even from the content distributor).
Popcorn relies on a powerful cryptographic primitive: pri-
vate information retrieval (PIR). With novel refinements
that leverage the properties of PIR protocols and media
streaming, Popcorn scales to the size of Netflix’s library
(8000 movies) and respects current controls on media
dissemination. The dollar cost to serve a media object in
Popcorn is 3.87× that of a non-private system.

1 Introduction and motivation
This paper describes a Netflix-like media delivery system,
Popcorn, that provably hides what is consumed by its
users, at scale and at low (dollar) cost.

Popcorn is motivated by a fundamental tension in the
ecosystem of online media consumption. In one camp
are people deeply uncomfortable with exposing their me-
dia diet, in particular to a centralized media server that
can be targeted by either hacking or subpoena. They ar-
gue that, philosophically, freedom requires the ability to
consume privately [91] and that, practically, access to
a person’s consumption profile can reveal the person’s
sexual orientation, political leanings, cultural affiliations,
etc. [77, 78, 93].1 And although many people may in fact
want to expose their consumption to gain recommenda-
tions, there may still be objects that they want to consume
without others’ knowledge. Another camp counters that
media often exists within a commercial framework, and
that people who create it and services that distribute it
need to be compensated to sustain the ecosystem.

Our work advances a new design point in the realm of
private media consumption. Specifically, this paper asks
the question, Is it possible to build a system that hides
content consumption while respecting current commercial
arrangements, and if so, what would that system cost?

No answer is likely to apply to all media delivery sys-
tems, as they differ widely. YouTube’s library, for instance,
is large, continuously updated, freely distributed, and sup-
ported by advertising. Netflix’s library is comparatively
small, updated infrequently [6], subject to strict content
protection, and supported by paid subscriptions. This pa-
per explicitly targets Netflix-like systems, and adopts the
following requirements:

1To be clear, we are not challenging the trustworthiness of commercial
media services. The issue is that collecting the information in the first
place creates the risk of exposure.

1. Hide requests comprehensively and provably. We
want to hide consumption from both a network eaves-
dropper [7, 44] and the content distributor, and avoid
the risk of heuristic solutions [18].

2. Make it affordable even at scale. Our system should
dispense privacy at an attractive price point. The cost
should be within a small multiple of what customers
pay to access content today.

3. Respect current controls on content dissemination.
Our solution must be compatible with the existing
commercial, legal, and policy regime (copyright, con-
trols on content dissemination, etc.) so as not to fun-
damentally reorient digital rights.

At first blush, Tor [39] and other anonymity systems [69]
(which conceal who consumes content) satisfy the above
requirements. However, these solutions conflict with com-
mercial media delivery: now Netflix would have to rely on
the altruism of Tor nodes. Moreover, the capacity, latency,
and reliability on a Tor network is unlikely to match the
requirements of Netflix.

Thus, Popcorn turns to a large body of cryptographic
protocols known as Private Information Retrieval, or
PIR (§2.2). These protocols [29, 45, 66, 81, 106] al-
low clients (content consumers) to request content from
servers (content distributors) without the servers being
able to infer which items the clients requested.

Applying these protocols, however, raises several chal-
lenges (§3): the linear overhead of PIR (to respond to a
request, the server must compute over its entire library,
or else it would learn what the client was not interested
in); the strict deadlines of media delivery; variable object
sizes (PIR assumes all objects are the same size); and
a tension surrounding PIR protocol choice (one type of
PIR, called CPIR [66], needs only one server, but the
overhead is high; another, called ITPIR [29], involves
lightweight operations but demands non-colluding servers
and hence separate administrative domains, which, among
other things, threatens content protection). There is a large
and inspiring body of work (§7) addressing some of these
issues [12, 13, 25, 31, 33, 35–37, 43, 49, 50, 54, 55, 57,
71, 73, 75, 83, 101, 103, 107], but prior implementations
suitable for media delivery at the scale we target levy
prohibitive demands on I/O and CPU resources.

Popcorn eases these demands substantially. It provably
hides media consumption, scales to the size of Netflix,
and respects current controls on media dissemination—

1

92 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

with resource overhead that translates to a manageable
dollar cost. To do so, Popcorn cherry-picks techniques
from the literature on PIR and media on demand, and
works through the “systems” ramifications of tailoring
them to the context at hand.

Three techniques are central to Popcorn’s design. First,
Popcorn combines both types of PIR. Media objects,
encrypted for content protection, are stored at multiple
servers from distinct administrative domains and retrieved
using the lighter-weight ITPIR. The much smaller crypto-
graphic keys needed to decrypt those objects are stored
at a single server and retrieved using the heavier-weight
CPIR. Second, Popcorn amortizes the cost of PIR by
batching requests from the large number of concurrent
users retrieving content at any given time; by leverag-
ing the properties of media streaming, Popcorn forms
large batches without introducing playback delays or in-
terruptions. Third, Popcorn exploits the ability to encode
a media object in multiple ways (e.g., by changing its
bitrate) to meet the fixed-size-object requirement of PIR.

We experimentally evaluate Popcorn for a Netflix-like
workload (10,000 concurrent clients, each streaming dif-
ferent content at 4 Mbps from a library of 8192 movies [1]
with an average length of 90 minutes). Popcorn’s over-
heads are high when compared to a non-private baseline:
for each request, Popcorn consumes 1080× more compu-
tational resources, about 14× more I/O bandwidth, and
2× longer network transfers. However, since CPU is cheap
and Popcorn is engineered to conserve the more expensive
resources (I/O and network), these overheads, when trans-
lated to dollars, are manageable: Popcorn’s per-request
cost, in terms of dollars, is 3.87× that of the baseline.

Though promising, Popcorn has several limita-
tions (§8). It requires non-colluding servers. Its overheads
grow with the library size; this precludes scaling to media
libraries that have more than a few tens of thousands of
media files (YouTube, for example, has millions [28]). It
does not support forward seeking. In addition, the cur-
rent prototype lacks features that would be required in a
full-fledged deployment: online library updates, deploy-
ment via CDNs, elasticity, adaptive streaming, royalty
payments, and advertising and recommendations. Some
of these have natural solutions; others require research.

2 Setting and background on PIR
2.1 Scenario and threat model

The media delivery ecosystem has three principals: a con-
tent creator, a content distributor, and a content consumer.
The creator (e.g., a movie studio), delegates to the distrib-
utor (e.g., an online streaming service like Netflix) the
tasks of disseminating content and charging consumers.

We model the content kept by the distributor as a collec-
tion L of n objects; we call L the library. We assume that

a mapping, between the integers 1, . . . , n and the names
of the objects in L, is known to the distributor and the
consumers. Therefore, a consumer can select a specific
object by supplying the corresponding integer.
Threat model. We consider an attacker (for example,
the content distributor or a network eavesdropper) trying
to infer what object the consumer is accessing. The at-
tacker has full access to the network and to the content
of the consumers’ requests, but for two restrictions. First,
we do not consider side-channel attacks that, for exam-
ple, use knowledge of where individual consumers pause
playback, or of their concurrent web browsing activity.
Second, we assume the existence of two non-colluding
servers that the distributor can use to serve content. To
satisfy this assumption in practice, one can pick servers
from separate administrative domains (e.g., from different
CDNs [11]). We discuss this topic further in Section 8.

We assume, as do today’s media delivery systems [15,
40], that the client-side media decode and display environ-
ment can defeat content consumers intent on copying and
redistributing content beyond what the distributor allows.

Finally, we treat content integrity as an orthogonal prob-
lem that undermines correctness (§2.2) but not privacy.
The literature offers standard solutions to guarantee con-
tent integrity (content hashing, etc.).

2.2 Private Information Retrieval (PIR)

The high-level goal of PIR protocols aligns with that of
Popcorn: they allow a client to use an integer between
1 and n to retrieve any object from a library L of n �-bit
objects kept by a set of k servers (k ≥ 1) without leak-
ing to the servers any information about which object
was retrieved. A PIR protocol is structured around three
procedures: Query, Answer, and Decode. To privately re-
trieve object Ob = L[b], the client invokes Query(b) to
produce k query vectors q1, . . . , qk, one for each server,
and forwards qj to server Sj (1 ≤ j ≤ k). Each Sj

replies with aj = Answer(qj, L). Finally, the client com-
putes Ob = Decode(a1, . . . , ak) by applying the decode
algorithm to the servers’ responses.

We want three properties from a PIR protocol:
• Correctness. If a client requests the object in library L

with index b, then the protocol indeed provides it with
object L[b].

• Privacy. After the server sees a query vector, its prob-
ability of guessing the client’s requested index is no
better than if the server had not seen the query in the
first place. This property can be generalized to coali-
tions of t < k servers, requiring that any t out of k
servers jointly do not learn any information about the
index of the requested object.

• Communication efficiency. The size of a server’s re-
ply must not be much larger than �, and the size of
a client’s request must be far smaller than � (though

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 93

Query (index b):
for i = 1 to n do

f ← (i == b) ? 1 : 0
ci ← Enc(pk, f)

return q = (pk, c1, . . . , cn)

Answer (query vector q, library L):
// Represent L as a matrix of y-bit integers:
// L ∈ ({0, 1}y)n×(�/y)

for j = 1 to �/y do
rj ←

∏n
i=1 ci

Li,j

return a = (r1, . . . , r�/y)

Decode (answer a, secret key sk):
return Dec(sk, r1), . . . , Dec(sk, r�/y)

Figure 1—A computational PIR (CPIR) protocol based on an
additively homomorphic cryptosystem (Gen, Enc, Dec) and
due to Stern [98]. (pk, sk) is a (public, private) key pair generated
using Gen. n is the number of objects in the library L, and � is
the length of each object.

it is acceptable if there is some overhead above the
minimum query size of log2 n bits).

We discuss below two such PIR protocols.

2.3 Computational PIR (CPIR) protocols

CPIR protocols [66] require only a single, computation-
ally bound server (k = 1). They are commonly con-
structed using additively (not fully [46]) homomorphic
public key cryptosystems. A cryptosystem is additively
homomorphic if Dec(sk, Enc(pk, m1) · Enc(pk, m2)) =
m1 + m2, where m1, m2 are plaintext messages, + rep-
resents addition of two plaintext messages, · is a binary
operation (for example, addition, multiplication, etc.) on
the ciphertexts, (pk, sk) is a (public, private) key pair gen-
erated using the key generation algorithm Gen, Dec is the
decryption algorithm, and Enc is the encryption algorithm.
Note that Enc is randomized; thus, repeatedly encrypting
the same plaintext produces different ciphertexts. Exam-
ples of cryptosystems used in CPIR are the Paillier [82]
and the lattice-based Ring-LWE [20].

Figure 1 depicts a CPIR protocol, due to Stern [98],
that meets the three properties (§2.2):
• Correctness. Dec(sk, rj) = Dec(sk,

∏n
i=1 ci

Li,j), which
equals

∑n
i=1 Dec(sk, ci) · Li,j after the application

of the additively homomorphic property. But ∀i ∈
{1, . . . , n} \ b, Dec(sk, ci) = 0, by construction of ci.
Similarly, Dec(sk, cb) = 1. Therefore, Dec(sk, rj) =
Dec(sk, cb) · Lb,j = Lb,j.

• Privacy. The guarantee that server S does not learn b
hinges on S being computationally bounded. All S sees
is q = (pk, c1, . . . , cn). If S could systematically guess
b (that is, guess which ciphertext is cb = Enc(pk, 1)),
then S could likewise guess which entry is the encryp-
tion of 1 (versus 0)—which would contradict the prop-
erties of the underlying encryption scheme.

Query (index b):
// Generate the first k − 1 query vectors randomly
for j = 1 to k − 1 do

select qj ∈R {0, 1}n

eb ← an n-bit string with all zeros except at b-th position
qk ← eb ⊕ q1 ⊕ · · · ⊕ qk−1 // ⊕ is bit-wise XOR
return q1, . . . , qk

Answer (query vector q, library L):
// q is one of the outputs of Query
// L has n objects; each is � bits
// q is a row vector, L a logical matrix: L ∈ {0, 1}n×�

return q · L // product over the two-element field F2

Decode (answers a1, . . . , ak):
// aj is the output of Answer
return a1 ⊕ · · · ⊕ ak

Figure 2—The ITPIR protocol of CGKS [29]. n is the number
of objects in library L, and � is the length of each object. k is the
total number of servers. (In Popcorn, k=2.)

• Communication efficiency. The length of the server’s
reply is (�/y) · |c| bits, where �/y is the number of ci-
phertexts in the reply and |c| is the size (in bits) of a
ciphertext. (�/y) · |c| is comparable to �, the size of ob-
ject Ob, if the expansion ratio, |c|/y, of the underlying
additively homomorphic cryptosystem is small.2 The
client’s request contains n ciphertexts and is thus |c| · n
bits. When � � n (as will be the case in our context)
and |c| is a small constant (e.g., 2048 in many Paillier
implementations), |c| · n is much smaller than �.

2.4 Information-theoretic PIR (ITPIR) protocols

ITPIR protocols [29] use more than one server (k > 1),
and assume that they do not collude; thus, in practice, the
servers must belong to different administrative domains.

Figure 2 shows the CGKS [29] ITPIR protocol. It meets
the three properties of PIR (§2.2):
• Correctness. The output of Decode is

⊕k
j=1 aj, which

equals
⊕k

j=1(qj · L). By properties of the field F2 (that
addition is XOR and that multiplication distributes over
addition),

⊕k
j=1(qj ·L) = (

⊕k
j=1 qj) ·L = eb ·L = L[b].

• Privacy. Each server in S1, . . . , Sk−1 sees a randomly
generated query vector, and therefore each server (and
all of them combined) cannot learn any information
about b. Server Sk sees qk, which is constructed by
XORing unit vector eb with the one-time pad q1⊕· · ·⊕
qk−1. By the properties of one-time pads, Sk can learn
information about eb only by learning the one-time pad
(or by colluding with all other servers).

• Communication efficiency. The combined length of
the servers’ reply is k · � bits. In Popcorn, we set k = 2
to keep this comparable to �, the size of an object. A
client’s request consists of k n-bit-long query vectors,
which is much smaller than � when k is small.

2The Paillier cryptosystem has a message expansion ratio of ≥ 2.

3

94 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

I/O CPU
content prot.

(ITPIR)
resists

collusion
object
sizes

pricing,
reco

XPIR [12] �� � �
RAID-PIR [33] ��
Percy++ [49] �� �� �� �� �
Popcorn � �� � ��

Figure 3—Prior PIR-oriented works (rows) and which media-
related challenges they address (columns), assuming two servers
for ITPIR-based works. � means that the work addresses the
challenge; �� means that it partially addresses the challenge.

3 Challenges of applying PIR
Though PIR is promising, there are a number of chal-
lenges in applying it to large-scale media consumption:
• Resources. The I/O and CPU resources required to

serve a single request are proportional to the size of the
library. Batching requests should help amortize some
of this overhead, but it is in tension with the next issue.

• Strict deadlines. Media delivery has stringent latency
requirements: initial delay must be small, and the de-
livery must obey real-time constraints.

• Variable object sizes. Object sizes vary as a function
of encoding or playback time. However, PIR assumes
objects of identical size.

• Content protection in ITPIR vs. CPIR. Content cre-
ators may be loath to disseminate the content beyond
its original distribution channel. Yet ITPIR requires
multiple non-colluding servers, and hence multiple ad-
ministrative domains, necessitating such dissemination.
CPIR, on the other hand, requires only a single server;
however, its computational cost is significantly higher.3

• Billing, access control, recommendations. For business
reasons, media services may need to support access con-
trol, pricing policies (tiers, etc.), targeted advertising,
and recommendations. Yet, private retrieval conflicts
with all of this functionality.
Subsets of these challenges have been addressed before

(Figure 3). Popcorn aims mainly at the resource consump-
tion issue, via the architecture and design described next.

4 Architecture and design of Popcorn
Figure 4 depicts Popcorn’s architecture. A primary con-
tent distributor creates an encrypted version of the library,
LEnc, using per-object keys, and replicates LEnc to two
secondary content distributors, each in separate adminis-
trative domains. The primary content distributor maintains
a key server. Each secondary content distributor maintains
an object server that is distributed over multiple physical
machines.

3The state of the art CPIR implementation is XPIR, which is based
on the Ring-LWE cryptosystem. XPIR can process data at 22 Gbps
on a machine with 4 physical (and 8 virtual) cores [12], while the
CGKS ITPIR implementation in Percy++ [49], based on cheaper XOR
operations, can process data at 152 Gbps on comparable hardware.

L
Key

Key server
Primary

content distributor

Clients CPIR

Object
server 1

Secondary content distributors

ITPIR

L
Enc

File server

Object server 2

Figure 4—Popcorn’s architecture. Popcorn uses two servers for
ITPIR to keep ITPIR’s network overhead (§2.4) small. Each
object server stores all of the columns in the library (Figure 5),
and is distributed over multiple physical machines.

Library

Object Size (l)

Column

Segment

Slice

O
b

je
c
ts

 (
n

)

Figure 5—Popcorn terminology. Each column is stored by two
ITPIR instances (one from each object server). Columns are
divided into slices, which are assigned to physical machines.

The key server delivers the per-object keys using
CPIR; the object servers deliver encrypted objects us-
ing ITPIR (§4.1). The distinction between key and object
servers maps to today’s DRM implementations [2, 3, 85],
where clients contact two separate servers, one for en-
crypted video and one for decryption keys.

Media objects are split into segments—contiguous
pieces of media containing, for example, a few seconds
or minutes of a video. Segment sizes vary (§4.3). Each
object is presumed to have the same decomposition into
segments (we revisit this assumption in §4.4). The library
is partitioned into columns (Figure 5); a column is a union
of corresponding segments, across all objects. Therefore,
a column’s size is n times that of any segment it contains.

Each column is stored and served by two independent
ITPIR instances (one for each object server); different
instances use separate physical machines. Columns are
further sub-divided into slices, which are the work units
assigned to physical machines. A slice is 1 MB “wide”
and n items “high”; we sometimes refer to 1 MB as a
chunk. Each machine is responsible for one or more slices.

To retrieve an object, the client fetches a decryption
key from the key server and the encrypted object from
the object servers. The latter step proceeds in two over-
lapping phases. In the first phase, the client sends, in
parallel, a query vector to all machines in both object
servers. On receiving a request, a machine adds the query
vector to a request queue. Each machine services its queue
by: looping over its slices, computing chunk-sized ITPIR
replies for every pending request, and pushing the result-
ing chunks to a file server (one per object server; Figure 4)
that retains the chunks until they are requested by clients.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 95

In the second phase, the client downloads these ITPIR-
encoded chunks at the appropriate playback times, and
applies Decode (Figure 2). This phase overlaps with the
server-side generation of replies.

4.1 Composing ITPIR and CPIR

As stated earlier, Popcorn combines CPIR and ITPIR: the
heavier-weight CPIR, which requires only one server, is
used to serve per-object keys, while the lighter-weight
ITPIR is used to serve the large encrypted objects. As a
result, both keys and objects are served privately (because
PIR is applied to them both), CPIR is not a performance
bottleneck (because it is used only for small keys), and
current controls on content protection are respected (be-
cause the plaintext content and keys are stored only at the
primary content distributor).

As an alternative to CPIR, the key server could use
Symmetric PIR (SPIR) or 1-out-of-n Oblivious Transfer
(OT). Section 7 discusses these alternatives.

4.2 Batching

Popcorn uses the CGKS ITPIR scheme described in §2.4,
as its inexpensive operations (XORs) keep its compu-
tational overhead low (by the standards of PIR). Still,
because ITPIR queries are dense—on average, half of
the entries are set to 1 (Figure 2)—responding to a query
requires the machine serving a slice to read from stor-
age and XOR, on average, n/2 chunks. This taxes I/O
bandwidth, memory bandwidth, and CPU cycles.

To reduce costs, Popcorn’s machines, which are oblivi-
ous to the content of queries, process queries in batches,
and perform a single I/O pass over a slice for all of the
queries in a batch. Batching thus amortizes I/O overhead
and lets Popcorn exploit sequential transfer bandwidth.

Batching also reduces computational (not just I/O) over-
head by leveraging the observation that the PIR compu-
tation required for a batch of requests can be expressed
as matrix multiplication (q · L in Figure 2 can be replaced
by Q · L, where Q is a matrix whose rows are query vec-
tors). Previous work [19, 71] (covered by the Percy++
row in Figure 3) has used this observation to incorporate
sub-cubic algorithms [30, 58] that reduce the total num-
ber of operations required by PIR. Popcorn, by contrast,
chooses block matrix multiplication [68], which, though
it does not affect the total number of operations, leverages
cache locality. One can view the resulting access pattern
as batching at the CPU-memory interface.

4.3 Specializing batching for media delivery

Given the considerations in the previous subsection, Pop-
corn has an interest in increasing batch sizes (at least up
to a point).4 However, there is a tension between large

4Above a certain batch size, there is no advantage: I/O is no longer a
bottleneck, and the CPU benefits of using matrix multiplication stop

Client A

Client B

ITPIR instance
for first column

ITPIR instance
for a later column

 A sends query vectors
for all columns

flush request
queue

time

batching requests process requests A,B

batching requests

 B sends query vectors
for all columns

process request A process request B

Figure 6—Batching at an object server in Popcorn. Requests to
the initial column from two clients A,B are in separate batches
as the processing cycle for this column is short. The requests
to a later column (sent alongside the requests to the first) can
be batched. This arrangement is inspired by Pyramid Broadcast-
ing [102].

batch sizes, which seem to require synchronizing clients,
and meeting the deadlines of real-time media delivery.
Popcorn resolves this tension as follows.

To begin with, each ITPIR instance loops over its as-
signed column (§4) continuously. Since a client can begin
playback only after decoding the response for the first
column, Popcorn uses a “narrow” first column to keep
this initial delay short. Column width, however, increases
quickly in Popcorn, making later columns wide. The cru-
cial intuition is that wide columns imply good batching
opportunities: a batch comprises all requests that reached
an ITPIR instance during its previous loop interval, and
wider columns imply longer loop intervals.

Figure 6 depicts this arrangement, which is inspired by
Pyramid Broadcasting (PB) [102], wherein increasingly-
sized pieces of a media object are served on separate
broadcast channels. However, the details of our setup are
different: the work of a Popcorn server depends on the
number of clients (unlike in broadcasting), Popcorn relies
on server-side buffering (PB relies on client-side buffer-
ing), and Popcorn is concerned with provisioning ma-
chines (PB concentrates on allocating bandwidth). These
and other differences lead us to a solution that owes a
debt to PB but is specific to our context.

Details. We start with two simplifying assumptions,
which we revisit later: that a single ITPIR instance is
handled by a single machine, and that there is no network
delay or loss. Define an instance processing cycle as the
duration of one iteration of an instance’s loop. Within this
cycle, an instance traverses each slice in turn, performing
Answer for all queries that arrived during the prior cycle.

We want all clients to experience smooth playback. To
this end, suppose that we are willing to impose startup
delay d. Suppose further that T1 ≤ d−ε, where T1 denotes
the processing cycle for the first instance, and ε is the time
for the instance to handle a single slice. Likewise, define

increasing. However, there is also no disadvantage, so for simplicity,
Popcorn does not bound batch sizes.

5

96 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Ti as the processing cycle for the ith instance (i > 1), and
suppose that for all such instances, Ti ≤ d − ε+

∑i−1
j=1 tj,

where tj is the playback time of segment j.
Under these conditions, we claim that any client, re-

gardless of when it joins, experiences smooth playback.
Why? Consider only instance 1: in the worst case, a client
initiates consumption just after instance 1 begins its pro-
cessing cycle. The client cannot download until the cur-
rent processing cycle has terminated (which takes time
T1) and the first slice of the next cycle is processed (for
an additional ε). Smooth playback simply requires the
overall delay (T1 + ε) to be less than d, matching our con-
ditions. Once playback begins, the client has t1 addtional
time before it needs the second segment. Generalizing,
in the worst case for instance i (i.e., the client’s initial
request arrives just as a processing cycle begins), as long
as Ti is no larger than d − ε +

∑i−1
j=1 tj (which is exacly

what our conditions guarantee), then the first slice of the
ith instance will be ready, and playback will be smooth.

But how should the {ti} be set? Recall that, for more
effective batching, Popcorn needs segment widths to in-
crease: we are then seeking the maximum ti for each
instance i .

Let µ be the playback rate, Pi the rate at which XOR
operations are processed by the ith instance, Ri the I/O
bandwidth available to the instance, and bi the batch size
(the number of requests accumulated in a cycle of time Ti).
To upper-bound ti, we match load to capacity, for both I/O
and CPU. For I/O, the column’s data (n segments, each of
size ti ·µ) is upper-bounded by the amount of data that the
instance can read in one cycle: ti ·µ · n ≤ Ti ·Ri. For CPU,
the picture is similar, except that the total work scales with
bi, the number of clients being served: ti ·µ ·n ·bi ≤ Ti ·Pi.
These inequalities lead to:

ti ≤ Ti ·
(

min {Ri, Pi/bi}
µ · n

)
.

Assume that for all i, min{Ri, Pi/bi} ≥ µ · n (we will
arrange for this in “Provisioning,” below). Then, the fore-
going bounds (on the {Ti} and on load) imply that for all
i, we can set:

ti = Ti = 2i−1 · (d − ε)

(see Appendix A). Note that the {ti} increase exponen-
tially in size, as desired. In particular, approximately half
of the file is covered by the final segment.

Provisioning is driven by the earlier assumption that
min{Ri, Pi/bi} ≥ µ · n for all i. To meet the requirements
on Ri and Pi, Popcorn uses multiple machines per instance
and aggregates their resources, by striping slices across
them. If ri is the per-machine I/O bandwidth for the ma-
chines used for the ith instance, then the I/O for instance
i can be handled with Ri/ri = µ · n/ri machines. Pi, the
XOR processing throughput for instance i, increases with

i because so does the batch size bi; specifically, if λ is the
overall rate at which clients initiate requests for objects,
then bi = λTi. Moreover, the per-machine XOR process-
ing throughput for the ith instance, pi(·), is a function
of the batch size because cache locality in block matrix
multiplication (§4.2) (and hence throughput) improves
with a a bigger batch size. Thus, the task of processing
the XOR operations for instance i can be handled by
Pi/pi(bi) = µ · n · bi/pi(bi) machines.

To account for the striping, we need to modify the
earlier analysis of startup delay, smooth playback, etc.:
if resources from ki machines are aggregated for the ith
instance, then each machine takes ε · ki time instead of ε
to handle a slice. As a result, the inequality Ti ≤ d − ε+∑i−1

j=1 tj becomes Ti ≤ d − ε · ki +
∑i−1

j=1 tj, and both the
{Ti} and {ti} are computed accordingly.5

The total number of machines, across all I instances,
is: µ · n ·

∑I
i=1 max{1/ri, λTi/pi(λTi)}. Notice that if the

max is controlled by the first term, then the given instance
is bottlenecked by I/O (and the CPU resource is sometimes
idle); if by the second, then the instance is bottlenecked
by CPU work (and the I/O resource is sometimes idle).
Later (§6.1) we will obtain estimates empirically for ri

and pi(·).
Popcorn must also provision for the file server ma-

chines (§4). The file server requires the buffer space for
each instance to equal the number of requests in service
times the size of a segment, i.e.,

∑I
i=1 bi · (ti · µ). The

file server also requires I/O bandwidth equal to the rate at
which reply data is produced and consumed: 2·

∑I
i=1 bi ·µ

(assuming ti = Ti).
Finally, we have been assuming no burstiness or delay

in the network. To account for network fluctuation, we
must allow for clients to build up a playback buffer, of
some time length β. To this end, Ti should be upper-
bounded by d−ε ·ki−β+

∑i−1
j=1 tj, and the {ti} computed

to be consistent with Ti.

Discussion. To understand the savings and amortiza-
tion from Popcorn’s batching, consider a naive batching
scheme, in which time is divided into epochs of length
Tepoch. Let a cohort denote the set of clients who initi-
ate a request (for the first chunk of a media file) in an
epoch. Then, the entire cohort moves through the slices,
as it were, together. Each cohort needs enough machines
to meet two requirements: (a) µ · n I/O bandwidth, and
(b) µ · n · λ · Tepoch XOR processing throughput (here
λ · Tepoch is the cohort’s batch size). If H = T/Tepoch
is the total number of cohorts (where T is the total
playback time), then the total number of machines is

5The computation must resolve a circular dependency as Ti is expressed
in terms of ki, which itself depends on the segment size, with a big-
ger segment requiring more machines. We resolve this circularity by
repeating the process of speculatively setting a ki, calculating Ti, and
then refining the speculated value of ki using the obtained value of Ti.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 97

µ · n ·
∑H

i=1 max{1/r, λ · Tepoch/p(λ · Tepoch)}, where
r is the per-machine I/O bandwidth, and p(λ · Tepoch)
is per-machine XOR processing throughput for a batch
size of λ · Tepoch. Here, Tepoch must be upper-bounded by
d− ε ·k−β to meet the startup delay requirements, where
k is the number of machines for a cohort.

To compare the cohort batching scheme to Popcorn, we
make the simplifying and optimistic assumption that both
schemes use machines that make the two terms of the
max equal, so that no resources are idle (we will revisit
this assumption in §6.2 and §6.4). Then, the total I/O
bandwidth required by the cohort scheme is H · µ · n,
which is considerably larger than what Popcorn needs
(I · µ · n, where I � H).

In terms of computational resources, the cohort scheme
needs µ·n·λ·T/p(λ·Tepoch) = µ·n·λ·

∑I
i=1 Ti/p(λ·Tepoch)

machines; Popcorn requires instead µ·n·λ·
∑I

i=1 Ti/pi(λ·
Ti) machines. Neither scheme is the clear-cut winner;
however, if we assume that p(·) = pi(·) for all i, then
Popcorn has lower computational demands, because
(a) Ti ≈ 2i−1 · Tepoch (by our earlier analysis) and (b)
p(·) is monotonically increasing. In essence, Popcorn has
larger batches, so (holding machine type configuration
constant) the benefit of locality is more pronounced (§4.2),
lowering Popcorn’s computational requirements relative
to the naive batching scheme.

4.4 Handling variable-sized objects

The design has so far assumed equally sized objects. Un-
fortunately, the naive solution—padding all objects to the
size of the longest one—is inefficient for Netflix: it causes
a 4× increase in network transfers (the average movie is
approximately 1.5 hours while the longest is 6). Moreover,
to not reveal the true object size, a client must download
the padded content in full.

Popcorn’s solution combines padding and compres-
sion. It chooses a representative object Oavg from the li-
brary (for example, the object closest to the average media
length) and makes all other objects Oavg in size: objects
smaller than Oavg are padded. Longer objects, meanwhile,
are compressed by reducing the bitrate.

Both padding and compression are potentially prob-
lematic. Padding could waste resources, but by using it
in combination with compression, Popcorn ensures that
objects will be padded only up to Oavg, limiting costs.
For compression, we consider two cases. First, if the ob-
ject is up to 30% bigger than Oavg, then the compression
required to make it Oavg is small, and the consequent
degradation in quality is likely to be tolerable. Indeed,
several studies [41, 64, 94] suggest that small variations
in video bitrate have a limited impact on user satisfaction.

The second case is that the object is much larger than
Oavg; a trade-off then arises between quality and on-
demand consumption. On the one hand, Popcorn can

compress these objects aggressively; however, doing so
will result in significant quality degradation. On the other
hand, Popcorn, like others [33, 54], can divide up these
objects; however, the client would then have to download
each division as if it were a separate movie, which means
delaying consumption or downloading far ahead of time
(if the separate divisions were downloaded all at once,
then an attacker could guess that a longer object is being
consumed).

The Netflix catalog [1] indicates that the majority of
movies have a similar size: 85% of the objects are be-
tween 60 and 120 minutes, with the majority clustered
around the average movie length of 92 minutes. Movies
between 92 and 120 minutes will consequently require,
on average, 10% compression. Similarly, the padding for
objects between 60 and 92 minutes will be small. The
impact of objects at either extreme will be limited: 8%
of the movies are below 60 minutes, and will require sig-
nificant padding; 6% are between 120 and 150 minutes,
making them candidates for aggressive compression (29%
on average); 1% are over 150 minutes, making them can-
didates for splitting. We think that splitting is not a huge
limitation, because we hypothesize that people usually
plan ahead to watch long movies.

5 Implementation
Our prototype implements the design in Section 4, except
for large file splitting (§4.4). It leverages existing PIR im-
plementations: the key server uses the XPIR [12] imple-
mentation of the CPIR protocol in Figure 1. For the object
servers, we borrow the CGKS ITPIR implementation of
Percy++ [49]6 and modify it to support the techniques in
Section 4. The total server-side code is 11K lines of C++.
We implement two versions of the client-side library: one
in C++ (2500 lines), which we use for experiments (§6.2),
and one in JavaScript (500 lines), which we use to show
compatibility with modern web browsers (§6.5).

6 Evaluation
Our evaluation answers the following questions:
1. When is Popcorn affordable?
2. What is the price of Popcorn’s privacy guarantees?
3. Can we use Popcorn to watch a movie encoded using

an existing DRM scheme on a modern web browser?
Figure 7 summarizes our evaluation results.

Method and setup. We compare Popcorn to three base-
lines. NoPriv, BaselinePIR, and BaselinePIR++. NoPriv
serves object chunks from an Apache web server, mod-
eling modern media delivery systems that use HTTP

6Percy++’s CGKS ITPIR implementation is one of the fastest imple-
mentations for two-server ITPIR. An alternative is the CGKS imple-
mentation from RAID-PIR [33] (§7).

7

98 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Popcorn is affordable when it serves large media files to many
concurrent clients. §6.2

Popcorn’s per-request dollar cost is 3.87× of a system
without privacy for workloads with ≥10K concurrent clients. §6.3

Popcorn integrates well with existing web technology. It can
play DRM-encoded media within modern web browsers. §6.5

Figure 7—Summary of main evaluation results.

RAM SSDs
type vCPUs (GB) (# × GB) cost/hr

c3.8xl 1 32 60 2 × 320 $0.6281
i2.4xl 2 16 122 4 × 800 $0.8451
i2.8xl 3 32 244 8 × 800 $1.6902

Figure 8—Hourly cost of reserved Amazon EC2 machines used
in our experiments. Machines starting with “c” are compute-
optimized; those starting with “i” are I/O-optimized.

caching at CDN edge servers [11]. BaselinePIR is a mod-
ified version of Percy++ [49] CGKS: the servers store the
library L as slices and process ITPIR queries directed at
them. This is essentially Popcorn without the techniques
of §4. BaselinePIR++ additionally batches requests us-
ing cohort batching (§4.3) to reduce both I/O and CPU
costs. For all PIR systems, we experiment with one object
server and multiply the measurements by two (to reduce
the financial cost of our experimental evaluation).

Our workload is modeled on existing media delivery
services [99]: clients arrive according to a Poisson pro-
cess (e.g., C=10K clients arrive in T=90 minutes). All
clients in NoPriv request the same (average-size) object,
giving this baseline the maximum benefit of server-side
caching. The server’s work in Popcorn, BaselinePIR, and
BaselinePIR++ is oblivious to the request distribution (we
select a Zipfian distribution with θ=0.8).

For the four systems, we measure server- and client-
side resource usage in terms of CPU time (by instrument-
ing code with clock()), I/O transfers and storage (using
iostat), and network transfers (via /proc/net/dev).

Our experimental testbed is a single availability zone
within Amazon’s EC2, and is described in Figure 8.

6.1 Provisioning resources using microbenchmarks
Popcorn. Machine provisioning for Popcorn involves
two steps: (1) benchmarking the basic operations (see
Figure 9 caption for details), and (2) combining the results
with the provisioning analysis in §4.3.

Consider, for example, provisioning the first ITPIR
instance of a Popcorn object server for a Netflix-like
workload: C=10,000 clients streaming from a library
of n=8192 media files with average playing time of
T=90 minutes, playback rate of µ=4 Mbps, and startup
delay of d=15 seconds.7 The processing cycle of this

7We think that 15 seconds of delay before playing a long video is tolera-
ble. During this time the server could display a generic advertisement
or public service announcement (existing services commonly display

Throughput (Gbps)

c3.8xl i2.4xl i2.8xl

Sequential read 6.4 12.6 23.3
Random mixed rw 2.1 8.0 16.0
block matrix multiplication 488–4968 488–2512 432–4608

Figure 9—Throughput of basic operations in Popcorn—reading
a column slice (§4.3), reading and writing 1 MB sized chunks,
and computing block matrix multiplication on a slice (§4.2)—on
machines listed in Figure 8. The latter value depends on the size
of the query matrix (§4.2, §4.3), so we report a range—from
a query matrix consisting of a single query vector to one that
contains 4096 query vectors.

instance must be T1 ≤ d−ε·k1 (§4.3). For our example,
ε=2 (the time to process or consume a 1 MB chunk at
µ=4 Mbps), and we speculatively set k1=3, which gives
T1 ≤ 15−2·3= 9 seconds. Thus, the instance is given a
segment of t1=T1=9 seconds and has a batch size of b1=
(C/T)·T1=17. Furthermore, it requires storage capacity
of n·t1·µ=36 GB, read bandwidth R1=n·µ=32 Gbps, and
XOR processing throughput P1=b1·n·µ=544 Gbps.

Our microbenchmarks (Figure 9) indicate that these
requirements can be met by three i2.4xl machines. Had
we required a different number of machines than three,
then, as described in §4.3, we would have had to adjust k1
and repeat the provisioning process described above.

BaselinePIR. To use the fewest possible machines, we
stripe the approximately 21 TB library of our Netflix-like
workload across four i2.8xl instances.

To reduce the financial cost of our experimental eval-
uation, we measure the number of requests that can be
serviced by this setup, along with each request’s resource
consumption, and extrapolate the results to workloads
with a larger number of requests (e.g., to support 2×
concurrent clients, we double resource costs).

BaselinePIR++. As in Popcorn, we use the microbench-
marks in Figure 9 and the provisioning analysis for the
cohort batching scheme (§4.3).

6.2 Per-request overheads of Popcorn

To understand when Popcorn is affordable, we run experi-
ments varying the number of concurrent requests (C); the
number of objects (n); and the playing time of objects
(T). We find that Popcorn incurs modest costs when the
library size is moderate (≈8K media files), object sizes
are large (≈90 minutes), and there are many concurrent
clients (≥10,000). Fortunately, these settings are consis-
tent with the workloads of Netflix-like systems (§8).

Before proceeding, we note that Popcorn’s provisioning
method can leave resources idle (§4.3), so we report both
the consumed and provisioned resources. We focus on the
consumed resources in this subsection and account for the
idle resources in the next subsection.

15 or 30 second advertisements [10]).

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 99

 0.01

 0.1

 1

 10

 100

 1000

C=1 C=1K C=10K

I/
O

 b
an

d
w

id
th

 (
G

b
p

s)

number of concurrent requests

BaselinePIR
BaselinePIR++

Popcorn (provisioned)
Popcorn (consumed)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

C=1 C=1K C=10K

n
u

m
b

er
 o

f
v

C
P

U
s

number of concurrent requests

NoPriv
BaselinePIR

BaselinePIR++
Popcorn (provisioned)

Popcorn (consumed)

Figure 10—Per-request server-side resource use (log-scaled) of Popcorn and the baselines with varying concurrent requests C. If
I/O is the bottleneck, there are idle CPU cycles and vice versa (§4.3). For Popcorn, we depict both the provisioned and consumed
resources; for the baselines, we depict only the latter. We do not depict I/O usage for NoPriv as it is always zero (see text).

Overhead versus number of concurrent requests. We
run Popcorn and its baselines with C={1, 1K, 10K}
while keeping n=8192, T=90 min, µ=4 Mbps, and
d=15 seconds. Figure 10 summarizes the per-request
server-side resource costs.

I/O overheads. When C=1, the I/O bandwidth
Popcorn consumes matches that of BaselinePIR and
BaselinePIR++, as there is no opportunity to batch re-
quests. However, as the request rate increases, batch-
ing lets Popcorn amortize its I/O transfers (§4.3): the
per-request amortized I/O bandwidth decreases from
≈ 63 Gbps (for C=1) to 53 Mbps (for C=10K), a re-
duction of 1190×. Surprisingly, concurrent requests, by
hitting the file system cache, also reduce BaselinePIR’s
per-request I/O bandwidth (by 16×). As expected,
BaselinePIR++’s per-request I/O bandwidth reduces by
the cohort batch size. Finally, there are no I/O transfers in
NoPriv as all requests hit the same (cached) object.

CPU overheads. For a single request, Popcorn con-
sumes 50% more CPU than BaselinePIR, as the overhead
of parallelizing block matrix multiplication (over multiple
cores) in Popcorn (§4.2) is charged to a single request. As
the number of concurrent requests increases, Popcorn’s
CPU overheads decrease; the per-request CPU consump-
tion decreases by ≈11× when the number of concurrent
requests increases from 1 to 10,000. We hypothesize that
this stems from the increase in cache locality from block
matrix multiplication over bigger batch sizes.8 Further-
more, the 36 minutes of per-request CPU time for C=10K
matches the performance of the matrix multiplication mi-
crobenchmark (42 TB of data processed in 36 minutes
gives a throughput of 159 Gbps for a single CPU, consis-
tent with the throughputs reported in Figure 9).

However, Popcorn’s per-request CPU consumption is
much higher than NoPriv (1080× for C=10K): for a sin-
gle object, the Apache web server in NoPriv serves 1 MB

8In a separate experiment, we measured the percentage of cache misses
for block matrix multiplication (§4.2) using CPU performance counters,
and found that it reduces from 48% for a query matrix with a single
request to less than 2% for a query matrix with 210 requests.

chunks and requires almost no server-side processing,
whereas Popcorn XORs n objects on average.

Network and storage overheads (not depicted in the
figures). BaselinePIR, BaselinePIR++, and Popcorn incur
a two-fold network overhead over NoPriv because clients
download from two servers. With respect to storage, each
instance of an object server in Popcorn needs buffer space
equal to its segment size times its batch size (§4.3). Across
all instances, this equals ≈15.4 TB, or ≈1.6 GB per con-
current request, which is 0.6× the size of an object.

Overhead versus number of objects. In Figure 11(a)
we change the size of the library (n={2048, 4096, 8192})
while keeping the other parameters fixed (C=10K,
T=90 min, µ=1 Mbps,9 and d=15 seconds). As expected,
Popcorn’s per-request CPU and I/O bandwidth consump-
tion, even though amortized, is proportional to n. Network
downloads and server-side storage overheads (not shown)
do not change with n.

Overhead versus playing time of objects. In Fig-
ure 11(b), we change the playing time of objects
(T={10, 60, 90} minutes) while keeping the other pa-
rameters fixed (n=2048, µ=1 Mbps, d=15 seconds, and
C=10K). As T increases, the number of CPUs consumed
per-request is unaffected, while the consumed I/O band-
width decreases. Thus, for bigger objects, Popcorn’s effi-
ciency (in terms of consumed I/O bandwidth) improves.
However, we note that idle I/O bandwidth (not depicted
in the figure) also increases for bigger objects (§4.3).

Overheads of the key server. Recall that Popcorn uses
XPIR [12] as its CPIR implementation (§5). Since XPIR
does not batch requests, the per-request overheads of the
key server depend only on the number of keys (and not
on the number of concurrent requests C). We use a single
machine of type c3.8xl for the key server. For a library
with 8192 keys, it takes three seconds of server-side CPU
time to privately retrieve a key; there are no I/O transfers

9To reduce the financial cost of EC2 experiments, this and subsequent
experiments set µ=1 Mbps instead of 4 Mbps. The change scales down
the experiments; the qualitative results are unaffected.

9

100 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0.001

 0.01

 0.1

 1

of vCPUs I/O bandwidth

n
u
m

b
er

 o
f

v
C

P
U

s,
I/

O
 b

an
d
w

id
th

 (
G

b
p
s)

2048 objects
4096 objects
8192 objects

 0.001

 0.01

 0.1

 1

of vCPUs I/O bandwidth

n
u
m

b
er

 o
f

v
C

P
U

s,
I/

O
 b

an
d
w

id
th

 (
G

b
p
s)

10 minutes
60 minutes
90 minutes

Figure 11—Popcorn per-request resource use (log-scaled) as a function of the number (left) and length (right) of objects.

experimental configuration per-request costs ($)

#reqs #1 #2 #3 machine network total

NoPriv 10K – – – – 0.016 0.016
Popcorn 1 2 60 0 77.943 0.032 77.975
Popcorn 1K 17 50 4 0.09 0.032 0.122
Popcorn 10K 185 32 32 0.03 0.032 0.062

Figure 12—Estimated per-request dollar cost for NoPriv and
Popcorn. #1, #2, and #3 refer to the type of AWS EC2 machines
from Figure 8.

because the 128 KB library fits in memory. Thus, as ex-
pected, the key server is not a performance bottleneck for
Popcorn. Moreover, the end-to-end time to retrieve a key
is much less than the startup delay of d=15 seconds.

Client-side overheads. Compared to NoPriv, Popcorn’s
client consumes additional CPU and network bandwidth
(because it has to generate and decode PIR queries,
and download content from two object servers). For
n=8192 objects, T=90 minutes, and µ=4 Mbps, we find
that Popcorn’s client (run on a single vCPU of c3.8xl
type machine) consumes 10 CPU seconds (compared to
NoPriv’s 1.7 CPU seconds), and 25 MB of network upload
bandwidth (compared to NoPriv’s 11 MB).

6.3 Dollar-cost analysis

The previous subsection showed that Popcorn signifi-
cantly reduces CPU and I/O consumption over the base-
line PIR systems, at least for large objects and high load.
These improvements provide the foundation for achieving
privacy at low cost, a cost that we now quantify.

Method. We use the pricing model of Amazon EC2 (Fig-
ure 8) to estimate the per-request machine cost, and the
pricing model of CDNs ($0.006 per GB) [87] to compute
per-request network cost. We choose these pricing models
because they are public—though, in an actual deployment,
a service could receive wholesale, bulk, or negotiated
prices. We use a Netflix-like workload in our calculations:
n=8192 media files, T=90 minutes, µ=4 Mbps with vary-
ing number of concurrent clients. Figure 12 summarizes
our results. We find that Popcorn’s per-request cost is
within a small multiple of NoPriv for a workload with
C=10K concurrent clients.

NoPriv. To give NoPriv the maximum benefit, we disre-
gard its machine cost. The per-request cost is then deter-

mined solely by the network transfer cost, and is ≈$0.016
(i.e., 90 minutes × 4 Mbps × $0.006/GB).

Popcorn. We provision EC2 machines as described in
§6.1 and §4.3. The total per-request cost is derived by
combining (1) the per-request machine cost, computed
by dividing total machine cost by the total number of re-
quests, and (2) the per-request network cost. This method
charges Popcorn for both consumed and idle resources
(Figure 10). For the Netflix-like library and C=10K, the
per-request cost is $0.062 (the per-request machine cost
is $0.03; the per-request network cost is $0.032).10 Pop-
corn thus increases dollar cost 3.87× over NoPriv, in
line with our initial affordability requirement (§1). Impor-
tantly, Popcorn’s low cost is premised on many clients
accessing the system concurrently: the per-request ma-
chine cost decreases with the number of concurrent clients.
It is $78 for C=1 and $0.09 for C=1K.

BaselinePIR and BaselinePIR++. Since we might have
provisioned these systems wastefully, we do not estimate
their dollar cost using the machine-based pricing model,
which charges for both the consumed and idle resources.
Instead, we use a per-resource pricing model to estimate
the dollar cost of these systems, as described next.

6.4 Further comparisons

In this subsection, we estimate the dollar cost of
BaselinePIR, BaselinePIR++, XPIR [12], and XPIR++,
a hypothetical extension to XPIR that uses cohort batch-
ing (§4.2) to reduce I/O costs (but does not use matrix
muliplication). Figure 13 summarizes these alternatives.

The estimates for BaselinePIR, BaselinePIR++, and
Popcorn are based on experimental data from §6.2; for
XPIR and XPIR++, we calculate CPU resource consump-
tion using XPIR’s reported performance and I/O band-
width consumption from the expression 2·(n·µ)/bcohort
(the factor of two is due to XPIR’s preprocessed library
being twice the size of the original [12]).

We compare these systems for the Netflix-like work-
load of §6.3. We set the startup delay d to 15 seconds,
except for the systems using cohort batching scheme, for
which we vary d.

10The network cost can be reduced for a pricing model in which network
transfers between (ITPIR) servers is cheaper than server to client
transfers, by using techniques of Riffle [67, Section 4.4].

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 101

system description

XPIR [12] fastest CPIR implementation
XPIR++ XPIR with naive batching (§4.2)
BaselinePIR XPIR composed with CGKS ITPIR (§4.1)
BaselinePIR++ BaselinePIR with naive batching (§4.2)
Popcorn §4.1+§4.2+§4.3

Figure 13—Comparison points. “Naive batching” refers to an
instantiation of batching, as described in §4.2, with the cohort
batching scheme described in §4.3.

I/O Dollar cost

vCPUs
bandwidth

(Gbps)
relative to

NoPriv

X [12]/X++ (C=1) 11.6 64 265×
X++ (C=1K) 11.6 26.6 118×
X++ (C=1K, d=60) 11.6 5.96 37×
X++ (C=1K, d=600) 11.6 0.58 16×
X++ (C=10K) 11.6 2.66 24×
X++ (C=10K, d=60) 11.6 0.59 16×
X++ (C=10K, d=600) 11.6 0.058 13.5×

B/B++ (C=1) 3.1 64 256×
B (C=1K) 2.4 4 19×
B (C=10K) 2.5 4 19×

B++ (C=1K) 1.7 16 66×
B++ (C=1K, d=60) 1.26 9.15 39×
B++ (C=1K, d=600) 0.49 0.54 4.5×
B++ (C=10K) 0.65 3 14×
B++ (C=10K, d=60) 0.49 0.59 4.7×
B++ (C=10K, d=600) 0.41 0.058 2.5×

P (C=1) 4.6–992 63–781 253×–4873×
P (C=1K) 0.5–1.47 0.43–0.83 4×–7.6×
P (C=10K) 0.4–0.74 0.053–0.23 2.5×–3.87×

Figure 14—Per-request resource consumption and estimated
dollar-cost of XPIR (X), XPIR++ (X++), BaselinePIR (B),
BaselinePIR++ (B++), and Popcorn (P). Network transfers are
not shown; they are 5× NoPriv for X and X++, and 2× NoPriv
for the other systems. For Popcorn, we present a range: the
smallest value considers only the consumed resources, while
largest value includes both consumed and idle resources. Startup
delay d is 15 seconds unless specified otherwise.

We use a per-resource pricing model (derived in Ap-
pendix B) based on Amazon EC2’s machine cost (Fig-
ure 8) and on the network cost of CDNs [87]. Our
model charges CPU at $0.0076/hour, I/O bandwidth at
$0.042/Gbps-hour, and network transfers at $0.006 per
GB. Multiplied by each system’s consumption of the
corresponding resources, these values determine the per-
request dollar cost (Figure 14).
• The costs of XPIR are high (265× NoPriv), though

adding a naive batching scheme (XPIR++) significantly
reduces them (by ≈11× for C=10K, d=15).

• Using ITPIR for object delivery (in conjunction with
CPIR (§4.1)) reduces the costs further (by ≈ 2× for
C=10K, d=15). The disadvantage is that ITPIR re-
quires non-colluding servers.

• Increasing the startup delay (and thus the batch size
of the cohort) can further reduce costs. For example,

increasing d from 15 to 60 seconds reduces costs by
3× (a reduction from 14× NoPriv to 4.7× NoPriv).

• BaselinePIR++ matches the cost of Popcorn (when
C=10K) but requires a 40× higher startup delay (d=10
minutes in BaselinePIR++ vs. 15 seconds for Popcorn).

6.5 Compatibility study of Popcorn

To verify Popcorn’s compatibility with modern Web
browsers and DRM technology, we implemented a Pop-
corn client in JavaScript and used it to watch short videos
in the WebM format [8] (protected using WebM En-
cryption [9]). Our prototype works on Chrome (version
45.0.2454), and makes use of the HTML5 video tag and
extensions: the decoded ITPIR content is passed into the
Media Source Extension interface, which forwards media
chunks to the video player; the decoded CPIR response
is passed into the Encrypted Media Extension interface,
which decrypts the protected content.

7 Related Work
Alternatives to PIR for privacy. Obfuscation [18, 42,
88] protects clients’ privacy by cloaking traffic with
dummy requests. This approach requires less processing
than PIR at clients and servers, but significantly higher
network cost: matching PIR’s degree of privacy (the num-
ber of objects among which a request is hidden) would
require downloading the entire library.

Rather than the content being consumed, anonymity
hides the identity of the consumer [39, 69]. This could
be used to hide metadata (login times, download fre-
quency, etc.), which is complementary to PIR. However,
anonymity-based solutions can reveal access patterns that,
combined with other background information, may dis-
close a user’s media consumption [77].

Oblivious RAM (ORAM) [51, 72, 74, 97] algorithms
conceal a client’s access patterns from a storage server.
Similarly, searchable symmetric encryption (SSE) (sur-
veyed in [26, 27]) offers yet another solution for private
data retrieval from a remote database. However, these
solutions target a setup where the client outsources its
encrypted data to a server.

Recent results [61, 84] enhance the above setup: they
let clients privately retrieve data from a remote database
owned by a different entity. Unlike PIR, these protocols
allow for a controlled amount of leakage in the form of
data-access and query patterns. Unlike us, they assume
that the server does not collude with clients (e.g., in Pop-
corn the server can pretend to be a new customer of the
streaming service). If the server can collude with a client,
it can issue queries for each media file in the system, mon-
itor access patterns, and decode all other clients’ queries.
Improving the performance of PIR. The computa-
tional challenges of PIR have been obvious since its intro-
duction, and have since been mitigated in several ways.

11

102 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Distributing the work, either by moving it to the cloud
or by dividing it among clients [35, 73, 83], reduces la-
tency but not the total computational burden.

GPUs [31, 75] and cheaper cryptographic opera-
tions [12, 13, 43, 101, 107] have reduced the computa-
tional load of CPIR, refuting the notion [95] that CPIR
is likely to be more expensive than the naive solution of
transferring the entire library. However, the single request
cost for media delivery in XPIR [12], the fastest system
employing these techniques, is still higher than desirable
(see §6.4 and Figure 14 for a comparison with Popcorn).

Another path to better performance is to limit the pri-
vacy guarantees to only a portion of the library [79, 80,
103]. For example, bbPIR [103] allows users of libraries
that can be thought of as a matrix to specify a submatrix
(called a bounding box) from which bits can be privately
retrieved using CPIR. This approach can be useful for ef-
ficiently implementing privacy-preserving location-based
services: the larger the bounding box, the higher the pri-
vacy, but also the higher the processing and network costs.

Perhaps the most direct way to reduce the overhead
of PIR is to genuinely reduce the work that servers need
to perform. Lueks and Goldberg [71], building on ear-
lier theoretical work by Beimel et al. [19] and Ishai et
al. [60], show that one can achieve sub-linear server-side
computation by efficiently processing batches of requests
from multiple clients. Popcorn is inspired by this work:
it uses batching at multiple stages of its protocol, but
tailored for media delivery. Another recent system, RAID-
PIR [33], based on the implementation of upPIR [25],
reduces server-side work, first, by storing and processing
only a fraction of the library at each ITPIR server and, sec-
ond, by encoding multiple requests from the same client
in a single query. Popcorn’s performance could potentially
benefit from these techniques, but only when using more
than two servers, or when clients issue multiple simulta-
neous requests. Currently, Popcorn assumes exactly two
servers and that clients request objects sequentially.

Finally, performance can be improved with dedicated
hardware [16, 59, 70, 96, 105], at the price of having to
trust its manufacturer: a client can connect to a secure
coprocessor that (obliviously to the server hosting the
library) retrieves and delivers the requested object.

A large body of literature focuses on instead reducing
the communication overhead of PIR [45, 81]. Unlike Pop-
corn, these protocols target an environment in which n��.
In that context, Devet et al. [36] propose a technique that,
like Popcorn, composes CPIR and ITPIR. Unlike Pop-
corn, the composition is hierarchical (ITPIR selects a
sub-library, and iterations of CPIR select an object) and
minimizes communication costs.

Protecting library content in PIR. The tension be-
tween ITPIR and content protection has been noted before.
Gertner et al. [47] introduce the problem and propose two

solutions, both of which, at a high level, protect the con-
tent by storing at untrusted servers independent random
data (e.g., two servers store random data that XORs to
the library content). Goldberg’s ITPIR protocol [50] has
a similar protection property as [47], but it uses fewer
servers. Huang et al. [57] protect library content kept at
untrusted servers by first encrypting it, and then using
a threshold signature scheme [34] to serve keys for the
encrypted object. In all the above schemes, the library con-
tent can be disclosed if more than a threshold of untrusted
servers collude. By composing CPIR and ITPIR (§4.1),
Popcorn instead keeps content protection collusion-proof.

Symmetric PIR (SPIR) schemes add an additional facet
to content protection by preventing dishonest clients from
learning information about the content of a database be-
yond what is contained in the records they retrieved [48].
Popcorn currently assumes an honest client (§2.1) and
thus does not use SPIR to privately download keys from
the key server; however, it can reduce that trust by trans-
forming its CPIR protocol into an SPIR protocol [38, 76].

1-out-of-N oblivious transfer (OT) [21, 76] provides
the same content protection property as SPIR but, unlike
SPIR, can have network overhead linear in the size of the
library. In our experiements, this overhead would not be
costly: WebM Encryption (§6.5) sets our keys to 128 bits,
which, for n=8192 objects, yields a library of only 128
KB. However, the linear overhead can in general be large
(e.g., if the key server embeds keys within DRM licenses;
for this reason, Popcorn’s key server does not use OT.

Handling variable-sized objects in PIR. A naive solu-
tion is to pad every object to the size of the longest, and
download (the equivalent of) the longest object from each
server. Prior work [33, 54] avoids this solution by (a) con-
catenating small objects (e.g., a few objects form one
row of the library), and (b) splitting large objects over
multiple rows of the library and using multi-row queries
that retrieve (secretly) many rows in a single query. The
reduced communication cost is close to the optimal: the
size of the longest object in the library. However, this
cost is still high, especially if a smaller object is being
retrieved. An alternative is to download different rows (of
an object) as independent objects, possibly at the cost of
increasing the consumption delay [33]. Popcorn uses this
technique for objects that are divided over multiple rows,
but in addition reduces the number of such objects by
using a combination of compression and padding (§4.4).

Prior PIR implementations. Many of the CPIR and
ITPIR protocols described above have been implemented.
The Percy++ library [49] contains several of them [13,
29, 35–37, 50, 55, 71]. Also, [54] is implemented as a
fork of Percy++, RAID-PIR [33] is implemented on top
of upPIR [25], and there are numerous CPIR implemen-
tations [12, 31, 43, 73, 75, 83, 90, 101, 103, 107], among

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 103

which XPIR [12] is the fastest. Popcorn incorporates some
of these implementations as modules: it uses the XPIR
library for CPIR and borrows the CGKS ITPIR [29] code
from Percy++. Sections 5 and 6 empirically or analytically
compare Popcorn against these prior implementations.

8 Discussion, limitations, and future work
We evaluated Popcorn at the scale of a Netflix library, and
found that the results are cautiously encouraging: com-
pared to a baseline, I/O and CPU overhead are both lower
(due to amortization, batching, and careful provisioning).
And, although the overall resource cost is high, the dol-
lar cost is manageable. Below, we discuss fundamental
limitations of Popcorn, followed by limitations of the
prototype and current design that require future work.

Fundamental limitations. We see three main limita-
tions. First, because Popcorn’s overheads grow linearly
with the number of objects, it has no hope of scaling to
YouTube-size libraries. Second, organizations that serve
objects can collude to compromise Popcorn’ privacy
guarantee. Admittedly, the no collusion assumption on
which rests Popcorn’ privacy guarantee may be unrealistic
against state-sponsored adversaries that can compromise
multiple organizations (or already have). Third, Popcorn
cannot support forward seeks during playback: such user
actions alter the download pattern in a content-dependent
way, thus revealing information.

Library updates. To support online updates, Popcorn
should execute both CPIR and ITPIR queries on the same
version of the key and object libraries, at the key server
and at both object servers. Standard solutions exist (e.g.,
generation numbers in concert with garbage collection).

Integration with CDNs. Running Popcorn on content
delivery networks (CDNs) would present two main chal-
lenges: maintaining the utility of batching when running
on a distributed infrastructure; and increased hardware
provisioning at the CDN’s edge servers (power consump-
tion, colocation space, etc.). Though addressing the lat-
ter is non-trivial, we believe that it does not require a
paradigm shift: Akamai’s EdgeComputing service [32]
already enables running CPU-intensive enterprise busi-
ness web applications at edge servers. Moreover, Netflix
recently installed custom-built storage-optimized appli-
ances at the edges.

Similarly, we believe that, though the CDN’s dis-
tributed infrastructure will reduce opportunities for batch-
ing, enough concurrency will remain to make the service
cost effective. Indeed, rough back-of-the-envelope calcu-
lations suggest that request rates for Netflix are already
quite high (e.g., over 9200 requests/90min/PoP11) and are

11Assumes 10 billion hours watched in 3 months [4], requests are for a
90 minute video, and a total of 500 Points of Presence (PoP).

growing fast [5]. This is not specific to Netflix: similar re-
quest rates (average of 6000 requests in 90 minutes from
within a single city) have been reported for other video
on demand systems [108].

Changes in load. Unless Popcorn is always wastefully
provisioned for the peak load, load changes require care:
the assignment of work units to machines depends on the
number of clients (§4.3). A solution is to rely on virtual
machines (VMs): give each VM a single slice, and then
provide elasticity via VM migration or consolidation.

Variations in quality and bandwidth. Adaptive stream-
ing lets clients dynamically switch between different
video quality levels to adjust to bandwidth fluctuations.
Popcorn could support this feature in two ways. First,
it could maintain an individual library for each video
quality level (where each library is adapted for Popcorn
as described in §4.4). Clients would send query vectors
to all libraries but download a given video chunk only
from the appropriate one. Switching between libraries
doesn’t leak information if download pattern is fixed (e.g.,
by assuming that always the same average size object is
consumed). This solution is simple, but asking each li-
brary to process every request would increase server-side
work significantly. Alternatively, Popcorn could exploit
layered coding [56, 63, 86, 92] or multiple description
coding (MDC) [52, 89, 104]. There would be a single
basic quality library accessed by all clients, with separate
libraries for enhancement layers (better spatial resolution,
bitrate, frame rate, etc.). Server-side work would thus be
proportional only to the size of the highest quality library.

Billing and accounting. Popcorn must enable the con-
tent distributor to charge consumers, pay royalties, and
collect aggregate statistics. Popcorn’s current prototype
can support both subscription-based and pay-per-view
pricing models by monitoring accesses to the key server.
Furthermore, it by default works with a prepaid royalty
model, where the distributor pays a fixed license fee up-
front. However, in its current form, Popcorn does not
support advanced pricing models (different prices for dif-
ferent objects, possibly in tiers) or advanced royalties
models (e.g., based on number of views or aggregate
statistics). However, we believe that these limitations are
not fundamental (e.g., prior works [14, 23, 55, 100] have
addressed them in different contexts). Future work is to
investigate how these prior works can be composed with
Popcorn, and what the implications of doing so are on
performance and privacy guarantees.

Targeted ads and recommendation services. Popcorn
does not currently support targeted advertisements or rec-
ommendations, but we believe this limitation is not funda-
mental [17, 22, 24, 53, 62, 65]. Incorporating these results
in Popcorn is a direction for future work.

13

104 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

A Derivation of segment sizes
Recall the inequalities defined in §4.3:

ti≤Ti·α, where α=
min {Ri, Pi/bi}

µ·n

Ti≤d′+

i−1∑
j=1

tj, where d′=d−ε

We consider the special case where both sides of the
inequalities are equal. Combining both statements:

ti=

d′+

i−1∑
j=1

tj

·α

We show that ti = (d′·α·(1+α)i−1) is a solution to the
above equation. Substituting on both sides:

d′·α·(1+α)i−1=

d′+

i−1∑
j=1

d′·α·(1+α)j−1

·α.

Summing the finite geometric series, and rearranging:

=

(
d′+d′·α·

(
(1+α)i−1−1

α

))
·α

=d′·α·(1+α)i−1.

Setting α=1, we get ti=2i−1·(d−ε), as desired.

B Pricing model
Our high-level goal is to estimate the hourly cost of rent-
ing three resources on Amazon EC2: a vCPU, 1 GB of
memory, and 1 Gbps of sequential read I/O bandwidth.
To get the estimates, we make the simplifying assump-
tion that the price of an EC2 machine depends only on
these three resources. Of course, in practice, pricing ma-
chines is a complex process that depends on many factors
(I/O performance for non-sequential workloads, cost of
the networking infrastructure, prices set by competitors,
etc.); the values derived here should be treated as only
estimates.

At a high level, our method is to use the specification
of machines on Amazon EC2 and their corresponding
prices to derive a system of linear equations; in these
equations variables represent the unit cost of the resources
mentioned above, coefficients represent the “quantity” of
those resources in an Amazon EC2 machine, and the RHS
will be the price of renting that machine.

We consider the machines in Figure 8 and an additional
machine. We need this additional machine as the equa-
tion for i2.4xl is not linearly independent from that of
i2.8xl, which leaves us with two equations to solve for
three variables. To write the third equation, we pick a
memory optimized machine that has 32 vCPUs, 244 GB

of memory capacity, 2 SSDs with 320 GB capacity each
(6.4 Gbps sequential read I/O bandwidth), and is rented
out for $0.9822 per hour. Using these, we get the follow-
ing equations:

32C+60M+6.4I=0.6281
32C+244M+6.4I=0.9822

32C+244M+23.3I=1.6902,

where C is the hourly cost of renting a vCPU, M is the
cost of renting 1 GB of memory for an hour, and I is the
hourly cost for 1 Gbps of sequential read I/O bandwidth.

Solving for the unknowns in the equations, we get
I=0.042, M=0.0019, and C=0.0076.

Acknowledgments
We thank Carlos Aguilar-Melchor, Allen Clement, Alan
Dunn, Bryan Ford, Yuval Ishai, Lon Ingram, Jaeyeon
Jung, Brad Karp, Marc-Olivier Killijian, Sangman Kim,
Michael Z. Lee, James Mickens, Thomas Schneider, Vi-
taly Shmatikov, Emmett Witchel, and the anonymous
reviewers for feedback and comments that improved this
draft. The Texas Advanced Computing Center (TACC) at
UT supplied computing resources for an earlier version
of this work. This work was supported by NSF grants
1040083, 1048269, 1409555, and 1055057; an AWS in
Education Research grant ; and a Google European Doc-
toral Fellowship.

References
[1] Alphabetical List - Fri, Apr 3, 2015.

http://usa.netflixable.com/2015/04/
alphabetical-list-fri-apr-3-2015.html.

[2] Digital Rights Management.
http://msdn.microsoft.com/en-us/library/
cc838192%28VS.95%29.aspx.

[3] Microsoft PlayReady.
http://www.microsoft.com/playready/.

[4] Netflix 2015 Q1 Earnings Letter.
http://files.shareholder.com/downloads/NFLX/
47469957x0x821407/DB785B50-90FE-44DA-9F5B-

37DBF0DCD0E1/Q1_15_Earnings_Letter_final_

tables.pdf.
[5] Netflix Soars On Subscriber Growth. http:

//www.forbes.com/sites/laurengensler/2015/
01/20/netflix-soars-on-subscriber-growth/.

[6] New Movie Arrivals - Fri, Apr 3, 2015.
http://usa.netflixable.com/2015/04/new-
movie-arrivals-fri-apr-3-2015.html.

[7] The 2014 Pulitzer Prize Winners, Public Service: The
Guardian US and The Washington Post. http://
www.pulitzer.org/works/2014-Public-Service.

[8] The WebM Project.
http://www.webmproject.org/about/faq/.

[9] WebM Encryption. http:
//www.webmproject.org/docs/webm-encryption/.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 105

[10] You are watching more web video ads than ever.
http://allthingsd.com/20130215/you-are-
watching-more-web-video-ads-than-ever/.

[11] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt,
M. Steiner, and Z.-L. Zhang. Unreeling Netflix:
Understanding and improving multi-CDN movie delivery.
In IEEE International Conference on Computer
Communications (INFOCOM), 2012.

[12] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private Information Retrieval for
Everyone. Cryptology ePrint Archive, Report 2014/1025,
2014.

[13] C. Aguilar-Melchor and P. Gaborit. A lattice-based
computationally-efficient private information retrieval
protocol. In Western European Workshop on Research in
Cryptology (WEWoRC), 2007.

[14] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious
transfer: How to sell digital goods. In Annual
International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), 2001.

[15] O. M. Alliance. DRM Architecture.
http://technical.openmobilealliance.org/
Technical/release_program/docs/DRM/V2_1-

20081106-A/OMA-AD-DRM-V2_1-20081014-A.pdf,
Mar. 2004.

[16] D. Asonov and J.-C. Freytag. Almost optimal private
information retrieval. In Workshop on Privacy Enhancing
Technologies (PET), 2003.

[17] M. Backes, A. Kate, M. Maffei, and K. Pecina. ObliviAd:
Provably secure and practical online behavioral
advertising. In IEEE Symposium on Security and Privacy
(S&P), 2012.

[18] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS:
Obfuscation-based private web search. In IEEE
Symposium on Security and Privacy (S&P), 2012.

[19] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’
computation in private information retrieval: PIR with
preprocessing. Journal of Cryptology, 17(2):125–151,
2004.

[20] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic
encryption from ring-LWE and security for key
dependent messages. In Advances in
Cryptology—CRYPTO, 2011.

[21] G. Brassard, C. Crepeau, and J.-M. Robert.
All-or-nothing disclosure of secrets. In Advances in
Cryptology—CRYPTO, 1987.

[22] M. Burkhart and X. A. Dimitropoulos. Fast
privacy-preserving top-k queries using secret sharing. In
International Conference on Computer Communication
Networks (ICCCN), 2010.

[23] J. Camenisch, M. Dubovitskaya, and G. Neven.
Unlinkable priced oblivious transfer with rechargeable
wallets. In International Conference on Financial
Cryptography and Data Security (FC), 2010.

[24] J. Canny. Collaborative filtering with privacy. In IEEE
Symposium on Security and Privacy (S&P), 2002.

[25] J. Cappos. Avoiding theoretical optimality to efficiently
and privately retrieve security updates. In International
Conference on Financial Cryptography and Data
Security (FC), 2013.

[26] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,

M.-C. Rosu, and M. Steiner. Dynamic searchable
encryption in very-large databases: Data structures and
implementation. In Network and Distributed System
Security Symposium (NDSS), 2014.

[27] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Advances
in Cryptology—CRYPTO, 2013.

[28] X. Cheng, C. Dale, and J. Liu. Statistics and social
network of YouTube videos. In International Workshop
on Quality of Service (IWQoS), 2008.

[29] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

[30] D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions. Journal of symbolic
computation, 9(3):251–280, 1990.

[31] W. Dai, Y. Doröz, and B. Sunar. Accelerating SWHE
based PIRs using GPUs. Cryptology ePrint Archive,
Report 2015/462, 2015.

[32] A. Davis, J. Parikh, and W. E. Weihl. Edgecomputing:
Extending enterprise applications to the edge of the
internet. In International World Wide Web conference on
Alternate track papers & posters (WWW Alt.), 2004.

[33] D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR:
Practical multi-server PIR. In Cloud computing security
workshop (CCSW), 2014.

[34] Y. G. Desmedt. Threshold cryptography. European
Transactions on Telecommunications, 5(4):449–458,
1994.

[35] C. Devet. Evaluating private information retrieval on the
cloud. Technical Report 5, University of Waterloo, 2013.

[36] C. Devet and I. Goldberg. The best of both worlds:
Combining information-theoretic and computational PIR
for communication efficiency. In Privacy Enhancing
Technologies Symposium (PETS), 2014.

[37] C. Devet, I. Goldberg, and N. Heninger. Optimally robust
private information retrieval. In USENIX Security
Symposium, 2012.

[38] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single
database private information retrieval implies oblivious
transfer. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2000.

[39] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security
Symposium, 2004.

[40] Discretix Technologies. Secure implementations of
content protection DRM schemes on consumer electronic
devices. http://www.discretix.com/wp-content/
uploads/2013/02/secure_implementation_of_

content_protection_schemes_on_consumer_

electronic_devices.pdf, Feb. 2013.
[41] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph,

A. Ganjam, J. Zhan, and H. Zhang. Understanding the
impact of video quality on user engagement. ACM
SIGCOMM Computer Communication Review,
41(4):362–373, 2011.

[42] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca.
h(k)-private information retrieval from
privacy-uncooperative queryable databases. Online

15

106 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Information Review, 33(4):720–744, 2009.
[43] C. Dong and L. Chen. A fast single server private

information retrieval protocol with low communication
cost. In European Symposium on Research in Computer
Security (ESORICS), 2014.

[44] Electronic Frontier Foundation. NSA spying on
Americans. https://www.eff.org/nsa-spying.

[45] W. Gasarch. A survey on private information retrieval.
Bulletin of the European Association for Theoretical
Computer Science (EATCS), 82:72–107, 2004.

[46] C. Gentry. Fully homomorphic encryption using ideal
lattices. In ACM Symposium on Theory of Computing
(STOC), 2009.

[47] Y. Gertner, S. Goldwasser, and T. Malkin. A random
server model for private information retrieval. In
International Workshop on Randomization and
Approximation Techniques in Computer Science
(RANDOM), 1998.

[48] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information retrieval
schemes. In ACM Symposium on Theory of Computing
(STOC), 1998.

[49] I. Goldberg. Percy++ project on SourceForge.
http://percy.sourceforge.net/.

[50] I. Goldberg. Improving the robustness of private
information retrieval. In IEEE Symposium on Security
and Privacy (S&P), 2007.

[51] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal of the ACM
(JACM), 43(3):431–473, 1996.

[52] V. Goyal. Multiple description coding: compression
meets the network. IEEE Signal Processing Magazine,
18(5):74–93, Sept. 2001.

[53] S. Guha, B. Cheng, and P. Francis. Privad: Practical
privacy in online advertising. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2011.

[54] R. Henry, Y. Huang, and I. Goldberg. One (block) size
fits all: PIR and SPIR over arbitrary-length records via
multi-block PIR queries. In Network and Distributed
System Security Symposium (NDSS), 2013.

[55] R. Henry, F. Olumofin, and I. Goldberg. Practical PIR for
electronic commerce. In ACM Conference on Computer
and Communications Security (CCS), 2011.

[56] U. Horn, K. Stuhlmüller, M. Link, and B. Girod. Robust
internet video transmission based on scalable coding and
unequal error protection. Signal Processing: Image
Communication, 15(1):77–94, 1999.

[57] Y. Huang and I. Goldberg. Outsourced private
information retrieval. In Workshop on Privacy in the
Electronic Society (WPES), 2013.

[58] S. Huss-Lederman, E. M. Jacobson, J. Johnson, A. Tsao,
and T. Turnbull. Implementation of Strassen’s algorithm
for matrix multiplication. In ACM/IEEE Conference on
Supercomputing, 1996.

[59] A. Iliev and S. Smith. Private information storage with
logarithmic-space secure hardware. In Information
Security Management, Education and Privacy, 2004.

[60] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Batch codes and their applications. In ACM Symposium
on Theory of Computing (STOC), 2004.

[61] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Outsourced symmetric private information
retrieval. In ACM Conference on Computer and
Communications Security (CCS), 2013.

[62] S. Jha, L. Kruger, and P. McDaniel. Privacy preserving
clustering. In European Symposium on Research in
Computer Security (ESORICS), 2005.

[63] M. Johanson and A. Lie. Layered encoding and
transmission of video in heterogeneous environments. In
ACM Multimedia (ACM-MM), 2002.

[64] J. Joskowicz and J. Ardao. Combining the effects of
frame rate, bit rate, display size and video content in a
parametric video quality model. In Latin America
Networking Conference (LANC), 2011.

[65] S. Katzenbeisser and M. Petković. Privacy-preserving
recommendation systems for consumer healthcare
services. In International Conference on Availability,
Reliability and Security (ARES), 2008.

[66] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private
information retrieval. In Symposium on Foundations of
Computer Science (FOCS), 1997.

[67] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An
efficient communication system with strong anonymity.
In Privacy Enhancing Technologies Symposium (PETS),
2016.

[68] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms.
ACM SIGOPS Operating Systems Review, 25(Special
Issue):63–74, 1991.

[69] M. Z. Lee, A. M. Dunn, B. Waters, E. Witchel, and
J. Katz. Anon-pass: Practical anonymous subscriptions.
In IEEE Symposium on Security and Privacy (S&P),
2013.

[70] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and
J. Schiffman. Shroud: Ensuring private access to
large-scale data in the data center. In USENIX Conference
on File and Storage Technologies (FAST), 2013.

[71] W. Lueks and I. Goldberg. Sublinear scaling for
multi-client private information retrieval. In International
Conference on Financial Cryptography and Data
Security (FC), 2015.

[72] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. Phantom:
Practical oblivious computation in a secure processor. In
ACM Conference on Computer and Communications
Security (CCS), 2013.

[73] T. Mayberry, E.-O. Blass, and A. H. Chan. PIRMAP:
Efficient private information retrieval for MapReduce. In
International Conference on Financial Cryptography and
Data Security (FC), 2013.

[74] T. Mayberry, E.-O. Blass, and A. H. Chan. Efficient
private file retrieval by combining ORAM and PIR. In
Network and Distributed System Security Symposium
(NDSS), 2014.

[75] C. A. Melchor, B. Crespin, P. Gaborit, V. Jolivet, and
P. Rousseau. High-speed private information retrieval
computation on GPU. In International Conference on
Emerging Security Information, Systems and
Technologies (SECUREWARE), 2008.

[76] M. Naor and B. Pinkas. Oblivious transfer and

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 107

polynomial evaluation. In ACM Symposium on Theory of
Computing (STOC), 1999.

[77] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy (S&P), 2008.

[78] A. Narayanan and V. Shmatikov. Myths and fallacies of
“personally identifiable information”. Communications of
the ACM, 53(6):24–26, June 2010.

[79] F. Olumofin and I. Goldberg. Preserving access privacy
over large databases. Technical Report 33, University of
Waterloo, 2010.

[80] F. Olumofin, P. K. Tysowski, I. Goldberg, and
U. Hengartner. Achieving efficient query privacy for
location based services. In Privacy Enhancing
Technologies Symposium (PETS), 2010.

[81] R. Ostrovsky and W. E. Skeith III. A survey of
single-database private information retrieval: Techniques
and applications. In Public Key Cryptography (PKC),
2007.

[82] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Annual International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 1999.

[83] S. Papadopoulos, S. Bakiras, and D. Papadias. pCloud: A
distributed system for practical PIR. IEEE Transactions
on Dependable and Secure Computing, 9(1):115–127,
2012.

[84] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G.
Choi, W. George, A. Keromytis, and S. Bellovin. Blind
Seer: A scalable private DBMS. In IEEE Symposium on
Security and Privacy (S&P), 2014.

[85] Pomelo LLC. Analysis of Netflix’s security framework
for ’Watch Instantly service.
http://pomelollc.files.wordpress.com/2009/
04/pomelo-tech-report-netflix.pdf, Mar. 2009.

[86] H. M. Radha, M. Van der Schaar, and Y. Chen. The
MPEG-4 fine-grained scalable video coding method for
multimedia streaming over IP. IEEE Transactions on
Multimedia, 3(1):53–68, 2001.

[87] D. Rayburn. CDN market trends: Pricing, growth and
competitive landscape. In Content Delivery Summit,
2015.

[88] D. Rebollo-Monedero and J. Forné. Optimized query
forgery for private information retrieval. IEEE
Transactions on Information Theory, 56(9):4631–4642,
2010.

[89] A. R. Reibman, H. Jafarkhani, Y. Wang, M. T. Orchard,
and R. Puri. Multiple description coding for video using
motion compensated prediction. In International
Conference on Image Processing (ICIP), 1999.

[90] F. Saint-Jean. Java implementation of a single-database
computationally symmetric private information retrieval
(cSPIR) protocol. Technical report, DTIC Document,
2005.

[91] B. Schneier. The eternal value of privacy. Wired, May
2006.
http://archive.wired.com/politics/security/
commentary/securitymatters/2006/05/70886.

[92] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the
scalable video coding extension of the H.264/AVC
standard. Transactions on Circuits and Systems for Video

Technology, 17(9):1103–1120, 2007.
[93] R. Singel. Netflix spilled your Brokeback Mountain

secret, lawsuit claims. Wired, Dec. 2009.
http://www.wired.com/images_blogs/
threatlevel/2009/12/doe-v-netflix.pdf.

[94] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino. Quality of
experience estimation for adaptive HTTP/TCP video
streaming using H.264/AVC. In Consumer
Communications and Networking Conference (CCNC),
2012.

[95] R. Sion and B. Carbunar. On the practicality of private
information retrieval. In Network and Distributed System
Security Symposium (NDSS), Mar. 2007.

[96] S. W. Smith and D. Safford. Practical server privacy with
secure coprocessors. IBM Systems Journal,
40(3):683–695, 2001.

[97] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious RAM. In Network and Distributed System
Security Symposium (NDSS), 2012.

[98] J. P. Stern. A new and efficient all-or-nothing disclosure
of secrets protocol. In International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), 1998.

[99] J. Summers, T. Brecht, D. Eager, and B. Wong.
Methodologies for generating HTTP streaming video
workloads to evaluate web server performance. In
International Systems and Storage Conference (SYSTOR),
2012.

[100] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum,
and S. Barocas. Adnostic: Privacy preserving targeted
advertising. In Network and Distributed System Security
Symposium (NDSS), 2010.

[101] J. Trostle and A. Parrish. Efficient computationally
private information retrieval from anonymity or trapdoor
groups. In International Security Conference (ISC), 2010.

[102] S. Viswanathan and T. Imielinski. Pyramid broadcasting
for video-on-demand service. In Multimedia Computing
and Networking (MMCN), 1995.

[103] S. Wang, D. Agrawal, and A. El Abbadi. Generalizing
PIR for practical private retrieval of public data. In
Working Conference on Data and Applications Security
and Privacy (DBSec), 2010.

[104] Y. Wang and S. Lin. Error-resilient video coding using
multiple description motion compensation. IEEE
Transactions on Circuits and Systems for Video
Technology, 12(6):438–452, 2002.

[105] P. Williams and R. Sion. Usable PIR. In Network and
Distributed System Security Symposium (NDSS), 2008.

[106] S. Yekhanin. Private Information Retrieval.
Communications of the ACM, 53(4):68–73, Apr. 2010.

[107] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino.
Single-database private information retrieval from fully
homomorphic encryption. IEEE Transactions on
Knowledge and Data Engineering, 25(5):1125–1134,
2013.

[108] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng.
Understanding user behavior in large-scale
video-on-demand systems. ACM SIGOPS Operating
Systems Review, 40(4):333–344, 2006.

17

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 109

Speeding up Web Page Loads with Shandian

Xiao Sophia Wang∗, Arvind Krishnamurthy∗, and David Wetherall∗†

Abstract
Web page loads are slow due to intrinsic inefficiencies

in the page load process. Our study shows that the in-
efficiencies are attributable not only to the contents and
structure of the Web pages (e.g., three-fourths of the CSS
resources are not used during the initial page load) but
also the way that pages are loaded (e.g., 15% of page load
times are spent waiting for parsing-blocking resources to
be loaded).

To address these inefficiencies, this paper presents
Shandian (which means lightening in Chinese) that re-
structures the page load process to speed up page loads.
Shandian exercises control over what portions of the
page gets communicated and in what order so that the ini-
tial page load is optimized. Unlike previous techniques,
Shandian works on demand without requiring a train-
ing period, is compatible with existing latency-reducing
techniques (e.g., caching and CDNs), supports security
features that enforce same-origin policies, and does not
impose additional privacy risks. Our evaluations show
that Shandian reduces page load times by more than
half for both mobile phones and desktops while incur-
ring modest overheads to data usage.

1 Introduction
Web pages have become the de-facto standard for bil-
lions of users to get access to the Internet. The end-
to-end Web page load time (PLT) has consequently be-
come a key metric as it affects user experience and thus
is associated with business revenues [6, 4]. Reports sug-
gest that Shopzilla increased its revenue 12% by reduc-
ing PLT from 6 seconds to 1.2 seconds and that Amazon
found every 100ms of increase in PLT cost them 1% in
sales [27].

Despite its importance and various attempts to im-
prove PLT, the end-to-end PLT for most pages is still
a few seconds on desktops and more than ten seconds
on mobile devices [9, 39]. This is because modern Web
pages are often complex. Previous studies show that
Web pages contain more than fifty Web objects on av-
erage [9], and exhibit complex inter-dependencies that
result in inefficient utilization of network and compute
resources [39]. In our own experiments, we have iden-
tified three types of inefficiencies associated with Web
pages and the page load process. The first inefficiency
comes from the content size of Web pages. Many Web

∗University of Washington
†Google Inc.

pages use JavaScript libraries such as jQuery [21] or in-
clude large customized JavaScript code in order to sup-
port a high degree of user interactivity. The result is that a
large portion of the code conveyed to a browser is never
used on a page or is only used when a user triggers an
action. The second inefficiency stems from how the dif-
ferent stages of the page load process are scheduled to
ensure semantic correctness in the presence of concur-
rent access to shared resources. This results in limited
overlap between computation and network transfer, thus
increasing PLT. The third and related inefficiency is that
many resources included in a Web page are often loaded
sequentially due to the complex dependencies in the page
load process, and this results in sub-optimal use of the
network and increased PLTs.

Reducing PLT is hard given these inefficiencies. Hu-
man inspection is not ideal since there is no guaran-
tee that Web developers adhere to the ever-changing
best practices prescribed by experts [35]. Thus, it is
widely believed that the inefficiencies should be trans-
parently mitigated by automated tools and techniques.
Many previously proposed techniques focus on improv-
ing the network transfer times. For example, techniques
such as DNS pre-resolution [22], TCP pre-connect [19],
and TCP fast open [28] reduce latencies, and the SPDY
protocol improves network efficiency at the application
layer [32]. Other techniques lower computation costs by
either exploiting parallelism [25, 12] or adding software
architecture support [41, 13]. While these techniques are
moderately effective at speeding up the individual activ-
ities corresponding to a page load, they have had limited
impact in reducing overall PLT, because they still com-
municate redundant code, stall in the presence of con-
flicting operations, and are constrained by the limited
parallelism in the page load process.

The key and yet unresolved issue with page loads is
that the page load process is suboptimally prioritized as
to what portions of a page get loaded and when. In
this paper, we advocate an approach that precisely pri-
oritizes resources that are needed during the initial page
load (load-time state) and those that are needed only af-
ter a page is loaded (post-load state). Unlike SPDY (or
HTTP/2) server push and Klotski [10], which only pri-
oritize network transfers at the granularity of Web ob-
jects, our approach prioritizes both network transfers and
computation at a fine granularity (e.g., HTML elements
and CSS rules), directly tackling the three inefficiencies
listed above.

1

110 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

A key challenge addressed by our approach is to en-
sure that we do not break static Web objects (e.g., exter-
nal JavaScript and CSS), because caching and CDNs are
commonly used to improve PLT. We make design deci-
sions to send unmodified static contents in the post-load
state thereby incurring the cost of sending a small por-
tion of redundant content that is already included in the
load-time state.

To deploy this approach transparently to Web pages,
we choose a split-browser architecture and fulfill part of
the page load on a proxy server, which can be either
part of the web service itself (e.g., reverse proxies) or
third-party proxy servers (e.g., Amazon EC2). A proxy
server is set up to preload a Web page up to a time, e.g.,
when the load event is fired; the preload is expected to be
fast since it exploits greater compute power at the proxy
server and since all the resources that would normally re-
sult in blocking transfers are locally available. When mi-
grating state (logics that determine a Web page and the
stage of the page load process) to the client, the proxy
server prioritizes state needed for the initial page load
over state that will be used later, so as to convey critical
information as fast as possible. After all the state is fully
migrated, the user can interact with the page normally as
if the page were loaded directly without using a proxy
server.

Note that Opera mini [26] and Amazon Silk [3] also
embrace a split-browser architecture but differ in terms
of how the rendering process is split between the client
and the proxy server. Their client-side browsers only
handle display, and thus JavaScript evaluation is han-
dled by the proxy server. This process depends on the
network, which is both slow and unreliable in mobile
settings [30], and encourages the proxy server to be
placed near users. We have a fully functioning client-side
browser and encourages the proxy server to be placed
near front-end Web servers (e.g., edge POPs) for the
most performance gains.

Our contributions are as follows:
• We conduct a measurement study that identifies the

inefficiencies of Web pages that can be fixed by bet-
ter page structures. We find that three-fourths of the
CSS is not used during a page load and that parsing-
blocking CSS and JavaScript slow down page loads by
20%.

• We design and implement Shandian, which signif-
icantly reduces end-to-end PLTs. Shandian uses a
proxy server to preload a Web page, quickly commu-
nicates an initial representation of the page’s DOM
to the client, and loads secondary resources in the
background. Shandian also ensures that the Web
page functionality in terms of user interactivity is pre-
served and that the delivery process is compatible
with latency-reducing techniques such as caching and

CDNs and security features such as the enforcement
of same-origin policies. The resulting system is thus
both efficient and practical.

• We evaluate Shandian on the top 100 Alexa
Web pages which have been heavily optimized by
other technologies. Our evaluations still show that
Shandian reduces PLT by more than half with a rea-
sonably powerful proxy server on a variety of mobile
settings with varied RTT, bandwidth, CPU power, and
memory. For example, Shandian reduces PLT by
50% to 60% on a mobile phone with 1GHz CPU and
1GB memory by exploiting the compute power of a
proxy server with a multicore 2.4GHz server. Unlike
many techniques that only improve network or com-
putation, Shandian shows consistent benefits on a
variety of settings. We also find that the amount of
load-time state is decreased while the total amount of
traffic is increased moderately by 1%.
In the rest of this paper, we first review the background

of Web pages and the page load process by identify-
ing the inefficiencies associated with page loads (§2).
Next, we present the design of Shandian (§3) and
its implementations and deployment (§4). We evaluate
Shandian in §5, discuss in §6, review related work in
§7, and conclude in §8.

2 An analysis of page load inefficiencies
This section reviews the background on the Web page
load process (§2.1), identifies three inefficiencies in the
load process, and quantifies them using a measurement
study (§2.2).

2.1 Background: Web page loads

Web page compositions. A Web page consists of sev-
eral Web objects that can be HTML, JavaScript, CSS, im-
ages, and other media such as videos and Flash. HTML
is the language (also the root object) that describes a Web
page; it uses a markup to define a set of tree-structured el-
ements such as headings, paragraphs, tables, and inputs.
Cascading style sheets (CSS) are used for specifying pre-
sentation attributes such as colors and fonts of the HTML
elements and is expressed as a set of rules. Processing
the CSS involves identifying the HTML elements that
match the given rules (referred to as CSS selector match-
ing) and adding the specified styles to matched elements.
JavaScript is often used to add dynamic content to Web
pages; it can manipulate the HTML, say by adding new
elements, modifying existing elements, or changing el-
ements’ styles, and can define and handle events. CSS
and JavaScript are embedded in a Web page as HTML
elements (i.e., script, style, and link) and can be
either a standalone Web object or inline HTML.

Web page load process. First, when a user inputs or
clicks a URL, the browser initiates an HTTP request to

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 111

(a) Web page contents.

(b) Dependency graph of loading the page.

Figure 1: An example of loading a page.

that URL. Upon receiving the request, the server either
responds with a static HTML file, or runs server-side
code (e.g., Node.js or PHP) to generate the HTML con-
tents on the fly and sends it to the browser. The browser
then starts to parse the HTML contents; it downloads em-
bedded files (e.g., CSS and JavaScript) until the page is
fully parsed. The result of the parsing process is a doc-
ument object model (DOM) tree, an in-memory repre-
sentation of the Web page. The DOM tree provides a
common interface for JavaScript to manipulate the page.
The browser progressively renders the page during the
load process; it converts the DOM tree to a layout tree
and further to pixels on the screen.

The browser fires a load event when it finishes load-
ing the DOM tree. The load event is commonly used
for prioritizing Web page contents to improve user expe-
rience [9, 39]. For example, websites commonly use the
load event to defer loading JavaScript that is not used in
the initial page display. Such a design makes Web pages
more responsive and provides better user-perceived page
load times.

Dependencies in Web page loads. Ideally, the browser
should fetch Web objects of a page fully in parallel, but
in practice the process is often blocked by dependencies
among Web objects. One type of dependencies stems
from coordinating access to shared resources [39]. For
example in Figure 1, when the parser encounters the
script tag that references 2.js, it stops parsing, loads
the corresponding JavaScript, evaluates the script (i.e.,
compilation and execution), and then resumes parsing.
As both HTML and JavaScript can modify the DOM,
this ensures that the DOM is modified in the order speci-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Matched v.s. redundant CSS rules

Matched Redundant

Figure 2: Fraction of redundant CSS rules of top 100
pages in bytes.

fied in the Web page. When a CSS appears ahead of this
JavaScript (e.g., 1.css), evaluating the JavaScript needs
to wait until the CSS is loaded and evaluated. (CSS eval-
uation includes parsing CSS rules, matching CSS selec-
tors, and computing element styles.) This is because both
JavaScript and CSS can modify the elements’ styles in
the DOM. As is shown in Figure 1(b), HTML parsing is
often blocked to ensure the correctness of execution, thus
significantly slowing down page loads.1

Unlike CSS and JavaScript, other Web objects (e.g.,
images) do not block HTML parsing or any task other
than rendering. Therefore, the composition of HTML,
CSS, and JavaScript resources and how they are orga-
nized are often the factors that affect PLT.

The dependencies not only slow down page loads but
also prevent optimizations from being more effective.
For example, the SPDY protocol would significantly im-
prove PLT if all the objects in a page were fetched and
processed in parallel; but this improvement is largely
nullified by the page dependencies in real browser con-
texts [40]. This is because the optimization technologies
often just improve one aspect of page loads (e.g., net-
work utilization), but the overall page load process re-
mains constrained by dependencies and the marginal im-
provements are not significant.

Critical paths of Web page loads. Not all the object
loads on a Web page affect the PLT. The bottlenecks
can be identified by performing a critical path analysis
on the dependency graphs obtained when a page is be-
ing loaded. For example in Figure 1(b), loading 0.html
and 1.css and evaluating all the objects are on the crit-
ical path. Figure 1(b) shows that the time spent on the
network comes not only from time to load the HTML,
but also from blocking load of JavaScript or CSS (e.g.,
1.css), which significantly slows down PLT.

2.2 Page load inefficiencies

To understand inefficiencies in the Web page load pro-
cess, we conduct a study on top 100 Alexa [2] pages by
using Chrome (which is a highly optimized browser). To

1These dependencies are enforced by popular browsers including
Chrome, Firefox, Safari, and IE.

3

112 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

provide a controlled network environment, we download
all pages to our own server, and use Dummynet [11] to
provide a stable network connection of 20ms RTT and
10Mbps bandwidth. Our client is a machine with a 2GHz
dual core CPU and 4GB memory. We clear the cache
for every page load, and define PLT as the time between
when the page is requested and when the load event is
fired. We then identified the following factors that slow
down the page load.

Unused CSS in page loads. The first observation is
that CSS files often contain rules that are either never
used in a page or at least not used during the initial page
load. Such CSS rules incur unnecessary network traffic
and parsing efforts. We quantify the amount of used ver-
sus unused CSS rules in initial page loads (see Figure 2).
In particular, 75% of CSS rules are unused in the me-
dian case. Surprisingly, 80% and 96% of CSS rules are
unused for google.com and facebook.com respec-
tively. This suggests that CSS is likely to be redundant
for interactive pages, because interactive pages tend to
load lots of CSS rules for future interactions, at the cost
of increased PLT.

Blocking JS/CSS. JavaScript and CSS often block pars-
ing on the critical path. We extend WProf [39] to mea-
sure the amount of additional round trips and parsing-
blocking object downloads and evaluations. We find
that 15% of the PLT for top pages is spent waiting for
JavaScript or CSS to be loaded on the critical path, and
5% of PLT is used for evaluating CSS and JavaScript.
Compared to the time to first byte, which is difficult to
reduce, there are significant potential gains from optimiz-
ing CSS and JavaScript.

Additional round trips. Web objects are not loaded in a
batch, but are often loaded sequentially due to the above
reason. The result is that loading a page usually incurs
many round trips, since loading an object often triggers
a sequence of latency-inflating operations such as redi-
rections, DNS lookups, TCP connection setups, and SSL
handshakes. We find that 80% of pages have sequentially
loaded Web objects on the critical path.

3 Design
Our design aims to reduce PLTs by restructuring the page
load process to remove the inefficiencies measured in
§2.2. We pre-process Web pages on the proxy server and
migrate page state to the client in order to streamline the
client-side page load process.

The key to our design is the state that we capture and
migrate. On the one hand, page state needs to be cap-
tured at an appropriate processing stage in order to min-
imize the network and computational costs; on the other
hand, the captured state should be comprehensive and
ensure that the rendered page on the client displays and

(a) Web page contents. This is to provide an overview of the load
process and we skipped some of the details in the interest of saving
space.

(b) Dependency graph of loading the page.

Figure 3: An example of loading a page using
Shandian.

functions correctly. Figure 3 shows an example of load-
ing a page with Shandian. We reorganize the state
in the root object (e.g., 0.json) while keeping the in-
tegrity of other objects (e.g., 1.css, d3.js, and 2.js). Fig-
ure 3(b) shows a dependency graph of loading the page
with Shandian. The page is loaded when the load-time
state is loaded and evaluated (e.g., the #main element is
rendered), which is much faster than Figure 1(b) with ob-
ject inter-dependencies. Processing post-load state does
not involve any complex inter-dependencies as the eval-
uation of objects can happen in parallel.

The challenges are detailed in §3.1. Next, we describe
the load-time state (§3.2) that is captured for fast page
loads, and the post-load state (§3.3) that is captured for
interactivity and compatibility. In addition to the state
that is migrated from the server to the client, we discuss
the state that needs to be migrated from the client to the
server (§3.4).

3.1 Challenges

We identify three challenges in designing Shandian.
First, precisely identifying state that is needed during

a page load (load-time state) is nontrivial since load-time
state and post-load state are largely mingled. For exam-
ple, some Web pages use a small portion of jQuery [21]
to construct HTML elements while leaving a large por-

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 113

tion of jQuery unused. Precisely identifying the load-
time state and migrating them to the client in the first
place is key to reducing PLT.

Second, we need to ensure that the Web page rendered
using Shandian is functionally equivalent to one that
is computed solely on the client. On the one hand, as
page state processing happens on both proxy servers and
clients, we need to carefully design the split process to
ensure that we do not break the pages. On the other hand,
the server needs proper client-side state to function prop-
erly. For example, some Web pages that adopt a respon-
sive Web design provide layouts specific to browser size.
The server needs information about browser size, cook-
ies or HTML5 local storage in order to function properly.

Third, completely recording and migrating the Web
page state computed by the server is nontrivial. After
the initial load process, the state computed by the server
is largely dispersed across various JavaScript code frag-
ments that comprise the Web page. This state needs to
be retrieved and then migrated to their equivalent loca-
tions on the client in order to ensure that the user has a
seamless experience in interacting with the Web page.

In the rest of the section, we discuss how we address
these challenges in designing Shandian.

3.2 Load-time state

The load-time state is designed primarily for facilitat-
ing display and is captured at a processing stage that
minimizes the amount of work required for rendering
on the client. To this end, design decisions regarding
the load-time state focus on how much we can eliminate
JavaScript/CSS evaluations while keeping the communi-
cated state small. As a result, the load-time state contains
only HTML elements and their styles, but not JavaScript
or post-load CSS. Below, we explain this in greater de-
tail and also describe the state that is migrated to reflect
JavaScript/CSS evaluations performed at the server.

3.2.1 Load-time state in JavaScript

JavaScript itself does not directly reflect on display, but
the result of JavaScript evaluation can. As JavaScript
evaluation is slow and blocks rendering, a design deci-
sion is to avoid both communicating JavaScript as part of
the load-time state and evaluating JavaScript on the client
device. Instead, the load-time state includes the result of
JavaScript evaluation on the server, and this result is re-
flected in the HTML elements and their styles. For exam-
ple, instead of transmitting a piece of D3 JavaScript [14]
to construct an SVG graphic on the client, the JavaScript
is evaluated at the server to generate the load-time state
of HTML elements that represent the SVG. This design
minimizes the computation time used in JavaScript eval-
uation for an initial page load and also avoids blocking
executions on the client, but this is at the cost of poten-

tially increased size of migrated state.

3.2.2 Load-time state in CSS

CSS evaluation is also slow, blocks rendering, and thus
should be avoided in the initial page load as much as
possible. The result of CSS evaluation is, however, a
detailed and potentially unwieldy list of styles for each
HTML element. Including the detailed list of styles in
the load-time state would fully eliminate the CSS evalu-
ation but incur a significant amount of time transferring
the state.

Here, we seek an intermediate representation for the
CSS state that incurs little additional time to finish the
CSS evaluation while keeping the state small. CSS eval-
uation involves a sequential process of CSS parsing, CSS
selector matching, and style computation. The CSS se-
lector matching step matches the selectors of all the CSS
rules to each HTML element, requiring more than a lin-
ear amount of time. The style computation process ap-
plies matched CSS properties in a proper order to gener-
ate a list of styles for rendering.

Our design decision here is to perform CSS parsing
and matching on the server but leave style computations
to be performed on the client. We migrate all the in-
puts required by style computations as part of load-time
state. The required inputs are largely determined by
the W3C algorithm that specifies the order according to
which CSS properties are applied [37]. In addition to
matched CSS selectors and properties for a given HTML
element, the state also includes the importance (marked
as important or not), the origin (from website, device, or
user), and the specificity (calculated from CSS selectors)
that determines this order. The resulting migrated state
is compact compared to the detailed list of styles, and at
the same time, it eliminates CSS selector matching on
the client.

3.2.3 Serialization and deserialization

In order to obtain the load-time state, the proxy server
first loads a Web page using a browser that has suffi-
cient capabilities to handle HTML, CSS, and JavaScript.
When the page load event or any other defined event is
fired, the proxy browser serializes the load-time state
from the memory. The server-side Shandian recur-
sively serializes each HTML element in the DOM (ex-
cluding CSS and JavaScript elements), its attributes, and
references to matched CSS rules. Then, the details of
the matched CSS rules are serialized. Each CSS rule in-
cludes a CSS selector, a list of CSS properties, the im-
portance, and the origin. Note that we do not add CSS
rules to each matched HTML element, but use references
to link HTML elements to their matched CSS rules (e.g.,
Figure 3(a) references the index of the matched CSS rule
in the CSS array). This is because a CSS rule is likely

5

114 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

to match with many HTML elements. The HTML ele-
ments and matched CSS rules together provide complete
information for a page to be displayed properly on the
client.

Deserializing the load-time state, which is both sim-
ple and fast, determines the page load time on the client.
The client-side Shandian linearly scans the load-time
state and uses HTML elements and attributes to con-
struct the DOM. Instead of running a full CSS evaluation,
Shandian computes styles from already matched CSS,
requiring just a linear amount of time. Shandian does
not require any client-side JavaScript evaluations be-
cause the state already contains the results of JavaScript
evaluation. Compared to the page load process, the de-
serialization process does not block, does not incur ad-
ditional network interactions, and avoids parsing of un-
used CSS or JavaScript, thereby significantly speeding
up page loads on the client as is demonstrated by Fig-
ure 3(b).

3.3 Post-load state

Following the load-time state, the post-load state needs to
be processed transparently in the background in order to
ensure that: (a) users can further interact with the page as
if it were delivered normally and not through Shandian
(interactivity), and (b) latency-reduction techniques are
still viable (compatibility). To ensure interactivity, the
post-load state should include the portion of JavaScript
that was not used in the load-time state, together with
unused CSS, because they might be required later in
user interactions. To ensure that complementary latency-
reduction techniques such as caching and CDNs can be
used in Shandian, we need to an unmodified version
of external objects in the post-load state.

The most direct approach would be to migrate un-
modified JavaScript/CSS snippets, which both ensures
integrity (and thus compatibility) and includes all the in-
formation for post-load state (interactivity). Our design
here focuses on examining the feasibility of migrating
unmodified snippets and processing unmodified snippets
while excluding the effects of load-time state.

3.3.1 Post-load state in CSS

Attaching unmodified CSS snippets (copies of inline
CSS and links to external CSS) in the post-load state is
both feasible and simple. We can just evaluate all the
CSS rules here regardless of whether they had appeared
in the load-time state. This is because CSS evaluation is
idempotent—evaluating the same CSS rule any number
of times would give the same results. In our design, the
CSS rules in load-time state will be evaluated twice (one
on the proxy server, and the other on the client) while
post-load CSS is evaluated once.

This design is simple and satisfies the constraints, but

at the cost of repeating the evaluation of load-time state.
For example, if a snippet of external CSS is already being
cached, our design does not require loading any portion
of this snippet from anywhere else. The price to pay is
the additional energy consumption and latencies that re-
sult from the repeated evaluation of load-time state. But,
since these computations happen after the initial load-
time version has been rendered, the additional cost does
not impact user’s perception of the page load time.

3.3.2 Post-load state in JavaScript

Attaching unmodified JavaScript snippets in the post-
load state incurs a complex processing procedure, be-
cause not all JavaScript evaluation is idempotent. On
the one hand, we need to ensure that JavaScript eval-
uation has equivalent results as if Shandian weren’t
used; on the other hand, we need to completely record
all the state of JavaScript. Other approaches such as mi-
grating the entire heap would incur significantly larger
state (10x) and break the integrity of JavaScript objects
(consequently caching), and are thus not an option here.

Ensuring equivalent results from JavaScript evalua-
tions. If we include the original unmodified JavaScript
code in the post-load state, it is hard to ensure that
JavaScript evaluation gives equivalent results as if
Shandian weren’t used. This is because the order
in which JavaScript appears determines the results of
JavaScript evaluation, but unfortunately this order is not
preserved as a result of isolating load-time and post-
load state. If we do not keep unmodified JavaScript in
the post-load state, the compatibility would be compro-
mised, so is the size of the communicated state.

Our approach uses unmodified JavaScript, together
with a bit of the memory state that we call heap (referred
to as partial heap), to reconstruct the whole heap. To
keep the partial heap small, the key is to extract as much
information as possible from the unmodified JavaScript.

To this end, we further break down the unmodified
JavaScript snippets into statements, and reuse as many
idempotent statements as possible. A JavaScript state-
ment can be a function declaration, a function call, a
variable declaration, and so forth. Evaluating function
declarations is idempotent, but evaluating other state-
ments is not necessarily idempotent. To avoid dou-
ble evaluating non-idempotent statements, the client-side
Shandian only evaluates function declarations in post-
load JavaScript, and directly applies the partial heap—
the results of JavaScript evaluation that are migrated
from the proxy server.

The contents of the partial heap largely depend on how
function declarations would be extracted from unmodi-
fied JavaScript. However, isolating function declarations
from other JavaScript is nontrivial because they are often
largely mixed. Below, we discuss the situations under

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 115

Events Event state

DOM events event name, callback and its arguments
XmlHttpRequest internal fields of the object
setTimeout time to fire, callback and its arguments
setInterval time to fire, interval, callback and its arguments

Table 1: Summary of events and their states.

which function declarations are hard to isolate and also
describe the use of the partial heap when necessary.

(i) Recursively embedded instance variables.
JavaScript does not distinguish between functions
and objects, and thus a function declaration can recur-
sively embed other function declarations and instance
variables. To this end, the server-side Shandian
recursively captures all the instance variables as the
partial heap even if they are embedded in a function
declaration. When the client-side Shandian evaluates
unmodified JavaScript, it first only evaluates function
declarations by ignoring these instance variables, and
then applies the partial heap to restore the instance
variables.

(ii) Self-invoking functions. A self-invoking func-
tion combines a function declaration and a function call
in a single statement. For example, (function(n)
{alert(n);})(0) is a self-invoking function. Our
approach is to split up the single statement into a func-
tion declaration and a function call, and evaluate them
differently.

(iii) eval and document.write can convert
strings to JavaScript code that embeds function decla-
rations. The use of eval and document.write is
considered as bad practices for both performance and se-
curity. We disable the use of Shandian for Web pages
that have invoked eval and document.write before
a page is loaded.

Recording all the state of JavaScript. Recording all the
state is challenging, because some state such as those in
function closures and event callbacks are hard to capture.

(i) Instance variables in function closures. A func-
tion closure is often used for isolating code execution
environments (referred to as scopes). We instrument the
JavaScript engine with the ability to refer to function clo-
sures and serialize the instance variable for each closure
respectively. Unlike other techniques that handle func-
tion closures by rewriting JavaScript [23], instrumenting
the JavaScript engine allows us to handle function clo-
sures efficiently.

(ii) State in event callbacks. Besides function closures,
event callbacks are also hard to capture. Here, we con-
sider three kinds of events that can be added in an initial
page load, which are summarized in Table 1. Serializing
the event callbacks requires us to capture all the state in
the event queue.

3.3.3 Serialization and deserialization

Serialization and deserialization of the post-load state
happens in the background while users interact with
load-time state and is more complex than that of the load-
time state.

The server-side Shandian first serializes unmodi-
fied CSS or JavaScript snippets if they are inline (their
links instead if they are external), ensuring compatibil-
ity. Next, Shandian serializes the event callbacks and
the partial heap excluding those that can be restored from
function declarations in the unmodified JavaScript (e.g.,
listeners and heap fields in Figure 3(a)). The post-
load state together with load-time state provides com-
plete information for a Web page to function correctly.
Note that the size of the load-time and post-load state
together exceeds that of the original Web page. The ex-
tra portions include the matched CSS rules, the partial
heap, and event state. Because they are computed from
the original Web page and are thus repetitive, they can be
compressed.

The client-side Shandian first deserializes and
parses unmodified CSS and JavaScript, fetching corre-
sponding objects if they are external. Unlike in a Web
page where fetching CSS and JavaScript has to com-
ply with the dependency model [39], here JavaScript and
CSS objects can be fetched completely in parallel. After
all the objects are fetched, CSS is completely evaluated,
and the function declarations in JavaScript are evaluated
to avoid duplicate evaluations. Then, the partial heap is
applied and events start to get fired. At this point, the
Web page state on the client is restored as if the entire
page load process happened on the client.

3.4 Client-side state

Website information stored in browsers. In addition
to migrating state from the server to the client, some
state stored in browsers needs to be first migrated from
the client to the server. While constructing the DOM,
the browser uses long-term storage including cookies,
HTML5 local storage, and Web database. Because the
server does not keep a copy of this state, lacking client-
side state might break the Web page. Shandian han-
dles client-side state by migrating them from the client to
the server along with the page request. But this has the
potential to increase the uplink transfers and thus slow
down page loads. To this end, we conduct a measurement
study on client-side state and have confirmed in §5.4 that
the client-side state that needs to be migrated is small.

Other sources of inconsistencies. Besides browser
storage, there can be differences in obtaining times-
tamps (Date.now), geolocation, and browser informa-
tion from the client and the server [8]. The absolute
timestamps should be the same on the client and the

7

116 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

server as if they are both synchronized to the global
clock. However, the time zone could be different and
thus needs to be sent to the server. The geolocation can
only be obtained by asking users for an explicit consent.
Once this happens, we send the geolocation to the server.
Browser information includes the window size and user
agents. As user agents are always sent to the server, we
do not need to explicitly handle it. We send the window
size to the server because it can be used to adjust the size
of the layout (e.g., in a responsive design).

4 Deployment and Implementation
4.1 Deployment

Shandian can be deployed either in the reverse proxy
(co-located with front-end servers) or as a separate glob-
ally distributed proxy service (similar to Opera mini [26]
and Amazon Silk [3]).

Conventional wisdom suggests deployments near
clients in order to make better use of edge caching and
CDNs and to offer low latencies (e.g., when JavaScript
offloading is needed). To the best of our knowledge,
all page rewriting techniques (e.g., Opera Mini [26]
and Amazon Silk [3]) are intended to be deployed near
clients. Unfortunately, such a deployment slows down
the preload process on the proxy server, because it adds
additional round trips to the Web server, which is a key
inefficiency especially for parsing-blocking object down-
loads in current Web pages (§2.2).

In our design of Shandian, we find that exploiting
caching/CDNs and reducing round trip delays to the ori-
gin server are not at odds and that a carefully designed
system can achieve both. We only require the resources
that are used as part of the initial page load to go through
the proxy server, while the resources accessed after the
initial load (e.g., images and videos) can still be cached
or be fetched from CDNs. Therefore, we consider de-
ployments wherein the proxy server is located near the
Web content server and is ideally co-located with the re-
verse proxy of the Web service in order to reduce the
preprocessing time in the proxy server.

4.2 Implementation

State format. We represent the migrated state in JSON
format, because it is simple and compact. Note that other
formats such as XML or HTML are also viable.

Server-side Shandian. We implement the server-side
browser as a webserver extension based on Chrome’s
content_shell with most modifications to Blink
and few to V8. We chose the lightweight browser
content_shell because it includes only page-
specific features such as HTML5 and GPU acceleration,
but not browser-specific features such as extensions, aut-
ofill, and spell checking [18].

Our instrumentation is primarily for state serialization,
and is minimal before state serialization starts: we turn
off downloads of images and other media because they
are not part of the migrated state; we also block objects
that are hosted on other domains because we mandate
downloading all the required CSS and JavaScript to the
Web server. While most of the state resides in Blink [5],
some also resides in V8 [36] (e.g., event callbacks and
function closures). The server extension can be added to
any webserver that allows process invocation.

Client-side Shandian. The client-side browser is also
based on Chrome, and we modify it as little as possi-
ble. We implemented a JSON lexer to parse the migrated
state, and this lexer is invoked instead of the HTML
lexer. After obtaining the HTML elements from the
JSON lexer, we perform DOM construction using un-
modified Blink. Given that the migrated state contains
matched CSS rules, we skip CSS selector matching and
directly apply the CSS properties to compute the element
styles. We modify V8 a little to selectively evaluate func-
tion statements in JavaScript and to apply server-side re-
sults of JavaScript evaluations. We modify Blink to cre-
ate event listeners and timers from our serialized state in-
stead of executing the load-time JavaScript. The client-
side browser can opt in to using Shandian using an
HTTP header and thus can easily fallback to loading the
original pages that Shandian does not support.

Note that we chose to modify the browsers instead of
implementing state migration using JavaScript because
JavaScript evaluation is time consuming and because it
does not provide the appropriate APIs necessary for all
the low-level manipulations. For example, JavaScript
does not allow access to the matched CSS rules for an
HTML element. By operating inside the browser code
base, we have easy in-memory access to all the desired
information, and we also avoid JavaScript execution at
the client prior to the page load event.

5 Evaluation
The evaluation aims to demonstrate that: (i) Shandian
significantly improves PLT under a variety of scenarios
(§5.2), (ii) Shandian does not significantly hurt data
usage §5.3), and (iii) the amount of client-side state that
needs to be transferred to the server is small (§5.4).

5.1 Experimental setup

We conduct the experiments by setting up a client that
loads Web pages using our modified Chrome and a server
that hosts pages using our server extension. We detail the
experimental setup below.

Our server is a 64-bit machine with 2.4GHz 16 core
CPU and 16GB memory, and has an Ubuntu 12.04 instal-
lation with the 3.8.0-29 kernel. To ensure all the Web ob-
jects are co-located with Shandian, we download the

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 117

mobile home pages of the Alexa top 100 websites to our
server and use Apache to host them. We download all
the Web objects for a page, ensuring that the page loads
by our server extension do not issue external network re-
quests. In practice, only Web objects that are used in
initial page loads need to be hosted on the server. For ex-
ample, synchronous JavaScript needs to be placed on the
server, but images and videos can be placed anywhere
else. Our experimental setup emulates a deployment set-
ting where Shandian executes on a front-end server of
a Web service.

Our clients include mobile phones (Nexus S with
1GHz Cortex A8 CPU, 512MB RAM) and virtual ma-
chines with varying CPU and memory. We experimented
with a 3G/4G cellular network, WiFi, and Ethernet in a
LAN. We focus on the results from LAN because results
from the cellular network are similar to simulated LAN
settings.

We define page load time (PLT) as the time to display
page contents that are rendered before the W3C load
event [38] is fired. Note that our approach works with
any metrics of page load times, though we use the W3C
load metric to evaluate our prototype. Alternatives to
PLT such as the above-the-fold time (AFT) [7] and speed
index [34] represent user-perceived page load times, but
they require cumbersome video recordings and analysis
and are thus out of the scope of this paper. We clear
browser cache between any two page loads and do not
consider client-side state that requires a login. We report
the median page load times out of five runs for all the
experiments.

5.2 Page load times

One source of benefits of Shandian comes from reduc-
ing the dependencies between network and computation,
which in turn eliminates network operations that block
rendering. For example in Figure 3(b), the network in-
teraction is minimized to just fetching the load-time state
in 0.json (before the page is loaded). Another source of
benefits comes from reducing the amount of computa-
tion needed for the initial page loads (evaluating just the
load-time state instead of evaluating all the dependent re-
sources). We now demonstrate the performance benefits
under a wide variety of scenarios.

5.2.1 PLT on mobile devices

We use a mobile phone, Nexus S with 1GHz Cortex-A8
CPU, 16GB internal memory (512MB RAM), and An-
droid 4.1.2. The mobile phone is connected to the Inter-
net via WiFi. We install our modified Android Chrome
and automate experiments using adb shell. We load
the Web pages with Shandian and with unmodified
Chrome on the mobile phone. Figure 4(a) shows that the
PLTs with Shandian are significantly reduced com-

 0

 5

 10

 15

 20

 25

 30

0 50 100

A
b
s
o
lu

te
 P

L
T

s
 (

s
e
c
o
n
d
s
) Chrome

SplitBrowser

(a) Overall page load times

 0

 5

 10

 15

 20

 25

 30

0 50 100

A
b
s
o
lu

te
 P

L
T

s
 (

s
e
c
o
n
d
s
) tp SplitBrowser

tp Chrome

tf SplitBrowser

tf Chrome

ts

(b) Breakdowns of page load times

Figure 4: Page load times (seconds) on Nexus S with
1GHz Cortex A8 CPU, 512MB RAM, and Android
4.1.2, and with WiFi. Shandian reduces page load
times by 60% compared to Chrome in the median case.

pared to those with unmodified Chrome. The reduction
is as much as 60% in the median case.

Source of benefits: To identify the source of bene-
fits, we further break down PLTs into time spent by the
Shandian server extension ts, time to fetch the first
chunk of the page tf , and time to parse the page (includ-
ing parsing-blocking network fetch time) tp. Figure 4(b)
shows that Shandian’s server extension uses little time
to pre-process pages (22ms in the median case, and 250
ms in the maximum case). Compared to client-side page
loads that take a few seconds, server-side page loads have
negligible overheads, due to the benefits accrued from
more compute power (especially memory), a lightweight
server browser, and mitigated network inefficiencies by
deploying the cloud server near the Web server. The ben-
efits together suggest that migrating page load computa-
tions to the server is effective. By comparing the client-
side parsing times tp of Shandian and Chrome, we find
that the benefits of Shandian stem mainly from client-
side parsing. This is because Shandian requires no
JavaScript evaluations, eliminates redundant CSS, and
increases network utilization by eliminating blocking op-
erations.

5.2.2 PLT on desktop VM

To demonstrate how much Shandian helps PLTs on a
variety of scenarios, we use a desktop VM with Ubuntu
12.04 kernel 3.8.0-29 installed and connected to the net-

9

118 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

PLT

0, Chrome

0, SP

200ms, Chrome

200ms, SP

Figure 5: Varying RTT with fixed 1GHz CPU and 1GB
memory.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

PLT

no cap, Chrome

no cap, SP

1Mbps, Chrome

1Mbps, SP

Figure 6: Varying bandwidth with fixed 1GHz CPU,
1GB memory, and 200ms RTT.

work using Ethernet. We use Dummynet [11] to emulate
varying bandwidths and RTTs.

Varying RTT: We vary RTT from the minimal of the
LAN to 200 milliseconds with fixed 1GHz CPU and
1GB memory, which are representative of current mo-
bile devices. We do not cap the bandwidth. The sce-
nario of minimal RTT approximates the scenario of hav-
ing caching always enabled. Figure 5 shows the cu-
mulative distributions of PLTs of the 100 Web pages.
The increased RTT affects much of PLT with Chrome
but affects little of PLT with Shandian, meaning that
Shandian is insensitive to RTT. This is because among
the breakdowns of PLT only tf which is a small fraction
of PLT is affected by RTT.

Varying bandwidth: We experiment with a 1Mbps
bandwidth and with no bandwidth cap using fixed 1GHz
CPU, 1GB memory, and 200ms RTT. Figure 6 shows that
PLTs are affected little by bandwidths, which is consis-
tent with previous findings [33, 31] that bandwidth is not
a limiting factor of PLTs. We also run experiments in
a cellular network but find similar results to simulated
links.

Varying CPU: We vary CPU speed from 1GHz to
2GHz while fixing memory size to 1GB. We do not
tune RTT or bandwidth, meaning that PLT is domi-
nated by computation. Figure 7 shows that the PLT
improvement is linear to CPU increase. It also shows
that CPU speed has the same amount of impact for
both Shandian and Chrome, because processing load-
time state in Shandian still incurs lots of CPU cy-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

PLT

2GHz, Chrome

2GHz, SP

1.5GHz, Chrome

1.5GHz, SP

1GHz, Chrome

1GHz, SP

Figure 7: Varying CPU speed with fixed 1GB memory,
no bandwidth cap, and no RTT insertion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

PLT

0.5G mem, Chrome

0.5G mem, SP

1G mem, Chrome

1G mem, SP

1.5G mem, Chrome

1.5G mem, SP

Figure 8: Varying memory size with fixed 2GHz CPU,
no bandwidth cap, and no RTT insertion.

cles. As PLT is dominated by computation, the results
here approximate the situations when objects are inlined
or cached. Clearly, Shandian significantly improves
PLTs than simply inlining objects since JavaScript eval-
uations and most of CSS evaluations are removed from
the page load process.

Varying memory: We vary memory size from 0.5GB
to 1.5GB with fixed 1GHz CPU and no network tuning.
Figure 8 suggests that memory size has the same amount
of impact for both Shandian and Chrome, but a de-
crease in memory size has a more than linear negative
impact on PLT.

In summary, Shandian significantly improves PLT
compared to Chrome under a variety of realistic mobile
scenarios. This is rare since most techniques are spe-
cific to improve one of computation and network. But
Shandian improves both.

Note that we do not evaluate page interactivity met-
rics, e.g., the time until interaction is possible, because
users spend time on the contents of a Web page before
interacting with it and it is difficult to model this de-
lay. Shandian could improve the time until interaction
since all external resources are loaded and evaluated in
parallel, but it can also hurt if the load-time state is too
large and blocks the transfer of the post-load state that is
required for page interactivity.

5.3 Size of transferred data

We evaluate the transferred data size as to (i) whether
it hurts latencies and (ii) whether it hurts data usage.
To understand whether the size of transferred data helps

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 119

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100

C
D

F

Size of the critical piece relative to the original HTML (KB)

Increased

Decreased

Figure 9: Size of the critical piece relative to the original
HTML (KB).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

% increased page size

Uncompressed

Compressed

Figure 10: Percentage of increased page size (uncom-
pressed v.s. compressed).

or hurts latencies, we consider the size of the load-time
state, because the post-load state and other objects do
not affect the page load time. Figure 9 shows the size
of the load-time state when a standard gzip compression
is applied. The size of the load-time state relative to the
original HTML decreases for most pages, and increases
by a small amount only for less than 20% of the pages.
This means that our migrated load-time state improves
latencies in overall.

To evaluate whether the size of migrated state hurts
data usage which is important for mobile browsers, we
consider the total size of Web pages transferred to the
client including all the embedded objects. Figure 10
shows that the transferred data increases by 7% before
compression, but it drops to 1% with standard gzip com-
pression. This indicates that the overheads introduced by
our approach are minimal.

5.4 Client-side state

We obtain client-side state from the browsers of a group
of people, totaling 2,435 domains. The majority of
the client-side state is HTML5 localStorage and cook-
ies. We find that 90% of the websites use less than 460
bytes of localStorage, while 2% of the websites use more
than 100KB of localStorage. Large localStorage is al-
most always used for caching. For example, websites
that use CloudFlare keep many caches in their localStor-
age; social networking websites such as Facebook store
friends lists in the localStorage; and location-based ser-
vices maintain the points of interest in the localStorage.
Lack of such localStorage does not break Web pages be-
cause cache misses can be remedied by fetching from the

server. Unlike localStorage, cookies are widely used but
are always small, and Web databases are used in less than
1% of the websites and are small. The use of sessionStor-
age is also not much, likely because it only persists per-
session state and cannot cache as long as localStorage.
The study of client-side state suggests that migrating all
the necessary client-side state (e.g., cookies) to the server
has a negligible effect on page load time.

6 Discussion
We believe that Shandian is an important first step
in mitigating dependencies that are the key bottleneck
of latencies in page loads. While future advances
in JavaScript or the Web might require us to patch
Shandian so as to ensure that Shandian does not
break Web pages, there are no fundamental obstacles that
prevent us from patching Shandian to track changes to
the web page formats. Next, we discuss privacy, com-
patibility, and further optimizations that can be added to
Shandian.

Latency-reducing techniques. Shandian is compat-
ible with existing latency-reduction techniques with no-
table examples of caching and CDNs. Both caching and
CDNs use a URL as the key to store a Web object. To
preserve the use of caching and CDNs, we need to pre-
serve the integrity of both the Web object itself and its
corresponding URL. We leave images and other media
unmodified because they do not block HTML parsing,
and we make the design decisions to migrate unmodi-
fied CSS and JavaScript in the post-load state. All the
resources that are typically cached or served from CDNs
are kept unmodified, meaning that all the caching and
CDN abilities are preserved.

Privacy. We consider the additional information that
users have to sacrifice in order to use Shandian. Even
without Shandian, websites already have access to
user information revealed as part of the page load process
(e.g., access patterns, user locations), and Shandian
does not result in the exposure of additional user infor-
mation. This is because: (i) website information stored
in browsers in the form of cookies or localStorage comes
from the website itself; (ii) current browsers expose ge-
olocation to websites upon receiving consent from users;
(iii) websites have already had access to the browser in-
formation (using JavaScript). To sum up, the client-side
state either comes from the website or is already exposed
to the website in the absence of Shandian, and thus
users do not have to expose any additional information
to servers in order to use Shandian.

Our design is compatible with HTTPS if it is deployed
on a reverse proxy that has terminated SSL, but requires
additional trust when deployed as a globally distributed
proxy. Similar to Amazon Silk and Opera mini, we

11

120 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

would need to trust the proxy. The connection between
the Web server and the proxy and the connection between
the proxy and the client use two separate HTTPS con-
nections. To handle SSL certificates, we need to route
the requests to the proxy so that the proxy can fetch Web
pages on behalf of the client.

Security techniques backed by same-origin policies.
Same-origin policy (SOP) is used to protect third-party
scripts from accessing first-party assets such as cook-
ies. Our design is compatible with SOP when third-party
scripts are embedded using an iframe, because frames
and parent document are isolated from each other. When
third-party scripts are embedded using a script tag,
they are given full permissions to access the first-party
assets, in which case our design respects SOP.

Scaling the proxy servers. Shandian adds compu-
tation costs to proxy servers, making it hard to scale.
We discuss the scalability issues of Shandian in three
adoption scenarios: by browsers, by third-party proxy
vendors, and by websites respectively. If browsers or
third-party proxy vendors were to adopt Shandian,
they can rent private cloud instances (e.g., Amazon EC2)
to users, which is similar to the scenarios of Opera Mini
and Amazon Silk.

If websites were to adopt Shandian, additional work
has to be done to increase scalability. A possible ap-
proach is to exploit the similarities of the Web pages
within a website. For example, when the same Web page
is sent to different users, most portions of the page are
the same except for personalized data. The server side of
Shandian can cache intermediate representations that
are generated from loading one Web page for one user.
These intermediate representations, if used smartly, can
reduce the computation of loading the same page for a
different user, or for loading a different page (if there are
similarities across pages). The technical details of this
extension are outside of the scope of this paper.

Using a cloud-based proxy for compression.
Shandian is orthogonal to existing cloud-based
proxy approaches that do not restructure the page load
process. This means that even if a proxy is already
placed near the server for Shandian, another proxy
can be placed near the client for other purposes (e.g.,
Android Chrome Beta [1] for data compression, SPDY
proxies for rewriting connections between the proxy
and the device). However, approaches that restructure
the page load process at clients (e.g., Opera mini [26]
and Amazon Silk [3]) cannot be used together with
Shandian.

Extending the definition of PLT. Currently,
Shandian is designed for improving page load
times defined by the W3C load event. But it would be
trivial to extend Shandian to improve any definition

of page load times. The key is to capture the state of
event listeners and the progress of HTML parsing for a
given definition of page load time. The flexibility of PLT
definitions is important because reports have shown that
user-perceived page load times matter more than when
the load event is fired [7].

7 Related Work

Cloud browsers for mobile devices. The closest re-
lated work is cloud browsers for mobile devices. Opera
mini [26] and Amazon Silk [3] only handle display in
client-side browsers. Therefore, evaluating JavaScript
depends on the network which is demonstrated to be
both slow and unreliable in mobile settings [30]. Dif-
ferent from these browsers, we provide a fully func-
tioning client-side browser that reduces latencies. Mo-
bile Chrome [1] compresses Web pages through a proxy
server to reduce network traffic. Our work is orthogonal
to Mobile Chrome.

Mitigating page load dependencies. To mitigate
the impact of page load dependencies, SPDY server
push, Klotski [10], and techniques developed by In-
start Logic [20] provide means to prioritize Web con-
tents at the object level on front-end servers, proxies, and
browsers respectively. These solutions require knowl-
edge of dependencies between Web objects within a page
beforehand to build a prioritization plan. Shandian
prioritizes Web contents at a finer granularity and does
not require the system to obtain any knowledge of the
Web pages beforehand. Best practices for Web author-
ing also aim at mitigating page load dependencies [31].
For example, a common advice is to place CSS at the be-
ginning of a Web page and to place JavaScript at the end
of a Web page. But, such advice is hard to execute since
the construction of many Web pages depends on using
JavaScript libraries such as jQuery [21] and D3.js [14],
which need to appear above where they are used in a
page. Shandian is the first that automatically enforces
this best practice.

Improving computation. Much work has been done to
improve page load computations, with a focus on exploit-
ing parallelism. Meyerovich et al. proposed a parallel ar-
chitecture for computing Web page layout by paralleliz-
ing CSS evaluations [25]. The Adrenaline browser ex-
ploits parallelism by splitting up a Web page into many
pieces and processing each piece in parallel [24]. The
ZOOMM browser further parallelizes the browser engine
by preloading and preprocessing objects and by speed-
ing up computation in sub-activities [12]. Due to the
dependencies that are intrinsic in browsers, the level of
parallelism is largely limited. Shandian removes de-
pendencies for initial page loads on the client and thus
provides opportunities for more parallelism. Besides in-

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 121

creasing parallelism, other efforts focus on adding archi-
tectural support. Zhu et al. [41] specialized the proces-
sors for fast DOM tree and CSS access. Choi et al. [13]
proposed a hybrid-DOM to efficiently access the DOM
nodes. These approaches are orthogonal to Shandian.

Improving network. There are several efforts that im-
prove page load latencies at the networking level. This
includes speculations inside browsers (e.g., TCP pre-
connect [19], DNS pre-resolution [22]), using new proto-
cols (e.g., SPDY [32], QUIC [29]), and improving TCP
for Web traffic (e.g., TCP fast open [28], proportional
rate reduction [16], and Tail loss probe [15, 17]). While
being effective in reducing latencies for a single Web ob-
ject, these techniques have a limited impact in reducing
page load times; these techniques reduce the network
costs but do not reduce the amount of HTTP requests
for the initial page load nor do they eliminate the ineffi-
ciencies associated with dependencies. Instead, we first
identify page load dependencies as the primary bottle-
neck for PLT, and then propose Shandian to mitigate
the dependencies.

8 Summary
In this paper, we presented Shandian that improves
PLT by simplifying the client-side page load process
through an architecture that splits the page load process
between a proxy server and the client. By performing
preprocessing in the proxy server with more compute
power, Shandian largely reduces the inefficiencies of
page loads on the client. Shandian is fast for dis-
playing Web pages, ensures that users are able to con-
tinue interacting with the page, and is compatible with
caching, CDNs, and security features that enforce same-
origin policies. Our evaluations show that Shandian
reduces PLTs by more than half on a variety of mobile
settings with varied RTT, bandwidth, CPU power, and
memory size.

Acknowledgements
We thank our shepherd, Vyas Sekar, and the anonymous
reviewers for their feedback. This work was supported
by the National Science Foundation under grants CNS-
1318396, CNS-1420703, and CNS-1518702.

References
[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-

gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Googles
data compression proxy for the mobile web. In
Proc. of the USENIX conference on Networked Sys-
tems Design and Implementation (NSDI), 2015.

[2] Top sites in United States. http://www.
alexa.com/topsites/countries/US.

[3] Amazon silk browser. http://amazonsilk.
wordpress.com/.

[4] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating
user-perceived quality into Web server design. In
Computer Networks Volume 33, Issue 1-6, 2000.

[5] Blink: Chrome’s Rendering Engine. http://
www.chromium.org/blink.

[6] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is
in the eye of the beholder: meeting users’ require-
ments for Internet quality of service. In Proc. of
the ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2000.

[7] J. Brutlag. Above the fold time: Measuring
web page performance visually, Mar. 2011.
http://en.oreilly.com/velocity-
mar2011/public/schedule/detail/
18692.

[8] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Inter-
active Record/Replay for Web Application Debug-
ging. In Proc. of the ACM UIST, 2013.

[9] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.
Understanding website complexity: measurements,
metrics, and implications. In Proc. of the SIG-
COMM conference on Internet Measurement Con-
ference (IMC), 2011.

[10] M. Butkiewicz, D. Wang, Z. Wu, H. V. Mad-
hyastha, and V. Sekar. Klotski: Reprioritizing
web content to improve user experience on mo-
bile devices. In Proc. of the USENIX conference
on Networked Systems Design and Implementation
(NSDI), 2015.

[11] M. Carbone and L. Rizzo. Dummynet revisited.
ACM SIGCOMM Computer Communication Re-
view, 40(2):12–20, Mar. 2010.

[12] C. Cascaval, S. Fowler, P. M. Ortego, W. Piekarski,
M. Reshadi, B. Robatmili, M. Weber, and
V. Bhavsar. ZOOMM: A Parallel Web Browser En-
gine for Multicore Mobile Devices. In Proc. of the
ACM PPoPP, 2013.

[13] R. H. Choi and Y. Choi. Designing a high-
performance mobile cloud web browser. In Proc.
of the International World Wide Web Conference
(WWW), 2014.

[14] D3.js. http://d3js.org/.

[15] N. Dukkipati, N. Cardwell, Y. Cheng, and
M. Mathis. Tail Loss Probe (TLP): An algo-
rithm for fast recovery of tail losses, Feb. 2013.

13

122 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

http://tools.ietf.org/html/draft-
dukkipati-tcpm-tcp-loss-probe-01.

[16] N. Dukkipati, M. Mathis, Y. Cheng, and
M. Ghobadi. Proportional rate reduction for TCP.
In Proc. of the SIGCOMM conference on Internet
Measurement Conference (IMC), 2011.

[17] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-
Bassett, and R. Govindan. Reducing web latency:
the virtue of gentle aggression. In Proc. of the ACM
SIGCOMM, 2013.

[18] Google. Content module. http://www.
chromium.org/developers/content-
module.

[19] I. Grigorik. Chrome networking: DNS
prefetch & TCP preconnect, June 2012.
http://www.igvita.com/2012/06/04/
chrome-networking-dns-prefetch-
and-tcp-preconnect/.

[20] Instart logic. https://www.instartlogic.
com/.

[21] jquery. https://www.jquery.com/.

[22] E. Lawrence. Internet Explorer 9 net-
work performance improvements, Mar.
2011. http://blogs.msdn.com/b/
ie/archive/2011/03/17/internet-
explorer-9-network-performance-
improvements.aspx.

[23] J. Lo, E. Wohlstadter, and A. Mesbah. Ima-
gen: Runtime Migration of Browser Sessions for
JavaScript Web Applications. In Proc. of the In-
ternational World Wide Web Conference (WWW),
2013.

[24] H. Mai, S. Tang, S. T. King, C. Cascaval, and
P. Montesinos. A Case for Parallelizing Web Pages.
In Proc. of HotPar, 2012.

[25] L. A. Meyerovich and R. Bodik. Fast and parallel
webpage layout. In Proc. of the international con-
ference on World Wide Web (WWW), 2010.

[26] Opera mini browser. http://www.opera.
com/mobile/.

[27] Shopzilla: faster page load time =
12% revenue increase. http://www.
strangeloopnetworks.com/resources/
infographics/web-performance-and-
ecommerce/shopzilla-faster-pages-
12-revenue-increase/.

[28] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proc. of the Inter-
national Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2011.

[29] J. Roskind. QUIC, a multiplexed stream transport
over UDP. http://www.chromium.org/
quic.

[30] A. Sivakumar, V. Gopalakrishnan, S. Lee, S. Rao,
S. Sen, and O. Spatscheck. Cloud is not a silver bul-
let: A Case Study of Cloud-based Mobile Brows-
ing. In Proc. of HotMobile, 2014.

[31] S. Souders. High Performance Web Sites. O’Reilly
Media, 2007.

[32] Spdy. http://dev.chromium.org/spdy.

[33] SPDY whitepaper. http://www.chromium.
org/spdy/spdy-whitepaper.

[34] Speed index. https://sites.google.
com/a/webpagetest.org/docs/using-
webpagetest/metrics/speed-index.

[35] Apache module for rewriting web pages to re-
duce latency and bandwidth. http://www.
modpagespeed.com/.

[36] V8: Chrome’s JavaScript Engine. https://
developers.google.com/v8/.

[37] Cascading Style Sheets level 2 revision 1 (CSS
2.1) specification, June 2011. http://www.w3.
org/TR/CSS21/.

[38] Document Object Model (DOM) Level 3 Events
specification, Sept. 2014. http://www.w3.
org/TR/DOM-Level-3-Events/.

[39] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystifying page load
performance with WProf. In Proc. of the USENIX
conference on Networked Systems Design and Im-
plementation (NSDI), 2013.

[40] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. How speedy is SPDY?
In Proc. of the USENIX conference on Networked
Systems Design and Implementation (NSDI), 2014.

[41] Y. Zhu and V. J. Reddi. WebCore: Architectural
Support for Mobile Web Browsing. In Proc. of the
41st International Symposium on Computer Archi-
tecture (ISCA), 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 123

Polaris: Faster Page Loads Using Fine-grained Dependency Tracking

Ravi Netravali*, Ameesh Goyal*, James Mickens†, Hari Balakrishnan*

*MIT CSAIL †Harvard University

Abstract
To load a web page, a browser must fetch and eval-
uate objects like HTML files and JavaScript source
code. Evaluating an object can result in additional ob-
jects being fetched and evaluated. Thus, loading a web
page requires a browser to resolve a dependency graph;
this partial ordering constrains the sequence in which a
browser can process individual objects. Unfortunately,
many edges in a page’s dependency graph are unobserv-
able by today’s browsers. To avoid violating these hidden
dependencies, browsers make conservative assumptions
about which objects to process next, leaving the network
and CPU underutilized.

We provide two contributions. First, using a new mea-
surement platform called Scout that tracks fine-grained
data flows across the JavaScript heap and the DOM,
we show that prior, coarse-grained dependency analyz-
ers miss crucial edges: across a test corpus of 200
pages, prior approaches miss 30% of edges at the me-
dian, and 118% at the 95th percentile. Second, we quan-
tify the benefits of exposing these new edges to web
browsers. We introduce Polaris, a dynamic client-side
scheduler that is written in JavaScript and runs on un-
modified browsers; using a fully automatic compiler,
servers can translate normal pages into ones that load
themselves with Polaris. Polaris uses fine-grained depen-
dency graphs to dynamically determine which objects to
load, and when. Since Polaris’ graphs have no missing
edges, Polaris can aggressively fetch objects in a way that
minimizes network round trips. Experiments in a variety
of network conditions show that Polaris decreases page
load times by 34% at the median, and 59% at the 95th
percentile.

1 INTRODUCTION

Users demand that web pages load quickly. Extra delays
of just a few milliseconds can result in users abandon-
ing a page early; such early abandonment leads to mil-
lions of dollars in lost revenue for page owners [5, 6, 10].
A page’s load time also influences how the page is
ranked by search engines—faster pages receive higher
ranks [12]. Thus, a variety of research projects [17, 23,
33, 34] and commercial systems [1, 21, 22, 31] have tried
to reduce page load times.

To load a page, a browser must resolve the page’s
dependency graph [8, 18, 37]. The dependency graph
captures “load-before” relationships between a page’s
HTML, CSS, JavaScript, and image objects. For exam-
ple, a browser must parse the HTML <script> tag for

(a) The dependencies captured by traditional approaches.

(b) The dependencies captured by Scout, which tracks fine-
grained data flows. New edges are shown in red.

Figure 1: Dependency graphs for weather.com.

a JavaScript file before that file can be fetched. Similarly,
the browser must execute the JavaScript code in that file
to reveal which images should be dynamically fetched
via XMLHttpRequests. The overall load time for a
page is the time that the browser needs to resolve the
page’s dependency graph, fetch the associated objects,
and evaluate those objects (e.g., by rendering images or
executing JavaScript files). Thus, fast page loads require
efficient dependency resolution.

Unfortunately, a page’s dependency graph is only par-
tially revealed to a browser. As a result, browsers must
use conservative algorithms to fetch and evaluate objects,
to ensure that hidden load-before relationships are not
violated. For example, consider the following snippet of
HTML:
<script src=‘‘http://x.com/first.js’’/>
<script src=‘‘http://y.com/second.js’’/>

When a browser parses this HTML and discovers the
first <script> tag, the browser must halt the pars-
ing and rendering of the page, since the evaluation
of first.js may alter the downstream HTML [19].
Thus, the browser must synchronously fetch and eval-
uate first.js; this is true even if first.js does
not modify the downstream HTML or define JavaScript
state required by second.js. Synchronously loading
JavaScript files guarantees correctness, but this approach
is often too cautious. For example, if first.js and
second.js do not modify mutually observable state,
the browser should be free to download and evaluate the
files in whatever order maximizes the utilization of the

1

124 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Scheduler Stub

Unmodified
Web Browser

Fine-grained
Dependency

Graph

HTTP request (e.g. GET /)

HTTP response Website

Offline
Dependency

Tracker
(Scout)Client

Web Servers

Original
HTML

<html>
…
</html>

Scheduler
Logic

Fine-grained
Dependency

Graph

Figure 2: With Polaris, clients request web pages using standard HTTP requests. Servers return a page’s HTML, as
well as the Polaris scheduler (written in JavaScript) and the page’s fine-grained dependency graph (generated offline
by Scout). Polaris then determines the best order to fetch the external objects that are referenced by the HTML.

network and the CPU. However, pages do not expose
such fine-grained dependency information to browsers.
This forces browsers to make conservative assumptions
about safe load orders by using coarse-grained relation-
ships between HTML tags to guide object retrieval. As a
result, pages load more slowly than necessary.

This paper makes two contributions. First, we intro-
duce a new measurement infrastructure called Scout that
automatically tracks fine-grained data dependencies in
web pages. By rewriting JavaScript code and HTML
files, Scout instruments web pages to track precise data
flows between and within the JavaScript heap and the
browser’s internal HTML and CSS state. For example,
Scout can track read/write dependencies for an indi-
vidual JavaScript variable that is accessed by multiple
JavaScript files. The resulting dependency graphs are
more accurate than those of prior frameworks. As shown
in Figure 1, our graphs also have dramatically different
structures than those of previous approaches. In particu-
lar, for 81% of the 200 real-world pages that we exam-
ined, our new graphs have different critical paths than
those of graphs from prior work (§3.5). The critical path
defines the set of object evaluations which, if delayed,
will always delay the end-to-end load time for a page.
Thus, the fact that our new graphs look different is not
just an academic observation: our graphs imply a faster
way to load web pages.

Our second contribution is Polaris, a dynamic client-
side scheduler which uses Scout’s fine-grained depen-
dency graphs to reduce page load times. Figure 2 pro-
vides an overview of how Polaris works. When a user
makes a request for a Polaris-enabled page, the server
returns a scheduler stub instead of the page’s orig-
inal HTML. The scheduler stub includes the Polaris
JavaScript library, the page’s fine-grained dependency
graph (as generated by Scout), and the original HTML.
The Polaris library uses the Scout graph, as well as dy-
namic observations about network conditions, to load ob-
jects in an order that reduces page load time.

As shown in Figure 1, our fine-grained data track-
ing adds new constraints to standard dependency graphs.
However, and perhaps counterintuitively, the Polaris
scheduler has more opportunities to reduce page load
times. The reason is that, since Polaris has a priori knowl-
edge of the true data dependencies in a page, Polaris can
aggressively fetch and evaluate objects “out-of-order”
with respect to lexical constraints between HTML tags.
In contrast, prior scheduling frameworks lack knowl-
edge of many dependencies, and are forced to make con-
servative assumptions that are derived from the lexical
HTML relationships (§2.2). Those conservative assump-
tions guarantee the correctness of an assembled page in
the face of hidden dependencies, but they often leave a
browser’s CPU and network connections underutilized.
By using fine-grained dependency graphs, Polaris can
ensure both correctness and high utilization of proces-
sors and network connections.

Because Polaris’ scheduler is implemented in
JavaScript, Polaris can reduce page load times on
unmodified commodity browsers; this contrasts with
load optimizers like Klotski [8], Amazon Silk [3], and
Opera Mini [30], which require modified browsers to
interact with a server-side component. Polaris is also
complementary to previous load optimizers that use data
compression (§6) or multiplex several HTTP requests
atop a single TCP connection (§5.4).

We evaluated Polaris using 200 popular web pages and
a variety of network conditions, with latencies ranging
from 25 ms to 500 ms, and bandwidths ranging from 1
Mbit/s to 25 Mbits/s. Polaris reduced page load times by
34% at the median, and 59% for the 95th percentile sites.

2 BACKGROUND

In a conventional page load, the browser first downloads
the page’s top-level HTML. For now, we assume that
the HTML does not reference any JavaScript, CSS, or
multimedia files. As the browser parses the HTML tags,
it generates a data structure called the Document Ob-
ject Model (DOM) tree. Each HTML tag has a corre-

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 125

sponding node in the DOM tree; the overall structure
of the DOM tree mirrors the hierarchical tag structure
of the HTML. Once the HTML parse is finished and
the DOM tree is complete, the browser constructs a ren-
der tree, which only contains the DOM nodes to be dis-
played. For example, a <text> node is renderable, but
a <head> node is not. Each node in the render tree is
tagged with visual attributes like background color, but
render nodes do not possess on-screen positions or sizes.
To calculate those geometric properties, the browser tra-
verses the render tree and produces a layout tree, which
determines the spatial location of all renderable tags. Fi-
nally, the browser traverses the layout tree and updates
(or “paints”) the screen. Modern browsers try to pipeline
the construction of the various trees, in order to progres-
sively display a page.

2.1 Loading More Complicated Pages
JavaScript: Using <script> tags, HTML can in-
clude JavaScript code. A script tag blocks the HTML
parser, halting the construction of the DOM tree
and the derivative data structures. Script tags block
HTML parsing because JavaScript can use interfaces
like document.write() to dynamically change the
HTML after a <script> tag; thus, when the HTML
parser encounters a <script> tag, the parser cannot
know what the post-<script> HTML will look like
until the JavaScript code in the tag has executed. As a re-
sult, script tags inject synchronous JavaScript execution
delays into a page load. If a script tag does not contain
inline source code, the browser also incurs network la-
tencies to download the JavaScript code.

To reduce these synchronous latencies, modern
browsers allow developers to mark a <script> tag
with the async or defer attribute. An async script is
downloaded in parallel with the HTML parse, but once it
is downloaded, it will execute synchronously, in a parse-
blocking manner. A defer script is only downloaded
and executed once HTML parsing is complete.

By default, a <script> tag is neither async nor
defer. Such scripts represent 98.3% of all JavaScript
files in our test corpus of 200 popular sites (§3.5). When
the HTML parser in a modern browser encounters a syn-
chronous <script> tag, the parser enters speculation
mode. The parser initiates the download of the JavaScript
file, and as that download completes in the background,
the parser continues to process the HTML after the script
tag, fetching the associated objects and updating a spec-
ulative version of the DOM. The browser discards the
speculative DOM if it is invalidated by the execution of
the upstream JavaScript code. We demonstrate in Sec-
tion 5 that speculative parsing is limited in its ability to
resolve deep dependency chains consisting of multiple
JavaScript files.

Object Type Median 95th Percentile
HTML 11.8% 26.2%

JavaScript 22.9% 43.0%
CSS 3.7% 16.7%

Images 44.9% 77.4%
Fonts 0.0% 7.8%
JSON 0.4% 5.0%
Other 0.0% 7.8%

Table 1: Per-page object distributions for 200 popular
sites.

CSS: A page may use CSS to define the visual pre-
sentation of HTML tags. The browser represents those
stylings using a CSS Object Model (CSSOM) tree. The
root of the CSSOM tree contains the general styling rules
that apply to all HTML tags. Different paths down the
tree apply additional rules to particular types of nodes,
resulting in the “cascading” aspect of cascading style
sheets.

A browser defines a default set of CSS rules known
as the user agent styles. A web page provides additional
rules by incorporating CSS <link> tags. To create the
render tree, the browser uses the DOM tree to enumer-
ate a page’s visible HTML tags, and the CSSOM tree to
determine what those visible tags should look like.

CSS tags do not block HTML parsing, but they do
block rendering, layout, and painting. The reason is that
unstyled pages are visually unattractive and potentially
non-interactive, so style computations should be handled
promptly. Best practices encourage developers to place
CSS tags at the top of pages, to ensure that the CSSOM
tree is built quickly. Since JavaScript code can query
the CSS properties of DOM nodes, the browser halts
JavaScript execution while CSS is being processed; do-
ing so avoids race conditions on CSS state.

Images: Browsers do not load tags syn-
chronously. Thus, a page can be completely rendered
and laid out (and partially painted) even if there are out-
standing image requests. However, browsers are still mo-
tivated to load images as quickly as possible, since users
do not like pages with missing images.

Other media files: Besides images, a page can include
various types of video and audio files. However, in this
paper, we focus on the loading of HTML, JavaScript,
CSS, and image files, which are the most common types
of web objects (see Table 1). Optimizing the loading pro-
cess for rich multimedia files requires complex, media-
specific techniques (e.g., [11, 15]).

2.2 The Pitfalls of Lexical Dependencies
As described above, the traditional approach for loading
a page is constrained by uncertainty. For example:

3

126 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

• A script tag might read CSS style properties from
the DOM tree, so CSS evaluation must block
JavaScript execution.

• A script tag might change downstream HTML, so
when the browser encounters a script tag, either
HTML parsing must block (increasing page load
time), or HTML parsing must transfer to a specu-
lative thread (a thread which, if aborted, will have
wasted network and computational resources).

• In the example from Section 1, two script tags that
are lexically adjacent might exhibit a write/read
dependency on JavaScript state. Thus, current
browsers must execute the script tags serially, in lex-
ical order, even if a different order (or parallel exe-
cution) would be more efficient.

These inefficiencies arise because HTML expresses a
strict tag ordering that is based on lexical dependen-
cies between tags. In reality, a page’s true dependency
graph is a partial ordering in which edges represent true
semantic dependencies like write/read dependencies on
JavaScript state. Since HTML does not express all of the
true semantic dependencies, the browser is forced to pes-
simistically guess those dependencies, or use optimistic
speculation that may waste resources.

In Section 3, we enumerate the kinds of true semantic
dependencies that pages can have, and introduce a new
framework to extract them. In Section 4, we describe how
developers can expose true dependencies to the browser,
allowing the browser to load pages faster.

3 DEPENDENCY TRACKING

In a traditional dependency graph [8, 13, 18, 25, 26], a
vertex represents an object like an image or a JavaScript
file. An edge represents a load-before relationship that
is the side-effect of parsing activity. For example, if a
page incorporates an image via an tag, the im-
age’s parent in the dependency graph will be the HTML
file which contains the tag; if an image is fetched via an
XMLHttpRequest, the image’s parent will be the as-
sociated JavaScript file.

By emphasizing fetch initiation contexts, i.e., the file
whose parsing causes an object to be downloaded, tra-
ditional dependency graphs mimic the lexical restric-
tions that constrain real browsers (§2). However, fetch
initiation contexts obscure the fine-grained data flows
that truly govern the order in which a page’s objects
must be assembled. In this section, we provide a tax-
onomy for those fine-grained dependencies, and de-
scribe a new measurement framework called Scout that
captures those dependencies. The resulting dependency
graphs have more edges than traditional graphs (be-
cause finer-grained dependencies are included). How-
ever, as we show in Section 5, fine-grained dependency
graphs permit more aggressive load schedules, because

browsers are no longer shackled by conservative assump-
tions about where hidden dependencies might exist.

3.1 Page State
Objects in a web page interact with each other via two
kinds of state. The JavaScript heap contains the code
and the data that are managed by the JavaScript run-
time. This runtime interacts with the rest of the browser
through the DOM interface. The DOM interface reflects
internal, C++ browser state into the JavaScript runtime.
However, the reflected JavaScript objects do not directly
expose the rendering and layout trees. Instead, the DOM
interface exposes an extended version of the DOM tree
in which each node also has properties for style infor-
mation and physical geometry (§2). By reading and writ-
ing this DOM state, JavaScript code interacts with the
browser’s rendering, layout, and painting mechanisms.
The DOM interface also allows JavaScript code to dy-
namically fetch new web objects, either indirectly, by in-
serting new HTML tags into the DOM tree, or directly,
using XMLHttpRequests or WebSockets.

3.2 Dependency Types
We are interested in capturing three types of data flows
that involve the JavaScript heap and the DOM state
belonging to HTML and CSS.

Write/read dependencies arise when one object pro-
duces state that another object consumes. For example,
a.js might create a global variable in the JavaScript
heap; later, b.js might read the variable. When op-
timizing the load order of the two scripts, we cannot
evaluate b.js before a.js (although it is safe to fetch
b.js before a.js).

Read/write dependencies occur when one object must
read a piece of state before the value is updated by
another object. Such dependencies often arise when
JavaScript code must read a DOM value before the
value is changed by the HTML parser or another
JavaScript file. For example, suppose that the HTML
parser encounters a JavaScript tag that lacks the async
or defer attributes. The browser must synchronously
execute the JavaScript file. Suppose that the JavaScript
code reads the number of DOM nodes that are currently
in the DOM tree. The DOM query examines a snapshot
of the DOM tree at a particular moment in time; as
explained in Section 2, a browser progressively updates
the DOM tree as HTML is parsed. Thus, any reordering
of object evaluations must ensure value equivalence
for DOM queries—regardless of when a JavaScript
file is executed, its DOM queries must return the
same results. This guarantees deterministic JavaScript
execution semantics [24] despite out-of-order evaluation.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 127

Write/write dependencies arise when two objects up-
date the same piece of state, and we must preserve the
relative ordering of the writes. For example, CSS files
update DOM state, changing the rules which govern a
page’s visual presentation. The CSS specification states
that, if two files update the same rule, the last writer wins.
Thus, CSS files which touch the same rule must be evalu-
ated in their original lexical ordering in the HTML. How-
ever, the evaluation of the CSS files can be arbitrarily re-
ordered with respect to the execution of JavaScript code
that does not access DOM state.

Output devices are often involved in write/write
dependencies. As described in the previous paragraph,
CSS rules create a write/write dependency on a ma-
chine’s display device. Write/write dependencies can
also arise for local storage and the network. For ex-
ample, the localStorage API exposes persistent
storage to JavaScript using a key/value interface. If we
shuffle the order in which a page evaluates JavaScript
objects, we must ensure that the final value for each
localStorage key is the same value that would
result from the original execution order of the JavaScript
files.

Traditional dependencies based on HTML tag con-
straints can often be eliminated if finer-grained depen-
dencies are known. For example, once we know the
DOM dependencies and JavaScript heap dependencies
for a <script> tag, the time at which the script can
be evaluated is completely decoupled from the position
of the <script> tag in the HTML—we merely have
to ensure that we evaluate the script after its fine-grained
dependencies are satisfied. Similarly, we can parse and
render a piece of HTML at any time, as long as we en-
sure that we have blocked the evaluation of downstream
objects in the dependency graph.

Images do need to be placed in specific locations in
the DOM tree. However, browsers already allow images
to be fetched and inserted asynchronously. So, images
can be fetched in arbitrary orders, regardless of the state
of the DOM tree, but their insertion is dependent on
the creation of the associated DOM elements. We model
this using write/write dependencies on DOM elements:
the HTML parser must write an initially empty
DOM node, and then the network stack must insert the
fetched image bitmap into that node.

3.3 Capturing Dependencies with Scout
To capture the fine-grained dependencies in a real web
page, we first record the content of the page using
Mahimahi [28]. Next, we use a new tool called Scout
to rewrite each JavaScript and HTML file in the page,
adding instrumentation to log fine-grained data flows
across the JavaScript heap and the DOM. Scout then

loads the instrumented page in a regular browser. As the
page loads, it emits a dependency log to a Scout analysis
server; the server uses the log to generate the fine-grained
dependency graph for the page.

Tracking JavaScript heap dependencies: To track
dependencies in which both actors are JavaScript code,
Scout leverages JavaScript proxy objects [27]. A proxy
is a transparent wrapper for an underlying object, allow-
ing custom event handlers to fire whenever external code
tries to read or write the properties of the underlying ob-
ject.

In JavaScript, the global namespace is explicitly name-
able via the window object; for example, the global
variable x is also reachable via the name window.x.
Scout’s JavaScript rewriter transforms unadorned global
names like x to fully qualified names like window.x.
Also, for each JavaScript file (whether inline or exter-
nally fetched), Scout wraps the file’s code in a closure
which defines a local alias for the window variable. The
aliasing closures, in combination with rewritten code us-
ing fully qualified global names, forces all accesses to the
global namespace to go through Scout’s window proxy.
Using that proxy, Scout logs all reads and writes to global
variables.

Scout’s window proxy also performs recursive prox-
ying for non-primitive global values. For example, read-
ing a global object variable window.x returns a logging
proxy for that object. In turn, reading a non-primitive
value y on that proxy would return a proxy for y. By
using recursive proxying and wrapping calls to new in
proxy generation code, Scout can log any JavaScript-
issued read or write to JavaScript state. Each read or
write target is logged using a fully qualified path to the
window object, e.g., window.x.y.z. Log entries also
record the JavaScript file that issued the operation.

Scout’s proxy generation code tags each underlying
object with a unique, non-enumerable integer id. The
proxy code also stores a mapping between ids and the
corresponding proxies. When a proxy for a particular ob-
ject is requested, Scout checks whether the object already
has an id. If it does, Scout returns the preexisting proxy
for that object, creating proxy-level reference equalities
which mirror those of the underlying objects.

Some objects lack a fully-qualified path to window.
For example, a function may allocate a heap object and
return that object to another function, such that neither
function assigns the object to a variable that is recur-
sively reachable from window. In these cases, Scout
logs the identity of the object using the unique object id.

Tracking DOM dependencies: JavaScript
code interacts with the DOM tree through the
window.document object. For example, to find

5

128 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the DOM node with a particular id, JavaScript calls
document.getElementById(id). The DOM
nodes that are returned by document provide addi-
tional interfaces for adding and removing DOM nodes,
as well as changing the CSS properties of those nodes.

To track dependencies involving JavaScript
code and DOM state, Scout’s recursive proxy for
window.document automatically creates proxies
for all DOM nodes that are returned to JavaScript
code. For example, the DomNode returned by
document.getElementById(id) is wrapped
in a proxy which logs reads and writes to the object via
interfaces like DomNode.height.

Developers do not assign ids to most DOM nodes.
Thus, Scout’s logs identify DOM nodes by their paths
in the DOM tree. For example, the DOM path <1,5,2>
represents the DOM node that is discovered by examin-
ing the first child of the HTML tag, the fifth child of that
tag, and then the second child of that tag.

A write to a single DOM path may trigger cascading
updates to other paths; Scout must track all of these up-
dates. For example, inserting a new node at a particular
DOM path may shift the subtrees of its new DOM sib-
lings to the right in the DOM tree. In this case, Scout
must log writes to the rightward DOM paths, as well as to
the newly inserted node. Similar bookkeeping is neces-
sary when DOM nodes are deleted or moved to different
locations.

The DOM tree can also be modified by the evaluation
of CSS objects that change node styles. Scout models
each CSS tag as reading all of the DOM nodes that are
above it in the HTML, and then writing all of those DOM
nodes with new style information. To capture the set of
affected DOM nodes, Scout’s HTML rewriter prepends
each CSS tag with an inline JavaScript tag that logs the
current state of the DOM tree (i.e., all of the live DOM
paths) and then deletes itself from the DOM tree.

In Scout logs, we represent DOM operations us-
ing the window.$$dom pseudovariable. For example,
the identifier window.$$dom.1 represents the first
child of the topmost <html> node. We also use the
window.$$xhr pseudovariable to track network reads
and writes via XMLHttpRequests. These pseudovari-
ables allow us to use a single analysis engine to process
all dependency types.

Missing Dependencies: To generate a page’s depen-
dency graph, Scout loads an instrumented version of the
page on a server-side browser, and collects the result-
ing dependency information. Later, when Polaris loads
the page on a client-side browser (§4), Polaris assumes
that Scout’s dependency graph is an accurate representa-
tion of the dependencies in the page. This might not be
true if the page’s JavaScript code exhibits nondetermin-
istic behavior. For example, suppose that a page contains

three JavaScript files called a.js, b.js, and c.js. At
runtime, a.js may call Math.random(), and use the
result to invoke a function in b.js or c.js (but not
both). During some executions, Scout will log a depen-
dency between a.js and b.js; during other execu-
tions, Scout will log a dependency between a.js and
c.js. If there is a discrepancy between the dependency
logged by Scout, and the dependency generated by the
code on the client browser, then Polaris may evaluate
JavaScript files in the wrong order, breaking correctness.

We have not observed such nondeterministic depen-
dencies in our corpus. However, if a page does in-
clude such dependencies, Scout must create a depen-
dency graph which contains the aggregate set of all pos-
sible dependencies. Such a graph overconstrains any par-
ticular load of the page, but guarantees that clients will
load pages without errors. The sources of nondeterminis-
tic JavaScript events are well-understood [24], so Scout
can use a variety of techniques to guarantee that non-
deterministic dependencies are either tracked or elimi-
nated. For example, Scout can rewrite pages so that calls
to Math.random() use a deterministic seed [24], re-
moving nondeterminism from calls to the random num-
ber generator.

For a given page, a web server may generate a differ-
ent dependency graph for different clients. For example,
a web server might personalize the graph in response to a
user’s cookie; as another example, a server might return
a smaller dependency graph in response to a user agent
string which indicates a mobile browser. The server-side
logic must run Scout on each version of the dependency
graph. We believe that this burden will be small in prac-
tice, since even customized versions of a page often share
the same underlying graph structure (with different con-
tent in some of the nodes).

Implementation: To build Scout, we used Es-
prima [14], Estraverse [36], and Escodegen [35] to
rewrite JavaScript code, and we used Beautiful Soup [32]
to rewrite HTML. We loaded the instrumented pages in
a commodity Firefox browser (version 40.0). Each page
sent its dependency logs to a dedicated analysis server;
logs were sent via an XMLHttpRequest that was trig-
gered by the onload event.

Our implementation of Scout handles the bulk of
the JavaScript language. However, our implementation
does not currently support the eval(sourceCode)
statement, which pages use to dynamically execute
new JavaScript code. To support this statement, Scout
would need to shim eval() and dynamically rewrite
the sourceCode argument so that the rewritten code
tracked dependencies.

Our current implementation also does not support the
with(obj) statement, which places obj at the be-
ginning of the scope chain that the JavaScript runtime

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 129

1 <h1>Text</h1>
2 <p>Text</p>
3 <script src=”first.js”/>

 <!--Reads <p> tag-->
4 Text
5 <script src=”second.js”/>

 <!--Accesses no DOM nodes-->
 <!--or JS state from first.js----->

6 <link rel=”stylesheet” href=”…”>
 <!--CSS-->

7 Text
8 Text
9 <script src=”third.js”/>

 <!--Writes tag-->
10 Text

(a) The HTML for a simple
page.

first.js@HTML[3]

second.js@HTML[5]HTML[1—2]

HTML[4]

HTML[7—8,10]

CSS@HTML[6]

third.js@HTML[9]

(b) The dependency graph gen-
erated by Scout.

second.jsfirst.js third.js CSS

HTML

(c) The dependency graph cre-
ated by Klotski [8].

HTML[1—2]

second.js@HTML[5]

HTML[7—8]

2]]
first.js@HTML[3]

HTML[4]

CSS@HTML[6]

third.js@HTML[9]

HTML[10]

(d) The dependency graph cre-
ated by WProf [37].

Figure 3: Comparing the order in which different tools declare that a simple page’s objects must be evaluated. The
notation HTML[i:j] refers to HTML lines i up to and including j. The notation obj@HTML[k] refers to the object
whose corresponding tag is at HTML[k].

uses to resolve variable names. To support this statement,
Scout merely needs to wrap the obj argument in code
which checks whether obj is a proxy; if not, the wrap-
per would return one.

3.4 Dependency Graphs: Scout vs. Prior Tools
Figure 3(a) depicts a simple web page with two
JavaScript files and one CSS file. Figures 3(b), (c), and
(d) show the dependency graphs that are produced by
Scout, Klotski [8], and WProf [37].
• Scout allows second.js and the first chunk of

HTML to be evaluated in parallel, since second.js
does not access DOM state or JavaScript state de-
fined by prior JavaScript files. first.js does ac-
cess DOM state from upstream HTML tags, but
Scout allows the evaluation of first.js to pro-
ceed in parallel with the parsing of downstream
HTML. Scout treats CSS as a read and then a write
to all upstream HTML, so the CSS file must be eval-
uated before the evaluation of downstream HTML
and downstream scripts which access DOM state.

• Klotski [8] cannot observe fine-grained data flows,
so its dependency graphs are defined by lexi-
cal HTML constraints (§2). Given a dependency
graph like the one shown in Figure 3(c), Klotski
uses heuristics to determine which objects a server
should push to the browser first. However, Klotski
does not know the page’s true data dependencies,
so Klotski cannot guarantee that prioritized objects
can actually evaluate ahead of schedule with respect
to their evaluation times in the original page. It is
only safe to evaluate an object (prioritized or not)
when its ancestors in the dependency graph have
been evaluated. So, Klotski’s prioritized pushes can
safely warm the client-side cache, but in general, it
is unsafe for those pushes to synchronously trigger
object evaluations.

• By instrumenting the browser, WProf observes the
times at which a browser is inside the network stack
or a parser for HTML, CSS, or JavaScript. Thus,
WProf can track complex interactions between a
browser’s fetching, parsing, and evaluation mech-
anisms. However, this technique only allows WProf
to analyze the critical path for the lexically-defined
dependency graph. This graph does not capture
true data flows, and forces conservative assumptions
about evaluation order (§2.2). As shown in Fig-
ure 3(d), WProf overconstrains the order in which
objects can be evaluated (although WProf may al-
low objects to be fetched out-of-lexical-order).

In summary, only Scout produces a dependency graph
which captures the true constraints on the order in which
objects can be evaluated. Polaris uses these fine-grained
dependencies to schedule object downloads—by priori-
tizing objects that block the most downstream objects,
Polaris reduces overall page load times (§4).

3.5 Results
We used Mahimahi [28], an HTTP record-and-replay
tool, to record the content from 200 sites in the Alexa Top
500 list [2]. The corpus spanned a variety of page cat-
egories, including news, ecommerce, and social media.
The corpus also included five mobile-optimized sites.
Since our Scout prototype does not support the eval()
and with() statements, we selected pages which did
not use those statements.

Figure 4 summarizes the differences between Scout’s
dependency graphs and the traditional ones that are de-
fined by Klotski [8] and the built-in developer tools from
Chrome [13], Firefox [26], and IE [25]. As shown in
Figure 4(a), traditional graphs are almost always incom-
plete, missing many edges that can only be detected via
data flow analysis. That analysis adds 29.8% additional

7

130 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

(a) (b) (c) (d)

Figure 4: How traditional dependency graphs change when updated with information from fine-grained data flows.
The updated graphs have additional edges which belong to previously untracked dependencies. The new edges often
modify a page’s critical paths. Note that a slack node is a node that is not on a critical path.

0

1 2

(a)

0

1 2

3

(b)

0

1 2

3 5

4

(c)

Figure 5: An example of dynamic critical paths during
the load of a simple page. Dynamic critical paths are
shown in red. Numbers represent the order in which Po-
laris requests the objects. Shaded objects have been re-
ceived and evaluated; numbered but unshaded objects
have been requested, but have no responses yet. We as-
sume that all objects are from the same origin, and that
only two outstanding requests per origin are allowed.

edges at the median, and 118% more edges at the 95th
percentile.

Those additional edges have a dramatic impact on
the characteristics of dependency graphs. For example,
adding fine-grained dependencies alters the critical
path length for 80.8% of the pages in our corpus
(Figure 4(b)). The set of objects on those paths often
changes, with old objects being removed and new ob-
jects being added. Furthermore, as shown in Figure 4(d),
86.6% of pages have a smaller fraction of slack nodes
when fine-grained dependencies are considered. Slack
nodes are nodes that are not on a critical path. Thus, a
decrease in slack nodes means that browsers have fewer
load schedules which result in optimal page load times.

4 POLARIS: DYNAMIC CLIENT-SIDE
SCHEDULING

Polaris is a client-side scheduler for the loading and eval-
uation of a page’s objects. Polaris is written completely

in JavaScript, allowing it to run on unmodified commod-
ity browsers. Polaris accepts a Scout graph as input, but
also uses observations about current network conditions
to determine the dynamic critical path for a page. The
dynamic critical path, i.e., the path which currently has
the most unresolved objects, is influenced by the order
and latency with which network fetches complete; im-
portantly, the dynamic critical path may be different than
the critical path in the static dependency graph.1 Polaris
prioritizes the fetching and evaluation of objects along
the dynamic critical path, trying to make parallel use of
the client’s CPU and network, and trying to keep the
client’s network pipe full, given browser constraints on
the maximum number of simultaneous network requests
per origin.

Figure 5 shows how a page’s dynamic critical path
can change over time. In Figure 5(a), Polaris has eval-
uated object 0, and issued requests for objects 1 and 2,
because those objects are the roots for the deepest un-
resolved paths in the dependency graph. In Figure 5(b),
Polaris has received and evaluated object 1, although ob-
ject 2 is still in-flight. Polaris has one available request
slot, so it requests object 3, because that object is the
root of the deepest unresolved path. In Figure 5(c), Po-
laris has received and evaluated object 3; Polaris uses the
available request slot to fetch object 4. Then, object 2
is received and evaluated. The critical path changes—the
deepest chain is now beneath object 2, so Polaris requests
object 5 next.

To use Polaris with a specific page, a web developer
runs Scout on that page to generate a dependency graph
and a Polaris scheduler stub. The developer then config-
ures her web server to respond to requests for that page
with the scheduler stub’s HTML instead of the page’s

1This is why a dynamic client-side scheduler is better than a static
client-side scheduler that ignores current network conditions and deter-
ministically fetches objects from a server-provided URL list.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 131

regular HTML (see Figure 2). The stub contains four
components.
• The scheduler itself is just inline JavaScript code.
• The Scout dependency graph for the page is repre-

sented as a JavaScript variable inside the scheduler.
• DNS prefetch hints indicate to the browser that the

scheduler will be contacting certain hostnames in
the near future. DNS prefetch hints are expressed
using <link> tags of type dns-prefetch, e.g.,
<link rel=’’dns-prefetch’’

href=’’http://domain.com’’>

DNS hints allow Polaris to pre-warm the DNS
cache in the same way that the browser does dur-
ing speculative HTML parsing (§2.1).

• Finally, the stub contains the page’s original
HTML, which is broken into chunks as deter-
mined by Scout’s fine-grained dependency resolu-
tion (see §3.3 and Figure 3). When Scout gener-
ates the HTML chunks, it deletes all src attributes
in HTML tags, since the external objects that are
referenced by those attributes will be dynamically
fetched and evaluated by Polaris.

Polaris adds few additional bytes to a page’s original
HTML. Across our test corpus of 200 sites, the sched-
uler stub was 3% (36.5 KB) larger than a page’s original
HTML at the median.

The scheduler uses XMLHttpRequests to dynam-
ically fetch objects. To evaluate a JavaScript file, the
scheduler uses the built-in eval() function that is pro-
vided by the JavaScript engine. To evaluate HTML,
CSS, and images, Polaris leverages DOM interfaces like
document.innerHTML to dynamically update the
page’s state.

In the rest of this section, we discuss a few of the
subtler aspects of implementing an object scheduler as
a JavaScript library instead of native C++ code inside the
browser.

Browser network constraints: Modern browsers limit
a page to at most six outstanding requests to a given ori-
gin. Thus, Polaris may encounter situations in which the
next missing object on the dynamic critical path would
be the seventh outstanding request to an origin. If Po-
laris actually generated the request, the request would
be placed at the end of the browser’s internal network
queue, and would be issued at a time of the browser’s
choosing. Polaris would lose the ability to precisely con-
trol the in-flight requests at any given moment.

To avoid this dilemma, Polaris maintains per-origin
priority queues. With the exception of the top-level
HTML (which is included in the scheduler stub), each
object in the dependency graph belongs to exactly one
queue. Inside a queue, objects that are higher in the de-

pendency tree receive a higher priority, since those ob-
jects prevent the evaluation of more downstream objects.
At any given moment, the scheduler tries to fetch objects
that reside in a dynamic critical path for the page load.
However, if fetching the next object along a critical path
would violate a per-origin network constraint, Polaris ex-
amines its queues, and fetches the highest priority object
from an origin that has available request slots.2

Frames: A single page may contain multiple iframes.
Scout generates a scheduler stub for each one, but the
browser’s per-origin request cap is a page-wide limit.
Thus, the schedulers in each frame must cooperate to re-
spect the limit and prevent network requests from getting
stuck inside the browser’s internal network queues.

The scheduler in the top frame coordinates the sched-
ulers in child frames. Using postMessage() calls,
children ask the top-most parent for permission to re-
quest particular objects. The top-most parent only autho-
rizes a fetch if per-origin request limits would not be vi-
olated.

URL matching: A page’s coarse-grained dependency
graph has a stable structure [8]. In other words, the edges
and vertices that are defined by lexical HTML constraints
change slowly over time. However, the URLs for specific
vertices change more rapidly. For example, if JavaScript
code dynamically generates an XMLHttpRequest
URL, that URL may embed the current date in its query
string. Across multiple page loads, the associated object
for the URL will have different names, even though all
of the objects will reside in the same place in the depen-
dency graph.

To handle any discrepancies between the URLs
in Scout’s dependency graphs and the URLs which
XMLHttpRequests generate on the client, Polaris
uses a matching heuristic to map dynamic URLs to their
equivalents in the static dependency graph. Our proto-
type implementation uses Mahimahi’s matching heuris-
tic [28], but Polaris is easily configured to use oth-
ers [8, 9, 33].

Page-generated XHRs: When Polaris evaluates a
JavaScript file, the executed code might try to fetch an
object via XMLHttpRequest. Assuming that a page
has deterministic JavaScript code (§3.3), Scout will have
included the desired object in the page’s dependency
graph. However, during the loading of the page in a
real client browser, Polaris requires control over the or-
der in which objects are fetched. Thus, Polaris uses an

2Browsers allow users to modify the constraint on the maximum
number of connections per origin; Polaris can be configured to respect
user-programmed values.

9

132 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: Polaris’ average reduction in page load times,
relative to baseline load times with Firefox v40.0. Each
bar is the average reduction in load time across the entire
200 site corpus. Error bars span one standard deviation
in each direction of the average.

RTT
25 ms 100 ms 500 ms

L
in

k
R

at
e 1 Mbit/s 256.3 ms 883.9 ms 1857.5 ms

12 Mbit/s 309.1 ms 1274.1 ms 2935.0 ms
25 Mbit/s 382.5 ms 1385.3 ms 3188.3 ms

Table 2: Polaris’ raw reduction in median page load times
for a subset of the parameter values in Figure 6.

XMLHttpRequest shim [24] to suppress autonomous
XMLHttpRequests. Polaris issues those requests us-
ing its own scheduling algorithm, and manually fires
XMLHttpRequest event handlers when the associated
data has arrived.

5 RESULTS

In this section, we demonstrate that Polaris can decrease
page load times across a variety of web pages and net-
work configurations: performance improves by 34% and
59% for the median and 95th percentile sites, respec-
tively. Polaris’ benefits grow as network latencies in-
crease, because higher RTTs increase the penalty for bad
fetch schedules. Thus, Polaris is particularly valuable for
clients with cellular or low-quality wired networks. How-
ever, even for networks with moderate RTTs, Polaris can
often reduce load times by over 20%.

5.1 Methodology
We evaluated Polaris using the 200 site corpus that is de-
scribed in Section 3.3. We used Mahimahi [28] to cap-
ture site content and later replay it using emulated net-
work conditions. To build Polaris-enabled versions of
each page, we post-processed the recorded web content,
generating Polaris scheduler stubs for each site. We then
compared the load times of the Polaris sites and the orig-
inal versions of those sites. All experiments used Firefox
v40.0. Unless otherwise specified, all experiments used
cold browser caches and DNS caches.

A page’s load time is normally defined with re-
spect to JavaScript events like navigationStart and
loadEventEnd. However, loadEventEnd is inac-
curate for Polaris pages, since the event only indicates
that the scheduler stub has been loaded; the rest of the
page’s objects remain to be fetched by the dynamic
scheduler. So, to define the load time for a Polaris page,
we first loaded the original version of the page and used
tcpdump to capture the objects that were fetched between
navigationStart and loadEventEnd. We then
defined the load time of the Polaris page as the time
needed to fetch all of those objects.

5.2 Reducing Page Load Times
Figure 6 demonstrates Polaris’ ability to reduce load
times. There are two major trends to note. First, for a
given link rate, Polaris’ benefits increase as network la-
tency increases. For example, at a link rate of 12 Mbits/s,
Polaris provides an average improvement of 10.1% for
an RTT of 25 ms. However, as the RTT increases to 100
ms and 200 ms, Polaris’ benefits increase to 27.5% and
35.3%, respectively. The reason is that, as network la-
tencies grow, so do the penalties for not prioritizing the
fetches of objects on the dynamic critical path. Polaris
does prioritize the fetching of critical path objects. Fur-
thermore, Polaris never has to wait for an object evalua-
tion to reveal a downstream dependency—Polaris knows
all of the dependencies at the beginning of the page load,
so Polaris can always keep the network pipe full.

The second trend in Figure 6 is that, for a given RTT,
Polaris’ benefits increase as network bandwidth grows.
This is because, if bandwidth is extremely low, transfer
times dominate fetch costs. As bandwidth increases, la-
tency becomes the dominant factor in download times.
Since Polaris prioritizes the fetch orders for critical path
objects (but does nothing to reduce those objects’ band-
width costs), Polaris’ gains are most pronounced when
latencies govern overall download costs.

Figure 6 describes Polaris’ gains in relative terms. Ta-
ble 2 depicts absolute gains, describing how many raw
milliseconds of load time Polaris removes. Even on a fast
network with 25 ms of latency, Polaris eliminates over
250 ms of load time. Those results are impressive, given
that web developers strive to eliminate tens of millisec-
onds from their pages’ load times [5, 6, 10].

The error bars in Figure 6 are large. The reason is that,
for a given network bandwidth and latency, Polaris’ ben-
efits are determined by the exact structure of a page’s de-
pendency graph. To understand why, consider the three
sites in Figure 7.
• The homepage for apple.com has a flat dependency

graph, as shown in Figure 8. This means that, once
the browser has the top-level HTML, the other ob-
jects can be fetched and evaluated in an arbitrary or-

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 133

Figure 7: Polaris’ average reduction in page load times,
relative to baseline load times, for three sites with diverse
dependency graph structures. Each experiment used a
link rate of 12 Mbits/s.

Figure 8: The dependency graph for Apple’s homepage.

der; all orders will result in similar end-to-end page
load times. Thus, for low RTTs, Polaris loads the
apple.com homepage 1–2% slower than the base-
line, due to computational overheads from Polaris’
scheduling logic.

• In contrast, the ESPN homepage has a dependency
path of length 5, and several paths of length 4. Also,
48% of the page’s content is loaded from only two
origins (a.espncdn.com and a1.espncdn.com), mag-
nifying the importance of optimally scheduling the
six outstanding requests for each origin (§4). In
ESPN’s dependency graph, many of the long paths
consist of JavaScript files. However, the standard
Firefox scheduler has no way of knowing this. So,
when Firefox loads the standard version of the page,
it initially requests a small number of JavaScript ob-
jects, and then fills the rest of its internal request
queue with 32 image requests. As a result, when a
JavaScript file evaluates and generates a request for
another JavaScript file on the critical path, the re-
quest is often stuck behind image requests in the
browser’s internal network queue. In contrast, Po-
laris has a priori knowledge of which JavaScript
files belong to deep dependency chains. Thus, Po-
laris prioritizes the fetching of those objects, using
its knowledge of per-origin request caps to ensure
that the fetches for critical path objects are never
blocked.

• As shown in Figure 1(b), the weather.com home-
page is even more complicated than that of ESPN.
Deep, complex dependency graphs present Polaris

Figure 9: Request initiation times for the regular and
Polaris-enabled versions of StackOverflow. These results
used a 12 Mbits/s link with an RTT of 100 ms.

with the most opportunities to provide gains. Thus,
of the three sites in Figure 7, weather.com enjoys
the largest reductions in load time.

Figure 9 depicts the order in which requests issue for the
normal version of the StackOverflow site, and the Polaris
version. In general, Polaris issues requests earlier; by pri-
oritizing the fetches of objects on the dynamic critical
path, Polaris minimizes the overall fetch time needed to
gather all objects. However, as shown in Figure 9, Polaris
briefly falls behind the default browser scheduler after
fetching the tenth object. The reason is that, in our cur-
rent Polaris implementation, HTML is rendered in large
chunks. While that HTML is being rendered, Polaris can-
not issue new HTML requests, because executing Po-
laris’ JavaScript-level scheduler would block rendering
(§2.1). In contrast, a native browser scheduler can issue
new requests in parallel with HTML rendering. Thus, the
default Firefox scheduler has a lower time-to-first paint
than Polaris, and Polaris falls behind the default sched-
uler after the tenth object fetch. However, after Polaris
renders the bulk of the HTML, Polaris quickly regains
its lead and never relinquishes it. To minimize Polaris’
time-to-first-paint, future versions of Polaris will render
HTML in smaller increments; this will not affect Polaris’
ability to optimize network utilization.

5.3 Browser Caching
Up to this point, our experiments have used cold browser
caches. In this section, we evaluate Polaris’ performance
when caches are warm. To do so, we examined the HTTP
headers in our recorded web pages, and, for each object
that was marked as cacheable, we rewrote the caching
headers to ensure that the object would remain cacheable
for the duration of our experiment. Then, for each page,
we cleared the browser’s cache, and loaded the page
twice, recording the elapsed time for the second load.

Figure 10 depicts Polaris’ benefits with warm caches;
the improvements are normalized with respect to Po-

11

134 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

ESPN

Apple

Ebay

Figure 10: Polaris’ benefits with warm caches, normal-
ized with respect to Polaris’ gains with cold caches. Each
data point represents one of the 200 sites in our corpus.
Pages were loaded over a 12 Mbits/s link with an RTT of
100 ms.

laris’ improvements when caches are cold. In general,
Polaris’ benefits decrease as cache hit rates increase, be-
cause there are fewer opportunities for Polaris to opti-
mize network fetches. For example, Ebay caches 92%
of all objects, including most of the JavaScript files in-
volved in deep dependency chains; thus, Polaris provides
little advantage over the standard scheduling algorithm.

That being said, there are many instances in which
caching does not touch objects along a page’s criti-
cal path. For example, on ESPN’s site, 76% of objects
are cacheable, but only one object on the deepest de-
pendency chain is cached. Furthermore, a.espncdn.com
serves many uncacheable images and JavaScript objects,
leading Firefox’s standard scheduler to bury critical path
JavaScript files behind images that are not on the crit-
ical path (§5.2). So, even though ESPN caches 76% of
its objects, Polaris still provides 71% of its cold-cache
benefits.

Note that the Apple site is an outlier: it caches 93% of
its objects, but Polaris provides little benefit in the cold
cache case (§5.2), so Polaris provides most of that negli-
gible benefit in the warm cache case as well.

5.4 SPDY
Google proposed SPDY [22], a transport protocol for
HTTP messages, to remedy several problems with the
HTTP/1.1 protocol. SPDY differs from HTTP/1.1 in four
major ways:
• First, SPDY uses a single TCP connection to multi-

plex all of a browser’s HTTP requests and responses
involving a particular origin. This allows HTTP re-
quests to be pipelined, and reduces the TCP and
TLS handshake overhead that would be incurred if
a browser opened multiple TCP connections to an
origin.

• SPDY also allows a browser to prioritize the fetches
of certain objects (e.g., JavaScript files which block

Figure 11: Average reductions in page load time us-
ing SPDY, Polaris over HTTP/1.1, and Polaris over
SPDY. The performance baseline was load time using
HTTP/1.1. The link rate was 12 Mbits/s.

HTML parsing). Priorities give servers hints about
how to allocate limited bandwidth to multiple re-
sponses.

• SPDY compresses HTTP headers. HTTP is a text-
based protocol, so compression can result in non-
trivial bandwidth savings.

• Finally, SPDY allows a server to proactively push
objects to a browser if the server believes that the
browser will request those objects in the near future.

SPDY was a major influence on the HTTP/2 protocol [4]
whose deployment is currently starting.

Mahimahi supports SPDY page loads using the
mod spdy Apache extension [20]. Thus, we could use
Mahimahi to explore how SPDY interacts with Polaris.
We loaded each page in our test corpus using four differ-
ent schemes: HTTP/1.1 (which all of our previous exper-
iments used), Polaris over HTTP/1.1, SPDY, and Polaris
over SPDY. In our experiments, SPDY used TCP mul-
tiplexing, object prioritization, and HTTP header com-
pression, but not server push, since few of the sites in our
test corpus defined SPDY push policies.

Figure 11 compares load times using the four schemes
on a 12 Mbits/s link with various RTTs; the perfor-
mance baseline is the load time using HTTP/1.1. On av-
erage, load times using SPDY are 1.74%–3.98% faster
than those with HTTP/1.1. Load times using Polaris
over SPDY are 2.05%–4.03% faster than those with
Polaris over HTTP/1.1. These results corroborate prior
work [38] which found that object dependencies limit
the ability of SPDY to maximize network utilization.
For example, a SPDY-enabled browser may prioritize a
JavaScript file in hopes of minimizing the stall time of
the HTML parser. However, without Polaris, the SPDY-
enabled browser is still limited by conservative lexical
dependencies (§2.2), meaning that it cannot aggressively
fetch objects “out-of-order” with respect to lexical con-
straints. In contrast, both Polaris over HTTP/1.1 and Po-

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 135

laris over SPDY have fine-grained dependency informa-
tion. That information allows Polaris to issue out-of-
lexical-order fetches which reduce page load time while
respecting the page’s intended data flow semantics.

In theory, SPDY-enabled web servers could use
Scout’s dependency graphs to guide server push poli-
cies. However, we believe that clients, not servers, are
best qualified to make decisions about how a client’s net-
work pipe should be used. A server from origin X can-
not see the objects being pushed by origin Y, so different
origins may unintentionally overload a client’s resource-
constrained network connection. Furthermore, Scout’s
dependency graphs do not capture dynamic critical paths,
i.e., the set of object fetches which a client should priori-
tize at the current moment (§4). Thus, a well-intentioned
server may hurt load time by pushing objects which are
not on a dynamic critical path. Polaris avoids this prob-
lem using dynamic client-side scheduling.

6 RELATED WORK

Prior dependency trackers [8, 13, 25, 26, 37] deduce de-
pendencies using lexical relationships between HTML
tags. As discussed in Sections 2.2 and 3.3, those lexi-
cal relationships do not capture fine-grained data flows.
As a result, load schedulers which use those dependency
graphs are forced to make conservative assumptions to
preserve correctness.

WebProphet [18] determines the dependencies be-
tween objects by carefully perturbing network fetch de-
lays for individual objects; delaying a parent should de-
lay the loads of dependent children. This technique also
relies on course-grained lexical dependencies, since the
perturbed browser uses those HTML dependencies to de-
termine which objects to load.

Silo [23] uses aggressive inlining of JavaScript and
CSS to fetch entire pages in one or two RTTs. However,
Silo does not use the CPU and the network in parallel—
all content is fetched, and then all content is evaluated.
In contrast, Polaris overlaps computation with network
fetches.

Compression proxies like Google FlyWheel [1] and
Opera Turbo [29] transparently compress objects before
transmitting them to clients. For example, FlyWheel re-
encodes images into space-saving formats, and minifies
JavaScript and CSS. Polaris is complementary to such
techniques.

JavaScript module frameworks like RequireJS [7] and
ModuleJS [16] allow developers to manually specify de-
pendencies between JavaScript libraries. Once the de-
pendencies are specified, the frameworks ensure that
the relevant libraries are loaded in the appropriate or-
der. Keeping manually-specified dependencies up-to-
date can be challenging for a large web site. In con-
trast, Scout automatically tracks fine-grained dependen-

cies between JavaScript files. Scout also tracks depen-
dencies involving HTML, CSS, and images.

7 CONCLUSION

Prior approaches for loading web pages have been con-
strained by uncertainty. The objects in a web page can
interact in complex and subtle ways; however, those sub-
tle interactions are only partially captured by lexical rela-
tionships between HTML tags. Unfortunately, prior load
schedulers have used those lexical relationships to ex-
tract dependency graphs. The resulting graphs are under-
specified and omit important edges. Thus, load sched-
ulers which use those graphs must be overly conserva-
tive, to preserve correctness in the midst of hidden de-
pendencies. The ultimate result is that web pages load
more slowly than necessary.

In this paper, we use a new tool called Scout to track
the fine-grained data flows that arise during a page’s load
process. Compared to traditional dependency trackers,
Scout detects 30% more edges for the median page, and
118% more edges for the 95th percentile page. These
additional edges actually give browsers more opportu-
nities to reduce load times, because they enable more
aggressive fetch schedules than allowed by conserva-
tive, lexically-derived dependency graphs. We introduce
a new client-side scheduler called Polaris which lever-
ages Scout graphs to assemble a page. By prioritizing the
fetches of objects along the dynamic critical path, Polaris
minimizes the number of RTTs needed to load a page.
Experiments with real pages and varied network condi-
tions show that Polaris reduces load times by 34% for the
median page, and 59% for the 95th percentile page.

8 ACKNOWLEDGEMENTS

We thank Katrina LaCurts, Amy Ousterhout, the NSDI
reviewers, and our shepherd, Paul Barford, for their help-
ful comments and suggestions. We also thank the mem-
bers of the MIT Center for Wireless Networks and Mo-
bile Computing (Wireless@MIT) for their support. This
work was supported in part by NSF grant CNS-1407470.

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
Data Compression Proxy for the Mobile Web. In
Proceedings of NSDI, 2015.

[2] Alexa. Top Sites in United States. http://www.
alexa.com/topsites/countries/US, 2015.

[3] Amazon. Silk Web Browser. https://amazonsilk.
wordpress.com/, December 16, 2014.

[4] M. Belshe, R. Peon, and M. Thomson. Hyper-
text Transfer Protocol Version 2. http://httpwg.org/
specs/rfc7540.html, May 2015.

13

136 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[5] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrat-
ing User-perceived Quality into Web Server De-
sign. In Proceedings of World Wide Web Con-
ference on Computer Networks: The International
Journal of Computer and Telecommunications Net-
working, 2000.

[6] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality
is in the Eye of the Beholder: Meeting Users’ Re-
quirements for Internet Quality of Service. In Pro-
ceedings of CHI, 2000.

[7] J. Burke. RequireJS. http://requirejs.org/, 2015.
[8] M. Butkiewicz, D. Wang, Z. Wu, H. V. Mad-

hyastha, and V. Sekar. Klotski: Reprioritizing Web
Content to Improve User Experience on Mobile De-
vices. In Proceedings of NSDI, 2015.

[9] Chromium. web-page-replay. https://github.com/
chromium/web-page-replay, 2015.

[10] D. F. Galletta, R. Henry, S. McCoy, and P. Polak.
Web Site Delays: How Tolerant are Users? Journal
of the Association for Information Systems, 5(1),
2004.

[11] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica,
J. Jiang, V. Sekar, and H. Zhang. C3: Internet-Scale
Control Plane for Video Quality Optimization. In
Proceedings of NSDI, 2015.

[12] Google. Using site speed in web search ranking.
http://googlewebmastercentral.blogspot.com/2010/
04/using-site-speed-in-web-search-ranking.html,
April 9, 2010.

[13] Google. Chrome DevTools Overview. https://
developer.chrome.com/devtools, August 2013.

[14] A. Hidayat. Esprima. http://esprima.org, 2015.
[15] J. Jiang, V. Sekar, and H. Zhang. Improving

Fairness, Efficiency, and Stability in HTTP-based
Adaptive Video Streaming with FESTIVE. In Pro-
ceedings of CoNext, 2012.

[16] L. Jung. modulejs lightweight JavaScript module
system. https://larsjung.de/modulejs/, 2016.

[17] Q. Li, W. Zhou, M. Caesar, and P. B. Godfrey.
ASAP: A Low-latency Transport Layer. In Pro-
ceedings of SIGCOMM, 2011.

[18] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg,
and Y.-M. Wang. WebProphet: Automating Perfor-
mance Prediction for Web Services. In Proceedings
of NSDI, 2010.

[19] Google Developers. Remove Render-Blocking
JavaScript. https://developers.google.com/speed/
docs/insights/BlockingJS, April 8, 2015.

[20] Google Developers. SPDY. https://developers.
google.com/speed/spdy/mod spdy/, May 27, 2015.

[21] The Chromium Projects. QUIC, a multi-
plexed stream transport over UDP. https://www.

chromium.org/quic, 2015.
[22] The Chromium Projects. SPDY. https://www.

chromium.org/spdy, 2015.
[23] J. Mickens. Silo: Exploiting JavaScript and DOM

Storage for Faster Page Loads. In Proceedings of
WebApps, 2010.

[24] J. Mickens, J. Elson, and J. Howell. Mugshot: De-
terministic Capture and Replay for Javascript Ap-
plications. In Proceedings of NSDI, 2010.

[25] Microsoft. Meet the Microsoft Edge De-
veloper Tools. https://dev.windows.com/
en-us/microsoft-edge/platform/documentation/
f12-devtools-guide/, 2015.

[26] Mozilla. Firefox Developer Tools. https://
developer.mozilla.org/en-US/docs/Tools, 2015.

[27] Mozilla. Proxy. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Proxy, February 16, 2016.

[28] R. Netravali, A. Sivaraman, S. Das, A. Goyal,
K. Winstein, J. Mickens, and H. Balakrish-
nan. Mahimahi: Accurate Record-and-Replay for
HTTP. In Proceedings of USENIX ATC, 2015.

[29] Opera. Data savings and turbo mode. http://www.
opera.com/turbo, 2015.

[30] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2015.

[31] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proceedings of
CoNext, 2011.

[32] L. Richardson. Beautiful Soup. http:
//www.crummy.com/software/BeautifulSoup/,
February 17, 2016.

[33] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen.
PARCEL: Proxy Assisted BRowsing in Cellular
Networks for Energy and Latency Reduction. In
Proceedings of CoNext, 2014.

[34] S. Sundaresan, N. Feamster, R. Teixeira, and
N. Magharei. Measuring and Mitigating Web Per-
formance Bottlenecks in Broadband Access Net-
works. In Proceedings of IMC, 2013.

[35] Y. Suzuki. Escodegen. https://github.com/estools/
escodegen, 2015.

[36] Y. Suzuki. Estraverse. https://github.com/estools/
estraverse, 2016.

[37] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystifying Page Load
Performance with WProf. In Proceedings of NSDI,
2013.

[38] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. How Speedy is SPDY?
In Proceedings of NSDI, 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 137

CFA: A Practical Prediction System for Video QoE Optimization

Junchen Jiang†, Vyas Sekar†, Henry Milner�, Davis Shepherd+, Ion Stoica�+◦, Hui Zhang†+

†CMU, �UC Berkeley, +Conviva, ◦Databricks

Abstract
Many prior efforts have suggested that Internet video
Quality of Experience (QoE) could be dramatically im-
proved by using data-driven prediction of video quality
for different choices (e.g., CDN or bitrate) to make opti-
mal decisions. However, building such a prediction sys-
tem is challenging on two fronts. First, the relationships
between video quality and observed session features can
be quite complex. Second, video quality changes dy-
namically. Thus, we need a prediction model that is
(a) expressive enough to capture these complex relation-
ships and (b) capable of updating quality predictions in
near real-time. Unfortunately, several seemingly natu-
ral solutions (e.g., simple machine learning approaches
and simple network models) fail on one or more fronts.
Thus, the potential benefits promised by these prior ef-
forts remain unrealized. We address these challenges and
present the design and implementation of Critical Fea-
ture Analytics (CFA). The design of CFA is driven by
domain-specific insights that video quality is typically
determined by a small subset of critical features whose
criticality persists over several tens of minutes. This en-
ables a scalable and accurate workflow where we auto-
matically learn critical features for different sessions on
coarse-grained timescales, while updating quality pre-
dictions in near real-time. Using a combination of a
real-world pilot deployment and trace-driven analysis,
we demonstrate that CFA leads to significant improve-
ments in video quality; e.g., 32% less buffering time and
12% higher bitrate than a random decision maker.

1 Introduction
Delivering high quality of experience (QoE) is crucial
to the success of today’s subscription and advertisement-
based business models for Internet video. As prior work
(e.g., [33, 11]) has shown, achieving good QoE is chal-
lenging because of significant spatial and temporal vari-
ation in CDNs’ performance, client-side network condi-
tions, and user request patterns.

At the same time, these observations also suggest there
is a substantial room for improving QoE by dynamically
selecting the optimal CDN and bitrate based on a real-
time global view of network conditions. Building on this

History of quality
measurements Decision Maker

Video Streaming Ecosystem

asurem Decision Makments surem

Global Optimization System

Global view of
video quality

Quality prediction of
potential decision

Prediction System

f lit

Figure 1: Overview of a global optimization system and
the crucial role of a prediction system.
insight, prior work makes the case for a quality optimiza-
tion system (Figure 1) that uses a prediction oracle to
suggest the best parameter settings (e.g., bitrate, CDN)
to optimize quality (e.g., [33, 11, 35, 32, 20]). Seen in a
broader context, this predictive approach can be applied
beyond Internet video (e.g., [10, 40, 15, 16, 43]).

However, these prior efforts fall short of providing
a concrete instantiation of such a prediction system.
Specifically, we observe that designing such a prediction
system is challenging on two key fronts (§2):

• Capturing complex factors that affect quality: For
instance, an outage may affect only clients of a spe-
cific ISP in a specific city when they use a specific
CDN. To accurately predict the quality of their ses-
sions, one must consider the combination of all three
factors. In addition, the factors that affect video qual-
ity vary across different sessions; e.g., wireless hosts
may be bottlenecked at the last connection, while
other clients may experience loading failures due to
unavailability of specific content on some CDNs.

• Need for fresh updates: Video quality changes
rapidly, on a timescale of several minutes. Ideally, we
must make predictions based on recent quality mea-
surements. This is particularly challenging given the
volume of measurements (e.g., YouTube had 231 mil-
lion video sessions and up to 500 thousand concurrent
viewers during the Olympics [7]), compounded with
the need for expressive and potentially complex pre-
diction models.

Unfortunately, many existing solutions fail on one or

1

138 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

both counts. For instance, solutions that use less complex
models (e.g., linear regression, Naive Bayes, or simple
models based on last-mile connection) are not expressive
enough to capture high dimensional and diverse relation-
ships between video quality and session features. More
complex algorithms (e.g., SVM [42]) can take several
hours to train a prediction model and will be inaccurate
because predictions will rely on stale data.

In this work, we address these challenges and present
the design and implementation of a quality prediction
system called Critical Feature Analytics (CFA). CFA is
built on three key domain-specific insights:

1. Video sessions with same feature values have similar
quality. This naturally leads to an expressive model,
wherein the video quality of a given session can be ac-
curately predicted based on the quality of sessions that
match values on all features (same ASN, CDN, player,
geographical region, video content, etc). However, if
applied naively, this model can suffer from the curse
of dimensionality — as the number of combinations of
feature values grows, it becomes hard to find enough
matching sessions to make reliable predictions.

2. Each video session has a subset of critical features
that ultimately determines its video quality. Given this
insight, we can make more reliable predictions based
on similar sessions that only need to match on criti-
cal features. For example, in a real event that we ob-
served, congestion of a Level3 CDN led to relatively
high loading failure rate for Comcast users in Balti-
more. We can accurately predict the quality of the af-
fected sessions using sessions associated with the spe-
cific CDN, region and ISP, ignoring other non-critical
features (e.g., player, video content). Thus, this tack-
les the curse of dimensionality, while still retaining
sufficient expressiveness for accurate prediction (§3).

3. Critical features tend to be persistent. Two remain-
ing concerns are: (a) Can we identify critical features
and (b) How expensive is it to do so? The insight
on persistence implies that critical features are learn-
able from recent history and can be cached and reused
for fast updates (§4). This insight is derived from re-
cent measurement studies [25, 20] (e.g., the factors
that lead to poor video quality persist for hours, and
sometimes, even days).

Taken together, these insights enable us to engineer
a scalable and accurate video quality prediction system.
Specifically, on a coarse timescale of tens of minutes,
CFA learns the critical features, and on a fine timescale
of minutes, CFA updates quality prediction using recent
quality measurements. CFA makes predictions and deci-
sions as new clients arrive.

We implemented a prototype of CFA and integrated
it in a video optimization platform that manages many

premium video providers. We ran a pilot study on one
content provider that has 150,000 sessions each day. Our
real-world experiments show that the bitrates and CDNs
selected by CFA lead to 32% less buffering time and 12%
higher bitrate than a baseline random decision maker.
Using real trace-driven evaluation, we also show that
CFA outperforms many other simple ML prediction al-
gorithms by up to 30% in prediction accuracy and 5-17%
in various video quality metrics.
Contributions and Roadmap:
• Identifying key challenges in building an accurate pre-

diction system for video quality (§2).
• Design and implementation of CFA, built on domain-

specific insights to address the challenges (§3-5).
• Real-world and trace-driven evaluation that demon-

strates substantial quality improvement by CFA (§6).
• Using critical features learned by CFA to make inter-

esting observations about video quality (§7).

2 Background and Challenges
This section begins with some background on video
quality prediction (§2.1). Then, we articulate two key
challenges faced by any video quality prediction system:
(1) The factors affecting video quality are complex, so
we need expressive models (§2.2); (2) Quality changes
rapidly, so models must be updated in near real-time by
recent quality measurements (§2.3). We also argue why
existing solutions do not address these challenges.

2.1 Background
Most video service providers today allow a video client
(player) to switch CDN and bitrate among a set of avail-
able choices [33, 20, 32]. These switches have little over-
head and can be performed at the beginning of and dur-
ing a video playback [8]. Our goal then is to choose the
best CDN and bitrate for a client by accurately predict-
ing the video quality of each hypothetical choice of CDN
and bitrate. In theory, if we can accurately predict the
quality of each potential decision, then we can identify
the optimal decision.

To this end, we envision a prediction system that uses a
global view of quality measurements to make predictions
for a specific video session. It learns a prediction func-
tion for each quality metric Pred : 2S × S �→ R, which
takes as input a given set of historical sessions S ∈ 2S

whose quality is already measured, and a new session
s ∈ S, and outputs a quality prediction p ∈ R for s.

Each quality measurement summarizes the quality of a
video session for some duration of time (in our case, one
minute). It is associated with values of four quality met-
rics [18] and a set of features2 (summarized in Table 1).

1For one session, VSF is zero if it starts successfully, one otherwise.
2By feature, we refer to the type of attribute (e.g., CDN), rather than

value of these attributes (e.g., CDN = Akamai)

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 139

Metrics Description
BufRatio Fraction of time a session spends in buffering

(smooth playback is interrupted by buffering).
AvgBitrate Time-weighted average of bitrates in a session.
JoinTime Delay for the video to start playing from the time

the user clicks “play”.
Video start fail-
ure (VSF)

Fraction of sessions that fail to start playing
(e.g., unavailable content or overloaded server)1.

Features Description
ASN Autonomous System to which client IP belongs.
City City where the client is located.
ConnectionType Type of access network; e.g., mobile/fixed wire-

less, DSL, fiber-to-home [3].
Player e.g., Flash, iOS, Silverlight, HTML5.
Site Content provider of requested video contents.
LiveOrVoD Binary indicator of live vs. VoD content.
ContentName Name of the requested video object.
CDN CDN a session started with.
Bitrate Bitrate value the session started at.

Table 1: Quality metrics and session features associ-
ated with each session. CDN and Bitrate refer to initial
CDN/bitrate values as we focus on initial selections.
In general, the set of features depends on the degree of
instrumentation and what information is visible to a spe-
cific provider. For instance, a CDN may know the loca-
tion of servers, whereas a third-party optimizer [1] may
only have information at the CDN granularity. Our fo-
cus is not to determine the best set of features that should
be recorded for each session, but rather engineer a pre-
diction system that can take an arbitrary set of features
as inputs and extract the relationships between these fea-
tures and video quality. In practice, the above set of fea-
tures can already provide accurate predictions that help
improve quality.

Our dataset consists of 6.6 million quality measure-
ments collected from 2 million clients using 3 large pub-
lic CDNs distributed across 168 countries and 152 ISPs.

2.2 Challenge 1: Expressive models
We show real examples of the complex factors that im-
pact video quality, and the limitations in capturing these
relationships.
High-dimensional relationship between video quality
and session features. Video quality could be impacted
by combinations of multiple components in the network.
Such high-dimensional effects make it harder to learn the
relationships between video quality and features, in con-
trast to simpler settings where features affect quality in-
dependently (e.g., assumed by Naive Bayes).

In a real-world incident, video sessions of Comcast
users in Baltimore who watched videos from Level3
CDN experienced high failure rate (VSF) due to con-
gested edge servers, shown by the blue line in Figure 2.
The figure also shows the VSF of sessions sharing the
same values on one or two features with the affected ses-
sions; e.g., all Comcast sessions across different cities
and CDNs. In the figure, the high VSF of the affected
sessions cannot be clearly identified if we look at the ses-

0
0.2
0.4
0.6
0.8

0 5 10 15 20 25

V
S

F

Time (hour)

3-Feature Best 2-Feature Best 1-Feature Global

Figure 2: The high VSF is only evident when three fac-
tors (CDN, ISP and geo-location) are combined.
sions that match on only one or two features. Only when
three features of CDN (“Level3”), ASN (“Comcast”) and
City (“Baltimore”) are specified (i.e., blue line), can we
detect the high VSF and predict the quality of affected
sessions accurately.

In practice, we find that such high-dimensional effects
are the common case, rather than an anomalous corner
case. For instance, more than 65% of distinct CDN-ISP-
City values have VSF that is at least 50% higher or lower
than the VSF of sessions matching only one or two fea-
tures (not shown). In other words, their quality is af-
fected by a combined effect of at least three features.
Limitation of existing solutions: It might be tempting to
develop simple predictors; e.g., based on the last-hop
connection by using average quality of history sessions
with the same ConnectionType value. However, they do
not take into account the combined impact of features on
video quality. Conventional machine learning techniques
like Naive Bayes also suffer from the same limitation.
In Figures 3(a) and 3(b), we plot the actual JoinTime
and the prediction made by the last-hop predictor and
Naive Bayes (from Weka [6]) for 300 randomly sampled
sessions. The figures also show the mean relative error
(|predicted−actual|

actual). For each session, the prediction algo-
rithms train models using historical sessions within a 10-
minute interval prior to the session under prediction. It
shows that the prediction error of both solutions is signif-
icant and two-sided (i.e., not fixable by normalization).
Highly diverse structures of factors. The factors that
affect video quality vary across different sessions. This
means the prediction algorithm should be expressive
enough to predict quality for different sessions using dif-
ferent prediction models. For instance, the fact that many
fiber-to-the-home (e.g., FiOS) users have high bitrates
and people on cellular connections have lower bitrates
is largely due to the speed of their last-mile connection.
In contrast, some video clients may experience video
loading failures due to unavailability of specific content
on some CDNs. A recent measurement study [25] has
shown that many heterogeneous factors are correlated
with video quality issues. In §7, we show that 15% of
video sessions are impacted by more than 30 different
combinations of features and give real examples of dif-
ferent factors that affect quality.
Limitation of existing solutions: To see why existing so-
lutions are not sufficient, let us consider the k-nearest

3

140 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 10

 20

 30

 0 10 20 30P
re

d
ic

te
d
 J

o
in

T
im

e
 (

s
e
c
)

Actual JoinTime (sec)

(a) Last hop (0.76)

 0

 10

 20

 30

 0 10 20 30P
re

d
ic

te
d
 J

o
in

T
im

e
 (

s
e
c
)

Actual JoinTime (sec)

(b) Naive Bayes (0.61)

 0

 10

 20

 30

 0 10 20 30P
re

d
ic

te
d
 J

o
in

T
im

e
 (

s
e
c
)

Actual JoinTime (sec)

(c) k-NN (0.63)

Figure 3: Prediction error of some existing solutions is
substantial (mean of relative error in parentheses).
neighbor (k-NN) algorithm. It does not handle diverse
relationships between quality and features, because the
similarity between sessions is based on the same func-
tion of features independent of the specific session un-
der prediction. In Figure 3(c), we plot the actual values
of JoinTime and the prediction made by k-NN with the
same setup as Figure 3(a)(b). Similar to Naive Bayes
and the last-hop predictor, k-NN has substantial predic-
tion error.

2.3 Challenge 2: Fresh updates
Video quality has significant temporal variability. In Fig-
ure 4(a), for each quality metric and combination of spe-
cific CDN, city and ASN, we compute the mean qual-
ity of sessions in each 10-minute interval, and then plot
the CDF of the relative standard deviation (stddev

mean) of the
quality across different intervals. In all four quality met-
rics of interest, we see significant temporal variability;
e.g., for 60% of CDN-city-ASN combinations, the rela-
tive standard deviation of JoinTime across different 10-
minute intervals is more than 30%. Such quality variabil-
ity has also been confirmed in other studies (e.g., [33]).

The implication of such temporal variability is that the
prediction system must update models in near real-time.
In Figure 4(b), we use the same setup as Figure 3, except
that the time window used to train prediction models is
several minutes prior to the session under prediction. The
figure shows the impact of such staleness on the predic-
tion error for JoinTime. For both algorithms, prediction
error increases dramatically if the staleness exceeds 10
minutes. As we will see later, this negative impact of
staleness on accuracy is not specific to these prediction
algorithms (§6.3).
Limitation of existing solutions: The requirement to use
the most recent measurements makes it infeasible to use
computationally expensive models. For instance, it takes
at least one hour to train an SVM-based prediction model
from 15K quality measurements in a 10-minute interval
for one video site, so the quality predictions will be based
on information from more than one hour ago.

3 Intuition behind CFA
This section presents the domain-specific insights we use
to help address the expressiveness challenge (§2.2). The
first insight is that sessions matching on all features have
similar video quality. However, this approach suffers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

C
D

F

Relative stddev

BufRatio
AvgBitrate

JoinTime
VSF

(a) Temporal variability

 0

 5

 10

 15

 20

 1 2 4 8 16

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

p

re
d

ic
ti
o

n
 e

rr
o

r

Staleness (min)

Naive Bayes
k-NN

(b) Impact of staleness on accuracy

Figure 4: Due to significant temporal variability of
video quality (left), prediction error increases dramati-
cally with stale data (right).

Input: Session under prediction s, Previous sessions S
Output: Predicted quality p
/* S�:identical sessions matching on all

features with s in recent history(Δ) */

1 S� ← SimilarSessionSet(s,S,AllFeatures,Δ);
/* Summarize the quality (e.g.,median) of

the identical sessions in S�. */

2 p ← Est(S�);
3 return p;

Algorithm 1: Baseline prediction that finds ses-
sions matching on all features and uses their ob-
served quality as the basis for prediction.

from the curse of dimensionality. Fortunately, we can
leverage a second insight that each video session has a
subset of critical features that ultimately determine its
video quality. We conclude this section by highlighting
two outstanding issues in translating these insights into a
practical prediction system.

3.1 Baseline prediction algorithm
Our first insight is that sessions that have identical fea-
ture values will naturally have similar (if not identical)
quality. For instance, we expect that all Verizon FiOS
users viewing a specific HBO video using Level3 CDN
in Pittsburgh at Fri 9 am should have similar quality
(modulo very user-specific effects such as local Wi-Fi
interference inside the home). We can summarize the
intuition as follows:

Insight 1: At a given time, video sessions having same
value on every feature have similar video quality.

Inspired by Insight 1, we can consider a baseline al-
gorithm (Algorithm 1). We predict a session’s quality
based on “identical sessions”, i.e., those from recent his-
tory that match values on all features with the session un-
der prediction. Ideally, given infinite data, this algorithm
is accurate, because it can capture all possible combina-
tions of factors affecting video quality.

However, this algorithm is unreliable as it suffers
from the classical curse of dimensionality [39]. Specif-
ically, given the number of combinations of feature val-
ues (ASN, device, content providers, CDN, just to name
a few), it is hard to find enough identical sessions needed

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 141

to make a robust prediction. In our dataset, more than
78% of sessions have no identical session (i.e., matching
on all features) within the last 5 minutes.

3.2 Critical features
In practice, we expect that some features are more likely
to “explain” the observed quality of a specific video ses-
sion than others. For instance, if a specific peering point
between Comcast and Netflix in New York is congested,
then we expect most of these users will suffer poor qual-
ity, regardless of the speed of their local connection.

Insight 2: Each video session has a subset of critical
features that ultimately determines its video quality.

We already saw some real examples in §2.2: in the
example of high dimensionality, the critical features
of the sessions affected by the congested Level3 edge
servers are {ASN,CDN,City}; in the examples of di-
versity, the critical features are {ConnectionType} and
{CDN,ContentName}. Table 2 gives more real exam-
ples of critical features that we have observed in opera-
tional settings and confirmed with domain experts.

Quality issue Set of critical features
Issue on one player of Vevo {Player,Site}
ESPN flipping between CDNs {CDN,Site,ContentName}
Bad Level3 servers for Com-
cast users in Maryland

{CDN,City,ASN}

Table 2: Real-world examples of critical features con-
firmed by analysts at a large video optimization vendor.

A natural implication of this insight is that it can help
us tackle the curse of dimensionality. Unlike Algo-
rithm 1, which fails to find a sufficient number of ses-
sions, we can estimate quality more reliably by aggre-
gating observations across a larger amount of “similar
sessions” that only need to match on these critical fea-
tures. Thus, critical features can provide expressiveness
while avoiding curse of dimensionality.

Algorithm 2 presents a logical view of this idea:
1. Critical feature learning (line 1): First, find

the critical features of each session s, denoted as
CriticalFeatures(s).

2. Quality estimation (line 2, 3): Then, find similar
sessions that match values with s on critical features
CriticalFeatures(s) within a recent history of length Δ
(by default, 5 minutes). Finally, return some suitable
estimate of the quality of these similar sessions; e.g.,
the median3 (for BufRatio, AvgBitrate, JoinTime) or
the mean (for VSF).
A practical benefit of Algorithm 2 is that it is inter-

pretable [52], unlike some machine learning algorithms

3We use median because it is more robust to outliers.

Input: Session under prediction s, Previous sessions S
Output: Predicted quality p
/* CFs:Set of critical features of s */

1 CFs ←CriticalFeatures(s);
/* S�:Similar sessions matching values on

critical features CFs with s. */

2 S� ← SimilarSessionSet(s,S,CFs,Δ);
/* Summarize the quality of the similar

sessions in S�. */

3 p ← Est(S�);
4 return p;

Algorithm 2: CFA prediction algorithm, where pre-
diction is based on similar sessions matching on
critical features.

(e.g., PCA or SVM). This allows domain experts to com-
bine their knowledge with CFA and diagnose prediction
errors or resolve incidents, as we explore in §7.2.

At this time, it is useful to clarify what critical fea-
tures are and what they are not. In essence, critical fea-
tures provide the explanatory power of how a prediction
is made. However, critical features are not a minimal
set of factors that determine the quality (i.e., root cause).
That is, they can include both features that reflect the
root cause as well as additional features. For example, if
all HBO sessions use Level3, their critical features may
include both CDN and Site, even if CDN is redundant,
since including it does not alter predictions. The primary
objective of CFA is accurate prediction; root cause diag-
nosis may be an added benefit.

3.3 Practical challenges
There are two issues in using Algorithm 2.
Can we learn critical features? A key missing piece
is how we get the critical features of each session (line
1). This is challenging because critical features vary both
across sessions and over time [33, 25], and it is infeasible
to manually configure critical features.
How to reduce update delay? Recall from §2.3 that
the prediction system should use the most recent quality
measurements. This requires a scalable implementation
of Algorithm 2, where critical features and quality esti-
mates are updated in a timely manner. However, naively
running Algorithm 2 for millions of sessions under pre-
diction is too expensive (§6.3). With a cluster of 32 cores,
it takes 30 minutes to learn critical features for 15K ses-
sions within a 10-minutes interval. This means the pre-
diction will be based on stale information from tens of
minutes ago.

4 CFA Detailed Design
In this section, we present the detailed design of CFA
and discuss how we address the two practical challenges
mentioned in the previous section: learning critical fea-
tures and reducing update delay.

5

142 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Notations Domains Definition
s,S,S A session, a set of ses-

sions, set of all sessions
q(s) S �→ R Quality of s
QualityDist(S) 2S �→ 2R {q(s)|s ∈ S}
f ,F,F A feature, a set of features,

set of all features
CriticalFeatures(s) S �→ 2F Critical features of s
V Set of all feature values
FV (f ,s) F×S �→ V Value on feature f of s
FSV (F,s) 2F×S �→ 2V Set of values on features in

F of s
SimilarSessionSet
(s,S,F,Δ)

F×2F×S×
R+ �→ 2F

{s�|s� ∈ S, t(s) − Δ <
t(s�) < t(s),FSV (F,s�) =
FSV (F,s)}

Table 3: Notations used in learning of critical features.
The key to addressing these challenges is our third and

final domain-specific insight:

Insight 3: Critical features tend to persist on long
timescales of tens of minutes.

This insight is derived from prior measurement stud-
ies [25, 20]. For instance, our previous study on shedding
light on video quality issues in the wild showed that the
factors that lead to poor video quality persist for hours,
and sometimes even days [25]. Another recent study
from the C3 system suggests that the best CDN tends to
be relatively stable on the timescales of few tens of min-
utes [20]. We independently confirm this observation in
§6.3 that using slightly stale critical features (e.g., 30-60
minutes ago) achieves similar prediction accuracy as us-
ing the most up-to-date critical features. Though this in-
sight holds for most cases, it is still possible (e.g., on mo-
bile devices) that critical features persist on a relatively
shorter timescale (e.g., due to the nature of mobility).

Note that the persistence of critical features does not
mean that quality values are equally persistent. In fact,
persistence of critical features is on a timescale an order
of magnitude longer than the persistence of quality. That
is, even if quality fluctuates rapidly, the critical features
that determine the quality do not change as often.

As we will see below, this persistence enables (a) au-
tomatic learning of critical features from history, and (b)
a scalable workflow that provides up-to-date estimates.

4.1 Learning critical features
Recall that the first challenge is obtaining the critical fea-
tures for each session. The persistence of critical features
has a natural corollary that we can use to automatically
learn them:

Corollary 3.1: Persistence implies that critical features
of a session are learnable from history.

Specifically, we can simply look back over the his-
tory and identify the subset of features F such that
the quality distribution of sessions matching on F is

Input: Session under prediction s, Previous sessions S
Output: Critical features for s
/* Initialization */

1 MaxSimilarity ←−∞,CriticalFeatures ← NULL;
/* D f inest:Quality distribution of

sessions matching on F in Δlearn. */
2 D f inest ← QualityDist(SimilarSessionSet(s,S,F,Δlearn));
3 for F ⊆ 2F do

/* Exclude F without enough similar
sessions for prediction. */

4 if |SimilarSessionSet(s,S,F,Δ)|< n then
5 continue;

/* DF:Quality distribution of
sessions matching on F in Δlearn.

*/
6 DF ← QualityDist(SimilarSessionSet(s,S,F,Δlearn));

/* Get similarity of D f inest & DF. */
7 Similarity ← Similarity(DF ,D f inest);
8 if Similarity>MaxSimilarity then
9 MaxSimilarity ← Similarity;

10 CriticalFeatures ← F ;
11 return CriticalFeature;

Algorithm 3: Learning of critical features.

most similar to that of sessions matching on all fea-
tures. For instance, suppose we have three features
�ContentName,ASN,CDN� and it turns out that sessions
with ASN = Comcast,CDN = Level3 consistently have
high buffering over the last few hours due to some in-
ternal congestion at the corresponding exchange point.
Then, if we look back over the last few hours, the
data from history will naturally reveal that the dis-
tribution of the quality of sessions with the feature
values �ContentName = Foo,ASN = Comcast,CDN =
Level3� will be similar to �ContentName = ∗,ASN =
Comcast,CDN = Level3�, but very different from, say,
the quality of sessions in �ContentName = ∗,ASN =
∗,CDN = Level3�, or �ContentName = ∗,ASN =
Comcast,CDN = ∗�. Thus, we can use a data-driven
approach to learn that ASN,CDN are the critical fea-
tures for sessions matching �ContentName=Foo,ASN =
Comcast,CDN = Level3�.

Algorithm 3 formalizes this intuition for learning crit-
ical features. Table 3 summarizes the notation used in
Algorithm 3. For each subset of features F (line 3), we
compute the similarity between the quality distribution
(DF) of sessions matching on F and the quality distri-
bution (D f inest) of sessions matching on all features (line
7). Then, we find the F that yields the maximum sim-
ilarity (line 8-10), under one additional constraint that
SimilarSessionSet(s,S,F,Δ) should include enough (by
default, at least 10) sessions to get reliable quality esti-
mation (line 4-5). This check ensures that the algorithm
will not simply return the set of all features.

As an approximation of the duration in which criti-

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 143

(a) Naive workflow (b) CFA workflow

Figure 5: To reduce update delay, we run critical
feature learning and quality estimation at different
timescales by leveraging persistence of critical features.
cal features persist, we use Δlearn = 60min. Note that
Δlearn is an order of magnitude larger than the time win-
dow Δ used in quality estimation, because critical fea-
tures persist on a much longer timescale than quality
values. We use (the negative of) Jensen-Shannon di-
vergence between D1 and D2 to quantify their similarity
Similarity(D1,D2).

Although Algorithm 3 can handle most cases, there
are corner cases where SimilarSessionSet(s,S,F,Δlearn)
does not have enough sessions (i.e., more than n) to com-
pute Similarity(DF ,D f inest) reliably. In these cases, we
replace D f inest by the set of n sessions that share most
features with s over the time window of Δlearn. For-
mally, we use {s�|s� matches ks features with s}, where
ks = argmink (|{s�|s� matches k features with s| ≥ n}|).
4.2 Using fresh updates
Next, we focus on reducing the update delay between
when a quality measurement is received and used for pre-
diction.

Naively running critical feature learning and quality
estimation of Algorithm 2 can be time-consuming, caus-
ing the predictions to rely on stale data. In Figure 5(a),
TCFL and TQE are the duration of critical feature learning
and the duration of quality estimation, respectively. The
staleness of quality estimation (depicted in Figure 5) to
respond to a prediction query can be as large as the total
time of two steps (i.e., TCFL + TQE), which typically is
tens of minutes (§6.3). Also, simply using more parallel
resources is not sufficient. The time to learn critical fea-
tures using Algorithm 3 grows linearly with the number
of sessions under prediction, the number of history ses-
sions, and the number of possible feature combinations.
Thus, the complexity of learning critical features TCFL is
exponential in the number of features. Given the current
set of features, TCFL is on the scale of tens of minutes.

To reduce update delay, we again leverage the persis-
tence of critical features:

Corollary 3.2: Persistence implies that critical features
can be cached and reused over tens of minutes.

Building on Corollary 3.2, we decouple the critical

feature learning and quality estimation steps, and run
them at separate timescales. On the timescale of tens of
minutes, we update the results of critical feature learn-
ing. Then, on a faster timescale of tens of seconds, we
update quality estimation using fresh data and the most
recently learned critical features.

This decoupling minimizes the impact of staleness on
prediction accuracy. Learning critical features on the
timescale of tens of minutes is sufficiently fast as they
persist on the same timescale. Meanwhile, quality esti-
mation can be updated every tens of seconds and makes
predictions based on quality updates with sufficiently
low staleness. Thus, the staleness of quality estimation
TQE of the decoupled workflow (Figure 5(b)) is a magni-
tude lower than TQE +TCFL of the naive workflow (Fig-
ure 5(a)). In §6.3, we show that this workflow can retain
the freshness of critical features and quality estimates.

In addition, CFA has a natural property that two ses-
sions sharing all feature values and occurring close in
time will map to the same critical features. Thus, in-
stead of running the steps per-session, we can reduce the
computation to the granularity of finest partitions, i.e.,
distinct values of all features.

4.3 Putting it together
Building on these insights, we create the following prac-
tical three-stage workflow of CFA.

• Stage I: Critical feature learning (line 1 of Algo-
rithm 2) runs offline, say, every tens of minutes to
an hour. The output of this stage is a key-value table
called critical feature function that maps all observed
finest partitions to their critical features.

• Stage II: Quality estimation (line 2,3 of Algo-
rithm 2) runs every tens of seconds for all observed
finest partitions based on the most recent critical fea-
tures learned in the first stage. This outputs another
key-value table called quality function that maps a
finest partition to the quality estimation, by aggregat-
ing the most recent sessions with the corresponding
critical features.

• Stage III: Real-time query/response. Finally, we
provide real-time query/response on the arrival of each
client, operating at the millisecond timescale, by sim-
ply looking up the most recent precomputed value
function from the previous stage. These operations
are simple and can be done very fast.

Finally, instead of forcing all finest partition-level
computations to run in every batch, we can do triggered
recomputations of critical feature learning only when the
observed prediction errors are high.

5 Implementation and Deployment
This section presents our implementation of CFA and
highlights engineering solutions to address practical

7

144 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: Implementation overview of CFA. The three
stages of CFA workflow are implemented in a backend
cluster and distribute frontend clusters.
challenges in operational settings (e.g., avoiding bulk
data loading and speeding up development iterations).

5.1 Implementation of CFA workflow
CFA’s three stages are implemented in two different lo-
cations: a centralized backend cluster and geographically
distributed frontend clusters as depicted in Figure 6.
Centralized backend: The critical feature learning and
quality estimation stages are implemented in a backend
cluster as periodic jobs. By default, critical feature learn-
ing runs every 30 minutes, and quality estimation runs
every minute. A centralized backend is a natural choice
because we need a global view of all quality measure-
ments. The quality function, once updated by the estima-
tion step, is disseminated to distributed frontend clusters
using Kafka [27].

Note that we can further reduce learning time using
simple parallelization strategies. Specifically, the criti-
cal features of different finest partitions can be learned
independently. Similarly in Algorithm 3, the similarity
of quality distributions can be computed in parallel. To
exploit this data-level parallelism, we implement them as
Spark jobs [4].
Distributed frontend: Real-time query/response and
decision makers of CDN/bitrate are co-located in dis-
tributed frontend clusters that are closer to clients than
the backend. Each frontend cluster receives the quality
function from the backend and caches it locally for fast
prediction. This reduces the latency of making decisions
for clients.

5.2 Challenges in an operational setting
Mitigating impact of bulk data loading: The backend
cluster is shared and runs other delay-sensitive jobs; e.g.,
analytics queries from production teams. Since the crit-
ical feature learning runs periodically and loads a large
amount of data (≈30 GB), it creates spikes in the de-
lays of other jobs (Figure 7). To address this concern,
we engineered a simple heuristic to evenly spread the
data retrieval where we load a small piece of data every
few minutes. As Figure 7 shows, this reduces the spikes

 68
 70
 72
 74
 76
 78
 80
 82
 84

 0 50 100 150 200 250 300 350 400

A
v
g
 c

o
m

p
le

ti
o
n
 t
im

e

o
f
b
a
c
k
g
ro

u
n
d
 j
o
b
s
 (

s
e
c
)

Time (min)

Batch
Smooth

Figure 7: Streaming data loading has smoother impact
on completion delay than batch data loading.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

CFA NB DT k-NN LH ASN

R
e
la

ti
v
e
 e

rr
o
r

(a) AvgBitrate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

CFA NB DT k-NN LH ASN

R
e
la

ti
v
e
 e

rr
o
r

(b) JoinTime() g

0
20
40
60
80

100
120

CFA NB DT k-NN LH ASN

H
it

R
at

e
(%

)

Good Quality Bad Quality

(c) BufRatio

()

0
20
40
60
80

100
120

CFA NB DT k-NN LH ASN

H
it

R
at

e
(%

)

Good Quality Bad Quality

(d) VSF

Figure 8: Distributions of relative prediction error
({5,10,50,90,95}%iles) on AvgBitrate and JoinTime
and hit rates on BufRatio and VSF. They show that
CFA outperforms other algorithms.
caused by bulk data loading in batch mode. Note that this
does not affect critical feature learning.
Iterative algorithm refinement: Some parameters
(e.g., learning window size Δlearn) of CFA require iter-
ative tuning in a production environment. However, one
practical challenge is that the frontend-facing part of the
backend can only be updated once every couple of weeks
due to code release cycles. Thus, rolling out new predic-
tion algorithms may take several days and is a practi-
cal concern. Fortunately, the decoupling between critical
feature learning and quality estimation (§4.2) means that
changes to critical feature learning are confined to the
backend cluster. This enables us to rapidly refine and
customize the CFA algorithm.

6 Evaluation
In this section, we show that:
• CFA predicts video quality with 30% less error than

competing machine learning algorithms (§6.1).
• Using CFA-based prediction, we can improve video

quality significantly; e.g., 32% less BufRatio, 12%
higher AvgBitrate in a pilot deployment (§6.2).

• CFA is responsive to client queries and makes pre-
dictions based on the most recent critical features and
quality measurements (§6.3).

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 145

6.1 Prediction accuracy
We compare CFA with five alternative algorithms: three
simple ML algorithms, Naive Bayes (NB), Decision Tree
(DT), k-Nearest Neighbor (k-NN)4, and two heuristics
which predict a session’s quality by the average quality
of other sessions from the same ASN (ASN) or matching
the last-mile connection type (LH). All algorithms use
the same set of features listed in Table 1.

Ideally, we want to evaluate how accurately an algo-
rithm can predict the quality of a given client on every
choice of CDN and bitrate. However, this is infeasible
since each video client is assigned to only one CDN and
bitrate at any time. Thus, we can only evaluate the pre-
diction accuracy over the observed CDN-bitrate choices,
and we use the quality measured on these choices as the
ground truth. That said, this approach is still useful for
doing a relative comparison across different algorithms.

For AvgBitrate and JoinTime, we report relative error:
|p−q|

q , where the q is the ground truth and p is the predic-
tion. For BufRatio and JoinTime, which have more “step
function” like effects [18], we report a slightly different
measure called hit rate: how likely a session with good
quality (i.e., BufRatio < 5%, VSF=0) or bad quality is
correctly identified. Figure 8 shows that for AvgBitrate
and JoinTime, CFA has the lowest {5,10,50,90}%th
percentiles of prediction error and lower 95%th per-
centiles than most algorithms. In particular, median er-
ror of CFA is about 30% lower than the best competing
algorithm. In terms of BufRatio and VSF, CFA signifi-
cantly outperforms other algorithms in the hit rate of bad
quality sessions. The reason for hit rate of bad quality
to be lower than that of good quality is that bad quality
sessions are almost always less than good quality, which
makes them hard to predict. Note that accurately iden-
tifying sessions that have bad quality is crucial as they
have the most room for improvement.

6.2 Quality improvement
Pilot deployment: As a pilot deployment, we integrated
CFA in a production system that provides a global video
optimization service [20]. We deployed CFA on one ma-
jor content provider and used it to optimize 150,000 ses-
sions each day. We ran an A/B test (where each algo-
rithm was used on a random subset of clients) to evaluate
the improvement of CFA over a baseline random deci-
sion maker, which many video optimization services use
by default (modulo business arrangement like price) [9].

Table 4 compares CFA with the baseline random deci-
sion maker in terms of the mean BufRatio, AvgBitrate
and a simple QoE model (QoE = −370 ∗ Bu f Ratio +
AvgBitrate/20), which was suggested by [33, 18]. Over
all sessions in the A/B testing, CFA shows an improve-

4NB, DT, and k-NN are mplemented using a popular ML library
weka[6].

CFA Baseline Improvement
QoE 155.43 138.27 12.4%
BufRatio 0.0123 0.0182 32%
AvgBitrate 3200 2849 12.31%

Table 4: Random A/B testing results of CFA vs. base-
line in real-world deployment.

ment in both BufRatio (32% reduction) and AvgBitrate
(12.3% increase) compared to the baseline. This shows
that CFA is able to simultaneously optimize multiple
(possibly conflicting) metrics. To put these numbers
in context, our conversation with domain experts con-
firmed that these improvements are significant for con-
tent providers and can potentially translate into substan-
tial benefits in engagement and revenues [2]. CFA’s su-
perior performance and that CFA is more automated than
the custom algorithm indicate that domain experts were
willing to invest time running longer pilot. Figure 9 pro-
vides more comparison and shows that CFA consistently
outperforms the baseline over time and across different
major cities in the US, connection types and CDNs.
Trace-driven simulation: We complement this real-
world deployment with a trace-driven simulation to si-
multaneously compare more algorithms over more qual-
ity metrics. However, one key challenge is that it is hard
to estimate the quality of a decision that was not used by
a specific client in the trace.

To address this problem, we use the counterfactual
methodology from prior work in online recommendation
systems [30, 31]. Suppose we have quality measure-
ments from a set of clients, where client c is assigned to
a decision drand(c) of CDN and bitrate at random. Now,
we have a new hypothetical algorithm that maps client
c to dalg(c). Then, we can evaluate the average quality
of clients assigned to each decision d, {c|dalg(c) = d},
by the average quality of {c|dalg(c) = d,drand(c) = d}.
Finally, the average quality of the new algorithm is the
weighted sum of average quality of all decisions, where
the weight of each decision is the fraction of sessions
assigned to it. This can be proved to be an unbiased (of-
fline) estimate of dalg’s (online) performance [5].5 For
instance, if out of 1000 clients assigned to use Akamai
and 500Kbps, 200 clients are assigned to this decision
in the random assignment, then we can use the average
quality of these 200 sessions as an unbiased estimate
of the average quality of these 1000 sessions. Fortu-
nately, our dataset includes a (randomly chosen) portion
of clients with randomized decision assignments (i.e.,

5One known limitation of this analysis is that it assumes the new
assignments do not affect each decision’s overall performance. For
instance, if we assign all sessions to one CDN, they may overload the
CDN and so this CDN’s quality in the random assignments is no longer
useful. Since this work only focuses on controlling traffic at a small
scale relative to the total load on the CDN (and our experiments are in
fact performed at such a scale), this methodology is still unbiased.

9

146 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

Q
o
E

Time (hour)

CFA
Baseline

(a) CFA vs. baseline by time

 0

 40

 80

 120

 160

 200

 240

Level3
Akamai

Amazon

Q
o
E

CDNs

CFA
Baseline

 0

 40

 80

 120

 160

 200

 240

Cable
DSL

Mobile
Satellite

Last hop connections

CFA
Baseline

 0

 40

 80

 120

 160

 200

 240

 280

LA NYC
ORL

CHI
SEA

Major US cities

CFA
Baseline

(b) CFA vs. baseline by spatial partitions

Figure 9: Results of real-world deployment. CFA outperforms the baseline random decision maker (over time and
across different large cities, connection types and CDNs).

0
10
20
30
40
50
60

QoE

BufRatio

AvgBitra
te

JoinTime
VSF

Im
pr

ov
em

en
t (

%
) Over baseline

Over the best prediction algorithm

Figure 10: Comparison of quality improvement be-
tween CFA and strawmen.

Stage Run time (mean
/ median)

Required
freshness

Critical feature learning 30.1/29.5 min 30-60 min
Quality estimation 30.7/28.5 sec 1-5 min
Query response 0.66/0.62 ms 1 ms

Table 5: Each stage of CFA is refreshed to meet the
required freshness of its results.

CDN and bitrate). Thus, we only report improvements
for these clients.

Figure 10 uses this counterfactual methodology and
compares CFA with the best alternative from §6.1 for
each quality metric and the baseline random decision
maker (e.g., the best alternative of AvgBitrate is k-NN).
For each quality metric and prediction algorithm, the de-
cision maker selects the CDN and bitrate that has the best
predicted quality for each client. For instance, the im-
provement of CFA over the baseline on VSF is 52% – this
means the number of sessions with start failures is 52%
less than when the baseline algorithm is used. The fig-
ures show that CFA outperforms the baseline algorithm
by 15%-52%. They also show that CFA outperforms the
best prediction algorithms by 5%-17%.

6.3 Timeliness of prediction
Our implementation of CFA should (1) retain freshness
to minimize the impact of staleness on prediction accu-
racy, and (2) be responsive to each prediction query.

We begin by showing how fast each stage described
in §4.2 needs to be refreshed. Figure 11 shows the im-
pact of staleness of critical features and quality values

 0

 4

 8

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(a) BufRatio

 0

 4

 8

 12

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(b) AvgBitrate

 0

 4

 8

 12

 16

 20

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(c) JoinTime

 4

 8

 12

 16

 20

 24

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(d) VSF

Figure 11: Latency of critical features and quality val-
ues (x-axis) on increase in accuracy (y-axis).
on the prediction accuracy of CFA. First, critical features
learned 30-60 minutes before prediction can still achieve
similar accuracy as those learned 1 minute before predic-
tion. In contrast, quality estimation cannot be more than
10 minutes prior to when prediction is made (which cor-
roborates the results of Figure 4(b)). Thus, critical fea-
ture learning needs to be refreshed every 30-60 minutes
and quality estimation should be refreshed at least every
several minutes. Finally, prediction queries need to be
responded to within several milliseconds [20] (ignoring
network delay between clients and servers).

Next, we benchmark the time to run each logical stage
described in §4.2. Real-time query/response runs in 4
geographically distributed data centers. Critical feature
learning and quality estimation run on two clusters of 32
cores. Table 5 shows the time for running each stage and
the timescale required to ensure freshness. It confirms
that the implementation of CFA is sufficient to ensure
the freshness of results in each stage.

7 Insights from Critical Features
In addition to the predictive power, CFA also offers in-
sights into the “structure” of video quality in the wild. In
this section, we focus on two questions: (1) What types

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 147

21%

21%

14%
10%

10%

24%

[ASN, City, CDN,
ConnectionType]
[ASN, City, CDN]

[ASN, City, CDN, Bitrate]

[ASN, CDN, Bitrate,
ContentName]
[Bitrate, ConnectionType,
Player]
Other

(a) BufRatio

17%

15%

15%
11%

9%

33%

[ASN, Bitrate, Player,
ConnectionType]
[City, CDN, Player,
ConnectionType]
[CDN, Bitrate]

[CDN, ConnectionType,
Player]
[ASN, City, CDN]

Other

(b) AvgBitrate

20%

14%

14%
12%

9%

31%

[ASN, CDN, Bitrate,
ConnectionType]
[Bitrate, ConnectionType]

[City, CDN, ConnectionType]

[CDN, ContentName,
Bitrate]
[CDN, Bitrate, Player]

Other

(c) JoinTime

]
21%

20%

16%
11%

10%

22%

[ASN, CDN,
ConnectionType]
[City, CDN, ContentName]

[ASN, City, CDN, Bitrate]

[CDN, Bitrate,
ConnectionType, Player]
[ASN, CDN, ContentName]

Other

(d) VSF

Figure 12: Analyzing the types of critical features: This
shows a breakdown of the total number of sessions as-
signed to a specific type of critical features.
of critical features are most common? (2) What factors
have significant impact on video quality?

7.1 Types of critical features
Popular types of critical features: Figure 12 shows
a breakdown of the fraction of sessions that are as-
signed to a specific type of critical feature set. We
show this for different quality metrics. (Since we fo-
cus on a specific VoD provider, we do not consider the
Site or LiveOrVoD for this analysis.) Across all qual-
ity metrics, the most popular critical features are CDN,
ASN and ConnectionType, which means video quality
is greatly impacted by network conditions at the server
(CDN), transit network (ASN), and last-mile connection
(ConnectionType).

We also see interesting patterns unique to individ-
ual metrics. City is among the top critical features of
BufRatio. This is perhaps because network congestion
usually depends on the volume of concurrent viewers in
a specific region. Bitrate (initial bitrate) has a larger
impact on AvgBitrate than on other metrics, since the
videos in the dataset are mostly short content (2-5 min-
utes) and AvgBitrate is correlated with initial bitrate. Fi-
nally, ContentName has a relatively large impact on fail-
ures (VSF) but not other metrics, because VSF is some-
times due to the requested content not being ready.
Distribution of types of critical features: While the
quality of about 50% of sessions is impacted by 3-4 pop-
ular types of critical features, 15% of sessions are im-
pacted by a diverse set of more than 30 types of critical
feature (not shown). This corroborates the need for ex-
pressive prediction models that handle the diverse factors
affecting quality (§2.2).

7.2 Values of critical features
Next, we focus on the most prevalent feature values (e.g.,
a specific ASN or player). To this end, we define preva-

City ASN Player ConnectionType
BufRatio Some major

east-coast
cities

Satellite,
Mobile,
Cable

AvgBitrate Cellular
carriers

Players with
different en-
codings

JoinTime Cellular
carrier

Satellite,
DSL

VSF Small
ISPs

Satellite,
Mobile

Table 6: Analysis of the most prevalent values of crit-
ical features. A empty cell implies that we found no
interesting values in this combination.
lence of a feature value by the fraction of video sessions
matching this feature value that have this feature as one
of their critical features; e.g., the fraction of video ses-
sions from Boston that have City as one of their critical
features. If a feature value has a large prevalence, then
the quality of many sessions that have this feature value
can be explained by this feature.

We present the values of critical features with a
prevalence higher than 50% for each quality metric
and only consider a subset of the features (ASN, City,
ContentName, ConnectionType) that appear promi-
nently in Figure 12. We present this analysis with two
caveats. First, due to proprietary concerns, we do not
present the names of the entities, but focus on their char-
acteristics. Second, we cannot confirm some of our hy-
pothesis as it involves other providers; as such, we intend
this result to be illustrative rather than conclusive.

Table 6 presents some anecdotal examples we ob-
served. In terms of BufRatio, we see some of the major
east coast cities (e.g., Boston, Baltimore) are more likely
to be critical feature values than other smaller cities. We
also see both poor (Satellite, Mobile) and broadband (Ca-
ble) connection types have high prevalence on BufRatio
and JoinTime. This is because poor quality sessions
are bottlenecked by poor connections, while some good
quality sessions are explained by their broadband con-
nections. “Player” has a relatively large prevalence on
AvgBitrate, because the content provider uses different
bitrate levels for different players (Flash or iOS). Finally,
in terms of VSF, some small ISPs have large prevalence.
We speculate that this is because their peering relation-
ships with major CDNs are not provisioned, so their
video sessions have relatively high failure rates.

8 Related Work
Internet video optimization: There is a large litera-
ture on measuring video quality in the wild (e.g., content
popularity [38, 55], quality issues [25] and server selec-
tion [51, 47]) and techniques to improve user experience
(e.g., bitrate adaptation algorithms [56, 26, 23], CDN
optimization and federation [32, 37, 11, 35] and cross-
provider cooperation [57, 19, 24]). Our work builds on

11

148 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

insight from this prior work. While a case for a similar
vision is made in [33], our work gives a systematic and
practical prediction system.
Global coordination platform: Decision making based
on a global view is similar to other logically centralized
control systems (e.g., [14, 33, 20, 48]). They examined
the architectural issues of decoupling the control plane
from the data plane, including scalability (e.g., [50, 17]),
fault tolerance (e.g., [36, 54]), and use of big data sys-
tems (e.g., [20, 4]). In contrast, our work offers concrete
algorithmic techniques over such a control platform [20]
for video quality optimization.
Large-scale data analytics in system design: Many
studies have applied data-driven techniques for perfor-
mance diagnosis (e.g., [46, 15, 40]), revenue debugging
(e.g., [13]), TCP throughput prediction (e.g., [22, 34]),
and tuning TCP parameters (e.g., [43, 41]). Recent stud-
ies try to operate these techniques at scale [16]. While
CFA shares this data-driven approach, we exploit video-
specific insights to achieve scalable and accurate predic-
tion based on a global view of quality measurements.
QoE models: Prior work has shown correlations be-
tween various video quality metrics and user engagement
(e.g., users are sensitive to BufRatio [18]), and built vari-
ous QoE models (e.g., [28, 45, 12, 10]. Our work focuses
on improving QoE by predicting individual quality met-
rics, and can be combined with these QoE models.

9 Discussion
Relationship to existing ML techniques: CFA is
a domain-specific prediction system that outperforms
some canonical ML algorithms (§6.1). We put CFA in
the context of three types of ML algorithms.
• Multi-armed bandit algorithms [53] find the decision

with the highest reward (i.e., best CDN and bitrate)
from multiple choices. They assume each decision has
a fixed distribution of rewards, but the video quality of
a CDN also depends on client-side features. In con-
trast, contextual multi-armed bandit algorithms [44]
assume the best decision depends on contextual in-
formation, but they require appropriate modeling be-
tween the context and decision space, to which critical
features provide one viable approach.

• The feature selection problem [21] seems similar to
critical feature learning, but with a key difference:
critical features vary across video sessions. Thus,
techniques looking for features that are most impor-
tant for all sessions are not directly applicable.

• Advanced ML algorithms today can handle highly
complex models [29, 42] efficiently, so in theory the
critical features could be automatically identified, al-
beit in an implicit manner. CFA uses existing ML
models (specifically, the “variable kernel conditional
density estimation” method [49]) and may be less ac-

curate than advanced ML techniques, but CFA can
predict with more recent data since it tolerates stale
update on the critical features. Furthermore, CFA is
less opaque since it is based on domain-specific in-
sights about critical features (§7).

Finer grain information and selection: Currently,
CFA makes predictions based on client side information
only. While clients provide accurate information regard-
ing QoE, prediction can be much more accurate if CFA
were to leverage finer-grained information from other
entities in the ecosystem, including servers, caches and
network paths. Furthermore, CFA currently selects re-
sources at the CDN granularity. This means CFA cannot
do much if the CDN redirects the client based on its lo-
cation and the servers the CDN redirects the client to are
congested. However, if the client were able to specify
the server to stream from, we could avoid the overloaded
servers and improve quality.

10 Conclusions
Many prior research efforts posited that quality predic-
tion could lead to improved QoE (e.g., [33, 11, 35, 10]).
However, these efforts failed to provide a prescriptive so-
lution that (a) is expressive enough to tackle the complex
feature-quality relationships observed in the wild and (b)
can provide near real-time quality estimates. To this end,
we developed CFA, a solution based on domain-specific
insights that video quality is typically determined by a
subset of critical features which tend to be persistent.
CFA leverages these insights to engineer an accurate al-
gorithm that outperforms off-the-shelf machine learning
approaches and lends itself to a scalable implementation
that retains model freshness. Using real deployments and
trace-driven analyses, we showed that CFA achieves up
to 30% improvement in prediction accuracy and 12-32%
improvement in QoE over alternative approaches.

Acknowledgments
This paper would not be possible without the contribu-
tion of Conviva Stuff, especially Jibin Zhan, Faisal Za-
karia Siddiqi and Rui Zhang. The authors thank Sid-
dhartha Sen for shepherding the paper and the NSDI re-
viewers for their feedback. This research is supported
in part by NSF CISE Expeditions Award CCF-1139158,
DOE Award SN10040 DE-SC0012463, and DARPA
XData Award FA8750-12-2-0331, and gifts from Ama-
zon Web Services, Google, IBM, SAP, The Thomas and
Stacey Siebel Foundation, Adatao, Adobe, Apple Inc.,
Blue Goji, Bosch, Cisco, Cray, Cloudera, Ericsson, Face-
book, Fujitsu, Guavus, HP, Huawei, Intel, Microsoft,
Pivotal, Samsung, Schlumberger, Splunk, State Farm,
Virdata and VMware. Junchen Jiang was supported in
part by NSF award CNS-1345305 and Juniper Networks
Fellowship.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 149

References
[1] Conviva inc. http://www.conviva.com/.

[2] Personal communication with aditya ganjam from conviva, who is an expert
on video qoe.

[3] Quova. http://developer.quova.com/.

[4] Spark. http://spark.incubator.apache.org/.

[5] Technical note on counterfactual evaluation. https://www.cs.cmu.
edu/cfe_technote.pdf.

[6] The weka manual 3.6.10. http://goo.gl/ISSY3c.

[7] Youtube and the olympics. http://goo.gl/4hgL4q.

[8] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE Multimedia, 2011.

[9] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, , and Z.-L. Zhang. A Tale of Three
CDNs: An Active Measurement Study of Hulu and Its CDNs. In Proc.
IEEE Global Internet Symposium, 2012.

[10] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan.
Prometheus: toward quality-of-experience estimation for mobile apps from
passive network measurements. In Proceedings of the 15th Workshop on
Mobile Computing Systems and Applications, 2014.

[11] A. Balachandran, V. Sekar, A. Akella, and S. Seshan. Analyzing the poten-
tial benefits of cdn augmentation strategies for internet video workloads. In
ACM IMC, pages 43–56, 2013.

[12] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang.
Developing a predictive model of quality of experience for internet video.
In ACM SIGCOMM ’13.

[13] R. Bhagwan, R. Kumar, R. Ramjee, G. Varghese, S. Mohapatra,
H. Manoharan, and P. Shah. Adtributor: revenue debugging in advertis-
ing systems. In USENIX NSDI, 2014.

[14] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der
Merwe. Design and implementation of a routing control platform. In
USENIX NSDI 2005.

[15] D. R. Choffnes, F. E. Bustamante, and Z. Ge. Crowdsourcing service-level
network event monitoring. In ACM SIGCOMM CCR, volume 40, pages
387–398. ACM, 2010.

[16] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J. Franklin,
A. Ghodsi, and M. I. Jordan. The missing piece in complex analytics: Low
latency, scalable model management and serving with velox. In Conference
on Innovative Data Systems Research (CIDR), 2015.

[17] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards
an elastic distributed sdn controller. In ACM HotSDN, 2013.

[18] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan,
and H. Zhang. Understanding the impact of video quality on user engage-
ment. In Proc. SIGCOMM, 2011.

[19] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs,
J. Rake, S. Uhlig, and R. Weber. Pushing cdn-isp collaboration to the limit.
ACM SIGCOMM CCR, 43(3), 2013.

[20] A. Ganjam, F. Siddiqi, J. Zhan, I. Stoica, J. Jiang, V. Sekar, and H. Zhang.
C3: Internet-scale control plane for video quality optimization. In NSDI.
USENIX, 2015.

[21] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
The Journal of Machine Learning Research, 3:1157–1182, 2003.

[22] Q. He, C. Dovrolis, and M. Ammar. On the predictability of large transfer
tcp throughput. ACM SIGCOMM CCR, 35(4):145–156, 2005.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: evidence from a large video
streaming service. In ACM SIGCOMM 2014.

[24] J. Jiang, X. Liu, V. Sekar, I. Stoica, and H. Zhang. Eona: Experience-
oriented network architecture. In ACM HotNets, 2014.

[25] J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Shedding light on the structure
of internet video quality problems in the wild. In CoNEXT. ACM, 2013.

[26] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Sta-
bility in HTTP-Based Adaptive Streaming with Festive . In ACM CoNEXT
2012.

[27] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system
for log processing. In Proceedings of the NetDB, 2011.

[28] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts viewer
behavior: inferring causality using quasi-experimental designs. In IMC,
2012.

[29] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[30] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit ap-
proach to personalized news article recommendation. In Proceedings of the
19th international conference on World wide web, pages 661–670. ACM,
2010.

[31] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of
contextual-bandit-based news article recommendation algorithms. In Pro-
ceedings of the fourth ACM international conference on Web search and
data mining, pages 297–306. ACM, 2011.

[32] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and
Performance for Content Multihoming. In Proc. SIGCOMM, 2012.

[33] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang.
A case for a coordinated internet video control plane. In ACM SIGCOMM,
pages 359–370. ACM, 2012.

[34] M. Mirza, J. Sommers, P. Barford, and X. Zhu. A machine learning ap-
proach to tcp throughput prediction. In ACM SIGMETRICS Performance
Evaluation Review, volume 35, pages 97–108. ACM, 2007.

[35] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang.
Practical, real-time centralized control for cdn-based live video delivery. In
ACM SIGCOMM, pages 311–324. ACM, 2015.

[36] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker. Cap for net-
works. In ACM HotSDN, 2013.

[37] L. Peterson and B. Davie. Framework for cdn interconnection. 2013.

[38] L. Plissonneau and E. Biersack. A longitudinal view of http video streaming
performance. In Proc. MMSys, 2012.

[39] W. B. Powell. Approximate Dynamic Programming: Solving the curses of
dimensionality, volume 703. John Wiley & Sons, 2007.

[40] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing perfor-
mance changes by comparing request flows. In USENIX NSDI, 2011.

[41] S. Savage, N. Cardwell, and T. Anderson. The case for informed transport
protocols. In HotOS, pages 58–63. IEEE, 1999.

[42] B. Schölkopf and A. J. Smola. Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond. MIT press, 2002.

[43] S. Seshan, M. Stemm, and R. H. Katz. Spand: Shared passive network
performance discovery. In USENIX Symposium on Internet Technologies
and Systems, pages 1–13, 1997.

[44] A. Slivkins. Contextual bandits with similarity information. The Journal of
Machine Learning Research, 15(1):2533–2568, 2014.

[45] H. H. Song, Z. Ge, A. Mahimkar, J. Wang, J. Yates, Y. Zhang, A. Basso,
and M. Chen. Q-score: Proactive Service Quality Assessment in a Large
IPTV System. In Proc. IMC, 2011.

[46] M. Stemm, R. Katz, and S. Seshan. A network measurement architecture
for adaptive applications. In INFOCOM, volume 1, pages 285–294. IEEE,
2000.

[47] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. Drafting
behind akamai (travelocity-based detouring). ACM SIGCOMM CCR, 2006.

13

150 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[48] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail latency
in cloud data stores via adaptive replica selection. In USENIX NSDI, 2015.

[49] G. R. Terrell and D. W. Scott. Variable kernel density estimation. The
Annals of Statistics, pages 1236–1265, 1992.

[50] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood.
On controller performance in software-defined networks. In USENIX Work-
shop on Hot Topics in Management of Internet, Cloud, and Enterprise Net-
works and Services (Hot-ICE), 2012.

[51] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and S. Rao.
Dissecting Video Server Selection Strategies in the YouTube CDN. In
ICDCS, 2011.

[52] A. Vellido, J. Martin-Guerroro, and P. Lisboa. Making machine learning
models interpretable. In Proceedings of the 20th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN). Bruges, Belgium, pages 163–172, 2012.

[53] R. Weber et al. On the gittins index for multiarmed bandits. The Annals of
Applied Probability, 2(4):1024–1033, 1992.

[54] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni, H. Zhang, and Z. Cai. Tesser-
act: A 4d network control plane. In NSDI, volume 7, pages 27–27, 2007.

[55] H. Yin et al. Inside the Bird’s Nest: Measurements of Large-Scale Live
VoD from the 2008 Olympics. In Proc. IMC, 2009.

[56] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach
for dynamic adaptive video streaming over http. In SIGCOMM, pages 325–
338. ACM, 2015.

[57] M. Yu, W. Jiang, H. Li, and I. Stoica. Tradeoffs in cdn designs for through-
put oriented traffic. In CoNEXT, pages 145–156. ACM, 2012.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 151

Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions

Bryce Kellogg†, Vamsi Talla†, Shyamnath Gollakota and Joshua R. Smith
University of Washington

†Co-primary Student Authors

Abstract – Wi-Fi has traditionally been considered
a power-consuming communication system and has not
been widely adopting in the sensor network and IoT
space. We introduce Passive Wi-Fi that demonstrates for
the first time that one can generate 802.11b transmissions
using backscatter communication, while consuming 3–
4 orders of magnitude lower power than existing Wi-Fi
chipsets. Passive Wi-Fi transmissions can be decoded
on any Wi-Fi device including routers, mobile phones
and tablets. Building on this, we also present a net-
work stack design that enables passive Wi-Fi transmit-
ters to coexist with other devices in the ISM band, with-
out incurring the power consumption of carrier sense and
medium access control operations. We build prototype
hardware and implement all four 802.11b bit rates on
an FPGA platform. Our experimental evaluation shows
that passive Wi-Fi transmissions can be decoded on off-
the-shelf smartphones and Wi-Fi chipsets over distances
of 30–100 feet in various line-of- sight and through-
the-wall scenarios. Finally, we design a passive Wi-Fi
IC that shows that 1 and 11 Mbps transmissions con-
sume 14.5 and 59.2 µW respectively. This translates
to 10000x lower power than existing Wi-Fi chipsets and
1000x lower power than Bluetooth LTE and ZigBee.

1 Introduction

Over the past few years, researchers have explored the
concept of Wi-Fi backscatter [25, 38] that creates an ad-
ditional narrowband data stream to ride on top of existing
Wi-Fi signals. While promising, existing designs either
achieve very low data rates (100s of bps) at close by dis-
tances (2-4 feet) [25] or use custom full-duplex hardware
that cannot be used with any existing Wi-Fi devices [38].

In this paper, we take a different approach — instead
of backscattering existing Wi-Fi signals to send an ad-
ditional data stream, we use backscatter communication
to directly generate Wi-Fi transmissions that can be de-
coded on any of the billions of existing devices with a

Figure 1: Passive Wi-Fi architecture. The passive Wi-
Fi devices perform digital baseband operations like cod-
ing, while the power-consuming RF functions are dele-
gated to a plugged-in device in the network.

Wi-Fi chipset. To this end, we introduce Passive Wi-Fi
that demonstrates for the first time that one can gener-
ate 802.11b transmissions using backscatter communi-
cation, while consuming 4–5 orders of magnitude lower
power than existing Wi-Fi chipsets.

We observe that while CMOS technology scaling has
conventionally provided exponential benefits for the size
and power consumption of digital logic systems, analog
RF components, that are necessary for Wi-Fi communi-
cation, have not seen a similar power scaling. As a result,
Wi-Fi transmissions on sensors and mobile devices still
consume hundreds of milliwatts of power [31–33]. To
get around this problem, passive Wi-Fi uses backscatter
to decouple the baseband Wi-Fi digital logic from the
power-consuming RF components, as shown in Fig. 1.

In our architecture, the passive Wi-Fi devices perform
digital baseband operations like coding and modulation,
while the power-consuming RF components such as fre-
quency synthesizers and power amplifiers are delegated
to a single plugged-in device in the network. This de-
vice provides the RF functions for all the passive Wi-Fi
devices in the vicinity by transmitting a single-frequency
tone. The passive Wi-Fi devices create 802.11b trans-
missions by reflecting or absorbing this tone using a dig-
ital switch running at baseband. Since the passive Wi-Fi

1

152 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

devices have no analog components, they consumes less
silicon area and would be smaller and cheaper than exist-
ing Wi-Fi chipsets. More importantly, their power con-
sumption would be orders of magnitude lower since they
only perform digital baseband operations. To realize this,
however, we need to address three main challenges.

(a) How can Wi-Fi receivers decode in the presence
of interference from the plugged-in device? The Wi-Fi
receiver receives the backscattered signal in the pres-
ence of a strong interference from the tone transmitted
by the plugged-in device. Traditional backscatter sys-
tems [34, 38] use a full-duplex radio to cancel this strong
interfering signal, which is not possible on existing Wi-
Fi devices. Our key observation is that Wi-Fi receivers
are required to work even in the presence of interference
in the adjacent band that is 35 dB stronger [12]. Further,
as Wi-Fi and Bluetooth radios are being integrated onto
a single chipset [6], Wi-Fi hardware is being designed
to work in the presence of out-of-band Bluetooth inter-
ference. Thus, we set the plugged-in device to transmit
its tone at a frequency that lies outside the desired Wi-
Fi channel; this ensures that existing Wi-Fi chipsets can
suppress the resulting out-of-band interference.

(b) How can we create 802.11b transmissions using
backscatter? At a high level, we first shift the out-of-
band tone from the plugged-in device to lie at the center
of the desired Wi-Fi channel. We then use this shifted
tone to create 802.11b transmissions. Intuitively, mul-
tiplying two sinusoidal signals can create a frequency
shift.1 Thus, by backscattering at a frequency ∆ f , we
can shift the tone. To synthesize Wi-Fi transmissions, we
leverage that 802.11b uses DSSS and CCK encoding on
top of DBPSK and DQPSK modulation. The encoding
operation is digital in nature and hence is achieved using
digital logic. To create the phase changes required for
DBPSK and DQPSK, we approximate a digital square
wave as a sinusoid and modulate its phase by changing
the timing of the square wave (see §2.3). Thus, passive
Wi-Fi devices can fully operate in the digital domain at
baseband and yet synthesize 802.11b transmissions.

(c) How do passive Wi-Fi devices share the Wi-Fi net-
work? Traditional Wi-Fi shares the network using carrier
sense. However, this requires a Wi-Fi receiver that is ON
before every transmission. Since Wi-Fi receivers require
power-consuming RF components such as ADCs and
frequency synthesizers, this would eliminate the power
savings from our design. Instead, we delegate the power-
consuming task of carrier sense to the plugged-in device.
At a high level, the plugged-in device performs carrier
sense and signals the passive Wi-Fi device to transmit.
§3 describes how such a signaling mechanism can also
be used to arbitrate the channel between multiple passive

12sin f tsin∆ f t = cos(f −∆ f)t − cos(f +∆ f)t.

Wi-Fi devices and address other link-layer issues includ-
ing ACKs and retransmissions.

To show the feasibility of our design, we build pro-
totype backscatter hardware and implement all four
802.11b bit rates on an FPGA platform. Our experimen-
tal evaluation shows that passive Wi-Fi transmissions
can be decoded on off-the-shelf smartphones and Wi-Fi
chipsets over distances of 30–100 feet in various line-
of-sight and through-the-wall scenarios. We also design
a passive Wi-Fi IC that performs 1 Mbps and 11 Mbps
802.11b transmissions and estimate the power consump-
tion using Cadence and Synopsis toolkits [5, 19]. Our
results show the 1 and 11 Mbps passive Wi-Fi transmis-
sions consume 14.5 and 59.2 µW respectively.

Contributions. We make the following contributions:
• We demonstrate for the first time that one can gener-
ate 802.11b transmissions using backscatter communica-
tion. We present backscatter techniques that synthesize
22 MHz DSSS and CCK spread spectrum transmissions
that can be decoded on existing Wi-Fi devices.
• We design a network stack for the passive Wi-Fi trans-
mitters to coexist with other devices in the ISM band.
Further, we present a detailed analytical model to under-
stand the operational range of passive Wi-Fi transmis-
sions in different deployment scenarios.
• We build a hardware prototype on an FPGA platform
and evaluate it in various scenarios. We also design a
passive Wi-Fi IC and present its power numbers.

2 Passive Wi-Fi Design

Our design has two main actors: a plugged-in device and
passive Wi-Fi devices. The former contains power con-
suming RF components including frequency synthesizer
and power amplifier and emits a single tone RF carrier. It
also performs carrier sense on behalf of the passive Wi-
Fi device and helps coordinate medium access control
across multiple passive Wi-Fi devices. The passive Wi-
Fi device backscatters the tone emitted by the plugged-in
device to synthesize 802.11b transmissions that can be
decoded on any device that has a Wi-Fi chipset.

In the rest of this section, we first provide a quick
primer for 802.11b physical layer and backscatter com-
munication. We then explain how the passive Wi-Fi de-
vices generate 802.11b packets using backscatter com-
munication. We then theoretically analyze the range of
our transmissions in various deployments scenarios.

2.1 Primer for 802.11b Transmissions
802.11b is a set of Wi-Fi physical layer specifications
that use spread spectrum modulation. 802.11b uses
DBPSK/DQPSK at the physical layer and achieves four

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 153

-40 -30 -20 -10 0 10 20 30 40

A
m

p
lit

u
d

e
2

Frequency (MHz)

A
m

p
lit

u
d

e
2

∆ f ∆ f

fwififwifi - 2∆f

Figure 2: Generation of Wi-Fi packets using backscatter. The plot on the left shows the 22 MHz main lobe and the
side lobes of the baseband 802.11b packet in the frequency domain. The plot on the right illustrates the backscatter
operation at the passive Wi-Fi device. The two main lobes are shifted by ∆ f with respect to the constant tone emitted
by the plugged-in device to generate the Wi-Fi packet (in red) at fwi f i and a mirror image (in blue) at fwi f i −2∆ f .

bit rates using different spreading codes. The lower two
bit rates of 1 and 2 Mbps use direct-sequence spread
spectrum (DSSS) while 5.5 and 11 Mbps use comple-
mentary code keying (CCK). DSSS uses a single code to
spread the information over 22 MHz, while CCK uses a
set of multiple code words to both encode bits and also
achieve a 22 MHz spread spectrum signal. We outline
how each of the 802.11b bit rates are encoded.

1 and 2 Mbps DSSS transmissions. To generate this,
802.11b first creates coded bits from the incoming data
using a 11-bit barker code [39]. Specifically, 802.11b
uses a single barker sequence, 10110111000, that is gen-
erated at a baseband frequency of 11 MHz to spread the
spectrum over 22 MHz. To create the coded bits, 802.11b
XORs each of the data bits with the barker sequence.
Thus, the coded bits for a ‘1’ data bit are 10110111000
and that for the ‘0’ data bit are 01001000111. Each of
these coded bits is encoded using DBPSK and DQPSK
modulation to achieve 1 and 2 Mbps transmissions re-
spectively. At a high level, this is achieved by setting the
phase of the carrier, sinθ . DBPSK modulation encodes
a 0 and 1 bit by setting θ to either 0 or π , while DQPSK
encodes pairs of bits by modulating the phase between 0,
π/2, π and 3π/2.

5.5 and 11 Mbps CCK transmissions. Instead of using a
single barker code, CCK uses a set of 8-bit code words.
At a high level, to generate 5.5 Mbps transmissions, the
incoming data bit stream is divided into blocks of 4 bits.
The first two bits are used to pick the DQPSK phase
and the last two bits are used to pick a spreading code
amongst four 8-bit code words. To generate 11 Mbps
802.11b transmissions, the incoming data bits are instead
divided into 8 bit blocks where the first two bits deter-
mine the DQPSK phase shift and the last 6 bits are used
to pick a spreading code amongst 64 8-bit code words.

To summarize, 802.11b requires generating the coded
bits using either DSSS or CCK and then modulating
these bits with DBPSK or DQPSK. The first operation
is typically implemented in digital baseband logic while

the second require changing the phase of I and Q com-
ponents. Finally, we note also that since the RF energy
is spread across a wide band, spread spectrum transmis-
sions are resilient to narrowband interference both within
and outside the Wi-Fi channel [39].

2.2 Backscatter Communication Primer
Unlike traditional active radio communication that re-
quires generating RF signals, devices using backscatter
communication modulate the radar cross-section of their
antenna to change the reflected signal. To understand
how backscatter works, consider a device that can switch
the impedance of its antenna between two states. The ef-
fect of changing the antenna impedance is that the radar
cross-section, i.e., the signal reflected by the antenna,
also changes between the two different states. Now,
given an incident signal with power Pincident , the power
in the backscattered signal can be written as,

Pbackscatter = Pincident
|Γ∗

1 −Γ∗
2|

2

4
(1)

Here Γ∗
1 and Γ∗

2 are the complex conjugates of the re-
flection coefficients corresponding to the two impedance
states. Thus to maximize the power in the backscat-
tered signal we need to maximize the difference in the
power of the two impedance states which is given by

|∆Γ|2 =
|Γ∗

1−Γ∗
2|

2

4 . Ideally, to ensure that the power in
the backscattered signal is equal to that of the incident
signal, we set |∆Γ|2 to 4 which can be achieved by mod-
ulating the reflection coefficients between +1 and −1.
In practice, however, backscatter hardware deviates from
this ideal behavior and incurs losses; our hardware im-
plementation has a loss of around 1.1 dB.

2.3 802.11b using passive Wi-Fi
Generating a Wi-Fi packet using backscatter is challeng-
ing for two main reasons. First, the backscattered signal

3

154 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

is much weaker than the tone transmitted by the plugged-
in device. A Wi-Fi receiver would suffer significant in-
band interference from this tone preventing it from de-
coding. Second, the passive Wi-Fi device has a single
digital switch that toggles between two impedance states,
resulting in a binary signal. It is unclear how one may
generate Wi-Fi transmissions using such a binary system.

We outline how to address these challenges. We first
describe the signal transmissions from the plugged-in de-
vice and then the operations at the passive Wi-Fi device
that allow us to synthesize 802.11b transmissions.

Transmissions at the plugged-in device. It transmits a
tone outside the desired Wi-Fi channel. Our key intuition
is that Wi-Fi receivers are designed to function in the
presence of out-of-band interference: 802.11b receivers
are required to ensure that the sensitivity is reduced by
no more than 6 dB in the presence of interference in the
adjacent band that is 35 dB greater than the in-band sig-
nal [12]. Further, as Wi-Fi and Bluetooth radios are be-
ing integrated onto the same chipset [6], Wi-Fi frontends
are being designed to function in the presence of out-of-
band interference from Bluetooth devices. Since the tone
from the plugged-in device is narrower in bandwidth than
Bluetooth, this would further help suppress the tone if it
is outside the desired Wi-Fi channel.

We note however that excessive out-of-band interfer-
ence, which occurs when the Wi-Fi receiver is right next
to the plugged-in device, can saturate and/or compress
the RF front end resulting in significant degradation of
Wi-Fi performance. This is called the input 1 dB com-
pression point which is around 0 dBm for commercial
Wi-Fi devices [13]. Passive Wi-Fi inherently avoids this
issue by ensuring that the Wi-Fi receiver (e.g., smart-
phone or router) is not next to the plugged-in device.

Backscatter operations at passive Wi-Fi devices. At
a high level, the passive Wi-Fi operations can be de-
scribed as first shifting the out-of-band tone transmit-
ted from the plugged-in device to lie at the center of
the desired Wi-Fi channel. We then use this shifted
tone to create 802.11b transmissions. To do this, we
leverage three key facts: (1) From basic trigonometry,
2sin f tsin∆ f t = cos(f −∆ f)t−cos(f +∆ f)t. Thus, mul-
tiplying two sinusoidal signals can create a frequency
shift. (2) Modulating the radar cross section of an an-
tenna effectively multiplies the incoming signal by the
modulated signal. Thus, modulating the antenna at a fre-
quency ∆ f would create a frequency shift in the incom-
ing signal. (3) All bit rates in 802.11b are differentially
phase modulated using DBPSK or DQPSK.

Step 1. Shifting the tone from the plugged-in device using
backscatter. Say the plugged-in device sends the tone
sin2π(fwi f i − ∆ f)t outside the Wi-Fi channel. Passive
Wi-Fi devices use a square wave at a frequency of ∆ f to

shift the tone to the center of the Wi-Fi channel. From
Fourier analysis, a square wave can be written as,

Square(∆ f t) =
4
π

∞

∑
n=1,3,5,..

1
n

sin(2πn∆ f t)

Here the first harmonic is a sinusoidal signal at the de-
sired frequency ∆ f . Note that the power in each of
these harmonic scales as 1

n2 . So the third and the fifth
harmonic are around 9.5 dB and 14 dB lower than the
first harmonic. Thus, we can approximate a square
wave as just the sinusoidal signal, 4

π sin(2π∆ f t). Since
modulating the radar cross section of an antenna effec-
tively multiplies the incoming signal by the modulated
signal, the backscatter signal can be approximated as
sin2π(fwi f i −∆ f)tsin2π∆ f t. So we have used backscat-
ter to effectively creates two tones, one centered at fwi f i
and the other at fwi f i −2∆ f ; the first tone is at the center
of the desired Wi-Fi channel.

Step 2. Synthesizing 802.11b transmissions using
backscatter. Now that we have a tone centered at the Wi-
Fi channel, the next step is to create 802.11b transmis-
sions using backscatter. 802.11b uses DSSS and CCK
encoding which are both digital operations and hence can
be performed using digital logic at the passive Wi-Fi de-
vice. So the question that remains is: how do we generate
DBPSK and DQPSK using just a square wave created at
a frequency ∆ f by the backscatter switch?

Passive Wi-Fi does this by noting that DBPSK and
DQPSK use a sine wave with four distinct phases:
0,π/2,π,3π/2. Since the square wave generated by our
digital switch can be approximated as a sine wave, we
can generate the required four phases by changing the
timing of our square wave. Specifically, shifting the
square wave by half of a symbol time, effectively creates
a phase change of π . Phase changes of π/2 and 3π/2 can
be achieved by shifting the square wave by one-fourth
and three-fourth of a symbol time. Thus, passive Wi-Fi
devices can fully operate in the digital domain while run
at a baseband frequency of a few tens of MHz and syn-
thesize 802.11b transmissions using backscatter.

We note the following properties of our design.
• In addition to creating a 802.11b transmission centered
at fwi f i, as shown in Fig. 2, our backscatter mechanism
also creates a mirror copy centered at fwi f i −2∆ f on the
other side of the tone. Thus, we use twice the bandwidth
of a traditional 802.11b transmission. This is the tradeoff
we make to achieve orders of magnitude lower power
consumption. We note that such a tradeoff is common in
802.11n systems which use channel bonding of adjacent
Wi-Fi channels to double the throughput.
• 802.11b transmissions have side lobes (Fig. 2); the
side lobes of the mirror copy creates interference for the
desired Wi-Fi signal. We plot the signal to interference

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 155

 5

 10

 15

 20

 25

 10 12 14 16 18 20 22

S
IR

 (
d
B

)

 ∆ f (MHz)

1 Mbps
2 Mbps

5.5 Mbps
11 Mbps

 0

 1

 2

 3

 4

 5

 10 12 14 16 18 20 22

S
e
n
s
it
iv

it
y
 L

o
s
s
 (

d
B

)

∆ f (MHz)

1 Mbps
2 Mbps

5.5 Mbps
11 Mbps

(a) Signal to Interference ratio (b) Sensitivity Loss

Figure 3: SIR and loss in receiver sensitivity. The plot
shows the effect of different ∆ f ’s on the quality and the
sensitivity of the synthesized Wi-Fi packets.

ratio for different frequency shifts, ∆ f , at the passive Wi-
Fi device. Fig. 3(a) plots the results for all four 802.11b
bit rates and shows that the interference from the side
lobes of the mirror copy reduces as ∆ f increases. This
is because, as ∆ f increases, the mirror copies are further
separated in frequency, resulting in lower interference.
• An effect of this interference, however, is that it adds
additional noise to the Wi-Fi signal, reducing the noise
sensitivity at which each of the 802.11b bit rates can be
decoded. Fig. 3(b) shows the loss in sensitivity for the
four 802.11b bit rates, as a function of the frequency off-
set, ∆ f . The plots show that the sensitivity loss is slightly
larger for higher 802.11b bit rates. This is because higher
bit rates require a cleaner signal to successfully be de-
coded. Our system sets ∆ f to 12.375 MHz, where the
sensitivity loss is less than 2 dB across all 802.11b bit
rates. This also ensures that the passive Wi-Fi transmis-
sions only occupy two adjacent Wi-Fi channels. Note
that Wi-Fi applies filters to remove the interfering side
lobes. Our implementation however does not do this.

2.4 Analyzing Passive Wi-Fi’s Range
In passive Wi-Fi, the communication range depends on
two parameters: the distance between the plugged-in de-
vice and the passive Wi-Fi transmitter and the distance
between the passive Wi-Fi transmitter and the Wi-Fi re-
ceiver. Specifically, the signal strength at the receiver, Pr,
can be modeled using Friis path loss [34] as follows,

Pr =

(
PtGt

4πd2
1

)(
λ 2G2

passive

4π
|∆Γ|2

4
αwi f i

)(
1

4πd2
2

λ 2Gr

4π

)

This equation has three key parts: the term in first paren-
thesis models signal propagation from the plugged-in de-
vice, with an output power Pt and an antenna gain Gt , to
a passive Wi-Fi transmitter at a distance d1 away. The
third term, similarly, models the signal propagation from
the passive Wi-Fi transmitter to a Wi-Fi receiver with an
antenna gain Gr and at a distance d2 away. Here, λ is
the wavelength of the RF signal been transmitted. Fi-
nally, the middle parenthesis models the fraction of inci-

d1 d2

-80

-70

-60

-50

 0 5 10 15 20 25 30 35 40 45

S
ig

n
a
l
S

tr
e
n
g
th

 (
d
B

m
)

Distance d1 (ft)

d1 + d2 = 45 ft

midpoint

-100

-80

-60

-40

-20

 0 10 20 30 40

M
id

-p
o
in

t
s
ig

n
a
l

s
tr

e
n
g
th

 (
d
B

m
)

Distance d1 + d2 (ft)

Pt = 10 dBm
Pt = 20 dBm
Pt = 30 dBm

Figure 4: Passive Wi-Fi’s analytical received signal
strength. The passive Wi-Fi device moves along the line
connecting the Wi-Fi router and plugged-in device.

-100

-90

-80

-70

-60

-50

-40

-30

 0 20 40 60 80 100

S
ig

n
a
l
S

tr
e
n
g
th

 (
d
B

m
)

Distance between Passive Wi-Fi device and smartphone (ft)

Passive Wi-Fi / Plugged in device separation: 5 ft
15 ft
25 ft

Figure 5: Signal strength versus distance between pas-
sive Wi-Fi transmitter and Wi-Fi receiver.

dent signal from the plugged-in device that is backscat-
tered by a passive Wi-Fi transmitter with an antenna gain
Gpassive. |∆Γ|2 is the backscatter coefficient which is a
measure of the efficiency with which passive Wi-Fi can
generate backscatter signals. As described in §2.2, this is
1.1 dB in our hardware. Finally, αwi f i models the loss in
energy due to synthesis of Wi-Fi signals using backscat-
ter. This is around 4.4 dB and includes half the power
lost in the mirror copy generated by backscatter and the
losses due to the side lobes as described in §2.3.

To gain a better intuition, consider the scenario in
Fig. 4 where we place the plugged-in device and the
Wi-Fi receiver separated by 45 feet. We move the pas-
sive Wi-Fi transmitter between these devices, along the
line connecting them. We set Pt , Gt , Gr and Gpassive to
30 dBm, 6 dBi, 0 dBi, and 2 dBi respectively. Fig. 4
shows the received signal strength, Pr, as we move the
passive Wi-Fi transmitter between the plugged-in device
and the Wi-Fi receiver. The plots show two key points.

(1) The received signal increases as the passive Wi-Fi
transmitter gets close to either the Wi-Fi receiver or the
plugged-in device. This is because, maximizing the sig-
nal strength requires minimizing the product d1d2, which
is achieved either by reducing the distance d1 or d2.

(2) The mid-point between the plugged-in device and
Wi-Fi receiver has the lowest strength. Fig. 4 shows
this mid-point signal strength, as we change the distance
between the plugged-in device and Wi-Fi receiver. The
plot shows that this decreases with distance between the
plugged-in device and the Wi-Fi receiver. As expected,
it increases with plugged-in device’s transmit power (Pt).

5

156 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

(a) 30 ft Separation (b) 50 ft Separation (c) 55 ft Separation (d) 60 ft Separation

Figure 6: Theoretical coverage maps for different distances between the plugged-in device and the Wi-Fi router.
The black dots denote the positions for these devices. The red region represents points in the 2D space where a passive
Wi-Fi transmitter can be located, while ensuring that the signal from it to the Wi-Fi router is at least -85 dBm.

2.4.1 Understanding Deployment Scenarios

1. I want to deploy passive Wi-Fi devices in my home.
Where do I place the plugged-in device so as to max-
imize their range? Fig. 5 shows the theoretical signal
strength at the Wi-Fi receiver as a function of its distance
from the passive Wi-Fi transmitter. We show the results
for different distances between the passive Wi-Fi trans-
mitter and the plugged-in device. We set Gt , Gr, Gpassive,
Pt to 6 dBi, 0 dBi, 2 dBi, and 30 dBm respectively. The
plot shows that, in general, as the distance between the
passive Wi-Fi transmitter and Wi-Fi receiver increases,
the received signal strength reduces. More importantly,
as the distance between the passive Wi-Fi transmitter
and plugged-in device decreases, the coverage range in-
creases. This is because, from our analysis, the signal
strength can be increased either by reducing the distance
between the passive Wi-Fi transmitter and the plugged-
in device or that between the passive Wi-Fi transmitter
and the Wi-Fi receiver. Since our goal is to maximize
range, we should reduce the distance between the pas-
sive Wi-Fi transmitter and the plugged-in device. In the
presence of multiple passive Wi-Fi devices, this would
translate to minimizing the worst-case distance between
the plugged-in device and all passive Wi-Fi transmitters.

2. Where do I place my Wi-Fi router and the plugged-
in device, so that I can have passive Wi-Fi devices work
from anywhere in my home? Fig. 6 shows the 2D cover-
age maps for different distances between the plugged-in
device and the Wi-Fi router. The red region represent
points in the 2D space where a passive Wi-Fi transmit-
ter can be located, while ensuring that the signal from
it to the Wi-Fi router is at least -85 dBm. These maps
show that the coverage area is a union of two circles cen-
tered each at the Wi-Fi router and the plugged-in device.
So, as a general rule of thumb, it is better to deploy the
plugged-in device and the Wi-Fi router at either ends of
the coverage area. Note however that at very large dis-
tances between the plugged-in device and Wi-Fi router
(Figs. 6 (c) and (d)), we end up getting two islands of
coverage. Such large distance deployments are suitable
only when the passive Wi-Fi transmitters are going to be
close to either the plugged-in device or the Wi-Fi router.

Device ID Ack Rate Check Bits

0 : 9 10 11 : 12 13 : 15

Figure 7: Structure of the signaling packet.

3 Passive Wi-Fi Network Stack Design

We first describe how passive Wi-Fi devices share the
ISM band. We then address the issue of ACKs and re-
transmissions and finally, present our protocol to asso-
ciate passive Wi-Fi devices with the network.

3.1 Sharing the ISM band
Wi-Fi uses carrier sense to share the ISM band. This
however requires a Wi-Fi receiver that is ON before ev-
ery transmission. Since Wi-Fi receivers require power-
consuming RF components like LNA, frequency synthe-
sizers, mixers and ADCs, this would eliminate the power
savings from our design. Instead, we delegate the task of
carrier sense to the plugged-in device, which also arbi-
trates access between multiple passive Wi-Fi devices.

We illustrate this with an example. Say a passive Wi-
Fi transmitter wants to sent a packet on channel 6 and
the plugged-in device transmits its tone between Wi-Fi
channels 1 and 6. Before any of the above transmissions
happen, the plugged-in device first uses carrier sense to
ensure that there are no ongoing transmissions on any the
frequencies including and in between channel 1 and 6.

Once the channels are found free, the plugged-in de-
vice sends a packet signaling a specific passive Wi-Fi
device to transmit. This signal is sent and decoded us-
ing the ultra-low power receiver described in §3.1.1. The
packet starts with an ID unique to each passive Wi-Fi de-
vice (see Fig. 7). When the passive Wi-Fi device detects
its ID, it transmits within a SIFS duration at the end of
the signaling packet. The signaling packet is sent at the
center of channel 1 and 6 as well as in between them.
This prevents other devices in the ISM band from cap-
turing the channel before the passive Wi-Fi device gets
to transmit. The packet has 16 bits and adds a fixed over-
head of 100 µs for every passive Wi-Fi transmission.

The above description assumes that the plugged-in de-
vice knows when to send the signaling packet to each of

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 157

the passive Wi-Fi devices in the network. To see how
this can be achieved let us focus on our target IoT ap-
plications. A device sending out beacons is configured
to send them at a fixed rate. Temperature sensors, mi-
crophones and Wi-Fi cameras (e.g., Dropcam [8]) have a
fixed rate at which they generate data. Similarly, motion
sensors have an upper bound on the delay they can toler-
ate. The passive Wi-Fi devices convey this information
to the plugged-in device during association (and can up-
date it later using the protocol in §3.3). This information
is used by the plugged-in device to signal each passive
Wi-Fi device in accordance to its desired update rate.

3.1.1 Ultra-low power receiver design

We encode bits using ON-OFF keying. We use a passive
energy detector with analog components and a compara-
tor to distinguish between the presence and absence of
energy. Our design is the same as that used in our prior
work [25, 26] and we skip it for brevity. We implement
the receiver using off-the-shelf components and it con-
sumes 18 µW, while achieving a bit rate of 160 kbps.

3.2 ACKs and Rate Adaptation
ACKs and retransmissions. The plugged-in device lis-
tens to the ACKs and conveys this information back to
the passive Wi-Fi sensor. Specifically, if the ACK is suc-
cessfully decoded at the plugged-in device, it sets the
ACK bit in the signaling packet shown in Fig. 7 to 1 and
sends it to the passive Wi-Fi sensor, by piggybacking it
during the next period when the sensor is scheduled to
transmit. If the ACK is not received at the plugged-in
device, it immediately performs carrier sense and sends
a signaling packet with the ACK bit set to 0. When the
passive Wi-Fi sensor receives this, it retransmits its sen-
sor value. In our implementation, the plugged-in device
detects an ACK by detecting energy for a ACK duration
at the end of the passive Wi-Fi transmission.

Rate adaptation. Wi-Fi bit rate adaptation algorithms
typically use packet loss as a proxy to adapt the trans-
mitter bit rate. In our design, we delegate this function
to the plugged-in device. Specifically, the plugged-in de-
vice estimates the packet loss rate for each of its asso-
ciated passive Wi-Fi devices by computing the fraction
of successfully acknowledged packets. It then estimates
the best 802.11b bit rate and encodes this information
in the bit rate field of the signaling packet. Since the
plugged-in device knows the bit rate as well as the packet
length (from association as described in §3.3), it knows
how long the transmissions from each of its passive Wi-
Fi devices would occupy on the wireless medium. Thus,
it stops transmitting its tone at the end of the passive Wi-
Fi transmission and listens for the corresponding ACKs.

1. Association: MAC:1 + MAC:2

5. Association: MAC3
6. Connection Notification

2. Discovery
3. Discovery Response

1

2

3

4 5 6

7

8

4. Forward

7. Ack
8. Forward

Figure 8: Passive Wi-Fi association procedure.

3.3 Network Association
Finally, we describe how the passive Wi-Fi transmitters
associate with the plugged-in device as well as with the
Wi-Fi router in the network. The key challenge is that
since the plugged-in device does not have a full-duplex
radio (the lack of which is desirable to make it practical
and keep it low cost), there is no direct communication
channel from the passive Wi-Fi device to the plugged-
in device. Instead, as shown in Fig. 8, the plugged-in
device associates with the Wi-Fi router with two MAC
address (MAC:1 and MAC:2). The plugged-in device
then broadcasts a discovery packet using ON-OFF key-
ing modulation that contains these two MAC addresses
and starts with a broadcast ID. The new passive Wi-Fi
device then transmits a Wi-Fi packet with the source
and destination addresses set to MAC:2 and MAC:1;
this packet gets routed through the Wi-Fi router to the
plugged-in device. The packet payload includes the sen-
sor update rate, packet length, supported bit rates and its
MAC address, MAC:3. The plugged-in device spoofs
MAC:3 and associates it with the Wi-Fi router. It then
picks a unique ID and sends it to the passive Wi-Fi de-
vice along with other Wi-Fi network credentials. Finally,
the passive Wi-Fi device responds with a Wi-Fi packet
with the source and destination addresses set to MAC:3
and MAC:1; this packet gets routed through the Wi-Fi
router and confirms association at the plugged-in device.

After association, the passive Wi-Fi transmitter can
send Wi-Fi packets to the plugged-in device through
the router, and change its parameters including update
rate and packet length. Note that the credentials for the
spoofed MAC addresses could be sent securely using a
manufacturer set secret key shared between the passive
Wi-Fi devices and the plugged-in devices.

4 Hardware Implementation

We first describe our implementation of passive Wi-Fi
using off-the shelf components on an FPGA platform.
We use this to characterize passive Wi-Fi in various
deployment scenarios. We then present our IC design

7

158 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 9: Passive Wi-Fi’s IC architecture. The fre-
quency synthesizer generates baseband clock.

which we use to quantify our power consumption.

Off-the-shelf implementation. We implement a pas-
sive Wi-Fi prototype using off-the-shelf components
for backscatter and an FPGA for digital processing.
The backscatter modulator consisted of HMC190BMS8
SPDT RF switch network on a 2-layer Rodgers 4350
substrate [10]. The switch was designed to modulate be-
tween open and closed impedance states and had a 1.1 dB
loss. All the required baseband processing including
data scrambling, header generation, DSSS/CCK encod-
ing, CRC computation and DBPSK/DQPSK modulation
were written in Verilog. The Verilog code was synthe-
sized and programmed on a DE1 Cyclone II FPGA de-
velopment board by Altera [2]. We implement four shifts
of 12.375, 16.5, 22 and 44 MHz. The digital output of the
FPGA was connected to the backscatter switch to gener-
ate the Wi-Fi packets. A 2 dBi omnidirectional antenna
was used on the passive Wi-Fi device. The plugged-in
device was set to transmit at an EIRP of 30 dBm.

Integrated circuit implementation. CMOS technology
scaling has enabled the exponential scaling in power and
area for integrated circuits. Wi-Fi chipsets have tried to
leverage scaling but with limited success due to the need
for power hungry analog components that do not scale in
power and size with CMOS technology. However, base-
band Wi-Fi operations are implemented in the digital do-
main and tend to scale very well with CMOS. For con-
text, Atheros’s AR6003 [4] and AR9462 [17] chipsets
that were released in 2009 and 2012 use 65 nm CMOS
and 55 nm CMOS node implementations respectively.
For passive Wi-Fi device’s integrated circuit implemen-
tation, we chose the 65 nm LP CMOS node by TSMC,
which gives us power savings of baseband processing
and ensures a fair comparison with current industry stan-
dards. The IC architecture of the passive Wi-Fi device is
shown in Fig. 9 and has three main components:

Baseband frequency synthesizer. It generates the 11 MHz
clock required for baseband processing as well as four
phases at 12.375 MHz offsets required for DBPSK
and DQPSK. We phase synchronize the 11 MHz and
12.375 MHz clocks to avoid glitches during phase mod-
ulation. We used an integer N charge pump and ring

Table 1: Passive Wi-Fi’s IC Power Consumption
1 Mbps 11 Mbps

Baseband Frequency
Synthesizer

5.6 µW 5.6 µW

Baseband Processor 5.0 µW 48 µW
Backscatter Modulator 3.9 µW 5.6 µW
Total Power 14.5 µW 59.2 µW

oscillator-based PLL to generate 49.5 MHz clock from
a 12.375 kHz reference. The 49.5 MHz clock is fed to
a quadrature Johnson counter to generate the four phases
with the required timing offsets (corresponding to 0, π

2 ,
π and 3π

2 phases). The same 49.5 MHz carrier is divided
by 4.5 to generate the 11 MHz baseband clock.

Baseband processor. It takes the payload bits as input
and generates baseband 802.11b Wi-Fi packet. We used
the Verilog code that was verified on the FPGA and use
the Design Compiler by Synopsis to generate the transis-
tor level implementation of the baseband processor [19].

Backscatter modulator. It mixes the baseband data to
generate DBPSK and DQPSK and drives the switch to
backscatter the incident tone signal. The baseband data
are the select inputs to a 2-bit multiplexer which switches
between the four phases of the 12.375 MHz clock to gen-
erate the phase modulated data. The multiplexer output is
buffered and used to drive the RF switch, which toggles
the antenna between open and short impedance state.

Table 1 shows the power consumption of our design
at 1 Mbps and 11 Mbps which was computed using the
Cadence spectre and Synopsis Design Complier toolk-
its [5, 19]. Passive Wi-Fi’s IC implementation for 1
Mbps and 11 Mbps consumes a total of 14.5 and 59.2
µW of power respectively. The digital frequency synthe-
sizer is clocked for DQPSK and consumes a fixed power
for all data rates. The power consumption of the base-
band processor that generates the 802.11b packets scales
with the data rate and consumes 30% and 80% of total
power for 1 and 11 Mbps respectively.

5 Evaluation

5.1 Physical Layer Performance
We first evaluate the range and then the effect of the fre-
quency shift used in our system. Finally, we present re-
sults for all four 802.11b bit rates.

5.1.1 RSSI in Line-of-sight scenarios

We run experiments in two line-of-sight scenarios.

Deployment scenario 1. We fix the distance between the
passive Wi-Fi device and the plugged-in device. We then

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 159

-70

-65

-60

-55

-50

-45

-40

-35

 0 10 20 30 40 50 60 70 80 90 100

R
S

S
I

Distance between Passive Wi-Fi device and smartphone (in ft)

Passive Wi-Fi / Plugged in device separation: 3 ft
6 ft

12 ft

Figure 10: RSSI in deployment scenario 1. We move
the phone away from the passive Wi-Fi device.

-60

-55

-50

-45

R
S

S
I

d1 + d2 = 18 ft

-65

-60

-55

-50

R
S

S
I

d1 + d2 = 24 ft

-65

-60

-55

-50

 0 5 10 15 20 25 30

R
S

S
I

Distance d1 (in ft)

d1 + d2 = 30 ft

Figure 11: RSSI in deployment scenario 2. d1 (d2) is
the distance between the passive Wi-Fi and plugged-in
device (Wi-Fi receiver). The passive Wi-Fi device moves
alone the line joining the other two devices.

move the Wi-Fi receiver away from the passive Wi-Fi
device and measure the RSSI of the passive Wi-Fi trans-
missions as seen by the receiver. We run the experiments
in the CSE atrium where the maximum distance possible
when the passive Wi-Fi device and Wi-Fi receiver were
placed on either end was around 100 feet. In our ex-
periments, we set the passive Wi-Fi device to generate
802.11b beacon packets at 1 Mbps. These packets have a
payload of 68 bytes where the SSID is set to WiLab_0000
and are transmitted every 15 ms. We set the plugged-in
device to transmit its tone 12.375 MHz from the center
of Wi-Fi channel 1 between channel 1 and 6. We use
an HTC One (M7) phone as our Wi-Fi receiver. Since
the passive Wi-Fi device is transmitting Wi-Fi beacons,
it appears as a Wi-Fi AP at the smartphone. To measure
the RSSI values of these packets, we use a third party
Android app called Wifi Analyzer [3] that provides the
RSSI value as shown in Fig. 12.

In each experiment, we hold the smartphone in our
hand and measure the reported RSSI values as we walk
away from the passive Wi-Fi device. The measurements
are taken at increments of 4 feet. Fig. 10 plots the re-
sults for three different values of the distance between
the passive Wi-Fi transmitter and the plugged-in device.
The x-axis plots the distance between the passive Wi-Fi
transmitter and the Wi-Fi receiver while the y-axis plots
the reported RSSI values. The plots show that as ex-
pected, the RSSI values reduce as the phone moves away

Figure 12: Snapshot of the Wi-Fi analyzer app.
WiLab_0000 corresponds to passive Wi-Fi beacons.

-75

-70

-65

-60

-55

-50

-45

 0 5 10 15 20 25 30 35 40 45

R
S

S
I

Distance between Passive Wi-Fi device and smartphone (in ft)

Passive Wi-Fi device / plugged-in device separation: 1 ft
6 ft

Figure 13: RSSI in deployment scenario 1 in the pres-
ence of walls. The brown blocks show the wall positions.

from the passive Wi-Fi device. Further, as predicted by
our analysis in §2.4, the range of our passive Wi-Fi trans-
missions reduce with the distance between the passive
Wi-Fi transmitter and the plugged-in device. When the
separation between the passive Wi-Fi transmitter and the
plugged-in device is 3 or 6 feet, the range of the passive
Wi-Fi transmissions spans the entire length of the CSE
atrium. The range is around 55 feet when this separation
is 12 feet. This reduced range is due to a combination of
multipath and a weak backscatter signal.

Deployment scenario 2. Next we place the plugged-in
device and the Wi-Fi receiver at a distance d1 + d2. We
move the passive Wi-Fi transmitter along the line con-
necting these two devices. As above the passive Wi-Fi
transmitter is set to generate 802.11b beacon packets at
1 Mbps and the plugged-in device transmits its tone at
12.375 MHz from the center of Wi-Fi channel 1. We
collect the RSSI values from a HTC One (M7). Fig. 11
plots the results for three different values of the distance
between the plugged-in device and the Wi-Fi receiver
(d1 + d2). Each point on the x-axis denotes the distance
between the passive Wi-Fi device and the plugged-in de-
vice (d1). The plots show that the RSSI values are the
highest when the passive Wi-Fi transmitter is either close
to the Wi-Fi receiver or the plugged-in device. Further,
the RSSI values are lower at the mid point between the
two devices, confirming our theoretical analysis.

5.1.2 RSSI in Through-the-Wall Scenarios

We rerun experiments in the above deployment scenarios
but now in the presence of walls. In the first deployment,

9

160 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

-60

-58

-56

-54

 0 5 10 15 20 25

R
S

S
I

Distance d1 (in ft)

d1 + d2 = 25 ft

Figure 14: RSSI in deployment scenario 2 in the pres-
ence of walls. The brown blocks denote the walls. d1
(d2) is the distance between the passive Wi-Fi device and
plugged-in device (Wi-Fi receiver).

we place the passive Wi-Fi device and the plugged-in de-
vices at distances of 1 and 6 feet from each other. As the
Wi-Fi receiver moves away from the passive Wi-Fi de-
vice, it is separated by multiple double sheet-rock (plus
insulation) walls with a thickness of approximately 5.7
inches. As before, we use an HTC One (M7) phone as
our Wi-Fi receiver and set the plugged-in device to trans-
mit with a 12.375 MHz frequency offset from channel 1.
The passive Wi-Fi device periodically transmits Wi-Fi
beacons at 1 Mbps and we measure the RSSI values as
reported by the Wi-Fi receiver. Fig. 13 shows that the
range is now around 28 feet when the distance between
the passive Wi-Fi device and the plugged-in device is
6 feet. This is expected because the signals get attenu-
ated by two walls before arriving at the Wi-Fi receiver.

In the second deployment, we fix the location of the
plugged-in device in the first room and place the Wi-Fi
receiver in the third room at a distance of 25 feet. We
then move the passive Wi-Fi device along the line con-
necting the above two devices and measure the RSSI re-
ported by the Wi-Fi receiver. Fig. 14 plots the RSSI re-
sults and show that they follow a similar trend as before
and work even in the presence of attenuation from walls.

5.1.3 Effect of different frequency shifts

We evaluate how different frequency shift values effect
passive Wi-Fi performance. To do this, we place the pas-
sive Wi-Fi transmitter and plugged-in device 6 feet from
each other. We move a Wi-Fi receiver away from the
passive Wi-Fi device in a 50 foot long space. The pas-
sive Wi-Fi device transmits 1 Mbps Wi-Fi packets with
a payload of 512 bytes on channel 1. We use the In-
tel 5350 chipset as a Wi-Fi receiver which runs tshark
to log all the packets that are successfully decoded by
it. The passive Wi-Fi transmitter consecutively transmits
200 unique sequence numbers in a loop using which we
compute the packet error rate at the Wi-Fi receiver. We
repeat these experiments for three different shifts.

Fig. 15 plots the PER at the Wi-Fi receiver as a func-
tion of distance between the passive Wi-Fi transmitter
and the Wi-Fi receiver. The figure shows that the PER is
consistently around 20% when we use frequency shifts
of 44 and 16.5 MHz. For comparison, we measured

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P
a
c
k
e
t
E

rr
o
r

R
a
te

Distance between Passive Wi-Fi device and Wi-Fi receiver (in ft)

12.375 MHz
16.5 MHz

44 MHz

Figure 15: Effect of different frequency shifts. The
PERs are very stable with 16.5 MHz and 44 MHz offsets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

PHY-Layer Goodput (Mbps)

1 Mbps
2 Mbps

5.5 Mbps
11 Mbps

Figure 16: All 802.11b bit rates. Our design can gener-
ate 802.11b transmissions across all four bit rates.

the PER for a conventional Wi-Fi transmitter placed 10
feet away and observed similar PER values. The in-
teresting observation however is that when the shift is
12.375 MHz, we see a large variation in the PER as the
location of the Wi-Fi receiver changes. This is because
of two related reasons. First, when the shift is small, the
tone from the plugged-in device is very close to the de-
sired Wi-Fi channel. Second, because of multipath, dif-
ferent locations see different signal strength differences
between the passive Wi-Fi device and the out-of-band in-
terference from the plugged-in device. When the shift is
small, this out-of-band interference can still be signifi-
cant in certain locations to create losses. We note that
while a 44 MHz shift is too high to be within the ISM
band, a 16.5 MHz shift has PERs that are stable across lo-
cations and yet is small to be within the ISM band while
generating packets on all Wi-Fi channels.

5.1.4 Higher 802.11b bit rates

Finally, we show that passive Wi-Fi can generate all
802.11b bit rates. We separate the passive Wi-Fi and
plugged-in device by 6 feet. We change the Wi-Fi re-
ceiver location to five spots in a 15×24 ft room. The
plugged-in device is set to use a 12.375 MHz offset. For
each Wi-Fi receiver location, the passive Wi-Fi device
transmits 802.11b packets at 1, 2, 5.5 and 11 Mbps. For
each bit rate, the passive Wi-Fi device sends 200 packets
with a 512 byte payload with different sequence num-
bers. The Wi-Fi receiver (Intel 5350) is configured to
compute the effective PHY goodput achieved by multi-
plying the transmitted Wi-Fi bit rate with the fraction of
packets that are decoded. Fig. 16 plots a CDF of the
PHY-layer goodput across the five locations demonstrat-
ing that we can generate all four 802.11b bit rates.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 161

 0
 0.2
 0.4
 0.6
 0.8

 1

 20 30 40 50 60 70 80 90 100

F
ra

c
ti
o
n

Distance (in ft)

Device 1: Correct ID
Device 2: Incorrect ID

 0
 0.2
 0.4
 0.6
 0.8

 1

 4 5 6 7 8 9 10 11 12 13 14C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

TCP Throughput (Mbps)

Wi-Fi Transmitter
Passive Wi-Fi Transmitter

(a) ID Detection (b) Wi-Fi Coexistence

Figure 17: Passive Wi-Fi network performance.

5.2 Passive Wi-Fi Network Performance
As described in §3.1 to coexist in the ISM band, the
plugged-in device first performs carrier sense and then
signals the passive Wi-Fi device to transmit. In this sec-
tion, we first evaluate how well the signaling mechanism
works. We then describe how our overall carrier sense
mechanism works in the presence of other Wi-Fi devices.

5.2.1 Evaluating the signaling mechanism

The plugged-in device transmits a packet with a 10-bit ID
that is unique to each passive Wi-Fi device. We evaluate
two aspects: (1) the probability with which the signal
from the plugged-in device trigger transmissions from
the correct passive Wi-Fi device and (2) the probability
that it would trigger the wrong passive Wi-Fi device. To
evaluate this we consider the worst-case scenario: two
devices that have IDs that differ by just one bit. We set
the plugged-in device to transmit the signaling packet
with the ID of the first device. We move the two pas-
sive Wi-Fi devices away from the plugged-in device. At
each distance value, the plugged-in device is configured
to transmit the signaling packet for a total of 1890 times.
The passive Wi-Fi devices use an envelope detector to
correlate for their specific ID. We compute the fraction
of the 1890 signaling packets that are decoded and match
the ID of the passive Wi-Fi device. We run these exper-
iments in the UW CSE atrium for increasing distances
from the plugged-in device. Fig. 17(a) show the fraction
of signaling packets that match the ID of the two pas-
sive Wi-Fi devices as a function of the distance from the
plugged-in device. The plot shows that neither device
incorrectly decodes the ID. This is because our receiver
builds on our prior work [25, 26, 29, 42] and has gone
through multiple iterations to improve its reliability.

5.2.2 Evaluating passive Wi-Fi’s carrier sense

The plugged-in device performs carrier sense and sig-
nals a specific passive Wi-Fi device to transmit. To
compare how our mechanism compares to standard Wi-
Fi, we compare the performance of a concurrent Wi-Fi
transmitter-receiver pair in the presence of a passive Wi-
Fi transmitter with that of a traditional Wi-Fi transmit-
ter. We use two Intel 5350 Wi-Fi chipsets to transmit

and receive Wi-Fi packets using iperf. The devices use
the chipset’s default bit rate adaptation. We run experi-
ments in two scenarios: 1) we use a Ralink RT2070 Wi-
Fi chipset to transmit packets at 1 Mbps every 15 ms and
2) we set our passive Wi-Fi device to transmit its packet
every 15 ms at 1 Mbps using our carrier sense mecha-
nism. We measure the throughput achieved by a con-
current Wi-Fi transmitter-receiver pair in the presence of
these two devices. Fig. 17(b) plots the TCP throughput
and shows that passive Wi-Fi has a similar impact on the
ongoing flow as a traditional Wi-Fi transmitter. This is
because, passive Wi-Fi adds only a small fixed 100 µs
overhead. This small overhead is however overshadowed
by transient changes in network conditions.

5.3 Applications
We first consider low latency sensors like microphones
and cameras that transmit continuously. We then analyze
duty-cycled sensors.

1) Low power microphones consume 17 µW [1] and
an ADC digitizing the microphone output consumes
33 µW [1], resulting in 50 µW for the sensing subsys-
tem. If we use an IoT Wi-Fi chipset by Gainspan or TI to
continuously transmit audio, the active Wi-Fi transmitter
consumes 670 mW [9, 21]. This results in a total power
budget of 670.05 mW which is dominated by the Wi-Fi
chipset. However, if we use passive Wi-Fi at 1 Mbps, the
power budget drops to 65 µW, i.e., a 1000x reduction.

2) A low power camera like OV7690 operating at VGA
resolution and capturing one image per second consumes
an average of 10 mW [15]. The camera outputs raw data
at 2.45 Mbps which can be transferred wirelessly without
power hungry on-board compression. Using an IoT Wi-
Fi chipset from Gainspan or TI, brings the total power
consumption of the system to 680 mW. If we substi-
tute an active Wi-Fi chipset which consumes 670 mW of
power with 11 Mbps passive Wi-Fi, we can improve the
battery life of Wi-Fi video camera by at least 50x [9, 21].

3) Duty cycled sensors such as iBeacon [11] and home
proximity sensors [16] periodically transmit data using
Bluetooth Low Energy and ZigBee protocols respec-
tively. They typically transmit beacons/data packets at a
rate of 100 ms to 900 ms and last for 3 months to 3 years
respectively on a coin cell battery [11]. If we replace the
BLE/ZigBee transmitter which consumes 35 mW [20] in
transmit mode with passive Wi-Fi consuming 15 µW, the
battery life can be extended well beyond 10 years.

6 Related Work

RFID systems. RFID tags backscatter the signal back to
a dedicated 900 MHz RFID reader. The use of backscat-

11

162 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

ter as a general communication mechanism, however, has
been limited to RFID systems for two key reasons. First,
to decode the weak backscattered signals, the reader
eliminates the strong signal from the reader using full-
duplex radios [27, 43]. This requires expensive cir-
culators and highly linear analog RF front end at the
reader that contributes to its high cost. In contrast, Wi-
Fi chipsets do not require the specialized components,
can be fully integrated in silicon and hence, are orders
of magnitude less expensive. Second, enabling backscat-
ter communication with existing devices requires a com-
plete hardware change to their chipsets and incorporating
a dedicated full duplex radio; this is a high bar that has
limited the adoption of backscatter beyond RFID.

Wi-Fi and ambient backscatter systems. Since 2013,
we have introduced the concepts of ambient and Wi-Fi
backscatter [25, 28, 37] where battery-free devices com-
municate with each other by backscattering ambient sig-
nals such as TV and Wi-Fi transmissions. The basic dif-
ference between these designs and passive Wi-Fi is that
Wi-Fi backscatter systems create an additional narrow-
band data stream to ride on top of existing Wi-Fi signals.
In contrast, passive Wi-Fi aims to use backscatter to gen-
erate 802.11b transmissions that can be decoded by bil-
lions of existing devices with a Wi-Fi chipsets.

In particular, our prior work on Wi-Fi backscatter [25]
demonstrated that existing Wi-Fi chipsets can decode
backscattered information from a tag using changes to
the per-packet CSI/RSSI values at 1 kbps bitrates and a
2 m range. [38] improved the rate of this communication
using a full-duplex radio to cancel the high-power Wi-
Fi transmissions from the reader and decode the weak
phase-modulated narrowband backscattered signal at the
reader. This has allowed them to achieve data rates of up
to 5 Mbps at a range of 1 m and 1 Mbps at a range of
5 m. A recent news release [14] claims to achieve 330
Mbps Wi-Fi backscatter communication at 2.5 m using
a custom IC that implements a full-duplex radio. The
challenge with these full-duplex designs is that they have
the same problem as conventional RFID designs— they
require a custom full-duplex radio to be incorporated at
the receiver and hence the backscattered signals cannot
be decoded on any of the existing Wi-Fi devices.

Finally, [23] creates Bluetooth signals using subcarrier
modulation to create 370 kHz narrowband 2-FSK sig-
nals. Instead, we create 22 MHz DSSS/CCK transmis-
sions using backscatter and enable Wi-Fi transmissions.
We also present a network-layer stack design that enables
us to operate with existing devices in the ISM band.

Duty-cycled radios. The key idea in these systems is to
design a custom low power radio transmitter and use a
wakeup receiver to duty cycle the transmitter and reduce
the average transceiver power consumption [41]. The

power consumption of such transmitters at sub-milliwatt
output power is in the order of 100 µW [36, 44] to few
mWs [22, 35, 40]. Further, such radios use custom pro-
tocols supporting 10-100 kbps data rates that require de-
ployment of special purpose receivers and hardware. In
contrast, passive Wi-Fi generates Wi-Fi transmissions at
tens of microwatts of power. Given the ubiquity of Wi-Fi,
this significantly lowers the bar for adoption. Further, the
duty cycle operation is orthogonal to passive Wi-Fi and
can be used to further reduce the power consumption of
a system employing passive Wi-Fi.

Low power Wi-Fi transceivers. The Wi-Fi industry has
designed chipsets for IoT applications including QUAL-
COMM QCA4002 and QCA4004 [18]. These designs
reduce the power consumption by decreasing the trans-
mit power by up to a half when in proximity of another
device. They also optimize the power consumption of
their sleep mode to be less than 1 mW. Gainspan and
TI Wi-Fi chipsets incorporate a 20 µW standby mode
and can switch to active mode within tens of millisec-
onds [9, 21]. However, their active transmission power
is around 600 mW [9, 21] which is orders of magni-
tude higher than passive Wi-Fi. Intel’s Moore’s radio [7]
designs digital versions for RF components such as fre-
quency synthesizers. This reduces the cost and size of the
RF chipset rather than its power — a digital Wi-Fi fre-
quency synthesizer consumes 10-50 mW [7, 24] which is
similar in power consumption to its analog counterpart.

Finally, recent low power Wi-Fi receiver designs use
techniques like dynamic voltage and frequency scal-
ing [30] and compressive sensing [31]. In particular,
SloMo [31] leverages the sparsity inherent to 802.11b
DSSS signals using compressive sensing to operate the
radio at a lower clock rate. Enfold [30] extends this to
work with OFDM modulation. Our work on enabling
ultra-low power Wi-Fi transmissions is complimentary
to this work and can in principle be integrated together.

7 Conclusion

We demonstrate for the first time that one can gener-
ate 802.11b transmissions using backscatter communi-
cation, while consuming 4-5 orders of magnitude lower
power than existing Wi-Fi chipsets. Wi-Fi has tradition-
ally been considered a power-consuming system. Thus,
it has not been widely adopting in the sensor network
and IoT space where low-power devices primarily trans-
mit data. We believe that, with its orders of magnitude
lower power consumption, passive Wi-Fi has the poten-
tial to transform the Wi-Fi industry.
Acknowledgements. We thank Ben Ransford and our
shepherd Jon Howell. This work was funded in part by NSF
under awards CNS-1452494 and CNS-1407583 and a Qual-
comm fellowship.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 163

References

[1] ADMP801. http://www.cdiweb.com/
datasheets/invensense/ADMP801_2_
Page.pdf.

[2] Altera de1 fpga development board. http:
//www.terasic.com.tw/cgi-bin/
page/archive.pl?No=83.

[3] Android wi-fi analyzer. https://play.
google.com/store/apps/details?id=
com.farproc.wifi.analyzer&hl=en.

[4] Atheros targets cellphone with wi-fi chip.
http://www.eetimes.com/document.
asp?doc_id=1172134.

[5] Cadence rfspectre. http://www.cadence.
com/products/rf/spectre_rf_
simulation/pages/default.aspx.

[6] Co-existence of wi-fi and bluetooth ra-
dios by marvell. http://www.
marvell.com/wireless/assets/
Marvell-WiFi-Bluetooth-Coexistence.
pdf.

[7] Connecting the future: The latest research from
intel labs. http://download.intel.com/
newsroom/kits/idf/2012_fall/pdfs/
IDF2012_Justin_Rattner.pdf.

[8] Dropcam. https://nest.com/camera/
meet-nest-cam/?dropcam=true.

[9] Gainspan gs1500m. http://www.
alphamicro.net/media/412417/
gs1500m_datasheet_rev_1_4.pdf.

[10] Hms190bms8 by hittite microwave devices.
https://www.hittite.com/content/
documents/data_sheet/hmc190bms8.
pdf.

[11] ibeacons. http://beekn.net/2014/04/
will-apple-pull-plug-ibeacon-devices/.

[12] Ieee 802.11 standard, 2012. http:
//standards.ieee.org/getieee802/
download/802.11-2012.pdf.

[13] Max2830 by maxim. https://datasheets.
maximintegrated.com/en/ds/MAX2830.
pdf.

[14] Nasa news release: A wi-fi reflector chip to speed
up wearables. http://www.jpl.nasa.gov/
news/news.php?feature=4663.

[15] Ovm 7690 camera module. http:
//www.ovt.com/uploads/parts/
OVM7690_PB(1.0)_web.pdf.

[16] Proximity sensors. https://www.ia.omron.
com/products/category/sensors/
proximity-sensors/.

[17] Qualcomm atheros 9462. http://www.qca.
qualcomm.com/wp-content/uploads/
2013/11/AR9462.pdf.

[18] Qualcomm qca4002 and qca4004. http:
//www.eeworld.com.cn/zt/wireless/
downloads/QCA4002-4004FIN.pdf.

[19] Synopsis design complier. http://www.
synopsys.com/Tools/Implementation/
RTLSynthesis/DesignCompiler/Pages/
default.aspx.

[20] TI CC2541. http://www.ti.com/lit/ds/
symlink/cc2541.pdf.

[21] TI CC3100MOD. http://www.ti.com/
lit/ds/symlink/cc3100mod.pdf.

[22] J. Ayers, N. Panitantum, K. Mayaram, and T. S.
Fiez. A 2.4 ghz wireless transceiver with 0.95 nj/b
link energy for multi-hop battery-freewireless sen-
sor networks. In VLSI Circuits (VLSIC), 2010 IEEE
Symposium on, pages 29–30. IEEE, 2010.

[23] J. Ensworth and M. Reynolds. Every smart phone is
a backscatter reader: Modulated backscatter com-
patibility with bluetooth 4.0 low energy (ble) de-
vices. In RFID, 2015 IEEE International Confer-
ence on.

[24] K. Greene. Intel’s tiny wi-fi chip could have a big
impact. MIT Technology review, 2012.

[25] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and
D. Wetherall. Wi-fi backscatter: Internet connec-
tivity for rf-powered devices. In Proceedings of the
2014 ACM Conference on SIGCOMM, 2014.

[26] B. Kellogg, V. Talla, and S. Gollakota. Bringing
gesture recognition to all devices. In Usenix NSDI,
volume 14, 2014.

[27] P. B. Khannur, X. Chen, D. L. Yan, D. Shen,
B. Zhao, M. K. Raja, Y. Wu, R. Sindunata, W. G.
Yeoh, and R. Singh. A universal uhf rfid reader ic
in 0.18-µm cmos technology. Solid-State Circuits,
IEEE Journal of, 43(5):1146–1155, 2008.

13

164 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[28] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wether-
all, and J. R. Smith. Ambient backscatter: Wire-
less communication out of thin air. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIG-
COMM, 2013.

[29] V. Liu, V. Talla, and S. Gollakota. Enabling in-
stantaneous feedback with full-duplex backscatter.
In Proceedings of the 20th annual international
conference on Mobile computing and networking,
pages 67–78. ACM, 2014.

[30] F. Lu, P. Ling, G. M. Voelker, and A. C. Snoeren.
Enfold: downclocking ofdm in wifi. In Proceed-
ings of the 20th annual international conference on
Mobile computing and networking, pages 129–140.
ACM, 2014.

[31] F. Lu, G. M. Voelker, and A. C. Snoeren. Slomo:
Downclocking wifi communication. In NSDI,
pages 255–258, 2013.

[32] J. Manweiler and R. Roy Choudhury. Avoiding the
rush hours: Wifi energy management via traffic iso-
lation. In MobiSys, 2011.

[33] R. Mittal, A. Kansal, and R. Chandra. Empowering
developers to estimate app energy consumption. In
MobiCom, 2012.

[34] P. Nikitin and K. Rao. Theory and measurement
of backscattering from RFID tags. Antennas and
Propagation Magazine, IEEE, 48(6):212 –218, de-
cember 2006.

[35] B. Otis, Y. Chee, R. Lu, N. Pletcher, and
J. Rabaey. An ultra-low power mems-based two-
channel transceiver for wireless sensor networks.
In VLSI Circuits, 2004. Digest of Technical Papers.
2004 Symposium on, pages 20–23. IEEE, 2004.

[36] J. Pandey and B. P. Otis. A sub-100 w mics/ism
band transmitter based on injection-locking and fre-
quency multiplication. Solid-State Circuits, IEEE
Journal of, 46(5):1049–1058, 2011.

[37] A. N. Parks, A. Liu, S. Gollakota, and J. R.
Smith. Turbocharging ambient backscatter commu-
nication. In Proceedings of the 2014 ACM Confer-
ence on SIGCOMM, 2014.

[38] D. Pharadia, K. R. Joshi, M. Kotaru, and S. Katti.
Backfi: High throughput wifi backscatter. In Pro-
ceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, 2015.

[39] J. G. Proakis and M. Salehi. Digital communica-
tions. 2005. McGraw-Hill, New York.

[40] J. Rabaey, J. Ammer, B. Otis, F. Burghardt,
Y. Chee, N. Pletcher, M. Sheets, and H. Qin. Ultra-
low-power design. Circuits and Devices Magazine,
IEEE, 22(4):23–29, 2006.

[41] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel,
and S. Roundy. Picoradio supports ad hoc ultra-low
power wireless networking. Computer, 33(7):42–
48, 2000.

[42] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V.
Mamishev, and J. R. Smith. Design of an rfid-
based battery-free programmable sensing platform.
Instrumentation and Measurement, IEEE Transac-
tions on, 57(11):2608–2615, 2008.

[43] C. Ying and Z. Fu-Hong. A system design for uhf
rfid reader. In Communication Technology, 2008.
ICCT 2008. 11th IEEE International Conference
on, pages 301–304. IEEE, 2008.

[44] F. Zhang, Y. Zhang, J. Silver, Y. Shakhsheer,
M. Nagaraju, A. Klinefelter, J. Pandey, J. Boley,
E. Carlson, A. Shrivastava, et al. A batteryless
19µw mics/ism-band energy harvesting body area
sensor node soc. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2012 IEEE In-
ternational, pages 298–300. IEEE, 2012.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 165

Decimeter-Level Localization with a Single WiFi Access Point
Deepak Vasisht†, Swarun Kumar‡, Dina Katabi†

†MIT CSAIL, ‡ CMU
deepakv@mit.edu, swarun@cmu.edu, dk@mit.edu

Abstract – We present Chronos, a system that enables
a single WiFi access point to localize clients to within tens
of centimeters. Such a system can bring indoor position-
ing to homes and small businesses which typically have a
single access point.

The key enabler underlying Chronos is a novel algo-
rithm that can compute sub-nanosecond time-of-flight us-
ing commodity WiFi cards. By multiplying the time-of-
flight with the speed of light, a MIMO access point com-
putes the distance between each of its antennas and the
client, hence localizing it. Our implementation on com-
modity WiFi cards demonstrates that Chronos’s accu-
racy is comparable to state-of-the-art localization systems,
which use four or five access points.

1. INTRODUCTION

Recent years have seen significant advances in indoor
positioning using wireless signals [48, 28]. State-of-the-
art systems have achieved an accuracy of tens of centime-
ters, even using commodity WiFi chipsets [30, 32, 18]. Ex-
isting proposals however target enterprise networks, where
multiple WiFi access points can combine their informa-
tion and cooperate together to locate a user. However, the
vast majority of homes and small businesses today have
a single WiFi access point. Consequently, this large con-
stituency of wireless networks has been left out of the ben-
efits of accurate indoor positioning.

Developing a technology that can locate users and ob-
jects using a single WiFi access point would enable a range
of important applications:

(i) Smart Home Occupancy: In particular, indoor posi-
tioning can play a crucial role in the smart home vi-
sion, where WiFi enabled home automation systems
like NEST are gaining increasing popularity [37]. Accu-
rate localization addresses a long-standing problem in
home automation: reliable occupancy detection [36, 6].
With WiFi-based localization, one can track the num-
ber of users per room using their phones or wearables,
and accordingly adapt heating and lighting. Knowing
the identity of these occupants can then help personalize
heating and lighting levels based on user preferences.

(ii) WiFi Geo-fencing: Beyond the home, indoor position-
ing can benefit small businesses that use a single access
point to offer free WiFi to attract customers. But with
increasingly congested networks, business owners seek
to restrict WiFi connectivity to their own customers,

given that 32% of users in the US admit to have ac-
cessed open WiFi networks outside the premises they
serve [47]. Yet securing these networks with passwords
is inconvenient, both to customers that connect to these
networks and the business owners who must frequently
change the passwords. Indoor positioning with a sin-
gle access point provides a natural solution to this prob-
lem because it can automatically authenticate customers
based on their location.

(iii) Device-to-device Location: More generally, enabling
two WiFi nodes to localize each other without addi-
tional infrastructure support has implications in areas
where WiFi networks may not exist altogether. Imagine
traveling with friends or family in countries where WiFi
is not as prevalent as in the US, yet still be able to find
each other in a mall, museum, or train station, without
the need to connect to a WiFi infrastructure.

Our goal is to design a system that enables a single
WiFi node (e.g., an access point) to localize another, with-
out support from additional infrastructure. Further, we
would like a design that works on commodity WiFi NICs
and does not require any additional sensors (cameras, ac-
celerometers, etc.).

As we design for the above goal, it helps to first ex-
amine why past systems need multiple access points. The
most direct approach to RF-based positioning estimates
the time-of-flight (i.e., propagation time) and multiplies it
by the speed of light to obtain the distance [23, 16]. How-
ever, past proposals for WiFi-based positioning cannot
measure the absolute time-of-flight. They measure only
differences in the time-of-flight across the receiver’s anten-
nas. Such time differences allow those systems to infer the
direction of the source with respect to the receiver, known
as the angle of arrival (AoA) [48]. But they don’t provide
the distance between the source and the receiver. Thus,
past work has to intersect the direction of the source from
multiple access points to localize it. In fact, past propos-
als typically use four or five access points to achieve tens
of centimeters accuracy [30, 32, 48, 50]. Even the few re-
cent proposals to localize using one WiFi access point [35,
53] require users to walk to multiple locations to emulate
the presence of multiple access points. They then intersect
signal measurements across these locations coupled with
accelerometer readings to infer the user’s trajectory.

There are however non-WiFi systems that can accu-
rately measure the absolute time-of-flight, and hence lo-
calize using a single receiver. Such systems use special-

1

166 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

ized ultra wideband radios that span multiple GHz [5,
41]. Since time resolution is inversely related to the ra-
dio bandwidth, such devices can measure time-of-flight at
sub-nanosecond accuracy, and hence localize an object to
within tens of centimeters. In contrast, directly measuring
time with a 20MHz or 40MHz WiFi radio results in errors
of 7 to 15 meters [30].

Motivated by the above analysis, we investigated
whether a WiFi radio can emulate a wideband multi-GHz
radio, for the purpose of localization. Our investigation
led to Chronos, an indoor positioning system that enables
a pair of WiFi devices to localize each other. It runs on
commodity WiFi cards, and does not require any external
sensor (e.g., accelerometer, or camera). Chronos works by
making a WiFi card emulate a very wideband radio. In
particular, while each WiFi frequency band is only tens of
Megahertz wide, there are many such bands that together
span a very wide bandwidth. Chronos therefore transmits
packets on multiple WiFi bands and stitches their informa-
tion together to give the illusion of a wideband radio.

Yet, emulating a wideband radio using packets trans-
mitted on different frequency bands is not easy. Stitch-
ing measurements across such packets requires Chronos
to overcome three challenges:
Resolving Phase Offsets: First, to emulate a wideband
radio, Chronos needs to stitch channel state information
(CSI) captured by multiple packets, transmitted in dif-
ferent WiFi frequency bands, at different points in time.
However, the very act of hopping between WiFi frequency
bands introduces a random initial phase offset as the hard-
ware resets to each new frequency (i.e., PLL locking).
Chronos must therefore recover time-of-flight to perform
positioning despite these random phase offsets.
Eliminating Packet Detection Delay: Second, any mea-
surement of time-of-flight of a packet necessarily includes
the delay in detecting its presence. Different packets how-
ever experience different random detection delays. To
make matters worse, this packet detection delay is typi-
cally orders-of-magnitude higher than time-of-flight. For
indoor WiFi environments, time-of-flight is just a few
nanoseconds, while packet detection delay spans hundreds
of nanoseconds [38]. Chronos must tease apart the time-
of-flight from this detection delay.
Combating Multipath: Finally, in indoor environments,
signals do not experience a single time-of-flight, but a
time-of-flight spread. This is because RF signals in indoor
environments bounce off walls and furniture, and reach
the receiver along multiple paths. As a result, the receiver
obtains several copies of the signal, each having experi-
enced a different time-of-flight. To perform accurate lo-
calization, Chronos therefore must disentangle the time-
of-flight of the direct path from all the remaining paths.

The body of this paper explains how Chronos over-
comes these challenges, computes the absolute time-of-

flight, and enables localization using a single access point.

Summary of Results: We have implemented Chronos
and evaluated its performance on devices equipped with
Intel 5300 WiFi cards. Our results reveal the following:

• Chronos computes the time-of-flight with a median er-
ror of 0.47 ns in line-of-sight and 0.69 ns in non-line-
of-sight settings. This corresponds to a median distance
error of 14.1 cm and 20.7 cm respectively.

• Chronos enables a WiFi device (e.g., an AP) to localize
another with a median error of 65 cm in line-of-sight
and 98 cm in non-line-of-sight settings.

To demonstrate Chronos’s capabilities, we use it for three
applications:

• Smart Home Occupancy: Chronos can be used to track
the number of occupants in different rooms of a home
using a single access point – a key primitive for smart
homes that adapt heating and lighting. Experiments
conducted in a 2-bedroom apartment with 4 occupants
show that Chronos maps residents in a home to the cor-
rect room they are in with an accuracy of 94.3%.

• WiFi Geo-fencing: Chronos can be used by small busi-
nesses with a single access point to restrict WiFi con-
nectivity to customers within their facility. Experiments
in a coffee house reveal that Chronos achieves this to an
accuracy of 97%.

• Personal Drone: Chronos’s ability to locate a pair of
user devices can directly benefit the navigation systems
of personal robots such as recreational drones. Chronos
enables personal drones that can maintain a safe dis-
tance from their user by tracking their owner’s handheld
device. Our experiments using an AscTec Quadrotor re-
veal that it maintains the required distance relative to a
user’s device with a root mean-squared error of 4.2 cm.

Contributions: To our knowledge, Chronos is the first
system that enables a node with a commercial WiFi card to
locate another at tens of centimeters accuracy without any
third party support, be it other WiFi nodes or external sen-
sors (e.g., accelerometers). Chronos also contributes the
first algorithm for measuring the absolute time-of-flight on
commercial WiFi cards at sub-nanosecond accuracy.

2. OVERVIEW

We briefly outline the organization of the rest of this
paper. Chronos localizes a pair of WiFi devices without
third party support by computing time of flight of sig-
nals between them. Sec. §3 describes our approach to
compute time-of-flight by stitching together information
across multiple WiFi frequency bands. It is followed by a
description of the challenges faced by Chronos and how it
addresses them. Specifically:

• Eliminating Packet Detection Delay: First, Chronos
disentangles the time-of-flight from packet detection

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 167

ized ultra wideband radios that span multiple GHz [5,
41]. Since time resolution is inversely related to the ra-
dio bandwidth, such devices can measure time-of-flight at
sub-nanosecond accuracy, and hence localize an object to
within tens of centimeters. In contrast, directly measuring
time with a 20MHz or 40MHz WiFi radio results in errors
of 7 to 15 meters [30].

Motivated by the above analysis, we investigated
whether a WiFi radio can emulate a wideband multi-GHz
radio, for the purpose of localization. Our investigation
led to Chronos, an indoor positioning system that enables
a pair of WiFi devices to localize each other. It runs on
commodity WiFi cards, and does not require any external
sensor (e.g., accelerometer, or camera). Chronos works by
making a WiFi card emulate a very wideband radio. In
particular, while each WiFi frequency band is only tens of
Megahertz wide, there are many such bands that together
span a very wide bandwidth. Chronos therefore transmits
packets on multiple WiFi bands and stitches their informa-
tion together to give the illusion of a wideband radio.

Yet, emulating a wideband radio using packets trans-
mitted on different frequency bands is not easy. Stitch-
ing measurements across such packets requires Chronos
to overcome three challenges:
Resolving Phase Offsets: First, to emulate a wideband
radio, Chronos needs to stitch channel state information
(CSI) captured by multiple packets, transmitted in dif-
ferent WiFi frequency bands, at different points in time.
However, the very act of hopping between WiFi frequency
bands introduces a random initial phase offset as the hard-
ware resets to each new frequency (i.e., PLL locking).
Chronos must therefore recover time-of-flight to perform
positioning despite these random phase offsets.
Eliminating Packet Detection Delay: Second, any mea-
surement of time-of-flight of a packet necessarily includes
the delay in detecting its presence. Different packets how-
ever experience different random detection delays. To
make matters worse, this packet detection delay is typi-
cally orders-of-magnitude higher than time-of-flight. For
indoor WiFi environments, time-of-flight is just a few
nanoseconds, while packet detection delay spans hundreds
of nanoseconds [38]. Chronos must tease apart the time-
of-flight from this detection delay.
Combating Multipath: Finally, in indoor environments,
signals do not experience a single time-of-flight, but a
time-of-flight spread. This is because RF signals in indoor
environments bounce off walls and furniture, and reach
the receiver along multiple paths. As a result, the receiver
obtains several copies of the signal, each having experi-
enced a different time-of-flight. To perform accurate lo-
calization, Chronos therefore must disentangle the time-
of-flight of the direct path from all the remaining paths.

The body of this paper explains how Chronos over-
comes these challenges, computes the absolute time-of-

flight, and enables localization using a single access point.

Summary of Results: We have implemented Chronos
and evaluated its performance on devices equipped with
Intel 5300 WiFi cards. Our results reveal the following:

• Chronos computes the time-of-flight with a median er-
ror of 0.47 ns in line-of-sight and 0.69 ns in non-line-
of-sight settings. This corresponds to a median distance
error of 14.1 cm and 20.7 cm respectively.

• Chronos enables a WiFi device (e.g., an AP) to localize
another with a median error of 65 cm in line-of-sight
and 98 cm in non-line-of-sight settings.

To demonstrate Chronos’s capabilities, we use it for three
applications:

• Smart Home Occupancy: Chronos can be used to track
the number of occupants in different rooms of a home
using a single access point – a key primitive for smart
homes that adapt heating and lighting. Experiments
conducted in a 2-bedroom apartment with 4 occupants
show that Chronos maps residents in a home to the cor-
rect room they are in with an accuracy of 94.3%.

• WiFi Geo-fencing: Chronos can be used by small busi-
nesses with a single access point to restrict WiFi con-
nectivity to customers within their facility. Experiments
in a coffee house reveal that Chronos achieves this to an
accuracy of 97%.

• Personal Drone: Chronos’s ability to locate a pair of
user devices can directly benefit the navigation systems
of personal robots such as recreational drones. Chronos
enables personal drones that can maintain a safe dis-
tance from their user by tracking their owner’s handheld
device. Our experiments using an AscTec Quadrotor re-
veal that it maintains the required distance relative to a
user’s device with a root mean-squared error of 4.2 cm.

Contributions: To our knowledge, Chronos is the first
system that enables a node with a commercial WiFi card to
locate another at tens of centimeters accuracy without any
third party support, be it other WiFi nodes or external sen-
sors (e.g., accelerometers). Chronos also contributes the
first algorithm for measuring the absolute time-of-flight on
commercial WiFi cards at sub-nanosecond accuracy.

2. OVERVIEW

We briefly outline the organization of the rest of this
paper. Chronos localizes a pair of WiFi devices without
third party support by computing time of flight of sig-
nals between them. Sec. §3 describes our approach to
compute time-of-flight by stitching together information
across multiple WiFi frequency bands. It is followed by a
description of the challenges faced by Chronos and how it
addresses them. Specifically:

• Eliminating Packet Detection Delay: First, Chronos
disentangles the time-of-flight from packet detection

2

Figure 1: WiFi Bands: Depicts WiFi bands at 2.4 GHz and
5 GHz. Note that some of these frequencies (e.g. 5.5-5.7 GHz)
are DFS bands in the U.S. that many 802.11h compatible
802.11n radios like Intel 5300 support.

delay, since the latter has no connection to the distance
between transmitter and receiver (See Sec. §4).

• Combating Multipath: Second, Chronos separates the
time-of-flight of the direct path of the wireless signal
from that of all the remaining paths (See Sec. §5).

• Resolving Phase Offsets: Finally, Chronos removes
arbitrary phase offsets that are introduced as the WiFi
receiver hops between frequency bands (See Sec. §6).

3. MEASURING TIME OF FLIGHT

In this section, we describe how Chronos measures ac-
curate time-of-flight of signals between a pair of WiFi
devices without third party support. For clarity, the rest
of this section assumes signals propagate from the trans-
mitter to a receiver along a single path with no detection
delay or phase offsets. We address challenges stemming
from packet detection delay, multipath and phase offsets
in §4, §5 and §6 respectively.

Chronos’s approach is based on the following observa-
tion: Conceptually, if our receiver had a very wide band-
width, it could readily measure time-of-flight from a single
receiving device at a fine-grained resolution (since time
and bandwidth are inversely related). Unfortunately, to-
day’s WiFi devices do not have such wide bandwidth. But
there is another opportunity: WiFi devices are known to
span multiple frequency bands scattered around 2.4 GHz
and 5 GHz. Combined, these bands span almost one GHz
of bandwidth. By making a transmitter and receiver hop
between these different frequency bands, we can gather
many different measurements of the wireless channel. We
can then “stitch together” these measurements to compute
the time-of-flight, as if we had a very wideband radio.

However, our method for stitching time measurements
across WiFi frequency bands must account for the fact that
many WiFi bands are non-contiguous, unequally spaced,
and even multiple GHz apart (Fig. 1). Chronos overcomes
these issues by exploiting the relation between the time-of-
flight and the phase of wireless channels. Specifically, we
know from basic electromagnetics that as a signal prop-
agates in time, it accumulates a corresponding phase de-
pending on its frequency. The higher the frequency of the
signal, the faster the phase accumulates. To illustrate, let
us consider a transmitter sending a signal to its receiver.

Then we can write the wireless channel h as [42]:
h = ae−j2πfτ , (1)

where a is the signal magnitude, f is the frequency and τ
is the time-of-flight. The phase of this channel depends on
time-of-flight as:

∠h = −2πf τ mod 2π (2)
Notice that the above equation depends directly on the sig-
nal’s time-of-flight and hence, we can use it to measure the
time-of-flight τ as:

τ = − ∠h
2πf

mod
1
f

(3)

The above equation gives us the time-of-flight modulo
1/f . Hence, for a WiFi frequency of 2.4 GHz, we can only
obtain the time-of-flight modulo 0.4 nanoseconds. Said
differently, transmitters with times-of-flight 0.1 ns, 0.5 ns,
0.9 ns, 1.3 ns, etc. all produce identical phase in the wire-
less channel. In terms of physical distances, this means
transmitters at distances separated by multiples of 12 cm
(e.g., 3 cm, 15 cm, 27 cm, 39 cm, etc.) all result in the
same channel phase. Consequently, there is no way to dis-
tinguish between these transmitters using their phase on a
single frequency band.

Indeed, this is precisely why Chronos needs to hop be-
tween multiple frequency bands {f1, . . . , fn} and measure
the corresponding wireless channels {h1, . . . , hn}. The re-
sult is a system of equations, one per frequency, that mea-
sure the time-of-flight modulo different values:

∀i ∈ {1, 2, . . . , n} τ =− ∠hi

2πfi
mod

1
fi

(4)

Notice that the above set of equations has the form of
the well-known Chinese remainder theorem [45]. Such
equations can be readily solved using standard modular
arithmetic algorithms, even amidst noise [14] and have
been used in prior work, in the context of range estima-
tion ([44, 43]).1 The theorem states that solutions to these
equations are unique modulo a much larger quantity – the
Least Common Multiple (LCM) of {1/f1, . . . , 1/fn}.

To illustrate how the above system of equations works,
consider a source at 0.6 m whose time-of-flight is 2 ns.
Say the receiver measures the channel phases from this
source on five candidate WiFi frequency bands as shown
in Fig. 2. We note that a measurement on each of these
channels produces a unique equation for τ , like in Eqn. 4.
Each equation has multiple solutions, depicted as colored
vertical lines in Fig. 2. However, only the correct solution
of τ will satisfy all equations. Hence, by picking the so-
lution satisfying the most number of equations (i.e., the τ
with most number of aligned lines in Fig. 2), we can re-
cover the true time-of-flight of 2 ns.

Note that our solution based on the Chinese remain-
der theorem makes no assumptions on whether the set

1Algorithm 1 in §5 provides a more general version of Chronos’s
algorithm to do this while accounting for noise and multipath

3

168 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

τ

Figure 2: Measuring Time-of-Flight: Consider a wireless
transmitter at a distance of 0.6 m, i.e. a time-of-flight of 2 ns.
The phase of each WiFi channel results in multiple solutions,
depicted as colored lines, including 2 ns. However, the solution
that satisfies most equations, i.e. has the most number of aligned
colored lines is the true time-of-flight (2 ns).

of frequencies {f1, . . . , fn} are equally separated or oth-
erwise. In fact, having unequally separated frequencies
makes them less likely to share common factors, boost-
ing the LCM. Thus, counter-intuitively, the scattered and
unequally-separated bands of WiFi (Fig. 1) are not a chal-
lenge, but an opportunity to resolve larger values of τ .

While the above provides a mathematical formulation
of our algorithm, we describe below important systems
considerations when dealing with commercial WiFi cards:

• Chronos must ensure both the WiFi transmitter and re-
ceiver hop synchronously between multiple WiFi fre-
quency bands. Chronos achieves this using a frequency
band hopping protocol driven by the transmitter. Be-
fore switching frequency bands (every 2-3 ms in our
implementation), the transmitter issues a control packet
that advertises the frequency of the next band to hop
to. The receiver responds with an acknowledgment and
switches to the advertised frequency. Once the acknowl-
edgment is received, the transmitter switches frequency
bands as well. As a fail-safe, transmitters and receivers
revert to a default frequency band if they do not re-
ceive packets or acknowledgments from each other for
a given time-out duration on any band.

• Our implementation of Chronos sweeps all WiFi bands
in 84 ms (12 times per second). This is within the chan-
nel coherence time of indoor environments [39] and can
empirically localize users at walking speeds (§10.3).

• Finally, we discuss and evaluate the implications of
Chronos’s protocol on data traffic in §9.3.

4. ELIMINATING PACKET DETECTION DELAY

So far, we computed time-of-flight based on the chan-
nels hi, that signals experience when transmitted over the
air on different frequencies fi. In practice however, there
is a difference between the channel over the air, hi, and
the channel as measured by the receiver, h̃i. Specifically,
the measured channel at the receiver, h̃i, experiences a de-

lay in addition to time-of-flight: the delay in detecting the
presence of a packet. This delay occurs because WiFi re-
ceivers detect the presence of a packet based on the energy
of its first few time samples. The number of samples that
the receiver needs to cross its energy detection threshold
varies based on the power of the received signal, as well
as noise. While this variation may seem small, packet de-
tection delays are often an order-of-magnitude larger than
time-of-flight, particularly in indoor environments, where
time-of-flight is just a few tens of nanoseconds (See §9.1).
Hence, accounting for packet detection delay is crucial for
accurate time-of-flight and distance measurements.

Thus, our goal is to derive the true channel hi (which
incorporates the time-of-flight alone) from the measured
channel h̃i (which incorporates both time-of-flight and
packet detection delay). To do this, we exploit the fact that
WiFi uses OFDM. Specifically, the bits of WiFi packets
are transmitted in the frequency domain on several small
frequency bins called OFDM subcarriers. This means that
the wireless channels h̃i can be measured on each subcar-
rier. We then make the following claim:

CLAIM 4.1. The measured channel at subcarrier-0
does not experience packet detection delay, i.e., it is iden-
tical in phase to the true channel at subcarrier 0.

To see why this claim holds, note that while time-of-
flight and packet detection delay appear very similar, they
occur at different stages of a signal’s lifetime. Specifically,
time-of-flight occurs while the signal is transmitted over
the air (i.e., in passband). In contrast, packet detection de-
lay stems from energy detection that occurs in digital pro-
cessing once the carrier frequency has been removed (in
baseband). Thus, time-of-flight and packet detection delay
affect the wireless OFDM channels in different ways.

To understand this difference, consider the WiFi fre-
quency band, i. Let h̃i,k be the measured channel of OFDM
subcarrier k, at frequency fi,k. h̃i,k experiences two phase
rotations in different stages of the signal’s lifetime:

• A phase rotation in the air proportional to the over-the-
air frequency fi,k. From Eqn. 2 in §3, this phase value
for a frequency fi,k is:

∠hi,k = −2πfi,kτ mod 2π,
where τ is the time-of-flight.

• An additional phase rotation due to packet detection af-
ter the removal of the carrier frequency. This additional
phase rotation can be expressed as:

Δi,k = −2π(fi,k − fi,0)δi,
where δi is the packet detection delay.

Thus, the total measured channel phase at subcarrier k is:
∠h̃i,k =(∠hi,k +Δi,k) mod 2π (5)

=(−2πfi,kτ − 2π(fi,k − fi,0)δi) mod 2π (6)
Notice from the above equation that the second term
Δi,k = −2π(fi,k − fi,0)δi = 0 at k = 0. In other words, at

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 169

τ

Figure 2: Measuring Time-of-Flight: Consider a wireless
transmitter at a distance of 0.6 m, i.e. a time-of-flight of 2 ns.
The phase of each WiFi channel results in multiple solutions,
depicted as colored lines, including 2 ns. However, the solution
that satisfies most equations, i.e. has the most number of aligned
colored lines is the true time-of-flight (2 ns).

of frequencies {f1, . . . , fn} are equally separated or oth-
erwise. In fact, having unequally separated frequencies
makes them less likely to share common factors, boost-
ing the LCM. Thus, counter-intuitively, the scattered and
unequally-separated bands of WiFi (Fig. 1) are not a chal-
lenge, but an opportunity to resolve larger values of τ .

While the above provides a mathematical formulation
of our algorithm, we describe below important systems
considerations when dealing with commercial WiFi cards:

• Chronos must ensure both the WiFi transmitter and re-
ceiver hop synchronously between multiple WiFi fre-
quency bands. Chronos achieves this using a frequency
band hopping protocol driven by the transmitter. Be-
fore switching frequency bands (every 2-3 ms in our
implementation), the transmitter issues a control packet
that advertises the frequency of the next band to hop
to. The receiver responds with an acknowledgment and
switches to the advertised frequency. Once the acknowl-
edgment is received, the transmitter switches frequency
bands as well. As a fail-safe, transmitters and receivers
revert to a default frequency band if they do not re-
ceive packets or acknowledgments from each other for
a given time-out duration on any band.

• Our implementation of Chronos sweeps all WiFi bands
in 84 ms (12 times per second). This is within the chan-
nel coherence time of indoor environments [39] and can
empirically localize users at walking speeds (§10.3).

• Finally, we discuss and evaluate the implications of
Chronos’s protocol on data traffic in §9.3.

4. ELIMINATING PACKET DETECTION DELAY

So far, we computed time-of-flight based on the chan-
nels hi, that signals experience when transmitted over the
air on different frequencies fi. In practice however, there
is a difference between the channel over the air, hi, and
the channel as measured by the receiver, h̃i. Specifically,
the measured channel at the receiver, h̃i, experiences a de-

lay in addition to time-of-flight: the delay in detecting the
presence of a packet. This delay occurs because WiFi re-
ceivers detect the presence of a packet based on the energy
of its first few time samples. The number of samples that
the receiver needs to cross its energy detection threshold
varies based on the power of the received signal, as well
as noise. While this variation may seem small, packet de-
tection delays are often an order-of-magnitude larger than
time-of-flight, particularly in indoor environments, where
time-of-flight is just a few tens of nanoseconds (See §9.1).
Hence, accounting for packet detection delay is crucial for
accurate time-of-flight and distance measurements.

Thus, our goal is to derive the true channel hi (which
incorporates the time-of-flight alone) from the measured
channel h̃i (which incorporates both time-of-flight and
packet detection delay). To do this, we exploit the fact that
WiFi uses OFDM. Specifically, the bits of WiFi packets
are transmitted in the frequency domain on several small
frequency bins called OFDM subcarriers. This means that
the wireless channels h̃i can be measured on each subcar-
rier. We then make the following claim:

CLAIM 4.1. The measured channel at subcarrier-0
does not experience packet detection delay, i.e., it is iden-
tical in phase to the true channel at subcarrier 0.

To see why this claim holds, note that while time-of-
flight and packet detection delay appear very similar, they
occur at different stages of a signal’s lifetime. Specifically,
time-of-flight occurs while the signal is transmitted over
the air (i.e., in passband). In contrast, packet detection de-
lay stems from energy detection that occurs in digital pro-
cessing once the carrier frequency has been removed (in
baseband). Thus, time-of-flight and packet detection delay
affect the wireless OFDM channels in different ways.

To understand this difference, consider the WiFi fre-
quency band, i. Let h̃i,k be the measured channel of OFDM
subcarrier k, at frequency fi,k. h̃i,k experiences two phase
rotations in different stages of the signal’s lifetime:

• A phase rotation in the air proportional to the over-the-
air frequency fi,k. From Eqn. 2 in §3, this phase value
for a frequency fi,k is:

∠hi,k = −2πfi,kτ mod 2π,
where τ is the time-of-flight.

• An additional phase rotation due to packet detection af-
ter the removal of the carrier frequency. This additional
phase rotation can be expressed as:

Δi,k = −2π(fi,k − fi,0)δi,
where δi is the packet detection delay.

Thus, the total measured channel phase at subcarrier k is:
∠h̃i,k =(∠hi,k +Δi,k) mod 2π (5)

=(−2πfi,kτ − 2π(fi,k − fi,0)δi) mod 2π (6)
Notice from the above equation that the second term
Δi,k = −2π(fi,k − fi,0)δi = 0 at k = 0. In other words, at

4

the zero-subcarrier of OFDM, the measured channel h̃i,k
is identical in phase to the true channel hi,k over-the-air
which validates our claim.

In practice, this means that we can apply the Chinese
Remainder theorem as described in Eqn. 4 of §3 at the
zero-subcarriers (i.e. center frequencies) of each WiFi fre-
quency band. In the U.S., WiFi at 2.4 GHz and 5 GHz
has a total of 35 WiFi bands with independent center fre-
quencies.2 Therefore, a sweep of all WiFi frequency bands
results in 35 independent equations like in Eqn. 4, which
we can solve to recover time-of-flight.

One problem still needs to be addressed. So far we have
used the measured channel at the zero-subcarrier of WiFi
bands. However, WiFi transmitters do not send data on the
zero-subcarrier, meaning that this channel simply cannot
be measured. This is because the zero-subcarrier overlaps
with DC offsets in hardware that are extremely difficult
to remove [22, 3]. So how can one measure channels on
zero-subcarriers if they do not even contain data?

Fortunately, Chronos can tackle this challenge by us-
ing the remaining WiFi OFDM subcarriers, where signals
are transmitted. Specifically, it leverages the fact that in-
door wireless channels are based on physical phenomena.
Hence, they are continuous over a small number of OFDM
subcarriers [27]. This means that Chronos can interpolate
the measured channel phase across all subcarriers to es-
timate the missing phase at the zero-subcarrier.3 Indeed,
the 802.11n standard [3] measures wireless channels on
as many as 30 subcarriers in each WiFi band. Hence, in-
terpolating between the channels not only helps Chronos
retrieve the measured channel on the zero-subcarrier, but
also provides additional resilience to noise.

To summarize, Chronos applies the following steps to
account for packet detection delay: (1) It obtains the mea-
sured wireless channels on the 30 subcarriers on the 35
available WiFi bands; (2) It interpolates between these
subcarriers to obtain the measured channel phase on the
zero-subcarriers on each of these bands, which is unaf-
fected by packet detection delay. (3) It retrieves the time-
of-flight using the resulting 35 channels.

5. COMBATING MULTIPATH

So far, our discussion has assumed that a wireless signal
propagates along a single direct path between its transmit-
ter and receiver. However, indoor environments are rich in
multipath, causing wireless signals to bounce off objects
in the environment like walls and furniture. Fig. 3(a) il-
lustrates an example where the signal travels along three
paths from its sender to receiver. The signals on each of
these paths propagate over the air incurring different time

2Including the DFS bands at 5 GHz in the U.S. which are sup-
ported by many 802.11h-compatible 802.11n radios, e.g., the In-
tel 5300.
3Our implementation of Chronos uses cubic spline interpolation.

5.2 ns
10 ns 16 ns

(a) Testbed (b) Multipath Profile

P
ow

er

Time (ns)

5.2 ns
10 ns

16 ns

0
x

y

Figure 3: Combating Multipath: Consider a signal propagat-
ing from a transmitter to a receiver along 3 paths as shown in
(a): an attenuated direct path and two reflected paths of lengths
5.2 ns, 10 ns and 16 ns respectively. These paths can be separated
by using the inverse discrete Fourier Transform as shown in (b).
The plot has 3 peaks corresponding to the propagation delays of
the paths, with peak magnitudes scaled by relative attenuations.

delays as well as different attenuations. The ultimate re-
ceived signal is therefore the sum of these multiple signal
copies, each having experienced a different propagation
delay. Fig. 3(b) represents this using a multipath profile.
This profile has peaks at the propagation delays of sig-
nal paths, scaled by their respective attenuations. Hence,
Chronos needs a mechanism to find such a multipath pro-
file, so as to separate the propagation delays of different
signal paths. This allows it to then identify the time-of-
flight as the least of these propagation delays, i.e. the delay
of the most direct (shortest) path.

5.1 Computing Multipath Profiles

Say that wireless signals from a transmitter reach a re-
ceiver along p different paths. The received signal from
each path corresponds to amplitudes {a1, . . . , ap} and
propagation delays {τ1, . . . , τp}. Observe that Eqn. 1 con-
siders only a single path experiencing propagation delay
and attenuation. In the presence of multipath, we can ex-
tend this equation to write the measured channel h̃i,0 on
center-frequency fi,0 as the sum of the channels on each of
these paths, i.e.:

h̃i,0 =

p∑
k=1

ake−j2πfi,0τk , for i = 1, . . . , n (7)

Now, we need to disentangle these different paths and
recover their propagation delays. To do this, notice that the
above equation has a familiar form – it is the well-known
Discrete Fourier Transform. Thus, if one could obtain
the channel measurements at many uniformly-spaced fre-
quencies, a simple inverse-Fourier transform would sep-
arate individual paths. Such an inverse Fourier transform
has a closed-form expression that can be used to obtain the
propagation delay of all paths and compute the multipath
profile (up to a resolution defined by the bandwidth).

WiFi frequency bands, however, are not equally spaced
– they are scattered around 2.4 GHz and multiple non-
contiguous chunks at 5 GHz, as shown in Fig. 1. While we

5

170 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

can measure h̃i,0 at each WiFi band, these measurements
will not be at equally spaced frequencies and hence cannot
be simply used to compute the inverse Fourier transform.
In fact, since our measurements of the channels are not
uniformly spaced, we are dealing with the Non-uniform
Discrete Fourier Transform or NDFT [8]. To recover the
multipath profile, we need to invert the NDFT.

5.2 Inverting the NDFT

The NDFT is an under-determined system, where the
responses of multiple frequency elements are unavail-
able [19, 15]. Thus, the inverse of such a Fourier trans-
form does not have a single closed-form solution, but sev-
eral possible solutions. So how can Chronos pick the best
among those solutions to find the true times-of-flight?

Chronos adds another constraint to the inverse-NDFT
optimization. Specifically, this constraint favors solutions
that are sparse, i.e., have few dominant paths. Intuitively,
this stems from the fact that while signals in indoor envi-
ronments traverse several paths, a few paths tend to domi-
nate as they suffer minimal attenuation [10].4 Indeed other
localization systems make this assumption as well, albeit
less explicitly. For instance, antenna-array systems can re-
solve a limited number of dominant paths based on the
number of antennas they use.

We can formulate the sparsity constraint mathemati-
cally as follows. Let the vector p sample inverse-NDFT
at m discrete values τ ∈ {τ1, . . . , τm}. Then, we can intro-
duce sparsity as a simple constraint in the NDFT inversion
problem that minimizes the L-1 norm of p. Indeed, it has
been well-studied in optimization theory that minimizing
the L-1 norm of a vector favors sparse solutions for that
vector [7]. Thus, we can write the optimization problem
to solve for the inverse-NDFT as:

min�p�1 (8)

s.t. �h̃−Fp�2
2 = 0 (9)

where, F is the n×m Fourier matrix, i.e. Fi,k = e−j2πfi,0τk ,
h̃ = [h̃1,0, . . . , h̃n,0]

T is the n×1 vector of wireless channels
at the n different center-frequencies {f1,0, . . . , fn,0}, � · �1
is the L-1 norm, and � · �2 is the L-2 norm. Here, the con-
straint makes sure that the Discrete Fourier Transform of p
is h̃, as desired. In other words, it ensures p is a candidate
inverse-NDFT solution of h̃. The objective function favors
sparse solutions by minimizing the L-1 norm of p.

We can re-formulate the above optimization problem
using the method of Lagrange multipliers as:

min
p

�h̃ −Fp�2
2 + α�p�1 (10)

Notice that the factor α is a sparsity parameter that en-
forces the level of sparsity. A bigger choice of α leads to
fewer non-zero values in p.

This objective function is convex but not differentiable.
4We empirically evaluate the sparsity of indoor multipath pro-
files in typical line-of-sight and non-line-of-sight settings in §9.1.

1 Algorithm to Compute Inverse NDFT
� Given: Measured Channels, h̃
� F : Non-uniform DFT matrix, such that Fi,k = e−j2πfi,0τk

� α: Sparsity parameter; �: Convergence Parameter
� Output: Inverse-NDFT, p
� Initialize p0 to a random value, t = 0, γ = 1

||F||2 .
while converged = false do

pt+1 =SPARSIFY(pt − γF∗(Fpt − h̃), γα)
if ||pt+1 − pt||2 < � then

converged = true
p = pt+1

else
t = t + 1

end if
end while
function SPARSIFY(p,t)

for i = 1, 2, ...length(p) do
if |pi| < t then

pi = 0
else

pi = pi
|pi|−t
|pi|

end if
end for

end function

Our approach to optimize for it borrows from proximal
gradient methods, a special class of optimization algo-
rithms that have provable convergence guarantees [24].
Specifically, our algorithm takes as inputs the measured
wireless channels h̃ at the frequencies {f1,0, . . . , fn,0} and
the sparsity parameter α. It then applies a gradient-descent
style algorithm by computing the gradient of differentiable
terms in the objective function (i.e., the L-2 norm), pick-
ing sparse solutions along the way (i.e., enforcing the L-
1 norm). Algorithm 1 summarizes the steps to invert the
NDFT and find the multipath profile.5

Inverting the NDFT provides Chronos with the time-
of-flight on all paths. Chronos still needs to identify the
direct path to compute the distance between transmitter
and receiver. To do this, Chronos leverages that: of all the
paths of the wireless signal, the direct path is the short-
est. Hence, the time-of-flight of the direct path is the time
corresponding to the first peak in the multipath profile.

It is worth noting that by making the sparsity assump-
tion, we lose the propagation delays of extremely weak
paths in the multipath profile. However, Chronos only
needs the propagation delay of the direct path. As long
as this path is among the dominant signal paths, Chronos
can retrieve it accurately. Of course, in some unlikely sce-
narios, the direct path may be too attenuated, which leads
to poorer localization in that instance. Our results in §9.1
depict the sparsity of representative multipath profiles, and
show its impact on overall accuracy.

6. CORRECTING FOR PHASE OFFSETS

To work with practical WiFi radios, Chronos has to ad-
5MATLAB implementation of this algorithm takes 3.1 s (stan-
dard deviation 0.6 s) for Chronos’s implementation in Sec. 8.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 171

can measure h̃i,0 at each WiFi band, these measurements
will not be at equally spaced frequencies and hence cannot
be simply used to compute the inverse Fourier transform.
In fact, since our measurements of the channels are not
uniformly spaced, we are dealing with the Non-uniform
Discrete Fourier Transform or NDFT [8]. To recover the
multipath profile, we need to invert the NDFT.

5.2 Inverting the NDFT

The NDFT is an under-determined system, where the
responses of multiple frequency elements are unavail-
able [19, 15]. Thus, the inverse of such a Fourier trans-
form does not have a single closed-form solution, but sev-
eral possible solutions. So how can Chronos pick the best
among those solutions to find the true times-of-flight?

Chronos adds another constraint to the inverse-NDFT
optimization. Specifically, this constraint favors solutions
that are sparse, i.e., have few dominant paths. Intuitively,
this stems from the fact that while signals in indoor envi-
ronments traverse several paths, a few paths tend to domi-
nate as they suffer minimal attenuation [10].4 Indeed other
localization systems make this assumption as well, albeit
less explicitly. For instance, antenna-array systems can re-
solve a limited number of dominant paths based on the
number of antennas they use.

We can formulate the sparsity constraint mathemati-
cally as follows. Let the vector p sample inverse-NDFT
at m discrete values τ ∈ {τ1, . . . , τm}. Then, we can intro-
duce sparsity as a simple constraint in the NDFT inversion
problem that minimizes the L-1 norm of p. Indeed, it has
been well-studied in optimization theory that minimizing
the L-1 norm of a vector favors sparse solutions for that
vector [7]. Thus, we can write the optimization problem
to solve for the inverse-NDFT as:

min�p�1 (8)

s.t. �h̃−Fp�2
2 = 0 (9)

where, F is the n×m Fourier matrix, i.e. Fi,k = e−j2πfi,0τk ,
h̃ = [h̃1,0, . . . , h̃n,0]

T is the n×1 vector of wireless channels
at the n different center-frequencies {f1,0, . . . , fn,0}, � · �1
is the L-1 norm, and � · �2 is the L-2 norm. Here, the con-
straint makes sure that the Discrete Fourier Transform of p
is h̃, as desired. In other words, it ensures p is a candidate
inverse-NDFT solution of h̃. The objective function favors
sparse solutions by minimizing the L-1 norm of p.

We can re-formulate the above optimization problem
using the method of Lagrange multipliers as:

min
p

�h̃ −Fp�2
2 + α�p�1 (10)

Notice that the factor α is a sparsity parameter that en-
forces the level of sparsity. A bigger choice of α leads to
fewer non-zero values in p.

This objective function is convex but not differentiable.
4We empirically evaluate the sparsity of indoor multipath pro-
files in typical line-of-sight and non-line-of-sight settings in §9.1.

1 Algorithm to Compute Inverse NDFT
� Given: Measured Channels, h̃
� F : Non-uniform DFT matrix, such that Fi,k = e−j2πfi,0τk

� α: Sparsity parameter; �: Convergence Parameter
� Output: Inverse-NDFT, p
� Initialize p0 to a random value, t = 0, γ = 1

||F||2 .
while converged = false do

pt+1 =SPARSIFY(pt − γF∗(Fpt − h̃), γα)
if ||pt+1 − pt||2 < � then

converged = true
p = pt+1

else
t = t + 1

end if
end while
function SPARSIFY(p,t)

for i = 1, 2, ...length(p) do
if |pi| < t then

pi = 0
else

pi = pi
|pi|−t
|pi|

end if
end for

end function

Our approach to optimize for it borrows from proximal
gradient methods, a special class of optimization algo-
rithms that have provable convergence guarantees [24].
Specifically, our algorithm takes as inputs the measured
wireless channels h̃ at the frequencies {f1,0, . . . , fn,0} and
the sparsity parameter α. It then applies a gradient-descent
style algorithm by computing the gradient of differentiable
terms in the objective function (i.e., the L-2 norm), pick-
ing sparse solutions along the way (i.e., enforcing the L-
1 norm). Algorithm 1 summarizes the steps to invert the
NDFT and find the multipath profile.5

Inverting the NDFT provides Chronos with the time-
of-flight on all paths. Chronos still needs to identify the
direct path to compute the distance between transmitter
and receiver. To do this, Chronos leverages that: of all the
paths of the wireless signal, the direct path is the short-
est. Hence, the time-of-flight of the direct path is the time
corresponding to the first peak in the multipath profile.

It is worth noting that by making the sparsity assump-
tion, we lose the propagation delays of extremely weak
paths in the multipath profile. However, Chronos only
needs the propagation delay of the direct path. As long
as this path is among the dominant signal paths, Chronos
can retrieve it accurately. Of course, in some unlikely sce-
narios, the direct path may be too attenuated, which leads
to poorer localization in that instance. Our results in §9.1
depict the sparsity of representative multipath profiles, and
show its impact on overall accuracy.

6. CORRECTING FOR PHASE OFFSETS

To work with practical WiFi radios, Chronos has to ad-
5MATLAB implementation of this algorithm takes 3.1 s (stan-
dard deviation 0.6 s) for Chronos’s implementation in Sec. 8.

6

dress their inherent phase and frequency offsets:

• PLL Phase Offset: Frequency hopping causes a ran-
dom phase offset in the measured channel. This is be-
cause the phase-locked loop (PLL) responsible for gen-
erating the center frequency for the transmitter and the
receiver starts at random initial phase (say, φtx

i,0 and
φrx

i,0 respectively). As a result, the channel measured at
the receiver is corrupted by an additional phase off-
set φtx

i,0 − φrx
i,0. This phase offset, if left uncorrected,

could render the phase information uncorrelated with
the time-of-flight of the signal.

• Carrier Frequency Offset: This offset occurs due to
small differences in the carrier frequency of the trans-
mitting and receiving radio. This leads to a time vary-
ing phase offset across each frequency band. Such dif-
ferences accumulate quickly over time and need to be
corrected for every WiFi packet. Mathematically, in the
ith WiFi frequency band, the receiver center frequency
f rx
i,0 is slightly different from the transmitter center fre-

quency, f tx
i,0. As a result, the channel measurements at

the receiver have an additional phase change which is
proportional to f tx

i,0 − f rx
i,0.

Let us refer to the channel values that incorporate phase
and frequency offsets as CSI (channel state information),
which is the typical term use in communication systems.
Then, the CSI measured at the receiver for the ith fre-
quency band can be written as:

CSIrx
i,0(t) = h̃i,0ej(f tx

i,0−f rx
i,0)t+j(φtx

i,0−φrx
i,0) (11)

So how do we remove the phase and frequency offsets
from CSI? To address this issue, Chronos exploits that, the
phase and frequency offsets measured on one node with
respect to another change sign when measured on the sec-
ond node with respect to the first. Thus, if one would mea-
sure the CSI on the transmitter with respect to the receiver,
it would take the following value:

CSItx
i,0(t) = h̃i,0ej(f rx

i,0−f tx
i,0)t+j(φrx

i,0−φtx
i,0). (12)

Note that the channel, h̃i,0, in equations 11 and 12 is the
same due to reciprocity [20]. We can therefore multiply
the CSI measurements at the receiver and the transmitter
to recover the wireless channel as follows:

h̃2
i,0 = CSIrx

i,0(t)CSItx
i,0(t) (13)

One may wonder how Chronos measure the CSI at the
transmitter. Note however that as part of our channel hop-
ping protocol both nodes have to transmit packets to each
other. Hence, the CSI can be measured on both sides and
exchanged to apply Eqn. 13.

The above formulation helps us only retrieve the square
of the wireless channels h̃2

i,0. However, this is not an issue:
Chronos can directly feed h̃2

i,0 into its algorithm (Alg. 1
in §5) instead of h̃i,0. Then the first peak of the resulting
multipath profile will simply be at twice the time-of-flight.

To see why, let us look at a simple example. Consider a

transmitter and receiver obtaining their signals along two
paths, with propagation delays 2 ns and 4 ns. We can write
the square of the resulting wireless channels from Eqn. 7
for frequency band i in a simple form:
h̃2

i,0 = (a1e−j2πfi,0×2 + a2e−j2πfi,0×4)2

= a2
1e−j2πfi,0×2×2 + 2a1a2e−j2πfi,0×(2+4) + a2

2e−j2πfi,0×4×2

= b1e−j2πfi,0×4 + b2e−j2πfi,0×6 + b3e−j2πfi,0×8

Where b1 = a2
1, b2 = 2a1a2, b3 = a2

2. Clearly, the
above equation has a form similar to a wireless channel
with propagation delays 4 ns, 6 ns and 8 ns respectively.
This means that applying Chronos’s algorithm will result
in peaks precisely at 4 ns, 6 ns and 8 ns. Notice that in
addition to 4 ns and 8 ns that are simply twice the prop-
agation delays of genuine paths, there is an extra peak at
6 ns. This peak stems from the square operation in h̃2

i,0
and is a sum of two delays. However, the sum of any two
delays will always be higher than twice the lowest delay.
Consequently, the smallest of these propagation delays is
still at 4 ns – i.e., at twice the time-of-flight. A similar ar-
gument holds for larger number of signal paths, and can
be used to recover time-of-flight.

Finally, we make a few observations: (1) In practice,
the forward and reverse channels cannot be measured at
exactly the same t but within short time separations (tens
of microseconds), resulting in a small phase error. How-
ever, this error is significantly smaller than the error from
not compensating for frequency offsets altogether (for tens
of milliseconds). The error can be resolved by averaging
over several packets. (2) Delays in the hardware result in a
constant additive value to the time-of-flight. This constant
can be pre-calibrated once in the lifetime of a WiFi-card,
by measuring time-of-flight to a device at a known dis-
tance. (3) Standard Fourier Transform properties dictate
that a minimum separation of Δf in frequencies of mea-
sured CSI values, leads to an ambiguity by multiples of

1
Δf in the time estimates (i.e the delay is measured mod-
ulo 1

Δf). Since, Chronos uses CSI measurements at center
frequencies, the minimum frequency separation is 5 MHz
6. Hence, the time domain ambiguity is 200 ns which cor-
responds to a distance of 60 m, i.e., distance measurements
are modulo 60 m. Thus, for indoor settings and typical
WiFi propagation, one can ignore the modulo factor.

7. COMPUTING DISTANCES AND LOCATION

So far, we have explained how Chronos measures the
time-of-flight between two antennas on a pair of WiFi
cards. One can then compute the distance between the two
antennas (i.e., the two devices) by multiplying the time-
of-flight by the speed of light.

In order to get the location of the client from the dis-
tance measurements, Chronos follows a two-step proce-
6The frequency separation is less than the channel bandwidth of
20 MHz due to overlapping WiFi bands.

7

172 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

dure. In the first step, Chronos refines the distance mea-
surements by utilizing geometric constraints, imposed by
the relative locations of the antennas on the access point
and the client. In the second step, Chronos formulates a
quadratic optimization problem, based on the refined dis-
tances to get the accurate location of the client with respect
to the access point.

Mathematically, we denote the separation between an-
tenna i and antenna j on the access point by lap

ij . Simi-
larly, antenna i and antenna j on the client are separated
by lcl

i,j. By using standard triangle inequality, we know that
|dij − di′j| < lap

ii′ , where dij is the distance measured by
Chronos between antenna i on the access point and an-
tenna j on the client. When a pair of distances measured by
Chronos violates this constraint; clearly, one or both of the
distance measurements must be declared invalid. Chronos
uses a relaxed version of triangle inequality to eliminate
erroneous distance measurements. Specifically, if we de-
note the maximum distance between any pair of antennas
on a device by α, Chronos chooses the largest cluster, C,
of distance measurements such that each measurement in
this cluster is at most α away from at least one other dis-
tance measurement in the cluster. Chronos, then, discards
the distance measurements that do not belong to C.

Finally, Chronos formulates the following constrained
optimization problem to find the accurate position of the
client. We denote the position of the ith antenna on the
access point by (xap

i , yap
i). Our goal is to optimize for the

position of the client which we denote by (x, y), where x
and y are 3 × 1 vectors of antenna coordinates:

min
�>0,x,y

�

such that
∀(i, j) ∈ C, |dist((xap

i , yap
i), (xj, yj))− dij)| < �

∀(i, j) ∈ {1, 2, 3}, dist((xi, yi), (xj, yj)) = lcl
i,j

where dist((x1, y1), (x2, y2)) denotes the euclidean dis-
tance between points (x1, y1) and (x2, y2). On a high level,
Chronos optimizes for the minimal violation of the dis-
tance constraints while still maintaining the relative posi-
tion of the antennas on the client. We formulate this prob-
lem as a quadratic-constrained optimization in MATLAB
and use the fmincon solver to find the optimum solution.
The average execution time for this algorithm is 0.09 s
(standard deviation 0.01 s).

8. IMPLEMENTATION

We implemented Chronos as a software patch to the iwl-
wifi driver on Ubuntu Linux running the 3.5.7 kernel. To
measure channel-state-information, we use the 802.11 CSI
Tool [21] for the Intel 5300 WiFi card. We measure the
channels on both 2.4 GHz and 5 GHz WiFi bands.7

7The Intel 5300 WiFi card is known to have a firmware issue on
the 2.4 GHz bands that causes it to report the phase of the channel

Figure 4: Lab Testbed: The figure depicts our testbed with can-
didate locations for the nodes marked with blue dots.

Unless specified otherwise, we pair two Chronos de-
vices by placing each device in monitor mode with packet
injection support on the same WiFi frequency. We im-
plemented Chronos’s frequency band hopping protocol
(see §3) in the iwlwifi driver using high resolution timers
(hrtimers), which can schedule kernel tasks such as packet
transmits at microsecond granularity. Since the 802.11
CSI Tool does not report channel state information for
Link-Layer ACKs received by the card, we use packet-
injection to create and transmit special acknowledgments
directly from the iwlwifi driver to minimize delay between
packets and acknowledgments. These acknowledgments
are also used to signal the next channel that the devices
should hop to, as described in §3. We process the CSI to
infer time-of-flight and device locations purely in software
written in part in C++, MEX and MATLAB.

We note that all our experiments are conducted in
naturally dynamic environments, specifically, an office
building, a coffee shop and a home with four occu-
pants. Chronos requires no modifications based on the
changes in the environment. The environments have am-
bient WiFi traffic. We could sense 3 to 19 different ac-
cess points across our testbeds. Chronos disables the con-
tention mechanism during hopping in order to enable fast
switching across different WiFi bands. This causes noise
in Chronos’s measurements when there is a collision with
other WiFi packets. However, Chronos is resilient to noise
on a small subset of the measurements. Moreover, since
Chronos sends few packets on each WiFi band, it does not
adversely effect the WiFi traffic.

9. RESULTS

We evaluate Chronos’s ability to measure the time-of-
flight, and compute a client’s position using a single AP.

9.1 Time-of-Flight Accuracy

We examine whether Chronos can deliver on its promise

∠h̃i,0 modulo π/2 (instead of the phase modulo 2π) [18]. We
resolve this issue by performing Chronos’s algorithm at 2.4 GHz
on h̃4

i,0 instead of h̃i,0. This does not affect the fact that the direct
path of the signal will continue being the first peak in the inverse
NDFT (like in §6).

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 173

dure. In the first step, Chronos refines the distance mea-
surements by utilizing geometric constraints, imposed by
the relative locations of the antennas on the access point
and the client. In the second step, Chronos formulates a
quadratic optimization problem, based on the refined dis-
tances to get the accurate location of the client with respect
to the access point.

Mathematically, we denote the separation between an-
tenna i and antenna j on the access point by lap

ij . Simi-
larly, antenna i and antenna j on the client are separated
by lcl

i,j. By using standard triangle inequality, we know that
|dij − di′j| < lap

ii′ , where dij is the distance measured by
Chronos between antenna i on the access point and an-
tenna j on the client. When a pair of distances measured by
Chronos violates this constraint; clearly, one or both of the
distance measurements must be declared invalid. Chronos
uses a relaxed version of triangle inequality to eliminate
erroneous distance measurements. Specifically, if we de-
note the maximum distance between any pair of antennas
on a device by α, Chronos chooses the largest cluster, C,
of distance measurements such that each measurement in
this cluster is at most α away from at least one other dis-
tance measurement in the cluster. Chronos, then, discards
the distance measurements that do not belong to C.

Finally, Chronos formulates the following constrained
optimization problem to find the accurate position of the
client. We denote the position of the ith antenna on the
access point by (xap

i , yap
i). Our goal is to optimize for the

position of the client which we denote by (x, y), where x
and y are 3 × 1 vectors of antenna coordinates:

min
�>0,x,y

�

such that
∀(i, j) ∈ C, |dist((xap

i , yap
i), (xj, yj))− dij)| < �

∀(i, j) ∈ {1, 2, 3}, dist((xi, yi), (xj, yj)) = lcl
i,j

where dist((x1, y1), (x2, y2)) denotes the euclidean dis-
tance between points (x1, y1) and (x2, y2). On a high level,
Chronos optimizes for the minimal violation of the dis-
tance constraints while still maintaining the relative posi-
tion of the antennas on the client. We formulate this prob-
lem as a quadratic-constrained optimization in MATLAB
and use the fmincon solver to find the optimum solution.
The average execution time for this algorithm is 0.09 s
(standard deviation 0.01 s).

8. IMPLEMENTATION

We implemented Chronos as a software patch to the iwl-
wifi driver on Ubuntu Linux running the 3.5.7 kernel. To
measure channel-state-information, we use the 802.11 CSI
Tool [21] for the Intel 5300 WiFi card. We measure the
channels on both 2.4 GHz and 5 GHz WiFi bands.7

7The Intel 5300 WiFi card is known to have a firmware issue on
the 2.4 GHz bands that causes it to report the phase of the channel

Figure 4: Lab Testbed: The figure depicts our testbed with can-
didate locations for the nodes marked with blue dots.

Unless specified otherwise, we pair two Chronos de-
vices by placing each device in monitor mode with packet
injection support on the same WiFi frequency. We im-
plemented Chronos’s frequency band hopping protocol
(see §3) in the iwlwifi driver using high resolution timers
(hrtimers), which can schedule kernel tasks such as packet
transmits at microsecond granularity. Since the 802.11
CSI Tool does not report channel state information for
Link-Layer ACKs received by the card, we use packet-
injection to create and transmit special acknowledgments
directly from the iwlwifi driver to minimize delay between
packets and acknowledgments. These acknowledgments
are also used to signal the next channel that the devices
should hop to, as described in §3. We process the CSI to
infer time-of-flight and device locations purely in software
written in part in C++, MEX and MATLAB.

We note that all our experiments are conducted in
naturally dynamic environments, specifically, an office
building, a coffee shop and a home with four occu-
pants. Chronos requires no modifications based on the
changes in the environment. The environments have am-
bient WiFi traffic. We could sense 3 to 19 different ac-
cess points across our testbeds. Chronos disables the con-
tention mechanism during hopping in order to enable fast
switching across different WiFi bands. This causes noise
in Chronos’s measurements when there is a collision with
other WiFi packets. However, Chronos is resilient to noise
on a small subset of the measurements. Moreover, since
Chronos sends few packets on each WiFi band, it does not
adversely effect the WiFi traffic.

9. RESULTS

We evaluate Chronos’s ability to measure the time-of-
flight, and compute a client’s position using a single AP.

9.1 Time-of-Flight Accuracy

We examine whether Chronos can deliver on its promise

∠h̃i,0 modulo π/2 (instead of the phase modulo 2π) [18]. We
resolve this issue by performing Chronos’s algorithm at 2.4 GHz
on h̃4

i,0 instead of h̃i,0. This does not affect the fact that the direct
path of the signal will continue being the first peak in the inverse
NDFT (like in §6).

8

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Time Error (in ns)

CD
F

LOS
NLOS

(a) Time of Flight

0 5 10 15 20 250

2

4
LOS

Po
we

r

0 5 10 15 20 250

1
Multipath

Time (in ns)

Po
we

r

(b) Multipath Profiles

0 100 200 3000

0.02

0.04

0.06

0.08

Delay (in ns)

Fr
ac

tio
n

of
 p

ac
ke

ts Propagation
Delay

Packet
Detection

Delay

(c) Packet Detection Delay

Figure 5: Accuracy in Time of Flight: (a) The CDF of error in time-of-flight between two devices in Line of Sight (LOS) and
Non-Line of Sight (NLOS). (b) Representative multipath profiles. (c) Histograms of time-of-flight and packet detection delay.

of measuring sub-nanosecond time-of-flight between a
pair of commodity WiFi devices.

Method: We run our experiments in the testbed in
Fig. 4. In each experiment, we randomly pick a location
for the AP. We then randomly pick a client location that is
within 15 meter from the AP. We experiment with both
line-of-sight and non-line-of-sight settings. We perform
our experiments using a 10” ASUS EEPC netbook as a
client and a Thinkpad W300 Laptop emulating a WiFi AP
via hostapd. Both devices are equipped with the 3-antenna
Intel 5300 chipset. The antennas are placed at the corner of
each device, which results an average antenna spacing of
30cm for the Thinkpad AP and 12cm for the ASUS client.

Using the above setup, we have run 400 localization
experiments for different AP-client pairs. For each pair,
we run Chronos channel hopping protocol. We compute
the time of flight between each transmit antenna and re-
ceive antenna. We measure the ground-truth location using
a combination of architectural drawings of our building
and a Bosch GLM50 laser distance measurement tool [1],
which measures distances up to 50 m with an accuracy of
1.5 mm. The ground truth time-of-flight is the ground truth
distance divided by the speed of light.
Time-of-Flight Results: We first evaluate Chronos’s
accuracy in time-of-flight. Fig. 5(a) depicts the CDF
of the time-of-flight of the signal in line-of-sight set-
tings and non-line-of-sight. We observe that the me-
dian errors in time-of-flight estimation are 0.47 ns and
0.69 ns respectively. These results show that Chronos
achieves its promise of computing time-of-flight at sub-
nanosecond accuracy. To put this in perspective, consider
SourceSync [38], a state-of-the-art system for time syn-
chronization. SourceSync achieves 95th percentile syn-
chronization error up to 20 ns, using advanced software ra-
dios. In contrast, the figure shows that Chronos’s 95th per-
centile error is 1.96 ns in line-of-sight and 4.01 ns in non-
line-of-sight. Thus, Chronos achieves 5 to 10 fold lower
error in time-of-flight, and runs on commodity WiFi cards
as opposed to software radios.
Multipath Profile Results: Next, we would like to ex-
amine whether multiple path profiles are indeed sparse.
Thus, we plot candidate multipath profiles computed by

Chronos in the above experiments. Fig. 5(b) plots repre-
sentative multipath profiles in line-of-sight and multipath
environments. We note that both profiles are sparse, with
the profile in multipath environments having five domi-
nant peaks. Across all experiments, the mean number of
dominant peaks in the multipath profiles is 5.05 on aver-
age, with standard deviation 1.95 — indicating that they
are indeed sparse. As expected, the profile in line-of-sight
has even fewer dominant peaks than the profile in multi-
path settings. In both cases, we observe that the leftmost
peaks in both profiles correspond to the true location of the
source. Further, we observe that the peaks in both profiles
are sharp due to two reasons: 1) Chronos effectively spans
a large bandwidth that includes all WiFi frequency bands,
leading to high time resolution; 2) Chronos’s resolution
is further improved by exploiting sparsity that focuses on
retrieving the sparse dominant peaks at much higher reso-
lution, as opposed to all peaks.
Packet Detection Delay Results: Past work on WiFi time
measurement and/or synchronization cannot measure the
time-of-flight of a packet separately from its detection de-
lay [38]. ([35] measures the distribution of detection de-
lays but not the detection delay of a particular packet.)
In contrast, Chronos has a novel way for separating the
detection delay from the time-of-flight. We would like to
understand the importance of this capability for the suc-
cess of Chronos. Thus, we use the measurements from the
above experiments to compare time-of-flight in indoor en-
vironments against packet detection delay.

Fig. 5(c) depicts histograms of both packet detection
delay and time-of-flight across experiments. Chronos ob-
serves a median packet detection delay of 177 ns across
experiments. We emphasize two key observations: (1)
Packet detection delay is nearly 8× larger than the time-
of-flight in our typical indoor testbed. (2) Packet delay
varies dramatically between packets, and has a high stan-
dard deviation of 24.8 ns. In other words, packet detection
delays are large, highly variable, and hard to predict. This
means that if left uncompensated, these delays could lead
to a large error in time-of-flight measurements. Our results
therefore reinforce the importance of accounting for these
delays and demonstrate Chronos’s ability to do so.

9

174 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: Ranging Accuracy: Plots error in distance across the
true distance separating the transmitter from the receiver.

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Localization Error(m)

CD
F

LOS
NLOS

Figure 7: Localization Accuracy: Plots CDF of localization
error in Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS).

9.2 Localization Accuracy

We evaluate Chronos’s accuracy in measuring distance
and location using a single access point.
Method: We compute the time-of-flight between the AP
and user client in the testbed as described in §9.1 above.
We use the measured time-of-flight to compute the dis-
tance between antennas and localize the client with respect
to the AP as described in §7. We repeat the experiment
multiple times in line-of-sight and non-line-of-sight.
Location Results: Fig. 7 plots a CDF of localization er-
ror using Chronos in different settings. The device’s me-
dian positioning error is 65 cm and 98 cm in line-of-sight
and non-line-of-sight respectively. This result shows that
Chronos’s accuracy is comparable to state-of-the-art in-
door localization that use multiple AP’s [30, 32, 48].
Ranging Results: In some applications, it is important
to maintain a particular distance between objects but the
exact location is not necessary (e.g., preventing robot col-
lision). Thus, here we plot the ranging results of Chronos.
Fig. 6 plots the median and standard deviation of error in
distance computed between the transmitter and receiver
against their true distance. We observe that this error is ini-
tially around 10 cm and increases to at most 26 cm at 12-
15 meters. The increase is primarily due to reduced signal-
to-noise ratio at further distances. Note that the ranging
accuracy is higher than the localization accuracy because
ranging is a simpler problem (no need to find the exact
direction) and Chronos’s time-of-flight computation natu-
rally yields the range between devices.

9.3 Impact on Network traffic

Chronos enables localization between a pair of WiFi de-
vices without third party support. In many cases, these are

user devices that do not otherwise communicate data be-
tween each other directly. However, an interesting ques-
tion is the impact of Chronos on network traffic, if one
of the devices is serving traffic, such as a WiFi AP. This
experiment answers three questions in this regard: (1)
How long does Chronos take to hop between all WiFi
bands? (2) How does Chronos impact real-time traffic like
video streaming applications? (3) How does Chronos af-
fect TCP? We address these questions below:
Method: We consider a Thinkpad W530 Laptop emu-
lating an AP and two ASUS EEPC netbook clients. We
assume client-2 requests the AP for indoor localization
at t = 6 s. We measure the time Chronos incurs to hop
between the 35 WiFi bands. Meanwhile, client-1 runs a
long-lasting traffic flow. We consider two types of flows:
(1) VLC video stream over RTP; (2) TCP flow using iperf.
We run the experiment 30 times and find aggregate results.
Results: Fig. 8(a) depicts the CDF of the time that
Chronos incurs to hop over all WiFi bands. We observe
that the median hopping time is 84 ms for the Intel 5300
WiFi card, like past work on commercial WiFi radios [29].

Next, Fig. 8(b) plots a representative trace of the cumu-
lative bytes of video received over time of a VLC video
stream run by client-1 (solid blue line). The red line plots
the cumulative number of bytes of video played by the
client. Notice that at t = 6 s, there is a brief time span
when no new bytes are downloaded by the client (ow-
ing to the localization request). However, in this inter-
val, the buffer has enough bytes of video to play, ensur-
ing that the user does not perceive a video stall (i.e. the
blue and red lines do not cross). In other words, buffers
in today’s video streaming applications can largely cush-
ion such short-lived outages [26, 25], minimizing impact
on user experience. Similarly, Fig. 8(c) depicts a represen-
tative trace of the throughput over time of a TCP flow at
client-1. The TCP throughput dips only slightly by 18.5%
at t = 6 s, when client-2 requests location. Thus, Chronos
can support localization without much impact on data traf-
fic. However, if more frequent localization is desired with
large traffic demands, we recommend deploying a dedi-
cated AP or WiFi beacon for localization.

10. APPLICATIONS

We evaluate Chronos in three application scenarios.

10.1 Room Occupancy Detection

Smart home technologies, such as personalized heating
and lighting, can vastly benefit from information about
the number and identity of people in individual rooms.
Chronos is a natural solution for this problem as it can lo-
calize and track people using their smartphones and wear-
ables, even if the home has a single WiFi access point.
Method: To demonstrate this capability, we deployed
Chronos in a two-bedroom apartment that has four res-

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 175

Figure 6: Ranging Accuracy: Plots error in distance across the
true distance separating the transmitter from the receiver.

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Localization Error(m)

CD
F

LOS
NLOS

Figure 7: Localization Accuracy: Plots CDF of localization
error in Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS).

9.2 Localization Accuracy

We evaluate Chronos’s accuracy in measuring distance
and location using a single access point.
Method: We compute the time-of-flight between the AP
and user client in the testbed as described in §9.1 above.
We use the measured time-of-flight to compute the dis-
tance between antennas and localize the client with respect
to the AP as described in §7. We repeat the experiment
multiple times in line-of-sight and non-line-of-sight.
Location Results: Fig. 7 plots a CDF of localization er-
ror using Chronos in different settings. The device’s me-
dian positioning error is 65 cm and 98 cm in line-of-sight
and non-line-of-sight respectively. This result shows that
Chronos’s accuracy is comparable to state-of-the-art in-
door localization that use multiple AP’s [30, 32, 48].
Ranging Results: In some applications, it is important
to maintain a particular distance between objects but the
exact location is not necessary (e.g., preventing robot col-
lision). Thus, here we plot the ranging results of Chronos.
Fig. 6 plots the median and standard deviation of error in
distance computed between the transmitter and receiver
against their true distance. We observe that this error is ini-
tially around 10 cm and increases to at most 26 cm at 12-
15 meters. The increase is primarily due to reduced signal-
to-noise ratio at further distances. Note that the ranging
accuracy is higher than the localization accuracy because
ranging is a simpler problem (no need to find the exact
direction) and Chronos’s time-of-flight computation natu-
rally yields the range between devices.

9.3 Impact on Network traffic

Chronos enables localization between a pair of WiFi de-
vices without third party support. In many cases, these are

user devices that do not otherwise communicate data be-
tween each other directly. However, an interesting ques-
tion is the impact of Chronos on network traffic, if one
of the devices is serving traffic, such as a WiFi AP. This
experiment answers three questions in this regard: (1)
How long does Chronos take to hop between all WiFi
bands? (2) How does Chronos impact real-time traffic like
video streaming applications? (3) How does Chronos af-
fect TCP? We address these questions below:
Method: We consider a Thinkpad W530 Laptop emu-
lating an AP and two ASUS EEPC netbook clients. We
assume client-2 requests the AP for indoor localization
at t = 6 s. We measure the time Chronos incurs to hop
between the 35 WiFi bands. Meanwhile, client-1 runs a
long-lasting traffic flow. We consider two types of flows:
(1) VLC video stream over RTP; (2) TCP flow using iperf.
We run the experiment 30 times and find aggregate results.
Results: Fig. 8(a) depicts the CDF of the time that
Chronos incurs to hop over all WiFi bands. We observe
that the median hopping time is 84 ms for the Intel 5300
WiFi card, like past work on commercial WiFi radios [29].

Next, Fig. 8(b) plots a representative trace of the cumu-
lative bytes of video received over time of a VLC video
stream run by client-1 (solid blue line). The red line plots
the cumulative number of bytes of video played by the
client. Notice that at t = 6 s, there is a brief time span
when no new bytes are downloaded by the client (ow-
ing to the localization request). However, in this inter-
val, the buffer has enough bytes of video to play, ensur-
ing that the user does not perceive a video stall (i.e. the
blue and red lines do not cross). In other words, buffers
in today’s video streaming applications can largely cush-
ion such short-lived outages [26, 25], minimizing impact
on user experience. Similarly, Fig. 8(c) depicts a represen-
tative trace of the throughput over time of a TCP flow at
client-1. The TCP throughput dips only slightly by 18.5%
at t = 6 s, when client-2 requests location. Thus, Chronos
can support localization without much impact on data traf-
fic. However, if more frequent localization is desired with
large traffic demands, we recommend deploying a dedi-
cated AP or WiFi beacon for localization.

10. APPLICATIONS

We evaluate Chronos in three application scenarios.

10.1 Room Occupancy Detection

Smart home technologies, such as personalized heating
and lighting, can vastly benefit from information about
the number and identity of people in individual rooms.
Chronos is a natural solution for this problem as it can lo-
calize and track people using their smartphones and wear-
ables, even if the home has a single WiFi access point.
Method: To demonstrate this capability, we deployed
Chronos in a two-bedroom apartment that has four res-

10

0 50 100 1500

0.2

0.4

0.6

0.8

1

Hopping time (ms)

CD
F

(a) Hopping Time

0 2 4 6 8 100

0.5

1

1.5

2

2.5x 104

Time(in s)

Da
ta(

Kb
)

Localize

Download
Play

(b) Video Streaming

0 2 4 6 8 100

5

10

15

20

25

30

35

Localize

Time(in s)

Th
ro

ug
hp

ut(
MB

its
/s)

(c) TCP Throughput
Figure 8: Impact on Network Traffic: (a) measures the CDF of time taken by Chronos to hop between all WiFi bands – a small
value of 84 ms. Consider a client-1 with a long-running traffic flow to an AP. The AP is asked to localize another client-2 at t = 6 s. (b)
depicts a representative trace of the number of bytes of data downloaded and data played over time if the client-1 views a VLC video
stream. (c) measures the throughput if client-1 runs a TCP flow using iperf. In either case, the impact of client-1’s flow is minimal at
t = 6 s.

(a) Home Floor Plan (b) Coffee Shop Schematic (c) Personal Drone
Figure 9: (a) Floor map of the apartment where Chronos is deployed. Red dot indicates the access point and the blue dots
represent the client positions. (b) Coffee shop schematic. Red dot indicates the access point. (c) We implement Chronos
on an AscTec Hummingbird quadrotor with an AscTec Atomboard.

idents. The floor map of the apartment is shown in
Fig. 9(a). The Chronos access point is centrally placed in
the home and is indicated by the red dot. Each resident is
given an ASUS netbook, equipped with Intel 5300 WiFi
cards, and running Chronos. The residents are then asked
to move freely to locations within the apartment. Their lo-
cations are manually recorded and are marked by the blue
dots in Fig. 9(a). Chronos measures the location of each
resident and detects the room the person is in. In partic-
ular, Chronos distinguishes between the two bed rooms,
living room, kitchen and bathroom.
Results: In our experiments, Chronos detects the user to
be in the correct room in 94.3% of the experiments. Most
of the errors occurred in Bedroom 1 in Fig. 9(a), and were
due to the signal being too weak after traversing two walls
and a closet. Overall, the results show that Chronos can
enable applications based on room occupancy detection
with a single home access point.

10.2 WiFi Geo-Fencing

Chronos can be used to authorize WiFi access in small
businesses, which have only one access point. To demon-
strate this capability, we deploy Chronos in a popular cof-
fee shop with free WiFi, and use the distance from the
access point to measure whether an individual is inside or
outside the coffee shop (Fig. 9(b)).
Method: We conducted 100 experiments in the coffee

shop. The user used an ASUS netbook, equipped with the
Intel 5300 WiFi card to connect to the Chronos AP. In 50
of these experiments, the user was standing at a randomly
chosen location inside the coffee shop, while in the oth-
ers, the user was standing outside, while still being able to
access the WiFi connection.
Results: Chronos correctly inferred whether the user was
inside or outside in 97% of experiments. However, if we
simply authenticate users based on location without any
buffer zone, the accuracy is 97%, but one legitimate cus-
tomer cannot access WiFi in his current location. In con-
trast, if we decide to accept users located within 30 cm
of the premises, Chronos authenticates all legitimate cus-
tomers but allows access incorrectly to people outside the
premise in 5% of the experiments, decreasing the overall
accuracy to 95%. Since it is more important to ensure cus-
tomers can access WiFi, we believe that one should use
some buffer zone.

10.3 Personal Drones

We apply Chronos to indoor personal drones [11].
These drones can follow users around while maintaining
a convenient distance relative to the control device in the
user’s hand or pocket. Users can use these drones to take
pictures or videos of them while performing an activity,
even in indoor settings where GPS is unavailable.
Method: We use an AscTec Hummingbird quadrotor

11

176 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0 5 100

0.2

0.4

0.6

0.8

1

Deviation from ideal distance(cm)

CD
F

Figure 10: Application to Personal Drones: The drone uses
Chronos to maintain a constant distance of 1.4 m to the user. The
figure plots the CDF of errors in maintaining a distance of 1.4 m.

equipped with the AscTec Atomboard light-weight com-
puting platform (with the Intel 5300 WiFi card), a Go-pro
camera and a Yei-Technology motion sensor. Fig. 9(c) de-
picts our setup. Note that the Intel 5300 WiFi card supports
3-antennas; the fourth antenna on the quadrotor is placed
only for balance and stability.

We perform our personal drone experiments in a 6 m ×
5 m room augmented with the VICON motion capture sys-
tem [2]. We use VICON to find the ground-truth trajec-
tories of the personal drone and the user control device.
In each experiment, the personal drone tracks an ASUS
EEPC netbook with the Intel 5300 WiFi card held by a
user. The distance measurements from Chronos are in-
tegrated with drone navigation using a standard negative
feedback-loop robotic controller [12]. The drone main-
tains a constant height and follows the user to maintain a
constant distance of 1.4 m relative to the user’s device. The
drone also captures photographs of the user along the way
using the Go-Pro camera mounted on the Hummingbird
quadrotor, keeping the user at 1.4 m in focus. The drone
uses the compass on the user’s device and the quadrotor to
ensure that its camera always faces the user.
Results: Fig. 10 measures the CDF of root mean squared
deviation in distance of the drone relative to the desired
value of 1.4 m — a median of 4.17 cm. Our results reveal
that the drone tightly maintains its relative distance to the
user’s device. Notice that our error in distance is signifi-
cantly lower in this experiment relative to §9.2. This is be-
cause drones measure multiple distances as they navigate
in the air, which helps de-noise measurements and remove
outliers. Chronos is the first system to achieve such a high
accuracy in device to device positioning using no support
from surrounding infrastructure.

11. RELATED WORK

Chronos builds on vast literature on indoor WiFi-based
localization [40, 13, 9, 51, 18, 48, 32, 30, 50, 4]. However,
past work that delivers sub-meter location accuracy typ-
ically requires cooperation across multiple (four or five)
AP’s [18, 48, 32, 30, 50].

A few prior proposals have aimed to localize with a sin-
gle WiFi AP. They may be divided into two categories:
some proposals [31, 52] require exhaustive fingerprinting

of received signal power prior to deployment. Such pro-
posals exhibit localization errors of several meters and
incur a large overhead due to fingerprinting. The second
class of proposals attempt to measure time-of-flight either
directly [35], or indirectly using the phase [53]. However,
since they cannot accurately measure the time-of-flight,
they need the user to walk around, perform measurements
in multiple locations, and intersect those measurements
with the help of an accelerometer. In contrast, Chronos
has tens of centimeter accuracy, and neither requires fin-
gerprinting nor user motion.

A few past papers on WiFi-based localization leverage
channel hopping [50, 49]. However, unlike Chronos which
measures the absolute time-of-flight and localizes with a
single AP, those systems measure differences in the time-
of-flight and require the deployment of multiple AP’s.

Prior theoretical ranging algorithms [44, 43] have used
the Chinese Remainder theorem. However, Chronos dif-
fers from those algorithms in multiple ways. First, those
algorithms ignore multipath and assume that wireless sig-
nals propagate in free space with a single time-of-flight
value. In contrast, Chronos addresses the crucial problem
of multipath, and hence its complete algorithm uses non-
uniform Fourier transform as opposed to the Chinese Re-
mainder theorem. Second, those algorithms ignore pratical
issues such as the frequency offset between the transmitter
and the receiver and the inability of the receiver to separate
the time of flight from the packet detection delay.

Finally, some past work has explored measuring the
time-of-flight of WiFi signals for reasons other than lo-
calization. There have been several studies that resolve
time-of-flight to around ten nanoseconds using the clocks
of WiFi cards or other methods [46, 33, 17, 34, 38]. In
contrast, Chronos can achieve sub-nanosecond resolution
which is necessary for accurate localization.

12. CONCLUSION

This paper presents Chronos, a system that measures
sub-nanosecond time-of-flight on commercial WiFi ra-
dios. Chronos uses these measurements to enable WiFi
device-to-device positioning at state-of-the-art accuracy,
without support of additional WiFi infrastructure or non-
WiFi sensors. By doing so, Chronos opens up WiFi-based
positioning to new applications where additional infras-
tructure and sensors may be unavailable or inaccessible,
e.g., geo-fencing, home occupancy measurements, finding
lost devices, maintaining robotic formations, etc.
Acknowledgements: We thank the NETMIT group, Arthur
Berger, our reviewers and our shepherd, Alex Snoeren, for their
insightful comments. This work is funded by NSF. We thank
members of the MIT Center for Wireless Networks and Mobile
Computing: Amazon, Cisco, Google, Intel, Mediatek, Microsoft,
ST Microelectronics and Telefonica for their interest and sup-
port.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 177

0 5 100

0.2

0.4

0.6

0.8

1

Deviation from ideal distance(cm)

CD
F

Figure 10: Application to Personal Drones: The drone uses
Chronos to maintain a constant distance of 1.4 m to the user. The
figure plots the CDF of errors in maintaining a distance of 1.4 m.

equipped with the AscTec Atomboard light-weight com-
puting platform (with the Intel 5300 WiFi card), a Go-pro
camera and a Yei-Technology motion sensor. Fig. 9(c) de-
picts our setup. Note that the Intel 5300 WiFi card supports
3-antennas; the fourth antenna on the quadrotor is placed
only for balance and stability.

We perform our personal drone experiments in a 6 m ×
5 m room augmented with the VICON motion capture sys-
tem [2]. We use VICON to find the ground-truth trajec-
tories of the personal drone and the user control device.
In each experiment, the personal drone tracks an ASUS
EEPC netbook with the Intel 5300 WiFi card held by a
user. The distance measurements from Chronos are in-
tegrated with drone navigation using a standard negative
feedback-loop robotic controller [12]. The drone main-
tains a constant height and follows the user to maintain a
constant distance of 1.4 m relative to the user’s device. The
drone also captures photographs of the user along the way
using the Go-Pro camera mounted on the Hummingbird
quadrotor, keeping the user at 1.4 m in focus. The drone
uses the compass on the user’s device and the quadrotor to
ensure that its camera always faces the user.
Results: Fig. 10 measures the CDF of root mean squared
deviation in distance of the drone relative to the desired
value of 1.4 m — a median of 4.17 cm. Our results reveal
that the drone tightly maintains its relative distance to the
user’s device. Notice that our error in distance is signifi-
cantly lower in this experiment relative to §9.2. This is be-
cause drones measure multiple distances as they navigate
in the air, which helps de-noise measurements and remove
outliers. Chronos is the first system to achieve such a high
accuracy in device to device positioning using no support
from surrounding infrastructure.

11. RELATED WORK

Chronos builds on vast literature on indoor WiFi-based
localization [40, 13, 9, 51, 18, 48, 32, 30, 50, 4]. However,
past work that delivers sub-meter location accuracy typ-
ically requires cooperation across multiple (four or five)
AP’s [18, 48, 32, 30, 50].

A few prior proposals have aimed to localize with a sin-
gle WiFi AP. They may be divided into two categories:
some proposals [31, 52] require exhaustive fingerprinting

of received signal power prior to deployment. Such pro-
posals exhibit localization errors of several meters and
incur a large overhead due to fingerprinting. The second
class of proposals attempt to measure time-of-flight either
directly [35], or indirectly using the phase [53]. However,
since they cannot accurately measure the time-of-flight,
they need the user to walk around, perform measurements
in multiple locations, and intersect those measurements
with the help of an accelerometer. In contrast, Chronos
has tens of centimeter accuracy, and neither requires fin-
gerprinting nor user motion.

A few past papers on WiFi-based localization leverage
channel hopping [50, 49]. However, unlike Chronos which
measures the absolute time-of-flight and localizes with a
single AP, those systems measure differences in the time-
of-flight and require the deployment of multiple AP’s.

Prior theoretical ranging algorithms [44, 43] have used
the Chinese Remainder theorem. However, Chronos dif-
fers from those algorithms in multiple ways. First, those
algorithms ignore multipath and assume that wireless sig-
nals propagate in free space with a single time-of-flight
value. In contrast, Chronos addresses the crucial problem
of multipath, and hence its complete algorithm uses non-
uniform Fourier transform as opposed to the Chinese Re-
mainder theorem. Second, those algorithms ignore pratical
issues such as the frequency offset between the transmitter
and the receiver and the inability of the receiver to separate
the time of flight from the packet detection delay.

Finally, some past work has explored measuring the
time-of-flight of WiFi signals for reasons other than lo-
calization. There have been several studies that resolve
time-of-flight to around ten nanoseconds using the clocks
of WiFi cards or other methods [46, 33, 17, 34, 38]. In
contrast, Chronos can achieve sub-nanosecond resolution
which is necessary for accurate localization.

12. CONCLUSION

This paper presents Chronos, a system that measures
sub-nanosecond time-of-flight on commercial WiFi ra-
dios. Chronos uses these measurements to enable WiFi
device-to-device positioning at state-of-the-art accuracy,
without support of additional WiFi infrastructure or non-
WiFi sensors. By doing so, Chronos opens up WiFi-based
positioning to new applications where additional infras-
tructure and sensors may be unavailable or inaccessible,
e.g., geo-fencing, home occupancy measurements, finding
lost devices, maintaining robotic formations, etc.
Acknowledgements: We thank the NETMIT group, Arthur
Berger, our reviewers and our shepherd, Alex Snoeren, for their
insightful comments. This work is funded by NSF. We thank
members of the MIT Center for Wireless Networks and Mobile
Computing: Amazon, Cisco, Google, Intel, Mediatek, Microsoft,
ST Microelectronics and Telefonica for their interest and sup-
port.

12

13. REFERENCES
[1] Bosch Laser Distance Measurer GLM50.

http://www.boschtools.com/Products/
Tools/Pages/BoschProductDetail.
aspx?pid=GLM\%2050.

[2] VICON T-Series.
http://www.vicon.com/products/documents/Tseries.pdf.

[3] IEEE 802.11n-2009 Standard. 2009.
http://standards.ieee.org/findstds/
standard/802.11n-2009.html.

[4] O. Abari, D. Vasisht, and D. Katabi. Caraoke: An
E-Toll Transponder Network for Smart Cities.
SIGCOMM, 2015.

[5] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3D
Tracking via Body Radio Reflections. NSDI, 2014.

[6] Automated Home. Apple iBeacons Explained:
Smart Home Occupancy Sensing Solved?, 2013.

[7] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski.
Convex Optimization with Sparsity-Inducing
Norms, 2011.

[8] S. Bagchi and S. K. Mitra. The Nonuniform Discrete
Fourier Transform and Its Applications in Signal
Processing. 1999.

[9] P. Bahl and V. Padmanabhan. RADAR: An
in-building RF-based User Location and Tracking
System . INFOCOM, 2000.

[10] W. U. Bajwa, J. Haupt, A. Sayeed, and R. Nowak.
Compressed Channel Sensing: A New approach to
Estimating Sparse Multipath Channels. Proceedings
of the IEEE, 2010.

[11] Ben Popper. The Drone You Should Buy Right
Now, 2014.
http://www.theverge.com/2014/7/31/
5954891/best-drone-you-can-buy.

[12] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and
M. Shaw. Software Engineering for Self-Adaptive
Systems. 2009.

[13] K. Chintalapudi, A. Padmanabha Iyer, and V. N.
Padmanabhan. Indoor Localization without the Pain.
MobiCom, 2010.

[14] C. Ding, D. Pei, and A. Salomaa. Chinese
Remainder Theorem: Applications in Computing,
Coding, Cryptography. 1996.

[15] A. Dutt and V. Rokhlin. Fast Fourier Transforms for
Nonequispaced Data. SIAM J. Sci. Comput., 1993.

[16] S. Gezici, Z. Tian, G. B. Biannakis, H. Kobayashi,
A. F. Molisch, V. Poor, Z. Sahinoglu, S. Gezici,
Z. Tian, G. B. Giannakis, H. Kobayashi, A. F.
Molisch, H. V. Poor, and Z. Sahinoglu. Localization
via Ultra-wideband Radios. In IEEE Signal
Processing Magazine, 2005.

[17] D. Giustiniano and S. Mangold. CAESAR: Carrier
Sense-based Ranging in Off-the-shelf 802.11
Wireless LAN. CoNEXT, 2011.

[18] J. Gjengset, J. Xiong, G. McPhillips, and
K. Jamieson. Phaser: Enabling Phased Array Signal
Processing on Commodity WiFi Access Points.
MobiCom, 2014.

[19] L. Greengard and J. Lee. Accelerating the
Nonuniform Fast Fourier Transform. SIAM
REVIEW, 2004.

[20] M. Guillaud, D. Slock, and R. Knopp. A Practical
Method for Wireless Channel Reciprocity
Exploitation through Relative Calibration. 2005.

[21] D. Halperin, W. Hu, A. Sheth, and D. Wetherall.
Tool Release: Gathering 802.11n Traces with
Channel State Information. ACM SIGCOMM CCR,
2011.

[22] J. Heiskala and J. Terry. OFDM Wireless LANs: A
Theoretical and Practical Guide. Sams Publishing,
2001.

[23] B. Hofmann-Wellenhof, H. Lichtenegger, and
J. Collins. Global Positioning System: Theory and
Practice. Springer Science & Business Media, 2013.

[24] K. Hou, Z. Zhou, A. M.-C. So, and Z.-Q. Luo. On
the Linear Convergence of the Proximal Gradient
Method for Trace Norm Regularization. NIPS,
2013.

[25] T.-Y. Huang, R. Johari, and N. McKeown. Downton
Abbey Without the Hiccups: Buffer-based Rate
Adaptation for HTTP Video Streaming. FhMN,
2013.

[26] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A Buffer-based Approach to Rate
Adaptation: Evidence from a Large Video
Streaming Service. SIGCOMM, 2014.

[27] A. T. Islam and I. Misra. Performance of Wireless
OFDM System with LS-Interpolation-Based
Channel Estimation in Multi-path Fading Channel.
IJCSA, 2012.

[28] K. Joshi, S. Hong, and S. Katti. PinPoint: Localizing
Interfering Radios. NSDI, 2013.

[29] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and
D. Katabi. FatVAP: Aggregating AP Backhaul
Capacity to Maximize Throughput. NSDI, 2008.

[30] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti.
SpotFi: Decimeter Level Localization Using WiFi.
SIGCOMM, 2015.

[31] C. Kumar, R. Poovaiah, A. Sen, and P. Ganadas.
Single Access Point-based Indoor Localization
Technique for Augmented Reality Gaming for
Children. Students’ Technology Symposium
(TechSym), 2014 IEEE, 2014.

[32] S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate
Indoor Localization with Zero Start-up Cost.
MobiCom, 2014.

[33] S. Lanzisera, D. Zats, and K. Pister. Radio
Frequency Time-of-Flight Distance Measurement
for Low-Cost Wireless Sensor Localization. Sensors

13

178 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Journal, IEEE, 2011.
[34] A. Marcaletti, M. Rea, D. Giustiniano, V. Lenders,

and A. Fakhreddine. Filtering Noisy 802.11
Time-of-Flight Ranging Measurements. CoNEXT,
2014.

[35] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim.
SAIL: Single Access Point-based Indoor
Localization. MobiSys, 2014.

[36] A. Nag and S. Mukhopadhyay. Occupancy
Detection at Smart Home Using Real-Time
Dynamic Thresholding of Flexiforce Sensor.
Sensors Journal, IEEE, 2015.

[37] New York Times. Homes Try to Reach Smart
Switch, 2015.
http://www.nytimes.com/2015/04/23/
business/energy-environment/homes-
try-to-reach-smart-switch.html.

[38] H. Rahul, H. Hassanieh, and D. Katabi. SourceSync:
A Distributed Wireless Architecture for Exploiting
Sender Diversity. ACM SIGCOMM, 2010.

[39] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO:
Scaling Wireless Capacity with User Demands.
ACM SIGCOMM, 2012.

[40] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and
R. Sen. Zee: Zero-effort Crowdsourcing for Indoor
Localization. MobiCom, 2012.

[41] P. Setlur, G. Alli, and L. Nuzzo. Multipath
Exploitation in Through-Wall Radar Imaging Via
Point Spread Functions. IEEE Transactions on
Image Processing, 2013.

[42] D. Tse and P. Vishwanath. Fundamentals of
Wireless Communications. Cambridge University
Press, 2005.

[43] C. Wang, Q. Yin, and H. Chen. Robust Chinese
Remainder Theorem Ranging-method based on
Dual-Frequency Measurements. IEEE Transactions
on Vehicular Technology, 2011.

[44] C. Wang, Q. Yin, and W. Wang. An Efficient
Ranging Method for Wireless Sensor Networks.
ICASSP, 2010.

[45] E. Weisstein. Chinese Remainder Theorem.
http://mathworld.wolfram.com/
ChineseRemainderTheorem.html.

[46] S. B. Wibowo, M. Klepal, and D. Pesch. Time of
Flight Ranging using Off-the-self IEEE802.11 WiFi
Tags. POCA, 2009.

[47] WiFi Alliance. Make Security a Priority in 2011:
Protect Your Personal Data on Wi-Fi Networks,
2011. http://www.wi-fi.org/news-
events/newsroom/make-security-a-
priority-in-2011-protect-your-
personal-data-on-wi-fi-networks.

[48] J. Xiong and K. Jamieson. ArrayTrack: A
Fine-Grained Indoor Location System. NSDI, 2013.

[49] J. Xiong, K. Jamieson, and K. Sundaresan.

Synchronicity: Pushing the Envelope of
Fine-grained Localization with Distributed Mimo.
HotWireless, 2014.

[50] J. Xiong, K. Sundaresan, and K. Jamieson.
ToneTrack: Leveraging Frequency-Agile Radios for
Time-Based Indoor Wireless Localization.
MobiCom, 2015.

[51] M. Youssef and A. Agrawala. The Horus WLAN
Location Determination System. MobiSys, 2005.

[52] G. V. Zàruba, M. Huber, F. Kamangar, and
I. Chlamtac. Indoor Location Tracking using RSSI
Readings From a Single Wi-Fi Access Point.
Wireless networks, 2007.

[53] X. Zheng, C. Wang, Y. Chen, and J. Yang. Accurate
Rogue Access Point Localization Leveraging
Fine-grained Channel Information. IEEE
Conference on Communications and Network
Security (CNS), 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 179

Journal, IEEE, 2011.
[34] A. Marcaletti, M. Rea, D. Giustiniano, V. Lenders,

and A. Fakhreddine. Filtering Noisy 802.11
Time-of-Flight Ranging Measurements. CoNEXT,
2014.

[35] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim.
SAIL: Single Access Point-based Indoor
Localization. MobiSys, 2014.

[36] A. Nag and S. Mukhopadhyay. Occupancy
Detection at Smart Home Using Real-Time
Dynamic Thresholding of Flexiforce Sensor.
Sensors Journal, IEEE, 2015.

[37] New York Times. Homes Try to Reach Smart
Switch, 2015.
http://www.nytimes.com/2015/04/23/
business/energy-environment/homes-
try-to-reach-smart-switch.html.

[38] H. Rahul, H. Hassanieh, and D. Katabi. SourceSync:
A Distributed Wireless Architecture for Exploiting
Sender Diversity. ACM SIGCOMM, 2010.

[39] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO:
Scaling Wireless Capacity with User Demands.
ACM SIGCOMM, 2012.

[40] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and
R. Sen. Zee: Zero-effort Crowdsourcing for Indoor
Localization. MobiCom, 2012.

[41] P. Setlur, G. Alli, and L. Nuzzo. Multipath
Exploitation in Through-Wall Radar Imaging Via
Point Spread Functions. IEEE Transactions on
Image Processing, 2013.

[42] D. Tse and P. Vishwanath. Fundamentals of
Wireless Communications. Cambridge University
Press, 2005.

[43] C. Wang, Q. Yin, and H. Chen. Robust Chinese
Remainder Theorem Ranging-method based on
Dual-Frequency Measurements. IEEE Transactions
on Vehicular Technology, 2011.

[44] C. Wang, Q. Yin, and W. Wang. An Efficient
Ranging Method for Wireless Sensor Networks.
ICASSP, 2010.

[45] E. Weisstein. Chinese Remainder Theorem.
http://mathworld.wolfram.com/
ChineseRemainderTheorem.html.

[46] S. B. Wibowo, M. Klepal, and D. Pesch. Time of
Flight Ranging using Off-the-self IEEE802.11 WiFi
Tags. POCA, 2009.

[47] WiFi Alliance. Make Security a Priority in 2011:
Protect Your Personal Data on Wi-Fi Networks,
2011. http://www.wi-fi.org/news-
events/newsroom/make-security-a-
priority-in-2011-protect-your-
personal-data-on-wi-fi-networks.

[48] J. Xiong and K. Jamieson. ArrayTrack: A
Fine-Grained Indoor Location System. NSDI, 2013.

[49] J. Xiong, K. Jamieson, and K. Sundaresan.

Synchronicity: Pushing the Envelope of
Fine-grained Localization with Distributed Mimo.
HotWireless, 2014.

[50] J. Xiong, K. Sundaresan, and K. Jamieson.
ToneTrack: Leveraging Frequency-Agile Radios for
Time-Based Indoor Wireless Localization.
MobiCom, 2015.

[51] M. Youssef and A. Agrawala. The Horus WLAN
Location Determination System. MobiSys, 2005.

[52] G. V. Zàruba, M. Huber, F. Kamangar, and
I. Chlamtac. Indoor Location Tracking using RSSI
Readings From a Single Wi-Fi Access Point.
Wireless networks, 2007.

[53] X. Zheng, C. Wang, Y. Chen, and J. Yang. Accurate
Rogue Access Point Localization Leveraging
Fine-grained Channel Information. IEEE
Conference on Communications and Network
Security (CNS), 2014.

14

A Scalable Multi-User Uplink for Wi-Fi

Adriana B. Flores, Sadia Quadri and Edward W. Knightly
Department of Electrical and Computer Engineering, Rice University, Houston, TX

{adriana.flores, sadia.quadri, knightly}@rice.edu

Abstract
Mobile devices have fewer antennas than APs due to size
and energy constraints. This antenna asymmetry restricts
uplink capacity to the client antenna array size rather
than the AP’s. To overcome antenna asymmetry, mul-
tiple clients can be grouped into a simultaneous multi-
user transmission to achieve a full rank transmission that
matches the number of antennas at the AP. In this pa-
per, we design, implement, and experimentally evalu-
ate MUSE, the first distributed and scalable system to
achieve full-rank uplink multi-user capacity without con-
trol signaling for channel estimation, channel reporting,
or user selection. Our experiments demonstrate full-rank
multiplexing gains in the evaluated scenarios that show
linear gains as the number of users increase while main-
taining constant overhead.

1 Introduction

Form factor and energy constraints result in mobile
clients having significantly fewer antennas than access
points (APs), e.g., 1 or 2 for clients vs. 8 or even more
for massive MIMO APs [1, 2]. When an AP serves a
single user at a time, this asymmetry severely restricts
capacity with limits defined by the client antenna ar-
ray size rather than the AP’s. Fortunately, both theo-
retical results and practical implementations have shown
that multiple clients can be grouped into a simultaneous
multi-user (MU-MIMO) transmission. The transmission
can achieve “full rank” when the group of clients form a
virtual array having the same number of antennas as the
AP [1, 2, 3, 4, 5]. While this technique is already stan-
dardized [6, 7] and commercialized [8, 9] for the Wi-Fi
downlink, the uplink still serves a single user at a time,
as specified in the original 1997 Wi-Fi standard [10].

In this paper, we design, implement, and experimen-
tally evaluate MUSE, the first system to achieve full-
rank uplink multi-user capacity without requiring a con-

trol channel.1 Namely, mirroring the functionality of
downlink standards for the uplink would require a con-
trol channel (set of control message exchanges, etc.) for
mechanisms such as channel estimation, reporting of
channel state, joint stream precoding, orthogonal user se-
lection, and control of the timing of user transmissions.
In contrast, we develop MUSE to scale not only raw
physical layer capacity, but also system throughput af-
ter incorporating all protocol overhead. In particular, we
present the following contributions.

First, we design three physical layer components to
enable the aforementioned MUSE properties (MUSE-
PHY). (i) In order for multiple users to transmit simul-
taneously, their combined transmissions must be suffi-
ciently orthogonal to be successfully decoded by the AP.
Rather than measuring channels and performing user se-
lection, indoor multipath induces sufficient channel in-
dependence for an arbitrary group of users to transmit
concurrently. However, precise channel estimation is re-
quired at the receiver, the AP must estimate the joint
channel state in order to separate and decode the streams.
We introduce the Dynamic Orthogonal Mapping (DOM)
matrix as a mechanism compatible with the IEEE 802.11
standard, that allows the AP to obtain clean channel
estimations from all independent distributed transmit-
ters. We redesign the 802.11n SU-MIMO (Single User
MIMO) channel estimation to function with multiple dis-
tributed users. Contrary to the requirement that multi-
plexing capabilities of SU-MIMO be pre-configured at
the transmitter, in MUSE, DOM is dynamically matched
according to the transmission and only statically lim-
ited by the receiver (AP). DOM preamble-based chan-
nel training avoids the non-scalable approach of sequen-
tially training one user at a time. (ii) DOM channel train-
ing requires the same symbols to be transmitted by all
the distributed stations and can result in signal correla-
tion and unintended beamforming. Exploiting cyclic de-

1MUSE is an acronym for Multi-User ScalablE Uplink.

1

180 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

lay diversity to increase diversity in the signal paths [3],
we introduce Arbitrary Cyclic Shift Delay (aCSD) to
maximally decorrelate users’ signals at the transmitters.
Recognizing that there is no control channel among the
transmitters and leveraging their physical separation, we
employ arbitrary cyclic shift delays applied indepen-
dently by each transmitter and demonstrate that these
achieve the desired multiplexing gains in a distributed
and non-channel-dependent manner. (iii) Lastly, because
MUSE lacks a control channel, the number of uplink
data streams is not fixed before the transmission. Con-
sequently, the MUSE design supports a variable number
of arbitrarily selected users and provides flexibility and
robustness to unknown client backlog state via dynamic
use of the DOM matrix.

Second, we design a medium access control protocol
(MUSE-MAC) that exploits the unique MUSE physical-
layer capabilities. Namely, without MUSE-PHY, the
MAC design would require a control protocol with mech-
anisms described above such as: feedback of channel
state, selection of an orthogonal group of transmitters,
alignment of their timing, and elimination of uncertainty
in the number of transmitting users. In contrast, we ex-
ploit MUSE-PHY’s ability to support an arbitrary set of
users and design MUSE-MAC to select a group of ar-
bitrary users with the rank of the group not exceeding
the number of antennas at the AP. In principle, a random
group could be selected by invoking the existing Wi-
Fi random access technique multiple times in sequence,
once to select each user, with the process ending when
the rank limit is reached. Unfortunately, such a pro-
cedure would require control overhead (in the form of
messages and backoff delays) that increases linearly with
rank. In contrast, we select a group of users with a single
contention in which all backlogged users independently
contend for the channel using the same Wi-Fi random
access count-down procedure. When a single user wins
the channel, MUSE-MAC attaches a random set of ad-
ditional users to the winning user via a predetermined
operation that is a function of each user’s Wi-Fi standard
Association ID. The groups are consequently arbitrary
(emulating randomly selected) but predefined, since as-
sociation IDs are predefined. In this way, we eliminate
the need for a group-selection control procedure for each
transmission as the MUSE-PHY ensures that a random
set of users can be decoded. Even though Association ID
grouping may be considered fixed, MUSE enables group
adaptation through the reassignment of Association IDs
by utilizing 802.11 standardized Reassociation Request
and Response procedure.

Finally, we implement MUSE on a software-defined-
radio platform, create a WLAN testbed, and evaluate per-
formance using extensive over-the-air experiments. We
demonstrate full rank multiplexing gains by orthogonal

spatial spreading the distributed transmitters and main-
taining a constant overhead as the number of users in-
creases. Specifically, MUSE achieves on average 197%,
290% and 395% aggregate PHY throughput for 2 to 4
concurrent served users respectively. We find that aCSD
enables the distributed transmitters to effectively induce
multipath in the form of variable phase offset, which
results in accurate channel estimation using the DOM
matrix. Further, we evaluate the effectiveness of ran-
dom user grouping and find that while the vast majority
of user groupings yield full rank, ill-conditioned chan-
nels can occur, necessitating reduction of modulation and
coding rate to counter interference. Lastly, we evaluate
medium access scalability and demonstrate that as the
number of users increases, MUSE MAC-layer through-
put, incorporating overhead, scales linearly. MUSE
achieves 2.5x higher throughput for a 16 antenna system
compared to prior multi-user uplink schemes [11, 12].

2 Orthogonal Multi-User Uplink PHY

In this section, we introduce background in channel esti-
mation for multi-user transmissions and present MUSE’s
key PHY techniques that enable interference-free chan-
nel estimation, decorrelate users’ channels, and enable
arbitrary user selection.

2.1 Background on CSI
Channel State Information (CSI) at the transmitter
(CSIT) or receiver (CSIR) is necessary for multi-stream
communication, i.e., for simultaneously spatially multi-
plexing independent data streams.

CSIT: One method for multi-stream transmission is
transmitter-based precoding in order to nullify or zero-
force the inter-stream interference, e.g., [4]. Trans-
mit beamforming requires CSIT which is obtained via a
closed-loop process in protocols such as IEEE 802.11ac
[6, 7]. As shown in Figure 1, a closed-loop approach
uses receiver feedback of the estimated CSI. The trans-
mitter then uses CSIT-based signal precoding to uncor-
relate users’ channels and achieve stream orthogonality
with reduced inter-stream interference.2 This process of
collecting CSIT, also termed channel sounding, requires
exchange of control information that scales linearly with
the number of users, thereby decreasing throughput pro-
portionately due to the resulting air-time cost of control
overhead.

CSIR: An open-loop receiver based approach is illus-
trated in Figure 1, performs CSI acquisition at the re-
ceiver at the time of packet transmission. Such CSIR

2Likewise, CSIT can be obtained via implicit feedback in which
the receiver sends pilots and the transmitter assumes that channels are
reciprocal.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 181

Figure 1: Closed-Loop and Open-Loop Channel State
Information (CSI) acquisition and utilization.

estimation is performed through predefined preamble se-
quences, enabling the receiver to compute the unknown
channel given the known preamble data. In an open-loop
system, transmitters do not have CSIT. The key benefit
of use of CSIR is elimination of control overhead for CSI
feedback. However, the main drawback of an open-loop
approach is that transmitted streams could have corre-
lated channels yielding inter-stream interference.

2.2 Dynamic Orthogonal Mapping matrix

MUSE open-loop design must address inter-stream inter-
ference and correlated channels among concurrent users.
To obtain precise CSIR and decode the multi-user trans-
mit data, the estimated CSIR must contain the combina-
tion of all transmit signals.

We design channel training to be compatible with the
IEEE 802.11 standard where we expand the usage of
the 802.11n SU-MIMO channel estimation to function
with multiple distributed users. We present the first
generalization of the preamble-based channel training of
802.11n to be used by distributed transmitters to achieve
multi-user spatial multiplexing gains.

To illustrate MUSE CSIR estimation, consider a 2x2
multi-user uplink transmission in which two clients con-
currently communicate with a two antenna AP as shown
in Figure 2, which depicts the four channels between the
clients and AP.

Following the procedure of 802.11n channel training,
the preamble training signals must be transmitted at the
same time. While in 802.11n this is easily achievable
due to having a single transmitter, in MUSE we expand
channel estimation to multiple users. Our MAC design
(Section 3) ensures the training signals are sent simulta-
neously. In effect, receiver antenna Y1 receives combined
high throughput preamble, HTLTF, of both transmitters
X1 and X2. Equation (1) shows the frequency domain

representation of the signals received by the AP for a sin-
gle subcarrier sc. ysc

1 and ysc
2 represent the received sig-

nals for antenna 1 and 2 respectively and hrx,tx represent
the channel taps for a given receiver-transmitter antenna
combination.

Figure 2: 2x2 Uplink Multi-User MIMO.

ysc
1 = ĥsc

11 ·HT LT F + ĥsc
12 ·HT LT F + zsc

1

ysc
2 = ĥsc

21 ·HT LT F + ĥsc
22 ·HT LT F + zsc

2
(1)

As observed we have four unknown channels
(ĥ11, ĥ12, ĥ21, ĥ22) and only two receive antenna equa-
tions (Y1,Y2). Consequently to be able to resolve all four
unknown channels we require four preamble transmis-
sions with a specific linear combination that allows es-
timation of each channel. The 802.11n standard adds
a second set of preamble transmissions with a corre-
sponding linear combination to allow the derivation of
all unknown channels as shown in Equation (2). How-
ever, when we expand this functionality to multiple-users
without a control channel to coordinate the distributed
users, these users are required to know the number of
preamble signals to send and the linear combination that
enables the channel estimation.

ysc
1,t1 = ĥsc

11 ·HT LT F + ĥsc
12 ·HT LT F + zsc

1,t1

ysc
1,t2 =−ĥsc

11 ·HT LT F + ĥsc
12 ·HT LT F + zsc

1,t2

ysc
2,t1 = ĥsc

21 ·HT LT F + ĥsc
22 ·HT LT F + zsc

2,t1

ysc
2,t2 =−ĥsc

21 ·HT LT F + ĥsc
22 ·HT LT F + zsc

2,t2

(2)

Consequently, we introduce the DOM matrix which
represents the full-rank version of the 802.11n orthogo-
nal mapping matrix and is made available to all devices
irrespective of their number of RF chains:

DOM =

1 −1 1 1
1 1 −1 1
1 1 1 −1
−1 1 1 1

 . (3)

The dimension of the DOM matrix is dependent on
the number of spatial streams (NSS) and the number of
HTLTF (NHT LT F) transmitted. While the size of the
11n-standard orthogonal mapping matrix depends on the

3

182 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

available RF chains of the transmitter, in DOM, the ma-
trix size is fixed to the AP’s full-rank version of the
802.11n matrix, yet it operates dynamically as follows.

Through MUSE-MAC design, the distributed users
obtain the total number of spatial streams in the multi-
user transmission and the assigned Stream ID. With this
information and the DOM matrix, the distributed users
transmit the required number of HTLTF symbols with
the appropriate precoding. Specifically, the transmitter
defines the size of the DOM matrix by NSS and applies
the row of the DOM matrix corresponding to the Stream
ID to the training signals.

Consequently, when all users transmit concurrently
the full DOM matrix is formed which permits a re-
ceiver to derive all channels by adding or subtracting the
HTLTF symbols.

ĥsc
11 =

ysc
1,t1

− ysc
1,t2

2 ·HT LT F
ĥsc

12 =
ysc

1,t1
+ ysc

1,t2
2 ·HT LT F

(4)

ĥsc
21 =

ysc
2,t1

− ysc
2,t2

2 ·HT LT F
ĥsc

22 =
ysc

2,t1
+ ysc

2,t2
2 ·HT LT F

Equation (4) shows how all four channels of the example
in Figure 2 are estimated by combining received subcar-
riers from symbol one (ysc

t1) with subcarriers from sym-
bol two (ysc

t2) and normalized by the number of HTLTFs
transmitted. Specifically, combining symbols (t1 and t2)
from antenna 1 derive channel estimates Ĥsc

11 and Ĥsc
12 and

symbols for antenna 2 derive channel estimates ĥsc
21 and

ĥsc
22. For example as seen in Equation (4), to derive chan-

nel estimate ĥsc
11, the first symbol of antenna 1 (ysc

1,t1
) is

subtracted by the second symbol (ysc
1,t2

) eliminating the
ĥsc

12 term. Then adding symbol one with symbol two of
antenna 1 eliminates ĥsc

11 and solves for ĥsc
12. This same

derivation applies for antenna two to obtain ĥsc
21 and ĥsc

22.

2.3 Arbitrary Cyclic Shift Delay

MUSE achieves interference-free channel estimation
through linear combination of preambles with the DOM
matrix. However, channel correlation among the users
limits the system performance due to destructive interfer-
ence and ill-conditioned channels. Ill-conditioned chan-
nels are not invertible, affecting MUSE’s linear receiver
which performs Zero-Forcing equalization.

Cyclic Shift Delays (CSD) have been used in wireless
communications to decorrelate transmitted signals by in-
troducing diversity. At the time of training, the same
preamble signals are transmitted by multiple antennas.
Even though a rich multipath environment decorrelates
the simultaneously transmitted signals at the receiver, if
the same signal is transmitted by multiple antennas, they

Table 1: 802.11n Cyclic Shift Delay.

Num-
ber of
Streams

CSD for
TX 1
(ns)

CSD for
TX 2
(ns)

CSD for
TX 3
(ns)

CSD for
TX 4
(ns)

1 0
2 0 -400
3 0 -400 -200
4 0 -400 -200 -600

can experience correlation and result in power fluctua-
tions and undesirable beamforming effects [5].

The 802.11n standard introduces Cyclic Shift Delays
to alleviate unintended beamforming. CSDs are applied
in the frequency domain as shown in Equation (5), where
S(f) is the Fourier transform of s(t) and TCSD is the cor-
responding CSD value. The Cyclic Shift Delay (TCSD) is
applied to both preamble and data.

SCSD(f) = S(f)e− j2π f TCSD (5)

CSD in the 802.11 standard are predefined phase
shift delays, shown in Table 1, that are applied to
each of the transmitting signals. However, contrary to
802.11n where antennas are co-located, MUSE transmit-
ters are separated by distances that are unpredictable, but
nonetheless expected to at least be multiple wavelengths.
Consequently, we introduce “Arbitrary Cyclic Shift De-
lay” (aCSD) a flexible CSD design that leverages trans-
mitter separation without requiring a control channel nor
synchronization. Channel correlation decreases as trans-
mitters separate. Thus, unlike fixed usage of CSD in
802.11n, we enable distributed users to arbitrarily se-
lect a CSD value. Through this design, we overcome
the lack of a control channel among the transmitters and
provide flexibility to adapt to the diverse channels of the
distributed transmitters. Multiple streams can apply the
same phase shift value and still obtain multiplexing gains
provided by the high multipath environment because of
the different paths and propagation delays between the
users. This is only possible because users are distributed
in space, leading to increasingly uncorrelated channels
as compared to co-located antennas.

2.4 Varying Number of Streams
Downlink multi-user and SU-MIMO have traffic gener-
ation and transmit opportunity gained by a single entity,
in MUSE, distributed clients compete for channel access
when they are backlogged. Consequently, MUSE does
not fix the number of data streams prior to transmission,
i.e., the selected group of clients is not assured to all be
backlogged. This contrasts with existing 802.11n sys-
tems with pre-configured number of spatial streams and
a fixed orthogonal mapping matrix.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 183

MUSE PHY design overcomes this by permitting a
variable number of data streams, thereby providing flex-
ibility and robustness to unknown backlogged informa-
tion of grouped users by a dynamic operation of the
DOM matrix. In a multi-user transmission with a miss-
ing user, not all rows of the full-rank DOM matrix are
used. Additionally, the rows of the DOM matrix are
not necessarily used in order because the missing users
are unknown. The missing and non-ordered rows of the
DOM matrix have no impact on the channel estimation.

In MUSE, the number of users in a group is always
equal to the number of receive antennas at the AP. Con-
sequently, if all users have traffic to transmit, MUSE will
achieve the full-rank multiplexing capacity. However,
when one or more users of the group does not have traf-
fic demand or misses the trigger to join the transmission,
the extra AP resources serve as receive diversity to in-
crease robustness. Nonetheless, MUSE uplink transmis-
sion will always have at least one client with traffic, the
one who gained the transmit opportunity.

To explain the dynamic operation of the DOM matrix,
we use an example scenario shown in Figure 3 with an
AP with two antennas and multiple associated clients.
Here a client wins channel access and gives transmit op-
portunity to a secondary client, in this case the group size
is limited to two because of the number of receive anten-
nas at the AP. Both the AP and the primary client expect
a 2x2 uplink multi-user transmission and consequently
the client transmits two HTLTF and the AP performs the
decoding process for two spatial streams. However, only
the primary client has traffic to transmit which results in
a 2x1 MIMO transmission since user 2 does not transmit.

Figure 3: MUSE 2x1 MIMO transmission. AP and C1
expect a 2x2 transmission but C2 has no traffic.

The expected signals from a 2x2 UL MIMO and the
AP received signals from this example are:

ysc
1,t1 = hsc

11 ·HT LT F +������������hsc
12 ·HT LT F + zsc

1,t1

ysc
1,t2 =−hsc

11 ·HT LT F +������������hsc
12 ·HT LT F + zsc

1,t2

ysc
2,t1 = hsc

21 ·HT LT F +������������hsc
22 ·HT LT F + zsc

2,t1

ysc
2,t2 =−hsc

21 ·HT LT F +������������hsc
22 ·HT LT F + zsc

2,t2

. (6)

Observe that the primary client transmitted two HTLTF
(t1 and t2) expecting a secondary transmitter. The AP

processes the received signals and estimates the expected
four channels, as follows:

ĥsc
11 =

ysc
1,t1

− ysc
1,t2

2 ·HT LT F
=

�2 · ĥsc
11 ·����HT LT F

�2 ·����HT LT F
= ĥsc

11

ĥsc
12 =

ysc
1,t1

+ ysc
1,t2

2 ·HT LT F
= zsc

1

(7)

ĥsc
21 =

ysc
2,t1

− ysc
2,t2

2 ·HT LT F
=

�2 · ĥsc
21 ·����HT LT F

�2 ·����HT LT F
= ĥsc

21

ĥsc
22 =

ysc
2,t1

+ ysc
2,t2

2 ·HT LT F
= zsc

2 .

Equations (7) indicate that the AP is able to estimate
ĥsc

11 and ĥsc
21. However, for channel estimates ĥsc

12 and ĥsc
22

it just obtains noise. Even with noise estimates for sec-
ondary transmitter channels, the AP is able to decode the
primary transmitter’s data packet and the extra AP an-
tenna resources serve as receive diversity.

MUSE’s adaptive usage of preamble-base channel es-
timation extends to any number of spatial streams. The
key is to always permit the maximum available number
of data streams supported by the AP. In case not all trig-
gered clients have traffic demand, the extra overhead of
preamble symbols is minimal and is not comparable to
the overhead of sounding for CSIT feedback. In the pre-
vious example, the extra overhead is equal to 1 HTLTF
which corresponds to 4µs. The general expression for
MUSE extra overhead is

(max(Nss)−NT X) ·4µs (8)

where max(Nss) is the max number of data streams, NT X
represents the number of transmitting clients where the
subtraction of these corresponds to the number of extra
HTLTF symbols that each add 4µs overhead.

3 Medium Access with Arbitrary Group
Members

In this section we present a distributed random ac-
cess and user-grouping protocol for multi-user uplink
medium access. We base the design on the capabilities
of the MUSE physical layer and target constant overhead
that does not increase with the number of users simulta-
neously served, enabling MUSE scaling to large array
sizes of distributed users.

3.1 Association ID Grouping
The MUSE-PHY properties include CSIR-based open-
loop multi-user uplink transmission via an arbitrary set
of users, provided that the rank of the AP is not exceeded
(i.e., the total number of antennas of all clients must not

5

184 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

exceed the number of antennas on the AP). Our tech-
nique proceeds in two steps.

In the first step, all backlogged users contend for the
medium through standardized backoff countdown pro-
cess. The first user to count to 0, which we refer to
as the contention-winning user, wins the medium. The
contention-winning user then sends a triggering message
to all users with its Association-ID. The triggering mes-
sage grants a transmit opportunity to a predefined ran-
dom set of users and serves as the time-synchronization
trigger for the multi-user transmission. If a user is out-of-
range to the contention-winning user it is deaf to the trig-
ger and misses the opportunistic medium access. Nev-
ertheless, if the deaf-to-trigger user has traffic to trans-
mit it will obtain a transmit opportunity when its backoff
counter expires. As described in Section 2, MUSE-PHY
is robust to deaf-to-trigger users.

In the second step, we join an arbitrary set of users to
the first user as follows. According to the IEEE 802.11
standard, upon association to an AP, users are assigned
an Association ID. MUSE leverages this association ID
for user selection and grouping by considering this to be
an arbitrary index for each user. For MUSE grouping,
the AP informs the network the total number of asso-
ciated users, i.e., the Max-Association-ID. We join as
many users as possible to the contention-winning user
as limited by the AP rank. For example, if the receiv-
ing AP has N antennas, the medium contention-winning
user triggers N − 1 additional users with the successive
Association-ID. If the contention-winning user ID is to-
wards the end such that there are not N − 1 successive
IDs available, we consider IDs to be circular and wrap
back to ID 1 as illustrated in Figure 4. Realization of cir-
cular ID grouping is possible because the AP informs all
users of the Max-Association-ID.

Figure 4: MUSE’s circular association ID.

After receiving the data from the multiple users, the
AP acknowledges the successfully decoded packets in-
dependently such that each user can determine its sup-
ported and desired type of acknowledgment, such as
Block ACK immediate or delayed.

To illustrate, consider the example in Figures 4 and
5, in which the AP has 4 antennas and there are a total
of 7 users in the network of which four can transmit at
the same time. As shown in the timeline of Figure 5,
the user with ID 6 wins the medium access contention

Figure 5: MUSE 4x3 MAC example, with a 4-antenna
AP and seven users.

with the smallest backoff counter of 3. After the back-
off expiration, the contention-winning user triggers three
additional user transmissions in order to reach maximum
rank of 4. However, because there are a total of seven
users, ID 6 will be grouped with users of IDs: 7, 1 and 2,
as shown in related Figure 4.

The triggering transmission acts as a beacon packet
which informs all users in the network the medium
winning-user ID, as shown in the timeline of Figure 5.
With the ID of the contention-winning user, all users
know if their ID falls within the N − 1 vicinity IDs to
obtain an opportunity for contention-free medium access
by joining the multi-user transmission. If stations hav-
ing the vicinity IDs have traffic available, they transmit
immediately after receiving the trigger beacon and are
synchronized via the timing of the beacon.

Because we use Wi-Fi contention to select the origi-
nating member of the group, we inherit the fairness prop-
erties of Wi-Fi. Further, MUSE resets backoff counters
for all users that accessed the medium even if these were
granted medium access without expired backoff coun-
ters. As seen in the Figure 5, users 7 and 1 had backoff
counters of 10 and 6 respectively, when group access was
granted. In this case, since medium access was obtained,
a new backoff counter must be chosen for new packets.
Likewise, because each user has the same probability to
win the contention, each user will be grouped the same
number of times on average, provided that all users are
fully backlogged.

3.2 Inter-User Stream Coordination

MUSE-PHY requires that the selected users start trans-
mission at the same time. Such time synchronization is
achieved by the triggering beacon, where the trigger mes-
sage serves as a Clear-To-Send to the users in a group to
start transmission SIFS time after its reception.

To coordinate the users for MUSE-PHY to enable un-
correlated channels, each transmitting user must know

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 185

which part of the Dynamic Orthogonal Mapping matrix
to apply. Consequently, we utilize the association IDs to
classify the transmitting users such that their IDs further
serve as the “Stream Number” assignment. In particular
MUSE-PHY requires a user to map to a Stream Num-
ber which determines the Dynamic Orthogonal Mapping
matrix to apply. In the example of Figure 5, contention-
winning user 6 is established as Stream 1, and consecu-
tive users in the group 7, 1 and 2 are assigned Stream 2,
3 and 4 respectively. With an assigned Stream number,
each user will apply the corresponding Dynamic Orthog-
onal Mapping matrix. In the example, only users 6, 7 and
1 have traffic to transmit these are Stream No. 1-3. These
streams apply row 1-3 of Dynamic Orthogonal Mapping
matrix matrix shown in Equation (3) and choose their
best suited Arbitrary Cyclic Shift Delay for their loca-
tion from values -100 ns to -700 ns.

3.3 Group Adaptation and Backlog

With MUSE-MAC, the triggering user is guaranteed to
be backlogged as only backlogged users initiate medium
contention. However, it is possible that one or more
of the remaining arbitrarily selected users are not back-
logged. MUSE-PHY ensures that the AP can decode the
received transmission for any subset of the random group
members being backlogged, from 1 to all. Nonetheless,
if traffic is sparse, fixed group selection without incorpo-
rating backlog state will result in a throughput penalty as
non-full-rank uplink transmissions will occur. However,
if traffic is fully backlogged, all MUSE uplink transmis-
sions will be full rank.

For sparse traffic, groups can be updated through reas-
signment of association IDs. Today, association IDs are
reassigned to users via the procedure of Reassociation
Request and Response. A Reassociation Request frame
is sent by a station (STA) to an AP when the STA al-
ready associated to the Extended Service Set (ESS) has
left the cell for a short duration and wants to rejoin or
when a STA wants to associate to another AP in the same
ESS [13]. The AP responds to this request with an Asso-
ciation Response frame which assigns a new Association
ID to the STA.

To update group assignments the AP can prompt the
Reassociation Request and Response procedure. The AP
being the receiver has knowledge of which users to group
to increase the probability of full-rank uplink transmis-
sions as these have previously transmitted uplink traf-
fic. A traffic-based group can be formed by the AP by
prompting the Reassociation Request and Response pro-
cedure to the selected users and assign these continuous
Association IDs. Optimized user selection and grouping
is a large area of study in MU-MIMO [14, 15, 16, 17]
and such techniques could be extended to MUSE.

4 Implementation and Evaluation

In this section we present the implementation and exper-
imental evaluation of MUSE for an indoor WLAN sce-
nario. Our evaluation focuses on MUSE scalability, user
orthogonality and MAC user grouping and performance.

4.1 MUSE Implementation

MUSE Implementation on WARP. We implement
MUSE on a software defined radio platform that enables
Over The Air (OTA) experiments [18]. The platform,
Wireless Open-Access Research Platform (WARP), sup-
ports a programming environment that performs OTA
data transmission and reception and offline processing.

We implement a complete 802.11n OFDM physi-
cal layer with modulation rates of 6 Mbps (BPSK),
12 Mbps (QPSK), and 24 Mbps (16-QAM) and include
mechanisms for heterogeneous modulation rates among
streams. 3 This feature enables each uplink transmitter to
select its highest possible bit rate, without requiring that
all users make the same selection. For ease of implemen-
tation we consider only half rate modulations. We im-
plement the complete suite of MUSE’s PHY techniques
Dynamic Orthogonal Mapping matrix and variable Arbi-
trary Cyclic Shift Delay on our platform. Our implemen-
tation permits 1 to 4 concurrent spatial streams transmis-
sions enabling full rank MIMO transmissions from 1x1
to 4x4 and alternative modes e.g., 2x4 and 3x4.

Testbed Setup. We use the 2.484 GHz radio channel,
i.e., channel 14 (currently unused spectrum) for all exper-
iments. All experiments are conducted at night to ensure
experimental repeatability with minimal unaccounted for
factors enabling us to isolate the effects of inter-stream
and inter-user interference. We perform experiments
with multiple node topologies with over 20 client loca-
tions in a conference room setting depicted in Figure 6.
For each experiment, the topology setup is specified at
each evaluation. The setup is configured from a 1x1 to a
4x4 MU-MIMO system depending on the evaluation be-
ing performed. Each MUSE client node is deployed with
a single WARP board running independent RF clocks.
Phase unsynchronized clients in our testbed demonstrate
the nonessential need of phase synchronization among
the distributed transmitters. However to emulate the bea-
con triggering system of MUSE, we time-synchronize
the transmission of the distributed users through trigger-
ing cables to all client-nodes that activate all users’ trans-
missions at the same time.

3Our system performance is not limited to a maximum of 24 Mbps.
This is just an evaluation platform constraint.

7

186 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: Experimental conference room setting with
evaluated locations.

4.2 Multiplexing Gains and Scalability
MUSE targets a linear scaling increase that matches
the number of simultaneous uplink transmissions to the
number of receiver antennas at the AP. Multiplexing
gains and scaling are limited by inter-stream interference
and channel-correlation between the users. In this sec-
tion we evaluate the ability of MUSE’s Dynamic Orthog-
onal Mapping matrix and Arbitrary Cyclic Shift Delay to
achieve multiplexing gains and permit linear scaling as
the number of transmitters grows.

Figure 7: Experimental Setup for Scalability Evaluation.

For this experiment, the system setup consists of 4 in-
dependent transmitting users and an AP receiver with 4
antennas, as depicted in Figure 7. The four transmitters
are placed at two topologies shown in Figure 7, where at
each topology 2x2, 3x3 and 4x4 transmissions are per-
formed with the AP. The topologies are chosen to repre-
sent a conference setting with users sitting next to each
other in topology 1 and spread out by one or more chairs
in setting 2. A total of 2000 packets are transmitted at
24 Mbps (16-QAM) per setting (1x1, 2x2, 3x3, 4x4),
where the number of active concurrent transmissions in-
creases from 1 to 4.

Figure 8 shows the PHY multiplexing gains achieved
by MUSE in the evaluated scenarios. The y-axis de-
picts the throughput gains in percentage, where the ag-
gregate throughput of the transmitting users is normal-
ized by the evaluated channel PHY rate (24 Mbps). The

Number of Served Users

1 2 3 4

P
H

Y
 T

h
ro

u
g

h
p

u
t

(%
)

50

100

150

200

250

300

350

400

450

MUSE

Ideal

Figure 8: MUSE scalability shown by PHY throughput
as number of users increase.

aggregate throughput is obtained from the Packet-Error-
Rate of each stream. The x-axis depicts the number of
active concurrent transmitters.

Figure 8 indicates that MUSE achieves a data rate
that linearly increases with the number of users for the
evaluated rates and scenario. In particular, the Dynamic
Orthogonal Mapping matrix and Arbitrary Cyclic Shift
Delay successfully isolate the transmitting streams for
decoding at all tested locations. Specifically, MUSE
achieves on average 197%, 290% and 395% aggregate
PHY throughput for 2 to 4 concurrent served users re-
spectively. The error bars indicate that in some of the
tested locations, full-rank rates were achieved, whereas
the lowest rates fall within 10% of ideal full-rank PHY
performance.

The scalability shown for 24 Mbps rates in Figure 8
holds for various SNR values and data rates. We demon-
strate the scalability of MUSE’s capacity for varying
SNR values in Figure 9. To calculate MUSE capacity
we use the generalized Shannon capacity formula for
M transmit antennas and N received antennas given by
C(bps/Hz) = log2[det(IN +(ρ/M)(HH∗))] [19], where
H∗ is the conjugate transpose of H, IN is the NxN iden-
tity matrix and ρ is the average SNR. We use the chan-
nels (H) from the OTA experiments described for Fig-
ure 8 where H is measured at the receiver after apply-
ing MUSE-PHY techniques. We calculate the capacity
for each subcarrier at each transmission for SNR values
from 0 to 20 and depict the average capacity per MIMO
setting in Figure 9.

MUSE-PHY enables large multiplexing gains, how-
ever perfect linear scaling is not realized in all settings
due to some residual channel correlation. Nevertheless,
significant gains are achieved, within 4 to 6% of ideal
for 2x2, 9 to 18% of ideal for 3x3 and 13 to 27% of
ideal for 4x4. We observe for an SNR value of 20 dB,
MUSE capacity increases from 9.6 bps/Hz for a 1x1 to

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 187

18.45 bps/Hz for a 2x2, 26.11 bps/Hz for a 3x3 and 33.48
for a 4x4. The theoretical maximum rates for the evalu-
ated channels range from 126 Mbps to 410 Mbps for an
SNR of 10 dB and 193 Mbps to 669 Mbps for an SNR of
20 dB.

SNR(dB)
0 5 10 15 20

C
ap

ac
ity

 (b
its

/s
/H

z)

0

5

10

15

20

25

30

35
MUSE 1x1
MUSE 2x2
MUSE 3x3
MUSE 4x4

Figure 9: MUSE capacity for OTA measured channels.

These multiplexing gains demonstrate the scalability
of MUSE and the ability of MUSE-PHY to enable simul-
taneous distributed transmitters in high multipath scenar-
ios with well-conditioned channels. MUSE-PHY tech-
niques can achieve full-rank multiplexing gains without
need for CSIT, while not being affected by interference
or correlated channels.

4.3 Signal Decorrelation

A key to achieve multiplexing gains is decorrelating
users signals via the Arbitrary Cyclic Shift Delay (aCSD)
for correct channel estimation. In contrast to co-located
use of cyclic shifts delays, MUSE distributed transmit-
ters have diverse wireless-environment from sparse lo-
cations which lead to different signal-paths to the AP.
Here, we evaluate the effect the different aCSD settings
have on performance and signal correlation of distributed
transmitters with distinct locations. Through this evalua-
tion we derive the effect aCSD has on performance when
transmitters are distributed in space and determine the re-
lation aCSD has with user locations in relation to other
users and the AP.

Figure 10: Setup for aCSD Evaluation.

In this experiment we fix the number of users to two,
and perform 2x2 uplink multi-user transmissions at 16-
QAM (24 Mbps) each. As shown in Figure 10, we evalu-
ate 3 settings where we fix user 1 at a 5 m distance to the
AP and vary User 2 distance to the AP from 5 m (equal
distance to AP as user 1) to 3 m and 1 m. The distance be-
tween users is varied as User 2 is moved closer to the AP
as depicted in Figure 10. At each location all 17 aCSD
values are evaluated ranging from 0 ns to -800 ns in 50 ns
steps. Only 17 values are possible since the IEEE 802.11
standard’s Cyclic Prefix size is defined as 16 symbols re-
sulting in a max of 800 ns aCSD.

 0 -100 -200 -300 -400 -500 -600 -700 -800
Arbitrary Cyclic Shift Delay for User 2 (ns)

0

20

40

60

80

100

120

140

160

180

200

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 2
x2

 (%
)

Setting 1 (5m to AP, 1m to User)
Setting 2 (3m to AP, 2m to User)
Setting 3 (1m to AP, 4m to User)
SISO

Figure 11: Effect of aCSD values on performance and
channel correlation of distributed transmitters on three
evaluated settings.

Figure 11 depicts the effect varying aCSD values de-
picted on the x-axis have on the system performance
shown in the y-axis. System performance is represented
as a percentage where the aggregate system throughput
is normalized by the evaluated SISO rate of 24 Mbps.

The figure indicates that MUSE achieves the desired
performance of 200% PHY utilization across most aCSD
values from -100 ns to -700 ns. However, signal corre-
lation can be observed in Setting 1 in Figure 11 where
performance drops exists for some aCSD values. From
the 3 evaluated scenarios, we observe that user channels
are more correlated at the scenario of Setting 1 where
both users are at 5 m distance to the AP. As a result,
we observe that sparse user placement of settings 2 and
3 benefits performance by providing uncorrelated chan-
nels, allowing usage of any aCSD value between 100 ns
to 700 ns.

In the presence of correlated channels as seen at close
user proximity, specific CSD values are required, as
used today in 802.11n system where transmitters are co-
located. We observe a value of -400 ns is suitable at any
of the 3 evaluated settings, since -400 ns delay corre-
sponds to a 90 degree phase shift which presents the best
results when users have highly correlated channels.

9

188 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Lastly, we observe that aCSD values of 0 ns or 800 ns
which both correspond to applying no phase-shift, obtain
very low PHY throughput values that fall below SISO
rates. Low PHY throughput values for 0 ns or 800 ns
aCSD values are caused by correlated training signals
leading to erroneous channel estimation at the receiver.
However, we observe that the throughput values for these
aCSD values are not 0. This indicates that the high multi-
path environment provides independent channels. How-
ever in the case where the training signals are transmitted
through multiple antennas, these may result in correlated
signals leading to beamforming effects creating nulls or
signal maximum at receive antennas. We can conclude
that when aCSD is applied to the distributed transmitters,
we effectively induce multipath in the form of time delay
of the simultaneous signals which leads to signal decor-
relation. The spatial sparsity of the distributed transmit-
ters allows any aCSD value to provide the required mul-
tipath to isolate the streams for high multiplexing gains.

4.4 User Grouping and Medium Access

MUSE MAC performs user grouping without knowledge
of channel estimates or SINR among the selected users.
MUSE grouping has minimal overhead by leveraging
Association ID to enable opportunistic medium access to
users with neighboring association IDs. Here, we evalu-
ate random user grouping used by MUSE as compared to
perfect user selection, identified experimentally via ex-
haustive search.

Figure 12: Setup for Random User Grouping Evaluation.

We evaluate user grouping by performing 2x2 UL
MU-MIMO transmissions where each user transmits at
the max rate of our evaluation platform of 24 Mbps
(16-QAM). We perform an exhaustive evaluation of the
grouping combination for a pair of users in a total set of
4 users distributed in space. By evaluating all possible
user grouping combinations, i.e., 1-2, 1-3, 1-4, 2-3, 2-4,
3-4, we can analyze the difference in performance from

Table 2: Aggregate PHY Throughput for varying user
grouping.

Grouping Regular Topology Irregular Topology

Dist.
(m)

Aggregate
Capacity (%)

Dist.
(m)

Aggregate
Capacity (%)

1-2 1.50 200.0 1.30 199.6
1-3 1.50 191.4 1.00 199.3
1-4 2.10 199.6 0.80 158.7
2-3 2.10 146.0 1.68 137.7
2-4 1.50 132.0 0.84 128.7
3-4 1.50 194.66 0.84 199.3

the distinct groups. We evaluate all grouping combina-
tions in the two topologies shown in Figure 12 where 500
packet transmissions are evaluated per group combina-
tion. We evaluate a regular topology shown on the left of
Figure 12 that emulates four users in a conference room
sitting at equal distances. Additionally, we evaluate an
irregular topology shown on the right of Figure 12 where
distances between the users vary from 80 cm to 1.3 m.

Table 2 shows the aggregate throughput results per
grouping combination for evaluated typologies shown in
Figure 12. The aggregate performance results are shown
in percentage which represent the aggregate throughput
normalized by the single-stream PHY rate of 24 Mbps,
where a value of 200% represents that 2x2 full multi-
plexing gains (48 Mbps in our evaluation platform) are
achieved. The throughput results are obtained through
packet-error-rate from all transmitted packets.

The results indicate that in the evaluated regular topol-
ogy, 4 of the 6 groupings (marked in bold) obtain 91
- 100% performance increase over MISO transmissions
and only 2 grouping combinations achieve 32-46% in-
crease. In the evaluated irregular-topology we observe
that 3 out of 6 grouping combinations (marked in bold)
are within 1% of ideal 2x2 throughput. However, 3 out
of 6 grouping combinations of the evaluated irregular
topology obtain 28-58% percentage increase over MISO
performance. In groupings with lower gains, only one
stream shows higher packet-error-rate resulting in un-
decodable packet. However, because each user trans-
mits independent data (no beamforming) the loss of one
stream does not affect the performance of the other and
thus we observe aggregate throughput values of 132 to
146% and not below 100% (MISO performance). Conse-
quently, to reduce packet-error-rate and increase robust-
ness and performance of ill-conditioned channels a lower
modulation is required. Existing multi-user rate adapta-
tion solutions such as TurboRate [20] can be adapted by
MUSE to increase system performance in the case a user
experiences an ill-conditioned channel.

Additionally, we observe from the results of Table 2

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 189

that varying distances between users does not affect per-
formance. In both evaluated topologies we observe that
low gains are achieved by short inter-user-distance of
0.8 m and larger inter-user-distance of 2.10 m. This
observation demonstrates that in the evaluated scenario,
sub-optimal grouping is not related to the distance be-
tween users but instead is dependent on the user’s chan-
nel conditions which varies according to room place-
ment. We conclude that multipath of the evaluated in-
door scenario permits full rank multiplexing gains at
most evaluated locations without need of CSI or SINR
knowledge. Ideally, a MUSE system alternates among
groupings with well-conditioned channels such as group-
ing 1-2, 1-3 and 3-4 in the evaluated scenario. How-
ever, there exist locations that may encountered ill-
conditioned channels which lead to lower multiplexing
gains. Nonetheless MUSE can be made robust to bad
grouping by smartly adapting modulation rate for a se-
lected bad user or reassignment of Association IDs as
explained in Section 3.

4.5 MAC Overhead and Performance
Here, we evaluate the scalability of the net system
throughput incorporating both physical layer through-
put and MAC overhead. As a baseline, we also con-
sider today’s Wi-Fi, single-user IEEE 802.11n, which in
this scenario uses a single antenna transmitter and multi-
antenna receiver (SIMO). In this case, sequential SIMO
transmissions are performed and the antennas at the AP
are used for receive diversity. Moreover, we compare to
uplink multi-user systems SAM [11] and Signpost [12].

We first evaluate MAC-layer overhead of MUSE,
802.11n SIMO, SAM and Signpost. The MAC overhead
for each evaluated system is given by

MUSE = BOt +ACKt +Pt +Trigt (9)
SIMO = N ∗ (BOt +ACKt +Pt) (10)
SAM = (N ∗BOt)+ACKt +Pt (11)

SIGNPOST = (N ∗BOt)+ACKt +Pt +SNDPA (12)

where N is the number of served clients, BOt is the
mean backoff time of 7 slots (minimum contention, 15
slots, window divided by 2), ACKt is the ack time and
Pt is the signal preamble time. In the expression for
MUSE’s overhead given by Equation (9), Trigt repre-
sents the overhead time for the triggering packet sent
by the contention-winning user to enable the multi-user
transmission. Further, all baseline systems employ se-
quential contention for each group member of the multi-
user transmission, this is shown by (N ∗BOt) in Equa-
tions (11) and (12). Additionally, Signpost includes a
sounding packet (NDPA) of 7.4 µs for signpost calcula-
tion.

Number of Served Users
 1 2 4 8 16

O
ve

rh
ea

d
7

s

0

200

400

600

800

1000

1200
MUSE
SAM
Signpost

(a) MAC Overhead

Number of Served Users
 1 2 4 8 16

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

400

500

600
MUSE
SAM
Signpost

(b) MAC Throughput

Figure 13: Medium Access Overhead and Throughput
Scaling.

Figure 13a depicts the MAC overhead vs. the number
of users for MUSE and the baseline systems. (SIMO is
not depicted as SIMO’s overhead rapidly increases as the
numbers of users increase as shown in Equation (10) and
alters Figure 13a’s scale.) We observe that MUSE’s over-
head remains close to constant as the number of users
increases because contention is only performed once per
multiuser transmission as shown in Equation (9). Over-
head slightly increases (from 119 µs to 179 µs) with rank
because the number of training symbols for channel esti-
mation increases with the number of users. The baseline
systems’ sequential contention (N ∗BOt) increases lin-
early with N, exponential for the depicted AP antenna
numbers. Figure 13a shows baseline overhead increased
504 µs from 8 to 16 users, meanwhile MUSE overhead
remains close to constant increasing only 32 µs from 8 to
16 users. Thus, even though MUSE overhead is greater

11

190 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

for a small number of users, it remains close to constant
leading to the best scaling with user population.

Second, we compare MAC throughput of MUSE with
IEEE 802.11n SIMO, SAM and Signpost. All systems
are simulated with 100 OFDM symbol packets with 6
bits per symbol for a 20 MHz channel, resulting in data
rate of 54 Mbps with no transmit collisions (0 Packet-
Error-rate). Figure 13b depicts MUSE throughput lin-
ear increase, e.g. MUSE throughput increases from
140 Mbps for 4 concurrent users to 513 Mbps for 16
users. However, throughput of baseline systems does
not increase linearly as MUSE, e.g., for 8 users baseline
throughput is 158.8 Mbps and only increases by 50 Mbps
(1/3) when doubling the number of users. Through-
put scalability of baseline systems is limited by increas-
ing overhead (shown in Figure 13a). Finally, MUSE’s
marginal gains over baseline increases with rank: with a
low number of users (1-2), MUSE performance is equal
or slightly worse than baseline. However, as the num-
ber of users increases, MUSE’s gains over the baseline
escalate where we observe gains of 2.5x for 16 antenna
APs compared to the multi-user baseline. This evalua-
tion demonstrates the importance of constant overhead
in scaling multi-user uplink medium access.

5 Prior Work

MUSE is the first PHY and MAC system that enables
scalable full-rank uplink multi-user multiplexing without
requiring a control channel. Here, we contrast MUSE to
prior work in both downlink and uplink multi-user trans-
mission.

Multi-User Downlink. There is a vast body of the-
oretical [3] and experimental [1, 2, 4, 5] research that
demonstrates the multiplexing gains available in down-
link multi-user MIMO. Moreover, downlink multi-user
WLAN transmission was standardized in 2014 in IEEE
802.11ac [7]. In both research and commercial systems,
Transmit beamforming (TxBF) is used to uncorrelate
users’ channels and serve multiple users simultaneously.
TxBF uses CSIT to form weight vectors that isolate the
data streams of the different users.

In contrast to downlink multi-user transmission where
data is sourced from a single AP, uplink multi-user data
is sent from multiple devices that are independent and
spatially distributed. Distributed transmitters have inde-
pendent clocks that cause channel estimation to become
stale or obsolete as their phases drift differently and in-
dependently. In TxBF all the space-time streams are
combined and multiplied by a matrix of steering vectors
to produce the input to the transmit chains. However,
distributed transmitters have no control channel among
them which prohibits the stream combination in TxBF.
Further, CSI overhead increases linearly with rank which

fails to achieve MUSE’s scaling goal for uplink multi-
user transmission.

Multi-User Uplink. There is limited prior work on
distributed multi-user uplink WLANs and to date it is
neither standardized nor commercialized for WLANs.
Existing WLAN uplink multi-user solutions [12, 11,
21] enable multiplexing through sequential contention
for each group member. However, sequential con-
tention incurs control overhead (training and contention)
that increases linearly with group size. In contrast,
MUSE-MAC scalable grouping eliminates the need for a
group-selection control procedure via a single contention
(fixed-overhead).

In aforementioned solutions stream isolation is
achieved in three different ways: by CSI based pre-
aligned orthogonal directions in [12], successive inter-
ference cancellation and staggered preambles in [11]
and interference alignment and cancellation [22] in [21].
In contrast, MUSE-PHY enables full-rank multiplexing
with standard compliant channel estimation from all dis-
tributed users, with temporally overlapped preambles for
an arbitrary number of users.

6 Conclusions

In this paper we introduce MUSE, the first system to
achieve full-rank uplink multi-user capacity in a fully
distributed and scalable manner without a control chan-
nel. In MUSE, no control messages are used for chan-
nel estimation, CSI feedback and channel-based user
selection. We design MUSE-PHY which decorrelates
users’ signals through Arbitrary Cyclic Shift Delays, en-
ables preamble-based clean channel estimation at the re-
ceiver with the Dynamic Orthogonal Mapping matrix
and adapts to variable traffic demand of distributed trans-
mitters. We design a fixed-overhead scalable MUSE-
MAC that enables a multi-user multi-stream transmis-
sion through a single medium access contention. MUSE-
MAC attaches a random set of additional users to the
winning-user and assures the rank of the group equals the
number of antennas at the AP. Our experiments demon-
strate full-rank multiplexing gains in the evaluated sce-
narios that show linear gains as the number of users in-
crease. Our experimental results show an average PHY
capacity utilization of 197%, 290% and 395% for 2 to
4 concurrent users respectively with evaluated rates and
maintain constant overhead as the number of users in-
creases.

7 Acknowledgments

This research was supported by Cisco Systems, Intel,
the Keck Foundation, and by NSF grants CNS-1514285,
CNS-1444056, CNS-1126478 and CNS-1012831.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 191

References

[1] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang,
and L. Zhong, “Argos: Practical many-antenna base sta-
tions,” in Proc. ACM MobiCom, 2012.

[2] X. Xie, E. Chai, X. Zhang, K. Sundaresan, A. Kho-
jastepour, and S. Rangarajan, “Hekaton: Efficient and
Practical Large-Scale MIMO,” in Proc. ACM MobiCom,
2015.

[3] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath,
“Capacity limits of MIMO channels,” IEEE Journal on
Selected Areas in Communications, 2003.

[4] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly,
“Design and experimental evaluation of multi-user beam-
forming in wireless LANs,” in Proc. ACM MobiCom,
2010.

[5] E. Perahia and R. Stacey, Next Generation Wireless LANs:
802.11n and 802.11ac. Cambridge University Press,
2013.

[6] O. Bejarano, E. W. Knightly, and M. Park, “IEEE
802.11ac: from channelization to multi-user MIMO.”
IEEE Communications Magazine, 2013.

[7] IEEE 802.11ac, “IEEE Standard for Information technol-
ogy Local and metropolitan area networks Part 11: Wire-
less LAN Medium Access Control (MAC) and Physi-
cal Layer (PHY) Specifications Amendment 5: Enhance-
ments for Higher Throughput,” IEEE Std 802.11ac-2014.

[8] “Qualcomm VIVE with Qualcomm MU EFX Multi-User
MIMO.” [Online]. Available: http://www.qca.qualcomm.
com/products/qualcomm-vive/

[9] “Quantenna communications.” [Online]. Available: http:
//www.quantenna.com/

[10] B. Crow, I. Widjaja, J. G. Kim, and P. Sakai, “IEEE
802.11 Wireless Local Area Networks,” IEEE Commu-
nications Magazine, Sep 1997.

[11] K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and
G. M. Voelker, “SAM: enabling practical spatial multiple
access in wireless LAN,” in Proc. ACM MobiCom, 2009.

[12] A. Zhou, T. Wei, X. Zhang, M. Liu, and Z. Li, “Signpost:
Scalable MU-MIMO signaling with zero CSI feedback,”
in Proc. ACM MobiHoc, 2015.

[13] IEEE 802.11-2012, “IEEE Standard for Information tech-
nology Local and metropolitan area networks Part 11:
Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications,” IEEE Std 802.11-2012.

[14] M. Esslaoui, F. Riera-Palou, and G. Femenias, “A fair
MU-MIMO scheme for IEEE 802.11ac,” in International
Symposium on Wireless Communication Systems, 2012.

[15] Z. Shen, R. Chen, J. Andrews, R. Heath, and B. Evans,
“Low complexity user selection algorithms for multiuser
MIMO systems with block diagonalization,” IEEE Trans-
actions on Signal Processing, 2006.

[16] N. Anand, J. Lee, S.-J. Lee, and E. W. Knightly, “Mode
and User Selection for Multi-User MIMO WLANs with-
out CSI,” in Proc. of IEEE INFOCOM, 2014.

[17] T. Tandai, H. Mori, and M. Takagi, “Cross-layer-
optimized user grouping strategy in downlink multiuser
MIMO systems,” in Proc. IEEE VTC. IEEE, 2009.

[18] “WARP project.” [Online]. Available: http://warpproject.
org

[19] G. J. Foschini, “Layered space-time architecture for wire-
less communication in a fading environment when us-
ing multi-element antennas,” Bell labs technical journal,
1996.

[20] W.-L. Shen, K. C.-J. Lin, S. Gollakota, and M.-S. Chen,
“Rate adaptation for 802.11 multiuser MIMO networks,”
IEEE Transactions on Mobile Computing, 2014.

[21] K. C.-J. Lin, S. Gollakota, and D. Katabi, “Random ac-
cess heterogeneous MIMO networks,” Proc. ACM SIG-
COMM, 2011.

[22] S. Gollakota, S. D. Perli, and D. Katabi, “Interference
Alignment and Cancellation,” Proc. ACM SIGCOMM,
2009.

13

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 193

BeamSpy: Enabling Robust 60 GHz Links Under Blockage
Sanjib Sur, Xinyu Zhang, Parmesh Ramanathan

University of Wisconsin-Madison
Ranveer Chandra

Microsoft Research

Abstract
Due to high directionality and small wavelengths, 60 GHz
links are highly vulnerable to human blockage. To over-
come blockage, 60 GHz radios can use a phased-array
antenna to search for and switch to unblocked beam di-
rections. However, these techniques are reactive, and
only trigger after the blockage has occurred, and hence,
they take time to recover the link. In this paper, we
propose BeamSpy, that can instantaneously predict the
quality of 60 GHz beams, even under blockage, with-
out the costly beam searching. BeamSpy captures unique
spatial and blockage-invariant correlation among beams
through a novel prediction model, exploiting which we
can immediately select the best alternative beam direc-
tion whenever the current beam’s quality degrades. We
apply BeamSpy to a run-time fast beam adaptation pro-
tocol, and a blockage-risk assessment scheme that can
guide blockage-resilient link deployment. Our experi-
ments on a reconfigurable 60 GHz platform demonstrate
the effectiveness of BeamSpy’s prediction framework,
and its usefulness in enabling robust 60 GHz links.

1. Introduction
The 60 GHz millimeter-wave (mmWave) band, with

up to 7 GHz of unlicensed spectrum, offers the foun-
dation for a new wave of applications, such as uncom-
pressed video streaming, instant file sync, wireless data-
centers and wireless fiber-to-home access. Demand for
such data-hungry applications, together with worldwide
availability of the 60 GHz band, have fueled multiple
standardizations, e.g., IEEE 802.11ad [1], 802.15.3c [2]
and ECMA-387 [3]. A similar paradigm has been advo-
cated by industry to realize next-generation multi-Gbps
cellular networks [4].

To counteract strong signal attenuation, a pair of 60
GHz transceivers can establish a link by forming highly
directional beams using phased-array antennas. How-
ever, the pseudo-optical nature of a beam renders it ex-
tremely sensitive to blockage, especially in indoor de-
ployments with heavy human activity [5]. Existing 60
GHz network standards have built in a counter-measure
— a phased-array antenna can electronically switch be-
tween a prescribed set of beam directions, and bounce the
signals off opportunistic reflectors, and thus detouring
the blockage. But two new challenges emerge. (1) Run-
time overhead. Searching for alternative Tx/Rx beam di-
rections involves a tedious scanning and signaling proce-

dure. The overhead grows almost quadratically with the
number of beam directions. Since a 60 GHz phased array
typically generates tens to hundreds of beams, the over-
head can easily overwhelm the precious channel time of
a multi-Gbps link [6, 7]. (2) Lack of outage prevention.
Beam searching/switching can only react after blockage
occurs, which may have already caused detrimental ef-
fect on application and transport layer protocols.

In this paper, we propose BeamSpy to meet the above
challenges. BeamSpy can predict the quality of alterna-
tive beams by only inspecting the channel response of
the current beam used by the receiver. BeamSpy’s pre-
diction mechanism leverages two fundamental properties
of 60 GHz links: (1) Channel sparsity: no matter how
many beam directions are available, the transmitter can
only reach the receiver via a small set of dominating sig-
nal paths [7–10]. (2) Spatial correlation: the channels
formed by different pairs of beams are often correlated,
and the correlation remain unaffected by blockage, ac-
cording to our measurement study (Sec. 3).

BeamSpy’s prediction framework is model-driven. It
exploits channel sparsity and models the channel between
the transmitter and receiver using only a discrete set of
signal paths, a set that we refer to as path skeleton. Fur-
thermore, BeamSpy characterizes the spatial correlation
by modeling the way different beam directions share the
same path skeleton. The model takes into account the
joint effect of phased-array beamforming and 60 GHz
channel distortions. The modeling parameters are ex-
tracted from a one-time measurement, and invariant un-
der blockage. Using BeamSpy, the Tx/Rx radios can in-
stantaneously predict the best alternative beam direction
whenever the current beams’ quality drops.

BeamSpy can become a core engine for a wide range
of 60 GHz protocols involving beam searching. In this
paper, we apply BeamSpy to design two such protocols
that facilitate reliable 60 GHz networking in blockage-
prone indoor environment. (1) Fast beam adaptation: A
link recovery protocol that can approximate the 802.11ad
beam searching with a single implicit probing, thus evad-
ing the run-time overhead. (2) Link outage prediction. A
risk-assessment algorithm that predicts the likelihood of
link outage under blockage, thus offering guidelines for
deploying 60 GHz links in a blockage-proof way.

We validate BeamSpy on a custom-built 60 GHz ra-
dio platform [7], along with trace-driven emulator run-
ning unmodified TCP/IP and application stack. Our ex-

194 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

perimental results demonstrate that: (1) BeamSpy’s pre-
diction framework can effectively forecast quality of all
beams by inspecting only one, with an average RSS pre-
diction error of 0.02 to 1.2 dB. (2) BeamSpy’s fast beam
adaptation protocol can efficiently identify the best beam
pair, if any, that can overcome human blockage. It achieves
comparable throughput performance with an oracle that
knows exact beam quality, and outperforms 802.11ad sig-
nificantly in application tests. (3) At deployment time,
BeamSpy’s outage risk analysis can effectively assess
vulnerability to human blockage and recommend a re-
deployment when necessary.

General properties of 60 GHz channels, and the possi-
bility of overcoming blockage via beam switching, are
already well known [7, 11–13]. The key contribution
of BeamSpy lies in a measurement-based and model-
driven framework to help combat blockage without any
extensive beam searching. In summary, our contribution
breaks down into the following three aspects,
(1) A measurement study to understand the unique
properties of 60 GHz channel that are pertinent to the
predictability of 60 GHz beamforming performance
(Sec. 3). To the best of our knowledge, we are the first
to perform a principled study of the blockage-invariant
spatial correlation between 60 GHz beams, which roots
in an interplay between extremely sparse 60 GHz spatial
channels and phased-array beamforming.
(2) A novel prediction framework that can capture
the spatial correlation between beams using a path
skeleton model, and can predict the performance of
different beams without explicit probing (Sec. 4). The
framework is validated through extensive experiments on
a 60 GHz testbed.
(3) Applications of the prediction framework to de-
sign robust 60 GHz indoor networks (Sec. 5). We de-
sign the first risk assessment protocol to predict the vul-
nerability of blockage at deployment time, and a fast
beam adaptation protocol to efficiently overcome block-
age at run-time.

2. Background & Motivation

2.1 60 GHz Channel and Impacts of Blockage
Due to smaller wavelength, a 60 GHz mmWave link

suffers from 28 dB of higher propagation loss than a
2.4 GHz WiFi link. This disadvantage is compensated
by using high-gain phased-array antenna, with multiple
antenna elements that together act as a “focusing lens”
to form highly directional RF beams. For instance, a
50×50 element phased-array can generate narrow beams
of width 3◦, providing an antenna gain of 36 dB [7, 14].
However, directional 60 GHz beams are highly suscepti-
ble to blockage [5, 7, 15] because of small wavelength,
and hence limited ability to diffract around obstacles.
When a beam is fully blocked by human body, link bud-

get is penalized by 20 to 30 dB [5, 7]. This is in stark
contrast with directional links at lower frequencies [7].
Human movement in a room, therefore, can cause inter-
mittent outage of 60 GHz links. Deployment in [5] ob-
served 1% to 2% of link outage in an environment with
1 to 5 persons, and 14% to 22% with 11 to 15 persons.

The impact of link outage will be amplified at higher
network layers. At the transport layer, TCP will respond
by timing out, and may even need to re-establish con-
nection [16]. Niche 60 GHz applications such as uncom-
pressed video streaming may suffer from glitches and ex-
tended stalling period. Cable-replacement applications
such as wireless HDMI, PCIe, USB deem outage event
as cable-unplugging [17], and respond to it with very
high re-establishment latency. As a result, it degrades
the users’ quality-of-experience significantly.

2.2 Limitations of Beam Scanning/Searching
A 60 GHz link may overcome blockage by switching

Tx’s and Rx’s beams to form a detour path. Numer-
ous beam-searching protocols, including the default in
802.11ad, has been proposed to search for the best beam
pair [6, 18–20] However, any beam-searching protocol
bears the following inherent limitations.
Overhead. Although dwelling on each beam direction
only takes a few µs (including the time in signal, switch-
ing, and RSS feedback), the overhead increases almost
quadratically with number of beams (48.4ms for a 16×16
phased-array antenna and 785.7ms for a 32×32 one [7]).
In addition, beam-searching are usually invoked only at
scheduled time-slots, and as such, only responds long af-
ter blockage already occurred.
Triggering threshold. Effective triggering of beam-searching
remains an open problem. A typical approach is to in-
voke searching once link SNR changes beyond a thresh-
old [12]. But under such an aggressive mode, search and
switch may be triggered relentlessly throughout a block-
age event, incurring substantial overhead [7]. Under a
conservative mode, the device defers searching until link
outage occurs. It then switches to best available beam
pair, if any, to re-establish link. Albeit with less over-
head, it may not be able to react quickly to blockage
event which leaves the link at outage state for an ex-
tended period of time. It is virtually infeasible to set
an optimal threshold which depends on elusive human
blockage pattern.
Lack of preventive mechanism. Existing beam-searching
protocols react to blockage, but do not afford any pre-
ventive mechanism to reduce the likelihood of link out-
age. An ideal preventive mechanism should be able to
assess if a 60 GHz link is robust (i.e., whether it can sur-
vive blockage using beam switching), and if not, sug-
gest a re-deployment. However, such assessment is very
challenging, because the effectiveness of beam switch-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 195

 Metallic
Reflector

Tx
Rx

Angular
Clusters

 Angular
spread ≅ 15°

LOS

NLOS30 dB

20 dB

10 dB

0
0.2

0.4

0
0.2

0.4

0
0.2

0.4

Angular Clusters

PD
F

1 2 3 4 5

Office
0.6

0.6

Corridor

Conference
0.6

Figure 1: (a) Sparse channel response and strong clus-
tering effect across different AOA. (b) Distribution of
number of strong clusters for 50 links in 3 environments.
ing highly depends on elusive environmental factors (re-
flectors positions, blocking positions etc. [7]). Interest-
ingly, our experiments reveal that, maintaining proactive
“backup” beams, commonly assumed in simulation mod-
els [11–13,21], rarely helps in blockage prevention (Sec.
7). This is due to spatial correlation: multiple beams can
be blocked simultaneously, even if they seem to point in
different physical directions.

3. Measurements and Observations
In this section, we present four measurement observa-

tions of 60 GHz channels and phased-array beamform-
ing. These observations constitute the foundation of Beam-
Spy’s prediction framework. Our measurement is con-
ducted using a custom-built 60 GHz software radio plat-
form (detailed in Sec. 6).
Observation 1 Channel sparsity: 60 GHz channels are
extremely sparse. The spatial channel response is domi-
nated by a few paths from a few angular directions.

The sparsity of 60 GHz channel is well known in prior
measurement studies [7, 8, 15, 22, 23], and is presented
here for completeness. Following a classical channel
measurement approach [7,8], we set up an omni-directional
60 GHz transmitter (Tx) in an office environment, while
steering a 3◦ receiver (Rx) to resolve signal paths com-
ing from different spatial angles. Fig. 1(a) plots an ex-
ample spatial channel profile, i.e., RSS measured along
different Angle-Of-Arrival (AOA). The AOA pattern is
extremely sparse — despite the omni-directionality of
Tx, the Rx can only receive strong signals from a few
densely concentrated directions (referred to as angular
clusters), each spanning a narrow angle. Such sparsity
is because mmWave signal energy tends to concentrate
around the LOS path and a few NLOS paths from strong
reflectors.
We have also measured 50 additional links randomly lo-
cated in 3 different sites (office, corridor and conference
room). Fig. 1(b) shows that all the links have 5 or fewer
angular clusters, which again corroborates the sparsity.

Observation 2 Spatial correlation: Given a 60 GHz phased-
array with multiple beam directions, blockage of one beam
affects the performance of other beams.

For a phased-array receiver beam, the RSS along each
spatial angle equals the corresponding beam gain pattern

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Correlation

4 beams
8 beams

16 beams
32 beams

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Correlation

4 beams - during blockage
4 beams - postblockage

8 beams - during blockage
8 beams - postblockage

Figure 2: (a) Distribution of correlation between clus-
ter blockage & RSS change of all beams. (b) Conditional
distribution of correlation of RSS change of all other
beams w.r.t. strongest beam during & after blockage.
multiplied by the channel gain. For example, under the
same setup as in Fig. 1(a), Fig. 5(b) illustrates the spatial
RSS when the receiver’s phased-array is tuned to 4 differ-
ent beam patterns. Note that each beam pattern may con-
tain multiple main lobes and sidelobes, but all 4 beams
“share” the same two channel clusters. Therefore, when
obstacles block a certain angular cluster, all beams may
be affected in a correlated way.

To consolidate this intuition, we examine the impact
of blockage on links using omni Tx and phased-array Rx,
with 4 to 32 different beam patterns. For each beam,
we measure the normalized RSS changes for different
blockage positions and stack them into a vector. We
then calculate the correlation coefficient between differ-
ent beams’ vectors. Fig. 2(a) plots the CDF of pairwise
correlation coefficients among 30 randomly deployed links.
Around 80% of the links showed a strong inter-beam cor-
relation (coefficient > 0.5), indicating that the perfor-
mance of many beams will change in a correlated way
even when the blockage seems to land on one beam.
Observation 3 Blockage invariant correlation: The sta-
tistical correlation between different beams is invariant
to human blockage.

Intuitively, whether two beams suffer from correlated
performance loss only depends on whether they strongly
share certain angular clusters, and the correlation should
not be affected by the blockage event itself. For verifica-
tion, we repeat the previous experiment by blocking only
the strongest angular cluster for each link. Meanwhile,
we measure the RSS change of all beams. After remov-
ing the blockage, we repeat the measurement. Fig. 2(b)
plots the distribution of the correlation between the per-
formance change of all other beams w.r.t. the strongest
beam. Evidently, the spatial correlation between phased-
array beams remain unaltered irrespective of blockage
events. BeamSpy essentially learns such correlation ex-
plicitly using a novel modeling framework (Sec. 4.2.1),
and leverages the model to predict the best beam during
blockage (Sec. 4.2.2).
Observation 4 Human blockage does not create addi-
tional significant angular clusters.

60 GHz signals are well known to be aquaphobic [7,
24,25]. Therefore, when blocking a 60 GHz link, human

196 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1 0 1 2

P
D

F

Angular Cluster Difference

Random
Conditioned

Figure 3: Distribution of difference in number of clusters
before and during blockage.

body may absorb most of incoming signals [25], thus
partially or completely blocking certain angular cluster(s).

This effect is evident in Fig. 3. Continuing with the
prior setup, for each of the random blockages around
each link, we identify the strong clusters and plot the
PDF of the cluster number difference before and during
blockage. A blockage may or may not fully block one
cluster, evident from the result that the number of clusters
can remain unchanged for more than 90% of the cases.
However, if we condition on the cases where blockage
landed on one or more clusters, about 63% links show
1 cluster less than those before blockage. Although sig-
nals can still bounce off the body, the end effect does not
create a new strong/significant cluster.

4. BeamSpy Prediction Framework
Driven by the above observations, BeamSpy establishes

a beam-quality prediction framework, designed for quasi-
stationary 60 GHz links that may be occasionally dis-
placed but frequently blocked by human movement [5].
Fig. 4 illustrates BeamSpy’s work flow. When a link is
deployed, BeamSpy leverages full-beam scanning (such
as in 802.11ad) to construct a novel path skeleton model,
and extrapolate the blockage-invariant spatial correlation
between different beams available on the Tx/Rx’s phased-
arrays. Afterwards, whenever beam quality changes due
to blockage (indicated by SNR drop), BeamSpy can pre-
dict the quality of all other beams by simply measuring
the Channel Impulse Response (CIR) of the beam in use.

In what follows, we first provide a primer on how 60
GHz signals are shaped by phased-array beamforming
and channel response (Sec. 4.1), based on which we de-
tail BeamSpy’s prediction framework (Sec. 4.2 and Sec. 4.3).

4.1 Joint Effect of Phased-array Beamforming
and Angle Dependent Channel Distortion

A phased-array can apply a vector of beamforming
weights to a set of omni-directional antenna elements to
create directional beams, for either a transmitter or a re-
ceiver. For ease of exposition, we focus on a 1-D uni-
formly spaced antenna array, which has N antenna el-
ements and can generate K beam directions/patterns in
total. For the kth beam, its array-factor (gain at spatial
direction θ) is given by [24]:

Ak(θ) =
∑N

n=1w(n,k) · exp(j2πndcosθ/λ) (1)

Tx Rx

Pair-wise full beam
 scanning

Measure K CIRs, one
for each Rx beam (Eq. 4)

 Path skeleton
construction (Eq. 5)

 Store one path
 skeleton for

 each Tx beam

Constructing the path skeleton at deployment time (Sec. 4.2.1)

X
Tx Rx

Predicting the best beam at run-time (Sec. 4.2.2)

Measure CIR
of current beam

Identify state of path
 skeleton (Eq. 7)

Reconstruct K CIRs (Eq. 8);
pick the beam with highest RSS

CIR of
beam 1

CIR of
beam K

Current beam is
affected by
blockage

CIR of
beam 1

CIR of
beam K

 CIR of
kth beam

Figure 4: BeamSpy’s prediction framework.

where d is the antenna element spacing and λ the wave-
length. w(n,k) is the beamforming weight applied to the
nth element when generating beam k. Each beam corre-
sponds to one antenna gain pattern, with certain spatial
directions amplified whereas others weakened.

For sake of simplicity, suppose the transmitter is omni-
directional and receiver is a directional phased-array. When
the receiver steers towards the kth beam, its Channel Im-
pulse Response (CIR), hk, is a joint effect of the array-
factor in Eq. (1) and the CIR of each antenna element.
Suppose Θ is the maximum receiver aperture of each an-
tenna elements (e.g., 360◦ for omni-directional ones) and
P is the number of paths the signals can traverse between
the transmitter and the receiver. Then, we have:

hk =
∑Θ

θ=0

∑P
p=1Ak(θ) · Γ(p) · δ(θ(p)− θ) (2)

where Γ(p) = β(p)ejφ(p) is the channel distortion over
path p, and β(p), φ(p), θ(p) are the attenuation, phase
and AOA of signal components traversing along path p.
δ(·) denotes the Dirac delta function capturing the effect
of path directions on CIR hk of kth beam.

Intuitively, the CIR hk captures the aggregated effect
of all paths that arrive at each of the antenna elements,
appropriately weighted by w(n,k) and summed together.
In practice, not only the receiver, but also the transmit-
ter’s phased-array antenna will reshape the channel re-
sponse, creating directionality effect along different spa-
tial directions. This is equivalent to simply applying the
transmitter’s array-factor to each path in a reciprocal way.

When steered to beam k, a phased-array receiver can
employ the built-in channel-training preambles such as
in 802.11ad packets to extract the CIR value hk, which
is required in order to demodulate the packet payload [1].

4.2 Prediction Framework: Model & Algorithm
We formally define a path skeleton as the sparse set

of dominating paths that can be used to approximate the
spatial channel between a 60 GHz transmitter and re-
ceiver. Note that, the path skeleton only depends on the
channel and is independent of the beamforming weights
at Tx/Rx. However, the overarching challenge here is
that the Tx/Rx can only measure the CIR when using a
given beam, and cannot discriminate the channel distor-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 197

 Path
Skeleton

 Metallic
Reflector

Rx
Tx

Received
 AOA

Beam1 Beam2

Beam3 Beam4

Measured
 Channel

 Antenna
Gain Pattern

Figure 5: (a) Example path skeleton constructed by
BeamSpy. (b) Measured CIR when receiver’s phased-
array antenna switches among 4 beam patterns.
tion/blockage along each specific path. But intuitively,
since the channel is sparse, the very few number of domi-
nating paths form a path skeleton that determines the per-
formance of all receive beams. The core idea of Beam-
Spy is to “reverse-engineer” the path skeleton between
the Tx and Rx (Sec. 4.2.1) and, when blockage occurs,
estimate the blocked paths within the skeleton, and then
predict the CIR of unobserved beams based on their known
beamforming weights (Sec. 4.2.2).

4.2.1 Constructing the Path Skeleton
Fig. 4 (top) shows the one-time procedure to construct

the path skeleton. When the 60 GHz AP and clients are
deployed, BeamSpy invokes a full beam-searching pro-
cedure (such as in 802.11ad) once to capture the pre-
blockage CIR between each pair of Tx and Rx beams.
For each Tx beam, BeamSpy uses an array of K entries
to store the CIR of the K receive beams.

Typical 60 GHz phased-array transmitters need to gen-
erate both highly directional and quasi-omni-directional
beams [1, 7]. For simplicity, we only focus on quasi-
omni transmit beam, whereas the receive beam can be
any k ∈ [1,K]. BeamSpy constructs a path skeleton for
each transmit beam. Simply put, the path skeleton con-
sists of M paths arriving at receiver, which can be used to
re-model the K CIR entries. These M paths should con-
tain majority of the spatial information of the channel to
represent the sparse set of signal clusters (Observation 1)
between the Tx and the Rx.

So, how to construct the M paths, given that the re-
ceiver can only measure the CIR of each receive beam?
BeamSpy solves this problem using a reverse-engineering
model. Following Eq. (2), the CIR of beam k (∈ [1,K])
can be represented as:

hrep
k =

∑M
i=1Ak(θi) · aiejφi

and let Hrep =
{
hrep
1 , hrep

2 , . . . , hrep
K

} (3)

Here, each path pi is represented by a triplet θi, ai, φi,
denoting its angle-of-arrival, amplitude and phase.
Denote the measured CIR of the K beams as:

Hms =
{
hms
1 , hms

2 , . . . , hms
K

}
(4)

Then, BeamSpy resolves the M paths as:

{p̂1, · · · , p̂M} = argmin
{p1,··· ,pM}

∣∣∣∣Hms −Hrep
∣∣∣∣2 (5)

Said differently, BeamSpy searches for M skeleton paths
that can reproduce the measured CIR of all K beams
with minimum error. This is a non-linear least mean
square error curve fitting problem. We solve the problem
using the Levenberg-Marquardt Algorithm (LMA) [26],
which are widely applied in non-linear inverse problems.

When M > K, the problem (5) can become underde-
termined, since we are fitting a skeleton of M paths to K
measured samples. Therefore, given the receiver owns K
beams, BeamSpy uses a skeleton of M ≤ K paths to rep-
resent the channel. In practice, M ≤ K holds because
the number of strong angular clusters (paths) is typically
below 5 in 60 GHz indoor/outdoor channels [9, 22] (c.f.
Fig. 1(b)), whereas K ≥ 8 even for a small 4-element
phased-array [7]. We will further discuss about choice of
M with system-level constraints in Sec. 4.2.2. Fig. 5(a)
illustrates an example of path skeleton constructed using
4 angular CIR patterns, measured when the receiver is
tuned to 4 different beam patterns (Fig. 5(b)).

4.2.2 Predicting the Best Beam
Fig. 4 (bottom) shows BeamSpy’s run-time prediction

procedure. Specifically, given the measured CIR of cur-
rent beam, BeamSpy estimates which paths within the
path skeleton are affected by blockage. It then immedi-
ately predicts the quality of all alternative beams, based
on the a priori path skeleton which captures the invariant
spatial correlation between beams.

To identify the affected paths, BeamSpy makes the fol-
lowing approximation, inspired by Observation 4: hu-
man blockage annihilates existing skeleton paths, but does
not create new paths. Suppose, the current receive beam
index is k, with measured CIR hobs

k . Let bi ∈ {0, 1} be
an indicator variable denoting whether the skeleton path
pi is blocked. Following Eq. (3), we can represent the
current beam’s CIR as:

hpred
k =

∑M
i=1Ak(θi) · bi · aiejφi (6)

where bi ·ai models path pi’s amplitude during blockage.
Then we fit Eq. (6) to measured CIR hobs

k to estimate b̂,
the blocked/non-blocked states of all the skeleton paths:

b̂ = {b̂1, · · · , b̂M} = argmin
{b1,··· ,bM}

∣∣∣
∣∣∣hpred

k − hobs
k

∣∣∣
∣∣∣
2

(7)

Finally, given the estimated b̂, and the pre-blockage path
skeleton (Sec. 4.2.1), BeamSpy can reconstruct the CIR
of any unobserved beam k′ (k′ �= k):

hpred
k′ =

∑M
i=1Ak′(θi) · b̂i · aiejφi (8)

The reconstructed CIR can be straightforwardly converted
to link quality metric, like RSS or effective SNR [27],
based on which BeamSpy can identify the best beam.
Note that, the Minimum Mean Square Error (MMSE) be-
tween current beam’s measured and reconstructed CIR,

eM = min
{b1,b2,··· ,bM}

∣∣∣∣hpred
k − hobs

k

∣∣∣∣2 (9)

198 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

characterizes the error when BeamSpy re-models block-
age using b̂. This is a salient metric, later used as a con-
fidence level of BeamSpy’s beam quality prediction.
Handling partial blockage and run-time execution. In
practice, a path may consist of a cluster of angles, and hu-
man body may block only part of the cluster. To account
for partial blockage, we quantize the elements b̂i ∈ b̂
into Q discretized levels and by default set Q = 4, cor-
responding to levels {0, 1

3 ,
2
3 , 1}. When multiple paths

are affected concurrently (due to either single or multi-
person blockage), the prediction framework is still appli-
cable as multiple elements in b̂ may become 0 simulta-
neously. The non-linear problem in (7) may be solved
using LMA, similarly to (5). However, the complexity
may be too high for run-time execution. We simplify
the solution using a look-up table approach. During the
path skeleton construction phase, we build a table of size
QM , each entry corresponding to the hpred

k for a given
configuration of b̂. At run time, to solve the problem
(7), BeamSpy can simply look for the entry that matches
hobs
k with minimum error. To reduce the lookup time,

we empirically limit M , the number of skeleton paths,
to a maximum of 8. In practice, this empirical choice
works because the typical number of angular clusters for
60 GHz indoor/outdoor channels is well below 5 [9, 22].

We emphasize that BeamSpy needs no PHY layer mod-
ification to the 60 GHz radios. It requires only channel
response for each receive beam direction. Today’s WiFi
drivers already allow access to such information [27] and
we expect this trend to continue for the 60 GHz drivers.

4.3 Operations of the Prediction Protocol
Lightweight prediction protocol. The above prediction
framework focused on predicting the best Rx beam for
a given quasi-omni Tx beam. We now describe how to
extend the framework to predict the best pair of Tx and
Rx beams. This is realized using a lightweight two-step
signaling procedure illustrated in Fig. 6(a).

First, the AP temporarily switches to a quasi-omni an-
tenna mode. The client measures the corresponding CIR
using its current beam, and predicts the quality of alter-
native beams using the above algorithm. Then, the client
feeds back the index of its new best beam direction (feed-
back sent via this new direction). Under the client’s new
beam direction, the AP predicts its new best beam, using
the prediction algorithm in a reciprocal way.

The two-step signaling can be sneaked into existing
MAC protocols, e.g. 802.11ad, as a background proce-
dure. During normal data transmission, AP downgrades
to quasi-omni mode, and invoke two-step signaling just
like a normal Data-ACK exchange. BeamSpy’s predic-
tion framework requires that the AP’s quasi-omni beam
cover its all possible fine beam directions, thus exciting
all paths they can generate. Multiple quasi-omni beams

may be invoked separately to repeat the two-step signal-
ing and satisfy this requirement. In practice, a quasi-
omni beamwidth can be 60◦ to 180◦, and 1 to 3 quasi-
omni beams are sufficient to meet this goal.

Two additional points are worth discussion here:
(1) BeamSpy requires that channel estimation is still fea-
sible after blockage. This is reasonable because channel
training preamble is much more robust than data payload.
For exmaple, 802.11ad uses a training sequence with a
spreading factor of 128. Thus, channel estimation is still
feasible even if link SNR is 21 dB (10 log10(128)) lower
than the minimum SNR needed to demodulate data.
(2) In the second signalling step, even if channel esti-
mation is feasible, the client may fail to convey its best
beam index to AP, i.e., the signaling packet may be lost
and AP times out. However, as long as the AP can extract
the client→AP CIR, it can recover the index as follows.
It can search through each path skeleton corresponding
to each of the client’s Tx beams, and apply a minimum
Euclidean distance metric to infer the client’s best beam
index j. Then, it applies BeamSpy’s prediction algorithm
as if j is directly fed back by the client.

In practice, BeamSpy’s signaling failure rarely occurs,
because it can employ a fast beam adaptation protocol
(Sec. 5.1) to ensure the link migrates to the best alterna-
tive beam pair before the current one is fully blocked.
Refreshing path skeleton. After its initial construction,
the path skeleton is refreshed on demand. BeamSpy can
instantaneously detect staleness of the path skeleton us-
ing the confidence level parameter eM (Eq. (9)). It re-
runs the path skeleton construction (Sec. 4.2.1) if the eM
drifts from its initial value beyond a threshold (default to
20%). We note that the triplet θi, ai, φi that characterize
each path pi are only affected by link distance, Tx/Rx
orientation and strong reflectors in the environment. Hu-
man movement does not affect the parameters, because
the effect is mostly weakening/blocking the paths, not
creating new skeleton paths (Observation 4). Strong in-
door reflectors (e.g. concrete walls, large metal furnitures
etc.) are typically not changed frequently. So BeamSpy
only needs to refresh the path skeleton at a very coarse
time scale. We will evaluate the impact of environment
change on the path skeleton update in Sec. 7.

5. Applications of BeamSpy
BeamSpy can potentially facilitate many higher layer

protocols and network management schemes. A higher
layer protocol may exploit BeamSpy-predicted RSS of
beams to jointly adapt bit-rate and beam direction. A 60
GHz mesh network may use BeamSpy to instantaneously
predict the best relay node that can help detour blockage.
Further, network planners may use BeamSpy for what-if
analysis when deploying 60 GHz links. In this section,
we explore two salient applications of BeamSpy to en-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 199

able robust and efficient 60 GHz networking. We use
802.11ad as a baseline MAC/PHY, but BeamSpy can be
similarly integrated with other standards e.g. 802.15.3c.

5.1 Fast Beam Adaptation Under Blockage
We first employ BeamSpy to enable efficient beam

switching under human movement and blockage. Specif-
ically, BeamSpy acts as a meta-protocol to augment 802.11ad,
so as to quickly recover from link outage without the
high-overhead beam searching [7].

Assuming the AP and client have established asso-
ciation, Fig. 6(b) illustrates the run-time state machine
of the link. A legacy 802.11ad link transits between 3
states: Norm, Outage, and Scan. An 802.11ad link re-
sponds to the blockage event by triggering beam-scanning
that searches for the best alternative beam pair. How-
ever, whether to use an aggressive or conservative thresh-
old remains an open problem, due to a tradeoff between
overhead and responsiveness (Sec. 2.2). BeamSpy over-
comes the dilemma using its prediction framework to-
gether with the two-step signaling. Similar to aggressive
mode, prediction is triggered when SNR changes. But,
instead of a full scan, BeamSpy only needs to inspect its
current beam quality, execute the aforementioned predic-
tion algorithm, and estimate the best alternative Tx/Rx
beam pair. Further, BeamSpy can help the link make an
informed decision while utilizing its prediction result.

Recall that, BeamSpy outputs an MMSE (eM) of model
fit as confidence level of prediction (Sec. 4.2.2). Intu-
itively, a higher eM indicates a larger error in estimat-
ing the blocked/non-blocked states of path skeleton, and
thus poor prediction accuracy. We leverage eM to make a
probabilistic decision between utilizing BeamSpy’s pre-
diction result and invoking an 802.11ad full-scanning.
Specifically, we first use BeamSpy to predict the best
available beam and evaluate eM following Eq. (9). eM
is normalized w.r.t. to the current beam’s channel gain
||hobs

k ||2, and the normalized value manifests how likely
BeamSpy predicts wrongly. Then, we set the probability
p of utilizing BeamSpy’s prediction result as p = 1 −
(eM/||hobs

k ||2). The probabilistic scheme reaps the bene-
fit of accurate prediction, whenever possible, thus evad-
ing high overhead of beam-scanning. We will evaluate
link performance gain from BeamSpy’s fast beam adap-
tation under intermittent human blockages in Sec. 7.1.2.

5.2 Link Outage Risk Assessment
BeamSpy does not guarantee a blocked link can be re-

covered via beam switching – such feasibility solely de-
pends on Tx/Rx placement and environmental reflectiv-
ity [7]. However, BeamSpy can predict how likely a link
deployment is to fail completely when blockage occurs.
We call this scheme risk assessment. Risk assessment
is critical when a 60 GHz link is deployed as a fixture,
e.g., from ceiling/wall to a furniture in home. Instead of

AP Client
X

Switch to
Q-omni

Predict Rx best beam,
transmits best index k'

to AP

Measure
CIR of jth

beam

Beam j Beam k

Measure CIR of
kth beam

Predict
best beam
switch to j' Switch to beam k'

Switc
h/S

tay

Norm

Scan Outage

Norm

Sw
itc

h/
St

ay

 Predict
Best Beam

Use pred.
w/ prob. p

 Invoke scan
w/ prob. (1-p)

OutageScan

802.11ad

BeamSpy +
 802.11ad

Figure 6: (a) Two-step signalling procedure (Sec. 4.3).
(b) Radio state-transition of 802.11ad (top), and Beam-
Spy’s fast beam adaptation (bottom) that augments
802.11ad using the prediction framework.
a re-deployment (which may be unaffordable) upon link
outage, at deployment time, the user can attempt differ-
ent placement, orientation, or even place new reflectors,
until the risk assessment mechanism indicates a low risk.

Risk assessment may be realized via empirical ways.
For instance, one can conduct a war-driving and blocking
the LOS to measure the likelihood of link outage. How-
ever, this can be tedious and cumbersome, since blocking
different LOS positions may or may not fail a 60 GHz
link with beam switching capability [7]. Alternatively,
one can run an 802.11ad full scan and check if alterna-
tive Tx/Rx beam pairs can establish link connection be-
sides the LOS beam pair. However, different beam pairs
can suffer from correlated outage when blockage occurs
(Sec. 3). This is again due to spatial correlation effect
which can not be captured by empirical solutions.

With BeamSpy, we design a risk assessment mecha-
nism to overcome such fundamental limitations. To cap-
ture the correlated blockage effect, we define the risk of
a link deployment as a conditional probability,

κ = P(Link outage|Beam with highest RSS is blocked)

Link outage occurs if no beam sustains the RSS required
by the lowest bit rate, even after beam switching.

To evaluate the κ-factor for a given deployment, Beam-
Spy first constructs the path skeleton and then “rehearses”
all possible blockage patterns over the beam with high-
est RSS. Each blockage pattern is modeled by a quan-
tized reduction of the amplitude of one or more paths
that the highest-RSS beam traverses, and 4 quantization
levels are used by default. Then, following Sec. 4.2.2,
BeamSpy predicts quality of all beams under each pos-
sible blockage pattern, and computes deployment risk κ
as fraction of cases where no beam can sustain the mini-
mum bit rate. We summarize BeamSpy’s risk assessment
procedure in Alg. 1. The algorithm is statistical in nature.
It does not make any assumption about the human move-
ment pattern or the absolute RSS drop due to blockage.

6. Testbed and Implementation
60 GHz Software-Radio Platform. To implement Beam-

200 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 1 Link Outage Risk Assessment
1: Initialize quantization level: Q = 4 ; CSurvival = K ×QM . K =

Number of beams, M = Number of paths.
2: foreach Tx beam
3: Rx constructs path skeleton with M paths (Sec. 4.2.1);
4: Initialize quantization matrix, CM with QM entries;
5: foreach row of CM → q: [q1, q2, . . . , qM]
6: Modulate path skeleton [p1, p2, . . . , pM] by quantization

vector q; Re-construct K beams from M modulated paths
7: If RSS of all K beams < minimum RSS requirement
8: CSurvival = CSurvival − 1;
9: Deployment risk, κ = 1− (CSurvival/K ·QM);

Spy and evaluate its efficacy, we use WiMi [7], a custom-
built 60 GHz software radio platform. WiMi allows pro-
grammable waveform generation and received-signal pro-
cessing on a PC host. Its RF front-end operates on 57-64
GHz carrier frequencies with 10 dBm output power and
245.76 Msps baseband sampling rate.

Due to lack of COTS 60 GHz phased-array antennas,
we use a trace-driven approach to emulate channel re-
sponse of a 60 GHz phased-array with a given set of
beamforming weights. The foundation of this approach
has been well established [6,28]. Simply put, it conducts
an angle-wise multiplication between the phased-array’s
antenna gain, and the spatial channel response (i.e., AOA
pattern) between the transmitter and receiver. However,
unlike the approach in [6, 28] that simulates the AOA
patterns, we follow Rappaport et al. [8] to directly mea-
sure the AOA pattern of a 60 GHz link. Specifically, we
equip WiMi with a highly directional 3◦ horn antenna,
which is steered using a programmable real-time motion
control system [29]. We measure the fine-grained AOA
trace spanning 360◦, and then convolve it with a standard
802.11ad beamforming codebook. This emulation ap-
proach is applied to each link in our experiment, with dif-
ferent blockage patterns, and different phased-array sizes
that produce different number of beams. Note that, the
mechanical movement of the horn antennas are used to
resolve spatial channel and the movement itself does not
affect the channel. Since spatial channel response is ob-
tained by testbed measurement, a real phased-array may
differ from emulated one only in its imperfect antenna
gain pattern. As a validation, we measure transmitter
beam pattern of the Wilocity 60 GHz radio [30] which
has a built-in phased-array, and compare with the emu-
lated one. The result (Fig. 7(a)) shows a close-match
between these two. Also, we compare RSS of 15 dif-
ferent LOS links for both Wilocity radio (following ap-
proach in [31]) and BeamSpy-emulated. The WiMi trans-
mitter and receiver were colocated with Wilocity for each
link. Since, Wilocity radio does not allow us to control its
beam direction, we only measure RSS of LOS strongest
beam. Fig. 7(b) shows that BeamSpy-emulated RSS dis-
tribution follows the Wilocity distribution.

Due to hardware constraint, we can only use WiMi

39 dB

13 dB

26 dB

Wilocity
BeamSpy
emulated

0

0.2

0.4

0.6

0.8

1

-70 -65 -60 -55 -50 -45 -40 -35 -30 -25

C
D

F

RSS of Strongest Beam (dBm)

Wilocity
BeamSpy emulated

Figure 7: (a) Two example beam patterns of the Wilocity
phased array [30], in comparison with the correspond-
ing emulated beam patterns in our implementation. (b)
Distribution of RSS of LOS strongest beam in Wilocity
and BeamSpy-emulated links.
to send narrow-band (bandwidth=245.76 MHz) signals
rather than 802.11ad-compatible one (1.7 GHz). The
use of narrowband test equipment does not fundamen-
tally affect our experimental validation, since directional
mmWave channels experience minute frequency selec-
tivity [22]. Even under a frequency selective channel,
BeamSpy can be trivially extended by running prediction
over different subchannels separately, and synthesizing
the CIR to compute RSS across an entire band.

Finally, we implement BeamSpy’s prediction algorithm
and applications within the software radios’ PC host, on
top of an existing library that implements a virtual-clock-
driven 802.11ad MAC [7]. The MAC module accurately
follows 802.11ad’s default timing parameters when en-
forcing packetization with preamble, beaconing, beam-
searching, inter-frame spacing, ACK, etc. The receiver
measures RSS and noise floor on a per-packet basis, and
translates it into achievable bit-rate following an 802.11ad
specific rate table similar to the approaches in [7, 32].
Emulating Transport/Application Layers. We develop
an emulation framework that can replay transport and
application layer protocols, on top of fine-grained link-
layer traces measured from WiMi. Our implementation
adapts the popular Dummynet emulator kernel [33]. Dur-
ing blockage, 60 GHz link quality (throughput and packet
delay/loss) can vary significantly at fine time scales. How-
ever, Dummynet can only configure link quality over coarse
time scales through user space commands. Besides, packet
losses can only be introduced probabilistically, which
hinders accurate link-layer trace playback. To overcome
such limitations, we augment the kernel to emulate link
quality as functions of time at a fine granularity of 1 ms.

7. Evaluation

7.1 Micro-benchmarks
We now evaluate BeamSpy, focusing on three key per-

formance questions: (1) How accurately can BeamSpy
predict beam quality? (2) How much performance im-
provement can BeamSpy bring to a 60 GHz link under
blockage? (3) How well can BeamSpy assess the risk
factor of arbitrary 60 GHz link deployment?

7.1.1 Prediction Accuracy

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 201

0
20
40
60
80

100

4 8 16 32

A
c
c
u

ra
c
y
 (

%
)

Available Beams

Grace - 0
Grace - 1

Grace - 2
Grace - 3

0
20
40
60
80

100

4 8 16 32
Available Beam

Grace - 0
Grace - 1

Grace - 2
Grace - 3

A
c
c
u

ra
c
y
 (

%
)

Figure 8: Accuracy of prediction. (a) Best Rx beam
under a quasi-omni Tx beam. (b) Joint best transmit-
receive beam pair. Grace-n indicates the oracle best
beam lies within first (n+ 1) predicted best ones.

Accuracy of beam-quality prediction. We test link pairs
deployed across 30 locations in an office. By default, a
link runs a quasi-omni-directional transmitter. A human
body statically blocks at a random position within LOS,
and a 3◦ directional receiver captures AOA trace of the
link before and during the blockage. Before blockage,
the receiver emulates phased-array beams (Sec. 6) from
the AOA trace and constructs the path skeleton (Sec. 4.2.1).
During blockage, ground-truth RSS of all beams is mea-
sured first, but when running BeamSpy, the receiver only
employs the CIR change of the single beam in use to pre-
dict the RSS of all other beams (Sec. 4.2.2).

Fig. 8(a) shows the accuracy of predicting the best
receiver beam index for 4 phased-arrays with different
sizes (i.e., different number of antenna elements, and hence
number of available beams). For a 4-beam receiver, Beam-
Spy’s mean prediction accuracy is well over 90%. The
prediction accuracy drops to 71% as the number of avail-
able beams increases to 16, and 60% for 32. However,
the oracle best beam still falls within the top 4 predicted
beams with high probability (73% to 100%). We have
also tested BeamSpy’s two-way signaling protocol, ap-
plicable when both the Tx and Rx use directional phased-
arrays (Sec. 4.3). The results (Fig. 8(b)) show a similar
level of accuracy as in predicting the best Rx beam.

The imperfectness in BeamSpy’s prediction stems from
two factors: (1) The entire spatial channel response is
represented by only few strong paths, which induces er-
rors as the number of beams increase; (2) Approximating
blockage impacts using quantized ampltitude degdration.
Despite this imperfectness, BeamSpy can substantially
improve link robustness by acting as a meta-protocol for
fast beam adaptation (Sec. 7.1.2), and as a risk assess-
ment mechanism to guide link deployment (Sec. 7.1.3).

In practice, beam index matters less than quality of the
beam BeamSpy predicts. Fig. 9(a) shows the absolute
RSS difference between the predicted-best and oracle-
best beam, which has a mean error of only 1.2 dB and
max. 5 dB even for a 16-beam receiver. This implies that
even when BeamSpy predicts wrong best-beam index, the
one it predicts does not have significant RSS difference
from the oracle best. Further, Fig. 9(b) plots the CDF
of difference between the predicted RSS and measured

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32R
S

S
 D

if
fe

r
e
n
c
e
 (

d
B

)

Available Beams

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
li
n
k
s

RSS Difference (dB)

4 beams
8 beams

16 beams
32 beams

Figure 9: (a) RSS diff. between predicted and oracle best
beam. (b) Predicted RSS diff. of the best beam.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o
n
 o

f
L
in

k
s

Correlation

4 beams
8 beams

16 beams

0

1

2

3

2
4
6

0 2 4 6 8 10

Oracle
BeamSpy
802.11ad

Time (s.)

T
hr

ou
gh

pu
t

 (

G
bp

s)
B

B
I

Figure 10: (a) Correlation between prediction accuracy
and eM metric. (b) Throughput for 10 s. random walking
and blockages. Best Beam Index (BBI) for Rx is shown.
RSS, focusing on the best beam BeamSpy selects. We
see that the 93-percentile error stays well within ±4 dB,
and median is below 0.8 dB even for the 16-beam case.
Confidence level of BeamSpy’s prediction. We evalu-
ate whether the eM metric in Eq. (9) can effectively in-
dicate the prediction accuracy. We leverage the previous
setup and for each blockage case, calculate BeamSpy’s
prediction accuracy (in finding the best beam), while keep-
ing track of eM . Then, for each link, we find the corre-
lation coefficient between the measured prediction accu-
racy and the eM metric. Fig. 10(a) shows the CDF of
correlation result across all links. We observe that for
more than 90% of links (with 8 beams), the average cor-
relation is greater than 0.5, Thus, the eM metric can in-
deed be used effectively as a confidence level indicator
during BeamSpy’s prediction. A closer look to the rest
10% of the links indicates that their performance went
below the lowest modulation level under blocakge, and
hence almost all beams perform similarly.
Effect of blockage position. We evaluate the predic-
tion accuracy for different blockage positions for 20 link
pairs. We setup the links with around 5m distance and
block them at 10 approximately equal-spaced positions.
Fig. 11(a) showcases the result as the position moves
from near-Tx to near-Rx. A blockage close to either
Tx or Rx blocks all the angular clusters which renders
all beams’ RSS to drop close to noise level. BeamSpy
shows relatively lower prediction accuracy there, simply
because all beams perform equally poorly. In all other
cases, BeamSpy shows a high prediction accuracy con-
sistent with our first micro-benchmark. We will evalu-
ate the overall effect of random blockages on BeamSpy’s
link-layer performance in Sec. 7.1.2.
Effect of quantization. Recall BeamSpy employs a quan-
tized look-up table to model the effect of blockage (Sec.
4.2.2). Finer quantization helps capture nuances of real

202 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

A
c
c
u
ra

c
y
 (

%
)

Normalized Human Blockage Position

4 beams
8 beams

16 beams
 15

 20

 25

 30

256 1K 4K 16K 64K
 0

 100

 200

 300

P
re

d
ic

ti
o
n
 E

rr
o
r

(%
)

O
v
e
rh

e
a
d
 (

µ
s
.)

Lookup Table Size (Q
M

)

Error Time

Figure 11: (a) Accuracy of prediction w.r.t. blockage po-
sitions. (b) Effect of increasing path skeleton lookup ta-
ble size on prediction error and overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

C
D

F

Throughput (Mbps)

Oracle
BeamSpy

802.11ad - aggr.
802.11ad - consv.

Figure 13: Throughput distribution of random walking
and blockages in office environment.
blockage effect, but increases the look-up table size and
computation overhead. Fig. 11(b) illustrates this trade-
off using a 16-beam receiver as example. BeamSpy’s
prediction framework runs on a desktop PC with 2.6 GHz
CPU. With a small table, average prediction error is around
29% and prediction overhead is less than 40µs. As ta-
ble size grows, the overhead grows proportionally, but
the prediction error quickly drops below 20%. We be-
lieve a full-fledged optimized firmware/hardware imple-
mentation can help minimize BeamSpy’s overhead while
maintaining its accuracy.
Temporal stability of path skeleton. We now evaluate
BeamSpy’s path skeleton refreshment (Sec. 4.3) by gen-
erating a set of controlled events around the link. Fig.
12(a) shows an example of how the prediction accuracy
varies over time when different events occur simultane-
ously with human blockages. Further, Fig. 12(b) quan-
tifies the correlation between BeamSpy’s skeleton up-
dates and the event types. Device displacement (mean
angular displacement of 10◦) or adding a new reflector
usually triggers skeleton updates, since they may add
new paths into the path skeleton. Small changes (involv-
ing books, kettle, laptops, chairs, etc.) hardly affect the
sparse path clusters, and thus do not trigger an update
of BeamSpy’s path skeleton. Overall, we can conclude
that BeamSpy can maintain high prediction accuracy in
quasi-stationary environment. It can adapt to infrequent
displacement of the Tx/Rx or large reflectors, and is in-
sensitive to small environmental changes.

7.1.2 Link Performance Gain from Prediction
In this section, we validate fast beam adaptation mech-

anism enabled by BeamSpy (Sec. 5.1). As benchmark
comparison, we use 802.11ad with two triggering schemes.
Under aggressive threshold, beam-scanning is invoked
whenever current beam’s SNR change leads to bit-rate

1000

1500

2000

2500

3000

3500

4 8 16 32

T
hr

ou
gh

pu
t(

M
bp

s)

Available Beams

Oracle
BeamSpy

11ad - aggr.
11ad - consv.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F
ra

c
ti
o
n
 o

f
li
n
k
s

Throughput (Mbps)

Oracle
BeamSpy
802.11ad

Figure 14: (a) Performance scaling with different num-
ber of available beams in office environment. (b) FTP
throughput in office environment.
change; with conservative threshold, beam-scanning is
only invoked when link cannot sustain the minimum bit-
rate. We also compare with an oracle beam adaptation
protocol that knows the best beam with no overhead.

Fig. 10(b) showcases how one link’s throughput and
best-beam index varies during random blockages. We
see that BeamSpy’s throughput closely matches oracle.
As a more general test, we repeat this experiment across
50 links deployed in the aforementioned 3 sites. Fig. 13
shows that BeamSpy provides a mean throughput gain
of 957 Mbps and 479 Mbps (57% & 25%) over 802.11ad
with aggressive and conservative thresholds, respectively.
The correctness of the prediction model (Sec. 4.2) de-
pends solely on channel sparsity and beam correlation,
which are independent of locations (Sec. 3). Thus, the
performance of BeamSpy remains consistently higher than
802.11ad, and close to oracle in different environments.

Fig. 14(a) shows how the link-level throughput scales
with the number of available beams. BeamSpy performs
close to the oracle with small to medium beam number,
and 13.2% lower with beam number equal to 32. In all
cases, BeamSpy outperforms the aggressive 802.11ad by
57–138% and conservative 802.11ad by 25–48%. In-
terestingly, due to high scanning overhead, the aggres-
sive 802.11ad’s performance drops substantially as beam
number goes beyond 16, and much worse than the reac-
tive/conservative approach that only responds to discon-
nections rather than SNR variations.

7.1.3 Performance of Outage Risk Assessment
We leverage the experimental setup in Sec. 7.1.1 to

evaluate BeamSpy’s risk assessment Alg. 1. To assess
the true blockage risk of a link deployment, we repeti-
tively blocks the LOS of a link at random positions, and
measure the fraction of cases where no beam can support
the SNR needed for the minimum bit-rate. We compare
BeamSpy with an 802.11ad-based risk assessment [12],
which outputs “no risk” if it sees at least one additional
backup beam that can establish the link before blockage.

Fig. 15 shows the results. Each dot in the scatter plot
compares the BeamSpy-predicted risk (κp) with the ground-
truth risk (κm). We observe that the backup-beam ap-
proach largely underestimates the risk. This effect is
amplified in a high RSS regime where many beams can
support good quality link before blockage. However, due

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 203

100

50

0

0 20 40 60 80 100 120

Accuracy
Chair movement

Device displacement
Generic movements

Reflector addition
Reflector movement

Reflector removal

P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

/E
ve

nt
s/

S
ke

le
to

n
U

pd
at

es

Time (m.)

Event
 line

Path skeleton
 updates

 0

 0.2

 0.4

 0.6

 0.8

 1

C
hairm
ov

D
evice

disp

G
eneric

m
ov

R
eflector

add

R
eflector

m
ov

R
eflector

rem

C
o

rr
e

la
ti
o

n

Uncorrelated

Strongly
correlated

Average correlation

Figure 12: (a) Time-lapse of prediction accuracy and path skeleton updates under different events. (b) Average
correlation between updates and event types. Generic movements include moving books, kettle and laptops.

to spatial correlation between beams (i.e., many of them
share an “invisible” set of skeleton paths), many of them
can be blocked together. Taking into account the spa-
tial correlation, BeamSpy’s risk prediction shows much
closer match with the measured risk. Overall, Beam-
Spy’s predicted risk is slightly biased to the conservative
side (on average 14% more risk than the measured one).
However, a conservative assessment is more preferable
than a overtly optimistic one, since it urges the deploy-
ment towards a blockage-proof stage.

7.2 Performance in User-level Applications
To test BeamSpy on real applications, we follow the

prior setup to collect link rate traces for 50 random walk-
ing/blockage near a 8-beam link, and then load the traces
into the emulator (Sec. 6). We compare BeamSpy’s fast
beam adaptation with the conservative 802.11ad, which
was shown to outperform the aggressive one.
FTP. We setup an FTP server using the emulator and
client downloads a 650 MB file. For each of the down-
loads, we find mean throughput while a human walks
by randomly, and repeat 10 trials. Fig. 14(b) shows re-
sulting FTP throughput distribution, where BeamSpy’s
median throughput is 147 Mbps (51%) higher than the
802.11ad-aggresive beam-searching.
Uncompressed Video Streaming. We set up a video
server that transmits uncompressed video frames over
the emulated network stack. The frames are captured
and directly displayed through a VLC client. The sup-
ported video resolution varies from uncompressed stan-
dard definition (640 × 480) to Full-HD (1920 × 1080)
at 25 fps. Fig. 16(a) shows that, under fixed Full-HD
rate, 802.11ad suffers from high stalling durations during
random human walking, and worst case stall can reach
460ms. In addition, under same median stall-duration,
we measure mean video-rate that can be supported (Fig.
16(b)). BeamSpy provides 1.3× improvement over 802.11ad.
In summary, BeamSpy simultaneously boosts the video
quality while reducing stallings, which can translate into
quality-of-experience improvement for end users.

8. Discussion
Applying BeamSpy in outdoor environment. Our ex-
periments have focused only on indoor 60 GHz links
that are prone to human blockage. Correctness of Beam-
Spy’s prediction model depends solely on channel spar-
sity and blockage-invariant spatial correlation. The for-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.02 0.04 0.08 0.16 0.32 0.64

C
D

F

Stall Duration (s)

Oracle
BeamSpy

802.11ad - consv.

 100
 120
 140
 160
 180
 200
 220
 240

0.02 0.04 0.06 0.08

M
e
a
n
 V

id
e
o

B
it
-r

a
te

 (
M

b
p
s
)

Stall Duration (s)

Oracle
BeamSpy

802.11ad - consv.

Figure 16: (a) Distribution of stall durations under fixed
video bit-rate. (b) Mean achievable video bit-rate condi-
tioned on same stalling rate.
mer has been extensively demonstrated in both short-
range indoor and long-range outdoor environment [10,
(Sec. III)]. The latter is a natural consequence of phased-
array beamforming in sparse channels. Therefore, Beam-
Spy’s foundation still holds in outdoor environment. We
leave the outdoor evaluation as future work.
Asymmetric antenna patterns. In certain 60 GHz de-
ployment, the AP may use a larger phased-array antenna
than client, thus creating asymmetric antenna patterns.
We note that BeamSpy only requires each device to con-
struct its own path skeleton to predict the alternate beam
quality. Therefore, BeamSpy is still applicable under
asymmetric phased-array antennas.
Handling client’s mobility. BeamSpy assumes quasi-
stationary link deployment. If the client is mobile, the
path skeleton construction has to be done at fine time
scale, which is as costly as a full beam scanning in 802.11ad.
However, by using a wide beamwidth at the mobile client
and running BeamSpy at a static AP, BeamSpy’s path
skeleton may still hold consistently. We leave the explo-
ration of such mobile scenarios as future work.
BeamSpy in multi-links. A strong interference from co-
located links may affect BeamSpy’s path skeleton con-
struction process and prediction results. However, when
multiple devices are served by the same AP, the skeleton
construction is already separated in time-domain owing
to 802.11ad’s MAC protocol. Further, the prediction step
is also mutually exclusive as an AP can serve only a sin-
gle device at a time. Therefore, we expect BeamSpy can
be easily extended to multi-links setup.

9. Related Work
60 GHz channel and network measurement. Using
dedicated channel sounders, existing measurement stud-
ies have recognized the unique characteristics of the mmWave
channel, especially the significant propagation loss [23]
and vulnerability to human blockage indoor [5, 7, 15].

204 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
e
a
su

re
d
 R

is
k

(κ
m

)

Protocol Predicted Risk (κp)

BeamSpy
802.11ad

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
e
a
su

re
d
 R

is
k

(κ
m

)

Protocol Predicted Risk (κp)

BeamSpy
802.11ad

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
e
a
su

re
d
 R

is
k

(κ
m

)

Protocol Predicted Risk (κp)

BeamSpy
802.11ad

Figure 15: (a) Performance of BeamSpy’s risk assessment algorithm. (1) Low RSS regime (< −65 dBm), (2) Medium
RSS (−65 to −60 dBm), (3) High RSS (> −60 dBm).

Consistent with our observations of channel sparsity, Xu
et al. [8] and Sur et al. [7] showed that even if a trans-
mitter is omni-directional, the received signals tend to
be densely concentrated on a few angular clusters. For
outdoor pico-cells, the blockage problem is less severe
because of higher AP elevation, larger transmit power al-
lowed by regulation and longer link distance [32] (and
hence beamwidth expansion).
Efficient beam switching and channel tracking. De-
spite optimality, brute-force beam scanning incurs high
overhead. More efficient beam scanning methods with
approximately good performance have been proposed.
They exploit hierarchical methods to reduce search space
[6, 18, 19, 34]. 802.11ad and 802.15.3c both assimilated
the idea, and patched refinement procedures to compen-
sate for the sub-optimality of hierarchical search.

BeamSpy exploits blockage-invariant correlation be-
tween beams, a principle that has not been leveraged in
previous works. In effect, BeamSpy’s fast beam adap-
tation can be integrated with these beam search proto-
cols, in the same way as it does for 802.11ad (Sec. 5.1).
Sparse channel distortion can be represented compactly
using compressed sensing [35, 36]. A transmitter can
leverage this principle to track the spatial channel re-
sponse [37]. However, such compressive tracking still
requires transmitter to scan multiple beam directions. In
contrast, BeamSpy deals with link outage due to block-
age, and can track the best among all beams by only ex-
amining current beam, without brute-force rescanning.

BeamSpy is partly inspired by CSpy [38], which ex-
ploited frequency domain correlation between adjacent
WiFi channels to predict best channel without probing.
Unlike BeamSpy, CSpy can only implicitly capture fre-
quency domain correlation through extensive training of
a machine learning model.
Surviving blockage. To overcome blockage, beam switch-
ing and reflection based methods have been proposed
and validated by simulation [11, 12]. But the simulation
ignored the practical correlation between beams/paths,
which renders the “backup” beams or paths ineffective
in practice (Sec. 7). Besides in-band beam searching,
out-of-band solutions have been explored, e.g., using a
microwave channel [39]. Indirect out-of-band sensing
methods like BBS [40] use 2.4 GHz MIMO to determine
the spatial channel. Whereas it may help narrow down
the search space, it still needs to steer across many 60

GHz beams to find the best-quality narrowest beam. This
is because the number of antenna elements in a typical
60 GHz phased-array is much larger than a WiFi array,
and thus there can be many narrow beams concentrated
within one 60 GHz sector. In addition, like all exisiting
beam searching methods, BBS is still a reactive mecha-
nism and incapable of outage risk assessment. Alterna-
tively, a detour path can be formed using relay nodes [14]
which suffer less from reflection loss. But the dense de-
ployment incurs additional cost.
Directional antenna networking at lower frequencies.
Directional-antenna networking has been extensively stud-
ied for the WiFi band, main focus being MAC design in
ad-hoc networks [41–44]. More recent work advocates
indoor high-speed networking using directional AP/clients
[45,46]. Mechanically steerable antennas, and microwave
band phased-array antennas have been used [47–49] to
maintain directional connectivity with a mobile device.
Blockage barely imposes any threat for low-frequency
directional links, because of much wider beamwidth (45◦

or so), and lower penetration loss [7].

Acknowledgment
We thank Jialiang Zhang for help with WiMi hardware
setup. The work reported in this paper was supported
in part by the NSF under Grant CNS-1318292, CNS-
1343363, CNS-1350039, CNS-1404613 and CNS-1518728.

10. Conclusion
We have provided experimental evidence of spatial cor-

relation between beams generated by a 60 GHz phased-
array antenna. This unique property originates from the
fact that the beams can share a sparse set of propagat-
ing signal paths. We leverage this observation to design
BeamSpy, a model-driven framework to predict the per-
formance of multiple beams by inspecting the channel
response of a single beam. BeamSpy’s modeling param-
eters are initialized through measurement, and are invari-
ant under link dynamics caused by human blockage. We
have validated the feasibility and effectiveness of Beam-
Spy on a 60 GHz testbed, and showcased how it enables
efficient and robust 60 GHz networking under human
blockage. We believe BeamSpy has wider implications
for 60 GHz network design than what we have explored
in this paper and can benefit a wide range of protocols
involving phased-array beamforming.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 205

References
[1] IEEE Standards Association, “IEEE Standards

802.11ad-2012: Enhancements for Very High
Throughput in the 60 GHz Band,” 2012.

[2] ——, “IEEE Standards 802.15.3c-2009:
Millimeter-wave-based Alternate Physical Layer
Extension,” 2009.

[3] ECMA International, “Standard ECMA-387: High
Rate 60 GHz PHY, MAC and PALs,” 2010.

[4] T. Rappaport, S. Sun, R. Mayzus, H. Zhao,
Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi,
and F. Gutierrez, “Millimeter Wave Mobile
Communications for 5G Cellular: It Will Work!”
IEEE Access, vol. 1, 2013.

[5] S. Collonge, G. Zaharia, and G. Zein, “Influence of
the Human Activity on Wide-Band Characteristics
of the 60 GHz Indoor Radio Channel,” IEEE
Trans. on Wireless Comm., vol. 3, no. 6, 2004.

[6] B. Li, Z. Zhou, W. Zou, X. Sun, and G. Du, “On
the Efficient Beam-Forming Training for 60GHz
Wireless Personal Area Networks,” IEEE
Transactions on Wireless Communications,
vol. 12, no. 2, 2013.

[7] S. Sur, V. Venkateswaran, X. Zhang, and
P. Ramanathan, “60 GHz Indoor Networking
through Flexible Beams: A Link-Level Profiling,”
in Proc. of ACM SIGMETRICS, 2015.

[8] H. Xu, V. Kukshya, and T. Rappaport, “Spatial and
Temporal Characteristics of 60-GHz Indoor
Channels,” IEEE Journal on Selected Areas in
Communications, vol. 20, no. 3, 2002.

[9] P. Smulders, “Exploiting the 60 GHz Band for
Local Wireless Multimedia Access: Prospects and
Future Directions,” IEEE Communications
Magazine, vol. 40, no. 1, 2002.

[10] T. S. Rappaport, E. Ben-Dor, J. N. Murdock, and
Y. Qiao, “38 GHz and 60 GHz angle-dependent
propagation for cellular and peer-to-peer wireless
communications,” in IEEE ICC, 2012.

[11] Z. Genc, U. Rizvi, E. Onur, and I. Niemegeers,
“Robust 60 GHz Indoor Connectivity: Is It
Possible with Reflections?” in IEEE Vehicular
Technology Conference (VTC-Spring), 2010.

[12] X. An, C.-S. Sum, R. Prasad, J. Wang, Z. Lan,
J. Wang, R. Hekmat, H. Harada, and
I. Niemegeers, “Beam Switching Support to
Resolve Link-Blockage Problem in 60 GHz
WPANs,” in IEEE International Symposium on
Personal, Indoor and Mobile Radio
Communications (PIMRC), 2009.

[13] H. Zhang, C. Wu, X. Cui, T. A. Gulliver, and
H. Zhang, “Low Complexity Codebook-Based
Beam Switching for 60 GHz Anti-Blockage
Communication,” Journal of Communications,

vol. 8, no. 7, 2013.
[14] S. Singh, F. Ziliotto, U. Madhow, E. M. Belding,

and M. Rodwell, “Blockage and Directivity in 60
GHz Wireless Personal Area Networks,” IEEE
JSAC, vol. 27, no. 8, 2009.

[15] C. Anderson and T. Rappaport, “In-Building
Wideband Partition Loss Measurements at 2.5 and
60 GHz,” IEEE Transactions on Wireless
Communications, vol. 3, no. 3, 2004.

[16] C.-Y. Huang and P. Ramanathan, “Network Layer
Support for Gigabit TCP Flows in Wireless Mesh
Networks,” IEEE Transactions on Mobile
Computing, 2014.

[17] “Multi-gigabit, Low latency connectivity,”
http://www.wi-fi.org/discover-wi-fi/wigig-certified,
2016.

[18] J. Wang, Z. Lan, C. woo Pyo, T. Baykas, C.-S.
Sum, M. Rahman, J. Gao, R. Funada, F. Kojima,
H. Harada, and S. Kato, “Beam Codebook Based
Beamforming Protocol for Multi-Gbps
Millimeter-Wave WPAN Systems,” IEEE Journal
on Selected Areas in Communications, vol. 27,
no. 8, 2009.

[19] Y. Tsang, A. Poon, and S. Addepalli, “Coding the
Beams: Improving Beamforming Training in
mmWave Communication System,” in IEEE
Global Telecommunications Conference
(GLOBECOM), 2011.

[20] K. Hosoya, N. Prasad, K. Ramachandran,
N. Orihashi, S. Kishimoto, S. Rangarajan, and
K. Maruhashi, “Multiple Sector ID Capture
(MIDC): A Novel Beamforming Technique for
60-GHz Band Multi-Gbps WLAN/PAN Systems,”
IEEE Transactions on Antennas and Propagation,
vol. 63, no. 1, 2015.

[21] B. Gao, Z. Xiao, C. Zhang, L. Su, D. Jin, and
L. Zeng, “Double-link beam tracking against
human blockage and device mobility for 60-GHz
WLAN,” in IEEE Wireless Communications and
Networking Conference, 2014.

[22] T. Rappaport, F. Gutierrez, E. Ben-Dor,
J. Murdock, Y. Qiao, and J. Tamir, “Broadband
Millimeter-Wave Propagation Measurements and
Models Using Adaptive-Beam Antennas for
Outdoor Urban Cellular Communications,” IEEE
Transactions on Antennas and Propagation,
vol. 61, no. 4, 2013.

[23] P. F. M. Smulders, “Statistical Characterization of
60-GHz Indoor Radio Channels,” IEEE
Transactions on Antennas and Propagation,
vol. 57, no. 10, 2009.

[24] T. S. Rappaport, R. W. H. Jr., R. C. Daniels, and
J. N. Murdock, Millimeter Wave Wireless
Communications. Prentice Hall, 2014.

206 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[25] S. Alekseev, A. Radzievsky, M. Logani, and
M. Ziskin, “Millimeter Wave Dosimetry of Human
Skin,” in Bioelectromagnetics, 2008.

[26] C.-T. Kim, J.-J. Lee, and H. Kim, “Variable
Projection Method and Levenberg-Marquardt
Algorithm for Neural Network Training,” in IEEE
Industrial Electronics (IECON), 2006.

[27] D. Halperin, W. Hu, A. Sheth, and D. Wetherall,
“Predictable 802.11 Packet Delivery from Wireless
Channel Measurements,” in Proc. of ACM
SIGCOMM, 2010.

[28] M. Park and P. Gopalakrishnan, “Analysis on
Spatial Reuse and Interference in 60-GHz Wireless
Networks,” IEEE Journal on Selected Areas in
Communications, vol. 27, no. 8, 2009.

[29] “Axis360 Motion Control System,”
http://cinetics.com/two-axis360/.

[30] “Wilocity 802.11ad Multi-Gigabit Wireless
Chipset,” http://wilocity.com, 2013.

[31] T. Nitsche, G. Bielsa, I. Tejado, A. Loch, and
J. Widmer, “Boon and Bane of 60 GHz Networks:
Practical Insights into Beamforming, Interference,
and Frame Level Operation,” in Proc. of ACM
CoNEXT, 2015.

[32] Y. Zhu, Z. Zhang, Z. Marzi, C. Nelson,
U. Madhow, B. Y. Zhao, and H. Zheng,
“Demystifying 60GHz Outdoor Picocells,” in
Proc. of ACM MobiCom, 2014.

[33] M. Carbone and L. Rizzo, “Dummynet revisited,”
in ACM SIGCOMM Computer Communication
Review, 2010.

[34] K. Ramachandran, N. Prasad, K. Hosoya,
K. Maruhashi, and S. Rangarajan, “Adaptive
Beamforming for 60 GHz Radios: Challenges and
Preliminary Solutions,” in ACM mmCom, 2010.

[35] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak,
“Compressed Channel Sensing: A New Approach
to Estimating Sparse Multipath Channels,”
Proceedings of the IEEE, vol. 98, no. 6, 2010.

[36] C. Berger, Z. Wang, J. Huang, and S. Zhou,
“Application of Compressive Sensing to Sparse
Channel Estimation,” IEEE Communications
Magazine, vol. 48, no. 11, 2010.

[37] D. Ramasamy, S. Venkateswaran, and U. Madhow,
“Compressive Tracking With 1000-Element
Arrays: A Framework for Multi-Gbps mm Mave
Cellular Downlinks,” in Annual Allerton
Conference on Communication, Control, and
Computing (Allerton), 2012.

[38] S. Sen, B. Radunovic, J. Lee, and K.-H. Kim,
“CSpy: Finding the Best Quality Channel Without
Probing,” in Proc. of ACM MobiCom, 2013.

[39] H. Singh, J. Hsu, L. Verma, S. Lee, and C. Ngo,
“Green Operation of Multi-Band Wireless LAN in
60 GHz and 2.4/5 GHz,” in IEEE Consumer
Communications and Networking Conference
(CCNC), 2011.

[40] T. Nitsche, A. B. Flores, E. W. Knightly, and
J. Widmer, “Steering with Eyes Closed: mm-Wave
Beam Steering without In-Band Measurement,” in
Proc. of IEEE INFOCOM, 2015.

[41] O. Bazan and M. Jaseemuddin, “A Survey On
MAC Protocols for Wireless Adhoc Networks with
Beamforming Antennas,” IEEE Communications
Surveys and Tutorials, vol. 14, no. 2, 2012.

[42] R. R. Choudhury and N. H. Vaidya, “Deafness: A
MAC Problem in Ad-Hoc Networks when using
Directional Antennas,” in IEEE ICNP, 2004.

[43] R. R. Choudhury, X. Yang, R. Ramanathan, and
N. Vaidya, “Using Directional Antennas for
Medium Access Control in Ad Hoc Networks,” in
Proc. of ACM MobiCom, 2002.

[44] R. Choudhury, X. Yang, R. Ramanathan, and
N. Vaidya, “On Designing MAC Protocols for
Wireless Networks Using Directional Antennas,”
IEEE Transactions on Mobile Computing, vol. 5,
no. 5, 2006.

[45] M. Takai, J. Martin, R. Bagrodia, and A. Ren,
“Directional Virtual Carrier Sensing for
Directional Antennas in Mobile Ad Hoc
Networks,” in Prof. of ACM MobiHoc, 2002.

[46] X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki,
S. Seshan, and P. Steenkiste, “DIRC: Increasing
Indoor Wireless Capacity Using Directional
Antennas,” in Proc. of ACM SIGCOMM, 2009.

[47] A. Amiri Sani, L. Zhong, and A. Sabharwal,
“Directional Antenna Diversity for Mobile
Devices: Characterizations and Solutions,” in
Proc. of ACM MobiCom, 2010.

[48] C.-F. Shih and R. Sivakumar, “FastBeam: Practical
Fast Beamforming for Indoor Environments,” in
International Conference on Computing,
Networking and Communications (ICNC), 2014.

[49] V. Navda, A. P. Subramanian, K. Dhanasekaran,
A. Timm-Giel, and S. Das, “MobiSteer: Using
Steerable Beam Directional Antenna for Vehicular
Network Access,” in Proc. of ACM MobiSys, 2007.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 207

Compiling Path Queries

Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and David Walker
Princeton University

Abstract
Measuring the flow of traffic along network paths

is crucial for many management tasks, including traf-
fic engineering, diagnosing congestion, and mitigating
DDoS attacks. We introduce a declarative query lan-
guage for efficient path-based traffic monitoring. Path
queries are specified as regular expressions over predi-
cates on packet locations and header values, with SQL-
like “groupby” constructs for aggregating results any-
where along a path. A run-time system compiles queries
into a deterministic finite automaton. The automaton’s
transition function is then partitioned, compiled into
match-action rules, and distributed over the switches.
Switches stamp packets with automaton states to track
the progress towards fulfilling a query. Only when pack-
ets satisfy a query are the packets counted, sampled, or
sent to collectors for further analysis. By processing
queries in the data plane, users “pay as they go”, as data-
collection overhead is limited to exactly those packets
that satisfy the query. We implemented our system on top
of the Pyretic SDN controller and evaluated its perfor-
mance on a campus topology. Our experiments indicate
that the system can enable “interactive debugging”—
compiling multiple queries in a few seconds—while fit-
ting rules comfortably in modern switch TCAMs and the
automaton state into two bytes (e.g., a VLAN header).

1 Introduction

Effective traffic-monitoring tools are crucial for running
large networks—to track a network’s operational health,
debug performance problems when they inevitably oc-
cur, account and plan for resource use, and ensure that
the network is secure. Poor support for network moni-
toring and debugging can result in costly outages [5].

The network operator’s staple measurement toolkit is
well-suited to monitoring traffic at a single location (e.g.,
SNMP/RMON, NetFlow, and wireshark), or probing an

end-to-end path at a given time (e.g., ping and tracer-
oute). However, operators often need to ask questions
involving packets that traverse specific paths, over time:
for example, to measure the traffic matrix [19], to resolve
congestion or a DDoS attack by determining the ingress
locations directing traffic over a specific link [18, 55], to
localize a faulty device by tracking how far packets get
before being dropped, and to take corrective action when
packets evade a scrubbing device (even if transiently).

Answering such questions requires measurement tools
that can analyze packets based both on their location
and headers, attributes which may change as the packets
flow through the network. The key measurement chal-
lenge is that, in general, it is hard to determine a packet’s
upstream or downstream path or headers. Current ap-
proaches either require inferring flow statistics by “join-
ing” traffic data with snapshots of the forwarding policy,
or answer only a small set of predetermined questions, or
collect much more data than necessary (§2).

In contrast, when operators want to measure path-level
flows in an network, they should be able to specify con-
cise, network-wide declarative queries that are

1. independent of the forwarding policy,
2. independent of other concurrent measurements, and
3. independent of the specifics of network hardware.

The measurements themselves should be carried out by
a run-time system, that enables operators to

4. get accurate measurements directly, without having
to “infer” results by joining multiple datasets,

5. have direct control over measurement overhead, and
6. use standard match-action switch hardware [8, 34].

A Path Query Language. We have developed a query
language where users specify regular expressions over
boolean conditions on packet location and header con-
tents. To allow concise queries over disjoint subsets of
packets, the language includes an SQL-like “groupby”
construct that aggregates query results anywhere along
a path. Different actions can be taken on a packet when

208 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Forwarding
Policy

Query compiler and runtime

SDN controller

CountersRules
Payloads

Operators/Apps

StatisticsQueries

Figure 1: Path Query System.

it satisfies a query, such as incrementing counters, direct-
ing traffic to a mirroring port or controller, or sampling at
a given rate. These actions may be applied either before
or after the packets traverse the matching trajectory.

The Run-time System. To implement a path query, the
run-time system programs the switches to record path
information in each packet as it flows through the data
plane. While prior approaches have tracked packet paths
this way [28, 49, 55], a naive encoding of every detail of
the path—location and headers—would incur significant
overheads. For example, encoding a packet’s source and
destination MAC addresses, and connection 5-tuple (24
bytes) at each hop incurs more than a 10% space over-
head on a 1500-byte packet, if the packet takes six hops.

Instead, we customize packet path information to the
input queries. More specifically, the run-time system
compiles queries into a deterministic finite automaton
(DFA), whose implementation is then distributed across
the switches. The state of the DFA is stored in each
packet as updated as it traverses the network. Upon re-
ceiving a packet, the switch reads the current DFA state,
checks conditions implied by the query, writes a new
DFA state on to the packet, executes actions associated
with forwarding policy, and sends the packet on its way.
Further, if a packet reaches an accepting state of the DFA,
the actions associated with the accepting state are trig-
gered. Hence, if the action associated with an accepting
state is to send the packet to a collector, only packets ac-
tually matching a query are ever sent to a collector.

The mechanism we propose has an attractive “pay for
what you query” cost model. Intuitively, our technique
acts as an application-specific compression scheme for
packet content and paths: rather than coding every detail
of the packet trajectory, only the information necessary
to answer queries is represented in the automaton state.
When a packet hits an accepting state, all user-requested
information about the packet path can be reconstructed.

Prototype Implementation and Evaluation. We have
implemented a prototype of our query system on the
Pyretic SDN controller [36] with the NetKAT compiler
[58]. Our compilation algorithms generate rules both for
single and multi-stage match-action tables (e.g., Open-
Flow [34], [8]), and we implemented several compiler
optimizations that reduce rule-space overhead and query

compile time significantly with multi-stage tables. Our
system design satisfies requirements (1)-(6) outlined ear-
lier. On an emulated Stanford network topology, our pro-
totype can compile several queries we tested (together)
in under 10 seconds. We believe such compile times can
enable “interactive” network debugging by human oper-
ators. The amount of packet state is less than two bytes,
and fits in standard fields like VLAN or MPLS head-
ers. Further, the emitted data plane rules—numbering
a few hundreds—fit comfortably in the TCAM available
on modern switches [8, 14, 25].

Contributions. In summary, this paper contributes:
1. the design of a query language that allows users to

identify packets traversing a given set of paths (§3),
2. an evaluation of query expressiveness and the de-

bugging model through examples (§4),
3. a run-time system that compiles queries to data-

plane rules that emulate a distributed DFA (§5),
4. a set of optimizations that reduce query compile

time by several orders of magnitude (§6), and
5. a prototype implementation and evaluation with the

Pyretic SDN controller and Open vSwitch (§7).
We have open-sourced our prototype [65] and instruc-
tions to reproduce the results are available online [46].

Our preliminary workshop paper [38] on designing
a path query system was only partly implemented, and
the compilation strategy was prohibitively expensive for
even moderately-sized networks. In this paper, we imple-
ment and evaluate a full system, and develop optimiza-
tions essential to make the system work in practice.

2 Design of Path Measurement

How do we know which path a packet took through the
network? How do we collect or count all packets going
through a specific path? A number of prior approaches
[1,16,23,30,31,49,55,59,64,73,75] aim to answer these
questions, but fall short of our requirements.

2.1 Existing Approaches

Policy checking. Approaches like header space analy-
sis [30] and VeriFlow [31] can predict the packets that
could satisfy certain conditions (e.g., reachability) ac-
cording to the network’s control-plane policy. However,
actual data-plane behavior can be different due to con-
gestion, faults, and switch misconfigurations.

‘Out-of-band’ path measurement. These techniques
collect observations of packets from network devices,
and infer path properties of interest—for example, from
independent packet samples (NetFlow [1], [52]), trajec-
tory labels [16], postcards [23], or matched and mirrored

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 209

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
a
ti
o
 o

v
e
rh

e
a
d
:t
o
ta

l

Ratio firewall-evading:egress

all packets, every hop

path query

firewall-evading pkts

Figure 2: Overheads are limited to traffic matching a query.

packets (wireshark [68], Gigascope [13], [69, 75]). Un-
fortunately, it is difficult to determine the full path of a
single packet through observations spread out in space
and time correctly and efficiently, for the reasons below.

(i) Dynamic forwarding policies: A simple way to
get path measurements is to capture traffic entering a
network (e.g., NetFlow [1]) and use the routing tables
to estimate the paths the traffic would take. How-
ever, packet forwarding changes often due to topology
changes, failover mechanisms (e.g., MPLS fast re-route),
and traffic engineering. Further, today’s devices do
not provide the timestamps at which the forwarding ta-
bles were updated, so it is difficult to reconcile packet-
forwarding state with collected traffic data.

(ii) Packets dropped in flight: It is tricky to estimate
actual packet trajectories even when packet forwarding is
static. Packets may be dropped downstream from where
they are observed, e.g., due to congestion or faulty equip-
ment, so it is difficult to know if a packet actually com-
pleted its inferred downstream trajectory.

(iii) Ambiguous upstream path: The alternative of ob-
serving traffic deeper in a network, on internal links of
interest, cannot always tell where the traffic entered. For
example, packets with identical header fields may arrive
at multiple ingress points, e.g., when packet headers are
spoofed as in a DDoS attack, or when two ISPs peer
at multiple points. Such packets would follow different
paths eventually merging on the same downstream inter-
face: disambiguating them at that point is impossible.

(iv) Packets modified in flight: Compounding the dif-
ficulty, network devices may modify the header fields of
packets in flight, e.g., NAT. “Inverting” packet modifi-
cations to compute the upstream trajectory is inherently
ambiguous, as the upstream packet could have contained
arbitrary values on the rewritten fields. Computing all
possibilities is computationally difficult [74]. Further,
packet modifications thwart schemes like trajectory sam-
pling [16] that hash on header fields to sample a packet
at each hop on its path.

(v) Opaque multi-path routing: Switch features like
equal cost multi-path (ECMP) routing are currently im-
plemented through hardware hash functions which are
closed source and vendor-specific. This confounds tech-
niques that attempt to infer downstream paths for pack-

ets. This is not a fundamental limitation (e.g., some ven-
dors may expose hash functions), but a pragmatic one.

(vi) High data collection overhead: Since both up-
stream and downstream trajectory inference is inaccu-
rate, we are left with the option of collecting packets
or digests at every hop [23, 59]. However, running taps
at every point in the network and collecting all traffic
is infeasible due to the bandwidth and data collection
overheads. Even targeted data collection using wire-
shark [68] or match-and-mirror solutions [69, 75] can-
not sustain the bandwidth overheads to collect all traf-
fic affected by a problem. Sampling the packets at low
rates [16] would make such overheads manageable, but
at the expense of losing visibility into the (majority) un-
sampled traffic. This lack of visibility hurts badly when
diagnosing problems for specific traffic (e.g., a specific
customer’s TCP connections) that the sampling missed.

‘In-band’ path measurement: These approaches tag
packets with metadata to enable switches to directly iden-
tify packet paths [28,32,38,55,64,73]. However, current
approaches have multiple drawbacks:

(vii) Limited expressiveness: IP record route [49],
traceback [55] and path tracing [64, 73] can identify the
network interfaces traversed by packets. However, oper-
ators also care about packet headers, including modifica-
tions to header fields in flight—e.g., to localize a switch
that violates a network slice isolation property [30]. Fur-
ther, the accuracy and overhead of these approaches can-
not be customized to requirement: traceback can only
accurately record a few waypoints, while path tracing al-
ways incurs tag space to record the entire path.

(viii) Strong assumptions: Current approaches require
strong assumptions: e.g., symmetric topology [64], no
loops [64, 73], stable paths to a destination [55], or re-
quiring that packets reach the end hosts [28, 32]. Un-
fortunately, an operator may be debugging the network
exactly when such conditions do not hold.

2.2 Our Approach
We design an accurate “in-band” path measurement sys-
tem without the limitations of the prior solutions. A run-
time system compiles modular, declarative path queries
along with the network’s forwarding policy (specified
and changing independently), generating the switch-
level rules that process exactly the packets matching the
queries, in operator-specified ways—e.g., counting, sam-
pling, and mirroring. Hence, our system satisfies require-
ments (1)-(6) laid out in §1. Further, since the emitted
data-plane rules process packets at every hop, our sys-
tem overcomes problems (i), (ii), (iii), and (v) in §2.1.
Identifying packet paths “in-band” with packet state un-
touched by regular forwarding actions removes ambigu-
ities from packet modification (iv), and avoids unneces-

3

210 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

field ::= location | header
location ::= switch | inport | outport
header ::= srcmac | dstmac | srcip | dstip | ...
pred ::= true | false | field=value

| pred & pred | (pred | pred) | ∼pred
| ingress() | egress()

atom ::= in_atom(pred) | out_atom(pred)
| in_out_atom(pred, pred)
| in_group(pred, [header])
| out_group(pred, [header])
| in_out_group(pred, [header],

pred, [header])
path ::= atom | path ˆ path | (path | path)

| path* | path & path | ∼path

Figure 3: Syntax of path queries.

sary collection overheads (vi). Finally, our query lan-
guage and implementation allow waypoint and header-
based path specification (vii) and do not require strong
operational assumptions to hold (viii).

As a demonstration of our query system, Fig. 2 shows
that only those packets evading a firewall switch in the
network core are collected at the network egress, on an
emulated Stanford campus topology [2]. In comparison,
common alternatives like wireshark will need to collect
all network traffic to reliably catch such packets.

Our system must overcome the challenges below.
(i) Resource constraints: The space to carry packet

trajectory metadata is limited, as packets must fit within
the network’s MTU. Further, switch rule-table space is
limited [14], so the system should generate a compact
set of packet-processing rules. Finally, to be usable for
operator problem diagnosis, the system should compile
queries in an acceptable amount of time.

(ii) Interactions between multiple measurement and
forwarding rules: Switches must identify packets on all
operator-specified paths—with some packets possibly on
multiple queried paths simultaneously. The switch rules
that match and modify packet trajectory metadata should
not affect regular packet forwarding in the network, even
when operators specify that packets matching the queries
be handled differently than the regular traffic.

Practically, our query system is complementary to
other measurement tools which are “always on” at low
overheads [1, 52, 75]—as opposed to completely replac-
ing those tools. Instead, our query system enables op-
erators to focus their attention and the network’s limited
resources on clearly-articulated tasks during-the-fact.

3 Path Query Language

A path query identifies the set of packets with particular
header values and that traverse particular locations. Such
queries can identify packets with changing headers, as

happens during network address translation, for instance.
When the system recognizes that a packet has satisfied a
query, any user-specified action may be applied to that
packet. Fig. 3 shows the syntax of the language. In what
follows, we explain the details via examples.

Packet Predicates and Simple Atoms. One of the basic
building blocks in a path query is a boolean predicate
(pred) that matches a packet at a single location. Predi-
cates may match on standard header fields, such as:

srcip=10.0.0.1 & dstip=10.0.0.2

as well as the packet’s location (a switch and interface).
The predicates true and false match all packets, and
no packets, respectively. Conjunction (&), disjunction
(|), and negation (∼) are standard. The language also
provides syntactic sugar for predicates that depend on
topology, such as ingress(), which matches all pack-
ets that enter the network at some ingress interface, i.e.,
an interface attached to a host or a device in another ad-
ministrative domain. Similarly, egress() matches all
packets that exit the network at some egress interface.

Atoms further refine the meaning of predicates, and
form the “alphabet” for the language of path queries. The
simplest kind of atom is an in_atom that tests a packet
as it enters a switch (i.e., before forwarding actions).
Analogously, an out_atom tests a packet as it leaves the
switch (i.e., after forwarding actions). The set of packets
matching a given predicate at switch entry and exit may
be different from each other, since a switch may rewrite
packet headers, multicast through several ports, or drop
the packet entirely. For example, to capture all packets
that enter a device S1 with a destination IP address (say
192.168.1.10), we write:

in_atom(switch=S1 & dstip=192.168.1.10)

It is also possible to combine those ideas, testing
packet properties on both “sides” of a switch. More
specifically, the in_out_atom tests one predicate as a
packet enters a switch, and another as the packet ex-
its it. For example, to capture all packets that en-
ter a NAT switch with the virtual destination IP ad-
dress 192.168.1.10 and exit with a private IP address
10.0.1.10, we would write:

in_out_atom(switch=NAT & dstip=192.168.1.10,
dstip=10.0.1.10)

Partitioning and Indexing Sets of Packets. It is often
useful to specify groups of related packets concisely in
one query. We introduce group atoms—akin to SQL
groupby clauses—that aggregate results by packet lo-
cation or header field. These group atoms provide a con-
cise notation for partitioning a set of packets that match
a predicate in to subsets based on the value of a particu-
lar packet attribute. More specifically, in_group(pred,

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 211

Example Query code Description
A simple path in_atom(switch=S1) ˆ in_atom(switch=S4) Packets going from switch S1 to S4 in the network.
Slice isolation true* ˆ (in_out_atom(slice1, slice2) | Packets going from network slice slice 1 to

in_out_atom(slice2, slice1)) slice2, or vice versa, when crossing a switch.
Firewall in_atom(ingress()) ˆ (in_atom(∼switch=FW))* Catch packets evading a firewall device FW when
evasion ˆ out_atom(egress()) moving from any network ingress to egress interface.
DDoS sources in_group(ingress(), [switch]) ˆ true* Determine traffic contribution by volume from all

ˆ out_atom(egress(), switch=vic) ingress switches reaching a DDoS victim switch vic.
Switch-level in_group(ingress(), [switch]) ˆ true* Count packets from any ingress to any egress switch,
traffic matrix ˆ out_group(egress(), [switch]) with results grouped by (ingress, egress) switch pair.
Congested link in_group(ingress(), [switch]) ˆ true* Determine flows (switch sources → sinks) utilizing a
diagnosis ˆ out_atom(switch=sc) ˆ in_atom(switch=dc) congested link (from switch sc to switch dc), to help

ˆ true* ˆ out_group(egress(), [switch]) reroute traffic around the congested link.
Port-to-port in_out_group(switch=s, true, Count traffic flowing between any two ports of switch s,
traffic matrix [inport], [outport]) grouping the results by the ingress and egress interface.
Packet loss in_atom(srcip=H1) ˆ in_group(true, [switch]) ˆ Localize packet loss by measuring per-path traffic flow
localization in_group(true, [switch]) ˆ out_atom(dstip=H2) along each 4-hop path between hosts H1 and H2.

Table 1: Some example path query applications. Further examples can be found in an extended version [39].

[h1,h2,...,hn]) collects packets that match the pred-
icate pred at switch ingress, and then divides those
packets into separate sets, one for each combination
of the values of the headers h1, h2, ..., hn. The
out_group atom is similar. For example,

in_group(switch=10, [inport])

captures all packets that enter switch 10, and organizes
them into sets according to the value of the inport field.
Such a groupby query is equivalent to writing a series of
queries, one per inport. The path query system conve-
niently expands groupbys for the user and manages all
the results, returning a table indexed by inport.

The in_out_group atom generalizes both the
in_group and the out_group. For example,

in_out_group(switch=2, [inport], true, [outport])

captures all packets that enter switch=2, and exit it (i.e.,
not dropped), and groups the results by the combination
of input and output ports. This single query is short-
hand for an in_out_atom for each pair of ports i, j
on switch 2, e.g., to compute a port-level traffic matrix.

Querying Paths. Full paths through a network may be
described by combining atoms using the regular path
combinators: concatenation (ˆ), alternation (|), repeti-
tion (∗), intersection (&), and negation (∼). The most
interesting combinator is concatenation: Given two path
queries p1 and p2, the query p1 ˆ p2 specifies a path
that satisfies p1, takes a hop to the next switch, and then
satisfies p2 from that point on. The interpretation of
the other operators is natural: p1 | p2 specifies paths
that satisfy either p1 or p2; p1* specifies paths that are
zero or more repetitions of paths satisfying p1; p1 & p2
specifies paths that satisfy both p1 and p2, and ∼p1 spec-
ifies paths that do not satisfy p1.

Table 1 presents several useful queries that illustrate
the utility of our system. Path queries enable novel ca-
pabilities (e.g., localizing packet loss using just a few
queries), significantly reduce operator labor (e.g., mea-
suring an accurate switch-level traffic matrix), and check
policy invariants (e.g., slice isolation) in the data plane.

Query Actions. An application can specify what to do
with packets that match a query. For example, packets
can be counted (e.g., on switch counters), be sent out a
specific port (e.g., towards a collector), sent to the SDN
controller, or extracted from sampling mechanisms (e.g.,
sFlow). Below, we show Pyretic sample code for var-
ious use cases. Suppose that p is a path query defined
according to the language (Fig. 3). Packets can be sent
to abstract locations that “store” packets, called buckets.
There are three types of buckets: count buckets, packet
buckets, and sampling buckets. A count bucket is an ab-
straction that allows the application to count the packets
going into it. Packets are not literally forwarded and held
in controller data structures. In fact, the information con-
tent is stored in counters on switches. Below we illustrate
the simplicity of the programming model.

cb = count_bucket() // create count bucket
cb.register(f) // process counts by callback f
p.set_bucket(cb) // direct packets matching p
... // into bucket cb
cb.pull_stats() // get counters from switches

Packets can be sent to the controller, using the packet
buckets and an equally straightforward programming id-
iom. Similarly, packets can also be sampled using tech-
nologies like NetFlow [1] or sFlow [3] on switches.

In general, an application can ask packets matching
path queries to be processed by an arbitrary NetKAT pol-
icy, i.e., any forwarding policy that is a mathematical

5

212 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Spliced

Pkt.	 flow	 on	 query	 path
Upstream Downstream

Figure 4: Query Capture Locations.

function from a packet to a set of packets [4,36]. The out-
put packet set can be empty (e.g., for dropped packets),
or contain multiple packets (e.g., for multicasted pack-
ets). For instance, packets matching a path query p can
be forwarded out a specific mirroring port mp:

p.set_policy(fwd(mp)) // forward out mirror port

An arbitrarily complex Pyretic policy pol can be used
instead of fwd above by writing p.set_policy(pol).

Query Capture Locations. The operator can specify
where along a path to capture a packet that satisfies
a query: either downstream—after it has traversed a
queried trajectory, upstream—right as it enters the net-
work, or spliced—somewhere in the middle. The dif-
ference between these three scenarios is illustrated in
Fig. 4. The packets captured for the same query may
differ at the three locations, because the network’s for-
warding policy may change as packets are in flight, or
packets may be lost downstream due to congestion. For
query p, the operator writes p.down() to ask matching
packets to be captured downstream, p.up() to be cap-
tured upstream, p.updown() to be captured at both loca-
tions, and splice(p1,p2) to be captured between two
sub-paths p1, p2 such that p = p1 ˆ p2.

Sometimes, we wish to collect packets at many or
even all points on a path rather than just one or two.
The convenience function stitch(A,B,n) returns a set
of queries by concatenating its first argument (e.g., an
in_atom) with k copies of its second argument (e.g., an
in_group), returning one query for each k in 0...n. For
example, stitch(A,B,2) = {A, AˆB, AˆBˆB}.

The capabilities described above allow the implemen-
tation of a network-wide packet capture tool. Drawing on
wireshark terminology, an operator is now able to write
global, path-based capture filters to collect exactly the
packets matching a query.

4 Interactive Debugging with Path Queries

Consider a scenario shown in Fig. 5 where an operator
is tasked with diagnosing a tenant’s performance prob-
lem in a large compute cluster, where the connections
between two groups of tenant virtual machines A and B
suffer from poor performance with low throughput. The
A → B traffic is routed along the four paths shown.

Such performance problems do occur in practice [75],
yet are very challenging to diagnose, as none of the con-
ventional techniques really help. Getting information

A B

C
D100 70

25
0

Figure 5: An example debugging scenario (§4).

from the end hosts’ networking stack [62, 70] is difficult
in virtualized environments. Coarse-grained packet sam-
pling (NetFlow [1], [16]) may miss collecting the traf-
fic relevant to diagnosis, i.e., A and B traffic. Interface-
level counters from the device may mask the problem en-
tirely, as the issue occurs with just one portion of the traf-
fic. It is possible to run wireshark [68] on switch CPUs;
however this can easily impact switch performance and
is very restrictive in its application [12]. Network op-
erators may instead mirror a problematic subset of the
traffic in the data plane through ACLs, i.e., “match and
mirror” [75]. However, this process is tedious and error-
prone. The new monitoring rules must incorporate the
results of packet modification in flight (e.g., NATs and
load balancers [45]), and touch several devices because
of multi-path forwarding. The new rules must also be
reconciled with overlapping existing rules to avoid dis-
ruption of regular packet forwarding. Ultimately, mirror-
ing will incur large bandwidth and data collection over-
heads, corresponding to all mirrored traffic.

In contrast, we show the ease with which a declarative
query language and run-time system allow an operator to
determine the root cause of the performance problem. In
fact, the operator can perform efficient diagnosis using
just switch counters—without mirroring any packets.

As a first step, the operator determines whether the end
host or the network is problematic, by issuing a query
counting all traffic that enters the network from A des-
tined to B. She writes the query p1 below:

p1 = in_atom(srcip=vm_a, switch=s_a) ˆ true*
ˆ out_atom(dstip=vm_b, switch=s_b)

p1.updown()

The run-time then provides statistics for A → B traf-
fic, measured at network ingress (upstream) and egress
(downstream) points. By comparing these two statistics,
the operator can determine whether packets never left the
host NIC, or were lost in the network.

Suppose the operator discovers a large loss rate in the
network, as query p1 returns values 100 and 70 as shown
in Fig. 5. Her next step is to localize the interface where
most drops happen, using a downstream query p2:

probe_pred = switch=s_a & srcip=vm_a & dstip=vm_b
p2 = stitch(in_atom(probe_pred),

in_group(true, [’switch’]), 4)

These queries count A → B traffic on each switch-level
path (and its prefix) from A to B. Suppose the run-

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 213

time returns, among statistics for other paths, the packet
counts 25 and 0 shown in red in Fig. 5. The operator
concludes that link C → D along the first path has a high
packet drop rate (all 25 packets dropped). Such packet
drops may be due to persistent congestion or a faulty
interface, affecting all traffic on the interface, or faulty
rules in the switch (e.g., a “silent blackhole” [75]) which
affect just A → B traffic. To distinguish the two cases,
the operator writes two queries measured midstream and
downstream (each). Here are the midstream queries:

probe_pred = switch=s_a & srcip=vm_a & dstip=vm_b
p3 = splice((in_atom(probe_pred) ˆ true*

ˆ in_atom(switch=s_c)),
in_atom(switch=s_d))

p4 = splice(true* ˆ in_atom(switch=s_c),
in_atom(switch=s_d))

These queries determine the traffic loss rate on the C →D
link, for all traffic traversing the link, as well as specif-
ically the A → B traffic. By comparing these two loss
rates, the operator can rule out certain root causes in fa-
vor of others. For example, if the loss rate for A→B traf-
fic is particularly high relative to the overall loss rate, it
means that that just the A → B traffic is silently dropped.

5 Path Query Compilation

Query compilation translates a collection of indepen-
dently specified queries, along with the forwarding pol-
icy, into data-plane rules that recognize all packets
traversing a path satisfying a query. These rules can
be installed either on switches with single-stage [34] or
multi-stage [8] match-action tables.1 We describe down-
stream query compilation in §5.1-§5.3, and upstream
compilation in §5.4. Downstream query compilation
consists of three main stages:

1. We convert the regular expressions corresponding
to the path queries into a DFA (§5.1).

2. Using the DFA as an intermediate representation,
we generate state-transitioning (i.e., tagging) and
accepting (i.e., capture) data-plane rules. These al-
low switches to match packets based on the state
value, rewrite state, and capture packets which sat-
isfy one or more queries (§5.2).

3. Finally, the run-time combines the query-related
packet-processing actions with the regular forward-
ing actions specified by other controller applica-
tions. This is necessary because the state match and
rewrite actions happen on the same packets that are
forwarded by the switches (§5.3).

The run-time expands group atoms into the corre-
sponding basic atoms by a pre-processing pass over the
queries (we elide the details here). The resulting queries

1The compiler performs significantly better with multi-stage tables.

only contain in, out, and in_out atoms. We describe
query compilation through the following simple queries:

p1 = in_atom(srcip=H1 & switch=1) ^
out_atom(switch=2 & dstip=H2)

p2 = in_atom(switch=1) ^ in_out_atom(true, switch=2)

5.1 From Path Queries to DFAs
We first compile the regular path queries into an equiva-
lent DFA,2 in three steps as follows.

Rewriting atoms to in-out-atoms. The first step is quite
straightforward. For instance, the path query p1 is rewrit-
ten to the following:

in_out_atom(srcip=H1 & switch=1, true) ^
in_out_atom(true, switch=2 & dstip=H2)

Converting queries to regular expressions. In the sec-
ond step, we convert the path queries into string regular
expressions, by replacing each predicate by a character
literal. However, this step is tricky: a key constraint is
that different characters of the regular expressions can-
not represent overlapping predicates (i.e., predicates that
can match the same packet). If they do, we may inadver-
tently generate an NFA (i.e., a single packet might match
two or more outgoing edges in the automaton). To ensure
that characters represent non-overlapping predicates, we
devise an algorithm that takes an input set of predicates
P, and produces the smallest orthogonal set of predicates
S that matches all packets matching P. The key intuition
is as follows. For each new predicate new_pred in P, the
algorithm iterates over the current predicates pred in S,
teasing out new disjoint predicates and adding them to S:

int_pred = pred & new_pred
new_pred = new_pred & ∼int_pred
pred = pred & ∼int_pred

Finally, the predicates in S are each assigned a unique
character. The full algorithm is described in Appendix B.

For the running example, Fig. 6 shows the emitted
characters (for the partitioned predicates) and regular ex-
pressions (for input predicates not in the partitioned set).
Notice in particular that the true predicate coming in to
a switch is represented not as a single character but as an
alternation of three characters. Likewise with switch=1,
switch=2, and true (out). The final regular expressions
for the queries p1 and p2 are:

p1: a^(c|e|g)^(a|d|f)^c
p2: (a|d)^(c|e|g)^(a|d|f)^(c|e)

2We could conceivably use an NFA instead of a DFA, to produce
fewer states. However, using an NFA would require each packet to
store all the possible states that it might inhabit at a given time, and
require switches to have a rule for each subset of states—leading to a
large number of rules. Hence, we compile our path queries to a DFA.

7

214 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Predicate Regex Predicate Regex
switch=1 & srcip=H1 a ∼switch=1 f
switch=1 & ∼srcip=H1 d ∼switch=2 g
switch=2 & dstip=H2 c switch=1 a|d
switch=2 & ∼dstip=H2 e switch=2 c|e
true (in) a|d|f true (out) c|e|g

Figure 6: Strings emitted for the running example (§5.1).

Q0	
a Q5	 Q1	

[ceg]	
Q2	 Q3	 c

Q8	
[ce]	

Q6	 Q7	 Q4	
[ceg]	

d

[adf]	

[adf]	
e

Figure 7: Automaton for p1 and p2 together. State Q4 accepts
p2, while Q5 accepts both p1 and p2.

Constructing the query DFA. Finally, we construct the
DFA for p1 and p2 together using standard techniques.
The DFA is shown in Fig. 7. For clarity, state transitions
that reject packets from both queries are not shown.

5.2 From DFA to Tagging/Capture Rules
The next step is to emit policies that implement the DFA.
Conceptually, we have two goals. First, for each packet,
a switch must read the DFA state, identify the appropriate
transition, and rewrite the DFA state. This action must
be done once at switch ingress and egress. Second, if
the packet’s new DFA state satisfies one or more queries,
we must perform the corresponding query actions, e.g.,
increment packet or byte counts.

State transitioning policies. The high-level idea here is
to construct a “test” corresponding to each DFA transi-
tion, and rewrite the packet DFA state to the destination
of the transition if the packet passes the test. This is
akin to a string-matching automaton checking if an in-
put symbol matches an outgoing edge from a given state.
To make this concrete, we show the intermediate steps of
constructing the transitioning policy in Pyretic code.

We briefly introduce the notions of parallel and se-
quential composition of network policies, which we use
to construct the transitioning policy. We treat each net-
work policy as a mathematical function from a packet to
a set of packets, similar to NetKAT and Pyretic [4, 36].
For example, a match srcip=10.0.0.1 is a function
that returns the singleton set of its input packet if the
packet’s source IP address is 10.0.0.1, and an empty
set otherwise. Similarly, a modification port←2 is a
function that changes the “port” field of its input packet
to 2. Given two policies f and g—two functions on pack-
ets to sets of packets—the parallel composition of these
two policies is defined as:

(f + g)(pkt) = f(pkt) ∪ g(pkt)

The sequential composition of policies is defined as:

Concept Example Description
Modification port←2 Rewrites a packet field
Match switch=2 Filters packets
Parallel monitor + route The union of results
composition from two policies.
Sequential balance >> route Pipe the output from
composition the first in to the second
Edge predicate pred_of(c) Get predicate of symbol
Path policy p.policy() Policy to process packets

accepted by query p.

Figure 8: Syntactic Constructs in Query Compilation.

(f >> g)(pkt) = ∪pkt ′∈ f (pkt)g(pkt’)

For example, the policy

(srcip=10.0.0.1 + dstip=10.0.0.2) >> (port←2)

selects packets with either srcip 10.0.0.1 or dstip
10.0.0.2 and forwards them out of port 2 of a switch.

Now we produce a policy fragment for each edge of
the DFA. Suppose the helper function pred_of takes in
a character input c and produces the corresponding pred-
icate. For each edge from state s to state t that reads
character c, we construct the fragment

state=s & pred_of(c) >> state←t

We combine these fragments through parallel composi-
tion, which joins the tests and actions of multiple edges:

tagging = frag_1 + frag_2 + ... + frag_n

We produce two state transitioning policies, one each for
ingress and egress actions. Each edge fragment belongs
to exactly one of the two policies, and it is possible to
know which one since we generate disjoint characters for
these two sets of predicates. For example, here is part of
the ingress transitioning policy for the DFA in Fig. 7:

in_tagging =
state=Q0 & switch=1 & srcip=H1 >> state←Q2 +
state=Q0 & switch=1 & ∼srcip=H1 >> state←Q6 +
... +

state=Q7 & ∼switch=1 >> state←Q8

Accepting policies. The accepting policy is akin to the
accepting action of a DFA: a packet that “reaches” an
accepting state has traversed a path that satisfies some
query; hence the packet must be processed by the actions
requested by applications. We construct the accepting
policy by combining edge fragments which move pack-
ets to accepting states. We construct the fragment

state=s & pred_of(c) >> p.policy()

for each DFA edge from state s to t through character c,
where t is a state accepting query p. Here p.policy()
produces the action that is applied to packets matching
query p. Next we construct the accepting policy by a
parallel composition of each such fragment:

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 215

capture = frag_1 + frag_2 + ... + frag_n

Similar to the transitioning policies, we construct two
accepting policies corresponding to switch ingress and
egress predicates. For example, for the DFA in Fig. 7,
part of the accepting policy looks as follows:

out_capture =
state=Q3 & switch=2 & dstip=H2 >> p1.policy()
+ ... +
state=Q8 & switch=2 & dstip=H2 >> p2.policy()

Ingress tagging and Egress un-tagging. The run-time
ensures that packets entering a network are tagged with
the initial DFA state Q0. Symmetrically, packets leaving
the network are stripped of their tags. We use the VLAN
header to tag packets, but other mechanisms are possible.

5.3 Composing Queries and Forwarding
The run-time system needs to combine the packet-
processing actions from the transitioning and accepting
policies with the forwarding policy. However, this re-
quires some thought, as all of these actions affect the
same packets. Concretely, we require that:

1. packets are forwarded through the network nor-
mally, independent of the existence of queries,

2. packet tags are manipulated according to the DFA,
3. packets matching path queries are processed cor-

rectly by the application-programmed actions, and
4. no unnecessary duplicate packets are generated.
To achieve these goals, the run-time system combines

the constituent policies as follows:

(in_tagging >> forwarding >> out_tagging)
+ (in_capture)
+ (in_tagging >> forwarding >> out_capture)

The first sequential composition (involving the two
tagging policies and the forwarding) ensures both
that forwarding continues normally (goal 1) as well as
that DFA actions are carried out (goal 2). This works
because tagging policies do not drop packets, and the
forwarding does not modify the DFA state.3 The re-
maining two parts of the top-level parallel composition
(involving the two capture policies) ensure that pack-
ets reaching accepting states are processed by the cor-
responding query actions (goal 3). Finally, since each
parallelly-composed fragment either forwards packets
normally or captures it for the accepted query, no un-
necessary extra packets are produced (goal 4).

Translating to match-action rules in switches. The run-
time system hands off the composed policy above to
Pyretic, which by default compiles it down to a single

3The run-time ensures this by constructing tagging policies with a
virtual header field [36] that regular forwarding policies do not use.

match-action table [20,36]. We also leverage multi-stage
tables on modern switches [8, 42] to significantly im-
prove compilation performance (§6). We can rewrite the
joint policy above as follows:

(in_tagging + in_capture)
>> forwarding
>> (out_tagging + out_capture)

This construction preserves the semantics of the origi-
nal policy provided in_capture policies do not forward
packets onward through the data plane. This new rep-
resentation decomposes the complex compositional pol-
icy into a sequential pipeline of three smaller policies—
which can be independently compiled and installed to
separate stages of match-action tables. Further, this en-
ables decoupling updates to the query and forwarding
rules on the data plane, allowing them to evolve inde-
pendently at their own time scales.

5.4 Upstream Path Query Compilation
Upstream query compilation finds those packets at net-
work ingress that would match a path, based on the cur-
rent forwarding policy—assuming that packets are not
dropped (due to congestion) or diverted (due to updates
to the forwarding policy while the packets are in flight).
We compile upstream queries in three steps, as follows.

Compiling using downstream algorithms. The first step
is straightforward. We use algorithms described in sec-
tions §5.1-§5.3 to compile the set of upstream queries
using downstream compilation. The output of this step is
the effective forwarding policy of the network incorpo-
rating the behavior both of forwarding and queries. Note
that we do not install the resulting rules on the switches.

Reachability testing for accepted packets. In the second
step, we cast the upstream query compilation problem as
a standard network reachability test [30, 31], which asks
which of all possible packet headers at a source can reach
a destination port with a specific set of headers. Such
questions can be efficiently answered using header space
analysis [30]: we simply ask which packets at network
ingress, when forwarded by the effective policy above,
reach header spaces corresponding to accepting states for
query p. We call this packet match upstream(p).

Capturing upstream. The final step is to process the
resulting packet headers from reachability testing with
application-specified actions for each query. We generate
an upstream capture policy for queries p1, ..., pn:

(upstream(p1) >> p1.policy()) + ...
+ (upstream(pn) >> pn.policy())

We can implement complex applications of header
space analysis like loop and slice leakage detection [30,
§5] simply by compiling the corresponding upstream

9

216 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

path query [39]. Spliced queries can be compiled in a
manner very similar to upstream queries.

In general, reachability testing does not restrict the
paths taken to reach the destination—however, we are
able to use the packet DFA state to do exactly that.

6 Optimizations

We implemented several key optimizations in our proto-
type to reduce query compile time and data-plane rule
space. Later we show the quantitative impact of these
optimizations (§7, Table 2). We briefly discuss the key
ideas here; full details are in an extended version [39].

Cross-product explosion. We first describe the “cross-
product explosion” problem that results in large compi-
lation times and rule-sets when compiling the policies
resulting from algorithms in §5. The output of NetKAT
policy compilation is simply a prioritized list of match-
action rules, which we call a classifier. When two classi-
fiers C1 and C2 are composed—using parallel or sequen-
tial composition (§5.2, Fig. 8)—the compiler must con-
sider the effect of every rule in C1 on every rule in C2. If
the classifiers have N1 and N2 rules (resp.), this results in
a Θ(N1 ×N2) operations. A similar problem arises when
predicates are partitioned during DFA generation (§5.1).
In the worst case, the number of orthogonal predicates
may grow exponentially on the input predicate set, since
every pair of predicates may possibly overlap.

Prior works have observed similar problems [15, 22,
58,72]. Our optimizations reduce large compile time and
rule sets through the domain-specific techniques below.

(A) Optimizing Conditional Policies. The policy gen-
erated from the state machine (§5.2) has a very special
structure, namely one that looks like a conditional state-
ment: if state=s1 then ... else if state=s2 then ... else if
A natural way to compile this down is through the par-
allel composition of policies that look like state=s_i
>> state_policy_i. This composition is expensive,
because the classifiers of state_policy_i for all i,
{Ci}i, must be composed parallelly. We avoid comput-
ing these cross-product rule compositions as follows: If
we ensure that each rule of Ci is specialized to match
on packets disjoint from those of Cj—by matching on
state s_i—then it is enough to simply append the classi-
fiers Ci and Cj. This brings down the running time from
Θ(Ni×Nj) to Θ(Ni+Nj). We further compact each clas-
sifier Ci: we only add transitions to non-dead DFA states
into state_policy_i, and instead add a default dead-
state transition wherever a Ci rule drops the packets.

(B) Integrating tagging and capture policies. Tagging
and capture policies have similar conditional structure:

tagging = capture =

(cond1 >> a1) + (cond1 >> b1) +
(cond2 >> a2) + (cond2 >> b2) +
... ...

Rather than supplying Pyretic with the policy tagging
+ capture, which will generate a large cross-product,
we construct a simpler equivalent policy:

combined =
(cond1 >> (a1 + b1)) +
(cond2 >> (a2 + b2)) +
...

(C) Flow-space based pre-partitioning of predicates. In
many queries, we observe that most input predicates
are disjoint with each other, but predicate partitioning
(§5.1) checks overlaps between them anyway. We avoid
these checks by pre-partitioning the input predicates into
disjoint flow spaces, and only running the partition-
ing within each flow space. For example, suppose in
a network with n switches, we define n disjoint flow
spaces switch=1, ..., switch=n. When a new pred-
icate pred is added, we check if pred & switch=i is
nonempty, and then only check overlaps with predicates
intersecting the switch=i flow space.

(D) Caching predicate overlap decisions. We avoid re-
dundant checks for predicate overlaps by caching the lat-
est overlap results for all input predicates4, and executing
the remainder of the partitioning algorithm only when
the cache is missed. Caching also enables introducing
new queries incrementally into the network without re-
computing all previous predicate overlaps.

(E) Decomposing query-matching into multiple stages.
Often the input query predicates may have significant
overlaps: for instance, one query may count on M source
IP addresses, while another counts packets on N desti-
nation IP addresses. By installing these predicates on
a single table stage, it is impossible to avoid using up
M ×N rules. However, modern switches [8, 43] support
several match-action stages, which can be used to reduce
rule space overheads. In our example, by installing the M
source IP matches in one table and N destination matches
in another, we can reduce the rule count to M+N. These
smaller logical table stages may then be mapped to phys-
ical table stages on hardware [29, 56].

We devise an optimization problem to divide queries
into groups that will be installed on different table stages.
The key intuition is to spread queries matching on dis-
similar header fields into multiple table stages to reduce
rule count. We specify a cost function that estimates the
worst-case rule space when combining predicates (Ap-
pendix A). The resulting optimization problem is NP-
hard; however, we design a first-fit heuristic to group

4We index this cache by a hash on the string representation of the
predicate’s abstract syntax tree.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 217

queries into table stages, given a limit on the number of
stages and rule space per stage. The compilations of dif-
ferent stages are parallelizable.

(F) Detecting overlaps using Forwarding Decision Dia-
grams (FDDs). To make intersection between predicates
efficient, we implement a recently introduced data struc-
ture called Forwarding Decision Diagram (FDD) [58].
An FDD is a binary decision tree in which each non-leaf
node is a test on a packet header field, with two outgoing
edges corresponding to true and false. Each path from
the root to a leaf corresponds to a unique predicate which
is the intersection of all tests along the path. Inserting a
new predicate into the FDD only requires checking over-
laps along the FDD paths which the new predicate inter-
sects, speeding up predicate overlap detection.

7 Performance Evaluation

We evaluated the expressiveness of the query language
and the debugging model in Table 1 and §4. Now, we
evaluate the prototype performance quantitatively.

Implementation. We implemented the query language
and compilation algorithms (§3, §5) on the Pyretic con-
troller [36] and NetKAT compiler [58]. We extended
the Hassel-C [48] implementation of header space anal-
ysis with inverse transfer function application for up-
stream compilation. NetFlow samples are processed
with nfdump [41]. The query language is embedded
in Python, and the run-time system is a library on top
of Pyretic. The run-time sends switch rules to Open
vSwitch [43] through OpenFlow 1.0 and the Nicira ex-
tensions [44]. We use Ragel [11] to compile string reg-
ular expressions. We evaluate our system using the PyPy
compiler [50]. Our prototype is open-source [65].

Metrics. A path-query system should be efficient along
the following dimensions:

1. Query compile time: Can a new query be processed
at a “human debugging” time scale?

2. Rule set size: Can the emitted match-action rules fit
into modern switches?

3. Tag set size: Can the number of distinct DFA states
be encoded into existing tag fields?

There are other performance metrics which we do not
report. Additional query rules that fit in the switch hard-
ware tables do not adversely impact packet processing
throughput or latency, because hardware is typically de-
signed for deterministic forwarding performance.5 The
same principle applies to packet mirroring [47]. The time
to install data plane rules varies widely depending on the
switch used—prior literature reports between 1-20 mil-

5Navindra Yadav. Personal communication, January 2016.

liseconds per flow setup [24]. Our compiler produces
small rule sets that can be installed in a few seconds.

Experiment Setup. We pick a combination of queries
from Table 1, including switch-to-switch traffic matrix,
congested link diagnosis, DDoS source detection, count-
ing packet loss per-hop per-path6, slice isolation between
two IP prefix slices, and firewall evasion. These queries
involve broad scenarios such as resource accounting, net-
work debugging, and enforcing security policy. We run
our single-threaded prototype on an Intel Xeon E3 server
with 3.70 GHz CPU (8 cores) and 32GB memory.

Compiling to a multi-stage table is much more effi-
cient than single-stage table, since the former is not sus-
ceptible to cross-product explosion (§6). For example,
the traffic matrix query incurs three orders of magnitude
smaller rule space with the basic multi-stage setup (§5.3),
relative to single-stage. Hence, we report multi-stage
statistics throughout. Further, since optimization (E) de-
composes queries into multiple stages (§6), and the stage
compilations are parallelizable, we report the maximum
compile time across stages whenever (E) is enabled.

(I) Benefit of Optimizations. We evaluate our system on
an emulated Stanford campus topology [2], which con-
tains 16 backbone routers, and over 100 network ingress
interfaces. We measure the benefit of the optimizations
when compiling all of the queries listed above together—
collecting over 550 statistics from the network.7

The results are summarized in Table 2. Some tri-
als did not finish8, labeled “DNF.” Each finished trial
shown is an average of five runs. The rows are keyed
by optimizations—whose letter labels (A)-(F) are listed
in paragraph headings in §6. We enable the optimiza-
tions one by one, and show the cumulative impact of all
enabled optimizations in each row. The columns show
statistics of interest—compile time (absolute value and
factor reduction from the unoptimized case), maximum
number of table rules (ingress and egress separately) on
any network switch, and required packet DFA bits.

The cumulative compile-time reduction with all
optimizations (last row) constitutes three orders of
magnitude—reducing the compile time to about 5 sec-
onds, suitable for interactive debugging by a human op-
erator.910 Further, the maximum number of rules re-
quired on any one switch fits comfortably in modern
switch memory capacities [8, 14, 25]; and the DFA state

6We use the version of this query from §4, see p2 there.
7By injecting traffic into the network, we tested that our system

collects the right packets (Fig. 2), extracts the right switch counters,
and produces no duplicate packets.

8The reason is that they run out of memory.
9Interactive response times within about 15 seconds retain a human

in the “problem-solving frame of mind” [35, topic 11].
10We enable (F) only for larger networks, where the time to set up

the data structure is offset by fast predicate intersection.

11

218 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Enabled
Opts.

Compile Time Max # Rules # State
BitsAbs. (s) Rel. (X) In Out

None > 4920 baseline DNF DNF DNF
(A) only > 4080 1.206 DNF DNF DNF
(A)-(B) 2991 1.646 2596 1722 10
(A)-(C) 56.19 87.48 1846 1711 10
(A)-(D) 35.13 139.5 1846 1711 10
(A)-(E) 5.467 894.7 260 389 16

Table 2: Benefit of optimizations on queries running on the
Stanford campus topology. “DNF” means “Did Not Finish.”

Network # Nodes Compile
Time (s)

Max # Rules # State
BitsIn Out

Berkeley 25 10.7 58 160 6.0
Purdue 98 14.9 148 236 22.5
RF1755 87 6.6 150 194 16.8
RF3257 161 44.1 590 675 32.3
RF6461 138 21.4 343 419 29.2

Table 3: Performance on enterprise and ISP (L3) network
topologies when all optimizations are enabled.

bits (2 bytes at most) fit within tag fields like VLANs. Fi-
nally, multi-stage query decomposition (E) reduces rule
space usage significantly with more state bits.

(II) Performance on enterprise and ISP networks. We
evaluate our prototype on real enterprise and inferred
ISP networks, namely: UC Berkeley [6], Purdue Univer-
sity [63], and Rocketfuel (RF) topologies for ASes 1755,
3257 and 6461 [54, 61]. All optimizations are enabled.
For each network, we report averages from 30 runs (five
runs each of six queries). The results are summarized in
Table 3. The average compile time is under 20 seconds
in all cases but one; rule counts are within modern switch
TCAM capacities; and DFA bits fit in an MPLS header.

(III) Scalability trends. We evaluate how performance
scales with network size, on a mix of five synthetic
ISP topologies generated from Waxman graphs [67] and
IGen, a heuristic ISP topology generator [51]. We dis-
cuss the parameters used to generate the topologies in an
extended version of this paper [39]. We report average
metrics from 30 runs, i.e., six queries compiled to five
networks of each size. The trends are shown in Fig. 9.
The average compile time (see red curve) is under ≈ 25
seconds until a network size of 140 nodes. In the same
size range, the ingress table rule counts (see black curve)
as well as the egress (not shown) are each under 700—
which together can fit in modern switch TCAM memo-
ries. DFA packet bits (see numeric labels on black curve)
fit in an MPLS header until 120 nodes.

For networks of about 140 nodes or smaller, our query
system supports interactive debugging—continuing to
provide useful results beyond for non-interactive tasks.
We believe that these query compile times are a signifi-
cant step forward for “human time scale” network debug-
ging, which requires operators to be involved typically

 0

 200

 400

 600

 800

 20 40 60 80 100 120 140 160

 10

 20

 30

 40

 50

#
In

g
re

s
s
 R

u
le

s

C
o

m
p

ile
 t

im
e

 (
s
)

Number of nodes

Compile time (s)
#Rules

5.236.93

13.6

23.3

28.5
33.0

38.3

Figure 9: Scalability trends on synthetic ISP topologies. Nu-
meric labels on the curve correspond to # DFA packet bits.

for hours [21, 75]. Among large ISP topologies mapped
out in literature [61], each ISP can be supported in the
“interactive” regime for PoP-level queries. We leave fur-
ther scaling efforts, e.g., to data centers, to future work.

8 Related Work

We already discussed the most relevant prior works in
§2; this section lays out other related work.

Data-plane query systems. Several query languages
have been proposed for performing analytics over
streams of packet data [7,13,20,66]. Unlike these works,
we address the collection of path-level traffic flows, i.e.,
observations of the same packets across space and time,
which cannot be expressed concisely or achieved by
(merely) asking for single-point packet observations.

Control-plane query systems. NetQuery [57] and other
prior systems [9, 10, 26] allow operators to query infor-
mation (e.g., next hop for forwarding, attack fingerprints,
etc.) from tuples stored on network nodes. As such,
these works do not query the data plane. SIMON [40]
and ndb [33] share our vision of interactive debugging,
but focus on isolating control plane bugs.

Summary statistics monitoring systems. DREAM [37],
ProgME [72] and OpenSketch [71] answer a different set
of monitoring questions than our work, e.g., detecting
heavy hitters and changes in traffic patterns.

Programming traffic flow along paths. Several prior
works [17, 27, 53, 60] aim to forward packets along
policy-compliant paths. However, our work measures
traffic along operator-specified paths, while the usual for-
warding policy continues to handle traffic.

9 Conclusion

We have shown how to take a declarative specification
for path-level measurements, and implement it in the data
plane with accurate results at low overhead. We believe
that this capability will be useful for network operators
for better real-time problem diagnosis, security policy
enforcement, and capacity planning.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 219

Acknowledgments

This work was supported by NSF grants CCF-1535948
and CNS-1111520, and gifts from Intel, Huawei, and
Cisco. We thank our shepherd, Oriana Riva, and the
anonymous reviewers for their thoughtful feedback; Vi-
mal Jeyakumar, Laurent Vanbever and Anirudh Sivara-
man for helpful discussions; Nick Feamster, Vimal
Jeyakumar, Divjyot Sethi, Nanxi Kang, Ronaldo Fer-
reira, Bharath Balasubramanian, Swarun Kumar, Xin Jin
and Xuan (Kelvin) Zou for feedback on earlier drafts;
Nate Foster and Arjun Guha for their generous help to in-
tegrate the NetKAT compiler with the Pyretic run-time;
and Changhoon Kim and Arpit Gupta for suggestions to
improve performance.

References
[1] Sampled Netflow, 2003. http://www.cisco.com/c/en/us/

td/docs/ios/12_0s/feature/guide/12s_sanf.html.

[2] Mini-Stanford backbone topology, 2014. [Online, Retrieved
February 17, 2016] https://bitbucket.org/peymank/
hassel-public/wiki/Mini-Stanford.

[3] sFlow, 2015. sflow.org.

[4] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. NetKAT:
Semantic foundations for networks. In Proc. ACM Symposium
on Principles of Programming Languages (2014).

[5] ANDREW LERNER. The cost of downtime, 2014. [Online,
Retrieved February 17, 2016] http://blogs.gartner.com/
andrew-lerner/2014/07/16/the-cost-of-downtime/.

[6] BERKELEY INFORMATION SERVICES AND TECHNOLOGY.
UCB network topology. [Online, Retrieved February 17,
2016] http://www.net.berkeley.edu/netinfo/newmaps/
campus-topology.pdf.

[7] BORDERS, K., SPRINGER, J., AND BURNSIDE, M. Chimera:
A declarative language for streaming network traffic analysis. In
USENIX Security (2012).

[8] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-
OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. For-
warding metamorphosis: Fast programmable match-action pro-
cessing in hardware for SDN. In Proc. ACM SIGCOMM (2013).

[9] CHEN, X., MAO, Y., MAO, Z. M., AND VAN DER MERWE, J.
Decor: Declarative network management and operation. ACM
SIGCOMM Computer Communication Review (2010).

[10] COHEN, J., REPANTIS, T., MCDERMOTT, S., SMITH, S., AND
WEIN, J. Keeping track of 70,000+ servers: The Akamai query
system. In Proc. Large Installation System Administration Con-
ference, LISA (2010).

[11] COLM NETWORKS. Ragel state machine compiler. [On-
line, Retrieved February 17, 2016] http://www.colm.net/
open-source/ragel/.

[12] CONFIGURING WIRESHARK ON THE CATALYST
3850 SWITCH. [Online, Retrieved January 25, 2016]
http://www.cisco.com/c/en/us/td/docs/switches/
lan/catalyst3850/software/release/3se/network_
management/configuration_guide/b_nm_3se_3850_
cg/b_nm_3se_3850_cg_chapter_01000.html#concept_
8EBE76A3D6DB46B79E7F0B6CFFE9FDF9.

[13] CRANOR, C., JOHNSON, T., SPATASCHEK, O., AND
SHKAPENYUK, V. Gigascope: A stream database for network
applications. In Proc. ACM SIGMOD (2003).

[14] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGAN-
DULA, P., SHARMA, P., AND BANERJEE, S. DevoFlow: Scaling
flow management for high-performance networks. In Proc. ACM
SIGCOMM (2011).

[15] D’ANTONI, L., AND VEANES, M. Minimization of symbolic
automata. In Proc. ACM Symposium on Principles of Program-
ming Languages (2014).

[16] DUFFIELD, N. G., AND GROSSGLAUSER, M. Trajectory sam-
pling for direct traffic observation. IEEE/ACM Trans. Networking
(June 2001).

[17] FAYAZBAKHSH, S. K., SEKAR, V., YU, M., AND MOGUL,
J. C. Enforcing network-wide policies in the presence of dynamic
middlebox actions using FlowTags. In Proc. USENIX Symposium
on Networked Systems Design and Implementation (2014).

[18] FELDMANN, A., GREENBERG, A., LUND, C., REINGOLD, N.,
AND REXFORD, J. NetScope: Traffic engineering for IP net-
works. IEEE Network (2000).

[19] FELDMANN, A., GREENBERG, A., LUND, C., REINGOLD, N.,
REXFORD, J., AND TRUE, F. Deriving traffic demands for op-
erational IP networks: Methodology and experience. IEEE/ACM
Trans. Networking (June 2001).

[20] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic:
A network programming language. In Proc. ACM International
Conference on Functional Programming (2011).

[21] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding net-
work failures in data centers: Measurement, analysis, and impli-
cations. In Proc. ACM SIGCOMM (2011).

[22] GUPTA, A., VANBEVER, L., SHAHBAZ, M., DONOVAN, S. P.,
SCHLINKER, B., FEAMSTER, N., REXFORD, J., SHENKER, S.,
CLARK, R., AND KATZ-BASSETT, E. SDX: A software defined
Internet exchange. In Proc. ACM SIGCOMM (2014).

[23] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÉRES,
D., AND MCKEOWN, N. I know what your packet did last
hop: Using packet histories to troubleshoot networks. In Proc.
USENIX Symposium on Networked Systems Design and Imple-
mentation (2014).

[24] HE, K., KHALID, J., DAS, S., GEMBER-JACOBSON, A.,
PRAKASH, C., AKELLA, A., LI, L. E., AND THOTTAN, M.
Latency in software defined networks: Measurements and miti-
gation techniques. In Proc. ACM SIGMETRICS (2015).

[25] HUANG, D. Y., YOCUM, K., AND SNOEREN, A. C. High-
fidelity switch models for software-defined network emulation.
In Proc. Hot Topics in Software Defined Networks (2013).

[26] HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO,
B. T., SHENKER, S., AND STOICA, I. Querying the Internet
with PIER. In Proc. International Conference on Very Large Data
Bases (2003).

[27] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,
L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU,
M., ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT, A.
B4: Experience with a globally-deployed software defined WAN.
In Proc. ACM SIGCOMM (2013).

[28] JEYAKUMAR, V., ALIZADEH, M., GENG, Y., KIM, C., AND
MAZIÈRES, D. Millions of little minions: Using packets for
low latency network programming and visibility. In Proc. ACM
SIGCOMM (2014).

[29] JOSE, L., YAN, L., VARGHESE, G., AND MCKEOWN, N. Com-
piling packet programs to reconfigurable switches. In Proc.
USENIX Symposium on Networked Systems Design and Imple-
mentation (2015).

13

220 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[30] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
space analysis: Static checking for networks. In Proc. USENIX
Symposium on Networked Systems Design and Implementation
(2012).

[31] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. VeriFlow: Verifying network-wide invariants in real
time. In Proc. USENIX Symposium on Networked Systems Design
and Implementation (2013).

[32] KIM, C., SIVARAMAN, A., KATTA, N., BAS, A., DIXIT,
A., AND WOBKER, L. J. In-band network telemetry
via programmable dataplanes, June 2015. Demo at Sym-
posium on SDN Research, http://opennetsummit.
org/wp-content/themes/ONS/files/sosr-demos/
sosr-demos15-final17.pdf.

[33] LIN, C.-C., CAESAR, M., AND VAN DER MERWE, K. Toward
interactive debugging for ISP networks. In Proc. ACM Workshop
on Hot Topics in Networking (2009).

[34] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review
(2008).

[35] MILLER, R. B. Response time in man-computer conversational
transactions. In Proc. Fall Joint Computer Conference, Part I
(1968).

[36] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing software-defined networks. In Proc.
USENIX Symposium on Networked Systems Design and Imple-
mentation (2013).

[37] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A.
DREAM: Dynamic Resource Allocation for Software-defined
Measurement. In Proc. ACM SIGCOMM (2014).

[38] NARAYANA, S., REXFORD, J., AND WALKER, D. Compiling
path queries in software-defined networks. In Proc. Hot Topics in
Software Defined Networks (2014).

[39] NARAYANA, S., TAHMASBI, M., REXFORD, J., AND WALKER,
D. Compiling Path Queries (Extended version). Tech.
rep., Princeton University, 2015. [Online, Retrieved Febru-
ary 17, 2016] http://www.cs.princeton.edu/~narayana/
pathqueries.

[40] NELSON, TIM AND YU, DA AND LI, YIMING AND FONSECA,
RODRIGO AND KRISHNAMURTHI, SHRIRAM. Simon: Script-
able interactive monitoring for SDNs. In Proc. ACM Symposium
on SDN Research (2015).

[41] NFDUMP TOOL SUITE. [Online, Retrieved February 17, 2016]
http://nfdump.sourceforge.net/.

[42] OPENFLOW V1.3 SPECIFICATION. [Online, Retrieved
February 17, 2016] https://www.opennetworking.
org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.
3.0.pdf.

[43] OPENVSWITCH. [Online, Retrieved August 15, 2015]
openvswitch.org.

[44] OPENVSWITCH NICIRA EXTENSIONS. [Online, Re-
trieved February 17, 2016] http://git.openvswitch.
org/cgi-bin/gitweb.cgi?p=openvswitch;a=blob;f=
include/openflow/nicira-ext.h.

[45] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREEN-
BERG, A., MALTZ, D. A., KERN, R., KUMAR, H., ZIKOS, M.,
WU, H., KIM, C., AND KARRI, N. Ananta: Cloud scale load
balancing. In Proc. ACM SIGCOMM (2013).

[46] PATH QUERIES FOR INTERACTIVE NETWORK DEBUGGING.
[Online, Retrieved February 17, 2016] http://www.cs.
princeton.edu/~narayana/pathqueries.

[47] PERFORMANCE IMPACT OF SPAN ON THE DIFFERENT
CATALYST PLATFORMS. [Online, Retrieved January 21,
2016] http://www.cisco.com/c/en/us/support/docs/
switches/catalyst-6500-series-switches/10570-41.
html#anc48.

[48] PEYMAN KAZEMIAN. Hassel: Header space library. [On-
line, Retrieved February 17, 2016] https://bitbucket.org/
peymank/hassel-public/wiki/Home.

[49] POSTEL, J. IP record route (Internet Protocol), 1981. RFC
791 [Online, Retrieved February 17, 2016] http://www.ietf.
org/rfc/rfc791.txt.

[50] PYPY. [Online, Retrieved February 17, 2016] http://pypy.
org.

[51] QUOITIN, B., VAN DEN SCHRIECK, V., FRANÃĞOIS, P., AND
BONAVENTURE, O. IGen: Generation of router-level Internet
topologies through network design heuristics. In Proc. Interna-
tional Teletraffic Congress (2009).

[52] RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER,
W., AGARWAL, K., CARTER, J., AND FONSECA, R. Planck:
Millisecond-scale monitoring and control for commodity net-
works. In Proc. ACM SIGCOMM (2014).

[53] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N.
FatTire: Declarative fault tolerance for software-defined net-
works. In Proc. Hot Topics in Software Defined Networks (2013).

[54] ROCKETFUEL: AN ISP TOPOLOGY MAPPING EN-
GINE. [Online, Retrieved February 17, 2016] http:
//research.cs.washington.edu/networking/
rocketfuel/interactive/.

[55] SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON,
T. Practical network support for IP traceback. In Proc. ACM
SIGCOMM (2000).

[56] SCHLESINGER, C., GREENBERG, M., AND WALKER, D. Con-
current NetCore: From policies to pipelines. In Proc. ACM Inter-
national Conference on Functional Programming (2014).

[57] SHIEH, A., SIRER, E. G., AND SCHNEIDER, F. B. NetQuery:
A knowledge plane for reasoning about network properties. In
Proc. ACM SIGCOMM (2011).

[58] SMOLKA, S., ELIOPOULOS, S., FOSTER, N., AND GUHA, A.
A fast compiler for NetKAT. In Proc. ACM International Con-
ference on Functional Programming (2015).

[59] SNOEREN, A. C., PARTRIDGE, C., SANCHEZ, L. A., JONES,
C. E., TCHAKOUNTIO, F., KENT, S. T., AND STRAYER, W. T.
Hash-based IP traceback. In Proc. ACM SIGCOMM (2001).

[60] SOULÉ, R., BASU, S., MARANDI, P. J., PEDONE, F., KLEIN-
BERG, R., SIRER, E. G., AND FOSTER, N. Merlin: A language
for provisioning network resources. In Proc. ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT)
(Dec. 2014).

[61] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measur-
ing ISP topologies with Rocketfuel. In Proc. ACM SIGCOMM
(2002).

[62] SUN, P., YU, M., FREEDMAN, M. J., AND REXFORD, J. Identi-
fying performance bottlenecks in CDNs through TCP-level mon-
itoring. In Proc. of the First ACM SIGCOMM Workshop on Mea-
surements Up the Stack (2011).

[63] SUNG, Y.-W. E., RAO, S. G., XIE, G. G., AND MALTZ, D. A.
Towards systematic design of enterprise networks. In Proc. ACM
Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT) (2008).

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 221

[64] TAMMANA, P., AGARWAL, R., AND LEE, M. Cherrypick: Trac-
ing packet trajectory in software-defined datacenter networks. In
Proc. ACM Symposium on SDN Research (2015).

[65] THE PYRETIC LANGUAGE AND RUN-TIME SYSTEM. [On-
line, Retrieved February 17, 2016] https://github.com/
frenetic-lang/pyretic.

[66] UDDIN, M. Real-time search in large networks and clouds, 2013.

[67] WAXMAN, B. Routing of multipoint connections. IEEE J. on
Selected Areas in Communications (1988).

[68] WIRESHARK. [Online, Retrieved February 17, 2016] https:
//www.wireshark.org.

[69] WU, W., WANG, G., AKELLA, A., AND SHAIKH, A. Virtual
network diagnosis as a service. In Proc. Symposium of Cloud
Computing (2013).

[70] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J.,
YUAN, L., KANDULA, S., AND KIM, C. Profiling network per-
formance for multi-tier data center applications. In Proc. USENIX
Symposium on Networked Systems Design and Implementation
(2011).

[71] YU, M., JOSE, L., AND MIAO, R. Software defined traffic mea-
surement with OpenSketch. In Proc. USENIX Symposium on Net-
worked Systems Design and Implementation (2013).

[72] YUAN, L., CHUAH, C.-N., AND MOHAPATRA, P. ProgME:
Towards programmable network measurement. In Proc. ACM
SIGCOMM (2007).

[73] ZHANG, H., LUMEZANU, C., RHEE, J., ARORA, N., XU, Q.,
AND JIANG, G. Enabling layer 2 pathlet tracing through context
encoding in software-defined networking. In Proc. Hot Topics in
Software Defined Networks (2014).

[74] ZHANG, HARVEST AND REICH, JOSHUA AND REXFORD, JEN-
NIFER. Packet traceback for software-defined networks. Tech.
rep., Princeton University, 2015. [Online, Retrieved Septem-
ber 10, 2015] https://www.cs.princeton.edu/research/
techreps/TR-978-15.

[75] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MA-
HAJAN, R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B.,
AND ZHENG, H. Packet-level telemetry in large data-center net-
works. In Proc. ACM SIGCOMM (2015).

A Multi-stage rule-packing problem

Below we write down the integer optimization problem
that minimizes the number of table stages subject to con-
straints on the number of stages and rule space available
per stage. Typically, predicate partitioning time is pro-
portional to the size of the output set of predicates, so
this also reduces the compile time significantly:

minimize: S = ∑ j y j

variables: qi j ∈ {0,1},y j ∈ {0,1}
subject to:

∀ j : cost({qi j : qi j = 1})≤ rulelimit∗ y j
∀i : ∑ j qi j = 1
S ≤ stagelimit

Here the variable qi j is assigned a value 1 if query i is
assigned to stage j, and 0 otherwise. The variable y j is 1
if stage j is used by at least one query and 0 otherwise.
The constraints ensure, respectively, that (i) queries in a

given stage respect the rule space limits for that stage, (ii)
every query is assigned exactly one table stage, and that
(iii) the total number of stages is within the number of
maximum stages supported by the switch. The optimiza-
tion problem minimizes the number of used table stages,
which is a measure of the latency and complexity of the
packet-processing pipeline.

We now write down the cost function that deter-
mines the rule space usage of a bunch of queries
together. First, we define the type and count for
each query as the set of header fields the query
matches on, and the number of total matches re-
spectively. In the example in §6, the query types
and counts would be q1: ([’srcip’], 100), q2:
([’dstip’], 200), q3: ([’srcip’], 300). We
estimate the worst-case rule space cost11 of putting two
queries together into one stage as follows:

cost ((type1, count1), (type2, count2)) :=
case type1 == ϕ:

count2 + 1
case type1 == type2:

count1 + count2
case type1 ⊂ type2:

count1 + count2
case type1 ∩ type2 == ϕ:

(count1 + 1) * (count2 + 1) - 1
case default:

(count1 + 1) * (count2 + 1) - 1

The type of the resulting query is type1 ∪ type2, as
the predicate partitioning (Alg. 1) creates matches with
headers involving the union of the match fields in the
two queries. Hence, we can construct a function which
produces a new query type and count, given two existing
query types and counts. It is easy to generalize this func-
tion to more than two arguments by iteratively applying
it to the result of the previous function application and
the next query12. Hence, we can compute the worst-case
rule space cost of putting a bunch of queries together into
one stage.

Our cost function and formulation are different from
prior works that map logical to physical switch tables
[29, 56] for two reasons. First, query predicates can be
installed on any table: there is no ordering or dependency
between them, so there are more possibilities to explore
in our formulation. Second, our rule space cost func-
tion explicitly favors predicates with similar headers in
one table, while penalizing predicates with very different
header matches.

Reduction of bin-packing to rule-packing. It is
straightforward to show that the problem of minimizing

11It is in general difficult to compute the exact rule space cost of
installing two queries together in one stage without actually doing the
entire overlap computation in Alg. 1.

12We believe, but are yet to show formally, that this cost function is
associative.

15

222 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 1 Predicate partitioning (§5.1).
1: P = set_o f _predicates
2: S = /0
3: for new_pred ∈ P do
4: for pred ∈ S do
5: if pred is equal to new_pred then
6: continue the outer loop
7: else if pred is a superset of new_pred then
8: di f f erence = pred & ∼ new_pred
9: S ← S∪{di f f erence,new_pred}

10: S ← S\{pred}
11: continue the outer loop
12: else if pred is a subset of new_pred then
13: new_pred ← new_pred & ∼ pred
14: else if intersect then
15: inter1 = pred & ∼ new_pred
16: inter2 = ∼ pred & new_pred
17: inter3 = pred & new_pred
18: S ← S∪{inter1, inter2, inter3}
19: S ← S\{pred}
20: new_pred ← new_pred & ∼ pred
21: end if
22: end for
23: S ← S∪{new_pred}
24: end for

the number of bins B of capacity V while packing n items
of sizes a1,a2, · · · ,an can be solved through a specific in-
stance of the rule packing problem above. We construct
n queries of the same type, with rule counts a1, · · · ,an re-
spectively. We set the rulelimit to the size of the bins
V , and stagelimit to the number of maximum bins al-
lowed in the bin packing problem (typically n). Since all
queries are of the same type, the rule space cost function
is just the sum of the rule counts of the queries at a given
stage. It is then easy to see that the original bin-packing
problem is solved by this instance of the rule-packing
problem.

First-fit Heuristic. The first-fit heuristic we use is di-
rectly derived from the corresponding heuristic for bin-

packing. We fit a query into the first stage that allows
the worst-case rule space blowup to stay within the pre-
specified per-stage rulelimit. The cost function above
is used to compute the final rule-space after including a
new query in a stage. We use a maximum of 10 logi-
cal stages in our experiments, with a 2000 rule limit per
stage in the worst-case.

The logical stages match and modify completely dis-
joint parts of the packet state. We believe that a packet
program compiler, e.g., [29], can efficiently lay out the
query rules on a physical switch table, since there are no
dependencies between these table stages.

B Predicate Partitioning

To ensure that characters represent non-overlapping
predicates, we apply Alg. 1 to partition the input pred-
icates. The algorithm takes an input set of predicates P,
and produces an orthogonal set of predicates S.

The partitioned set S is initialized to a null set (line 2).
We iterate over the predicates in P, teasing out overlaps
with existing predicates in S. If the current input pred-
icate new_pred already exists in S, we move on to the
next input (lines 5-6). If a predicate pred in S is a su-
perset of new_pred, we split pred into two parts, cor-
responding to the parts that do and don’t overlap with
new_pred (lines 7-11). Then we move to the next in-
put predicate. The procedure is symmetrically applied
when pred is a subset of new_pred (lines 12-13), ex-
cept that we continue looking for more predicates in S
that may overlap with new_pred. Finally, if pred and
new_pred merely intersect (but neither is a superset of
the other), we create three different predicates in S ac-
cording to three different combinations of overlap be-
tween the two predicates (lines 14-20). Finally, any re-
maining pieces of new_pred are added to the partitioned
set S. Under each case above and for each predicate in P,
we also keep track of the predicates in the partitioned set
S with which it overlaps (details elided).

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 223

Simplifying Software-Defined Network Optimization Using SOL

Victor Heorhiadi, Michael K. Reiter, Vyas Sekar
UNC Chapel Hill, UNC Chapel Hill, Carnegie Mellon University

Abstract
Realizing the benefits of SDN for many network man-
agement applications (e.g., traffic engineering, service
chaining, topology reconfiguration) involves addressing
complex optimizations that are central to these problems.
Unfortunately, such optimization problems require (a)
significant manual effort and expertise to express and (b)
non-trivial computation and/or carefully crafted heuris-
tics to solve. Our goal is to simplify the deployment of
SDN applications using general high-level abstractions
for capturing optimization requirements from which we
can efficiently generate optimal solutions. To this end,
we present SOL, a framework that demonstrates that it
is possible to simultaneously achieve generality and ef-
ficiency. The insight underlying SOL is that many SDN
applications can be recast within a unifying path-based
optimization abstraction. Using this, SOL can efficiently
generate near-optimal solutions and device configura-
tions to implement them. We show that SOL provides
comparable or better scalability than custom optimiza-
tion solutions for diverse applications, allows a balancing
of optimality and route churn per reconfiguration, and in-
terfaces with modern SDN controllers.

1 Introduction
Software-defined networking (SDN) is an enabler for
network management applications that may otherwise be
difficult to realize using existing control-plane mecha-
nisms. Recent work has used SDN-based mechanisms to
implement network configuration for a range of manage-
ment tasks: traffic engineering (e.g., [40]), service chain-
ing (e.g., [39]), energy efficiency (e.g., [19]), network
functions virtualization (NFV) (e.g., [14]), and cloud of-
floading (e.g., [44]), among others.

While this body of work has been instrumental in
demonstrating the potential benefits of SDN, realizing
these benefits requires significant effort. In particular, at
the core of many SDN applications are custom optimiza-
tion problems to tackle various constraints and require-
ments that arise in practice (§2). For instance, an SDN
application might need to account for limited TCAM,
link capacities, or middlebox capacities, among other
considerations. Developing such formulations involves
a non-trivial learning curve, a careful understanding of
theoretical and practical issues, and considerable man-
ual effort. Furthermore, when the resulting optimiza-
tion problems are intractable to solve with state-of-the-
art solvers (e.g., CPLEX or Gurobi), heuristic algorithms

SOL

Control platform, e.g., ONOS

SDN Applications
e.g., Service chaining, Traffic engineering

Solver, e.g., CPLEX

app.allocateFlow(…)
app.addLinkCapacityConstraint(…)
app.addNodeCapacityConstraint(…)

…
app.generateRoutes()

Network data Network routes

SO
L

 A
P

I

Figure 1: Developers use the SOL high-level APIs to
specify optimization goals and constraints. SOL gen-
erates near-optimal solutions and produces device con-
figurations that are input to the SDN control platform.

must be crafted to ensure that new configurations can
be generated on timescales demanded by the applica-
tion as relevant inputs (e.g., traffic matrix entries) change
(e.g., [19, 29]). Furthermore, without a common frame-
work for representing network optimization tasks, it is
difficult to reuse key ideas across applications or to com-
bine useful features into a custom new application.

Our goal in this work is to raise the level of abstraction
for writing such SDN-based network optimization appli-
cations. To this end, we introduce SOL, a framework
that enables SDN application developers to express high-
level application goals and constraints. Conceptually,
SOL is an intermediate layer that sits between the SDN
optimization applications and the actual control platform
(see Fig. 1). Application developers who want to develop
new network optimization capabilities express their re-
quirements using the SOL API. SOL then generates con-
figurations that meet these goals, which can be deployed
to SDN control platforms.

There are two natural requirements for such a frame-
work: (1) generality to express the requirements for a
broad spectrum of SDN applications (e.g., traffic engi-
neering, policy steering, load balancing, and topology
management); and (2) efficiency to generate (near-) op-
timal configurations on a timescale that is responsive to
application needs. Given the diversity of the application
requirements and the trajectory of prior work in devel-
oping custom solutions (e.g., [39, 24, 23, 19, 29, 14, 8,
46, 40, 20]), generality and efficiency appear individually
difficult, let alone combined. We show that it is indeed
possible to achieve both generality and efficiency.

The key insight in SOL to achieve generality is that
many network optimization problems can be expressed
as path-based formulations. Paths are a natural abstrac-

1

224 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

tion for application developers to reason about intended
network behaviors and to express policy requirements.
For example, we can use paths to specify service chain-
ing requirements (e.g., each path includes a firewall and
intrusion-detection system, in that order) or redundancy
(e.g., each includes two intrusion-prevention systems, in
case one fails open). Finally, it is easy to model de-
vice (e.g., TCAM space, middlebox CPU) and link re-
source consumption based on the volume of traffic flow-
ing through paths that traverse that device or link.

The natural question is whether the generality of
path-based formulations precludes efficiency. Indeed, if
implemented naively, optimization problems expressed
over the paths that traffic might travel will introduce ef-
ficiency challenges since the number of paths grows ex-
ponentially with the network size. Our key insight is that
by combining infrequent, offline preprocessing with sim-
ple, online path-selection algorithms (e.g., shortest paths
or random paths), we can achieve near-optimal solutions
in practice for all applications we considered. Moreover,
SOL is typically far more efficient than solving the op-
timization problems originally used to express these ap-
plications’ requirements.

We have implemented SOL as a Python-based library
that interfaces with ONOS [5] and OpenDaylight [35]
(§7). We have also prototyped numerous SDN applica-
tions in SOL, including SIMPLE [39], ElasticTree [19],
Panopticon [29], and others of our own design (§6 and
App. B). SOL is open-source; we have released mod-
ules for various applications coded in SOL as well as our
ONOS extensions [22].

Our evaluations on a range of topologies show that:
1) SOL outperforms several applications’ original opti-
mization algorithms by an order of magnitude or more,
and is even competitive with their custom heuristics; 2)
SOL scales better than other network management tools
like Merlin [45]; 3) SOL substantially reduces the effort
required (e.g., in terms of lines of code) for implement-
ing new SDN applications by an order of magnitude; and
4) optional SOL extensions can reduce route churn sub-
stantially across reconfigurations with modest impact on
optimality.

2 Background and Motivation
In this section, we describe representative network ap-
plications that could benefit from a framework such as
SOL. We highlight the need for careful formulation and
algorithm development involved in prior efforts, as well
as the diversity of requirements they entail.

2.1 Traffic engineering
Traffic engineering (TE) is a canonical application that
was an early driving application for SDN [24, 23]. Fig. 2
shows an example where traffic classes C1 and C2 need

to be routed completely while minimizing the load on the
most heavily loaded link. A TE application takes as in-
put traffic demands (e.g., the traffic matrix between WAN
sites), a specification of the traffic classes and priorities,
and the network topology and link capacities. It deter-
mines how to route each class to achieve network-wide
objectives, e.g., minimizing congestion [11] or weighted
max-min fairness [24, 23].

Figure 2: Traffic engineering applications

Challenges: Simple goals like link congestion can be
represented and solved via max-flow formulations [1].
However, the expressivity and efficiency quickly breaks
down for more complex objectives such as max-min
fairness, which multiple research efforts have sought
to address [23, 9, 24]. When max-flow like formula-
tions fail, designers invariably revert to “low-level” tech-
niques such as linear programs (LP) or combinatorial al-
gorithms. Neither is ideal—using/tuning LP solvers is
painful as they expose a very low-level interface, and
combinatorial algorithms require significant theoretical
expertise. Finally, translating the algorithm output into
actual routing rules requires care to install volume-aware
rules to truly reap the benefits of the optimization [47].

2.2 Service chaining
Networks today rely on a wide variety of middleboxes
(e.g., IDS, proxy, firewall) for performance, security, and
external compliance capabilities (e.g., [44]). The goal
of service chaining is to ensure that each class of traffic
is routed through the desired sequence of network func-
tions. For example, in Fig. 3, class C1 is required to
traverse a firewall and proxy in order. Such policy rout-
ing rules must be suitably encoded within the available
TCAM on SDN switches [39]. Since middleboxes are
often compute-intensive, they can get easily overloaded
and thus operators would like to balance the load on these
appliances [39, 15]. The key inputs to such applications
are the service chaining requirements of different classes,
traffic demands, and the available middlebox processing
resources. The application then sets up the forwarding
rules such that the service chaining requirements are met
while respecting the switch TCAM and middlebox ca-
pacities. Furthermore, as many of these middleboxes are
stateful, these rules must ensure flow affinity.
Challenges: Service chaining introduces more com-
plex requirements when compared to TE applications.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 225

Figure 3: Service chaining applications

First, modeling the consumption of switch TCAM intro-
duces discrete components into the optimization, which
impacts scalability [39]. Second, such service process-
ing requirements fall outside the scope of existing net-
work flow abstractions [8]. Third, service chaining high-
lights the complexity of combining different require-
ments; e.g., reasoning about the interaction between the
load balancing algorithm and the switch TCAM con-
straints is non-trivial [25]. Existing service chaining ef-
forts developed custom heuristics [7] or new theoretical
extensions [8]. Furthermore, as observed previously, en-
suring flow affinity can be quite tricky [21, 20].

2.3 Flexible topology management
SDN enables topology modifications that would be dif-
ficult to implement with existing control plane capabil-
ities. For instance, ElasticTree [19] and Response [46]
use SDN to dynamically switch on/off network links and
nodes to make datacenters more energy efficient. In
Fig. 4, these applications might shut down node N3 dur-
ing periods of low utilization, if classes C1 and C2 can
be routed via N4 without significantly impacting end-to-
end performance. Topology reconfiguration is especially
feasible in rich topologies with multiple paths between
every source and destination. Such applications take as
input the demand matrix (similar to the TE task) and then
compute the nodes and links that should be active and
traffic-engineered routes to ensure performance SLAs.

Figure 4: Topology reconfiguration applications

Challenges: The on-off requirement on the switch-
es/links once again introduces discrete constraints, yield-
ing integer-linear optimizations that are theoretically in-
tractable and difficult to express using max-flow like ab-
stractions. Solving such problems requires significant
computation even on small topologies and thus forces de-
velopers to design new, heuristic solving strategies; e.g.,
ElasticTree uses a greedy bin-packing algorithm [19].

2.4 Network function virtualization
Prior work has leveraged SDN capabilities to offload
or outsource network functions to leverage clusters or
clouds [44, 16, 40]. This is especially useful for expen-
sive deep-packet-inspection services [20]. The key de-
cision here is to decide how much of the processing on
each path to offload to the remote datacenter — e.g., in
Fig. 5, how much of class C1 traffic should be routed to
the datacenter between N4 and N5 for IPS processing,
versus processing it at N3. Offloading can increase user-
perceived latency and impose additional load on network
links. Moreover, some active functions (e.g., WAN op-
timizers or IPS) induce changes to the observed traffic
volumes due to their actions. Thus, optimizing such of-
floading must take into account the congestion that might
be introduced, as well as latency impact and any traf-
fic volume changes induced by such outsourced func-
tions. Further generalizations have considered not only
offloading middlebox services but also elastically scaling
them [36, 14, 34, 6], exacerbating these issues.

Figure 5: Offloading network functions

Challenges: Such offloading and elastic scaling oppor-
tunities introduce new dimensions to optimization that
are difficult to capture. For instance, offloading requires
rerouting the traffic and thus optimizations must model
the impact on link loads, downstream nodes, and TE ob-
jectives. If done naively, this can introduce non-linear
dependencies since the actions of downstream nodes de-
pend on control decisions made upstream. The active
changes to traffic volumes by some functions (e.g., com-
pression for redundancy elimination or drops by IPS)
also introduce non-linear dependencies in the optimiza-
tion. Finally, elastic scaling introduces a discrete aspect
to the problem similar to the topology modification ap-
plication, further decaying the problem’s tractability.

2.5 Motivation for SOL
Drawing on the above discussion (and our own experi-
ence), we summarize a few key considerations:
• Network applications have diverse and complex opti-

mization requirements; e.g., service chaining requires
us to reason about valid paths while topology modifi-
cation needs to enable/disable nodes.

• Designers of these applications have to spend signif-
icant effort in expressing and debugging these prob-

3

226 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

lems using low-level optimization libraries.
• It can take non-trivial expertise to ensure that the

problems can be solved fast enough to be relevant for
operational timescales, e.g., recomputing TE every
few minutes or periodically solving the large integer-
linear programs (ILPs) supporting topology reconfig-
uration (e.g., [19]).

3 SOL Overview
Our overarching vision in developing SOL is to raise the
level of abstraction in developing new SDN applications
and specifically to eliminate some of the black art in de-
veloping SDN-based optimizations, making them more
accessible for deployment by network managers. To do
so, SOL abstracts away low-level details of optimization
solvers and SDN controllers, allowing the developer to
focus on the high-level application goals (recall Fig. 1).
SOL takes as inputs the network topology, traffic pat-
terns, and optimization requirements in the SOL API.
It then translates these into constraints for optimization
solvers such as CPLEX or Gurobi. Finally, SOL inter-
faces with existing SDN control platforms such as ONOS
to install the forwarding rules on the SDN switches. SOL
does not require modifications to the existing control or
data plane components of the network. Our vision for
SOL stands in stark contrast to the state of affairs today,
in which a developer faces programming a new SDN op-
timization either directly for a generic and low-level op-
timization solver such as CPLEX or using a heuristic al-
gorithm designed by hand, after which she must translate
the decision variables of the optimization to device con-
figurations.

Path abstraction: For SOL to be useful and robust, we
need a unifying abstraction that can capture the require-
ments of diverse classes of SDN network optimization
applications described in the previous section. SOL is
built using paths through a network as a core abstrac-
tion for expressing network optimization problems. This
is contrary to how many optimizations are formulated in
the literature — using a more standard edge-centric ap-
proach [1]. In our experience, however, an edge-centric
approach forces complexity when presented with addi-
tional requirements, especially ones that attempt to cap-
ture path properties [29, 19].

In contrast, path-based formulations capture these re-
quirements more naturally. For instance, much of the
complexity in modeling service chaining or network
function offloading applications from §2 is in captur-
ing the path properties that need to be satisfied. With a
path-based abstraction, we can simply define predicates
that specify valid paths — e.g., those that include certain
waypoints or that avoid a certain node (to anticipate that
node’s failure). In addition, we can model path-based
resource use with ease. For example, usage of TCAM

space in a switch corresponds to a traffic-carrying path
traversing that switch (and thus a rule to accommodate
that path). Without the path abstraction, modeling such
constraints is difficult (cf., [39]). Finally, expressing con-
straints on nodes and edges does not introduce increased
difficulty compared to edge-centric approach.

Scalability: In a pure flow-routing scenario, an edge-
based formulation admits simple algorithms that guaran-
tee polynomial-time execution. Path-based formulations,
on the other hand, are often dismissed because of their
inefficient appearance — after all, in the worst case, the
number of paths in the network is exponential in the net-
work size — or due to the complexity of algorithms to
solve path based formulations (column-generation, de-
compositions, etc. [1]). However, in many practical sce-
narios, the number of valid paths (as defined by the appli-
cation) is likely to be significantly smaller. Furthermore,
multipath routing can provide only so much network di-
versity before its value diminishes [30]. So, the set of
paths that need to be considered is not large.

SOL leverages an off-line path generation step to de-
termine valid paths (step 1 of Fig. 6). Since for most ap-
plications, the set of valid paths is fairly static and does
not need to be recomputed every time the optimization is
run, we expect this step is infrequent. Next, SOL selects
a subset of these paths (step 2) using a selection strategy
(see §5) and runs the optimization with only the selected
paths as input (step 3), to ensure that the optimization
completes quickly. We show in §8 that this strategy still
permits inclusion of sufficiently many paths for the opti-
mization to converge to a (near) optimal value. So, while
the efficiency of path-based optimization is a valid theo-
retical concern, in practice we show that there are practi-
cal heuristics to address this issue.

SOL
Path selection Optimization

Dataplane configuration

2

Rule generation

4

Rules for p1p1

Rules for p2p2

Offline path generation

1 3

Traffic vol on p1p1

Traffic vol on p2p2

Figure 6: SOL architecture, overview of the workflow

Generating device configurations: SOL translates the
decision variables from the SOL optimization to net-
work device configurations to implement appropriate
flow routing (step 4 of Fig. 6). The algorithm utilized
in SOL to perform this translation is based on that in pre-
vious work [47, 20]. However, because the optimization
is path-based, the algorithm is more straightforward and
requires fewer steps.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 227

nodes: Set of all nodes, part of the topology

links: Set of all links, part of the topology

classes: Set of all traffic classes

paths(c): Paths available for class c ∈ classes; output by
path-selection stage (§5)

Figure 7: Network data input

Var. Description

D
ec

is
io

n

xc,p Fraction of class-c flows allocated to path
p ∈ paths(c); non-integer

bp Is path p used; binary
bv Is node v used; binary
bl Is link l used; binary

capvarr
v Capacity allocated for resource r at node v;

non-integer

D
er

iv
ed

ac Fraction of c’s “demand” routed; non-integer
loadr

l Amount of resource r consumed by flows
routed over link l; non-integer

loadr
v Amount of resource r consumed by flows

routed via node v; non-integer

Figure 8: Variables internal to the optimization

4 SOL Detailed Design
In this section, we present the detailed design of SOL.
We focus on the high-level API that the SDN application
developer would use to express applications via SOL,
and the impact of these API calls on the SOL’s inter-
nal representation of the optimization problem. Note,
however, that the developer “thinks” in terms of the high-
level API rather than low-level details of dealing with the
solver-level variables, how paths are identified, etc.

A developer begins a new optimization in SOL by
instantiating an opt object via the getOptimization
function and then building the optimization using con-
straint templates, which we explain below.

4.1 Preliminaries

Data inputs: There are two basic data inputs that the
developer needs to provide to any network optimization.
First, the network topology is a required input, speci-
fied as a graph with nodes and links. It also contains
metadata of node/edge types or properties; e.g., nodes
can have designated functions like “switch” or “mid-
dlebox”. Second, SOL needs a specification of traffic
classes, where each class c has associated ingress and
egress nodes and some expected traffic volume. Each
class can (optionally) be associated with a specification
of the “processing” required for traffic in this class, e.g.,
service chaining. Finally, to each traffic class c is asso-
ciated a set paths(c) available to route flows in class
c; paths(c) is output by a path-selection preprocessing
step described in §5.

Internal variables: SOL internally defines a set of vari-
ables summarized in Fig. 8. We reiterate that the de-
veloper does not need to reason about these variables
and uses a high-level mental model as discussed earlier.
There are two main kinds of variables:
• Decision variables that identify key optimization con-

trol decisions. The most fundamental decision vari-
able is xc,p, which captures traffic routing decisions
and denotes the fraction of flow for a traffic class c
that path p ∈ paths(c) carries. This variable is cen-
tral to various types of resource management appli-
cations as we will see later. To capture topological
requirements (e.g., §2.3), we introduce three binary
decision variables bp, bv, and bl that denote whether
each path, node or link (respectively) is enabled (= 1)
or disabled (= 0). The variable capvarr

v is the SOL-
assigned allocation of resource-r to node v.

• Derived variables are functions defined over the
above decision variables that serve as convenient
“shorthands”. ac denotes the total fraction of flow for
class c that is carried by all paths. The load variables
loadr

v and loadr
l model the consumption of resource r

on node v and link l, respectively.
There are low-level API calls 1 that return the names of
these internal variables, which can be used to access each
one’s value in a public map of names to values, if needed.

4.2 Routing requirements
Routing constraints control the allocation of flow in the
network. addAllocateFlowConstraint creates the
necessary structure for routing the traffic through a set of
paths for each traffic class. Some network applications
try to satisfy as much of their flow demands as possible
(e.g., max-flow) while others (e.g., TE) want to “satu-
rate” demands. For example, a developer of a TE ap-
plication (§2.1) would like to route all traffic though the
network, and thus she would add the following high-level
routing constraint templates to her empty opt object:
opt.addAllocateFlowConstraint()
opt.addRouteAllConstraint()

In contrast, a simple max-flow would only need
addAllocateFlowConstraint since there is no re-
quirement on saturating demands in that case.

The addEnforceSinglePath(C) constraint forces
a single flow-carrying path per class c ∈ C, preventing
flow-splitting and multipath routing.
Internals: addAllocateFlowConstraint ensures
that the total traffic flow across all chosen paths for the
class c matches the variable ac.

∀c ∈ classes : ∑
p∈paths(c)

xc,p = ac

1We also expose low-level APIs (see Appendix A) for advanced
users.

5

228 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Group Function Description

Routing
(C ⊆ classes)

addAllocateFlowConstraint Allocate flow in the network
addRouteAllConstraint Route all traffic demands
addEnforceSinglePath (C) For each c ∈C, at most one p ∈ paths(c) is

enabled.

Capacities

addLinkCapacityConstraint (r, lnCap,
linkCapFn)

If l is in lnCap, then limit utilization of link
resource r on link l to lnCap[l].

addNodeCapacityConstraint (r, ndCap,
nodeCapFn)

If v is in ndCap, then limit utilization of node
resource r on node v to ndCap[v].

addNodeCapacityPerPathConstraint (r,
ndCap, nodeCapFn)

If v is in ndCap, then limit utilization of node
resource r on node v by enabled paths to ndCap[v].

addCapacityBudgetConstraint (r, N, totCap) Limit total type-r resources allocated to nodes in
N ⊆ nodes to totCap. Used when SOL is
allocating capacities.

Topology
control
(C ⊆ classes)

addRequireAllNodesConstraint (C) For each c ∈C and each p ∈ paths(c), p can be
enabled iff all nodes on p are enabled.

addRequireSomeNodesConstraint (C) For each c ∈C and each p ∈ paths(c), p can be
enabled iff some node on p is enabled.

addRequireAllEdgesConstraint (C) For each c ∈C and each p ∈ paths(c), p can be
enabled iff all links on p are enabled.

addPathDisableConstraint (C) For each c ∈C and each p ∈ paths(c), p can carry
traffic only if it is enabled.

addBudgetConstraint (nodeBudgetFn, k) Total cost of enabled nodes, as computed using
nodeBudgetFn, is at most k.

Objective setPredefinedObjective (name) Set one of the predefined functions as the objective
(see Fig. 11).

Figure 9: Selected constraint template functions for building optimizations; see Fig. 10 for linkCapFn,
nodeCapFn, and nodeBudgetFn

Similarly, addRouteAllConstraint implies:

∀c ∈ classes : ac = 1

Due to space limitations, we do not provide the formal
basis for addEnforceSinglePath.

4.3 Resource capacity constraints
As we saw in §2, SDN optimizations have to deal with
a variety of capacity constraints for network resources
such as link bandwidth, switch rules, and middlebox
CPU and memory. SOL allows users to write custom
resource management logic by specifying several “cost”
functions, depicted in Fig. 10. These functions prescribe
how to compute the cost of routing traffic through a link,
a node, or a given path. SOL provides default implemen-
tations of these for common tasks, but allows the user to
specify their own logic, as well, as we will show later
(§6).

These cost functions can then be passed into constraint
templates. For example, to add a constraint that lim-
its link usage, the user can invoke the template function
addLinkCapacityConstraint with a resource that
we are constraining (e.g., ‘bandwidth’), a map of links to
their capacities,2 and optionally, a custom linkCapFn to

2When capacities should be allocated by the optimization itself, a

compute the cost of traffic on a link.

opt.addLinkCapacityConstraint (’bandwidth’,
{(1,2): 10**7, (2,3): 10**7},
defaultLinkFunction)

This indicates that bandwidth should not exceed 10 Mbps
for links 1-2 and 2-3. Note that the default function is
purely for illustration; the developer can write her own
linkCapFn (recall Fig. 10).
addNodeCapacityPerPathConstraint generates

constraints on the nodes that do not depend on the traffic,
but rather on the routing path. That is, the cost of rout-
ing at a node does not depend on the volume or type of
traffic being routed; it depends on the path and its prop-
erties. The best example of such usage is accounting for
the limited rule space on a network switch (e.g., §2.2).
If a path is “active”, the rule must be installed on each
switch to support the path.

Internals: addLinkCapacityConstraint and
addNodeCapacityConstraint rely on linkCapFn
and nodeCapFn, respectively, to compute the cost of us-
ing a particular resource at a link or node if all of the
class-c traffic was routed to it. Internally, the load is
multiplied by the xc,p variable to capture the load accu-

capacity of TBA (meaning To Be Allocated) can be specified, instead.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 229

linkCapFn(l,c, p,r): Amount of resource type r consumed if all
class-c traffic is allocated to path p � l for link l

nodeCapFn(v,c, p,r): Amount of resource r consumed if all class-c
traffic is allocated to path p � v for node v

nodeBudgetFn(v): Cost of using node v; required with
addBudgetConstraint

routingCostFn(p): Cost of routing along path p; required with
minRoutingCost

predicate(p): Determine whether any given path is valid by
returning True or False

Figure 10: Customizable functions

rately, then the load is capped by a user-provided lnCap
(ndCap), which is a mapping of links (nodes) to capaci-
ties for a given resource r. (Similar node capacity equa-
tions not shown for brevity.)

∀l in lnCap :

loadr
l = ∑

c
∑

p∈paths(c):l∈p
xc,p ×linkCapFn(l,c, p,r)

loadr
l ≤ lnCap[l]

The addNodeCapacityPerPathConstraint func-
tions a bit differently, as it depends on enabled paths:

∀v in ndCap :

loadr
v = ∑

c
∑

p∈paths(c):v∈p
bp ×nodeCapFn(v,c, p,r)

loadr
v ≤ capvarr

v

if ndCap[v] �= TBA then capvarr
v = ndCap[v]

4.4 Node/link activation constraints
Next set of constraints, when used, allow develop-
ers to logically model the act of enabling or dis-
abling nodes, links, and paths; e.g., for managing en-
ergy or other costs (e.g., §2.3). We identify two
possible modes of interactions between these topology
modifiers, and the optimization developer can choose
the one that is most suitable for their context. 1)
addRequireAllNodesConstraint captures the prop-
erty that disabling a node disables all paths that traverse
it; and 2) addRequireSomeNodesConstraint cap-
tures the property that enabling a node permits any path
traversing it to be enabled, as well. The latter version
is suitable when, e.g., a node can still route traffic even
if its other (middlebox) functionality is disabled, and so
a path containing that node is potentially useful as pro-
viding middlebox functions if at least one of its nodes
is enabled. There are analogous constraint templates for
links, but we omit them here for brevity. A third con-
straint template, addPathDisableConstraint, re-
stricts a path to carry traffic only if it is enabled.

For example, a developer trying to implement
the application from §2.3 can model the re-
quirements for shutting off datacenter nodes by
adding the addRequireAllNodesConstraint and
addPathDisableConstraint templates:

opt.addRequireAllNodesConstraint (trafficClasses)
opt.addPathDisableConstraint (trafficClasses)

Other efficiency considerations may enforce a budget
on the number of enabled nodes, to model constraints on
total power consumption of switches/middleboxes, cost
and budget of installing/upgrading particular switches,
etc. These are captured via the addBudgetConstraint
template function.
Internals: Internally, these topology modification tem-
plates are achieved using the binary variables we intro-
duced earlier. Specifically, the above requirements can
be formalized as follows:

∀p ∈ paths(c) :
addRequireAllNodesConstraint ∀v ∈ p : bp ≤ bv
addRequireSomeNodesConstraint bp ≤ ∑v∈p bv
addPathDisableConstraint xc,p ≤ bp

Naturally, similar constraints are constructed for links.
Note that addPathDisableConstraint is crucial
to the correctness of the optimization in that it en-
forces that no traffic traverses a disabled path. For
brevity, we do not provide the formal equations for
addBudgetConstraint.

4.5 Specifying network objectives
The goal of SDN applications is eventually to optimize
some network-wide objective, e.g., maximizing the net-
work throughput, balancing load, or minimizing total
traffic footprint. Fig. 11 lists the most common objective
functions, drawing on the applications considered in §2.
For instance, the developer of a TE application may want
to implement the objective of minimizing the maximum
link load and thus add the following code snippet:

opt.setPredefinedObjective (minMaxLinkLoad,
’bandwidth’)

Other optimizations (e.g., §2.4) may need to minimize
the total routing cost and include a minRoutingCost
objective. This objective is parameterized with
routingCostFn(p); i.e., developers can plugin their
own cost metrics such as number of hops or link weights.
As shown, we also provide a range of natural load-
balancing templates. SOL also exposes a low-level API
for specifying other complex objective functions, which
we describe in Appendix A.

5 Path generation and selection
Given these constraint templates, the remaining ques-
tion is how we populate the path set paths(c) for each

7

230 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

maxAllFlow maximize ∑
c∈classes

ac

minMaxNodeLoad (r) minimize max
v∈nodes

loadr
v

minMaxLinkLoad (r) minimize max
l∈links

loadr
l

minRoutingCost ∑
c,p

routingCostFn(p)× xc,p

Figure 11: Common objective functions

traffic class c to meet two requirements. First, each
p ∈ paths(c) should satisfy the desired policy specifi-
cation for the class c. Second, paths(c) should contain
paths for each class c that make the formulation tractable
and yet yield near-optimal results. We describe how we
address each concern next.

Generation: First, to populate the paths, SOL does an
offline enumeration of all simple (i.e., no loops) paths
per class.3 Given this set, we filter out the paths that do
not satisfy the user-defined predicate predicate, i.e.,
where predicate(p) =True only if p is a valid path.
(We can generalize this to allow different predicates per
class; not shown for brevity.)

In practice, we implement the predicate as a flexible
Python callable function rather than constrain ourselves
to specific notions of path validity (e.g., regular expres-
sions as in prior work [45]). Using this predicate gives
the user flexibility to capture a range of possible require-
ments. Examples include waypoint enforcement (forcing
traffic through a series of middleboxes in order); enforc-
ing redundant processing (e.g., through multiple IDS, in
case one fails open); and limiting network latency by
mandating shorter paths.

Selection: Using all valid paths per class may be in-
efficient since the number of paths grows exponentially
with the size of the network, meaning that the LP/ILP
that SOL generates will quickly become too large to
solve in reasonable time. SOL thus provides path selec-
tion algorithms that choose a subset of valid paths (num-
ber of paths denoted as selectNumber) that are still
likely to yield near-optimal results in practice. Specifi-
cally, two natural methods work well across the spectrum
of applications we have considered: (1) shortest paths
for latency-sensitive applications (selectStrategy =
shortest) or (2) random paths for applications involv-
ing load balancing (selectStrategy = random). SOL
is flexible to incorporate other selection strategies, e.g.,
picking paths with minimal node overlap for fault toler-
ance. We find random works well for many applications
that require load balancing. We conjecture this is be-
cause choosing random paths on sufficiently rich topolo-
gies yields a high degree of edge-disjointedness among
the chosen paths, yielding sufficient degrees of freedom

3This is to simplify the forwarding rules without resorting to tun-
neling or packet tagging [39].

1 SIMPLE_predicate = functools.partial(waypointMboxPredicate
, order=(’fw’,’ids’))

2 def SIMPLE_NodeCapFunc(node,tc,path,resource,nodeCaps):
3 if resource==’cpu’ and node in nodeCaps[’cpu’]:
4 return tc.volFlows*tc.cpuCost/nodeCaps[resource][node]

5 capFunc = functools.partial(SIMPLE_NodeCapFunc, nodeCaps=
nodeCaps)

7 def SIMPLE_TCAMFunc(node, tc, path, resource):
8 return 1
9 # Path generation, typically run once in a precomputation

phase
10 opt = getOptimization()
11 pptc = generatePathsPerTrafficClass(topo, trafficClasses,

SIMPLE_predicate, 10, 1000,
functools.partial(useMboxModifier, chainLength=2))

12 # Allocate traffic to paths
13 pptc = chooserand(pptc, 5)
14 opt.addDecisionVariables(pptc)
15 opt.addBinaryVariables(pptc, topo, [’path’,’node’])
16 opt.addAllocateFlowConstraint(pptc)
17 opt.addRouteAllConstraint(pptc)
18 opt.addLinkCapacityConstraint(pptc, ’bandwidth’, linkCaps,

defaultLinkFuncNoNormalize)
19 opt.addNodeCapacityConstraint(pptc, ’cpu’,

{node: 1 for node in topo.nodes() if ’fw’ or
’ids’ in topo.getServiceTypes(node)}, capFunc)

20 opt.addNodeCapacityPerPathConstraint(pptc, ’tcam’,
nodeCaps[’tcam’], SIMPLE_TCAMFunc)

21 opt.setPredefinedObjective(’minmaxnodeload’,’cpu’)
22 opt.solve()
23 obj = opt.getSolvedObjective()
24 pathFractions = opt.getPathFractions(pptc)
25 c = controller()
26 c.pushRoutes(c.getRoutes(pathFractions))

Figure 12: Code to express SIMPLE [39] in SOL

for balancing loads.

Developer API: The developer can specify the path
predicate and selection strategy, but she does not need
to be involved in the low-level details of generation and
selection. SOL also provides APIs for developers to add
their own logic for generation and selection; we do not
discuss these due to space limitations.

6 Examples
Next, we show end-to-end examples to highlight the
ease of using the SOL APIs to write existing and novel
SDN network optimizations. These examples are ac-
tual Python code that can be run, not just pseudocode.
By comparison, the code is significantly higher-level and
more readable than the equivalent CPLEX code would be,
as it does not need to deal with large numbers of under-
lying variables and constraints.

Service chaining (§2.2): As a concrete instance of the
service chaining example, we consider SIMPLE [39].
SIMPLE involves the following requirements: route all
traffic through the network, enforce the service chain
(e.g., “firewall followed by IDS”) policy for all traf-
fic, load balance across middleboxes, and do so while
respecting CPU, TCAM, and bandwidth requirements.
Fig. 12 shows how the SIMPLE optimization can be writ-
ten in ≈ 25 lines of code. This listing assumes that topol-
ogy and traffic classes have been set up, in the topo and

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 231

trafficClasses objects, respectively.
The first part of the figure shows function definitions

and the path generation step, which would typically be
performed once as a precomputation step. We start
by defining a path predicate (line 1) for basic enforce-
ment through middleboxes by using the SOL-provided
function with the middlebox order. The next few lines
(lines 2–4) show a custom node capacity function to nor-
malize the CPU load between 0 and 1. This computes
the processing cost per traffic class (number of flows
times CPU cost) normalized by the current node’s capac-
ity. Similarly, the TCAM capacity function captures that
each path consumes a single rule per switch (line 7). The
user gets the optimization object (line 10), and generates
the paths (line 11), obtaining the “paths per traffic class”
(pptc) object. The path generation algorithm is parame-
terized with the custom SIMPLE_predicate, a limit on
path length of 10 nodes, and a limit on the number of
paths per class of 1000. It is also instructed to evaluate
every possible use of two middleboxes on a routing path
for inclusion as a distinct path in the output.

The remaining lines show what would be executed
whenever a new allocation of traffic to paths is desired.
Line 13 selects 5 random paths per traffic class; lines 14–
20 add the routing and capacity constraints. We use the
default link capacity function for bandwidth constraints,
and our own functions for CPU and TCAM capacity. Be-
cause the CPU capacity function normalizes the load, the
capacity of each node is now 1 (line 19). The program
selects a predefined objective to minimize the CPU load
(line 21) and calls the solver (line 22). Finally, the pro-
gram gets the results and interacts with the SDN con-
troller to automatically install the rules (line 26).

ElasticTree [19]: Due to space limitations we only
show the most important differences between Elastic-
Tree and SIMPLE. There is no requirement on paths,
and so nullPredicate is used for path generation.
We use link binary variables (see line 1 below) and the
node/link activation constraints (lines 2–4). Finally, we
use the low-level API (see App. A) to define power con-
sumption for switches and links (lines 5, 6, wherein
“opt.bn(node)” and “opt.be(u,v)” retrieve the names
of variables bnode and b(u,v) from Fig. 8, respectively) and
use these variables to define a custom objective function
(line 7).

1 opt.addBinaryVariables(pptc,topo,[’path’,’node’,’edge’])
2 opt.addRequireAllNodesConstraint(pptc)
3 opt.addRequireAllEdgesConstraint(pptc)
4 opt.addPathDisableConstraint(pptc)
5 opt.defineVar(’SwitchPower’, {opt.bn(node):switchPower[

node] for node in topo.nodes()})
6 opt.defineVar(’LinkPower’, {opt.be(u, v): linkPower[(u, v

)] for u, v in topo.links()})
7 opt.setObjectiveCoeff({’SwitchPower’: .75, ’LinkPower’:

.25}, ’min’)

We refer the reader to Appendix B for other examples
that include new and more complex applications.

7 Implementation

Developer interface: We currently provide a Python
API for SDN optimization that is an extended version of
the interface described in §4.

Invoking solvers: We use CPLEX (via its existing
Python API) as our underlying solver. This choice
largely reflects our familiarity with the tool, and we could
substitute CPLEX with other solvers like Gurobi. SOL
offers APIs to exploit solver capabilities to use a previ-
ously computed solution and incrementally find a new
solution. This approach is typically faster than starting
from scratch and so is useful for faster reconfigurations.
SOL also allows hard-limiting of the optimization run-
time, albeit affecting the optimality of the solution.

Path generation: Path generation is an inherently par-
allelizable process; we simply launch separate Python
processes for different traffic classes. We currently
support two path selection algorithms: random and
shortest. It is easy to add more algorithms as new
applications emerge.

Rule generation and control interface: We implement
applications for ONOS [5] and use custom REST API to
allow remote batch installation of the relevant rules. We
generate the rules based on the optimization output, us-
ing network prefix splitting to implement the fractional
responsibilities represented by the xc,p variables. This
step is similar to prior work that map fractional process-
ing and forwarding responsibilities onto network flows
(e.g., [47, 20]), and so we do not repeat it here. With
ONOS, we leverage path intents [5]: while not required, it
facilitates easier integration.

Minimizing reconfiguration changes: Networks are in
flux during reconfigurations with potential performance
or consistency implications, and thus it is desirable to
minimize unnecessary configuration changes. SOL sup-
ports constraints that bound (or minimize) the logical dis-
tance between a previous solution and the new solution
to help minimize the number of flows that have to be
assigned a new route. In this way, SOL supports path
selection that gives priority to previously selected paths.

8 Evaluation
In this section we show that SOL
• performs well with the ONOS controller;
• computes optimal solutions for published applications

order(s) of magnitude faster than their original opti-
mizations; allows to minimize traffic churn

• is either faster or has richer functionality than state-
of-the-art related work;

9

232 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

(a) Time for SOL to configure
the network using the ONOS
controller for a traffic engi-
neering application.

(b) Route generation & in-
stallation time of SOL traffic
engineering app vs. ONOS all-
pair shortest paths

Figure 13: Deployment benchmarks using the ONOS
controller

• significantly reduces development effort in compari-
son to manually coding optimization applications; and

• scales well, because it computes near-optimal solu-
tions using few paths per traffic class.

Setup: We evaluate the effect of using SOL to imple-
ment three existing SDN applications: ElasticTree [19],
SIMPLE [39], and Panopticon [29]. For each applica-
tion, we implemented the original formulation presented
in prior work or obtained the original source code. We
refer to these as “original” formulations (and solutions).
We chose topologies of various sizes from the Topolo-
gyZoo dataset [28]; when indicating a topology, we gen-
erally include the number of nodes in the topology in
parentheses, e.g., “Abilene (11)” for the 11-node Abilene
topology. For ElasticTree, we also constructed FatTree
topologies of various sizes [2]. We synthetically gen-
erated traffic matrices using a uniform traffic matrix for
the FatTree networks and a gravity-based model [43] for
the TopologyZoo topologies. We used randomly sam-
pled values from a log-normal distribution as “popula-
tions” for the gravity model. Unless otherwise spec-
ified, we used 5 paths per traffic class when running
SOL. All times below refer to computation on comput-
ers with 2.4GHz cores and 128GB of RAM. For deploy-
ment benchmarks, we used the default Mininet [31] vir-
tual machine to emulate topologies.

8.1 Deployment benchmarks
We setup a variety of emulated networks using Mininet
and ONOS. We measured time for SOL to run the op-
timization for a traffic engineering goal and compute
and install network routes. Fig. 13a shows the times
to perform each step. SOL exhibits low optimization
and route generation times, making route installation the
most time-consuming part of the configuration process.
This bottleneck is caused by the number of rules that
must be installed and by the controller platform. Fig. 13b
shows the time to generate and install routes for a traf-
fic engineering application using SOL, in contrast to in-
stalling shortest path routes using methods available in
ONOS. The difference is insignificant, and exists due to

Figure 14: Optimization runtime of SOL and original
formulations; gray regions show where original formu-
lation could not be solved within 30 mins
the additional optimization time and because of the mul-
tiple paths per source-destination pair in the SOL case.

8.2 Optimality and scalability

Comparing to optimal: Next, we examine how well
SOL’s results match original solutions, which are opti-
mal (by definition). In all cases except ElasticTree, SOL
finds the optimal solution. Due to complexity of Elastic-
Tree’s optimization, SOL suffers a 10% optimality gap:
the relative error in the objective value computed by SOL
(i.e., relative to the true optimal objective value).

SOL solution times are at least one order of magnitude
faster than solving the original formulations, and are of-
ten two or even three orders of magnitude faster. Fig. 14
shows run times to find original solutions. The runtime
was capped at 30 min (1800 s), after which the execu-
tion was aborted. Several original formulations did not
complete in that time, such as SIMPLE for topologies
Bellcanada and larger, and Panopticon for Ion and larger.
The topologies for which original solutions could not be
found are indicated in the gray regions in Fig. 14.

Comparing to specialized heuristics: We found that
SOL performs fairly well even compared to specialized
heuristics. Specifically, we compared the performance of
SOL to the custom heuristic for SIMPLE, obtained from
its authors. The runtime of SOL is comparable to that
of the SIMPLE heuristic algorithm, with a performance
gap of at most 3 seconds on the largest topologies we
considered (up 58 nodes, namely the “Dfn” topology).
We believe the benefit of not having to design custom
heuristics outweighs this performance gap.

Responding to traffic changes: We explore the ben-
efits of the reconfiguration minimization capabilities of
SOL, for simplicity dubbed “mindiff.” We first computed
an optimal solution for a traffic engineering application;
then, a random permutation of the traffic matrix triggered
the re-computation with mindiff enabled. When com-
puting the new solution, we assigned 4× greater priority
to the TE objective than the mindiff objective. Fig. 15a
shows that with mindiff enabled, up to an additional 35%

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 233

(a) Fraction of traffic reas-
signed to different paths with
and without “mindiff”

(b) Optimality gap when us-
ing “mindiff”

Figure 15: Traffic shift and optimality gap when using
reconfiguration minimization capabilities of SOL

(a) Optimization runtimes of
SOL and Merlin; gray re-
gion indicates where Merlin
did not complete in 30 mins

(b) Optimization runtimes of
SOL and DEFO, for a traffic
engineering application

Figure 16: Runtime of SOL vs. state-of-the-art opti-
mization frameworks

of total traffic stays on its original paths across reconfigu-
rations, versus being reassigned to new paths by the opti-
mal solution. Naturally, SOL sacrifices some optimality
in the original TE objective (shown in Fig. 15b).

8.3 Comparison to Merlin and DEFO
Merlin [45] tackles problems of network resource man-
agement similar to SOL. While the goals and formula-
tions of Merlin and SOL are quite different, we use this
comparison to highlight the generality of SOL and the
power of its path abstraction. Specifically, Merlin uses
a more heavyweight optimization that is always an ILP
and operates on a graph that is substantially larger than
the physical network. We implemented the example ap-
plication taken from the Merlin paper using both SOL
and Merlin. Fig. 16a shows that SOL outperforms Mer-
lin by two or more orders of magnitude.

DEFO [18] is an optimization framework that aims to
simplify traffic engineering [18]. We obtained the DEFO
authors’ implementation and compared the optimization
times of DEFO and SOL on a simple traffic engineering
application. DEFO and SOL exhibit comparable run-
times (see Fig. 16b). However, DEFO lacks the ability
to express more complex applications and objectives and
to filter paths by arbitrary predicates.

8.4 Developer benefits
SOL is a much simpler framework for encoding SDN op-
timization tasks, versus developing custom solutions by
hand. In an effort to demonstrate this simplicity some-
what quantitatively, Table 1 shows the number of lines
of code (LOC) in our SOL implementations of various
applications (“SOL lines of code”), and the ratio of the
LOC of the original formulations to the LOC for our

SOL implementations (“Estimated improvement”). We
acknowledge that lines-of-code comparisons are inexact,
but we do not know of other ways of comparing “devel-
opment effort” without conducting user studies.

Name SOL lines
of code

Estimated
improvement

ElasticTree 16 21.8×
Panopticon 13 25.7×
SIMPLE 21 18.6×

Table 1: Development effort benefits provided by SOL

We believe that the improvements in Table 1 are con-
servative. First, producing original formulations is a
much more complex and delicate process than writing
SOL code. We primarily attribute this difference to need-
ing to account for CPLEX (or other solvers, e.g., [17, 33])
particulars at all; with SOL, these particulars are com-
pletely hidden from the developer. Second, SOL trans-
lates its optimization results to device configurations,
whereas this functionality is not even included in our
scripts for producing original formulations. Producing
device configurations from original solutions would re-
quire designing an extra algorithm to map the variables
in each formulation to relevant device configurations.

8.5 Sensitivity
SOL solutions require the specification of both the num-
ber (selectNumber) and type (shortest or random)
of paths to select per traffic class. In this section, we
quantify how sensitive SOL is to these parameters.

Number of Paths: Fig. 17 shows the SOL’s runtime and
optimality gap as a function of the number of paths per
class for two applications: SIMPLE and Panopticon. Un-
surprisingly, with a larger number of paths, SOL’s run-
time increases. However, this is not a significant concern,
since we find optimal solutions at selectNumber as low
as 5. These numbers are representative of all applications
and topologies we have considered.

Figure 17: Runtime and optimality gap as function of
paths; optimality is achieved in most cases with as few
as 5 paths per class

Path selection strategy: We evaluated different selec-
tion strategies across topologies and applications (omit-

11

234 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

ted for brevity). Our results were consistent with our ex-
periences more generally that most problems lend them-
selves to a fairly obvious path selection strategy: those
with need for load balancing are likely to benefit from
random and those that are latency-sensitive benefit from
shortest. If in doubt, however, both strategies can be
attempted.
Path selection and generation costs: Since path se-
lection is part of the optimization cycle, we ensure that
path selection times are small, ranging from 0.1 to 3 sec-
onds across topologies. Path selection is preceded by a
path generation phase that enumerates the simple paths
per class. Path generation is moderately costly for large
topologies, e.g., taking <300 s for the largest presented
topology, when parallelized to 60 threads. However, we
emphasize that path generation can be relegated to an of-
fline precomputation phase that is only performed once.

9 Discussion
Expressiveness of SOL: We make no claim that SOL
is a panacea, capable of expressing any optimization,
nor do we have a formal way to decide if a problem
fits the SOL paradigm. We can provide guidelines as to
which problems are well-suited (or not) for SOL. Opti-
mizations with complex path predicates benefit greatly
from SOL, as path generation and validation is per-
formed offline, not during optimization. So do prob-
lems with resource constraints dependent on paths (e.g.,
SIMPLE with its TCAM constraints). Problems with no
path predicates and very large interconnected topologies
(i.e., large datacenter networks) are less likely to benefit
from SOL. However, we plan to explore alternative ap-
proaches (e.g., hierarchical optimization) approaches to
provide benefits in that space as well.
Analytical guarantees: While our empirical results
suggest that random or shortest paths yield near-
optimal solutions with a small selectNumber, they also
raise interesting theoretical questions: can we prove that
these selection strategies permit near-optimal solutions
for specific classes of problems?
Very large/dynamic networks: For very large networks
(>100 nodes) SOL might not perform as well as heuris-
tic solutions, especially for applications that require an
ILP, since the number of paths grows very large. In such
cases, we can utilize general approximation heuristics,
such as randomized rounding, to maintain its ability to
react to network changes quickly.
Composition: Having a unified optimization layer atop
SDN controllers exposes opportunities to compose appli-
cations. We plan to explore these in future work.
10 Related Work
We already discussed the optimization applications that
motivated SOL. Here we focus on other related work.

Higher-layer abstractions for SDN: This work in-
cludes new programming languages (e.g., [41, 12]), test-
ing and verification tools (e.g, [27]), semantics for net-
work updates (e.g., [42]), compilers for rule generation
(e.g., [26]), abstractions for handling control conflicts
(e.g., [4]), and APIs for users to express requirements
(e.g., [10]). These works do not address the optimization
component, which is the focus of SOL.

Languages for optimization: There are several mod-
eling frameworks such as AMPL [13], Mosek [33],
PyOpt [37], and PuLP [32] for expressing optimization
tasks. However, these do not specifically simplify net-
work optimization. SOL is a domain-specific library that
operates at a higher level of semantics than these “wrap-
pers”. SOL offers a path-based abstraction for writing
network optimizations, exploits this structure to solve
these optimizations quickly, and generates network de-
vice configurations that implement its solutions.

Network resource management: Merlin is a language
for network resource management [45]. In terms of the
applications that it can support, Merlin is restricted to
using path predicates expressed as regular expressions.
Our experiments suggest that SOL is three orders of
magnitude faster than Merlin using the same underly-
ing solvers. That said, Merlin’s “language-based” ap-
proach provides other capabilities (e.g., verified delega-
tion) that SOL does not (try to) offer. DEFO is another
optimization framework that focuses on traffic engineer-
ing and service chaining applications [18]. Their goal is
not to develop a general framework, but rather to support
easy management of carrier-grade networks, which they
accomplish using a two-layer architecture and support
for networks that are not OpenFlow-enabled via segment
routing. Other works focus on traffic-steering optimiza-
tion (e.g., [39, 7]). SOL offers a unifying abstraction that
covers many network management applications.

11 Conclusion
While network optimization is central to many SDN
applications, few efforts attempt to make it accessible.
Our vision is a general, efficient framework for express-
ing and solving network optimizations. Our framework,
SOL, achieves both generality and efficiency via a path-
centric abstraction. We showed that SOL can concisely
express applications with diverse goals (traffic engineer-
ing, offloading, topology modification, service chain-
ing, etc.) and yields optimal or near-optimal solutions
with often better performance than custom formulations.
Thus, SOL can lower the barrier to entry for novel SDN
network optimization applications.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Ankit Singla, for helpful comments and guidance. This

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 235

work was supported in part by grant N00014-13-1-0048
from the Office of Naval Research, NSF grants 1535917
and 1536002, an NSF Graduate Research Fellowship, the
Science of Security Lablet at North Carolina State Uni-
versity, and by Intel Labs’ University Research Office.

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Net-

work flows: theory, algorithms, and applications.
Prentice hall, 1993.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In ACM SIGCOMM Computer Communication Re-
view, volume 38, pages 63–74, 2008.

[3] M. Allalouf and Y. Shavitt. Centralized and dis-
tributed algorithms for routing and weighted max-
min fair bandwidth allocation. ACM/IEEE Trans-
actions on Networking, 16(5):1015–1024, 2008.

[4] A. AuYoung, S. Banerjee, J. Lee, J. C. Mogul,
J. Mudigonda, L. Popa, P. Sharma, and Y. Turner.
Corybantic: Towards the modular composition of
SDN control programs. In ACM HotNets, 2013.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, et al. ONOS: towards an
open, distributed SDN OS. In Proceedings of the
third workshop on Hot topics in software defined
networking, pages 1–6. ACM, 2014.

[6] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Ko-
ral. Deep packet inspection as a service. In ACM
CoNEXT, pages 271–282, 2014.

[7] Z. Cao, M. Kodialam, and T. Lakshman. Traf-
fic steering in software defined networks: planning
and online routing. In ACM SIGCOMM Work-
shop on Distributed Cloud Computing, pages 65–
70, 2014.

[8] M. Charikar, Y. Naamad, J. Rexford, and K. Zou.
Multi-Commodity Flow with In-Network Pro-
cessing. Manuscript, www.cs.princeton.edu/
~jrex/papers/mopt14.pdf.

[9] E. Danna, S. Mandal, and A. Singh. A practi-
cal algorithm for balancing the max-min fairness
and throughput objectives in traffic engineering. In
IEEE Conference on Computer Communications,
pages 846–854, 2012.

[10] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Participatory networking: An
API for application control of SDNs. In ACM SIG-
COMM, August 2013.

[11] B. Fortz and M. Thorup. Internet traffic engineering
by optimizing OSPF weights. In IEEE Conference
on Computer Communications, volume 2, 2000.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Fre-
netic: A network programming language. In ACM
SIGPLAN Notices, volume 46, pages 279–291,
2011.

[13] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL:
A mathematical programming language. AT&T
Bell Laboratories Murray Hill, 1987.

[14] A. Gember, A. Krishnamurthy, S. S. John,
R. Grandl, X. Gao, A. Anand, T. Benson, V. Sekar,
and A. Akella. Stratos: A network-aware orchestra-
tion layer for virtual middleboxes in clouds. arXiv
preprint arXiv:1305.0209, 2013.

[15] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling innovation in network function
control. In ACM SIGCOMM, 2014.

[16] G. Gibb, H. Zeng, and N. McKeown. Outsourcing
network functionality. In ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Network-
ing, 2012.

[17] Gurobi. http://www.gurobi.com/.

[18] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaven-
ture, C. Filsfils, T. Telkamp, and P. Francois. A
declarative and expressive approach to control for-
warding paths in carrier-grade networks. In ACM
SIGCOMM, 2015.

[19] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiak-
oumis, P. Sharma, S. Banerjee, and N. McKeown.
ElasticTree: Saving energy in data center networks.
In USENIX Symposium on Networked Systems De-
sign and Implementation, pages 19–21, 2010.

[20] V. Heorhiadi, S. K. Fayaz, M. K. Reiter, and
V. Sekar. SNIPS: A software-defined approach for
scaling intrusion prevention systems via offloading.
In 10th International Conference on Information
Systems Security, Dec. 2014.

[21] V. Heorhiadi, M. K. Reiter, and V. Sekar. New op-
portunities for load balancing in network-wide in-
trusion detection systems. In ACM CoNEXT, 2012.

[22] V. Heorhiadi, M. K. Reiter, and
V. Sekar. SOL bitbucket repository.
https://bitbucket.org/progwriter/sol/, 2015.

13

236 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[23] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achiev-
ing high utilization with software-driven WAN. In
ACM SIGCOMM, pages 15–26, 2013.

[24] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
et al. B4: Experience with a globally-deployed
software defined WAN. In ACM SIGCOMM, pages
3–14, 2013.

[25] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. Soft-
cell: Scalable and flexible cellular core network ar-
chitecture. In ACM CoNEXT, 2013.

[26] N. Kang, Z. Liu, J. Rexford, and D. Walker. Opti-
mizing the one big switch abstraction in software-
defined networks. In ACM CoNEXT, pages 13–24,
2013.

[27] P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: Static checking for net-
works. In USENIX Symposium on Networked Sys-
tems Design and Implementation, 2012.

[28] S. Knight, H. Nguyen, N. Falkner, R. Bowden,
and M. Roughan. The internet topology zoo.
IEEE Journal on Selected Areas in Communica-
tions, 29(9):1765 –1775, October 2011.

[29] D. Levin, M. Canini, S. Schmid, F. Schaffert,
A. Feldmann, et al. Panopticon: Reaping the ben-
efits of incremental sdn deployment in enterprise
networks. In USENIX Annual Technical Confer-
ence, 2014.

[30] X. Liu, S. Mohanraj, M. Pioro, and D. Medhi. Mul-
tipath routing from a traffic engineering perspec-
tive: How beneficial is it? In IEEE International
Conference on Network Protocols, pages 143–154,
2014.

[31] Mininet. http://mininet.org/.

[32] S. Mitchell, M. O’Sullivan, and I. Dunning. Pulp:
a linear programming toolkit for python, 2011.

[33] Mosek. https://mosek.com/.

[34] Network functions virtualisation – introductory
white paper. http://portal.etsi.org/NFV/
NFV_White_Paper.pdf.

[35] Opendaylight SDN controller. http:
//www.opendaylight.org/.

[36] S. Palkar, C. Lan, S. Han, K. Jang, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: A runtime frame-
work for network functions. In ACM Symposium
on Operating Systems Principles, 2015.

[37] R. E. Perez, P. W. Jansen, and J. R. R. A. Martins.
pyOpt: A Python-based object-oriented framework
for nonlinear constrained optimization. Structures
and Multidisciplinary Optimization, 45(1):101–
118, 2012.

[38] M. Pióro, P. Nilsson, E. Kubilinskas, and G. Fodor.
On efficient max-min fair routing algorithms. In
Computers and Communication, pages 365–372.
IEEE, 2003.

[39] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. SIMPLE-fying middlebox policy en-
forcement using SDN. In ACM SIGCOMM, 2013.

[40] S. Raza, G. Huang, C.-N. Chuah, S. Seethara-
man, and J. P. Singh. Measurouting: a framework
for routing assisted traffic monitoring. ACM/IEEE
Transactions on Networking, 20(1):45–56, 2012.

[41] J. Reich, C. Monsanto, N. Foster, J. Rexford,
and D. Walker. Modular SDN programming with
pyretic. ;login: Magazine, 38(5):128–134, 2013.

[42] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update. In
ACM SIGCOMM, 2012.

[43] M. Roughan. Simplifying the synthesis of internet
traffic matrices. ACM SIGCOMM Computer Com-
munication Review, 35, 2005.

[44] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes
someone else’s problem: Network processing as a
cloud service. In ACM SIGCOMM, 2012.

[45] R. Soule, S. Basu, P. J. Marandi, F. Pedone,
R. Kleinberg, E. G. Sirer, and N. Foster. Merlin:
A language for provisioning network resources. In
ACM CoNEXT, 2014.

[46] N. Vasić, P. Bhurat, D. Novaković, M. Canini,
S. Shekhar, and D. Kostić. Identifying and using
energy-critical paths. In ACM CoNEXT, 2011.

[47] R. Wang, D. Butnariu, and J. Rexford. Openflow-
based server load balancing gone wild. In Hot-ICE,
2011.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 237

A Advanced users and low-level interface
While the SOL API described in §4 is general and ex-
pressive enough to capture the diverse requirements of
the broad spectrum of applications, we also expose a
low-level API that gives more control to the user by giv-
ing access to the SOL internal variables. Advanced users
can use this API for further customization.

For instance, API calls enable the names of the in-
ternal variables in Fig. 8 to be retrieved and their val-
ues determined. Similarly, using the defineVar (name,
coeffs, lb, ub) function, the user can create a new vari-
able with name name, specify numeric lower and upper
bounds (lb and ub), and equate it to a linear combina-
tion of any other existing variables as specified by coeffs,
a map from variable names to numeric coefficients. This
is a useful primitive when specifying complex objectives.
SOL also allows setting a custom objective function that
is a linear combination of any existing variables, allow-
ing for multi-objective optimization. This is done using
the setObjective (coeffs, dir) function call, which ac-
cepts a mapping coeffs of variable names to their coeffi-
cients. The binary input dir indicates whether the objec-
tive should be minimized or maximized.

B Additional applications

New elastic scaling capabilities: Here, we show SOL
can be used for novel SDN applications. Specifically,
we consider an elastic NFV setting [14] that places mid-
dleboxes in the network and allocates capacities in re-
sponse to observed demand. There could be additional
constraints, such as the total number of such VM loca-
tions. As a simple objective, we consider an upper bound
on the number of nodes used while still load balancing
across virtual middlebox instances. We can easily add
other objectives such as minimizing number of VMs. For
brevity we highlight only the key parts of building such
a novel application.

1 predicate = hasMboxPredicate
2 opt.addBinaryVariables(pptc, topo, [’path’, ’node’])
3 opt.addNodeCapacityConstraint(pptc, ’cpu’, {node: ’TBA’

for node in topo.nodes()}, lambda node, tc, path,
resource: tc.volFlows * tc.cpuCost)

4 opt.addRequireSomeNodesConstraint(pptc)
5 opt.addPathDisableConstraint(pptc)
6 opt.addBudgetConstraint(topo, lambda node: 1, topo.

getNumNodes()/2)
7 opt.setPredefinedObjective(’minmaxnodeload’, resource=’

cpu’)

First, we define a valid path to be one that goes though
a middlebox; SOL provides a predicate for that (line 1).
The main difference here is the definition of capacities
with the TBA value on line 3; this indicates that our
optimization must allocate the capacities to the nodes.
(SOL ensures that disabled nodes have 0 capacity al-
located.) Thus we require at least one enabled node
per path (lines 4, 5), limit the number of enabled nodes

1 def _MaxMinFairness_MCF(topology, pptc, unstaturated,
saturated, allocation, linkCaps):

2 opt = getOptimization()
3 opt.addDecisionVariables(pptc)
4 # setup flow constraints
5 opt.addAllocateFlowConstraint({tc: pptc[tc] for tc in

unstaturated})
6 for i in saturated:
7 opt.addAllocateFlowConstraint({tc: pptc[tc] for

tc in pptc[i]}, allocation[i])
8 # setup link capacities:
9 def linkcapfunc(link, tc, path, resource):

10 return tc.volBytes
11 opt.addLinkCapacityConstraint(pptc, ’bandwidth’,

linkCaps, linkcapfunc)
12 opt.setPredefinedObjective("maxallflow")
13 opt.solve()
14 return opt

16 def iterateMaxMinFairness(topology, pptc, linkCaps):
17 # Setup saturated and unsaturated commodities
18 saturated = defaultdict(lambda: [])
19 unsaturated = set(pptc.keys())
20 paths = defaultdict(lambda: [])

22 t = [] # allocation values per each iteration
23 i = 0 # iteration index
24 while unsaturated:
25 # Run slightly modified multi-commodity flow
26 opt = _MaxMinFairness_MCF(topology, pptc,

unsaturated, saturated, t, linkCaps)
27 if not opt.isSolved():
28 raise FormulationException(’No solution’)
29 alloc = opt.getSolvedObjective()
30 t.append(alloc)
31 # Check if commodity is saturated, if so move it

to saturated list
32 for tc in list(unsaturated):
33 # NOTE: this is an inefficient non-blocking

test, based on dual variables
34 # More efficient methods are available
35 dual = opt.getDualValue(opt.al(tc))
36 if dual > 0:
37 unsaturated.remove(tc)
38 saturated[i].append(tc)
39 paths[tc] = opt.getPathFractions()[tc]
40 i += 1
41 return paths

Figure 18: Python code for Max-min fairness opti-
mization
(line 6), and set the objective (line 7).
Complex multi-part optimizations: We also show how
one can model more complex optimizations, using SOL
as a primitive to express certain blocks of the optimiza-
tion. Fig. 18 provides code for solving a max-min fair-
ness problem. It relies on expressing intermediate multi-
commodity flow problems using SOL (see function
_MaxMinFairness_MCF) and writing a small iterative
algorithm (see function iterateMaxMinFairness) for
arriving at the optimal solution. We model our code af-
ter the algorithm suggested by Pióro et al. [38], however
there are more recent and efficient proposals that can also
be expressed in SOL (e.g., [3, 9]).

15

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 239

Paving the Way for NFV:
Simplifying Middlebox Modi�cations using StateAlyzr

Junaid Khalid, Aaron Gember-Jacobson, Roney Michael,
Anubhavnidhi Abhashkumar, Aditya Akella

University of Wisconsin-Madison
Abstract

Important Network Functions Virtualization (NFV)
scenarios such as ensuring middlebox fault tolerance or
elasticity require redistribution of internal middlebox
state. While many useful frameworks exist today for mi-
grating/cloning internal state, they require modi�cations
to middlebox code to identify needed state. �is process
is tedious and manual, hindering the adoption of such
frameworks. We present a framework-independent sys-
tem, StateAlyzr, that embodies novel algorithms adapted
from program analysis to provably and automatically
identify all state that must be migrated/cloned to ensure
consistent middlebox output in the face of redistribu-
tion. We �nd that StateAlyzr reducesman-hours required
for code modi�cation by nearly 20 . We apply State-
Alyzr to four open source middleboxes and �nd its algo-
rithms to be highly precise. We �nd that a large amount
of, but not all, live state matters toward packet process-
ing in these middleboxes. StateAlyzr’s algorithms can re-
duce the amount of state that needs redistribution by 600-
8000 compared to naive schemes.

1 Introduction
Network functions virtualization (NFV) promises to of-
fer networks great �exibility in handling middlebox load
spikes and failures by helping spin up new virtual in-
stances and dynamically redistributing tra�c among in-
stances. Central to realizing the bene�ts of such elasticity
and fault tolerance is the ability to handle internal mid-
dlebox state during tra�c redistribution. Becausemiddle-
box state is dynamic (it can be updated for each incom-
ing packet) and critical (its current value determinesmid-
dlebox actions), the relevant internal state must be made
available when tra�c is rerouted to a di�erent middlebox
instance [16, 26, 30].
Recognizing this, and given the high-overhead and

poor e�ciency of existing approaches for replicating and
sharing application state [16, 24, 26], researchers have
developed several exciting frameworks for transferring,
cloning, or sharing live middlebox state across instances,
e.g., OpenNF [16], FTMB [30], Split/Merge [26], Pico
Replication [24], and StatelessNF [20].
However, for middleboxes to work with these frame-

works, middlebox developers must modify, or at least
annotate, their code to perform custom state allocation,
track updates to state, and (de)serialize state objects. �e

central contribution of this paper is a novel, framework-
independent system that greatly reduces the e�ort in-
volved in making such modi�cations.
�ree factors make such modi�cations di�cult today:

(i) middlebox so�ware is extremely complex, and the
logic to update/create di�erent pieces of state can be intri-
cate; (ii) there may be 10s-100s of object types that corre-
spond to state that needs explicit handling; and (iii) mid-
dleboxes are extremely diverse. Factors i and ii make it
di�cult to reason about the completeness or correctness
of manual modi�cations. And, iii means manual tech-
niques that apply to one middlebox may not extend to
another. Our own experience in modifying middleboxes
to work with OpenNF [16] underscores these problems.
Making even a simple monitoring appliance (PRADS [6],
with 10K LOC) OpenNF-compliant took over 120 man-
hours. We had to iterate over multiple code changes and
corresponding unit tests to ascertain completeness of our
modi�cations; moreover, the process we used for modi-
fying this middlebox could not be easily adapted to other
more complex ones!
�ese di�culties signi�cantly raise the bar for the

adoption of these otherwise immensely useful state han-
dling frameworks. To reduce manual e�ort and ease
adoption, we develop StateAlyzr, a system that relies on
data and control-�ow analysis to automate identi�cation
of state objects that need explicit handling. Using State-
Alyzr’s output, developers can easily make framework-
compliant changes to arbitrary middleboxes, e.g., iden-
tify which state to allocate using custom libraries for [20,
24, 26], determine where to track updates to state [16,
26, 30], (de)serialize relevant state objects for transfer/-
cloning [16], andmerge externally provided state with in-
ternal structures [16, 24]. In practice we �nd StateAlyzr
to be highly e�ective. For example, leveraging StateAlyzr
to make PRADS OpenNF-compliant took under 6 man-
hours of work.
Importantly, transferring/cloning state objects identi-

�ed with StateAlyzr is provably sound and precise. �e
former means that the aggregate output of a collection of
instances following redistribution is equivalent to the out-
put thatwould have been produced had redistribution not
occurred.�e lattermeans that StateAlyzr identi�esmin-
imal state to transfer so as to ensure that redistribution
o�ers good performance and incurs low overhead.
However, achieving high precision without compro-

1

240 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

mising soundness is challenging. Key attributes of mid-
dlebox code contribute to this: e.g., numerous data struc-
tures and procedures, large callgraphs, heavy use of
(multi-level) pointers, and indirect calls to packet pro-
cessing routines that modify state (See Table 2).

To overcome these challenges, StateAlyzr cleverly
adapts program analysis techniques, such as slicing [18,
33] and pointer analysis [9, 31], to typical middlebox
code structure and design patterns, contributing new al-
gorithms for detailed classi�cation of middlebox state.
�ese algorithms can automatically identify: (i) variables
corresponding to state objects that pertain to individual
or groups of �ows, (ii) the subset of these that correspond
to state objects that can be updated by an arbitrary incom-
ing packet at runtime, (iii) the �ow space correspond-
ing to a state object, (iv) middlebox I/O actions that are
impacted by each state object, and (v) objects updated at
runtime by an incoming packet.

To evaluate StateAlyzr, we both prove that our algo-
rithms are sound (Appendix B) and use experiments to
demonstrate precision and the resultant impact on the
e�ciency of state transfer/cloning. We run StateAlyzr
on four open sourcemiddleboxes—Passive Real-timeAs-
set Detection System (PRADS) [6], HAProxy load bal-
ancer [2], Snort Intrusion Detection System [7], and
OpenVPN gateway [5]—and �nd:

• StateAlyzr’s algorithms improve precision signi�-
cantly: whereas the middleboxes have 1500-18k vari-
ables, only 29-131 correspond to state that needs ex-
plicit handling, and 10-148 are updateable at run time.
By automatically identifying updateable state, State-
Alyzr allows developers to focus on the necessary sub-
set of variables among the many present. StateAlyzr
can be imprecise: 18% of the updateable variables are
mis-labeled (they are in fact read-only), but the infor-
mation StateAlyzr provides allows developers to ig-
nore processing these variables.

• Using StateAlyzr output, we modi�ed PRADS and
Snort to support fault tolerance using OpenNF [16].
We �nd that StateAlyzr reduces the manual e�ort
needed. We could modify Snort (our most complex
middlebox) and PRADS in 90 and 6 man-hours, re-
spectively. Further, by helping track which �ows-
pace an incoming packet belongs to, and which state
objects it had updated, StateAlyzr reduces unneeded
runtime state transfers between the primary and
backup instances of PRADS and Snort by 600 and
8000 respectively compared to naive approaches.

• StateAlyzr can process middlebox code in a reason-
able amount of time. Finally, it helped us identify im-
portant variables that we missed in our earlier modi-
�cations to PRADS, underscoring its usefulness.

1
Launch
instance

Start buffering traffic
SDN

Controller
2

3

Transfer
state

4
Release buffered

traffic

Redistribute
traffic 5

(a) Scaling with Split/Merge [26]

Launch VM

Failure!

Snapshot VM

Log state accesses
and packets 2

1
Persistent
storage

4
Reprocess
packets

5

3

6
Redistribute
traffic

(b) Failure recovery with FTMB [30]
Figure 1: Scaling and failure recovery process with recently
state management frameworks

2 Motivation
A central goal of NFV is to create more scalable and fault
tolerant middlebox deployments, where middleboxes au-
tomatically scale themselves in accordance with network
load and automatically heal themselves when so�ware,
hardware, or link failures occur [4]. Scaling, and possibly
fault tolerance, requires launching middlebox instances
on demand. Both require redistributing network tra�c
among instances, as shown in Figure 1.

2.1 Need for Handling State

Middlebox scaling and failure recovery should be trans-
parent to end-users and applications. Key to ensuring
this is maintaining output equivalence: for any input traf-
�c stream, the aggregate output of a dynamic set of mid-
dlebox instances should be equivalent to the output pro-
duced by a single, monolithic, always-available instance
that processes the entire input [26]. �e output may in-
clude network tra�c and middlebox logs.
As shown in prior works [16, 26, 30], achieving out-

put equivalence is hard because middleboxes are stateful.
Every packet the middlebox receives may trigger updates
to multiple pieces of internal state, and middlebox out-
put is highly dependent on the current state. �us, mal-
functions can occur when tra�c is rerouted to a middle-
box instancewithout the relevant internal state beingmade
available at the instance. Approaches like naively rerout-
ing newly arriving �ows or forcibly rerouting �ows with
pertinent state can violate output equivalence. �e reader
is referred to [16, 24] for a more formal treatment of the
need to handle internal state.

2.2 Approaches for Handling State

Traditional approaches for replicating and sharing ap-
plication state are resource intensive and slow [16, 24,
26]. �us, researchers have introduced fast and e�-
cient frameworks that transfer, clone, or share live inter-
nal middlebox state across instances. Examples include:

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 241

Required Modi�cations
State State Serial- Merge

Framework Provides Alloc. Access ization State
Split/Merge [26] Elasticity
Pico Rep. [24] Fault tol.
OpenNF [16] Both
FTMB [30] Fault tol.
StatelessNF [20] Both
Table 1: Middlebox modi�cations in di�erent frameworks

Split/Merge [26] and StatelessNF [20] that focus on elastic-
ity; Pico replication [24] and FTMB [30] that focus on fault
tolerance; and OpenNF [16] that applies to both. Unfor-
tunately, these frameworks require detailedmodi�cations
to middlebox code to handle state (see Table 1):

• Split/Merge [26] and Pico Replication [24] require
middleboxes to allocate and access all per- and
cross-�ow state—i.e., state that supports the pro-
cessing of multiple packets within and across �ows,
respectively—through a specialized shared library,
instead of using system-provided functions (e.g.,
malloc). �is allows the frameworks to transfer and
replicate middlebox state without serializing or up-
dating middlebox-internal structures.

• OpenNF [16] requires middleboxes to identify and
serialize per- and cross-�ow state objects pertaining
to a particular �owspace, as well as deserialize and
integrate objects received from other middlebox in-
stances. �is allows OpenNF to transfer and copy
�ow-related state between middlebox instances.

• FTMB [30] requires middleboxes to log: (i) ac-
cesses to cross-�ow state, and (ii) invocations of
non-deterministic functions (e.g., gettimeofday).
�e logs allow FTMB to deterministically reprocess
packets on a di�erentmiddlebox instance in case the
current instance fails before an up-to-date snapshot
of its state can be captured.

• StatelessNF [20] requires middleboxes to create,
read, and update all state values from a central,
RDMA (remote direct memory access) based key/-
value store. �is enables any middlebox instance to
have access to any state, and hence any instance can
safely process any packet.

Making the above modi�cations to middleboxes is dif-
�cult because middlebox code is complex. As shown in
Table 2, several popular middleboxes have between 60K
and 275K lines of code (LOC), dozens of di�erent struc-
tures and classes, and, in some cases, complex event-
based control �ow. If a developermisses a change to some
structure, class, or function, then output equivalencemay
be violated under certain input patterns, and amiddlebox
may fail in unexpectedways at run time. FTMB is the only
system that aims to avoid such problems. It automatically
modi�es middleboxes using LLVM [3]. However, there
are two problems: (i) developersmust still manually spec-

ify which variables may contain/point-to cross-�ow state;
(ii) the tool is limited to Click-based middleboxes [21].

2.3 Simplifying Modi�cation and its Requirements

Making the aforementioned changes to even simple mid-
dleboxes can take numerous man-hours as our own ex-
perience with OpenNF suggests. �is is a serious barrier
to adopting any of the previously mentioned systems.
A system that can automatically identify what state a

middlebox creates, where the state is created, and how the
state is used could be immensely helpful in reducing the
man-hours. It can provide developers guidance on writ-
ing custom state allocation routines, and on adding ap-
propriate state �ltering, serialization, and merging func-
tions.�us, it would greatly lower the barriers to adopting
the above frameworks.
Building such a system is challenging because of sound-

ness and precision requirements. Soundness means that
the system must not miss any types, storage locations, al-
locations, or uses of state required for output equivalence.
A precise system identi�es the minimal set of state that
requires special handling to ensure state handling at run-
time is fast and low-overhead.

2.4 Options

Well-known program analysis approaches can be applied
to identify middlebox state and its characteristics.
Dynamic analysis. We could use dynamic taint analy-
sis [29] to monitor which pieces of state are used and
modi�ed while a middlebox processes some sample in-
put. Unfortunately, the sample inputs may not exercise
all code paths, causing the analysis to miss some state.
We also �nd that such monitoring can signi�cantly slow
middleboxes down (e.g., PRADS [6] and Snort IDS [7] are
slowed down 10).
Static analysis. Alternatively, we could use symbolic ex-
ecution [10] or data-/control-�ow analysis [15, 18].1

Symbolic execution can be employed to explore all pos-
sible code paths by representing input and runtime state
as a series of symbols rather than concrete values. We
can then track the state used in each path. While this
is sound, the complexity of most middleboxes (Table 2)
makes it impossible to explore all execution paths in a
tractable amount of time. For example, we symbolically
executed PRADS—which has just 10K LOC—for 8 hours
using S2E [10], and only 13% of PRAD’s code was cov-
ered. �e complexity worsens exponentially for middle-
boxeswith larger codebases. Recent advances in symbolic
execution of middleboxes [14] do not help as they over
come state space explosion by abstracting away middle-
box state, which is precisely what we aim to analyze.

1Abstract interpretation [12] is another candidate, but it su�ers from
the well known problem of incompleteness, i.e., it over-approximates
the middlebox’s processing and may not identify all relevant state.

3

242 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

LOC Classes/ Event Level of Number of Size of
Middlebox (C/C++) Structs based? pointers procedures callgraph
Snort IDS [7] 275K 898 No 10 4617 3391
HAProxy load balancer [2] 63K 191 No 8 2560 1018
OpenVPN [5] 62K 194 No 2 2023 1184
PRADS asset detector [6] 10K 40 No 4 297 115
Bro IDS [23] 97K 1798 No - 3034 -
Squid caching proxy [8] 166K 875 Yes - 2133 -

*Shows the lower bound. It does not include the number of structs used by the libraries and kernel.
Table 2: Code complexity for popular middleboxes. �ose above the line are analyzed in greater detail later.

while (!done)

packet = receive()

send(packet) write(log)

Packet processing loop

while (event = dequeue())

Event thread

Packet processing procedures

foo()

processIndirect(event)

processIndirect(event)

process(packet)

process(packet)

Main

loopProcedure() init()

raiseEvent()

Figure 2: Logical structure of middlebox code
In this paper, we make clever use of data-/control-�ow

analysis to automatically evaluate how to handle middle-
box state. Naively applying standard data-/control-�ow
analysis identi�es all variables as pertaining to ‘state that
needs handling’ (e.g., variables pertaining to per-packet
state, read-only state, and state that falls outside the scope
of a �owspace of interest); if developers modify a mid-
dlebox to specially handle all these variables, it can re-
sult in arbitrarily poor runtime performance during re-
distribution. We show how middlebox code structure and
design patterns can be used to design novel algorithms
that employ static program analysis techniques in a way
that signi�cantly improves precisionwithout compromis-
ing soundness. Our approach is general and does not as-
sume use of any particular state management framework.

3 Overview of StateAlyzr
Most middleboxes’ code can be logically divided into
three basic parts (Figure 2): initialization, packet receive
loop, and packet processing. �e initialization code runs
when the middlebox starts. It reads and parses con�gu-
ration input, loads supplementary modules or �les, and
opens log �les. All of this can be done in the main()
procedure, or in separate procedures called by main. �e
packet receive loop is responsible for reading a packet (or
byte stream) from the kernel (via a socket) and passing it
to the packet processing procedure(s).�e latter analyzes,
and potentially modi�es, the packet. �is procedure(s)
reads/writes internal middlebox state to inform the pro-
cessing of the current (and future) packet.
Our approach consists of three primary stages that

leverage this structure. In each stage we further re�ne
our characterization of amiddlebox’s state.�e stages and
their main challenges are described next:
1) Identify Per-/Cross-Flow State. In the �rst stage, we
identify the storage location for all per- and cross-�ow

state created by the middlebox. �e �nal output of this
stage is a list of what we call top-level variables that con-
tain or indirectly refer to such state.
Unlike state that is only used for processing the cur-

rent packet, per-/cross-�ow state in�uences other pack-
ets’ processing. Consequently, the lifetime of this state ex-
tends beyond the processing a single packet. We leverage
this property, along with knowledge of the relation be-
tween variable and value lifetimes, to �rst identify vari-
ables that may contain or refer to per-/cross-�ow state.
We improve precision by considering which variables

are actually used in packet processing code, thereby elim-
inating variables that contain or refer to state that is only
used for middlebox initialization. We call the remaining
variables “top-level”. �e main challenge here is dealing
with indirect calls to packet processing in event-based
middleboxes (Figure 2), which complicate the task of
identifying all packet processing code. We develop an al-
gorithm that adapts forward program slicing [18] to ad-
dress this challenge (§4.1).
2) Identify Updateable State. �e second stage fur-
ther categorizes state based on whether it may be up-
dated while a packet is processed. If state is read-
only, we can avoid repeated cloning (in Pico Replica-
tion andOpenNF), avoid unnecessary logging of accesses
(FTMB), and allow simultaneous access frommultiple in-
stances (StatelessNF); all of these will reduce the frame-
works’ overhead. We can trivially identify updateable
state by looking for assignment statements in packet pro-
cessing procedures. However, this strawman is compli-
cated by heavy use of pointers in middlebox code which
can be used to indirect state update. To address this chal-
lenge we show how to employ �ow-, context-, and �eld-
insensitive pointer analysis [9, 31] (§4.2).
3) Identify States’ Flowspace Dimensions. Finally, the
third stage determines a state’s �owspace: a set of packet
header �elds (e.g. src ip, dest ip, src port, dest port &
proto) that delineate the subset of tra�c that relates to
the state. Flowspace must be considered when modifying
a middlebox to use custom allocation functions [24, 26]
or �lter state in preparation for export [16]. It is impor-
tant to avoid the inclusion of irrelevant header �elds and
the exclusion of relevant �elds in a state’s �owspace, be-
cause it impacts runtime correctness and performance,
respectively. To solve this problem we developed an al-
gorithm that leverages common state access patterns in

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 243

middleboxes to identify program points where we can ap-
ply program chopping [27] to determine relevant header
�elds (§4.3).
Soundness. In order for StateAlyzr to be sound it is nec-
essary for these three stages to be sound. In Appendix B,
we prove the soundness of our algorithms.
Assumptions about middlebox code. Our proofs are
based on the assumption that middleboxes use standard
API or system calls to read/write packets and hashtables
or link-lists to store state. �ese assumption are not limi-
tations of our analysis algorithms. Instead, they are made
to ease the implementation of StateAlyzr. Our imple-
mentation can be extended to add additional packet read-
/write methods or other data structures to store the state.

4 StateAlyzr Foundations
We now describe our novel algorithms for detailed state
classi�cation. To describe the algorithms, we use the ex-
ample of a simple middlebox that blocks external hosts
creating too many new connections (Figure 3).

4.1 Per-/Cross-Flow State

Our analysis begins by identifying the storage location for
all relevant per- and cross-�ow state created by the mid-
dlebox. �is has two parts: (i) exhaustively identifying
persistent variables to ensure soundness, and (ii) carefully
limiting to top-level variables that contain or refer to per-
/cross-�ow values to ensure precision.

4.1.1 Identifying Persistent Variables

Because per-/cross-�ow state necessarily in�uences two
or more packets within/across �ows, values correspond-
ing to such state must be created during or prior to the
processing of one packet, and be destroyed during or af-
ter the processing of a subsequent packet. Hence, the cor-
responding variables must be persistent, i.e., their values
persist beyond a single iteration of the packet processing
loop. In Figure 3, variables declared on lines 7 to 11 are
persistent, whereas curr on line 61 is not. Our algorithm
�rst identi�es such variables.
Analysis Algorithm. We traverse a middlebox’s code, as
shown in Figure 4. �e values of all global and static vari-
ables exist for the entire duration of the middlebox’s exe-
cution, so these variables are always persistent. Variables
local to the loop-procedure2—i.e., the procedure contain-
ing the packet processing loop—exist for the duration of
this procedure, and hence the duration of the packet pro-
cessing loop, so they are also persistent.
Local variables of procedures that precede the loop-

procedure on the call stack are also persistent, because
the procedures’ stack frames last longer than the packet
processing loop. However, these variables cannot be used

2To automatically detect packet processing loops, we use the fact that
middleboxes read packets using standard library/system functions.

1 s t r u c t ho s t {
2 u i n t i p ;
3 i n t count ;
4 s t r u c t ho s t * n ex t ;
5 }
6
7 p c a p t * in tPcap , * e x tP c ap ;
8 i n t t h r e s h o l d ;
9 cha r * queue [1 0 0] ;
10 i n t head = 0 , t a i l = 0 ;
11 s t r u c t ho s t * h o s t s = NULL ;
12
13 i n t main (i n t a rgc , cha r * * a r g v) {
14 p t h r e a d t t h r e a d ;
15 i n t P c ap = p c a p c r e a t e (a r g v [0]) ;
16 ex tPc ap = p c a p c r e a t e (a r g v [1]) ;
17 t h r e s h o l d = a t o i (a r g v [2]) ;
18 p t h r e a d c r e a t e (& th r e ad , (vo id *)& p r o c e s s P a c k e t) ;
19 }
20
21 i n t l oopProc edu r e () {
22 wh i l e (1) {
23 s t r u c t p c ap pk thd r pcapHdr ;
24 cha r * pk t = p c ap n e x t (ex tPcap , &pcapHdr) ;
25 i f F u l l W a i t () ;
26 enqueue (pk t) ;
27 i f (en t r y >count < t h r e s h o l d)
28 p c a p i n j e c t (i n tPcap , pkt , pcapHdr > c ap l e n) ;
29 } }
30
31 vo id enqueue (cha r * pk t){
32 head = (head + 1)% 1 00 ;
33 queue [head] = pk t ;
34 }
35
36 cha r * dequeue (){
37 i n t * index = & t a i l ;
38 * index = (* index + 1)% 1 00 ;
39 r e t u r n queue [* index] ;
40 }
41
42 vo id p r o c e s s P a c k e t (){
43 wh i l e (1){
44 i fEmpty Wa i t () ;
45 cha r * pk t = dequeue () ;
46 s t r u c t e thhd r * ethHdr= (s t r u c t e thhd r) pk t ;
47 s t r u c t i phd r * ipHdr= (s t r u c t i phd r *) (ethHdr + 1) ;
48 s t r u c t t cphd r * tcpHdr= (s t r u c t t cphd r *) (ipHdr + 1) ;
49 s t r u c t ho s t * e n t r y = lookup (ipHdr >saddr , h o s t s) ;
50 i f (NULL == ho s t){
51 s t r u c t ho s t *new = ma l l o c (s i z e o f (s t r u c t ho s t)) ;
52 new > i p = ipHdr >saddr ;
53 new >nex t = h o s t s ;
54 h o s t s = new ;
55 }
56 i f (tcpHdr >syn && ! tcpHdr >ack)
57 en t r y >count ++;
58 } }
59
60 s t r u c t ho s t * lookup (u i n t i p) {
61 s t r u c t ho s t * c u r r = h o s t s ;
62 wh i l e (c u r r != NULL) {
63 i f (cu r r > i p == i p)
64 r e t u r n cu r r ;
65 c u r r = cur r >nex t ;
66 } }

Figure 3: Code for our running example.
within the packet processing loop, or a procedure called
therein, because the variables are out of scope. �us we
exclude these fromour list of persistent variables, improv-
ing precision.
�e above analysis implicitly considers heap-allocated

values by considering the values of global, static, and lo-
cal variables, which can point to values on the heap. Val-
ues on the heap exist until they are explicitly freed (or
themiddlebox terminates), but theirusable lifetime is lim-

5

244 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Input: prog
Output: persistVars

1 persistVars = {}
2 persistVars = persistVars GlobalVarDecls(prog)
3 foreach proc in Procedures(prog) do
4 persistVars = persistVars StaticVarDecls(proc)
5 persistVars = persistVars LocalVarDecls(loopProc)
6 persistVars = persistVars FormalParams(loopProc)

Figure 4: Identifying persistent variables
ited to the time frame in which they are reachable from a
variable’s value.3 �erefore, we can conclude that a heap-
allocated value’s persistence is predicated on the persis-
tence of a variable identi�ed by our algorithm.

4.1.2 Limiting to Top-level Variables

�e above algorithm identi�es a superset of variables
that may be bound, or point, to per-/cross-�ow state. It
includes variables bound to state used in initialization
for loading/processing con�guration/signature �les: e.g.,
variables intPcap and extPcap in Figure 3. Such vari-
ables don’t need handling during tra�c redistribution;
they can simply be copied when an instance is launched.
To eliminate such variables and improve precision, the
key insight we leverage is that, by de�nition, per-/cross-
�ow state is used in some way during packet processing.
However, identifying all such variables is non-trivial, and
missing variables impact analysis soundness.

Input: prog, persistVars
Output: pktProcs, percross�owVars

1 pktProcs = {}
2 sdg = SystemDependenceGraph(prog)
3 foreach stmt in Statements(loopProc) do
//Statements() returns all statements in a procedure

4 if stmt calls PKT RECV FUNC then
5 slice = ForwardSlice(sdg, stmt, stmt.LHS)
6 pktProcs = pktProcs Procedures(slice)

//Procedures() returns all procedures in a slice
7 percross�owVars = {}
8 foreach proc in pktProcs do
9 foreach stmt in Statements(proc) do
10 foreach var in Vars(stmt) do

//Vars() returns all variables used in a statement
11 if var in persistVars then
12 percross�owVars = percross�owVars {var}

Figure 5: Identifying per-/cross-�ow variables

Identifying Packet Processing Procedures. Figure 5
shows our algorithm for identifying top-level variables
that contain or refer to per-/cross-�ow values. �e �rst
half of the algorithm (lines 1–6) focuses on identifying
packet processing code. Obviously any code contained in
the packet processing loop is used for processing packets,
but, crucially, the code of procedures (indirectly) called
from within the loop is also packet processing code.

3A heap value whose lifetime is longer than its usable lifetime is a
memory leak.

We considered a strawman approach of using call
graphs to identify packet processing procedure. A call
graph is constructed by starting at each procedure call
within the packet processing loop, and classifying each
appearing procedure as a packet processing procedure.
However, this analysis does not capture packet process-
ing procedures that are called indirectly.�e Squid proxy,
e.g., does initial processing of the received packet, then
enqueues an event to trigger further processing through
later calls to additional procedures. Hence the analy-
sis may incorrectly eliminate some legitimate per-/cross-
�ow state which is used in such procedures.
�us, we need an approach that exhaustively consid-

ers the dependencies between the receipt of a packet and
both direct and indirect invocations of packet process-
ing procedures. Below, we show how system dependence
graphs [15] and program slicing [18] can be used for this.
A system dependence graph (SDG) consists of multiple

program dependence graphs (PDGs)— one for each pro-
cedure. Each PDG contains vertices for each statement
along with their data and control dependency edges. A
data dependence edge is created between statements p and
q if there is an execution path between them, and p may
update the value of some variable that q reads. A control
dependence edge is created if p is a conditional statement,
and whether or not q executes depends on p. A snippet
of the control and data edges for our example in Figure 3
is in Figure 6.
Whereas control edges capture direct invocations of

packet processing, we can rely on data edges to capture
indirect procedure calls. For example, the dashed yel-
low lines in Figure 6 fail to capture invocation of the
processPacket procedure on bottom right (because
there is no control edge from the while loop or any of its
subsequent procedures to processPacket). In contrast,
we can follow the data edges, the dashed red line, to track
such calls.
Given a middlebox’s SDG, we compute a forward pro-

gram slice from a packet receive function call for the vari-
able which stores the received packet. A forward slice
contains the set of statements that are a�ected by the value
of a variable starting from a speci�c point in the pro-
gram [18]. Mostmiddleboxes use standard library/system
functions to receive packets—e.g., pcap next, or recv—
sowe can easily identify these calls and the variable point-
ing to the received packet. We consider any procedure
appearing in the computed slice to be a packet processing
procedure. For middleboxes which invoke packet receive
functions at multiple points, we compute forward slices
from every call site and take the union of the procedures
appearing in all such slices.
Values Used in Packet Processing Procedures. �e sec-
ond half of our algorithm (Figure 5, lines 7–12) focuses
on identifying persistent values that are used within some

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 245

entry
loopProcedure

pcapHdr

PDG – loopProcedure()

while 1

call ifFull_wait
call pcap_next

call enqueue

pkt = ret

pktin = pkt

entry
pcap_next

entry
processPacket

entry
enqueue

entry
dequeue

pkt = pktinhead =
(head+1)%100

queue[head]
= pkt

pkt =
queue[*index] *index =

(*index+1)%100

ret = pkt

queue

head

tail

while 1

call dequeue

pkt = ret

*index = &tail

hosts = NULL

PDG – pcap_next()

PDG –
enqueue()

PDG – processPacket()

PDG – dequeue()

PDG –
#System()

legend
data edge

control edge

Figure 6: Snippet of System dependence graph (SDG) for the
code in Figure 3; green edges indicate data dependencies and
blue edges indicate control dependencies; light yellow nodes
represent formal and actual parameters, while dark yellow
nodes represent return values.

packet processing procedure. We analyze each statement
in the packet processing procedures. If the statement con-
tains a persistent variable, then we mark that persistent
variable as a top-level variable.

4.2 Updateable State

Next, we delineate updateable top-level variables from
read only variables to further improve precision. In Fig-
ure 3, variable head, tail, hosts and queue are up-
dateable, whereas threshold is not. Because state is
updated through assignment statements, one strawman
choice here is to statically identify top-level variables on
the le�-hand-side (LHS) of assignment statements. In
Figure 3, this identi�es head, hosts and queue.
However, this falls short due to aliasing, where mul-

tiple variables are bound to the same storage location
due to the use of pointers [11]. Aliasing allows a value
reachable from a top-level variable to be updated through
the use of a di�erent variable. �us our strawman can
mis-label top-level variables as read-only, compromising
soundness. For example, tail is mislabeled in Figure 3,
because it never appears on the LHS of assignment state-
ments. But on line 38 index is updated which points to
tail.
Analysis Algorithm. We develop an algorithm to iden-
tify updateable top-level variable (Figure 7). Since we
are concerned with variables whose (referenced) values
are updated during packet processing, we analyze each
assignment statement contained in the packet process-

Input: pktProcs, percross�owVars
Output: updateableVars

1 percross�owVars = {}
2 foreach proc in pktProcs do
3 foreach stmt in AssignmentStmts(proc) do

//AssignmentStmts() returns all assignment
statements in a procedure

4 foreach var in percross�owVars do
5 if stmt.LHS == var

or var in PointsTo(stmt.LHS)
or PointsTo(var) PointsTo(stmt.LHS)

then
6 updateableVars = updateableVars {var }

Figure 7: Identifying updateable variables

ing procedures identi�ed in the �rst stage of our analy-
sis (§4.1.2). If the assignment statement’s LHS contains a
top-level variable, then we mark the variable as update-
able (similar to our strawman). Otherwise, we compute
the points-to set for the variable on the LHS and com-
pare this with the set of updateable top-level variables and
their points-to sets. A variable’s points-to set contains all
variables whose associated storage locations are reachable
from the variable. To compute this set, we employ �ow-
, context-, and �eld-insensitive pointer analysis [9]. If
the points-to set of the variable on the LHS contains a
top-level variable, or has a non-null intersection with the
points-to set of a top-level variable, thenwemark the top-
level variable as updateable.
Due to limitations of pointer analysis, our algorithm

may stillmark read-only top-level variables as updateable.
E.g., �eld insensitive pointer analysis canmark a top-level
struct variable as updateable even if just one of its sub-
�elds is updateable.

4.3 State Flowspaces

Finally, we identify the packet header �elds that de�ne
the �owspace associated with the values of each top-level
variable. Identifying too �ne-grained of a �owspace for
a value—i.e., more header �elds than those that actu-
ally de�ne the �owspace—is unsound; such an error will
cause a middlebox to incorrectly �lter out the value when
it is requested by a middlebox state management frame-
work [16, 20, 24, 26]. Contrarily, assuming an overly per-
missive �owspace (e.g., the entire �owspace) for a value
hurts precision.
To identify �owspaces, we leverage common middle-

box design patterns in updating or accessing state. Mid-
dleboxes typically use simple data structures (e.g., a hash
table or linked list) to organize state of the same type
for di�erent network entities (connections, applications,
subnets, URLs, etc.). When processing a packet, a mid-
dlebox uses header �elds4 to lookup the entry in the

4In cases where keys are not based on the packet header �elds e.g.
URL, a middlebox usually keeps another data structure to maintain the

7

246 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

data structure that contains a reference to the values that
should be read/updated for this packet. In the case of a
hash table, the middlebox computes an index from the
packet header �elds to identify the entry pointing to the
relevant values. For a linked list, the middlebox iterates
over entries in the data structure and compares packet
header �elds against the values pointed to by the entry.

Input: pktProcs, percross�owVars
Output: chop, �owspace

1 keyedVars = {}
2 foreach var in percross�owVars do
3 if Type(var) == pointer

or Type(var) == struct then
4 keyedVars = keyedVars {keyedVars}
5 foreach proc in pktProcs do
6 foreach loopStmt in LoopStmts(proc) do
7 condVars = {}
8 foreach var in Vars(loopStmt.condition) do
9 if var in keyedVars

or PointsTo(var) keyedVars then
10 for condStmt in

ConditionalStmts(loopStmt.body) do
11 for condVar in Vars(condStmt) do
12 if condVar var then
13 condVars = condVars {condVar}
14 chop = Chop(sdg,pktVar,condVars)
15 �owspace = ExtractFlowspace(chop)

Figure 8: Identifying packet header �elds that de�ne a
per-/cross-�ow variable’s associated �owspace

Algorithm. We leverage the above design patterns in our
algorithm shown in Figure 8. In the �rst step (lines 2-
4), if the top-level variable is a struct or a pointer, we
mark it as a possible candidate for having a �owspace as-
sociated with it. �is �lters out all the top-level variables
which cannot represent more than one entry; e.g., vari-
ables head and tail in Figure 3.
We assume that middleboxes use hash tables or

linked lists to organize their values,5 and that these data
structures are accessed using:
square brackets, e.g.
entry = table[index];

pointer arithmetic, e.g.
entry = head + offset;

or iteration6, e.g.
while(entry->next!=null){entry=entry->next;}
for(i=0; i<list.length; i++) {...}

�e second step is thus to identify all statements like
these where a top-level variable marked above is on the
right-hand-side (RHS) of the statement (square brackets
or pointer arithmetic scenario) or in the conditional

mapping between such keys and packet header �elds
5Our approach can easily be extended to other data structures.
6Middleboxes may also use recursion, but we have not found this

access pattern in the middleboxes we study, so we do not consider it in
our algorithm.

expression (iteration scenario).
When square brackets or pointer arithmetic are used,

we compute a chop between the variables in the access
statement and the variable containing the packet returned
by the packet receive procedure. A chop between a set of
variablesU at program point p and a set of variables V at
program point q is the set of statements that (i) may be
a�ected by the value of variables in U at point p, and (ii)
may a�ect the values of variables inV at point q.�us, the
chop we compute above is a snippet of executable code
which takes a packet as input and outputs the index or
o�set required to extract the value from the hashtable.
In a similar fashion, when iteration is used, we iden-

tify all conditional statements in the body of the loop.
We compute a chop between the packet returned by the
packet receive procedure and the set of all the variables
in the conditional expression which do not point to any
of the top-level variables; in our example (Figure 3), the
chop starts at line 24 and terminates at line 63. We output
the resulting chops, which collectively contain all condi-
tional statements that are required to lookup a value in
a linked list data structure based on a �ow space de�ni-
tion. Assuming that the middlebox accesses packet �elds
using standard system-provided structs (e.g., struct ip

as de�ned in netinet/ip.h), we conduct simple string
matching on the code snippets to produce a list of packet
header �elds that de�ne a state’s �owspace.

5 Enhancements
Data and control �ow analysis can help improve preci-
sion, but they have some limitations in that they cannot
guarantee that exactly the relevant state and nothing else
has been identi�ed. In particular, static analysis cannot
di�erentiate between multiple memory regions that are
allocated through separate invocations ofmalloc from the
same call site. �erefore, we cannot statically determine
if only a subset of these memory regions have been up-
dated a�er processing a set of packets. To overcome po-
tential e�ciency loss due to such limitations, we can em-
ploy custom algorithms that boost precision in speci�c
settings. We present two candidates below.

5.1 Output-Impacting State

In addition to the threemain code blocks (Figure 2), mid-
dleboxesmay optionally have packet and log output func-
tions.�ese pass a packet to the kernel for forwarding and
record the middlebox’s observations and actions in a log
�le, respectively. �ese functions are usually called from
within the packet processing procedure(s).
In some cases, operators may desire output equiva-

lence only for speci�c types of output. For example, an
operator may want to ensure client connections are not
broken when a NAT fails—i.e., packet output should be
equivalent—but may not care if the log of NAT’d connec-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 247

tions is accurate. In such cases, internal state that only
impacts non-essential forms of output does not need spe-
cial handling during redistribution and can be ignored.
To aid such optimizations, we develop an algorithm to

identify the type of output that updateable state a�ects.
We use two key insights. First, middleboxes typically use
standard libraries and system calls to produce packet and
log output: either PCAP (e.g. pcap dump) or socket (e.g.
send) functions for the former, and regular I/O functions
(e.g. write) for the latter.7 Second, the output produced
by these functions can only be impacted by a handful of
parameters passed to these functions. �us, we focus on
the call sites of these functions, and their parameters.
Algorithm. We use program slicing [18] to identify the
dependencies between a speci�c type of output and up-
dateable variables. We sketch the algorithm and relegate
details to Appendix A. We �rst identify the call sites of
packet or log output functions by checking each state-
ment in each packet processing procedure (§4.1.2). �en
we use the SDG produced in the �rst stage of our analysis
(Figure 5) to compute a backward slice from each call site.
Such a slice contains the set of statements that a�ect (i)
whether the procedure call is executed, and (ii) the value
of the variables used in the procedure call, such as the
parameters passed to the output function. We examine
each statement in a backward slice to determine whether
it contains an updateable per-/cross-�ow variable. Such
variables aremarked as impacting packet (or log) output.

5.2 Tracking Runtime Updates

Developers aiming to design fault-tolerant middleboxes
can use the algorithms in §4 and §5.1 to e�ciently clone
state to backup instances. For example, if tra�c will be
distributed among multiple instances in the case of fail-
ure, then only state whose �owspace overlaps with that
assigned to a speci�c instance needs to be cloned to that
instance. However, the potential performance gains from
these optimizationsmay be limited due to constraints im-
posed by data/control-�ow analysis. For example, our
analysis can only identify whether a persistent variable’s
value may be updated during the middlebox’s execution.
If we can determine at runtime exactly which values are
updated, and when, then we can further improve the e�-
ciency of state cloning and speed up failover.
To achieve higher precision, we must use (simple) run

time monitoring. For example, we can track, at run time,
whether part of an object is updated during packet pro-
cessing. To implement this monitoring, we must mod-
ify the middlebox to set an “updated bit” whenever a
value reachable from a top-level variable is updated dur-
ing packet processing. Figure 9a shows such modi�ca-
tions, in red, for a simple middlebox. We create a unique

7Our approach can be easily extended to consider non-standard out-
put functions.

1 s t r u c t conn t b l [1 0 0 0] ; // Assigned id 0
2 i n t count ; // Assigned id 1
3 i n t t c p c n t ; // Assigned id 2
4 char updated[3];
5 vo id main () {
6 wh i l e (1) {
7 cha r * pk t = r e c v () ;
8 updated[1] = 1;
9 count = count + 1 ;
10 s t r u c t * i phd r i = ge t IpHdr (pk t) ;
11 i f (i > p r o t o c o l == TCP) {
12 hd l (& t cp cn t , & t b l [hash (pk t)] , getTcpHdr (pk t)) ;
13 } } }
14 vo id hd l (i n t * c , s t r u c t conn * s , s t r u c t t cphd r * t) {
15 updated[2] = 1;
16 c = c + 1 ;
17 updated[0] = 1;
18 s > f l a g s = s > f l a g s | t > f l a g s ;
19 i f (t > f l a g s & ACK)
20 updated[0] = 1; // Pruned
21 s >acknum = t >acknum ;
22 } }

(a) Example middlebox code instrumented for update
tracking at run time; statements in red are inserted based
on our analysis

entry updated[2] = 1

updated[0] = 1

updated[0] = 1

C = c + 1

S->flags = s->flags | t->flags

if (t->flags & ACK)

S->acknum = t->ackum

{ } { 2}

{ 2,0}

{ 2}

{ 2,0} { 2,0}

exit

{ 2,0}

{ 2,0} { 2,0}

(b) Annotated control �ow graph used for pruning re-
dundant updated-bit-setting (shaded) statements
Figure 9: Implementing update tracking at run time

updated bit for each top-level variable—there are three
such variables in the example—and we set the appropri-
ate bit before any statement that updates a value that may
be reachable from the corresponding variable.
We use the same analysis discussed in §4.2 to de-

termine where to insert statements to set updated bits.
For any statement where a top-level variable is up-
dated, we insert a statement—just prior to the assignment
statement—that sets the appropriate updated bit.
However, this approach can add a lot more code than

needed: if one assignment statement always executes be-
fore another, and they always update the same value, then
we only need to set the updated bit before the �rst assign-
ment statement. For example, line 21 in Figure 9a updates
the same compound value as line 18, so the code on line
20 is redundant.
We use a straightforward control �ow analysis to prune

unneeded updated-bit-setting statements. First, we con-
struct a control �ow graph (CFG) for each modi�ed
packet processing procedure. Next, we perform a depth-
�rst traversal of each CFG, tracking the set of updated
bits that have been set along the path; as we traverse each
edge, we label it with the current set of updated bits. Fig-
ure 9b shows this annotated CFG for the handleTcp pro-
cedure shown in lines 14-22 of Figure 9a. Lastly, for each
updated-bit-setting statement in a procedure’s CFG, we
check whether the bit being set is included in the label for

9

248 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

every incoming edge. If this is true, then we prune the
statement; e.g., we prune line 20 in Figure 9a.

6 Implementation
We implement StateAlyzr using CodeSurfer [1] which
has built-in support for constructing CFGs, perform-
ing �ow- and context-insensitive pointer analysis, con-
structing PDGs/SDGs, and computing forward/back-
ward slices and chops for C/C++ code. CodeSufer uses
proven sound algorithms to implement these static anal-
ysis techniques. We use CodeSurfer’s Scheme API to ac-
cess output from these analyses in our algorithms. We
applied StateAlyzr to four middleboxes: PRADS asset
monitoring [6] and Snort IntrusionDetection System [7],
HAproxy load balancer [2], and OpenVPN gateway [5].
Fault Tolerance. We use the output from StateAlyzr to
add fault tolerance to PRADS and Snort, both o�-path
middleboxes. We added code to both to export/import
internal state (to a standby). We used the output of our
�rst two analysis phases (§4.1 and §4.2) to know which
top level variables’ values we need to export, and where
in a hot-standby we should store them. We used the out-
put of our third analysis phase (§4.3) as the basis for code
that looks up per-/cross-�ow state values. �is code takes
a �owspace as input and returns an array of serialized val-
ues. We use OpenNF [16] to transfer serialized values to a
hot-standby. Similarly, import code deserializes the state
and stores it in the appropriate location. We also imple-
mented both enhancements discussed in §5.

7 Evaluation
We report on the outcomes of applying StateAlyzr to four
middleboxes. We address the following questions:
• E�ectiveness: Does StateAlyzr help withmakingmod-
i�cations to today’s middleboxes? How many top-
level variables do these middleboxes maintain, rela-
tive to all variables? What relative fractions of these
pertain to state that may need to be handled during
redistribution? How precise is StateAlyzr?

• Runtime e�ciency and manual e�ort: To what extent
do StateAlyzr’smechanismshelp improve the runtime
e�ciency of state redistribution? How much manual
e�ort does it save?

• Practical considerations: Does StateAlyzr take pro-
hibitively long to run (like symbolic execution; §2.4)?
Is it sound in practice?

7.1 E�ectiveness

In Table 3, we present a variety of key statistics de-
rived for the four middleboxes using StateAlyzr. We use
this to highlight StateAlyzr’s ability to improve precision,
thereby underscoring its usefulness for developers.
�e complexity of middlebox code is underscored by

the overall number of variables in Table 3, which can vary

pkt/log require
Mbox All Persistent Top Update output serial-

-level -able impacting ization
PRADS 1529 61 29 10 N.A. / 6 14
Snort 18393 507 333 148 N.A. /148 176
HAproxy 7876 272 176 115 101 / 109 59
OpenVPN 8704 156 131 106 97 / 102 8

Table 3: Variables and their properties

Figure 10: Flowspace dims. of keyed per-/cross-�ow vars

between 1500 and 18k, and other relevant code complex-
ity metrics shown in Table 2. �us, manually identifying
state that needs handling, and optimizing its transfer, is
extremely di�cult.
We also note from Table 3 that StateAlyzr identi�es 61-

507 variables as persistent across the four middleboxes.
A subset of these, 29-333, are top-level variables. Finally,
6-148 top-level variables are updateable; operators only
have to deal with handling the values pertaining to these
variables at run time. Snort is the most complex middle-
box we analyze (275K lines of code) and has the largest
number of top-level variables (333); the opposite is true
for PRADS (10K LOC and 29 top-level variables).
�e drastic reduction to the �nal number of update-

able variables shows that naive approaches that attempt to
transfer/clone values corresponding to all variables can be
very ine�cient at runtime. (We show this empirically in
§7.2.) Even so, the number of updateable variables can be
as high as 148, and attempting to manually identify them
and argument code suitably can be very di�cult. By au-
tomatically identifying them, StateAlyzr simpli�es modi-
�cations; we provide further details in §7.2.
Finally, the reductions we observe in going from per-

sistent variables to top-level variables (16-53% reduction)
and further to updateable ones (19-65% reduction) show
that our techniques in §4.1 and §4.2 o�er useful improve-
ments in precision.
In Figure 10, we characterize the �owspaces for the

variables found in Snort and PRADS. From the le� �g-
ure, we see that Snort maintains state objects that could
be keyed by as many as 5 or 6 header �elds; the maximum
number of such �elds for PRADS is 3. �e �gure on the
right shows the number of variables that use a particular
number of header �elds as �owspace keys; for instance,
in the case of Snort, 3 variables each are keyed on 1 and 6
�elds. �e total number of variables keyed on at least one
key is 2 and 10 for Snort and PRADS, respectively (sum
of the heights of the respective bars).
�ese numbers are signi�cantly lower than the update-

able variables we discovered for thesemiddleboxes (6 and
148, respectively). Digging deeper into Snort (for exam-
ple) we �nd that:

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 249

• 111 updateable variables pertain to all �ows (i.e., a
�owspace key of “*”). Of these, 59 variables are related
to con�gurations and signatures, while 30 are func-
tion pointers (that point to di�erent detection and
processing plugins). �ese 89 variables can be up-
dated from the command line at middlebox run time
(when an operator provides new con�gurations and
signatures, or new analysis plugins).

• 27 updateable variables—or 18%—are only used for
processing a single packet; hence they don’t corre-
spond to per-/cross-�ow state. �is points to State-
Alyzr’s imperfect precision. �ese variables are global
in scope and are used by di�erent functions for pro-
cessing a single incoming packet, which is why our
analysis labels them as updateable. A developer can
easily identify these variables and can either remove
them from the list of updateable variables or modify
code to make them local in scope.

7.2 Runtime e�ciency and manual e�ort

7.2.1 Fault Tolerant Middleboxes

Using fault tolerant PRADS/Snort versions (§5), we show
that StateAlyzr helps signi�cantly cut unneeded state
transfers, improving state operation time/overhead.
Man-hours needed. Modifying PRADS based on State-
Alyzr analysis took roughly 6 man-hours, down from
over 120man-hours whenwe originallymodi�ed PRADS
for OpenNF (Two di�erent persons made these modi�-
cations.). Modifying Snort, a much more complex mid-
dlebox, took 90 man-hours. In both cases, most of the
time (90%) was spent in writing serialization code for
the data structures identi�ed by StateAlyzr (14 for PRADS
and 176 for Snort; Table 3). Providing support for export-
ing/importing state objects according to OpenNF APIs
took just 1 and 2 hours, respectively.
Runtime bene�ts. We consider a primary/hot standby
setup, where the primary sends a copy of the state to
the hot standby a�er processing each packet. We use a
university-to-cloud packet trace [17] with around 700k
packets for our trace-based evaluation of this setup. �e
primary instance processes the �rst half of the trace �le
until a random point, and the hot standby takes over af-
ter that. We consider three models for operating the hot
standby which re�ect progressive application of the dif-
ferent optimizations in §4 and §5: (i) the primary instance
sends a copy of all the updateable states to the hot standby,
(ii) the primary instance only sends the state which ap-
plies to the �owspace of the last processed packet, and
(iii) in addition to considering the �owspace, we also con-
sider which top level variables are marked as updated for
the last processed packet.
Figure 11a shows the average case results for the amount

of per packet data transferred between the primary and
secondary instances for all three models for PRADS.

(a) (b)
Figure 11: (a) Per packet state transfer (b) Per packet state
transfer for a single connection

Transferring state which only applies to the �owspace of
the last processed packet, i.e., the second model, reduces
the data transferred by 305 compared to transferring all
per-/cross-�ow state. Furthermore, we �nd that the third
model, i.e., run time marking of updated state variables,
further reduces the amount of data transferred by 2 , on
average. �is is because not all values are updated for ev-
ery packet: the values pertaining to a speci�c connection
are updated for every packet of that connection, but the
values pertaining to a particular host and its services are
only updated when processing certain packets. �is be-
havior is illustrated in Figure 11b, which shows the size
of the state transfer a�er processing each of the �rst 200
packets in a randomly selected �ow.
We measured the increase in per packet processing

time purely due to the code instrumentation needed to
identify state updates for highly available PRADS.We ob-
served an average increase of 0.04µsec, which is around
0.14% of the average per packet processing time for un-
modi�ed PRADS.
Figure 12 shows the corresponding results for Snort.

Transferring just the updateable state results in a 8800
reduction in the amount of state transferred compared
to transferring all per-/cross-�ow state. �is is because,
a signi�cant portion of the persistent state in Snort con-
sists of con�guration and signatures which are never up-
dated during packet processing. Transferring state which
only applies to a particular �owspace further reduces the
data transfer by 2.75 . Unlike PRADS, the amount of state
transfer in the second model remains constant for a par-
ticular �ow becausemost of the state is created on the �rst
few packets of a �ow. Finally, runtimemarking further re-
duces the amount of state transferred by 3.6 .

7.2.2 Packet/Log Output

Table 3 includes the number of variables that impact
packet or log output. For on-path HAproxy (OpenVPN),
87% (91%) of updateable variables a�ect packet output; a
slightly higher fraction impact log output. 95 (93) vari-
ables impact both outputs. A much smaller number im-
pacts packet output but not log (6 and 4, respectively).
Another handful impact logs but not packets (14 and 9);
operators who are interested in just packet output consis-
tency can ignore transferring the state pertaining to these
variables, but the bene�t will likely not be signi�cant for

11

250 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 12: Per packet state transfer in Snort

these middleboxes given the low counts.
Being o�-path, PRADS and Snort have no variables

that impact packet output. For PRADS, 6 out of 10 up-
dateable variables impact log output. StateAlyzr did �nd
4 other updateable variables—tos, tstamp, in pkt, and
mtu—but did not mark them as a�ecting packet output
or log output. Upon manual code inspection we found
that these values are updated as packets are processed, but
they are never used; thus, these variables can be removed
from PRADS without any impact on its output, pointing
to another bene�t of StateAlyzr—code clean-up.

7.3 Practicality

Table 4 shows the time and resources required to run our
analysis. CodeSurfer computes data and control depen-
dencies and points-to sets at compile time, so the mid-
dleboxes take longer than normal to compile. �is phase
is also memory intensive, as illustrated by peak memory
usage. Snort, being complex, takes the longest to compile
and analyze (20.5h). �is is not a concern since State-
Alyzr only needs to be run once, and it runs o�ine.

7.3.1 Empirically Verifying Soundness

Empirically showing soundness in practice is hard. Nev-
ertheless, for the sake of completeness, we use two ap-
proaches to verify soundness of the modi�cations we
make on the basis of StateAlyzr’s outputs.
First, we use the experimental harness from §7.2. We

compare logs at PRADS/Snort in the scenario where a
single instance processes the complete trace �le against
concatenated logs of the primary and hot standby, using
the trace and the three models as above. In all cases, there
was no di�erence in the two sets of logs.
Next, we compare with manually making all changes.

Recall that we had manually modi�ed PRADS to make
it OpenNF-compliant. We compared StateAlyzr’s output
for PRADS against the variables contained in the state
transfer code we added during our prior modi�cations to
PRADS. StateAlyzr found all variables we had considered
in our prior modi�cations, and more. Speci�cally, we
found that our prior modi�cations hadmissed an impor-
tant compound value that contains a few counters along
with con�guration settings.

Mbox Compile time Analysis time Memory
PRADS 0.2 0.25 0.3
Snort 1.5 19 6
HAproxy 0.25 6 6
OpenVPN 0.5 5 7.3

Table 4: Time (h) and memory usage (GB)
8 Other RelatedWork
Aside from the works discussed in §2 and §4 [9, 16, 18, 22,
24, 25, 26, 28, 31, 33] StateAlyzr is related to a few other
e�orts. Some prior studies have focused on transform-
ing non-distributed applications into distributed applica-
tions [19, 32]. However, these works aim to run di�erent
parts of an application at di�erent locations. We want all
analysis steps performed by a middlebox instance to run
at one location, but we want di�erent instances to run on
a di�erent set of inputs without changing the collective
output from all instances.
Dobrescu and Argyarki use symbolic execution to ver-

ify middlebox code satis�es crash-freedom, bounded-
execution, and other safety properties [14]. �ey employ
small, Click-based middleboxes [21] and abstract away
accesses to middlebox state. In contrast, our analysis fo-
cuses on identifying state needed for correct middlebox
operation and works with regular, popular middleboxes.
Lorenzo et al. [13] use similar static program analysis

techniques to identify �owspace, but their identi�cation
is limited to just hashtables.

9 Summary
Our goal was to aid middlebox developers by identify-
ing state objects that need explicit handling during redis-
tribution operations. In comparison with today’s man-
ual and necessarily error-prone techniques, our program
analysis based system, StateAlyzr, vastly simpli�es this
process, and ensures soundness and high precision. Key
to StateAlyzr is novel state characterization algorithms
that marry standard program analysis tools with middle-
box structure and design patterns. StateAlyzr results in
nearly 20 reduction in manual e�ort, and can automati-
cally eliminate nearly 80% of variables in middlebox code
for consideration during framework-speci�c modi�ca-
tions, resulting in dramatic performance and overhead
improvements in state reallocation. Ultimately, we would
like to fully automate the process of making middlebox
code framework-compliant, thus ful�lling the promise of
using NFV e�ectively for middlebox elasticity and fault
tolerance. Our work addresses basic challenges in code
analysis, a di�cult problem on its own which is necessary
to solve �rst.

Acknowledgments
We thank our shepherd, Mona Attariyan, and the anony-
mous reviewers for their insightful feedback. �is work is
supported in part byNational Science Foundation (grants

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 251

CNS-1302041, CNS-1330308 and CNS-1345249) and the
Wisconsin Institute on So�ware-De�ned Datacenters of
Madison.

References
[1] Codesurfer. http://grammatech.com/

research/technologies/codesurfer.

[2] HAProxy: �e reliable, high performance
TCP/HTTP load balancer. http://haproxy.

1wt.eu/.

[3] �e LLVM compiler infrastructure. http://llvm.
org.

[4] Network functions virtualisation – update white
paper. https://portal.etsi.org/nfv/nfv_

white_paper2.pdf.

[5] OpenVPN. http://openvpn.net.

[6] Passive Real-time Asset Detection System. http:

//prads.projects.linpro.no.

[7] Snort. http://snort.org.

[8] Squid. http://squid-cache.org.

[9] L. O. Andersen. Program analysis and specialization
for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A
platform for in-vivo multi-path analysis of so�ware
systems. In ASPLOS, 2011.

[11] J.-D. Choi, M. Burke, and P. Carini. E�cient �ow-
sensitive interprocedural computation of pointer-
induced aliases and side e�ects. In POPL, 1993.

[12] P. Cousot and R. Cousot. Abstract interpretation: a
uni�ed lattice model for static analysis of programs
by construction or approximation of �xpoints. In
ACM SIGPLAN-SIGACT, 1977.

[13] L. De Carli, R. Sommer, and S. Jha. Beyond pattern
matching: A concurrency model for stateful deep
packet inspection. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 1378–1390. ACM, 2014.

[14] M. Dobrescu and K. Argyarki. So�ware dataplane
veri�cation. In NSDI, 2014.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren. �e
program dependence graph and its use in optimiza-
tion. ACMTrans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
SIGCOMM, 2014.

[17] K. He, A. Fisher, L.Wang, A. Gember, A. Akella, and
T. Ristenpart. Next stop, the cloud: Understanding
modern web service deployment in ec2 and azure.
In Proceedings of the 2013 conference on Internetmea-
surement conference, pages 177–190. ACM, 2013.

[18] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Pro-
gram. Lang. Syst., 12(1):26–60, Jan. 1990.

[19] G. C. Hunt and M. L. Scott. �e coign automatic
distributed partitioning system. In OSDI, 1999.

[20] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and
E. Keller. Stateless network functions. In HotMid-
dlebox, 2015.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. �e Click modular router. ACM Trans-
actions on Computer Systems (TOCS), 18:263–297,
2000.

[22] Y. G. Park and B. Goldberg. Escape analysis on lists.
In PLDI, 1992.

[23] V. Paxson. Bro: a system for detecting network in-
truders in real-time. In USENIX Security (SSYM),
1998.

[24] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
Replication: A high availability framework for mid-
dleboxes. In SoCC, 2013.

[25] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. War�eld. Escape capsule: Explicit state is robust
and scalable. In HotOS, 2013.

[26] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. War�eld. Split/Merge: System support for elas-
tic execution in virtual middleboxes. In NSDI, 2013.

[27] T. Reps and G. Rosay. Precise interprocedural chop-
ping. In ACM SIGSOFT, 1995.

[28] C. Ruggieri and T. P. Murtagh. Lifetime analysis of
dynamically allocated objects. In POPL, 1988.

[29] E. J. Schwartz, T. Avgerinos, and D. Brumley. All
you ever wanted to know about dynamic taint analy-
sis and forward symbolic execution (but might have
been afraid to ask). In IEEE Symposium on Security
and Privacy, 2010.

13

252 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[30] J. Sherry, P. Gao, S. Basu, A. Panda, A. Krish-
namurthy, C. Macciocco, M. Manesh, J. Martins,
S. Ratnasamy, and L. R. S. Shenker. Rollback recov-
ery for middleboxes. In SIGCOMM, 2015.

[31] B. Steensgaard. Points-to analysis in almost linear
time. In POPL, 1996.

[32] E. Tilevich and Y. Smaragdakis. J-orchestra: En-
hancing java programs with distribution capabili-
ties. ACM Trans. So�w. Eng. Methodol., 19(1):1:1–
1:40, Aug. 2009.

[33] M.Weiser. Program slicing. IEEE Trans. on So�ware
Engineering, SE-10(4):352–357, July 1984.

Appendix
A. Output-Impacting State - Algorithm
Figure 13 outlines the algorithm for identifying state that
impacts packet/log output (from §5.1).

Input: sdg, updateableVars
Output: pktoutputVars, logoutputVars

1 pktoutputVars = {}
2 logoutputVars = {}
3 foreach proc in pktProcs do
4 foreach stmt in Statements(proc) do
5 if stmt calls PKT OUTPUT FUNC

or stmt calls LOG OUTPUT FUNC then
6 slice = BackwardSlice(sdg, stmt,

Vars(stmt.RHS))
7 foreach sliceStmt in Statements(slice) do
8 foreach var in Vars(sliceStmt) do
9 if var in updateableVars then
10 if stmt calls PKT OUTPUT FUNC then
11 pktoutputVars = pktoutputVars {var}
12 else
13 logoutputVars = logoutputVars {var}

Figure 13: Identifying output-impacting variables

B. Proofs of soundness
We now prove the soundness of our algorithms.

Identifying Per-/Cross-Flow State

Slicing [18] and pointer analysis [9] have already been
proven sound.

�eorem 1. If a middlebox uses standard packet receive
functions, then our analysis identi�es all packet processing
procedures.

Proof. For a procedure to perform packet processing: (i)
there must be a packet to process, and (ii) the procedure
must have access to the packet, or access to values derived
from the packet. �e former is true only a�er a packet
receive function returns. �e latter is true only if some

variable in a procedure has a data dependency on the re-
ceived packet. �erefore, a forward slice computed from
a packet receive function over the variable containing (a
pointer to) the packet will identify all packet processing
procedures.

�eorem 2. If a value is per-/cross-�ow state, then our
analysis outputs a top-level variable containing this value,
or containing a reference from which the value can be
reached (through arbitrarily many dereferences).

Proof. Assume no top-level variable is identi�ed for a
particular per-/cross-�ow value. By the de�nition, a per-
/cross-�ow must (i) have a lifetime longer than the life-
time of any packet processing procedure, and (ii) be used
within some packet processing procedure. For a value
to be used within a packet processing procedure, it must
be the value of, or be a value reachable from the value
of, a variable that is in scope in that procedure. Only
global variables and the procedure’s local variables will be
in scope.
Since we identify statements in packet processing pro-

cedures that use global variables, and points-to analysis
is sound [9], our analysis must identify a global variable
used to access/update the value; this contradicts our as-
sumption.
�is leaves the case where a local variable is used to ac-

cess/update the value. When the procedure returns the
variable’s value will be destroyed. If the variable’s value
was the per-/cross-�ow value, then the value will be de-
stroyed and cannot have a lifetime beyond the packet pro-
cessing procedure; this is a contradiction. If the variable’s
value was a reference through which the per-/cross-�ow
value could be reached, then this reference will be de-
stroyed when the procedure returns. Assuming a value’s
lifetime ends when there are no longer any references to
it, the only way for the per-/cross-�ow value to have a life-
time beyond any packet processing procedure is for it be
reached through another reference. �e only such refer-
ence that can exist is through a top-level variable. Since
points-to analysis is sound [9] this variable would have
been identi�ed, which contradicts our assumption.

Identifying Updateable State

�eorem 3. If a top-level variable’s value, or a value reach-
able through arbitrarily many dereferences starting from
this value, may be updated during the lifetime of some
packet processing procedure, then our analysis marks this
top-level variable as updateable.

Proof. According to the language semantics, scalar and
compound values can only be updated via assignment
statements. According to �eorem 1, we identify all
packet processing procedures. �erefore, identifying all
assignment statements in these procedures is su�cient to

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 253

identify all possible value updates that may occur during
the lifetime of some packet processing procedure.
�e language semantics also state that the variable on

the le�-hand-side of an assignment is the variable whose
value is updated. �us, when a top-level variable ap-
pears on the le�-hand-side of an assignment, we know
its value, or a reachable value, is updated. Furthermore,
�ow-insensitive context-insensitive pointer alias is prov-
ably guaranteed to identify all possible points-to relation-
ships [9].�erefore, any assignment to a variable thatmay
point to a value also pointed to (indirectly) by a top-level
variable is identi�ed, and the top-level variable marked
updateable.

Identifying Flowspaces

�eorem 4. If a middlebox uses standard patterns for
fetching values from data structures, and the �owspace for
a top-level variable’s value (or a value reachable through ar-
bitrarily many dereferences starting from this value) is not
constrained by a particular header �eld, then our analysis
does not include this header �eld in the �owspace �elds for
this top-level variable.

Proof. A header �eld can only be part of a value’s �ows-
pace de�nition if there is a data or control dependency
between that header �eld in the current packet and the
fetching of an entry from a data structure. It follows from
the proven soundness and precision of �ow-sensitive
context-insensitive pointer analysis [11] that the SDG will
not include false data or control dependency edges. It
also follows from the proven soundness of program slic-
ing [18] that only data and control dependencies between

source variables (i.e., the packet variable) and target vari-
ables (i.e., the index variable, increment variable, or vari-
able in a conditional inside a loop) will be included in the
chop.

Identifying Output-Impacting State

�eorem 5. If a top-level variable’s value, or a value reach-
able through arbitrarily many dereferences starting from
this value, may a�ect a call to a packet output function
or the output produced by the function, then our analysis
marks this top-level variable as impacting packet output.

Proof. Follows from SDG construction soundness [15,
18]. If/when a packet output function is called is deter-
mined by a sequence of conditional statements. �e path
taken at each conditional depends on the values used in
the condition. Control and data dependency edges in a
system dependence graph capture these features. Since
SDG construction is sound [15, 18], we will identify all
such dependencies, and thus all values that may a�ect a
call to a packet output function.
Only parameter values, or values reachable through ar-

bitrarily many dereferences starting from these values,
can a�ect the output produced by a packet output func-
tion. �us, knowing what values a parameter value de-
pends on is su�cient to know what values a�ect the out-
put produced by an output function. Again, since SDG
construction is sound, wewill identify all such dependen-
cies.

15

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 255

Embark: Securely Outsourcing Middleboxes to the Cloud
Chang Lan Justine Sherry Raluca Ada Popa Sylvia Ratnasamy Zhi Liu*

UC Berkeley *Tsinghua University

Abstract
It is increasingly common for enterprises and other
organizations to outsource network processing to the
cloud. For example, enterprises may outsource fire-
walling, caching, and deep packet inspection, just as
they outsource compute and storage. However, this poses
a threat to enterprise confidentiality because the cloud
provider gains access to the organization’s traffic.

We design and build Embark, the first system that en-
ables a cloud provider to support middlebox outsourcing
while maintaining the client’s confidentiality. Embark en-
crypts the traffic that reaches the cloud and enables the
cloud to process the encrypted traffic without decrypting
it. Embark supports a wide-range of middleboxes such as
firewalls, NATs, web proxies, load balancers, and data ex-
filtration systems. Our evaluation shows that Embark sup-
ports these applications with competitive performance.

1 Introduction
Middleboxes such as firewalls, NATs, and proxies,
have grown to be a vital part of modern networks,
but are also widely recognized as bringing significant
problems including high cost, inflexibility, and complex
management. These problems have led both research
and industry to explore an alternate approach: moving
middlebox functionality out of dedicated boxes and into
software applications that run multiplexed on commodity
server hardware [53, 52, 54, 29, 37, 28, 27, 14, 8]. This ap-
proach – termed Network Function Virtualization (NFV)
in industry – promises many advantages including the
cost benefits of commodity infrastructure and outsourced
management, the efficiency of statistical multiplexing,
and the flexibility of software solutions. In a short time,
NFV has gained a significant momentum with over 270
industry participants [27] and a number of emerging
product offerings [1, 7, 6].

Leveraging the above trend, several efforts are explor-
ing a new model for middlebox deployment in which
a third-party offers middlebox processing as a service.
Such a service may be hosted in a public cloud [54, 13, 17]
or in private clouds embedded within an ISP infrastruc-
ture [14, 11]. This service model allows customers such
as enterprises to “outsource” middleboxes from their
networks entirely, and hence promises many of the known
benefits of cloud computing such as decreased costs and
ease of management.

However, outsourcing middleboxes brings a new chal-

lenge: the confidentiality of the traffic. Today, in order to
process an organization’s traffic, the cloud sees the traffic
unencrypted. This means that the cloud now has access
to potentially sensitive packet payloads and headers. This
is worrisome considering the number of documented
data breaches by cloud employees or hackers [23, 60].
Hence, an important question is: can we enable a third
party to process traffic for an enterprise, without seeing
the enterprise’s traffic?

To address this question, we designed and imple-
mented Embark1, the first system to allow an enterprise
to outsource a wide range of enterprise middleboxes
to a cloud provider, while keeping its network traffic
confidential. Middleboxes in Embark operate directly
over encrypted traffic without decrypting it.

In previous work, we designed a system called Blind-
Box to operate on encrypted traffic for a specific class
of middleboxes: Deep Packet Inspection (DPI) [55] –
middleboxes that examine only the payload of packets.
However, BlindBox is far from sufficient for this setting
because (1) it has a restricted functionality that supports
too few of the middleboxes typically outsourced, and (2)
it has prohibitive performance overheads in some cases.
We elaborate on these points in §2.4.

Embark supports a wide range of middleboxes with
practical performance. Table 1 shows the relevant mid-
dleboxes and the functionality Embark provides. Embark
achieves this functionality through a combination of
systems and cryptographic innovations, as follows.

From a cryptographic perspective, Embark provides a
new and fast encryption scheme called PrefixMatch to en-
able the provider to perform prefix matching (e.g., if an IP
address is in the subdomain 56.24.67.0/16) or port range
detection (e.g., if a port is in the range 1000-2000). Prefix-
Match allows matching an encrypted packet field against
an encrypted prefix or range using the same operators as
for unencrypted data: ≥ and prefix equality. At the same
time, the comparison operators do not work when used
between encrypted packet fields. Prior to PrefixMatch,
there was no mechanism that provided the functionality,
performance, and security needed in our setting. The clos-
est practical encryption schemes are Order-Preserving
Encryption (OPE) [21, 48]. However, we show that
these schemes are four orders of magnitude slower than

1This name comes from “mb” plus “ark”, a shortcut for middlebox
and a synonym for protection, respectively.

1

256 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Middlebox Functionality Support Scheme
L

3/
L

4
H

ea
de

r

IP Firewall [66]
(SIP, DIP, SP, DP, P)∈(SIP[], DIP[], SP[], DP[], P)

⇔Enc(SIP, DIP, SP, DP, P)∈Enc(SIP[], DIP[], SP[], DP[], P)
Yes PrefixMatch

NAT (NAPT) [57]

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2)

Enc(SIP1,SP1)=Enc(SIP2,SP2)⇒(SIP1,SP1)=(SIP2,SP2)

Yes PrefixMatch

L3 LB (ECMP) [58]
(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇔Enc(SIP1,DIP1,SP1,DP1,P1) = Enc(SIP2,DIP2,SP2,DP2,P2)
Yes PrefixMatch

L4 LB [4]
(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇔Enc(SIP1,DIP1,SP1,DP1,P1) = Enc(SIP2,DIP2,SP2,DP2,P2)
Yes PrefixMatch

H
T

T
P HTTP Proxy

/ Cache [25, 4, 10]
Match(Request-URI, HTTP Header)
=Match�(Enc(Request-URI), Enc(HTTP Header))

Yes KeywordMatch

D
ee

p
Pa

ck
et

In
sp

ec
tio

n
(D

PI
) Parental Filter [10]

Match(Request-URI, HTTP Header)
=Match�(Enc(Request-URI), Enc(HTTP Header))

Yes KeywordMatch

Data Exfiltration
/ Watermark
Detection [56]

Match(Watermark, Stream)
=Match�(Enc(Watermark), Enc(Stream))

Yes KeywordMatch

Match(Keyword, Stream)=
Match�(Enc(Keyword), Enc(Stream))

Yes KeywordMatch

Intrusion
Detection [59, 47]

RegExpMatch(RegExp, Stream)
=RegExpMatch�(Enc(RegExp), Enc(Stream))

Partially KeywordMatch

Run scripts,
cross-flow analysis, or other advanced (e.g. statistical) tools

No -

Table 1: Middleboxes supported by Embark. The second column indicates an encryption functionality that is sufficient to support
the core functionality of the middlebox. Appendix §A demonstrates this sufficiency. “Support” indicates whether Embark supports
this functionality and “Scheme” is the encryption scheme Embark uses to support it. Legend: Enc denotes a generic encryption
protocol, SIP = source IP address, DIP = destination IP, SP = source port, DP = destination port, P = protocol, E[] = a range of E,
⇔ denotes “if and only if”, Match(x,s) indicates if x is a substring of s, and Match� is the encrypted equivalent of Match. Thus,
(SIP, DIP, SP, DP, P) denotes the tuple describing a connection.

PrefixMatch making them infeasible for our network
setting. At the same time, PrefixMatch provides stronger
security guarantees than these schemes: PrefixMatch
does not reveal the order of encrypted packet fields, while
OPE reveals the total ordering among all fields. We de-
signed PrefixMatch specifically for Embark’s networking
setting, which enabled such improvements over OPE.

From a systems design perspective, one of the key in-
sights behind Embark is to keep packet formats and header
classification algorithms unchanged. An encrypted IP
packet is structured just as a normal IP packet, with
each field (e.g., source address) containing an encrypted
value of that field. This strategy ensures that encrypted

packets never appear invalid, e.g., to existing network
interfaces, forwarding algorithms, and error checking.
Moreover, due to PrefixMatch’s functionality, header-
based middleboxes can run existing highly-efficient
packet classification algorithms [34] without modifi-
cation, which are among the more expensive tasks in
software middleboxes [52]. Furthermore, even software-
based NFV deployments use some hardware forwarding
components, e.g. NIC multiqueue flow hashing [5],
‘whitebox’ switches [12], and error detection in NICs and
switches [5, 2]; Embark is also compatible with these.

Embark’s unifying strategy was to reduce the core func-
tionality of the relevant middleboxes to two basic opera-

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 257

tions over different fields of a packet: prefix and keyword
matching, as listed in Table 1. This results in an encrypted
packet that simultaneously supports these middleboxes.

We implemented and evaluated Embark on EC2.
Embark supports the core functionality of a wide-range
of middleboxes as listed in Table 1, and elaborated in
Appendix A. In our evaluation, we showed that Embark
supports a real example for each middlebox category in
Table 1. Further, Embark imposes negligible throughput
overheads at the service provider: for example, a single-
core firewall operating over encrypted data achieves
9.8Gbps, equal to the same firewall over unencrypted
data. Our enterprise gateway can tunnel traffic at 9.6
Gbps on a single core; a single server can easily support
10Gbps for a small-medium enterprise.

2 Overview
In this section, we present an overview of Embark.

2.1 System Architecture
Embark uses the same architecture as APLOMB [54],
a system which redirects an enterprise’s traffic to the
cloud for middlebox processing. Embark augments this
architecture with confidentiality protection.

In the APLOMB setup, there are two parties: the enter-
prise(s) and the service provider or cloud (SP). The enter-
prise runs a gateway (GW) which sends traffic to middle-
boxes (MB) running in the cloud; in practice, this cloud
may be either a public cloud service (such as EC2), or an
ISP-supported service running at a Central Office (CO).

We illustrate the two redirection setups from APLOMB
in Fig. 1. The first setup, in Fig. 1(a), occurs when the
enterprise communicates with an external site: traffic
goes to the cloud and back before it is sent out to the
Internet. It is worth mentioning that APLOMB allows an
optimization that saves on bandwidth and latency relative
to Fig. 1(a): the traffic from SP can go directly to the exter-
nal site and does not have to go back through the gateway.
Embark does not allow this optimization fundamentally:
the traffic from SP is encrypted and cannot be understood
by an external site. Nonetheless, as we demonstrate in §6,
for ISP-based deployments this overhead is negligible.
For traffic within the same enterprise, where the key is
known by two gateways owned by the same company, we
can support the optimization as shown in Fig. 1(b).

We do not delve further into the details and motivation
of APLOMB’s setup, but instead refer the reader to [54].

2.2 Threat Model
Clients adopt cloud services for decreased cost and ease
of management. Providers are known and trusted to
provide good service. However, while clients trust cloud
providers to perform their services correctly, there is an
increasing concern that cloud providers may access or
leak confidential data in the process of providing service.

Reports in the popular press describe companies selling
customer data to marketers [20], disgruntled employees
snooping or exporting data [16], and hackers gaining
access to data on clouds [60, 23]. This type of threat is
referred to as an ‘honest but curious’ or ‘passive’ [33]
attacker: a party who is trusted to handle the data and
deliver service correctly, but who looks at the data, and
steals or exports it. Embark aims to stop these attackers.
Such an attacker differs from the ‘active’ attacker, who
manipulates data or deviates from the protocol it is sup-
posed to run [33]. We consider that such a passive attacker
has gained access to all the data at SP. This includes any
traffic and communication SP receives from the gateway,
any logged information, cloud state, and so on.

We assume that the gateways are managed by the en-
terprise and hence trusted; they do not leak information.

Some middleboxes (such as intrusion or exfiltration
detection) have a threat model of their own about the two
endpoints communicating. For example, intrusion detec-
tion assumes that one of the endpoints could misbehave,
but at most one of them misbehaves [47]. We preserve
these threat models unchanged. These applications rely
on the middlebox to detect attacks in these threat models.
Since we assume the middlebox executes its functions
correctly and Embark preserves the functionality of these
middleboxes, these threat models are irrelevant to the
protocols in Embark, and we will not discuss them again.

2.3 Encryption Overview
To protect privacy, Embark encrypts the traffic passing
through the service provider (SP). Embark encrypts both
the header and the payload of each packet, so that SP does
not see this information. We encrypt headers because
they contain information about the endpoints.

Embark also provides the cloud provider with a set of
encrypted rules. Typically, header policies like firewall
rules are generated by a local network administrator.
Hence, the gateway knows these rules, and these rules
may or may not be hidden from the cloud. DPI and
filtering policies, on the other hand, may be private to
the enterprise (as in exfiltration policies), known by both
parties (as in public blacklists), or known only by the
cloud provider (as in proprietary malware signatures).
We discuss how rules are encrypted, generated and
distributed given these different trust settings in §4.2.

As in Fig. 1, the gateway has a secret key k; in the setup
with two gateways, they share the same secret key. At
setup time, the gateway generates the set of encrypted
rules using k and provides them to SP. Afterwards, the
gateway encrypts all traffic going to the service provider
using Embark’s encryption schemes. The middleboxes at
SP process encrypted traffic, comparing the traffic against
the encrypted rules. After the processing, the middleboxes
will produce encrypted traffic which SP sends back to the

3

258 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Enterprise

client

External site

gateway

Service
provider

middleboxes

(a) Enterprise to external site communication

Enterprise 1

client
gateway 1

Enterprise 2

server
gateway 2

middleboxes

Service provider

(b) Enterprise to enterprise communication

Figure 1: System architecture. APLOMB and NFV system setup with Embark encryption at the gateway. The arrows indicate traffic
from the client to the server; the response traffic follows the reverse direction.

gateway. The gateway decrypts the traffic using the key k.
Throughout this process, middleboxes at SP handle

only encrypted traffic and never access the decryption
key. On top of Embark’s encryption, the gateway can
use a secure tunneling protocol, such as SSL or IPSec to
secure the communication to SP.
Packet encryption. A key idea is to encrypt packets
field-by-field. For example, an encrypted packet will
contain a source address that is an encryption of the
original packet’s source address. We ensure that the
encryption has the same size as the original data, and
place any additional encrypted information or metadata
in the options field of a packet. Embark uses three encryp-
tion schemes to protect the privacy of each field while
allowing comparison against encrypted rules at the cloud:
• Traditional AES: provides strong security and no

computational capabilities.
• KeywordMatch: allows the provider to detect if an

encrypted value in the packet is equal to an encrypted
rule; does not allow two encrypted values to be
compared to each other.

• PrefixMatch: allows the provider to detect whether or
not an encrypted value lies in a range of rule values –
e.g. addresses in 128.0.0.0/24 or ports between 80-96.

We discuss these cryptographic algorithms in §3.
For example, we encrypt IP addresses using Prefix-

Match. This allows, e.g., a firewall to check whether the
packet’s source IP belongs to a prefix known to be con-
trolled by a botnet – but without learning what the actual
source IP address is. We choose which encryption scheme
is appropriate for each field based on a classification of
middlebox capabilities as in Table 1. In the same table,
we classify middleboxes as operating only over L3/L4
headers, operating only over L3/L4 headers and HTTP
headers, or operating over the entire packet including
arbitrary fields in the connection bytestream (DPI). We
revisit each category in detail in §5.

All encrypted packets are IPv6 because PrefixMatch
requires more than 32 bits to encode an encrypted IP
address and because we expect more and more service
providers to be moving to IPv6 by default in the future.
This is a trivial requirement because it is easy to convert
from IPv4 to IPv6 (and back) [42] at the gateway. Clients

may continue using IPv4 and the tunnel connecting the
gateway to the provider may be either v4 or v6.

Example. Fig. 2 shows the end-to-end flow of a packet
through three example middleboxes in the cloud, each
middlebox operating over an encrypted field. Suppose the
initial packet was IPv4. First, the gateway converts the
packet from IPv4 to IPv6 and encrypts it. The options field
now contains some auxiliary information which will help
the gateway decrypt the packet later. The packet passes
through the firewall which tries to match the encrypted
information from the header against its encrypted rule,
and decides to allow the packet. Next, the exfiltration
device checks for any suspicious (encrypted) strings in
data encrypted for DPI and not finding any, it allows the
packet to continue to the NAT. The NAT maps the source
IP address to a different IP address. Back at the enterprise,
the gateway decrypts the packet, except for the source IP
written by the NAT. It converts the packet back to IPv4.

2.4 Architectural Implications and Com-
parison to BlindBox

When compared to BlindBox, Embark provides broader
functionality and better performance. Regarding
functionality, BlindBox [55] enables equality-based
operations on encrypted payloads of packets, which
supports certain DPI devices. However, this excludes
middleboxes such as firewalls, proxies, load balancers,
NAT, and those DPI devices that also examine packet
headers, because these need an encryption that is com-
patible with packet headers and/or need to perform range
queries or prefix matching.

The performance improvement comes from the differ-
ent architectural setting of Embark, which provides a set
of interesting opportunities. In BlindBox, two arbitrary
user endpoints communicate over a modified version of
HTTPS. BlindBox requires 97 seconds to perform the
initial handshake, which must be performed for every
new connection. However, in the Embark context, this
exchange can be performed just once at the gateway
because the connection between the gateway and the
cloud provider is long-lived. Consequently, there is no
per-user-connection overhead.

The second benefit is increased deployability. In Em-
bark, the gateway encrypts traffic whereas in BlindBox

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 259

gateway

rewall
block from

19::*/8

exltration
detection

match
0xE932CB?

NAT
client

sourceIP: 128.0...
destIP: 28.1...
payload: password

sourceIP: 8:9::
destIP: 199:2::
options: x78d1
payload: x582A

sourceIP: 8:9::
destIP: 199:2::
options: x78d1
payload: x582A

sourceIP: 0::ffff:8.8.8.8
destIP: 199:2::
options: x78d1
payload: x582A

gateway
sourceIP: 8.8.8.8
destIP: 28.1...
payload: password

server

no!allow!

from: 8:9::
to: 0:ffff:8.8.8.8

Figure 2: Example of packet flow through a few middleboxes. Red in bold indicates encrypted data.

the end hosts do. Hence, deployability improves because
the end hosts do not need to be modified.

Finally, security improves in the following way. Blind-
Box has two security models: a stronger one to detect
rules that are ‘exact match’ substrings, and a weaker one
to detect rules that are regular expressions. The more
rules there are, the higher the per-connection setup cost is.
Since there is no per-connection overhead in Embark, we
can afford having more rules. Hence, we convert many
regular expressions to a set of exact-match strings. For
example /hello[1-3]/ is equivalent to exact matches on
"hello1", "hello2", "hello3". Nonetheless, many regular
expressions remain too complex to do so – if the set of
potential exact matches is too large, we leave it as a reg-
ular expression. As we show in §6, this approach halves
the number of rules that require using the weaker security
model, enabling more rules in the stronger security model.

In the rest of the paper, we do not revisit these archi-
tectural benefits, but focus on Embark’s new capabilities
that allow us to outsource a complete set of middleboxes.

2.5 Security guarantees
We formalize and prove the overall guarantees of Embark
in our extended paper. In this version, we provide only a
high-level description. Embark hides the values of header
and payload data, but reveals some information desired
for middlebox processing. The information revealed is
the union of the information revealed by PrefixMatch
and KeywordMatch, as detailed in §3. Embark reveals
more than is strictly necessary for the functionality, but it
comes close to this necessary functionality. For example,
a firewall learns if an encrypted IP address matches an
encrypted prefix, without learning the value of the IP
address or the prefix. A DPI middlebox learns whether a
certain byte offset matches any string in a DPI ruleset.

3 Cryptographic Building Blocks
In this section, we present the building blocks Embark
relies on. Symmetric-key encryption (based on AES)
is well known, and we do not discuss it here. Instead,
we briefly discuss KeywordMatch (introduced by [55],
to which we refer the reader for details) and more
extensively discuss PrefixMatch, a new cryptographic
scheme we designed for this setting. When describing
these schemes, we refer to the encryptor as the gateway

whose secret key is k and to the entity computing on the
encrypted data as the service provider (SP).

3.1 KeywordMatch
KeywordMatch is an encryption scheme using which SP
can check if an encrypted rule (the “keyword”) matches
by equality an encrypted string. For example, given an
encryption of the rule “malicious”, and a list of encrypted
strings [Enc(“alice”), Enc(“malicious”), Enc(“alice”)],
SP can detect that the rule matches the second string, but
it does not learn anything about the first and third strings,
not even that they are equal to each other. KeywordMatch
provides typical searchable security guarantees, which
are well studied: at a high level, given a list of encrypted
strings, and an encrypted keyword, SP does not learn
anything about the encrypted strings, other than which
strings match the keyword. The encryption of the strings
is randomized, so it does not leak whether two encrypted
strings are equal to each other, unless, of course, they
both match the encrypted keyword. We use the scheme
from [55] and hence do not elaborate on it.

3.2 PrefixMatch
Many middleboxes perform detection over prefixes or
ranges of IP addresses or port numbers (i.e. packet clas-
sification). To illustrate PrefixMatch, we use IP addresses
(IPv6), but the scheme works with ports and other value
domains too. For example, a network administrator
might wish to block access to all servers hosted by MIT,
in which case the administrator would block access to
the prefix 0::ffff:18.0.0.0/104, i.e., 0::ffff:18.0.0.0/104–
0::ffff:18.255.255.255/104. PrefixMatch enables a mid-
dlebox to tell whether an encrypted IP address v lies in an
encrypted range [s1, e1], where s1 = 0::ffff:18.0.0.0/104
and e1 = 0::ffff:18.255.255.255/104. At the same time,
the middlebox does not learn the values of v, s1, or e1.

One might ask whether PrefixMatch is necessary,
or one can instead employ KeywordMatch using the
same expansion technique we used for some (but not
all) regexps in §2.4. To detect whether an IP address
is in a range, one could enumerate all IP addresses in
that range and perform an equality check. However, the
overhead of using this technique for common network
ranges such as firewall rules is prohibitive. For our own
department network, doing so would convert our IPv6
and IPv4 firewall rule set of only 97 range-based rules to

5

260 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

2238 exact-match rules; looking only at IPv4 rules would
still lead to 38M exact-match rules. Hence, for efficiency,
we need a new scheme for matching ranges.

Requirements. Supporting the middleboxes from
Table 1 and meeting our system security and performance
requirements entail the following requirements in design-
ing PrefixMatch. First, PrefixMatch must allow for direct
order comparison (i.e., using ≤/≥) between an encrypted
value Enc(v) and the encrypted endpoints s1 and e1 of a
range, [s1,e1]. This allows existing packet classification
algorithms, such as tries, area-based quadtrees, FIS-trees,
or hardware-based algorithms [34], to run unchanged.

Second, to support the functionality of NAT as in
Table 1, Enc(v) must be deterministic within a flow.
Recall that a flow is a 5-tuple of source IP and port,
destination IP and port, and protocol. Moreover, the
encryption corresponding to two pairs (IP1, port1) and
(IP2, port2) must be injective: if the pairs are different,
their encryption should be different.

Third, for security, we require that nothing leaks about
the value v other than what is needed by the functionality
above. Note that Embark’s middleboxes do not need to
know the order between two encrypted values Enc(v1)
and Enc(v2), but only comparison to endpoints; hence,
PrefixMatch does not leak such order information.
PrefixMatch also provides protection for the endpoints of
ranges: SP should not learn their values, and SP should not
learn the ordering of the intervals. Further, note that the
NAT does not require that Enc(v) be deterministic across
flows; hence, PrefixMatch hides whether two IP addresses
encrypted as part of different flows are equal or not. In
other words, PrefixMatch is randomized across flows.

Finally, both encryption (performed at the gateway)
and detection (performed at the middlebox) should be
practical for typical middlebox line rates. Our Prefix-
Match encrypts in < 0.5μs per value (as we discuss in
§6), and the detection is the same as regular middleboxes
based on the ≤/≥ operators.

Functionality. PrefixMatch encrypts a set of ranges
or prefixes P1, ... , Pn into a set of encrypted prefixes.
The encryption of a prefix Pi consists of one or more
encrypted prefixes: Pi,1...,Pi,ni . Additionally, PrefixMatch
encrypts a value v into an encrypted value Enc(v). These
encryptions have the property that, for all i,

v∈Pi⇔Enc(v)∈Pi,1∪···∪Pi,ni .

In other words, the encryption preserves prefix matching.
For example, suppose that encrypting P =

0::ffff:18.0.0.0/104 results in one encrypted prefix
P = 1234::/16, encrypting v1 = 0::ffff:18.0.0.2 re-
sults in v1 = 1234:db80:85a3:0:0:8a2e:37a0:7334,
and encrypting v2 = 0::ffff:19.0.0.1 results in v2 =
dc2a:108f:1e16:992e:a53b:43a3:00bb:d2c2. We can see
that v1∈P and v2 /∈P.

0:…:0 ffff:...:ffff

P1

I1 I2 I3 I4I0

P0

P2

Figure 3: Example of prefix encryption with PrefixMatch.

3.2.1 Scheme
PrefixMatch consists of two algorithms: EncryptPrefixes
to encrypt prefixes/ranges and EncryptValue to encrypt a
value v.

Prefixes’ Encryption. PrefixMatch takes as input a set
of prefixes or ranges P1 = [s1,e1],...,Pn = [sn,en], whose
endpoints have size len bits. PrefixMatch encrypts each
prefix into a set of encrypted prefixes: these prefixes are
prefix_len bits long. As we discuss below, the choice of
prefix_len depends on the maximum number of prefixes
to be encrypted. For example, prefix_len=16 suffices for
a typical firewall rule set.

Consider all the endpoints si and ei laid out on an
axis in increasing order as in Fig. 3. Add on this axis the
endpoints of P0, the smallest and largest possible values,
0 and 2len−1. Consider all the non-overlapping intervals
formed by each consecutive pair of such endpoints. Each
interval has the property that all points in that interval
belong to the same set of prefixes. For example, in Fig. 3,
there are two prefixes to encrypt: P1 and P2. PrefixMatch
computes the intervals I0, ... , I4. Two or more prefix-
es/ranges that overlap in exactly one endpoint define a
one-element interval. For example, consider encrypting
these two ranges [13::/16, 25::/16] and [25::/16, 27::/16];
they define three intervals: [13::/16, 25::/16-1], [25::/16,
25::/16], [25::/16+1, 27::/16].

Each interval belongs to a set of prefixes. Let
prefixes(I) denote the prefixes of interval I. For example,
prefixes(I2)={P0,P1,P2}.

PrefixMatch now assigns an encrypted prefix to each
interval. The encrypted prefix is simply a random number
of size prefix_len. Each interval gets a different random
value, except for intervals that belong to the same pre-
fixes. For example, in Fig. 3, intervals I0 and I4 receive the
same random number because prefixes(I0)=prefixes(I4).

When a prefix overlaps partially with another prefix,
it will have more than one encrypted prefix because it is
broken into intervals. For example, I1 was assigned a ran-
dom number of 0x123c and I2 of 0xabcc. The encryption
of P1 in Fig. 3 will be the pair (123c ::/16, abcc ::/16).

Since the encryption is a random prefix, the encryption
does not reveal the original prefix. Moreover, the fact that
intervals pertaining to the same set of prefixes receive the
same encrypted number hides where an encrypted value
matches, as we discuss below. For example, for an IP
address v that does not match either P1 or P2, the cloud

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 261

provider will not learn whether it matches to the left or
to the right of P1 ∪P2 because I0 and I4 receive the same
encryption. The only information it learns about v is that
v does not match either P1 or P2.

We now present the EncryptPrefixes procedure, which
works the same for prefixes or ranges.

EncryptPrefixes (P1, ..., Pn, prefix_len, len):
1: Let si and ei be the endpoints of Pi. // Pi =[si,ei]

2: Assign P0← [0,2len−1]
3: Sort all endpoints in ∪iPi in increasing order
4: Construct non-overlapping intervals I0, ... , Im

from the endpoints as explained above. For each
interval Ii, compute prefixes(Ii), the list of prefixes
Pi1 ,...,Pim that contain Ii.

5: Let I0, ... , Im each be a distinct random value of
size prefix_len.

6: For all i, j with i < j if prefixes(Ii) = prefixes(I j),
set I j ← Ii

7: The encryption of Pi is Pi =
{I j/prefix_len, for all j s.t. Pi ∈ prefixes(I j)}.
The encrypted prefixes are output sorted by value
(as a means of randomization).

8: Output P1,..., Pn and the interval map [Ii→ Ii]

Value Encryption. To encrypt a value v, PrefixMatch
locates the one interval I such that v ∈ I. It then looks up
I in the interval map computed by EncryptPrefixes and
sets I to be the prefix of the encryption of v. This ensures
that the encrypted v, v, matches I/prefix_len. The suffix
of v is chosen at random. The only requirement is that
it is deterministic. Hence, the suffix is chosen based on
a pseudorandom function [32], prfsuffix_len, seeded in a
given seed seed, where suffix_len = len− prefix_len. As
we discuss below, the seed used by the gateway depends
on the 5-tuple of a connection (SIP, SP, DIP, DP, P).

For example, if v is 0::ffff:127.0.0.1, and the assigned
prefix for the matched interval is abcd :: /16, a possible
encryption given the ranges encrypted above is Enc(v)=
abcd : e f 01 : 2345 : 6789 : abcd : e f 01 : 2345 : 6789. Note
that the encryption does not retain any information about
v other than the interval it matches in because the suffix
is chosen (pseudo)randomly. In particular, given two
values v1 and v2 that match the same interval, the order of
their encryptions is arbitrary. Thus, PrefixMatch does not
reveal order.

EncryptValue (seed, v, suffix_len, interval map):
1: Run binary search on interval map to locate the

interval I such that v∈ I.
2: Lookup I in the interval map.
3: Output

Enc(v)= I�prfsuffix_len
seed (v) (1)

Rule Encryption

Data Encryption

Data Decryption

Service
Provider

Encryption requests: rules and state

Encrypted rules and state

Encrypted data packets

Encrypted payload metadata

Encrypted data packetsPlaintext
packets

Plaintext
packets

Gateway

Figure 4: Communication between the cloud and gateway
services: rule encryption, data encryption, and data decryption.

Comparing encrypted values against rules. Determin-
ing if an encrypted value matches an encrypted prefix is
straightforward: the encryption preserves the prefix and
a middlebox can use the regular ≤/≥ operators. Hence, a
regular packet classification can be run at the firewall with
no modification. Comparing different encrypted values
that match the same prefix is meaningless, and returns a
random value.

3.2.2 Security Guarantees
PrefixMatch hides the prefixes and values encrypted with
EncryptPrefixes and EncryptValue. PrefixMatch reveals
matching information desired to enable functionality at
the cloud provider. Concretely, the cloud provider learns
the number of intervals and which prefixes overlap in
each interval, but no additional information on the size,
order or endpoints of these intervals. Moreover, for every
encrypted value v, it learns the indexes of the prefixes
that contain v (which is the functionality desired of the
scheme), but no other information about v. For any two
encrypted values Enc(v) and Enc(v�), the cloud provider
learns if they are equal only if they are encrypted as part
of the same flow (which is the functionality desired for
the NAT), but it does not learn any other information
about their value or order. Hence, PrefixMatch leaks less
information than order-preserving encryption, which
reveals the order of encrypted prefixes/ranges.

Since EncryptValue is seeded in a per-connection
identifier, an attacker cannot correlate values across
flows. Essentially, there is a different key per flow. In
particular, even though EncryptValue is deterministic
within a flow, it is randomized across flows: for example,
the encryption of the same IP address in different flows is
different because the seed differs per flow.

We formalize and prove the security guarantees of
PrefixMatch in our extended paper.

4 Enterprise Gateway
The gateway serves two purposes. First, it redirects traffic
to/from the cloud for middlebox processing. Second, it
provides the cloud with encryptions of rulesets. Every
gateway is configured statically to tunnel traffic to a fixed
IP address at a single service provider point of presence. A
gateway can be logically thought of as three services: the

7

262 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

rule encryption service, the pipeline from the enterprise
to the cloud (Data encryption), and the pipeline from
the cloud to the enterprise (Data decryption). All three
services share access to the PrefixMatch interval map and
the private key k. Fig. 4 illustrates these three services and
the data they send to and from the cloud provider.

We design the gateway with two goals in mind:

Format-compatibility: in converting plaintext traffic
to encrypted traffic, the encrypted data should be struc-
tured in such a way that the traffic appears as normal
IPv6 traffic to middleboxes performing the processing.
Format-compatibility allows us to leave fast-path oper-
ations unmodified not only in middlebox software, but
also in hardware components like NICs and switches; this
results in good performance at the cloud.

Scalability and Low Complexity: the gateway should
perform only inexpensive per-packet operations and
should be parallelizable. The gateway should require only
a small amount of configuration.

4.1 Data Encryption and Decryption
As shown in Table 1, we categorize middleboxes as
Header middleboxes, which operate only on IP and
transport headers; DPI middleboxes, which operate on
arbitrary fields in a connection bytestream; and HTTP
middleboxes, which operate on values in HTTP headers
(these are a subclass of DPI middleboxes). We discuss
how each category of data is encrypted/decrypted in order
to meet middlebox requirements as follows.

4.1.1 IP and Transport Headers
IP and Transport Headers are encrypted field by field
(e.g., a source address in an input packet results in an
encrypted source address field in the output packet) with
PrefixMatch. We use PrefixMatch for these fields be-
cause many middleboxes perform analysis over prefixes
and ranges of values – e.g., a firewall may block all
connections from a restricted IP prefix.

To encrypt a value with PrefixMatch’s Encrypt-
Value, the gateway seeds the encryption with seed =
prfk(SIP, SP, DIP, DP, P), a function of both the key
and connection information using the notation in Table 1.
Note that in the system setup with two gateways, the gate-
ways generate the same encryption because they share k.

When encrypting IP addresses, two different IP
addresses must not map to the same encryption because
this breaks the NAT. To avoid this problem, encrypted IP
addresses in Embark must be IPv6 because the probability
that two IP addresses get assigned to the same encryption
is negligibly low. The reason is that each encrypted prefix
contains a large number of possible IP addresses. Suppose
we have n distinct firewall rules, m flows and a len-bit
space, the probability of a collision is approximately:

1−e
−m2(2n+1)

2len+1 (2)
Therefore, if len=128 (which is the case when we use

IPv6), the probability is negligible in a realistic setting.
When encrypting ports, it is possible to get collisions

since the port field is only 16-bit. However, this will not
break the NAT’s functionality as long as the IP address
does not collide, because NATs (and other middleboxes
that require injectivity) consider both IP addresses and
ports. For example, if we have two flows with source IP
and source ports of (SIP,SP1) and (SIP,SP2) with SP1 �=
SP2, the encryption of SIP will be different in the two flows
because the encryption is seeded in the 5-tuple of a con-
nection. As we discuss in Appendix A, the NAT table can
be larger for Embark, but the factor is small in practice.

Decryption. PrefixMatch is not reversible. To enable
packet decryption, we store the AES-encrypted values
for the header fields in the IPv6 options header. When the
gateway receives a packet to decrypt, if the values haven’t
been rewritten by the middlebox (e.g., NAT), it decrypts
the values from the options header and restores them.

Format-compatibility. Our modifications to the IP and
transport headers place the encrypted prefix match data
back into the same fields as the unencrypted data was
originally stored; because comparisons between rules
and encrypted data rely on ≤≥, just as unencrypted data,
this means that operations performing comparisons on IP
and transport headers remain entirely unchanged at the
middlebox. This ensures backwards compatibility with
existing software and hardware fast-path operations.
Because per-packet operations are tightly optimized in
production middleboxes, this compatibility ensures good
performance at the cloud despite our changes.

An additional challenge for format compatibility is
where to place the decryptable AES data; one option
would be to define our own packet format, but this
could potentially lead to incompatibilities with existing
implementations. By placing it in the IPv6 options header,
middleboxes can be configured to ignore this data.2

4.1.2 Payload Data
The connection bytestream is encrypted with Keyword-
Match. Unlike PrefixMatch, the data in all flows is
encrypted with the same key k. The reason is that Key-
wordMatch is randomized and it does not leak equality
patterns across flows.

This allows Embark to support DPI middleboxes,
such as intrusion detection or exfiltration prevention.
These devices must detect whether or not there exists

2It is a common misconception that middleboxes are incompatible
with IP options. Commercial middleboxes are usually aware of IP
options but many administrators configure the devices to filter or drop
packets with certain kinds of options enabled.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 263

an exact match for an encrypted rule string anywhere
in the connection bytestream. Because this encrypted
payload data is over the bytestream, we need to generate
encrypted values which span ‘between’ packet payloads.
Searchable Encryption schemes, which we use for
encrypted DPI, require that traffic be tokenized and that a
set of fixed length substrings of traffic be encrypted along
a sliding window – e.g., the word malicious might be
tokenized into ‘malici’, ‘alicio’, ‘liciou’, ‘icious’. If the
term ‘malicious’ is divided across two packets, we may
not be able to tokenize it properly unless we reconstruct
the TCP bytestream at the gateway. Hence, if DPI is
enabled at the cloud, we do exactly this.

After reconstructing and encrypting the TCP
bytestream, the gateway transmits the encrypted
bytestream over an ‘extension’, secondary channel that
only those middleboxes which perform DPI operations
inspect. This channel is not routed to other middle-
boxes. We implement this channel as a persistent TCP
connection between the gateway and middleboxes. The
bytestream in transmission is associated with its flow
identifier, so that the DPI middleboxes can distinguish
between bytestreams in different flows. DPI middleboxes
handle both the packets received from the extension
channel as well as the primary channel containing the
data packets; we elaborate on this mechanism in [55].
Hence, if an intrusion prevention system finds a signature
in the extension channel, it can sever or reset connectivity
for the primary channel.
Decryption. The payload data is encrypted with AES and
placed back into the packet payload – like PrefixMatch,
KeywordMatch is not reversible and we require this
data for decryption at the gateway. Because the exten-
sion channel is not necessary for decryption, it is not
transmitted back to the gateway.
Format-compatibility. To middleboxes which only
inspect/modify packet headers, encrypting payloads has
no impact. By placing the encrypted bytestreams in the
extension channel, the extra traffic can be routed past and
ignored by middleboxes which do not need this data.

DPI middleboxes which do inspect payloads must
be modified to inspect the extension channel alongside
the primary channel, as described in [55]; DPI devices
are typically implemented in software and these modi-
fications are both straightforward and introduce limited
overhead (as we will see in §6).

4.1.3 HTTP Headers
HTTP Headers are a special case of payload data.
Middleboxes such as web proxies do not read arbitrary
values from packet payloads: the only values they read
are the HTTP headers. They can be categorized as
DPI middleboxes since they need to examine the TCP
bytesteam. However, due to the limitation of full DPI

support, we treat these values specially compared to other
payload data: we encrypt the entire (untokenized) HTTP
URI using a deterministic form of KeywordMatch.

Normal KeywordMatch permits comparison between
encrypted values and rules, but not between one value
and another value; deterministic KeywordMatch permits
two values to be compared as well. Although this is a
weaker security guarantee relative to KeywordMatch,
it is necessary to support web caching which requires
comparisons between different URIs. The cache hence
learns the frequency of different URIs, but cannot
immediately learn the URI values. This is the only field
which we encrypt in the weaker setting. We place this
encrypted value in the extension channel; hence, our
HTTP encryption has the same format-compatibility
properties as other DPI devices.

Like other DPI tasks, this requires parsing the entire
TCP bytestream. However, in some circumstances we
can extract and store the HTTP headers statelessly; so
long as HTTP pipelining is disabled and packet MTUs are
standard-sized (>1KB), the required fields will always
appear contiguously within a single packet. Given that
SPDY uses persistent connections and pipelined requests,
this stateless approach does not apply to SPDY.
Decryption. The packet is decrypted as normal using the
data stored in the payload; IP options are removed.

4.2 Rule Encryption
Given a ruleset for a middlebox type, the gateway
encrypts this ruleset with either KeywordMatch or Prefix-
Match, depending on the encryption scheme used by that
middlebox as in Table 1. For example, firewall rules are
encrypted using PrefixMatch. As a result of encryption,
some rulesets expand and we evaluate in §6 by how
much. For example, a firewall rule containing an IP prefix
that maps to two encrypted prefixes using PrefixMatch
becomes two rules, one for each encrypted prefix. The
gateway should generate rules appropriately to account
for the fact that a single prefix maps to encrypted prefixes.
For example, suppose there is a middlebox that counts the
number of connections to a prefix P. P maps to 2 encrypted
prefixes P1 and P2. If the original middlebox rule is ‘if v
in P then counter++’, the gateway should gener-
ate ‘if v in P1 or v in P2 then counter++’.

Rules for firewalls and DPI services come from a va-
riety of sources and can have different policies regarding
who is or isn’t allowed to know the rules. For example,
exfiltration detection rules may include keywords for
company products or unreleased projects which the client
may wish to keep secret from the cloud provider. On
the other hand, many DPI rules are proprietary features
of DPI vendors, who may allow the provider to learn
the rules, but not the client (gateway). Embark supports
three different models for KeywordMatch rules which

9

264 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

allow clients and providers to share rules as they are
comfortable: (a) the client knows the rules, and the
provider does not; (b) the provider knows the rule, and
the client does not; or (c) both parties know the rules.
PrefixMatch rules only supports (a) and (c) – the gateway
must know the rules to perform encryption properly.

If the client is permitted to know the rules, they encrypt
them – either generating a KeywordMatch, AES, or
PrefixMatch rule – and send them to the cloud provider.
If the cloud provider is permitted to know the rules as
well, the client will send these encrypted rules annotated
with the plaintext; if the cloud provider is not allowed,
the client sends only the encrypted rules in random order.

If the client (gateway) is not permitted to know the
rules, we must somehow allow the cloud provider to learn
the encryption of each rule with the client’s key. This is
achieved using a classical combination of Yao’s garbled
circuits [65] with oblivious transfer [40], as originally
applied by BlindBox [55]. As in BlindBox, this exchange
only succeeds if the rules are signed by a trusted third
party (such as McAffee, Symantec, or EmergingThreats)
– the cloud provider should not be able to generate their
own rules without such a signature as it would allow the
cloud provider to read arbitrary data from the clients’
traffic. Unlike BlindBox, this rule exchange occurs
exactly once – when the gateway initializes the rule.
After this setup, all connections from the enterprise are
encrypted with the same key at the gateway.

Rule Updates. Rule updates need to be treated carefully
for PrefixMatch. Adding a new prefix/range or removing
an existing range can affect the encryption of an existing
prefix. The reason is that the new prefix can overlap with
an existing one. In the worst case, the encryption of all
the rules needs to be updated.

The fact that the encryption of old rules changes poses
two challenges. The first challenge is the correctness of
middlebox state. Consider a NAT with a translation table
containing ports and IP addresses for active connections.
The encryption of an IP address with EncryptValue
depends on the list of prefixes so an IP address might
be encrypted differently after the rule update, becoming
inconsistent with the NAT table. Thus, the NAT state
must also be updated. The second challenge is a race
condition: if the middlebox adopts a new ruleset while
packets encrypted under the old ruleset are still flowing,
these packets can be misclassified.

To maintain a consistent state, the gateway first runs
EncryptPrefixes for the new set of prefixes. Then, the
gateway announces to the cloud the pending update, and
the middleboxes ship their current state to the gateway.
The gateway updates this state by producing new encryp-
tions and sends the new state back to the middleboxes.
During all this time, the gateway continued to encrypt
traffic based on the old prefixes and the middleboxes

processed it based on the old rules. Once all middleboxes
have the new state, the gateway sends a signal to the cloud
that it is about to ‘swap in’ the new data. The cloud buffers
incoming packets after this signal until all ongoing pack-
ets in the pipeline finish processing at the cloud. Then, the
cloud signals to all middleboxes to ‘swap in’ the new rules
and state; and finally it starts processing new packets.
For per-packet consistency defined in [51], the buffering
time is bounded by the packet processing time of the
pipeline, which is typically hundreds of milliseconds.
However, for per-flow consistency, the buffering time
is bounded by the lifetime of a flow. Buffering for such
a long time is not feasible. In this case, if the cloud has
backup middleboxes, we can use the migration avoidance
scheme [43] for maintaining consistency. Note that all
changes to middleboxes are in the control plane.

5 Middleboxes: Design & Implementation
Embark supports the core functionality of a set of
middleboxes as listed in Table 1. Table 1 also lists the
functionality supported by Embark. In Appendix A, we
review the core functionality of each middlebox and
explain why the functionality in Table 1 is sufficient to
support these middleboxes. In this section, we focus on
implementation aspects of the middleboxes.

5.1 Header Middleboxes
Middleboxes which operate on IP and transport headers
only include firewalls, NATs, and L3/L4 load balancers.
Firewalls are read-only, but NATs and L4 load balancers
may rewrite IP addresses or port values. For header
middleboxes, per-packet operations remain unchanged
for both read and write operations.

For read operations, the firewall receives a set of
encrypted rules from the gateway and compares them di-
rectly against the encrypted packets just as normal traffic.
Because PrefixMatch supports ≤ and ≥, the firewall may
use any of the standard classification algorithms [34].

For write operations, the middleboxes assign values
from an address pool; it receives these encrypted pool
values from the gateway during the rule generation
phase. These encrypted rules are marked with a special
suffix reserved for rewritten values. When the gateway
receives a packet with such a rewritten value, it restores
the plaintext value from the pool rather than decrypting
the value from the options header.

Middleboxes can recompute checksums as usual after
they write.

5.2 DPI Middleboxes
We modify middleboxes which perform DPI operations
as in BlindBox [55]. The middleboxes search through
the encrypted extension channel – not the packet pay-
loads themselves – and block or log the connection if a
blacklisted term is observed in the extension. Embark

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 265

also improves the setup time and security for regular
expression rules as discussed in §2.4.

5.3 HTTP Middleboxes
Parental filters and HTTP proxies read the HTTP URI
from the extension channel. If the parental filter observes
a blacklisted URI, it drops packets that belong to the
connection.

The web proxy required the most modification of any
middlebox Embark supports; nonetheless, our proxy
achieves good performance as we will discuss in §6. The
proxy caches HTTP static content (e.g., images) in order
to improve client-side performance. When a client opens
a new HTTP connection, a typical proxy will capture the
client’s SYN packet and open a new connection to the
client, as if the proxy were the web server. The proxy
then opens a second connection in the background to
the original web server, as if it were the client. When a
client sends a request for new content, if the content is
in the proxy’s cache, the proxy will serve it from there.
Otherwise, the proxy will forward this request to the web
server and cache the new content.

The proxy has a map of encrypted file path to encrypted
file content. When the proxy accepts a new TCP con-
nection on port 80, the proxy extracts the encrypted URI
for that connection from the extension channel and looks
it up in the cache. The use of deterministic encryption
enables the proxy to use a fast search data structure/index,
such as a hash map, unchanged. We have two possible
cases: there is a hit or a miss. If there is a cache hit, the
proxy sends the encrypted file content from the cache
via the existing TCP connection. Even without being
able to decrypt IP addresses or ports, the proxy can still
accept the connection, as the gateway encrypts/decrypts
the header fields transparently. If there is a cache miss,
the proxy opens a new connection and forwards the
encrypted request to the web server. Recall that the traffic
bounces back to gateway before being forwarded to the
web server, so that the gateway can decrypt the header
fields and payloads. Conversely, the response packets
from the web server are encrypted by the gateway and
received by the proxy. The proxy then caches and sends
the encrypted content back. The content is separated into
packets. Packet payloads are encrypted on a per-packet
basis. Hence, the gateway can decrypt them correctly.

5.4 Limitations
Embark supports the core functionality of a wide-range
of middleboxes, as listed in Table 1, but not all middlebox
functionality one could envision outsourcing. We now
discuss some examples. First, for intrusion detection,
Embark does not support regular expressions that cannot
be expanded in a certain number of keyword matches,
running arbitrary scripts on the traffic [47], or advanced
statistical techniques that correlate different flows studied

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

APLOMB Header Header
 + HTTP

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

 0
 2x10

6
 4x10

6
 6x10

6
 8x10

6
 1x10

7
 1.2x10

7
 1.4x10

7
 1.6x10

7

APLOMB Header Header
 + HTTP

P
ac

k
et

s
p
er

 S
ec

o
n
d

Pessimal: min size packets
Realistic (mixed) packets

Maximal: 1500 byte packets
Empirical Trace (m57)

Figure 5: Throughput on a single core at stateless gateway.

 9.5

 9.6

 9.7

 9.8

 9.9

 10

1 2 4

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

of Cores

APLOMB
Embark, Header
Embark, Header+HTTP

Figure 6: Gateway throughput with increasing parallelism.

in the research literature [69].
Second, Embark does not support application-level

middleboxes, such as SMTP firewalls, application-level
gateways or transcoders. These middleboxes parse the
traffic in an application-specific way – such parsing is
not supported by KeywordMatch. Third, Embark does
not support port scanning because the encryption of a
port depends on the associated IP address. Supporting all
these functionalities is part of our future work.

6 Evaluation
We now investigate whether Embark is practical from a
performance perspective, looking at the overheads due to
encryption and redirection. We built our gateway using
BESS (Berkeley Extensible Software Switch, formerly
SoftNIC [35]) on an off-the-shelf 16-core server with
2.6GHz Xeon E5-2650 cores and 128GB RAM; the net-
work hardware is a single 10GbE Intel 82599 compatible
network card. We deployed our prototype gateway in our
research lab and redirected traffic from a 3-server testbed
through the gateway; these three client servers had the
same hardware specifications as the server we used as
our gateway. We deployed our middleboxes on Amazon
EC2. For most experiments, we use a synthetic workload
generated by the Pktgen [63]; for experiments where
an empirical trace is specified we use the m57 patents
trace [26] and the ICTF 2010 trace [62], both in IPv4.

Regarding DPI processing which is based on BlindBox,
we provide experiment results only for the improvements
Embark makes on top of BlindBox, and refer the reader
to [55] for detailed DPI performance.

6.1 Enterprise Performance
We first evaluate Embark’s overheads at the enterprise.

6.1.1 Gateway
How many servers does a typical enterprise require to
outsource traffic to the cloud? Fig. 5 shows the gateway
throughput when encrypting traffic to send to the cloud,

11

266 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

 0 20000
 40000

 60000
 80000

 100000

 120000

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

T
h
ro

u
g
h
p
u
t

(p
p
s)

P
ro

ce
ss

in
g
 T

im
e

(u
s)

Throughput
Processing Time

Figure 7: Throughput as # of PrefixMatch rules increases.

first with normal redirection (as used in APLOMB [54]),
then with Embark’s L3/L4-header encryption, and fi-
nally with L3/L4-header encryption as well as state-
less HTTP/proxy encryption. For empirical traffic traces
with payload encryption (DPI) disabled, Embark averages
9.6Gbps per core; for full-sized packets it achieves over
9.8Gbps. In scalability experiments (Fig. 6) with 4 cores
dedicated to processing, our server could forward at up to
9.7Gbps for empirical traffic while encrypting for headers
and HTTP traffic. There is little difference between the
HTTP overhead and the L3/L4 overhead, as the HTTP en-
cryption only occurs on HTTP requests – a small fraction
of packets. With DPI enabled (not shown), throughput
dropped to 240Mbps per core, suggesting that an enter-
prise would need to devote at least 32 cores to the gateway.
How do throughput and latency at the gateway scale
with the number of rules for PrefixMatch? In §3.2, we
discussed how PrefixMatch stores sorted intervals; every
packet encryption requires a binary search of intervals.
Hence, as the size of the interval map goes larger, we can
expect to require more time to process each packet and
throughput to decrease. We measure this effect in Fig. 7.
On the y1 axis, we show the aggregate per packet through-
put at the gateway as the number of rules from 0 to 100k.
The penalty here is logarithmic, which is the expected per-
formance of the binary search. From 0-10k rules, through-
put drops from 3Mpps to 1.5Mpps; after this point the
performance penalty of additional rules tapers off. Adding
additional 90k rules drops throughput to 1.1Mpps. On the
y2 axis, we measure the processing time per packet, i.e.,
the amount of time for the gateway to encrypt the packet;
the processing time follows the same logarithmic trend.
Is PrefixMatch faster than existing order preserving
algorithms? We compare PrefixMatch to BCLO [21] and
mOPE [48], two prominent order-preserving encryption
schemes. Table 2 shows the results. We can see that
PrefixMatch is about four orders of magnitude faster than
these schemes.

Operation BCLO mOPE PrefixMatch
Encrypt 10K rules 9333μs 6640μs 0.53μs
Encrypt 100K rules 9333μs 8300μs 0.77μs

Decrypt 169μs 0.128μs 0.128μs
Table 2: PrefixMatch’s performance.

What is the memory overhead of PrefixMatch? Storing
10k rules in memory requires 1.6MB, and storing 100k
rules in memory requires 28.5MB – using unoptimized
C++ objects. This overhead is negligible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F
 (

S
it

es
)

Page Load Time (s)

Baseline
Central Office

CDN
EC2

Figure 8: Page load times under different deployments.

6.1.2 Client Performance
We use web performance to understand end-to-end user
experience of Embark. Fig. 8 shows a CDF for the Alexa
top-500 sites loaded through our testbed. We compare
the baseline (direct download) assuming three different
service providers: an ISP hosting services in a Central
Office (CO), a Content-Distribution Network, and a
traditional cloud provider (EC2). The mean RTTs from
the gateway are 60μs, 4ms, and 31ms, respectively. We
deployed Embark on EC2 and used this deployment for
our experiments, but for the CO and CDN we emulated
the deployment with inflated latencies and servers in our
testbed. We ran a pipeline of NAT, firewall and proxy (with
empty cache) in the experiment. Because of the ‘bounce’
redirection Embark uses, all page load times increase by
some fraction; in the median case this increase is less than
50ms for the ISP/Central Office, 100ms for the CDN,
and 720ms using EC2; hence, ISP based deployments
will escape human perception [39] but a CDN (or a cloud
deployment) may introduce human-noticeable overheads.

6.1.3 Bandwidth Overheads
We evaluate two costs: the increase in bandwidth due
to our encryption and metadata, and the increase in
bandwidth cost due to ‘bounce’ redirection.
How much does Embark encryption increase the amount
of data sent to the cloud? The gateway inflates the size of
traffic due to three encryption costs:
• If the enterprise uses IPv4, there is a 20-byte per-packet

cost to convert from IPv4 to IPv6. If the enterprise uses
IPv6 by default, there is no such cost.

• If HTTP proxying is enabled, there are on average 132
bytes per request in additional encrypted data.

• If HTTP IDS is enabled, there is at worst a 5× overhead
on all HTTP payloads [55].

We used the m57 trace to understand how these overheads
would play out in aggregate for an enterprise. On the up-
link, from the gateway to the middlebox service provider,
traffic would increase by 2.5% due to encryption costs for
a header-only gateway. Traffic would increase by 4.3× on
the uplink for a gateway that supports DPI middleboxes.
How much does bandwidth increase between the gateway
and the cloud from using Embark? How much would
this bandwidth increase an enterprises’ networking
costs? Embark sends all network traffic to and from
the middlebox service provider for processing, before

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 267

Application Baseline
Throughput

Embark
Throughput

IP Firewall 9.8Gbps 9.8Gbps
NAT 3.6Gbps 3.5 Gbps
Load Balancer L4 9.8 Gbps 9.8Gbps
Web Proxy 1.1Gbps 1.1Gbps
IDS 85Mbps 166Mbps [55]
Table 3: Middlebox throughput for an empirical workload.

sending that traffic out to the Internet at large.
In ISP contexts, the clients’ middlebox service provider

and network connectivity provider are one and the same
and one might expect costs for relaying the traffic to and
from the middleboxes to be rolled into one service ‘pack-
age;’ given the latency benefits of deployment at central
offices (as we saw in Fig. 8) we expect that ISP-based
deployments are the best option to deploy Embark.

In the cloud service setting the client must pay a
third party ISP to transfer the data to and from the
cloud, before paying that ISP a third time to actually
transfer the data over the network. Using current US
bandwidth pricing [24, 38, 61], we can estimate how
much outsourcing would increase overall bandwidth
costs. Multi-site enterprises typically provision two kinds
of networking costs: Internet access, and intra-domain
connectivity. Internet access typically has high bandwidth
but a lower SLA; traffic may also be sent over shared
Ethernet [24, 61]. Intra-domain connectivity usually
has a private, virtual Ethernet link between sites of the
company with a high SLA and lower bandwidth. Because
bounce redirection is over the ‘cheaper’ link, the overall
impact on bandwidth cost with header-only encryption
given public sales numbers is between 15-50%; with DPI
encryption, this cost increases to between 30-150%.

6.2 Middleboxes
We now evaluate the overheads at each middlebox.
Is throughput reduced at the middleboxes due to Embark?

Table 3 shows the throughput sustained for the apps we
implemented. The IP Firewall, NAT, and Load Balancer
are all ‘header only’ middleboxes; the results shown
compare packet processing over the same dataplane, once
with encrypted IPv6 data and once with unencrypted IPv4
data. The only middlebox for which any overhead is ob-
servable is the NAT – and this is a reduction of only 2.7%.

We re-implemented the Web Proxy and IDS to enable
the bytestream aware operations they require over our
encrypted data. We compare our Web Proxy implemen-
tation with Squid [10] to show Embark can achieve
competitive performance. The Web Proxy sustains the
same throughput with and without encrypted data, but, as
we will present later, does have a higher service time per
cache hit. The IDS numbers compare Snort (baseline) to
the BlindBox implementation; this is not an apples-to-
apples comparison as BlindBox performs mostly exact

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 500
 1000

 1500
 2000

 2500
 3000T

im
e

p
er

 r
eq

u
es

t
(m

s)

Concurrent Connections

Embark Proxy
Unencrypted Proxy

Figure 9: Access time per page against the number of concurrent
connections at the proxy.

matches where Snort matches regular expressions.
In what follows, we provide some further middlebox-

specific benchmarks for the firewall, proxy, and IDS.
Firewalls: Does Embark support all rules in a typical
firewall configuration? How much does the ruleset
“expand” due to encryption?

We tested our firewall with three rulesets provided
to us by a network administrator at our institution and
an IP firewall ruleset from Emerging Threats [3]. We
were able to encode all rules using range and keyword
match encryptions. The size of 3 rulesets did not change
after encryption, while the size of the other ruleset from
Emerging Threats expanded from 1363 to 1370 – a 0.5%
increase. Therefore, we conclude that it has negligible
impact on the firewall performance.
Proxy/Caching: The throughput number shown in
Table 3 is not the typical metric used to measure proxy
performance. A better metric for proxies is how many
connections the proxy can handle concurrently, and
what time-to-service it offers each client. In Fig. 9, we
plot time-to-service against the number of concurrent
connections, and see that it is on average higher for
Embark than the unencrypted proxy, by tens to hundreds
of milliseconds per page. This is not due to computation
costs, but instead, due to the fact that the encrypted HTTP
header values are transmitted on a different channel
than the primary data connection. The Embark proxy
needs to synchronize between these two flows; this
synchronization cost is what increases the time to service.
Intrusion Detection: Our IDS is based on BlindBox [55].
BlindBox incurs a substantial ‘setup cost’ every time a
client initiates a new connection. With Embark, however,
the gateway and the cloud maintain one, long-term
persistent connection. Hence, this setup cost is paid once
when the gateway is initially configured. Embark also
heuristically expands regular expressions in the rulesets
into exact match strings. This results in two benefits:
(1) End-to-end performance improvements. Where
BlindBox incurs an initial handshake of 97s [55] to
open a new connection and generate the encrypted rules,
end hosts under Embark never pay this cost. Instead,
the gateway pays a one-time setup cost, and end hosts
afterwards perform a normal TCP or SSL handshake of
only 3-5 RTTs. In our testbed, this amounts to between
30 and 100 ms, depending on the site and protocol – an

13

268 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

improvement of 4 orders of magnitude.
(2) Security improvements. Using IDS rulesets from
Snort, we converted regular expressions to exact match
strings as discussed in §2.4. In BlindBox, exact match
rules can be supported with higher security than regular
expressions. With 10G memory, we were able to convert
about half of the regular expressions in this ruleset to a fi-
nite number of exact match strings; the remainder resulted
in too many possible states. We used two rulesets to evalu-
ate this [3, 9]. With the first ruleset BlindBox would resort
to a lower security level for 33% of rules, but Embark
would only require this for 11.3%. With the second rule-
set, BlindBox would use lower security for 58% of rules,
but Embark would only do so for 20.2%. At the same time,
Embark does not support the lower security level so Em-
bark simply does not support the remaining regexp rules.

It is also worth noting that regular expression expan-
sion in this way makes the one-time setup very slow in one
of the three cases: the case when the gateway may not see
the rules. The reason is that, in this case, Embark runs the
garbled circuit rule-exchange protocol discussed in §4.2,
whose slowdown is linear in the number of rules. On one
machine, the gateway to server initial setup would take
over 3,000 hours to generate the set of encrypted rules due
to the large number of keywords. Fortunately, this setup
cost is easily parallelizable. Moreover, this setup cost
does not occur in the other two rule exchange approaches
discussed in §4.2, since they rely only on one AES encryp-
tion per keyword rather than a garbled circuit computation
which is six orders of magnitude more expensive.

7 Related Work
Middlebox Outsourcing: APLOMB [54] is a practical
service for outsourcing enterprise’s middleboxes to the
cloud, which we discussed in more detail in §2.
Data Confidentiality: Confidentiality of data in the cloud
has been widely recognized as an important problem and
researchers proposed solutions for software [18], web ap-
plications [30, 50], filesystems [19, 36, 31], databases [49,
46], and virtual machines [68]. CryptDB [49] was one of
the first practical systems to compute on encrypted data,
but its encryption schemes and database system design

do not apply to our network setting.

Focusing on traffic processing, the most closely related
work to Embark is BlindBox [55], discussed in §2.4.
mcTLS [41] proposed a protocol in which client and
server can jointly authorize a middlebox to process
certain portions of the encrypted traffic. Unlike Embark,
the middlebox gains access to unencrypted data. A
recent paper [67] proposed a system architecture for
outsourced middleboxes to specifically perform deep
packet inspection over encrypted traffic.

Trace Anonymization and Inference: Some systems
which focus on offline processing allow some analysis
over anonymized data [44, 45]; they are not suitable for
online processing as is Embark. Yamada et al [64] show
how one can perform some very limited processing on
an SSL-encrypted packet by using only the size of data
and the timing of packets, however they cannot perform
analysis of the contents of connection data.

Encryption Schemes: Embark’s PrefixMatch scheme
is similar to order preserving encryption schemes [15],
but no existing scheme provided both the performance
and security properties we required. Order-preserving
encryption (OPE) schemes such as [21, 48] are > 10000
times slower than PrefixMatch (§6) and additionally leak
the order of the IP addresses encrypted. On the other
hand, OPE schemes are more generic and applicable to a
wider set of scenarios. PrefixMatch, on the other hand, is
designed for our particular scenario.

The encryption scheme of Boneh et al. [22] enables
detecting if an encrypted value matches a range and
provides a similar security guarantee to PrefixMatch; at
the same time, it is orders of magnitude slower than the
OPE schemes which are already slower than PrefixMatch.

Acknowledgments
We thank our shepherd, Srinivasan Seshan, and the
anonymous reviewers for their thoughtful comments.
We’re also grateful to Dahlia Malkhi and Ittai Abraham
from VMware Research for their valuable feedback on
PrefixMatch.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 269

A Sufficient Properties for Middleboxes
In this section, we discuss the core functionality of the
IP Firewall, NAT, L3/L4 Load Balancers in Table 1, and
why the properties listed in the Column 2 of Table 1 are
sufficient for supporting the functionality of those mid-
dleboxes. We omit the discussion of other middleboxes in
the table since the sufficiency of those properties is obvi-
ous. The reason Embark focuses on the core (“textbook”)
functionality of these middleboxes is that there exist vari-
ations and different configurations on these middleboxes
and Embark might not support some of them.

A.1 IP Firewall
Firewalls from different vendors may have significantly
different configurations and rule organizations, and thus
we need to extract a general model of firewalls. We used
the model defined in [66], which describes Cisco PIX
firewalls and Linux iptables. In this model, the firewall
consists of several access control lists (ACLs). Each ACL
consists of a list of rules. Rules can be interpreted in the
form (predicate, action), where the predicate describes
the packets matching this rule and the action describes the
action performed on the matched packets. The predicate
is defined as a combination of ranges of source/destina-
tion IP addresses and ports as well as the protocol. The
set of possible actions includes "accept" and "deny".

Let Enc denote a generic encryption protocol, and
(SIP[], DIP[], SP[], DP[], P) denote the predicate of a
rule. Any packet with a 5-tuple (SIP, DIP, SP, DP, P) ∈
(SIP[], DIP[], SP[], DP[], P) matches that rule. We
encrypt both tuples and rules. The following property of
the encryption is sufficient for firewalls.

(SIP, DIP, SP, DP, P)∈(SIP[], DIP[], SP[], DP[], P)⇔
Enc(SIP, DIP, SP, DP, P)∈

Enc(SIP[], DIP[], SP[], DP[], P).
(3)

A.2 NAT
A typical NAT translates a pair of source IP and port
into a pair of external source IP and port (and back),
where the external source IP is the external address of the
gateway, and the external source port is arbitrarily chosen.
Essentially, a NAT maintains a mapping from a pair of
source IP and port to an external port. NATs have the
following requirements: 1) same pairs should be mapped
to the same external source port; 2) different pairs should
not be mapped to the same external source port. In order
to satisfy them, the following properties are sufficient:

(SIP1,SP1) = (SIP2,SP2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2),
(4)

Enc(SIP1,SP1)=Enc(SIP2,SP2)

⇒(SIP1,SP1)=(SIP2,SP2).
(5)

However, we may relax 1) to: the source IP and port pair
that belongs to the same 5-tuple should be mapped to the
same external port. After relaxing this requirement, the
functionality of NAT is still preserved, but the NAT table
may get filled up more quickly since the same pair may
be mapped to different ports. However, we argue that this
expansion is small in practice because an application on
a host rarely connects to different hosts or ports using the
same source port. The sufficient properties then become:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)

⇒Enc(SIP1,SP1)=Enc(SIP2,SP2)

(6)

and

Enc(SIP1,SP1)=Enc(SIP2,SP2)

⇒(SIP1,SP1)=(SIP2,SP2).
(7)

A.3 L3 Load Balancer
L3 Load Balancer maintains a pool of servers. It chooses a
server for an incoming packet based on the L3 connection
information. A common implementation of L3 Load
Balancing uses the ECMP scheme in the switch. It guar-
antees that packets of the same flow will be forwarded
to the same server by hashing the 5-tuple. Therefore, the
sufficient property for L3 Load Balancer is:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇔
Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2).

(8)

A.4 L4 Load Balancer
L4 Load Balancer [4], or TCP Load Balancer also main-
tains a pool of servers. It acts as a TCP endpoint that ac-
cepts the client’s connection. After accepting a connection
from a client, it connects to one of the server and forwards
the bytestreams between client and server. The encryption
scheme should make sure that two same 5-tuples have
the same encryption. In addition, two different 5-tuple
should not have the same encryption, otherwise the L4
Load Balancer cannot distinguish those two flows. Thus,
the sufficient property of supporting L4 Load Balancer is:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇔
Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2)

(9)

15

270 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

B Formal Properties of PrefixMatch
In this section, we show how PrefixMatch supports mid-
dleboxes indicated in Table 1. First of all, we formally list
the properties that PrefixMatch preserves. As discussed in
3.2, PrefixMatch preserves the functionality of firewalls
by guaranteeing Property 3. In addition, PrefixMatch also
ensures the following properties:

(SIP1,DIP1,SP1,DP1,P1) = (SIP2,DIP2,SP2,DP2,P2)⇒
Enc(SIP1,DIP1,SP1,DP1,P1) =

Enc(SIP2,DIP2,SP2,DP2,P2)

(10)
The following statements hold with high probability:

Enc(SIP1)=Enc(SIP2) ⇒ SIP1=SIP2 (11)

Enc(DIP1)=Enc(DIP2) ⇒ DIP1=DIP2 (12)

Enc(SIP1,SP1)=Enc(SIP2,SP2) ⇒
(SIP1,SP1)=(SIP2,SP2)

(13)

Enc(DIP1,DP1)=Enc(DIP2,DP2) ⇒
(DIP1,DP1)=(DIP2,DP2)

(14)

Enc(P1)=Enc(P2) ⇒ P1=P2 (15)
We discuss how those properties imply all the sufficient

properties in §A as follows.
NAT We will show that Eq.(10)-Eq.(15) imply
Eq.(6)- Eq.(7). Given (SIP1, DIP1, SP1, DP1, P1) =
(SIP2, DIP2, SP2, DP2, P2), by Eq. (10), we have
Enc(SIP1, SP1) = Enc(SIP2, SP2). Hence, Eq.(6) holds.
Similarly, given Enc(SIP1, SP1) = Enc(SIP2, SP2), by
Eq.(13), we have (SIP1,SP1)=(SIP2,SP2). Hence, Eq.(7)
also holds. Note that if we did not relax the property in
Eq.(6), we could not obtain such a proof.
L3 Load Balancer By Eq.(10), the left to right direction
of Eq.(8) holds. By Eq.(11)-Eq.(15), the right to left
direction of Eq.(8) also holds.
L4 Load Balancer By Eq.(10), the left to right direction
of Eq.(9) holds. By Eq.(11)-Eq.(15), the right to left
direction of Eq.(9) also holds.

References
[1] Brocade Network Function Virtualiza-

tion. http://www.brocade.com/
en/products-services/software-
networking/network-functions-
virtualization.html.

[2] Cisco IOS IPv6 Commands. http://www.
cisco.com/c/en/us/td/docs/ios-
xml/ios/ipv6/command/ipv6-cr-
book/ipv6-s2.html.

[3] Emerging Threats.net Open rulesets. http://
rules.emergingthreats.net/.

[4] HAProxy. http://www.haproxy.org/.

[5] Intel 82599 10 GbE Controller Datasheet.
http://www.intel.com/content/
dam/www/public/us/en/documents/
datasheets/82599-10-gbe-
controller-datasheet.pdf.

[6] Network Edge Services Products. https:
//www.juniper.net/us/en/products-
services/network-edge-services/.

[7] Network Function Virtualization for Telecom.
http://www.dell.com/learn/us/
en/04/tme-telecommunications-
solutions-telecom-nfv/.

[8] OPNFV: An Open Platform to Accelerate
NFV. https://www.opnfv.org/sites/
opnfv/files/pages/files/opnfv_
whitepaper_103014.pdf.

[9] Snort v2.9 Community Rules. https:
//www.snort.org/downloads/
community/community-rules.tar.gz.

[10] Squid: Optimising Web Delivery. http://www.
squid-cache.org/.

[11] Telefónica NFV Reference Lab. http://
www.tid.es/long-term-innovation/
network-innovation/telefonica-
nfv-reference-lab.

[12] What are White Box Switches? https://www.
sdxcentral.com/resources/white-
box/what-is-white-box-networking/.

[13] ZScaler. http://www.zscaler.com/.

[14] AT&T Domain 2.0 Vision White Paper.
https://www.att.com/Common/
about_us/pdf/AT&T%20Domain%202.
0%20Vision%20White%20Paper.pdf, Nov.
2013.

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 271

[15] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Pro-
ceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04,
pages 563–574. ACM, 2004.

[16] Ars Technica. AT&T fined $25 million after
call center employees stole customers data.
http://arstechnica.com/tech-
policy/2015/04/att-fined-25-
million-after-call-center-
employees-stole-customers-data/.

[17] Aryaka. WAN Optimization. http:
//www.aryaka.com/.

[18] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven.
In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’14, pages 267–283. USENIX Association,
2014.

[19] M. Blaze. A Cryptographic File System for UNIX.
In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93,
pages 9–16. ACM, 1993.

[20] Bloomberg Business. RadioShack Sells
Customer Data After Settling With States.
http://www.bloomberg.com/news/
articles/2015-05-20/radioshack-
receives-approval-to-sell-name-
to-standard-general.

[21] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-Preserving Symmetric Encryption. In
Proceedings of the 28th Annual International Con-
ference on Advances in Cryptology: The Theory and
Applications of Cryptographic Techniques, EURO-
CRYPT ’09, pages 224–241. Springer-Verlag, 2009.

[22] D. Boneh, A. Sahai, and B. Waters. Fully Collusion
Resistant Traitor Tracing with Short Ciphertexts
and Private Keys. In Proceedings of the 24th Annual
International Conference on The Theory and
Applications of Cryptographic Techniques, EURO-
CRYPT’06, pages 573–592. Springer-Verlag, 2006.

[23] P. R. Clearinghouse. Chronology of data breaches
. http://www.privacyrights.org/
data-breach.

[24] Comcast. Small Business Internet. http:
//business.comcast.com/internet/
business-internet/plans-pricing.

[25] I. Cooper, I. Melve, and G. Tomlinson. Internet
Web Replication and Caching Taxonomy. IETF
RFC 3040, Jan. 2001.

[26] Digital Corpora. m57-Patents Scenario.
http://digitalcorpora.org/corpora/
scenarios/m57-patents-scenario.

[27] European Telecommunications Standards Institute.
NFV Whitepaper. https://portal.etsi.
org/nfv/nfv_white_paper.pdf.

[28] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu,
and J. C. Mogul. Enforcing Network-wide Policies
in the Presence of Dynamic Middlebox Actions
Using FlowTags. In Proceedings of the 11th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 533–546.
USENIX Association, 2014.

[29] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling Innovation in Network Func-
tion Control. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages
163–174. ACM, 2014.

[30] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Maz-
ières, J. C. Mitchell, and A. Russo. Hails: Protecting
Data Privacy in Untrusted Web Applications. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, pages 47–60. USENIX Association,
2012.

[31] E.-J. Goh, H. Shacham, N. Modadugu, and
D. Boneh. SiRiUS: Securing Remote Untrusted
Storage. In Proceedings of the Tenth Network and
Distributed System Security Symposium, NDSS ’03,
pages 131–145. Internet Society (ISOC), Feb. 2003.

[32] O. Goldreich. Foundations of Cryptography:
Volume I Basic Tools. Cambridge University Press,
2001.

[33] M. Goodrich and R. Tamassia. Introduction to
Computer Security. Pearson, 2010.

[34] P. Gupta and N. McKeown. Algorithms for Packet
Classification. IEEE Network, 15(2):24–32, Mar.
2001.

[35] S. Han, K. Jang, A. Panda, S. Palkar, D. Han,
and S. Ratnasamy. SoftNIC: A Software NIC to
Augment Hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of
California, Berkeley, May 2015.

17

272 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[36] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable Secure File Sharing
on Untrusted Storage. In Proceedings of the
2nd USENIX Conference on File and Storage
Technologies, FAST ’03, pages 29–42. USENIX
Association, 2003.

[37] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and the
Art of Network Function Virtualization. In Proceed-
ings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI’14,
pages 459–473. USENIX Association, 2014.

[38] Megapath. Ethernet Data Plus. http://
www.megapath.com/promos/ethernet-
dataplus/.

[39] R. B. Miller. Response Time in Man-computer
Conversational Transactions. In Proceedings of
the December 9-11, 1968, Fall Joint Computer
Conference, Part I, AFIPS ’68 (Fall, part I), pages
267–277. ACM, 1968.

[40] M. Naor and B. Pinkas. Efficient Oblivious Transfer
Protocols. In Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA ’01, pages 448–457. Society for Industrial
and Applied Mathematics, 2001.

[41] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,
J. Blackburn, D. R. López, K. Papagiannaki, P. Ro-
driguez Rodriguez, and P. Steenkiste. Multi-Context
TLS (mcTLS): Enabling Secure In-Network Func-
tionality in TLS. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 199–212.
ACM, 2015.

[42] E. Nordmark. Stateless IP/ICMP Translation
Algorithm (SIIT). IETF RFC 2765, Feb. 2000.

[43] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda,
S. Ratnasamy, L. Rizzo, and S. Shenker. E2: A
Framework for NFV Applications. In Proceedings
of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 121–136, New York,
NY, USA, 2015. ACM.

[44] R. Pang, M. Allman, V. Paxson, and J. Lee. The
Devil and Packet Trace Anonymization. SIGCOMM
Computer Communication Review, 36(1):29–38,
Jan. 2006.

[45] R. Pang and V. Paxson. A High-level Programming
Environment for Packet Trace Anonymization and
Transformation. In Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures,

and Protocols for Computer Communications,
SIGCOMM ’03, pages 339–351. ACM, 2003.

[46] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,
S. G. Choi, W. George, A. Keromytis, and
S. Bellovin. Blind Seer: A Scalable Private DBMS.
In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 359–374. IEEE
Computer Society, 2014.

[47] V. Paxson. Bro: A System for Detecting Network
Intruders in Real-time. Computer Networks,
31(23-24):2435–2463, Dec. 1999.

[48] R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-
Security Protocol for Order-Preserving Encoding.
In Proceedings of the 2013 IEEE Symposium on
Security and Privacy, SP ’13, pages 463–477. IEEE
Computer Society, 2013.

[49] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting Confi-
dentiality with Encrypted Query Processing. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages
85–100. ACM, 2011.

[50] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zel-
dovich, M. F. Kaashoek, and H. Balakrishnan.
Building Web Applications on Top of Encrypted
Data Using Mylar. In Proceedings of the 11th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 157–172.
USENIX Association, 2014.

[51] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for Network Update. In
Proceedings of the ACM SIGCOMM 2012 Confer-
ence on Applications, Technologies, Architectures,
and Protocols for Computer Communication,
SIGCOMM ’12, pages 323–334. ACM, 2012.

[52] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and Implementation of a Consol-
idated Middlebox Architecture. In Proceedings
of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12,
pages 24–24. USENIX Association, 2012.

[53] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and
G. Shi. The Middlebox Manifesto: Enabling Inno-
vation in Middlebox Deployment. In Proceedings of
the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 21:1–21:6. ACM, 2011.

[54] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes

18

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 273

Someone else’s Problem: Network Processing
As a Cloud Service. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages
13–24. ACM, 2012.

[55] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
BlindBox: Deep Packet Inspection over Encrypted
Traffic. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 213–226. ACM, 2015.

[56] G. Silowash, T. Lewellen, J. Burns, and D. Costa.
Detecting and Preventing Data Exfiltration Through
Encrypted Web Sessions via Traffic Inspection.
Technical Report CMU/SEI-2013-TN-012, Soft-
ware Engineering Institute, Carnegie Mellon
University, 2013.

[57] P. Srisuresh and K. B. Egevang. Traditional IP
Network Address Translator (Traditional NAT).
IETF RFC 3022, Jan. 2001.

[58] D. Thaler and C. E. Hopps. Multipath Issues in
Unicast and Multicast Next-Hop Selection. IETF
RFC 2991, Nov. 2000.

[59] The Snort Project. Snort users manual, 2014.
Version 2.9.7.

[60] Verizon. 2015 Data Breach Investigations Report.
http://www.verizonenterprise.com/
DBIR/2015/.

[61] Verizon. High Speed Internet Pack-
ages. http://www.verizon.com/
smallbusiness/products/business-
internet/broadband-packages/.

[62] G. Vigna. ICTF Data. https://ictf.cs.
ucsb.edu/.

[63] K. Wiles. Pktgen. https://pktgen.
readthedocs.org/.

[64] A. Yamada, Y. Saitama Miyake, K. Takemori,
A. Studer, and A. Perrig. Intrusion Detection for
Encrypted Web Accesses. In 21st International
Conference on Advanced Information Networking
and Applications Workshops, 2007.

[65] A. C.-C. Yao. How to Generate and Exchange Se-
crets. In Proceedings of the 27th Annual Symposium
on Foundations of Computer Science, SFCS ’86,
pages 162–167. IEEE Computer Society, 1986.

[66] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and
P. Mohapatra. FIREMAN: A Toolkit for FIREwall
Modeling and ANalysis. In Proceedings of the 2006
IEEE Symposium on Security and Privacy, SP ’06,
pages 199–213. IEEE Computer Society, 2006.

[67] X. Yuan, X. Wang, J. Lin, and C. Wang. Privacy-
preserving Deep Packet Inspection in Outsourced
Middleboxes. In Proceedings of the 2016 IEEE
Conference on Computer Communications, INFO-
COM ’16, 2016.

[68] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVi-
sor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages
203–216. ACM, 2011.

[69] Y. Zhang and V. Paxson. Detecting stepping stones.
In Proceedings of the 9th Conference on USENIX
Security Symposium - Volume 9, SSYM’00, pages
13–13. USENIX Association, 2000.

19

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 275

BUZZ: Testing Context-Dependent Policies in Stateful Networks

Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, Vyas Sekar
CMU

Abstract

Checking whether a network correctly implements in-
tended policies is challenging even for basic reachabil-
ity policies (Can X talk to Y?) in simple stateless net-
works with L2/L3 devices. In practice, operators imple-
ment more complex context-dependent policies by com-
posing stateful network functions; e.g., if the IDS flags X
for sending too many failed connections, then subsequent
packets from X must be sent to a deep-packet inspection
device. Unfortunately, existing approaches in network
verification have fundamental expressiveness and scala-
bility challenges in handling such scenarios. To bridge
this gap, we present BUZZ, a practical model-based test-
ing framework. BUZZ’s design makes two key contri-
butions: (1) Expressive and scalable models of the data
plane, using a novel high-level traffic unit abstraction and
by modeling complex network functions as an ensemble
of finite-state machines; and (2) A scalable application of
symbolic execution to tackle state-space explosion. We
show that BUZZ generates test cases for a network with
hundreds of network functions within two minutes (five
orders of magnitude faster than alternative designs). We
also show that BUZZ uncovers a range of both new and
known policy violations in SDN/NFV systems.

1 Introduction
The security, performance, and availability of networks
depend on the correct implementation of critical policy
goals. Network operators realize these goals by configur-
ing and composing network appliances, such as switch-
es/routers, firewalls, and proxies.

Unfortunately, making sure that the network correctly
implements a given policy is challenging, error-prone,
and entails significant manual effort and operational
costs [20,59]. As recent advances in network verification
show, checking correctness is challenging even for sim-
ple reachability policies (Can X talk to Y?) in networks
with stateless switches and routers [44, 52, 53, 57, 75].

In practice, operators’ intended policies go well be-
yond reachability— operators implement a range of rich
context-dependent policies using stateful network func-
tions (NFs)1 to ensure traffic goes through the intended
sequence of NFs; e.g., if an intrusion detection system
(IDS) flags host X for generating too many connections

1An NF may be a switch/router or a middlebox (e.g., firewalls, load
balancers, intrusion prevention systems, or proxies). It may be realized
by a physical appliance or a virtual machine (VM).

(i.e., if traffic context is “alarm”), then reroute subse-
quent flows to a deep packet inspection (DPI) filter [23].
Such rich policies and stateful data planes are quite com-
mon (e.g., the number of stateful NFs in a network may
be comparable to the number of routers [70]). Looking
forward, software-defined networking (SDN) [60] and
network functions virtualization (NFV) [34] are poised
to enable even richer in-network traffic processing ser-
vices [22, 26, 29, 34, 42, 56].

What is critically lacking today is a principled way
to check whether a stateful data plane correctly imple-
ments intended context-dependent policies. Existing ap-
proaches [44,52,53,57,75] face fundamental expressive-
ness and scalability challenges in this regard. First, cur-
rent abstractions cannot capture stateful behaviors (e.g.,
how many connections host X has tried to establish)
or express context-dependent policies (e.g., on-demand
deep inspection). Second, trying to reason about stateful
behaviors results in state-space explosion; e.g., a naive
application of formal verification tools takes > 20 hours
even for a small network with 4-5 nodes (see §8).

We address these challenges and develop a principled
testing framework called BUZZ. BUZZ takes in intended
policies from the operator, and by exploring a model of
the data plane, it finds abstract test traffic (i.e., an input
that triggers policy-relevant states of a model of the data
plane). It then translates the abstract test traffic into con-
crete test traffic and injects it into the actual data plane.
Finally, it reports whether the observed behavior com-
plies with the policies. As an active testing framework,
BUZZ provides concrete assurances about the behavior
“on-the-wire” and can help operators localize sources of
violations [75] (§3).

In designing BUZZ, we make two key contributions:

• Expressive-yet-scalable data plane models (§5): We
introduce a novel abstraction for network traffic called
a BUZZ Data Unit (BDU). BDUs extend the notion
of located packets from prior work [52] in three key
ways: (1) it enables composition of diverse NFs span-
ning multiple protocol layers; (2) it simplifies mod-
els of NFs operating above L3 by aggregating a se-
quence of packets; and (3) it explicitly encodes traffic
processing history to expose policy-relevant contexts.
Second, we model individual NFs as FSMs that pro-
cess BDUs and explicitly embed the relevant contexts
into BDUs. A network then is simply a composition of
individual NF models. To build tractable models, we

276 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

decouple logically independent tasks (e.g., client-side
vs. server-side connections) or units of traffic (e.g.,
distinct TCP connections) within each NF to create an
ensemble of FSMs representation rather than a mono-
lithic FSM.

• Scalable test traffic generation (§6): To generate ab-
stract test traffic to explore the behaviors of the data
plane model, we develop an optimized symbolic exe-
cution (SE)-based workflow. To combat the challenge
of state space explosion [30,32], we engineer domain-
specific optimizations (e.g., reducing the number and
scope of symbolic variables). We also develop cus-
tom translation mechanisms to convert the output of
this step into concrete test traffic.

We have implemented BUZZ as an application over
OpenDaylight [14]. BUZZ provides both text-based
and graphical interfaces for operators to input policies
and receive test results through an automated workflow.
We have written a library of models for several canon-
ical NFs and implemented our SE optimizations using
KLEE [31]. We have also developed simple monitoring
and test resolution mechanisms (§7). BUZZ is open-
source, and our code, models, and examples can be found
at [1].

Our evaluation (§8) on a real testbed shows that
BUZZ: (1) effectively helps detect both new and known
policy violations within tens of seconds; (2) tests hun-
dreds of policies in networks with hundreds of switches
and stateful NFs within two minutes; (3) dramatically
improves test scalability, providing nearly five orders of
magnitude reduction in time for test traffic generation
relative to strawman solutions (e.g., model checking).

2 Motivation
In this section, we use a few illustrative examples to dis-
cuss why it is challenging to check the correctness of
context-dependent policies in stateful data planes.

Stateful firewalling: Today most firewalls capture TCP
semantics. A common usage is reflexive ACLs [5] as
shown in Figure 1, where incoming traffic is allowed
depending on its context. In particular, the context-
dependent policy here specifies that only traffic belong-
ing to a TCP connection initiated by a host inside the de-
partment (i.e., if traffic context is “solicited”) be allowed.

Prior work in network verification models each NF as
a “transfer” function T(hdr, port) whose input/output is
a located packet (i.e., a header, port tuple) (e.g., [52, 53,
62]). Unfortunately, even the simple policy of Figure 1
cannot be captured by this stateless transfer function. In
particular, it does not capture the policy-relevant state of
the firewall (e.g., SYN SENT) for a given connection.

Context-dependent traffic monitoring: In Figure 2,
the operator uses a proxy to improve web performance.

Figure 1: Is firewall allowing solicited and blocking
unsolicited traffic?

She also wants to restrict web access; i.e., H2 (a host
in the department) cannot have access to XYZ.com.
Here the context-dependent policy specifies that both
cache hits/misses for H2 should be monitored. As noted
elsewhere [43], there could be subtle policy violations
where cached responses evade the monitor because (1)
the proxy hides traffic provenance (i.e., true origin), and
(2) the proxy’s response (i.e., hit vs. miss) depends on
the hidden policy-relevant state (i.e., the current cache
contents).

Figure 2: Are both cache hit/miss traffic monitored?

While there are mechanisms to fix this (e.g., [43]), op-
erators need tools to check whether such mechanisms are
implemented correctly. Again, a stateless transfer func-
tion [52, 53, 57] is insufficient, as it does not capture the
state of the proxy.

Multi-stage triggers: Figure 3 uses a light-weight in-
trusion prevention system (L-IPS) for all traffic, and
only subjects suspicious hosts (i.e., flagged by the L-
IPS due to generating too many scans) to the expensive
heavy-weight IPS (H-IPS) for payload signature match-
ing. Such context-dependent multi-stage detection can
minimize latency and reduce H-IPS load [42].

Figure 3: Is suspicious traffic sent to heavy IPS?
Again, we cannot check if such multi-stage policies

are enforced correctly using existing mechanisms [44,
52, 53, 75] because they capture neither policy context
(e.g., alarm/not alarm) nor data plane state (e.g., the
count of bad connection attempts on L-IPS). This exam-
ple also demonstrates that just capturing packet headers
(e.g., [52, 53, 57]) is not sufficient, as the behavior of the
H-IPS may depend on packet contents.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 277

Figure 4: Does the scale-out mechanism honor the
stateful semantics of migration?

Dynamic NF deployments: NFV creates new opportu-
nities for elastic scaling of NFs [34]. However, ensuring
the correctness of policies in the presence of elastic scal-
ing is not easy. For example, in Figure 4, suppose IPS1
observes flow f1 established between the two hosts; later
f1 is migrated to the newly launched IPS2 for better load
balancing [68]. Due to the stateful semantics of the IPS,
IPS2 needs to know that f1 has already established a TCP
connection; otherwise, IPS2 may incorrectly block this
flow. While recent efforts enable state migration [46,68],
we need ways to check whether they do so correctly.

Similarly, in dynamic NF failure recovery [34], if the
main NF fails, the backup NF needs to be activated
with the correct state so that traffic is uninterrupted (e.g.,
see [69]). Again, we lack the ability to check whether
such mechanisms work as intended.

3 Overview
Our goal is to enable network operators to check
at human-interactive timescales whether their context-
dependent policies are realized in stateful data planes.
Next, we present a high-level view of BUZZ to meet this
goal and summarize key challenges in realizing it.

To put our work in perspective, we note that there
are two complementary approaches: (1) Static verifica-
tion uses network configuration files to check whether
the network behavior complies with the intended poli-
cies assuming the data plane behaves correctly (e.g.,
HSA [52], Veriflow [53], NOD [57], Batfish [44]); (2)
Active testing, on the other hand, checks the behavior
of the data plane by injecting test traffic into the net-
work [75]. While both are useful, we adopt an active
testing approach for two reasons. First, it provides prac-
tical assurances that things are actually working correctly
“on-the-wire”. Second, network behaviors in certain sce-
narios such as dynamic NF deployment (Figure 4) are
hard to capture with a purely static approach.

Due to context-dependent policies and complex state-
ful behaviors, naive attempts to generate test traffic, ei-
ther manually or via fuzzing [47,61], are ineffective. For
example, in Figure 3, in order to trigger the policy con-
text “L-IPS alarm” and check if traffic will actually go
to H-IPS, we need to carefully craft a sequence of pack-
ets that drive the count of bad connections on L-IPS to

Figure 5: High-level workflow of BUZZ.

≥ 10; achieving this via randomly generated packets is
unlikely. Our goal is to automate this process.

To bridge the gap between policies and the actual data
plane, we adopt model-based testing (MBT) [72], which
is useful when the blackbox behavior of a system needs
to be actively tested. The high-level idea is to (1) use a
model (or specification) of the system under test and a
search mechanism to systematically find test inputs that
trigger certain behaviors of the model, and then (2) com-
pare the behavior of the system under test to the behavior
of the model for each input [72].

Figure 5 shows the high-level workflow of BUZZ:
1. Model Instantiation: BUZZ instantiates a model of the

data plane using the intended policies (the only input
by the operator) and a library of NF models;

2. Test Traffic Generation: BUZZ generates abstract test
traffic to trigger policy-relevant behaviors of the data
plane model. BUZZ then translates it into concrete
test traffic, which is then injected into the actual data
plane;

3. Test Resolution: BUZZ monitors the actual data plane
and compares the observed behavior to the intended
policies. The result (i.e., success/violation) is reported
to the operator.
There are two challenges in realizing this workflow:

• Expressive-yet-scalable data plane models: To see
why this is challenging, let us consider some seem-
ingly natural candidates. A natural starting point
would be the transfer function abstraction [52, 62];
however, it is not expressive, as it offers no stateful
semantics and no binding to the relevant context. On
the other hand, using an NF’s implementation code
as its model is not tractable (e.g., Squid [18] has ≥
200K lines of code) and may suffer from other prac-
tical limitations (e.g., code may not be available, or
implementation bugs may affect test traffic).

• Scalable test traffic generation: Exploring data
plane’s behaviors is challenging even for simple
reachability policies in stateless data planes [75]. Our
setting is worse, as reasoning about stateful behaviors
requires addressing the challenge of state-space explo-
sion. Off-the-shelf mechanisms (e.g., model check-
ing) struggle beyond a few hundred lines of code
(see §6 and §8).

278 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Listing 1: An abstract stateful NF.
1 //Input: packet inPkt on port inPort
2 �outPkt,state� ← process(inPkt,state)
3 context ← stateToContextMap(state)
4 outPort ← applyPolicy(outPkt,context)
5 dispatch(outPkt,outPort)

We address these two challenges in §5 and §6, respec-
tively. Before doing so, in the next section (§4), we first
formalize our problem to shed light on the key require-
ments of modeling the data plane and generating test traf-
fic.

4 Problem Formulation
In this section, we formalize our model-based testing
framework to see what a data plane model should capture
and what test traffic needs to do. These inform our ap-
proach to modeling (§5) and test traffic generation (§6).

4.1 Intuition behind model and test traffic

What should the data plane model capture: First, we
give the intuition behind what an NF model needs to cap-
ture. As we saw in §2, data planes are stateful (e.g., the
bad connection attempts count in Figure 3). However,
being stateful is not sufficient for a data plane model to be
expressive. Specifically, to test context-dependent poli-
cies, the model needs to explicitly map each state to a
context. For example, if we want to trigger an alarm on
L-IPS in Figure 3 (e.g., to check if the traffic will actu-
ally go to H-IPS), we need to capture the mapping from
the bad connection attempts count (e.g., ≥ 10 or < 10) to
the context (e.g., alarm or not alarm).

To understand what an NF model should capture, we
consider the abstract NF shown in Listing 1 that shows
the NF model as running three logical steps: (1) It pro-
cesses an input packet and updates some relevant state
(e.g., an IPS updating bad conn attempts count)
(Line 2); (2) It extracts the relevant context for the
processed packet (e.g., alarm on an IPS based on
bad conn attempts count) (Line 3); (3) It applies the
corresponding policy (e.g., drop, forward) via function
applyPolicy(.) and then dispatches the packet to the
policy-mandated port (Lines 4-5).

What should test traffic do? At a high level, test traffic
for a given policy needs to drive the data plane to a state
corresponding to the context. In Listing 1, this means we
need to find a sequence of packets that drives the NF to a
state (Line 2) that maps to the intended context (Line 3).
If the NF is policy-compliant, the traffic at this point will
be sent to a policy-mandated port (Lines 4-5). For exam-
ple, to exercise the context of “L-IPS alarm” in Figure 3,
test traffic needs to make bad conn attempts count

to exceed 10; then, we check whether traffic at this point
actually goes to H-IPS.

4.2 Formal framework
Having seen the intuition behind state, context, and test
traffic, we formalize these to inform our design.

Context-dependent policies: Let context pkt
NFi

denote
the processing context corresponding to packet pkt
at NFi (Line 3 of Listing 1). Then, the con-
text sequence of the packet is the sequence of con-
texts along the NFs it has traversed; i.e., if pkt
has traversed NF1, . . . , NFi, its context sequence is
ContextSeqpkt = �context pkt

NF1
, . . . ,context pkt

NFi
�.

Context-dependent policies are expressed as a set of
rules of the form:

Policy : TrafficSpec×ContextSeq �→ PortSeq

Here, TrafficSpec is a predicate on the IP 5-tuple (e.g.,
source IP and transport protocol), ContextSeq is a context
sequence, and PortSeq is a sequence of network ports
Ports (interfaces).2 For example, in Figure 3, the policy
that mandates “if traffic triggers an alarm on L-IPS, it
must be sent to H-IPS” is specified as:

�srcIP=Dept�,�alarmL−IPS� �→
�L−IPS → S1,S1 → S2,S2 → H−IPS�

(Policies for dynamic NF deployments, such as Fig-
ure 4, are defined slightly differently—see §6.4.)

Stateful data planes: Contexts are convenient “short-
hands” to define policies. In reality, however, the data
plane operates in terms of the related but (possibly)
lower-level notion of state.

As we saw in Listing 1, a stateful NF takes an input
packet on one of its ports, processes it, goes to a new
state, and outputs a packet on one of its ports. A stateful
NF can be naturally expressed as a finite-state machine
(FSM) of the form NFi = (Si, Ii,Portsi,Ti), where Si is
the set of NFi states, Ii is the initial state of NFi, Portsi
is the set of ports of NFi (where Portsi ∈ Ports), and Ti :
Pkts×Portsi × Si �→ Pkts×Portsi × Si is the stateful (as
opposed to stateless, e.g., [52]) transfer function of NFi.
We model intended packet drops as sending packets to a
virtual “drop port” on the NF . To model the entire data
plane, the topology function τ : Ports �→ Ports captures
the physical interconnection of NFs. Finally, we define
the state of the data plane, SDP, as the conjunction of the
states of its individual NFs.

There are many levels of abstraction to write such an
FSM on, from low-level code variables to high-level log-
ical states (e.g., proxy cache state). Irrespective of this

2Without loss of generality, we assume policies are in terms of phys-
ical NF instances as opposed to logical types of NFs. This is more
precise because the semantics of stateful NFs (e.g., NATs) requires
that both directions of a flow pass the same NF instance.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 279

granularity, to be expressive for testing the model needs
to provide a mapping from the states to the correspond-
ing traffic specification and context:

stateToContextMapi : 2Si �→ TrafficSpec×Ci

where Ci denotes the set of all contexts of NFi.
To illustrate this, let us revisit Figure 3. Figure 6

shows two possible ways of modeling L-IPS as an FSM.
In both Figures 6a and 6b, each of the red states maps
to �srcIP=Dept�,�alarmL−IPS�—these mappings make
the models expressive. (In §5, we will discuss other re-
quirements of an FSM-based NF model in addition to
expressiveness.)

(a) Each state is of the form
�badAttmpCntH1 ,badAttmpCntH2 �

(b) Each state is of the form
�connStatus f1 , . . . ,connStatus f20 �

Figure 6: Two example FSM models of L-IPS of Fig-
ure 3 assuming a world with 2 hosts and 20 flows.
The states corresponding to alarm (i.e., at least 10 bad
connection attempts) are highlighted in red.

Test traffic: Test traffic needs to trigger the policy
context by driving the data plane to a state that cor-
responds the context (e.g., a red state in Figure 6).
Thus, trace = �pkt1, . . . , pktm, . . . , pktr� is a test trace for
policy : trafficSpec× contextSeq �→ portSeq iff:
1. Each packet pkt ∈ trace satisfies trafficSpec, and
2. SDP does not correspond to contextSeq after injection

of each of packets �pkt1, . . . , pktm−1�, and
3. SDP corresponds to contextSeq after injection and pro-

cessing each of packets �pktm, . . . , pktr�.
After trace is injected into the actual data plane,

test resolution involves checking whether packets
�pktm, . . . , pktr� actually traverse ports portSeq.

Takeaways: This framework suggests two key design
implications: (1) While an FSM is a natural starting
point to model a stateful NF , an expressive model should
bridge the gap between its states and policy-mandated
traffic specification and context (§5); and (2) Test traf-
fic should satisfy the traffic specification and drive the
data plane to a state that corresponds to the policy con-
text (§6).

5 Data Plane Model Instantiation
In this section, we discuss how to instantiate a model of
the data plane. Recall from §3 that this stage takes as in-
put a library of NF models and the policy. The challenge
in building such a library is to model each type of NF
(e.g., stateful firewall, web proxy) such that these models

are (1) composable, despite diverse types of NFs oper-
ating at different network layers; (2) expressive, despite
stateful behaviors and hidden context; and (3) scalable to
explore. After presenting our high-level approach (§5.1),
we introduce a new abstract data unit for modeling input-
output of NFs and describe how we create scalable NF
models via an ensemble-of-FSMs representation (§5.2).
Finally, we describe how we construct the network-wide
model composing individual models of NFs (§5.3).

5.1 High-level idea
A natural starting point to model an NF that is compos-
able is the transfer function from prior work [52, 62].
Each NF is modeled as: l p← T(l p). Here, the input/out-
put is a located packet l p = (pkt, port), an IP packet
(header) along with its location in the network. How-
ever, as we saw in §2, this is not expressive on several
fronts w.r.t. state and context. To see how we can make it
expressive, let us revisit our abstract NF from Listing 1
and contrast it with the transfer function. This highlights
two key missing elements: (1) there is no notion of state,
and (2) the located packet has no binding to the relevant
context.

Our formalism from §4 suggests two extensions: (1)
Instead of the (stateless) transfer function, we need to
move to an FSM-like abstraction that captures state and
the state-to-context mappings; and (2) We need some
way to logically bind a packet to its relevant context. To
this end, we extend the located packet abstraction so that
it carries the relevant context history as it traverses the
data plane model. Then, we can consider an NF as an
FSM that processes this extended located packet and ex-
plicitly includes the policy-relevant context in the out-
going packet. In a nutshell, this summarizes our basic
insight to create an expressive model.

Next, we discuss how we translate this insight into a
concrete realization. We also address the scalability re-
quirement of NF models, as a naive FSM model will
have too many states to explore.

5.2 Modeling individual NFs
The BUZZ Data Unit (BDU): We start by presenting
our approach to modeling the extended located packet
idea described above and explain how it enables com-
posability, expressiveness, and scalability. Concretely, a
BDU is a struct as shown in Listing 2 that extends a lo-
cated packet [52, 62] in three key ways:

1. Multi-layer abstraction with IP as the common de-
nominator: Unlike a located packet, a BDU can ex-
plicitly encode higher-layer semantics (e.g., HTTP
GET or responses). The key to achieving model com-
posability while enabling higher-layer semantics is
simple. Borrowing from the design of IP, we pick the
network layer as the narrow waist across diverse NFs.

280 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Listing 2: BDU is the I/O unit of an NF model.
1 struct BDU{
2 // IP fields
3 int srcIP, dstIP, proto;
4 // transport
5 int srcPort, dstPort;
6 // TCP specific
7 int tcpSYN, tcpACK, tcpFIN, tcpRST;
8 // HTTP specific
9 int httpGetObj, httpRespObj;

10 // BUZZ-specific
11 int dropped, networkPort, BDUid;
12 // Each NF updates traffic context
13 int c-Tag[C_TAG_MAX]; //context tags
14 int p-Tag; //provenance tag
15 ...};

Each NF model processes only relevant fields of an
input BDU (e.g., an L2 switch ignores HTTP fields).

2. Tag fields for context and provenance: First, to ensure
a BDU carries its context as it goes through the net-
work, we introduce the context tag, or c-Tag, field,
which explicitly binds the BDU to its context (e.g.,
1 bit for cache hit/miss, 1 bit for alarm/no-alarm).
When the NF model receives an input BDU, it gen-
erates an output BDU with the updated c-Tag (e.g.,
a proxy may set the cache hit bit). Second, a BDU
preserves its provenance via its p-Tag field. This
field encodes the BDU’s original 5-tuple indicating
its TrafficSpec. This binding is needed because cer-
tain NFs (e.g., NATs, proxies) rewrite the original
IP 5-tuple of a BDU. We ensure the provenance field
p-Tag is left unchanged by NF models the BDU tra-
verses.

3. Aggregation for scalability: Each BDU can represent
a sequence of packets associated with higher-layer NF
operations. This aggregation helps shrink the search
space for finding test traffic (§6). For example, all
packets of an HTTP reply are captured by a single
BDU with the httpRespObj field indicating the re-
trieved object id; a proxy’s state (e.g., cache contents)
gets updated after receiving this BDU.
To design a BDU struct in practice, we need to iden-

tify the protocols that affect any context mentioned in the
policies. The struct’s fields are simply the union of the
policy-related headers of these protocols. For example, if
our policy involves a stateful firewall, then TCP SYN and
ACK should be part of the fields, as these are the fields
that denote connection establishment semantics. Since
each NF model processes only relevant fields of an in-
coming BDU, our BDU abstraction is future-proof. For
example, if we later need to add an ICMP field to the
BDU of Listing 2, existing NF models will remain un-
changed, as they simply ignore this new field.

Ensemble of FSMs representation: While there are
many ways to expressively model a stateful NF , not all
models may be scalable. To see why, consider model-
ing the state-space as the concatenation of state variables

we have identified (e.g., in a proxy this concatenation
may have three variables: per-host and per-server con-
nection states and per-object cache state). Taking this
approach means with var variables each with val possi-
ble values, such a monolithic FSM has valvar states (i.e.,
an exponential growth with the number of values). While
it may be tempting to reduce the state space by moving
to a layer-specific abstraction (e.g., a proxy model that
ignores TCP and purely works at the HTTP layer), this
is not viable, as the models of diverse NFs will not be
composable.

To build a scalable FSM without compromising com-
posability, we borrow insights from the design of actual
NFs. NF programs in practice are not monolithic; rather,
they independently track “active” connections, and dif-
ferent functional components of an NF are segmented;
e.g., client- vs. server-side handling in a proxy are sepa-
rate. This naturally suggests two opportunities:
1. Decoupling independent traffic units: Consider a

stateful firewall. If modeled as a monolithic FSM,
each state of the model involves states of individual
connections. While this is expressive, it is not scal-
able as the number of connections grow. By decou-
pling per-connection states, we model the NF as an
ensemble of FSMs. In general, this insight cuts the
number of states from |state||conn| to |conn| × |state|,
where |conn| and |state| denote the number of connec-
tions and states per connection, respectively.

2. Decoupling independent tasks: To illustrate this,
consider a proxy. The code of a real proxy
(e.g., Squid [18]) typically has three logical
modules in charge of managing client-side and
server-side connections and the cache. We de-
couple such logically independent tasks in the
model so that instead of a monolithic FSM model
with each state being of the “cross-product” form
�client TCP state,server TCP state,cache content�,
we use an ensemble of three smaller FSMs,
i.e., �client TCP state�, �server TCP state�, and
�cache content�. In general, if an NF has |T | inde-
pendent tasks with task i having Si states, this idea
cuts the number of states from ∏|T |

i=1 |Si| to ∑|T |
i=1 |Si|.

Putting it together: Taken together, our BDU abstrac-
tion as the traffic I/O unit and FSM ensembles as NF
models satisfy the three modeling requirements of com-
posability, expressiveness, and scalability (§5.1). As an
illustration, Listing 3 shows a code snippet of a proxy
model focusing on the actions when a client requests a
non-cached HTTP object and while the proxy has not es-
tablished a TCP connection with the server. Each NF
instance is identified by a unique id that allows us to
index into the relevant variables. Since the traffic I/O
of the model (Line 1) is a BDU, the model is com-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 281

Listing 3: Proxy as an ensemble of FSMs.
1 BDU Proxy(NFId id, BDU inBDU){
2 ...
3 if ((frmClnt(inBDU)) && (isHttpRq(inBDU))){
4 if (!cached(id, inBDU)){
5 if(srvConnEstablished(id, inBDU))
6 outBDU=rqstFrmSrv(id, outBDU);
7 else
8 outBDU=tcpSYNtoSrv(id, inBDU); }}
9 //set c-Tags based on context (e.g., hit/miss)

10 outBDU.c-Tags = ...
11 ...
12 return outBDU;}

posable with other NF models. Second, instead of a
monolithic FSM, it is partitioned into these three dimen-
sions (i.e., client-, server-side connections and cache)
making the model scalable. The state variables of dif-
ferent proxy instances are naturally partitioned per NF
instance (not shown) and help track the relevant NF
states, and are updated by the NF-specific functions such
as srvConnEstablished.3 If the input inBDU is
an HTTP request (Line 3) and the requested object is
not cached (Line 4), the proxy checks the status of the
server TCP connection. If it has already been established
(Line 5), the output BDU is an HTTP request (Line 6).
Otherwise, the proxy initiates a TCP connection with
the server (Line 8). Finally, note that the proxy updates
c-Tags of the output BDU before sending it out.

5.3 Composing the data plane model
Next we discuss how to instantiate a model of the data
plane given the models of individual NFs. Listing 4 il-
lustrates this for the network of Figure 2. BUZZ uses
the policy to automatically concretize the relevant model
parameters (e.g., lines 3–4 specify which content/host to
watch). Lines 8–10 model the stateless switch, where we
model a switch as a static data store lookup [52]. Note
that a BDU captures its current location in the network
via its networkPort field, which gets updated as it tra-
verses the network. Function lookUp() takes an input
BDU, looks up its forwarding table, and creates a new
outBDU with its port value set based on the forwarding
table.

Similar to prior work [52,75], our network model pro-
cesses one-packet-per-NF at a time, without modeling
(a) batching or queuing inside the network, (b) parallel
processing inside NFs, or (c) simultaneous processing
of different packets across NFs. As a result, the data
plane model is a simple loop (Line 26); in each iteration,
a BDU is processed (Line 27) in two steps: (1) it is for-
warded to the other end of the current link (Line 28),
(2) it is then passed as an argument to the NF con-
nected at this end (e.g., a switch or firewall) (Line 29).
The output BDU is then processed in the next itera-

3The choice of passing ids and modeling state in per-id global vari-
ables is not fundamental but an artifact of using C/KLEE.

Listing 4: Data plane pseudocode for Figure 2.
1 // Symbolic BDUs to be instantiated (see §6).
2 BDU A[20];
3 int objToWatch = XYZ.com;
4 int hostToWatch = H2;
5 // Global state variables
6 bool Cache[2][100]; // 2 proxies, 100 objects
7 // Model of a switch
8 BDU Switch(NFId id, BDU inBDU){
9 outBDU=lookUp(id, inBDU);

10 return outBDU;}
11 // Model of a monitoring NF
12 BDU Mon(NFId id, BDU inBDU){
13 ...
14 outBDU = inBDU;
15 if (isHttp(id, inBDU)){
16 takeMonAction(id, inBDU);/* if inBDU
17 contains objToWatch destined to
18 hostToWatch, set outBDU.dropped to 1.*/}
19 ...
20 return outBDU;}
21 // Model of a proxy NF; See Listing 3
22 BDU Proxy(NFId id, BDU inBDU){...}
23 main(){
24 // Model of the data plane
25 initializeProvenanceTags(A[]);
26 for each injected A[i]
27 while (!DONE(A[i])){
28 Forward A[i] on current link;{
29 A[i] = Next_NF(A[i]);{
30 assert(
31 (!(A[i].p-Tag==hostId[H2]))
32 ||(!(A[i].c-Tags[cacheContext]==objToWatch));
33 }}}}

tion. The loop is executed until the BDU is “DONE”;
i.e., it either reaches its destination or is dropped by an
NF .4 Based on the policy, wee identify the Next NF
in line 29. (As an optimization, our implementation pre-
populates switches’ lookup() and Next NF() based
on shortest-path routing between policy-relevant NFs.)
The role of the assert statement will become clear
in §6, where we discuss test traffic generation.

6 Test Traffic Generation
In this section, we discuss how to generate test traf-
fic given the policies and the data plane model. First,
we highlight why we choose symbolic execution (SE)
as a starting mechanism to explore the data plane
model (§6.1). Then we present our domain-specific opti-
mizations to scale SE to generate abstract test traffic con-
sisting of BDUs (§6.2). Then, we show how to convert
this abstract test traffic into concrete test traffic (§6.3).
Finally, we present an extension to test dynamic NF sce-
narios (§6.4).

6.1 Why symbolic execution (SE)?
For BUZZ to be usable by operators at human interactive
timescales, it should generate test traffic within seconds
to a few minutes even for large networks. This is chal-
lenging on two fronts:

4NFs may be time-triggered (e.g., TCP time-out), so we capture
time using a BDU field. These “time BDUs” are injected by the net-
work model periodically to update time-related states.

282 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

• Traffic space explosion: Unlike prior work where an
IP packet header is an independent unit of test (hence
mandating a search only over the header space [51,
53,75,76]), we need to search over a very large traffic
space of all possible sequences of traffic units. While
BDUs, as compared to IP packets, improve scalability
via aggregation (§5.2), we still have to search over the
space of possible BDU value assignments.

• State space explosion: Even though using the FSM
ensembles abstraction significantly reduces the num-
ber of states (§5.2), it does not address state space ex-
plosion due to composition of NFs; e.g., if the models
of NF1 and NF2 can reach K1 and K2 states, respec-
tively, their composition will have K1 ×K2 states.
Unfortunately, several canonical search solutions (e.g.,

model checking [4,36] and AI planning tools [7]) do not
scale beyond 5-10 stateful NFs; e.g., model checking
took 25 hours for policy involving only two contexts.

As the first measure to address the search scalability
challenge, we choose symbolic execution (SE), which
is a well-known approach to tackle state-space explo-
sion [30]. At a high level, an SE engine explores pos-
sible behaviors of a program (in our case, the data plane
model) by assigning different values to its symbolic vari-
ables [32]. In our implementation, we use KLEE [31], a
popular SE engine.

6.2 Generating abstract test traffic
BUZZ employs SE as follows. For each
policy : trafficSpec× contextSeq �→ portSeq, we con-
strain the symbolic BDUs to satisfy the TrafficSpec.
Then, to drive the SE engine to generate test traffic that
satisfies contextSeq = �contextNF1 , . . . ,contextNFN �, we
introduce the logical negation of contextSeq as an asser-
tion in the network model code. In practice, if contextSeq
involves contexts of N NFs context1, . . . ,contextN ,
BUZZ instruments the network model with an assertion
of the form ¬(context1 ∧ ·· · ∧ contextN), where each
term is expressed in terms of BDUs’ c-Tag sub-fields.
The assertion guides the SE engine toward finding a
“violation” of the assertion by assigning concrete values
to symbolic BDUs.5 In effect, SE generates abstract test
traffic by concretizing a sequence of symbolic BDUs.
The abstract test traffic will be then translated into
concrete test traffic (§6.3), which in turn, will be injected
into the actual data plane. The injected concrete test
traffic must traverse the sequence of ports specified in
portSeq; otherwise, the actual data plane violates policy.

To illustrate this, let us revisit Listing 4, where we
want a test trace to check cached responses from the
proxy to host H2. Lines 30-32 show the assertion to
get a sequence of i BDUs that change the state of the

5Note that an assertion of the form ¬(A1 ∧·· ·∧An), or equivalently
(¬A1 ∨·· ·∨¬An), is violated only if each term Ai is evaluated to true.

Listing 5: Assertion pseudocode for Figure 3 to
trigger alarms at both IPSes.

1 // Global state variables
2 int L_IPS_Alarm[noOfHosts];//alarm per host
3 int H_IPS_Alarm[noOfHosts];//alarm per host
4 ...
5 //A[] is an array of symbolic BDUs
6 ...
7 assert((!(A[i].c-Tags[L_IPS_Alarm]==1)) ||
8 (!(A[i].c-Tags[H_IPS_Alarm]==1)));

data plane such that the ith BDU in the abstract traffic
trace: (1) is from host H2 (Line 31), and (2) corresponds
to a cached response (Line 32). For example, the SE
engine may generate 6 BDUs: three BDUs between a
host other than H2 in the Dept and the proxy to estab-
lish a TCP connection (the 3-way handshake) where the
third BDU has httpGetObj = httpObjId (this ef-
fectively makes the proxy cache the object), followed
by another 3 BDUs, this time from H2 with the field
httpGetObj set to httpObjId to induce a cached
response. Similarly, Listing 5 shows an assertion in
Lines 7-8 to trigger alarms at both L-IPS and H-IPS of
the example from Figure 3.

While SE is significantly faster than other candidates,
it is not sufficient for interactive use. Even after a broad
sweep of configuration parameters to customize KLEE, it
took several hours for a small network (§8.3). To scale to
large topologies, we implement two optimizations:
• Minimizing number of symbolic variables: Making

an entire BDU structure (Listing 2) symbolic forces
KLEE to find values for every field. Instead, BUZZ
identifies the policy-related subset of BDU fields and
only makes these symbolic and concretizes the rest.
For instance; when BUZZ is testing a data plane with
a stateful firewall but no proxies, it makes the HTTP-
relevant fields concrete (i.e., non-symbolic) by assign-
ing a don’t care value ∗ (represented by -1 in our im-
plementation) to them.

• Scoping values of symbolic variables: The
trafficSpec scopes the range of values a BDU may
take. BUZZ further narrows this range using the
policy and protocols semantics. For example, even
though the tcpSYN field is an integer, BUZZ con-
strain it to be either 0 or 1.

Test coverage: Ideally, test traffic should cover the
space of all possible traffic, including (1) packet traces
of all possible lengths (in terms of number of packets in
the trace), and (2) enumerating all possible values of the
fields of each packet. However, this is impractical with
respect to both test traffic generation and injection over-
heads. That is why even in case of simple reachability
policies and stateless data planes in prior work [75], only
one sample packet out of an equivalence class of pack-
ets (i.e., the set of all packets that experience the same
forwarding behavior) is selected as the test packet. Sim-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 283

ilarly, we define our test coverage goal as obtaining one
test trace to exercise each policy. In §8, we will show that
BUZZ (1) successfully satisfies this goal, and (2) can be
used to satisfy alternative coverage goals.

6.3 Generating concrete test traffic
The output of the SE step is a sequence of BDUs
BDUSeqSE. Since BDUs are abstract, we cannot directly
inject them into the actual data plane. Moreover, we can-
not simply do a one-to-one translation between BDUs
and raw packets and do a trace replay [3,75] because we
need to honor session semantics (e.g., for TCP or FTP) of
the policies—several parameters of such sessions (e.g.,
TCP seq. numbers) are outside of our control and are
chosen by the OS of the end hosts at run time.

To this end, we translate abstract test traffic into test
traffic injection scripts that are run on end hosts to inject
concrete test traffic. The translation algorithm uses a li-
brary of traffic injection commands that maps a known
BDUSeql into a script. For example, if a BDUSeq con-
sists of 3 BDUs for TCP connection establishment and
a web request, we map this into a wget with the re-
quired parameters (e.g., server IP and object URL). In
the most basic case, the script will be an IP packet. Using
our domain knowledge, we populated this library with
commands (e.g., getHTTP(.), sendIPPacket(.))
that support IP, TCP, UDP, FTP, and HTTP.

For completeness, its pseudocode is presented in Ap-
pendix A. Here we give the intuition behind our trans-
lation algorithm. We partition the BDUSeqSE based
on srcIP-dstIP pairs (i.e., communication end-points) of
BDUs; i.e., BDUSeqSE =

⋃
l BDUSeql. Then for each

partition BDUSeql, we do a longest-specific match (i.e.,
match on a protocol at the highest possible layer of the
network stack) in our test script library, retrieve the cor-
responding command for each subsequence, and then
concatenate these commands to form a traffic injection
script.

6.4 Testing dynamic NF deployments
Next we describe the extensions needed to handle dy-
namic NF deployment scenarios. Intuitively, the goal in
these scenarios is to ensure the change is transparent with
respect to stateful semantics of traffic. To be concrete, let
Policybefore and Policyafter denote the policies that the op-
erator intends to enforce before and after the “change”
occurs, where the change is captured by changeCond
(e.g., an NF’s scale-out, or failure). We define the correct
enforcement of a dynamic NF deployment policy as fol-
lows: For each data plane state s ∈ SDP, if changeCond
is triggered while the data plane is in s, then Policyafter is
enforced correctly.

In Figure 4, Policybefore is the top part of the pol-
icy graph (i.e., involving IPS1), Policyafter is the bot-

tom part of the policy graph (i.e., involving IPS2), and
changeCond is IPS1’s scale-out. Irrespective of the state
in which IPS1 scales out, IPS2 must start processing traf-
fic with the same state at which IPS1 has scaled out.

Abstract test traffic generation for dynamic NF de-
ployment scenarios is slightly different from what we de-
scribed in §6.1. At a high-level, for every data plane state
s ∈ SDP, BUZZ (1) generates test traffic to drive the data
plane to s, (2) triggers changeCond (e.g., by scaling-out
an NF), and (3) test if the data plane is compliant with
Policyafter. For completeness, we describe the full proce-
dure in Appendix B.

7 Implementation
BUZZ comprises ≈ 10,000 lines of code, including
NF models, code for test traffic generation, test res-
olution, extensions to KLEE, and the operator inter-
faces. The entire workflow of BUZZ is implemented
atop OpenDayLight [14]. The source code is avail-
able at [1].

Operator interface: Operators can enter policies us-
ing either a text-based or a graphical interface (example
screenshots in Appendix C). BUZZ then performs a set
of sanity checks on the policies and warns the operator
of any mistakes (e.g., an overlap between TrafficSpec of
two policies). This I/O is the only effort that BUZZ needs
from the operator. Once policies are entered, the work-
flow of BUZZ (Figure 5) is entirely automated.

NF models: We have written C models for switches,
ACL devices, stateful firewalls, NATs, L4 load balancers,
HTTP and FTP proxies, passive monitoring, and sim-
ple intrusion prevention systems (e.g., counting failed
connection attempts and matching payload signatures).
Our models are between 10 (for a switch) to 100 lines
(for a proxy cache) of C code. We reuse common tem-
plates across NFs; e.g., TCP connection sequence used
in both the firewall and proxy models. Note that model-
ing NFs is a one-time offline task and can be augmented
with community efforts [12]. We validated models by
inspecting call graphs visualization [9, 21] on extensive
manually generated input traffic to ensure the models are
correct.

Test traffic generation and injection: We use KLEE
with the optimizations discussed in §6.2 to generate
BDU-level test traffic (i.e., abstract test traffic), and then
translate it to test scripts that run at the injection points.

Test traffic monitoring and test resolution: We use
offline monitoring via tcpdump (with suitable filters).
BUZZ uses the monitoring logs to determine the test re-
sult. For completeness, we have provided the monitor-
ing and test resolution pseudocode in Appendix D. Here
we give the intuition behind this process. From the in-
put policy, BUZZ inspects the monitoring logs to check

284 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

whether traffic has traversed the policy-mandated ports.
If so, the test concludes with success. Otherwise, a pol-
icy violation along with the first violating port on which
traffic appeared is declared.

8 Evaluation
In this section, we show that:
1. BUZZ can help detect a broad spectrum of both new

and known policy violations (§8.1);
2. BUZZ works in close-to-interactive time scales (i.e.,

within two minutes) even for large topologies with
100s of switches and stateful NFs (§8.2); and

3. BUZZ’s design is critical for its scalability (§8.3).

Testbed and topologies: We use a testbed of 13 server-
grade machines (20-core 2.8GHz servers with 128GB
RAM) connected via direct 1GbE links and a 10GbE
Pica8 OpenFlow switch. On each server, with KVM
installed, we run injectors and software NFs as sepa-
rate VMs, connected via Open vSwitch. The specific
stateful NFs are iptables [8] as a NAT and a stateful fire-
wall, Squid [18] as a proxy, Snort [17] and Bro [65] as
IPS/IDS, Balance [2], and PRADS [15].

In addition to the example scenarios from §2, we use
8 randomly selected recent topologies from the Inter-
net Topology Zoo [19] with 6–196 nodes. We also use
two larger topologies (400 and 600 nodes) by extend-
ing these topologies. These serve as switch-level topolo-
gies; we extend them with different NFs to enforce poli-
cies. For the scalability experiments, we augment each
switch-level topology with stateful NFs (§8.2) by con-
necting each stateful NF to a randomly selected switch.
As a concrete policy enforcement scheme, we used prior
work to handle dynamic middleboxes [43]. (We reiter-
ate designing this scheme is not the goal of BUZZ; we
simply needed some concrete solution.)

8.1 BUZZ end-to-end use cases
First, we demonstrate the effectiveness of BUZZ in find-
ing both new and known policy violations.

Finding new violations: Using BUZZ, we uncovered
several policy violations in recent systems, a few of
which we present here:
• Violations due to reactive control in Kinetic [10]:

We set up a simple policy composed of an IDS fol-
lowed by a Kinetic dynamic firewall. By generating
malicious traffic, BUZZ found that the first few mali-
cious packets are wrongly let through. The root cause
of this violation is the delay between (1) the IDS’s de-
tection of malicious traffic and sending an “infected”
event to the controller, and (2) the controller’s recon-
figuration of the data plane to block malicious traffic.

• Incorrect state migration using OpenNF [46]: We
used the OpenNF-enhanced PRADS [15, 46] to en-

force the following policy: if a host spawns more than
Thresh TCP connections, its traffic should be sent to
a rate limiter. BUZZ revealed a violation due to the
incorrect state migration when we elastically scale a
PRADS instance. Specifically, BUZZ made a host es-
tablish n1 and n2 sessions with a server before and af-
ter migration, respectively, such that: n1, n2<Thresh,
but n1+n2>Thresh. BUZZ then found that traffic did
not go to the rate limiter. This is because OpenNF
does not migrate the session count (i.e., n1) from
PRADS1 to PRADS2.

• Faulty policy composition using PGA [66]: We used
PGA6 to compose two policies on traffic from H1 to
H2: it should pass a load balancer and a stateful fire-
wall (policy1), and if it is found suspicious, it then
should go to an IPS (policy2). After enforcing the
composition of the two policies, BUZZ found that the
test traffic exercising policy1 did not go through the
firewall. This is because the SDN switch rules corre-
sponding to policy1 took precedence over the switch
rules for policy2, rendering policy2 ineffective.

• Incorrect tagging using FlowTags [43]: BUZZ
helped us identify a bug in our FlowTags implementa-
tion in OpenDaylight [14]. In the scenario of Figure 2,
the controller code in charge of decoding tags (e.g., to
distinguish hosts behind the proxy) would assign the
same tag value to traffic from different hosts. Our test
traffic showed that the proxy’s cache hit replies by-
pass the monitoring device. BUZZ’s traffic trace in-
dicated that the tag values of cache miss/hit are iden-
tical; this gave us a hint as to focus on the controller
code in charge of configuring the tagging behavior of
the proxy.

Finding known violations: We used a “red team–blue
team” exercise, to evaluate the utility of BUZZ in finding
known policy violations. In each scenario, the red team
(Student 1) secretly picks one of the policies (at random)
from the set of policies that is known to both teams, and
creates a failure that causes the network to violate this
policy; e.g., misconfiguring L-IPS count threshold. The
blue team (Student 2) uses BUZZ to identify a violation
and localize the source of the policy violation.

Table 1 highlights the results for a subset of these
scenarios and the specific traces that BUZZ generated.
Three of the scenarios use the motivating examples from
§2. In the Conn. limit. scenario, two hosts are connected
to a server through an authentication server to prevent
brute-force password guessing attacks. The authentica-
tion server is expected to halt a host’s access after 3 con-
secutive failed log in attempts. Finally, in the asymmetric
routing scenario, upstream and downstream traffic tra-
verse different paths [55]. In all scenarios, the blue-team

6We used our implementation of PGA, as its code was unavailable.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 285

“Red Team” scenario BUZZ test trace Violating
NF

Cascaded NATs using Click
IPRewriter [54] ; NAT2 incor-
rectly rewrites srcIP triggering
“assertion failure” on NAT1 [38]

H1 attempts to access to the
server

NAT2

Multi-stage triggers (Fig. 3); L-
IPS miscounts by summing three
hosts

H1 makes 9 scan attempts
followed by 9 scans by H2

L-IPS

Conn. limit.; Login counter re-
sets

H1 makes 3 continuous log
in attempts with a wrong
password

Login
counter

Conn. limit.; S1 missing switch
forwarding rules from Auth-
Server to the protected server

H2 makes a log in attempt
with the correct password

S1

Conflicting firewall rules: Rule
1, if internal connect to external
IP, allow IP to access any inter-
nal port; Rule 2, block external
access to internal port 443

A tcp connection from in-
ternal C1 to external S1 fol-
lowed by an access from S1
to C1 : port443

Firewall

Asymmetric routing; Client-to-
server TCP traffic goes through
Bro, but the response bypasses
Bro. Since Bro does not see
the SYN ACK packet, it (mis-
takenly) blocks the connection.

a tcp connection followed by
tcp data packets

switch
close to
dst.

Table 1: Example red-blue team scenarios.

successfully localized the failure (i.e., which NF or link
is the root cause) within 10 seconds.

It is useful at this time to reiterate that these types of
violations could not be exposed by existing debugging
tools such as ATPG [75], ping, or traceroute, as they do
not capture violations w.r.t. stateful/context-dependent
aspects. We also tried using fuzzing to generate test traf-
fic, using both Scapy [16] and a custom fuzzer. Across
all scenarios, fuzzing did not find any test trace within 48
hours. This is because we need targeted search to trigger
specific data plane states, which fuzzing is not suited for.

8.2 Scalability
Recall that we envision operators using BUZZ in an in-
teractive fashion; i.e., the time for test generation should
be within 1-2 minutes even for large networks with hun-
dreds of switches and stateful NFs.

We evaluate how BUZZ scales with topology size and
policy complexity. We define policy complexity as the
number of stateful NFs whose contexts appear in the pol-
icy. We consider a baseline policy that has 3 stateful NFs
(a NAT, followed by a proxy, followed by a stateful fire-
wall). The firewall is expected to block access from a
fixed subset of origin hosts to certain web content. To
create more complex policies, we linearly “chain” to-
gether repetitions of the baseline policy.

Figure 7 shows the average test traffic generation la-
tency for various topology sizes and policy complexi-
ties. There are two takeaways. First, BUZZ generates
test traffic in human-interactive time scales; even in the
largest topology with 600 switches and the most com-
plex policy it takes only 113 seconds. Second, BUZZ’s
test traffic generation latency only depends on the policy
complexity: if we increase the topology size without in-

1
10

100
1,000

1e+04
1e+05

 0 100 200 300 400 500 600

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

Topology size (# of switches)

BUZZ, pol. complexity of 10% of topo. size
BUZZ, pol. complexity of 3
BUZZ, pol. complexity of 9

Model checking, pol. complexity of 3

Figure 7: Test generation latency of BUZZ.

crease the policy complexity, this will not add to the test
traffic generation latency. This is expected, as test traf-
fic generation involves a search over the data plane state
space, which naturally is a function of stateful NFs.

To put the traffic generation latency of BUZZ in per-
spective, Figure 7 also shows the traffic generation la-
tency of a strawman solution of using the model checker
CMBC [4]. Even on a small 9-node topology (6 switches
and 3 stateful NFs), it took 25 hours; i.e., on a 90× larger
topology, BUZZ is at least five orders of faster.

Test coverage: We have evaluated the test coverage of
BUZZ, and here, we discuss the three takeaways. First,
across all scenarios of §8.1 and §8.2, we explicitly enu-
merated all contexts, and observed that BUZZ provided
full coverage with respect to the coverage goal of §6.1
(i.e., one test case to trigger each context). Second, we
extended BUZZ to satisfy an alternative coverage goal
of generating > 1 test trace per context. We enabled
this through an iterative test generation process, where in
each iteration, we obtain a new test case by using asser-
tions such that a previously generated test case will not
be generated again. Finally, while, in general, using mul-
tiple test cases per context may reveal new violations, in
our experiments, we did not find new violations by doing
so.

8.3 BUZZ design choices
Next, we do a component-wise analysis to demonstrate
the effect of our key design choices and optimizations.

BDUs vs. packets: To see how aggregating a sequence
of packets as a BDU helps with scalability, we use BUZZ
to generate test traffic to test the proxy-monitor policy
(Figure 2), first in terms of BDUs and then in terms of
raw MTU-sized packets, on varying sizes of files to re-
trieve from the web. Figure 9 shows that on the topol-
ogy with 600 switches and 300 stateful NFs, in case of
packet-level test traffic generation, test traffic generation
latency increases linearly with the file size. On the other
hand, since the number of test packets is dominated by
the number of object retrieval packets, aggregating all
file retrieval packets as one BDU significantly cuts the
latency. (The results, not shown, are consistent across
topologies as well as using FTP instead of HTTP.)

Impact of SE optimizations: We examine the effect of
the SE-specific optimizations (§6.2) in Figure 8. To put

286 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1

10

100

1,000

e+4

e+5

6 52 92 196 400 600

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

Topology size (# of switches)

BUZZ
Min # of sym. vars.

No optimizations, smallest topology

Figure 8: Improvements due to SE optimizations.

these numbers in context, using KLEE without the opti-
mizations on a network of six switches and a policy chain
with three stateful NFs takes ≥ 19 hours. We see that (1)
minimizing the number of symbolic variables cuts the
test generation latency by three orders of magnitude, and
(2) scoping the values yields a further > 9× reduction.

9 Related work
Network verification: There is a rich literature on
checking reachability [40, 44, 51, 52, 57, 58, 73, 74]. The
work closest to BUZZ is ATPG [75]. As discussed
earlier, these do not capture the stateful behaviors and
context-dependent policies.

Code verification: The work in [39] focuses on finding
Click [54] code faults (e.g., crash) as opposed to verify-
ing traffic processing policies (e.g., reachability). NICE
combines model checking and SE to find bugs in control
plane software [33]. BUZZ is complementary to these
efforts.

Modeling stateful networks: Joseph and Stoica formal-
ized middlebox forwarding behaviors but do not model
stateful behaviors [50]. The only work that also mod-
els stateful behaviors are FlowTest [41], Symnet [71],
and the work by Panda et al [64]. FlowTest’s [41] high-
level models are not composable and the AI planning ap-
proaches do not scale beyond 4-5 node networks. Sym-
net [71] uses models written in Haskell to capture NAT
semantics similar to our example; based on published
work we do not have details on their models, verification
procedures, or scalability. The work by Panda et al. is
different from BUZZ in terms of both goals (only reach-
ability policies) and techniques (static checking) [64].

Policy enforcement: There are several frameworks to
facilitate policy enforcement [10,43,46,63,66,67]. There
are also efforts to generate correct-by-construction SDN
programs [25, 27, 45]. Our work is complementary, as
it checks whether the intended behavior manifests cor-
rectly in the actual data plane.

Simulation and shadow configurations: Simula-
tion [13], emulation [6, 11], and shadow configura-
tions [24] are common methods to model/test networks.
BUZZ is orthogonal in that it focuses on generating test
traffic. While our current focus is on active testing,

1

10

100

1,000

e+4

e+5

e+6

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

 10KB 100KB 1MB 10MB
 file size

BUZZ
Model I/O = packet

Figure 9: BDUs vs. packets for various request sizes.

BUZZ applies to these platforms as well. We also posit
that our techniques can be used to validate these efforts.

10 Discussion
Model synthesis: BUZZ uses hand-generated models
of NFs. A natural direction for future work is to use
program analysis to automatically synthesize NF models
from middlebox code (e.g., [35]) or logs (e.g., [28]).
Soundness vs. completeness: For “infinite-state” sys-
tems, it is not possible to simultaneously achieve both
guarantees [49]. BUZZ’s design favors soundness (i.e.,
if we report a violation, then the data plane actually has
that behavior) over completeness (i.e., if we do not find
a violation, then there are no bugs). In our setting, this is
a worthwhile trade-off as we can repeat tests for greater
coverage [49, 75] (e.g., see §8.2).
New use cases: Looking forward, we believe BUZZ
can be extended to systematically check interoperabil-
ity of new protocols with middleboxes [48]. As prelim-
inary evidence, we were able to replicate a known prob-
lem with a middlebox-cooperative TCP extension called
HICCUPS [37], where the protocol fails in the presence
of middleboxes that modify certain headers or if there are
multiple middleboxes on the path.

11 Conclusions
BUZZ tackles a key missing piece in network
verification—checking context-dependent policies in
stateful data planes introduces fundamental expressive-
ness and scalability challenges. We make two key contri-
butions to address these challenges: (1) Developing ex-
pressive and scalable network models; and (2) An opti-
mized application of symbolic execution to tackle state-
space explosion. We demonstrate that BUZZ is scalable
and it can help diagnose policy violations.

Acknowledgments
This work was supported in part by grant number
N00014-13-1-0048 from the Office of Naval Research,
NSF awards 1440056 and 1440065, and Intel Labs’ Uni-
versity Research Office. Seyed K. Fayaz was supported
by the VMware Graduate Fellowship and CMU Bertucci
Fellowship. We thank the anonymous reviewers and our
shepherd Kobus Van der Merwe for their suggestions.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 287

References
[1] BUZZ. https://github.com/network-policy-

tester/buzz.

[2] Balance. http://www.inlab.de/balance.html.

[3] Bit-Twist. http://bittwist.sourceforge.net.

[4] CBMC. http://www.cprover.org/cbmc/.

[5] Cisco’s Reflexive Access Lists. http://bit.ly/1O8N5p2.

[6] Emulab. http://www.emulab.net/.

[7] Graphplan. http://www.cs.cmu.edu/˜avrim/
graphplan.html.

[8] iptables. http://www.netfilter.org/projects/
iptables/.

[9] KCachegrind. http://kcachegrind.sourceforge.
net/html/Home.html.

[10] Kinetic. http://resonance.noise.gatech.edu/.

[11] Mininet. http://yuba.stanford.edu/foswiki/bin/
view/OpenFlow/Mininet.

[12] Network Function Virtualization Research Group (NFVRG).

[13] ns-3. http://www.nsnam.org/.

[14] OpenDaylight project. http://www.opendaylight.
org/.

[15] PRADS. http://gamelinux.github.io/prads/.

[16] Scapy. http://bit.ly/1FiqZyK.

[17] Snort. http://www.snort.org/.

[18] Squid. http://www.squid-cache.org/.

[19] The Internet Topology Zoo. http://www.topology-zoo.
org/index.html.

[20] Troubleshooting the network survey. http://eastzone.
github.io/atpg/docs/NetDebugSurvey.pdf.

[21] Valgrind. http://www.valgrind.org/.

[22] High Performance Service Chaining for Advanced Software-
Defined Networking (SDN) . http://intel.ly/1ilX5PG,
2014.

[23] Tackling the Dynamic Service Chaining Challenge of NFV/SDN
Networks with Wind River and Intel. http://intel.ly/
1EFmEVQ, 2014.

[24] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as a
network management primitive. In Proc. SIGCOMM, 2008.

[25] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic foundations
for networks. In Proc. POPL, 2014.

[26] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford. A
slick control plane for network middleboxes. In Proc. HotSDN,
2013.

[27] T. Ball, N. Bjorner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sa-
giv, M. Schapira, and A. Valadarskyi. VeriCon: Towards verify-
ing controller programs in software-defined networks. In Proc.
PLDI, 2014.

[28] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging existing instrumentation to automatically in-
fer invariant-constrained models. In Proc. ESEC/FSE, 2011.

[29] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, J. Guichard,
and C. Pignataro. Differentiated Service Function Chaining
Framework. https://tools.ietf.org/html/draft-
boucadair-service-chaining-framework-00,
2013.

[30] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 10ˆ20 States and Beyond.
Inf. Comput., 98(2), 1992.

[31] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems
programs. In Proc. OSDI, 2008.

[32] C. Cadar and K. Sen. Symbolic execution for software testing:
Three decades later. Commun. ACM, 56(2):82–90, Feb. 2013.

[33] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford. A
NICE way to test openflow applications. In Proc. NSDI, 2012.

[34] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bu-
genhagen, W. Khan, M. Fargano, C. Cui, H. Deng, J. Ben-
itez, U. Michel, H. Damker, K. Ogaki, T. Matsuzaki, M. Fukui,
K. Shimano, , D. Delisle, Q. Loudier, C. Kolias, I. Guardini,
E. Demaria, R. Minerva, A. Manzalini, D. Lpez, F. Javier,
R. alguero, F. Ruhl, and P. Sen. Network Functions Virtualisa-
tion: An Introduction, Benefits, Enablers, Challenges & Call for
Action. http://portal.etsi.org/nfv/nfv_white_
paper.pdf, 2012.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, volume 1855. 2000.

[36] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT
press, 1999.

[37] R. Craven, R. Beverly, and M. Allman. A middlebox-cooperative
tcp for a non end-to-end internet. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 151–162. ACM, 2014.

[38] M. Dobrescu, K. Argyarki, and S. Ratnasamy. Toward Pre-
dictable Performance in Software Packet-Processing Platforms.
In Proc. NSDI, 2012.

[39] M. Dobrescu and K. Argyraki. Software dataplane verification.
In Proc. NSDI, 2014.

[40] D. J. Dougherty, T. Nelson, C. Barratt, K. Fisler, and S. Krishna-
murthi. The margrave tool for firewall analysis. In Proc. LISA,
2010.

[41] S. K. Fayaz and V. Sekar. Testing stateful and dynamic data
planes with FlowTest. In Proc. HotSDN, 2014.

[42] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexi-
ble and elastic DDoS defense. In Proc. USENIX Security Sympo-
sium, 2015.

[43] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions using FlowTags. In Proc. NSDI, 2014.

[44] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govin-
dan, R. Mahajan, and T. Millstein. A general approach to network
configuration analysis. In Proc. NSDI, 2015.

[45] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-
ford, A. Story, and D. Walker. Frenetic: A network programming
language. SIGPLAN Not., 46(9), Sept. 2011.

[46] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: Enabling innovation
in network function control. In Proc. SIGCOMM, 2014.

[47] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox
fuzzing for security testing. ACM Queue, 2012.

[48] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. Is it still possible to extend tcp? In Proc. IMC,
2011.

[49] R. Jhala and R. Majumdar. Software model checking. ACM Com-
put. Surv., 2009.

[50] D. Joseph and I. Stoica. Modeling middleboxes. Netwrk. Mag. of
Global Internetwkg., 22(5), 2008.

288 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[51] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte. Real time network policy checking using header
space analysis. In Proc. NSDI, 2013.

[52] P. Kazemian, G. Varghese, and N. McKeown. Header space anal-
ysis: static checking for networks. In Proc. NSDI, 2012.

[53] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
verifying network-wide invariants in real time. In Proc. NSDI,
2013.

[54] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 2000.

[55] F. Le, E. Nahum, V. Pappas, M. Touma, and D. Verma. Experi-
ences deploying a transparent split tcp middlebox and the impli-
cations for nfv. In Proc. HotMiddlebox, 2015.

[56] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Z. Cao,
and J. Hu. Service Function Chaining (SFC) Use Cases. http:
//bit.ly/1JTVneh, 2014.

[57] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and
G. Varghese. Checking beliefs in dynamic networks. In Proc.
NSDI, 2015.

[58] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King. Debugging the data plane with anteater. In Proc.
SIGCOMM, 2011.

[59] N. McKeown. Mind the Gap: SIGCOMM’12 Keynote. http:
//bit.ly/1izyVld.

[60] N. McKeown et al. OpenFlow: enabling innovation in campus
networks. CCR, March 2008.

[61] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of unix utilities. Commun. ACM, 1990.

[62] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software-defined networks. In Proc. NSDI, 2013.

[63] S. Palkar, C. Lan, S. Han, K. J. amd Aurojit Panda, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: A framework for NFV applications.
In Proc. SOSP, 2015.

[64] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker.
Verifying Isolation Properties in the Presence of Middleboxes.
arXiv:submit/1075591.

[65] V. Paxson. Bro: A system for detecting network intruders in real-
time. In Computer Networks, pages 2435–2463, 1999.

[66] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang. PGA: Using graphs
to express and automatically reconcile network policies. In Proc.
SIGCOMM, 2015.

[67] Z. Qazi, C. Tu, L. Chiang, R. Miao, and M. Yu. SIMPLE-fying
middlebox policy enforcement using sdn. In Proc. SIGCOMM,
2013.

[68] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/merge: System support for elastic execution in virtual mid-
dleboxes. In Proc. NSDI, 2013.

[69] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Ma-
ciocco, M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and
S. Shenker. Rollback recovery for middleboxes. In Proc. SIG-
COMM, 2015.

[70] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making middleboxes someone else’s problem: Net-
work processing as a cloud service. In Proc. SIGCOMM, SIG-
COMM, 2012.

[71] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet:
Static checking for stateful networks. In Proc. HotMiddlebox,
2013.

[72] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-
based testing approaches. Software Testing, Verification and Re-
liability, 22(5), 2012.

[73] G. Xie, J. Zhan, D. Maltx, H. Z. G. Hjalmtysson, and J. Rex-
ford. On Static Reachability Analysis of IP Networks. In Proc.
INFOCOM, 2005.

[74] L. Yuan and H. Chen. FIREMAN: a toolkit for FIREwall Mod-
eling and ANalysis. In Proc. IEEE Symposium on Security and
Privacy, 2006.

[75] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Auto-
matic test packet generation. In Proc. CoNEXT, 2012.

[76] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McK-
eown, and A. Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In Proc. NSDI, 2014.

Copyright 2016 Carnegie Mellon University. This material is based upon
work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development
center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN AS-IS BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WAR-
RANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RE-
SPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT. This material has been approved for public release and un-
limited distribution. DM-0002799

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 289

A Translating abstract test traffic into test
traffic injection scripts

Figure 10 shows the pseudocode for the translation
mechanism (§6.3).

1 � Inputs:
2 #1: a sequence of BDUs from Symbolic Execution

BDUseqSE = �BDUn : n = 1,2, ...,N�,
each BDUn has an abstract predd

3 #2: a cmd-BDUs library cmdlib = {�cmd1,Seqcmd
1�,�cmd2,Seqcmd

2�, ...,�cmdM ,Seqcmd
M�}

4 #3: a set of end-hosts H = {Hk : k = 1,2, ...,K} to execute cmds
5 � Outputs:
6 #1: a number of scripts S = {scriptH1 · · ·scriptHK } to

be executed on end-hosts {Hk : k = 1,2, ...,K},
where scriptHk is a sequence of �· · ·cmd

Hk
i · · · �, such that

�· · ·Seqcmd H1
i · · · � is equivalent to BDUseqSE

7 � Sort cmd-BDUs library from cmds with most BDUs to
least BDUs

8 cmdlib = Sort(cmdlib)
9 � Decompose BDUseqSE sequence into subsequences

BDUsubseqSE of BDUs with same predicate pred
10 {BDUsubseqSE

predd
: d = 1,2, ...,D}= Decompose(BDUseqSE)

11 for each BDUsubseqSE
predd

in {BDUsubseqSE
predd

: d = 1,2, ...,D}
12 � Instantiate a scriptpredd to store cmd for BDUsubseqSE

predd
13 scriptpredd ← empty
14 � Match the BDUs in BDUsubseqSE

predd
with cmds in cmdlib

15 for each cmdm in cmdlib
16 for BDUn in BDUsubseqSE

predd
17 � if Seqcmd

m equals to a BDU substring of BDUsubseqSE
predd

started at BDUn
18 if Substring(BDUsubseqSE

predd
,BDUn, len(Seqcmd

m)) == Seqcmd
m

19 � add the matched cmdm and the first matched BDU’s index n
to scriptpredd

20 scriptpredd .add(cmdn
m)

21 � mark all BDUs in Substring(BDUsubseqSE
predd

,BDUn,

len(Seqcmd
m))

22 Mark(Substring(BDUsubseqSE
predd

,BDUn, len(Seqcmd
m)))

23 � remove all marked BDUs from BDUsubseqSE
predd

24 RemoveMarked(BDUsubseqSE
predd

)

25 if all BDUs in BDUsubseqSE
predd

are marked, then break
26 � Sort every cmdn

m in scriptpredd by its first matched BDU’s index n
27 scriptpredd = Sort(scriptpredd)
28 � Map abstract predd to real test host Hpredd and assign script to host
29 scriptHpredd

= scriptpredd

Figure 10: Pseudocode for translating abstract test
traffic into test traffic injection scripts.

B Abstract test traffic generation for
change management policies

Figure 11 shows the abstract test traffic generation pseu-
docode for change management policies (§6.4).

C Operator interface of BUZZ
Figures 12 and 13 show operator’s interface (§7).

D Test resolution
Figure 14 shows the pseudocode for test resolution (§7).

1 � Inputs:
2 #1: Policy1:pred1(5−tuple)×C1 �→Ports1 before migrate/rollback
3 #2: Policy2:pred2(5−tuple)×C2 �→Ports2 after migrate/rollback
4 � Outputs:
5 #1: a sequence of BDUseqSE = �BDUn : n = 1,2, ...,N� with two substrings,
6 BDUseqSE

be f ore and BDUseqSE
a f ter , which should satisfy:

7 BDUseqSE
be f ore exploits all possible context context in C1 before

migration/rollback happens.
8 BDUseqSE

a f ter test all possible context in C2 after the migration/rollback.
9 � Init BDU sequence

10 BDUseqSE = �BDUn : n = 1,2, ...,N�
11 � note the values in BDUn for calculation by Symbolic Execution
12 makesymbolic(BDUn)
13 � exploits all possible context in C1
14 � BDUs processed sequentially by Policy1
15 for each BDUi in BDUseqSE

16 if BDUi is in BDUseqSE
be f ore

17 � process BDUi by Policy1 and update C1
18 C1 = Policy1(pred1(BDUi),C1,Ports1)
19 � do migrate/rollback and change service chain from Policy1 to Policy2
20 � map ports
21 Ports2 = g(Ports1)
22 � migrate/rollback context
23 C2 = C1
24 � test all possible context in C2
25 � BDUs processed sequentially by Policy2
26 for each BDUj in BDUseqSE

27 if BDUj is in BDUseqSE
a f ter

28 � process BDUi by Policy2 and update C2
29 C2 = Policy2(pred2(BDUi),C2,Ports2)
30 � generate BDU sequence with values assigned by Symbolic Execution
31 symbolicout put = �BDUn : n = 1,2, ...,N�

Figure 11: Pseudocode for abstract test traffic gener-
ation for change management policies.

In_L_H_IPS.jsChoose File

#Traffic
10.1.0.1 10.2.0.1
#Enforcement
LightIPS_1 bad_conn>=Threshold HeavyIPS_1
LightIPS_1 !(bad_conn>=Threshold) Allow
HeavyIPS_1 bad_signature Block
HeavyIPS_1 !bad_signature Allow
#Customize
LightIPS_1:Threshold=10

In_L_H_IPSS.jsCChhoose Fille

#Traffic
10.1.0.1 10.2.0.1
#Enforcement
LightIPS_1 bad_conn>=Threshold HeavyIPS_1
LightIPS_1 !(bad_conn>=Threshold) Allow
HeavyIPS_1 bad_signature Block
HeavyIPS_1 !bad_signature Allow
#Customize
LightIPS_1:Threshold=10

Figure 12: Text-based interface to input policies (e.g.,
multistage-triggers policy in Figure 3).

Figure 13: Graphical interface to input policies (e.g.,
multistage-triggers policy in Figure 3).

1 � Inputs:
2 #1: packet traces pkttraceporti dumped at each porti in Ports
3 #2: policy Policy:pred(5−tuple)×C �→Ports, where C includes all possible

contexts
4 � Outputs:
5 #1: The resolution result of each context contexti in C in terms of pass/fail
6 #2: The port of the NF that causes the failure
7 � perform resolution scheme for each context contexti in C
8 for each contexti in C
9 � Trace = �pktm, . . . , pktr� is the test packets for this context

10 for testpkt in �pktm, . . . , pktr�
11 � calculate the logically correct ports test pkt should reach
12 Portslogical

test pkt = Policy(pred(test pkt)),contexti)
13 � find the real ports test pkt has reached
14 Portsreality

test pkt = search test pkt in each pkttraceporti

15 if Portsreality
test pkt == Portslogical

test pkt
16 contexti test pass
17 else
18 contexti test fail
19 � Compare the port of Portsreality

test pkt and Portslogical
test pkt and find the first

different port, which is the NF that causes the failure.
20 FailedNFPort = FirstDi f f Port(Portsreality

test pkt ,Portslogical
test pkt)

21 mark contexti as tested

Figure 14: Pseudocode for BUZZ test resolution.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 291

Minimizing Faulty Executions of Distributed Systems

Colin Scott� Aurojit Panda� Vjekoslav Brajkovic� George Necula�

Arvind Krishnamurthy† Scott Shenker��
�UC Berkeley �ICSI †University of Washington

Abstract
When troubleshooting buggy executions of distributed
systems, developers typically start by manually separat-
ing out events that are responsible for triggering the
bug (signal) from those that are extraneous (noise). We
present DEMi, a tool for automatically performing this
minimization. We apply DEMi to buggy executions of two
very different distributed systems, Raft and Spark, and
find that it produces minimized executions that are be-
tween 1X and 4.6X the size of optimal executions.

1 Introduction
Even simple code can contain bugs (e.g., crashes due
to unexpected input). But the developers of distributed
systems face additional challenges, such as concurrency,
asynchrony, and partial failure, which require them to
consider all possible ways that non-determinism might
manifest itself. Since the number of event orderings a dis-
tributed system may encounter grows exponentially with
the number of events, bugs are commonplace.

Software developers discover bugs in several ways.
Most commonly, they find them through unit and in-
tegration tests. These tests are ubiquitous, but they are
limited to cases that developers anticipate themselves.
To uncover unanticipated cases, semi-automated testing
techniques such as fuzzing (where sequences of message
deliveries, failures, etc. are injected into the system) are
effective. Finally, despite pre-release testing, bugs may
turn up once the code is deployed in production.

The last two means of bug discovery present a signifi-
cant challenge to developers: the system can run for long
periods before problems manifest themselves. The re-
sulting executions can contain a large number of events,
most of which are not relevant to triggering the bug. Un-
derstanding how a trace containing thousands of concur-
rent events lead the system to an unsafe state requires
significant expertise, time,1 and luck.

Faulty execution traces can be made easier to under-
stand if they are first minimized, so that only events that
are relevant to triggering the bug remain. In fact, devel-
opers often start troubleshooting by manually perform-
ing this minimization. Since developer time is typically

1Developers spend a significant portion of their time debugging
(49% of their time according to one study [52]), especially when the
bugs involve concurrency (70% of reported concurrency bugs in [37]
took days to months to fix).

much more costly than machine time, automated mini-
mization tools for sequential test cases [24, 86, 94] have
already proven themselves valuable, and are routinely
applied to bug reports for software projects such as Fire-
fox [1], LLVM [7], and GCC [6].

In this paper we address the problem of automatically
minimizing executions of distributed systems. We focus
on executions generated by fuzz testing, but we also il-
lustrate how one might minimize production traces.

Distributed executions have two distinguishing fea-
tures. Most importantly, input events (e.g., failures) are
interleaved with internal events (e.g., intra-process mes-
sage deliveries) of concurrent processes. Minimization
algorithms must therefore consider both which input
events and which (of the exponentially many) event
schedules are likely to still trigger the bug. Our main con-
tribution (discussed in section 3) is a set of techniques
for searching through the space of event schedules in a
timely manner; these techniques are inspired by our un-
derstanding of how practical systems behave.

Distributed systems also frequently exhibit non-
determinism (e.g., since they make extensive use of
timers to detect failures), complicating replay. We ad-
dress this challenge (as we discuss in section 4) by in-
strumenting the Akka actor system framework [2] to gain
nearly perfect control over when events occur.

With the exception of our prior work [70], we are un-
aware of any other tool that solves this problem with-
out needing to analyze the code. Our prior work targeted
a specific distributed system (SDN controllers), and fo-
cused on minimizing input events given limited control
over the execution [70]. Here we target a broader range
of systems, define the general problem of execution min-
imization, exercise significantly greater control, and sys-
tematically explore the state space. We also articulate
new minimization strategies that quickly reduce input
events, internal events, and message contents.

Our tool, Distributed Execution Minimizer (DEMi), is
implemented in ∼14,000 lines of Scala. We have applied
DEMi to akka-raft [3], an open source Raft consensus
implementation, and Apache Spark [90], a widely used
data analytics framework. Across 10 known and discov-
ered bugs, DEMi produces executions that are within
a factor of 1X to 4.6X (1.6X median) the size of the
smallest possible bug-triggering execution, and between

292 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1X and 16X (4X median) smaller than the executions
produced by the previous state-of-the-art blackbox tech-
nique [70]. The results we find for these two very dif-
ferent systems leave us optimistic that these techniques,
along with adequate visibility into events (either through
a framework like Akka, or through custom monitoring),
can be applied successfully to a wider range of systems.

2 Problem Statement
We start by introducing a model of distributed systems
as groundwork for defining our goals. As we discuss fur-
ther in §4.2, we believe this model is general enough to
capture the behavior of many practical systems.

2.1 System Model

Following [33], we model a distributed system as a col-
lection of N single-threaded processes communicating
through messages. Each process p has unbounded mem-
ory, and behaves deterministically according to a transi-
tion function of its current state and the messages it re-
ceives. The overall system S is defined by the transition
function and initial configuration for each process.

Processes communicate by sending messages over a
network. A message is a pair (p,m), where p is the iden-
tity of the destination process, and m is the message
value. The network maintains a buffer of pending mes-
sages that have been sent but not yet delivered. Timers
are modeled as messages a process can request to be de-
livered to itself at a specified later point in the execution.

A configuration of the system consists of the internal
state of each process and the contents of the network’s
buffer. Initially the network buffer is empty.

An event moves the system from one configuration to
another. Events can be one of two kinds. Internal events
take place by removing a message m from the network’s
buffer and delivering it to the destination p. Then, de-
pending on m and p’s internal state, p enters a new in-
ternal state determined by its transition function, and
sends a finite set of messages to other processes. Since
processes are deterministic, internal transitions are com-
pletely determined by the contents of m and p’s state.

Events can also be external. The three external events
we consider are: process starts, which create a new pro-
cess; forced restarts (crash-recoveries), which force a
process to its initial state (though it may maintain non-
volatile state); and external message sends (p,m), which
insert a message sent from outside the system into the
network buffer (which may be delivered later as an inter-
nal event). We do not need to explicitly model fail-stop
failures, since these are equivalent to permanently parti-
tioning a process from all other processes.

A schedule is a finite sequence τ of events (both ex-
ternal and internal) that can be applied, in turn, start-
ing from an initial configuration. Applying each event

in the schedule results in an execution. We say that a
schedule ‘contains’ a sequence of external events E =
[e1,e2, . . . ,en] if it includes only those external events
(and no other external events) in the given order.

2.2 Testing

An invariant is a predicate P (a safety condition) over the
internal state of all processes at a particular configuration
C. We say that configuration C violates the invariant if
P(C) is false, denoted P(C).

A test orchestrator generates sequences of external
events E = [e1,e2, . . . ,en], executes them along with
some (arbitrary) schedule of internal events, and checks
whether any invariants were violated during the execu-
tion. The test orchestrator records the external events it
injected, the violation it found, and the interleavings of
internal events that appeared during the execution.

2.3 Problem Definition

We are given a schedule τ injected by a test orchestrator,2

along with a specific invariant violation P observed at the
end of the test orchestrator’s execution.

Our main goal is to find a schedule containing a small
sequence of external (input) events that reproduces the
violation P. Formally, we define a minimal causal se-
quence (MCS) to be a subsequence of external events
E ′ � E such that there exists a schedule containing E ′

that produces P, but if we were to remove any single ex-
ternal event e from E ′, there would not exist any sched-
ules shorter3 than τ containing E ′ − e that produce P.4

We start by minimizing external (input) events because
they are the first level of abstraction that developers rea-
son about. Occasionally, developers can understand the
root cause simply by examining the external events.

For more difficult bugs, developers typically step
through the internal events of the execution to understand
more precisely how the system arrived at the unsafe state.
To help with these cases, we turn to minimizing inter-
nal events after the external events have been minimized.
At this stage we fix the external events and search for
smaller schedules that still triggers the invariant viola-
tion, for example, by keeping some messages pending
rather than delivering them. Lastly, we seek to minimize
the contents (e.g. data payloads) of external messages.

Note that we do not focus on bugs involving only se-
quential computation (e.g. incorrect handling of unex-

2We explain how we obtain these schedules in §4.
3We limit the number of internal events to ensure that the search

space is finite; any asynchronous distributed system that requires de-
livery acknowledgment is not guaranteed to stop sending messages [8],
essentially because nodes cannot distinguish between crashes of their
peers and indefinite message delays.

4It might be possible to reproduce P by removing multiple events
from E ′, but checking all combinations is tantamount to enumerating
its powerset. Following [94], we only require a 1-minimal subsequence
E ′ instead of a globally minimal subsequence.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 293

pected input), performance, or human misconfiguration.
Those three bug types are more common than our focus:
concurrency bugs. We target concurrency bugs because
they are the most complex (correspondingly, they take
considerably more time to debug [37]), and because ma-
ture debugging tools already exist for sequential code.

With a minimized execution in hand, the developer be-
gins debugging. Echoing the benefits of sequential test
case minimization, we claim that the greatly reduced size
of the trace makes it easier to understand which code path
contains the underlying bug, allowing the developer to
focus on fixing the problematic code itself.

3 Approach
Conceptually, one could find MCSes by enumerating and
executing every possible (valid, bounded) schedule con-
taining the given external events. The globally minimal
MCS would then be the shortest sequence containing the
fewest external events that causes the safety violation.
Unfortunately, the space of all schedules is exponentially
large, so executing all possible schedules is not feasible.
This leads us to our key challenge:

How can we maximize reduction of trace size
within bounded time?

To find MCSes in reasonable time, we split schedule
exploration into two parts. We start by using delta de-
bugging [94] (shown in Appendix A), a minimization
algorithm similar to binary search, to prune extraneous
external events. Delta debugging works by picking sub-
sequences of external events, and checking whether it is
possible to trigger the violation with just those external
events starting from the initial configuration. We assume
the user gives us a time budget, and we spread this budget
evenly across each subsequence’s exploration.

To check whether a particular subsequence of exter-
nal events results in the safety violation, we need to
explore the space of possible interleavings of internal
events and external events. We use Dynamic Partial Or-
der Reduction (‘DPOR’, shown in Appendix B) to prune
this schedule space by eliminating equivalent schedules
(i.e. schedules that differ only in the ordering of commu-
tative events [34]). DPOR alone is insufficient though,
since there are still exponentially many non-commutative
schedules to explore. We therefore prioritize the order in
which we explore the schedule space.

For any prioritization function we choose, an adver-
sary could construct the program under test to behave in
a way that prevents our prioritization from making any
progress. In practice though, programmers do not con-
struct adversarial programs, and test orchestrators do not
construct adversarial inputs. We choose our prioritization
order according to observations about how the programs
we care about behave in practice.

Our central observation is that if one schedule trig-
gers a violation, schedules that are similar in their causal
structure should have a high probability of also triggering
the violation. Translating this intuition into a prioritiza-
tion function requires us to address our second challenge:

How can we reason about the similarity or dis-
similarity of two different executions?

We implement a hierarchy of match functions that tell
us whether messages from the original execution corre-
spond to the same logical message from the current exe-
cution. We start our exploration with a single, uniquely-
defined schedule that closely resembles the original exe-
cution. If this schedule does not reproduce the violation,
we begin exploring nearby schedules. We stop explo-
ration once we have either successfully found a schedule
resulting in the desired violation, or we have exhausted
the time allocated for checking that subsequence.

External event minimization ends once the system
has successfully explored all subsequences generated by
delta debugging. Limiting schedule exploration to a fixed
time budget allows minimization to finish in bounded
time, albeit at the expense of completeness (i.e., we may
not return a perfectly minimal event sequence).

To further minimize execution length, we continue to
use the same schedule exploration procedure to mini-
mize internal events once external event minimization
has completed. Internal event minimization continues
until no more events can be removed, or until the time
budget for minimization as a whole is exhausted.

Thus, our strategy is to (i) pick subsequences with
delta debugging, (ii) explore the execution of that subse-
quence with a modified version of DPOR, starting with
a schedule that closely matches the original, and then by
exploring nearby schedules, and (iii) once we have found
a near-minimal MCS, we attempt to minimize the num-
ber of internal events. With this road map in mind, below
we describe our minimization approach in greater detail.

3.1 Choosing Subsequences of External Events

We model the task of minimizing a sequence of external
events E that causes an invariant violation as a function
ExtMin that repeatedly removes parts of E and invokes
an oracle (defined in §3.2.1) to check whether the result-
ing subsequence, E ′, still triggers the violation. If E ′ trig-
gers the violation, then we can assume that the parts of
E removed to produce E ′ are not required for producing
the violation and are thus not a part of the MCS.

ExtMin can be trivially implemented by removing
events one at a time from E, invoking the oracle at each
iteration. However, this would require that we check
O(|E|) subsequences to determine whether each trig-
gers the violation. Checking a subsequence is expensive,

3

294 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

since it may require exploring a large set of event sched-
ules. We therefore apply delta debugging [93, 94], an al-
gorithm similar to binary search, to achieve O(log(|E|))
average case runtime (worst case O(|E|)). The delta de-
bugging algorithm we use is shown in Appendix A.

Efficient implementations of ExtMin should not waste
time trying to execute invalid (non-sensical) external
event subsequences. We maintain validity by ensuring
that forced restarts are always preceded by a start event
for that process, and by assuming that external messages
are independent of each other, i.e., we do not currently
support external messages that, when removed, cause
some other external event to become invalid. One could
support minimization of dependent external messages by
either requiring the user to provide a grammar, or by em-
ploying the O(|E|2) version of delta debugging that con-
siders complements [94].

3.2 Checking External Event Subsequences

Whenever delta debugging selects an external event se-
quence E ′, we need to check whether E ′ can result in
the invariant violation. This requires that we enumerate
and check all schedules that contain E ′ as a subsequence.
Since the number of possible schedules is exponential in
the number of events, pruning this schedule space is es-
sential to finishing in a timely manner.

As others have observed [38], many events occurring
in a schedule are commutative, i.e., the system arrives
at the same configuration regardless of the order events
are applied. For example, consider two events e1 and e2,
where e1 is a message from process a being delivered
to process c, and e2 is a message from process b being
delivered to process d. Assume that both e1 and e2 are
co-enabled, meaning they are both pending at the same
time and can be executed in either order. Since the events
affect a disjoint set of nodes (e1 changes the state at c,
while e2 changes the state at d), executing e1 before e2
causes the system to arrive at the same state it would ar-
rive at if we had instead executed e2 before e1. e1 and
e2 are therefore commutative. This example illustrates a
form of commutativity captured by the happens-before
relation [51]: two message delivery events a and b are
commutative if they are concurrent, i.e. a �→ b and b �→ a,
and they affect a disjoint set of nodes.

Partial order reduction (POR) [34,38] is a well-studied
technique for pruning commutative schedules from the
search space. In the above example, given two sched-
ules that only differ in the order in which e1 and e2 ap-
pear, POR would only explore one schedule. Dynamic
POR (DPOR) [34] is a refinement of POR (shown in Ap-
pendix B): at each step, it picks a pending message to de-
liver, dynamically computes which other pending events
are not concurrent with the message it just delivered, and
sets backtrack points for each of these, which it will later

use (when exploring other non-equivalent schedules) to
try delivering the pending messages in place of the mes-
sage that was just delivered.

Even when using DPOR, the task of enumerating
all possible schedules containing E as a subsequence
remains intractable. Moreover, others have found that
naı̈ve DPOR gets stuck exploring a small portion of the
schedule space because of its depth-first exploration or-
der [57]. We address this problem in two ways: first, as
mentioned before, we limit ExtMin so it spreads its fixed
time budget roughly evenly across checking whether
each particular subsequence of external events repro-
duces the invariant violation. It does this by restricting
DPOR to exploring a fixed number of schedules before
giving up and declaring that an external event sequence
does not produce the violation. Second, to maximize
the probability that invariant violations are discovered
quickly while exploring a fixed number of schedules, we
employ a set of schedule exploration strategies to guide
DPOR’s exploration, which we describe next.

3.2.1 Schedule Exploration Strategies

We guide schedule exploration by manipulating two de-
grees of freedom within DPOR: (i) we prescribe which
pending events DPOR initially executes, and (ii) we pri-
oritize the order backtrack points are explored in. In its
original form, DPOR only performs depth-first search
starting from an arbitrary initial schedule, because it was
designed to be stateless so that it can run indefinitely in
order to find as many bugs as possible. Unlike the tra-
ditional use case, our goal is to minimize a known bug
in a timely manner. By keeping some state tracking the
schedules we have already explored, we can pick back-
track points in a prioritized (rather than depth-first) order
without exploring redundant schedules.

A scheduling strategy implements a backtrack pri-
oritization order. Scheduling strategies return the first
violation-reproducing schedule they find (if any) within
their time budget. We design our key strategy (shown in
Algorithm 1) with the following observations in mind:
Observation #1: Stay close to the original execution.
The original schedule provides us with a ‘guide’ for
how we can lead the program down a code path that
makes progress towards entering the same unsafe state.
By choosing modified schedules that have causal struc-
tures that are close to the original schedule, we should
have high probability of retriggering the violation.

We realize this observation by starting our exploration
with a single, uniquely defined schedule for each external
event subsequence: deliver only messages whose source,
destination, and contents ‘match’ (described in detail be-
low) those in the original execution, in the exact same
order that they appeared in the original execution. If an
internal message from the original execution is not pend-

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 295

type:A
seq:5

Term:4

type:B
seq:2

Term:4
client

request
type:A
seq:6

Term:4

client
request

type:A
seq:3

Term:4
client

request
type:A
seq:4

Term:4

type:A
seq:1

Term:1
client

request
type:A
seq:2

Term:1

Original Execution:

First External Event
Subsequence:

Initial
Schedule:

First
Backtrack
Schedule:

client
request

Figure 1: Example schedules. External message deliveries are shown
in red, internal message deliveries in green. Pending messages, source
addresses, and destination addresses are not shown. The ‘B’ mes-
sage becomes absent when exploring the first subsequence of external
events. We choose an initial schedule that is close to the original, ex-
cept for the masked ‘seq’ field. The violation is not triggered after the
initial schedule (depicted as �), so we next match messages by type,
allowing us to deliver pending messages with smaller ‘Term’ numbers.

ing (i.e. sent previously by some actor) at the point that
internal message should be delivered, we skip over it and
move to the next message from the original execution.
Similarly, we ignore any pending messages that do not
match any events delivered in the original execution. In
the case where multiple pending messages match, it does
not matter which we choose (see Observation #2).
Matching Messages. A function match determines
whether a pending message from a modified execution
logically corresponds to a message delivered in the orig-
inal execution. The simplest way to implement match is
to check equality of the source, the destination, and all
bytes of the message contents. Recall though that we are
executing a subsequence of the original external events.
In the modified execution the contents of many of the
internal messages will likely change relative to message
contents from the original execution. Consider, for ex-
ample, sequence numbers that increment once for every
message a process receives (shown as the ‘seq‘ field in
Figure 1). These differences in message contents prevent
simple bitwise equality from finding many matches.
Observation #2: Data independence. Often, altered
message contents such as differing sequence numbers do
not affect the behavior of the program, at least with re-
spect to whether the program will reach the unsafe state.
Formally, this property is known as ‘data-independence’,
meaning that the values of some message contents do not
affect the system’s control-flow [71, 82].

To leverage data independence, application developers
can (optionally) supply us with a ‘message fingerprint’
function,5 which given a message returns a string that
depends on the relevant parts of the message, without

5It may be possible to extract message fingerprints automatically
using program analysis or experimentation [77]. Nonetheless, manu-
ally defining fingerprints does not require much effort (see Table 4).
Without a fingerprint function, we default to matching on message type
(Observation #3).

considering fields that should be ignored when check-
ing if two message instances from different executions
refer to the same logical message. An example finger-
print function might ignore sequence numbers and au-
thentication cookies, but concatenate the other fields of
messages. Message fingerprints are useful both as a way
of mitigating non-determinism, and as a way of reducing
the number of schedules the scheduling strategy needs
to explore (by drawing an equivalence relation between
all schedules that only differ in their masked fields). We
do not require strict data-independence in the formal
sense [71]; the fields the user-defined fingerprint func-
tion masks over may in practice affect the control flow of
the program, which is generally acceptable because we
simply use this as a strategy to guide the choice of sched-
ules, and can later fall back to exploring all schedules if
we have enough remaining time budget.

We combine observations #1 and #2 to pick a sin-
gle, unique schedule as the initial execution, defined by
selecting pending events in the modified execution that
match the original execution. This stage corresponds to
the first two lines of TEST in Algorithm 1. We show an
example initial schedule in Figure 1.
Challenge: history-dependent message contents. This
initial schedule can be remarkably effective, as demon-
strated by the fact that minimization often produces sig-
nificant reduction even when we limit it to exploring this
single schedule per external event subsequence. How-
ever, we find that without exploring additional schedules,
the MCSes we find still contain extraneous events: when
message contents depend on previous events, and the
messages delivered in the original execution contained
contents that depended on a large number of prior events,
the initial schedule will remain inflated because it never
includes “unexpected” pending messages that were not
delivered in the original execution yet have contents that
depend on fewer prior events.

To illustrate, let us consider two example faulty ex-
ecutions of the Raft consensus protocol. The first exe-
cution was problematic because all Raft messages con-
tain logical clocks (“Term numbers”) that indicate which
epoch the messages belong to. The logical clocks are in-
cremented every time there is a new leader election cy-
cle. These logical clocks cannot be masked over by the
message fingerprint, since they play an important role in
determining the control flow of the program.

In the original faulty execution, the safety violation
happened to occur at a point where logical clocks had
high values, i.e. many leader election cycles had already
taken place. We knew however that most of the leader
election cycles in the beginning of the execution were
not necessary to trigger the safety violation. Minimiza-
tion restricted to only the initial schedule was not able
to remove the earlier leader election cycles, though we

5

296 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 1 Pseudocode for schedule exploration. TEST is invoked
once per external event subsequence E ′. We elide the details of DPOR
for clarity (see Appendix B for a complete description). τ denotes the
original schedule; b.counterpart denotes the message delivery that was
delivered instead of b (variable m in the elif branch of STSSCHED);
b.predecessors and b.successors denote the events occuring before and
after b when b was set (τ ′′[0..i] and τ ′′[i+1...τ ′′.length] in STSSCHED).

backtracks ← {}
procedure TEST(E ′)

STSSCHED(E ′,τ)
if execution reproduced �: return �

while ∃b∈backtracks.b.type=b.counterpart.type ∧
b.fingerprint �= b.counterpart.fingerprint ∧
time budget for E ′ not yet expired do

reinitialize system, remove b from backtracks
prefix ← b.predecessors + [b]
if prefix (or superstring) already executed:

continue
STSSCHED(E ′,prefix + b.successors)
if execution reproduced �: return �

return �

procedure STSSCHED(E ′,τ ′)
τ ′′ ← τ ′.remove {e | e is external and e �∈ E ′}
for i from 0 to τ ′′.length do

if τ ′′[i] is external:
inject τ ′′[i]

elif ∃m∈pending. m.fingerprint = τ ′′[i].fingerprint:
deliver m, remove m from pending
for m′ ∈ pending do

if ¬commute(m,m′):
backtracks ← backtracks ∪ {m′}

would have been able to if we had instead delivered other
pending messages with small term numbers.

The second execution was problematic because of
batching. In Raft, the leader receives client commands,
and after receiving each command, it replicates it to
the other cluster members by sending them ‘AppendEn-
tries’ messages. When the leader receives multiple client
commands before it has successfully replicated them all,
it batches them into a single AppendEntries message.
Again, client commands cannot be masked over by the
fingerprint function, and because AppendEntries are in-
ternal messages, we cannot shrink their contents.

We knew that the safety violation could be triggered
with only one client command. Yet minimization re-
stricted to only the initial schedule was unable to prune
many client commands, because in the original faulty ex-
ecution AppendEntries messages with large batch con-
tents were delivered before pending AppendEntries mes-
sages with small batch contents.

These examples motivated our next observations:
Observation #3: Coarsen message matching. We
would like to stay close to the original execution (per
observation #1), yet the previous examples show that we

should not restrict ourselves to schedules that only match
according to the user-defined message fingerprints from
the original execution. We can achieve both these goals
by considering a more coarse-grained match function:
the type of pending messages. By ‘type’, we mean the
language-level type tag of the message object, which is
available to the RPC layer at runtime.

We choose the next schedules to explore by looking
for pending messages whose types (not contents) match
those in the original execution, in the exact same order
that they appeared in the original execution. We show an
example in Figure 1, where any pending message of type
‘A’ with the same source and destination as the original
messages would match. When searching for candidate
schedules, if there are no pending messages that match
the type of the message that was delivered at that step
in the original execution, we skip to the next step. Simi-
larly, we ignore any pending messages that do not match
the corresponding type of the messages from the origi-
nal execution. This leaves one remaining issue: how we
handle cases where multiple pending messages match the
corresponding original message’s type.
Observation #4: Prioritize backtrack points that re-
solve match ambiguities. When there are multiple pend-
ing messages that match, we initially only pick one.
DPOR (eventually) sets backtrack points for all other co-
enabled dependent events (regardless of type or message
contents). Of all these backtrack points, those that match
the type of the corresponding message from the original
trace should be most fruitful, because they keep the exe-
cution close to the causal structure of the original sched-
ule except for small ambiguities in message contents.

We show the pseudocode implementing Observation
#3 and Observation #4 as the while loop in Algorithm 1.
Whenever we find a backtrack point (pending message)
that matches the type but not the fingerprint of an original
delivery event from τ , we replace the original delivery
with the backtrack’s pending message, and execute the
events before and after the backtrack point as before.

Backtracking allow us to eventually explore all com-
binations of pending messages that match by type. Note
here that we do not ignore the user-defined message fin-
gerprint function: we only prioritize backtrack points for
pending messages that have the same type and that differ
in their message fingerprints.
Minimizing internal events. Once delta debugging over
external events has completed, we attempt to further re-
duce the smallest reproducing schedule found so far.
Here we apply delta debugging to internal events: for
each subsequence of internal events chosen by delta de-
bugging, we (i) mark those messages so that they are
left pending and never delivered, and (ii) apply the same
scheduling strategies described above for the remaining
events to check whether the violation is still triggered.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 297

Internal event minimization continues until there is no
more minimization to be performed, or until the time
budget for minimization as a whole is exhausted.
Observation #5: Shrink external message contents
whenever possible. Our last observation is that the con-
tents of external messages can affect execution length;
because the test environment crafts these messages, it
should minimize their contents whenever possible.

A prominent example is akka-raft’s bootstrapping
messages. akka-raft processes do not initially know
which other processes are part of the cluster. They in-
stead wait to receive an external bootstrapping message
that informs them of the identities of all other processes.
The contents of the bootstrapping messages (the pro-
cesses in the cluster) determine quorum size: how many
acknowledgments are needed to reach consensus, and
hence how many messages need to be delivered. If the
application developer provides us with a function for sep-
arating the components of such message contents, we
can minimize their contents by iteratively removing ele-
ments, and checking to see if the violation is still trigger-
able until no single remaining element can be removed.
Recap. In summary, we first apply delta debugging
(ExtMin) to prune external events. To check each ex-
ternal event subsequence chosen by delta debugging, we
use a stateful version of DPOR. We first try exploring a
uniquely defined schedule that closely matches the orig-
inal execution. We leverage data independence by ap-
plying a user-defined message fingerprint function that
masks over certain message contents. To overcome infla-
tion due to history-dependent message contents, we ex-
plore subsequent schedules by choosing backtrack points
according to a more coarse-grained match function: the
types of messages. We spend the remaining time bud-
get attempting to minimize internal events, and wherever
possible, we seek to shrink external message contents.

3.3 Comparison to Prior Work

We made observations #1 and #2 in our prior work [70].
In this paper, we adapt observations #1 and #2 to deter-
mine the first schedule we explore for each external event
subsequence (the first two lines of TEST). We refer to
the scheduling strategy defined by these two observations
as ‘STSSched’, named after the ‘STS’ system [70].

STSSched only prescribes a single schedule per ex-
ternal event subsequence chosen by delta debugging. In
this work we systematically explore multiple schedules
using the DPOR framework. We guide DPOR to explore
schedules in a prioritized order based on similarity to the
original execution (observations #3 and #4, shown as the
while loop in TEST). We refer to the scheduling strategy
used to prioritize subsequent schedules as ‘TFB’ (Type
Fingerprints with Backtracks). We also minimize inter-
nal events, and shrink external message contents.

4 Systems Challenges
We implement our techniques in a publicly available tool
we call DEMi (Distributed Execution Minimizer) [5].
DEMi is an extension to Akka [2], an actor framework
for JVM-based languages. Actor frameworks closely
match the system model in §2: actors are single-threaded
entities that can only access local state and operate on
messages received from the network one at a time. Upon
receiving a message an actor performs computation, up-
dates its local state and sends a finite set of messages to
other actors before halting. Actors can be co-located on
a single machine (though the actors are not aware of this
fact) or distributed across multiple machines.

On a single machine Akka maintains a buffer of sent
but not yet delivered messages, and a pool of message
dispatch threads. Normally, Akka allows multiple actors
to execute concurrently, and schedules message deliver-
ies in a non-deterministic order. We use AspectJ [50], a
mature interposition framework, to inject code into Akka
that allows us to completely control when messages and
timers are delivered to actors, thereby linearizing the se-
quence of events in an executing system. We currently
run all actors on a single machine because this simplifies
the design of DEMi, but minimization could also be dis-
tributed across multiple machines to improve scalability.

Our interposition lies above the network transport
layer; DEMi makes delivery decisions for application-
level (non-segmented) messages. If the application as-
sumes ordering guarantees from the transport layer (e.g.
TCP’s FIFO delivery), DEMi adheres to these guarantees
during testing and minimization to maintain soundness.
Fuzz testing with DEMi. We begin by using DEMi to
generate faulty executions. Developers give DEMi a
test configuration (we tabulate all programmer-provided
specifications in Appendix C), which specifies an initial
sequence of external events to inject before fuzzing, the
types of external events to inject during fuzzing (along
with probabilities to determine how often each event type
is injected), the safety conditions to check (a user-defined
predicate over the state of the actors), the scheduling con-
straints (e.g. TCP or UDP) DEMi should adhere to, the
maximum execution steps to take, and optionally a mes-
sage fingerprint function. If the application emits side-
effects (e.g. by writing to disk), the test configuration
specifies how to roll back side-effects (e.g. by deleting
disk contents) at the end of each execution.

DEMi then repeatedly executes fuzz runs until it finds
a safety violation. It starts by generating a sequence of
random external events of the length specified by the
configuration. DEMi then injects the initial set of ex-
ternal events specified by the developer, and then starts
injecting external events from the random sequence. De-
velopers can include special ‘WaitCondition’ markers in
the initial set of events to execute, which cause DEMi

7

298 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

to pause external event injection, and deliver pending
internal messages at random until a specified condition
holds, at which point the system resumes injecting exter-
nal events. DEMi periodically checks invariants by halt-
ing the execution and invoking the developer-supplied
safety predicate over the current state of all actors. Ex-
ecution proceeds until a predicate violation is found, the
supplied bound on execution steps is exceeded, or there
are no more external or internal events to execute.

Once it finds a faulty execution DEMi saves a user-
defined fingerprint of the violation it found (a violation
fingerprint might, for example, mark which process(es)
exhibited the violation),6 a totally ordered recording of
all events it executed, and information about which mes-
sages were sent in response to which events. Users can
then replay the execution exactly, or instruct DEMi to
minimize the execution as described in §3.
Mitigating non-determinism. Processes may behave
non-deterministically. A process is non-deterministic if
the messages it emits (modulo fingerprints) are not
uniquely determined by the prefix of messages we have
delivered to it in the past starting from its initial state.

The main way we control non-determinism is by inter-
posing on Akka’s API calls, which operate at a high level
and cover most sources of non-determinism. For exam-
ple, Akka provides a timer API that obviates the need for
developers to read directly from the system clock.

Applications may also contain sources of non-
determinism outside of the Akka API. We discovered
the sources of non-determinism described below through
trial and error: when replaying unmodified test execu-
tions, the violation was sometimes not reproduced. In
these cases we compared discrepancies between execu-
tions until we isolated their source and interposed on it.
akka-raft instrumentation. Within akka-raft, actors use
a pseudo random number generator to choose when to
start leader elections. Here we provided a seeded random
number generator under the control of DEMi.
Spark instrumentation. Within Spark, the task sched-
uler chooses the first value from a hashmap in order to
decide what tasks to schedule. The values of the hashmap
are arbitrarily ordered, and the order changes from exe-
cution to execution. We needed to modify Spark to sort
the values of the hash map before choosing an element.

Spark runs threads (‘TaskRunners’) that are outside
the control of Akka. These send status update messages
to other actors during their execution. The key challenge
with threads outside Akka’s control is that we do not
know when the thread has started and stopped each step

6Violation fingerprints should be specific enough to disambiguate
different bugs found during minimization, but they do not need to be
specific to the exact state the system at the time of the violation. Less
specific violation fingerprints are often better, since they allow DEMi to
find divergent code paths that lead to the same buggy behavior.

of its computation; when replaying, we do not know how
long to wait until the TaskRunner either resends an ex-
pected message, or we declare that message as absent.

We add two interposition points to TaskRunners: the
start of the TaskRunner’s execution, and the end of the
TaskRunner’s execution. At the start of the TaskRun-
ner’s execution, we signal to DEMi the identity of the
TaskRunner, and DEMi records a ‘start atomic block’
event for that TaskRunner. During replay, DEMi blocks
until the corresponding ‘end atomic block’ event to en-
sure that the TaskRunner has finished sending messages.
This approach works because TaskRunners in Spark have
a simple control flow, and TaskRunners do not communi-
cate via shared memory. Were this not the case, we would
have needed to interpose on the JVM’s thread scheduler.

Besides TaskRunner threads, the Spark driver also
runs a bootstrapping thread that starts up actors and sends
initialization messages. We mark all messages sent dur-
ing the initialization phase as ‘unignorable’, and we have
DEMi wait indefinitely for these messages to be sent dur-
ing replay before proceeding. When waiting for an ‘unig-
norable’ message, it is possible that the only pending
messages in the network are repeating timers. We pre-
vent DEMi from delivering infinite loops of timers while
it awaits by detecting timer cycles, and not delivering
more timers until it delivers a non-cycle message.

Spark names some of the files it writes to disk using
a timestamp read from the system clock. We hardcode a
timestamp in these cases to make replay deterministic.
Akka changes. In a few places within the Akka frame-
work, Akka assigns IDs using an incrementing counter.
This can be problematic during minimization, since the
counter value may change as we remove events, and the
(non-fingerprinted) message contents in the modified ex-
ecution may change. We fix this by computing IDs based
on a hash of the current callstack, along with task IDs in
case of ambiguous callstack hashes. We found this mech-
anism to be sufficient for our case studies.
Stop-gap: replaying multiple times. In cases where it is
difficult to locate the cause of non-determinism, good re-
duction can often still be achieved simply by configuring
DEMi to replay each schedule multiple times and check-
ing if any of the attempts triggered the safety violation.
Blocking operations. Akka deviates from the computa-
tional model we defined in §2 in one remaining aspect:
Akka allows actors to block on certain operations. For
example, actors may block until they receive a response
to their most recently sent message. To deal with these
cases we inject AspectJ interposition on blocking oper-
ations (which Akka has a special marker for), and sig-
nal to DEMi that the actor it just delivered a message to
will not become unblocked until we deliver the response
message. DEMi then chooses another actor to deliver a
message to, and marks the previous actor as blocked until

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 299

DEMi decides to deliver the response.

4.1 Limitations

Safety vs. liveness. We are primarily focused on safety
violations, not liveness or performance bugs.
Non-Atomic External Events. DEMi currently waits for
external events (e.g. crash-recoveries) to complete before
proceeding. This may prevent it from finding bugs in-
volving finer-grained event interleavings.
Limited scale. DEMi is currently tied to a single physi-
cal machine, which limits the scale of systems it can test
(but not the bugs it can uncover, since actors are unaware
of colocation). We do not believe this is fundamental.
Shared memory & disk. In some systems processes
communicate by writing to shared memory or disk rather
than sending messages over the network. Although we do
not currently support it, if we took the effort to add inter-
position to the runtime system (as in [74]) we could treat
writes to shared memory or disk in the same way we treat
messages. More generally, adapting the basic DPOR al-
gorithm to shared memory systems has been well stud-
ied [34, 85], and we could adopt these approaches.
Non-determinism. Mitigating non-determinism in akka-
raft and Spark required effort on our part. We might have
adopted deterministic replay systems [29, 36, 56, 92] to
avoid manual instrumentation. We did not because we
could not find a suitably supported record and replay sys-
tem that operates at the right level of abstraction for actor
systems. Note, however that deterministic replay alone is
not sufficient for minimization: deterministic replay does
not inform how the schedule space should be explored;
it only allows one to deterministically replay prefixes of
events. Moreover, minimizing a single deterministic re-
play log (without exploring divergent schedules) yields
executions that are orders of magnitude larger than those
produced by DEMi, as we discuss in §6.
Support for production traces. DEMi does not cur-
rently support minimization of production executions.
DEMi requires that execution recordings are complete
(meaning all message deliveries and external events are
recorded) and partially ordered. Our current implementa-
tion achieves these properties simply by testing and min-
imizing on a single physical machine.

To support recordings from production executions, it
should be possible to capture partial orders without re-
quiring logical clocks on all messages: because the ac-
tor model only allows actors to process a single mes-
sage at a time, we can compute a partial order simply
by reconstructing message lineage from per-actor event
logs (which record the order of messages received and
sent by each actor). Crash-stop failures do not need to
be recorded, since from the perspective of other pro-
cesses these are equivalent to network partitions. Crash-
recovery failures would need to be recorded to disk.

Byzantine failures are outside the scope of our work.
Recording a sufficiently detailed log for each actor

adds some logging overhead, but this overhead could be
modest. For the systems we examined, Akka is primarily
used as a control-plane, not a data-plane (e.g. Spark does
not send bulk data over Akka), where recording overhead
is not especially problematic.

4.2 Generality

We distinguish between the generality of the DEMi arti-
fact, and the generality of our scheduling strategies.
Generality of DEMi. We targeted the Akka actor frame-
work for one reason: thanks to the actor API (and to a
lesser extent, AspectJ), we did not need to exert much
engineering effort to interpose on (i) communication be-
tween processes, (ii) blocking operations, (iii) clocks,
and (iv) remaining sources of non-determinism.

We believe that with enough interposition, it should be
possible to sufficiently control other systems, regardless
of language or programming model. That said, the effort
needed to interpose could certainly be significant.

One way to increase the generality of DEMi would be
to interpose at a lower layer (e.g. the network or syscall
layer) rather than the application layer. This has sev-
eral limitations. First, some of our scheduling strategies
depend on application semantics (e.g. message types)
which would be difficult to access at a lower layer. Trans-
port layer complexities would also increase the size of
the schedule space. Lastly, some amount of application
layer interposition would still be necessary, e.g. interpo-
sition on user-level threads or blocking operations.
Generality of scheduling strategies. At their core, dis-
tributed systems are just concurrent systems (with the ad-
ditional complexities of partial failure and asynchrony).
Regardless of whether they are designed for multi-core
or a distributed setting, the key property we assume from
the program under test is that small schedules that are
similar to original schedule should be likely to trigger the
same invariant violation. To be sure, one can always con-
struct adversarial counterexamples. Yet our results for
two very different types of systems leave us optimistic
that these scheduling strategies are broadly applicable.

5 Evaluation
Our evaluation focuses on two key metrics: (i) the
size of the reproducing sequence found by DEMi, and
(ii) how quickly DEMi is able to make minimization
progress within a fixed time budget. We show a high-
level overview of our results in Table 1. The “Bug Type”
column shows two pieces of information: whether the
bug can be triggered using TCP semantics (denoted as
“FIFO”) or whether it can only be triggered when UDP
is used; and whether we discovered the bug ourselves or
whether we reproduced a known bug. The “Provenance”

9

300 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Bug Name Bug Type Initial Provenance STSSched TFB Optimal NoDiverge
raft-45 Akka-FIFO, reproduced 2160 (E:108) 2138 (E:108) 1183 (E:8) 23 (E:8) 22 (E:8) 1826 (E:11)
raft-46 Akka-FIFO, reproduced 1250 (E:108) 1243 (E:108) 674 (E:8) 35 (E:8) 23 (E:6) 896 (E:9)
raft-56 Akka-FIFO, found 2380 (E:108) 2376 (E:108) 1427 (E:8) 82 (E:8) 21 (E:8) 2064 (E:9)
raft-58a Akka-FIFO, found 2850 (E:108) 2824 (E:108) 953 (E:32) 226 (E:31) 51 (E:11) 2368 (E:35)
raft-58b Akka-FIFO, found 1500 (E:208) 1496 (E:208) 164 (E:13) 40 (E:8) 28 (E:8) 1103 (E:13)
raft-42 Akka-FIFO, reproduced 1710 (E:208) 1695 (E:208) 1093 (E:39) 180 (E:21) 39 (E:16) 1264 (E:43)
raft-66 Akka-UDP, found 400 (E:68) 392 (E:68) 262 (E:23) 77 (E:15) 29 (E:10) 279 (E:23)
spark-2294 Akka-FIFO, reproduced 1000 (E:30) 886 (E:30) 43 (E:3) 40 (E:3) 25 (E:1) 43 (E:3)
spark-3150 Akka-FIFO, reproduced 600 (E:20) 536 (E:20) 18 (E:3) 14 (E:3) 11 (E:3) 18 (E:3)
spark-9256 Akka-FIFO, found (rare) 300 (E:20) 256 (E:20) 11 (E:1) 11 (E:1) 11 (E:1) 11 (E:1)

Table 1: Overview of case studies. “E:” is short for “Externals:”. The ‘Provenance’, ‘STSSched’, and ‘TFB’ techniques are pipelined one after
another. ‘Initial’ minus ‘TFB’ shows overall reduction; ‘Provenance’ shows how many events can be statically removed; ‘STSSched’ minus ‘TFB’
shows how our new techniques compare to the previous state of the art [70]; ‘TFB’ minus ‘Optimal’ shows how far from optimal our results are;
and ‘NoDiverge’ shows the size of minimized executions when no divergent schedules are explored (explained in §6).

Bug Name STSSched TFB
raft-45 56s (594) 114s (2854)
raft-46 73s (384) 209s (4518)
raft-56 54s (524) 2078s (31149)
raft-58a 137s (624) 43345s (834972)
raft-58b 23s (340) 31s (1747)
raft-42 118s (568) 10558s (176517)
raft-66 14s (192) 334s (10334)
spark-2294 330s (248) 97s (78)
spark-3150 219s (174) 26s (21)
spark-9256 96s (73) 0s (0)

Table 2: Minimization runtime in seconds (total schedules executed).
Overall runtime is the summation of “STSSched” and “TFB”. spark-
9256 only had unignorable events remaining after STSSched com-
pleted, so TFB was not necessary.

column shows how many events from the initial execu-
tion remain after statically pruning events that are con-
current with the safety violation. The “STSSched” col-
umn shows how many events remain after checking the
initial schedules prescribed by our prior work [70] for
each of delta debugging’s subsequences. The “TFB” col-
umn shows the final execution size after we apply our
techniques (‘Type Fingerprints with Backtracks’), where
we direct DPOR to explore as many backtrack points that
match the types of original messages (but no other back-
track points) as possible within the 12 hour time bud-
get we provided. Finally, the “Optimal” column shows
the size of the smallest violation-producing execution we
could construct by hand. We ran all experiments on a
2.8GHz Westmere processor with 16GB memory.

Overall we find that DEMi produces executions that
are within a factor of 1X to 4.6X (1.6X median) the
size of the smallest possible execution that triggers that
bug, and between 1X and 16X (4X median) smaller
than the executions produced by our previous technique
(STSSched). STSSched is effective at minimizing exter-
nal events (our primary minimization target) for most
case studies. TFB is significantly more effective for min-
imizing internal events (our secondary target), especially
for akka-raft. Replayable executions for all case studies
are available at github.com/NetSys/demi-experiments.

We create the initial executions for all of our case stud-
ies by generating fuzz tests with DEMi (injecting a fixed

number of random external events, and selecting internal
messages to deliver in a random order) and selecting the
first execution that triggers the invariant violation with
≥300 initial message deliveries. Fuzz testing terminated
after finding a faulty execution within 10s of minutes for
most of our case studies.

For case studies where the bug was previously known,
we set up the initial test conditions (cluster configuration,
external events) to closely match those described in the
bug report. For cases where we discovered new bugs, we
set up the test environment to explore situations that de-
velopers would likely encounter in production systems.

As noted in the introduction, the systems we fo-
cus on are akka-raft [3] and Apache Spark [90]. akka-
raft, as an early-stage software project, demonstrates
how DEMi can aid the development process. Our eval-
uation of Spark demonstrates that DEMi can be applied
to complex, large scale distributed systems.
Reproducing Sequence Size. We compare the size of
the minimized executions produced by DEMi against the
smallest fault-inducing executions we could construct by
hand (interactively instructing DEMi which messages to
deliver). For 6 of our 10 case studies, DEMi was within
a factor of 2 of optimal. There is still room for im-
provement however. For raft-58a for example, DEMi ex-
hausted its time budget and produced an execution that
was a factor of 4.6 from optimal. It could have found a
smaller execution without exceeding its time budget with
a better schedule exploration strategy.
Minimization Pace. To measure how quickly
DEMi makes progress, we graph schedule size as
a function of the number of executions DEMi tries.
Figure 2 shows an example for raft-58b. The other
case studies follow the same general pattern of sharply
decreasing marginal gains.

We also show how much time (# of replays)
DEMi took to reach completion of STSSched and TFB
in Table 2.7 The time budget we allotted to DEMi for all

7It is important to understand that DEMi is able to replay executions
significantly more quickly than the original execution may have taken.
This is because DEMi can trigger timer events before the wall-clock

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 301

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 500 1000 1500 2000

N
um

be
r o

f R
em

ai
ni

ng
 E

ve
nt

s

Number of Schedules Executed

Deliveries
Externals

Figure 2: Minimization pace for raft-58b. Significant progress is made
early on, then progress becomes rare.

case studies was 12 hours (43200s). All case studies ex-
cept raft-56, raft-58a, and raft-42 reached completion of
TFB in less than 10 minutes.
Qualitative Metrics. We do not evaluate how minimiza-
tion helps with programmer productivity. Data on how
humans do debugging is scarce; we are aware of only one
study that measures how quickly developers debug mini-
mized vs. non-minimized traces [40]. Nonetheless, since
humans can only keep a small number of facts in work-
ing memory [62], minimization seems generally useful.
As one developer puts it, “Automatically shrinking test
cases to the minimal case is immensely helpful” [13].

5.1 Raft Case Studies

Our first set of case studies are taken from akka-raft [3].
akka-raft is implemented in 2,300 lines of Scala exclud-
ing tests. akka-raft has existing unit and integration tests,
but it has not been deployed in production. The known
bugs we reproduced had not yet been fixed; these were
found by a recent manual audit of the code.

For full descriptions of each case study, see Ap-
pendix D. The lessons we took away from our akka-raft
case studies are twofold. First, fuzz testing is quite effec-
tive for finding bugs in early-stage software. We found
and fixed these bugs in less than two weeks, and sev-
eral of the bugs would have been difficult to anticipate
a priori. Second, debugging unminimized faulty execu-
tions would be very time consuming and conceptually
challenging; we found that the most fruitful debugging
process was to walk through events one-by-one to under-
stand how the system arrived at the unsafe state, which
would take hours for unminimized executions.

5.2 Spark Case Studies

Spark [4] is a mature software project, used widely in
production. The version of Spark we used for our evalu-
ation consists of more than 30,000 lines of Scala for just
the core execution engine. Spark is also interesting be-

duration for those timers has actually passed, without the application
being aware of this fact (cf. [39])

Without Shrinking With shrinking
Initial Events 360 (E: 9 bootstraps) 360 (E: 9 bootstraps)
After STSSched 81 (E: 8 bootstraps) 51 (E: 5 bootstraps)

Table 3: External message shrinking results for raft-45 starting with 9
processes. Message shrinking + minimization was able to reduce the
cluster size to 5 processes.

akka-raft Spark
Message Fingerprint 59 56
Non-Determinism 2 ∼250
Invariants 331 151
Test Configuration 328 445

Table 4: Complexity (lines of Scala code) needed to define message
fingerprints, mitigate non-determinism, define invariants, and configure
DEMi. Akka API interposition (336 lines of AspectJ) is application
independent.

cause it has a significantly different communication pat-
tern than Raft (e.g., statically defined masters).

For a description of our Spark case studies, see Ap-
pendix E. Our main takeaway from Spark is that for the
simple Spark jobs we submitted, STSSched does surpris-
ingly well. We believe this is because Spark’s commu-
nication tasks were all almost entirely independent of
each other. If we had submitted more complex Spark jobs
with more dependencies between messages (e.g. jobs
that make use of intermediate caching between stages)
STSSched likely would not have performed as well.

5.3 Auxiliary Evaluation

External message shrinking. We demonstrate the bene-
fits of external message shrinking with an akka-raft case
study. Recall that akka-raft processes receive an external
bootstrapping message that informs them of the IDs of all
other processes. We started with a 9 node akka-raft clus-
ter, where we triggered the raft-45 bug. We then shrank
message contents by removing each element (process
ID) of bootstrap messages, replaying these along with
all other events in the failing execution, and checking
whether the violation was still triggered. We were able
to shrink the bootstrap message contents from 9 process
IDs to 5 process IDs. Finally, we ran STSSched to com-
pletion, and compared the output to STSSched without
the initial message shrinking. The results shown in Ta-
ble 3 demonstrate that message shrinking can help mini-
mize both external events and message contents.
Instrumentation Overhead. Table 4 shows the com-
plexity in terms of lines of Scala code needed to define
message fingerprint functions, mitigate non-determinism
(with the application modifications described in §4),
specify invariants, and configure DEMi. In total we spent
roughly one person-month debugging non-determinism.

6 Related Work
We start this section with a discussion of the most closely
related literature. We focus only on DEMi’s minimiza-
tion techniques, since DEMi’s interposition and testing
functionality is similar to other systems [55, 57, 72].
Input Minimization for Sequential Programs. Mini-

11

302 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

mization algorithms for sequentially processed inputs are
well-studied [18,20,24,40,69,81,94]. These form a com-
ponent of our solution, but they do not consider interleav-
ings of internal events from concurrent processes.
Minimization without Interposition. Several tools
minimize inputs to concurrent systems without control-
ling sources of non-determinism [10, 26, 44, 47, 76]. The
most sophisticated of these replay each subsequence
multiple times and check whether the violation is repro-
duced at least once [25,44]. Their major advantage is that
they avoid the engineering effort required to interpose.
However, we found in previous work [70] that bugs are
often not easily reproducible without interposition.

QuickCheck’s PULSE controls the message delivery
schedule [25] and supports schedule minimization. Dur-
ing replay, it only considers the order messages are sent
in, not message contents. When it cannot replay a step,
it skips it (similar to STSSched), and reverts to random
scheduling once expected messages are exhausted [43].
Thread Schedule Minimization. Other techniques seek
to minimize thread interleavings leading up to concur-
rency bugs [22, 30, 41, 46]. These generally work by
iteratively feeding a single input (the thread schedule)
to a single entity (a deterministic scheduler). These ap-
proaches ensure that they never diverge from the original
schedule (otherwise the recorded context switch points
from the original execution would become useless). Be-
sides minimizing context switches, these approaches at
best truncate thread executions by having threads exit
earlier than they did in the original execution.
Program Analysis. By analyzing the program’s control-
and dataflow dependencies, one can remove events in the
middle of the deterministic replay log without causing
divergence [19, 31, 42, 54, 74, 79]. These techniques do
not explore alternate code paths. Program analysis also
over-approximates reachability, disallowing them from
removing dependencies that actually commute.

We compare against these techniques by configuring
DEMi to minimize as before, but abort any execution
where it detects a previously unobserved state transi-
tion. Column ‘NoDiverge’ of Table 1 shows the results,
which demonstrate that divergent executions are crucial
to DEMi’s reduction gains for the akka-raft case studies.
Model Checking. Algorithmically, our work is most
closely related to the model checking literature.

Abstract model checkers convert (concurrent) pro-
grams to logical formulas, find logical contradictions (in-
variant violations) using solvers, and minimize the logi-
cal conjunctions to aid understanding [23,49,61]. Model
checkers are very powerful, but they are typically tied
to a single language, and assume access to source code,
whereas the systems we target (e.g. Spark) are composed
of multiple languages and may use proprietary libraries.

It is also possible to extract formulas from raw bina-

ries [11]. Fuzz testing is significantly lighter weight.
If, rather than randomly fuzzing, testers enumerated

inputs of progressively larger sizes, failing tests would be
minimal by construction. However, breadth first enumer-
ation takes very long to get to ‘interesting’ inputs (After
24 hours of execution, our bounded DPOR implementa-
tion with depth bound slightly greater than the optimal
trace size still had not found any invariant violations. In
contrast, DEMi’s randomized testing discovered most of
our reported bugs within 10s of minutes). Furthermore,
minimization is useful beyond testing, e.g. for simplify-
ing production traces.

Because systematic input enumeration is intractable,
many papers develop heuristics for finding bugs
quickly [17, 28, 35, 55, 57, 63, 64, 66, 75, 78, 84]. We do
the same, but crucially, we are able to use information
from previously failing executions to guide our search.

As far as we know, we are the first to combine DPOR
and delta debugging to minimize executions. Others have
modified DPOR to keep state [87, 88] and to apply
heuristics for choosing initial schedules [53], but these
changes are intended to help find new bugs.
Bug Reproduction. Several papers seek to find a sched-
ule that reproduces a given concurrency bug [9, 67, 91,
92]. These do not seek to find a minimal schedule.
Probabilistic Diagnosis. To avoid the runtime overhead
of deterministic replay, other techniques capture care-
fully selected diagnostic information from production
execution(s), and correlate this information to provide
best guesses at the root causes of bugs [12,21,48,68,89].
We assume more complete runtime instrumentation (dur-
ing testing), but provide exact reproducing scenarios.
Log Comprehension. Model inference techniques sum-
marize log files in order to make them more easily under-
standable by humans [14–16,32,58,59]. Model inference
is complementary, as it does not modify the event logs.
Program Slicing & Automated Debugging. Program
slicing [80] and the subsequent literature on automated
debugging [27, 45, 60, 73, 83, 95] seek to localize errors
in the code itself. Our goal is to slice the temporal dimen-
sion of an execution rather than the code dimension.

7 Conclusion
Distributed systems, like most software systems, are be-
coming increasingly complex over time. In comparison
to other areas of software engineering however, the de-
velopment tools that help programmers cope with the
complexity of distributed & concurrent systems are lag-
ging behind their sequential counterparts. Inspired by the
obvious utility of test case reduction tools, we sought to
develop a minimization tool for distributed executions.
Our evaluation results for two very different systems
leave us optimistic that these techniques can be success-
fully applied to a wide range of concurrent systems.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 303

References
[1] 7 Tips for Fuzzing Firefox More Effectively.

https://blog.mozilla.org/security/2012/06/20/
7-tips-for-fuzzing-firefox-more-effectively/.

[2] Akka official website. http://akka.io/.

[3] akka-raft Github repo. https://github.com/ktoso/
akka-raft.

[4] Apache Spark Github repo. https://github.com/
apache/spark/.

[5] DEMi Github repo. https://github.com/NetSys/
demi.

[6] GNU’s guide to testcase reduction. https://gcc.
gnu.org/wiki/A guide to testcase reduction.

[7] LLVM bugpoint tool: design and usage. http://
llvm.org/docs/Bugpoint.html.

[8] M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat:
A Timeout-Free Failure Detector for Quiescent Re-
liable Communication. International Workshop on
Distributed Algorithms ’97.

[9] G. Altekar and I. Stoica. ODR: Output-
Deterministic Replay for Multicore Debugging.
SOSP ’09.

[10] T. Arts, J. Hughes, J. Johansson, and U. Wiger.
Testing Telecoms Software with Quviq
QuickCheck. Erlang ’06.

[11] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brum-
ley. Enhancing Symbolic Execution with Veritest-
ing. ICSE ’14.

[12] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for Request Extraction and Work-
load Modelling. OSDI ’04.

[13] Basho Blog. QuickChecking Poolboy for Fun and
Profit. http://tinyurl.com/qgc387k.

[14] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krish-
namurthy. Inferring Models of Concurrent Systems
from Logs of their Behavior with CSight. ICSE ’14.

[15] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan,
and M. D. Ernst. Leveraging Existing Instrumen-
tation to Automatically Infer Invariant-Constrained
Models. ESEC/FSE ’11.

[16] A. W. Biermann and J. A. Feldman. On the Synthe-
sis of Finite-State Machines from Samples of their
Behavior. IEEE ToC ’72.

[17] S. Burckhardt, P. Kothari, M. Musuvathi, and
S. Nagarakatte. A Randomized Scheduler with
Probabilistic Guarantees of Finding Bugs. ASP-
LOS ’10.

[18] M. Burger and A. Zeller. Minimizing Reproduction
of Software Failures. ISSTA ’11.

[19] Y. Cai and W. Chan. Lock Trace Reduction for
Multithreaded Programs. TPDS ’13.

[20] K.-h. Chang, V. Bertacco, and I. L. Markov.
Simulation-Based Bug Trace Minimization with
BMC-Based Refinement. IEEE TCAD ’07.

[21] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, O. Fox,
and E. Brewer. Pinpoint: Problem Determination in
Large, Dynamic Internet Services. DSN ’02.

[22] J. Choi and A. Zeller. Isolating Failure-Inducing
Thread Schedules. SIGSOFT ’02.

[23] J. Christ, E. Ermis, M. Schäf, and T. Wies. Flow-
Sensitive Fault Localization. VMCAI ’13.

[24] K. Claessen and J. Hughes. QuickCheck: a
Lightweight Tool for Random Testing of Haskell
Programs. ICFP ’00.

[25] K. Claessen, M. Palka, N. Smallbone, J. Hughes,
H. Svensson, T. Arts, and U. Wiger. Finding
Race Conditions in Erlang with QuickCheck and
PULSE. ICFP ’09.

[26] J. Clause and A. Orso. A Technique for Enabling
and Supporting Debugging of Field Failures. ICSE
’07.

[27] H. Cleve and A. Zeller. Locating Causes of Pro-
gram Failures. ICSE ’05.

[28] K. E. Coons, S. Burckhardt, and M. Musuvathi.
GAMBIT: Effective Unit Testing for Concurrency
Libraries. PPoPP ’10.

[29] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling Intrusion Analy-
sis Through Virtual-Machine Logging and Replay.
OSDI ’02.

[30] M. A. El-Zawawy and M. N. Alanazi. An Efficient
Binary Technique for Frace Simplifications of Con-
current Programs. ICAST ’14.

[31] A. Elyasov, I. W. B. Prasetya, and J. Hage. Guided
Algebraic Specification Mining for Failure Simpli-
fication. TSS ’13.

13

304 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[32] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically Discovering Likely Pro-
gram Invariants to Support Program Evolution.
IEEE ToSE ’01.

[33] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of Distributed Consensus with One
Faulty Process. JACM ’85.

[34] C. Flanagan and P. Godefroid. Dynamic Partial-
Order Reduction for Model Checking Software.
POPL ’05.

[35] P. Fonseca, R. Rodrigues, and B. B. Brandenburg.
SKI: Exposing Kernel Concurrency Bugs through
Systematic Schedule Exploration. OSDI ’14.

[36] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Re-
play Debugging For Distributed Applications. ATC
’06.

[37] P. Godefroid and N. Nagappan. Concurrency at Mi-
crosoft - An Exploratory Survey. CAV ’08.

[38] P. Godefroid, J. van Leeuwen, J. Hartmanis,
G. Goos, and P. Wolper. Partial-Order Methods
for the Verification of Concurrent Systems: An Ap-
proach to the State-Explosion Problem. PhD The-
sis, ’95.

[39] D. Gupta, K. Yocum, M. Mcnett, A. C. Snoeren,
A. Vahdat, and G. M. Voelker. To Infinity and Be-
yond: Time-Warped Network Emulation. NSDI
’06.

[40] M. Hammoudi, B. Burg, Gigon, and G. Rothermel.
On the Use of Delta Debugging to Reduce Record-
ings and Facilitate Debugging of Web Applications.
ESEC/FSE ’15.

[41] J. Huang and C. Zhang. An Efficient Static Trace
Simplification Technique for Debugging Concur-
rent Programs. SAS ’11.

[42] J. Huang and C. Zhang. LEAN: Simplifying Con-
currency Bug Reproduction via Replay-Supported
Execution Reduction. OOPSLA ’12.

[43] J. M. Hughes. Personal Communication.

[44] J. M. Hughes and H. Bolinder. Testing a Database
for Race Conditions with QuickCheck. Erlang ’11.

[45] J. A. Jones and M. J. Harrold and J. Stasko. Visu-
alization of Test Information To Assist Fault Local-
ization. ICSE ’02.

[46] N. Jalbert and K. Sen. A Trace Simplification Tech-
nique for Effective Debugging of Concurrent Pro-
grams. FSE ’10.

[47] W. Jin and A. Orso. F3: Fault Localization for Field
Failures. ISSTA ’13.

[48] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure Sketching: A Technique for
Automated Root Cause Diagnosis of In-Production
Failures. SOSP ’15.

[49] S. Khoshnood, M. Kusano, and C. Wang. Con-
cBugAssist: Constraint Solving for Diagnosis and
Repair of Concurrency Bugs. ISSTA ’15.

[50] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of As-
pectJ. ECOOP ’01.

[51] L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. CACM ’78.

[52] T. D. LaToza, G. Venolia, and R. DeLine. Main-
taining Mental Models: a Study of Developer Work
Habits. ICSE ’06.

[53] S. Lauterburg, R. K. Karmani, D. Marinov, and
G. Agha. Evaluating Ordering Heuristics for Dy-
namic Partial-Order Reduction Techniques. FASE
’10.

[54] K. H. Lee, Y. Zheng, N. Sumner, and X. Zhang.
Toward Generating Reducible Replay Logs. PLDI
’11.

[55] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Luk-
man, and H. S. Gunawi. SAMC: Semantic-Aware
Model Checking for Fast Discovery of Deep Bugs
in Cloud Systems. OSDI ’14.

[56] C.-C. Lin, V. Jalaparti, M. Caesar, and J. Van der
Merwe. DEFINED: Deterministic Execution for
Interactive Control-Plane Debugging. ATC ’13.

[57] H. Lin, M. Yang, F. Long, L. Zhang, and L. Zhou.
MODIST: Transparent Model Checking of Unmod-
ified Distributed Systems. NSDI ’09.

[58] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
Generation of Software Behavioral Models. ICSE
’08.

[59] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining
Invariants from Console Logs for System Problem
Detection. ATC ’10.

[60] M. Jose and R. Majmudar. Cause Clue Causes:
Error Localization Using Maximum Satisfiability.
PLDI ’11.

[61] N. Machado, B. Lucia, and L. Rodrigues. Concur-
rency Debugging with Differential Schedule Pro-
jections. PLDI ’15.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 305

[62] G. A. Miller. The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Pro-
cessing Information. Psychological Review ’56.

[63] M. Musuvathi and S. Qadeer. Iterative Context
Bounding for Systematic Testing of Multithreaded
Programs. PLDI ’07.

[64] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. SOSP ’08.

[65] D. Ongaro and J. Ousterhout. In Search of an Un-
derstandable Consensus Algorithm. ATC ’14.

[66] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing
Atomicity Violation Bugs from their Hiding Places.
ASPLOS ’09.

[67] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. H. Lee, and S. Lu. PRES: Probabilistic Re-
play with Execution Sketching on Multiprocessors.
SOSP ’09.

[68] S. M. Park. Effective Fault Localization Techniques
for Concurrent Software. PhD Thesis, ’14.

[69] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison,
and X. Yang. Test-case Reduction for C Compiler
Bugs. PLDI ’12.

[70] C. Scott, A. Wundsam, B. Raghavan, A. Panda,
A. Or, J. Lai, E. Huang, Z. Liu, A. El-
Hassany, S. Whitlock, H. Acharya, K. Zarifis, and
S. Shenker. Troubleshooting Blackbox SDN Con-
trol Software with Minimal Causal Sequences.
SIGCOMM ’14.

[71] O. Shacham, E. Yahav, G. G. Gueta, A. Aiken,
N. Bronson, M. Sagiv, and M. Vechev. Verifying
Atomicity via Data Independence. ISSTA’14.

[72] J. Simsa, R. Bryant, and G. A. Gibson. dBug: Sys-
tematic Evaluation of Distributed Systems. SSV
’10.

[73] W. Sumner and X. Zhang. Comparative Causality:
Explaining the Differences Between Executions.
ICSE ’13.

[74] S. Tallam, C. Tian, R. Gupta, and X. Zhang.
Enabling Tracing of Long-Running Multithreaded
Programs via Dynamic Execution Reduction. IS-
STA ’07.

[75] V. Terragni, S.-C. Cheung, and C. Zhang. RECON-
TEST: Effective Regression Testing of Concurrent
Programs. ICSE ’15.

[76] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou.
Triage: Diagnosing Production Run Failures at the
User’s Site. SOSP ’07.

[77] Twitter Blog. Diffy: Testing Services Without
Writing Tests. https://blog.twitter.com/2015/
diffy-testing-services-without-writing-tests.

[78] R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting
Where it Hurts: An Automatic Concurrent Debug-
ging Technique. ISSTA ’07.

[79] J. Wang, W. Dou, C. Gao, and J. Wei. Fast Repro-
ducing Web Application Errors. ISSRE ’15.

[80] M. Weiser. Program Slicing. ICSE ’81.

[81] A. Whitaker, R. Cox, and S. Gribble. Configura-
tion Debugging as Search: Finding the Needle in
the Haystack. SOSP ’04.

[82] P. Wolper. Expressing Interesting Properties of Pro-
grams in Propositional Temporal Logic. POPL ’86.

[83] J. Xuan and M. Monperrus. Test Case Purification
for Improving Fault Localization. FSE ’14.

[84] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kun-
cak. CrystalBall: Predicting and Preventing Incon-
sistencies in Deployed Distributed Systems. NSDI
’09.

[85] M. Yabandeh and D. Kostic. DPOR-DS: Dynamic
Partial Order Reduction in Distributed Systems.
2009 Tech Report.

[86] X. Yang, Y. Chen, E. Eide, and J. Regehr. Find-
ing and Understanding Bugs in C Compilers. PLDI
’11.

[87] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M.
Kirby. Efficient Stateful Dynamic Partial Order Re-
duction. MCS ’08.

[88] X. Yi, J. Wang, and X. Yang. Stateful Dynamic
Partial-Order Reduction. FMSE ’06.

[89] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and
S. Pasupathy. SherLog: Error Diagnosis by Con-
necting Clues from Run-time Logs. ASPLOS ’10.

[90] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Com-
puting. NSDI ’12.

[91] C. Zamfir, G. Altekar, G. Candea, and I. Stoica.
Debug Determinism: The Sweet Spot for Replay-
Based Debugging. HotOS ’11.

15

306 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[92] C. Zamfir and G. Candea. Execution Synthesis:
A Technique for Automated Software Debugging.
EuroSys ’10.

[93] A. Zeller. Yesterday, my program worked. Today,
it does not. Why? ESEC/FSE ’99.

[94] A. Zeller and R. Hildebrandt. Simplifying and Iso-
lating Failure-Inducing Input. IEEE TSE ’02.

[95] S. Zhang and C. Zhang. Software Bug Localization
with Markov Logic. ICSE ’14.

A Delta Debugging
We show the Delta Debugging simplification algo-
rithm [93] we use in Figure 3, and an example execu-
tion of Delta Debugging in Figure 5. An updated version
of the ddmin simplification algorithm appeared in [94].
We use the simpler version of ddmin (which is equiva-
lent to the version ddmin from [94], except that it does
not consider complements) because we ensure that each
subsequence of external events is consistent (semanti-
cally valid), and therefore are still guarenteed to find a
1-minimal output without needing to consider comple-
ments.

B DPOR
We show the original depth-first version of Dynamic
Partial Order Reduction in Algorithm 2. Our modified
DPOR algorithm uses a priority queue rather than a (re-
cursive) stack, and tracks which schedules it has explored
in the past. Tracking which schedules we have explored
in the past is necessary to avoid exploring redundant
schedules (an artifact of our non depth-first exploration
order). The memory footprint required for tracking pre-
viously explored schedules continues growing for every
new schedule we explore. Because we assume a fixed
time budget though, we typically exhaust our time bud-
get before DEMi runs out of memory.

There are a few desirable properties of DPOR we want
to maintain, despite our prioritized exploration order:
Soundness: any executed schedule should be valid, i.e.
possible to execute on an uninstrumented version of the
program starting from the initial configuration.

Step External Event Subsequence TEST
1 e1 e2 e3 e4 · · · · �
2 · · · · e5 e6 e7 e8 �
3 e1 e2 · · e5 e6 e7 e8 �
4 · · e3 e4 e5 e6 e7 e8 �
5 · · e3 · e5 e6 e7 e8 � (e3 found)
6 e1 e2 e3 e4 e5 e6 · · �
7 e1 e2 e3 e4 e5 · · · � (e6 found)
Result · · e3 · · e6 · ·

Table 5: Example execution of Delta Debugging, taken from [93]. ‘·’
denotes an excluded original external event.

Programmer-provided Specification Default
Initial cluster configuration -
External event probabilities No external events
Invariants Uncaught exceptions
Violation fingerprint Match on any violation
Message fingerprint function Match on message type
Non-determinism mitigation Replay multiple times

Table 6: Tasks we assume the application programmer completes in
order to test and minimize using DEMi. Defaults of ‘-’ imply that the
task is not optional.

Efficiency: the happens-before partial order for every ex-
ecuted schedule should never be a prefix of any other
partial orders that have been previously explored.
Completeness: when the state space is acyclic, the strat-
egy is guaranteed to find every possible safety violation.

Because we experimentally execute each schedule,
soundness is easy to ensure (we simply ensure that we
do not violate TCP semantics if the application assumes
TCP, and we make sure that we cancel timers whenever
the application asks to do so). Improved efficiency is
the main contribution of partial order reduction. The last
property—completeness—holds for our modified ver-
sion of DPOR so long as we always set at least as many
backtrack points as depth-first DPOR.

C Programmer Effort
In Table 6 we summarize the various tasks, both optional
and necessary, that we assume programmers complete in
order to test and minimize using DEMi.

D Raft Case Studies
Raft is a consensus protocol, designed to replicate a fault
tolerant linearizable log of client operations. akka-raft is
an open source implementation of Raft.

The external events we inject for akka-raft case studies
are bootstrap messages (which processes use for discov-
ery of cluster members) and client transaction requests.
Crash-stop failures are indirectly triggered through fuzz
schedules that emulate network partitions. The cluster
size was 4 nodes (quorum size=3) for all akka-raft case
studies.

The invariants we checked for akka-raft are the con-
sensus invariants specified in Figure 3 of the Raft pa-
per [65]: Election Safety (at most one leader can be
elected in a given term), Log Matching (if two logs con-
tain an entry with the same index and term, then the logs
are identical in all entries up through the given index),
Leader Completeness (if a log entry is committed in a
given term, then that entry will be present in the logs of
the leaders for all higher-numbered terms), and State Ma-
chine Safety (if a server has applied a log entry at a given
index to its state machine, no other server will ever apply
a different log entry for the same index). Note that a vio-
lation of any of these invariants allows for the possibility
for the system to later violate the main linearizability in-

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 307

Input: E s.t. E is a sequence of externals, and TEST(E) = �. Output: E ′ = ddmin(E) s.t. E ′ � E, TEST(E ′) = �, and E ′ is minimal.

ddmin(E) = ddmin2(E, /0) where

ddmin2(E ′,R) =

E ′ if |E ′|= 1 (“base case”)
ddmin2

(
E1,R

)
else if TEST(E1 ∪R) = � (“in E1”)

ddmin2
(
E2,R

)
else if TEST(E2 ∪R) = � (“in E2”)

ddmin2
(
E1,E2 ∪R

)
∪ddmin2

(
E2,E1 ∪R

)
otherwise (“interference”)

where � denotes an invariant violation, E1 � E ′, E2 � E ′, E1 ∪E2 = E ′, E1 ∩E2 = /0, and |E1| ≈ |E2| ≈ |E ′|/2 hold.

Figure 3: Delta Debugging Algorithm from [93]. � and � denote subsequence relations. TEST is defined in Algorithm 1.

Algorithm 2 The original depth-first version of Dynamic Partial Order Reduction from [34]. last(S) denotes the configuration reached after
executing S; next(κ,m) denotes the state transition (message delivery) where the message m is processed in configuration κ; →S denotes ‘happens-
before’; pre(S, i) refers to the configuration where the transition ti is executed; dom(S) means the set {1, . . . ,n}; S.t denotes S extended with an
additional transition t.

Initially: EXPLORE(/0)
procedure EXPLORE(S)

κ ← last(S)
for each message m ∈ pending(κ) do

if ∃i = max({i ∈ dom(S)|Si is dependent and may be coenabled with next(κ,m) and i �→S m}):
E ←{m′ ∈ enabled(pre(S, i))|m′ = m or ∃ j ∈ dom(S) : j > i and m′ = msg(S j) and j →S m}
if E �= /0:

add any m′ ∈ E to backtrack(pre(S, i))
else

add all m ∈ enabled(pre(S, i)) to backtrack(pre(S, i))
if ∃m ∈ enabled(κ):

backtrack(κ)←{m}
done ← /0
while ∃m ∈ (backtrack(κ)\done) do

add m to done
EXPLORE(S.next(κ,m))

variant (State Machine Safety).
For each of the bugs where we did not initially know

the root cause, we started debugging by first minimiz-
ing the failing execution. Then, we walked through the
sequence of message deliveries in the minimized execu-
tion. At each step, we noted the current state of the actor
receiving the message. Based on our knowledge of the
way Raft is supposed to work, we found places in the
execution that deviate from our understanding of correct
behavior. We then examined the code to understand why
it deviated, and came up with a fix. Finally, we replayed
to verify the bug fix.

The akka-raft case studies in Table 1 are shown in the
order that we found or reproduced them. To prevent bug
causes from interfering with each other, we fixed all other
known bugs for each case study. We reported all bugs and
fixes to the akka-raft developers.
raft-45: Candidates accept duplicate votes from the
same election term. Raft is specified as a state machine
with three states: Follower, Candidate, and Leader. Can-
didates attempt to get themselves elected as leader by so-
liciting a quorum of votes from their peers in a given
election term (epoch).

In one of our early fuzz runs, we found a violation
of ‘Leader Safety’, i.e. two processes believed they were
leader in the same election term. This is a highly prob-
lematic situation for Raft to be in, since the leaders may
overwrite each others’ log entries, thereby violating the
key linearizability guarantee that Raft is supposed to pro-
vide.

The root cause for this bug was that akka-raft’s can-
didate state did not detect duplicate votes from the same
follower in the same election term. (A follower might re-
send votes because it believed that an earlier vote was
dropped by the network). Upon receiving the duplicate
vote, the candidate counts it as a new vote and steps up
to leader before it actually achieved a quorum of votes.
raft-46: Processes neglect to ignore certain votes from
previous terms. After fixing the previous bug, we found
another execution where two leaders were elected in the
same term.

In Raft, processes attach an ‘election term’ number
to all messages they send. Receiving processes are sup-
posed to ignore any messages that contain an election
term that is lower than what they believe is the current
term.

17

308 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

akka-raft properly ignored lagging term numbers for
some, but not all message types. DEMi delayed the de-
livery of messages from previous terms and uncovered a
case where a candidate incorrectly accepted a vote mes-
sage from a previous election term.
raft-56: Nodes forget who they voted for. akka-raft is
written as a finite state machine. When making a state
transition, FSM processes specify both which state they
want to transition to, and which instance variables they
want to keep once they have transitioned.

All of the state transitions for akka-raft were correct
except one: when the Candidate steps down to Follower
(e.g., because it receives an ‘AppendEntries’ message,
indicating that there is another leader in the cluster), it
forgets which node it previously voted for in that term.
Now, if another node requests a vote from it in the same
term, it may vote for a different node than it previously
voted for in the same term, later causing two leaders to be
elected, i.e. a violation of Raft’s “Leader Safety” condi-
tion. We discovered this by manually examining the state
transitions made by each process throughout the mini-
mized execution.
raft-58a: Pending client commands delivered before
initialization occurs. After ironing out leader election
issues, we started finding other issues. In one of our fuzz
runs, we found that a leader process threw an assertion
error.

When an akka-raft Candidate first makes the state tran-
sition to leader, it does not immediately initialize its state
(the ‘nextIndex’ and ‘matchIndex’ variables). It instead
sends a message to itself, and initializes its state when it
receives that self-message.

Through fuzz testing, we found that it is possible that
the Candidate could have pending ClientCommand mes-
sages in its mailbox, placed there before the Candidate
transitioned to Leader and sent itself the initialization
message. Once in the Leader state, the Akka runtime
will first deliver the ClientCommand message. Upon pro-
cessing the ClientCommand message the Leader tries to
replicate it to the rest of the cluster, and updates its nex-
tIndex hashmap. Next, when the Akka runtime delivers
the initialization self-message, it will overwrite the value
of nextIndex. When it reads from nextIndex later, it is
possible for it to throw an assertion error because the
nextIndex values are inconsistent with the contents of the
Leader’s log.
raft-58b: Ambiguous log indexing. In one of our fuzz
tests, we found a case where the ‘Log Matching’ invari-
ant was violated, i.e. log entries did not appear in the
same order on all machines.

According to the Raft paper, followers should reject
AppendEntries requests from leaders that are behind, i.e.
prevLogIndex and prevLogTerm for the AppendEntries
message are behind what the follower has in its log.

The leader should continue decrementing its nextIndex
hashmap until the followers stop rejecting its AppendEn-
tries attempts.

This should have happened in akka-raft too, except for
one hiccup: akka-raft decided to adopt 0-indexed logs,
rather than 1-indexed logs as the paper suggests. This
creates a problem: the initial value of prevLogIndex is
ambiguous: Followers can not distinguish between an
AppendEntries for an empty log (prevLogIndex == 0)
an AppendEntries for the leader’s 1st command (pre-
vLogIndex == 0), and an AppendEntries for the leader’s
2nd command (prevLogIndex == 1 1 == 0). The last
two cases need to be distinguishable. Otherwise follow-
ers will not be able to reject inconsistent logs. This cor-
ner would have been hard to anticipate; at first glance it
seems fine to adopt the convention that logs should be
0-indexed instead of 1-indexed.

As a result of this ambiguity, followers were unable to
correctly reject AppendEntries requests from leader that
were behind.
raft-42: Quorum computed incorrectly. We also found
a fuzz test that ended in a violation of the ‘Leader Com-
pleteness’ invariant, i.e. a newly elected leader had a log
that was irrecoverably inconsistent with the logs of pre-
vious leaders.

Leaders are supposed to commit log entries to their
state machine when they knows that a quorum (N/2+1)
of the processes in the cluster have that entry replicated
in their logs. akka-raft had a bug where it computed the
highest replicated log index incorrectly. First it sorted
the values of matchIndex (which denote the highest log
entry index known to be replicated on each peer). But
rather than computing the median (or more specifically,
the N/2+1’st) of the sorted entries, it computed the mode
of the sorted entries. This caused the leader to commit
entries too early, before a quorum actually had that en-
try replicated. In our fuzz test, message delays allowed
another leader to become elected, but it did not have all
committed entries in its log due to the previously leader
committing too soon.

As we walked through the minimized execution, it be-
came clear mid-way through the execution that not all
entries were fully replicated when the master committed
its first entry. Another process without all replicated en-
tries then became leader, which constituted a violation of
the “Leader Completeness” invariant.
raft-66: Followers unnecessarily overwrite log en-
tries. The last issue we found is only possible to trigger
if the underlying transport protocol is UDP, since it re-
quires reorderings of messages between the same source,
destination pair. The akka-raft developers say they do not
currently support UDP, but they would like to adopt UDP
in the future due to its lower latency.

The invariant violation here was a violation of the

18

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 309

‘Leader Completeness’ safety property, where a leader
is elected that does not have all of the needed log entries.

Leaders replicate uncommitted ClientCommands to
the rest of the cluster in batches. Suppose a follower with
an empty log receives an AppendEntries containing two
entries. The follower appends these to its log.

Then the follower subsequently receives an Appen-
dEntries containing only the first of the previous two en-
tries (this message was delayed). The follower will inad-
vertently delete the second entry from its log.

This is not just a performance issue: after receiving
an ACK from the follower, the leader is under the im-
pression that the follower has two entries in its log. The
leader may have decided to commit both entries if a quo-
rum was achieved. If another leader becomes elected, it
will not necessarily have both committed entries in its
log as it should, leading to a ‘LeaderCompleteness’ vio-
lation.

E Spark Case Studies
Spark is a large scale data analytics framework. We fo-
cused our efforts on reproducing known bugs in the
core Spark engine, which is responsible for orchestrat-
ing computation across multiple machines.

We looked at the entire history of bugs reported for
Spark’s core engine. We found that most reported bugs
only involve sequential computation on a single ma-
chine (e.g. crashes due to unexpected user input). We
instead focused on reported bugs involving concurrency
across machines or partial failures. Of the several dozen
reported concurrency or partial failure bugs, we chose
three.

The external events we inject for Spark case studies
are worker join events (where worker nodes join the clus-
ter and register themselves with the master), job sub-
missions, and crash-recoveries of the master node. The
Spark job we ran for all case studies was a simple paral-
lel approximation of the digits of Pi.
spark-2294: Locality inversion. In Spark, an ‘execu-
tor’ is responsible for performing computation for Spark
jobs. Spark jobs are assigned ‘locality’ preferences: the
Spark scheduler is supposed to launch ‘NODE LOCAL’
tasks (where the input data for the task is located on the
same machine) before launching tasks without prefer-
ences. Tasks without locality preferences are in turn sup-
posed to be launched before ‘speculative’ tasks.

The bug for this case study was the following: if an
executor E is free, a task may be speculatively assigned
to E when there are other tasks in the job that have not
been launched (at all) yet. Similarly, a task without any
locality preferences may be assigned to E when there
was another ‘NODE LOCAL’ task that could have been
scheduled. The root cause of this bug was an error in
Spark scheduler’s logic: under certain configurations of

pending Spark jobs and currently available executors, the
Spark scheduler would incorrectly invert the locality pri-
orities. We reproduced this bug by injecting random, con-
currently running Spark jobs (with differing locality pref-
erences) and random worker join events.
spark-3150: Simultaneous failure causes infinite
restart loop. Spark’s master node supports a ‘Cold-
Replication’ mode, where it commits its state to a
database (e.g., ZooKeeper). Whenever the master node
crashes, the node that replaces it can read that informa-
tion from the database to bootstrap its knowledge of the
cluster state.

To trigger this bug, the master node and the driver
process need to fail simultaneously. When the master
node restarts, it tries to read its state from the database.
When the driver crashes simultaneously, the information
the master reads from the database is corrupted: some of
the pointers referencing information about the driver are
null. When the master reads this information, it derefer-
ences a null pointer and crashes again. After failing, the
master restarts, tries to recover its state, and crashes in an
infinite cycle. The minimized execution for this bug con-
tained exactly these 3 external events, which made the
problematic code path immediately apparent.
spark-9256: Delayed message causes master crash.
We found the following bug through fuzz testing.

As part of initialization, Spark’s client driver registers
with the Master node by repeatedly sending a Register-
Application message until it receives a RegisteredAppli-
cation response. If the RegisteredApplication response
is delayed by at least as long as the configured timeout
value (or if the network duplicates the RegisterApplica-
tion RPC), it is possible for the Master to receive two
RegisterApplication messages for the same client driver.

Upon receiving the second RegisterApplication mes-
sage, the master attempts to persist information about the
client driver to disk. Since the file containing information
about the client driver already exists though, the master
crashes with an IllegalStateException.

This bug is possible to trigger in production, but it will
occur only very rarely. The name of the file containing in-
formation has a second-granularity timestamp associated
with it, so it would only be possible to have a duplicate
file if the second RegisteredApplication response arrived
in the same second as the first response.

Acknowledgements
We thank our shepherd David Lie and the anonymous
reviewers for their feedback. We also thank Peter Alvaro,
Barath Raghavan, and Kay Ousterhout for feedback on
the submitted draft. This research was supported by NSF
CNS 1040838 and a gift from Intel. Colin Scott was also
supported by an NSF Graduate Research Fellowship.

19

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 311

FlowRadar: A Better NetFlow for Data Centers

Yuliang Li∗ Rui Miao∗ Changhoon Kim† Minlan Yu∗
∗University of Southern California †Barefoot Networks

Abstract

NetFlow has been a widely used monitoring tool with
a variety of applications. NetFlow maintains an active
working set of flows in a hash table that supports flow
insertion, collision resolution, and flow removing. This
is hard to implement in merchant silicon at data cen-
ter switches, which has limited per-packet processing
time. Therefore, many NetFlow implementations and
other monitoring solutions have to sample or select a
subset of packets to monitor. In this paper, we observe
the need to monitor all the flows without sampling in
short time scales. Thus, we design FlowRadar, a new
way to maintain flows and their counters that scales to a
large number of flows with small memory and bandwidth
overhead. The key idea of FlowRadar is to encode per-
flow counters with a small memory and constant inser-
tion time at switches, and then to leverage the computing
power at the remote collector to perform network-wide
decoding and analysis of the flow counters. Our eval-
uation shows that the memory usage of FlowRadar is
close to traditional NetFlow with perfect hashing. With
FlowRadar, operators can get better views into their net-
works as demonstrated by two new monitoring applica-
tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] is a widely used monitoring tool for over 20
years, which records the flows (e.g., source IP, destina-
tion IP, source port, destination port, and protocol) and
their properties (e.g., packet counters, and the flow start-
ing and finish times). When a flow finishes after the in-
active timeout, NetFlow exports the corresponding flow
records to a remote collector. NetFlow has been used for
a variety of monitoring applications such as accounting
network usage, capacity planning, troubleshooting, and
attack detection.

Despite its wide applications, the key problem to im-

plement NetFlow in hardware is how to maintain an ac-
tive working set of flows using a data structure with low
time and space complexity. We need to handle collisions
during flow insertion and remove old flows to make room
for new ones. These tasks are challenging given the lim-
ited per-packet processing time at merchant silicon.

To handle this challenge, today’s NetFlow is imple-
mented in two ways: (1) Using complex custom silicon
that is only available at high-end routers, which is too
expensive for data centers; (2) Using software to count
sampled packets from hardware, which takes too much
CPU resources at switches. Because of the lack of us-
able NetFlow in data centers, operators have to mirror
packets based on sampling or matching rules and ana-
lyze these packets in a remote collector [26, 40, 44, 34].
It is impossible to mirror all the packets because it takes
too much bandwidth to mirror the traffic, and too many
storage and computing resources at the remote collector
to analyze every packet. (Section 2)

However, in data centers, there is an increasing need
to have visibility of the counters for all the flows all the
time. We need to cover all the flows to capture those tran-
sient loops, blackholes, and switch faults that only hap-
pen to a few flows in the Network and to perform fine-
grained traffic analysis (e.g., anomaly detection). We
need to cover these flows all the time to identify transient
losses, bursts, and attacks in a timely fashion. (Section 3)

In this paper, we propose FlowRadar, which keeps
counters for all the flows with low memory overhead
and exports the flow counters in short time scales (e.g.,
10 ms). The key design of FlowRadar is to identify the
best division of labor between cheap switches with lim-
ited per-packet processing time and the remote collector
with plenty of computing resources. We introduce en-
coded flowsets that only require simple constant-time in-
structions for each packet and thus are easy to implement
with merchant silicon at cheap switches. We then decode
these flowsets and perform network-wide analysis across
time and switches all at the remote collector. We make

312 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the following key contributions in building FlowRadar:

Capture encoded flow counters with constant time
for each packet at switches: We introduce encoded
flowsets, which is an array of cells that encode the flows
(5 tuples) and their counters. Encoded flowsets ensure
constant per-packet processing time by embracing rather
than handling hash collisions. It maps one flow to many
cells, allows flows to collide in one cell, but ensure each
cell has constant memory usage. Since encoded flowsets
are small, we can afford to periodically export the en-
tire flowsets to the remote collector in short time scales.
Our encoded flowset data structure is an extension of In-
vertible Bloom filter Lookup Table (IBLT), but provides
better support for counter updates.

Network-wide decoding and analysis at a remote col-
lector: While each switch independently encodes the
flows and counters, we observe that most flows tra-
verse multiple switches. By leveraging the redundan-
cies across switches, we make the encoded flowsets more
compact. We then propose a network-wide decoding
scheme to decode the flows and counters across switches.
With the network-wide decoding, our encoded flowsets
can reduce the amount of memory needed to track 100K
flows by 5.6% compared to an ideal (and hence imprac-
tical) implementation of NetFlow with perfect hashing
(i.e., no collisions) while providing 99% decoding suc-
cess rate1. (Section 4 and 5)

FlowRadar can support a wide range of monitoring
applications including both existing monitoring applica-
tions on NetFlow, and new ones that require monitoring
all the flows all the time. As demonstrations, we design
and build two systems on top of FlowRadar: one that
detects transient loops and blackholes using a network-
wide flow analysis and another that provides a per-flow
loss map using temporal analysis (Section 6).

We discuss the implementation issues in Section 7,
compare with related work in Section 8, and conclude
in Section 9.

2 Motivation

In this section, we discuss the key challenges of im-
plementing NetFlow. We then describe three alterna-
tive monitoring solutions (Table 1): NetFlow in high-end
routers with custom silicon, NetFlow in cheap switches
with merchant silicon, and selective mirroring. To ad-
dress the limitations of these approaches, we present
FlowRadar architecture, which identifies a good division
of labor between the switches and the remote collector.

1The decode success rate is defined as the probability of success-
fully decoding all the flows.

2.1 Key challenges of supporting NetFlow
Since NetFlow has been developed for over 20 years,
there have been many implementations and extensions of
NetFlow in routers and switches. We cannot capture all
the NetFlow solutions here, and in fact many solutions
are proprietary information. Instead, we focus on the ba-
sic function of NetFlow: storing the flow fields (e.g., 5
tuples) and the records (e.g., packet counter, flow start-
ing time, the time that the flow is last seen, etc.) in a hash
table. The key challenge is how to maintain the active
working set of flows in the hash table given the limited
packet processing time.

Maintain the active working set of flows: There are
two key tasks in maintaining the active working set of
flows:

(1) How to handle hash collisions during flow insertion?
When we insert a new flow, it may experience collisions
with existing flows. One solution is to store multiple
flows in each cell in the hash table to reduce the chances
of overflow (e.g., d-left hashing [14, 38]), which requires
atomic many-byte memory accesses. Another solution
to move existing flows around to make room for new
flows (e.g., Cuckoo hashing [33]), which requires mul-
tiple, non-constant memory accesses per packet in the
worst case. Both are very challenging to implement on
merchant silicon with high line rate. The detailed chal-
lenges are discussed in Section 8.

(2) How to remove an old flow? We need to periodi-
cally remove old flows to make room for new flows in
the hash table. If a TCP flow receives a FIN, we can re-
move it from the table. However, in data centers there
are many persistent connections reused by multiple re-
quests/responses or messages. To identify idle flows,
NetFlow keeps the time a flow is last seen and period-
ically scan the entire hash table to check the inactive
time of each flow. If a flow is inactive for more than
the inactive timeout, NetFlow removes the flow and ex-
ports its counters. The inactive timeout can only be set
between 10 and 600 seconds with a default value of 15
seconds [1]. When the hash table is large, it takes a sig-
nificant time and switch CPU resources to scan the table
and clean up the table entries.

Limited per-packet processing time at merchant sil-
icon: It is hard to maintain the active working set of
flows at the merchant silicon—the commodity switch
design in data centers. The key constraint of the mer-
chant silicon is the limited time we can spend on each
packet. Suppose a switch has 40Gbps per port, which
means 12ns per packet processing time for 64 Byte pack-
ets2. Let’s assume the entire 12 ns can be dedicated
to NetFlow by performing perfect packet pipelining and

2This becomes worse when datacenters move to 100Gbps.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 313

Hardware-based NetFlow Sampled software-based sFlow [40], FlowRadar
in custom silicon NetFlow in merchant silicon EverFlow [44]

Division of labor
state in switch hardware active working set of flows none none encoded flows and counters
state in switch software none (or some active flows) active working set of flows none none
data exported to collector flow records after termination flow records after termination Selected pkts and timestamps periodic encoded flow records
Coverage of traffic info
Temporal coverage No No No (if select control packets) Yes (milliseconds)
Flow coverage All or sampled packets sampled packets sampled or selected packets All

Table 1: Comparing FlowRadar with hardware-based NetFlow in custom silicon, sampling-based software NetFlow in merchant
silicon, and sFlow/EverFlow

allocating all other packet processing functions (packet
header parsing, Layer 2/3 forwarding, ACLs, etc.) to
other stages. Yet inside NetFlow, one needs to calcu-
late the hash functions, look up SRAM, run a few ALU
operations, and write back to the SRAM. Even with on-
chip SRAM which has roughly 1 ns access time, to fin-
ish all these actions in 12 ns is still a challenge. (Similar
arguments are made in [23] about the difficulties of im-
plementing data streaming at routers.)

2.2 Alternative monitoring solutions
Due to the limited per-packet time in merchant silicon,
one cannot process complex and non-constant time inser-
tion and deletion actions as required in NetFlow. There-
fore, there are three alternatives (Table 1):

Hardware-based NetFlow in custom silicon: One so-
lution is to design custom silicon to maintain the active
working set of flows in switch hardware. We can cache
popular flow entries in on-chip SRAM, but the rest in
off-chip SRAM or DRAM. We can also combine SRAM
with expensive and power-hungry TCAM to support par-
allel lookup. Even with the expensive custom silicon, the
test of Cisco high-end routers (Catalyst series) [18, 12]
shows that there is still around 16% switch CPU over-
head for storing 65K flow entries in hardware. Cisco
highly recommends NetFlow users to choose sampling
to reduce the NetFlow overhead on these routers [18].

Sampled software-based NetFlow in merchant sili-
con: Another solution is to sample packets and mir-
ror them to the switch software, and maintain the ac-
tive working set of flows in software. This solution
works with cheap merchant silicon, but takes even more
CPU overhead than hardware-based NetFlow in high-end
routers. To reduce the switch CPU overhead of NetFlow
and avoid interrupting other processes (e.g., OSPF, rule
updates) in CPU, operators have to set sampling rate low
enough (e.g., down to 1 in 4K). With such low sampling
rate, operators cannot use NetFlow for fine-grained traf-
fic analysis (e.g., anomaly detection) or capturing those
events that only happen to some flows (e.g., transient
loops or blackholes).

Selective mirroring (sFlow [40], EverFlow [44]): The

Decode analyzers

Encoded	
Flowsets

Flows &
Counters

Encoded	
Flowsets

Encoded	
Flowsets

Periodic report

Figure 1: FlowRadar architecture

final solution data center operators take today is to only
sample packets or select packets based on match-action
rules, and then mirror these packets to a remote collec-
tor. The remote collector extracts per flow information
and performs detailed analysis. This solution works with
existing merchant silicon, and best leverages the comput-
ing resources in the cloud. However, it takes too much
bandwidth overhead to transfer all the packets to the col-
lector and too much storage and computing overhead at
the collector [44]. Therefore, operators can only get a
partial view from the selected packets.

2.3 FlowRadar architecture

Instead of falling back to sampling in existing monitor-
ing solutions, we aim at providing full visibility to all the
flows all the time (see example use cases in Section 3).
To achieve this, we propose to best leverage the capa-
bilities at both the merchant silicon at switches and the
computing power at the remote collector (Figure 1).

Capturing encoded flow counters at switches:
FlowRadar chooses to encode flows and their counters
into small fixed memory size that can be implemented in
merchant silicon with constant flow insertion time. In
this way, we can afford to capture all the flows with-
out sampling, and periodically export these encoded flow
counters to the remote collector in short time scales.

Decoding and analyzing flow counters at a remote
collector: Given the encoded flows and counters ex-
ported from many switches, we can leverage the com-
puting power at the remote collector to perform network-
wide decoding of the flows, and temporal and flow space
analysis for different monitoring applications.

314 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

3 Use cases

Since FlowRadar provides per flow counters, it can easily
inherit many monitoring applications built on NetFlow
such as accounting, capacity planning, application mon-
itoring and profiling, and security analysis. In this sec-
tion, we show that FlowRadar provides better monitoring
support than sampled NetFlow and sFlow/EverFlow in
two aspects: (1) Flow coverage: count all the flows with-
out sampling; and (2) Temporal coverage: export these
counters for each short time slot (e.g., 10 ms).

3.1 Flow coverage

Transient loop/blackhole detection: Transient loops
and blackholes are important to detect, as they could
cause packet loss. Just a few packet losses can cause sig-
nificant tail-latency increase and throughput drops (es-
pecially because TCP treats losses as congestion sig-
nals) [31, 10], leading to violations of service level agree-
ments (SLAs) and even a decrease of revenue [19, 39].
However, transient loops and blackholes are difficult to
detect, as they may only affect a few packets during
a very short time period. EverFlow or sampled Net-
Flow only select a few packets to monitor, and thus may
miss most of the transient loops and blackholes. In ad-
dition, the transient loops and blackholes may only af-
fect a certain kind of flows, so probing methods like
Pingmesh [25] may not even notice the existence of
them. Instead, if we can capture all the packets in each
flow and maintain a corresponding counter in real time
at every switch, we can quickly identify flows that are
experiencing loops or blackholes (see Section 6).

Errors in match-action tables: Switches usually main-
tain a pipeline of match-action tables for packet process-
ing. Data centers have reported table corruptions when
switch memory experiences soft errors (i.e., bit flips) and
these corruptions can lead to packet losses or incorrect
forwarding for a small portion of the traffic [25, 44]3.
Such corruptions are hard to detect using network ver-
ification tools because they cannot see the actual cor-
rupted tables. They are also hard to detect by sampled
NetFlow or EverFlow because we cannot pre-decide the
right set of packets to monitor. Instead, since FlowRadar
can monitor all the packets, we can see problems when
they happen (Section 6).

Fine-grained traffic analysis: Previous research has
shown that packet sampling is inadequate for many fine-
grained monitoring tasks such as understanding flow size
distribution and anomaly detection [22, 20, 30]. Since

3For example, the L2 forwarding table gets corrupted. The packet
that matches the entry can be flooded or mis-forwarded, leading to tran-
sient blackholes or loops before the entry is relearnt and corrected.

FlowRadar monitors all the packets, we can provide
more accurate traffic analysis and anomaly detection.

3.2 Temporal coverage

Per-flow loss map: Packet losses can be caused by a
variety of reasons (e.g., congestion, switch interface bug,
packet corruptions) and may have significant impact on
applications. Although each TCP connection can detect
its own losses (with sequence numbers or with switch
support [17]), it is hard for the operators to understand
where the losses happen inside the network, how many
flows/applications are affected by such loss, and how the
number of losses changes over time. NetFlow with
low sampling rates cannot capture losses that happened
to flows that are not sampled; and even for those sam-
pled flows, we cannot infer losses from estimated flow
counters. EverFlow can only capture control pack-
ets (e.g., NACK (Negative Acknowledgment)) to infer
loss and congestion scenarios. Instead, if we can deploy
FlowRadar at switches, we can directly get an overall
map of the per-flow loss rate for all the flows soon after
a burst of packets passes by (see Section 6).

Debugging ECMP load imbalance: ECMP load
imbalance can lead to inefficient bandwidth usage in
network and can significantly hurt application perfor-
mance [11]. Short-term load imbalance can be caused
by either (1) the network (e.g., ECMP not hashing on the
right flow fields) or (2) the application (e.g., the appli-
cation sends a sudden burst). If operators can quickly
distinguish the two cases, they can make quick reactions
to either reconfigure the ECMP functions for the network
problem or to rate limit a specific application for the ap-
plication problem.

EverFlow can diagnose some load imbalance prob-
lems by mirroring all the SYN and FIN packets and count
the number of flows on each ECMP paths. However, it
cannot diagnose either of the two cases above because it
does not have detailed packet counters for each flow and
does not know the traffic changes for these flows over
time. Traditional NetFlow has similar limitations (i.e.,
no track of flows over time).

Timely attack detection: Some attacks exhibit specific
temporal traffic patterns, which are hard to detect if we
just count the number of packets per flow as NetFlow, or
just capture the SYN/FIN packets as EverFlow. For ex-
ample, TCP low-rate attacks [29] send a series of small
traffic bursts that always trigger TCPs retransmission
timeout, which can throttle TCP flows to a small fraction
of the ideal rate. With per-flow counters at small time
scale, we can not only detect these attacks by temporal
analysis, but also report these attacks quickly (without
waiting for the inactive timeout in NetFlow).

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 315

Packets

01000 10100 00010
Flow filter

Counting
Table

Packets FlowXOR
FlowCount
PacketCount

Figure 2: IBLT based flow counters

4 FlowRadar Design

The key design in FlowRadar is an encoding scheme to
store flows and their counters in a small fixed-size mem-
ory, that requires constant insertion time at switches and
can be decoded fast at the remote collector. When there
is a sudden burst of flows, we can leverage network-wide
decoding to decode more flows from multiple encoded
flowsets. We also analyze the tradeoff between memory
usage and decoding success rates.

4.1 Encoded Flowsets
The key challenge for NetFlow is how to handle flow col-
lisions. Rather than designing solutions to react to flow
collisions, our design focuses on how to embrace colli-
sions: We allow flows to collide with each other without
extra memory usage, and yet ensure we can decode indi-
vidual flows and their counters at the collector.

There are two key designs that allow us to embrace
collisions: (1) First, we hash the same flow to multiple
locations (like Bloom filters). In this way, the chance
that one flow collide with other flows in one of the bins
decreases. (2) When multiple flows fall in the same cell,
it is expensive to store them in a linked list. Instead, we
use a XOR function to the packets of these flows without
using extra bits. In this way, FlowRadar can work with a
fixed-size memory space shared among many flows and
has constant update and insertion time for all the flows.

Based on the two designs, the encoded flowset data
structure is shown in Figure 2, which includes two parts:
The first part is the flow filter. The flow filter is just a
normal Bloom filter with an array of 0’s and 1’s, which
is used for testing if a packet belongs to a new flow or
not. The second part is the counting table which is used
to store flow counters. The counting table includes the
following fields:
• FlowXOR: which keeps the XOR of all the flows

(defined based on 5 tuples) mapped in the bin
• FlowCount: which keeps the number of flows

mapped in the bin
• PacketCount: which keeps the number of packets of

all the flows mapped in the bin
As indicated in Algorithm 1, when a packet arrives, we

first extract the flow fields of the packet, and check the
flow filter to see if the flow has been stored in the flowset
or not. If the packet comes from a new flow, we up-

Algorithm 1: FlowRadar packet processing
1 if ∃ i ∈ [1,k f], s.t. FlowFilter[HF

i (p.flow)]==0 then
2 FlowFilter.add(p.flow);
3 for j= 1..kc do
4 l = HC

j (p.flow);
5 CountTable[l].FlowXOR =

CountTable[l].FlowXOR ⊕ p.flow;
6 CountTable[l].FlowCount ++;
7 end
8 end
9 for j= 1..kc do

10 CountTable[HC
j (p.flow)].PacketCount ++;

11 end

date the counting table by adding the packet’s flow fields
to FlowXOR and incrementing FlowCount and Packet-
Count at all the kc locations. If the packet comes from an
existing flow, we simply increment the packet counters
at all the kc locations.

Each switch sends the flowset to the collector every a
few milliseconds, which we defined as time slots. In the
rest of the paper, we set the value of the time slot to 10ms,
unless explicitly setting it to other values in the context.

When FlowRadar collector receives the encoded
flowset, it can decode the per flow counters by first look-
ing for cells that include just one flow in it (called pure
cell). For each flow in a pure cell, we perform the same
hash functions to locate the other cells of this flow and re-
move it from all the cells (by XORing with the FlowXOR
fields, subtracting the packet counter, and decrementing
the flow counter). We then look for other pure cells and
perform the same for the flows in each pure cell. The
process ends when there are no pure cells. The detailed
procedure is illustrated in Algorithm 3 in the appendix.

4.2 Network-wide decoding

Operators can configure the encoded flowset size based
on the expected number of flows. However, there can
be a sudden burst in terms of the number of flows. In
that case, we may fail to decode some flows, when we
do not have any cell with just one flow in the middle of
the SingleDecode process. To handle a burst of flows,
we propose a network-wide decoding scheme that can
correlate multiple encoded flowsets at different switches
to decode more flows. Our network-wide decoding pro-
cess has two steps: decoding flows across switches and
decoding counters inside a single switch.

FlowDecode across switches: The key observation
is that if we use different hash functions at different
switches, and if we cannot decode one flow in one en-
coded flowset, it is likely that we may be able to de-

316 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

code the flow at another encoded flowset at a different
switch the flow traverses. For example, suppose we col-
lect flowsets at two neighboring switches A1 and A2. We
know that they have a common subset of flows from A1
to A2. Some of these flows may be single-decoded at A1
but not A2. If they match A2’s flow filter, we can remove
these flows from A2, which may lead to more one-flow
cells. We can run SingleDecode on A2 again.

Algorithm 2: FlowDecode
1 for i=1..N do
2 Si = SingleDecode(Ai);
3 end
4 f inish = false;
5 while not f inish do
6 f inish = true;
7 foreach Ai,A j are neighbor do
8 foreach f low in Si −S j do
9 if A j.FlowFilter.contains(f low) then

10 S j.add(f low);
11 for p=1..kc do
12 l = H j,C

p (f low);
13 A j.CountTable[l].FlowXOR =

A j.CountTable[l].FlowXOR ⊕ flow;
14 A j.CountTable[l].FlowCount -= 1;
15 end
16 end
17 end
18 foreach f low in S j −Si do
19 Update Si and Ai same as S j and A j
20 end
21 end
22 for i=1..N do
23 result = SingleDecode(Ai);
24 if result �= /0 then
25 f inish = false;
26 end
27 Si.add(result);
28 end
29 end

The general process of FlowDecode is described in Al-
gorithm 2. Suppose we have the N encoded flowsets:
A1..AN , and the corresponding sets of flows we get from
SingleDecode S1..SN . For any two neighboring Ai and
A j, we check the all the flows we can decode from Ai but
not A j (i.e., Si−S j) to see if they also appear at A j’s flow
filter. We remove those flows that match A j’s flow filter
from A j. We then run SingleDecode for all the flowsets
again, get the new groups of S1..SN and continue check-
ing the neighboring pairs. We repeat the whole process
until we cannot decode any more flows in the network.

Note that if we have the routing information of each
packet, FlowDecode can speed up, because for one de-
coded flow at Ai, we only check the previous hop and

next hop of Ai instead of all neighbors.

CounterDecode at a single switch: Although we can
easily decode the flows using FlowDecode, we cannot
decode the counters of them. This is because the coun-
ters at A and B for the same flow may not be the same due
to the packet losses and on-the-fly packets (e.g. packets
in A’s output queue). Fortunately, from the FlowDecode
process, we may already know all the flows in one en-
coded flowset. That is, at each cell, we know all the flows
that are in the cell and the summary of these flows’ coun-
ters. Formally, we know CountTable[i].PacketCount =
∑∀ f ,∃ j,HC

j (f)=i f .PacketCount for each cell i. Suppose the
flowset has mc cells and n flows, we have a total of mc
equations and n variables. This means we need to solve
MX = b, where X is the vector of n variables and M and b
are constructed from the above equations. We show how
to construct M and b in Algorithm 4 in the Appendix.

Solving a large set of sparse linear equations is not
easy. With the fastest solver lsqr (which is based on iter-
ation) in Matlab, it takes more than 1 minute to get the
counters for 100K flows. We speed up the computation
from two aspects. First, we provide a close approxima-
tion of the counters, so that the solver can start from the
approximation and reach the result fast. As the coun-
ters are very close across hops for the same flow, we can
get the approximated counters during the FlowDecode.
That is, when decoding Ai with the help of A j’s flows
(Algorithm 2 line 7 to 21), we treat the counter from A j
as the counter in Ai for the same flow. We feed the ap-
proximated counters to the solver as initial values to start
iteration, so that it can converge faster. Second, we use a
loose stopping criterion for the iteration. As the counter
is always an integer, we stop the iteration as long as the
result is floating within a range of ±0.5 around an in-
teger. This significantly reduces the rounds of iteration.
By these two optimizations, we reduce the computation
time by around 70 times.

4.3 Analysis of decoding errors

SingleDecode: We now perform a formal analysis of the
error rate in an encoded flowset. Suppose the flow filter
uses k f hash functions and m f cells; and the counting ta-
ble has kc hash functions and mc cells with sc bits per cell.
The total memory usage is mc · sc +m f . Assume there
are n flows in the encoded flowset. For the flow filter, the
false positive for a single new flow (i.e., the new flow be-
ing treated as an existing flow) is (1− e−k f n/m f)k f . Thus
the chance that none of the n flows experience false pos-
itives is ∏n−1

i=1 (1− (1−e−k f i/m f)k f). When the flow filter
has a false positive, we can detect it by checking if there
are non-zero PacketCounts after decoding. In this case
the counters are not trustful, but we still get all the flows.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 317

For the counting table, the decoding success rate of
SingleDecode (i.e., the chance we can decode all the
flows) is proved to be larger than O(1 − n−kc+2), if
mc > ckcn, where ckc is a constant associates with kc [24].
When we fail to decode some flows in the counting table,
the already decoded flows and their counters are correct.

We choose to use separated flow filter and counting
table rather than a combined one (i.e. the counting table
also serves as a bloom filter to test new flow), because
a combined one consumes much more memory. For a
combined one, for each packet, we check the kc cells it is
hashed to, and view this flow as a new flow if and only if
at least one of these kc cells’ FlowCount is 0. However,
this solution requires far more memory than the sepa-
rated solution. This is because for the counting table, a
good parameter setting is about kc = 3 and mc = 1.24n
when n is larger than 10K based on the guidelines in [24]
and our experiences in Section 5. In such a parameter set-
ting, when we treat the counting table as a Bloom filter,
the false positive rate for a new flow is (1− e−kcn/mc)kc

is larger than 99.9%. To keep the false positive rate low
enough for all the n flows, we would have to significantly
increase kc and mc.

NetDecode: We discuss FlowDecode and CounterDe-
code separately. For FlowDecode, we first consider a
simple pair-decode case, where we run NetDecode be-
tween two nodes with the same set of flows. This can
be viewed as decoding n flows in a large counting table
with 2kc hashes and 2mc cells. This means we will need
only half of the number of cells of the counting table
with 2kc hashes with SingleDecode. In our experiment,
we only need mc = 8K for decoding 10K flow appear at
both sides, which is even fewer than the number of flows.

For the more general network-wide FlowDecode, if all
nodes in the network have more flows than expected and
require FlowDecode, the decode success rate is similar
to the pair-decode case. This is because for each node A,
decoding its flows is similar to decoding the pair of A’s
flowset and the sum of flowsets from all the neighbors
containing A’s flows. However, it is more likely that only
a portion of the nodes have more flows than expected,
and the rest can SingleDecode. In this case, the decode
success rate is higher than the pair-decode case.

For CounterDecode, we need at least the same number
of linear equations as the number of variables (per flow
counters). Because we have one equation per cell, we
need the number of cells mc to be at least the number of
variables n. In practice, mc should be slightly larger than
the n, to obtain a high enough chance of having n linearly
independent equations.

The complete NetDecode process is bottlenecked by
CounterDecode not FlowDecode. This is because Coun-
terDecode requires more memory and takes more time
to decode. Since CounterDecode only runs on a single

node, the memory usage and decoding speed of NetDe-
code at a node mostly depends on the number of flows in
its own decoded flowset, rather than the number of other
flowsets that contain similar flows.

5 Evaluation

In this section, we demonstrate that FlowRadar can scale
to many flows and large networks with limited mem-
ory, bandwidth, and computing overhead, through sim-
ulations on FatTree topologies.

5.1 Scale to many flows

Parameter settings We set up a simulation network of
FatTree with k = 8 (80 switches). We set the number of
flows on each switch in 10 ms from 1K to 1000K. We
generate an equal number of flows between each inter-
Pod ToR pair. We then equally split these flows among
ECMP paths. In this way, each switch has the same num-
ber of flows. We set the flow filter to ensure that the prob-
ability that one of the n flows experiences a false positive
is 1/10 of the SingleDecode failure rate of the counting
table. We set the optimal k f and m f according to the for-
mulas in Section 4.3. We set kc = 4 because it is the best
for NetDecode. We select mc based on the guidelines
in [24]. We set the size of FlowCounter according to the
expected number of flows. We conservatively set both
NetFlow and FlowRadar packet counters as 4 Bytes, al-
though in FlowRadar we collect statistics in a short time
scale and thus would see much fewer packets and needs
fewer bytes for the packet counter. Since our results are
only related to the number of flows but not the packets,
we generate a random set of flows as input.

We run decoding on 3.60GHz CPU cores, and paral-
lelize decoding different flowsets on multiple cores.

The memory usage of FlowRadar is close to NetFlow
with a perfect hash table: We first compare the mem-
ory usage between NetFlow and FlowRadar. As dis-
cussed in Section 2, it is almost impossible in merchant
silicon to implement a hash-based design that handles
flow insertions and collisions within the per packet time
budget. If we implement a simple hash table, it would
take 8.5TB to store 100K flows to ensure a 99% chance
that there are no collisions. The actual data structure
used in custom silicon would be proprietary information.
Therefore, we compare with the best possible case for
NetFlow—a perfect hash table without any collisions.

Even with a perfect hash table, NetFlow still needs to
store in each cell the starting time of a flow and the time
the flow is last seen for calculating inactive timeout (4
Bytes each). However, in FlowRadar, we do not need
to keep timestamps in hardware because we use frequent

318 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

�

�

��

��

��

��

��

� �� ��� ����

�
��
��
�
��
��
��
�
��
���
�
��
��

� ����� ��� ������ ���

��������� �� ������������
������� ���� �� ��

��������� �� ���������
������� ���� ��� ��

Figure 3: Memory usage per switch

�����

����

���

�

��

���

� �� ��� ����

��
��
�
��
��
��
�
��
���
�
��
��
��

� ����� ��� ������ ���

����
�����

Figure 4: Bandwidth usage per switch

�

�

��

��

��

��

��

� �� ��� ����

�
��
���
��
��
��
��
��
��
��
��
��
��
�
��
�

�������� � ����� ��� ������ ���

Figure 5: Extra #flows using NetDecode

reporting in a short scale. To fully decouple the benefit of
FlowRadar data structure and removing timestamps, we
also compare with perfect hashing without timestamps,
which can be viewed as the optimal case we can reach.

Figure 3 shows that NetFlow with perfect hashing
needs 2.5 MB per switch. FlowRadar needs only
2.88MB per switch with SingleDecode and 2.36MB per
switch with NetDecode to store 100K flows with 99% de-
coding success4, which is +15.2% and -5.6% compared
to 2.5MB used by NetFlow. The best possible memory
usage with perfect hashing without timestamps is 1.7MB
per switch. With 1M flows, we need 29.7MB per switch
for SingleDecode and 24.8MB per switch for NetDe-
code, which is +18.8% and -0.8% compared to NetFlow
with perfect hashing and timestamps.

FlowRadar requires only a small portion of band-
width to send encoded flowsets every 10ms. Figure 4
shows that we only need 2.3Gbps per switch to send en-
coded flowsets of 100K flows with 10ms time slot, and
0.23Gbps with 100ms time slot. In Facebook data cen-
ter and traffic setting [35], a rack switch connects to 44
hosts with 10Gbps links, where each host send at most
100s to 1000s of concurrent flows in 5ms. Suppose there
are a total of 2K*44 flows in 10ms in the rack switch,
FlowRadar only incurs less than 0.52% of bandwidth
overhead (2.3Gbps/(44*10Gbps)) with 10ms time slot.

FlowRadar with NetDecode can support 26.6-30%
more flows than SingleDecode, with more decoding
time Operators can configure FlowRadar based on the
expected number of flows. When the number of flows
goes beyond the expected number, we can use NetDe-
code to decode more flows given the same memory. Fig-
ure 5 shows with 1K to 1M expected number of flows,
NetDecode can decode 26.6-30% more flows than Sin-
gleDecode given the same memory. So our solution can
tolerate bursts in the number of flows.

Figure 6 shows the average decoding time of each
flowset for the case with 100K expected flows. When
the traffic is below 100K flows, the collector can run
SingleDecode to quickly detect all the flows within 10
ms. When the traffic goes beyong 100K flows, we need

4Note that even in the 1% of cases we cannot successfully decode
all flows, we can still decode 61.7% of the flows on average.

NetDecode, which takes 283ms and 3275ms to decode
flowsets with respective 101K flows and 126.8K flows.

We break down the NetDecode time into CounterDe-
code and FlowDecode. The result is shown in Figure 7.
As the number of flows increases, the CounterDecode
time increases fast, but the FlowDecode time remains
low. If we just need to decode the flows, we need only
135ms, which is very small portion compared to Coun-
terDecode’s 3140ms. Note that the burst of flows does
not always happen, so it is fine to wait for extra time to
get the decoded flows and counters.

We do not rely on the routing information to reduce
the NetDecode time, because it only helps reduce the
FlowDecode time, which is only a small portion of the
NetDecode time. The routing information can help re-
duce the FlowDecode time by 2 times.

5.2 Scale to many switches

We now investigate how FlowRadar scales with larger
networks. For direct comparison, we assume the same
number of flows per switch with different network sizes.

The memory and bandwidth usages per switch do not
change with more switches: This is because the de-
coding success rate only relates to the number of flows
and number of cells. Obviously this is true for SingleDe-
code. For NetDecode this is also true, because as long as
all flows appear in at least 2 flowsets, NetDecode’s de-
coding rate is similar no matter how many flowsets the
flows appear in. The reason is that the bottleneck of the
number of flows can be decoded is from CounterDecode,
which is independent from other flowsets. For flowsets
with 102.5K cells, two such flowsets can already decode
more than 110K flows, but the CounterDecode can only
support 100K flows (limited by the number of linearly
independent equations).

Decoding requires proportionally more cores with
more switches: The SingleDecode time per switch only
relates to the number of flows in a flowset. For example,
to decode 100K flows within 10ms, we need the same
number of cores at the remote collector as the number
of switches. This means for a network with 27K servers
(K=48 FatTree) and 16 cores per server, we need about

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 319

���

�

��

���

����

�����

�� �� �� �� ��� ��� ���

�
��
�
��
��
��
�
�
��
�
��
�
��
���
�
��
��

� ����� ��� ������ ���

Figure 6: Decoding time

��

���

����

�����

��� ��� ��� ��� ��� ��� ���

�
��
�
��
��
��
�
�
��
�
��
�
��
���
��
�
��

� ����� ��� ������ ���

���������� ��� �������
���������� �� �������

�������������

Figure 7: Breakdown of NetDecode
Time

��

���

���

���

���

���

���

���

���

���

� � � �� �� �� ��

�
��
�
��
��
��
�
�
��
�
��
�
��
���
�
��
��

� ������� �� ��������� �� ���� �������

���������� ��� �������
���������� �� �������

Figure 8: FlowDecode Time with differ-
ent network size

S3

S2 S5

S4

S1

Figure 9: A flow path that has cycle

0.65% of the servers for the decoding.
NetDecode only happens during bursts of flows. The

decoding time per switch increases slowly with more
switches, because most time is spent on CounterDecode,
which only relates to the number of flows in a flowset.

The FlowDecode time increases with larger networks,
because it takes more time to check a decoded flow with
the neighboring switches, when there are more neighbors
in a larger network. In a FatTree network, suppose each
switch has k neighbors. The total number of switches
in the network is n = 5

4 k2, so each flowset only checks
with O(

√
n) other flowsets. We tested the FlowDecode

time with different FatTree network sizes by increasing k
from 4 to 16. The memory on each switch is set expect-
ing 100K flows for SingleDecode. We generate traffic
such that the number of flows on each switch reaches
the maximum number (126.8K) that could be NetDe-
coded. Figure 8 shows the result. The FlowDecode time
increases linearly with k. However, it is still a small por-
tion compared to CounterDecode time. For 126.8K flows
per switch and k = 16 FatTree, FlowDecode only takes
0.24 seconds, which is 7.1% of the total decoding time.
Routing information can speed up FlowDecode to 0.093
seconds, which is 2.9% of the total decoding time.

6 FlowRadar Analyzer

We show two use cases of FlowRadar: transient loop and
blackhole detection with network-wide flow analysis and
providing per-flow loss map with temporal analysis.

6.1 Transient loop/blackhole detection

With FlowRadar, we can infer the path for each flow
by concatenating the switches that have records for that
flow. As a result, we can easily provide a network-wide
map of all the loops and blackholes, the time they hap-
pen, and the flows they affected.

Loops: We first identify all the switches that see the
same flow during each time slot. If the switches form a
cycle, then we suspect there is a loop. We cannot con-
clude that there is a loop because this may be caused by
a routing change. For example, in Figure 9, we may ob-
serve counters at all the switches in one time slot with
FlowRadar, which forms a cycle (S2,S3,S4,S5). How-
ever, this may be caused by a routing change from S1 →
S2 → S5 to S1 → S2 → S3 → S4 → s5 within the time
slot. To confirm, we need to compare the counter on the
hop that is not in the cycle (counter1), and the counter on
one hop in the cycle (counter2). If counter1 < counter2
then we can conclude that there is a loop. For example,
if counter on S1 < counter on S3, we know this is a loop.

Blackholes: If a transient blackhole is longer than a
slot’s time, we can detect it by seeing the path of some
flows stopped at some hop. If a transient blackhole is
shorter than a slot’s time, we still see a large difference
between the counters before and after the blackhole at
one slot. Note that we do not need the counters, but only
the flow information to detect blackhole. Thus, during
flow bursts, we can run FlowDecode without Counter-
Decode to detect blackholes faster.

Evaluation: We create a FatTree k=4 topology with
16 hosts and 20 switches in DeterLab [2]. We modify
Open vSwitch [6] to support our traffic collection. We
direct all the packets to the user space and maintain the
encoded flowsets. We install forwarding rules for indi-
vidual flows with different source and destination IP pair.
We send persistent flows from each host to all the other
hosts, which send one packet every 5 ms. This is to make
sure that each flow has at least one packet in each time
slot even if some packets is close to the slot’s boundary.

We simulated a case that a VM migration causes a
transient loop when the routing table on the edge switch
S1 of the old VM location is updated so it sends pack-
ets up to the aggregation switch S2. But S2 has not been
updated so it sends packets back to S1. We manually up-
dated a rule at the edge switch S1 at around 10ms, which
forms a loop S1 → S2 → S1, where S2 is an aggregation
switch. We can detect the loop within 10ms.

To generate a blackhole, we manually remove a rout-
ing rule at an edge switch. We can detect the blackhole

320 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

�

���

���

���

���

�

� �� �� �� �� ��� ��� ��� ���

�
�
�
��
��
��
�

����� ����

Figure 10: CDF of loss detection delay

within 20 ms. This is because there are still traffic in the
first 10ms when the blackhole happens. So we can only
confirm in the next 10ms.

6.2 Per-flow loss map
FlowRadar can generate a network-wide loss map by
comparing the per-flow counters between the upstream
and downstream switches (or hosts) in a sequence of time
slots. A simple approach is that for each flow, the differ-
ence between the upstream and downstream counters is
the number of losses in each time slot. However, this
approach does not work in practice because it is impos-
sible for the two switches capture exactly the same set
of packets, even though today’s data centers often have
well synchronized clocks across switches at milliseconds
level. This is because there are always packets on the fly
between upstream and downstream switches (e.g., in the
switch output queue).

To address this problem, we can wait until the flow
finishes to compare its total number of packets at differ-
ent hops. But this takes too long. Instead, we can detect
losses faster by comparing counters for flowlets instead
of flows. Suppose a time slot in FlowRadar is 10ms.
We define flowlets as bursts of packets from a flow that
are separated by gaps larger than a time slot [27]. With
FlowRadar, we can identify flowlets between two time
slots with counters equal to zero. Given a flowlet f , the
upstream and downstream switches collect sequences of
counters: U1...Ut and D1...Dt (D0 and Dt+1 are zero). We
compute the total number of losses for the flowlet f as
∑t

i=1(Ui)−∑t
i=1(Di). This is because if a packet does

not arrive at the downstream switch for at least 10ms, it
is very likely this packet is lost.

With this approach, we can get the accurate loss num-
bers and rates for all the flowlets that have finished.
The key factor for our detection delay is the duration of
flowlets. Fortunately, in data centers, many flows have
short flowlets. For example, in a production web search
workload [13], 87.5% of the partition/aggregate query
flows are separated by a gap larger than 15 ms. 95% of
query flows can finish within 10ms. Moreover, 95% of
background large flows have 10-200 ms flow completion
times with potential flowlets in them.

Evaluation: We evaluate our solution in a k=8 FatTree

topology in a ns-3 simulator [5]. The FatTree has 128
hosts connected with 80 switches using 10G links. We
take the same workload distribution from a production
web search data center [13], but add the 1000 partition-
aggregate queries per second with 20 incast degree (i.e.,
the number of responding nodes) and packet sizes of
1.5KB. The queue size of each port in our experiment
is 150KB which means 100 packets of size 1.5KB. The
flowlet durations are mostly shorter than 30ms with the
maximum as 160ms. 50% of background traffic has 0ms
interarrival time indicates application sends a spike of
flows. The rest at least 40% of background traffic has
interarrival time larger than 10ms for periodical update
and short messages.

We run FlowRadar to collect encoded flowsets every
10ms at all the switches. We define detection delay as the
time difference between when the loss happens and when
we report it. Figure 10 shows the CDF of loss detection
delay. We can detect more than 57% of the losses within
20ms, and more than 99% of the losses within 50ms.

7 Implementation

We now discuss the implementation issues in FlowRadar.

Encode and export flow counters at switches:
FlowRadar only requires simple operations (e.g., hash-
ing, XOR, and counting) that can be built on existing
merchant silicon components. For example, hashing is
already used in Layer 2 forwarding and ECMP functions.
With the trend of programmable switches (e.g., P4 [8]),
FlowRadar can be easier to implement.

We have implemented our prototype in P4 simula-
tor [9], which will be released at [3]. We use an ar-
ray of counters to store our counting table and flow
filter. On each packet’s arrival, we use the mod-
ify field with hash based offset API to generate the kc
hash values for counting table and k f hash values for
flow filter, and use bit xor API to xor the header into the
flowXOR field. In the control plane, we use the state-
ful read counter API to read the content in our data.

Since the encoded flowset is small, we can export the
entire encoded flowset to the collector rather than export-
ing them on a per flow basis. To avoid the interruptions
on the data plane during the exporting phase, we can use
two encoded flowset tables: the incoming packets update
one table while we export data in another table. Note that
there is a tradeoff between the memory usage and export-
ing overhead. If we export more often (with a smaller
export interval), there are fewer flows in the interval and
thus require fewer memory usage. Operators can config-
ure the right export interval based on the number of flows
in different time scales and the switch performance. For
this paper, we set the time interval as 10 ms.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 321

Deployment scenarios: Similar to NetFlow, we can
deploy FlowRadar’s encoded flowset either per port or
per switch. The per-switch case would use less memory
than per-port case because of multiplexing of flows. That
is, it is unlikely that all the ports experience a burst in
terms of the number of flows at the same time.

In the per-switch case, we still need to distinguish the
incoming and outgoing flows (e.g., the two unidirectional
flows in the same connection). One way to do this is
to store the input port and output port as extra fields in
the encoded flowset such as InputPortXOR and Output-
PortXOR as what we did for the 5-tuple flow fields.5 An-
other way is to maintain two encoded flowsets, one for
incoming flows and another for outgoing flows.

FlowRadar can be deployed in any set of switches.
FlowRadar can already report the per-flow counters in
short time scales independently at each deployed switch.
If FlowRadar is deployed at more switches, we can lever-
age network-wide decoding to handle more number of
flows in a burst. Note that our network-wide decoding
does not require full deployment. As long as there are
flows that traverse two or more encoded flowsets, we
start to gain benefits from network-wide decoding. Op-
erators can choose where to deploy, and they know the
flows where they deployed FlowRadar. In the ideal case,
if all switches are deployed, then we know the per-flow
counters at all locations, and the paths of the flows. Op-
erators could also choose a subset of switches. For ex-
ample, if we deploy only on ToR switches, the counters
still cover all the events (e.g. loss) in the network, but
we no longer know the exact locations where the flows
appear in the network. As we mentioned in Section 5.2,
the decoding success rate does not change as long as we
have at least 2 flowsets, so partial deployment does not
affect decoding success rate.

8 Related Work

8.1 Monitoring tools for data centers
Due to the problems of NetFlow, data center operators
start to invent and use other monitoring tools. In addi-
tion to sFlow [40] and EverFlow [44], there are other
in-network monitoring tools. OpenFlow [32] provide
packet counters for each installed rules, which is only
useful when the operators know which flows to track.
Planck [34] leverages sampled mirroring at switches,
which may not be sufficient for some monitoring tasks
we discussed in Section 2. There are also many end-host
based monitoring solutions such as SNAP which cap-
tures TCP-level statistics [41] and pingmesh [25] which
leverages active probes. FlowRadar is complementary

5Similarly, one can easily add other flow properties (e.g., VLAN)
as XOR sum fields.

to the end-host based solutions by providing in-network
view for individual flows.

8.2 Measurement data structures

There have been many hash-based data structures for
measurement. Compared to them, FlowRadar has three
unique features: (1) Store flow-counter pairs for many
flows; (2) Easy to implement in merchant silicon; (3)
Support network-wide decoding across switches.

Data structures for performance measurement and
volume counting: Varghese et. al. proposed a group
of data structures for loss, latency, and burst measure-
ment [28, 37]. However, none of these solutions can
maintain per flow metrics and scale to a large num-
ber of flows. There are many hash-based data struc-
tures that can keep per-flow state with small mem-
ory [15, 42, 36, 43]. However, most of them do not suit
for NetFlow because they can only keep the values (i.e.,
per flow state). Instead, FlowRadar provides the key-
value pairs (i.e., the flow tuples and the packet counters)
and can scale to a large number of flows.

Hash-based data structures for storing key-value
pairs: Cuckoo hashing [33] and d-left hashing [14, 38]
are two hash table designs that can store key-value pairs
with low memory usage. However, both are hard to im-
plement in merchant silicon for NetFlow. This is because
NetFlow requires inserting a flow immediately for an in-
coming packet so that follow up packets can update the
same entry (i.e., atomic read-update operations). Other-
wise, if one packet reads a cell that is being updated by
a preceding packet, the counters become incorrect. To-
day, merchant silicon already has transactional memory
that supports read-update operations in an atomic way
for counters. However, typical merchant silicon can han-
dle read-update operations against only a few (up to four)
4B- or 8B-long counters for each packet6. This is be-
cause to support high link rate of merchant silicon (typi-
cally a few Tbps today), merchant silicon must resort to
a highly-parallelized packet-processing design, and the
atomic-execution logic is at odds with such parallelism.
In fact, to support such atomic read-update semantics
for a small number of counters, merchant silicon has
to employ various complicated hardware logic similar to
operand forward [7].

A d-way Cuckoo hash table [33] hashes each key to d
positions and stores the key in one of the empty positions.
When all the d positions are full, we need to rebuild the
table by moving items around to make room for the new
key. However, this rebuilding process can only be im-
plemented with switch software (i.e., the control plane),

6Note the total number of counters can still be larger; only the num-
ber of concurrently read-and-updatable counters is small.

322 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

because it requires multiple, and often-unbounded num-
ber of memory accesses [33]. Running the rebuilding
process in switch software is not suitable for NetFlow,
because NetFlow requires atomic read-update semantics.

d-left hashing splits a hash table with n buckets into
d equal subtables each with n/d buckets, where each
bucket contains L cells to hold up to L keys. d-left hashes
a new key to d buckets, one in each subtable, and put the
key in the bucket with the least load, breaking ties to the
left. d-left requires first reading all Ld cells and testing
if there is any match for an incoming flow. If there is
a match, we increment the counter; otherwise, we put
a new entry in an empty cell in the least-loaded bucket.
There are two key challenges in supporting d-left: First,
rather than read-update operations, d-left requires atomic
read-test-update operations. The testing logic requires
not only more ALUs and MUXes but also significantly
increase the complexity of the atomic operation logic,
making the critical section much longer in time. Second,
d-left can only make insertion decisions after the testing
on all Ld cells (each cell with 13 bytes 5-tuple fields and
4 bytes counter) are finished, which also increases the
size of the atomic operation logic. Longer atomic op-
eration duration can be a disaster for highly parallelized
packet processing in merchant silicon.

In contrast, FlowRadar is easier to implement in mer-
chant silicon, because of three reasons: First, FlowRadar
only requires atomic read-update operations (i.e., incre-
ment/xor) rather than atomic read-test-update, which is
much simpler in silicon design and has shorter atomic
operation duration. Second, FlowRadar only requires
atomic operations on a single cell and packets can up-
date different cells in parallel. Thus FlowRadar requires
significantly shorter atomic operations and is better fit for
merchant silicon with high line rate.

It is impossible to support d-left with today’s merchant
silicon because the smallest d-left configuration (i.e.,
d = 4 and L = 1) needs to atomically read-test-update
4*17=68B, but today’s silicon only supports 4*8B=32B.
Thus, we compare FlowRadar with the basic d-left set-
ting (i.e., d = 4 and L = 1) that may be supported in fu-
ture silicon, and the setting recommended by [16] (i.e.,
d = 3 and L = 5) which is even harder to implement.
To hold 100K flows on a memory of 2.74MB, the ba-
sic d-left has an overflow rate of 1.04%; both FlowRadar
and the recommended d-left have no overflow. During
flow bursts, FlowRadar can still report flows even when
the counters cannot be decoded. Such flow information
can be used for a variety of tasks like transient black-
hole detection, route verification, and flow duration mea-
surement. For example, to hold 152K flows in 2.74MB
memory, the basic d-left has an overflow rate of 10%;
the recommeded d-left has an overflow rate of 1.2%;
FlowRadar can still decode all 152K flows (but not their

counters).

Invertible Bloom filter Lookup Table (IBLT):
FlowRadar is inspired by Invertible Bloom filter
(IBF) [21] and Invertible Bloom filter Lookup Table
(IBLT) [24]. IBF is used to keep a set of items. By com-
paring two IBFs, one can easily extract the differences
between two sets. Rather then keeping a set of elements,
FlowRadar needs to collect a key-value store of flows
and their packet counters.

IBLT is an extension of IBF that can store key-value
stores. Our counting table is built upon IBLT, but has
two key extensions: (1) How to handle value updates.
Since IBLT does not have a flow filter before it to iden-
tify if a key is new or old, it treats an existing key with a
new value as a new key-value pair which has duplicated
keys with existing key-value pairs. It then uses an arith-
metic sum instead of a XOR sum in FlowXOR field, and
a sum of hash values of the flows instead of a simple flow
counter. This design takes more bits in both FlowXOR
and FlowCount fields, which takes as much memory as
FlowRadar uses for the flow filter. It also requires com-
putations over large numbers (beyond 64bit integer), and
more complex hash functions. Our experiments show
that IBLT saves only 2.6% of memory for 100K keys but
at the expense of 4.6 times more decoding time. (2) How
to decode the keys. Our single node encoding scheme is
similar to IBLT’s, but takes much less time because of
the simple FlowXOR and FlowCount fields. Moreover,
with an extra flow filter, we support network-wide flow
and counter decoding across multiple encoded flowsets.

9 Conclusion

We present FlowRadar, a new way to provide per-
flow counters for all the flows in short time scales,
which provides better visibility in data center networks.
FlowRadar encodes flows and their counters with a small
memory and constant insertion time at switches. It then
introduces network-wide decoding of flowsets across
switches to handle bursts of flows with limited memory.
Our design can be improved in many aspects to further
reduce the cost of computation, memory, and bandwidth,
such as reducing the NetDecode time and better ways to
leveraging redundancies across switch hops.

10 Acknowledgment

We thank our shepherd Sujata Banerjee, George Vargh-
ese, and the anonymous reviewers for their help-
ful feedbacks. This paper is partially supported by
CNS-1453662, CNS-1423505, CNS-1413972, NSFC-
61432009, and Google.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 323

APPENDIX

A Algorithms

Algorithm 3: Decoding at a single node
1 Function SingleDecode(A)
2 flowset = /0;
3 foreach c where CountTable[c].FlowCount==1 do
4 flow = A.CountTable[c].FlowXOR;
5 flowset.add(flow);
6 count = A.CountTable[c].PacketCount;
7 for j=1..kc do
8 l=HC

j (flow);
9 A.CountTable[l].FlowXOR =

CountTable[l].FlowXOR ⊕ flow;
10 A.CountTable[l].FlowCount -= 1;
11 A.CountTable[l].PacketCount -= count;
12 end
13 end
14 return flowset;

Algorithm 4: Linear equations for CounterDecode
1 Function ConstructLinearEquations(A,S)
2 M=ZeroMatrix; b=ColumnVector;
3 foreach f lowt in S do
4 for j=1..kc do
5 l = HC

j (f lowt); M[l,t] = 1;
6 end
7 end
8 foreach CountTable[j] in A do
9 b[j] = CountTable[j].PacketCount;

10 end

References

[1] http://www.cisco.com/c/en/
us/products/collateral/
ios-nx-os-software/ios-netflow/
prod_white_paper0900aecd80406232.
html.

[2] deterlab.net.

[3] Flowradar implementation in p4. https://
github.com/USC-NSL/FlowRadar-P4.

[4] NetFlow. https://www.ietf.org/rfc/
rfc3954.txt.

[5] ns-3 simulator. https://www.nsnam.org/.

[6] Open vSwitch. http://openvswitch.org/.

[7] Operand forwarding. https://en.
wikipedia.org/wiki/Operand_
forwarding.

[8] P4 language consortium. p4.org.

[9] P4 simulator. https://github.com/
p4lang.

[10] Packet loss impact on tcp throughput
in esnet. http://fasterdata.
es.net/network-tuning/
tcp-issues-explained/packet-loss/.

[11] Solving the mystery of link imbal-
ance a metastable failure state at scale.
https://code.facebook.com/posts/
1499322996995183/.

[12] Router overhead when enabling net-
flow. http://blog.tmcnet.com/
advanced-netflow-traffic-analysis/
2013/05/router-overhead-when-enabling-netflow.
html, 2013.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data center TCP (DCTCP). In SIGCOMM,
2010.

[14] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Up-
fal. Balanced allocations. SIAM J. Comput., 29(1),
1999.

[15] F. Bonomi, M. Mitzenmacher, R. Panigrahy,
S. Singh, and G. Varghese. Beyond bloom filters:
From approximate membership checks to approxi-
mate state machines. In SIGCOMM, 2006.

[16] F. Bonomi, M. Mitzenmacher, R. Panigraphy,
S. Singh, and G. Varghese. Bloom filters via d-left
hashing and dynamic bit reassignment extended ab-
stract. In Forty-Fourth Annual Allerton Conf., Illi-
nois, USA, pages 877–883, 2006.

[17] P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the
whole lot in an action: Rapid precise packet loss
notification in data centers. In NSDI, 2014.

[18] Cisco. Netflow performance analysis. White paper,
2005.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In ACM SIGOPS,
2007.

324 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[20] N. Duffield, C. Lund, and M. Thorup. Estimating
flow distributions from sampled flow statistics. In
ACM SIGCOMM, 2003.

[21] D. Eppstein, M. Goodrich, F. Uyeda, and G. Vargh-
ese. What’s the difference? efficient set difference
without prior context. In SIGCOMM, 2011.

[22] C. Estan, K. Keys, D. Moore, and G. Varghese.
Building a better netflow. ACM SIGCOMM, 2004.

[23] C. Estan and G. Varghese. Data streaming in com-
puter networking. In Workshop on Management
and Processing of Data Streams, 2003.

[24] M. T. Goodrich and M. Mitzenmacher. Invertible
bloom lookup tables. In arXiv:1101.2245v2, 2011.

[25] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W.
Lin, and V. Kurien. Pingmesh: A large-scale sys-
tem for data center network latency measurement
and analysis. In SIGCOMM, 2015.

[26] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I know what your packet did
last hop: Using packet histories to troubleshoot net-
works. In NSDI, 2014.

[27] S. Kandula, D. Katabi, S. Sinha, and A. Berger.
Dynamic load balancing without packet reordering.
SIGCOMM Comput. Commun. Rev., 37(2), 2007.

[28] R. Kompella, K. Levchenko, A. Snoeren, and
G. Varghese. Every microsecond counts: Tracking
fine-grain latencies with a loss difference aggrega-
tor. In SIGCOMM, 2009.

[29] A. Kuzmanovic and E. W. Knightly. Low-rate tcp-
targeted denial of service attacks (the shrew vs. the
mice and elephants). In SIGCOMM, 2003.

[30] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and
H. Zang. Is sampled data sufficient for anomaly
detection? In Proceedings of the 6th ACM SIG-
COMM conference on Internet measurement, IMC
’06, pages 165–176, New York, NY, USA, 2006.
ACM.

[31] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the tcp congestion avoid-
ance algorithm. In SIGCOMM Comput. Commun.
Rev., 1997.

[32] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling Innovation in

Campus Networks. SIGCOMM Computer Commu-
nication Review, 38(2), 2008.

[33] R. Pagh and F. F. Rodler. Cuckoo hashing. In Al-
gorithms — ESA 2001. Lecture Notes in Computer
Science 2161.

[34] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for com-
modity networks. In SIGCOMM, 2014.

[35] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the social network’s (datacenter)
network. In SIGCOMM, 2015.

[36] H. Song, S. Dharmapurikar, J. Turner, and J. Lock-
wood. Fast hash table lookup using extended
Bloom filter: An aid to network processing. In SIG-
COMM, 2005.

[37] F. Uyeda, L. Foschini, F. Baker, S. Suri, and
G. Varghese. Efficiently Measuring Bandwidth at
All Time Scales. In NSDI, 2011.

[38] B. Vöcking. How asymmetry helps load balancing.
J. ACM, 50(4), 2003.

[39] W. Vogels. Performance and scalability.
http://www.allthingsdistributed.
com/2006/04/performance_and_
scalability.html, 2009.

[40] M. Wang, B. Li, and Z. Li. sflow: Towards
resource-efficient and agile service federation in
service overlay networks. Distributed Computing
Systems, International Conference on, 0:628–635,
2004.

[41] M. Yu, A. Greenberg, D. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim. Profiling Net-
work Performance for Multi-tier Data Center Ap-
plications. In NSDI, 2011.

[42] M. Yu, L. Jose, and R. Miao. Software Defined
Traffic Measurement with OpenSketch. In NSDI,
2013.

[43] D. Zhou, B. Fan, H. Lim, D. G. Andersen, and
M. Kaminsky. Scaling up clustered network appli-
ances with ScaleBricks. In SIGCOMM, 2015.

[44] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-level telemetry in large
datacenter networks. In SIGCOMM, 2015.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 325

Sibyl: A Practical Internet Route Oracle

Ítalo Cunha†∗ Pietro Marchetta‡∗ Matt Calder� Yi-Ching Chiu�

Brandon Schlinker� Bruno V. A. Machado† Antonio Pescapè‡

Vasileios Giotsas� Harsha V. Madhyastha+ Ethan Katz-Bassett�

†Universidade Federal de Minas Gerais ‡University of Napoli "Federico II"
�University of Southern California �University of California San Diego/CAIDA +University of Michigan

Abstract
Network operators measure Internet routes to trou-
bleshoot problems, and researchers measure routes to
characterize the Internet. However, they still rely on
decades-old tools like traceroute, BGP route collectors,
and Looking Glasses, all of which permit only a sin-
gle query about Internet routes—what is the path from
here to there? This limited interface complicates answer-
ing queries about routes such as “find routes traversing
the Level3/AT&T peering in Atlanta,” to understand the
scope of a reported problem there.

This paper presents Sibyl, a system that takes rich
queries that researchers and operators express as regu-
lar expressions, then issues and returns traceroutes that
match even if it has never measured a matching path in
the past. Sibyl achieves this goal in three steps. First,
to maximize its coverage of Internet routing, Sibyl inte-
grates together diverse sets of traceroute vantage points
that provide complementary views, measuring from thou-
sands of networks in total. Second, because users may
not know which measurements will traverse paths of inter-
est, and because vantage point resource constraints keep
Sibyl from tracing to all destinations from all sources,
Sibyl uses historical measurements to predict which new
ones are likely to match a query. Finally, based on these
predictions, Sibyl optimizes across concurrent queries to
decide which measurements to issue given resource con-
straints. We show that Sibyl provides researchers and op-
erators with the routing information they need—in fact,
it matches 76% of the queries that it could match if an
oracle told it which measurements to issue.

1 Introduction

Operators and researchers need Internet route measure-
ments to keep the Internet running smoothly, to under-
∗The two lead authors are listed alphabetically. They conducted

some of this research as visiting scholars at USC.

stand its behavior, and to improve it for the future [61, 75].
Route measurements help identify performance prob-
lems caused by circuitous routing [34, 58, 73], loops
and loss caused by inconsistency during route conver-
gence [11, 23, 28, 35, 36, 52, 60, 69], and outages caused
by misconfigurations [7, 31, 32, 51, 74]. Route measure-
ments can reveal malicious hijacks [76] and inadvertent
routing leaks [24]. Route measurements are also used to
understand the Internet’s structure [2, 6, 29, 41, 57, 71]
and performance [42].
The ideal: An Internet route oracle. Given the im-
portance of route measurements, one can imagine a cen-
tralized platform that could be queried for any Internet
route of interest. Which end-points in Europe route to
each other circuitously via networks in other continents?
Which routes traverse the Atlanta peering between Level3
and AT&T that seems to be experiencing congestion? Is
the problem more widespread—which routes traverse a
peering between Level3 and AT&T that is not in Atlanta?
Which routes go through Level3 in Atlanta without go-
ing through AT&T? Which Tor exit nodes have routes
to my destination that do not traverse the US? A plat-
form that can answer such questions would enable better
understanding and faster troubleshooting for researchers
and operators.
The reality: Traceroute. While such a platform would
be enormously useful, the reality today is far from it.
We are stuck with tools like traceroute. While tracer-
oute is simple, widely used, and has been incredibly use-
ful [1, 2, 6, 7, 13, 22, 27, 29, 31, 32, 41, 42, 51, 57, 61, 71,
73, 74, 75, 76], it offers a very limited capability–it can
only answer “what is the path from here to there?” We
are used to asking this question, so it seems natural, but
in fact it is only one of the many questions we might ask
about Internet routes, limiting the ability of operators and
researchers to access the routing information they need.
The Outages network operators mailing list [51] illus-
trates the problem—operators frequently send a tracer-
oute to the mailing list when experiencing problems [7],

1

326 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

asking other operators to send traceroutes from their van-
tage points, in the blind (and often unsuccessful) hope
that someone will issue a measurement that illuminates
the problem.
Our contribution: A practical traceroute-based oracle.
While a complete oracle for Internet routing is clearly
infeasible without radical changes to the network, we
demonstrate that we can come surprisingly close using
only available vantage points and measurement tools.

We present Sibyl,1 our system that can serve a rich set of
queries about Internet routes. Sibyl’s interface is simple
yet powerful: a user submits a regular expression de-
scribing paths of interest (§3.2), and Sibyl returns routes
that match. Users need not worry about which vantage
points to use, how to access or configure them, or which
destinations to target. Behind the scenes, Sibyl issues
traceroutes from a diverse set of vantage points, with the
goal of satisfying a query if any vantage point has routes
that match. Our evaluation in Section 8.2 shows that
combining vantage points from multiple measurement
platforms achieves unprecedented coverage, better than
even successful crowd-sourced measurements [55, 56].
The problem: Resource constraints limit measure-
ment budgets. Although the integration of multiple sets
of vantage points offers the potential to improve cover-
age [8, 64], most vantage points are severely constrained
in the number of measurements they can issue. This
constraint occurs because the most diverse sets of van-
tage points are in home networks [55, 56, 57, 62], on
personal phones [73], and on production devices [63],
settings in which measurements cannot be allowed to in-
terfere with other uses of already scarce resources. Thus,
exhaustive probing to answer a query is infeasible, and
allocating limited measurements to maintain an up-to-
date atlas in the face of path changes is an extremely hard
problem [15].

The main challenge in building Sibyl to serve any query
is that, due to its limited probing budget, it may have
never previously measured a path that matches the query
or, even if it did, the path may have changed since. As a
result, it needs to serve queries despite uncertainty about
which measurements match the queries.
Our approach: Allocate measurement budget based
on predictions. Our primary technical contributions to
overcome this challenge are three-fold. First, we demon-
strate how Sibyl can use the structure of a query to focus
its attention on a small number of traceroutes to con-
sider issuing (§6). Second, we design a prediction engine
which uses an atlas of previously-issued traceroutes to
predict which unissued traceroutes are likely to match
input queries (§5). Third, we develop an optimization

1Named for the oracular Sibyls of ancient Greece, not the pesky Sybils
who keep undermining our P2P systems.

framework that uses the predictions to allocate Sibyl’s
probing budget to measurements that maximize how well
it satisfies input queries (§4).

Building an effective prediction engine requires ad-
dressing potential causes of inaccuracy. First, the predic-
tion engine could make an incorrect prediction from even
an up-to-date atlas, due to inaccuracies in the model-
ing of routing policy. Second, measurements in the atlas
may become out-of-date. So, we develop techniques to
evaluate how likely a prediction is to be correct (§5.2),
allowing Sibyl to incorporate the likelihood into its opti-
mizations, and we develop lightweight approaches Sibyl
can use to identify and patch or discard paths that may no
longer be correct (§7).

Our evaluation (§8) shows that, using this prediction
approach, Sibyl can serve 32% more queries than it could
without calculating likelihoods and can, despite stringent
rate limits, serve 76% of the test queries that it could if it
had an oracle informing it which measurements to issue.

2 Motivating Sibyl’s approach

Traceroute is widely supported, and when the right tracer-
oute measurement is at hand, it can prove useful for a
range of tasks. Therefore, we use traceroute measure-
ments as the basis of Sibyl and strive to overcome its
limitations.
Opportunity: Combining platforms improves cover-
age. Today, one can use a number of publicly acces-
sible measurement platforms that offer vantage points
(VPs) across the world in order to issue traceroute mea-
surements. In this paper, we focus on platforms at two
extremes—small numbers of powerful VPs in a some-
what homogeneous deployment (PlanetLab) versus large
numbers of severely limited VPs in networks around the
world (RIPE Atlas and traceroute servers). In addition,
Dasu and DIMES each offer several hundreds to several
thousands of VPs from which one can issue traceroutes.
For a few of these platforms, Figure 1a presents the num-
ber of VPs they offer and the number of ASes across
which these VPs are spread. Although Figure 1a shows
that the number of ASes in which RIPE Atlas offers VPs
is much higher than in other platforms, we see in the
Unique portions of the bars of Figure 1b that each of the
other platforms contributes significantly to improving the
number of distinct ASes covered by VPs. For all three
of PlanetLab, Dasu, and traceroute servers, 30%–60% of
ASes in which they have VPs do not host VPs for any of
the other platforms.
Challenge: Resource constraints limit probing rates.
The wide spread of RIPE Atlas and the presence of other
VPs in ASes without Atlas probes show promising cov-
erage for a unified system. But, effective use is compli-

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 327

Platform # of VPs # of ASes
PlanetLab (PL) 422 260

RIPE Atlas (RIPE) 7699 2716
Traceroute servers (TS) 499 494

DIMES <400 –
Dasu – 288

(a) Sizes of measurement platforms.

 0

 20

 40

 60

 80

 100

RIPE PL TS Dasu

%
 o

f
A

S
e

s
 h

o
s
ti
n

g
 V

a
n

ta
g

e
 P

o
in

ts

Unique
Overlap - RIPE

Overlap - non RIPE

(b) Vantage point uniqueness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
D

F
 o

f
D

e
s
ti
n

a
ti
o

n
s

Number of ASes seen on Path

RIPE

Rate Limited

 - TS+RIPE+PL

TS

PL

Rate Limited - TS

Rate Limited - RIPE

(c) Path diversity. Dashed lines obey rate limits.
Figure 1: Utility of combining measurement platforms: (a) Comparison of deployment sizes. (b) % of ASes hosting a
platform’s vantage points (VPs) that: (i) only host that platform; (ii) also host a RIPE Atlas VP; (iii) or host a VP from
another non-Atlas platform. (c) Path diversity, with/without rate limits that exist in practice.

cated because the most diverse sets of VPs have severe
and inevitable resource constraints. Good visibility re-
quires an ability to measure from many networks low in
the AS hierarchy [48], and researchers have argued and
demonstrated that the way to achieve this viewpoint—
especially in remote and developing regions—is to gather
measurements from mobile devices [70, 73] and home
networks [12, 17, 22, 55, 56, 57, 62], settings in which
resources are scarce and researchers are guests. To give
a sense of the constraints, measuring a traceroute ev-
ery 5 minutes to all 500,000 BGP prefixes would take
more than 40 Mbps—much higher than typical uplink
bandwidth in many parts of the world.2 And, to avoid
interfering with the hosts, the platforms limit measure-
ments to only a small fraction of this rate. Traceroute
servers also offer diverse VPs, but these machines serve
an operational role and so do not allow a fast rate of mea-
surement. Future faster rates will still strain in the face of
measurement-hungry use cases such as network tomog-
raphy [9, 14] and studying route convergence [36, 69],
which require consistent snapshots or rapid tracking of
changes, respectively.

Figure 1c depicts one measure of the impact of limited
probing budgets. It plots the number of unique ASes
seen when using the vantage points in PlanetLab, RIPE
Atlas, and traceroute servers in isolation and in combi-
nation, with and without rate limits. In each case, we
consider traceroutes to the .1 address in the same 1000
IP prefixes, and we do not count the source AS (which
we accounted for in Figure 1b). We have measurements
from every PlanetLab site, RIPE vantage points in 2000
ASes not covered by PlanetLab, and traceroute servers
in 200 ASes not covered by RIPE. Ignoring rate limits,
RIPE vantage points provide routes to most destinations
through > 600 transit ASes, versus only ≈ 100 when us-
ing PlanetLab or traceroute servers alone. Figure 1c also

2Beyond constraints on the VPs, we do not want to overload upstream
devices or links with measurement traffic, and routers and other devices
increasingly rate-limit and de-preference these probes.

depicts the path diversity we can uncover if we allocate a
day’s Atlas probing budget and a day’s traceroute server
rate limit evenly across the 1000 destinations. RIPE en-
forces a per user aggregate rate limit across all sources
and destinations. Here, we split it across a quarter of
the Atlas VPs and 0.2% of the Internet’s prefixes. We
follow established research best practices [40, 59] and
limit ourselves to one traceroute every 5 minutes per pub-
lic traceroute server. These limits result in us randomly
choosing 16–17 RIPE vantage points and 57–58 tracer-
oute servers from which to probe each destination, and
the graph shows results averaged across 10 trials. Given
these severe rate restrictions, the benefit of PlanetLab—
and its very high achievable probe rate—becomes clear,
and the route diversity is much better if we combine the
rate-limited traceroute servers and Atlas platform with
the smaller, but less restrictive PlanetLab platform.
Challenge: Rate limits necessitate decisions in the face
of uncertainty. The vast gap between the full diversity
of paths seen in Figure 1c and the diversity seen when
subject to rate limits shows that we have to be quite dis-
cerning in how we allocate a limited probing budget, to
make sure we are issuing the measurements most useful
to the queries at hand. We cannot issue measurements
fast enough to have up-to-date paths to large numbers of
destinations—the rate limits imposed by Atlas and tracer-
oute servers [40, 59] mean that it would take years to
measure routes from their VPs to all 500K BGP prefixes.
Therefore, to serve queries well, it is necessary to rea-
son effectively about which traceroutes to issue despite
uncertainty about routes that measurements will traverse
and, hence, which traceroutes will satisfy queries.

3 System overview

Goal. Our goal is to provide researchers and opera-
tors with route measurements of interest to them. Our
system should allow them to express properties of inter-
est in a natural way, without the user needing to know a

3

328 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Measurements

QueryQueryQuery

Interface Queries

Compare

to Query

Optimize

Budget Use

Perform

Measurements

Update

Models Measurements

RIPE Atlas

PlanetLab

Traceroute

Servers

Predict Paths

for Queries

§5 §6 §4

Staleness check (§7)

Appendix §3.2

Measurements

RIPE
Atlas

Traceroute
Servers

Planetlab

Traceroute
Servers

RIPE
AtlasPlanetLab

Figure 2: Sibyl architecture.
priori which (source, destination) pairs will yield paths
with those properties. Section 2 shows existing tracer-
oute platforms offer rich path diversity, if the system can
respect resource constraints while efficiently measuring
only the paths most useful in serving received queries.

3.1 Basic architecture
Figure 2 depicts Sibyl. Users submit queries to the sys-
tem (§3.2). It operates in rounds, queueing up queries
in between rounds. This round-by-round operation al-
lows us to formulate the decision as a clean optimiza-
tion, simplifies rate limiting, and aids in efficient use of a
probing budget by batching requests. RIPE Atlas, for in-
stance, is designed to perform more efficiently when given
batches of measurements. Each round, the system pre-
dicts which traceroutes might be useful to match pending
queries (§5 and §6). It then formulates an optimization
to select the traceroutes to issue given measurement re-
source constraints (§4.1–4.2) and solves the optimization
greedily (§4.3). It issues the measurements, collects the
results, and returns results that match user queries.

Sibyl currently uses vantage points from PlanetLab,
RIPE Atlas, and traceroute servers. We developed a con-
troller for each that exposes them via a common API,
including information on available vantage points and
rate limits, and commands to request and collect tracer-
outes. A central controller integrates the three platform
controllers to present the rest of Sibyl with a unified view.
In the background, we issue daily traceroutes from all
PlanetLab sites to responsive destinations across the In-
ternet [25] to bootstrap Sibyl’s knowledge of routing.

3.2 Specifying queries
Just as other work found regular expressions to be a
natural way to express properties of paths [46, 67], we
support queries in a form that we refer to as symbolic
regular expressions over IP addresses. Symbolic regu-
lar expressions are an analogue to symbolic finite au-
tomata [65], in which transitions are labeled with Boolean
predicates on IP addresses, rather than directly with IP ad-
dresses. These predicates allow, for example, the natural
expression of Sprint(x)&CHI(x) rather than listing all
Sprint IP addresses in Chicago. We will use the notation
Sprint&CHI. A predicate can delineate any subset of IP

addresses, but our UI currently supports ASes, cities, and
countries, 3 and also prefixes for sources/destinations.4

Users augment their queries with a utility function
that indicates how well a set of traceroutes satisfies their
needs. Sibyl’s UI currently supports two types of utility
functions that we believe cover a wide range of queries.
For existence queries, the user wants one matching path,
e.g., the user may want to know the path from a particu-
lar network to a specific destination. The utility is zero
if no measurements match, or a constant value if one or
more measurements match. For diversity queries, the
user wants a set of paths matching the query in as diverse
ways as possible. For example, the user may want to
know all paths that pass through a given AS link, in order
to learn the set of (source, destination) pairs that use that
link. The utility is a function of path diversity, which we
model as a constant times the number of distinct elements
seen in the set of measurements that match the query. The
user specifies the granularity of elements by selecting any
combination of (AS, city, and country). Again, if none of
the traceroutes match the query, the utility is zero.

Now, let us consider a few example queries, in POSIX
ERE-like syntax with dashes in between symbols for clar-
ity. Parentheses create a group, whereas curly braces in-
dicate that the query is a diversity query and delineate the
portion of the query to diversify over.

Reverse traceroute [30]: To query for a path from a
network r back to a source s, the user requests:

r-.*-s$

Detecting prefix hijacks with iSpy [76]: iSpy monitors
paths towards a prefix p in the background. When the AS
loses reachability to other destinations, iSpy considers it a
normal outage if the destinations share common subpaths
to the AS, or a hijack if the destinations represent a large
cut in the graph towards p. To identify diverse AS paths
for iSpy to monitor, an operator could query for:

^{.*}-p$ by <AS>

Troubleshooting a problem [51]: On January 6, 2015,
an operator emailed the Outages mailing list suspecting
a problem on paths that went between Level3 in LA and
GTT in Seattle, and he wanted to check other paths with
that subpath. He was requesting:

^{.*-(GTT&SEA-.*-Level3&LAX |
Level3&LAX-.*-GTT&SEA)-.*}$ by <AS,city>

3Mapping IP addresses to PoPs, ASes, and locations are active areas
of research. We use iPlane’s PoP and AS mappings and MaxMind’s
location data. Sibyl is agnostic to how mappings are generated, and its
results will improve as mappings do.
4Our techniques for deciding which measurements to issue in response
to a query (§5) base decisions on previous measurements of routing,
so implicitly encode routing policies and hence avoid wasting mea-
surements trying to match unlikely regular expressions, such as one
that asks for a path that traverses every Tier-1 network.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 329

Another operator replied that traceroutes with the prob-
lem seemed to traverse a Seattle peering between GTT
and NTT. To see if the problems occurred on GTT paths
with other peers as well, one might query for:

^.*-{[^NTT-Level3]}-GTT&SEA-
{[^NTT-Level3]}-.*$ by <AS>

Appendix I presents screenshots of Sibyl’s query inter-
face for the last of these examples.

3.3 Key problems to solve
Section 2 described two key challenges Sibyl must over-
come in integrating traceroute platforms to serve these
types of queries: severe probing rate limits induced by
resource constraints, and the need to decide how to allo-
cate these limited probes despite not knowing definitively
which traceroutes will satisfy queries. To overcome these
challenges, we address the following sub-problems:
• (§4) Suppose we can address uncertainty by capturing

the likelihood that a traceroute, if issued, will match a
query. How should Sibyl allocate its probing budget to
best serve queries?
• (§5) How can Sibyl calculate those likelihoods?
• (§6) Given that the set of possible measurements is

large, how can Sibyl limit the set of traceroutes it has to
consider issuing (and hence calculate likelihoods for)?

4 Maximizing returns from rate limits

Since Sibyl cannot issue every traceroute—or even ev-
ery traceroute that would match the queries—in a given
round, it needs to intelligently allocate its probing bud-
get to best serve a set of queries. Because Sibyl must
issue a traceroute in order to know definitively whether it
matches a query, Sibyl’s goal is to maximize the expected
utility of the traceroutes it issues. This section describes
how Sibyl allocates its budget, assuming it has an oracle
that answers, for every possible traceroute, the likelihood
that the traceroute, if issued, will match a particular query.
Section 5 describes how Sibyl estimates these likelihood
values to approximate such an oracle.

4.1 Accounting for rate limits
Since we want Sibyl to incorporate different sets of VPs to
improve coverage and path diversity, we need to account
for the different kinds of rate limits across platforms. The
rate at which a PlanetLab node can probe is limited by
the ability of our traceroute tool to send and receive and
by the available bandwidth. ISPs make traceroute servers
available through websites, but restrict how often one can
issue traceroutes from a website. RIPE Atlas users earn

credits for hosting probes, then spend credits by issuing
measurements. We host a number of Atlas probes in
order to earn credits, but RIPE caps the number of credits
a user can spend in a day regardless of credit balance.

We unify these different types of rate limits as follows.
First, we group together each set of vantage points that
are subject to a shared aggregate rate limit. For the i’th
such set, we will use the notation Vi = {vi,1,vi,2,vi,3, . . .}
to indicate the vantage points in set Vi , and let V =
{V1,V2,V3, . . .,Vn} be the collection of n sets used. For
PlanetLab, each host is in a singleton set, since the num-
ber of traceroutes sent from one PlanetLab site does not
affect the number that can be sent from another. For
traceroute servers, we group the hosts behind a common
web interface (generally the hosts in one ISP), since we
are limited in how often we can query a website without
drawing complaints. For RIPE Atlas, we group together
all vantage points in the platform, since they are subject
to a platform-wide credit budget and daily limit.

Second, in each round, Sibyl has a multi-element bud-
get of traceroutes it can issue, with one budget per set of
vantage points inV . For rate-limited vantage points like
PlanetLab or traceroute servers, the per-round traceroute
budget for a set reflects the rate limit on the set and the
duration of the round. For credit-based vantage point
platforms like RIPE Atlas, we set a per-round aggregate
budget for all traceroutes from the platform to reflect the
number of credits we earn in a round.5

4.2 Formulating the optimization
In a given round r , we have a set of queries Q =
{q1,q2, . . .,qm }, each with a corresponding utility func-
tion fq1, fq2, . . ., fqm that maps a set of traceroutes
to a score. For each set of vantage points V ∈ V ,
we have a per round budget CV . Each V defines
a set of possible traceroutes TV = {tv,d | v ∈ V, d ∈
the set of all Internet destinations D}, where tv,d is the
traceroute from v to d, and we have to select a subset
Tr,V ⊆ TV to issue in round r such that |Tr,V | ≤ CV .

Our goal is to select traceroutes, subject to budget con-
straints, to maximize the combined utility across queries:

max
Tr

f (Tr), where Tr =
⋃
V ∈V

Tr,V

and f (Tr) =
∑
q∈Q

fq (Tr)

subject to |Tr,V | ≤ CV ∀V ∈ V

(1)

Since we cannot know whether a traceroute satisfies a
query before issuing it, in practice, Sibyl maximizes the

5We adjust the exact budget round-by-round to allow overspending when
we have banked a surplus or exercise caution when reserves run low,
as well as to cap it to not exceed the daily platform limit.

5

330 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

expected utility. We use the notation t ∈ q to indicate
that traceroute t satisfies query q. Assuming an ability to
determine the likelihood p(t ∈ qexist) for any traceroute t
matching an existence query qexist,6 Sibyl calculates the
expected utility E

[
fqexist (Tr)

]
as the probability that at

least one traceroute matches the query:

E
[

fqexist (Tr)
]
= 1−

∏
t ∈Tr

(
1− p(t ∈ qexist)

)
(2)

Sibyl calculates the expected utility for a diversity query
in a similar way, except that the likelihood values capture,
for every path element h at the diversification granular-
ity as defined by a Boolean predicate on IP addresses,
the probability that t satisfies qdiv and traverses h (Ap-
pendix D.3 presents an example):

E
[

fqdiv (Tr)
]
=
∑
h

��
�
1−
∏
t ∈Tr

(
1− p(t ∈ qdiv∧∃i ∈ t : h(i)

)��
�

(3)
(In practice, Sibyl scales down diversity utility scores,
which are per (query,hop), to balance vs existence queries,
which are per (query).)

4.3 Solving the optimization
We apply a greedy algorithm to select the measurements
to issue in every round. At each step, Sibyl chooses to
issue the traceroute that fits in the budget (meaning that
the source VP must be part of a set V for which budget
remains) and that provides the largest marginal expected
utility on top of those already chosen.7 It stops when
no budget remains for the round or when no traceroutes
provide additional expected utility. While it may seem
like a complicated problem, with a multi-part budget,
multiple queries, and queries that desire diverse sets of
traceroutes, in fact the greedy algorithm is known to have
a provably good approximation bound for this class of
problems. See Appendix A for details.

In addition to having good approximation performance,
the runtime of our greedy algorithm is reasonable. The
runtime is reasonable because both existence and diver-
sity queries allow us to calculate the marginal expected
benefit of each possible traceroute in time proportional
to the number of queries, without growing with the num-
ber of traceroutes already issued. Appendix A describes
other utility functions Sibyl supports. The worst-case
runtime is thus proportional to the size of the budget
(the number of greedy steps) times the number of tracer-
outes under consideration (to assess marginal benefit

6For simplicity, we assume independence in how well traceroutes satisfy
different queries, and in whether different traceroutes satisfy a query.
7The marginal expected utility of adding a traceroute t to a set of
previously selected traceroutes T is E[f (T ∪ {t })]−E[f (T)].

of each during each greedy step) times the number of
queries (to calculate the marginal utility of the tracer-
oute). Most traceroutes under consideration do not match
most queries, i.e., fq (t) = 0 most of the time, simplify-
ing the calculation of marginal benefit in practice. Sibyl
also limits the number of traceroutes under consideration
based on the structure of queries (§6).

5 Estimating likelihood of satisfying queries

Sibyl approximates an oracle by using the subset of paths
for which it has relatively fresh measurements to pre-
dict other paths, checking whether the predictions match
queries, and estimating how confident it is in the predic-
tions. PlanetLab paths are stable relative to how often
we can refresh PlanetLab measurements. Further, while
paths from diverse RIPE Atlas and traceroute server VPs
in general change more than PlanetLab paths and cannot
be refreshed frequently, the portions of paths near these
VPs tend to be quite stable.8 Based on these observa-
tions, our design predicts paths by composing the relative
freshness of paths to destinations from PlanetLab with
the long-term stability of the beginning portions of paths
from other VPs in order to predict unknown paths from
these VPs, overcoming the rate limits that keeps us from
measuring a full map in a timely fashion.

5.1 Predicting unknown paths
We adapt iPlane’s path splicing approach [39] to predict
whether a particular unmeasured path is likely to match
a query. To predict the path from s to d, iPlane splices a
path from s (to some destination) with a path to d (from
some source), if they traverse a common point of presence
(PoP, a set of routers in the same location and same AS),
which we refer to as the splice PoP.

Although iPlane’s approach provides a basic mecha-
nism for using measured paths to predict unknown paths,
it has two major limitations for our needs. First, iPlane’s
predictions can be wrong; our experiments found 32% of
its AS path predictions to be incorrect. Second, iPlane
does not calculate how confident it is in its prediction.
Even if iPlane predicts (vantage point, destination) pairs
as candidates to match a query, it fails to provide guid-
ance on which paths are more likely to match the query
than others, given limited measurement budgets.

We overcome these shortcomings in iPlane’s path splic-
ing approach as follows. For a (vantage point v, desti-
nation d) pair, while iPlane selects a single best guess
for the route between them, we instead consider all pos-
sible ways to splice previously measured paths from v

with previously measured paths to d. We then estimate

8Measurements supporting these claims appear in Appendix B.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 331

our confidence in the correctness of each spliced path in
the set S of all possible spliced paths from v to d. We
denote the confidence as p(v→ d = s) (normalized such
that
∑

s∈S p(v→ d = s) ≤ 1). Given these confidence es-
timates, we compute the likelihood p(v→ d ∈ q) of the
traceroute from v to d matching a query q as the sum of
confidence in the spliced paths that match the query:9

p(v→ d ∈ q) =
∑

s∈S∧s∈q
p(v→ d = s) (4)

Appendix D.2 illustrates how the above process works.

5.2 Assigning confidence to predictions
To assess the confidence in each spliced path, we employ
RuleFit, a supervised machine learning technique [20].
We describe how we train and apply a RuleFit model.
The model takes the set of spliced paths of a particu-
lar prediction and assigns confidence to each based on
features of the paths.
Training the RuleFit model RuleFit is a supervised
machine learning technique based on rule ensembles. In
our case, we supply RuleFit with a training set that maps
from features of a predicted (spliced) path (e.g., the pre-
dicted path’s AS-path length and the latency from the
source to the splice point; Appendix C describes all fea-
tures) to the similarity between the spliced path and the
actual path. As a measure of similarity, we use the PoP-
level Jaccard index. RuleFit then generates thousands
of rules that combine features in logical expressions and
builds a model using rules that help predict the Jaccard
index. RuleFit automatically generates and selects rules
(and indirectly, features) using techniques such as deci-
sion trees and lasso constraints. See the RuleFit paper
for details [20]. Each rule selected by RuleFit has an
associated value, with positive (negative) values for rules
meant to identify predicted paths similar (dissimilar) to
the real path, indicating high (low) Jaccard index. Impor-
tant features may change over time, as the Internet and
the set of Sibyl VPs evolves. We track the accuracy of
predictions over time to identify if performance drops and
can re-initiate training. For the evaluation in Section 8,
we use traceroutes from 100 PlanetLab sites to 500 des-
tinations and from all RIPE Atlas (Atlas) and traceroute
server (TS) sites to 50 destinations to generate spliced
paths from Atlas and TS sites to the 500 destinations.
We randomly chose 2.5% of the spliced paths to train a
RuleFit model.

9The likelihood value for an (v, d) pair need not directly or inversely
correlate with the number of spliced paths between the pair, as it
depends on how confidence varies across spliced paths and on which
spliced paths match the query. For example, if p(v→ d = s1) = 0.5
and p(v→ d = s2) = 0.25, p(v → d ∈ q) could be 0.25 (s2 ∈ q),
0.5 (s1 ∈ q), 0.75 (s1 ∈ q and s2 ∈ q), or 0 (neither matches).

Using the RuleFit model To use the model to estimate
the Jaccard index of a predicted (spliced) path from v

to d, Sibyl calculates the features of the predicted path,
then uses the RuleFit model to score the path. The score
for a spliced path is the sum of rule values for rules
that match the spliced path’s features; e.g., if the spliced
path’s AS-path length is among the shortest, then increase
the confidence (score) that it is very similar to the actual
path. It repeats this process for every spliced path between
(v,d).

Sibyl translates these estimates of similarity between a
(known) spliced path and (unknown) actual path into a
confidence estimate that a query that matches (does not
match) the spliced path will also match (not match) the
actual path. We assign each predicted path a confidence
proportional to its RuleFit score, normalized to sum to the
highest predicted Jaccard index among all spliced paths
for v→ d. Sibyl uses these confidence values to estimate
the likelihood that a traceroute will match a query, using
Eq. 4, which it then uses to optimize the expected utility
of the traceroutes it chooses to issue, in Eq. 1.

Section 8.3 evaluates the accuracy of Sibyl’s likelihood
estimates, Appendix E evaluates the accuracy of its Jac-
card index predictions, and Appendix C describes the
RuleFit model in more detail.

6 Limiting traceroutes to consider

Thus far, our description has assumed that we estimate
the likelihood of matching a query for every possible
traceroute from every vantage point, and then use these
likelihood values to choose the subset of traceroutes that
Sibyl should measure in order to maximize utility, given
rate limits. However, due to the non-negligible computa-
tion associated with the estimation of likelihood values,
running this computation on all (vantage point, destina-
tion) pairs is not practical.

Instead, Sibyl computes the likelihood of matching a
query q only on a subset of candidate paths it deems likely
to match the query. The goal of candidate generation is
to identify (vantage point v, splice PoP r , destination
d) tuples such that Sibyl has a previous traceroute from
v going through r that matches a prefix of the query
q (possibly the empty prefix), and has a traceroute to
d through r that matches the remaining suffix (possibly
empty). For example, candidate generation for the query
Level3-Cogent-.*-SmallISP could find a path that
traverses a Level3-Cogent link on the way to some r ,
then another path that traverses r on its way to SmallISP.
The process works as follows.

1. Given the query q, construct a symbolic finite au-
tomaton Aq that accepts Lq , the language of paths
that match the expression q.

7

332 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

2. Run Aq over all traceroutes previously gathered from
Sibyl’s VPs, which consists of evaluating the hops’
IP addresses against Aq’s transition predicates, test-
ing, for example, AS membership. Label each
(source, PoP) tuple with all of the state-to-state tran-
sitions that Aq can follow in consuming one of the
PoP’s IP addresses when processing a traceroute
from that source.

3. Build AR
q by swapping Aq’s initial and final states

and reversing transitions. AR
q accepts the language

LR
q consisting of the reverse of all paths in Lq .

4. Run AR
q over all traceroutes, starting from the des-

tinations and proceeding backwards, labeling each
(destination d, PoP r) tuple with all the transitions
that AR

q can follow in consuming r starting from d.

5. If a PoP ends up labeled as following a transition
in one direction from a source and in the opposite
direction from a destination, then the spliced path
matches the entire query.

Appendix D.1 presents an example of this sequence of
steps.

7 Patching & pruning stale measurements

Previous sections assume the availability of an atlas of
historical measurements that serve as the basis for pre-
dictions. Resource-constrained VPs do not have enough
resources to refresh all measurements regularly, and so
routes may change between measurements. Therefore,
Sibyl needs to balance between discarding old measure-
ments to reduce the risk of out-of-date ones causing faulty
predictions, versus using them in predictions to aid cov-
erage (since many old measurements may still be valid).
Given that most (s, d) pairs use a single route the vast ma-
jority of the time [15, 52], we err on the side of retaining
routes and apply three mechanisms to infer and remove
stale data from Sibyl ’s atlas. In the first two, a traceroute
from s to d reveals a change in one path, and we use the
new path to patch other paths either from s or to d that
overlapped the old path from s to d.
Traceroute-based destination patching. Since Internet
routing is destination-based, if two traceroutes to the same
destination (possibly from different sources) converge, we
patch the old measurement to match the new measurement
from the convergence point to the destination. Flach et
al. found that the most common reason for violations of
destination-based routing is load balancing [18], which
can be filtered using Paris traceroute [5, 66]. Exclud-
ing load balancing, that study found only 10% of routers
caused IP-level deviations from destination-based rout-
ing and only 2% caused AS-level deviations, for reasons

including traffic engineering and tunneling. In the future,
we could apply these earlier techniques to identify and
exclude these exceptions from our patching.

Traceroute-based source patching. Destination-based
routing helps us keep the tail of paths collected from con-
strained VPs up-to-date using measurements from less-
constrained VPs such as PlanetLab. To remove stale data
from the beginning of paths, we assume a path change
observed on the path from a constrained VP to one des-
tination will also impact its paths to other destinations
that traverse the path segment that changed. Violations
to these assumptions result in incorrect updates to paths.
However, a single error is unlikely to impact Sibyl ’s pre-
dictions, as Sibyl can continue to make equivalent pre-
dictions if it knows other non-stale paths from the VP
that traverse a subset of the PoPs that were on the stale
segment.

BGP-based destination pruning. Traceroute-based
patching still requires issuing a measurement to de-
tect the change. We supplement these approaches with
lightweight BGP monitoring, which requires only passive
observation of BGP feeds via the following steps. First,
we convert all traceroutes in the atlas into AS paths in the
following process. (a) We use PeeringDB data to build a
database of IXP prefixes and remove these IP addresses
from traceroutes. (b) We map remaining IP addresses
to the ASes that originate their prefixes. (c) We group
addresses into routers using CAIDA’s Midar [33] for IP
aliasing resolution, assigning a router to an AS only if
all its interfaces belong to the same AS. (d) We partition
the traceroute into segments in which every router has
been assigned an AS (but a segment can contain multiple
ASes). Second, we monitor RouteViews and RIPE RIS
BGP feeds for BGP changes. When we observe an AS
A change its next hop AS to a destination d, we mark as
stale any traceroutes that routed via A and its old path
to reach d, and we do not use these traceroutes to make
predictions. Whereas traceroute-based staleness checks
provide a way to patch old measurements, BGP checks
on their own do not.

8 Evaluation

We evaluate Sibyl from two perspectives. First, we show
that Sibyl is able to serve queries effectively. On a large
set of test queries, it satisfies three-quarters of the queries
it could if it had an oracle to provide the result of a tracer-
oute before issuing it. Thereafter, we evaluate individual
components of the system in isolation to show that Sibyl’s
components operate efficiently and make decisions that
enable it to make good use of its probing budget.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 333

8.1 Efficiency in serving queries

Datasets and experimental design. To evaluate Sibyl
end-to-end, we run the system in an offline mode, stub-
bing out the component that issues traceroutes. We first
collect a large set of traceroutes. We then run Sibyl as
normal, except that, when it decides to issue a traceroute
from a vantage point to a destination, instead of issuing
a new measurement, it fetches the existing measurement
between that pair. Offline analysis allows us to compare
choices made by Sibyl with other measurements it chose
not to issue or that we did not give it access to.

Between January 13–16 2016, we issued traceroutes
from 2660 vantage points–2000 RIPE Atlas vantage
points, 560 traceroute servers, and 100 PlanetLab sites–to
1000 destinations, chosen at random from a list known to
be responsive [25]. Within a platform (Atlas, traceroute
servers, or PlanetLab), each vantage point is in a different
AS, although these is some overlap across platforms.10

In each experiment, we generate a starting corpus of
paths that Sibyl has access to. The corpus includes all
traceroutes from PlanetLab sites, giving it traceroutes to
destinations to splice to for predictions. For rate limited
platforms (traceroute servers and RIPE Atlas), the corpus
starts with 10 randomly chosen measurements from each
vantage point, a number previous work shows captures
upstream diversity for path prediction [40].

The experiments test how efficiently Sibyl can allo-
cate a limited number of additional traceroutes from rate-
limited vantage points in order to serve queries. We em-
ulate a series of rounds, with a per round measurement
budget and query arrival rate configured per experiment
and described with the experiments below. In each round,
Sibyl decides how to allocate its probing budget to issue
traceroutes, we assess how well these traceroutes matched
the queries, and then we add these traceroutes to Sibyl’s
corpus for the next round. Unsatisfied queries do not
carry over to the next round.
Existence queries. We first evaluate Sibyl’s ability to
serve existence queries, where the goal is to find one
traceroute that matches. To generate test queries, we se-
lect one of the traceroutes not (yet) available to Sibyl and
generate a query that will match it. This way, we know
that there is at least one measurement that Sibyl could
issue to match the query. To create a query, we sampled
hops in the path to generate regular expressions accord-
ing to four different Sibyl use cases (e.g., find paths that
traverse a given link toward a destination; more details in
Appendix F). We evaluated Sibyl with a range of budgets
and query volumes, and the results are qualitatively sim-

10We worked with the RIPE Atlas staff to gather data faster than their
normal rate limits. They allowed this just for the purpose of our
evaluation, it required tight coordination between our team and theirs,
and it does not appear they will support this on a regular basis.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24F
ra

c
ti
o

n
 o

f
Q

u
e

ri
e

s
 S

a
ti
s
fi
e

d

Round

Sibyl (AS and country queries)

Sibyl (AS-level queries)

Sibyl (PoP-level queries)

Figure 3: Fraction of queries satisfied when they are speci-
fied at different granularities.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24F
ra

c
ti
o

n
 o

f
Q

u
e

ri
e

s
 S

a
ti
s
fi
e

d

Round

Sibyl (No rate limit)

Sibyl (Confidence Estimation + iPP + iPF + CG)

iPlane Prediction (iPP) + iPF + CG

iPlane Filtering (iPF) + CG

Candidate Generation (CG)

Figure 4: Incremental contribution of Sibyl’s components
to its ability to satisfy existence queries. Combined, the
techniques allow it to allocate budget smartly and approach
the performance it would see if it could issue every candidate
traceroute it generated (no rate limit line).

ilar, so we present results for just one setting, a per-round
probing budget that allowed an average of one traceroute
per query.
Performance by query granularity. We used this query
generation approach at different granularities (by map-
ping the traceroutes to PoPs, ASes, and a mix of ASes
and countries). Figure 3 shows the fraction of existence
queries that Sibyl can satisfy at these granularities in each
round. At all granularities, Sibyl satisfies a high fraction
of queries. As expected, the coarser the granularity, the
higher the fraction of satisfied queries, from around 75%
at the PoP level to 90% at the AS/country level. Also,
Sibyl is able to efficiently allocate its budget at different
granularities, including answering queries that combine
ASes and country codes, which may overlap in complex
ways (e.g., traverse a link between AT&T and Level3 in
the US on the way to Europe).
Incremental contribution of Sibyl components. Sibyl’s
performance is good across queries of different gran-
ularities, and so we focus the rest of our analysis on
fine-grained PoP-level queries to stress the system. For
PoP-level queries, Sibyl allocates its probing budget well,
satisfying 32% more queries than a baseline approach that
relies only on existing measurements to answer queries.
Figure 4 breaks down the incremental benefit of the sys-

9

334 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

tem’s various modules. First, candidate generation uses
Sibyl’s module that splices previously measured paths to
identify (s,d) pairs that may match a query (§6). Without
access to the rest of Sibyl, it then assumes that each of
these pairs will indeed match the query and distributes
measurements uniformly across queries, picking candi-
dates at random for each query. Second, we add iPlane
filtering to candidate generation, using iPlane to predict a
(more accurate) PoP-level path for each candidate and fil-
tering out candidates whose predicted paths do not match
any query. Third, iPlane prediction extends iPlane filter-
ing to consider all spliced paths iPlane can generate for a
given candidate (s,d) pair (§5.1). Unlike the full system,
this comparison point assigns an equal confidence value
to every spliced path between the pair when calculating
likelihood of matching a query. Finally, the Sibyl line
adds in confidence (§5.2) into the likelihood estimation
to arrive at the full system. As we add the techniques,
each contributes to satisfying 5-8% additional queries,
justifying their use.
Why does Sibyl fail to satisfy some queries? The
two central challenges are (a) limited probing budgets
and (b) uncertainty about whether traceroutes will match
queries before issuing them. Because the evaluation uses
a 1:1 query:budget ratio and all queries have at least one
traceroute that satisfies them, without uncertainty, we
could satisfy 100% of queries. Sibyl could miss satisfying
a query either because it failed to generate any candidate
traceroutes that, if issued, would satisfied the query, or
because it did generate the candidate but calculated that
it was unlikely to match the query. The Sibyl (no rate
limit) teases apart these two causes, as it allows Sibyl to
issue every candidate traceroute. Without a rate limit,
Sibyl satisfies 88% of queries (vs. 76% with a 1:1 ratio),
suggesting that half of Sibyl’s unsatisfied queries were
because its corpus of measured paths did not suffice to
generate candidates that could satisfy them, and half were
instances in which Sibyl generated a candidate that would
have satisfied the queries, but rated them as having less
expected value than other candidates, so did not allocate
probing budget to them. This result suggests the potential
benefit of future work to improve candidate generation
and likelihood estimation.
Can Sibyl efficiently service satisfiable queries in the
face of unsatisfiable ones? Our evaluation thus far is
on queries that are satisfiable, generated from traceroutes
Sibyl could choose to issue. Appendix H presents an ex-
periment demonstrating that the fraction of these queries
that Sibyl can satisfy is robust to the simultaneous intro-
duction of realistic but unsatisfiable queries.
Diversity queries. Next, we assess Sibyl’s ability to
respond to diversity queries by finding a set of paths
that match the query in diverse ways. We create diver-
sity queries by supplementing the PoP-level queries from

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
Q

u
e

ri
e

s

Fraction of PoP diversity uncovered

Candidate Generation

Sibyl

Figure 5: Fraction of distinct PoPs returned for diversity
queries, relative to the number of distinct PoPs that could
be returned if Sibyl had budget to issue every candidate
traceroute it considered. Even with limited RIPE Atlas and
traceroute server budgets, Sibyl usually uncovers a signifi-
cant fraction of the relevant diversity, providing substantial
benefit over an approach that lacks the ability to predict
which paths are most likely to provide diversity in order to
optimize use of the budget.

above by asking Sibyl to maximize diversity of all wild-
card tokens (.*) in the regular expression. The diversity
utility function for a query awards a unit of utility for
each unique PoP in the set of matching traceroutes. We
set a 1:4 query:budget ratio (but Sibyl may distribute this
budget unevenly across queries according to its expected
diversity optimization in Eq. 3).

Figure 5 depicts the ratio between the number of dis-
tinct PoPs on matching paths that Sibyl uncovers sub-
ject to the rate limit versus the number it could have
uncovered with an unlimited budget to probe all candi-
dates it generates. The candidate generation baseline—
which already uses some of Sibyl’s novel functionality
to identify promising traceroutes to issue—is unable to
find any matching paths for 32% of queries, and it un-
covers less than half of the matching path diversity for
75% of queries. In contrast, by optimizing based on its
estimation of the expected chance of a given traceroute
traversing each PoP while satisfying the query, Sibyl satis-
fies 83% of queries with at least one traceroute, uncovers
half the path diversity for 67% of queries, and, for 13%
of queries, uses its very limited budget to uncover all of
the diversity that was found using unlimited probes.

8.2 Coverage of vantage point platforms

Coverage by vantage point AS. Our ideal is to service
any routing query, but Sibyl is limited by available vantage
points. No one platform has achieved overwhelming cov-
erage, and the types of ASes that host vantage points can
vary across platforms, so we designed Sibyl to accommo-
date a range of platforms. Figure 6 depicts the locations
of the vantage points of different platforms in terms of
their coverage of ASes by customer cone sizes [3]; the
customer cone of an AS is its customers, its customers’
customers, etc.. For example, even though Atlas covers

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 335

 0

 20

 40

 60

 80

 100

10
-1

10
0

10
1

10
2

10
3

10
4

%
 o

f
A

S
e
s
 H

o
s
ti
n
g

V
a
n
ta

g
e
 P

o
in

ts

Minimum Customer Cone Size

All

Sibyl

RIPE

TS

Dasu

PL

Figure 6: Sibyl combines platforms to maximize AS cover-
age, with especially strong coverage of larger ASes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24F
ra

c
ti
o

n
 o

f
Q

u
e

ri
e

s
 S

a
ti
s
fi
e

d

Round

Sibyl (no rate limits)

Sibyl (PL + RIPE + TS)

PL + RIPE Atlas (RIPE)

PL + Traceroute Servers (TS)

PlanetLab (PL) only

Figure 7: Fraction of existence queries satisfied given dif-
ferent VPs. Combining platforms improves performance.

by far the most ASes (Table 1a), the figure shows that
traceroute servers have better presence in large ASes, en-
abling Sibyl’s union of platforms to have presence in all
ASes with customer cone size greater than 2000, whereas
this coverage is below 80% when combining all other
platforms excluding traceroute servers. Based on data
provided by the Dasu team, incorporating Dasu would
not significantly improve Sibyl’s vantage point diversity,
although it would increase probing budget. Coverage
across AS sizes will improve as existing measurement
platforms expand and new ones become available.
Impact of combining vantage point platforms on ability
to satisfy queries. We now consider how combining
platforms helps Sibyl satisfy queries. Using the same
queries and probing budget as in Section 8.1, Figure 7
shows the fraction of queries Sibyl can satisfy using only
PlanetLab, PlanetLab plus traceroute servers, PlanetLab
plus RIPE, and all three platforms combined. The Sibyl
lines from the Figure 4 are the same as the Sibyl lines in
this graph. We observe that all platforms contribute to
the number of satisfied queries. Even though the number
of RIPE Atlas vantage points is four times larger than the
number of traceroute servers, traceroute servers provide
additional diversity and are useful in satisfying queries.

8.3 Accuracy of likelihood estimation
We evaluate Sibyl’s likelihood estimation (§5) during our
end-to-end evaluation of existence queries (§8.1). Fig-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1F
ra

c
ti
o

n
 o

f
C

a
n

d
id

a
te

s

 S
a

ti
s
fy

in
g

 t
h

e
 Q

u
e

ri
e

s

Likelihood

Figure 8: (Bucketed) estimated likelihood of candidates
matching queries vs actual fraction matching queries.

ure 8 shows the fraction of candidates that match a query
as a function of estimated likelihood (Eq. (4)) for 20,895
candidates generated for 2273 queries. We bucketed can-
didates by rounding the estimated likelihood to the closest
0.1. The graph shows high correlation between likelihood
and the probability of satisfying a query. Appendix E
shows the number of candidates in each bucket.

8.4 Impact of staleness
Sibyl always issues and returns fresh traceroutes to serve
queries, so staleness cannot result in false query matches.
Staleness can however lead to wrong predictions and sub-
optimal allocation of probing budget.

We evaluate the impact of staleness on Sibyl’s ability to
service queries over time, using weekly traceroute mea-
surements from 1800 RIPE Atlas nodes toward a set of
1000 destinations collected between Jun. 20th and Aug.
20th, 2015. We partition the set of RIPE Atlas VPs in two:
we choose 150 VPs at random to use as constrained VPs,
and use the remaining 1650 VPs as unconstrained VPs.
As in Section 8.1, we consider existence queries, give
Sibyl a probing budget of one traceroute per query, and
build an initial corpus of traceroute paths that includes
10 measurements from each of the 150 constrained VPs
plus all measurements from the 1650 unconstrained VPs.

We test the performance of three different strategies
for dealing with stale traceroutes. Keep last 14 days
uses only paths collected during the last 14 days and dis-
cards older paths. Keep all accumulates all the traceroute
paths collected by Sibyl regardless of their age, without
applying any sanitation technique to mitigate staleness.
Sibyl(patching and pruning) also accumulates all the col-
lected traceroutes, but attempts to filter-out stale hops
using Sibyl’s techniques described in Section 7.

Figure 9 measures Sibyl’s ability to service the queries
over time. We also show linear fits for each curve to
make the trends more clear. Keep last 14 days loses
path diversity over time, as it only keeps traceroutes from
parts of the Internet that were recently targeted by queries,
and this narrow focus over time limits its ability to serve

11

336 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7F
ra

c
ti
o

n
 o

f
Q

u
e

ri
e

s

S
a

ti
s
fi
e

d

Week after Initial Measurement

Sibyl (patching and pruning)

Keep all

Keep last 14 days

Figure 9: Queries satisfied over time using different ap-
proaches to maintain historical traceroutes as a basis for
predictions. By pruning/patching paths it detects as stale,
Sibyl performs much better than an approach that only
keeps recent measurements and slightly better than an ap-
proach that keeps all measurements. The dip at week 3 is
caused by corrupted traceroute files that week.

queries about some other parts of the Internet. Keep
all maintains diversity, but loses some accuracy due to
staleness. Sibyl (patching and pruning) strikes a balance,
adding measurements to its corpus over time to generate
more candidates while minimizing the impact of staleness
by patching paths likely to be out of date. Appendix G
evaluates the coverage and accuracy of Sibyl’s various
approaches to patching and pruning stale paths.

9 Related work

Traceroute tool: Van Jacobson’s traceroute tool [26]
first enabled measurements of the Internet route from the
machine on which the tool is executed to any destination.
Followup work addressed limitations in the tool. Paris
traceroute modified traceroute to account for load balanc-
ing [4]; reverse traceroute enabled a source to measure the
route back to it from any destination [30]; and researchers
assessed how common interpretations of the tool’s out-
put can lead to overestimating route changes [44]. Sibyl
goes beyond enabling measurement of the route from/to a
specific source, and instead chooses (source, destination)
pairs that it should measure in order to obtain routes that
match specified input criteria.
Measurement platforms and systems: Many dis-
tributed platforms have been deployed to cater to the
needs of researchers and network operators to perform
measurements of Internet routing. DIMES [57], Ark [2],
public traceroute servers [63], and RIPE Atlas [55] ex-
plicitly serve this goal, whereas other platforms such as
PlanetLab [53], MobiPerf [72], and Dasu [56] enable
traceroutes among several other capabilities. Leverag-
ing the measurement capabilities offered by these plat-
forms, a large number of systems have been developed

that rely on making measurements of the Internet for
various purposes such as topology discovery [2], fault
diagnosis [31, 32, 74], prefix hijack detection [76], etc.
In all of these cases, researchers have relied on issuing
traceroutes along paths whose routes match particular
criteria relevant to their system, but they have only used
small numbers of vantage points due to the overhead of
incorporating different platforms and the difficulty in dis-
cerning which measurements will be most useful. Sibyl
can enable these prior systems as well as future ones to
take advantage of available measurement platforms.
Studies of Internet routing: Several research efforts
have studied the temporal stability of Internet routes [15,
52], attempted to infer routing policies [1, 3, 21, 27, 45],
and modeled the evolution of the Internet’s topology [49].
We similarly model properties of Internet routing, in our
case in service of identifying the measurements that are
most beneficial for Sibyl in serving user queries.
Route prediction: Many prior efforts have developed
techniques to predict Internet routing at the AS [43, 54]
and PoP [37, 40, 41] levels. However, in our results, even
the state of the art prediction techniques offer only 68%
accuracy in correctly predicting AS-level paths. There-
fore, instead of attempting to predict a single route for
any (source, destination) pair, we focus on estimating the
probability that the route will match a query; our approach
shows significant gains in prediction accuracy.

10 Conclusion

Internet route measurements are crucial to our ability to
troubleshoot and understand the Internet, yet our interface
to them remains crude: for decades, the only query that
has been easy to answer is, “What is the path from here
to there?” This limitation leads to inefficient approaches
and incomplete understanding. We built and evaluated
Sibyl, a system that accepts regular expression-based
queries and returns fresh path measurements matching
the queries. To achieve broad coverage, Sibyl includes
vantage points (such as traceroute servers and RIPE At-
las probes) that are severely rate-limited, which led to
the central challenge in building the system—how can
it accurately respond even though, for many queries, it
will not have issued traceroutes that match in the recent
past? Therefore, we designed Sibyl to predict which mea-
surements, if issued, will help fulfill queries, in order to
efficiently service requests while subscribing to rate lim-
its. Our evaluation shows that these predictions allow
Sibyl to easily outpace other schemes in its ability to an-
swer questions about Internet routes, performing nearly
as well as if it had access to an oracle to tell it which
measurements to issue.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 337

Acknowledgements

We would like to thank our shepherd Monia Ghobadi
and the anonymous reviewers for their valuable feedback.
The RIPE NCC and Comcast supported our use of RIPE
Atlas. Conversations with Shaddin Dughmi and Nate
Foster shaped Sibyl’s optimization and query language,
respectively. This work was supported in part by the
National Science Foundation grants CNS-1351100 and
CNS-1413978, CNPq, and FAPEMIG.

Appendices
A Optimization details

Sibyl’s optimization has good greedy performance.
While the constraints in Eq. 1 (§4.2) enforce multiple
budgets, we designed them so that each traceroute only
counts against one budget, and so the constraints function
as a partition matroid [68]. The utility functions we use
for existence queries and diversity queries exhibit dimin-
ishing returns as we add to the set of traceroutes to issue,
and so the objective function is submodular (essentially,
a set function that displays diminishing returns) [47].
The greedy optimization of submodular functions given
partition constraints both has a good theoretical lower
bound [16, 68]11 and has been frequently observed to be
near-optimal in practice.

In addition to the greedy heuristic only being guar-
anteed to find a solution within a factor of optimal, the
optimization problem itself can lose utility compared to
a global optimal due to the following factors:
• Candidate generation can miss useful traceroutes, if no

previous traceroutes splice to generate the candidate.
• Prediction errors can lead to errors in expected utility.
• Our formulation assumes the correctness of different

predictions is independent, but destination-based rout-
ing [19] and other factors mean that the correctness of
different predictions may be intertwined.

Section 8.1 assessed the first two factors. The third is an
interesting future direction for improving predictions.
Utility functions supported by Sibyl. Section 4.2
formalizes the utility functions supported by our UI, but,
in general, Sibyl will work with any utility function fq
for a query q that satisfies the following properties:

• fq takes a set of traceroutes T and returns a nonneg-
ative value.

• fq (T) > 0 if and only if ∃ t ∈ T that satisfies q.

11The greedy algorithm we use has an approximation ratio of 0.5. A
randomized variant has a ratio of 1−1/e ≈ 0.63 [68].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

C
D

F
 o

f
V

a
n

ta
g

e
 P

o
in

ts

Fraction of Paths that Changed after One Week

PlanetLab, uphill changes

RIPE, uphill changes

PlanetLab, all changes

RIPE, all changes

Figure 10: Fraction of paths for which AS-level routes differ
in snapshots measured a week apart.

• Non-decreasing: fq (T) ≤ fq (T ∪ {t}) ∀T,∀t.

• S ⊆ T ⇒ fq (S∪ {t})− fq (S) ≥ fq (T ∪ {t})− fq (T)
∀S,∀T,∀t. In other words, adding additional tracer-
outes provides diminishing returns.

• The expected utility of issuing a set of traceroutes
must be computable within Sibyl’s prediction frame-
work, in which a traceroute is predicted as a set of
PoP-level paths, each with a confidence.

To be computationally efficient, the expected util-
ity function should also be “incrementally computable”:
if Sibyl already calculated E[fq (T)], then computing
E[fq (T ∪ {t})] takes time proportional to the time to cal-
culate E[fq ({t})], not proportional to |T |.

B Assessing path stability

Section 5 describes how Sibyl predicts paths by splic-
ing the small number of traceroutes from resource-
constrained vantage points onto traceroutes from less-
constrained vantage points to a large number of destina-
tions. We assessed path stability to justify this approach.
We probed 1000 prefixes from all PlanetLab sites and
from 2000 RIPE Atlas vantage points. We repeated these
measurements twice, a week apart. Figure 10 shows, for
every vantage point, the fraction of prefixes for which
the AS-level routes differ across a week, revealing more
RIPE Atlas paths change than PlanetLab paths.

Internet paths are generally considered to have an up-
hill portion, traversing from customers to providers, fol-
lowed by a downhill portion from providers to customers,
possibly with a peering link in between. Figure 10 also
plots the fraction of prefixes that have different AS-level
routes in the two snapshots if we consider only the uphill
portions of the paths. The uphill paths differ much less
frequently than the full paths, implying that most of the
differences are on the downhill portions of paths. By
combining the uphill (more stable) portion of paths from

13

338 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

rate-limited RIPE Atlas/traceroute server vantage points
with the downhill portions of (frequently-refreshed) Plan-
etLab paths, Sibyl minimizes the impact of path instability
on its predictions.

C Features used by RuleFit

In this section we provide more details on the RuleFit
model we train to estimate the correctness of a path pre-
diction (§5.2). To identify important features, we adopted
a multi-round refinement process, starting from a large set
of features that we reduced each round, retaining features
RuleFit found to have predictive power. We describe
features retained at the end of this process.
Source path features: The greatest challenge in identi-
fying which spliced path is correct is to pick the correct
route out from the source, since Internet routing is pre-
dominantly destination-based and the source’s portion of
the source path has a destination different from the one
we are predicting. Traffic engineering practices such as
hot and cold potato routing may also exacerbate this is-
sue. We characterize the source path using the following
features: the number of PoPs and ASes along the source
path, the round-trip latency from the source to the splice
point [39], and the degree of the source AS (from CAIDA
data [3]). The intuition behind these features is that a pre-
diction is more likely to be correct if the source’s part of
the path is short (so quickly intersects a known path to the
destination) and if the source AS is small (so has fewer
routing options we can incorrectly pick). We do not con-
sider the age of measurements as a feature since we take
steps to prune out-of-date measurements, as described in
Section 7. Most (source, destination) pairs have a path
that is prevalent over long time periods [15, 52].
Splice point features: We considered the characteristics
of the splice point as additional features such as (i) the
type of AS splice point (i.e. educational, transit, access,
transit/access, content, enterprise, educational/research,
non-profit network, from CAIDA data [10]); and (ii) the
business relationship between the AS of the splice point
and its neighbors in the predicted path (from CAIDA
data [38]). The type and the AS relationships allow Rule-
Fit to learn to favor spliced paths that follow common
routing policies, such as valley-free [21].
iPlane-derived features: iPlane picks the correct
spliced path more often than not [39], and so, for each
spliced path, we calculate the features that iPlane uses,
as well as comparisons between that spliced path and the
one that iPlane picks (inflation in terms of RTT up to
the splice point and in terms of AS- and PoP-level path
lengths). We also included the rank order assigned by
iPlane to the spliced path, to account for mechanisms
added to improve iPlane’s prediction accuracy [41].

Spliced Path Feature Importance

1. PoP-level similarity with the other paths 1
2. PoP-level path length inflation vs iPlane’s top-ranked path .90
3. Total number of PoP splice points .60
4. Total number of AS splice points .55
5. AS splice point type .52
6. AS splice point relationship with neighbors .49
7. Number of PoPs in iPlane’s top-ranked path .44
Other features ≤ .34

Table 1: Feature importance according to RuleFit.

Spliced path set features: Finally, we compute some
features by comparing the spliced path with the other
spliced paths from the vantage point to the destination.
We used the Jaccard Index to estimate the average sim-
ilarity between the spliced path and other paths both at
the PoP and AS level. We aim to inform RuleFit whether
or not the other paths confirm this one. We also include
as features the total number of spliced paths and the total
number of ASes containing splice points.
Most important features: RuleFit computes the impor-
tance of each rule as a function of how often it gets applied
and how much it impacts the correctness of the predic-
tion. For each feature, it computes this as the sum of the
importance of the rules that use the feature.

Table 1 reports the resulting ordering of features with
normalized importance computed by RuleFit. Several
features turned out to play an important role in estimating
the similarity of a spliced path to the true path. The
first, third, and fourth most important features capture
how similar the spliced paths are; intuitively, if there
are few splicing points and all spliced paths are similar,
then there is less diversity and spliced paths are likely
similar to the true path. The second and seventh most
important feature follows from Internet routing protocols
that prefer short paths. The fifth and sixth most important
features capture AS routing relationships at the splicing
point, which enables RuleFit, e.g., to reduce confidence
in splices that violate the valley-free model.

D Examples

D.1 Candidate generation
We first provide an example of how Sibyl generates can-
didate traceroutes to consider issuing (§6). For ease of
exposition, assume that an IP address maps to an AS
and PoP corresponding to the address’s first octet (e.g.,
1.0.0.1 is in AS1 and PoP1; 5.0.0.1 is in AS5, PoP5). As-
sume Sibyl has three existing traceroutes it can combine
to generate new candidates:

1. 1.0.0.1 (AS1, PoP1), 2.0.0.1 (AS2, PoP2), 3.0.0.1 (AS3,
PoP3), 4.0.0.1 (AS4, PoP4), 5.0.0.1 (AS5, PoP5)

2. 6.0.0.1 (AS6, PoP6), 7.0.0.1 (AS7, PoP7), 8.0.0.1 (AS8,
PoP8), 9.0.0.1 (AS9, PoP9), 10.0.0.1 (AS10, PoP10)

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 339

start

.*

AS2
S1

AS9

.* .*

S2 S3

start

.*

AS2
S1

AS9

.* .*

S2 S3

(a)

start

.*

AS2
S1

AS9

.* .*

S2 S3

start

.*

AS2
S1

AS9

.* .*

S2 S3

(b)
Figure 11: (a) Forward and (b) reverse FSAs corresponding
to a query for a traceroute through AS2 and AS9.

3. 11.0.0.1 (AS11, PoP11), 12.0.0.1 (AS12, PoP12), 3.0.0.1
(AS3, PoP3), 9.0.0.1 (AS9, PoP9), 13.0.0.1 (AS13,
PoP13)

Say a user issues an existence query: “I want a tracer-
oute that traverses AS2 and AS9, in that order, consec-
utively or not,” is expressed as the following regular ex-
pression:

^.*AS2.*AS9.*$.

This regular expression is then translated to an FSA
shown in Figure 11(a). Sibyl then runs the FSA over
each traceroute, maintaining a record of the transitions in
the FSA taken when consuming the PoPs in each of its
existing traceroutes, as shown in Table 2(a).

Next, the FSA is reversed (Figure 11(b)), and the re-
verse FSA is run over the traceroutes from destination to
source. Table 2(b) shows the transitions used in this case.

In our example, PoP 3 is labeled with the transition
(S2

.*−−→ S2) when the forward FSA is applied on Trace 1,
and the same PoP is labeled with the reverse of that transi-
tion when the reverse FSA is applied on Trace 3. Hence,
Sibyl splices Traceroute 1 (PoP1→PoP2→PoP3. . .) and
Traceroute 3 (. . . PoP3→PoP9→PoP13) at PoP3 to gen-
erate a candidate. The candidate pair is constructed from
the source of Traceroute 1 and the destination of Tracer-
oute 3 which gives (1.0.0.1, 13.0.0.1).

D.2 Likelihood estimation
We next walk through an example of how Sibyl calculates
how likely a traceroute is to satisfy a query (Eq. 4 in §5).
Assume that, in addition to (1.0.0.1, 13.0.0.1), Sibyl also
finds (15.0.0.1, 16.0.0.1) as a possible candidate. Once
Sibyl identifies the candidates for a query, it uses iPlane
to generate a set of possible paths for each candidate
(source, destination) pair. Sibyl uses its RuleFit-trained

Forward FSA PoPs Traversed
Transition

S1
.*−−→ S1

Trace 1: PoP 1, 2, 3, 4, 5
Trace 2: PoP 6, 7, 8, 9, 10
Trace 3: PoP 11, 12, 3, 9, 13

S1
AS2−−−→ S2 Trace 1: PoP 2

S2
.*−−→ S2 Trace 1: PoP 3, 4, 5

S2
AS9−−−→ S3 -

S3
.*−−→ S3 -

(a)
Reverse FSA PoPs Traversed
Transition

S3
.*←−− S3

Trace 1: PoP 5, 4, 3, 2, 1
Trace 2: PoP 10, 9, 8, 7, 6
Trace 3: PoP 13, 9, 3, 12, 11

S2
AS9←−−− S3

Trace 2: PoP 9
Trace 3: PoP 9

S2
.*←−− S2

Trace 2: PoP 8, 7, 6
Trace 3: PoP 3, 12, 11

S1
AS2←−−− S2 -

S1
.*←−− S1 -

(b)
Table 2: Transitions activated by PoPs in each traceroute
on the (a) forward and (b) reverse FSAs.

Candidate Splice Jaccard Predicted AS-Level Path
(1.0.0.1, A 0.7 AS1 AS2 AS3 AS9 AS13
13.0.0.1) B 0.5 AS1 AS20 AS21 AS9 AS13
(15.0.0.1, C 0.6 AS15 AS2 AS3 AS9 AS16
16.0.0.1) D 0.6 AS15 AS2 AS4 AS9 AS16

Table 3: All spliced paths for each candidate and their
RuleFit-predicted Jaccard indexes.

model to estimate the Jaccard indexes for each spliced
path compared to the corresponding (unknown) actual
path. It uses these estimates to compute the likelihood of
each candidate matching the query. Consider the example
paths and estimated Jaccard indexes in Table 3, where we
show AS-level paths for ease of exposition.

For the candidate pair (1.0.0.1, 13.0.0.1), Sibyl es-
timated that spliced path A is more likely to be cor-
rect than spliced path B (0.7 vs 0.5), which (via §5.2)
normalize to 0.41 = 0.7 × 0.7/(0.7 + 0.5) and 0.29 =
0.7×0.5/(0.7+0.5). Spliced path A matches the user’s
query, whereas B does not traverse AS2. The final likeli-
hood that candidate (1.0.0.1, 13.0.0.1) matches the query
is 0.41, from Eq. 4.

For (15.0.0.1, 20.0.0.1), spliced paths C and D have
lower estimated Jaccard indexes than spliced path A, but
both satisfy the user’s query. These spliced paths result
in a likelihood of matching the query equal to 0.6 = 0.6×
0.6/(0.6+0.6)+0.6×0.6/(0.6+0.6), making (15.0.0.1,
16.0.0.1) a stronger candidate to satisfy the user’s query.

15

340 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

D.3 Diversity queries
To illustrate the usefulness of diversity queries, we will
use an example of Sibyl finding diverse AS paths that
a system such as iSpy [76] can use to monitor for prefix
hijacks in BGP. Since issuing traceroutes from all vantage
points is not feasible, we want Sibyl to find a set of vantage
points to use that maximizes AS path coverage to a prefix
204.57.0.0/21. Since we want to diversify over AS, we
build the following query:

^{.*}-204.57.0.0/21$ by AS

For simplicity of exposition, we assume Sibyl predicts
a single path for each candidate and has complete con-
fidence in all predictions, removing the probabilistic ex-
pected value calculation of Eq. 3. Sibyl predicts tracer-
outes with the following AS paths toward 204.57.0.0/21:

1. AS3356, AS209, AS2722, AS47

2. AS1299, AS10490, AS2722, AS47

3. AS3257, AS209, AS2722, AS47

4. AS1273, AS209, AS2722, AS47

5. AS6939, AS226, AS2914, AS2497, AS47

6. AS3257, AS209, AS2722, AS47

7. AS701, AS2914, AS209, AS2722, AS47

Sibyl greedily selects traceroutes that offer the highest
diversity utility first. The greedy selection starts out with
an empty AS set. Traceroutes are then selected based on
how many new ASes a path is predicted to add. In the
above example, Traceroute 5 is selected first since it has
a utility of 5 ASes (contains 5 new ASes). Traceroute 7
would be greedily selected next since it has a marginal
utility of 4 ASes. The current AS set is now:

AS6939, AS226, AS2914, AS2497, AS47, AS701,
AS2914, AS209, AS2722

Of the remaining traceroutes, Traceroutes 1, 3, 4, and
6 each offer only one new AS compared to the above set,
whereas Traceroute 2 has 2 new ASes. Hence, Traceroute
2 is selected. In subsequent rounds, Traceroutes 3 and
4 would be selected if budget allowed, but Traceroute 6
would not be since it adds no new ASes.

E Evaluation of RuleFit model

Section 8.3 showed that Sibyl’s estimates of how likely
a candidate traceroute is to satisfy a query are accurate
enough to use as expected utilities. In this section we look
at the distribution of likelihood values across candidates

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Likelihood

0.0

0.2

0.4

0.6

0.8

F
ra

c
ti
o

n
 o

f
C

a
n

d
id

a
te

s

Sibyl
iPlane
+ RuleFit iPlane

Don't Satisfy

Satisfy

Figure 12: Distribution of candidates by likelihood.

and at the accuracy of the Jaccard index estimates (§5.2)
that Sibyl uses to calculate the likelihoods.
Distribution of likelihood estimates. Figure 12 parti-
tions the range of likelihood values ([0, 1]) into 11 buck-
ets ([0, 0.05], [0.05, 0.15], . . ., [0.95, 1]), and shows the
number of candidates in each bucket, broken down by
whether the candidates satisfy their queries or not. We
also add two comparison points: (1) iPlane: iPlane pro-
vides a single predicted path for a candidate and does
not have a notion of varying confidence [40], and so we
assign a candidate a likelihood of 1 if iPlane’s prediction
matches the query and 0 if it does not. (2) iPlane with
confidence ranking: for iPlane predictions that match
their queries, we extend iPlane by assigning a likelihood
equal to our RuleFit model’s estimated confidence in the
prediction. As seen in the graph, Sibyl’s likelihood es-
timation provides benefit over iPlane. In the bucket of
likelihood [0.95, 1], Sibyl only includes candidates that
satisfy queries, while iPlane includes some candidates
that do not satisfy queries. Sibyl only assigns a likelihood
of 1 to a candidate when all its spliced paths satisfy the
query and RuleFit rates it high confidence. Sibyl also pro-
vides benefit over iPlane by removing some candidates
that can satisfy queries from the [0, 0.05] bucket. This im-
provement comes at the cost of moving some candidates
that do not satisfy queries from the [0, 0.05] likelihood
bucket to other low-likelihood buckets, which we con-
sider to be acceptable since Sibyl gives low priority to
issue measurements for candidates with low likelihood.

Together, Figures 8 and 12 show that Sibyl computes
likelihoods that can reasonably reflect the probability of
matching a query, and it assigns most candidates either
very high or very low likelihood values, enabling it to
distinguish between candidates that it should or should
not select to satisfy queries.
Accuracy of confidence values. Figure 13 evaluates
RuleFit’s capability to predict the PoP-level similarity
of spliced paths to the actual paths they are predicting,
which it does without access to the actual paths. We use
RuleFit to estimate the Jaccard index for 4 million spliced
paths (not included in the training set), then calculate the
actual Jaccard index by comparing the spliced path to

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 341

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Predicted PoP-level Jaccard Index

0.0

0.2

0.4

0.6

0.8

1.0

R
e
a
l
P

o
P

-l
e
v
e
l
J
a
c
c
a
rd

 I
n
d
e
x

Figure 13: Spliced paths’ predicted vs actual Jaccard index
with respect to the actual path.

the actual path. We group the spliced paths by their
predicted Jaccard index and show the 10th, 25th, 50th,
75th, and 90th percentiles of the true Jaccard values for
each group. We see that our estimated Jaccard indexes
are well correlated to the true Jaccard values.

F Queries used in evaluation

We used several types of queries when evaluating
Sibyl (§8.1). For each traceroute that Sibyl does not have
access to, we generate all possible queries that the tracer-
oute matches for the following query types:

1. ^.*A.*D$ Traverse A on the way to destination D.

2. ^[^A]+A.*D$ Traverse, but do not start at, A on the
way to destination D.

3. ^.*AB.*D$ Traverse link A-B on the way to desti-
nation D.

4. ^.*A.*B.*C.*$ Traverse A, B, and C in sequence.

Among all possible queries of these types, our evalu-
ation randomly selected an equal number of each type.
Queries of types 1 and 2 represent queries reverse tracer-
oute uses as part of its measurements [30]. Query
type 3 represents queries operators might ask when trou-
bleshooting performance problems towards a destination,
to assess paths that use a particular link. All three look
for routes toward a destination D traversing a specific net-
work region. Query type 4 does not specify a destination
and could be used to study inter-AS routing policing and
business relationships [38] or to look for routes that take
long detours in between two nearby hops (e.g., [22]).

G Efficacy of staleness patching & pruning

Section 8.4 evaluated the impact of staleness on Sibyl’s
end-to-end ability to satisfy queries, showing that its tech-
niques for dealing with stale measurements allow it to
outperform techniques that either keep or discard all old

measurements. In this section we evaluate the accuracy
and coverage of its techniques (§7) in isolation.

Traceroute-based source/destination patching. First,
we validate Sibyl’s approaches of using a path change
observed on one path to update other previously measured
paths (from the same source or to the same destination)
that traverse the path segment that changed. For this,
we issued traceroutes from all PlanetLab sites to 150K
prefixes on Dec. 5 and on Dec. 6 2014. We calculated
the probability that paths undergo identical path changes,
given their Dec. 5 routes traversed a shared segment that
changed in one of the routes on Dec. 6. For 65% of path
changes, all paths experience an identical change. Results
on measurements one week apart are similar.

BGP-based destination pruning. We evaluate Sibyl’s
BGP-based filtering of stale paths on RIPE Atlas mea-
surements gathered between July 2 and August 27, 2015,
using daily BGP paths from BGPStream [50]. We
mapped the traceroute destinations to the longest pre-
fix in the collected BGP data, excluding prefixes longer
than 24.

First, for coverage, of the (AS, destination) pairs in our
traceroutes, only 5% of the ASes appear in BGP feed
paths towards the destinations, demonstrating both the
superior coverage of our traceroute vantage points com-
pared to available BGP feeds and also a limitation with
BGP-based filtering. However, 84% of our traceroutes
include at least one pair seen in the BGP feeds. Of the
pairs seen in both data sources, the AS paths are the same
in 57% of cases. The other 43% reflect a mix of large
ASes using multiple paths, of errors in translating tracer-
outes to AS paths, and of misalignment in time because
we do not have an exact timestamp for the traceroutes.

Second, we evaluate the accuracy of BGP-based fil-
tering. Every time we refreshed an Atlas traceroute to a
destination d, for every AS A on the traceroute, we check
three conditions. 1:(BGP-change) Is the BGP path to d
different than it was at the time of the original traceroute
to d? 2:(TR-change) Did A’s traceroute AS path change
between the two measurements? 3:(TR-match) Did A’s
original traceroute AS path match A’s BGP path at the
time it was issued? Comparing every instance of BGP-
change with the subset that are also TR-change, 72% of
BGP changes were also reflected in traceroutes. Compar-
ing instances that are both BGP-change and TR-change
with the subset that are also TR-match, the percentage
increases to 77% if we add the stricter condition that the
BGP and traceroute paths matched to begin with. Over-
all, BGP monitoring prunes 9% of the traceroute changes
if we require the TR-match check and 13.8% if we do not.

17

342 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 14: Screenshot of Sibyl’s interface to build predicates.

(a) All paths traversing GTT in Seattle then Level3 in Los Angeles. (b) Paths through GTT peers other than NTT and Level3 in Seattle.
Figure 15: Screenshots of example queries from Section 3.2, built by composing predicates such as the one in Fig. 14.

H Unsatisfiable Queries

Section 8 uses queries that are satisfiable–since we gen-
erate them from traceroutes Sibyl could choose to issue.
Here we evaluate whether Sibyl can avoid wasting budget
on queries it has no hope of satisfying, to avoid having
them impede its performance on queries it can satisfy.
We generated sensible unsatisfiable queries by generat-
ing existence queries as in Section 8.1, removing Sibyl’s
access to 10% of the RIPE Atlas and traceroute server
VPs, then identifying queries that can only be satisfied by
measurements from the removed vantage points.12

In our experiment, we add unsatisfiable queries to the
set of queries submitted to Sibyl while keeping the prob-
ing budget fixed. As we move from all queries satisfi-
able to an even mix of satisfiable and unsatisfiable, Sibyl
still matches just as many queries, 76% on average as in
Figure 3. It does generate some candidates to consider
issuing for some of the unsatisfiable queries. However,
Sibyl’s ability to rate the likelihood of matching allows
it to prioritize measurements with high expected utility,

12We do not include trivial unsatisfiable queries such as asking for paths
originated from ASes hosting the removed VPs.

concentrating budget on queries that can be satisfied. In
practice, it could inform a user when it had no candidates
likely to match the user’s query.

To verify that this result was because the system as-
sessed that its vantage points were unable to satisfy the
queries, not because it found the queries to be unsatis-
fiable in general, we reintroduced the 10% of vantage
points back into the system and ran it with just the previ-
ously unsatisfiable queries. Sibyl satisfied an average of
48% of the queries, suggesting that they are hard but not
impossible when suitable vantage points are available.
When we then combined the two batches of queries, in-
creasing the absolute traceroute budget to maintain the
1:1 query:budget ratio, Sibyl satisfied an average of 58%
of queries, balancing the budget well across the two sets to
nearly equal the (76+48)/2 = 62% average performance
when it could dedicate itself to one set.

I Sibyl’s query interface

We built a web-based user interface to guide users in
specifying queries. Figure 14 presents a screenshot of
the widgets used to build a predicate. Users can build

18

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 343

a broad class of predicates that accept (or, via negation,
reject) a user-specified set of values (e.g., particular cities
or ASes) at any or all granularities. Users can then build
queries by specifying a sequence of predicates they want
paths to traverse. Figures 15(a) and (b) show examples
of simplified versions of queries from Section 3.2.

References
[1] Anwar, R., Niaz, H., Choffnes, D., Cunha, I., Gill, P., and

Katz-Bassett, E. Investigating interdomain routing policies in
the wild. In IMC (2015).

[2] Archipelago measurement infrastructure. http://www.caida.
org/projects/ark/.

[3] AS Rank: AS Ranking. http://as-rank.caida.org/.

[4] Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Fried-
man, T., Latapy, M., Magnien, C., and Teixeira, R. Avoiding
traceroute anomalies with Paris traceroute. In IMC (2006).

[5] Augustin, B., Friedman, T., and Teixeira, R. Measuring mul-
tipath routing in the Internet. IEEE/ACM TON (2011).

[6] Augustin, B., Krishnamurthy, B., and Willinge, W. IXPs:
mapped? In IMC (2009).

[7] Banerjee, R., Chiang, L., Mishra, A., Razaghpanah, A.,
Sekar, V., Choi, Y., and Gill, P. Internet outages, the eye-
witness accounts: Analysis of the outages mailing list. In PAM
(2015).

[8] Bourgeau, T., Augé, J., and Friedman, T. TopHat: supporting
experiments through measurement infrastructure federation. In
TridentCom (2010).

[9] Bu, T., Duffield, N., Presti, F. L., and Towsley, D. Network
tomography on general topologies. In SIGMETRICS (2002).

[10] CAIDA UCSD AS classification dataset. http://www.caida.
org/data/as_classification.xml.

[11] Chang, D., Govindan, R., and Heidemann, J. The temporal and
topological characteristics of BGP path changes. In ICNP (2003).

[12] Chen, K., Choffnes, D. R., Potharaju, R., Chen, Y., Busta-
mante, F. E., Pei, D., and Zhao, Y. Where the sidewalk ends:
Extending the Internet AS graph using traceroutes from P2P users.
In CoNEXT (2009).

[13] Chiu, Y.-C., Schlinker, B., Radhakrishnan, A. B., Katz-
Bassett, E., and Govindan, R. Are we one hop away from
a better Internet? In IMC (2015).

[14] Coates, M., Hero, A., Nowak, R., and Yu, B. Internet tomog-
raphy. IEEE Signal Processing Magazine (2002).

[15] Cunha, I., Teixeira, R., Veitch, D., and Diot, C. Predicting
and tracking Internet path changes. In SIGCOMM (2011).

[16] Dughmi, S. Submodular functions: Extensions, distributions, and
algorithms. A survey (PhD qualifying exam report). Tech. rep.,
Stanford, 2009.

[17] Fanou, R., Francois, P., and Aben, E. On the diversity of
interdomain routing in Africa. In PAM (2015).

[18] Flach, T., Katz-Bassett, E., and Govindan, R. Quantifying
violations of destination-based forwarding on the Internet. In
IMC (2012).

[19] Flach, T., Katz-Bassett, E., and Govindan, R. Quantifying
violations of destination-based forwarding on the Internet. In
IMC (November 2012).

[20] Friedman, J. H., and Popescu, B. E. Predictive learning via rule
ensembles. The Annals of Applied Statistics (2008), 916–954.

[21] Gao, L., and Rexford, J. Stable Internet routing without global
coordination. In SIGMETRICS (2000).

[22] Gupta, A., Calder, M., Feamster, N., Chetty, M., Calandro,
E., and Katz-Bassett, E. Peering at the Internet’s frontier: A
first look at ISP interconnectivity in Africa. In PAM (2014).

[23] Hengartner, U., Moon, S., Mortier, R., and Diot, C. Detection
and analysis of routing loops in packet traces. In IMW (2002).

[24] Hiran, R., Carlsson, N., and Gill, P. Characterizing large-scale
routing anomalies: a case study of the China Telecom incident.
In PAM (2013).

[25] Internet address hitlist dataset, PREDICT ID USC LAN-
DER internet_address_hitlist_it28wbeta20090914. http://
www.isi.edu/ant/lander.

[26] Jacobson, V. Traceroute. ftp://ftp.ee.lbl.gov/
traceroute.tar.gz.

[27] Javed, U., Cunha, I., Choffnes, D. R., Katz-Bassett, E., An-
derson, T., and Krishnamurthy, A. PoiRoot: Investigating the
root cause of interdomain path changes. In SIGCOMM (2013).

[28] John, J. P., Katz-Bassett, E., Krishnamurthy, A., Anderson,
T., and Venkataramani, A. Consensus routing : The Internet
as a distributed system. In NSDI (2008).

[29] Katz-Bassett, E., John, J. P., Krishnamurthy, A., Wetherall,
D., Anderson, T., and Chawathe, Y. Towards IP geolocation
using delay and topology measurements. In IMC (2006).

[30] Katz-Bassett, E., Madhyastha, H. V., Adhikari, V., Scott, C.,
Sherry, J., van Wessep, P., Anderson, T., and Krishnamurthy,
A. Reverse traceroute. In NSDI (2010).

[31] Katz-Bassett, E., Madhyastha, H. V., John, J. P., Krishna-
murthy, A., Wetherall, D., and Anderson, T. Studying black
holes in the Internet with Hubble. In NSDI (2008).

[32] Katz-Bassett, E., Scott, C., Choffnes, D. R., Cunha, I.,
Valancius, V., Feamster, N., Madhyastha, H. V., Anderson,
T. E., and Krishnamurthy, A. LIFEGUARD: Practical repair
of persistent route failures. In SIGCOMM (2012).

[33] Keys, K., Hyun, Y., Luckie, M., and kc claffy. Internet-
scale IPv4 alias resolution with MIDAR: System architecture.
Tech. rep., Cooperative Association for Internet Data Analysis
(CAIDA), 2011.

[34] Krishnan, R., Madhyastha, H. V., Srinivasan, S., Jain, S.,
Krishnamurthy, A., Anderson, T., and Gao, J. Moving beyond
end-to-end path information to optimize CDN performance. In
IMC (2009).

[35] Kushman, N., Kandula, S., and Katabi, D. Can you hear me
now?! It must be BGP. SIGCOMM CCR (2007).

[36] Labovitz, C., Ahuja, A., Bose, A., and Jahanian, F. Delayed
Internet routing convergence. In SIGCOMM (2000).

[37] Lee, D., Jang, K., Lee, C., Iannaccone, G., and Moon, S.
Scalable and systematic Internet-wide path and delay estimation
from existing measurements. Computer Networks (2011).

19

344 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[38] Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., and
Claffy, K. AS relationships, customer cones, and validation. In
IMC (2013).

[39] Madhyastha, H. V., Anderson, T., Krishnamurthy, A.,
Spring, N., and Venkataramani, A. A structural approach
to latency prediction. In IMC (2006).

[40] Madhyastha, H. V., Isdal, T., Piatek, M., Dixon, C., Ander-
son, T., Krishnamurthy, A., and Venkataramani, A. iPlane:
An information plane for distributed services. In OSDI (2006).

[41] Madhyastha, H. V., Katz-Bassett, E., Anderson, T., Krish-
namurthy, A., and Venkataramani, A. iPlane Nano: Path
prediction for peer-to-peer applications. In NSDI (2009).

[42] Mahajan, R., Zhang, M., Poole, L., and Pai, V. Uncovering
performance differences among backbone ISPs with Netdiff. In
NSDI (2008).

[43] Mao, Z. M., Qiu, L., Wang, J., and Zhang, Y. On AS-level path
inference. In SIGMETRICS (2005).

[44] Marchetta, P., Persico, V., Katz-Bassett, E., and Pescape, A.
Don’t trust traceroute (completely). In CoNEXT Student Workshop
(2013).

[45] Mühlbauer, W., Uhlig, S., Fu, B., Meulle, M., and Maennel,
O. In search for an appropriate granularity to model routing
policies. In SIGCOMM (2007).

[46] Narayana, S., Tahmasbi, M., Rexford, J., and Walker, D.
Compiling path queries. In NSDI (2016).

[47] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An analysis
of approximations for maximizing submodular set functions I.
Mathematical Programming 14 (1978), 265–294.

[48] Oliveira, R., Pei, D., Willinger, W., Zhang, B., and Zhang,
L. In search of the elusive ground truth: The Internet’s AS-level
connectivity structure. In SIGMETRICS (2008).

[49] Oliveira, R. V., Zhang, B., and Zhang, L. Observing the
evolution of Internet AS topology. In SIGCOMM (2007).

[50] Orsini, C., King, A., and Dainotti, A. BGPStream: a software
framework for live and historical BGP data analysis. Tech. rep.,
Center for Applied Internet Data Analysis (CAIDA), Oct 2015.

[51] Outages mailing list. http://isotf.org/mailman/
listinfo/outages.

[52] Paxson, V. End-to-end routing behavior in the Internet.
IEEE/ACM TON (1997).

[53] PlanetLab website. http://www.planet-lab.org.

[54] Qiu, J., and Gao, L. AS path inference by exploiting known AS
paths. In GLOBECOM (2006).

[55] RIPE Atlas. https://atlas.ripe.net/.

[56] Sánchez, M. A., Otto, J. S., Bischof, Z. S., Choffnes, D. R.,
Bustamante, F. E., Krishnamurthy, B., and Willinger, W.
A measurement experimentation platform at the Internet’s edge.
IEEE/ACM TON (2014).

[57] Shavitt, Y., and Shir, E. DIMES: Let the Internet measure itself.
SIGCOMM CCR (2005).

[58] Spring, N., Mahajan, R., and Anderson, T. Quantifying the
causes of path inflation. In SIGCOMM (2003).

[59] Spring, N., Mahajan, R., and Wetherall, D. Measuring ISP
topologies with Rocketfuel. In SIGCOMM (2002).

[60] Sridharan, A., Moon, S. B., and Diot, C. On the correlation
between route dynamics and routing loops. In IMC (2003).

[61] Steenbergen, R. A. A practical guide to (cor-
rectly) troubleshooting with traceroute. In NANOG
45 (2009). http://www.nanog.org/meetings/nanog45/
presentations/Sunday/RAS_traceroute_N45.pdf.

[62] Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R.,
Crawford, S., and Pescape, A. Broadband Internet perfor-
mance: A view from the gateway. In SIGCOMM (2011).

[63] Traceroute.org. http://www.traceroute.org/.

[64] Trammell, B., Casas, P., Rossi, D., Bar, A., Houidi, Z., Leon-
tiadis, I., Szemethy, T., and Mellia, M. mPlane: an intelligent
measurement plane for the Internet. Communications Magazine,
IEEE 52, 5 (2014), 148–156.

[65] Veanes, M. Applications of symbolic finite automata. In Imple-
mentation and Application of Automata. Springer, 2013.

[66] Veitch, D., Augustin, B., Teixeira, R., and Friedman, T.
Failure control in multipath route tracing. In INFOCOM (2009).

[67] Vissicchio, S., Tilmans, O., Vanbever, L., and Rexford, J.
Central control over distributed routing. In SIGCOMM (2015).

[68] Vondrak, J. Optimal approximation for the submodular welfare
problem in the value oracle model. In STOC (2008).

[69] Wang, F., Mao, Z. M., Wang, J., Gao, L., and Bush, R. A
measurement study on the impact of routing events on end-to-end
Internet path performance. In SIGCOMM (2006).

[70] Wang, Z., Qian, Z., Xu, Q., Mao, Z., and Zhang, M. An
untold story of middleboxes in cellular networks. SIGCOMM
CCR (2011).

[71] Wong, B., Stoyanov, I., and Sirer, E. G. Octant: A comprehen-
sive framework for the geolocalization of Internet hosts. In NSDI
(2007).

[72] Xu, Q., Huang, J., Wang, Z., Qian, F., Gerber, A., and
Mao, Z. M. Cellular data network infrastructure characterization
and implication on mobile content placement. In SIGMETRICS
(2011).

[73] Zarifis, K., Flach, T., Nori, S., Choffnes, D., Govindan, R.,
Katz-Bassett, E., Mao, Z. M., and Welsh, M. Diagnosing path
inflation of mobile client traffic. In PAM (2014).

[74] Zhang, M., Zhang, C., Pai, V., Peterson, L., and Wang, R.
PlanetSeer: Internet path failure monitoring and characterization
in wide-area services. In OSDI (2004).

[75] Zhang, Y., Mao, Z. M., and Zhang, M. Effective diagnosis of
routing disruptions from end systems. In NSDI (2008).

[76] Zhang, Z., Zhang, Y., Hu, Y. C., Mao, Z. M., and Bush, R.
iSpy: detecting IP prefix hijacking on my own. In SIGCOMM
(2008).

20

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 345

VAST: A Unified Platform for Interactive Network Forensics

Matthias Vallentin
vallentin@icir.org

UC Berkeley

Vern Paxson
vern@icir.org

UC Berkeley / ICSI

Robin Sommer
robin@icir.org

ICSI / LBNL

Abstract
Network forensics and incident response play a vital role in
site operations, but for large networks can pose daunting dif-
ficulties to cope with the ever-growing volume of activity and
resulting logs. On the one hand, logging sources can generate
tens of thousands of events per second, which a system support-
ing comprehensive forensics must somehow continually ingest.
On the other hand, operators greatly benefit from interactive
exploration of disparate types of activity when analyzing an
incident.

In this paper, we present the design, implementation, and
evaluation of VAST (Visibility Across Space and Time), a dis-
tributed platform for high-performance network forensics and
incident response that provides both continuous ingestion of
voluminous event streams and interactive query performance.
VAST leverages a native implementation of the actor model
to scale both intra-machine across available CPU cores, and
inter-machine over a cluster of commodity systems.

1 Introduction

Security incidents often leave network operators scram-
bling to ferret out answers to key questions: How did the
attackers get in? What did they do once inside? Where
did they come from? What activity patterns serve as indi-
cators reflecting their presence? How do we prevent this
attack in the future?

Operators can only answer such questions by drawing
upon high-quality logs of past activity recorded over ex-
tended time. Incident analysis often starts with a narrow
piece of intelligence, typically a local system exhibiting
questionable behavior, or a report from another site de-
scribing an attack they detected. The analyst then tries
to locate the described behavior by examining logs of
past activity, often cross-correlating information of dif-
ferent types to build up additional context. Frequently,
this process in turn produces new leads to explore itera-
tively (“peeling the onion”), continuing and expanding
until ultimately the analyst converges on as complete of

an understanding of the incident as they can extract from
the available information.

This process, however, remains manual and time-
consuming, as no single storage system efficiently inte-
grates the disparate sources of data (e.g., NIDS, firewalls,
NetFlow data, service logs, packet traces) that investiga-
tions often involve. While standard SIEM systems such
as Splunk aggregate logs from different sources into a
single database, their data models omit crucial semantics,
and they struggle to scale to the data rates that large-scale
environments require.

Based on these needs, and drawing upon our years of
experience working closely with operational security staff,
we formulate three key goals for a system supporting the
forensic process [2]:

Interactivity. The potential damage that an attacker
can wreak inside an organization grows quickly as a func-
tion of time, making fast detection and containment a vital
concern. Further, a system’s interactivity greatly affects
the productivity of an analyst [16]. We thus desire replies
to queries to begin arriving within a second or so.

Scalability. The volume of data to archive and process
exceeds the capacity of single-machine deployments. A
fundamental challenge lies in devising a distributed archi-
tecture that scales with the number of nodes in the system,
as well as maximally utilizes the cores available in each
node.

Expressiveness. Representing arbitrary activity re-
quires a richly typed data model to avoid losing domain-
specific semantics when importing data. Similarly, the
system should expose a high-level query language to en-
able analysts to work within their domain, rather than
spending time translating their workflows to lower-level
system idiosyncrasies.

In this work, we develop a system for network foren-
sics and incident response that aims to achieve these goals.
We present the design and implementation of VAST (Visi-
bility Across Space and Time), a unified storage platform
that provides: (i) an expressive data model to capture de-

346 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

scriptions of various forms of activity; (ii) the capability
to use a single, declarative query language to drive both
post-facto analyses and detection of future activity; and
(iii) the scalability to support archiving and querying of
not just log files, but a network’s entire activity, from
high-level IDS alerts to raw packets from the wire.

The key to VAST’s power concerns providing the nec-
essary performance to support both very high data vol-
umes (100,000s of events/sec) and interactive queries
against extensive historical data. VAST features an en-
tirely asynchronous architecture designed in terms of the
actor model [25], a message-passing abstraction for con-
current systems, to fully utilize all available CPU and stor-
age resources, and to transparently scale from single-node
to cluster deployments. To support interactive queries,
VAST relies extensively on bitmap indexes that we adapt
to support its expressive query language.

Our evaluations show that on a single machine VAST
can ingest 100 K events/sec for events with 20 fields, re-
flecting an input rate of 2 M values/sec. Moreover, dis-
tributed ingestion allows for spreading the load over nu-
merous system entry points. Users receive a “taste” of
their results typically within 1 sec. This first subset helps
users to quickly triage the relevance of the result and
move on with the analysis by aborting or modifying the
current query. We also show that VAST, with its unified
approach, can effectively serve as a high-volume packet
bulk recorder.

We structure the rest of the paper as follows. In §2 we
summarize related work. We present the architecture of
VAST in §3 and our implementation in §4. In §5 we
evaluate VAST and assess its aptness for the domain.
Finally, we conclude in §6.

2 Related Work

Data Warehouses. VAST receives read-only data for
archiving, similar to a data warehouse. Dremel [40] stores
semi-structured data in situ and offers an SQL interface
for ad-hoc queries with interactive response. Dremel’s
query executor forms a tree structure where intermediate
nodes aggregate results from their children. VAST gen-
eralizes this approach with its actor-based architecture to
both data import and query execution.

Succinct [1] also stores data in situ, but in compressed
flat files that do not require decompression when searched.
Internally, Succinct operates on suffix trees and therefore
supports point, wildcard, and lexicographical lookup on
strings. Other data types (e.g., arithmetic, compound)
require transformations into strings to maintain a lexico-
graphical ordering. Succinct exhibits high preprocessing
costs and modest sequential throughput, rendering it inapt
for high-volume scenarios. When the working set fits in

memory, Succinct offers competitive performance, but
not when primarily executing off the filesystem.

ElasticSearch [17] is a distributed, document-oriented
database built on top of Apache Lucene [36], which
provides a full-text inverted index. ElasticSearch hides
Lucene behind a RESTful API and a scheme to partition
data over a cluster of machines. VAST uses a similar
deployment model, but instead provides a semi-structured
data model and internally relies on different indexing tech-
nology more amenable to hit composition and iterative
refinements.

Network Forensics. NET-Fli [20] is a single-machine
NetFlow indexer relying on secondary bitmap indexes.
The authors also present a promising (though patented)
bit vector encoding scheme, COMPAX. Instead of hand-
optimizing a system for NetFlow records, VAST offers a
generic data model. The separation between base data and
indexes has also found application in similar systems [51],
with the difference of relying on a column store for the
base data instead of a key-value store. The existing sys-
tems show how one can design a single-machine archi-
tectures, whereas we present a design that transparently
scales from single-machine to cluster deployments.

The Time Machine [38] records raw network traffic
in PCAP format and builds indexes for a limited set of
packet header fields. To cope with large traffic volumes,
the Time Machine employs a cutoff to cease recording a
connection’s packets after they exceed a size threshold.
The system hard-codes the use of four tree indexes over
the connection tuple, and cannot reuse its indexes across
restarts. Similarly, NetStore [22], pcapIndex [19], and
FloSIS [33] offer custom architectures geared specifically
towards flow archival. VAST represents a superset of bulk
packet recorders: it supports the same cutoff functionality,
and packets simply constitute a particular event type in
VAST’s data model.

The GRR Rapid Response framework [11] enables live
forensic investigations where analysts push out queries
to agents running on end-hosts. A NoSQL store accu-
mulates the query results in a central location, but GRR
does not feature a persistence component to comprehen-
sively archive end-host activity over long time periods.
VAST can serve as a long-term storage backend for host-
level data, which allows analysts to query both host and
network events in a unified fashion.

Finally, existing aggregators such as Splunk [49] oper-
ate on unstructured, high-level logs that lack the semantics
to support typed queries, and are not designed for stor-
ing data at the massive volumes required by lower-level
representations of activity. Splunk in particular cannot
dynamically adapt its use of CPU resources to change in
workload.

Distributed Computing. The MapReduce [14] execu-
tion model enables arbitrary computation, distributed over

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 347

a cluster of machines. While generic, MapReduce cannot
deliver interactive response times on large datasets due
to the full data scan performed for each job. Spark [58]
overcomes this limitation with a distributed in-memory
cluster computing model where data is efficiently shared
between stages of computation. However, for rapid re-
sponse times, the entire dataset must reside preloaded in
memory. But analysts can rarely define a working set
a priori, especially for spatially distant data, which can
result in thrashing due to frequent loading and evicting
of working sets from memory. We envision VAST going
hand-in-hand with Hadoop or Spark, where VAST quickly
finds a tractable working set and then hands it off to a
system well-suited for more complex analysis.

3 Architecture

To support flexible deployments on large-scale clusters,
as well as single machines while retaining a high de-
gree of concurrency, we designed VAST in terms of
the actor model [25]. In this model, concurrent en-
tities (“actors”) execute independently and in parallel,
while providing local fault isolation and recovery. Using
unique, location-independent addresses, actors communi-
cate asynchronously solely via message passing. They do
not share state, which prevents data races by design.

A related model of computation is communicating se-
quential processes (CSP) [26] in which processes commu-
nicate via synchronous channels. As a result, the sender
blocks until the receiver has processed the message. This
creates a tighter coupling compared to the asynchronous
fire-and-forget semantics of actor messaging. CSP em-
phasizes the channel while the actor model its endpoints:
actors have a location-independent address whereas pro-
cesses remain anonymous. In the context of distributed
systems, the focus on endpoints provides a powerful ad-
vantage: the actor model contains a flexible failure propa-
gation model based on monitors, links, and hierarchical
supervision trees [4]. These primitives allow for isolating
failure domains and implementing local recovery strate-
gies, and thus constitute an essential capability at scale,
where component failure is the norm rather than the ex-
ception. For these reasons, we deem the actor model a
superior fit for our requirements.

We first present the underlying data model and the
associated query language (§3.1), and then VAST’s com-
ponents and their structure (§3.2).

3.1 Data Model

VAST’s data model consists of types, which define the
physical interpretation of data. A type’s signature in-
cludes a type name and type attributes. A value combines

Boolean Expression Symbol

Conjunction E1 && E2
Disjunction E1 || E2
Negation / Group ! E / (E)
Predicate LHS ◦ RHS

Relational Operator ◦ Symbol

Arithmetic <, <=, ==, !=, >=, >

Membership in, !in

Extractor (LHS/RHS) Semantics

:T All values having type T
x.y.z Value according to schema
&key Event meta data

Types Examples

bool T, F
int / count / real +42 / 42 / -4.2

duration / time 10ms / 2014-09-25

string "foo", "b\x2Ar"
addr 10.0.0.1, ::1
subnet 192.168.0.0/24

port 80/tcp, 53/udp, 8/icmp
vector<T> / set<T> [x, x, x] / {x, x, x}

table<T,U> {(k,v), ..}

Table 1: VAST’s query language.

a type with a data instance. An event is a value with addi-
tional metadata, such as a timestamp, a unique identifier,
and arbitrary key-value pairs. A schema describes the
access structure of one or more types.

VAST’s type system includes basic types to represent a
single value (booleans, signed/unsigned integers, floating-
point, times and durations, strings, IPv4 and IPv6 ad-
dresses, subnets, ports), container types for bundled val-
ues (vectors, sets, tables), and compound types to create
sequenced structures (records), where each named field
holds a value (or nil if absent).

Query Language. VAST’s query language supports
filtering data according to boolean algebra. Table 1 lists
the key syntactic elements. A query expression con-
sists of one or more predicates connected with boolean
AND/OR/NOT. A predicate has the form LHS ◦ RHS,
with ◦ representing a binary relational operator. VAST
supports arithmetic and membership operators. At least
one side of the operator typically must be an extractor,
which specifies the lookup aspect for the value, as follows.

Schema extractors refer to particular values in the
schema. For example, in the predicate http.method

== "POST", http.method is a schema extractor, and
"POST" is the value to match. Meta extractors refer to
event metadata, such as &name to reference the event
name and &time the event timestamp. For example, the
predicate &time > now - 1d selects all events within

348 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

importer

archive

index

exporter

node

source sink

(a) Single-machine deployment. The NODE actor
accommodates all key system actors.

(b) Cluster deployment. Multiple NODEs peer to form
a cluster, which users access transparently.

Figure 1: VAST system architecture.

the last 24 hours. Type extractors leverage the strict typing
in VAST to perform queries over all values having a given
type. For example, the predicate :addr in 10.0.0.0/8

applies to all IP addresses (any VAST value or record field
with type addr).

To represent a log file having a fixed number of
columns, VAST automatically transforms each line into a
record whose fields correspond to the columns. VAST
enforces type safety over queries and only forwards them
to those index partitions with a compatible schema.

3.2 Components
From a high-level view, VAST consists of four key com-
ponents: (i) import to parse data from a source into events
and assign them a globally unique ID, (ii) archive to store
compressed events and provide a key-value interface for
retrieval, (iii) index to accelerate queries by keeping a par-
titioned secondary index referencing events in the archive,
and (iv) export to spawn queries and relay them to sinks
of various output formats. Each component consists of
multiple actors, which can execute all inside the same
process, across separate processes on the same host, or on
different machines.

A NODE1 represents a container for other actors. Typi-
cally, a NODE maps to a single OS-level process. Users
can spawn components all within a NODE (Figure 1(a))
or spread them out over multiple NODEs (Figure 1(b)) to
harness available hardware and network resources in the
most effective way. NODEs can peer to form a cluster,
using Raft [42] for achieving distributed consensus over
global state accessible through a key-value store interface
similar to etcd [18]. We refer to this globally replicated
state as meta store. Each NODE has access to its own meta
store instance which performs the fault-tolerant distribu-
tion of values. A typical cluster deployment exhibits a
shared-nothing architecture, where each NODE constitutes
a fully independent system by itself. In the following we

1We refer to particular actors in a SMALL CAPS font style.

discuss each of the four components in more detail.
Import. Data enters VAST via SOURCEs, each of

which can parse various input formats. SOURCEs produce
batches of events and relay them to IMPORTER, where
they receive a unique monotone ID. Upon receiving the
ID range and assigning them to the events, IMPORTER
relays the batch to ARCHIVE and INDEX.

Each event represents a unique description of activity
which analysts need to be able to unambiguously refer-
ence. This requires each event to have a unique iden-
tifier (ID) as meta data independent of its value. The
ID also establishes a link between the archive and index
component: an index lookup yields a set of IDs, each of
which identify a single event in the archive. This yields
the following requirements on ID generation: (i) 64 bits
to represent a sufficiently large number of events, but not
larger since modern processors efficiently operate on 64-
bit integers, (ii) monotonicity because the indexes we use
are append-only data structures, and (iii) ID generation
should also work in distributed setups.

The sequentiality requirement precludes approaches
involving randomness, such as universally unique identi-
fiers [32]. In fact, any random ID generation algorithm
experiences collisions after ≈

√
N IDs due to the birthday

paradox. In combination with the 64-bit requirement, this
would degenerate the effective space from 264 to only√

264 = 232 IDs. Our approach uses a single distributed
counter in the meta store. Requesting a range of N IDs
translates to incrementing this counter by N, which re-
turns a pair with the old and new counter value [o,n)
denoting the allocated half-open range with n− o ≤ N
IDs. To avoid high latencies from frequent interaction
with the meta store, IMPORTER keeps a local cache of IDs
and only replenishes it when running low of IDs.

Archive. The ARCHIVE receives events from IM-
PORTER and stores them compressed on the filesystem.2

To avoid frequent I/O operations for small amounts of

2VAST supports LZ4 [37] and Snappy [48] for compression; both
trade higher speeds for lower compression ratios.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 349

data, ARCHIVE keeps event batches in a fixed-size mem-
ory buffer (by default 128 MB) before writing them to the
filesystem. The buffer (which we term segment) keeps
batches sorted by the ID of their first event. Because
events have continuous IDs within a batch, this process
ensures strictly monotonic IDs within a segment.

ARCHIVE exposes a key-value interface: queried with a
specific ID, it returns a batch containing the ID. The alter-
native, returning the single matching event, only works for
small requests, but would quickly bottleneck the messag-
ing subsystem for moderate request volumes. Internally,
ARCHIVE operates at the granularity of segments to fur-
ther group event batches into larger blocks suitable for
sequential filesystem I/O. ARCHIVE keeps an LRU cache
of a configurable number of segments in memory. In the
future, we plan to store data in a format also shareable
with other applications, e.g., HDFS [46].

Index. By itself, ARCHIVE does not provide efficient
access to data, since extracting events with specific prop-
erties would require a full scan of the archive. Therefore,
VAST maintains a comprehensive set of secondary in-
dexes, which we divide up in horizontal partitions as a
unit of data scaling.

We chose bitmap indexes [41] because they provide an
excellent fit for the domain. First, appending new values
only requires time linear in the number of values in the
new data, which is optimal and yields deterministic per-
formance. Second, bitmap indexes have space-efficient
representations that enable us to carry out bitwise oper-
ations without expanding them. Third, bitmap indexes
compose efficiently: intermediate results have the form
of bit vectors and combining them with logical operation
translates into inexpensive bitwise operations. In §4.2 we
describe bitmap indexes in more detail.

VAST’s index consists of horizontal PARTITIONs, each
of which manages an independent set of bitmap indexes.
An active partition is mutable and can incorporate events,
whereas a passive partition is an immutable unit which
the scheduler manages during query processing. INDEX
relays each arriving batch of events to the currently active
PARTITION, which spawns a set of INDEXERs, one per
event type. An INDEXER may internally further helper
actors, e.g., record INDEXERs use one helper per field.
In comparison to a relational database, this architecture
provides a fine-grained concurrent equivalent to tables
(INDEXERs) and their attributes. PARTITION relays each
batch concurrently to all INDEXERs, each of which pro-
cesses only the subset matching its type. The copy-on-
write message passing semantics of the actor model im-
plementation makes this an efficient operation (INDEXERs
only need read-access to the events) while providing a
high degree of parallelism.

Export. While the import component handles event
ingestion, the export component deals with retrieving

subscribe

importer

archive

index

sinkexporter

relay event stream

filter
results

source

assign
IDs

Figure 2: Continuous query architecture.

events through queries. There exists one EXPORTER per
query, who sends its result to SINKs for rendering. VAST
currently includes ASCII, JSON, PCAP [35], Bro [43],
and Kafka [29] SINKs.

For historical queries over existing data, INDEX ana-
lyzes the abstract syntax tree (AST) of the query expres-
sion to determine the relevant PARTITIONs and constructs
a schedule to process them sequentially. This process
begins with partition pruning: the selection of relevant
partitions for a query. To this end, VAST uses a “meta
index,” consisting of event meta data and event type in-
formation. The meta index has different requirements
than the event indexes within a partition: it must tolerate
immense throughput and update rates. We currently asso-
ciate with each partition the time period its events spans
and record the entire partition schema.

After pruning, INDEX relays the query to the remain-
ing PARTITIONs, which then deconstructs the AST into
its predicates to match them with INDEXERs. If neces-
sary, PARTITION loads the INDEXER from the filesystem
into memory. Upon performing the predicate lookup, IN-
DEXERs send their hits back to their PARTITION, where
they trigger a re-evaluation of the query expression. If the
evaluation yields a change, PARTITION relays the delta
hits from the last evaluation up to INDEX, which in turn
forwards them to the subscribed EXPORTERs. As soon as
the first hits arrive at an EXPORTER, extracting events can
begin by asking ARCHIVE. When EXPORTER receives an
answer in the form of a batch of events, it concurrently
prefetches another batch proceeding with the “candidate
check” to filter out false positives, which may be neces-
sary for some indexes types (e.g., when using binning
for floating point values, see §4.2). Finally, EXPORTER
sends the matching results back to SINK. The process
terminates after EXPORTER has no more unprocessed hits
to extract.

VAST also supports continuous queries to subscribe to
new results as they arrive. As we illustrate in Figure 2,
EXPORTER can subscribe to a copy of the full incoming
event feed at IMPORTER to filter out those events matching
the query expression. Since IMPORTER and EXPORTER
live in the same process this operation does not copy any

350 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

data. In fact, a continuous query is effectively a candidate
check, with the only difference that events now come from
IMPORTER instead of ARCHIVE. The main challenge
lies in efficiently performing this check. To this end,
EXPORTER derives from the AST of the query expression
a visitor performing the candidate check. EXPORTER
constructs one visitor per unique event type on the fly,
and dispatches to the relevant visitor efficiently through
a hash table. For example, an expression may include
the predicate :addr in 10.1.1.0/24. If the current
event has no data of type addr, the visitor discards the
predicate.

3.3 Distribution

When the amount of data exceeds the capacity of a sin-
gle machine, VAST can distribute the load over multiple
machines, as we show in Figure 1(b) for 4 peering NODEs.

Cluster Deployment. In case a SOURCE produces
events at a rate that overloads a single system, it can
load-balance its events over all NODEs. Alternatively,
users can pin SOURCEs to a specific set of NODEs (e.g.,
if certain data should land on a more powerful system).
The dual occurs during querying: the user decides on
which NODEs to spawn an EXPORTER, each of which will
relay its events to the same SINK. In the common case
of round-robin load-balancing of input data, a user query
results in spawning one EXPORTER on all NODEs.

Fault Tolerance. Coping with NODE failure concerns
two aspects: data loss and query execution. To avoid
permanent data loss, we assume a reliable, distributed
filesystem, e.g., HDFS. Data loss can still occur during
ingestion, when ARCHIVE and INDEX have not yet written
their data to the filesystem. VAST minimizes this risk by
writing data out as quickly as possible. When a NODE
fails during query execution, another takes over respon-
sibility of its persistent ARCHIVE and INDEX data, and
re-executes the query on its behalf. EXPORTER can peri-
odically checkpoint its state (consisting of index hits and
event identifiers of results that have passed the candidate
check) to reduce the amount of duplicate results.

4 Implementation

We now present some implementation highlights of the
previously discussed architecture with a focus on ac-
tors (§4.1), bitmap indexes (§4.2), and queries (§4.3).

4.1 Actors

We implemented the components discussed in §3.2 with
the C++ Actor Framework (CAF), a native implementa-
tion of the actor model [10].

A

B

C

D

E

F

G

H

I

J

K

L

Figure 3: Flow-control implemented as back-pressure:
overloaded nodes J, I, and E propagate their load status
upstream such that data sources can throttle their sending
rate.

Performance. CAF offers a high-performance runtime
with a type-safe messaging layer that exhibits minimal
memory overhead. The runtime can distribute actors dy-
namically, within the same process, across the network,
or to GPUs. Within the same process, CAF uses copy-
on-write semantics to enable efficient messaging. CAF’s
networking layer handles actor communication and rout-
ing transparent to the user: the runtime decides whether
sending a message translates into a local enqueue opera-
tion into the recipient’s mailbox, or whether a middleman
serializes the message and ships it across the network.

CAF’s copy-on-write messaging proves particularly
valuable during the indexing process, where PARTITION
sends the same set of events to each INDEXER without
incurring a copy of the data. Although each INDEXER
sees the full data feed, this method still runs faster than
chopping up the input sequence and incurring extra mem-
ory allocations. Such a computation style resembles GPU
programming where we make available data “globally”
and each execution context picks its relevant subset.

Flow Control. CAF operates entirely asynchronously
and does not block: immediately after sending a message
an actor can dequeue a message from its mailbox. This
makes it easy for data producers to overwhelm down-
stream nodes if not equipped with enough processing ca-
pacity. A naive reaction entails provisioning more buffer
capacity at the edge so that the system can receive more
messages. But without including the true bottlenecks in
the decision, buffer bloat [31] only worsens the situation
by introducing higher latency and jitter. Flow control
attempts to prevent this scenario from happening: back-
pressure signals overload back to the sender, load shed-
ding reduces the accumulating tasks at the bottleneck, and
timeouts at various stages in the data flow graph bound
the maximum response time.

CAF currently does not support flow control. During
data import, data producers (SOURCEs) can easily over-
load downstream components (ARCHIVE and INDEX). To
throttle the sending rate of SOURCEs, we implemented a
simple back-pressure mechanism: when an actor becomes
overloaded, it sends an overload message to all its reg-
istered upstream components, which either propagate it

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 351

further, or if being the data producer themselves, throttle
their sending rate (see Figure 3). When an overloaded
actor becomes underloaded again, it sends an underload
message to signal upstream senders that it can process
data again. This basic mechanism works well to prevent
system crashes due to overloads, but does not help at ab-
sorb peak input rates. To prevent data loss of non-critical,
latency-insensitive events, queueing brokers that spill to
the filesystem (e.g., Kafka [29]) at the edges help smooth-
ing the data arrival rate to facilitate resource provisioning
for the average case. We are currently working with the
CAF developers to integrate various forms of flow control
deeper into the runtime.

4.2 Composable Indexing
VAST exclusively relies on bitmap indexes to accelerate
queries. We begin in §4.2.1 with briefly summarizing
existing work, which we then rely on in §4.2.2 to define
composable higher-level index types.

4.2.1 A Unified Indexing Framework

Traditional tree and hash indexes [6, 30] provide a quick
entry point into base data, but they do not compose effi-
ciently for higher-dimensional search queries. Inverted
and bitmap indexes avoid this problem by adding an extra
level of indirection: instead of looking up base data di-
rectly, they operate on the IDs of the base data, allowing
for combining results from multiple index lookups via set
operations. Consider the event values x(α) where x rep-
resents a numeric value and α its ID, e.g., 1(0), 3(1), 1(2),
2(3), and 1(4). An inverted index represents the events
as a mapping from values to position lists: 1 →{0,2,4},
2 →{3}, and 3 →{1}. A bitmap index is an isomorphic
data structure where the position lists have the form of bit
vectors:3 1 → 〈10101〉, 2 → 〈00010〉, and 3 → 〈01000〉.
When the distinction does not matter, we use the term
identifier set to mean either position list or bit vector.

There exist hybrid schemes which combine both index
types in a single data structure [7], but VAST currently
implements its algorithms only in terms of bitmap indexes,
where operations from boolean algebra (set, intersection,
complement) naturally map to native CPU instructions. In
general, an index I provides two basic primitives: adding
new values and looking up existing ones under a given
predicate. To add a new value x(α), the index adds α to
the identifier set for x. A lookup under a predicate I ◦ x
retrieves the identifier set S = {α | x(α) ∈ I}. The size of
and index |I|= N represents the number of values entered
and the cardinality #I =C the number of distinct values.

3The literature often uses the term “bitmap” to refer to a bit vector,
i.e., a sequence of bits. We use “bit vector” instead to avoid confusion
between “bitmap” and “bitmap index.”

2

1

3

X

001

0

0

1

0

1

0

012

0010

0

0

1

0

0

0

0

1

0123

1

11

0

0,11,2

Equality Range Interval

1 0110100 11

1 0110100 11

0

0

Figure 4: Equality, range, and interval encoding exempli-
fied using bitmap indexes.

Our example has N = 5 and C = 3. In the following, we
sketch key concepts that affect the inherent space-time
trade-off during the implementation of indexes, which
include binning, coding, compression, and composition.

Binning reduces the cardinality of an index by group-
ing values into bins or rounding floating-point values to
a certain decimal precision. For example, we could cre-
ate bins [1,2] → 〈10111〉 and [3,4] → 〈01000〉, which
reduces the cardinality of the index to C = 2. The sur-
jective nature of binning introduces false positives and
therefore requires a candidate check with the base data to
verify whether a certain hit qualifies as an actual result.
A candidate check can easily dominate the entire query
execution time due to materializing additional base data
(high I/O costs) and extra post-processing. Therefore,
choosing an efficient binning strategy requires careful
tuning and domain knowledge, or advanced adaptive al-
gorithms [44, 47].

Encoding determines how an index maps values to
identifier sets. We show in Figure 4 the three major exist-
ing encoding schemes for a fixed cardinality C = 4, which
can represent values 0–3. Equality encoding associates
each value with exactly one identifier set. This scheme
reflects our running example and consists of exactly C
identifier sets. Range encoding associates each value x(α)

with a range of C − 1 identifier sets such that an ID α
lands in i sets where x ≤ i. We can omit the last identifier
set because x ≤ C−1 holds true for all possible values.
Interval encoding splits the index into �C

2 � overlapping
slices, each of which covers half of the values. In our
example, we have two the intervals [0,1] and [1,2].

Compression algorithms for bit vectors typically use
variations of run-length encoding, which support bitwise
operations without prior decompression. There exist nu-
merous algorithms: BBC [3], WAH [56], COMPAX [20],
CONCISE [12], WBC/EWAH [57, 34], PLWAH [15],
DFWAH [45], PWAH [53], VLC [13], and VAL [24].
We chose EWAH for VAST because when we began our
project software patents covered (and still do) the other
attractive candidates (WAH, PLWAH, COMPAX), which
would have prevented us from releasing our project as

352 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

open-source software. EWAH also trades space for time:
while exhibiting a slightly larger footprint, it executes
faster in certain conditions [23] because it can skip entire
blocks of words.

Multi-component indexes combine several individual
index instances (which might use different approaches)
such that each covers a disjoint partition of the value
domain. Doing so provides an exponential reduction in
space by decreasing the size of the value domain by a mul-
tiplicative factor for each component. We can decompose
a value x into k components 〈xk, . . . ,x1〉 by representing
it with respect to a fixed base (or radix) β = 〈βk, . . . ,β1〉:
x = ∑k

i=1 xiβi, where xi = �x/∏i−1
j=1 β j� mod βi, for all

i ∈ {1, . . . ,k}. This decomposition scheme directly ap-
plies to the index structure as well: a multi-component
index Kβ = 〈Ik, . . . , I1〉 consists of k indexes, where each
Ii covers a total of βi values. A base is uniform if βi = β j
for all i �= j. A uniform base with βi = 2 for all 1 ≤ i ≤ k
yields the bit-sliced index [55], because each xi can only
take on values 0 and 1. We denote this special case by
Θk = Kβ where |β | = k and βi = β j = 2 for all i �= j.
Further, we define Φw = Kβ where ∏k

i=1 βi ≤ 2w as an
index which supports up to 2w values.

For example, consider a two-component index Kβ =
〈I2, I1〉 with β = 〈10,10〉, which supports 100 distinct
values. Appending a value x(α) = 42 involves first de-
composing it into 〈4,2〉, and then appending 4(α) to I2
and 2(α) to I1. Looking up the value x = 23 begins with
decomposing x into 〈2,3〉, and then proceeds with com-
puting I2 = 2 ∧ I1 = 3. The final step resolves each com-
ponent lookup according to its encoding scheme. Oper-
ators other than {=, �=} require more elaborate lookup
algorithms [8, 9], which we lay out in greater detail sepa-
rately [52].

4.2.2 Higher-Level Indexing

For each type in VAST’s data model, there exist differ-
ent requirements derived from the desired query opera-
tions. For example, numeric values commonly involve
inequality comparisons and IP address lookups top-k pre-
fix search. Different lookup operations require different
index layouts.

Per §3.1, a value consists of a type and corresponding
data. A value can exhibit no data, in which case it only
carries type information. We define the value index V=
〈N,D〉 as a composite structure with a null index N to
represent whether data is null (implemented as single
identifier set), and a data index D to represent a type-
specific index, whose instantiations we describe next.

Integral Indexes. The boolean index B= 〈S〉 for type
bool consists of a single identifier set, where α ∈ S im-
plies x(α) = true.

For types count and int, the challenge lies in both

supporting lookups under {<,≤,=, �=,≥,>}, as well as
representing 264 distinct values. To address the high car-
dinality challenge, we use a multi-component index Φ64.
We found that a uniform base 10 works well in prac-
tice. To support the desired arithmetic operations, we use
range coding, which supports both equality and inequality
lookups efficiently.

Signed integers introduce a complication: we cannot
map negative values to array indices during encoding, and
only positive numbers work with value decomposition.
For a w-bit signed integer, we therefore introduce a “bias”
of 2w−1, which shifts the smallest value of −2w−1 to 0
in the unsigned representation. This allows us to use the
same index type for signed an unsigned integers inter-
nally. Thus, we define the count index as C= Φ64 and the
integer index as I= Φ64 with the aforementioned bias.

Floating-Point Index. Type real corresponds to a
IEEE 754 double precision floating point value [28],
which consists of one sign bit, 11 bits for the exponent,
and 52 bits for the significand. Consequently, we con-
struct the real index F = 〈S,E,M〉 as a boolean index
S = B for the sign, a bit-sliced index E = Θ11 for the ex-
ponent, and a bit-sliced index M = Θ52 for the significand.
Varying the number of bits in E and M allows for trading
space for precision without the need to round to a specific
decimal point.

Temporal Indexes. VAST represents duration data
as a 64-bit signed integers in nanosecond resolution,
which can represent ±292.3 years. Since duration and
int are representationally equal, the duration index D= I
directly maps to an integer index.

The type time describes a fixed point in time, which
VAST internally expresses as duration relative to the
UNIX epoch. Thus, the time index T= D is representa-
tionally equal to the duration index.

String Index. Existing string indexes rely on a dic-
tionary to map each unique string value to a unique nu-
meric value [50]. However, constructing a space-efficient
dictionary poses a challenge in itself [39, 27]. More-
over, this design only supports equality lookups naturally:
for substring search, one must search the dictionary key
space first to get the identifier sets, and then perform the
lookup for each identifier set, and finally combine the
result. Instead of using a stateful dictionary, one can rely
on hashing to compute a unique string identifier [51]. The
possibility of collisions now requires a candidate check.
While space-optimal due to the absence of a dictionary,
and time-efficient due to fast computation, this approach
does not support substring search.

We propose a new approach for string indexing that
supports both equality and substring search, yet operates
in a stateless fashion without dictionary. Our string index
S= 〈φ ,κ1, . . . ,κM〉 consists of an index φ = Kβ for the
string length, plus M indexes κi = Φ8 per character where

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 353

M is the largest string added to the index. When repre-
senting the character-level indexes κi as a bit-sliced index
Θ8, we obtain efficient case-insensitive (substring) search
for ASCII-encoded strings. This works because only the
6th bit determines casing in ASCII, and by simply omit-
ting the corresponding identifier set Θ8

6 during lookup,
case-insensitive search executes faster than case-sensitive
search. We plan on supporting search via a subset of regu-
lar expressions by compiling a pattern into an automaton
performing a sequence of per-character lookups. Like-
wise this structure lends itself to similarity search, e.g.,
via edit-distance.

This design works well for bounded, non-uniform
string data, such as URLs or HTTP user agents. For
other workloads we fall back to hashing in combination
with tokenization. This preprocessing step splits a string
according to a pattern (e.g., whitespace for text, ’/’ for
URIs, etc.), which then creates a set of multiple smaller
strings. Adaptively switching between the index types
presents an interesting opportunity for future work, e.g.,
by inspecting both the nature of user queries as well as
inferring the data distribution.

Network Indexes. IP addresses constitute a central
data type to describe endpoints of communicating enti-
ties. The most common operation on IP addresses con-
sists of top-k prefix search, e.g., I ∈ 192.168.0.0/24

or I /∈ fd00::/8. We can consider equality lookup as a
special case when k = 32 and k = 128 for IPv4 and IPv6,
respectively. There exists a standardized scheme to embed
a 32-bit IPv4 address inside a 128-bit IPv6 address [5]:
set the first 96 bits to 0 and copy the IPv4 address in the
last 32 bits. This yields the address index A= Θ128 where
each bit in the address corresponds to one identifier set in
the index.

The subnet type consists of a network address and
a prefix. Typical queries involve point lookups of IP
addresses (e.g., 192.168.0.42 ∈ I), and subset relation-
ships to test whether one subnet contains another (e.g.,
192.168.0.0/28⊆ I). The subnet index U= 〈A,P〉 con-
sists of an address index A and a single equality-encoded
index P for the prefix.

The port type consists of a 16-bit number and a trans-
port protocol type. The port index P= 〈Φ16,T 〉 consists
of an index for the 16-bit bit port number and a single
equality-encoded index T for the different port types.

Container Indexes. Container types include vector,
set, and table. A container contains a variable num-
ber of elements of a homogeneous type, unlike records,
which allows for fixed-length heterogeneous data with
named fields. For example, a set describes DNS lookup
results, where a single host name has associated multiple
A records. We support cardinality and subset queries on
containers.

The design of string indexes generalizes to contain-

extracting

waitingidle

done

hits arrived,
unprocessed hits

finished batch,
no inflight batches

finished batch,
inflight batch

processed fewer events
than in batch

all hits arrived,
no unprocessed hits batch

arrived

Figure 5: The QUERY state machine.

ers. Let M denote the maximum number of elements
in a container. We define the vector index XV and set
index XS both as 〈φ ,V1, . . . ,VM〉: an index φ = Kβ for
the container size and M value indexes Vi. The table in-
dex XT = 〈φ ,X1, . . . ,XM,Y1, . . . ,YM〉 consists of an index
for the size φ , a sequence of value indexes Xi = V for the
table keys, and a sequence of value indexes Yi = V for
the table values. Tables support key lookup, value lookup,
and checking for specific mappings.

4.3 Queries
The actor model provides an apt vehicle to implement a
fully asynchronous architecture, which enables VAST to
deliver interactive response times. We illustrate how this
applies to query processing in the following.

Finite state machines. We found that finite state ma-
chines (FSMs) prove an indispensable mechanism to en-
sure correct message handling during query execution.
Recall that NODE spawns an EXPORTER for each query
to bridge ARCHIVE and INDEX. We implemented EX-
PORTER as a finite state machine (see Figure 5), which
begins in idle state. Upon receiving new hits EXPORTER
asks ARCHIVE for the corresponding batches and tran-
sitions into waiting. As soon as the first batch arrives,
it transitions into extracting, from where a user can
selectively control it to fetch specific results. By letting
the user drive the extraction, VAST does not consume
resources unless needed.

Predicate-level caching. To speed-up related queries,
INDEX maintains a predicate cache. If hits for the expres-
sion A || B exists already, then a new expression A &&

D only requires looking up D. This makes iterative query
styles viable, where the analyst keeps on refining a filter
until having pin-pointed the desired information.

Evaluating expressions. When INDEX receives a
query consisting of multiple predicates, VAST evaluates
them concurrently. Recall from §3.2 that during a histori-
cal query INDEXERs send their hits back to PARTITION,
where they trigger an evaluation of the expression. If
the evaluation yields new hits (i.e., a bit vector with new

354 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

A

&&

BA

!

&&

B

||

C

! !

!

C

!

&&

B' C'A

Figure 6: Expression normalization: negation normal
form (NNF) and negation absorbing. The expression A ∧
B ∨C first becomes A ∧ B ∧C. Thereafter, we can absorb
negations further and reduce the intermediate expression
to A ∧ B′ ∧C′, e.g., if B = I < x, then B′ = I ≥ x.)

1-bits), PARTITION forwards them to INDEX, which in
turn relays them to EXPORTER.

To minimize latency and relay hits as soon as possible,
we normalize queries to negation normal form (NNF),
which eliminates double-negations and pushes negations
inwards to the predicate level. We also absorb remaining
negations into the predicates, which is possible because
each operator has a complement (e.g., < and ≥). Figure 6
illustrates the normalization procedure. The absence of
negations, aside from saving an extra complement oper-
ation, has a useful property: a 1-bit will never turn to 0
during evaluation.

To understand this benefit, consider a predicate A
which decomposes into n sub-predicates. This may occur
for predicates of the form :addr in 172.16.0.0/16,
where the type extractor acts as a placeholder resolving to
n concrete schema extractors. When PARTITION sends A
to the n INDEXERS, they report their hits asynchronously
as soon as they become available. PARTITION contin-
uously re-evaluates the AST for new arriving Hi, until
having computed A = H1 ∨ ·· · ∨ Hn. As soon as a re-
evaluation yields one or more new 1-bits, PARTITION
relays this delta upstream to INDEX. If we kept the nega-
tion A, we would to wait for all n hits to arrive in order
to ensure we are not producing false positives. Without
negations, we can relay this change immediately since a
1-bit cannot turn 0 again in a disjunction.

5 Evaluation

We evaluate our implementation in terms of through-
put (§5.1), latency (§5.2), and storage requirements (§5.4).
We performed measurements with two types of inputs:
synthetic workloads that we can precisely control, and
real-world network traffic. For the former, we imple-
mented a benchmark SOURCE that generates input for
VAST according to a configuration file. The SOURCE
generates all synthetic data in memory to avoid adding
I/O load. For real-world input, we use logs from Bro and
raw PCAP traces. For the latter, VAST functions as a
flow-oriented bulk packet recorder.

VAST comprises 36,800 lines of C++14 code (exclud-
ing whitespace and comments), plus 6,700 line of C++
unit tests verifying the system’s building blocks and basic
interactions. We expand on these checks with an end-to-
end test of whether the entire pipeline—from import, over
querying, to export—yields correct results. For valida-
tion, we processed our ground truth (Bro logs and PCAP
traces) separately and cross-checked against the query
results VAST delivers. We found full agreement.

We conducted our single-machine evaluation experi-
ments on a 64-bit FreeBSD system with two 8-core Intel
Xeon E5-2650 CPUs with 128 GB of RAM and four 3 TB
SAS 7.2 K disks (RAID 10 with 2 GB of cache). Our
dataset encompasses a full-packet trace from the upstream
link at the International Computer Science Institute (ICSI),
containing 10 M packets over a 24-hour window on Feb.
24, 2015. We further use 3.4 M Bro connection logs de-
rived from this trace. For our cluster experiments, we
use 1.24 B Bro connection logs (152 GB), split into N
slices for N worker nodes, with N ranging from 1 to 24.
Each worker node runs FreeBSD 10 on a system with two
8-core Intel Xeon E5430 CPUs with 12 GB of RAM and
2 x 500 MB SATA disks. An additional machine with two
Xeon X5570 CPUs and 24 GB performs the slicing. The
machines share a 1 GE network link.

5.1 Throughput

One key performance metric represents the rate of events
that VAST can ingest. Recall the data flow: SOURCEs
parse and send input to a system entry point, an IM-
PORTER, which dispatches the events to ARCHIVE and
INDEX. Because we can spawn multiple SOURCEs for ar-
bitrary subsets of the data, we did not optimize SOURCEs
at this stage in the development, nor ARCHIVE since it
merely sequentially compresses events into fixed-size
chunks and writes them out to the filesystem. Instead, we
concerned ourselves with achieving high performance at
the bottleneck: INDEX, which performs the CPU-intensive
task of building bitmap indexes.

Macro Benchmark. For the ingestion benchmark,
we configured a batch size of 65,536 events at SOURCE,
after observing that greater values entail slightly poorer
performance and higher variance (we tested up to 524,288
events per batch).

Figure 7 shows the event rates for three data formats
(Bro, PCAP, and a benchmark test) at SOURCE, ARCHIVE,
and INDEX as a function of number of cores provided
to CAF’s scheduler in the single system setup. The y-
axis shows the throughput in events per second; note
the log scale. As mentioned above, by design SOURCE
and ARCHIVE exhibit a fairly constant throughput rate.
The highly concurrent architecture complicates measure-
ments of aggregate throughput at INDEX, because there

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 355

�

�

�

�

� �

� �

�
� � �

� � � � � � � � � � � � � � � � � � � �

�

�

� �

�
�

�

�

�

�

�
�

� �
�

�
�

�

�

� �

�

� �

�

�

�

�

� � �

�

�

�

�

�
�

�

�
�

�

�
� �

�
� �

�

� � � �

� � � � � � � � � � � �

bro pcap test

8,192

16,384

32,768

65,536

131,072

262,144

524,288

1,048,576

2,097,152

4,194,304

0 10 20 30 0 10 20 30 0 10 20 30
Cores

Ev
en

ts
/s

ec

Aspect
� Index

Archive
Source

Figure 7: Throughput in events per second as a function of the number of cores for three data types: Bro connection
logs, PCAP traces, and a test source generating synthetic events.

Label Results Query Description

A 374 resp h == 2001:7fe::53 Connections to a specific IPv6 address
B 942 (duration > 1000s || resp bytes > 40000) && service == "dns" Anomalous DNS / zone transfers
C 13 orig h in 192.150.186.0/23 && orig bytes > 10000 && service == "http" Outgoing HTTP requests > 10 KB (exfiltration)
D 3 duration > 1h && service == "ssh" Long-lived SSH sessions
E 969,092 conn state != "SF" TCP sessions lacking normal termination
F 4812 :addr in 192.150.186.0/23 && :port == 3389/? All RDP involving ICSI connections

G 1,077 :addr in 192.150.186.0/23 && :port == 3389/? Same as above, but applied to PCAP trace
H 34 &time > 2015-02-04+10:00:00 && &time < 2015-02-04+11:00:00 && ((src

== 77.255.19.163 && dst == 192.150.187.43 && sport == 49613/? &&
dport == 443/?) || (src == 192.150.187.43 && dst == 77.255.19.163
&& sport == 443/? && dport == 49613/?))

Extract all packets from a single connection
specified by its 4-tuple and restricted to a
one-hour time window

I 187,015 &time > 2015-02-04+10:00:00 && &time < 2015-02-04+11:00:00 && :addr
== 192.150.187.43

All traffic from a single machine within a one-hour
window

Table 2: Test queries for single-machine throughput and latency evaluation. The top 6 queries run over Bro connection
logs and the bottom 3 over a PCAP trace.

exist multiple running INDEXERs, but not all start and
finish at the same time. Therefore we compute through-
put at INDEX as the number of events processed between
start and end of the measurement. Consequently, the
throughput can never exceed the input rate of SOURCE.
We observe that the indexing rate approaches the input
rate for all sources at around 10 cores. Giving CAF’s
work-stealing scheduler, more cores yield no further im-
provement; in fact, performance decreases slightly. We
presume this occurs to due thrashing since CAF does not
pin the worker threads to a specific core, which increases
context switches and cache evictions.

VAST parses Bro events at a rate of roughly 100 K
events per second, with each event consisting of 20 dif-
ferent values, yielding an aggregate throughput of 2 M
values per second. For PCAP, events consist of only the
4-tuple plus the full packet payload; the latter do not need
indexing. VAST can read at around 260 K packets per
second with libpcap. Since ARCHIVE does not skip
the payload, it cannot keep up with the input rate. This
suggests that we need to parallelize this component in the
future, which can involve spawning one COMPRESSOR
per event batch to parallelize the process. With our test

SOURCE, INDEX converges to the input rate at around 14
cores, and we observe input rates close to 1 M events per
second. We conclude that VAST meets the performance
and scalability goals for data import on a single machine:
the system scales up to the point of the input rate after
10-14 cores.

Micro Benchmark. To better understand where VAST
spends its time, we instrumented CAF’s scheduler to get
fine-grained, per-actor resource statistics. This involved
bracketing the job execution with resource tracking calls
(getrusage), i.e., we only measure actor execution and
leave CAF runtime overhead, mostly out of the picture.

In Figure 8, we plot user versus system CPU time for all
key actors. Each point represents a single actor instance,
with its size scaled to the utilization: user plus system
CPU time divided by wallclock time. Note the log scale
on both axes. In the top-right corner, we see ARCHIVE,
which spends its time compressing events (user) and writ-
ing chunks to disk (system). Likewise, INDEX appears
nearby, which manages primarily PARTITIONs and builds
small “meta indexes” based on time to quickly identify
which PARTITION to consider during a query. The bulk
of the processing time spreads over numerous INDEXERs,

356 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0us

10us

100us

1ms

10ms

100ms

1s

0us 10us 100us 1ms 10ms 100ms 1s 10s
User CPU time

Sy
st

em
 C

PU
 ti

m
e

ID
accountant
archive
event−data−indexer
event−indexer
event−name−indexer
event−time−indexer
identifier
importer
index
key−value−store
node
OTHER
partition
task

Utilization
��������������

��������������

��������������

��������������

0.25
0.50
0.75
1.00

Figure 8: User versus system CPU time for key actors.
Each point represents a single actor instance, with point
size scaled to utilization: user plus system CPU time
divided by wallclock time.

which we can see accumulating on the right-hand side,
because building bitmap indexes is a CPU-bound task.

5.2 Latency
Query response time plays a crucial role in assessing the
system’s viability. VAST spawns one EXPORTER per
query, which acts as a middleman receiving hits from IN-
DEX and retrieving the corresponding compressed chunks
of events from ARCHIVE. This architecture exhibits two
interleaving latency elements: the time (i) from the first
to the last set of hits received from INDEX, and (ii) from
the first to the last result sent to a SINK after a successful
candidate check.

To evaluate these latency components, we use the set
of test queries given in Table 2, which a security operator
for a large enterprise confirmed indeed reflect common
searches during an investigation.

Query Pipeline. Figure 9 illustrates the latency ele-
ments seen over the test queries. For all queries, we ran
VAST with 12 cores and a batch size of 65,536. The first
red bar corresponds to the time it took until EXPORTER
received the first set of hits from INDEX. The green bar
shows the time until EXPORTER has sent the first result
to its SINKs. We refer to this as “taste” time, since from
the user perspective it represents the first system response.
The blue bar shows the time until EXPORTER has sent
the full set of results to its SINK. The black transparent

I

H

G

F

E

D

C

B

A

0 5 10 15 20 25 30 35 40 45
Latency (seconds)

Q
ue

ry

Time until
Index
Taste
Query

Count
100,000
200,000
300,000

Figure 9: Query pipeline reflecting various stages of
single-node execution. The first stage (Index) may appear
absent because it can take too little time to manifest in the
plot.

0

2

4

6

8

10

12

14

16

4 8 12 16
Cores

La
te

nc
y

(s
ec

on
ds

) Query
A
B
C
D
E
F
G
H
I

Figure 10: Index latency (full computation of hits) as a
function of cores.

box corresponds to the time when INDEX finished the
computation of hits. Finally, the crosses inside the bar
correspond to points in time when hits arrive, and the
circles to the times when EXPORTER finishes extracting
results from a batch of events.

We see that extracting results from ARCHIVE (blue bar)
accounts for the largest share of execution time. Currently,
this time is a linear function of the query selectivity, be-
cause EXPORTER does not perform extraction in parallel.
We plan to improve this in the future by letting EXPORTER
spawn a dedicated helper actor per arriving batch from
ARCHIVE, allowing for concurrent sweeps over the candi-
dates. Alternatively, we could offload more computation
into ARCHIVE. Selective decompression algorithms [21]
present an orthogonal avenue for further improvement.

Index. VAST processes index lookups in a continuous
fashion, with first hits trickling in after a few 100 msecs.
Figure 10 shows that nearly all index lookups fully com-
plete within 3 seconds once we use more than 4 cores.
For query G, we observe scaling gains up to 10 cores.
This particular query processes large intermediate bit vec-
tors during the evaluation, which require more time to
combine.

Overall, we find that VAST meets our single-machine
performance expections. In particular, we prioritized ab-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 357

�

�

�

�

�

�

�

0.5

1.0

1.5

2.0

5 10 15 20 25
Nodes

1
/ U

til
iz

at
io

n

Figure 11: Per-node CPU utilization during ingestion.

straction to performance in our implementation, and have
not micro-optimized code bottlenecks (such as via in-
specting profiler call graphs). Given that each layer of
abstraction—from low-level bit-wise operations to high-
level concurrency constructs—comes at the cost of perfor-
mance, we believe that future tuning efforts hold promise
for even further gains.

5.3 Scaling
In addition to single-machine benchmarks, we analyze
how VAST scales over multiple machines in a cluster
setting, as this will constitute the only viable deployment
model for large sites exhibiting copious amounts of data.

Ingestion. Our first measurement concerns quantifying
how CPU load during event import varies as a function of
cluster nodes. To this end, we ingest 1.24 B Bro connec-
tion logs by load-balance them over the cluster NODEs in
batches of 65 K. That is, as in Figure 1(b), a SOURCE on
a separate machine parses the logs and generates batches
with a median rate of 125 K events per second. Due to the
fixed input rate, we assess scaling by looking at the CPU
load of each worker.

Figure 11 shows per-machine CPU inverse utilization
1/U for U = ∑N

i (ui + si)/∑N
i ti with user CPU time ui,

system CPU time si, and wallclock time ti, for selected
values of i in [0,N]. The value U can exceed 1.0 because
each node runs several threads, and CPU time measure-
ments yield the sum of all threads. As one would expect
for effective load-balancing, we observe linear scaling
gains for each added node N.

Query. Our second measurement seeks to understand
how query latency changes when varying the number of
nodes. We show the index completion time of query D
in Figure 12. For these measurements, we first primed the
file system cache in each case to compensate for a short-
cut that our current implementation takes (it maintains
the index in numerous small files that cause high seek
penalties for reads from disk; an effect we could avoid by
optimizing the disk layout through an intermediary step
so that the index can read its data sequentially).

We observe linear scaling from 12 nodes upward, but

�

��

��
�

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25
Nodes

La
te

nc
y

(s
ec

on
ds

)

Figure 12: Index completion latency as function of nodes.

experience problems for the lower half. Other queries
show linear scaling for small numbers of nodes. We are
in the process of investigating the discrepancy.

5.4 Storage
Unlike systems which process data in situ, VAST relies on
secondary indexes that require additional storage space.
In the case of the Bro connection logs, the index increases
the total storage by 90%. VAST, however, also com-
presses the raw data before storing in the archive, in this
case cutting it down to 47% of its original size. Taken
together, VAST requires 1.37 times the volume of its raw
input. For PCAP traces VAST, archives entire packets,
but skips all packet payload during index construction.
Archive compression brings down the trace to 92% of its
original size, whereas the index for connection 4-tuple
plus timestamps amounts to 4%. In total, VAST still
occupies less space than the original data.

String and container indexes require the most storage,
due to their composite and variable-length nature. The
remaining indexes exhibit constant space design, and their
concrete size is a direct function of encoding and layout
of the bit vectors.

6 Conclusion

When security analysts today attempt to reconstruct the
sequence of events leading to a cyber incident, they strug-
gle to bring together enormous volumes of heterogeneous
data. We present VAST [54], a novel platform for forensic
analysis that captures and retains a high-fidelity archive
of a network’s entire activity, leveraging domain-specific
semantics to manage high data volumes while support-
ing rapid queries against historical data. VAST’s novelty
comes from synthesizing powerful indexing technology
with a distributed, entirely asynchronous system archi-
tecture that can fully exploit today’s highly concurrent
architectures. Our evaluation with real-world log and
packet data demonstrates the system’s potential to sup-
port interactive investigation and exploration at a level
beyond what current systems offer.

358 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

References

[1] AGARWAL, R., KHANDELWAL, A., AND STOICA,
I. Succinct: Enabling Queries on Compressed Data.
In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI)
(2015).

[2] ALLMAN, M., KREIBICH, C., PAXSON, V., SOM-
MER, R., AND WEAVER, N. Principles for Devel-
oping Comprehensive Network Visibility. In Pro-
ceedings of the USENIX Workshop on Hot Topics in
Security (HotSec) (2008).

[3] ANTOSHENKOV, G. Byte-aligned Bitmap Compres-
sion. In Proceedings of the Conference on Data
Compression (DCC) (1995), p. 476.

[4] ARMSTRONG, J. Making Reliable Distributed Sys-
tems in the Presence of Software Errors. Ph.D. The-
sis, Department of Microelectronics and Informa-
tion Technology, KTH, Sweden, 2003.

[5] BAO, C., HUITEMA, C., BAGNULO, M., BOU-
CADAIR, M., AND LI, X. IPv6 Addressing of
IPv4/IPv6 Translators. RFC 6052, Internet Engi-
neering Task Force (IETF), 2010.

[6] BAYER, R., AND MCCREIGHT, E. M. Organiza-
tion and Maintenance of Large Ordered Indexes. In
Record of the ACM SIGFIDET Workshop on Data
Description and Access (1970), pp. 107–141.

[7] CHAMBI, S., LEMIRE, D., KASER, O., AND
GODIN, R. Better Bitmap Performance with Roar-
ing Bitmaps. CoRR abs/1402.6407 (2014).

[8] CHAN, C.-Y., AND IOANNIDIS, Y. E. Bitmap
Index Design and Evaluation. In Proceedings of the
International Conference on Management of Data
(SIGMOD) (1998), pp. 355–366.

[9] CHAN, C.-Y., AND IOANNIDIS, Y. E. An Efficient
Bitmap Encoding Scheme for Selection Queries.
In Proceedings of the International Conference on
Management of Data (SIGMOD) (1999), pp. 215–
226.

[10] CHAROUSSET, D., SCHMIDT, T. C., HIESGEN, R.,
AND WÄHLISCH, M. Native Actors – A Scalable
Software Platform for Distributed, Heterogeneous
Environments. In Proceedings of the International
Workshop on Programming based on Actors, Agents,
and Decentralized Control (AGERE!) (2013).

[11] COHEN, M. I., BILBY, D., AND CARONNI, G.
Distributed Forensics and Incident Response in the
Enterprise. Digital Investigations 8 (2011), S101–
S110.

[12] COLANTONIO, A., AND DI PIETRO, R. CON-
CISE: Compressed ’n’ Composable Integer Set. In-
formation Processing Letters 110, 16 (2010), 644–
650.

[13] CORRALES, F., CHIU, D., AND SAWIN, J. Vari-
able Length Compression for Bitmap Indices. In
Proceedings of the International Conference on
Database and Expert Systems Applications (DEXA)
(2011), pp. 381–395.

[14] DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-
plified Data Processing on Large Clusters. In Pro-
ceedings of the Conference on Symposium on Op-
erating Systems Design & Implementation (OSDI)
(2004), vol. 6, pp. 10–10.

[15] DELIÈGE, F., AND PEDERSEN, T. B. Position
List Word Aligned Hybrid: Optimizing Space and
Performance for Compressed Bitmaps. In Proceed-
ings of the International Conference on Extending
Database Technology (EDBT) (2010), pp. 228–239.

[16] DOHERTY, W. J., AND THADANI, A. J. The Eco-
nomic Value of Rapid Response Time. IBM (1982).

[17] ElasticSearch. https://www.elastic.co/

products/elasticsearch.

[18] etcd. https://github.com/coreos/etcd.

[19] FUSCO, F., DIMITROPOULOS, X., VLACHOS, M.,
AND DERI, L. pcapIndex: An Index for Network
Packet Traces with Legacy Compatibility. SIG-
COMM Computer Communication Review 42, 1
(2012), 47–53.

[20] FUSCO, F., STOECKLIN, M. P., AND VLACHOS,
M. NET-FLi: On-the-fly Compression, Archiving
and Indexing of Streaming Network Traffic. Pro-
ceedings of the VLDB Endowment 3, 1-2 (2010),
1382–1393.

[21] FUSCO, F., VLACHOS, M., AND DIMITROPOULOS,
X. RasterZip: Compressing Network Monitoring
Data with Support for Partial Decompression. In
Proceedings of the Internet Measurement Confer-
ence (IMC) (2012), pp. 51–64.

[22] GIURA, P., AND MEMON, N. NetStore: An Effi-
cient Storage Infrastructure for Network Forensics
and Monitoring. In Proceedings of the International
Symposium on Recent Advances in Intrusion Detec-
tion (RAID) (2010), pp. 277–296.

[23] GUZUN, G., AND CANAHUATE, G. Performance
Evaluation of Word-Aligned Compression Methods
for Bitmap Indices. Knowledge and Information
Systems (2015), 1–28.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 359

[24] GUZUN, G., CANAHUATE, G., CHIU, D., AND
SAWIN, J. A Tunable Compression Framework
for Bitmap Indices. In In Proceedings of the Inter-
national Conference on Data Engineering (ICDE)
(2014), pp. 484–495.

[25] HEWITT, C., BISHOP, P., AND STEIGER, R. A
Universal Modular ACTOR Formalism for Artificial
Intelligence. In Proceedings of the International
Joint Conferences on Artificial Intelligence (IJCAI)
(1973), pp. 235–245.

[26] HOARE, C. A. R. Communicating Sequential Pro-
cesses. Communications of the ACM 21, 8 (1978),
666–677.

[27] INGO MLLER, CORNELIUS RATSCH, F. F. Adap-
tive String Dictionary Compression in In-Memory
Column-Store Database Systems. In Proceed-
ings of the International Conference on Extending
Database Technology (EDBT) (2014), pp. 283–294.

[28] ISO/IEC. Information technology – Microproces-
sor Systems – Floating-Point arithmetic. Standard
60559:2011, 2011.

[29] Apache Kafka. http://kafka.apache.org.

[30] KNUTH, D. E. The Art of Computer Programming:
Sorting and Searching, vol. 3. 1998.

[31] KREIBICH, C., WEAVER, N., NECHAEV, B., AND
PAXSON, V. Netalyzr: Illuminating the Edge Net-
work. In Proceedings of the Internet Measurement
Conference (IMC) (2010), pp. 246–259.

[32] LEACH, P. J., MEALLING, M., AND SALZ, R. A
Universally Unique IDentifier (UUID) URN Names-
pace. RFC 4122, Internet Engineering Task Force
(IETF), 2005.

[33] LEE, J., LEE, S., LEE, J., YI, Y., AND PARK, K.
FloSIS: A Highly Scalable Network Flow Capture
System for Fast Retrieval and Storage Efficiency.
In Proceedings of the USENIX Annual Technical
Conference (ATC) (2015).

[34] LEMIRE, D., KASER, O., AND AOUICHE, K. Sort-
ing Improves Word-aligned Bitmap Indexes. Data
& Knowledge Engineering 69, 1 (2010), 3–28.

[35] libpcap. http://www.tcpdump.org.

[36] Lucene. https://lucene.apache.org.

[37] LZ4: Extremely Fast Compression algorithm.
https://github.com/Cyan4973/lz4.

[38] MAIER, G., SOMMER, R., DREGER, H., FELD-
MANN, A., PAXSON, V., AND SCHNEIDER, F. En-
riching Network Security Analysis with Time Travel.
In Proceedings of the ACM SIGCOMM conference
(2008).

[39] MARTNEZ-PRIETO, M. A., BRISABOA, N., CNO-
VAS, R., CLAUDE, F., AND NAVARRO, G. Practical
Compressed String Dictionaries. Information Sys-
tems 56 (2016), 73–108.

[40] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER,
G., SHIVAKUMAR, S., TOLTON, M., AND VAS-
SILAKIS, T. Dremel: Interactive Analysis of Web-
Scale Datasets. Proceedings of the VLDB Endow-
ment 3, 1-2 (2010), 330–339.

[41] O’NEIL, P. E. Model 204 Architecture and Perfor-
mance. In Proceedings of the International Work-
shop on High Performance Transaction Systems
(1987), pp. 40–59.

[42] ONGARO, D., AND OUSTERHOUT, J. In Search of
an Understandable Consensus Algorithm. In Pro-
ceedings of the USENIX Annual Technical Confer-
ence (ATC) (2014), pp. 305–319.

[43] PAXSON, V. Bro: A System for Detecting Network
Intruders in Real-Time. Computer Networks 31,
23–24 (1999), 2435–2463.

[44] ROTEM, D., STOCKINGER, K., AND WU, K. Opti-
mizing Candidate Check Costs for Bitmap Indices.
In Proceedings of International Conference on In-
formation and Knowledge Management (CIKM)
(2005), pp. 648–655.

[45] SCHMIDT, A., AND BEINE, M. A Concept for a
Compression Scheme of Medium-Sparse Bitmaps.
In Proceedings of the International Conference on
Advances in Databases, Knowledge, and Data Ap-
plications (DBKDA) (2011), pp. 192–195.

[46] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop Distributed File Sys-
tem. In Proceedings of the Symposium on Mass
Storage Systems and Technologies (MSST) (2010),
pp. 1–10.

[47] SINHA, R. R., AND WINSLETT, M. Multi-
resolution Bitmap Indexes for Scientific Data. ACM
Transactions on Database Systems (TODS) 32, 3
(2007).

[48] Snappy: A fast compressor/decompressor. https:
//code.google.com/p/snappy/.

[49] Splunk. http://www.splunk.com.

360 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[50] STOCKINGER, K., CIESLEWICZ, J., WU, K.,
ROTEM, D., AND SHOSHANI, A. Using bitmap
index for joint queries on structured and text data.
New Trends in Data Warehousing and Data Analysis
(2009), 1–23.

[51] TAYLOR, T., COULL, S. E., MONROSE, F., AND
MCHUGH, J. Toward Efficient Querying of Com-
pressed Network Payloads. In Proceedings of
the USENIX Annual Technical Conference (ATC)
(2012), USENIX ATC ’12.

[52] VALLENTIN, M. Scalable Network Forensics.
Ph.D. Thesis, University of California, Berkeley,
2016. (in preparation).

[53] VAN SCHAIK, S. J., AND DE MOOR, O. A Memory
Efficient Reachability Data Structure Through Bit
Vector Compression. In Proceedings of the Inter-
national Conference on Management of Data (SIG-
MOD) (2011), pp. 913–924.

[54] VAST. http://vast.io.

[55] WONG, H. K. T., LIU, H.-F., OLKEN, F., ROTEM,
D., AND WONG, L. Bit Transposed Files. In Pro-
ceedings of the International Conference on Very
Large Data Bases (VLDB) (1985), pp. 448–457.

[56] WU, K., OTOO, E., AND SHOSHANI, A. On the
Performance of Bitmap Indices for High Cardinality
Attributes. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB) (2004),
pp. 24–35.

[57] WU, K., OTOO, E. J., AND SHOSHANI, A. A Per-
formance Comparison of Bitmap Indexes. In Pro-
ceedings of International Conference on Informa-
tion and Knowledge Management (CIKM) (2001),
pp. 559–561.

[58] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE,
A., MA, J., MCCAULEY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Resilient Dis-
tributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. In Proceedings of
the USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI) (2012), pp. 2–2.

Appendix

In §4.2.2 we introduce the structure of VAST’s high-level
index types, but do note elaborating how to operate on
them with concrete algorithms. Table 3 and Table 4 pro-
vide this information in more detail. For each type, we
show how to append a value (symbol �) to an index as
well as how to query it in terms of logical operations.

The basic index I in these tables represents a bitmap or
inverted index with a fixed binning, encoding, and com-
pression scheme. I operates on unsigned integer values
and supports operators {<,≤,=, �=,≥,>}. For append
and lookup algorithms of the concrete encoding schemes,
we refer the reader to the literature [8, 9], from which sum-
marize established results about multi-component indexes
in the following.

The basic index forms the foundation for the
k-component index Kβ = 〈I1, . . . , Ik〉 with |β | = k
(see §4.2.1). It represents the foundation of many higher-
level indexes and its lookup algorithm varies according to
the relational operator of the predicate. Answering equal-
ity queries involves computing a simple conjunction:

EQ(i,x) =
i∧

j=1

(I j = x j) (1)

Thus, we can answer Kβ = x with EQ(k,x), and Kβ �= x
with EQ(k,x). For one-sided range queries, the algorithm
less-than-or-equal (LE) implements range lookup of the
form Kβ ≤ x as follows:

LE(i,x)=

(Ii ≤ xi −1) ∨ (θi ∧ LE(i−1,x)) i > 1,xi > 0
θi ∧ LE(i−1,x) i > 1,xi = 0
(Ii ≤ xi −1) ∨ LE(i−1,x) i > 1,xi = βi −1
Ii ≤ xi i = 1

(2)
The extra parameter θi depends on the coding scheme

and means either Ii = xi or Ii ≤ xi. Putting together algo-
rithms EQ and LE, we can now answer Kβ ◦ x under all
relational operators with the algorithm �:

�(Kβ ,◦,x) =

EQ(k,x) ◦ ∈ {=}
EQ(k,x) ◦ ∈ {�=}
LE(k,x) ◦ ∈ {≤}
LE(k,x) ◦ ∈ {>}
LE(k,x−1) ◦ ∈ {<} ∧ x > 0
LE(k,x−1) ◦ ∈ {≥} ∧ x > 0
0 ◦ ∈ {<} ∧ x = 0
1 ◦ ∈ {≥} ∧ x = 0

(3)

The two results 0 and 1 denote the empty and complete
identifier set. In the case of bitmap indexes, 0 represents
a bit vector with all 0-bits, whereas 1 only consists of
1-bits.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 361

Ty
pe

St
ru

ct
ur

e
A

pp
en

d
L

oo
ku

p

ba
si

c∗
I

I
�

x(
α
)

I◦
x

k-
co

m
po

ne
nt

†
K

β
=
〈I

k,
..
.,

I 1
〉

Θ
k
=

K
β

β i
=

β
j=

2
∧
|β
|=

k

Φ
w
=

K
β

∏
k i=

1
β i

≤
2w

K
β
�

x(
α
)
≡

I i
�

x(α
)

i
∀1

≤
i≤

k
K

β
◦x

≡
�(

K
β
,◦
,x
)

b
o
o
l

B
=

S
B
�

x(
α
)
≡

S
�

α
iff

x
=
t
r
u
e

B
◦x

≡

{ S
x
=
f
a
l
s
e

S
x
=
t
r
u
e

c
o
u
n
t

C
=

Φ
64

C
�

x(
α
)
≡

Φ
64

�
x(

α
)

C
◦x

≡
Φ

64
◦x

i
n
t

I=
Φ

64
I�

x(
α
)
≡

Φ
64

�
(x

(α
)

u +
263

)
I◦

x
≡

Φ
64
◦(

x
u +

263
)

r
e
a
l

§

F
=
〈S
,E

,M
〉

S
=
B

E
=

Θ
11

M
=

Θ
52

F
�

〈x
s,

x e
,x

m
〉(α

)
≡

 S
�

x(α
)

s

E
�

x(α
)

e

M
�

x(α
)

m

F
◦x

≡

 S
=

x s
∧

E
◦x

e
∧

M
◦x

m
◦
∈
{=

,�=
}

S
=

0
∧

E
◦x

e
∧

M
◦x

m
x
≥

0
∧
◦
∈
{>

,≥
}

S
=

1
∨
(E

◦x
e
∧

M
◦x

m
)

x
≥

0
∧
◦
∈
{<

,≤
}

S
=

0
∨
(E

�
x e

∧
M

�
x m

)
x
<

0
∧
◦
∈
{>

,≥
}

S
=

1
∧

E
�

x e
∧

M
�

x m
x
<

0
∧
◦
∈
{<

,≤
}

d
u
r
a
t
i
o
n

D
=
I

D
�

x(
α
)
≡

I�
x(

α
)

D
◦x

≡
I◦

x

t
i
m
e

T
=
D

T
�

x(
α
)
≡

D
�

x(
α
)

T
◦x

≡
D
◦x

s
t
r
i
n
g

S
=
〈φ

,κ
1,
..
.,

κ M
〉

φ
=

K
β

κ i
=

Θ
8

S
�

〈x
1,
..
.,

x n
〉(α

)
≡

{ φ
�

n(
α
)

κ i
�

x(α
)

i
∀1

≤
i≤

n
S
◦x

≡

 0
|x
|>

M
φ
=

0
|x
|=

0

φ
=
|x
|∧

|x
| ∧ i=
1

κ i
=

x i
◦
∈
{=

,�=
}

φ
≥
|x
|∧

M
−
|x
|+

1
∨ i=

1

|x
| ∧ j=
1

κ i
+

j−
1
=

x j

◦
∈
{∈

,/∈
}

∗
T

he
ba

si
c

in
de

x
ha

s
a

fix
ed

bi
nn

in
g,

co
di

ng
,a

nd
co

m
pr

es
si

on
sc

he
m

e
an

d
op

er
at

es
on

va
lu

es
x
∈

X
⊆
N
+ 0

an
d

ha
s

ca
rd

in
al

ity
C
≤
|X
|.

(s
ee

§4
.2

.1
)

†
T

he
k-

co
m

po
ne

nt
in

de
x

op
er

at
es

w
ith

a
ba

se
β
=
〈β

k,
..
.,

β 1
〉.

W
e

sh
ow

al
go

ri
th

m
�

in
§?

?.
T

he
bi

t-
sl

ic
ed

in
de

x
[5

5]
is

a
sp

ec
ia

lo
fK

β
w

he
re

β i
=

β i
=

2
fo

ra
ll

i�=
j.

T
he

m
ul

ti-
co

m
po

ne
nt

in
de

x
Φ

w

ca
n

at
m

os
tr

ep
re

se
nt

2w
di

st
in

ct
va

lu
es

.
§

W
e

de
no

te
by

�
th

e
“m

ir
ro

re
d”

op
er

at
or

of
◦,

e.
g.

,<
an

d
>

.

Ta
bl

e
3:

Su
m

m
ar

y
of

ap
pe

nd
an

d
lo

ok
up

op
er

at
io

ns
on

hi
gh

-l
ev

el
in

de
xe

s.

362 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Ty
pe

St
ru

ct
ur

e
A

pp
en

d
L

oo
ku

p

a
d
d
r

A
=

Θ
12

8
A
�

〈x
1,
..
.,

x 1
28
〉(α

)
≡

Θ
12

8
i

←
x(α

)
i

∀1
≤

i≤
12

8
A
◦x

≡

k ∧ i=
1

Θ
12

8
i

=
x i

◦
∈
{∈

}

A
�

x
◦
∈
{/∈

}

s
u
b
n
e
t

U
=
〈A

,Φ
8 〉

U
�

〈x
a,

x p
〉(α

)
≡

{ A
�

x(α
)

a

Φ
8
�

x(α
)

p
U
◦x

≡

 Φ
8
≤

x p
∧

(
p ∧ i=
1

A
i
=

x a
i)

◦
∈
{∈

}

U
�

x
◦
∈
{/∈

}

p
o
r
t

P
=
〈Φ

16
,Φ

2 〉
P
�

〈x
n,

x t
〉(α

)
≡

{ Φ
16

�
x(α

)
n

Φ
2
�

x(α
)

t
P
◦x

≡

{ Φ
16
◦x

n
∧

Φ
2
=

x t
x t
�=
u
n
k
n
o
w
n

Φ
16
◦x

n
x t
=
u
n
k
n
o
w
n

v
e
c
t
o
r
∗

X
V
=
〈φ

,V
1,
..
.,
V

M
〉

φ
=

K
β

X
V
�

〈x
1,
..
.,

x n
〉(α

)
≡

{ φ
�

n(
α
)

V
i
�

x(α
)

i
∀1

≤
i≤

n
X

V
◦x

≡

{ se
e
S
◦x

τ(
x)

=
v
e
c
t
o
r

se
e
X

S
◦x

τ(
x)

=
s
e
t

s
e
t

X
S
=
〈φ

,V
1,
..
.,
V

M
〉

φ
=

K
β

X
S
�

〈x
1,
..
.,

x n
〉(α

)
≡

{ φ
�

n(
α
)

V
i
�

x(α
)

i
∀1

≤
i≤

n
X

S
◦x

≡

 0
|x
|>

M
φ
=

0
|x
|=

0
|x
| ∧ i=
1

(
M ∨ j=

1

V
j
=

x i

)
ot

he
rw

is
e

t
a
b
l
e

†

X
T
=
〈φ

,X
1,
..
.,

X M
,Y

1,
..
.,

Y M
〉

φ
=

K
β

X i
=
V

Y i
=
V

X
T
�

〈(
k 1
,v

1)
..
.,
(k

n,
v n
)〉

(α
)
≡

 φ
�

n(
α
)

X i
�

k(α
)

i
∀1

≤
i≤

n

Y i
�

v(α
)

i
∀1

≤
i≤

n

X
T
◦k

≡

M ∨ i=
1

X i
=

k
◦
∈
{∈

}

X
T
�

k
◦
∈
{/∈

}

X
T
◦v

≡

M ∨ i=
1Y i

=
v

◦
∈
{∈

}

X
T
�

v
◦
∈
{/∈

}

X
T
◦(

k,
v)

≡

M ∨ i=
1(X

i
=

k
∧

Y i
=

v)
◦
∈
{∈

}

X
T
�
(k

→
v)

◦
∈
{/∈

}
∗

D
ep

en
di

ng
on

th
e

ty
pe

τ(
x)

of
va

lu
e

x,
th

e
lo

ok
up

fu
nc

tio
n

ca
n

ei
th

er
pr

es
er

ve
or

de
ri

ng
(a

s
in

su
bs

tr
in

g
se

ar
ch

)o
ri

gn
or

e
or

de
ri

ng
(a

s
in

su
bs

et
se

ar
ch

).
†

A
ta

bl
e

va
lu

e
ha

s
th

e
fo

rm
x
=
〈(

k 1
,v

1)
,.
..
,(

k n
,v

n)
〉.

W
e

sh
ow

lo
ok

up
s

fo
ra

si
ng

le
ke

y,
va

lu
e,

or
m

ap
pi

ng
.

Ta
bl

e
4:

Su
m

m
ar

y
of

ap
pe

nd
an

d
lo

ok
up

op
er

at
io

ns
on

hi
gh

-l
ev

el
in

de
xe

s.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 363

Ernest: Efficient Performance Prediction for Large-Scale Advanced
Analytics

Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, Ion Stoica
University of California, Berkeley

Abstract
Recent workload trends indicate rapid growth in the

deployment of machine learning, genomics and scientific
workloads on cloud computing infrastructure. However,
efficiently running these applications on shared infras-
tructure is challenging and we find that choosing the right
hardware configuration can significantly improve perfor-
mance and cost. The key to address the above challenge
is having the ability to predict performance of applica-
tions under various resource configurations so that we
can automatically choose the optimal configuration.

Our insight is that a number of jobs have predictable
structure in terms of computation and communication.
Thus we can build performance models based on the be-
havior of the job on small samples of data and then pre-
dict its performance on larger datasets and cluster sizes.
To minimize the time and resources spent in building a
model, we use optimal experiment design, a statistical
technique that allows us to collect as few training points
as required. We have built Ernest, a performance pre-
diction framework for large scale analytics and our eval-
uation on Amazon EC2 using several workloads shows
that our prediction error is low while having a training
overhead of less than 5% for long-running jobs.

1 Introduction
In the past decade we have seen a rapid growth of large-
scale advanced analytics that implement complex algo-
rithms in areas like distributed natural language process-
ing [24, 74], deep learning for image recognition [34],
genome analysis [72, 61], astronomy [17] and parti-
cle accelerator data processing [19]. These applications
differ from traditional analytics workloads (e.g., SQL
queries) in that they are not only data-intensive but also
computation-intensive, and typically run for a long time
(and hence are expensive). Along with new workloads,
we have seen widespread adoption of cloud computing
with large data sets being hosted [7, 1], and the emer-
gence of sophisticated analytics services, such as ma-
chine learning, being offered by cloud providers [9, 6].

With cloud computing environments such as Ama-
zon EC2, users typically have a large number of choices
in terms of the instance types and number of instances
they can run their jobs on. Not surprisingly, the amount
of memory per core, storage media, and the number

of instances are crucial choices that determine the run-
ning time and thus indirectly the cost of running a given
job. Using common machine learning kernels we show
in §2.2 that choosing the right configuration can improve
performance by up to 1.9x at the same cost.

In this paper, we address the challenge of choosing
the configuration to run large advanced analytics ap-
plications in heterogeneous multi-tenant environments.
The choice of configuration depends on the user’s goals
which typically includes either minimizing the running
time given a budget or meeting a deadline while min-
imizing the cost. The key to address this challenge is
developing a performance prediction framework that can
accurately predict the running time on a specified hard-
ware configuration, given a job and its input.

One approach to address this challenge is to predict the
performance of a job based on monitoring the job’s pre-
vious runs [39, 44]. While simple, this approach assumes
the job runs repeatedly on the same or “similar” data sets.
However, this assumption does not always hold. First,
even when a job runs periodically it typically runs on
data sets that can be widely different in both size and
content. For example, a prediction algorithm may run on
data sets corresponding to different days or time granu-
larities. Second, workloads such as interactive machine
learning [9, 55] and parameter tuning generate unique
jobs for which we have little or no relevant history. An-
other approach to predict job performance is to build a
detailed parametric model for the job. Along these lines,
several techniques have been recently proposed in the
context of MapReduce-like frameworks [77, 52]. These
techniques have been aided by the inherent simplicity of
the two-stage MapReduce model. However, the recent
increase in the popularity of more complex parallel com-
putation engines such as Dryad [51] and Spark [83] make
these parametric techniques much more difficult to apply.

In this paper, we propose a new approach that can ac-
curately predict the performance of a given analytics job.
The main idea is to run a set of instances of the entire
job on samples of the input, and use the data from these
training runs to create a performance model. This ap-
proach has low overhead, as in general it takes much less
time and resources to run the training jobs than running
the job itself. Despite the fact that this is a black-box ap-
proach (i.e., requires no knowledge about the internals of

1

364 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0
10
20
30
40
50
60

large xlarge 2xlarge 4xlarge 8xlarge

M
em

or
y

BW
 (G

B/
s)

(1 core) (2 core) (4 core) (8 core) (16 core)

R3 C3 M3

Figure 1: Comparison of memory bandwidths across Ama-
zon EC2 m3/c3/r3 instance types. There are only three sizes
for m3. Smaller instances (large, xlarge) have better mem-
ory bandwidth per core.

the job), it works surprisingly well in practice.
The reason this approach works so well is because

many advanced analytics workloads have a simple struc-
ture and the dependence between their running times and
the input sizes or number of nodes is in general charac-
terized by a relatively small number of smooth functions.
This should come as no surprise as big data has naturally
lead researchers and practitioners to develop algorithms
that are linear [22] or quasi-linear in terms of the input
size, and which scale well with the number of nodes. As
a simple example, consider a mini-batch gradient descent
algorithm used for linear regression. For a dataset with
m data points and n features per partition, the time taken
by each task to compute the gradient is uniform (mn) and
similarly the size of output from every task is the same,
a vector of size n.

The cost and utility of training data points collected
is important for low-overhead prediction and we address
this problem using optimal experiment design [63] , a sta-
tistical technique that allows us to select the most useful
data points for training. We augment experiment design
with a cost model and this helps us find the training data
points to explore within a given budget. We have built
support for the above techniques in Ernest and we find
that a number of advanced analytics workloads can be ac-
curately modeled using simple features that reflect com-
monly found computation and communication patterns.
We include a cross-validation based verification scheme
in Ernest to detect when a workload does not match the
features being used and show how we can easily extend
our model in such cases.

Using Amazon EC2 as our execution environment, we
evaluate the accuracy of our system using a number of
workloads including (a) several machine learning algo-
rithms that are part of Spark MLlib [56], (b) queries from
GenBase [73] and I/O intensive transformations using
ADAM [61] on a full genome, and (c) a speech recog-
nition pipeline that achieves state-of-the-art results [50].
Our evaluation shows that our average prediction error is
under 20% and that this is sufficient for choosing the ap-
propriate number or type of instances. Our training over-
head for long-running jobs is less than 5% and we also

large xl 2xl 4xl 8xl

0

4

8

12

16

●
●

●

●

●

N
or

m
al

iz
ed

 B
W

, P
ric

e

Machine size

●

Network BW Normalized
Price / hr Normalized

Figure 2: Comparison of network bandwidths with prices
across different EC2 r3 instance sizes normalized to
r3.large. r3.8xlarge has the highest bandwidth per core.

find that using experiment design improves prediction er-
ror for some algorithms by 30− 50% over a cost-based
scheme. Finally, using our predictions we show that for a
long-running speech recognition pipeline, finding the ap-
propriate number of instances can reduce cost by around
4x compared to a greedy allocation scheme. In summary,
the main contributions of this paper are:

• We propose Ernest, a performance prediction
framework that works with unmodified jobs and
achieves low overhead using optimal experiment
design.

• We show how Ernest can detect when a model isn’t
appropriate and how small extensions can be used
to model complex workloads.

• Using experiments on EC2, we show that Ernest is
accurate for a variety of algorithms, input sizes, and
cluster sizes.

2 Background
In this section we first present an overview of different
approaches to performance prediction. We then discuss
recent hardware and workload trends for large scale data
analysis. We also present an example of an end-to-end
machine learning pipeline and discuss some of the com-
putation and communication patterns that we see using
this example.

2.1 Performance Prediction
Performance modeling and prediction have been used in
many different contexts in various systems [59, 16, 39].
At a high level performance modeling and prediction
proceeds as follows: select an output or response variable
that needs to be predicted and the features to be used for
prediction. Next, choose a relationship or a model that
can provide a prediction for the output variable given the
input features. This model could be rule based [27, 21]
or use machine learning techniques [60, 80] that build an
estimator using some training data. We focus on machine
learning based techniques in this paper and we next dis-
cuss two major approaches in modeling that influences
the training data and machine learning algorithms used.
Performance counters: Performance counter based ap-
proaches typically use a large number of low level coun-

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 365

ters to try and predict application performance character-
istics. Such an approach has been used with CPU counter
for profiling [14], performance diagnosis [81, 25] and
virtual machine allocation [60]. A similar approach has
also been used for analytics jobs where the MapRe-
duce counters have been used for performance predic-
tion [77] and straggler mitigation [80]. Performance-
counter based approaches typically use advanced learn-
ing algorithms like random forests, SVMs. However as
they use a large number of features, they require large
amounts of training data and are well suited for scenar-
ios where historical data is available.
System modeling: In the system modeling approach, a
performance model is developed based on the properties
of the system being studied. This method has been used
in scientific computing [16] for compilers [11], program-
ming models [21, 27]; and by databases [29, 57] for es-
timating the progress made by SQL queries. System de-
sign based models are usually simple and interpretable
but may not capture all the execution scenarios. How-
ever one advantage of this approach is that only a small
amount of training data is required to make predictions.

In this paper, we look at how to perform efficient per-
formance prediction for large scale advanced analytics.
We use a system modeling approach where we build a
high-level end-to-end model for advanced analytics jobs.
As collecting training data can be expensive, we further
focus on how to minimize the amount of training data
required in this setting. We next survey recent hardware
and workload trends that motivate this problem.

2.2 Hardware Trends
The widespread adoption of cloud computing has led to
a large number of data analysis jobs being run on cloud
computing platforms like Amazon EC2, Microsoft Azure
and Google Compute Engine. In fact, a recent survey by
Typesafe of around 500 enterprises [4] shows that 53% of
Apache Spark users deploy their code on Amazon EC2.
However using cloud computing instances comes with
its own set of challenges. As cloud computing providers
use virtual machines for isolation between users, there
are a number of fixed-size virtual machine options that
users can choose from. Instance types vary not only in
capacity (i.e. memory size, number of cores etc.) but
also in performance. For example, we measured mem-
ory bandwidth and network bandwidth across a number
of instance types on Amazon EC2. From Figure 1 we can
see that the smaller instances i.e. large or xlarge have
the highest memory bandwidth available per core while
Figure 2 shows that 8xlarge instances have the high-
est network bandwidth available per core. Based on our
experiences with Amazon EC2, we believe these perfor-
mance variations are not necessarily due to poor isolation
between tenants but are instead related to how various in-

0

20

40

LSS Time

Ti
m

e
(s

)1 r3.8xlarge
2 r3.4xlarge
4 r3.2xlarge
8 r3.xlarge
16 r3.large

(a)

0

10

20

30

 MM Time

Ti
m

e
(s

)

(b)

Figure 3: Performance comparison of a Least Squares
Solver (LSS) job and Matrix Multiply (MM) across similar
capacity configurations.

stance types are mapped to shared physical hardware.
The non-linear relationship between price vs. perfor-

mance is not only reflected in micro-benchmarks but can
also have a significant effect on end-to-end performance.
For example, we use two machine learning kernels: (a) A
least squares solver used in convex optimization [37] and
(b) a matrix multiply operation [75], and measure their
performance for similar capacity configurations across a
number of instance types. The results (Figure 3(a)) show
that picking the right instance type can improve perfor-
mance by up to 1.9x at the same cost for the least squares
solver. Earlier studies [47, 79] have also reported such
performance variations for other applications like SQL
queries, key-value stores. These performance variations
motivate the need for a performance prediction frame-
work that can automate the choice of hardware for a
given computation.

Finally, performance prediction is important not just
in cloud computing but it is also useful in other shared
computing scenarios like private clusters. Cluster sched-
ulers [15] typically try to maximize utilization by pack-
ing many jobs on a single machine and predicting the
amount of memory or number of CPU cores required for
a computation can improve utilization [36]. Next, we
look at workload trends in large scale data analysis and
how we can exploit workload characteristics for perfor-
mance prediction.

2.3 Workload trends
The last few years have seen the growth of advanced an-
alytics workloads like machine learning, graph process-
ing and scientific analyses on large datasets. Advanced
analytics workloads are commonly implemented on top
of data processing frameworks like Hadoop [35], Na-
iad [58] or Spark [83] and a number of high level libraries
for machine learning [56, 2] have been developed on top
of these frameworks. A survey [4] of Apache Spark users
shows that around 59% of them use the machine learn-
ing library in Spark and recently launched services like
Azure ML [9] provide high level APIs which implement
commonly used machine learning algorithms.

Advanced analytics workloads differ from other work-
loads like SQL queries or stream processing in a num-
ber of ways. These workloads are typically numerically

3

366 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Cosine
Transformation

Feature
Normalization

Solver

~100 iterations

Raw
Data

Figure 4: Execution DAG of a machine learning pipeline
used for speech recognition [50]. The pipeline consists of
featurization and model building steps which are repeated
for many iterations.

Collect

(a)

Tree Aggregation

(b)

Shufe

(c)

Figure 5: Scaling behaviors of commonly found communi-
cation patterns as we increase the number of machines.

intensive, i.e. performing floating point operations like
matrix-vector multiplication or convolutions [32], and
thus are sensitive to the number of cores and memory
bandwidth available. Further, such workloads are also
often iterative and repeatedly perform parallel operations
on data cached in memory across a cluster. Advanced
analytics jobs can also be long-running: for example, to
obtain the state-of-the-art accuracy on tasks like image
recognition [34] and speech recognition [50], jobs are
run for many hours or days.
Example: Speech Recognition Pipeline. As an exam-
ple of an advanced analytics job, we consider a speech
recognition pipeline [50] that achieves state-of-the-art
accuracy on the TIMIT [26] dataset. The pipeline trains
a model using kernel SVMs and the execution DAG is
shown in Figure 4. From the figure we can see that
such pipelines consist of a number of stages, each of
which may be repeated for some iterations. This TIMIT
pipeline contains three main stages. The first stage of the
DAG reads input data, and featurizes the data by apply-
ing a random cosine transformation [64] to each record.
Assuming dense input data and equal-sized partitions,
we can also see that each task in the first stage will take a
similar amount of time to compute. Further, we observe
that, unlike SQL queries with selectivity clauses, the
transformation here results in the same amount of output
data per input record across all tasks. The second stage
in the pipeline normalizes data, which requires comput-
ing the mean and variance of the features by aggregating
values across all the partitions. In the last stage, the nor-
malized features are fed into a convex solver [23] to build
a model. The model is then refined by generating more
features and these steps are repeated for 100 iterations to
achieve state-of-the-art accuracy.

Workload Properties: Since advanced analytics jobs
run on large datasets are expensive, we observe that de-
velopers have focused on algorithms that are scalable
across machines and are of low complexity (e.g., lin-
ear or quasi-linear) [22]. Otherwise, using these algo-
rithms to process huge amounts of data might be infea-
sible. The natural outcome of these efforts is that these
workloads admit relatively simple performance models.
Specifically, we find that the computation required per
data item remains the same as we scale the computation.

Further, we observe that only a few communication
patterns repeatedly occur in such jobs. These patterns
(Figure 5) include (a) the all-to-one or collect pattern,
where data from all the partitions is sent to one machine,
(b) tree-aggregation pattern where data is aggregated us-
ing a tree-like structure, and (c) a shuffle pattern where
data goes from many source machines to many destina-
tions. These patterns are not specific to advanced analyt-
ics jobs and have been studied before [30, 20]. Having a
handful of such patterns means that we can try to auto-
matically infer how the communication costs change as
we increase the scale of computation. For example, as-
suming that data grows as we add more machines (i.e.,
the data per machine is constant), the time taken for the
collect increases as O(machines) as a single machine
needs to receive all the data. Similarly the time taken for
a binary aggregation tree grows as O(log(machines)).

Finally we observe that many algorithms are iterative
in nature and that we can also sample the computation by
running just a few iterations of the algorithm. Next we
will look at the design of the performance model.

3 Modeling Advanced Analytics Jobs
In this section we outline a model for predicting execu-
tion time of advanced analytics jobs. This scheme only
uses end-to-end running times collected from executing
the job on smaller samples of the input and we discuss
techniques for model building and data collection.

At a high level we consider a scenario where a user
provides as input a parallel job (written using any exist-
ing data processing framework) and a pointer to the input
data for the job. We do not assume the presence of any
historical logs about the job and our goal here is to build
a model that will predict the execution time for any input
size, number of machines for this given job. The main
steps in building a predictive model are (a) determining
what training data points to collect (b) determining what
features should be derived from the training data and (c)
performing feature selection to pick the simplest model
that best fits the data. We discuss all three aspects below.

3.1 Features for Prediction
One of the consequences of modeling end-to-end un-
modified jobs is that there are only a few parameters that

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 367

we can change to observe changes in performance. As-
suming that the job, the dataset and the machine types
are fixed, the two main features that we have are (a) the
number of rows or fraction of data used (scale) and (b)
the number of machines used for execution. Our goal
in the modeling process is to derive as few features as
required for the amount of training data required grows
linearly with the number of features.

To build our model we add terms related to the com-
putation and communication patterns discussed in §2.3.
The terms we add to our linear model are (a) a fixed cost
term which represents the amount of time spent in serial
computation (b) the interaction between the scale and the
inverse of the number of machines; this is to capture the
parallel computation time for algorithms whose compu-
tation scales linearly with data, i.e., if we double the size
of the data with the same number of machines, the com-
putation time will grow linearly (c) a log(machines) term
to model communication patterns like aggregation trees
(d) a linear term O(machines) which captures the all-
to-one communication pattern and fixed overheads like
scheduling / serializing tasks (i.e. overheads that scale as
we add more machines to the system). Note that as we
use a linear combination of non-linear features, we can
model non-linear behavior as well.

Thus the overall model we are fitting tries to learn val-
ues for θ0,θ1, θ2, and θ3 in the formula

time = θ0 +θ1 × (scale× 1
machines

)+

θ2 × log(machines)+

θ3 ×machines (1)

Given these features, we then use a non-negative least
squares (NNLS) solver to find the model that best fits
the training data. NNLS fits our use case very well as
it ensures that each term contributes some non-negative
amount to the overall time taken. This avoids over-fitting
and also avoids corner cases where say the running time
could become negative as we increase the number of ma-
chines. NNLS is also useful for feature selection as it
sets coefficients which are not relevant to a particular job
to zero. For example, we trained a NNLS model using 7
data points on all of the machine learning algorithms that
are a part of MLlib in Apache Spark 1.2. The final model
parameters are shown in Table 1. From the table we can
see two main characteristics: (a) that not all features are
used by every algorithm and (b) that the contribution of
each term differs for each algorithm. These results also
show why we cannot reuse models across jobs.
Additional Features: While the features used above
capture most of the patterns that we see in jobs, there
could other patterns which are not covered. For exam-
ple in linear algebra operators like QR decomposition the
computation time will grow as scale2/machines if we scale

Benchmark intercept scale/ mc mc log(mc)
spearman 0.00 4887.10 0.00 4.14
classification 0.80 211.18 0.01 0.90
pca 6.86 208.44 0.02 0.00
naive.bayes 0.00 307.48 0.00 1.00
summary stats 0.42 39.02 0.00 0.07
regression 0.64 630.93 0.09 1.50
als 28.62 3361.89 0.00 0.00
kmeans 0.00 149.58 0.05 0.54

Table 1: Models built by Non-Negative Least Squares for
MLlib algorithms using r3.xlarge instances. Not all fea-
tures are used by every algorithm.

the number of columns. We discuss techniques to detect
when the model needs such additional terms in §3.4.

3.2 Data collection
The next step is to collect training data points for build-
ing a predictive model. For this we use the input data
provided by the user and run the complete job on small
samples of the data and collect the time taken for the job
to execute. For iterative jobs we allow Ernest to be con-
figured to run a certain number of iterations (§4). As we
are not concerned with the accuracy of the computation
we just use the first few rows of the input data to get ap-
propriately sized inputs.

How much training data do we need?: One of the
main challenges in predictive modeling is minimizing
the time spent on collecting training data while achieving
good enough accuracy. As with most machine learning
tasks, collecting more data points will help us build a bet-
ter model but there is time and a cost associated with col-
lecting training data. As an example, consider the model
shown in Table 1 for kmeans. To train this model we
used 7 data points and we look at the importance of col-
lecting additional data by comparing two schemes: in the
first scheme we collect data in an increasing order of ma-
chines and in the second scheme we use a mixed strategy
as shown in Figure 6. From the figure we make two im-
portant observations: (a) in this case, the mixed strategy
gets to a lower error quickly; after three data points we
get to less than 15% error. (b) We see a trend of dimin-
ishing returns where adding more data points does not
improve accuracy by much. We next look at techniques
that will help us find how much training data is required
and what those data points should be.

3.3 Optimal Experiment Design
To improve the time taken for training without sacrific-
ing the prediction accuracy, we outline a scheme based
on optimal experiment design, a statistical technique that
can be used to minimize the number of experiment runs
required. In statistics, experiment design [63] refers to
the study of how to collect data required for any exper-
iment given the modeling task at hand. Optimal exper-

5

368 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

iment design specifically looks at how to choose exper-
iments that are optimal with respect to some statistical
criterion. At a high-level the goal of experiment design
is to determine data points that can give us most infor-
mation to build an accurate model.

More formally, consider a problem where we are try-
ing to fit a linear model X given measurements y1, . . . ,ym
and features a1, . . . ,am for each measurement. Each fea-
ture vector could in turn consist of a number of dimen-
sions (say n dimensions). In the case of a linear model
we typically estimate X using linear regression. We de-
note this estimate as X̂ and X̂ −X is the estimation error
or a measure of how far our model is from the true model.

To measure estimation error we can compute the Mean
Squared Error (MSE) which takes into account both the
bias and the variance of the estimator. In the case of the
linear model above if we have m data points each having
n features, then the variance of the estimator is repre-

sented by the n× n covariance matrix (
m
∑

i=1
aiaT

i)
−1. The

key point to note here is that the covariance matrix only
depends on the feature vectors that were used for this ex-
periment and not on the model that we are estimating.

In optimal experiment design we choose feature vec-
tors (i.e. ai) that minimize the estimation error. Thus
we can frame this as an optimization problem where we
minimize the estimation error subject to constraints on
the number of experiments. More formally we can set λi
as the fraction of times an experiment is chosen and min-
imize the trace of the inverse of the covariance matrix:

Minimize tr((
m

∑
i=1

λiaiaT
i)

−1)

subject to λi ≥ 0,λi ≤ 1

Using Experiment Design: The predictive model de-
scribed in the previous section can be formulated as an
experiment design problem. Given bounds for the scale
and number of machines we want to explore, we can
come up with all the features that can be used. For exam-
ple if the scale bounds range from say 1% to 10% of the
data and the number of machine we can use ranges from
1 to 5, we can enumerate 50 different feature vectors
from all the scale and machine values possible. We can
then feed these feature vectors into the experiment de-
sign setup described above and only choose to run those
experiments whose λ values are non-zero.
Accounting for Cost: One additional factor we need to
consider in using experiment design is that each experi-
ment we run costs a different amount. This cost could be
in terms of time (i.e. it is more expensive to train with
larger fraction of the input) or in terms of machines (i.e.
there is a fixed cost to say launching a machine). To ac-
count for the cost of an experiment we can augment the
optimization problem we setup above with an additional

(2, 0.0625)

(4, 0.125) (4, 0.5)
(8, 0.25)

(8, 0.5) (4, 0.5)

(1, 0.03125)

(4, 0.125)

(16, 0.5) (8, 0.25) (4, 0.5)

(8, 0.5) (16, 0.5)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300

Pr
ed

ic
te

d
/ A

ct
ua

l

Training Time (seconds)

Machines
Mixed

Figure 6: Comparison of different strategies used to collect
training data points for KMeans. The labels next to the data
points show the (number of machines, scale factor) used.

Residual Sum Percentage Err
of Squares Median Max

without
√

n 1409.11 12.2% 64.9%
with

√
n 463.32 5.7% 26.5%

Table 2: Cross validation metrics comparing different
models for Sparse GLM run on the splice-site dataset.

constraint that the total cost should be lesser than some
budget. That is if we have a cost function which gives us
a cost ci for an experiment with scale si and mi machines,

we add a constraint to our solver that
m
∑

i=1
ciλi ≤ B where

B is the total budget. For the rest of this paper we use the
time taken to collect training data as the cost and ignore
any machine setup costs as we usually amortize that over
all the data we need to collect. However we can plug-in
in any user-defined cost function in our framework.

3.4 Model extensions
The model outlined in the previous section accounts for
the most common patterns we see in advanced analytics
applications. However there are some complex applica-
tions like randomized linear algebra [43] which might
not fit this model. For such scenarios we discuss two
steps: the first is adding support in Ernest to detect when
the model is not adequate and the second is to easily al-
low users to extend the model being used.
Cross-Validation: The most common technique for test-
ing if a model is valid is to use hypothesis testing and
compute test statistics (e.g., using the t-test or the chi-
squared test) and confirm the null hypothesis that data
belongs to the distribution that the model describes.
However as we use non-negative least squares (NNLS)
the residual errors are not normally distributed and sim-
ple techniques for computing confidence limits, p-values
are not applicable. Thus we use cross-validation, where
subsets of the training data can be used to check if the
model will generalize well. There are a number of meth-
ods to do cross-validation and as our training data size is
small, we use a leave-one-out-cross-validation scheme in
Ernest. Specifically if we have collected m training data
points, we perform m cross-validation runs where each
run uses m−1 points as training data and tests the model
on the left out data point.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 369

Model extension example: As an example, we consider
the GLM classification implementation in Spark MLLib
for sparse datasets. In this workload the computation is
linear but the aggregation uses two stages (instead of an
aggregation tree) where the first aggregation stage has√

n tasks for n partitions of data and the second aggre-
gation stage combines the output of

√
n tasks using one

task. This communication pattern is not captured in our
model from earlier and the results from cross validation
using our original model are shown in Table 2. As we can
see in the table both the residual sum of squares and the
percentage error in prediction are high for the original
model. Extending the model in Ernest with additional
terms is simple and in this case we can see that adding
the

√
n term makes the model fit much better. In practice

we use a configurable threshold on the percentage error
to determine if the model fit is poor. We investigate the
end-to-end effects of using a better model in §6.6.

4 Implementation
Ernest is implemented using Python as multiple mod-
ules. The modules include a job submission tool that
submits training jobs, a training data selection pro-
cess which implements experiment design using a CVX
solver [42, 41] and finally a model builder that uses
NNLS from SciPy [53]. Even for a large range of scale
and machine values we find that building a model takes
only a few seconds and does not add any overhead. In the
rest of this section we discuss the job submission tool and
how we handle sparse datasets, stragglers.

4.1 Job Submission Tool
Ernest extends existing job submission API [5] that is
present in Apache Spark 1.2. This job submission API
is similar to Hadoop’s Job API [10] and similar job sub-
mission APIs exist for dedicated clusters [65, 78] as well.
The job submission API already takes in the binary that
needs to run (a JAR file in the case of Spark) and the
input specification required for collecting training data.

We add a number of optional parameters which can be
used to configure Ernest. Users can configure the min-
imum and maximum dataset size that will be used for
training. Similarly the maximum number of machines to
be used for training can also be configured. Our proto-
type implementation of Ernest uses Amazon EC2 and we
amortize cluster launch overheads across multiple train-
ing runs i.e., if we want to train using 1, 2, 4 and 8 ma-
chines, we launch a 8 machine cluster and then run all of
these training jobs in parallel.

The model built using Ernest can be used in a number
of ways. In this paper we focus on a cloud computing use
case where we can choose the number and type of EC2
instances to use for a given application. To do this we
build one model per instance type and explore different

sized instances (i.e. r3.large,...r3.8xlarge). After training
the models we can answer higher level questions like se-
lecting the cheapest configuration given a time bound or
picking the fastest configuration given a budget. One of
the challenges in translating the performance prediction
into a higher-level decision is that the predictions could
have some error associated with them. To help with this,
we provide the cross validation results (§3.4) along with
the prediction and these can be used to compute the range
of errors observed on training data. Additionally we plan
to provide support for visualizing the scaling behavior
and Figure 20 in §6.6 shows an example.

4.2 Handling Sparse Datasets
One of the challenges in Ernest is to deal with algorithms
that process sparse datasets. Because of the difference in
sparsity across data items, each record could take dif-
ferent time to process. We observe that operations on
sparse datasets depend on the number of non-zero en-
tries and thus if we can sample the data such that we use
a representative sparse subset during training, we should
be able to apply modeling techniques described before.
However in practice, we don’t see this problem as even
if there is a huge skew in sparsity across rows, the skew
across partitions is typically smaller.

To illustrate, we chose three of the largest sparse
datasets that are part of the LibSVM repository [70, 82]
and we measured the maximum number of non-zero en-
tries present in every partition after loading the data into
HDFS. We normalize these values across partitions and
a CDF of partition densities is shown in Figure 7. We
observe the the difference in sparsity between the most
loaded partition and the least loaded one is less than 35%
for all datasets and thus picking a random sample of par-
titions [76] is sufficient to model computation costs.

4.3 Straggler mitigation by over-allocation
The problem of dealing with stragglers, or tasks which
take much longer than other tasks is one of the main
challenges in large scale data analytics [80, 13, 33]. Us-
ing cloud computing instances could further aggravate
the problem due to differences in performance across in-
stances. One technique that we use in Ernest to over-
come variation among instances is to launch a small per-
centage of extra instances and then discard the worst
performing among them before running the user’s job.
We use memory bandwidth and network bandwidth mea-
surements (§2) to determine the slowest instances.

In our experiences with Amazon EC2 we find that
even having a few extra instances can be more than suffi-
cient in eliminating the slowest machines. To demon-
strate this, we set the target cluster size as N = 50
r3.2xlarge instances and have Ernest automatically al-
locate a small percentage of extra nodes. We then run

7

370 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1.00 1.10 1.20 1.30

0.0
0.2
0.4
0.6
0.8
1.0

Non−zero entries per partition

splice−site
KDD−A
KDD−B

Figure 7: CDF of maximum num-
ber of non-zero entries in a parti-
tion, normalized to the least loaded
partition for sparse datasets.

24000 26000 28000 30000 32000

0.0
0.2
0.4
0.6
0.8
1.0

Memory Bandwidth (MB/sec)

Baseline
2% extra
4% extra
10% extra

Figure 8: CDFs of STREAM mem-
ory bandwidths under four allocation
strategies. Using a small percentage of
extra instances removes stragglers.

0
500

1000
1500
2000
2500

0:00 4:48 9:36 14:24 19:12 0:00

R
un

ni
ng

 T
im

e (
s)

Real Time (hh:mm)

GLM Regression
NaiveBayes

Figure 9: Running times of GLM and
Naive Bayes over a 24-hour time window
on a 64-node EC2 cluster.

STREAM [54] at 30 second intervals and collect mem-
ory bandwidth measurements on all instances. Based
on the memory bandwidths observed, we eliminate the
slowest nodes from the cluster. Figure 8 shows for each
allocation strategy, the CDF of the memory bandwidth
obtained when picking the best N instances from all the
instances allocated. We see that Ernest only needs to al-
locate as few as 2 (or 4%) extra instances to eliminate the
slowest stragglers and improve the target cluster’s aver-
age memory bandwidth from 24.7 GB/s to 26 GB/s.

5 Discussion
In this section we look at when a model should be re-
trained and also discuss the trade-offs associated with in-
cluding more fine-grained information in Ernest.

5.1 Model reuse
The model we build using Ernest predicts the perfor-
mance for a given job for a specific dataset and a tar-
get cluster. One of the questions while using Ernest is
to determine when we need to retrain the model. We
consider three different circumstances here: changes in
code, changes in cluster behavior and changes in data.
Code changes: If different jobs use the same dataset, the
cluster and dataset remain the same, but the computation
being run changes. As Ernest treats the job being run as
a black-box, we will need to retrain the model for any
changes to the code. This can be detected by computing
hashes of the binary files.
Variation in Machine Performance: One of the con-
cerns with using cloud computing based solutions like
EC2 is that there could be performance variations over
time even when a job is using the same instance types
and number of instances. We investigated if this was
an issue by running two machine learning jobs GLM re-
gression and NaiveBayes repeatedly on a cluster of 64
r3.xlarge instances. The time taken per run of each
algorithm over a 24 hour period is shown in Figure 9.
We see that the variation over time is very small for both
workloads and the standard deviation is less than 2% of
the mean. Thus we believe that Ernest models should
remain relevant across relatively long time periods.
Changes in datasets: As Ernest uses small samples of
the data for training, the model is directly applicable as

the dataset grows. When dealing with newly collected
data, there are some aspects of the dataset like the num-
ber of data items per block and the number of features
per data item that should remain the same for the perfor-
mance properties to be similar. As some of these prop-
erties might be hard to measure, our goal is to make the
model building overhead small so that Ernest can be re-
run for newly collected datasets.

5.2 Using Per-Task Timings
In the model described in the previous sections, we only
measure the end-to-end running time of the whole job.
Existing data processing frameworks already measure
fine grained metrics [8, 3] and we considered integrat-
ing task-level metrics in Ernest. One major challenge we
faced here is that in the BSP model a stage only com-
pletes when its last task completes. Thus rather than pre-
dicting the average task duration, we need to estimate the
maximum task duration and this requires more complex
non-parametric methods like Bootstrap [38]. Further, to
handle cases where the number of tasks in a stage are
greater than the number of cores available, we need adapt
our estimate based on the number of waves [12] of tasks.
We found that there were limited gains from incorporat-
ing task-level information given the additional complex-
ity. While we continue to study ways to incorporate new
features, we found that simple features used in predicting
end-to-end completion time are more robust.

6 Evaluation
We evaluate how well Ernest works by using two met-
rics: the prediction accuracy and the overhead of training
for long-running machine learning jobs. In experiments
where we measure accuracy, or how close a prediction is
to the actual job completion time, we use the ratio of the
predicted job completion time to the actual job comple-
tion time Predicted Time/Actual Time as our metric.

The main results from our evaluation are:

• Ernest’s predictive model achieves less than 20%
error on most of the workloads with less than 5%
overhead for long running jobs.(§6.2)

• Using the predictions from Ernest we can get up to
4x improvement in price by choosing the optimal
number of instances for the speech pipeline. (§6.3)

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 371

0

0.4

0.8

1.2

1.6

Regression KMeans NaiveBayes PCA Pearson Classication Spearman Summary
Statistics

ChiSquare

Pr
ed

ic
te

d
/ A

ct
ua

l
45 machines 64 machines

Figure 10: Prediction accuracy using Ernest for 9 machine learning algorithms in Spark MLlib.

0
0.2
0.4
0.6
0.8

1
1.2

GenBase
Regression

GenBase SVDPr
ed

ic
te

d
/ A

ct
ua

l 16 machines
20 machines

(a)

0
0.25

0.5
0.75

1
1.25

TIMIT Pipeline

Pr
ed

ic
te

d
/ A

ct
ua

l 45 machines
64 machines

(b)

Figure 11: Prediction accuracy for GenBase queries and
TIMIT pipeline.

0
0.2
0.4
0.6
0.8

1
1.2

Sort MarkDup FlagStat BQSR

Pr
ed

ic
te

d
/

A
ct

ua
l

45 Machines 64 Machines

Figure 12: Prediction accuracy for four transformations
run using ADAM.

• Given a training budget, experiment design im-
proves accuracy by 30%−50% for some workloads
when compared to a cost-based approach. (§6.5)

• By extending the default model we are also able to
accurately predict running times for sparse and ran-
domized linear algebra operations. (§6.6)

6.1 Workloads and Experiment Setup
We use five workloads to evaluate Ernest. Our first work-
load consists of 9 machine learning algorithms that are
part of MLlib [56]. For algorithms designed for dense
inputs, the performance characteristics are independent
of the data and we use synthetically generated data with
5 million examples. We use 10K features per data point
for regression, classification, clustering and 1K features
for the linear algebra and statistical benchmarks.

To evaluate Ernest on sparse data, we use
splice-site and kdda, two of the largest sparse
classification datasets that are part of LibSVM [28].
The splice-site dataset contains 10M data points
with around 11M features and the kdda dataset contains
around 6.7M data points with around 20M features. To
see how well Ernest performs on end-to-end pipelines,
we use GenBase, ADAM and a speech recognition
pipeline (§2). We run regression and SVD queries
from GenBase on the Large dataset [40] (30K genes

4.1%

3.4%

84.3%

86.9%

0 2000 4000 6000 8000 10000 12000

64

45

Time (seconds)

M
ac

hi
ne

s

TIMIT

Actual
Predicted
Training

Figure 13: Training times vs. accuracy for TIMIT pipeline
running 50 iterations. Percentages with respect to actual
running times are shown.

3.9%

2.9%

113.4%

112.7%

0 1000 2000 3000 4000 5000

64

45

Time (seconds)

M
ac

hi
ne

s
MLlib Regression

Actual
Predicted
Training

Figure 14: Training times vs. accuracy for MLlib Regres-
sion running 500 iterations. Percentages with respect to ac-
tual running times are shown.

for 40K patients). For ADAM we use the high cov-
erage NA12878 full genome from the 1000 Genomes
project [1] and run four transformations: sorting, mark-
ing duplicate reads, base quality score recalibration and
quality validation. The speech recognition pipeline is
run on the TIMIT [50] dataset using an implementation
from KeystoneML [71]. All datasets other than the
one for ADAM are cached in memory before the
experiments begin and we do warmup runs to trigger
the JVM’s just-in-time compilation. We use r3.xlarge
machines from Amazon EC2 (each with 4 vCPUs
and 30.5GB memory) unless otherwise specified. Our
experiments were run with Apache Spark 1.2. Finally
all our predictions were compared against at least three
actual runs and the values in our graphs show the average
with error bars indicating the standard deviation.

6.2 Accuracy and Overheads
Prediction Accuracy: We first measure the prediction
accuracy of Ernest using the nine algorithms from ML-
lib. In this experiment we configure Ernest to use be-
tween 1 and 16 machines for training and sample be-
tween 0.1% to 10% of the dataset. We then predict the

9

372 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

performance for cases where the algorithms use the en-
tire dataset on 45 and 64 machines. The prediction accu-
racies shown in Figure 10 indicate that Ernest’s predic-
tions are within 12% of the actual running time for most
jobs. The two exceptions where the error is higher are the
summary statistics and glm-classification job.
In the case of glm-classification, we find that the
training data and the actual runs have high variance (error
bars in Figure 10 come from this) and that Ernest’s pre-
diction is within the variance of the collected data. In the
case of summary statistics we have a short job where the
absolute error is low: the actual running time is around 6
seconds while Ernest’s prediction is around 8 seconds.

Next, we measure the prediction accuracy on GenBase
and the TIMIT pipeline; the results are shown in Fig-
ure 11. Since the GenBase dataset is relatively small
(less than 3GB in text files), we partition it into 40 splits,
and restrict Ernest to use up to 6 nodes for training and
predict the actual running times on 16 and 20 machines.
As in the case of MLlib, we find the prediction errors to
be below 20% for these workloads. Finally, the predic-
tion accuracy for four transformations on ADAM show a
similar trend and are shown in Figure 12. We note that
the ADAM queries read input and write output to the dis-
tributed filesystem (HDFS) in these experiments and that
these queries are also shuffle heavy. We find that Ernest
is able to capture the I/O overheads and the reason for
this is that the time to read / write a partition of data re-
mains similar as we scale the computation.

Our goal in building Ernest is not to enforce strict
SLOs but to enable low-overhead predictions that can
be used to make coarse-grained decisions. We discuss
how Ernest’s prediction accuracy is sufficient for deci-
sions like how many machines (§6.3) and what type of
machines (§6.4) to use in the following sections.

Training Overheads: One of the main goals of Ernest
is to provide performance prediction with low overhead.
To measure the overhead in training we consider two
long-running machine learning jobs: the TIMIT pipeline
run for 50 iterations, and MLlib Regression with a mini-
batch SGD solver run for 500 iterations. We configure
Ernest to run 5% of the overall number of iterations dur-
ing training and then linearly scale its prediction by the
target number of iterations. Figures 13 and 14 show the
times taken to train Ernest and the actual running times
when run with 45 or 64 machines on the cluster. From
the figures, we observe that for the regression problem
the training time is below 4% of the actual running time
and that Ernest’s predictions are within 14%. For the
TIMIT pipeline, the training overhead is less than 4.1%
of the total running time. The low training overhead with
these applications shows that Ernest efficiently handles
long-running, iterative analytics jobs.

73.73 57.74 59.43
0

200
400
600
800
1000

0 20 40 60 80 100 120 140

Ti
m

e p
er

ite

ra
tio

n
(s

)

Machines

TIMITPredicted
Actual

Figure 15: Time per iteration as we vary the number of in-
stances for the TIMIT pipeline. Time taken by actual runs
are shown in the plot.

0.565 0.378 0.445
0
1
2
3
4
5

0 20 40 60 80 100 120 140

Ti
m

e p
er

ite
ra

tio
n

(s
)

Machines

RegressionPredicted
Actual

Figure 16: Time per iteration as we vary the number of
instances for MLlib Regression. Time taken by actual runs
are shown in the plot.

6.3 Choosing optimal number of instances
When users have a fixed-time or fixed-cost budget it is
often tricky to figure out how many instances should be
used for a job as the communication vs. computation
trade-off is hard to determine for a given workload. In
this section, we use Ernest’s predictions to determine the
optimum number of instances. We consider two work-
loads from the previous section: the TIMIT pipeline and
GLM regression, but here we use subsets of the full data
to focus on how the job completion time varies as we in-
crease the number of machines to 641. Using the same
models trained in the previous section, we predict the
time taken per iteration across a wide range of number
of machines (Figures 15 and 16). We also show the ac-
tual running time to validate the predictions.

Consider a case where a user has a fixed-time budget
of 1 hour (3600s) to say run 40 iterations of the TIMIT
pipeline and an EC2 instance limit of 64 machines. Us-
ing Figure 15 and taking our error margin into account,
Ernest is able to infer that launching 16 instances is suf-
ficient to meet the deadline. Given that the cost of an
r3.xlarge instance is $0.35/hour, a greedy strategy of
using all the 64 machines would cost $22.4, while using
the 16 machines as predicted by Ernest would only cost
$5.6, a 4x difference. We also found that the 15% pre-
diction error doesn’t impact the decision as actual runs
show that 15 machines is the optimum. Similarly, if the
user has a budget of $15 then we can infer that using 40
machines would be faster than using 64 machines.

6.4 Choosing across instance types
We also apply Ernest to choose the optimal instance type
for a particular workload; similar to the scenario above,

1We see similar scaling properties in the entire data, but we use a
smaller dataset to highlight how Ernest can handle scenarios where the
algorithm does not scale well.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 373

109.0%

97.2%

99.9%

6.9%

4.7%

4.0%

0 2000 4000 6000 8000 10000 12000

32 r3.xlarge

16 r3.2xlarge

8 r3.4xlarge

Time (seconds)

Training Predicted Actual

Figure 17: Time taken for 50 iterations of the TIMIT work-
load across different instance types. Percentages with re-
spect to actual running times are shown.

0 750 1500 2250

Sort

MarkDup

Time (s)

(a)

0 5 10 15

Sort

MarkDup

Price (Dollars)

45 r3.xlarge

45 m3.2xlarge

64 r3.xlarge

64 m3.2xlarge

(b)

Figure 18: Time taken for Sort and MarkDup workloads
on ADAM across different instance types.

we can optimize for cost given a deadline or optimize for
performance given a budget. As an example of the ben-
efits of choosing the right instance type, we re-run the
TIMIT workload on three instance types (r3.xlarge,
r3.2xlarge and r3.4xlarge) and we build a model
for each instance type. With these three models, Ernest
predicts the expected performance on same-cost config-
urations, and then picks the cheapest one. Our results
(Figure 17) show that choosing the smaller r3.xlarge
instances would actually be 1.2x faster than using the
r3.4xlarge instances, while incurring the same cost.
Similar to the previous section, the prediction error does
not affect our decision here and Ernest’s predictions
choose the appropriate instance type.

We next look at how choosing the right instance type
affects the performance of ADAM workloads that read
and write data from disk. We compare m3.2xlarge in-
stances that have two SSDs but cost $0.532 per hour
and r3.xlarge instances that have one SSD and cost
$0.35 an hour2. Results from using Ernest on 45 and
64 machines with these instance types is shown in Fig-
ure 18. From the we can see that using m3.2xlarge in-
stances leads to better performance and that similar to the
memory bandwidth analysis (§2.2) there are non-linear
price-performance trade-offs. For example, we see that
for the mark duplicates query, using 64 m3.2xlarge in-
stances provides a 45% performance improvement over
45 r3.xlarge instances while only costing 20% more.

6.5 Experiment Design vs. Cost-based
We next evaluate the benefits of using optimal experi-
ment design in Ernest. We compare experiment design
to a greedy scheme where all the candidate training data

2Prices as of September 2015

0 1 2 3 4 5

Regression
Classication

KMeans
PCA

TIMIT

Predicted / Actual

Expt-Design
Cost-based

Figure 19: Prediction accuracy when using Ernest vs. a
cost-based approach for MLlib and TIMIT workloads.

0
200
400
600
800

1000
1200

1 2 4 8 16 32 64 128 256

T
im

e
(s

)

Machines

Actual
With Model Extension
Default Model

Figure 20: Comparing KDDA models with and without ex-
tensions for different number of machines.

points are sorted in increasing order of cost and we pick
training points to match the cost of the points chosen in
experiment design. We then train models using both con-
figurations. A comparison of the prediction accuracy on
MLlib and TIMIT workloads is shown in Figure 19.

From the figure, we note that for some workloads (e.g.
KMeans) experiment design and the cost-based approach
achieve similar prediction errors. However, for the Re-
gression and TIMIT workloads, Ernest’s experiment de-
sign models perform 30% − 50% better than the cost-
based approach. The cost-based approach fails because
when using just the cheapest training points, the training
process is unable to observe how different stages of the
job behave as scale and number of machines change. For
example, in the case of TIMIT pipeline, the cost-based
approach explores points along a weak scaling curve
where both data size and number of machines increase,
thus it is unable to model how the Solver stage scales
when the amount of data is kept constant. Ernest’s op-
timal experiment design mechanism successfully avoids
this and chooses the most useful training points.

6.6 Model Extensions
We also measure the effectiveness of the model exten-
sions proposed in §3.4 on two workloads: GLM classi-
fication run on sparse datasets (§4.2) and a randomized
linear algebra workload that has non-linear computation
time [43]. Figure 21 shows the prediction error for the
default model and the error after the model is extended:
with a

√
n term for the Sparse GLM and a nlog2n

mc term
which is the computation cost of the random projection.
As we can see from the figure, using the appropriate
model makes a significant difference in prediction error.

To get a better understanding of how different mod-
els can affect prediction error we use the KDDA dataset

11

374 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0
0.25
0.5

0.75
1

64 machines 45 machines
KDDA
(a)

0
0.25
0.5

0.75
1

64 machines 45 machines
Splice Site

(b)

0
0.25

0.5
0.75

1

64 machines 45 machines
Random Projection

default model
model extension

(c)
Figure 21: Prediction accuracy improvements when using model extensions in Ernest. Workloads used include sparse
GLM classification using KDDA, splice-site datasets and a random projection linear algebra job.

and plot the predictions from both models as we scale
from 2 to 200 machines (Figure 20). From the figure
we can see that the extending the model with

√
n en-

sures that the scaling behavior is captured accurately and
that the default model can severely over-predict (at 2
machines and 200 machines) or under-predict (32 ma-
chines). Thus, while the default model in Ernest can cap-
ture a large number of workloads we can see that making
simple model extensions can also help us accurately pre-
dict more complex workloads.

7 Related work
Performance Prediction: There have been a number of
recent efforts at modeling job performance in datacen-
ters to support SLOs or deadlines. Techniques proposed
in Jockey [39] and ARIA [77] use historical traces and
dynamically adjust resource allocations in order to meet
deadlines. In Ernest we build a model with no historic
information and try to minimize the amount of train-
ing data required. Bazaar [52] proposed techniques to
model the network utilization of MapReduce jobs by us-
ing small subsets of data. In Ernest we capture compu-
tation and communication characteristics and use high
level features that are framework independent. Projects
like MRTuner [68] and Starfish [48] model MapReduce
jobs at very fine granularity and set optimal values for
options like memory buffer sizes etc. In Ernest we use
few simple features and focus on collecting training data
will help us maximize their utility. Finally scheduling
frameworks like Quasar [36] try to estimate the scale out
and scale up factor for jobs using the progress rate of the
first few tasks. Ernest on the other hand runs the entire
job on small datasets and is able to capture how different
stages of a job interact in a long pipeline.
Query Optimization: Database query progress predic-
tors [29, 57] solve a performance prediction problem
similar to Ernest. Database systems typically use sum-
mary statistics [67] of the data like cardinality counts to
guide this process. Further, these techniques are typi-
cally applied to a known set of relational operators. Sim-
ilar ideas have also been applied to linear algebra opera-
tors [49]. In Ernest we use advanced analytics jobs where
we know little about the data or the computation being
run. Recent work has also looked at providing SLAs for
OLTP [62] and OLAP workloads [46] in the cloud and

some of our observations about variation across instance
types in EC2 are also known to affect database queries.
Tuning, Benchmarking: Ideas related to experiment de-
sign, where we explore a space of possible inputs and
choose the best inputs, have been used in other applica-
tions like server benchmarking [69]. Related techniques
like Latin Hypercube Sampling have been used to ef-
ficiently explore file system design space [45]. Auto-
tuning BLAS libraries [18] like ATLAS [31] also solve a
similar problem of exploring a state space efficiently.

8 Future Work and Conclusion
In the future, we plan to study how statistical proper-
ties change in conjunction with the hardware. For ex-
ample, in algorithms like HOGWILD! [66], the network
latency between machines could affect the convergence
rate. Further, based on our benchmarking experiments
(§2) we see that there are a few key metrics which dictate
the performance characteristics of a cluster. In the future
we plan to study how we can integrate these metrics with
the algorithm specific features used in Ernest.

In conclusion, the rapid adoption of advanced analyt-
ics workloads makes it important to consider how these
applications can be deployed in a cost and resource-
efficient fashion. In this paper, we studied the problem
of performance prediction and show how simple models
can capture computation and communication patterns.
Using these models we have built Ernest, a performance
prediction framework that intelligently chooses training
points to provide accurate predictions with low overhead.

Acknowledgments
We would like to thank Ganesh Ananthanarayanan, Au-
rojit Panda, Kay Ousterhout, Evan Sparks, the NSDI
reviewers and our shepherd Ranjita Bhagwan for their
comments on earlier drafts of this paper. This research
is supported in part by NSF CISE Expeditions Award
CCF-1139158, DOE Award SN10040 DE-SC0012463,
and DARPA XData Award FA8750-12-2-0331, and gifts
from Amazon Web Services, Google, IBM, SAP, The
Thomas and Stacey Siebel Foundation, Adatao, Adobe,
Apple Inc., Blue Goji, Bosch, Cisco, Cray, Cloudera,
Ericsson, Facebook, Fujitsu, Guavus, HP, Huawei, In-
tel, Microsoft, Pivotal, Samsung, Schlumberger, Splunk,
State Farm, Virdata and VMware.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 375

References
[1] 1000 Genomes Project and AWS. http://aws.

amazon.com/1000genomes/.

[2] Apache Mahout. http://mahout.apache.org/.

[3] Apache Spark: Monitoring and Instrumentation.
http://spark.apache.org/docs/latest/

monitoring.html.

[4] Apache spark, preparing for the next wave of reac-
tive big data. http://goo.gl/FqEh94.

[5] Apache Spark: Submitting Applications.
http://spark.apache.org/docs/latest/

submitting-applications.html.

[6] Big data platform, hp haven. http://www8.

hp.com/us/en/software-solutions/

big-data-platform-haven/.

[7] Common crawl. http://commoncrawl.org.

[8] Hadoop History Server REST APIs.
http://archive.cloudera.com/cdh4/cdh/

4/hadoop/hadoop-yarn/hadoop-yarn-site/

HistoryServerRest.html.

[9] Machine learning, microsoft azure. http:

//azure.microsoft.com/en-us/services/

machine-learning/.

[10] MapReduce Tutorial. hadoop.apache.org/

docs/current/hadoop-mapreduce-client/

hadoop-mapreduce-client-core/

MapReduceTutorial.html.

[11] V. S. Adve, J. Mellor-Crummey, M. Anderson,
K. Kennedy, J.-C. Wang, and D. A. Reed. An inte-
grated compilation and performance analysis envi-
ronment for data parallel programs. In Supercom-
puting, 1995.

[12] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
Pacman: Coordinated memory caching for parallel
jobs. In USENIX NSDI, 2012.

[13] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in Map-Reduce clusters using Mantri.
In USENIX OSDI, 2010.

[14] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat,
M. R. Henzinger, S.-T. A. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: Where have all the cycles
gone? ACM Transactions on Computer Systems,
15(4):357–390.

[15] Apache Hadoop NextGen MapReduce
(YARN). Retrieved 9/24/2013, URL:
http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[16] V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-
mer. A static performance estimator to guide data
partitioning decisions. In Symposium on Principles
and Practice of Parallel Programming, PPOPP ’91,
pages 213–223, Williamsburg, Virginia, USA.

[17] G. B. Berriman, G. Juve, E. Deelman, M. Regelson,
and P. Plavchan. The application of cloud com-
puting to astronomy: A study of cost and perfor-
mance. In Sixth IEEE International Conference on
e-Science, 2010.

[18] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Dem-
mel. Optimizing matrix multiply using PHiPAC:
a portable, high-performance, ANSI C coding
methodology. In Supercomputing 1997, pages 340–
347.

[19] I. Bird. Computing for the large hadron collider.
Annual Review of Nuclear and Particle Science,
61:99–118, 2011.

[20] Blaise Barney. Message Passing Interface. https:
//computing.llnl.gov/tutorials/mpi/.

[21] G. E. Blelloch. Programming parallel algorithms.
Communications of the ACM, 39(3):85–97.

[22] L. Bottou and O. Bousquet. The tradeoffs of large
scale learning. In Advances in Neural Information
Processing Systems, volume 20, pages 161–168.
2008.

[23] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers. Foundations and Trends in Machine Learning,
3(1):1–122, 2011.

[24] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean.
Large language models in machine translation. In
Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP-CoNLL), pages 858–867, Prague, Czech
Republic, June 2007.

[25] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A scalable cross-platform infrastructure
for application performance tuning using hardware
counters. In Supercomputing 2000, Dallas, Texas,
USA.

13

376 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[26] J. P. Campbell Jr and D. A. Reynolds. Corpora
for the evaluation of speaker recognition systems.
In Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol-
ume 2, pages 829–832, 1999.

[27] B. L. Chamberlain, C. Lin, S.-E. Choi, L. Snyder,
E. C. Lewis, and W. D. Weathersby. Zpl’s wysiwyg
performance model. In Third International Work-
shop on High-Level Parallel Programming Models
and Supportive Environments, pages 50–61.

[28] C.-C. Chang and C.-J. Lin. LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011.

[29] S. Chaudhuri, V. Narasayya, and R. Ramamurthy.
Estimating progress of execution for SQL queries.
In SIGMOD 2004, pages 803–814.

[30] M. Chowdhury and I. Stoica. Coflow: a networking
abstraction for cluster applications. In Proceedings
of the 11th ACM Workshop on Hot Topics in Net-
works, pages 31–36, 2012.

[31] R. Clint Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimizations of software and
the ATLAS project. Parallel Computing, 27(1):3–
35, 2001.

[32] A. Coates and A. Y. Ng. Learning feature represen-
tations with k-means. In Neural Networks: Tricks
of the Trade, pages 561–580. Springer, 2012.

[33] J. Dean and L. A. Barroso. The tail at scale. Com-
munications of the ACM, 56(2):74–80, 2013.

[34] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. Le, M. Mao, A. Senior, P. Tucker, K. Yang,
et al. Large scale distributed deep networks. In Ad-
vances in Neural Information Processing Systems
25, pages 1232–1240, 2012.

[35] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1), 2008.

[36] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster manage-
ment. In ASPLOS 2014, pages 127–144.

[37] J. Demmel, L. Grigori, M. Hoemmen, and J. Lan-
gou. Communication-optimal parallel and sequen-
tial QR and LU factorizations. SIAM Journal on
Scientific Computing, 34(1):A206–A239, 2012.

[38] B. Efron. The jackknife, the bootstrap and other
resampling plans, volume 38. SIAM, 1982.

[39] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin,
and R. Fonseca. Jockey: guaranteed job latency in
data parallel clusters. In Eurosys 2012, pages 99–
112.

[40] GenBase repository. https://github.com/

mitdbg/genbase.

[41] M. Grant and S. Boyd. Graph implementations
for nonsmooth convex programs. In V. Blondel,
S. Boyd, and H. Kimura, editors, Recent Advances
in Learning and Control, Lecture Notes in Control
and Information Sciences, pages 95–110. Springer-
Verlag Limited, 2008. http://stanford.edu/

~boyd/graph_dcp.html.

[42] M. Grant and S. Boyd. CVX: Matlab software
for disciplined convex programming, version 2.1.
http://cvxr.com/cvx, Mar. 2014.

[43] N. Halko, P.-G. Martinsson, and J. A. Tropp. Find-
ing structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decom-
positions. SIAM review, 53(2):217–288, 2011.

[44] B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su,
H. Wang, and L. Zhou. Wave computing in the
cloud. In HotOS, 2009.

[45] J. He, D. Nguyen, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. Reducing file system tail laten-
cies with chopper. In FAST 2015, pages 119–133,
Santa Clara, CA.

[46] H. Herodotou and S. Babu. Profiling, what-if anal-
ysis, and cost-based optimization of MapReduce
programs. VLDB 2011, 4(11):1111–1122.

[47] H. Herodotou, F. Dong, and S. Babu. No one (clus-
ter) size fits all: automatic cluster sizing for data-
intensive analytics. In SOCC 2011.

[48] H. Herodotou, H. Lim, G. Luo, N. Borisov,
L. Dong, F. B. Cetin, and S. Babu. Starfish: A
self-tuning system for big data analytics. In CIDR,
volume 11, pages 261–272, 2011.

[49] B. Huang, M. Boehm, Y. Tian, B. Reinwald,
S. Tatikonda, and F. R. Reiss. Resource elastic-
ity for large-scale machine learning. In SIGMOD
2015.

[50] P.-S. Huang, H. Avron, T. N. Sainath, V. Sindhwani,
and B. Ramabhadran. Kernel methods match deep
neural networks on timit. In IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 1, page 6, 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 377

[51] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In Eurosys 2007.

[52] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis,
and A. Rowstron. Bridging the tenant-provider gap
in cloud services. In SOCC 2012.

[53] E. Jones, T. Oliphant, P. Peterson, et al. SciPy:
Open source scientific tools for Python. http:

//www.scipy.org/, 2001–.

[54] J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers.
IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages
19–25, Dec. 1995.

[55] X. Meng, J. Bradley, E. Sparks, and S. Venkatara-
man. ML Pipelines: A New High-Level API for
MLlib. https://goo.gl/pluhq0, 2015.

[56] Apache Spark MLLib. https://spark.apache.
org/mllib/.

[57] K. Morton, M. Balazinska, and D. Grossman. Para-
timer: A progress indicator for mapreduce dags. In
SIGMOD 2010, pages 507–518, Indianapolis, Indi-
ana, USA.

[58] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. In SOSP 2013, pages 439–455.

[59] D. Narayanan. Operating System Support for Mo-
bile Interactive Applications. PhD thesis, CMU,
2002.

[60] O. Niehorster, A. Krieger, J. Simon, and
A. Brinkmann. Autonomic resource management
with support vector machines. In International
Conference on Grid Computing (GRID ’11), pages
157–164, 2011.

[61] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang,
U. Laserson, C. Yeksigian, J. Kottalam, A. Ahuja,
J. Hammerbacher, M. Linderman, M. J. Franklin,
A. D. Joseph, and D. A. Patterson. Rethinking data-
intensive science using scalable analytics systems.
In SIGMOD 2015, pages 631–646.

[62] L. Ortiz, V. de Almeida, and M. Balazinska. Chang-
ing the Face of Database Cloud Services with Per-
sonalized Service Level Agreements. In Proceed-
ings of the International Conference on Innovative
Data Systems Research (CIDR), 2015.

[63] F. Pukelsheim. Optimal design of experiments, vol-
ume 50. SIAM, 1993.

[64] A. Rahimi and B. Recht. Random features for
large-scale kernel machines. In Advances in neural
information processing systems, pages 1177–1184,
2007.

[65] R. Raman, M. Livny, and M. Solomon. Match-
making: Distributed resource management for high
throughput computing. In HPDC 1998.

[66] B. Recht, C. Re, S. Wright, and F. Niu. HOGWILD!:
A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural Informa-
tion Processing Systems, pages 693–701, 2011.

[67] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selec-
tion in a relational database management system.
In Proceedings of the 1979 ACM SIGMOD inter-
national conference on Management of data, pages
23–34, 1979.

[68] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang.
MRTuner: A Toolkit to Enable Holistic Optimiza-
tion for MapReduce Jobs. VLDB 2014, 7(13).

[69] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam,
and S. Babu. Cutting corners: workbench automa-
tion for server benchmarking. In USENIX ATC
2008, pages 241–254.

[70] S. Sonnenburg and V. Franc. Coffin: A computa-
tional framework for linear svms. In Proceedings
of the 27th International Conference on Machine
Learning (ICML-10), pages 999–1006, 2010.

[71] E. Sparks. Announcing KeystoneML.
https://amplab.cs.berkeley.edu/

announcing-keystoneml, 2015.

[72] L. D. Stein et al. The case for cloud computing in
genome informatics. Genome Biology, 11(5):207,
2010.

[73] R. Taft, M. Vartak, N. R. Satish, N. Sundaram,
S. Madden, and M. Stonebraker. Genbase: A com-
plex analytics genomics benchmark. In SIGMOD
2014, pages 177–188.

[74] J. Uszkoreit, J. M. Ponte, A. C. Popat, and M. Du-
biner. Large scale parallel document mining for
machine translation. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics, pages 1101–1109. Association for Computa-
tional Linguistics, 2010.

15

378 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[75] R. A. Van De Geijn and J. Watts. SUMMA:
Scalable universal matrix multiplication algorithm.
Concurrency-Practice and Experience, 9(4):255–
274, 1997.

[76] S. Venkataraman, A. Panda, G. Ananthanarayanan,
M. J. Franklin, and I. Stoica. The power of choice
in data-aware cluster scheduling. In OSDI 2014,
pages 301–316.

[77] A. Verma, L. Cherkasova, and R. H. Campbell.
Aria: Automatic resource inference and allocation
for mapreduce environments. In ICAC 2011, pages
235–244, Karlsruhe, Germany.

[78] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at google with borg. In Eurosys 2015.

[79] W. Wang, L. Xu, and I. Gupta. Scale up Vs. Scale
out in Cloud Storage and Graph Processing System.
In Proceedings of the 2nd IEEE Workshop on Cloud
Analytics, 2015.

[80] N. J. Yadwadkar, G. Ananthanarayanan, and
R. Katz. Wrangler: Predictable and faster jobs us-
ing fewer resources. In SOCC 2014.

[81] W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H.
Campbell. Adp: Automated diagnosis of perfor-
mance pathologies using hardware events. In In-
ternational Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS 2012,
pages 283–294, London, England, UK.

[82] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G.
McKenzie, J.-W. Chou, P.-H. Chung, C.-H. Ho, C.-
F. Chang, Y.-H. Wei, et al. Feature engineering and
classifier ensemble for KDD Cup 2010. KDD Cup
2010.

[83] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI 2012.

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 379

Cliffhanger: Scaling Performance Cliffs in Web
Memory Caches

Asaf Cidon1, Assaf Eisenman1, Mohammad Alizadeh2, and Sachin Katti1

1Stanford University
2MIT CSAIL

ABSTRACT
Web-scale applications are heavily reliant on memory
cache systems such as Memcached to improve through-
put and reduce user latency. Small performance improve-
ments in these systems can result in large end-to-end
gains. For example, a marginal increase in hit rate of
1% can reduce the application layer latency by over 35%.
However, existing web cache resource allocation policies
are workload oblivious and first-come-first-serve. By an-
alyzing measurements from a widely used caching ser-
vice, Memcachier, we demonstrate that existing cache
allocation techniques leave significant room for improve-
ment. We develop Cliffhanger, a lightweight iterative
algorithm that runs on memory cache servers, which
incrementally optimizes the resource allocations across
and within applications based on dynamically changing
workloads. It has been shown that cache allocation algo-
rithms underperform when there are performance cliffs,
in which minor changes in cache allocation cause large
changes in the hit rate. We design a novel technique
for dealing with performance cliffs incrementally and
locally. We demonstrate that for the Memcachier ap-
plications, on average, Cliffhanger increases the overall
hit rate 1.2%, reduces the total number of cache misses
by 36.7% and achieves the same hit rate with 45% less
memory capacity.

1. INTRODUCTION
Memory caches like Memcached [13], Redis [4] and

Tao [8] have become a vital component of cloud infras-
tructure. Major web service providers such as Facebook,
Twitter, Pinterest and Airbnb have large deployments
of Memcached, while smaller providers utilize caching-
as-a-service solutions like Amazon ElastiCache [1] and
Memcachier [3]. These applications rely heavily on
caching to reduce web request latency, reduce load on
backend databases and lower operating costs.

Even modest improvements to the cache hit rate im-
pact performance in web applications, because reading
from a disk or Flash-based database (like MySQL) is

much slower than a memory cache. For instance, the hit
rate of one of Facebook’s Memcached pools is 98.2% [5].
Assuming the average read latency from the cache and
MySQL is 200µs and 10ms, respectively, increasing the
hit rate by just 1% would reduce the read latency by over
35% (from 376µs at 98.2% hit rate to 278µs at 99.2%
hit rate). The end-to-end speedup is even greater for user
queries, which often wait on hundreds of reads [26].

Web caching systems are generally simple: they have
a key-value API, and are essentially an in-memory hash-
table spread across multiple servers. The servers do not
have any centralized control and coordination. In partic-
ular, memory caches are oblivious to application request
patterns and requirements. Memory allocation across
slab classes1 and across different applications sharing a
cache server is based on fixed policies like first-come-
first-serve or static reservations. The eviction policy,
Least-Recently-Used (LRU), is also fixed.

By analyzing a week-long trace of a popular caching
service, Memcachier, we show that existing first-come-
first-serve cache allocation techniques can be greatly im-
proved by applying workload aware resource policies.
We show that for certain applications, the number of
misses can be reduced by 99%.

We propose Cliffhanger, a lightweight iterative algo-
rithm that runs on memory cache servers. Cliffhanger
runs across multiple eviction queues. For each eviction
queue, it determines the gradient of the hit rate curve at
the current working point of the queue. It then incremen-
tally allocates memory to the queues that would benefit
the most from increased memory, and removes memory
from the queues that would benefit the least.

Cliffhanger determines the hit rate curve gradient of
each queue by leveraging shadow queues. Shadow
queues are an extension of the eviction queue that only
contain the keys of the requests, without the values. We
show that the rate of hits in the shadow queue approxi-

1To avoid memory fragmentation, Memcached divides its
memory into several slabs. Each slab stores items with size
in a specific range (e.g., < 128B, 128-256B, etc.) [2]

1

380 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

mates the hit rate curve gradient. Cliffhanger differs from
previous cache allocation schemes in that it does not re-
quire an estimation of the entire hit rate curves, which
is expensive to estimate accurately. We also prove that
although Cliffhanger is incremental and relies only on
local knowledge of the hit rate curve, it performs as well
as a system has knowledge of the entire hit rate curve.

Prior work has shown that existing cache allocation
algorithms underperform when there are performance
cliffs [6, 29, 35]. Performance cliffs occur when a small
increase in memory creates an unexpectedly large change
in hit rate. In other words, performance cliffs are re-
gions in the hit rate curve where increasing the amount
of memory for the queue accelerates the increase in hit
rate. Memcachier’s traces demonstrate that performance
cliffs are common in web applications.

We propose a novel technique that deals with perfor-
mance cliffs without having to estimate the entire hit rate
curve. The technique utilizes a pair of small shadow
queues, which allow Cliffhanger to locally search for
where the performance cliff begins and ends. With this
knowledge, Cliffhanger can overcome the performance
cliff and increase the hit rate of the queue, by splitting
the eviction queue into two and dividing the traffic across
the two smaller queues [6]. We demonstrate that this al-
gorithm removes performance cliffs in real time.

Cliffhanger runs on each memory cache server and it-
eratively allocates memory to different queues and re-
moves performance cliffs in parallel. We show that the
performance increase resulting from both algorithms is
cumulative. Cliffhanger supports any eviction policy, in-
cluding LRU, LFU or hybrid policies such as ARC [25].

We have built a prototype implementation of
Cliffhanger in C for Memcached. We demonstrate that
Cliffhanger can achieve the same hit rate as Mem-
cached’s default cache allocation using on average only
55% of the memory. Our micro-benchmark evalua-
tion based on measurements at Facebook [5] shows that
Cliffhanger incurs a negligible overhead in terms of la-
tency and throughput. Since Cliffhanger uses fixed-sized
shadow queues, its memory overhead is minimal: less
than 500KB for each application. Applications typically
use 50MB or more on each server.

2. BACKGROUND
Multi-tenant web caches need to allocate memory

across multiple applications and across requests within
applications. Typically individual applications are stati-
cally assigned a fixed amount of memory across multiple
servers. Within each application, each request occupies
a position in the queue based on its order. To avoid mem-
ory fragmentation, Memcached divides its memory into
several slabs. Each slab stores items with size in a spe-
cific range (e.g., < 128B, 128-256B, etc.) [2]. Each slab

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of Items in LRU Queue

H
it
ra

te

Application 3, Slab Class 9

Figure 1: Hit rate curve for Application 3, Slab Class 9.

has its own LRU queue. Once the memory cache is full,
when a new request arrives, Memcached evicts the last
item from its corresponding slab’s LRU queue.

There are several problems with this first-come-first-
serve approach. First, slab memory is divided greedily,
without taking into account the slab sizes. Therefore,
in many applications, the large requests will take up too
much space at the expense of smaller requests. Second,
when applications change their request distribution, cer-
tain slab classes may not have enough memory and their
queues will be too short. Some Memcached implemen-
tations have tried to solve the second problem by peri-
odically evicting a page of a slab class, and reassigning
it to the corresponding slab class of new incoming re-
quests [26, 30]. However, even these improved slab class
allocation may suffer from sub-optimal slab class allo-
cation, and they still treat large and small items equally.
Third, if one slab class suffers from a very high rate of
compulsory misses (i.e., many items never get accessed
more than once), the web cache operator may prefer to
shift its resources to a different slab class that can achieve
a higher hit rate with the same amount of memory.

These problem are not specific to slab-based memory
allocation like Memcached. They also occur in systems
like RAMCloud [28, 31] that assign memory contigu-
ously in a log (i.e., in a global LRU queue). Regardless
of the memory allocation approach, memory is assigned
to requests greedily: when new requests reach the cache
server they are allocated memory on a first-come-first-
serve basis, without consideration for the request size or
the requirements of the requesting application.

2.1 The Cache Allocation Problem
As a motivating example, we describe how to optimize

resource allocation across slab classes for a single appli-
cation in Memcached, where the goal is to maximize the
overall hit rate. The same technique can also be applied
to prioritize items of different sizes in a log-structured
cache and to optimize memory across applications. The
problem can be expressed as an optimization:

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 381

maximize
m

s∑
i=1

wifihi(mi)

subject to
s∑

i=1

mi ≤ M

(1)

Where s is the number of slab classes, fi is the fre-
quency of GETs for each slab class, hi(mi) is the hit
rate of each slab class as a function of the its available
memory (mi), and M is the amount of memory reserved
by the application on the Memcached server. In case
different queues have different priorities, we can assign
weights (wi) to the different queues. For simplicity’s
sake, throughout the paper we assume that the weights
of all queues are always equal to 1.

To accurately solve this optimization problem, we
need to compute hi(mi), or the hit rate curve for each
slab class. Stack distances [24] enable the computation
of the hit rate curve beyond the allocated memory size.
The stack distance of a requested item is its rank in the
cache, counted from the top of the eviction queue. For
example, if the requested item is at the top of the evic-
tion queue, its stack distance is equal to 1. If an item has
never been requested before, its stack distance would be
infinite. Figure 1 depicts the stack distances for a par-
ticular slab class in Memcachier, where the X axis is the
size of the LRU queue required to achieve a certain hit
rate. In Dynacache [10] we demonstrated how to solve
Equation 1 by estimating stack distances and using a sim-
ple convex solver. Equation 1 can be extended to maxi-
mize the hit rate across applications, or to assign different
weights to different request sizes and applications.

Estimating stack distances for each application and
running a convex solver is expensive and complex. Com-
puting the stack distances directly is O(N), where N
is the number of requests. Instead, we estimated the
stack distances using the bucket algorithm presented in

Mimir [32]. This technique is O(
N

B
), where B is the

number of buckets (we used 100 buckets). However, this
technique is not accurate when estimating stack distance
curves with tens of thousands of items or more. In addi-
tion, since application workloads change over time, the
solver would need to run frequently, typically on a differ-
ent node than the cache server. Furthermore, each server
would need to keep track of the stack distances of multi-
ple applications. This introduces significant complexity
to the simple design of web caches like Memcached.

3. TRACE ANALYSIS
In this section, we analyze the performance of Mem-

cached’s default resource allocation. We show that there
is great potential to improve the hit rate of Memcached
by optimizing memory across different request sizes

App Slab
Class

% GETs Original
% Misses

Dynacache
% Misses

4 0 9% 0% 7.4%
4 1 91% 100% 92.6%

6 0 1% 0.1% 2%
6 2 70% 92.6% 0%
6 5 29% 0.1% 0.2%

Table 1: Misses in two applications compared by slab class. Applica-
tion 4’s misses were reduced by 6.3% and Application 6’s were reduced
by 91.7%.

within each application. We then investigate and char-
acterize performance cliffs.

Our analysis is based on a week-long trace of the
top 20 applications (sorted by number of requests) run-
ning for a week on a server in Memcachier, a multi-
tenant Memcached service. In Memcachier, each appli-
cation reserves a certain amount of memory in advance,
which is uniformly allocated across multiple Memcached
servers comprising the Memcachier cache.

3.1 Resource Allocation in Memcachier
Figure 2 shows the hit rates and the number of misses

that are reduced in Memcachier if we replace the default
policy with the cache allocation using the Dynacache
solver presented in Equation 1. We ran the solver on the
week-long stack distances of each slab class. The results
show that some applications benefit from a optimizing
their memory across slab classes, and some do not. For
example, the hit rate of Application 18 and 19 with full
memory allocation is lower with the solver than the de-
fault algorithm. On the other hand, for some applications
like Application 6, 14, 16 and 17, the number of misses
is reduced by over 65%.

The solver’s allocation is not optimal. This is due to
several reasons. First, it assumes that all the hit rate
curves are concave. We will explore this assumption
later in the paper. Note that in Figure 2, the applica-
tions marked with asterisks are those that are not con-
cave. Second, it requires that there be enough stack dis-
tance data points to accurately estimate the hit rate curve.
If the requests for a slab class are too sparse, it will not
be able to estimate its hit rate curve. Third, we ran the
solver based on the trace of the entire week. If during
that period the hit rate curves fluctuated considerably, the
solver will not provide the ideal amount of memory for
each slab class at any point in time. Due to these rea-
sons, as we will show later, a heuristic dynamic cache
allocation scheme can beat the solver.

3.2 Variance in Request Sizes
Table 1 demonstrates that the default scheme may as-

sign too much memory to large slab classes, as evident

3

382 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20

Memcachier Application

H
it

R
at

e
(%

)

Default Dynacache Solver

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20

0

0.5

1

Memcachier Application

M
is

s
R

ed
uc

tio
n

(%
)

Misses Reduced by Dynacache Solver

Figure 2: Hit rates and the number of misses reduced in Memcachier trace. Application 18 and 19’s misses were increased by 13.6 and 51.5 times
respectively. The applications that have an asterisk have performance cliffs.

Application Original
Hitrate

Log-
structured
Hitrate

Dynacache
Solver Hitrate

3 97.7% 99.5% 98.8%
4 97.4% 97.8% 97.6%
5 98.4% 98.6% 99.4%

Table 2: Hit rates under log-structured memory and Dynacache solver.

in the case of applications 4 and 6. In application 6 this
problem is much more severe, which is why the number
of misses were reduced much more significantly by the
Dynacache solver. The applications in the trace that did
not see a significant hit rate improvement did not have
much variance in terms of request size or were over-
allocated memory.

The greedy nature of first-come-first-serve is not spe-
cific to Memcached’s slab allocation scheme, it also
occurs in contiguous Log Structured Memory (LSM).
LSM [31] stores memory in a continuous log, rather than
splitting it into slab classes, and it requires a log cleaner
to run continuously to clear out stale items from the log
and compact it. In memory caches, the benefit of LSM
compared to slab classes would be the ability to run a

global LRU queue, rather than having an LRU queue per
slab class. To demonstrate this, we ran applications in
three modes: with the default allocation of Memcached,
the Dynacache solver allocation, and with a global LRU
queue that simulates LSM. The global LRU simulates
LSM with 100% memory utilization (such a scheme does
not exist in practice). The results are displayed in Ta-
ble 2. The results show that while LSM outperforms the
Memcached slab allocator, in the case of application 5,
even LSM running at 100% memory utilization may not
perform as well as the optimized hit rate running on slab
classes. The reason is that even in a global LRU queue
large items may take space at the expense of small items.

3.3 Cross-application Performance
The Dynacache solver can be applied across appli-

cations running on the same memory cache server. To
demonstrate the potential benefits of cross-application
memory optimization, we applied the Dynacache solver
to the top 5 applications in the trace. The results are dis-
played in Table 3. Note that in this example, we assigned
each application the same weight. System operators can
also assign different applications different weights in the
optimization, for example, if certain applications belong

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 383

App Original
Memory
Allocation
%

Dynacache
Solver
Memory
Allocation
%

Original
Hitrate

Dynacache
Solver Hi-
trate

1 81% 69% 67.7% 67%
2 4% 13% 27.5% 38.6%
3 1% 1% 97.6% 97.6%
4 6% 8% 97.6% 98.1%
5 8% 9% 98.4% 98.5%

Table 3: Hit rates of the top 5 applications in the trace after we optimize
their memory to maximize overall hit rate.

to production systems and others do not.

3.4 Climbing Concave Hills
In order to solve Equation 1 we relied on estimating

the entire hit rate curve. This requires a large number of
stack distance data points and does not adapt to chang-
ing workloads. Instead, the same problem can be solved
incrementally. If the gradient of each hit rate curve is
known, we can incrementally add memory to the queue
with the highest gradient (the one with the steepest hit
rate curve), and remove memory from the queue with
the lowest gradient. This process can be continued until
shifting resources from one curve to the other will not
result in overall hit rate improvement. This approach is
called hill climbing.

The potential benefits of local hill climbing are that it
can be conducted locally on each web-cache server, and
that the algorithm is responsive to workload changes. If
the hit rate curves change over time, the hill climbing
algorithm incrementally responds. This leads us to ask:
how can we measure the hit rate curve gradient locally
without estimating the entire hit rate curve?

Our main insight is that the local hit rate curve can be
measured using shadow queues. A shadow queue is an
extension of an eviction queue that does not store the val-
ues of the items, only the keys. Items are evicted from the
eviction queue into the shadow queue. For example, with
an eviction queue of 1000 objects and a shadow queue of
1000 objects, when a request misses the eviction queue
but hits the shadow queue, it means that if the eviction
queue was allocated space for another 1000 objects, the
request would have been a hit. The rate of hits in the
shadow queue provides an approximation of the queue’s
local hit rate gradient.

3.5 Performance Cliffs
Hill climbing works well as long as the hit rate curves

behave concavely and do not experience performance
cliffs. This is true for some, but not for many web ap-
plications. Performance cliffs occur frequently in web
applications: 6 out of the 20 top applications in our traces

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Items in LRU Queue

H
it
ra

te

Application 11, Slab Class 6

Figure 3: Examples of performance cliff in Memcachier traces.

have performance cliffs. The applications in Figure 2 that
have an asterisk are the ones with performance cliffs.

Figure 3 depicts the hit rate curve of a queue from the
trace. Performance cliffs are thresholds where the hit rate
suddenly changes as data fits in the cache. Cliffs occur,
for example, with sequential accesses under LRU. Con-
sider a web application that sequentially scans a 10 MB
database. With less than 10 MB of cache, LRU will al-
ways evict items before they hit. However, with 10 MB
of cache, the array suddenly fits and every access will be
a hit. Therefore, increasing the cache size from 9 MB
to 10 MB will increase the hit rate from 0% to 100%.
Performance cliffs may hurt the hill climbing algorithm,
because the algorithm will underestimate the gradient be-
fore a cliff, since it does not have knowledge of the en-
tire hit rate curve. In the example of the queue in Fig-
ure 3, the algorithm can get stuck when the LRU queue
has 10000 items.

Performance cliffs do not just hurt local-search based
algorithms like hill climbing. They cause even bigger
problems for solving optimization problems like the one
described in Equation 1, since solvers assume that the hit
rate curves do not have performance cliffs. For exam-
ple, in application 19, due to the performance cliff, the
solver approximates the hit rate curve to be lower than
it is. This is why it fails to find the correct allocation
for application 19, and significantly reduces its hit rate
from 99.5% to 74.7%. In fact, optimal allocation is NP-
complete without concave hit rate curves [6, 29, 35].

Resource allocation algorithms like Talus [6] and
LookAhead [29] provide techniques to overcome perfor-
mance cliffs for a single hit rate curve, but they require
estimating the entire hit rate curve with stack distances.
Since estimating stack distances introduces significant
complexity and cost to web based storage systems, this
leads us to ask: how can we overcome performance cliffs
without estimating the entire hit rate curve?

4. DESIGN
In this section, we present the design of Cliffhanger, a

hill-climbing resource allocation algorithm that runs on

5

384 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 1 Hill Climbing Algorithm
1: if request ∈ shadowQueue(i) then
2: queue(i).size = queue(i).size + credit
3: chosenQueue = pickRandom({queues} - {queue(i)})
4: chosenQueue.size = chosenQueue.size - credit
5: end if

each memory cache server and can scale performance
cliffs. First, we describe the design of the hill climb-
ing algorithm and show that it approximates the solution
to the memory optimization problem. Second, we show
how to overcome performance cliffs. Finally, we show
how Cliffhanger climbs concave hit rate curves while
navigating performance cliffs in parallel.

4.1 Hill Climbing Using Shadow Queues
The key mechanism we leverage to design our hill-

climbing algorithm is shadow queues. Algorithm 1 de-
picts the hill-climbing algorithm, where request is a new
request coming into the cache server, ShadowQueue(i)
is the shadow queue of a particular queue (it can be the
queue of a slab or a queue of an entire application),
pickRandom is a function that randomly picks one of
the queues out the list of queues that we are optimizing.
The algorithm is simple. Queue sizes are initialized so
their capacity sums to the total available memory. When
one of the shadow queues gets a hit, we increase its size
by a constant credit, and randomly pick a different queue
and decrease its size by the same constant credit. Once a
queue reaches a certain amount of credits, it is allocated
additional memory at the expense of another queue.

The intuition behind this algorithm is that the fre-
quency of hits in the shadow queue is a function of the
gradient of the local hit rate curve. In fact, we can
prove that Algorithm 1 approximates the optimization
described in Equation 1. Like before, we use the example
of optimized memory across slab classes.

maximize
m

s∑
i=1

fihi(mi)

subject to
s∑

i=1

mi ≤ M

As a reminder, s is the number of slab classes, fi is the
frequency of GETs, hi(mi) is the hit rate as a function
of the slab’s memory, and M is the application’s total
amount of memory. Assume that hi(mi) are increasing
and concave. The Lagrangian for this problem is:

L(m, γ) =
s∑

i=1

fihi(mi)− γ(

s∑
i=1

mi −M)

The optimality condition is:

fih
′
i(mi) = γ for 1 ≤ i ≤ s

s∑
i=1

mi = M
(2)

Therefore, fih′
i(mi) is a constant (for any i), at the

optimal solution. We show that with this algorithm,
fih

′
i(mi) is roughly constant in equilibrium for any i.

To see why, consider the rate at which the credits for slab
class i increase with a hit in its shadow queue:

fi(hi(mi + δ)− hi(mi)) · ε ≈ fih
′
i(mi) · δ · ε

Here δ is the shadow queue size, and ε is the amount
of credits we add to each queue when there is a hit in the
shadow queue. The reason this approximation holds is
that fi(hi(mi + δ) − hi(mi)) is the rate of hits that fall
in the shadow queue. At the same time, the rate of credit
decreases for class i is:

s∑
j=1

fj(hj(mj + δ)− hj(mj)) · ε

s
≈

s∑
j=1

fjh
′
j(mj) · δ · ε

s
The reason this approximation holds is because when

there is a hit in the shadow queue of any slab class j,

we remove credits slab class i with probability
1

s
. In

equilibrium the rate of credit increase and decrease have
to be the same for every slab class. Therefore:

fih
′
i(mi) =

s∑
j=1

fjh
′
j(mj) · δ · ε

s
= γ

Since the right-hand side of the above equation does
not depend on i, in equilibrium the gradients of each
queue (normalized by the number of requests) are equal.
This guarantees optimality (assuming concave hit rate
curves) as shown in Equation 2.

4.2 Scaling Cliffs Using Shadow Queues
The hill climbing algorithm can get stuck in a sub-

optimal allocation if the hit rates exhibit performance
cliffs. We present for incrementally scaling performance
cliffs. Our algorithm is inspired by Talus [6]. Talus in-
troduced a queue partitioning scheme that scales perfor-
mance cliffs, as long as the shape of the hit rate curve
is known. Talus partitions a given queue to two smaller
queues. By carefully choosing the ratio of requests it
assigns to each queue and the size of the queues, Talus
achieves the concave hull of the hit rate curve.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 385

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Items in LRU Queue

H
it
ra

te

Concave Hull

Application 19, Slab 0

Shadow	 Queues	
Le-	 Queue	

Shadow	 Queues	
Right	 Queue	 Queue	 Size	

Left	 Physical	 Queue
957	 items

Right	 Physical	 Queue
7043	 items

Simulates	 queue	 of	 2000	 items

Simulates	 queue	 of	 13500	 items
48%	 of	 requests

52%	 of	 requests

Left	 shadow	 queue

Right	 shadow	 queue

Left	 shadow	 queue

Right	 shadow	 queue

Figure 4: Visualization of shadow queues on Application 19, Slab
Class 0.

We demonstrate how Talus works with the hit rate
curve of the smallest slab class of Application 19. Fig-
ure 4 depicts the concave hull of the hit rate curve. Sup-
pose the slab class is currently allocated 8000 items.
Talus allows us to achieve a hit rate that is a linear in-
terpolation between any two points in the hit rate curve,
by simulating two queues of different sizes. For exam-
ple, if we select the points that correspond to 2000 and
13500 items, Talus can trace the linear curve between
these two points on the hit rate curve graph. It does so,
by simulating a queue of size 2000 and a queue of size
13500. The key insight is that since each of the smaller
queues get a fraction of the requests, it causes them to
behave as if they were larger queues. In this example,
if we split an 8000 item queue into a queue of 957 items
and a queue of 7043 items, and split the requests between
the two queues using a ratio of 0.48% and 0.52% respec-
tively, the first queue will simulate a queue of 2000 items
(957 items seeing a ratio of 0.48% of the requests), and
the second queue will be of a simulated size of 13500
items (7043 items with a ratio of 52% of the requests).
By partitioning the requests into these two queues, the
application can achieve the hit rate of the concave hull.
For more information, see Talus [6].

However, in our setting we do not know the entire hit
rate curve. Therefore, to apply the Talus partitioning,
we need to dynamically determine whether the current
operating point is on a performance cliff of the hit rate
curve, or in other words, whether it is in a convex section
of the curve. We also need to find the two points in the
curve that will provide anchors for the concave hull.

The key insight to determining whether a certain
queue is in a convex section of the graph, is to approx-

Par$$oned	

Original	 Queue	

Par$$oned	
Queues	

Track	 le4	 of	 pointer	

Track	 le4	 of	 pointer	

Track	 right	 of	 pointer	
Track	 right	 of	 pointer	

Track	 hill	 climbing	

Track	 hill	 climbing	

Figure 5: Illustration of Cliffhanger implementation. The darkly-
colored sections represent the physical queue, which stores both the
keys and the values of items, and the light sections are shadow queues.

imate its second derivative. If the second derivative is
positive, then the queue is currently in a convex area,
a performance cliff. Similar to the hill-climbing algo-
rithm, which locally approximates the first gradient with
a shadow queue, to approximate the second derivative we
use two shadow queues.

Each queue is split into two: a left and right phys-
ical queue. As long as the second derivative is nega-
tive (the function is concave), the left and right physical
queues are the same size, and each receive half of the re-
quests. Two evenly split queues behave exactly the same
as one longer queue, since the frequency of the requests
is halved for each queue, and the average stack distances
of each request are also halved. Each one of the physi-
cal queues has its own shadow queue. The goal of these
shadow queues is to find the points in the graph where
the convex region ends. In the example of Application
19, these shadow queues are trying to locate points 2000
and 13500. In order to find the convexity region, each
one of these shadow queues is in turn also split in half
(right half and left half). The algorithm tracks whether
each of the shadow queues receive hits in its right half or
left half.
Algorithm 2 describes the cliff scaling algorithm. We

initialize the algorithm by splitting the queue into half: a
left and right physical queue, each with its own shadow
queue, split in turn into two parts (the right and left half).
The algorithm uses two pointers (right and left), which
track the size of the simulated queues. The goal of the
algorithm is to move the left and right pointers to the
place in the hit rate curve where it starts and stops being
convex. We initialize both of these pointers to the current
size of the physical queue.

If the graph is in a convex point, the right pointer needs
to be moved to the right, and the left pointer to the left,
until it stops being convex. If each of the pointers are in a
convex region of the graph, the rate of hits to the right of
the pointer will be greater than to its left. When a request
arrives to the server, we check if it hits the right or left
shadow queue. If it hits the right half of the right shadow
queue, we move the right pointer to the right. If it hits
the left half, we move it to the left. Therefore, if the right
pointer is in a convex region, the right pointer will move
towards the top of the cliff. The left pointer moves in

7

386 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 2 Update Pointers
1: function INIT
2: ratio = 1/2
3: rightPointer = leftPointer = queue.size
4: UPDATEPHYSICALQUEUES(ratio)
5: end function
1: function UPDATEPOINTERS(request)
2: if request ∈ rightShadowQueue then
3: if request ∈ rightShadowQueue.rightHalf then
4: rightPointer = rightPointer + credit
5: end if
6: if request ∈ rightShadowQueue.leftHalf AND

rightShadowQueue.size > queue.size then
7: rightPointer = rightPointer - credit
8: end if
9: end if

10: if request ∈ leftShadowQueue then
11: if request ∈ leftShadowQueue.rightHalf then
12: leftPointer = leftPointer - credit
13: end if
14: if request ∈ leftShadowQueue.leftHalf AND

leftShadowQueue.size < queue.size then
15: leftPointer = leftPointer + credit
16: end if
17: ratio = COMPUTERATIO(queue.size,

rightPointer, leftPointer)
18: UPDATEPHYSICALQUEUES(ratio)
19: end if
20: end function

Algorithm 3 Compute Ratios
1: function COMPUTERATIO(queue.size, rightPointer, leftPointer)
2: distanceRight = rightPointer - queue.size
3: distanceLeft = queue.size - leftPointer
4: if distanceRight > 0 AND distanceLeft > 0 then
5: requestRatio = distanceRight /

(distanceRight + distanceLeft)
6: else
7: requestRatio = 0.5
8: end if
9: end function
1: function UPDATEPHYSICALQUEUES(ratio)
2: rightPhysicalQueue.size = rightPointer · (1 - ratio)
3: leftPhysicalQueue.size = leftPointer · ratio
4: end function

the opposite direction. If it gets a hit to the right shadow
queue, it moves left, and vice versa.

After adjusting the left and right pointers, Algorithm 3
updates the ratio of requests going to each physical
queue, and their size. If the ratio is more than 0.5, more
requests will be diverted to the left queue, and if the ratio
is smaller than 0.5, more requests will be diverted to the
right queue. As shown in Talus [6], the ratio is inverse to
the distance of the position of the left and right shadow
queues from the current operating point on the hit rate
graph. In addition, the sizes of the right and left queues
will also be updated based on this ratio. Their sum adds
up to the current operating point (the queue size).

If Algorithm 2 does not see a performance cliff (i.e.,
a fully concave hit rate curve), the right and left point-
ers will not move from their starting points, because

there will be more hits on the left halves of both queues
than the right halves, since the hit rate curve is concave.
Therefore, the physical queue will be split in half and
each half will receive half of the requests, which will re-
sult in the same hit rate of the original queue.

Note that Algorithm 2 can only efficiently scale a sin-
gle cliff. If there are multiple cliffs in the hit rate curve
graph, the algorithm will either scale only one of them, or
the right and left shadow queue positions will scale mul-
tiple cliffs. In any case, even if multiple cliffs are scaled,
the resulting concave hull will be at a higher hit rate than
at the original hit rate curve, since the cliffs are convex.
In the Memcachier traces, we did not find an example of
multiple performance cliffs in any of the hit rate curves.

4.3 Combining the Algorithms
So far, we’ve introduced two algorithms: first, the gra-

dient approximation (hill climbing) algorithm allows us
to iteratively optimize the resource allocation across mul-
tiple queues, and works well as long as they do not have
performance cliffs. Second, the second derivative ap-
proximation (cliff scaling) algorithm allows us to "flat-
ten" performance cliffs to their concave hulls.

Cliffhanger combines both algorithms by utilizing two
shadow queues: a small shadow queue to approximate
the second derivative and detect and mitigate perfor-
mance cliffs, and a longer shadow queue appended to
the shorter shadow queue to approximate the first gra-
dient and perform hill-climbing. When we get a hit in
the larger shadow queue, we assign credits to the entire
slab class. When we get a hit at the end of the physical
queue or in the small shadow queue, we adjust the two
pointers and update the ratio and the split between the
left and right queue. Cliffhanger runs on each memory
cache server and does not require any coordination be-
tween different servers. In addition, it can support any
eviction policy, including LRU, LFU and other hybrid
schemes.

5. EVALUATION
In this section we present the implementation and eval-

uation of Cliffhanger on the Memcachier traces and a set
of micro benchmarks.

5.1 Implementation
We implemented Cliffhanger on Memcached in C. The

shadow queues were implemented on a separate hash and
queue data structures. In order to measure the end-to-end
performance improvement across the Memcachier appli-
cations, we re-ran the Memcachier traces and simulated
the hit rate achieved by Cliffhanger. In order to stress
the implementation, we ran our micro benchmarks on
an Intel Xeon E5-2670 system with 32 GB of RAM and
an SSD drive, using a micro bench mark workload gen-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 387

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20
0

0.2

0.4

0.6

0.8

1

Memcachier Application

H
it

R
at

e
(%

)

Default Dynacache Solver Cliffhanger

Figure 6: Hit rates of top 20 applications in Memcachier trace with Cliffhanger, compared to the Dynacache solver.

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20
0

0.2

0.4

0.6

0.8

1

M
em

or
y

Sa
vi

ng
s

(%
)

Memcachier Application

M
is

s
R

ed
uc

tio
n

(%
)

Misses Reduced by Cliffhanger Memory Saved by Cliffhanger

Figure 7: Miss reduction and amount of memory that can be saved to achieve the default hit rate of top 20 applications in Memcachier trace with
Cliffhanger.

erated by Mutilate [19], a load generator that simulates
traffic from the 2012 Facebook study [5].

Figure 5 is an illustration of the structure of the queues
in Cliffhanger’s implementation. Each queue is parti-
tioned into two smaller queues (left and right queue).
Each of the smaller queues needs to track whether items
hit to the right or left of the pointers of the cliff scaling
algorithm. In order to determine if an item hit to the left
of the pointer, we do not need an extra shadow queue,
since the section of the hit rate curve that is to the left
of the pointer is already contained in the physical queue.
To this end, our implementation tracks whether it sees
hits in the last part of the queue (the last 128 items). In
order to track hits to the right of the pointer, a 128 item
shadow queue is appended after the physical queue. Fi-
nally, another shadow queue is appended to the end of
each queue, to track hits for the hill climbing algorithm,
since it requires a longer shadow queue.

The implementation only runs the cliff scaling al-
gorithm when the queue is relatively large (over 1000
items), since it needs a large queue with a steep cliff to
be accurate. It always runs the hill climbing algorithm,

including on short queues. When it runs both of the algo-
rithms in parallel, the 1 MB shadow queue used for hill
climbing is partitioned into two shadow queues in pro-
portion to the partition sizes (e.g., if the smaller partition
is 0.4 MB and the larger one is 1.6 MB, the shadow queue
will be split into 0.2 MB and 0.8 MB). To avoid thrash-
ing, the cliff scaling algorithm resizes the two queues
only when there is a miss (i.e., when a miss occurs we
insert the new item into the queue that is larger).

5.2 Miss Reduction and Memory Savings
Figure 6 presents the hit rate of Cliffhanger, and Fig-

ure 7 presents the miss reduction of Cliffhanger com-
pared to the default scheme, and the amount of memory
that Cliffhanger requires to produce the same hit rate as
the default scheme. Cliffhanger on average increases the
hit rate by 1.2% and reduces the number of misses by
36.7%, and requires 55% of the memory to achieve the
same hit rate as the default scheme.

For some of the applications, the reduction in misses
is negligible (less than 10%). In these applications there
is not much room for optimizing the memory alloca-

9

388 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0

5

10

15

20

25

30

35

40

86400 172800 259200 345600 432000 518400 604800

M
em

or
y	
Al
lo
ca
te
d	
(M

Bs
)

Seconds

Slab 9

Slab	 8

Slab	 7

Slab	 6
Slab	 5

Slab	 4

Figure 8: Memory allocated to slabs over time in Application 5, using
Cliffhanger with shadow queues of 1 MB and 4 KB credits.

tion based on request sizes. For some applications,
such as Application 5, 13 and 16, the hit rate with
Cliffhanger is very similar to the hit rate of the Dy-
nacache solver. In some applications, like applications
9, 18 and 19, Cliffhanger significantly outperforms the
Dynacache solver. The reason that Cliffhanger outper-
forms the Dynacache solver in these applications is that
it is an incremental algorithm, and therefore it can deal
with hit rate curve changes even in queues that are rel-
atively small. For the Dynacache solver to work well,
it needs to profile a larger amount of data on the perfor-
mance of the queue, otherwise it will not estimate the
concave shapes of the curves accurately (for more infor-
mation, see Dynacache [10]). In addition, application 19
has steep performance cliffs, which hurt the performance
of the Dynacache solver.

5.3 Constants and Queue Sizes
Both the hill climbing algorithm and cliff scaling al-

gorithms require the storage designer to determine the
size of the shadow queues and the amount of credits we
award each queue when it gets a hit to its shadow queue.
For example, the behavior of the hill climbing algorithm
is demonstrated in Figure 8. The figure depicts the mem-
ory allocation across slabs, when we use the hill climbing
algorithm with shadow queues of 1 MB and 4 KB cred-
its, and shows that it takes several days for the algorithm
to shift memory across the different slabs. The reason it
takes several days is that the request rate on each Mem-
cachier server is relatively low: about 10,000 requests
per second, across 490 different total applications.

We found little variance in the behavior of the hill
climbing algorithm when we use shadow queues over 1
MB. The cliff scaling algorithm is more sensitive to the
size of the shadow queues, since it measures the second
gradient. We found that we achieve the highest hit rate
when we use shadow queues of 128 items for the cliff
scaling algorithm. We experimented with using different
credit sizes for both algorithms, and found that 1-4 KB

Slab
Class

Original
Hitrate

Cliff Scal-
ing Hitrate

Hill
Climbing
Hitrate

Combined
Algorithm
Hitrate

0 38.1% 44.8% 95.3% 98.3%
1 37.3% 45.6% 67.4% 69.1%

Total
Hitrate

37.3% 45.5% 70.3% 72.1%

Table 4: Comparing the hit rates with the default scheme, with the hill
climbing and cliff scaling algorithms.

0

0.2

0.4

0.6

0.8

1

48 49 50 51 52 53

Hi
t	 R

at
e

Hours

Application	 19,	 Slab	 Class	 0

Figure 9: Hit rate of Application 19’s Slab Class 0 under Cliffhanger,
when the queue is in a region with a convex cliff.

provide the highest hit rates when we run the algorithms
across an entire week. If we use significantly larger cred-
its sizes, the algorithms may oscillate their memory allo-
cation, which could cause thrashing across the queues.

5.4 Combined Algorithm Behavior
To better understand the affect of the hill climbing and

cliff scaling algorithms, we focus on Application 19 that
has steep performance cliffs in both slab classes. Table 4
depicts the results of running Cliffhanger on Application
19 when we use queues of 8000 items so that the hill-
climbing algorithm gets stuck in the performance cliffs
in both of its slab classes. We compare it to the default
first-come-first-serve resource allocation, and to running
only Algorithms 1 and 2 separately.

This demonstrates the algorithms have a cumulative
hit rate benefit. The hill climbing algorithm’s benefit is
due to a long period where the application sends requests
belonging to Slab Class 0, and then sends a burst of re-
quests belonging to Slab Class 1. The reason the cliff
scaling algorithm improves the hit rate, is that both slab
class 0 and 1 are stuck in a performance cliff.

The behavior of the combined algorithms is demon-
strated in Figure 9. The queue starts at a hit rate of
about 70%. It takes about 30 minutes to stabilize until
it reaches a hit rate of about 99.7%.

5.5 Comparison with LFU Schemes
Much of the previous work on improving cache

hit rates focuses on allocating memory between LRU

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 389

Application Original
Hitrate

Facebook
Hitrate

Cliffhanger
+ LRU
Hitrate

Cliffhanger
+ Facebook
Hitrate

3 97.7% 97.8% 99.3% 99.3%
4 97.4% 97.6% 97.6% 97.6%
5 98.4% 98.5% 99.1% 99.1%

Table 5: Hit rates with the Facebook eviction scheme.

Algorithm Operation Cache Hit Cache Miss

Hill Climb-
ing

GET 0% 1.4%

Hill Climb-
ing

SET 0% 4.7%

Cliffhanger GET 0.8% 1.4%
Cliffhanger SET 0.8% 4.8%

Table 6: Average latency overhead when the cache is full.

and LFU queues. We compared the performance of
Cliffhanger with two such schemes: the first is ARC [25],
which splits each queue to an LRU and LFU queue and
uses shadow queues to dynamically resize them based
similar to our algorithm. The second scheme is used by
Facebook, in which the first time a request hits it is in-
serted at the middle of the queue. When it hits a second
time, it is inserted to the top of the queue.

We found that ARC did not provide any hit rate im-
provement in any of the applications of the Memcachier
trace. We found that most recently used items that are
ranked high in the LFU queue, are also ranked high by
LRU. Therefore, the LFU queue never gets any hits in its
shadow queue and does not get more memory.

The Facebook scheme performed better than LRU, but
did not perform as well as Cliffhanger with LRU. Table 5
presents the results with Applications 3, 4 and 5.

5.6 Micro Benchmarks
We observed negligible latency and throughput over-

head with high hit rates, such as the hit rate of most
applications in Memcachier, since in the case of a hit,
the shadow queue does not add any latency. To analyze
the overhead of Cliffhanger under a worst-case scenario,
we used synthetic trace where all keys are unique and
all queries miss the cache. In this scenario the cache
is always full, and every single request causes shadow
queue allocations and evictions and all the GETs perform
lookups in the shadow queue. We warm up the caches
for 100 seconds to fill the eviction queues and shadow
queues, and only then start measuring the latency and
throughput. The experiment utilizes the same key and
value distribution described by Facebook [5].

Table 6 shows that the average latency in this worst-
case scenario was between 1.4%-4.8%, when the request
missed. When the request hit there was no latency over-

% GETs % SETs Throughput
Slowdown

96.7% 3.3% 1.5%
50% 50% 3%
10% 90% 3.7%

Table 7: Throughput overhead when the cache is full and CPU
bounded. The first row represents the GET/SET ratio in Facebook.

head with the hill climbing algorithm, since a hit does
not require a lookup in the shadow queue, and 0.8% of
latency with Cliffhanger, because we need to route the
request between two physical queues. Table 7 presents
the throughput overhead when the cache is full, which
are identical when we are running the hill climbing algo-
rithm alone and Cliffhanger. In any case, both Mem-
cachier and Facebook are not CPU bound, but rather
memory bound. Therefore, in both of these cases, in-
creasing the average hit rate for applications at the ex-
pense of slightly decreased throughput at maximum CPU
utilization is a favorable trade-off.

5.7 Memory Overhead
The memory overhead of Cliffhanger is minimal. The

hill climbing algorithm uses shadow queues that repre-
sent 1 MB of requests. For example, with a 64 byte slab
class the shadow queue will store 16384 keys, and with a
1KB slab class the shadow queue will store 1024 keys.
The average key size is about 14 bytes. The cliff scaling
algorithm uses a constant of 4 shadow queues (two left
and right queues) of 128 items for each queue. There-
fore, with the smallest slab class (64 bytes) the overhead
will be 16384+128 · 4 = 16896 keys of 14 bytes for the
smallest queue, which is about 200KB of extra memory
for each queue. In Memcachier applications have 15 slab
classes at most, and the overhead in the worst case will
be 0.5MB of memory for each application.

6. RELATED WORK
There are two main bodies of related work. The first

is previous work on improving the performance of web-
based caches. The second is resource allocation tech-
niques applied in other areas of caching and memory
management, such as multi-core caches.

6.1 Web-based Memory Caches
Several systems improved the performance of memory

cache servers by modifying their cache allocation and
eviction policies. GD-Wheel [20] (GDW) uses the cost
of recomputing the request in the database when priori-
tizing items in the cache eviction queue. This approach
assumes the cache knows the recomputation cost in the
database. Such information is not available to memory
caches like Memcachier and Facebook, and would re-

11

390 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

quire changes to the memory cache clients. Regardless,
Cliffhanger can be used with GDW as a replacement
for LRU. Similar to Cliffhanger, GD-Size-Frequency
(GDSF) [9] takes into account value size and frequency
to replace LRU as a cache eviction algorithm for web
proxy caches. GDSF relies on a global LRU queue,
which is not available in Memcached, and on know-
ing the frequencies of each request. Unlike Cliffhanger,
GDW and GDSF suffer from performance cliffs.

Mica [23], MemC3 [11] and work from Intel Labs [21]
focus on improving the throughput of memory caches
on multi-cores, by increasing concurrency and remov-
ing lock bottlenecks. While these systems offer signif-
icant throughput improvements over stock Memcached,
they do not improve hit rates as a function of memory ca-
pacity. In the case of Facebook and Memcachier, Mem-
cached is memory bound and not CPU bound.

Dynacache [10], Moirai [33, 34], Mimir [32] and
Blaze [7] estimate stack distances and optimize resource
allocation based on knowing the entire hit rate curve.
Similar to Cliffhanger, Mimir approximates the hit rate
curves using multiple buckets that contain only the keys
and not the value sizes. Similarly, Wires et. al. pro-
file hit rate curves using Counter Stacks [36] in order
to better provision Flash based storage resources. All
of these systems rely on estimation of the entire hit rate
curve, which is generally more expensive and complex
that local-search based methods like Cliffhanger, and do
not deal with performance cliffs.

A recent study on the Facebook photo cache demon-
strates that modifying LRU can improve web cache per-
formance [14]. Twitter [30] and Facebook [26] have tried
to improve Memcached slab class allocation to better ad-
just for varying item sizes, by periodically shifting pages
from slabs with a high hitrate to those with a low hi-
trate. Unlike Cliffhanger, both of these schemes do not
take into account the hit rate curve gradients and there-
fore would allocate too much memory to large requests.

Facebook [22], Zhang et al [37] and Fan et al [12] pro-
pose client-side proxies that provide better load-balacing
and application isolation for Memcached clusters by
choosing which servers to route requests to. While
client-side proxies improve load-balancing, they do not
control resource allocation within memory cache servers.

6.2 Cache Resource Allocation
Our work relies on results from multi-core cache par-

titioning. Talus [6] laid the groundwork for dealing with
performance cliffs in memory caches, by providing a
simple cache partitioning scheme that allows caches to
trace the hit rate curve’s concave hull, given knowledge
of the shape of the convex portions of the hit rate graph.
Talus relies on hardware utility monitors (UMONs) [29]
to estimate stack distances and construct the hit rate

curves. In contrast, Cliffhanger does not rely on profil-
ing stack distance curves to trace the concave hull, and is
therefore more lightweight and can incrementally adapt
to changes in the hit rate curve profile of applications.
LookAhead [29] is another algorithm that deals with per-
formance cliffs. Instead of tracing the concave hull, it
simply looks ahead in the hit rate curve graph, and al-
locates memory to applications after taking into account
the affect of performance cliffs. Like Talus, it also relies
on having knowledge of the entire hit rate curve.

There is an extensive body of working on workload
aware eviction policies for multi-core systems that uti-
lize shadow queues. A prominent example is ARC [25],
which leverages shadow queues to dynamically allocate
memory between LRU and LFU queues. Cliffhanger
also leverages shadow queues in order to locate perfor-
mance cliffs and dynamically shift memory across slab
classes and applications. There are many other systems
that try to improve on variants of LRU and LFU, includ-
ing LRU-K [27], 2Q [16], LIRS [15] and LRFU [17, 18].
In addition, Facebook has implemented a hybrid scheme,
where the first time a request is inserted into the eviction
queue, it is not inserted at the top of the queue but in the
middle. We have found that for the Memcachier traces,
Facebook’s hybrid scheme does provide hit rate improve-
ments over LRU, and that ARC does not.

7. CONCLUSION
By analyzing a week-long trace from a multi-tenant

Memcached cluster, we demonstrated that the standard
hit rate of a data center memory cache can be improved
significantly by using workload aware cache allocation.
We presented Cliffhanger, a lightweight iterative algo-
rithm, that locally optimizes memory allocation within
and across applications. Cliffhanger uses a hill climbing
approach, which allocates more memory to the queues
with the highest hit rate curve gradient. In parallel, it
utilizes a lightweight local algorithm to overcome per-
formance cliffs, which have been shown to hurt cache
allocation algorithms. We implemented Cliffhanger and
evaluated its performance on the Memcachier traces and
micro benchmarks. The algorithms introduced in this pa-
per can be applied to other cache and storage systems
that need to dynamically handle different request sizes
and varying workloads without having to estimate global
hit rate curves.

8. ACKNOWLEDGMENTS
We thank Amit Levy and David Terei, who helped

us gather the traces from Memcachier. We also thank
Nathan Bronson, Sathya Gunasekar, Anton Likhtarov,
Ryan Stutsman, our shepherd, Mahesh Balakrishnan,
and our reviewers for their valuable feedback.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 391

References
[1] Amazon Elasticache. aws.amazon.com/elasticache/.

[2] Memcached. code.google.com/p/memcached/wiki/
NewUserInternals.

[3] Memcachier. www.memcachier.com.

[4] Redis. redis.io.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIG-
METRICS Performance Evaluation Review, volume 40, pages
53–64. ACM, 2012.

[6] N. Beckmann and D. Sanchez. Talus: A simple way to remove
cliffs in cache performance. In High Performance Computer Ar-
chitecture (HPCA), 2015 IEEE 21st International Symposium on,
pages 64–75. IEEE, 2015.

[7] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59.
ACM, 2013.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, et al. TAO:
Facebook’s distributed data store for the social graph. In USENIX
Annual Technical Conference, pages 49–60, 2013.

[9] L. Cherkasova. Improving WWW proxies performance with
greedy-dual-size-frequency caching policy. Hewlett-Packard
Laboratories, 1998.

[10] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:
Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

[11] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and concurrent Memcache with dumber caching and smarter
hashing. In NSDI, volume 13, pages 385–398, 2013.

[12] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small cache,
big effect: Provable load balancing for randomly partitioned clus-
ter services. In Proceedings of the 2nd ACM Symposium on Cloud
Computing, page 23. ACM, 2011.

[13] B. Fitzpatrick. Distributed caching with Memcached. Linux jour-
nal, 2004(124):5, 2004.

[14] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li. An analysis of Facebook photo caching. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 167–181. ACM, 2013.

[15] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. SIGMETRICS Perform. Eval. Rev., 30(1):31–42, June
2002.

[16] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In VLDB’94, Pro-
ceedings of 20th International Conference on Very Large Data
Bases, September 12-15, 1994, Santiago de Chile, Chile, pages
439–450, 1994.

[17] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU)
policies. In ACM SIGMETRICS Performance Evaluation Review,
volume 27, pages 134–143. ACM, 1999.

[18] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. LRFU: A spectrum of policies that subsumes the least re-
cently used and least frequently used policies. IEEE transactions
on Computers, (12):1352–1361, 2001.

[19] J. Leverich. Mutilate. github.com/leverich/
mutilate/.

[20] C. Li and A. L. Cox. GD-Wheel: a cost-aware replacement pol-
icy for key-value stores. In Proceedings of the Tenth European
Conference on Computer Systems, page 5. ACM, 2015.

[21] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architecting to
achieve a billion requests per second throughput on a single key-
value store server platform. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, pages 476–
488. ACM, 2015.

[22] A. Likhtarov, R. Nishtala, R. McElroy, H. Fugal, A. Gry-
nenko, and V. Venkataramani. Introducing McRouter: A
memcached protocol router for scaling Memcached deploy-
ments, 2014. https://code.facebook.com/posts/
296442737213493.

[23] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
holistic approach to fast in-memory key-value storage. manage-
ment, 15(32):36, 2014.

[24] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems journal, 9(2):78–
117, 1970.

[25] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead
replacement cache. In FAST, volume 3, pages 115–130, 2003.

[26] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Face-
book. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages
385–398, Lombard, IL, 2013. USENIX.

[27] E. J. O’neil, P. E. O’neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. ACM SIGMOD
Record, 22(2):297–306, 1993.

[28] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 29–41. ACM, 2011.

[29] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 423–432.
IEEE Computer Society, 2006.

[30] M. Rajashekhar and Y. Yue. Twemcache. blog.twitter.
com/2012/caching-with-twemcache.

[31] S. M. Rumble, A. Kejriwal, and J. K. Ousterhout. Log-structured
memory for DRAM-based storage. In FAST, volume 1, page 16,
2014.

[32] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–14. ACM,
2014.

[33] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Bal-
lani, T. Karagiannis, A. Rowstron, and T. Talpey. Software-
defined caching: Managing caches in multi-tenant data centers.
In Proceedings of the Sixth ACM Symposium on Cloud Comput-
ing, pages 174–181. ACM, 2015.

13

392 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[34] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani,
T. Karagiannis, A. Rowstron, and T. Talpey. Software-defined
caching: Managing caches in multi-tenant data centers. Technical
Report CSRG-626, Department of Computer Science, University
of Toronto, 2015.

[35] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of
shared cache memory. The Journal of Supercomputing, 28(1):7–
26, 2004.

[36] J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, A. Warfield, and
C. Data. Characterizing storage workloads with counter stacks.
In Proceedings of the 11th USENIX conference on Operating Sys-
tems Design and Implementation, pages 335–349. USENIX As-
sociation, 2014.

[37] W. Zhang, J. Hwang, T. Wood, K. Ramakrishnan, and H. Huang.
Load balancing of heterogeneous workloads in Memcached clus-
ters. In 9th International Workshop on Feedback Computing
(Feedback Computing 14), Philadelphia, PA, 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 393

FairRide: Near-Optimal, Fair Cache Sharing
Qifan Pu, Haoyuan Li (UC Berkeley), Matei Zaharia (MIT), Ali Ghodsi, Ion Stoica (UC Berkeley)

Abstract –
Memory caches continue to be a critical component

to many systems. In recent years, there has been larger
amounts of data into main memory, especially in shared
environments such as the cloud. The nature of such en-
vironments requires resource allocations to provide both
performance isolation for multiple users/applications and
high utilization for the systems. We study the problem of
fair allocation of memory cache for multiple users with
shared files. We find that, surprisingly, no memory al-
location policy can provide all three desirable proper-
ties (isolation-guarantee, strategy-proofness and Pareto-
efficiency) that are typically achievable by other types of
resources, e.g., CPU or network. We also show that there
exist policies that achieve any two of the three proper-
ties. We find that the only way to achieve both isolation-
guarantee and strategy-proofness is through blocking,
which we efficiently adapt in a new policy called Fair-
Ride. We implement FairRide in a popular memory-
centric storage system using an efficient form of block-
ing, named as expected delaying, and demonstrate that
FairRide can lead to better cache efficiency (2.6× over
isolated caches) and fairness in many scenarios.

1 Introduction
Caches are a crucial component of most computer sys-
tems, characterized by two features: their impact on ap-
plication performance, and their limited size compared
to the total amount of data. With in-memory caches
increasingly being used for large-scale data processing
clusters [4, 26] in addition to databases and key-value
stores [19, 37, 10, 30, 8], caches also play a key role in
today’s multi-tenant cloud environments. In a shared en-
vironment with multiple users, however, the problem of
managing caches becomes harder: how should a provider
allocate space across multiple users, each of which wants
to keep their own datasets in memory?

Unfortunately, traditional caching policies do not pro-
vide a satisfactory answer to this problem. Most cache
management algorithms (e.g., LRU, LFU) have focused
on global efficiency of the cache (Figure 1a): they aim to
maximize the overall hit rate. Regardless of being com-
monly used in today’s cache systems for cloud serving
(Redis [9], Memcached [7]) and big data storage (HDFS
Caching [5]), this has two problems in a shared environ-
ment. First, users who read data at long intervals may
gain little or no benefit from the cache, simply because
their data is likely to be evicted out of the memory. Sec-
ond, applications can also easily abuse such systems by
making spurious accesses to increase their access rate.

Cache

Secondary storage (Disk, S3...)

Figure 1: Different schemes. Global: single memory
pool, agnostic of users or applications; Isolation: static
allocations of memory among multiple users, possibly
under-utilization (blank cells), no sharing; Sharing: al-
lowing dynamic allocations of memory among users, and
one copy of shared files (stripe cells).

There is no incentive to dissuade users from doing this
in a cloud environment, and moreover, such shifts in the
cache allocation can happen even with non-malicious ap-
plications. We show later that a strategic user can out-
perform a non-strategic user by 2.9×, simply by making
spurious accesses to her files.

The other common approach is to have isolated caches
for each user (Figure 1b). This gives each user perfor-
mance guarantees and there are many examples in prac-
tice, e.g., hypervisors that set up separate buffer caches
for each of its guest VMs, web hosting platforms that
launch a separate memcached instance to each tenant.
However, providing such performance guarantees comes
at the cost of inefficient utilization of the cache.

This inefficiency is not only due to users not fully
utilizing their allocated cache, but also because that a
cached file can be accessed by multiple users at a time
and isolating cache leads to multiple copies of such
shared files. We find such non-exclusive sharing to be a
defining aspect of cache allocation, while other resources
are typically exclusively shared, e.g., a CPU time slice or
a communication link can be only used by a single user
at a time. In practice, there are a significant number of
files shared across users in many workloads, e.g., we ob-
serve more than 30% files are shared by at least two users
from a production HDFS log. Such sharing is likely to
increase as more workloads move to multi-tenant envi-
ronments.

In this paper, we study how to share cache space be-
tween multiple users that access shared files. To frame
the problem, we begin by identifying desirable proper-
ties that we’d like an allocation policy to have. Building
on common properties used in sharing of CPU and net-
work resources [20], we identify three such properties:

1

394 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Isolation Strategy- Pareto-
Guarantee Proofness Efficiency

global (e.g., LRU) � � �

max-min fairness � � �

FairRide � � near-optimal
None Exist � � �

Table 1: Summary of various memory allocation policies
against three desired properties.

• Isolation Guarantee: no user should receive less
cache space than she would have had if the cache
space were statically and equally divided between
all users (i.e., assuming n users and equal shares,
each one would get 1/n of the cache space). This
also implies that the user’s cache performance (e.g.,
cache miss ratio) should not be worse than isolation.

• Strategy Proofness: a user cannot improve her allo-
cation or cache performance at the expense of other
users by gaming the system, e.g., through spuri-
ously accessing files.

• Pareto Efficiency: the system should be efficient, in
that it is not possible to increase one user’s cache
allocation without lowering the allocation of some
other user. This property captures operator’s desire
to achieve high utilization.

These properties are common features of allocation
policies that apply to most resource sharing schemes,
including CPU sharing via lottery or stride schedul-
ing [39, 15, 35, 40], network link sharing via max-min
fairness [28, 13, 17, 23, 33, 36], and even allocating mul-
tiple resources together for compute tasks [20]. Some-
what unexpectedly, there has been no equivalent policy
for allocation of cache space that satisfies all three prop-
erties. As shown earlier, global sharing policies (Fig-
ure 1a) lack isolation-guarantee and strategy-proofness,
while static isolation (Figure 1b) is not Pareto-efficient.

The first surprising result we find is that this deficiency
is no accident: in fact, for sharing cache resources, no
policy can achieve all three properties. Intuitively, this is
because cached data can be shared across multiple users,
allowing users to game the system by “free-riding” on
files cached by others, or optimizing usage by caching
popular files. This creates a strong trade-off between
Pareto efficiency and strategy-proofness.

While no memory allocation policy can satisfy the
three properties (Table 1), we show that there are poli-
cies that come close to achieving all three in practice.
In particular, we propose FairRide, a policy that pro-
vides both isolation-guarantee (so it always performs no
worse than isolated caches) and strategy-proofness (so
users are not incentivized to cheat), and comes within
4% of global efficiency in practice. FairRide does this
by aligning each user’s benefit-cost ratio with her private

preference, through probabilistic blocking (Section 3.4),
i.e., probabilistically disallowing a user from accessing a
cached file if the file is not cached on behalf of the user.
Our proof in Section 5 shows that blocking is required
to achieve strategy-proofness, and that FairRide achieves
the property with minimal blocking possible.

In practice, probabilistic blocking can be efficiently
implemented using expected delaying (Section 4.1) in or-
der to mitigate I/O overhead and to prevent even more
sophisticated cheating models. We implemented Fair-
Ride on Tachyon [26], a memory-centric storage system,
and evaluated the system using both cloud serving and
big data workloads. Our evaluation shows that FairRide
comes within 4% of global efficiency while preventing
strategic users, meanwhile giving 2.6× more job run-
time reduction over isolated caches. In a non-cooperative
environment when users do cheat, FairRide outperforms
max-min fairness by at least 27% in terms of efficiency.
It is also worth noting that FairRide would support plug-
gable replacement policies as it still obeys each user’s
caching preferences, which allows users to choose dif-
ferent replacement policies (e.g., LRU, LFU) that best
suit their workloads.

2 Background
Most of today’s cache systems are oblivious to the en-
tities (users) that access data: CPU caches do not care
which thread accesses data, web caches do not care
which client reads a web page, and in-memory based sys-
tems such as Spark [41] do not care which user reads a
file. Instead, these systems aim to maximize system effi-
ciency (e.g., maximize hit rate) and as a result favor users
that contribute more to improve efficiency (e.g., users ac-
cessing data at a higher rate) at the expense of the other
users.

To illustrate the unfairness of these cache systems,
consider a typical setup of a hosted service, as shown
in Figure 2a. We setup multiple hosted sites, all sharing
a single Memcached [7] caching system to speed up the
access to a back-end database. Assume the loads of A
and B are initially the same. In this case, as expected,
the mean request latencies for the two sites are roughly
the same (see left bars in Figure 2b). Next, assume that
the load of site A increases significantly. Despite the fact
that B’s load remains constant, the mean latency of its re-
quests increases significantly (2.9×) and the latency for
A’s requests surprisingly drops! Thus, an increase in A’s
load improves the performance of A, but degrades the
performance of B. This is because A accesses the data
more frequently, and in response the cache system starts
loading more results from A while evicting B’s results.

While the example is based on synthetic web work-
load, this problem is very real, as demonstrated by the
many questions posted on technical forums [6], on how

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 395

Database
site A

site B

Cache
(Redis/Memcached)

access

access

fetch

HTTP Req

HTTP Req

(a)

Site A : low load
Site B : low load

Site A : high load
Site B : low load

(b)

Figure 2: (a) Typical cache setup for web servers. (b)
Site B suffers high latency because unfair cache sharing.

to achieve resource isolation across multiple sites when
using either Redis [9] or Memcached [7]. It turns out
that none of the two popular caching systems provide
any guarantee for performance isolation. This includes
customized distributions from dominant cloud service
providers, such as Amazon ElastiCache [1] and Mi-
crosoft Azure Redis Cache [3]. As we will show in Sec-
tion 7, for such caching systems, it is easy for a strategic
user to improve her performance and hurt others (with
2.9× performance gap) by making spurious access to
files.

To provide performance isolation, the default answer
in the context of cloud cache services today is to setup
a separate caching instance per user or per application.
This goes against consolidation and comes at a high cost.
Moreover, cache isolation will eliminate the possibility
of sharing cached files, which makes isolation even more
expensive as there is a growing percentage of files to be
shared. We studied a production HDFS log from a Inter-
net company and observed 31.4% of files are shared by
at least two users/applications. The shared files also tend
to be more frequently accessed compared to non-shared
files, e.g., looking at the 10% most accessed files, shared
files account for as much as 53% of the accesses. The
percentage of sharing can go even higher pair-wise: 22%
of the users have at least 50% of their files accessed by
another user. Assuming files are of equal sizes, we would
need at least 31.4% more space if we assign isolated in-
stances for each user, and even more cost on additional
cache as the percentage of shared files in the working set
is even larger.

Going back to the example in Figure 2, one possible
strategy for B to reclaim some of its cache back would
be to artificially increase its access rate. While this strat-
egy may help B to improve its performance, it can lead
to worse performance overall (e.g., lower aggregate hit
rate). Worse yet, site A may decide to do the same: arti-
ficially increase its access rate. As we will show in this
paper, this may lead to everyone losing out, i.e., everyone
getting worse performance than when acting truthfully.
Thus an allocation policy such as LRU is not strategy
proof, as it does incentivize a site to misbehave to im-
prove its performance. Furthermore, like with prisoner’s

dilemma, sites are incentivized to misbehave even if this
leads to worse performance for everyone.

While in theory users might be incentivized to misbe-
have, a natural question is whether they are actually do-
ing so in practice. The answer is “yes”, with many real-
world examples being reported in the literature. Previ-
ous works on cluster management [38] and job schedul-
ing [20] have reported that users lie about their resource
demands to game the system. Similarly, in peer-to-peer
systems, “free-riding” is a well known and wide spread
problem. In an effort to save bandwidth and storage,
“free-riders” throttle their uplink bandwidth and remove
files no longer needed, which leads to decreased over-
all performance [32]. We will show in Section 3 that
shared files can easily lead to free-riding in cache alloca-
tion. Finally, as mentioned above, cheating in the case
of caching is as easy as artificially increasing the ac-
cess rate, for example, by running an infinite loop that
accesses the data of interest, or just by making some
random access. While some forms of cheating do in-
cur certain cost or overhead (e.g., CPU cycles, access
quota), the overhead is outweighed by the benefits ob-
tained. On the one hand, a strategic user does not need
many spurious accesses for effective cheating, as we will
show in Section 7. If a caching system provides inter-
faces for users to specify file priorities or evict files in
the system, cheating would be even simpler. On the
other hand, many applications’ performances are bottle-
necked at I/O, and trading off some CPU cycles for better
cache performance is worthwhile.

In summary, we argue that any caching allocation pol-
icy should provide the following three properties: (1)
isolation-guarantee which subsumes performance isola-
tion (i.e., a user will not be worse off than under static
isolation), (2) strategy-proofness which ensures that a
user cannot improve her performance and hurt others by
lying or misbehaving, and (3) Pareto efficiency which en-
sures that resources are fully utilized.

3 Pareto Efficiency vs. Strategy Proofness
In this section we show that—under the assumption
that the isolation-guarantee property holds—there is a
strong trade-off between Pareto efficiency and strategy-
proofness, that is, it is not possible to simultaneously
achieve both in a caching system where files (pages) can
be shared across users.

Model: To illustrate the above point, in the remainder
of this section we consider a simple model where multi-
ple users access a set of files. For generality we assume
each user lets the cache system know the priorities in
which her files can be evicted, either by explicitly speci-
fying the priorities on the files or based on a given policy,
such as LFU or LRU. For simplicity, in all examples, we
assume that all files are of unit size.

3

396 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

FUNC u.access(f) // user u accessing file f
1: if (f ∈Cache. f ileSet) then
2: return CACHED DATA;
3: else
4: return CACHE MISS;
5: end if

FUNC cache(u, f) // cache file f for user u
6: while (Cache.availableSize < f .size) do
7: u1 = users.getUserWithLargestAlloc();
8: f 1 = u1.getFileToEvict();
9: if (u1 == u and

10: u.getPriority(f 1)> u.getPriority(f)) then
11: return CACHE ABORT;
12: end if
13: Cache. f ileSet.remove(f 1);
14: Cache.availableSize += f 1.size;
15: u.allocSize -= f 1.size;
16: end while
17: Cache. f ileSet.add(f)
18: Cache.availableSize -= f .size;
19: u.allocSize += f .size;
20: return CACHE SUCCEED;

Algorithm 1: Pseudocode for accessing and cahing a file
under max-min fairness.

Utility: We define each user’s utility function as the
expected cache hit rate. Given a cache allocation, it’s
easy to calculate a user’s expected hit rate by just sum-
ming up her access frequencies of all the files cached in
memory.

3.1 Max-min Fairness

One of the most popular solutions to achieve efficient re-
source utilization while still providing isolation is max-
min fairness.

In a nutshell, max-min fairness aims to maximize the
minimum allocation across all users. Max-min fairness
can be easily implemented in our model by evicting from
the user with the largest cache allocation, as shown in
Algorithm 1. When a user accesses a file, f , the sys-
tem checks whether there is enough space available to
cache it. If not, it repeatedly evicts the files of the users
who have the largest cache allocation to make enough
room for f . Note that the user from which we evict a
file can be the same as the user who is accessing file f ,
and it is possible for f to not be actually cached. The
latter happens when f has a lower caching priority than
any of the other user’s files that are already cached. At
line 10 from Algorithm 1, the user.getPriority() is called
to obtain priority. Note caching priority depends on the
eviction policy. In the case of LFU, priority represents
file’s access frequency, while in the case of LRU it can
represent the inverse of the time interval since it has been

accessed. Similar to access frequency, priority need not
to be static, but rather reflects an eviction policy’s instan-
taneous preference.

If all users have enough demand, max-min fairness en-
sures that each user will get an equal amount of cache,
and max-min fairness reduces to static isolation. How-
ever, if one or more users do not use their entire share,
the unused capacity is distributed across the other users.

3.2 Shared Files

So far we have implicitly assumed that each user ac-
cesses different files. However, in practice multiple users
may share the same files. For example, different users or
applications can share the same libraries, input files and
intermediate datasets, or database views.

The ability to share the same allocation across mul-
tiple users is a key difference between caching and tra-
ditional environments, such as CPU and communication
bandwidth, in which max-min fairness has been success-
fully applied so far. With CPU and communication band-
width, only a single user can access the resource that was
allocated to her: a CPU time slice can be only used by
a single process at a time, and a communication link can
be used to send a single packet of a single flow at a given
time.

A natural solution to account for shared files is to
“charge” each user with a fraction of the shared file’s
size. In particular, if a file is accessed by k users, and
that file is cached, each user will be charged with 1/k of
the size of that file. Let fi, j denote file j cached on behalf
of user i, and let k j denote the number of users that have
requested the caching of file j. Then, the total cache size
allocated to user i, alloci, is computed as

alloci = ∑
j

size(fi, j)

k j
. (1)

Consider a cache that can hold 6 files, and assume
three users. User 1 accesses files A,B,C, . . . user 2 ac-
cesses files A,B,D, . . ., and user 3 accesses files F,G,
Assuming that each file is of unit size, the following set
of cached files represent a valid max-min allocation: A,
B, C, D, F , and G, respectively. Note that since files
A and B are shared by the first two users, each of these
users is only charged with half of the file size. In par-
ticular, the cache allocation of user 1 is computed as
size(A)/2 + size(B)/2 + size(C) = 1/2 + 1/2 + 1 = 2.
The allocation of user 2 is computed in a similar man-
ner, while allocation of user 3 is simply computed as
size(F) + size(G) = 2. The important point to note
here is that while each user has been allocated the same
amount of cache as computed by Eq. 1, users 1 and 2 get
three files cached (as they get the benefit of sharing two
of them), while user 3 gets only two.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 397

LEGEND

A

C

5

5

A

B

C

5

5
10

B

A

B

C

5

5
10

true access

free-ride

cheat

blocked

Figure 3: Example with 2 users, 3 files and total cache
size of 2. Numbers represent access frequencies. (a). Al-
location under max-min fairness; (b). Allocation under
max-min fairness when second user makes spurious ac-
cess (red line) to file C; (c). Blocking free-riding access
(blue dotted line).

3.3 Cheating

While max-min fairness is strategy-proof when users ac-
cess different files, this is no longer the case when files
are shared. There are two types of cheating that could
break strategy-proofness: (1) Intuitively, when files are
shared, a user can “free ride” files that have been already
cached by other users. (2) A thrifty user can choose to
cache files that are shared by more users, as such files are
more economic due to cost-sharing.

Free-riding To illustrate “free riding”, consider two
users: user 1 accesses files A and B, and user 2 accesses
files A and C. Assume size of cache is 2, and that we can
cache a fraction of a file. Next, assume that every user
uses LFU replacement policy and that both users access
A much more frequently than the other files. As a result,
the system will cache file A and “charge” each user by
1/2. In addition, each user will get half of their other
files in the cache, i.e., half of file B for user 1, and file
B for user 2, as shown in Figure 3(a). Each user gets a
cache hit rate of 5×0.5+10 = 12.51 hits/sec.

Now assume user 2 cheats by spuriously accessing file
C to artificially increase its access rate such that to exceed
A’s access rate (Figure 3(b)), effectively sets the priority
of C higher than B. Since now C has the highest access
rate for user 2, while A remains the most accessed file of
user 1, the system will cache A for user 1 and C for user 2,
respectively. The problem is that user 2 will still be able
to benefit from accessing file A, which has already been
cached by user 1. At the end, user 1 gets 10 hits/sec, and
user 2 gets 15 hits/sec. In this way, user 2 free-rides on
user 1’s file A.

Thrifty-cheating To explain the kind of cheating
where a user carefully calculates cost-benefits and
then changes file priorities accordingly, we first define
cost/(hit/sec) as the amount of budget cost a user pays

1When half of a file is in cache, half of the page-level accesses to
the file will result in cache miss. Numerically, it is the equal to missing
the entire file 50% of the time. So hit rate is calculated as access rate
multiplied by percentage cached.

to get 1 hit/sec access rate for a unit file. To opti-
mize over the utility, which is defined as the total hit
rate, a user’s optimal strategy is not to cache the files
that one has highest access frequencies, but the ones
with lowest cost/(hit/sec). Compare a file of 100MB,
shared by 2 users and another file of 100MB, shared by 5
users. Even though a user access the former 10 times/sec
and the latter only 8 times/sec, it is overall economic
to cache the second file (comparing 5MB/(hit/sec) vs.
2.5MB/(hit/sec)).

The consequence of “thrift-cheating”, however, is
more complicated. As it might appear to improve
user and system performance at first glance, it doesn’t
lead to an equilibrium where all users are content
about their allocations. This can cause users to con-
stantly game the system which leads to a worse outcome.

In the above examples we have shown that due to an-
other user cheating, one can experience utility loss. A
natural question to ask is, how bad could it be? i.e. What
is the upper bound a user can lose when being cheated?
By construction, one can show that for two-user cases, a
user can lose up to 50% of cache/hit rate when all her
files are shared and “free ridden” by the other strategic
user. As the free-rider evades charges of shared files, the
honest user double pays. This can be extended to a more
general case with n (n> 2) users, where loss can increase
linearly with the number of cheating users. Suppose that
cached files are shared by n users, each user pays 1

n of the
file sizes. If n− 1 strategic users decide to cache other
files, the only honest user left has to pay the total cost.
In turn, the honest user has to evict at most (n−1

n) of her
files to maintain the same budget.

It is also worth mentioning that for many applications,
moderate or even minor cache loss can result in dras-
tic performance drop. For example, in many file sys-
tems with overall high cache hit ratio, the effective I/O
latency with caching could be approximated as TIO =
RatiomissLatencymiss. A slight difference in the cache
hit ratio, e.g. from 99.7% to 99.4%, means 2× I/O av-
erage latency drop! This indeed necessitates strategy-
proofness in cache policies.

3.4 Blocking Access to Avoid Cheating

At the heart of providing strategy-proofness is this ques-
tion of how free-riding can be prevented. In the previ-
ous example, user 2 was incentivized to cheat because
she was able to access the cached shared files regardless
her access patterns. Intuitively, if user 2 is blocked from
accessing files that she tries to free-ride, she will be dis-
incentivized to cheat.

Applying blocking to our previous example, user 2
will not be allowed to access A, despite the fact that user
1 has already cached A (Figure 3(c)). The system blocks

5

398 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

user 2 but not user 1 because user 1 is the sole person
who pays the cache. As a result, user 2 gets only 1 cache
size with a less important file C.

As we will show in Section 5 this simple scheme is
strategy-proof. On the other hand, this scheme is unfor-
tunately not Pareto efficient by definition, as the perfor-
mance (utility) of user 2 can be improved without hurting
user 1 by simply letting user 2 access file A.

Furthermore, note that it is not necessary to have a user
cheating to arrive at the allocation in Figure 3. Indeed,
user 2 can legitimately access file C at a much higher rate
than A, In this case, we get the same allocation—file A is
cached on behalf of user 1 and file C is cached on behalf
of user 2—with no user cheating. Blocking in this case
will reduce the system utilization by punishing a well-
behaved user.

Unfortunately, the cache system cannot differentiate
between a cheating and a well-behaved user, so it is not
possible to avoid the decrease in the utilization and thus
the violation of Pareto efficiency, even when every user
in the system is well-behaved.

Thus, in the presence of shared files, with max-min
fairness allocation we can achieve either Pareto effi-
ciency or strategy-proofness, but not both. In addition,
we can trade between strategy-proofness and Pareto ef-
ficiency by blocking a user from accessing a shared file
if that file is not in the user’s cached set of files, even
though that file might have been cached by other users.

In Section 5, we will show that this trade-off is more
general. In particular, we show that in the presence of
file sharing there is no caching allocation policy that can
achieve more than two out of the three desirable proper-
ties: isolation-guarantee, strategy-proofness, and Pareto
efficiency.

4 FairRide

In this section, we describe FairRide, a caching policy
that extends max-min fairness with probabilistic block-
ing. Different from max-min fairness, FairRide provides
isolation-guarantee and strategy-proofness at the expense
of Pareto-efficiency. We use expected delaying to imple-
ment the conceptual model of probabilistic blocking, due
to several system considerations.

Figure 4 shows the control logic for a user i access-
ing file j under FairRide. We will compare it with the
pseudo-code of max-min fairness, Algorithm 1. In max-
min, a user i can directly access a cached file j, as long as
j is cached in memory. While with FairRide, there is an
chance that the user might get blocked for accessing the
cached copy. This is key to making FairRide strategy-
proof and the only difference with max-min fairness,
which we prove in Section 5. The chance of blocking
is not an arbitrary probability, but is set at 1

n j+1 , where
n j is the number of other users caching the file. We will

1
nj +1

Delay
nj +1

Figure 4: With FairRide, a user might be blocked to ac-
cess a cached copy of file if the user does not pay the stor-
age cost. The blue box shows how this can be achieved
with probabilistic blocking. In system implementation,
we replace the blue box with the purple box, where we
instead delay the data response.

prove in Section 5 that this is the only and minimal block-
ing probability setting that will make a FairRide strategy-
proof.

Consider again the example in Figure 3. If user 2
cheats and makes spurious access to file C, file A will
be cached on behalf of user 1. In that case, FairRide
recognizes user 2 as a non-owner of the file, and user
2 has 1

2 chance to access directly from the cache. So
user 2’s total expected hit rate becomes 5+10× 1

2 = 10,
which is worse than 12.5 before without cheating. In this
way, FairRide discourages cheating and makes the policy
strategy-proof.

4.1 Expected Delaying

In real systems, probabilistic blocking could not thor-
oughly solve the problem of cheating, as now a strategic
user can make even more accesses in hope that one of the
accesses is not blocked. For example, if a user is blocked
with a probability of 1

2 , he can make three accesses so to
reduce the likelihood of being blocked to 1

8 . In addition,
blocking itself is not an ideal way to implement in a sys-
tem as it further incurs unnecessary I/O operations (disk,
network) for blocked users. To address this problem, we
introduce expected delaying to approximate the expected
effect of probabilistic blocking. When a user tries to ac-
cess an in-memory file that is cached by other users, the
system delays the data response with certain wait dura-
tion. The wait time should be set as the expected delay a
user would experience if she’s probabilistically blocked
by the system. In this way, it is impossible to get around
the delaying effect, and the system does not have to is-
sue additional I/O operations. The theoretically equiva-
lent wait time could be calculated as twait = Delaymem ×
(1 − pblock) + Delaydisk,network × pblock, where pblock is
the blocking probability as described above, and Delayx
being the access latency of medium x. As memory access
latency is already incurred during data read time, we sim-
ply set the wait time to be Delaydisk,newtwork × pblock. We
will detail how we measure the secondary storage delay
in Section 6.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 399

5 Analysis
In this section, we prove that the general trade-off be-
tween the three properties is fundamental with existence
of file sharing. Next in Section 5.2, we also show by
proof that FairRide indeed achieves strategy-proof and
isolation-guarantee, and that FairRide uses most efficient
blocking probability to achieve strategy-proofness.

5.1 The SIP theorem

We state the following SIP theorem: With file sharing,
no cache allocation policy can satisfy all three following
properties: strategy-proofness (S), isolation-guarantee
(I) and Pareto-efficiency (P).

Proof of the SIP theorem
The three properties are defined as in Section 1, and we
use total hit rate as the performance metric. Reusing the
example setup in Figure 3(a), we now examine a general
policy P. The only assumption of P is that P satisfies
isolation-guarantee and Pareto-efficiency, and we shall
prove that such policy P must not be strategy-proof, i.e.
a user can cheat to improve under P. We start with the
case when no user cheats for Figure 3(a). Let y1,y2 be
user 1 and 2’s total hit rate:

y1 = 10xA +5xB (2)

y2 = 10xA +5xC (3)

Where xA, xB, xC are fractions of the each file A,B,C
cached in memory.2 Because xA + xB + xC = 2, and y1 +
y2 = 15xA + 5(xA + xB + 5xc), it’s impossible for y1 +
y2 > 25, or, for both y1 and y2 to be greater than 12.5. As
the two users have symmetric access patterns, we assume
y2 < 12.5 without loss of generality.

Now if user 2 cheats and increases her access rate of
file C to 30, we can prove that she can get a total rate of
13.3, or y2 > 13.3. This is partly because the system has
to satisfy a new isolation guarantee:

y�2 = 10xA +30xC > 30 (4)

It must hold that xC > 2
3 , because xA ≤ 1. Also, be-

cause xC ≤ 1 and xA + xB + xC = 2, we have xA + xB ≥ 1
to achieve Pareto-efficiency. For the same reason, xA = 1
is also necessary as it’s strictly better to cache file A over
file B for both users. Plugging xA = 1,xC > 2

3 back to
user 2’s actual hit rate calculation (Equation 3), we get
y2 > 13.3.

So far, we have found a cheating strategy for a user
2 to improve her cache performance and hurt the other
user. This is done under a general policy P that assumes

2We use fractions only for simplifying the proof. The theorem holds
when we can only cache a file/block in its entirety.

only isolation-guarantee and Pareto-efficiency but noth-
ing else. Therefore, we can conclude that any policy P
that satisfies the two properties cannot achieve strategy-
proofness. In other words, no policy can achieve all three
properties simultaneously. This ends the proof for the
SIP theorem.

5.2 FairRide Properties

We now examine FairRide (as described in Section 4)
against three properties.
Theorem FairRide achieves isolation-guarantee.
Proof Even if FairRide does complete blocking, in which
each user gets strictly less memory cache, the amount
of cache a user accesses is: Cachetotal = ∑ j size(f ile j),
j for all the files the user caches. Because FairRide
splits the charges of shared files across all users, a user’s
allocation budget is spent up by: Alloc = ∑ j

size(f ile j)
n j

,
with n j being the number of users sharing f ile j.
Combining the two equations we can easily derive
that Cachetotal > Alloc. As Alloc is also what a user
can get in isolation, we can conclude that the amount
of memory a user can access is always bigger than
isolation. Likewise, we can prove the total hit rate user
gets with FairRide is greater than isolation.

Theorem FairRide is strategy-proof.
Proof We will sketch the proof using cost-benefit
analysis, following the line of reasoning in Section 3.3.
With probabilistic blocking, a user i can access a file
j without caching it with a probability of n j

n j+1 . This
means that the benefit resulted from caching is the
increased rate, equal to f reqi j

1
n j+1 . The cost is 1

n j+1
for the joining user, with n j other users already caching
it. Dividing the two, the benefit-cost ratio is equal to
f reqi j, user i’s access frequency of file j. As a user
is incentivized to cache files based on the descending
order of benefit-cost ratio, this results in caching files
based on actual access frequencies, rather than cheating.
In other words, FairRide is incentive-compatible and
allows users to perform truth-telling.

Theorem FairRide’s uses lower-bound blocking proba-
bilities for achieving strategy-proofness.
Proof Suppose a user has 2 files: f j, fk with access
frequencies of f req j and f reqk. We use p j and pk
to denote the corresponding blocking probabilities
if the user chooses not to cache the files. Then the
benefit-cost ratios for the two files are f req j p j(n j + 1)
and f reqk pk(nk + 1), n j and nk being the numbers of
other users already caching the files. For the user to
be truth-telling for whatever f req j, f reqk, n j or nk,
we must have p j

pk
= nk+1

n j+1 . Now p j and pk can still be
arbitrarily small or big, but note p j(pk) must be 1 when

7

400 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

n j(nk) is 0, as no user is caching file f j(fk). Putting
p j = 1,n j = 0 into the equation we will have pk =

1
nk+1 .

Similarly, p j =
1

n j+1 . Thus we show that FairRide’s
blocking probabilities are the only probabilities that can
provide strategy-proofness in the general case (assuming
any access frequencies and sharing situations). The only
probabilities are also the lower-bound probabilities.

6 Implementation
FairRide is evaluated through both system implemen-
tation and large-scale trace simulations. We have
implemented FairRide allocation policy on top of
Tachyon [26], a memory-centric distributed storage
system. Tachyon can be used as a caching system and it
supports in-memory data sharing across different cluster
computation frameworks or applications, e.g. multiple
Hadoop Mapreduce [2] or Spark [41] applications.

Users and Shares Each application running on top of
Tachyon with FairRide allocation has a FairRide client
ID. Shares for each user can be configured. When shares
are changed during system uptime, cache allocation is
re-allocated over time, piece by piece, by evicting files
from the user who uses most atop of her share, i.e.,
argmaxi(Alloci −Capacity∗Sharei), thus converging to
the configured shares eventually.

Pluggable Policy Because FairRide obeys each user’s
individual caching preferences, it can apply a two-level
cache replacement mechanism. It first picks the user who
occupies the most cache in the system, and then finds the
least preferred file from that user to evict. This natu-
rally enables “pluggable policy”, allowing each user to
pick a replacement policy best fit for her workload. Note
this would not be possible for some global policies such
as global LRU. A user’s more frequently accessed file
could be evicted by a less frequently accessed file just be-
cause the first file’s aggregate frequency across all users
is lower than the second file. We’ve implemented “plug-
gable policy” in the system and expose a simple API for
applications to pick best replacement policy.

Client.setCachePolicy(Policy.LRU)
Client.setCachePolicy(Policy.LFU)
Client.pinFile(fileId)

Currently, our implementation of FairRide sup-
ports LRU (Least-Recently-Used) and LFU (Least-
Frequently-Used), as well as policies that are more
suited for data-parallel analytics workloads, e.g. LIFE
or LFU-F that preserves all-or-nothing properties for
cached files [12]. Another feature FairRide supports is
“pinned files”. Through a pinfile(fileId) API, a
user can override the replacement policy and prioritize

specified files.

Delaying The key to strategy-proofness in implementing
FairRide is to emulate probabilistic blocking by delaying
the read of a file which a user didn’t cache before.
Thus the amount of wait time has to approximate the
wait time as if the file is not cached, for any type
of read. We implement delaying by simply sleeping
the thread before giving a data buffer to the Tachyon
client. The delay time is calculated by size(bu f f er)

BWdisk
,

with BWdisk being the pre-measured disk bandwidth
on the node, and size(bu f f er) being the size of the
data buffer sent to the client. The measured bandwidth
is likely an over-estimate of run-time disk bandwidth
due to I/O contention when system is in operation.
This causes shorter delay, higher efficiency, and less
strategy-proofness, though a strategic user should gain
very little from this over-estimate.

Node-based Policy Enforcement
Tachyon is a distributed system comprised of multi-

ple worker nodes. We enforce allocation policies inde-
pendently at each node. This means that data is always
cached locally at the node when being read, and that
when the node is full, we evict from the user who uses up
most memory on that node. This scheme allows a node
to select an evicting user and perform cache replacement
without any global coordination.

The lack of global coordination can incur some effi-
ciency penalty, as a user is only guaranteed to get at least
1/n-th of memory on each node, but not necessarily 1/n-
th of total memory across the cluster. This happens when
users have access skew across nodes. To give an exam-
ple, suppose a cluster of two nodes, each with 40GB
memory. One user has 30GB frequently accessed data
on node 1 and 10GB on node 2, and another user has
10GB frequently accessed data on node 1 and 30GB on
node 2. Allocating 30GB on node 1 and 10GB on node
2 to the first user will outperform a 20 to 20 even allo-
cation on each node, in terms of hit ratio for both users.
Note that such allocation is still fair globally – each user
gets 40GB memory in total. Our evaluation results in
Section 7.6 will show that node-based scheme is within
3%∼4% compared to global fairness, because of the self-
balance nature of big data workloads on Tachyon.

7 Experimental Results
We evaluated FairRide using both micro- and macro-
benchmarks, by running EC2 experiments on Tachyon,
as well as large-scale simulations replaying production
workloads. The number of users in the workloads varies
from 2 to 20. We show that while non-strategy-proof
policies can cause everybody worse-off by a large mar-
gin (1.9×), FairRide can prevent user starvation within

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 401

0

100

200

300

400

500

0 150 300 450 600 750 900 1050

Av
g.

 re
sp

on
se

 (m
s)

Time (s)

user 1
user 2

(a) Max-min fair allocation

0

100

200

300

400

500

0 150 300 450 600 750 900 1050

Av
g.

 re
sp

on
se

 (m
s)

Time (s)

user 1
user 2

(b) FairRide
Figure 5: Miss ratio for two users. At t = 300s, user 2
started cheating. At t = 700s, user 1 joined cheating.

4% of global efficiency. It is 2.6× better than isolated
caches in terms of job time reduction, and gives 27%
higer utilization compared to max-min fairness.

We start by showing how FairRide can dis-incentivize
cheating users by blocking them from accessing files that
they don’t cache, in Section 7.1. In Section 7.2, we com-
pare FairRide against a number of schemes, including
max-min fairness using experiments on multiple work-
loads: TPC-H, YCSB and a HDFS production log. Sec-
tion 7.3 and Section 7.4 demonstrate FairRide’s benefits
with multiple users and pluggable policies. Finally, in
Section 7.5, we use Facebook traces that are collected
from a 2000-node Hadoop cluster to evaluate the perfor-
mance of FairRide in large-scale clusters.

7.1 Cheating and Blocking

In this experiment, we illustrate how FairRide can pre-
vent a user from cheating. We ran two applications on
a 5-node Amazon EC2 cluster. The cluster contains one
master node and four worker nodes, each configured with
32GB memory. Each application accessed 1000 data
blocks (128MB each), among which 500 were shared.
File access complied with Zipf distribution. We assumed
users knew a priori which files are shared, and could
cheat by making excessive accesses to non-shared files.
We used LRU as cache replacement policy for this ex-
periment.

We ran the experiment under two different schemes,
max-min fair allocation (Figure 5a) and FairRide (Fig-
ure 5b). Under both allocations, the two users got sim-
ilar average block response time (226ms under max-
min, 235ms under FairRide) at the beginning (t < 300s).
For max-min fair allocation, when user 2 started to
cheat at t = 300s, she managed to lower her miss ratio
over time (∼130ms), while user 1 got degraded perfor-

mance with 380ms. At t = 750s, user 1 also started to
cheat and both users stayed at high miss ratio (315ms).
In this particular case, there was strong incentive for
both the users to cheat at any point of time because
cheating could always decrease the cheater’s miss ratio
(226ms→130ms,380ms→315ms). Unfortunately, both
users get worse performance compared to not cheat all.
Such a prisoner’s dilemna would not happen with Fair-
Ride (Figure 5b). When user 2 cheated at t = 300s, her
response time instead increases to 305ms . Because of
this, both users would rather not cheat under FairRide
and behave truthfully.

7.2 Benchmarks with Multiple Workloads

Now we evaluate FairRide by running three workloads
on a EC2 cluster.

• TPC-H The TPC-H benchmark [11] is a set of de-
cision support queries based on those used by retail-
ers such as Amazon. The queries can be separated
into two main groups: a sales-oriented group and a
supply-oriented group. These two groups of queries
have some separate tables, but also share common
tables such as those maintaining inventory records.
We treated two query groups as from two indepen-
dent users.

• YCSB The Yahoo! Cloud Serving Benchmark pro-
vides a framework and common set of workloads
for evaluating the performance of key-value serv-
ing stores. We implemented a YCSB client and ran
multiple YCSB workloads to evaluate FairRide. We
let half of files to be shared across users.

• Production Cluster HDFS Log The HDFS log is
collected from a production Hadoop cluster at a
large Internet company. It contains detailed infor-
mation such as access timestamps and access user/-
group information. We found that more than 30%
of files are shared by at least two users.

We ran each workload under the following allocation
schemes: 1) isolation: statically partition the memory
space across users; 2) best-case: i.e. max-min fair allo-
cation and assume no user cheats; 3) FairRide: our solu-
tion which uses delaying to prevent cheating; 4) max-min
: max-min fair allocation with half users trying to game
the system. We used LRU as the default cache replace-
ment algorithm for all users and assumed cheating users
know what files are shared.

We focus on three questions: 1) does sharing the cache
improve performance significantly? (comparing perfor-
mance gain over isolation) 2) can FairRide prevent cheat-
ing with small efficiency loss? (comparing FairRide with
best-case) 3) does cheating degrade system performance
significantly? (comparing FairRide with max-min).

9

402 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: Summary of perfor-
mance results for three work-
loads, showing the gain com-
pared to isolated caches.

Figure 7: Average miss ra-
tios of cheating users and non-
cheating users, when there are
multiple cheaters.

To answer these questions, we plot the relative gain of
three schemes compared to isolation, as shown in Fig-
ure 6. In general, we find sharing the cache can im-
prove performance by 1.3∼3.1×, with best-case. If users
cheat, 15%∼220% of the gain will be lost. For the HDFS
workload, we also observe that cheating causes a per-
formance drop below isolation. While FairRide is very
close to best-case with 3%∼13% overhead, it prevents
the undesirable performance drop.

There are other interesting observations to note. First
of all, the overhead of FairRide, is more noticeable in the
YCSB benchmark and TPC-H than in the HDFS trace.
We find that this is because the most shared files in the
HDFS prodcution trace are among the top accessed files
for both users. Therefore, both users would cache the
shared files, resulting in less blocking/delaying. Sec-
ondly, cheating user benefits less in the HDFS trace, this
is due to fact that the access distribution across files are
highly long tailed in that trace, so that even cheating help
user gain more memory, it doesn’t show up significantly
in terms of miss ratio. Finally, there is a varied degree
of connection between miss ratio and application perfor-
mance (read latency, query time), e.g., YCSB’s read la-
tency is directly linked to miss ratio change, while TPC-
H’s query response time is relatively stable. This is be-
cause, for the latter, a query typically consists of multiple
stages of parallel tasks. As the completion time of a stage
is decided by the slowest task, caching could only help
when all tasks speed up. Therefore, a caching algorithm
that can provide all-or-nothing caching for parallel tasks
is needed to speed up query response time. We evalu-
ated the Facebook trace with such a caching algorithm in
Seciton 7.5.

7.3 Many Users

We want to understand how the effect of cheating relates
to the number of active users in the system. In this exper-
iment, we replay YCSB workloads with 20 users, where
each pair of users have a set of shared files that they ac-
cess commonly. Users can cheat by making excessive
access to their private files. We increase the number of
strategic users in different runs and plot the average miss
ratio for both the strategic user group and the truthful

user group in Figure 7. As expected, the miss ratio of the
truthful group increases when there is a growing num-
ber of strategic users. What’s interesting is that for the
strategic group, the benefit they can exploit decreases as
more and more users joining the group. With 12 strategic
users, even the strategic group has worse performance
compared to the no-cheater case. Eventually both groups
converge at a miss ratio of 74%.

7.4 Pluggable Policies

Next, we evaluated the benefit of allowing pluggable
policies. We ran three YCSB clients concurrently with
each client running a different workload. The character-
istics of the three workloads are summarized below:

User ID Workload Distribution Replacement
1 YCSB(a) zipfian LFU
2 YCSB(d) latest-most LRU
3 YCSB(e) scan priority 3

In the experiment, each YCSB client sets up the best
replacement specified in the above table with the system.
We compared our system with traditional caching sys-
tems that support only configuration of one uniform re-
placement policy, applied to all users. We ran the system
with uniform configuration three times, each time with a
different policy (LRU, LFU and priority). As shown in
Figure 8, by allowing the users to specify a best replace-
ment policy on their own, our system is able to provide
gain of the best case for each of the user among all uni-
form configurations.

7.5 Facebook workload
Our trace-driven simulator performed a detailed and
faithful replay of a task-level trace of Hadoop jobs col-
lected from a 2000-node cluster from Facebook during
the week of October 2010. Our replay preserved read
and write sizes of tasks, locations of input data as well as
job characteristics of failures, stragglers.

To make the effect of caching relevant to job com-
pletion time, we also use LIFE and LFU-F from PAC-
Man [12] as cache replacement policies. These poli-
cies performed all-or-nothing cache replacement for files
and can improve job completion time better than LRU
or LFU, as it speeds all concurrent tasks in one stage
[12]. In a nutshell, LIFE evicts files based on largest-
incomplete-file-first eviction, and LFU-F is based on
least-accessed-incomplete-file-first. We also set each

3Priority replacement means keeping a fixed set of files in cache.
Not the best policy here, but still better than LFU and LRU for the scan
workload.

4Effective miss ratio. For FairRide, we count a delayed access as
a “fractional” miss, with the fraction equal to the blocking probability,
so we can effectively compare miss ratio between FairRide and other
schemes.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 403

(a) Effective Miss Ratio (b) Average Latency (c) Throughput

Figure 8: Pluggable policies.

job time cluster eff. eff. miss%4

u1 u2 u1 u2 u1 u2
isolation 17% 15% 23% 22% 68% 72%
global 54% 29% 55% 35% 42% 60%

best-case 42% 41% 47% 43% 48% 52%
max-min 30% 43% 35% 47% 63% 46%
FairRide 39% 40% 45% 43% 50% 55%

Table 2: Summary of simulation results on reduction in job
completion time, cluster efficiency improvement and hit ratio
under different scheme, with no caching as baseline.

(a) Median, w/ LIFE (b) 95%-tile, w/ LIFE

(c) Median, w/ FairRide (d) 95%-tile, w/ FairRide

Figure 9: Overall reduction in job completion time for
Facebook trace.

node in the cluster with 20Gb of memory so miss ratio
was around 50%. The conclusion would hold for a wider
range of memory size.

We adopted a more advanced model of cheating in this
simulation. Instead of assuming users know what files
are shared a priori, a user cheats based on the cached
files she observes in the cluster. For example, for a non-
blocking scheme such as max-min fairness, a user can
figure out what shared files are cached by other users by
continuously probing the system. She would avoid shar-
ing the cost of those files and only cache files for her own
interest.

Caching improves overall performance of the system.
Table 2 provides a summary of reduction in job com-
pletion time and improvement in cluster efficiency (total
task run-time reduction) compared to a baseline with no
caching, as well as miss ratio numbers. Similar to pre-

vious experiments, isolation gave lowest gains for both
users and global improved users unevenly (compared
to best-case). FairRide suffered minimal overhead of
blocking (2% and 3% in terms of miss ratio compared
to best-case, 4% of cluster efficiency) but could prevent
cheating of user 2 that can potentially hurt user 1 by 15%
in terms of miss ratio. Similar comparisons were ob-
served in terms of job completion and cluster efficiency,
FairRide can outperform max-min by 27% in terms of ef-
ficiency and has 2.6× more improvement over isolation.

Figure 9 also shows the reduction in job completion
time across all users, plotted in median completion time
(a) and 95 percentile completion time (b) respectively.
FairRide preserved better overall reduction compared to
max-min. This was due to the fact that marginal im-
provement of the cheating user was smaller than the per-
formance drop of the cheated. FairRide also prevented
cheating from greatly increasing the tail of job comple-
tion time (95 percentile) as the metric was more domi-
nated by the slower user. We also show the improvement
of FairRide under different cache policies in (c) and (d).

7.6 Comparing Global FairRide
How much performance penalty does node-based Fair-
Ride suffer compared to global FairRide, if any? To an-
swer this question, we ran another simulation with the
Facebook trace to compare against two global FairRide
schemes. The two global schemes both select a evicting
user based on users’ global usage, but differ in how they
pick evicting blocks: a “naive” global scheme chooses
from only blocks on that node, similar to the node-based
approach, and an “optimized” global scheme chooses
from any user blocks in the cluster. We use LIFE as the
replacement policy for both users.

Cluster size 200 500 1000
Node-based FairRide 51% 44% 41%

Global FairRide, Naive 25% 21% 17%
Global FairRide, Optimized 54% 47% 44%

Table 3: Comparing against global schemes. Keep to-
tal memory size as constant while varying the number
of nodes in the cluster. Showing improvement over no
cache as in the reduction in median job completion time.

As we find out, the naive global scheme has a great
performance drop (23%∼25% improvement difference

11

404 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

compared to node-based FairRide), noticeably in Table 3.
This is due to the fact that the naive scheme is unable to
allocate in favor of frequently accessing user per node.
With the naive global scheme, memory allocations on
each node quickly stabilizes based on initial user ac-
cesses. A user can get an unnecessarily large portion of
memory on a node because she accesses data earlier than
the other, although her access frequency on that node is
low in general. The optimized global scheme fixes this
issue by allowing a user to evict least preferred data in
the whole cluster and it makes sure the 1/n-th of mem-
ory allocated must store her most preferred data. We ob-
serve an increase of average hit ratio by 24% with the
optimized scheme, which reflects the access skew for the
underlying data. What’s interesting is that the optimized
global scheme is only 3%∼4% better than node-based
scheme in terms of job complete time improvement. In
addition to the fact data skew is not huge (considering
24% increase for hit ratio), the all-or-nothing property
of data-parallel caching again comes into play. Global
scheme on average increases the number of completely
cached files by only 7%, and because now memory allo-
cation is skewed across the cluster, there is an increased
chance that tasks cannot be scheduled to co-locate with
cached data, due to CPU slot limitation. Finally, we
also observe that as the number of nodes increases (while
keeping the total CPU slots and memory constant), there
is a decrease in improvement in all three schemes, due to
less tasks can be scheduled with cache locality.
8 Related Works
Management of shared resources has always been been
an important subject. Over the past decades, re-
searchers and practitioners have considered the sharing
of CPU [39, 15, 35, 40] and network bandwidth [28,
13, 17, 23, 33, 36], and developed a plethora of solu-
tions to allocate and schedule these resources. The prob-
lem of cache allocation for better isolation, quality-of-
service [24] or attack resilience [29] has also been stud-
ied under various contexts, including CPU cache [25],
disk cache [31] and caching in storage systems [34].

One of the most popular allocation policies is fair
sharing [16] or max-min fairness [27, 14]. Due to the
nice properties, it has been implemented using vari-
ous methods, such as round-robin, proportional resource
sharing [39] and fair queuing [18], and has been extended
to support multiple resource types [20] and resource con-
straints [21]. The key differentiator for our work from the
ones mentioned above, is that we consider shared data.
None of the works above identifies the impossibility of
three important properties with shared files.

There are other techniques that have been studied to
provide fairness and efficiency of shared cache. Prefetch-
ing of data into the cache before access, either through
hints from applications [31] or predication [22], can

improve the overall system efficiency. Profiling appli-
cations [25] is useful for provding application-sepcific
information. We view these techniques as orthogonal to
our work. Other techniques such as throttling access rate
requires the system to identify good thresholds.
9 Conclusions
In this paper, we study the problem of cache alloca-
tion in a multi-user environment. We show that with
data sharing, it is not possible to find an allocation pol-
icy that achieves isolation-guarantee, strategy-proofness
and Pareto-efficiency simultaneously. We propose a new
policy called FairRide. Unlike previous policies, Fair-
Ride provides both isolation-guarantee (so a user gets
better performance than on isolated cache) and strategy-
proofness (so users are not incentivized to cheat), by
blocking access from cheating users. We provide an ef-
ficient implementation of the FairRide system and show
that in many realistic workloads, FairRide can outper-
form previous policies when users cheat. The two
nice properties of FairRide come at the cost of Pareto-
efficiency. We also show that FairRide’s cost is within
4% of total efficiency in some of the production work-
loads, when we conservatively assume users don’t cheat.
Based of the appealing properties and relatively small
overhead, we believe that FairRide can be a practical pol-
icy for real-world cloud environments.
Acknowledgement

We thank Radhika Mittal, Shivaram Venkataraman,
Rachit Agarwal and other members of Berkeley CS and
AMPLab for providing many feedbacks on this work;
Scott Shenker and Eric J. Friedman for providing guid-
ance during early stage of the project; Srikanth Kandula
for helpful feedbacks on the draft; and the anonymous
reviewers for valuable comments; and finally, our shep-
herd, Thomas Moscibroda, for helping to shape the final
version of the paper. This research is supported in part
by NSF CISE Expeditions Award CCF-1139158, DOE
Award SN10040 DE-SC0012463, and DARPA XData
Award FA8750-12-2-0331, and gifts from Amazon Web
Services, Google, IBM, SAP, The Thomas and Stacey
Siebel Foundation, Adatao, Adobe, Apple Inc., Blue
Goji, Bosch, Cisco, Cray, Cloudera, Ericsson, Facebook,
Fujitsu, Guavus, HP, Huawei, Intel, Microsoft, Pivotal,
Samsung, Schlumberger, Splunk, State Farm, Virdata
and VMware.

References
[1] Amazon elasticache. https://aws.amazon.

com/elasticache/.
[2] Apache Hadoop. http://hadoop.apache.org/.
[3] Azure cache - redis cache cloud service.

http://azure.microsoft.com/en-us/

services/cache/.
[4] Distributed Memory: Supporting Memory Stor-

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 405

age in HDFS. http://hortonworks.com/blog/
ddm/.

[5] Hdfs caching. http://blog.

cloudera.com/blog/2014/08/

new-in-cdh-5-1-hdfs-read-caching/.
[6] Isolation in Memcached or Redis. http://goo.

gl/FYfrOK;http://goo.gl/iocFrt;http:

//goo.gl/VeJHvs.
[7] Memcached, a distributed memory object caching

system. http://memcached.org/.
[8] MemSQL In-Memory Database. http://http:

//www.memsql.com/.
[9] Redis. http://redis.io/.

[10] The column-store pioneer: MonetDB. https://

www.monetdb.org.
[11] TPC-H. http://www.tpc.org/tpch.
[12] ANANTHANARAYANAN, G., GHODSI, A.,

WANG, A., BORTHAKUR, D., KANDULA, S.,
SHENKER, S., AND STOICA, I. Pacman: co-
ordinated memory caching for parallel jobs. In
NSDI’12.

[13] BENNETT, J. C., AND ZHANG, H. Wf2q: worst-
case fair weighted fair queueing. In INFOCOM’96.

[14] CAO, Z., AND ZEGURA, E. W. Utility max-
min: An application-oriented bandwidth allocation
scheme. In INFOCOM’99.

[15] CAPRITA, B., CHAN, W. C., NIEH, J., STEIN, C.,
AND ZHENG, H. Group ratio round-robin: O (1)
proportional share scheduling for uniprocessor and
multiprocessor systems. In ATC’05.

[16] CROWCROFT, J., AND OECHSLIN, P. Differenti-
ated end-to-end internet services using a weighted
proportional fair sharing tcp. SIGCOMM CCR,
1998.

[17] DEMERS, A., KESHAV, S., AND SHENKER, S.
Analysis and simulation of a fair queueing algo-
rithm. In SIGCOMM CCR, 1989.

[18] DEMERS, A., KESHAV, S., AND SHENKER, S.
Analysis and simulation of a fair queueing algo-
rithm. In SIGCOMM’89.

[19] FÄRBER, F., CHA, S. K., PRIMSCH, J.,
BORNHÖVD, C., SIGG, S., AND LEHNER, W. Sap
hana database: Data management for modern busi-
ness applications. SIGMOD Rec., 2012.

[20] GHODSI, A., ZAHARIA, M., HINDMAN, B.,
KONWINSKI, A., SHENKER, S., AND STOICA, I.
Dominant resource fairness: Fair allocation of mul-
tiple resource types. NSDI’11.

[21] GHODSI, A., ZAHARIA, M., SHENKER, S., AND
STOICA, I. Choosy: Max-min fair sharing for dat-
acenter jobs with constraints. EuroSys’13.

[22] GILL, B. S., AND BATHEN, L. A. D. Amp: Adap-
tive multi-stream prefetching in a shared cache. In
FAST’07.

[23] GOYAL, P., VIN, H. M., AND CHEN, H. Start-
time fair queueing: a scheduling algorithm for inte-
grated services packet switching networks. In SIG-
COMM CCR, 1996.

[24] IYER, R., ZHAO, L., GUO, F., ILLIKKAL, R.,
MAKINENI, S., NEWELL, D., SOLIHIN, Y., HSU,
L., AND REINHARDT, S. Qos policies and ar-
chitecture for cache/memory in cmp platforms. In
SIGMETRICS’07.

[25] KIM, S., CHANDRA, D., AND SOLIHIN, Y. Fair
cache sharing and partitioning in a chip multipro-
cessor architecture. PACT’04.

[26] LI, H., GHODSI, A., ZAHARIA, M., SHENKER,
S., AND STOICA, I. Tachyon: Reliable, memory
speed storage for cluster computing frameworks. In
SOCC’14.

[27] MA, Q., STEENKISTE, P., AND ZHANG, H. Rout-
ing high-bandwidth traffic in max-min fair share
networks. In SIGCOMM CCR, 1996.

[28] MASSOULIÉ, L., AND ROBERTS, J. Bandwidth
sharing: objectives and algorithms. In INFO-
COM’99.

[29] MOSCIBRODA, T., AND MUTLU, O. Memory
performance attacks: Denial of memory service in
multi-core systems. In USENIX Security’07.

[30] OUSTERHOUT, J., AGRAWAL, P., ERICKSON,
D., KOZYRAKIS, C., LEVERICH, J., MAZIÈRES,
D., MITRA, S., NARAYANAN, A., PARULKAR,
G., ROSENBLUM, M., RUMBLE, S. M., STRAT-
MANN, E., AND STUTSMAN, R. The case for ram-
clouds: Scalable high-performance storage entirely
in dram. SIGOPS OSR, 2010.

[31] PATTERSON, R. H., GIBSON, G. A., GINTING,
E., STODOLSKY, D., AND ZELENKA, J. Informed
prefetching and caching. SIGOPS’95.

[32] PIATEK, M., ISDAL, T., ANDERSON, T., KR-
ISHNAMURTHY, A., AND VENKATARAMANI, A.
Do incentives build robustness in bit torrent. In
NSDI’07.

[33] SHREEDHAR, M., AND VARGHESE, G. Efficient
fair queuing using deficit round-robin. TON’96.

[34] SHUE, D., FREEDMAN, M. J., AND SHAIKH, A.
Performance isolation and fairness for multi-tenant
cloud storage. In OSDI’12.

[35] STOICA, I., ABDEL-WAHAB, H., JEFFAY, K.,
BARUAH, S. K., GEHRKE, J. E., AND PLAXTON,
C. G. A proportional share resource allocation
algorithm for real-time, time-shared systems. In
RTSS’96.

[36] STOICA, I., SHENKER, S., AND ZHANG, H. Core-
stateless fair queueing: Achieving approximately
fair bandwidth allocations in high speed networks.
In SIGCOMM’98.

[37] STONEBRAKER, M., AND WEISBERG, A. The

13

406 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

voltdb main memory dbms. http://voltdb.

com/.
[38] VERMA, A., PEDROSA, L. D., KORUPOLU, M.,

OPPENHEIMER, D., AND WILKES, J. Large scale
cluster management at google with borg. Eu-
rosys’15.

[39] WALDSPURGER, C. A., AND WEIHL, W. E. Lot-
tery scheduling: Flexible proportional-share re-
source management. In OSDI’94.

[40] WALDSPURGER, C. A., AND WEIHL, W. E.
Stride scheduling: deterministic proportional-share
resource management. In MIT Tech Report, 1995.

[41] ZAHARIA, M., CHOWDHURY, M., DAS, T.,
DAVE, A., MA, J., MCCAULY, M., FRANKLIN,
M. J., SHENKER, S., AND STOICA, I. Resilient
distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI’12.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 407

HUG: Multi-Resource Fairness for Correlated and Elastic Demands
Mosharaf Chowdhury1, Zhenhua Liu2, Ali Ghodsi3, Ion Stoica3

1University of Michigan 2Stony Brook University 3UC Berkeley, Databricks Inc.

Abstract
In this paper, we study how to optimally provide isola-
tion guarantees in multi-resource environments, such as
public clouds, where a tenant’s demands on different re-
sources (links) are correlated. Unlike prior work such as
Dominant Resource Fairness (DRF) that assumes static
and fixed demands, we consider elastic demands. Our
approach generalizes canonical max-min fairness to the
multi-resource setting with correlated demands, and ex-
tends DRF to elastic demands. We consider two natu-
ral optimization objectives: isolation guarantee from a
tenant’s viewpoint and system utilization (work conser-
vation) from an operator’s perspective. We prove that
in non-cooperative environments like public cloud net-
works, there is a strong tradeoff between optimal iso-
lation guarantee and work conservation when demands
are elastic. Even worse, work conservation can even de-
crease network utilization instead of improving it when
demands are inelastic. We identify the root cause be-
hind the tradeoff and present a provably optimal alloca-
tion algorithm, High Utilization with Guarantees (HUG),
to achieve maximum attainable network utilization with-
out sacrificing the optimal isolation guarantee, strategy-
proofness, and other useful properties of DRF. In co-
operative environments like private datacenter networks,
HUG achieves both the optimal isolation guarantee and
work conservation. Analyses, simulations, and experi-
ments show that HUG provides better isolation guar-
antees, higher system utilization, and better tenant-level
performance than its counterparts.

1 Introduction
In shared, multi-tenant environments such as public
clouds [2, 5, 6, 8, 40], the need for predictability and the
means to achieve it remain a constant source of discus-
sion [15, 44, 45, 50, 51, 58, 59, 61, 62]. The general con-
sensus – recently summarized by Mogul and Popa [53]
– is that tenants expect guaranteed minimum bandwidth
(i.e., isolation guarantee) for performance predictability,
while network operators strive for work conservation to
achieve high utilization and strategy-proofness to ensure
isolation.

Max-min fairness [43] – a widely-used [16, 25, 34, 35,
55, 63, 64] allocation policy – achieves all three in the
context of a single link. It provides the optimal isolation
guarantee by maximizing the minimum amount of band-
width allocated to each flow. The bandwidth allocation
of a user (tenant) determines her progress – i.e., how fast
she can complete her data transfer. It is work-conserving,

L2

L1A1

A2

B1

B2

A3

A4

B3

B4

(a)

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

(b) Max-min fair.

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(c) DRF [33]

Figure 1: Bandwidth allocations in two independent links (a)
for tenant-A (orange) with correlation vector

−→
dA = � 1

2
, 1� and

tenant-B (dark blue) with
−→
dB = �1, 1

6
�. Shaded portions are

not allocated to any tenant.

because, given enough demand, it allocates the entire
bandwidth of the link. Finally, it is strategyproof, because
tenants cannot get more bandwidth by lying about their
demands (e.g., by sending more traffic).

However, a datacenter network involves many links,
and tenants’ demands on different links are often corre-
lated. Informally, we say that the demands of a tenant on
two links i and j are correlated, if for every bit the ten-
ant sends on link-i, she sends at least α bits on link-j.
More formally, with every tenant-k, we associate a cor-
relation vector

−→
dk = �d1k, d2k, . . . , dnk �, where dik ≤ 1,

which captures the fact that for every dik bits tenant-k
sends on link-i, it should send at least djk bits on link-j.

Examples of applications with correlated demands in-
clude optimal shuffle schedules [22, 23], long-running
services [19, 52], multi-tiered enterprise applications
[39], and realtime streaming applications [10, 69]. Con-
sider the example in Figure 1a with two independent
links and two tenants. The correlation vector

−→
dA = � 12 , 1�

means that (i) link-2 is tenant-A’s bottleneck, (ii) for ev-
ery MA rate tenant-A is allocated on the bottleneck link,
she requires at least MA/2 rate on link-1, resulting in a
progress of MA, and (iii) except for the bottleneck link,
tenants’ demands are elastic, meaning tenant-A can use
more than MA/2 rate on link-1.1 Similarly, tenant-B re-
quires at least MB/6 on link-2 for MB on link-1. If we
denote the rate allocated to tenant-k on link-i by aik, then

Mk = mini

{
ai
k

di
k

}
, the minimum demand-normalized

rate allocation over all links, captures her progress.
In this paper, we want to generalize max-min fairness

to tenants with correlated and elastic demands while
maintaining its desirable properties: optimal isolation
guarantee, high utilization, and strategy-proofness.

1While it does not improve the instantaneous progress of tenant-A,
it increases network utilization, which is desired by the operators.

1

408 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Intuitively, we want to maximize the minimum
progress over all tenants, i.e., maximize mink Mk,
where mink Mk corresponds to the isolation guaran-
tee of an allocation algorithm. We make three observa-
tions. First, when there is a single link in the system,
this model trivially reduces to max-min fairness. Sec-
ond, getting more aggregate bandwidth is not always bet-
ter. For tenant-A in the example, �50Mbps, 100Mbps� is
better than �90Mbps, 90Mbps� or �25Mbps, 200Mbps�,
even though the latter ones have more bandwidth in to-
tal. Third, simply applying max-min fairness to individ-
ual links is not enough. In our example, max-min fairness
allocates equal resources to both tenants on both links,
resulting in allocations � 12 , 1

2 � on both links (Figure 1b).
Corresponding progress (MA = MB = 1

2) result in a
suboptimal isolation guarantee (min{MA,MB} = 1

2).
Dominant Resource Fairness (DRF) [33] extends max-

min fairness to multiple resources and prevents such sub-
optimality. It equalizes the shares of dominant resources
– link-2 (link-1) for tenant-A (tenant-B) – across all ten-
ants with correlated demands and maximizes the iso-
lation guarantee in a strategyproof manner. As shown
in Figure 1c, using DRF, both tenants have the same
progress – MA = MB = 2

3 , 50% higher than using
max-min fairness on individual links. Moreover, DRF’s
isolation guarantee (min{MA,MB} = 2

3) is optimal
across all possible allocations and is strategyproof.

However, DRF assumes inelastic demands [40], and it
is not work-conserving. For example, bandwidth on link-
2 in shades is not allocated to either tenant. In fact, we
show that DRF can result in arbitrarily low utilization
(Lemma 6). This is wasteful, because unused bandwidth
cannot be recovered.

We start by showing that strategy-proofness is a neces-
sary condition for providing the optimal isolation guar-
antee – i.e., to maximize mink Mk – in non-cooperative
environments (§2). Next, we prove that work conserva-
tion – i.e., when tenants are allowed to use unallocated
resources, such as the shaded area in Figure 1c, without
constraints – spurs a race to the bottom. It incentivizes
each tenant to continuously lie about her demand cor-
relations, and in the process, it decreases the amount of
useful work done by all tenants! Meaning, simply mak-
ing DRF work-conserving can do more harm than good.

We propose a two-stage algorithm, High Utilization
with Guarantees (HUG), to achieve our goals (§3). Fig-
ure 2 surveys the design space for cloud network shar-
ing and places HUG in context by following the thick
lines. At the highest level, unlike many alternatives
[13, 14, 37, 44], HUG is a dynamic allocation algo-
rithm. Next, HUG enforces its allocations at the tenant-
/network-level, because flow- or (virtual) machine-level
allocations [61, 62] do not provide isolation guarantee.

Due to the hard tradeoff between optimal isolation

Cloud Network Sharing

Dynamic Sharing

Flow-Level
(Per-Flow Fairness)

No isolation guarantee

VM-Level
(Seawall, GateKeeper)
No isolation guarantee

Tenant-/Network-Level

Non-Cooperative
Environments

Require
strategy-proofness

Highest Utilization for
Optimal Isolation Guarantee

(HUG)

Cooperative
Environments

Do not require
strategy-proofness

Reservation
(SecondNet, Oktopus, Pulsar, Silo)

Uses admission control

Low
Utilization

(DRF)
Optimal isolation guarantee

Work-Conserving
Optimal Isolation Guarantee

(HUG)

Suboptimal
Isolation Guarantee
(PS-P, EyeQ, NetShare)

Work-conserving

Figure 2: Design space for cloud network sharing.

guarantee and work conservation in non-cooperative en-
vironments, HUG ensures the highest utilization possi-
ble while maintaining the optimal isolation guarantee.
It incentivizes tenants to expose their true demands, en-
suring that they actually consume their allocations in-
stead of causing collateral damages. In cooperative en-
vironments, where strategy-proofness might be a non-
requirement, HUG simultaneously ensures both work
conservation and the optimal isolation guarantee. In
contrast, existing solutions [33, 45, 51, 58, 59] are sub-
optimal in both environments. Overall, HUG generalizes
single- [25, 43, 55] and multi-resource max-min fairness
[27, 33, 38, 56] and multi-tenant network sharing solu-
tions [45, 51, 58, 59, 61, 62] under a unifying framework.

HUG is easy to implement and scales well. Even with
100, 000 machines, new allocations can be centrally cal-
culated and distributed throughout the network in less
than a second – faster than that suggested in the litera-
ture [13]. Moreover, each machine can locally enforce
HUG-calculated allocations using existing traffic control
tools without any changes to the network (§4).

We demonstrate the effectiveness of our proposal us-
ing EC2 experiments and trace-driven simulations (§5).
In non-cooperative environments, HUG provides the op-
timal isolation guarantee, which is 7.4× higher than ex-
isting network sharing solutions like PS-P [45, 58, 59]
and 7000× higher than traditional per-flow fairness, and
1.4× better utilization than DRF for production traces. In
cooperative environments, HUG outperforms PS-P and
per-flow fairness by 1.48× and 17.35× in terms of the
95th percentile slowdown of job communication stages,
and 70% jobs experience lower slowdown w.r.t. DRF.

We discuss current limitations and future research in
Section 6 and compare HUG to related work in Section 7.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 409

M1

A1 B1
M2

A2 B2
M3

A3 B3

L1 L4 L2 L5 L3 L6

Figure 3: Two VMs from tenant-A (orange) and three from
tenant-B (dark blue) and their communication patterns over a
3 × 3 datacenter fabric. The network fabric has three uplinks
(L1–L3) and three downlinks (L4–L6) corresponding to the
three physical machines.

2 Motivation
In this section, we elaborate on the assumptions and no-
tations used in this paper and summarize the three de-
sirable requirements – optimal isolation guarantee, high
utilization, proportionality – for bandwidth allocation
across multiple tenants. Later, we show the tradeoff be-
tween optimal isolation guarantee and high utilization,
identifying work conservation as the root cause.

2.1 Background
We consider Infrastructure-as-a-Service (e.g., EC2 [2],
Azure [8], and Google Compute [5]) and Container-as-
a-Service (e.g., Mesos [40] and Kubernetes [6]) models
where tenants pay per-hour flat rates for virtual machines
(VMs) and containers.2

We abstract out the datacenter network as a non-
blocking switch (i.e., the fabric/hose model [11, 12, 14,
23, 28, 45, 49]) with P physical machines connected to
it. Each machine has full-duplex links (i.e., 2P indepen-
dent links) and can host one or more VMs from different
tenants. Figure 3 shows an example. We assume that VM
placement and routing are implemented independently.
Not only does this model provide analytical simplicity,
it is mostly a reality today: recent EC2 and Google data-
centers have full bisection bandwidth networks [4, 7].

We denote the correlation vector of the k-th tenant
(k ∈ {1, ...,M}) as

−→
dk = �d1k, d2k, . . . d2Pk �, where dik

and dP+i
k (1 ≤ i ≤ P) respectively denote the uplink

and downlink demands normalized3 by link capacities

2We use the terms VM and container interchangeably in this paper
because they are similar from the network’s perspective.

3Normalization helps us consider heterogeneous capacities. By de-
fault we normalize the correlation vector such that the largest compo-
nent equals to 1 unless otherwise specified.

−→
dk Correlation vector of tenant-k’s demand
−→ak Guaranteed allocation to tenant-k

Mk Progress of tenant-k; Mk := min
1≤i≤2P

{
ai
k

dik

}
,

where subscript i stands for link-i
−→ck Actual resource consumption of tenant-k

Isolation Guarantee mink Mk

Optimal Isolation Guarantee max {mink Mk}
(Network) Utilization

∑
i

∑
k c

i
k

Table 1: Important notations and definitions.

(Ci) and
∑P

i=1 d
i
k =

∑P
i=1 d

P+i
k .

For the example in Figure 3, consider tenant correla-
tion vectors:

−→
dA = �1

2
, 1, 0, 1,

1

2
, 0�

−→
dB = �1, 1

6
, 0, 0, 1,

1

6
�

where dik = 0 indicates the absence of a VM and dik = 1
indicates the bottleneck link(s) of a tenant.

Correlation vectors depend on tenant applications, that
can range from elastic-demand batch jobs [3, 24, 42, 68]
to long-running services [19, 52], multi-tiered enterprise
applications [39], and realtime streaming applications [9,
69] with inelastic demands. We focus on scenarios where
a tenant’s demand changes at the timescale of seconds or
longer [13, 18, 58], and she can use provider-allocated
resources in any way for her own workloads.

2.2 Inter-Tenant Network Sharing
Requirements

Given correlation vectors of M tenants, a cloud provider
must use an allocation algorithm A to determine the al-
locations of each tenant:

A({−→d1,−→d2, . . . ,−→dM}) = {−→a1,−→a2, . . . ,−→aM}

where −→ak = �a1k, a2k, . . . a2Pk � and aik is the fraction of
link-i guaranteed to the k-th tenant.

As identified in previous work [15, 58], any allocation
policy A must meet three requirements – (optimal) isola-
tion guarantee, high utilization, and proportionality – to
fairly share the cloud network:
1. Isolation Guarantee: VMs should receive minimum

bandwidth guarantees proportional to their correla-
tion vectors so that tenants can estimate worst-case
performance. Formally, progress of tenant-k (Mk)
is defined as her minimum demand satisfaction ratio
across the entire fabric:

Mk = min
1≤i≤2P

{
aik
dik

}

3

410 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

Figure 4: Bandwidth consumptions of tenant-A (orange) and
tenant-B (dark blue) with correlation vectors

−→
dA = � 1

2
, 1� and−→

dB = �1, 1
6
� using PS-P [45, 58, 59]. Both tenants run elastic-

demand applications.

For example, progress of tenants A and B in Figure 4
are MA = MB = 1

2 .4 Note that Mk = 1
M if

−→
dk =

�1, 1, . . . , 1� for all tenants (generalizing PS-P [58]),
and Mk = 1

M for flows on a single link (generalizing
per-flow max-min fairness [43]).
Isolation guarantee is defined as the lowest progress
across all tenants, i.e., min

k
Mk.

2. High Utilization: Spare network capacities should
be utilized by tenants with elastic demands to ensure
high utilization as long as it does not decrease any-
one’s progress.
A related concept is work conservation, which en-
sures that either a link is fully utilized or demands
from all flows traversing the link have been satisfied
[43, 58]. Although existing research conflates the two
[14, 15, 45, 51, 58, 59, 61, 62, 67], we show in the
next section why that is not the case.

3. Proportionality: A tenant’s bandwidth allocation
should be proportional to its payment similar to re-
sources like CPU and memory. We discuss this re-
quirement in more details in Section 3.3.1.

2.3 Challenges and Inefficiencies of
Existing Allocation Policies

Prior work also identified two tradeoffs: isolation guar-
antee vs. proportionality and high utilization vs. propor-
tionality. However, it has been implicitly assumed that
tenant-level optimal isolation guarantee5 and network-
level work conservation can coexist. Although optimal
isolation guarantee and network-level work conservation
can coexist for a single link – max-min fairness is an ex-
ample – optimal isolation guarantee and work conser-
vation can be at odds when we consider the network as
a whole. This has several implications on both isolation
guarantee and network utilization. In particular, we can
(1) either optimize utilization, then maximize the isola-

4We are continuing the example in Figure 3 but omitted the rest of−→ak , because there is either no contention or they are symmetric.
5Optimality means that the allocation maximizes the isolation guar-

antee across all tenants, i.e., maximize
{
min
k

Mk

}
.

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(a) Optimal isolation guarantee

100%

50%

0% 1/2

1/2 11/12

1/12
L1 L2

(b) Tenant-A lies

100%

50%

0%
3/4

1/4 1/2

1/2
L1 L2

(c) Tenant-B lies

100%

50%

0% L1 L2
1/2

1/2 1/2

1/2

(d) Both lie

Figure 5: Bandwidth consumptions of tenant-A (orange) and
tenant-B (dark blue) with correlation vectors

−→
dA = � 1

2
, 1�

and
−→
dB = �1, 1

6
�, when both run elastic-demand applications.

(a) Optimal isolation guarantee in the absence of work con-
servation. With work conservation, (b) tenant-A increases her
progress at the expense of tenant-B, and (c) tenant-B can do
the same, which results in (d) a prisoner’s dilemma.

tion guarantee with best effort; or (2) optimize the iso-
lation guarantee, then maximize utilization with best ef-
fort.6 Please refer to Appendix C for more details.

2.3.1 Full Utilization but Suboptimal Isolation
Guarantee

As shown in prior work [58, Section 2.5], flow-level
and VM-level mechanisms – e.g., per-flow, per source-
destination pair [58], and per-endpoint fairness [61, 62]
– can easily be manipulated by creating more flows or
by using denser communication patterns. To avoid such
manipulations, many allocation mechanisms [45, 58, 59]
equally divide link capacities at the tenant level and allow
work conservation for tenants with unmet demands. Fig-
ure 4 shows an allocation using PS-P [58] with isolation
guarantee 1

2 . If both tenants have elastic-demand appli-
cations, they will consume entire allocations; i.e., −→cA =−→cB = −→aA = −→aB = � 12 , 1

2 �, where −→ck = �c1k, c2k, . . . c2Pk �
and cik is the fraction of link-i consumed by tenant-k.
Recall that aik is the guaranteed allocation of link-i to
tenant-k.

However, PS-P and similar mechanisms are also sub-
optimal. For the ongoing example, Figure 5a shows the
optimal isolation guarantee of 2

3 , which is higher than
that provided by PS-P. In short, full utilization does not
necessarily imply optimal isolation guarantee!

6Maximizing a combination of these two is also an interesting fu-
ture direction.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 411

2
3

2
3

, 11
12

1
2

,
1
2

3
4

, 1
2

1
2

,

Tenant-A

Te
na

nt
-B

LiesDoesn’t Lie

Doesn’t Lie

Lies

Figure 6: Payoff matrix for the example in Section 2.3. Each
cell shows progress of tenant-A and tenant-B.

2.3.2 Optimal Isolation Guarantee but Low
Utilization

In contrast, optimal isolation guarantee does not neces-
sarily mean full utilization. In general, optimal isolation
guarantees can be calculated using DRF [33], which gen-
eralizes max-min fairness to multiple resources. In the
example of Figure 5a, each uplink and downlink of the
fabric is an independent resource – 2P in total.

Given this premise, it seems promising and straightfor-
ward to keep the DRF-component for optimal isolation
guarantee and strategy-proofness and try to ensure full
utilization by allocating all remaining resources.In the
following two subsections, we show that work conserva-
tion may render isolation guarantee no longer optimal,
and even worse, may reduce useful network utilization.

2.3.3 Naive Work Conservation Reduces Optimal
Isolation Guarantee

We first illustrate that even the optimal isolation guar-
antee allocation degenerates into the classic prisoner’s
dilemma problem [30] in the presence of work conser-
vation. In particular, we show that reporting a false cor-
relation vector �1, 1� is the dominant strategy for each
tenant, i.e., her best option, no matter whether the other
tenants tell the truth or not. As a consequence, optimal
isolation guarantees decrease (Figure 6).

If tenant-A can use the spare bandwidth in link-2, she
can increase her progress at the expense of tenant-B by
changing her correlation vector to

−→
d′A = �1, 1�. With an

unmodified
−→
dB = �1, 1

6 �, the new allocation would be−→aA = � 12 , 1
2 � and −→aB = � 12 , 1

12 �. However, work con-
servation would increase it to −→aA = � 12 , 11

12 � (Figure 5b).
Overall, progress of tenant-A would increase to 11

12 , while
decreasing it to 1

2 for tenant-B. As a result, the isolation
guarantee decreases from 2

3 to 1
2 .

The same is true for tenant-B as well. Consider again
that only tenant-B reports a falsified correlation vector−→
d′B = �1, 1� to receive a favorable allocation: −→aA =
� 14 , 1

2 � and −→aB = � 12 , 1
2 �. Work conservation would in-

crease it to −→aB = � 34 , 1
2 � (Figure 5c). Overall, progress

of tenant-B would increase to 3
4 , while decreasing it to 1

2
for tenant-A, resulting in the same suboptimal isolation
guarantee 1

2 .
Since both tenants gain by lying, they would both si-

100%

50%

0% L1 L2
2/3

1/3 2/3

1/9

(a) Optimal isolation guarantee

100%

50%

0% L1 L2
1/2 1/12

11/1211/24

(b) Tenant-A lies

100%

50%

0%
3/4

1/4 1/2

1/8
L1 L2

(c) Tenant-B lies

100%

50%

0% 1/2

1/4 1/2

1/12
L1 L2

(d) Both lie

Figure 7: Bandwidth consumptions of tenant-A (orange) and
tenant-B (dark blue) with correlation vectors

−→
dA = � 1

2
, 1�

and
−→
dB = �1, 1

6
�, when neither runs elastic-demand applica-

tions. (a) Optimal isolation guarantee allocation is not work-
conserving. With work conservation, (b) utilization can in-
crease or (c) decrease, based on which tenant lies. (d) However,
ultimately it lowers utilization. Shaded means unallocated.

multaneously lie:
−→
d′A =

−→
d′B = �1, 1�, resulting in a lower

isolation guarantee 1
2 (Figure 5d). Both are worse off!

In this example, the inefficiency arises due to allocat-
ing all spare resources to the tenant who demands more.
We show in Appendix B that intuitive allocation poli-
cies of all spare resources – e.g., allocating all to who
demands the least, allocating equally to all tenants with
non-zero demands, and allocating proportionally to ten-
ants’ demands – do not work as well.

2.3.4 Naive Work Conservation can Even Decrease
Utilization

Now consider that neither tenant has elastic-demand ap-
plications; i.e., they can only consume bandwidth pro-
portional to their correlation vectors. A similar prisoner’s
dilemma unfolds (Figure 6), but this time, network uti-
lization decreases as well.

Given the optimal isolation guarantee allocation, −→aA =−→cA = � 13 , 2
3 � and −→aB = −→cB = � 23 , 1

9 �, both tenants have
the same optimal isolation guarantee: 2

3 , and 2
9 -th of link-

2 remain unused (Figure 7a). One would expect work
conservation to utilize this spare capacity.

Same as before, if tenant-A changes her correlation
vector to d′A = �1, 1�, she can receive an allocation−→aA = � 12 , 11

12 � and consume −→cA = � 1124 , 11
12 �. This in-

creases her isolation guarantee to 11
12 and total network

utilization increases (Figure 7b).
Similarly, tenant-B can receive an allocation −→aB =

� 34 , 1
2 � and consume −→cB = � 34 , 1

8 � to increase her isola-

5

412 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

100%

50%

0% L1 L2
2/3

1/3 2/3

1/3

Figure 8: Optimal allocations with maximum achievable uti-
lizations and maximum isolation guarantees for tenant-A (or-
ange) and tenant-B (dark blue).

tion guarantee to 3
4 . Utilization decreases (Figure 7c).

Consequently, both tenants lie and consume −→cA =
� 14 , 1

2 � and −→cB = � 12 , 1
12 � (Figure 7d). Instead of increas-

ing, work conservation decreases network utilization!

2.4 Summary
The primary takeaways of this section are the following:
• Existing mechanisms provide either suboptimal iso-

lation guarantees or low network utilization.
• There exists a strong tradeoff between optimal isola-

tion guarantee and high utilization in a multi-tenant
network. The key lies in strategy-proofness: optimal
isolation guarantee requires it, while work conserva-
tion nullifies it. We provide a formal result about this
(Corollary 2) in the next section.

• Unlike single links, work conservation can decrease
network utilization instead of increasing it.

3 HUG: Analytical Results
In this section, we show that despite the tradeoff between
optimal isolation guarantee and work conservation, it is
possible to increase utilization to some extent. Moreover,
we present HUG, the optimal algorithm to ensure max-
imum achievable utilization without sacrificing optimal
isolation guarantees and strategy-proofness of DRF.

We defer the proofs from this section to Appendix A.

3.1 Root Cause Behind the Tradeoff:
Unrestricted Sharing of Spare
Resources

Going back to Figure 5, both tenants were incentivized to
lie because they were receiving spare resources without
any restriction due to the pursuit of work conservation.

After tenant-A lied in Figure 5b, both MA and MB

decreased to 1
2 . However, by cheating, tenant-A managed

to increase her allocation in link-1 to 1
2 from 1

3 . Next,
indiscriminate work conservation increased her alloca-
tion in link-2 to 11

12 from the initial 1
2 , effectively increas-

ing MA to 11
12 . Similarly in Figure 5c, tenant-B first in-

creased her allocation in link-2 to 1
2 from 1

9 and then
work conservation increased her allocation in link-1 to
3
4 from the initial 1

2 .

Algorithm 1 High Utilization with Guarantees (HUG)

Input: {−→dk}: reported correlation vector of tenant-k, ∀k
Output: {−→ak}: guaranteed resource allocated to tenant-k, ∀k

Stage 1: Calculate the optimal isolation guarantee (M∗)
and minimum allocations −→ak = M∗−→dk, ∀k

Stage 2: Restrict maximum utilization for each of
the 2P links, such that cik ≤ M∗, ∀i, ∀k

Consequently, we must eliminate a tenant’s incentive
to gain too much spare resources by lying; i.e., a ten-
ant should never be able to manipulate and increase her
progress due to work conservation.

Lemma 1 Any allocation policy with the following two
characteristics is not strategyproof:
1. it first uses DRF to ensure the optimal isolation guar-

antee and then assigns the spare, DRF-unallocated
resources for work conservation;

2. there exists at least one tenant whose allocation (in-
cluding spare) on some link is more than her progress
under DRF based on her reported correlation vector.

Corollary 2 (of Lemma 1) Optimal isolation guaran-
tee allocations cannot always be work-conserving even
in the presence of elastic-demand applications. �

3.2 The Optimal Algorithm: HUG
Given the tradeoff, our goal is to design an allocation
algorithm that can achieve the highest utilization while
keeping the optimal isolation guarantee and strategy-
proofness. Formally, we want to design an algorithm to

Maximize
∑

i∈[1,2P]

∑
k∈[1,M]

cik

subject to min
k∈[1,M]

Mk = M∗,
(1)

where cik is the actual consumption7 of tenant-k on link-i
for allocation aik, and M∗ is the optimal isolation guar-
antee.

We observe that an optimal algorithm would have re-
stricted tenant-A’s progress in Figure 5b and tenant-B’s
progress in Figure 5c to 2

3 . Consequently, they would not
have been incentivized to lie and the prisoner’s dilemma
could have been avoided. Algorithm 1 – referred to as
High Utilization with Guarantees (HUG) – is such a
two-stage allocation mechanism that guarantees maxi-
mum utilization while maximizing the isolation guaran-
tees across tenants and is strategyproof.

In the first stage, HUG allocates resources to maxi-
mize isolation guarantees across tenants. To achieve this,
we pose our problem as a 2P -resource fair sharing prob-
lem and use DRF [33, 56] to calculate M∗. By reserving

7Consumptions can differ from allocations when tenants are lying.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 413

these allocations, HUG ensures isolation. Moreover, be-
cause DRF is strategy-proof, tenants are guaranteed to
use these allocations (i.e., cik ≥ aik).

While DRF maximizes the isolation guarantees (a.k.a.
dominant shares), it results in low network utilization.
In some cases, DRF may even have utilization arbitrar-
ily close to zero, and HUG can increase that to 100%
(Lemma 6).

To achieve this, the second stage of HUG maxi-
mizes utilization while still keeping the allocation strat-
egyproof. In this stage, we calculate upper bounds to re-
strict how much of the spare capacity a tenant can use in
each link, with the constraint that the largest share across
all links cannot increase (Lemma 1). As a result, Algo-
rithm 1 remains strategy-proofness across both stages.
Because spare usage restrictions can be applied locally,
HUG can be enforced in individual machines.

Illustrated in Figure 8, the bound is set at 2
3 for both

tenants, and tenant-B can use its elastic demand on link-
2’s spare resource, while tenant-A cannot as she has
reached its bound on link-2.

3.3 HUG Properties
We list the main properties of HUG in the following.
1. In non-cooperative cloud environments, HUG is

strategyproof (Theorem 3), maximizes isolation
guarantees (Corollary 4), and ensures the highest
utilization possible for an optimal isolation guaran-
tee allocation (Theorem 5). In particular, Lemma 6
shows that under some cases, DRF may have utiliza-
tion arbitrarily close to 0, and HUG improves it to
100%. We defer the proofs of properties in the Sec-
tion to Appendix A.

2. In cooperative environments like private datacenters,
HUG maximizes isolation guarantees and is work-
conserving. Work conservation is achievable because
strategy-proofness is a non-requirement in this case.

3. Because HUG provides optimal isolation guarantee,
it provides min-cut proportionality (§ 3.3.1) in both
non-cooperative and cooperative environments.

Regardless of resource types, the identified tradeoff
exists in general multi-resource allocation problems and
HUG can directly be applied.

3.3.1 Min-Cut Proportionality

Prior work promoted the notion of proportionality [58],
where tenants would expect to receive total allocations
proportional to their number of VMs regardless of com-
munication patterns. Meaning, two tenants, each with
N VMs, should receive equal bandwidth even if tenant-
X has an all-to-all communication pattern (i.e.,

−→
dX =

�1, 1, . . . , 1�) and tenant-Y has an N -to-1 pattern (i.e.,
exactly one 1 in

−→
dY and the rest are zeros). Figure 9

… …

(a) Tenant-X (N-to-N)
… …

(b) Tenant-Y (N-to-1)

Figure 9: Communication patterns of tenant-X and tenant-Y
with (a) two minimum cuts of size P , where P is the number
of fabric ports, and (b) one minimum cut of size 1. The size
of the minimum cut of a communication pattern determines its
effective bandwidth even if it were placed alone.

shows an example. Clearly, tenant-Y will be bottle-
necked at her only receiver; trying to equalize them will
only result in low utilization. As expected, FairCloud
proved that such proportionality is not achievable as it
decreases both isolation guarantee and utilization [58].
None of the existing algorithms provide proportionality.

Instead, we consider a relaxed notion of proportional-
ity, called min-cut proportionality, that depends on com-
munication patterns and ties proportionality with a ten-
ant’s progress. Specifically, each tenant receives mini-
mum bandwidth proportional to the size of the minimum
cut [31] of their communication patterns. Meaning, in the
earlier example, tenant-X would receive P times more
total bandwidth than tenant-Y, but they would have the
optimal isolation guarantee (MX = MY = 1

2).
Min-cut proportionality and optimal isolation guaran-

tee can coexist, but they both have tradeoffs with work
conservation.

4 Design Details
This section discusses how a cloud operator can imple-
ment, enforce, and expose HUG to the tenants (§4.1),
how to exploit placement to further improve HUG’s per-
formance (§4.2), and how HUG can handle weighted,
heterogeneous scenarios (§4.3).

4.1 Architectural Overview
HUG can easily be implemented atop existing moni-
toring infrastructure of cloud operators (e.g., Amazon
CloudWatch [1]). Tenants would periodically update
their correlation vectors through a public API, and the
operator would compute new allocations and update en-
forcing agents within milliseconds.

HUG API The tenant-facing API simply transfers a
tenant’s correlation vector (

−→
dk) to the operator.

−→
dk =

�1, 1, . . . , 1� is used as the default correlation vector. By
design, HUG incentivizes tenants to report and maintain
accurate correlation vectors. This is because the more ac-
curate it is – instead of the default

−→
dk = �1, 1, . . . , 1� –

7

414 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the higher are her progress and performance.
Many applications already know their long-term pro-

files (e.g., multi-tier online services [19, 52]) and others
can calculate on the fly (e.g., bulk communication data-
intensive applications [22, 23]). Moreover, existing tech-
niques in traffic engineering can provide good accuracy
in estimating and predicting demand matrices for coarse
time granularities [17, 18, 20, 47, 48].

Centralized Computation For any update, the oper-
ator must run Algorithm 1. Although Stage-1 requires
solving a linear program to determine the optimal isola-
tion guarantee (i.e., the DRF allocation) [33], it can also
be rewritten as a closed-form equation [56] when tenants
can scale up and down following their normalized corre-
lation vectors. The progress of all tenants after Stage-1
of Algorithm 1 – the optimal isolation guarantee – is:

M∗ =
1

max
1≤i≤2P

M∑
k=1

dik
(2)

Equation (2) is computationally inexpensive. For our
100-machine cluster, calculating M∗ takes about 5 mi-
croseconds. Communicating the decision to all 100 ma-
chines takes just 8 milliseconds and to 100, 000 (emu-
lated) machines takes less than 1 second (§5.1.2).

The guaranteed minimum allocations of tenant-k can
then be calculated as aik = M∗dik for all 1 ≤ i ≤ 2P .

Local Enforcement Enforcement in Stage-2 of Algo-
rithm 1 is simple as well. After reserving the minimum
uplink and downlink allocations for each tenant, each
machine needs to ensure that no tenant can consume
more than M∗ fraction of the machine’s up or down link
capacities (Ci) to the network; i.e., aik ≤ cik ≤ M∗.
The spare is allocated among tenants using local max-
min fairness subject to tenant-specific upper-bounds.

Because we only care about inter-tenant behavior – not
how a tenant performs internal sharing – stock Linux
tc is sufficient (§5). A tenant has the flexibility to
choose from traditional per-flow fairness, shortest-first
flow scheduling [12, 41], or explicit rate-based flow con-
trol [29].

4.2 VM Placement and
Re-Placement/Migration

While M∗ is optimal for a given placement, it can be im-
proved by changing the placement of tenant VMs based
on their correlation vectors. One must perform load bal-
ancing across all machines to minimize the denominator
of Equation (2). Cloud operators can employ optimiza-
tion frameworks like [19] to perform initial VM place-
ment and periodic migrations with an additional load
balancing constraint. However, VM placement is a noto-
riously difficult problem because of often-incompatible

constraints like fault-tolerance and collocation [19], and
we consider its detailed study an important future work.
It is worth noting that with any VM placement, HUG pro-
vides the highest attainable utilization without sacrificing
optimal isolation guarantee and strategy-proofness.

4.3 Additional Constraints
Weighted Tenants Giving preferential treatment to
tenants is simple. Just using wk

−→
dk instead of

−→
dk in Equa-

tion (2) would account for tenant weights (wk for tenant-
k) in calculating M∗.

Heterogeneous Capacities Because allocations are
calculated independently in each machine based on M∗

and local capacities (Ci), HUG supports heterogeneous
link capacities.

Bounded Demands So far we have considered only
elastic tenants. If tenant-k has bounded demands, i.e.,
dik < 1 for all i ∈ [1, 2P], calculating a common M∗

and corresponding −→ak in one round using Equation (2)
will be inefficient. This is because tenant-k might require
less than the calculated allocation, and being bounded,
she cannot elastically scale up to use it. Instead, we must
use the multi-round DRF algorithm [56, Algorithm 1] in
Stage-1 of HUG; Stage-2 will remain the same. Note that
this is similar to max-min fairness in a single link when
a flow has a smaller demand than its 1

n -th share.

5 Evaluation
We evaluated HUG using trace-driven simulations and
EC2 deployments. Our results show the following:
• HUG isolates multiple tenants across the entire net-

work, and it can scale up to 100, 000 machines with
less than one second overhead (§5.1).

• HUG ensures the optimal isolation guarantee – al-
most 7000× more than per-flow fairness and about
7.4× more than PS-P in production traces – while
providing 1.4× higher utilization than DRF (§5.2).

• HUG outperforms per-flow fairness (PS-P) by
17.35× (1.48×) in terms of the 95th percentile slow-
down and by 1.49× (1.14×) in minimizing the aver-
age shuffle completion time (§5.3).

• HUG outperforms Varys [23] in terms of the maxi-
mum shuffle completion time by 1.77×, even though
Varys is 1.45× better in minimizing the average shuf-
fle completion time and 1.33× better in terms of the
95th percentile slowdown (§5.3).

We present our results in three parts. First, we mi-
crobenchmark HUG on 100-machine EC2 clusters to
evaluate HUG’s guarantees and overheads (§5.1). Sec-
ond, we leverage traces collected from a 3200-machine
Facebook cluster by Popa et al. [58] to compare HUG’s
instantaneous allocation characteristics with that of per-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 415

0

50

100

0 60 120 180 240 300 360 420 480 540

To
ta

l A
llo

c
(G

bp
s)

Time (Seconds)

Tenant A
Tenant B
Tenant C

(a) Per-flow Fairness (TCP)

0

50

100

0 60 120 180 240 300 360 420 480 540

To
ta

l A
llo

c
(G

bp
s)

Time (Seconds)

Tenant A
Tenant B
Tenant C

(b) HUG

Figure 10: [EC2] Bandwidth consumptions of three tenants arriving over time in a 100-machine EC2 cluster. Each tenant has 100
VMs, but each uses a different communication pattern (§5.1.1). We observe that (a) using TCP, tenant-B dominates the network by
creating more flows; (b) HUG isolates tenants A and C from tenant B.

flow fairness, PS-P [58], and DRF [33] (§5.2). Finally,
we evaluate HUG’s long-term impact on application per-
formance using a 3000-machine Facebook cluster trace
used by Chowdhury et al. [23] and compare against per-
flow fairness, PS-P, DRF, as well as Varys, which focuses
only on improving performance (§5.3).

5.1 Testbed Experiments
Methodology We performed our experiments on 100
m2.4xlarge Amazon EC2 [2] instances running on
Linux kernel 3.4.37 and used the default htb and tc im-
plementations. While there exist proposals for more ac-
curate qdisc implementations [45, 57], the default htb
worked sufficiently well for our purposes. Each of the
machines had 1 Gbps NICs, and we could use close to
full 100 Gbps bandwidth simultaneously.

5.1.1 Network-Wide Isolation

We consider a cluster with 100 EC2 machines, divided
between three tenants A, B, and C that arrive over time.
Each tenant has 100 VMs; i.e., VMs Ai, Bi, and Ci

are collocated on the i-th physical machine. However,
they have different communication patterns: tenants A
and C have pairwise one-to-one communication patterns
(100 VM-VM flows each), whereas tenant-B follows
an all-to-all pattern using 10, 000 flows. Specifically, Ai

communicates with A(i+50)%100, Cj communicates with
C(j+25)%100, and any Bk communicates with all Bl,
where i, j, k, l ∈ {1, ..., 100}. Each tenant demands the
entire capacity at each machine; hence, the entire capac-
ity of the cluster should be equally divided among the
active tenants to maximize isolation guarantees.

Figure 10a shows that as soon as tenant-B arrives, she
takes up the entire capacity in the absence of isolation
guarantee. Tenant-C receives only marginal share as she
arrives after tenant-B and leaves before her. Note that
tenant-A (when alone) uses only about 80% of the avail-
able capacity; this is simply because just one TCP flow
per VM-VM pair often cannot saturate the link.

Figure 10b presents the allocation using HUG. As ten-
ants arrive and depart, allocations are dynamically calcu-

lated, propagated, and enforced in each machine of the
cluster. As before, tenants A and C use marginally less
than their allocations because of creating only one flow
between each VM-VM pair.

5.1.2 Scalability

The key challenge in scaling HUG is its centralized re-
source allocator, which must recalculate tenant shares
and redistribute them across the entire cluster whenever
any tenant changes her correlation vector.

We found that the time to calculate new allocations us-
ing HUG is less than 5 microseconds in our 100 machine
cluster. Furthermore, a recomputation due to a tenant’s
arrival, departure, or change of correlation vector would
take about 8.6 milliseconds on average for a 100, 000-
machine datacenter.

Communicating a new allocation takes less than 10
milliseconds to 100 machines and around 1 second for
100, 000 emulated machines (i.e., sending the same mes-
sage 1000 times to each of the 100 machines).

5.2 Instantaneous Fairness
While Section 5.1 evaluated HUG in controlled, syn-
thetic scenarios, this section focuses on HUG’s instanta-
neous allocation characteristics in the context of a large-
scale cluster.

Methodology We use a one-hour snapshot with 100
concurrent jobs from a production MapReduce trace,
which was extracted from a 3200-machine Facebook
cluster by Popa et al. [58, Section 5.3]. Machines are con-
nected to the network using 1 Gbps NICs. In the trace, a
job with M mappers and R reducers – hence, the corre-
sponding M × R shuffle – is described as a matrix with
the amount of data to transfer between each M -R pair.
We calculated the correlation vectors of individual shuf-
fles from their communication matrices ourselves using
the optimal rate allocation algorithm for a single shuffle
[22, 23], ensuring all the flows of each shuffle to finish
simultaneously.

Given the workload, we calculate progress of each
job/shuffle using different allocation mechanisms and

9

416 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Fr
ac

tio
n

of
 S

hu
f

es

Progress (Gbps)

Per-Flow Fairness
PS-P
HUG
DRF

(a) Distribution of progress

0

0.5

1

1.5

2

2.5

Pe
r-

Fl
ow

PS
-P

H
U

G
D

R
FTo

ta
l A

llo
ca

tio
n

(T
bp

s)

(b) Total allocation

0

0.5

1

0.0001 0.001 0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 S

hu
f

es

Aggregate Bandwidth (Gbps)

Per-Flow Fairness
PS-P
HUG
DRF

(c) Distribution of allocations

Figure 11: [Simulation] HUG ensures higher isolation guarantee than high-utilization schemes like per-flow fairness and PS-P, and
provides higher utilization than multi-resource fairness schemes like DRF.

cross-examine characteristics like isolation guarantee,
utilization, and proportionality.

5.2.1 Impact on Progress

Figure 11a presents the distribution of progress of each
shuffle. Recall that the progress of a shuffle – we con-
sider each shuffle an individual tenant in this section – is
the amount of bandwidth it is receiving in its bottleneck
up or downlink (i.e., progress can be at most 1 Gbps).
Both HUG and DRF (overlapping vertical lines in Fig-
ure 11a) ensure the same progress (0.74 Gbps) for all
shuffles. Note that despite same progress, shuffles will
finish at different times based on how much data each
one has to send (§5.3). Per-flow fairness and PS-P pro-
vide very wide ranges: 112 Kbps to 1 Gbps for the former
and 0.1 Gbps to 1 Gbps for the latter. Shuffles with many
flows crowd out the ones with fewer flows under per-flow
fairness, and PS-P suffers by ignoring correlation vectors
and through indiscriminate work conservation.

5.2.2 Impact on Utilization

By favoring heavy tenants, per-flow fairness and PS-P do
succeed in their goals of increasing network utilization
(Figure 11b). Given the communication patterns of the
workload, the former utilizes 69% of 3.2 Tbps total ca-
pacity across all machines and the latter utilizes 68.6%.
In contrast, DRF utilizes only 45%. HUG provides a
common ground by extending utilization to 62.4% with-
out breaking strategy-proofness and providing optimal
isolation guarantee.

Figure 11c breaks down total allocations of each shuf-
fle and demonstrates two high-level points:
1. HUG ensures overall higher utilization (1.4× on

average) than DRF by ensuring equal progress for
smaller shuffles and by using up additional band-
width for larger shuffles. It does so while ensuring
the same optimal isolation guarantee as DRF.

2. Per-flow fairness crosses HUG at the 90-th per-
centile; i.e., the top 10% shuffles receive more band-

Bin 1 (SN) 2 (LN) 3 (SW) 4 (LW)

% of Shuffles 52% 16% 15% 17%

Table 2: Shuffles binned by their lengths (Short and Long) and
widths (Narrow and Wide).

width than they do under HUG, while the other 90%
receive less than they do using HUG. PS-P crosses
over at the 76-th percentile.

5.2.3 Impact on Proportionality

A collateral benefit of HUG is that tenants receive allo-
cations proportional to their bottleneck demands. Con-
sequently, despite the same progress across all shuffles
(Figure 11a), their total allocations vary (Figure 11c)
based on the size of minimum cuts in their communi-
cation patterns.

5.3 Long-Term Characteristics
We have shown in Section 5.2 that HUG provides opti-
mal isolation guarantee in the instantaneous case. How-
ever, similar to all instantaneous solutions [33, 43, 58],
HUG does not provide any long-term isolation or fair-
ness guarantees. Consequently, in this section, we eval-
uate HUG’s long-term impact on performance using a
production trace through simulations.

Methodology For these simulations, we use a MapRe-
duce/Hive trace from a 3000-machine production Face-
book cluster. The trace includes the arrival times, com-
munication matrices, and placements of tasks of over
10, 000 shuffle during one day. Shuffles in this trace have
diverse length (i.e., size of the longest flow) and width
(i.e., the number of flows) characteristics and roughly
follow the same distribution of the original trace (Ta-
ble 2). We consider a shuffle to be short if its longest
flow is less than 5 MB and narrow if it has at most 50
flows; we use the same categorization. We calculated the
correlation vector of each shuffle as we did before (§ 5.2).

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 417

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

Fr
ac

tio
n

of
 C

of
lo

w
s

Slowdown w.r.t. Minimum Required Completion Time

Per-Flow Fairness
PS-P
HUG
DRF
Varys

(a) CDFs

Min 95th AVG STDEV

Per-Flow Fairness 1 69.4 15.52 65.54

PS-P 1 5.9 2.22 2.97

HUG 1 4.0 1.86 2.25

DRF 1 4.4 2.11 2.66

Varys 1 3.0 1.43 0.99

(b) Summaries

Figure 12: [Simulation] Slowdowns of shuffles using different
mechanisms w.r.t. the minimum completion times of each shuf-
fle. The X-axis of (a) is in log scale.

4.
80

6.
15

1.
33

1.
31 1.
49

1.
19

1.
27

1.
11

1.
14

1.
14

1.
13

1.
13

1.
11

1.
15

1.
14

1.
00

0.
74

0.
76

0.
68

0.
69

0
1
2
3
4
5
6
7
8

Bin 1 Bin 2 Bin 3 Bin 4 ALLN
or

m
al

iz
ed

 C
om

p.
 T

im
e

Shuffle Type

Per-Flow Fairness
PS-P
DRF
Varys

Figure 13: [Simulation] Average shuffle completion times nor-
malized by HUG’s average completion time. 95-th percentile
plots are similar.

Metrics We consider two metrics: 95th percentile
slowdown and average shuffle completion time to respec-
tively measure long-term progress and performance char-
acteristics.

We define the slowdown of a shuffle as its completion
time due to a scheme normalized by its minimum com-
pletion time if it were running alone; i.e.,

Slowdown =
Compared Duration
Minimum Duration

The minimum value of slowdown is one.
We measure performance as the shuffle completion

time of a scheme normalized by that using HUG; i.e.,

Normalized Comp. Time =
Compared Duration

HUG’s Duration

If the normalized completion time of a scheme is greater
(smaller) than one, HUG is faster (slower).

5.3.1 Improvements Over Per-Flow Fairness

HUG improves over per-flow fairness both in terms of
slowdown and performance. The 95th percentile slow-
down using HUG is 17.35× better than that of per-flow
fairness (Table 12b). Overall, HUG provides better slow-
down across the board (Figure 12a) – 61% shuffles are
better off using HUG and the rest remain the same.

HUG improves the average completion time of shuf-
fles by 1.49× (Figure 13). The biggest wins comes from
bin-1 (4.8×) and bin-2 (6.15×) that include the so-called
narrow shuffles with less than 50 flows. This reinforces
the fact that HUG isolates tenants with fewer flows from
those with many flows. Overall, HUG performs well
across all bins.

5.3.2 Improvements Over PS-P

HUG improves over PS-P in terms of the 95th percentile
slowdown by 1.48×, and 45% shuffles are better off
using HUG. HUG also providers better average shuf-
fle completion times than PS-P for an overall improve-
ment of 1.14×. Large improvements again come in bin-
1 (1.19×) and bin-2 (1.27×) because PS-P also favors
tenants with more flows.

Note that instantaneous high utilization of per-flow
fairness and PS-P (§5.2) does not help in the long run
due to lower isolation guarantee.

5.3.3 Improvements Over DRF

While HUG and DRF has the same worst-case slow-
down, 70% shuffles are better off using HUG. HUG also
provides better average shuffle completion times than
DRF for an overall improvement of 1.14×.

5.3.4 Comparison to Varys

Varys outperforms HUG by 1.33× in terms of the 95th
percentile slowdown and by 1.45× in terms of aver-
age shuffle completion time. However, because Varys at-
tempts to improve the average completion time by pri-
oritization, it risks in terms of the maximum completion
time. More precisely, HUG outperforms Varys by 1.77×
in terms of the maximum shuffle completion time (not
shown).

6 Discussion
Payment Model Similar to many existing proposals
[32, 33, 45, 46, 58, 59, 61, 62], we assume that tenants
pay per-hour flat rates for individual VMs, but there is no
pricing model associated with their network usage. This
is also the prevalent model of resource pricing in cloud
computing [2, 5, 8]. Exploring whether and how a net-
work pricing model would change our solution and what
that model would look like requires further attention.

Determining Correlation Vectors Unlike long-term
correlation vectors, e.g., over the course of an hour or for

11

418 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

an entire shuffle, accurately capturing short-term changes
can be difficult. How fast tenants should update their vec-
tors and whether that is faster than centralized HUG can
react to requires additional analysis.

Decentralized HUG HUG’s centralized design makes
it easier to analyze its properties and simplifies its im-
plementation. We believe that designing a decentralized
version of HUG is an important future work, which will
be especially relevant for sharing wide-area networks in
the context of geo-distributed analytics [60, 66].

7 Related Work
Single-Resource Fairness Max-min fairness was first
proposed by Jaffe [43] to ensure at least 1

n -th of a link’s
capacity to each flow. Thereafter, many mechanisms
have been proposed to achieve it, including weighted fair
queueing (WFQ) [25, 55] and those similar to or extend-
ing WFQ [16, 34, 35, 63, 64]. We generalize max-min
fairness to parallel communication observed in scale-out
applications, showing that unlike in the single-link sce-
nario, optimal isolation guarantee, strategy-proofness,
and work conservation cannot coexist.

Multi-Resource Fairness Dominant Resource Fair-
ness (DRF) [33] maximizes the dominant share of each
user in a strategyproof manner. Solutions that have at-
tempted to improve the system-level efficiency of multi-
resource allocation – both before [54, 65] and after
[27, 38, 56] DRF – sacrifice strategy-proofness. We have
proven that work-conserving allocation without strategy-
proofness can hurt utilization instead of improving it.

Dominant Resource Fair Queueing (DRFQ) [32] ap-
proximates DRF over time in individual middleboxes.
In contrast, HUG generalizes DRF to environments with
elastic demands to increase utilization across the entire
network and focuses only on instantaneous fairness.

Joe-Wong et al. [46] have presented a unifying frame-
work to capture fairness-efficiency tradeoffs in multi-
resource environments. They assume a cooperative envi-
ronment, where tenants never lie. HUG falls under their
FDS family of mechanisms. In non-cooperative environ-
ments, however, we have shown that the interplay be-
tween work conservation and strategy-proofness is criti-
cal, and our work complements the framework of [46].

Network-Wide / Tenant-Level Fairness Proposals for
sharing cloud networks range from static allocation [13,
14, 44] and VM-level guarantees [61, 62] to variations of
network-wide sharing mechanisms [45, 51, 58, 59, 67].
We refer the reader to the survey by Mogul and Popa [53]
for an overview. FairCloud [58] stands out by systemati-
cally discussing the tradeoffs and addresses several lim-
itations of other approaches. Our work generalizes Fair-
Cloud [58] and many proposals similar to FairCloud’s
PS-P policy [45, 59, 61]. When all tenants have elastic

demands, i.e., all correlation vectors have all elements as
1, we give the same allocation; for all other cases, we
provide higher isolation guarantee and utilization.

Efficient Schedulers Researchers have also focused
on efficient scheduling and/or packing of datacenter re-
sources to minimize job and communication completion
times [12, 21–23, 26, 36, 41]. Our work is orthogonal and
complementary to these work focusing on application-
level efficiency within each tenant. We guarantee iso-
lation across tenants, so that each tenant can internally
perform whatever efficiency or fairness optimizations
among her own applications.

8 Conclusion
In this paper, we have proved that there is a strong trade-
off between optimal isolation guarantees and high uti-
lization in non-cooperative public clouds. We have also
proved that work conservation can decrease utilization
instead of improving it, because no network sharing al-
gorithm remains strategyproof in its presence.

To this end, we have proposed HUG to restrict band-
width utilization of each tenant to ensure highest uti-
lization with optimal isolation guarantee across multi-
ple tenants in non-cooperative environments. In cooper-
ative environments, where strategy-proofness might be
a non-requirement, HUG simultaneously ensures both
work conservation and the optimal isolation guarantee.

HUG generalizes single-resource max-min fairness to
multi-resource environments where a tenant’s demand on
different resources are correlated and elastic. In particu-
lar, it provides optimal isolation guarantee, which is sig-
nificantly higher than that provided by existing multi-
tenant network sharing algorithms. HUG also comple-
ments DRF with provably highest utilization without sac-
rificing other useful properties of DRF. Regardless of
resource types, the identified tradeoff exists in general
multi-resource allocation problems, and all those scenar-
ios can take advantage of HUG.

Acknowledgments
We thank our shepherd Mohammad Alizadeh and the
anonymous reviewers of SIGCOMM’15 and NSDI’16
for useful feedback. This research is supported in
part by NSF CISE Expeditions Award CCF-1139158,
NSF Award CNS-1464388, DOE Award SN10040 DE-
SC0012463, and DARPA XData Award FA8750-12-2-
0331, and gifts from Amazon Web Services, Google,
IBM, SAP, The Thomas and Stacey Siebel Foundation,
Adatao, Adobe, Apple, Inc., Blue Goji, Bosch, Cisco,
Cray, Cloudera, EMC2, Ericsson, Facebook, Fujitsu,
Guavus, HP, Huawei, Informatica, Intel, Microsoft, Ne-
tApp, Pivotal, Samsung, Schlumberger, Splunk, Virdata,
and VMware.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 419

References
[1] Amazon CloudWatch.
http://aws.amazon.com/cloudwatch.

[2] Amazon EC2. http://aws.amazon.com/ec2.

[3] Apache Hadoop. http://hadoop.apache.org.

[4] AWS Innovation at Scale.
http://goo.gl/Py2Ueo.

[5] Google Compute Engine.
https://cloud.google.com/compute.

[6] Google Container Engine.
http://kubernetes.io.

[7] A look inside Google’s data center networks.
http://goo.gl/u0vZCY.

[8] Microsoft Azure.
http://azure.microsoft.com.

[9] Storm: Distributed and fault-tolerant realtime
computation. http://storm-project.net.

[10] Trident: Stateful Stream Processing on Storm.
http://goo.gl/cKsvbj.

[11] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus,
R. Pan, N. Yadav, and G. Varghese. CONGA:
Distributed congestion-aware load balancing for
datacenters. In SIGCOMM, 2014.

[12] M. Alizadeh, S. Yang, M. Sharif, S. Katti,
N. Mckeown, B. Prabhakar, and S. Shenker.
pFabric: Minimal near-optimal datacenter
transport. In SIGCOMM, 2013.

[13] S. Angel, H. Ballani, T. Karagiannis, G. OShea,
and E. Thereska. End-to-end performance
isolation through virtual datacenters. In OSDI,
2014.

[14] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Towards predictable datacenter
networks. In SIGCOMM, 2011.

[15] H. Ballani, K. Jang, T. Karagiannis, C. Kim,
D. Gunawardena, and G. OShea. Chatty tenants
and the cloud network sharing problem. In NSDI,
2013.

[16] J. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In INFOCOM, 1996.

[17] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
IMC, 2010.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang.
MicroTE: Fine grained traffic engineering for data
centers. In CoNEXT, 2011.

[19] P. Bodik, I. Menache, M. Chowdhury, P. Mani,
D. Maltz, and I. Stoica. Surviving failures in
bandwidth-constrained datacenters. In
SIGCOMM, 2012.

[20] M. Chowdhury, S. Kandula, and I. Stoica.
Leveraging endpoint flexibility in data-intensive
clusters. In SIGCOMM, 2013.

[21] M. Chowdhury and I. Stoica. Efficient coflow
scheduling without prior knowledge. In
SIGCOMM, 2015.

[22] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan,
and I. Stoica. Managing data transfers in computer
clusters with Orchestra. In SIGCOMM, 2011.

[23] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with Varys. In SIGCOMM,
2014.

[24] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis
and simulation of a fair queueing algorithm. In
SIGCOMM, 1989.

[26] F. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized task-aware scheduling
for data center networks. In SIGCOMM, 2014.

[27] D. Dolev, D. G. Feitelson, J. Y. Halpern,
R. Kupferman, and N. Linial. No justified
complaints: On fair sharing of multiple resources.
In ITCS, 2012.

[28] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. K. Ramakrishnan, and J. E. van der Merive. A
flexible model for resource management in virtual
private networks. In SIGCOMM, 1999.

[29] N. Dukkipati. Rate Control Protocol (RCP):
Congestion control to make flows complete
quickly. PhD thesis, Stanford University, 2007.

[30] M. M. Flood. Some experimental games.
Management Science, 5(1):5–26, 1958.

[31] L. R. Ford and D. R. Fulkerson. Maximal flow
through a network. Canadian Journal of
Mathematics, 8(3):399–404, 1956.

[32] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet
processing. SIGCOMM, 2012.

13

420 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[33] A. Ghodsi, M. Zaharia, B. Hindman,
A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple
resource types. In NSDI, 2011.

[34] S. J. Golestani. Network delay analysis of a class
of fair queueing algorithms. IEEE JSAC,
13(6):1057–1070, 1995.

[35] P. Goyal, H. M. Vin, and H. Chen. Start-time fair
queueing: A scheduling algorithm for integrated
services packet switching networks. In
SIGCOMM, 1996.

[36] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In SIGCOMM, 2014.

[37] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong,
P. Sun, W. Wu, and Y. Zhang. SecondNet: A data
center network virtualization architecture with
bandwidth guarantees. In CoNEXT, 2010.

[38] A. Gutman and N. Nisan. Fair allocation without
trade. In AAMAS, 2012.

[39] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz,
S. Rao, K. Sripanidkulchai, and M. Tawarmalani.
Cloudward bound: planning for beneficial
migration of enterprise applications to the cloud.
In SIGCOMM, 2010.

[40] B. Hindman, A. Konwinski, M. Zaharia,
A. Ghodsi, A. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In NSDI,
2011.

[41] C.-Y. Hong, M. Caesar, and P. B. Godfrey.
Finishing flows quickly with preemptive
scheduling. In SIGCOMM, 2012.

[42] M. Isard, M. Budiu, Y. Yu, A. Birrell, and
D. Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In
EuroSys, 2007.

[43] J. M. Jaffe. Bottleneck flow control. IEEE
Transactions on Communications, 29(7):954–962,
1981.

[44] K. Jang, J. Sherry, H. Ballani, and T. Moncaster.
Silo: Predictable message completion time in the
cloud. In SIGCOMM, 2015.

[45] V. Jeyakumar, M. Alizadeh, D. Mazieres,
B. Prabhakar, C. Kim, and A. Greenberg. EyeQ:
Practical network performance isolation at the
edge. In NSDI, 2013.

[46] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang.
Multiresource allocation: Fairness-efficiency
tradeoffs in a unifying framework. In INFOCOM,
2012.

[47] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the tightrope: Responsive yet stable traffic
engineering. In SIGCOMM, 2005.

[48] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The nature of datacenter traffic:
Measurements and analysis. In IMC, 2009.

[49] N. Kang, Z. Liu, J. Rexford, and D. Walker.
Optimizing the “One Big Switch” abstraction in
Software-Defined Networks. In CoNEXT, 2013.

[50] K. LaCurts, J. Mogul, H. Balakrishnan, and
Y. Turner. Cicada: Introducing predictive
guarantees for cloud networks. In HotCloud, 2014.

[51] V. T. Lam, S. Radhakrishnan, A. Vahdat,
G. Varghese, and R. Pan. NetShare and stochastic
NetShare: Predictable bandwidth allocation for
data centers. SIGCOMM CCR, 42(3):5–11, 2012.

[52] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee,
J.-M. Kang, and P. Sharma. Application-driven
bandwidth guarantees in datacenters. In
SIGCOMM, 2014.

[53] J. C. Mogul and L. Popa. What we talk about
when we talk about cloud network performance.
SIGCOMM CCR, 42(5):44–48, 2012.

[54] J. F. Nash Jr. The bargaining problem.
Econometrica: Journal of the Econometric
Society, pages 155–162, 1950.

[55] A. K. Parekh and R. G. Gallager. A generalized
processor sharing approach to flow control in
integrated services networks: The single-node
case. IEEE/ACM ToN, 1(3):344–357, 1993.

[56] D. C. Parkes, A. D. Procaccia, and N. Shah.
Beyond dominant resource fairness: extensions,
limitations, and indivisibilities. In EC, 2012.

[57] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A centralized
“zero-queue” datacenter network. In SIGCOMM,
2014.

[58] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
FairCloud: Sharing the network in cloud
computing. In SIGCOMM, 2012.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 421

[59] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
Y. Turner, and J. R. Santos. ElasticSwitch:
Practical work-conserving bandwidth guarantees
for cloud computing. In SIGCOMM, 2013.

[60] Q. Pu, G. Ananthanarayanan, P. Bodik,
S. Kandula, A. Akella, V. Bahl, and I. Stoica. Low
latency geo-distributed data analytics. In
SIGCOMM, 2015.

[61] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares,
and D. Guedes. Gatekeeper: Supporting
bandwidth guarantees for multi-tenant datacenter
networks. In USENIX WIOV, 2011.

[62] A. Shieh, S. Kandula, A. Greenberg, and C. Kim.
Sharing the data center network. In NSDI, 2011.

[63] M. Shreedhar and G. Varghese. Efficient fair
queueing using deficit round robin. In SIGCOMM,
1995.

[64] I. Stoica, H. Zhang, and T. Ng. A hierarchical fair
service curve algorithm for link-sharing, real-time,
and priority services. In SIGCOMM, 1997.

[65] H. R. Varian. Equity, envy, and efficiency. Journal
of economic theory, 9(1):63–91, 1974.

[66] A. Vulimiri, C. Curino, B. Godfrey, J. Padhye, and
G. Varghese. Global analytics in the face of
bandwidth and regulatory constraints. In NSDI,
2015.

[67] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The
only constant is change: Incorporating
time-varying network reservations in data centers.
In SIGCOMM, 2012.

[68] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[69] M. Zaharia, T. Das, H. Li, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
stream computation at scale. In SOSP, 2013.

A Proofs from Section 3
Proof Sketch (of Lemma 1) Consider tenant-A from
the example in Figure 5. Assume that instead of report-
ing her true correlation vector

−→
dA = � 12 , 1�, she reports−→

d�A = � 12 + �, 1�, where � > 0. As a result, her alloca-

tion will change to
−→
a�A = � 1/2+�

3/2+� ,
1

3/2+� �. Her allocation

in link-1
(

1/2+�
3/2+�

)
is already larger than before

(
1
3

)
. If

the work conservation policy allocates the spare resource
in link-2 by δ (δ may be small but a positive value),
her progress will change to M�

A = min
(

a′1
A

d1
A
,
a′2

A

d2
A

)
=

min
(

1+2�
3/2+� ,

1
3/2+�+δ

)
. As long as � < 3/2δ

2/3−δ (if δ ≥ 2
3 ,

we have no constraint on �), her progress will be better
than when she was telling the truth, which makes the pol-
icy not strategyproof. The operator cannot prevent this
because she knows neither a tenant’s true correlation vec-
tor nor �, the extent of the tenant’s lie. �

Theorem 3 Algorithm 1 is strategyproof.

Proof Sketch (of Theorem 3) Because DRF is strate-
gyproof, the first stage of Algorithm 1 is strategyproof
as well. We show that adding the second stage does not
violate strategy-proofness of the combination.

Assume that link-b is a system bottleneck – the link
DRF saturated to maximize isolation guarantee in the

first stage. Meaning, b = argmax
i

M∑
k=1

dik. We use Db =

M∑
k=1

dbk to denote the total demand in link-b (Db ≥ 1), and

Mb
k = 1/Db for corresponding progress for all tenant-k

(k ∈ {1, ...,M}) when link-b is the system bottleneck.
In Figure 5, b = 1. The following arguments hold even
for multiple bottlenecks.

Any tenant-k can attempt to increase her progress
(Mk) only by lying about her correlation vector (

−→
dk).

Formally, her action space consists of all possible cor-
relation vectors. It includes increasing and/or decreasing
demands of individual resources to report a different vec-
tor,

−→
d�k and obtain a new progress, M�

k(> Mk). Tenant-
k can attempt one of the two alternatives when report-
ing

−→
d�k: either keep link-b still the system bottleneck or

change it. We show that Algorithm 1 is strategyproof in
both cases; i.e., M�

k ≤ Mk.
Case 1: link-b is still the system bottleneck.
Her progress cannot improve because
• if d�bk ≤ dbk, her share on the system bottleneck will

decrease in the first stage; so will her progress. There is
no spare resource to allocate in link-b.
For example, if tenant-A changes d�1A = 1

4 instead of
d1A = 1

2 in Figure 5, her allocation will decrease to 1
5 -

th of link-1; hence, M�
A = 2

5 instead of MA = 2
3 .

• if d�bk > dbk, her share on the system bottleneck
will increase. However, because D�b > Db as d�bk > dbk,
everyone’s progress including her own will decrease in
the first stage (M�b

k ≤ Mb
k). The second stage will en-

sure that her maximum consumption in any link-i c�ik ≤
maxj

{
a�jk

}
. Therefore her progress will be smaller than

15

422 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

that when she tells the truth (M�b
k < Mb

k).
For example, if tenant-A changes d�1A = 1 instead of
d1A = 1

2 in Figure 5, her allocation will increase to 1
2 of

link-1. However, progress of both tenants will decrease:
MA = MB = 1

2 . The second stage will restrict her us-
age in link-2 to 1

2 as well; hence, M�
A = 1

2 instead of
MA = 2

3 .
Case 2: link-b is no longer a system bottleneck; in-

stead, link-b� (�= b) is now one of the system bottlenecks.
We need to consider the following two sub-cases.
• If D�b′ ≤ Db, the progress in the first stage will

increase; i.e., M�b′
k ≥ Mb

k. However, tenant-k’s alloca-
tion in link-b will be no larger than if she had told the
truth, making her progress no better. To see this, con-
sider the allocations of all other tenants in link-b before
and after she lies. Denote by cb−k and c�b−k the resource
consumption of all other tenants in link-b when tenant-
k was telling the truth and lying, respectively. We also
have cb−k = ab−k and ab−k + abk = 1 because link-b
was the bottleneck, and there was no spare resource to
allocate for this link. When tenant-k lies, a�b−k ≥ ab−k

because M�b′
k ≥ Mb

k. We also have c�b−k ≥ a�b−k and
c�b−k + c�bk ≤ 1. This implies c�bk ≤ 1− c�b−k ≤ 1− a�b−k ≤
1 − ab−k = abk = cbk. Meaning, tenant-k’s progress is no
larger than that when she was telling the truth.

• If D�b′ > Db, everyone’s progress including her
own decreases in the first stage (M�b′

k < Mb
k). Similar

to the second scenario in Case 1, the second stage will
restrict tenant-k to the lowered progress.

Regardless of tenant-k’s approaches – keeping the
same system bottleneck or not – her progress using Al-
gorithm 1 will not increase. �

Corollary 4 (of Theorem 3) Algorithm 1 maximizes
isolation guarantee, i.e., the minimum progress across
tenants. �

Theorem 5 Algorithm 1 achieves the highest resource
utilization among all strategyproof algorithms that pro-
vide optimal isolation guarantee among tenants.

Proof Sketch (of Theorem 5) Follows from Lemma 1
and Theorem 3. �

Lemma 6 Under some cases, DRF may have utilization
arbitrarily close to 0, and HUG helps improve the uti-
lization to 1.

Proof Sketch (of Lemma 6) Construct the cases with
K links and N tenants, and each tenant has demand 1
on link-1 and � on other links.

DRF will allocate to each tenant 1
N on link-1 and

�
N on all other links, resulting in a total utilization of
1+(K−1)�

K → 0 when K → ∞, � → 0 for any N .

100%

50%

0% L1 L2

2/5

1/5 2/5

1/15

2/5

(a) DRF

100%

50%

0% L1 L2

2/5

1/5 2/5

2/5
2/5

(b) HUG

Figure 14: Hard tradeoff between work conservation and
strategy-proofness. Adding one more tenant (tenant-C in black)
to Figure 5 with correlation vector 〈1, 0〉 makes simultaneously
achieving work conservation and optimal isolation guarantee
impossible, even when all three have elastic demands.

HUG will allocate to each tenant 1
N on every link and

achieve 100% utilization. �

B Tradeoff Between Work Conser-
vation and Strategy-proofness

We demonstrate the tradeoff between work conservation
and strategy-proofness (thus isolation guarantee) by ex-
tending our running example from Section 2.

Consider another tenant (tenant-C) with correlation
vector

−→
dC = �1, 0� in addition to the two tenants present

earlier. The key distinction between tenant-C and either
of the earlier two is that she does not demand any band-
width on link-2. Given the three correlation vectors, we
can use DRF to calculate the optimal isolation guaran-
tee (Figure 14a), where tenant-k has Mk = 2

5 , link-1 is
completely utilized, and 7

15 -th of link-2 is proportionally
divided between tenant-A and tenant-B.

This leaves us with two questions:
1. How do we completely allocate the remaining 8

15 -th
bandwidth of link-2?

2. Is it even possible without sacrificing optimal isola-
tion guarantee and strategy-proofness?

We show in the following that it is indeed not possible
to allocate more than 4

5 -th of link-2 (Figure 14b) without
sacrificing the optimal isolation guarantee.

Let us consider three primary categories of work-
conserving spare allocation policies: demand-agnostic,
unfair, and locally fair. All three will result in lower iso-
lation guarantee, lower utilization, or both.

B.1 Demand-Agnostic Policies
Demand-agnostic policies equally divide the resource
between the number of tenants independently in each
link, irrespective of tenant demands, and provide isola-
tion. Although strategyproof, this allocation (Figure 15a)
has lower isolation guarantee (MA = 1

2 and MB =
MC = 1

3 , therefore isolation guarantee is 1
3) than the op-

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 423

100%

50%

0% L1 L2

1/3

1/3 1/2

1/21/3

(a) PS-P

100%

50%

0% L1 L2

1/3

1/3

1/3

14/15

1/15

(b) Most-demanding gets all

100%

50%

0% L1 L2

1/3

1/3 2/3

1/31/3

(c) Equal spare division

100%

50%

0% L1 L2

1/3

1/3 6/7

1/71/3

(d) Prop. spare division

Figure 15: Allocations after applying different work-
conserving policies to divide spare capacities in link-2 for the
example in Figure 14.

timal isolation guarantee allocation shown in Figure 14a
(MA = MB = MC = 2

5 , therefore isolation guarantee
is 2

5). PS-P [45, 58, 59] fall in this category.
Worse, when tenants do not have elastic-demand ap-

plications, demand-agnostic policies are not even work-
conserving (similar to the example in §2.3.4).

Lemma 7 When tenants do not have elastic demands,
per-resource equal sharing is not work-conserving.

Proof Sketch Only 11
12 -th of link-1 and 5

9 -th of link-2
will be consumed; i.e., none of the links will be satu-
rated! �

To make it work-conserving, PS-P suggests dividing
spare resources based on whoever wants it.

Lemma 8 When tenants do not have elastic demands,
PS-P is not work-conserving.

Proof Sketch If tenant-B gives up her spare allocation
in link-2, tenant-A can increase her progress to MA = 2

3
and saturate link-1; however, tenant-B and tenant-C will
remain at MB = MC = 1

3 . If tenant-A gives up her
spare allocation in link-1, tenant-B and tenant-C can in-
crease their progress to MB = MC = 3

8 and saturate
link-1, but tenant-A will remain at MA = 1

2 . Because
both tenant-A and tenant-B have chances of increas-
ing their progress, both will hold off to their allocations
even with useless traffic – another instance of Prisoner’s
dilemma. �

B.2 Unfair Policies
Instead of demand-agnostic policies, one can also con-
sider simpler, unfair policies; e.g., allocating all the re-

sources to the tenant with the least or the most demand.

Lemma 9 Allocating spare resource to the tenant with
the least demand can result in zero spare allocation.

Proof Sketch Although this strategy provides the opti-
mal allocation for Figure 5, when at least one tenant in
a link has zero demand, it can trivially result in no addi-
tional utilization; e.g., tenant-C in Figure 14. �
Lemma 10 Allocating spare resource to the tenant with
the least demand is not strategyproof.

Proof Sketch Consider tenant-A lied and changed her
correlation vector to

−→
d′A = �1, 1

10 �. The new optimal iso-
lation guarantee allocation for unchanged tenant-B and
tenant-C correlation vectors would be: −→aA = � 13 , 1

30 �,−→aB = � 13 , 1
18 �, and −→aC = � 13 , 0�. Now the spare resource

in link-2 will be allocated to tenant-A because she asked
for the least amount, and her final allocation would be−→
a′A = � 13 , 17

18 �. As a result, her progress improved from
MA = 2

5 to M′
A = 2

3 , while the others’ decreased to
MB = MC = 1

3 . �
Corollary 11 (of Lemma 10) In presence of work con-
servation, tenants can lie both by increasing and de-
creasing their demands, or a combination of both. �
Lemma 12 Allocating spare resource to the tenant with
the highest demand is not strategyproof.

Proof Sketch If tenant-A changes her correlation vector
to

−→
d′A = �1, 1�, the eventual allocation (Figure 15b) will

again result in lower progress (MB = MC = 1
3). Be-

cause tenant-B is still receiving more than 1
6 -th of her

allocation in link-1 in link-2, she does not need to lie. �
Corollary 13 (of Lemmas 10, 12) Allocating spare re-
source randomly to tenants is not strategyproof. �

B.3 Locally Fair Policies
Finally, one can also consider equally or proportionally
dividing the spare resource on link-2 between tenant-
A and tenant-B. Unfortunately, these strategies are not
strategyproof either.

Lemma 14 Allocating spare resource equally to tenants
is not strategyproof.

Proof Sketch If the remaining 8
15 -th of link-2 is equally

divided, the share of tenant-A will increase to 2
3 -rd and

incentivize her to lie. Again, the isolation guarantee will
be smaller (Figure 15c). �
Lemma 15 Allocating spare resource proportionally to
tenants’ demands is not strategyproof.

Proof Sketch If one divides the spare in proportion to
tenant demands, the allocation is different (Figure 15d)
than equal division. However, tenant-A can again in-
crease her progress at the expense of others. �

17

424 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

C Dual Objectives of Network
Sharing

The two conflicting requirements of the network sharing
problem can be defined as follows.
1. Utilization:

∑
i∈[1,2P]

∑
k∈[1,M] c

i
k

2. Isolation guarantee: mink∈[1,M] Mk

Given the tradeoff between the two, one can consider
one of the two possible optimizations:8

O1 Ensure highest utilization, then maximize the isola-
tion guarantee with best effort;

O2 Ensure optimal isolation guarantee, then maximize
utilization with best effort.

O1: Utilization-First In this case, the optimization at-
tempts to maximize the isolation guarantee across all ten-
ants while keeping the highest network utilization.

Maximize min
k∈[1,M]

Mk

s.t.
∑

i∈[1,2P]

∑
k∈[1,M]

cik = U∗,
(3)

where U∗ = max
∑

i∈[1,2P]

∑
k∈[1,M]

cik is the highest uti-

lization possible. Although this ensures maximum net-
work utilization, isolation guarantee to individual tenants
can be arbitrarily low. This formulation can still be useful
in private datacenters [36].

To ensure some isolation guarantee, existing cloud
network sharing approaches [14, 45, 51, 58, 59, 61, 62,
67] use a similar formulation:

Maximize
∑

1≤i≤2P

∑
k∈[1,M]

cik

subject to Mk ≥ 1

M
, k ∈ [1,M]

(4)

The objective here is to maximize utilization while en-
suring at least 1

M -th of each link to tenant-k. However,
this approach has two primary drawbacks (§ 2.3):
1. suboptimal isolation guarantee, and
2. lower utilization.

O2: Isolation-Guarantee-First Instead, in this paper,
we have formulated the network sharing problem as fol-
lows:

Maximize
∑

i∈[1,2P]

∑
k∈[1,M]

cik

subject to min
k∈[1,M]

Mk = M∗
k

cik ≥ aik, i ∈ [1, 2P], k ∈ [1,M]

(5)

8Maximizing a combination of these two is also an interesting fu-
ture direction.

Here, we maximize resource consumption while keep-
ing the optimal isolation guarantee across all tenants, de-
noted by M∗

k. Meanwhile, the constraint on consump-
tion being at least guaranteed minimum allocation en-
sures strategy-proofness; thus, guaranteeing that guaran-
teed allocated resources will be utilized.

Because cik values have no upper bounds except for
physical capacity constraints, optimization O2 may re-
sult in suboptimal isolation guarantee in non-cooperative
environments (§2.3.3). HUG introduces the following
additional constraint to avoid this issue only in non-
cooperative environments:

cik ≤ M∗, i ∈ [1, 2P], k ∈ [1,M]

This constraint is not necessary when strategy-proofness
is a non-requirement – e.g., in private datacenters.

18

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 425

Consensus in a Box: Inexpensive Coordination in Hardware

Zsolt István, David Sidler, Gustavo Alonso
Systems Group, Dept. of Computer Science, ETH Zürich

Marko Vukolić∗

IBM Research - Zürich

Abstract

Consensus mechanisms for ensuring consistency are
some of the most expensive operations in managing large
amounts of data. Often, there is a trade off that involves
reducing the coordination overhead at the price of ac-
cepting possible data loss or inconsistencies. As the de-
mand for more efficient data centers increases, it is im-
portant to provide better ways of ensuring consistency
without affecting performance.

In this paper we show that consensus (atomic broad-
cast) can be removed from the critical path of perfor-
mance by moving it to hardware. As a proof of concept,
we implement Zookeeper’s atomic broadcast at the net-
work level using an FPGA. Our design uses both TCP
and an application specific network protocol. The design
can be used to push more value into the network, e.g.,
by extending the functionality of middleboxes or adding
inexpensive consensus to in-network processing nodes.

To illustrate how this hardware consensus can be used
in practical systems, we have combined it with a main-
memory key value store running on specialized mi-
croservers (built as well on FPGAs). This results in
a distributed service similar to Zookeeper that exhibits
high and stable performance. This work can be used as a
blueprint for further specialized designs.

1 Introduction

Data centers face increasing demands in data sizes and
workload complexity while operating under stricter effi-
ciency requirements. To meet performance, scalability,
and elasticity targets, services often run on hundreds to
thousands of machines. At this scale, some form of coor-
dination is needed to maintain consistency. However, co-
ordination requires significant communication between
instances, taking processing power away from the main
task. The performance overhead and additional resources

∗ Part of this work was done while the author was at ETH Zürich.

needed often lead to reducing consistency, resulting in
less guarantees for users who must then build more com-
plex applications to deal with potential inconsistencies.

The high price of consistency comes from the mul-
tiple rounds of communication required to reach agree-
ment. Even in the absence of failures, a decision can
be taken only as quickly as the network round-trip times
allow it. Traditional networking stacks do not optimize
for latency or specific communication patterns turning
agreement protocols into a bottleneck. The first goal of
this paper is to explore whether the overhead of running
agreement protocols can be reduced to the point that it
is no longer in the performance critical path. And while
it is often possible to increase performance by “burning”
more energy, the second goal is to aim for a more effi-
cient system, i.e., do not increase energy consumption or
resource footprint to speed up enforcing consistency.

In addition to the performance and efficiency
considerations, there is an emerging opportunity
for smarter networks. Several recent examples il-
lustrate the benefits of pushing operations into the
network [16, 41, 54] and using middleboxes to tailor
it to applications [52, 9, 61, 49]. Building upon these
advances, the following question arises: could agree-
ment be made a property of the network rather than
implementing it at the application level? Given the
current trade off between complexity of operations and
the achievable throughput of middleboxes, the third goal
of this work is to explore how to push down agreement
protocols into the network in an efficient manner.

Finally, data center architecture and the hardware
used in a node within a data center is an important
part of the problem. Network interface cards with pro-
grammable accelerators are already available from, e.g.,
Solarflare [55], but recent developments such as the
HARP initiative from Intel [25] or the Catapult sys-
tem of Microsoft [50] indicate that heterogeneous hard-
ware is an increasingly feasible option for improving per-
formance at low energy costs: the field programmable

1

426 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

gate arrays (FPGAs) used in these systems offer the op-
portunity of low energy consumption and do not suffer
from some of the traditional limitations that conventional
CPUs face in terms of data processing at line-rate. Cata-
pult also demonstrates the benefits of having a secondary,
specialized network connecting the accelerators directly
among themselves. When thinking of agreement proto-
cols that are bound by round trip times and jitter, such
a low latency dedicated network seems quite promising
in terms of efficiently reducing overhead. We do not ar-
gue for FPGAs as the only way to solve the problem,
but given their increasing adoption in the data center, it
makes sense to take advantage of the parallelism and per-
formance/energy advantages they offer. This leads us to
the fourth and final question the paper addresses: can
an FPGA with specialized networking be used to imple-
ment consensus while boosting performance and reduc-
ing overall overhead?

Contribution. In this paper we tackle the four chal-
lenges discussed above: We implement a consensus pro-
tocol in hardware in order to remove the enforcement of
consistency from the critical path of performance with-
out adding more bulk to the data center. We create
a reusable solution that can augment middleboxes or
smart network hardware and works both with TCP/IP
and application-specific network protocols using hard-
ware and platforms that are starting to emerge. Therefore
the solution we propose is both a basis for future research
but also immediately applicable in existing data centers.

Results. In the paper we show how to implement
Zookeeper’s atomic broadcast (ZAB [43]) on an FPGA.
We expose the ZAB module to the rest of the net-
work through a fully functional low latency 10Gbps TCP
stack. In addition to TCP/IP, the system supports an
application-specific network protocol as well. This is
used to show how the architecture we propose can be
implemented with point-to-point connections to further
reduce networking overhead. For a 3 node setup we
demonstrate 3.9 million consensus rounds per second
over the application specific network protocol and 2.5
million requests per second over TCP. This is a signif-
icant improvement over systems running on commod-
ity networks and is on par even with the state of art
systems running over lower latency and higher band-
width Infiniband networks. Node to node latencies are
in the microsecond range, without significant tail laten-
cies. To illustrate how this hardware consensus can be
used in practical systems, we have combined it with a
main-memory key value store running on specialized mi-
croservers (built as well on FPGAs). This results in a dis-
tributed service similar to Zookeeper that exhibits a much
higher and stable performance than related work and can
be used as a blueprint for further specialized designs.

Figure 1: Zookeeper’s Atomic Broadcast

2 Background

2.1 Zookeeper’s Atomic Broadcast

There are many distributed systems that require some
form of coordination for achieving their core services,
and since implementing distributed consensus [34, 35]
correctly is far from trivial [46], reusable libraries and
solutions such as Zookeeper have emerged. Zookeeper
is a centralized service that provides distributed synchro-
nization, store configuration, and naming services for
distributed systems. It achieves fault tolerance and high
availability through replication.

At the core of Zookeeper is an atomic broadcast proto-
col (ZAB [33]) coupled with leader election that is used
to ensure the consistency of modifications to the tree-
based data store backing Zookeeper. ZAB is roughly
equivalent to running Paxos [35], but is significantly eas-
ier to understand because it makes a simplifying assump-
tion about the network. The communication channels
are assumed to be lossless and strongly ordered (thus,
Zookeeper in principle requires TCP).

We briefly describe the ZAB protocol in a 3 node setup
(Figure 1): The atomic broadcast protocol of Zookeeper
is driven by a leader, who is the only node that can
initiate proposals. Once the followers receive propos-
als, they will acknowledge the receipt of these propos-
als thus signaling that they are ready to commit. When
the leader received an acknowledgment from the major-
ity of followers it will issue a commit message to apply
the changes. Committed messages are persisted by de-
fault on a disk, but depending on the nature of the data
stored in the service and failure scenarios, writing the log
to memory can be enough. The order of messages is de-
fined using monotonically increasing sequence numbers:
the “Zxid’,’ incremented every time a new proposal is
sent, and the “epoch” counter, which increases with each
leader election round.

Zookeeper can run with two levels of consistency:
strong [26] and relaxed (a form of prefix consis-
tency [56]). In the strong case, when a client reads from
a follower node, it will be forced to consult the leader
whether it is up to date (using a sync operation), and
if not, to fetch any outstanding messages. In the more
relaxed case (no explicit synchronization on read) the
node might return stale data. In the common case, how-
ever, its state mirrors the global state. Applications using
Zookeeper often opt for relaxed consistency in order to

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 427

increase read performance. Our goal is to make strong
consistency cheaper and through this to deliver better
value to the applications at a lower overall cost.

2.2 Reconfigurable Hardware

Field programmable gate arrays (FPGAs) are hardware
chips that can be reprogrammed but act like application-
specific integrated circuits (ASICs). They are appeal-
ing for implementing data processing operations because
they allow for true dataflow execution [45, 57]. This
computational paradigm is fundamentally different from
CPUs in that all logic on the chip is active all the time,
and the implemented “processor” is truly specialized to
the given task. FPGAs are programmed using hardware
description languages, but recently high level synthesis
tools for compiling OpenCL [6], or domain specific lan-
guages [24] down to logic gates are becoming common.

FPGAs typically run at low clock frequencies (100-
400 MHz) and have no caches in the traditional sense
in front of the DDR memory. On the other hand the
FPGA fabric contains thousands of on-chip block RAMs
(BRAM) that can be combined to form different sized
memories and lookup tables [13]. Recent chips have an
aggregated BRAM capacity in the order of megabytes.

There are good examples of using FPGA-based de-
vices in networks, e.g., smart NICs from Solarflare [55]
that add an FPGA in the data path to process packets at
line-rate, deep packet inspection [11] and line-rate en-
cryption [51]. It has also been proposed to build middle-
boxes around FPGAs [9] because they allow for combin-
ing different functional blocks in a line-rate pipeline, and
can also ensure isolation between different pipelines of
different protocols. We see our work as a possible com-
ponent in such designs that would allow middleboxes to
organize themselves more reliably, or to provide consen-
sus as a service to applications.

3 System Design

For prototyping we use a Xilinx VC709 Evaluation
board. This board has 8 GB of DDR3 memory, four
10Gbps Ethernet ports, and a Virtex-7 VX690T FPGA
(with 59 Mb Block RAM on chip). Our system consists
of three parts: networking, atomic broadcast, and to help
evaluate the implementation of the latter two, a key-value
store as consensus application (Figure 2). The network
stack was implemented using high level synthesis [60],
the other two modules are written in Verilog and VHDL.

The Atomic Broadcast module replicates requests sent
to the application (in our case the key-value store). Since
it treats the actual requests as arbitrary binary data, it
requires a thin header in front of them. The structure
of the 16 B header is explained in Table 1: It consists
of an operation “code” and ZAB-specific fields, such as

Figure 2: The target platform and system architecture

Bits Description Bits Description
[15:0] Magic number [63:32] Length of message
[23:16] Sender Node ID [95:64] Zxid (req. sequence no.)
[31:24] Operation code [127:96] Epoch number

Table 1: Structure of request header

epoch-number and Zxid. This is because the same header
structure is used for communication between nodes and
clients, and different node’s atomic broadcast units. This
means that not all messages will have a payload. As ex-
plained in Section 2.1, Zookeeper provides two levels
of consistency, from which in our system we implement
strong consistency by serving both reads and writes from
the leader node. This setup simplifies the discussion and
evaluation, however, serving strongly consistent read on
followers is also possible.

When the atomic broadcast unit is used in conjunc-
tion with the key-value store, one can distinguish be-
tween two types of client requests: local ones (reads)
and replicated ones (writes). Local requests are read op-
erations that a node can serve from its local data store
bypassing the atomic broadcast logic completely. Write
requests need to be replicated because they change the
global state. These replicated requests are “trapped”
inside the atomic broadcast module until the protocol
reaches a decision and only then are sent to the applica-
tion, which will process them and return the responses to
the client. For reaching consensus, the atomic broadcast
module will send and receive multiple messages from
other nodes. Since the atomic broadcast unit does not di-
rectly operate on the message contents, these are treated
as binary data for the sake of replication.

4 Networking

The FPGA nodes implement two networking protocols:
TCP/IP and an application specific one, used for point-
to-point connections. As Figures 2 and 3 show, the net-
work module connects to the Ethernet Network Interface
provided by the FPGA vendor that handles Layer 1 and
2 (including MAC) processing before handing the pack-
ets to the IP Handler module. This module validates IP
checksums and forwards packets to their protocol han-
dlers. Additionally, data arriving from other FPGAs, us-
ing the application specific network protocol, shortcut

3

428 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 3: Network stack overview

Figure 4: TCP stack details

the TCP/IP stack and are instead processed by an ap-
plication specific network module. The ARP, ICMP and
DHCP modules in Figure 3 provide the functionality nec-
essary for integrating the FPGA into a real network.

4.1 TCP/IP in Hardware

The network stack is a modified version of earlier
work [53]. The original design addresses the problem
of very low connection counts in existing network stacks
for FPGAs (typically in the tens or low hundreds). The
changes introduced in this paper aim to further reduce the
latency of the stack and reduce its memory footprint by
tailoring the logic to the consensus and replication traffic.

The main benefit of using hardware for implement-
ing a network stack is that it allows for building true
dataflow pipelines and also for the isolation of send and
receive paths so that they do not influence each other’s
performance negatively. Figure 4 shows the resulting ar-
chitecture of the TCP stack in hardware: two pipelines
that share connection state through the data structures.
These data structures are: session lookup, port and state
table, and an event engine backed by timers. The session
lookup table contains the mapping of the 4-tuple (IP ad-
dress and TCP port of destination and source) to session
IDs, and is implemented as a content-addressable mem-
ory directly on the FPGA [32]. It holds up to 10k ses-
sions in our current configuration. The port table tracks
the state of each TCP port and the state table stores meta-
information for each open TCP connection. The event
engine is responsible for managing events and incoming
requests from the Send Interface, and instructs the TX
Engine accordingly.

4.2 Application-aware Receive Buffers

TCP operates on the abstraction of data streams, however
data packets on the application level are usually very well
defined. We take advantage of this application knowl-

edge to reduce the latency of our network stack. The
original version [53] of the network stack implemented
“generic” receive buffers. In this version we replaced the
DRAM buffer on the receive path with low latency on-
chip BRAM. The smaller buffer space has no negative
impact on throughput due to two reasons: 1) The ap-
plication logic is designed to consume data at line-rate
for most workloads, 2) In the datacenter TCP packets
are in the common case rarely reordered [49]. Conse-
quently, a smaller on-chip BRAM buffer will lower the
latency without negatively impacting performance and
frees up DRAM space for the consensus and applica-
tion logic. Internally the BRAM buffers are organized
as several FIFOs that are assigned dynamically to TCP
sessions. By pushing down some knowledge about the
application protocol (header fields), the BRAM buffers
can determine when a complete request is available in a
FIFO and then forward it to the application logic. In case
all FIFOs fill up, we rely on TCP’s built in retransmis-
sion mechanisms in order to not lose any data. For this
reason on the transmit path a much larger buffer space
is required, since packets have to be buffered until they
are acknowledged. Therefore the high capacity DRAM
buffer from our original design was kept.

4.3 Tailoring TCP to the Datacenter

TCP gives very strong guarantees to the application level,
but is very conservative about the guarantees provided by
the underlying network. Unlike the Internet, datacenter
networks have well-defined topologies, capacities, and
set of network devices. These properties, combined with
knowledge about the application, allow us to tailor the
TCP protocol and reduce the latency even further without
giving up any of the guarantees provided by TCP.

Starting from the behavior of consensus applications
and key-value stores we make two assumptions for the
traffic of the key-value store and consensus logic to op-
timize the TCP implementation: a client request is al-
ways smaller than the default Ethernet MTU of 1500 B
and clients are synchronous (only a single outstanding
request per client). Additionally, we disable Nagle’s
algorithm which tries to accumulate as much payload
from a TCP stream to fill an entire MTU. Since it waits
for a fixed timeout for more data, every request small
than MTU gets delayed by that timeout. The combi-
nation of disabling Nagle’s algorithm, client requests
fitting inside an MTU, and synchronous clients means
that we can assume that in the common case and ex-
cept for retransmission between the FPGAs, requests are
not fragmented over multiple MTUs and each Ethernet
frame holds a single request. Disabling Nagle’s algo-
rithm is quite common in software stacks through the
TCP NODELAY flag. Having our own hardware imple-
mentation we did an additional optimization to reduce

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 429

latency by disabling Delayed Acknowledgments as de-
scribed in RFC1122 [4], which says that a TCP imple-
mentation should delay an Acknowledgment for a fixed
timeout such that it either can be merged with a sec-
ond ACK message or with an outgoing payload message,
thereby reducing the amount of bandwidth which is used
for control messages. Since in our setup the network
latencies between the FPGAs are in the range of a few
microseconds, we decided to not just reduce the time-
out but completely remove it. This way each message
sent is immediately acknowledged. Obviously removing
Delayed Acknowledgments and disabling Nagle’s algo-
rithm comes with the tradeoff that more bandwidth is
used by control messages. Still, our experiments show
that even for small messages we achieve a throughput of
more than 7 Gbps considering only “useful” payload.

4.4 Application Specific Networking

In addition to the regular TCP/IP based channels, we
have also developed a solution for connecting nodes to
each other on dedicated links (direct connections, as we
will refer to them in the paper, labeled D.C. in Figure 2),
while remaining in-line with the reliability requirements
(in-order delivery, retransmission on error). Packets are
sent over Ethernet directly, and sequence numbers are
the main mechanism of detecting data loss. These are
inserted into requests where normally the ZAB-specific
magic number is in the header – so the sequence number
is actually increased with each logical request, not with
each packet. Since the links are point-to-point, conges-
tion control is not necessary beyond signaling backpres-
sure (achieved through special control packets). If data
was dropped due to insufficient buffer space on the re-
ceiving end, or because of corruption on the wire, the
receiver can request retransmissions. To send and re-
ceive data over this protocol, the application uses special
session numbers when communicating with the network
stack, such that they are directly relayed to the applica-
tion specific network module in Figure 3.

The design of the buffers follows the properties of the
connections as explained above: the sending side main-
tains a single buffer (64 KB) per link from which it can
resend packets if necessary, and the receiving side only
reserves buffer space for request reassembly. Since the
latency between nodes is in the order of microseconds,
this buffer covers a time window of 50 µs on a 10 Gbps
link, more than enough capacity for our purposes.

At the moment, our design only accommodates a lim-
ited number of nodes connected together with this pro-
tocol because there is no routing implemented and the
FPGAs have only four Ethernet interfaces each. The Cat-
apult platform [50] is a good example of what is possible
over such secondary interconnects: it includes a 2D torus
structure where FPGAs route packets over the dedicated

Figure 5: Overview of the atomic broadcast module

network, while using a simple application-specific proto-
col. We plan to eventually evaluate our system at larger
scale using such a network interconnect.

5 Atomic Broadcast in Hardware

The overall benefit of using hardware for implementing
consensus is that nodes have predictable performance,
thereby allowing the protocol to function in the“best case
scenario” most of the time. Latencies are bound and pre-
dictable, so with careful adjustments of on-chip buffers
and memories, the hardware solution can for instance
avoid in most cases to access the log in DRAM and read
the cached head from on chip memory instead. Even
the “less common” paths in the algorithm can perform
well due to the inherent parallelism of FPGA resources,
and the ability to hide memory access latencies through
pipelining for instance. Another example is the timeout
used for leader election that is much lower than what
would be feasible in software solutions. In conclusion,
the high determinism of hardware, low latency and in-
herent pipeline parallelism are a good fit for ZAB and
there was no need to write a new solution from scratch.

By design, the atomic broadcast logic treats the data
associated with requests as arbitrary binary data. This
decouples it from the application that runs on top. For
the purpose of evaluation, in this paper we use a key-
value store but integrating other applications would be
straightforward as well.

Inside the consensus module the control and data
planes are separated, and the Control State Machine and
the Log/Data Manager shown in Figure 5 can work in
parallel to reduce latencies more easily. There are two
additional blocks in the figure to complete the consen-
sus functionality. The Splitter splits the incoming re-
quests into command word and payload, and the Recom-
bine unites commands with payloads for output. Headers
(i.e., command words) are extracted from requests and
reformatted into a single 128 bit wide word, so that they
can be manipulated and transmitted internally in a single
clock cycle (as compared to two on the 10Gbps data bus
that is 64 bits wide). Similarly, payload data is aggre-
gated into 512 bit words to match the memory interface
width. When the control state machine (controller) is-
sues a command (header) that has no encapsulated data,

5

430 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: Abstract states used for implementing the
Zookeeper Atomic Broadcast in the FPGA

such as the acknowledgment or commit messages of the
ZAB protocol, this passes through the Recombine mod-
ule without fetching a payload from the log. If, on the
other hand, there is encapsulated data to be sent then the
controller will request the data in parallel to creating the
header. The system is pipelined, so it is possible to have
multiple outstanding requests for data from memory.

5.1 State Machine

The state machine that controls the atomic broadcast is
based on the ZAB protocol as described in [43]. Fig-
ure 6 shows the “super states” in which the state ma-
chine can be (each such oval on in the figure hides several
states of its own). Transitions between states are trig-
gered by either incoming packets or by means of event
timers. These timers can be used for instance to imple-
ment timeouts used in leader election, detection of failed
nodes, etc., and operate in the range of tens of µs.

Table 2 shows an overview of how many clock cycles
the more important states of the state machine take to
be processed. Most of them are linear in cost with the
number of nodes in a setup (Cnodes), or the time it takes
to seek in the command log as the parameter LcLog (3
cycles in the average case in our current design). The
theoretical maximum throughput achievable by the con-
trol unit shown in Table 2 for the 3 node setup we use in
the Evaluation is higher than the maximum throughput
in reality as our system is limited by 10Gbps networking
most of the time. If we wanted to scale our system up to
40 Gbps networking, this component could be clocked up
to 300 MHz (independently from the rest of the pipeline)
and then it would have enough performance to handle the
increased message rate. The rest of the logic inside the
atomic broadcast module handles the payloads only, and
these paths could be made wider for 4 x throughput.

On each node there is a table to hold the state of the
other nodes in the cluster. The table resides in BRAM
and in the current implementation holds up to 64 en-
tries. Each entry consists of information associated with
Zookeeper atomic broadcast (Zxid, epoch, last acknowl-
edged Zxid, etc.), a handle to the session opened to the
node, and a timestamp of the node’s last seen activity.
Since the mapping from session number to network pro-

Operation/State Cost Max for: Max for:
(clock cycles) 3 nodes 7 nodes

L1 Create and send proposal 2+Cnodesx2 19.5 M/s 9.75 M/s
F1 Recv. proposal and send
acknowledgment

2 78 M/s 78 M/s

L2 Recv. acknowledgment
and check majority

2+Cnodes+LcLog 17.3 M/s 13 M/s

F2 Commit 1+LcLog 39 M/s 39 M/s
L3 Commit 3+Cnodes 26 M/s 15.6 M/s
Consensus round (leader) L1 +L2 +L3 7.1 M/s 4.1 M/s
Consensus round (follower) F1 +F2 26 M/s 26 M/s

Table 2: Cost of ZAB operations and the theoretical max-
imum consensus rounds per second over 10GbE

tocol or even network interface is made in the networking
module, the controller is independent of the network de-
tails and works the same for messages received over any
protocol or connection.

5.2 Quorums and Committing

Zookeeper atomic broadcast allows the pipelining of re-
quests, so when the leader’s controller receives a client
request that needs to be replicated it will send out the
proposal and mark its Zxid as the highest that has already
been sent but not acknowledged or committed. When
an acknowledgment is received from another node, the
leader’s controller will test if a quorum (majority) has
been reached on that Zxid. This is done by iterating
through the active nodes in the state table: if enough
nodes have already acknowledged, the leader’s controller
will send out commit messages to all nodes that already
acknowledged the proposal. Then the leader will instruct
the log unit to mark the operation as successful and to
return the payload so that the application can process the
original request. On the follower, the receipt of a commit
message will result in the same operations of updating
the log and preparing the data for the application. In case
a node sends its acknowledgment after the operation has
already been committed, the leader will issue a commit
to that node as a response.

The system offers tunable consistency by allowing the
quorum-checking function to be updated at runtime. To
be more specific, one can change between either waiting
for a majority or waiting for all nodes to respond. The
latter behavior could be useful in cases when failures of
nodes are assumed to be transient, but updates have to
happen absolutely at the same time on all nodes (like
changing a policy on a set of middleboxes). While in
software this could lead to much higher response times,
in the Evaluation section we show the benefits of the low
latency hardware.

5.3 Maintaining a Log

After the payload is separated from the command it is
handed to the Log and Data Manager (bottom half of
Figure 5). The payload is added to an append-only log,
and read out later to be sent to other nodes with the pro-

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 431

posal commands. When an operation commits, this event
is also added to the log (a physically different location,
reserved for command words) with a pointer to the pay-
load’s location. In case a synchronization has to happen,
or the node needs to read its log for any other reason, the
access starts with the part of the log-space that contains
the commands. Since each entry is of fixed size, it is
trivial to search a command with a given Zxid.

To reduce the latency of accessing this data structure
we keep the most recent entries in on-chip BRAM, which
is spilled to DRAM memory in large increments. Of
course if the payloads are large only a small number will
fit into the first part of the log. However, this is not re-
ally an issue because in the common case each payload is
written once to the log when received and then read out
immediately for sending the proposals (it will still be in
BRAM at this point), and then read again later when the
operation commits. The aspect where the atomic broad-
cast unit and the application need to work together is log
compaction. In the case of the key-value store, the log
can be compacted up to the point where data has been
written to the key-value store, and the key-value store
notifies the atomic broadcast unit of each successful op-
eration when returning the answer to the client.

Our design is modular, so that the log manager’s im-
plementation could change without requiring modifica-
tions in the other modules. This is particularly important
if one would want to add an SSD to the node for per-
sistent log storage. We have mechanisms to extend the
FPGA design with a SATA driver to provide direct ac-
cess to a local SSD [59]. Although we have not done
it in the current prototype, this is part of future work as
part of developing a data appliance in hardware. Alterna-
tively, one can use battery backed memory [5], which in
the context of the FPGA is a feasible and simpler option.

5.4 Synchronization

When a node fails, or its network experienced outages
for a while it will need to recover the lost messages from
the leader. This is done using sync messages in the ZAB
protocol. In our implementation, when a follower detects
that is behind the leader it will issue a sync message. The
leader will stream the missing operations from the log to
the follower. These messages will be sent with an opcode
that will trigger their immediate commit on the other end.
In the current design the leader performs this operation
in a blocking manner, where it will not accept new input
while sending this data. It is conceivable to perform this
task on the side, but for simplicity we implemented it this
way for this prototype design.

If for some case the other node would be too far behind
the leader, and syncing the whole log would take longer
than copying the whole data structure in the key-value
store (or the log has already been compacted beyond the

requested point) there is the option of state transfer at
bulk: copying the whole hash table over and then sending
only the part of the log that has been added to the table
since the copy has begun. Of course this tradeoff depends
on the size of the hash table, and is an experiment that we
defer to our future work.

5.5 Bootstrapping and Leader Election

On initial start-up each node is assigned a unique ID by
an outside entity, e.g., a configuration master [36]. This
ID is a sequence number that is increased as nodes are
added. If a node joins after the initial setup, it gets the
next available ID and all other nodes are notified. If a
node fails and then recovers, it keeps its ID. When think-
ing of smart network devices or middleboxes connected
together in a coordination domain, it is reasonable to ex-
pect much less churn than with regular software nodes.

We implement the leader election following the algo-
rithm in the ZAB paper [33], with the optimization that
the followers will propose prospective leaders in a round-
robin fashion, i.e., proposing the next higher ID once the
current leader is unreachable. Nodes transition to leader
election once no message or heartbeat has been received
from the leader for a given timeout (based on the maxi-
mum consensus time in our use-case we set this to 50µs).
We perform the synchronization phase after the leader
election (discovery phase in the ZAB paper) in a pull-
based manner. This means that the newly elected leader
will explicitly ask the most up to date follower to send it
the requests with which it might be behind instead of fol-
lowers actively sending their histories. Requests arriving
from clients during leader election and synchronization
will be dropped by default, to allow the clients to recon-
figure based on a timeout mechanism. One simple opti-
mization that we implement is responding to requests ar-
riving during the leader election with a message that will
prompt the client to switch over to the next leader directly
without timeouts. Further, more sophisticated optimiza-
tions are possible, but are deferred to future work.

6 Use-case: Key-value Store

In order to test the atomic broadcast unit with a realistic
application running on the same FPGA we implemented
a key-value store that at its core uses the hash table de-
sign from our earlier work [29]. It is compatible with
memcached’s ASCII protocol and implements the set,
get, delete and flush all commands. In addition, it sup-
ports memcached’s check-and-set (cas) as well. The de-
sign is aggressively pipelined and handles mixed work-
loads well. As we previously demonstrated, the internal
pipeline can process more than 11 million memcached
requests per second, enough to saturate a 10Gbps con-
nection even with keys and values as small as 16 B.

7

432 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 7: Internal pipeline of the key-value store

32B Request 512B Req. 1KB Req.
Ethernet loopback 0.6µs 1.4µs 2.2µs
TCP loopback 1.5µs 3.8µs 6.5µs
Direct Conn. loopback 0.7µs 1.5µs 2.3µs
DRAM access latency 0.2µs
Ping from client 15µs 35µs –

Table 3: Latencies of different components of the system

Keys are hashed with a hash function that is based
on multiplication and shifting and processes the input
one byte at a time (similar to a Knuth’s hash function).
To meet the line-rate requirements we rely on the par-
allelism of the FPGA and create multiple hashing cores
that process the keys in the order of arrival. We solve
collisions by chaining, and the first four entries of every
chain are pre-allocated and stored in memory in such a
way that they can be read in parallel. This is achieved by
dividing each physical memory line (512b on our plat-
form) into four equal parts belonging to different entries,
and tiling keys over multiple physical memory addresses.
The start address of each bucket is at a multiple of 8
memory lines, which allows for keys of up to 112 B long
(the header of each entry is 16 B) to be stored. This size
should be enough for most common use-cases [10].

In order to hide the memory latency when accessing
the data structures in off-chip DDR memory, the hash
table is implemented as series of pipelined stages itself.
Multiple read commands can be issued to the memory,
and the requests will be buffered while waiting for the
data from memory. While with this concurrency there
is no need for locking the hash table entries in the tradi-
tional sense, the pipeline has a small buffer on-chip that
stores in-flight modifications to memory lines. This is
necessary to counter so called read-after-write hazards,
that is, to make sure that all requests see a consistent state
of the memory. A benefit of no locking in the software
sense, and also hiding memory latency through pipelin-
ing instead of caching, is that the hash table is agnostic
to access skew. This is an improvement over software
because in the presence of skew any parallel hash table
will eventually become bottlenecked on a single core.

Similarly to the related work in software [7] and hard-
ware [30], we store the values in a separate data struc-
ture from keys. This allows for more flexible memory
allocation strategies, and also the option to provide more
complex ways of managing memory in the future without
modifying the hash table data structure. At the moment
we use a simple block based memory allocation scheme

Figure 8: Evaluation setup of our prototype system

that allocates memory linearly. When a key is inserted
into the hash table, and its value placed in memory, its
slot in the value store is reused for subsequent updates as
long as the modified value is smaller than or equal in size
to the previous one.

7 Evaluation

7.1 Setup

For evaluation, we use 12 machines connected to a
10Gbps 48 port Cisco Nexus 5596UP switch and three
FPGAs connected to the same switch (Figure 8). FP-
GAs communicate either over TCP or the specialized
network, i.e., direct connections. The three node setup
mirrors the basic fault-tolerant deployment of Zookeeper
that can tolerate one faulty node. The client machines
have dual-socket Xeon E5-2609 CPUs, with a total of
8 cores running at 2.4 GHz, 128 GB of memory and an
Intel 82599ES 10Gbps network adapter. The machines
are running Debian Linux (jessie/sid with kernel version
3.12.18) and use the standard ixgbe drivers. Our load
generator was memaslap [2] with modifications to in-
clude our ZAB header in the requests.

7.2 Baselines

The performance of consensus protocols is sensitive to
latency, so we performed a series of micro-benchmarks
and modeling to determine the minimal latencies of dif-
ferent components of our system with differently sized
packets. As the results in Table 3 show, the transmission
of data through TCP adds the most latency (ranging be-
tween 1 and 7µs), but this is expected and is explained
by the fact that the packet goes through additional check-
summing and is written and read from a DRAM buffer.
An other important result in Table 3 is that round trip
times of ping messages from software are almost an or-
der of magnitude higher than inter-FPGA transmission
times, which highlights the shortcomings of the standard
networking stack in software. The measurements were
taken using the ping-flood command in Linux. In the
light of this, we will mainly report consensus latencies
as measured on the leader FPGA (we do this by insert-
ing two timestamps in the header: one when a message
is received and the other when the first byte of the re-
sponse is sent), and show times measured on the client
for experiments that involve the key-value store more.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 433

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100 1000

CD
F

Latency measured on leader (us)

Direct
TCP

Libpaxos3
Etcd (Raft)

(a) Small requests, related work

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 200 400 600 800 1000

La
te

nc
y

on
 le

ad
er

 (u
s)

Request size (B)

50th percentile
95th percentile
99th percentile

(b) Increasing size over TCP

Figure 9: Consensus round latency on leader

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y

(u
s)

Million consensus rounds / s

Direct 50th pctile
Direct 95th pctile
Direct 99th pctile
TCP 50th pctile
TCP 95th pctile
TCP 99th pctile

Figure 10: Load vs. Latency on leader

7.3 Cost of Consensus

Systems such as Zookeeper require hundreds of mi-
croseconds to perform a consensus round [48, 20] even
without writing data to disk. This is a significant over-
head that will affect the larger system immediately, and
here we explain and quantify the benefits of using hard-
ware for this task. Instead of testing the atomic broadcast
module in isolation, we measure it together with the ap-
plication on the chip, using memaslap on a single thread
sending one million consecutive write requests to the
key-value store that need to be replicated. We chose very
small request size (16 B key and 16 B value) to ensure
that measurements are not influenced by the key-value
store and stress mostly the atomic broadcast module.

Figure 9(a) depicts the probability distribution of a
consensus round as measured on the leader both when
using TCP and direct connections to communicate with
followers. Clearly, the application-specific network pro-
tocol has advantages over TCP, reducing latencies by a
factor of 3, but the latter is more general and needs no
extra infrastructure. Figure 9(b) shows that the latency of
consensus rounds increase only linearly with the request
size, and even for 1KB requests stay below 16µs on TCP.
To put the hardware numbers in perspective we include
measurements of Libpaxos3 [3] and the Raft implemen-
tation used in Etcd [1]. We instrumented the code of both
to measure the latency of consensus directly on th leader
and deployed them on three nodes in our cluster. Unsur-
prisingly the software solutions show more than an or-
der of magnitude difference in average latency, and have
significantly higher 99th percentiles even for this experi-
ment where the system handles one request at a time.

Figure 10 shows how the FPGA system fares under
increasing load of replicated requests. As later shown in
the experiments, with small payloads (<48 B) the system

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20

CD
F

Latency measured on leader (us)

TCP 3/3 (2Mrps)
TCP 2/3 (2Mrps)
Direct 3/3 (3.9Mrps)
Direct 2/3 (3.9Mrps)

Figure 11: Latency of consensus on leader when waiting
for majority or all nodes, on TCP and direct connections

 0
 0.25

 0.5
 0.75

 1

 0 10 20 30 40 50 60

CD
F

Latency measured on SW client (us)

24B value
128B value

Figure 12: Round-trip times with replication measured
on client

can reach up to 2.4 million consensus rounds per second
over TCP and almost 4 million over direct connections
before hitting bottlenecks. In our graph the latencies do
not increase to infinity because we increased throughput
only until the point where the pipeline of the consensus
module and the input buffers for TCP could handle load
without filling all buffers, and the clients did not need to
retransmit many messages. Since we measured latency
at the leader, these retransmitted messages would lead to
false measurements from the leader’s perspective.

7.4 Quorum Variations

The leader can be configured at runtime to consider a
message replicated either when a majority of nodes ac-
knowledged or all of them. The second variant leads to
a system of much stronger consistency, but might reduce
availability significantly. We measured the effect of the
two strategies on consensus latency, and found that even
when the system is under load waiting for an additional
node does not increase latencies significantly. This is de-
picted in Figure 11 both for TCP and direct, “2/3” be-
ing the first strategy committing when at least two nodes
agree and “3/3” the second strategy when all of them
have to agree before responding to the client.

7.5 Distributed Key-value Store

The rest of the evaluation looks at the atomic broadcast
module as part of the distributed key-value store running
on the FPGAs. We measure the round trip times (latency)
on the clients and report maximum throughput with mul-
tiple client machines. As seen in Figure 12, for a single
threaded client round trip times are 30µs larger than the
measurements taken on the leader. The reason for this is
the inefficiency of the software network stack, and is in
line with the ping micro-benchmarks. Interestingly, even
though these numbers are measured on a system with a
single client and one TCP connection, software still adds
uncertainty to the high percentiles.

9

434 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 64 128 256 384 512

M
ill

io
n

w
rit

es
/s

KVS value size (B)

Direct links (3 nodes)
TCP (3 nodes)
TCP (4 nodes)
Etcd
Zookeeper

Figure 13: Consensus rounds (writes operations) per
second as a function of request size

 0
 2
 4
 6
 8

 10
 12

 0 64 128 256 384 512

M
ill

io
n

re
qu

es
ts

/s

KVS value size (B)

Client capacity

~8Gbps user data

FPGA, 10% write
FPGA, 20% write
Zookeeper, 10% wr.
Etcd, 10% write

Figure 14: Mixed workload throughput measured on
leader without and with replication (3 nodes)

When varying the size of the values in the write re-
quests to the key-value store, we can exercise differ-
ent parts of the system. The key size is kept at a con-
stant 16 B for all experiments. Figure 13 and Figure 14
show the achievable throughput for write-only and mixed
workloads (for the former all requests are replicated, for
the latter only a percentage). Naturally, the write-only
performance of the system is limited by the consensus
logic when using direct connections, and by the combi-
nation of the consensus logic and the TCP/IP stack other-
wise. This is because the transmit path on the leader has
to handle three times as many messages as the receive
path, and random accesses to DRAM limit performance.
To further explore this aspect we ran experiments with
a 4 node FPGA setup as well, and seen that the perfor-
mance scales as expected.

For mixed workloads and small requests the clients’
load generation capability is the bottleneck, while for
larger messages performance is bound by the network
capacity. This is illustrated by the two workloads in
Figure 14, one with 10% writes and the other with
20%. Since they show the same performance, the atomic
broadcast logic is not the bottleneck in these instances.
The workload with 20% writes is actually slightly faster
because the average size of responses to the clients gets
smaller (each read request to the key-value store will re-
turn the key, value and headers, while write requests only
return headers and a success message).

We ran Zookeeper and Etcd on three machines each
and performed the same mixed-workload experiment as
before. To make sure that they are not impacted by
hard drive access times, we set up ram disks for persist-
ing logs. Figure 14 shows that their performance is not
bound by the network, and is mostly constant even for
large messages. Both are almost an order of magnitude
slower for small messages than hardware.

 0
 0.4
 0.8
 1.2
 1.6

 2

 0 30 60 90 120 150 180 210 240 270 300M
ill

io
n

w
rit

e
re

q.
 /

s

Time (s)

3 nodes 2 nodes 3 nodes

Le
ad

er
 fa

ils Election

N
od

e
ad

de
d

Bulk sync.

Figure 15: Leader election triggered while client issue an
all-write workload, nodes connected via TCP links

7.6 Leader Election

To exercise leader election and recovery we simulate a
node failure of the leader, which results in a leader elec-
tion round without significant state transfer since the FP-
GAs do not drift much apart under standard operation.
Hence leader election over TCP/IP takes approximately
as long as a consensus round (10µs in average), not
counting the initial timeout of the followers (50µs) Fig-
ure 15 depicts the experiment: we generate write-only
load from several clients for a three node FPGA cluster
communicating over TCP and at the 56 s mark the leader
node fails and a new leader is elected. To make client
transition possible we modified memaslap and added a
timeout of 100 ms before trying an other node (the clients
retry in the same round robin order in which the FPGAs
try to elect leaders). The graph indicates that the dip in
performance is due to the 100 ms inactivity of clients,
since leader election takes orders of magnitude less.

Synchronization of state between nodes happens for
instance when a new node joins the cluster. In Figure 15
we shows the previously failed node recovering after 2
minutes and prompting the new leader to synchronize.
Since at this point the log has been compacted, the leader
will bulk transfer the application state that consists of the
hash table and value area, occupying 256MB and 2GB,
respectively. During synchronization the leader will not
handle new write requests to keep the state stable, hence
the clients will repeatedly time out and resume normal
operation only once the leader has finished the state
transfer. The results show that, as expected, this step
takes between 2-3 seconds, the time necessary to send
the state over 10Gbps network plus clients resuming.

This experiment allows us to make two observations.
First, leader election can be performed very quickly
in hardware because detecting failed nodes happens in
shorter time frames than in software (i.e., in order of 10s
of µs). Hence, leader-change decisions can be taken
quickly thanks to low round-trip times among nodes.
Second, the cost of performing bulk transfers shows that
in future work it will be important to optimize this opera-
tion. The hardware could benefit from the approach used
by related work, such as DARE [48], where the followers
synchronize the newly added node. This leads to smaller
performance penalty incurred by state transfer at the cost
of a slightly more complex synchronization phase.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 435

Component LUTs BRAM DSPs
PHY and Ethernet (x3) 16k 18 0
TCP/IP + App-spec. 23k 325 0
Memory interface 47k 127 0
Atomic broadcast 10k 340 0
Key-value store 28k 113 62
Total used (% of available) 124k (28%) 923 (63%) 62 (2%)

Table 4: Detailed breakdown of the resource usage

7.7 Logic and Energy Footprint

To decide whether the hardware consensus protocol
could be included in other FPGA-based accelerators or
middleboxes we need to look at its logic footprint. FP-
GAs are a combination of look-up tables (LUTs) that
implement the “logic”, BRAMs for storage, and digital
signal processors (DSPs) for complex mathematical op-
erations. In general, the smaller the footprint of a mod-
ule, the more additional logic can fit on the chip besides
it. Table 4 shows that the ZAB module is smaller than
the network stack or the key-value store, and uses only a
fraction of the LUTs on the chip. The resource table also
highlights that a big part of the BRAMs are allocated
for networking-related buffers and for log management.
While it is true that some of these could be shrunk, in our
current setup where there is nothing else running on the
FPGA, we were not aiming at minimizing them.

One of the goals of this work is to show that it is pos-
sible to build a Zookeeper-like service in an energy effi-
cient way. The power consumption of the FPGAs, even
when fully loaded, is 25 W – almost an order of magni-
tude lower than the power consumption of a x86 server.

8 Related Work
8.1 Coordination in Systems

Paxos [34, 35] is a family of protocols for reaching con-
sensus among a set of distributed processes that may
experience failures of different kinds, including ones in
the communication channels (failure, reordering, multi-
ple transmission, etc.). While Paxos is proven to be cor-
rect, it is relatively complex and difficult to implement,
which has led to alternatives like Raft [46], ZAB [27, 43]
or chain replication [58]. There is also work on adapting
consensus protocols for systems that span multiple phys-
ical datacenters [38, 40, 15], and while they address dif-
ficult challenges, these are not the same problems faced
in a single data-center and tight clusters.

Paxos and related protocols are often packaged as
coordination services when exposed to large systems.
Zookeeper [27] is one such coordination service. It is
a complex multi-threaded application and since its aim is
to be as universal as possible, it does not optimize for ei-
ther the network or the processor. Related work [48, 20]
and our benchmarks show that its performance is capped
around sixty thousand consensus rounds per second and
that its response time is at least an order of magni-

tude larger than the FPGA (300-400µs using ram disks).
Etcd [1], a system similar to Zookeeper, written in Go
and using Raft [46] at its core has lower throughput than
Zookeeper. This is partially due to using the HTTP pro-
tocol for all communication (both consensus and client
requests) which introduces additional overhead.

Many systems (including e.g., the Hadoop ecosys-
tem) are based on open source coordination services
such as Zookeeper and Etcd, or proprietary ones (e.g.,
the Chubby [14] lock server). All of them can bene-
fit from a faster consensus mechanisms. As an illustra-
tion, Hybris [20] is a federated data storage system that
combines different cloud storage services into a reliable
multi-cloud system. It relies on Zookeeper to keep meta-
data consistent. This means that most operations per-
formed in Hybris directly depend on the speed at which
Zookeeper can answer requests.

8.2 Speeding up Consensus

Recently, there has been a high interest in speeding up
consensus using modern networking hardware or remote
memory access. For instance DARE [48] is a system
for state machine replication built on top of a proto-
col similar to Raft and optimized for one-sided RDMA.
Their 5 node setup demonstrates very low consensus la-
tency of <15µs and handles 0.5-0.75 million consensus
rounds per second. These numbers are similar to our re-
sults measured on the leader for 3 nodes (3-10µs) and,
not surprisingly, lower than those measured on the un-
optimized software clients. While this system certainly
proves that it is possible to achieve low latency consen-
sus over Infiniband networks and explores the interest-
ing idea of consensus protocols built on top of RDMA,
our hardware-based design achieves higher throughput
already on commodity 10 GbE and TCP/IP.

FaRM [23] is a distributed main-memory key value
store with strong consensus for replication and designed
for remote memory access over 40Gbps Ethernet and
Infiniband. It explores design trade-offs and optimiza-
tions for one-sided memory operations and it demon-
strates very high scalability and also high throughput for
mixed workloads (up to 10M requests/s per node). FaRM
uses a replication factor of three for most experiments
and our hardware solution performs comparably both in
terms of key-value store performance (the hardware hash
table reaches 10 Gbps line-rate for most workloads [29])
and also in terms of consensus rounds per second, even
though the FPGA version is running on a slower network.

NetPaxos [18] is a prototype implementation of Paxos
at the network level. It consists of a set of OpenFlow ex-
tensions implementing Paxos on SDN switches; it also
offers an alternative, optimistic protocol which can be
implemented without changes to the Open- Flow API
that relies on the network for message ordering in low

11

436 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

traffic situations. Best case scenarios for NetPaxos ex-
hibit two orders of magnitude higher latency than our
system, FARM, or DARE. It can also sustain much lower
throughput (60k requests/s). The authors point out that
actual implementations will have additional overheads.
This seems to indicate that it is not enough to push con-
sensus into the network but it is also necessary to opti-
mize the network and focus on latency to achieve good
performance. In more recent work [17] the same authors
explore and extend P4 to implement Paxos in switches.
While P4 enables implementing complex functionality in
network devices, the high level of abstraction it provides
might make it difficult to implement the kind of proto-
col optimizations we describe in this paper and that are
necessary to achieve performance comparable to that of
conventional systems running over Infiniband.

Similar to the previously mentioned work, Speculative
Paxos[49] suggests to push certain functionality into the
network, e.g., message ordering. The design relies on
specific datacenter characteristics, such as the structured
topology, high reliability and extensibility of the network
through SDN. Thereby, it could execute requests specu-
latively and synchronization between replicas only has to
occur periodically. Simulations of the proposed design
show that with increasing number of out-of-order mes-
sages the throughput starts to decrease quickly, since the
protocol and application have to rollback transactions.

8.3 Quicker and Specialized Networking

One of the big challenges for software applications fac-
ing the network is that a significant time is spent in the
OS layers of the network stack [47, 31] and on multi-
core architectures response times can increase as a result
of context switching and memory copies from the NIC
to the right CPU core. As a result, there are multiple
frameworks for user-space networking [28, 31], and on
the other end of the spectrum, operating systems [12, 47]
that aim to speed up networking by separating schedul-
ing and management tasks. The use of RDMA [22, 44] is
also becoming common to alleviate current bottlenecks,
but there are many (legacy) systems that rely on the guar-
antees provided by TCP, such as congestion control, in-
order delivery and reliable transmission. Although some
functionality of the network stack is offloaded to the
NIC, processing TCP packets still consumes significant
compute resources at the expense of the applications.
Hardware systems, as we present in this paper, are imple-
menting network processing as a dataflow pipeline and
thereby can provide very high performance combined
with the robustness and features of TCP.

A good example of what can be achieved with user-
space networking is MICA [37], a key-value store built
from the ground up using Intels DPDK [28] library. The
results of this work are very promising: when using

a minimalistic stateless protocol the complete system
demonstrates over 70 million requests per second over
more than 66Gbps network bandwidth (using a total of
8 network interfaces and 16 cores). It is important to
note however that in MICA and similar systems skewed
workloads will experience slowdowns due to the parti-
tioned nature of the data structures. Additionally, a sig-
nificant part of the servers logic (for instance comput-
ing the hash function on keys, or load balancing) is of-
floaded to clients. Our aim with the hardware solution on
the other hand was to offer high throughput, low latency
while relying on simple clients and commodity networks.

8.4 Hardware for Middleboxes

There is a wide spectrum of middlebox implementations
ranging from all-software [42, 21, 8, 39], through hy-
brid [52, 9], to all-hardware [19]. One advantage of us-
ing FPGA-based solutions over software is that data can
be processed at line-rate and only a minimal overhead in
terms of latency is added. In ClickOS [42], for instance,
adding a 40ms delay to get load balancing or congestion
control is considered a good tradeoff. A hardware-based
solution like the one we propose can perform even more
complex operations, possibly involving coordination and
consensus, in a fraction of that overhead.

9 Conclusion
In this paper we have explored a number of research
questions aiming at determining whether the overhead
of consensus can be removed as a bottleneck in dis-
tributed data processing systems. First, we have shown
that it is possible to reduce the cost of reaching consensus
without compromising reliability or correctness, through
the means of specialized hardware. Second, based on
the low latency and high throughput achieved, we have
shown how to use the hardware consensus to implement
a fully functional version of Zookeeper atomic broadcast
with a corresponding key-value store. Third, we have ar-
gued that the proposed consensus module is agnostic to
the actual request contents sent to the application and,
hence, it could easily be integrated with middleboxes or
other accelerators/microservers built with FPGAs. Fi-
nally, we have explored the benefits of using a custom
messaging protocol for reducing latency, establishing the
basis for further research into application specific proto-
cols over secondary networks.

Acknowledgments
We would like to thank Xilinx for the donation of the FPGA
boards used in this paper. The work reported in this paper is
partially funded by Xilinx, Microsoft Research and the Swiss
State Secretariat for Education Research and Innovation (SERI)
under contract number 15.0025 (as part of the SUPERCLOUD
H2020 project). We would also like to thank our shepherd,
Wyatt Lloyd, for his help in improving our paper.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 437

References

[1] Etcd repository in the CoreOS project. https://

github.com/coreos/etcd.

[2] Libmemcached-1.0.18. https://launchpad.net/

libmemcached/.

[3] LibPaxos3 repository. https://bitbucket.org/

sciascid/libpaxos.

[4] Network working group: Requirements for internet hosts
– communication layers. https://tools.ietf.org/

html/rfc1122.

[5] Viking Technology. http://www.vikingtechnology.com/.

[6] Altera. Programming FPGAs with OpenCL.
https://www.altera.com/content/dam/

altera-www/global/en_US/pdfs/literature/

wp/wp-01173-opencl.pdf.

[7] David G Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A fast array of wimpy nodes. In SOSP’09.

[8] James W Anderson, Ryan Braud, Rishi Kapoor, George
Porter, and Amin Vahdat. xOMB: extensible open mid-
dleboxes with commodity servers. In ANCS’12.

[9] Muhammad Bilal Anwer, Murtaza Motiwala, Mukar-
ram bin Tariq, and Nick Feamster. Switchblade: a plat-
form for rapid deployment of network protocols on pro-
grammable hardware. ACM SIGCOMM CCR, 40(4), Au-
gust 2010.

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In SIGMETRICS’12.

[11] Michael Attig and Gordon Brebner. 400 Gb/s pro-
grammable packet parsing on a single FPGA. In
ANCS’11.

[12] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In OSDI’14.

[13] Stephen Brown and Jonathan Rose. FPGA and CPLD
architectures: A tutorial. IEEE Design & Test, 13(2), June
1996.

[14] Mike Burrows. The Chubby lock service for loosely-
coupled distributed systems. In OSDI’06.

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, Jeffrey John Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Googles globally distributed
database. ACM TOCS, 31(3), August 2013.

[16] Paolo Costa, Matteo Migliavacca, Peter Pietzuch, and
Alexander L. Wolf. NaaS: Network-as-a-Service in the
Cloud. In Hot-ICE’12.

[17] Huynh Tu Dang, Marco Canini, Fernando Pedone, and
Robert Soulé. Paxos made switch-y. ACM SIGCOMM
CCR, 2016.

[18] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at network speed. In SOSR’15.

[19] Lorenzo De Carli, Yi Pan, Amit Kumar, Cristian Estan,
and Karthikeyan Sankaralingam. Plug: flexible lookup
modules for rapid deployment of new protocols in high-
speed routers. In SIGCOMM’09.

[20] Dan Dobre, Paolo Viotti, and Marko Vukolić. Hybris:
Robust hybrid cloud storage. In SOCC’14.

[21] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-
Gon Chun, Kevin Fall, Gianluca Iannaccone, Allan
Knies, Maziar Manesh, and Sylvia Ratnasamy. Route-
bricks: exploiting parallelism to scale software routers.
In SIGOPS’09.

[22] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote memory.
In NSDI’14.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: distributed transactions with consistency, avail-
ability, and performance. In SOSP’15.

[24] Nivia George, HyoukJoong Lee, David Novo, Tiark
Rompf, Kevin J Brown, Arvind K Sujeeth, Martin Oder-
sky, Kunle Olukotun, and Paolo Ienne. Hardware system
synthesis from domain-specific languages. In FPL’14.

[25] PK Gupta. Xeon+FPGA platform for the data center. In
CARL’15.

[26] Maurice P Herlihy and Jeannette M Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
TOPLAS, 12(3), July 1990.

[27] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX ATC’10.

[28] Intel. DPDK networking library. http://dpdk.org/.

[29] Zsolt István, Gustavo Alonso, Michaela Blott, and Kees
Vissers. A hash table for line-rate data processing. ACM
TRETS, 8(2), March 2015.

[30] Zsolt István, Gustavo Alonso, Michaela Blott, and
Kees A. Vissers. A flexible hash table design for 10Gbps
key-value stores on FPGAs. In FPL’13.

[31] Eun Young Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a highly scalable user-level TCP
stack for multicore systems. In NSDI’14.

[32] Weirong Jiang. Scalable ternary content addressable
memory implementation using FPGAs. In ANCS’13.

[33] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-
afini. Zab: High-performance broadcast for primary-
backup systems. In DSN’11.

[34] Jonathan Kirsch and Yair Amir. Paxos for system
builders: An overview. In LADIS ’08, 2008.

13

438 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[35] Leslie Lamport. Generalized consensus and paxos.
Technical report, Microsoft Research MSR-TR-2005-33,
2005.

[36] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Verti-
cal paxos and primary-backup replication. In PODC’09.

[37] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: a holistic approach to fast
in-memory key-value storage. In NSDI’14.

[38] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,
and David G Andersen. Stronger semantics for low-
latency geo-replicated storage. In NSDI’13.

[39] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou,
Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui Gao, and
Yongguang Zhang. ServerSwitch: A programmable and
high performance platform for data center networks. In
NSDI’11.

[40] Hatem Mahmoud, Faisal Nawab, Alexander Pucher,
Divyakant Agrawal, and Amr El Abbadi. Low-
latency multi-datacenter databases using replicated com-
mit. PVLDB, 6(9), July 2013.

[41] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa,
Matteo Migliavacca, Peter Pietzuch, and Alexander L.
Wolf. NetAgg: Using Middleboxes for Application-
specific On-path Aggregation in Data Centres. In
CoNEXT’14.

[42] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir
Olteanu, Michio Honda, Roberto Bifulco, and Felipe
Huici. Clickos and the art of network function virtual-
ization. In NSDI’14.

[43] André Medeiros. Zookeeper’s atomic broadcast protocol:
theory and practice. Technical report, 2012.

[44] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, cpu-efficient
key-value store. In USENIX ATC’13.

[45] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data
processing on FPGAs. PVLDB, 2(1), August 2009.

[46] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In USENIX ATC’14.

[47] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In OSDI 14.

[48] Marius Poke and Torsten Hoefler. DARE: high-
performance state machine replication on RDMA net-
works. In HPDC’15.

[49] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr.
Sharma, and Arvind Krishnamurthy. Designing dis-
tributed systems using approximate synchrony in data
center networks. In NSDI’15.

[50] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal,
Jordan Gray, et al. A reconfigurable fabric for acceler-
ating large-scale datacenter services. In ISCA’14.

[51] Safenet. Ethernet encryption for data in motion.
http://www.safenet-inc.com/data-encryption/

network-encryption/ethernet-encryption/.

[52] Alan Shieh, Srikanth Kandula, and Emin Gun Sirer. Side-
car: building programmable datacenter networks without
programmable switches. In HotNets’10.

[53] David Sidler, Gustavo Alonso, Michaela Blott, Kimon
Karras, Kees Vissers, and Raymond Carley. Scal-
able 10Gbps TCP/IP stack architecture for reconfigurable
hardware. In FCCM’15.

[54] Solarflare. Accelerating memcached using Solarflare’s
Flareon Ultra server I/O adapter. December 2014. http:
//www.http://solarflare.com/Media/Default/

PDFs/Solutions/Solarflare-Accelerating

-Memcached-Using-Flareon-Ultra-server-IO

-adapter.pdf.

[55] Solarflare. Application OnLoad Engine (AOE). http:

//www.solarflare.com/applicationonload

-engine.

[56] Doug Terry. Replicated data consistency explained
through baseball. Commun. ACM, 56(12), December
2013.

[57] Jens Teubner and Louis Woods. Data processing on FP-
GAs. Morgan & Claypool Synthesis Lectures on Data
Management, 2013.

[58] Robbert van Renesse and Fred B. Schneider. Chain repli-
cation for supporting high throughput and availability. In
OSDI’04.

[59] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex - an
intelligent storage engine with support for advanced SQL
off-loading. PVLDB, 7(11), July 2014.

[60] Xilinx. Vivado HLS. http://www.xilinx.com/

products/design-tools/vivado/integration/

esl-design.html.

[61] Wei Zhang, Timothy Wood, KK Ramakrishnan, and Jinho
Hwang. Smartswitch: Blurring the line between network
infrastructure & cloud applications. In HotCloud’14.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 439

STREAMSCOPE: Continuous Reliable Distributed Processing of
Big Data Streams

Wei Lin∗

Microsoft
Haochuan Fan∗

Microsoft
Zhengping Qian∗

Microsoft Research
Junwei Xu
Microsoft

Sen Yang
Microsoft

Jingren Zhou∗

Microsoft
Lidong Zhou

Microsoft Research

Abstract
STREAMSCOPE (or STREAMS) is a reliable distributed
stream computation engine that has been deployed in
shared 20,000-server production clusters at Microsoft.
STREAMS provides a continuous temporal stream model
that allows users to express complex stream processing
logic naturally and declaratively. STREAMS supports
business-critical streaming applications that can process
tens of billions (or tens of terabytes) of input events
per day continuously with complex logic involving tens
of temporal joins, aggregations, and sophisticated user-
defined functions, while maintaining tens of terabytes in-
memory computation states on thousands of machines.

STREAMS introduces two abstractions, rVertex and
rStream, to manage the complexity in distributed stream
computation systems. The abstractions allow efficient
and flexible distributed execution and failure recovery,
make it easy to reason about correctness even with fail-
ures, and facilitate the development, debugging, and de-
ployment of complex multi-stage streaming applications.

1 Introduction

An emerging trend in big data processing is to extract
timely insights from continuous big data streams with
distributed computation running on a large cluster of ma-
chines. Examples of such data streams include those
from sensors, mobile devices, and on-line social media
such as Twitter and Facebook. Such stream computa-
tions process infinite sequences of input events and pro-
duce timely output events continuously. Events are of-
ten processed in multiple stages that are organized into
a directed acyclic graph (DAG), where a vertex corre-
sponds to the continuous and often stateful computation
in a stage and an edge indicates an event stream flow-
ing downstream from the producing vertex to the con-
suming vertex. In contrast to batch processing, also of-

∗Now with Alibaba Group.

ten modeled as a DAG [27], a defining characteristic of
cloud-scale stream computation is its ability to process
potentially infinite input events continuously with delays
in seconds and minutes, rather than processing a static
data set in hours and days. The continuous, transient, and
latency-sensitive nature of stream computation makes it
challenging to cope with failures and variations that are
typical in a large-scale distributed system, and makes
stream applications hard to develop, debug, and deploy.

This paper presents the design and implementation of
STREAMSCOPE (or STREAMS), a cloud-scale reliable
stream computation engine that has been deployed in
shared production clusters, each containing over 20,000
commodity servers. STREAMS adopts a declarative lan-
guage that supports a continuous stream computation
model, extended with the ability to allow user-defined
functions to customize stream computation at each step.

STREAMS has been designed for business-critical
stream applications desiring a strong guarantee that each
event is processed exactly once despite server failures
and message losses. Failure recovery in cloud-scale
stream computation is particularly challenging because
of two types of dependencies: the dependency between
upstream and downstream vertices, and the dependency
introduced by vertex computation states. An upstream
vertex failure affects downstream vertices directly, while
the recovery of a downstream vertex would depend on
the output events from the upstream vertices. Failure
recovery of a vertex would require rebuilding the state
before the vertex can continue processing new events.
STREAMS therefore introduces two new abstractions,
rVertex and rStream, to manage the complexity of cloud-
scale stream computation by addressing the two types of
dependencies through decoupling. rVertex models con-
tinuous computation on each vertex, introduces the no-
tion of snapshots along the time dimension, and allows
the computation to restart from a snapshot. rStream ab-
stracts out the data and communication aspects of dis-
tributed stream computation, provides the illusion of reli-

440 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

able and asynchronous communication channels, and de-
couples upstream and downstream vertices. Combined,
rVertex and rStream offer well-defined semantics to re-
play computation and to rewind streams, as needed dur-
ing failure recovery, thereby making it easy to develop
different failure recovery strategies while ensuring cor-
rectness. The power of this abstraction also comes from
the separation of its properties from its actual implemen-
tation that achieves those properties. That, for example,
allows a different implementation of rStream specifically
for development and debugging.

Our evaluation shows that STREAMS can support
complex production streaming applications deployed on
thousands of machines, processing tens of billions of
events per day with complex computation logic to deliver
business-critical results continuously despite unexpected
failures and planned maintenance, while at the same time
demonstrating good scalability and capability of achiev-
ing 10-millisecond latencies on simple applications.

STREAMS’s key contributions are as follows. First,
STREAMS shows that a cloud-scale distributed fault-
tolerant stream engine can support a continuous stream
computation model without having to converting a
stream computation unnaturally to a series of mini-batch
jobs [42]. Second, STREAMS introduces two new ab-
stractions, rVertex and rStream, to simplify cloud-scale
stream computation engines through separation of con-
cerns, making it easy to understand and reason about
correctness despite failures. The abstractions are also
effective in addressing challenges on debugging and de-
ployment of stream applications in STREAMS. Support
for debugging and deployment is critical in practice from
our experiences, but has not received sufficient attention.
Finally, STREAMS is deployed in production and runs
critical stream applications continuously on thousands of
machines while coping well with failures and variations.

The rest of the paper is organized as follows. Sec-
tion 2 describes STREAMS’s continuous stream model
and declarative language. Section 3 defines STREAMS’s
new abstractions: rVertex and rStream. Section 4 de-
scribes STREAMS’s design and implementation in de-
tail, followed by a discussion of several design choices
in Section 5. Engineering experiences are the topic of
Section 6. Section 7 presents the evaluation results of
STREAMS in a production environment. We survey re-
lated work in Section 8 and conclude in Section 9.

2 Programming Model

In this section, we provide a high-level overview of the
programming model, highlighting the key concepts in-
cluding the data model and query language.
Continuous event streams. In STREAMS, data is rep-
resented as event streams, each describing a potentially

AlertWithUserID =
SELECT Alert.Name AS Name, Process.UserID AS UserID
FROM Process INNER JOIN Alert
ON Process.ProcessID == Alert.ProcessID;

CountAlerts =
SELECT UserID, COUNT(*) AS AlertCount
FROM AlertWithUserID
GROUP BY UserID
WITH HOPPING(5s, 5s);

Figure 1: A simplified STREAMS program.

infinite collection of events that changes over time. Each
event stream has a well-defined schema. In addition,
each event has a time interval [Vs,Ve), describing the start
and end time for which the event is valid.

Like other stream processing engines [9, 19],
STREAMS supports Current Time Increments (CTI)
events that assert the completeness of event delivery up
to start time Vs of the CTI event; that is, there will be no
events with a timestamp lower than Vs in the stream after
this CTI event. Stream operators rely on CTI events to
determine the current processing time in order to make
progress and to retire obsolete state information.
Declarative query language. STREAMS provides a
declarative language for users to program their applica-
tions without having to worry about distributed system
details such as scalability or fault tolerance. Specifically,
we extend the SCOPE [43] query language to support a
full temporal relational algebra [15], extensible through
user-defined functions, aggregators, and operators.

STREAMS supports a comprehensive set of relational
operators including projection, filters, grouping, and
joins, adapted for temporal semantics. For example, a
temporal inner join applies to events with overlapping
time intervals only. Windowing is another key con-
cept in stream processing. A window specification de-
fines time windows and consequently defines a subset of
events in a window, to which aggregations can be ap-
plied. STREAMS supports several types of time-based
windows, such as hopping, tumbling, and snapshot win-
dows. For example, hopping windows are windows (of
size S) that “jump” forward in time by a fixed size H: a
new window of size S is created for every H units of time.
Example. Figure 1 shows an example program that
performs continuous activity diagnosis on Process and
Alert event streams. A STREAMS program consists
of a sequence of declarative queries operating on event
streams. Process events record information about ev-
ery process and its associated user, while Alert events
record information about every alert, including which
process generated the alert. The program first joins the
two streams to attach user information to alerts, and then
calculates for each user the number of alerts every 5 sec-
onds using a hopping window.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 441

CountAlerts Events

Alert LogProcess Log Stages

Extract events;
partition by ProcessID

Merge events

Join events;
partition by UserID

Merge events;
aggregate in windows

(256) (512)

(256)(256)

(256)

(64)

Figure 2: An execution DAG for the example in Figure 1.

o 1

o 1
, o

2,
o 3

t0 t1 t2

s0={<0, 0>, <0>, t0} s1={<1, 0>, <1>, t1} s2={<1, 1>, <3>, t2}

Figure 3: Vertex execution from snapshot s0 to s2.

3 STREAMS Abstractions

The execution of a STREAMS program can be modeled
as a directed acyclic graph (DAG), where each vertex
performs local computation on input streams from its
in-edges and produces output streams as its out-edges.
Each stream is modeled as an infinite sequence of events,
each with a continuously incremented sequence number.
Figure 2 shows an example DAG corresponding to Fig-
ure 1, where each stage of computation is partitioned into
multiple vertices to execute in parallel. STREAMS deter-
mines the degree of parallelism for each stage (marked
in parentheses) based on data rate and computation cost.

A vertex can maintain a local state. Its execution
starts with its initial state and proceeds in steps. In each
step, the vertex consumes the next events from its input
streams, updates its state, and possibly produces events
to its output streams. The execution of a vertex is tracked
through a series of snapshots, where each snapshot is a
triplet containing the current sequence numbers of its in-
put streams, the current sequence numbers of its output
streams, and its current state. Figure 3 illustrates the
progression of a vertex execution from snapshot s0, to
s1 (after processing a1), and then to s2 (after processing
b1). STREAMS introduces two abstractions rStream and
rVertex to implement streams and vertices, respectively.

3.1 The rStream Abstraction
Rather than having vertices communicate directly
through the network, STREAMS introduces an rStream

abstraction to decouple upstream and downstream ver-
tices with properties to facilitate failure recovery.

Conceptually, rStream reliably maintains a sequence
of events with continuous and monotonically increasing
sequence numbers, supporting multiple writers and read-
ers. A writer issues Write(seq,e) to add event e with
sequence number seq. rStream supports multiple writ-
ers mainly to allow two instances of the same vertex,
which is useful when handling failures and stragglers via
duplicated execution, as described in Section 4.

A reader can issue Register(seq) to indicate its in-
terest in receiving events starting from sequence number
seq and start reading from the stream using ReadNext(),
which returns the next batch of events with their se-
quence numbers and advances the reading position ac-
cordingly. In the implementation, events can be pushed
to a registered reader rather than pulled. With rStream
each reader can proceed asynchronously from the same
stream without synchronizing with other readers or writ-
ers. A reader can also rewind a stream by re-registering
with an earlier sequence number (e.g., for failure recov-
ery). rStream also supports GarbageCollect(seq) to
indicate that all events less than sequence number seq
will not be requested any more and therefore can be dis-
carded. rStream maintains the following properties.
Uniqueness. There is a unique value associated with
each sequence number. After the first write for each se-
quence number seq succeeds, any subsequent write that
associates seq will be discarded.
Validity. If a ReadNext() returns an event e

with sequence number seq, there must have been a
Write(seq,e) that has returned successfully.
Reliability. If write(seq,e) succeeds, then, for any
ReadNext() reaching position seq, eventually the read
returns (seq,e).

Uniqueness ensures consistency for each sequence
number, Validity ensures correctness of the event value
returned for each sequence number, while Reliability en-
sures that, all events written to the stream are always
available to readers whenever requested. rStream could
simply be implemented by a reliable pub/sub system
backed by reliable and persistent store. But STREAMS
adopts a more efficient implementation that avoids pay-
ing the latency cost of going to persistent and reliable
store in the critical path, with the additional mechanism
of reconstructing the requested events through recompu-
tation [38, 42], as detailed in Section 4.

3.2 The rVertex Abstraction
The rVertex abstraction supports the following opera-
tions for a vertex. Load(s) starts an instance of the vertex
at snapshot s. Execute() executes a step from the cur-
rent snapshot. GetSnapshot() returns the current snap-

3

442 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

shot. A vertex can then be started with Load(s0), where
s0 is the initial snapshot with an initial state and with
all streams at starting positions. The vertex can then ex-
ecute a series of Execute() operations, which read the
input events, update the state, and produce output events.
At any point, one can issue GetSnapshot() to retrieve
and save the snapshot. When the vertex fails, it can be
restarted with Load(s), where s is a saved snapshot.
Determinism. For a vertex with its given input streams,
running Execute() on the same snapshot will always
cause the vertex to transition into the same new snapshot
and produce the same output events.

Determinism ensures correctness when replaying an
execution during failure recovery. It implies that (i)
the order in which the execution takes the next event
from multiple input streams is deterministic; we ex-
plain how this order determinism is enforced naturally
in STREAMS without introducing unnecessary delay in
Section 4, and (ii) the execution of the processing logic
is deterministic. Determinism greatly simplifies the rea-
soning of correctness in STREAMS and makes streaming
applications easier to develop and debug. In Section 5,
we discuss how to mask non-determinism when needed.

3.3 Failure Recovery
The rStream abstraction decouples upstream and down-
stream vertices to allow individual vertices to recover
from failures separately. When a vertex fails, we can
simply restart its execution by calling Load(s) from a
most recently saved snapshot s to continue executing.
The rVertex abstraction ensures that execution after re-
covery is the same as the continuation of the original ex-
ecution as if no failures occurred. The rStream abstrac-
tion ensures that the restarted vertex is able to (re-)read
the input streams. Section 4 describes how rVertex and
rStream are implemented and how different failure re-
covery strategies can achieve different tradeoffs.

4 Architecture and Implementation

STREAMS is designed and implemented as a streaming
extension of the SCOPE [43] batch-processing system.
As a result, STREAMS heavily leverages the architecture,
compiler, optimizer, and job manager in SCOPE, adapted
or re-designed to support stream processing at scale.
This approach expedites the development of STREAMS;
the integration of batch and stream processing also offers
significant benefits in practice, as elaborated in Section 6.

In STREAMS, a user programs a stream application
declaratively as described in Section 2. The program is
compiled into a streaming DAG for distributed execu-
tion as shown in Figure 4. To generate such a DAG, the
STREAMS compiler performs the following steps: (1)

Job
Manager

Event Sinks

Event Sources
ProgramCompiler/

Optimizer

Reliable
Storage

Figure 4: An overview of a STREAMS program.

the program is first converted into a logical plan (DAG)
of STREAMS runtime operators, which include tempo-
ral joins, window aggregates, and user-defined functions;
(2) the STREAMS optimizer then evaluates various plans,
choosing the one with the lowest estimated cost based on
available resource, data statistics such as the incoming
rate, and an internal cost model; and (3) a physical plan
(DAG) is finally created by mapping a logical vertex into
an appropriate number of physical vertices for parallel
execution and scaling, with code generated for each ver-
tex to be deployed in a cluster and process input events
continuously at runtime. We omit the details of these
steps as they are similar to those for SCOPE [43].

The entire execution is orchestrated by a streaming job
manager that is responsible for: (1) scheduling vertices
to and establishing channels (edges) in the DAG among
different machines; (2) monitoring progress and tracking
snapshots; (3) providing fault tolerance by detecting fail-
ures/stragglers and initiating recovery actions. Unlike a
batch-oriented job manager that schedules vertices at dif-
ferent times on demand, a streaming job manager sched-
ules all vertices in a DAG at the beginning of job execu-
tion. To provide fault tolerance and to cope with runtime
dynamics, rVertex and rStream are used to implement
vertices and channels in a streaming DAG, working in
coordination with the job manager.

4.1 Implementing rVertex

The key to implementing rVertex is to ensure Determin-
ism as defined in Section 3, which requires both function
determinism and input determinism. In STREAMS, all
operators and user-defined functions must be determinis-
tic. We also assume that the input streams for a job are
deterministic, both in terms of order and event values.
The only remaining input-related non-determinism is the
ordering of events across multiple input streams. Be-
cause STREAMS uses CTI events (Section 2) as markers,
we insert a special MERGE operator at the beginning of a

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 443

vertex that takes multiple input streams, which produces
a deterministic order of events for subsequent processing
in the vertex. It does so by waiting for the correspond-
ing CTI events across input streams to show up, ordering
them deterministically, and emitting them in that deter-
ministic order. Because the processing logic of vertices
tends to wait for the CTI events in the same way, this
solution does not introduce additional noticeable delay.

STREAMS labels events in each stream with consec-
utive monotonically increasing sequence numbers. A
vertex uses sequence numbers to track the last con-
sumed/produced events from all streams. At each step
of the execution, a vertex consumes the next event(s)
of the input streams, invokes Execute(), which might
change its internal state, and generates new events into
the output streams, thereby reaching a new snapshot.
GetSnapshot() returns such a snapshot, which can be
implemented by pausing the execution after a step or
some copy-on-write data structures so that a consistent
snapshot can be retrieved while running uninterrupted.
Load(c) starts a vertex and loads c as the current snap-
shot before resuming execution. To be able to resume
execution from a snapshot, a vertex can periodically cre-
ate a checkpoint and store it reliably and persistently.

4.2 Implementing rStream

The rStream abstraction provides reliable channels that
allow receivers to read from any written position. One
straightforward implementation is for producing vertices
to write events persistently and reliably into the underly-
ing Cosmos distributed file system. Those synchronous
writes introduce significant latencies in the critical path
of stream processing. STREAMS instead uses a hybrid
scheme that moves those writes out of the critical path
while providing the illusion of reliable channels: the
events being written are first buffered in memory co-
located with the producing vertex and can be transmitted
directly to consuming vertices. The in-memory buffer is
asynchronously flushed to Cosmos to survive server fail-
ures. Events that are only kept in memory might be lost
on a failure, but can be recomputed when requested.

To be able to recompute lost events in case of fail-
ures, STREAMS tracks how each event is computed, sim-
ilar to dependency tracking in TimeStream [38] or lin-
eage in D-Streams [42]. In particular, during execu-
tion, the job manager tracks vertex snapshots (through
GetSnapshot()), which it can use later to infer how to
reproduce events in the output streams. A vertex decides
for itself when to capture a snapshot, save it (e.g., check-
pointing to a reliable persistent store), and report pro-
gress to the job manager. For example, in Figure 5, ver-
tex v4 sends two updates to the job manager. The first
update reports a snapshot s1 = {〈2,7〉,〈12〉, t1}, which

Job
Manager

Step 1. snapshot tracking
v4: s1={<2, 7>, <12>, t1},

s2={<5, 10>, <20>, t2}, …

v1

v2

v4 v5

v7

v6v4

v3

Step 2. resolve snapshot to
reproduce 16

Step 3. start a new instance

Figure 5: Snapshot tracking and recovery for rStream.

C1 C2 C3 C4 C5

R1 R2 R3

W

Reliable VolatileGCOld New

Figure 6: The STREAMS implementation of rStream.

indicates that the vertex consumed up to event 2 in the
first input stream and up to event 7 in the second, and
produced output event 12, while at state t1. The second
update s2 = {〈5,10〉,〈20〉, t2} reports that it has reached
event 5 in the first input stream, event 10 in the second,
while at state t2. This tracking is completely transparent
to users. Now if event 16 in the output stream needs to be
recomputed, the job manager can simply scan the snap-
shots and find the highest output sequence number that is
lower than 16, which is s1 in this case. It then starts a new
instance of the vertex, loads snapshot s1, and continues
executing until event 16 is produced. The execution of
that new instance would require events 3-5 from the first
input stream and events 8-10 in the second, which might
trigger recomputation in upstream vertices if those events
were no longer available. This process eventually termi-
nates as the original input events are always assumed to
be reliably persisted. Overall, such a design moves the
flush to the reliable persistent store out of the critical path
in normal execution, while at the same time reduces the
number of events that need to be recomputed during fail-
ure recovery. While rStream is conceptually infinite, in
a real implementation, garbage collection is necessary to
remove obsolete events and related tracking information
that are no longer needed for producing output events or
for failure recovery, which we describe in Section 4.3.

Figure 6 illustrates rStream’s implementation. In this
example, there is one writer W (the upstream vertex) and
three readers R1, R2, and R3 (downstream vertices). The
stream grows over time from left to right. The prefix
of the stream (marked as GC) includes events that are

5

444 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0

DAG

Final output
Time

Snapshots

t0 t1 t2 t3

Low-water mark

3 7 9

a
…

v1 v2

…
v3.GC(c, 8)

b

c

Persisted up to 8 (exclusive)

0 0 2 3 6 4 7 8

v1.GC(a, 6)
v2.GC(b, 4)

Figure 7: Garbage collection: a recursive view.

obsolete and can be garbage collected, followed by a se-
quence of events that have been reliably persisted. The
tail of the stream (i.e., the most recent events) is volatile
and could get lost when failures happen. Checkpoints
can be created periodically (e.g., C1, C2, C3, C4, and C5)
for snapshots of the upstream vertex. When the volatile
portion of the stream is lost due to failure, it can be re-
computed from snapshot C4. Events in the reliable por-
tion can be served to R1 and R2 without recomputation.
Replaying from a checkpoint in the reliable portion (e.g.,
C4) fully recovers the transient portion; as a result, no
further cascading recomputation is needed for recovery.

4.3 Garbage Collection

STREAMS persists checkpoints of snapshots, streams,
and other tracking information reliably for failure re-
covery, and must determine when such information can
be garbage collected. STREAMS maintains low-water
marks for vertices and streams during the execution of a
streaming application. For a stream, the low-water mark
points to the lowest sequence number of the events that
are needed; for a vertex, the low-water mark points to the
lowest snapshot of the vertex that are needed.

For each vertex, snapshots are totally ordered by the
vector of sequence numbers of its input and output
streams. Because snapshots capture the linear progress
of deterministic vertex execution, all sequence numbers
only move forward. For example, consider a vertex with
two input streams and one output stream, a snapshot s
with a vector of sequence numbers at (〈7,12〉,〈5〉) will
be lower than a snapshot at (〈7,20〉,〈8〉). There cannot
be another snapshot at (〈6,16〉,〈4〉).

Consider a vertex v with I as its set of input streams
and O as its set of output streams. Vertex v maintains
a low-water mark sequence number lmo for each out-
put stream o ∈ O, initialized to 0. Vertex v implements
GC(o,m) to perform garbage collection, indicating that
any sequence number lower than m will no longer be
requested by the downstream vertex consuming output
stream o. For simplicity, we assume that each stream

is consumed by a single downstream vertex, but it is
straightforward to support the general case, where a
stream is shared among multiple downstream vertices.
1. If m ≤ lmo, return; // no further GC needed.
2. Set lmo to m. Let s be the highest checkpointed snap-
shot s satisfying the condition that the sequence number
for output stream o in s is no higher than lmo for every
o ∈ O. Discard any snapshot lower than s.
3. For each input stream i ∈ I, let vi be the upstream
vertex producing input stream i and let si be the se-
quence number corresponding to input stream i in s, call
vi.GarbageCollect (si) to discard events lower than si
in input stream i. Recursively call vi.GC(i,si).

Intuitively, GC(o,m) figures out which information is
no longer needed if the downstream vertex (connected to
the output stream o) will not request any events with a
sequence number lower than m. It is called when the fi-
nal output events are persisted or consumed, or when any
output events in a stream is persisted reliably. Figure 7
shows an example of low-water marks. Although the al-
gorithm is specified recursively, it can be implemented
efficiently through a reverse topological order traversal.

4.4 Failure Recovery Strategies

STREAMS must recover from failures to keep streaming
applications running. The rVertex and rStream abstrac-
tions decouple downstream vertices in a DAG from their
upstream counterparts, making it easier to reason about
and deal with runtime failures. In addition, they abstract
away underlying implementation details, and allow them
to share a common mechanism for fault tolerance.

Different failure recovery strategies can be developed;
the choice can be decided by a combination of fac-
tors: normal-case cost (in terms of resources required),
normal-case overhead (in terms of latency), recovery cost
(in terms of resources required for recovery), and recov-
ery time. We highlight three strategies that represent dif-
ferent tradeoffs that are appropriate in different scenar-
ios. With rStream and rVertex, each vertex can recover
from failures independently. As a result, those strategies
can be applied at the vertex granularity and even different
vertices in the same job could potentially use different
strategies due to their different characteristics.
Checkpoint-based recovery. In this strategy, a vertex
checkpoints its snapshot periodically into a reliable per-
sistent store. When the vertex fails, it will load the most
recent checkpoint and resume execution. A straightfor-
ward implementation of checkpointing introduces over-
head in normal execution that is not ideal for vertices that
maintain a large internal state. Advanced checkpointing
techniques [33, 34] often require specific data structures,
which introduces complexity and overhead.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 445

Replay-based recovery. Quite often stream computa-
tion is either stateless or has a short-term memory due
to its use of window operators; that is, its current inter-
nal state depends only on the events in the most recent
window of a certain duration (say the last 5 minutes).
In those cases, a vertex can get away with not explic-
itly checkpointing state, and instead reloading that win-
dow of events to rebuild state from an initial one. While
this is a special case, it is common enough to be useful.
Leveraging this property, STREAMS can simply track the
sequence numbers of the input/output streams without
having to store the local states of a vertex. This strategy
might need to reload a possibly large window of input
events during recovery, but it avoids the upfront cost of
checkpointing in the normal case.

This strategy has a subtle implication on garbage col-
lection. Instead of loading a state in a snapshot, a vertex
must recover it from earlier events in the input streams.
Those events must be retained along with the snapshot.
Replication-based recovery. Yet another strategy is to
have multiple instances of the same vertex run at the
same time: they can be connected to the same input
streams and output streams. Our rStream implementa-
tion allows multiple readers and writers, deduplicating
automatically based on sequence numbers. The Deter-
minism property of rVertex also makes replication a vi-
able approach because those instances will behave con-
sistently. With replication, a vertex can have instances
take checkpoints in turn without affecting latency ob-
served by readers because other instances are running at a
normal pace. When one instance fails, it can also get the
current snapshot from another instance directly to speed
up recovery. All those benefits come at the cost of having
multiple instances running at the same time.

5 Discussion

STREAMS makes different choices from existing dis-
tributed stream processing engines on stream model,
non-determinism, and out-of-order event processing.
Mini-batch stream processing with RDD. Instead of
supporting a continuous stream model, D-Streams [42]
models a stream computation as a series of mini-batch
computations in small time intervals and leverages im-
mutable RDDs [41] for failure recovery. Modeling a
stream computation as a series of mini-batches could
be cumbersome because many stream operators, such as
windowing, joins, and aggregations, maintain states to
process event streams efficiently. Breaking such opera-
tions into separate mini-batch computation requires re-
building computation state from the previous batches be-
fore processing new events in the current batch. A good
example is the inner join in Figure 1. The join operator
needs to track all the events that might generate matching

results for the current or future batches in efficient data
structures and can only retire them on CTI events. Re-
gardless of how mini-batches are generated, such a join
state is potentially big for complex join types and needs
to be rebuilt in each batch or passed on between con-
secutive mini-batches. Furthermore, D-Streams unnec-
essarily couples low latency and fault tolerance: a mini-
batch defines the granularity at which vertex computation
is triggered and therefore dictates latency, while an im-
mutable RDD, mainly for failure recovery, is created for
each mini-batch. The low-latency requirements demand
small batch sizes even though there is no need to enable
failure recovery at that granularity.
Non-determinism. Determinism is required in rVer-
tex for correctness and also makes debugging easier.
Non-determinism could introduce inconsistency when
a vertex re-executes during failure recovery. Non-
determinism might cause re-execution to deviate from
the initial execution and lead to a situation where down-
stream vertices use two inconsistent versions of the out-
put event streams from this vertex. STREAMS can be
extended to support non-determinism, but at a cost.

One way to avoid inconsistency due to non-
determinism is to make sure that any output events pro-
duced by a vertex do not need to be recomputed. This can
be achieved, for example, by checkpointing the snapshot
to a reliable and persistent store before making the output
events visible to downstream vertices. This is in essence
the choice that MillWheel [7] makes in its design. This
proposal introduces significant overhead because the ex-
pensive checkpointing is on the critical path. An alterna-
tive approach is to log non-deterministic decisions during
execution for faithful replay [10, 22, 23, 32, 35]. Log-
ging non-deterministic decisions is often less costly than
checkpointing snapshots, but this approach requires that
all sources of non-determinism be identified, appropri-
ately logged, and replayed. STREAMS does not support
such mechanisms in the current implementation.
Out-of-order event ordering. Events could arrive in an
order that does not correspond to their application time-
stamps, for example, when the events come from mul-
tiple sources. To allow out-of-order event processing,
systems such as Storm [3] and MillWheel [7] assign a
unique but unordered ID to each event. A downstream
vertex sends ACKs with those IDs to an upstream vertex to
track progress and handle failures. STREAMS decouples
the logical order of events from their physical delivery
and consumption. It borrows the idea of CTI events as
discussed in Section 2 from stream databases to achieve
out-of-order event processing at the language and opera-
tor level. At the system level, STREAMS assigns unique
and ordered sequence numbers to events, making it easy
to track progress and handle failures, while avoiding ex-
plicit ACKs that could incur performance overhead.

7

446 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

6 Production Experiences

STREAMS has been deployed in production. This section
highlights our experiences with developing STREAMS
and with supporting the life cycle of streaming applica-
tions, from development, debugging, to deployment.
From batch to streaming. STREAMS has been devel-
oped as an extension to an existing large-scale batch pro-
cessing system and benefited greatly from reusing the ex-
isting components, such as the compiler, optimizer, and
DAG/job manager, with adaptation and changes to sup-
port streaming. For example, the compiler is extended
to handle streaming operators and the optimizer has a re-
vised cost function to evaluate streaming plans.

Quite a few streaming applications were migrated
from recurring batch jobs to achieve better efficiency and
low latency. STREAMS provides supports for such mi-
gration in the compiler and allows the use of a batch ver-
sion to validate the results of a streaming counterpart.
Scaling and robustness to fluctuation. STREAMS cre-
ates a physical plan to handle scaling based on estimated
peak input rates and operator costs, ensuring that a suf-
ficient number of vertices in each stage execute in par-
allel to handle the peak load. We find STREAMS’s de-
sign robust to fluctuations caused by load spikes or server
failures thanks to the decoupling between vertices using
rStream. When one vertex falls behind temporarily, the
input events to the vertex are queued in essentially an in-
finite buffer in the underlying distributed storage system.
The queuing also allows effective event batching to al-
low the vertex to catch up quickly. When the peak load
increases over time, STREAMS provides the support to
move to a new configuration with increased degrees of
paralleliem, without any interruption. This is done by
initiating new vertices with derived states from check-
points in the current job, and retires the corresponding
vertices when the new ones catch up. The flexibility of
rStream makes it easy to support such transitions. We
decided not to support dynamic reconfiguration [38] as
the additional complexity was not justified.
Distributed streaming made easy. In STREAMS, the
declarative programming language and the stream data
model makes it easy to program a streaming application
without worrying about the distributed system details.
STREAMS extends the simplicity to development and de-
bugging via a different instantiation of rStream and a
different scheduling policy in the job manager. Specif-
ically, STREAMS introduces an off-line mode, where fi-
nite datasets, usually persistently stored, can be read to
simulate on-line event streams, through a special instan-
tiation of rStream. The job manager also uses a special
off-line mode that favors ease of debugging over latency
by executing one vertex at a time, instead of running
all vertices concurrently, thereby significantly reducing

the required resources. The off-line mode is completely
transparent to the user code, which behaves the same
way as in the on-line version except for latency.
Traveling back in time. A streaming application typ-
ically progresses forward in time, but we have encoun-
tered cases where traveling back in time is needed. For
example, a user might request to re-examine a segment
of execution in the past in response to an audit request.
As a result of the investigation, the user needs to apply
adjustments to the past results because the learning algo-
rithm used is imperfect and needs correction in this par-
ticular case. To improve the algorithm, the user further
conducts experiments with new algorithms and compares
them with the current one. To handle such requirements,
we maintain all past checkpoints and input channels in a
global repository that implements a retention policy. Our
rVertex and rStream abstractions support time travel to
the past as is the case for failure recovery.
Continuous operation during system maintenance.
Cluster-wide maintenance and updates, e.g., to apply
patches, occur regularly in data centers. For batch jobs,
the maintenance can be done systematically by not as-
signing new tasks to the ones to be patched and waiting
for the existing tasks to finish on those machines. This
is unfortunately not sufficient for streaming applications
as they run continuously. Instead, STREAMS leverages
duplicate execution (as used to handle stragglers) to min-
imize the effect: after receiving a notification that certain
machines are scheduled for maintenance, the job man-
ager replicates the execution of each affected vertex and
schedules another instance in a different safe machine.
Once the new instance catches up in terms of events pro-
cessing, the job manager can safely kill the affected ver-
tex and allow maintenance to proceed.
Straggler handling. Stragglers are vertices that make
progress at a slower rate than other vertices in the same
stage. Preventing and mitigating stragglers is particu-
larly important for streaming applications where strag-
glers can have more severe and long-lasting performance
impact. First, STREAMS continuously monitors machine
health and only considers healthy machines for running
streaming vertices. This significantly reduces the likeli-
hood of introducing stragglers at runtime. Second, for
each vertex, STREAMS tracks its resulting CTI events,
normalized by the number of its input events, to estimate
roughly its progress. If one vertex has a processing speed
that is significantly slower than the others in the same
stage that execute the same query logic, a duplicate copy
is started from the most recent checkpoint. They execute
in parallel until either one catches up with the others, at
which point the slower one is killed.

A streaming application might encounter anomalies
during its execution; for example, when hitting unex-
pected input events. We have encountered cases where

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 447

0 %
20 %
40 %
60 %
80 %

100 %

 10 20 30 40

C
D

F

Vertex state size(GB)

Figure 8: Distribution of vertex state sizes.

certain rare input events take a lot of time to process.
The vertex hitting such an event is often considered a
straggler, but such a straggler cannot be fixed by dupli-
cate execution as the computation is always expensive.
We extend STREAMS with an alert mechanism to sup-
ply users with various alerts, including event process-
ing speeds and on-line statistics, and provide a flexible
mechanism that allows users to specify a filter to weed
out such events to keep the streaming application run-
ning smoothly (before a new solution is ready to be de-
ployed). To ensure determinism, before a filter is applied,
STREAMS creates a checkpoint for the vertex, flushes the
volatile part of the streams, and records the filter.

7 Evaluation

STREAMS has been deployed since late 2014 in shared
20,000-server production clusters, running concurrently
a few hundred thousand jobs daily, including a variety of
batch, interactive, machine-learning, and streaming ap-
plications. Our evaluation starts with an in-depth study
of a large business-critical production streaming appli-
cation. Next, we perform extensive experiments using
three simple streaming applications to demonstrate the
scalability and performance with STREAMS, as well as
the tradeoff between latency and throughput. Finally, we
evaluate different failure recovery strategies. All the ex-
periments are carried out in our shared production envi-
ronment to perform real and practical evaluation.

7.1 A Production Streaming Application

For our evaluation, we study a production streaming ap-
plication that supports a core on-line advertisement ser-
vice. The application detects fraud clicks of on-line
transactions in near-real time and refunds affected cus-
tomers accordingly. Because the application is related to
accounting, strong guarantees are needed. Latency is im-
portant for the application because lower latency allows
customers to adjust their selling strategies more quickly,
leading to higher revenues for the service. The previous
implementation as a batch job introduced a latency of

 20

 40

 60

 80

 100

La
te

nc
y

(m
in

ut
e)

A D

B

C

 0
 30
 60
 90

 120

Fa

ilu
re

s

 0
 200
 400
 600
 800

1 2 3 4 5 6 7

Se

rv
er

 R
eb

oo
ts

Time (week)

Figure 9: Application performance, failures, and server
reboots over a 7-week period.

around 6 hours: it had to wait for the data to accumulate
(every 3 hours) and to rebuild the state every time it ran.

The application has a complex processing logic that
involves a total of 48 stages, containing 18 joins of 5
different types (specifically, left semi, left anti semi, left
outer, inner, and clip [9]). During the period of evalua-
tion, the application executes on 3,220 vertices, process-
ing tens of billions of input events (around 9.5 TB in size)
and resulting in around 180 TB of I/O per day. Figure 8
shows the distribution of in-memory vertex state sizes
in the application. There are about 25% “heavy” ver-
tices that maintain a huge in-memory state because the
application extracts millions of features from raw events
and maintains a large number of complicated statistics in
memory before feeding them into a sophisticated on-line
prediction engine for fraud detection. The aggregated in-
memory state of all the vertices is around 21.3 TB.

7.2 STREAMS in Production

In a shared production environment, failures, variations,
and system maintenance are the norm. We cover several
key aspects of the production streaming application, in-
cluding performance, failures, variations, and stragglers.
Performance and failure impact. Figure 9 shows the
end-to-end latency of this application over a 7-week pe-
riod (top figure), along with the number of server failures
(middle figure), and the number of servers brought down
for planned maintenance (bottom figure), all aligned on
time. We observed random server failures from time to
time, impacting the application latency in various ways.
We also experienced a major planned system mainte-
nance that systematically rebooted machines.

We highlight four interesting periods, labeled A, B, C,
and D. In case A, although the number of failures was not

9

448 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0 %
20 %
40 %
60 %
80 %

100 %

 2 4 6 8 10 12 14 16

C
D

F

Latency (minute)

Stage W
Stage X
Stage Y
Stage Z

Figure 10: Distribution of vertex latency in four repre-
sentative stages.

high, some of the failed vertices held a relatively large
in-memory state and took a long time to recover, thereby
leading to a significant latency spike. In case B, however,
a majority of failures occurred to vertices with a rela-
tively small state. The recovery was therefore fast and its
latency impact was hardly visible. Case C corresponds to
a “live site” triggered by an unplanned mis-configuration
that caused a significant number of machines to reboot.
The issue led to a significant latency spike, but the appli-
cation survived this massive failure. In Case D, a planned
system maintenance rebooted machines in batches to ap-
ply OS patches and software upgrades. The entire ap-
plication had to be migrated to run on a different set of
machines. STREAMS used duplicate execution for each
affected vertex to migrate gracefully.

The average end-to-end latency for the application is
around 20 minutes. The original timestamps of the input
events are included in the final output events and are used
to compute end-to-end latency. The input delay, which
is the interval between when events are generated/times-
tamped and when they appear in the input streams of the
application, is also included. Window aggregations se-
mantically introduce delay in latency and are the domi-
nant factor in the overall latency for this application.
Variations. Performance variations are common in dis-
tributed computation, even among vertices in the same
stage. Figure 10 shows the latency distribution of all the
vertices in four representative stages, respectively. Stage
W is responsible for extracting input events from raw
event logs: the latency observed at that stage is mostly
due to input delay. The variations observed in that stage
are also consistently observed in later stages. Stage X
contains window aggregations, which intrinsically intro-
duce delays that are comparable to those of the window
sizes to the downstream stage Y . Stage Z represents
the application’s final computation stage. Variations are
the result of various factors: load fluctuation and inter-
ference on servers, or changing data characteristics and
their impact on computation complexity and efficiency.
Concurrent channels. Interestingly, noticeable perfor-
mance variations are observed on vertices that process
the same data from the same upstream vertex. We ex-
amine a vertex whose output events are broadcast to 150

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8

Pr
oc

es
se

d
Ev

en
ts

 (K
)

Time (minute)
(a) Processing speed variations

V1
V2
V3
V4

 0
 5

 10
 15
 20
 25
 30
 35
 40

 200 400 600 800

Pr
oc

es
se

d
Ev

en
ts

 (M
)

Time (minute)
(b) Synchronized v.s.
concurrent channels

concurrent
synchronized

Figure 11: Benefits of concurrent channels.

 0
 1
 2
 3
 4
 5

1 2 3 4 5 6 7

St
ra

gg
le

rs

Time (week)

Figure 12: Stragglers in production.

downstream vertices in the application we study. Fig-
ure 11(a) shows a detailed 8-minute view of processing
speed variations on four selected vertices. A difference
of several thousand events in processing speeds shows up
from time to time, mainly due to computation variations
in individual vertices: one vertex might outperform oth-
ers for a period of time and then lag behind in the next.
This observation argues against a naive synchronized de-
sign (e.g., using TCP directly) that forces all downstream
vertices to proceed in lock steps, causing the slowest ver-
tex to dictate in each step. STREAMS employs a con-
current design, allowing individual downstream vertices
to advance at different speeds. Figure 11(b) compares
the projected progress of such a synchronized design
with the actual execution that uses a concurrent chan-
nel. The performance of using concurrent channels no-
ticeably outperforms that of using synchronized ones.

Stragglers. Stragglers do appear in production even with
mechanisms to prevent them. A straggler cannot recover
by itself, unlike performance variation, and actions such
as duplicate execution might be needed to resolve it. Fig-
ure 12 shows the number of stragglers we detected and
successfully recovered during the 7-week period. We are
conservative in classifying a vertex as a straggler because
we observe that in most cases a vertex that falls behind
temporarily can catch up by processing at large batches.
The detected ones are those with persistent issues.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 449

 0
 5

 10
 15
 20
 25
 30
 35
 40

100 400 700 1000

Th
ro

ug
hp

ut
 (G

B/
s)

Degree of parallelism

Join
Grep

WordCount

Figure 13: Scalability.

7.3 Scalability
To evaluate scalability and study performance tradeoff,
we run three simple streaming applications in produc-
tion. (1) Grep scans input events (strings) for a matching
pattern; (2) WordCount counts the number of words in
an input stream over 1-minute hopping windows, and (3)
Join joins two input streams to return matching pairs.
Each event in the first input stream has a 2-min win-
dow [t, t +2], while a matching event with the same join
key appears in the second stream in a 1-min window
[t + 0.5, t + 1.5], so that each event appears in the join
result, allowing the application to produce a steady out-
put stream. In all cases, each event is 100 bytes.

To evaluate scalability, we run each application with
different numbers of vertices (degrees of parallelism) up
to 1,000. We constrain each vertex to use one CPU core
and limit I/O bandwidth to avoid significantly impact-
ing production activities. Figure 13 reports the maxi-
mum throughput that STREAMS can sustain under a 1-
second latency bound for each application with different
numbers of vertices. STREAMS scales linearly to 1000
vertices, achieving a throughput of up to 35 GB/s. We
also repeat the same experiments on a small dedicated
20-machine test cluster without any vertex resource con-
straint. STREAMS is able to saturate the network and the
maximum throughput is bounded by network bandwidth.

7.4 Tradeoff: Latency vs. Throughput
We further study the tradeoff between latency and
throughput by varying event buffer size using Grep with
100 vertices. We choose Grep because it has no win-
dow or join constructs that could introduce application-
level delays. We repeat each experiment 3 times and re-
port the average, minimum, and maximum values. As
shown in Figure 14(a), STREAMS achieves a latency
around 10 msec using a small buffer size at the cost of
lower throughput. As the buffer size grows, the through-
put improves but the latency also increases. STREAMS
achieves a stable maximum throughout when buffering
every 16K events, where the latency is around 280 msec.
Our default production setting triggers computation ei-
ther when accumulated events fill a 2MB buffer or every

 0

 200

 400

 600

 800

 1000

 1200

1 4 16 64 256 1K 4K 16K 64K 256K
 0

 0.5

 1

 1.5

 2

 2.5

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (G

B/
s)

Buffer size

Latency
Throughput

(a) STREAMS (Asynchronous writes)

 0

 200

 400

 600

 800

 1000

 1200

1 4 16 64 256 1K 4K 16K 64K 256K
 0

 0.5

 1

 1.5

 2

 2.5

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (G

B/
s)

Buffer size

Latency
Throughput

(b) Synchronous writes

Figure 14: Latency and throughput tradeoff using Grep
with 100 vertices.

 0
 20
 40
 60
 80

 100
 120
 140
 160

A1 A2A3 A4

B1 B2B3 B4

La
te

nc
y

(s
ec

on
d)

Time

Checkpoint
Replay

Replicate

Figure 15: Comparing failure recovery strategies.

500 msec, but it is configurable for each application.
In STREAMS, events are first buffered in memory be-

fore asynchronously flushed to a reliable persistent store.
To compare, we repeat the same Grep experiment by
synchronously storing every event persistently, as done
in MillWheel [7]. Figure 14(b) shows a similar trade-
off. However, its latency is always worse than that of
STREAMS, while its throughput is worse when the buffer
size is smaller than 1KB and is comparable otherwise.

7.5 Failure Recovery Strategies

We compare three failure recovery strategies using Join
in Figure 15. The experiment is conducted in a produc-
tion environment, where we inject a vertex failure manu-
ally, apply different recovery strategies, and observe the
latency impact during failure and recovery. We align the
time lines of the executions for ease of comparison.

11

450 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

The replication-based strategy has no impact on the la-
tency because it always has at least two instances of the
same vertex running. For the checkpoint-based strategy,
each checkpointing introduces a small latency spike. Af-
ter a failure, a new instance of the failed vertex reloads
the latest checkpoint and continues executing. From A1
to A2, the checkpointed snapshot is reloaded. From A2
to A3, the vertex re-produces events that were already
generated before failure. Those are discarded. After A3,
the vertex starts to produce new output events. The la-
tency is high at this point because input events have been
buffered during failure/recovery. The vertex catches up
at A4. Replay-based recovery does not have checkpoint-
ing overhead. The last snapshot is reconstructed by re-
playing the input events, which corresponds to the period
between B1 to B2. There is a longer delay in replay-based
recovery because the state in checkpoint is more con-
densed than the input events (a common case). Once the
state is reconstructed, it follows the same steps as in the
checkpoint-based recovery: it reproduces some duplicate
output from B2 to B3 and then catches up at B4. The ac-
tual shape of the curves depends on many factors, such
as the sizes of the states, the number of events that must
be replayed, the replay speed, and the catch-up speed.

As a rule of thumb, the checkpoint-based strategy is
preferable if the checkpointing cost is low. The replay-
based strategy is favored if the checkpointing cost is
high, but the replay cost is comparable to that of recov-
ery from a checkpoint. In our production application,
25% of the vertices use replay-based recovery (manu-
ally configured) to avoid the normal-case latency penalty,
while the remaining use checkpoint-based recovery for
fast fail-over. Replication is used for duplicate execution
to handle stragglers or to enable migration.

8 Related Work

The key concepts in STREAMS, such as declarative SQL-
like language, temporal relational algebra, compilation
and optimization to streaming DAG, and scheduling,
have been inherited from the design of stream database
systems [6, 13, 20, 5, 19], which extensively studied
stream semantics [29, 18, 15, 28] and distributed pro-
cessing [11, 25, 17, 14, 26]. STREAMS’s novelty is in the
new rStream and rVertex abstractions designed for high
scalability and fault tolerance through decoupling, rep-
resenting a different and increasingly important design
point that favors scalability at the expense of somewhat
loosened latency requirements. MapReduce Online [21],
S4 [37], and Storm [3, 31] extend a DAG model in batch
processing systems like Hadoop [1] to streaming.

STREAMS is designed to achieve the exactly-once se-
mantics despite failures; such strong consistency is re-
quired by many production streaming applications and

makes it easy to reason about correctness. Other sys-
tems such as Trident [4] (over Storm), MillWheel [7, 8],
TimeStream [38], D-Streams [42], and Samza [2] also
embrace strong consistency, but make different design
choices. The abstractions in STREAMS separate the
key requirements of fault tolerant streaming process-
ing from the different approaches in satisfying those re-
quirements. For example, state management and track-
ing in Trident, MillWheel, and Samza can be consid-
ered a way to realize rVertex. TimeStream’s depen-
dency tracking and D-Streams’ lineage tracking can be
used to implement rStream with on-demand recomputa-
tion, while Kafka [30]-based channel implementation in
Samza implements rStream with all events persisted re-
liably. STREAMS’s rStream implementation moves the
cost of reliable persistence out of the critical path (unlike
MillWheel [7] and Samza [2]), while keeping the prob-
ability of on-demand recomputation low and avoiding
cascading recovery in practice. Other noteworthy techni-
cal differences, such as continuous vs. mini-batch mod-
els, non-determinism, and out-of-order event processing,
have been discussed in Section 5.

Several other systems focus on other design dimen-
sions. For example, Photon [12] and JetStream [39] ad-
dress the geo-distribution aspect of streaming to achieve
consistency and efficiency over a wide area network.
Naiad [36] and Flink [16] handle dataflows with cycles
for incremental computation. SEEP [24] and ChronoS-
tream [40] address the resource elasticity for stream-
ing by dynamically adjusting the degree of parallelism.
Heron [31] improves on Storm to run in shared produc-
tion cluster efficiently and introduces backpressure.

9 Conclusion

STREAMS takes a principled approach to distributed
fault-tolerant cloud scale stream computation with new
abstractions rVertex and rStream. Its implementation
and deployment in production not only provide the in-
sights that validate the design choices, but also offer
valuable engineering experiences that are key to the suc-
cess of such a cloud scale stream computation system.

10 Acknowledgments

We would like to thank the anomymous reviewers, as
well as our shepherd Hari Balakrishnan, for their valu-
able comments and suggestions. We are grateful to
Michael Levin, Andrew Baumann, Geoff Voelker, and
Jay Lorch for providing insightful feedback on our early
draft. We would also like to thank Microsoft Big Data
team members for their support and collaboration.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 451

References

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Apache Samza. http://samza.apache.org/.

[3] Apache Storm. http://storm.incubator.apache.org/.

[4] Trident. https://storm.apache.org/documentation/trident-
tutorial.html.

[5] ABADI, D. J., AHMAD, Y., BALAZINSKA, M.,
ÇETINTEMEL, U., CHERNIACK, M., HWANG, J.,
LINDNER, W., MASKEY, A., RASIN, A., RYVK-
INA, E., TATBUL, N., XING, Y., AND ZDONIK,
S. B. The design of the Borealis stream processing
engine. In CIDR (2005), pp. 277–289.

[6] ABADI, D. J., CARNEY, D., ÇETINTEMEL, U.,
CHERNIACK, M., CONVEY, C., LEE, S., STONE-
BRAKER, M., TATBUL, N., AND ZDONIK, S. B.
Aurora: A new model and architecture for data
stream management. VLDB J. 12, 2 (2003), 120–
139.

[7] AKIDAU, T., BALIKOV, A., BEKIROGLU, K.,
CHERNYAK, S., HABERMAN, J., LAX, R.,
MCVEETY, S., MILLS, D., NORDSTROM, P.,
AND WHITTLE, S. MillWheel: Fault-tolerant
stream processing at Internet scale. PVLDB 6, 11
(2013), 1033–1044.

[8] AKIDAU, T., BRADSHAW, R., CHAMBERS,
C., CHERNYAK, S., FERNÁNDEZ-MOCTEZUMA,
R. J., LAX, R., MCVEETY, S., MILLS, D.,
PERRY, F., SCHMIDT, E., ET AL. The dataflow
model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing. Proceed-
ings of the VLDB Endowment 8, 12 (2015), 1792–
1803.

[9] ALI, M. H., CHANDRAMOULI, B., GOLDSTEIN,
J., AND SCHINDLAUER, R. The extensibility
framework in Microsoft StreamInsight. In ICDE
(2011), pp. 1242–1253.

[10] ALTEKAR, G., AND STOICA, I. ODR: Output-
deterministic replay for multicore debugging. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009 (2009),
pp. 193–206.

[11] AMINI, L., ANDRADE, H., BHAGWAN, R., ES-
KESEN, F., KING, R., SELO, P., PARK, Y., AND
VENKATRAMANI, C. SPC: A distributed, scalable
platform for data mining. In Proceedings of the 4th

international workshop on Data mining standards,
services and platforms (2006), ACM, pp. 27–37.

[12] ANANTHANARAYANAN, R., BASKER, V.,
DAS, S., GUPTA, A., JIANG, H., QIU, T.,
REZNICHENKO, A., RYABKOV, D., SINGH, M.,
AND VENKATARAMAN, S. Photon: Fault-tolerant
and scalable joining of continuous data streams. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013
(2013), pp. 577–588.

[13] ARASU, A., BABCOCK, B., BABU, S., DATAR,
M., ITO, K., NISHIZAWA, I., ROSENSTEIN, J.,
AND WIDOM, J. STREAM: The Stanford stream
data manager. In Proceedings of the 2003 ACM
SIGMOD International Conference on Manage-
ment of Data, San Diego, California, USA, June
9-12, 2003 (2003), p. 665.

[14] BALAZINSKA, M., BALAKRISHNAN, H., MAD-
DEN, S., AND STONEBRAKER, M. Fault-
Tolerance in the Borealis Distributed Stream Pro-
cessing System. In ACM SIGMOD Conf. (Balti-
more, MD, June 2005).

[15] BARGA, R. S., GOLDSTEIN, J., ALI, M. H., AND
HONG, M. Consistent streaming through time: A
vision for event stream processing. In CIDR 2007,
Third Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings (2007), pp. 363–374.

[16] CARBONE, P., FÓRA, G., EWEN, S., HARIDI,
S., AND TZOUMAS, K. Lightweight asynchronous
snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603 (2015).

[17] CETINTEMEL, U. The Aurora and Medusa
projects. Data Engineering 51, 3 (2003).

[18] CHAKRAVARTHY, S., KRISHNAPRASAD, V., AN-
WAR, E., AND KIM, S. Composite events for active
databases: Semantics, contexts and detection. In
VLDB’94, Proceedings of 20th International Con-
ference on Very Large Data Bases, September 12-
15, 1994, Santiago de Chile, Chile (1994), pp. 606–
617.

[19] CHANDRAMOULI, B., GOLDSTEIN, J., BAR-
NETT, M., DELINE, R., PLATT, J. C., TER-
WILLIGER, J. F., AND WERNSING, J. Trill: A
high-performance incremental query processor for
diverse analytics. PVLDB 8, 4 (2014), 401–412.

13

452 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[20] CHANDRASEKARAN, S., COOPER, O., DESH-
PANDE, A., FRANKLIN, M. J., HELLERSTEIN,
J. M., HONG, W., KRISHNAMURTHY, S., MAD-
DEN, S. R., REISS, F., AND SHAH, M. A. Tele-
graphCQ: Continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD international
conference on Management of data (2003), ACM,
pp. 668–668.

[21] CONDIE, T., CONWAY, N., ALVARO, P., HELLER-
STEIN, J. M., ELMELEEGY, K., AND SEARS,
R. Mapreduce online. In Proceedings of the 7th
USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2010, April 28-30,
2010, San Jose, CA, USA (2010), pp. 313–328.

[22] DUNLAP, G. W., KING, S. T., CINAR, S., BAS-
RAI, M. A., AND CHEN, P. M. Revirt: Enabling
intrusion analysis through virtual-machine logging
and replay.

[23] DUNLAP, G. W., LUCCHETTI, D. G., FETTER-
MAN, M. A., AND CHEN, P. M. Execution replay
of multiprocessor virtual machines. In Proceedings
of the 4th International Conference on Virtual Exe-
cution Environments, VEE 2008, Seattle, WA, USA,
March 5-7, 2008 (2008), pp. 121–130.

[24] FERNANDEZ, R. C., MIGLIAVACCA, M., KALY-
VIANAKI, E., AND PIETZUCH, P. Integrating scale
out and fault tolerance in stream processing using
operator state management. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013 (2013), pp. 725–736.

[25] FRANKLIN, M. J., JEFFERY, S. R., KRISHNA-
MURTHY, S., REISS, F., RIZVI, S., WU, E.,
COOPER, O., EDAKKUNNI, A., AND HONG, W.
Design considerations for high fan-in systems: The
HiFi approach. In CIDR (2005), pp. 290–304.

[26] HWANG, J.-H., BALAZINSKA, M., RASIN, A.,
CETINTEMEL, U., STONEBRAKER, M., AND
ZDONIK, S. High-Availability Algorithms for Dis-
tributed Stream Processing. In The 21st Inter-
national Conference on Data Engineering (ICDE
2005) (Tokyo, Japan, April 2005).

[27] ISARD, M., BUDIU, M., YU, Y., BIRRELL,
A., AND FETTERLY, D. Dryad: distributed
data-parallel programs from sequential building
blocks. In Proceedings of the 2007 EuroSys Confer-
ence, Lisbon, Portugal, March 21-23, 2007 (2007),
pp. 59–72.

[28] JAIN, N., MISHRA, S., SRINIVASAN, A.,
GEHRKE, J., WIDOM, J., BALAKRISHNAN, H.,
ÇETINTEMEL, U., CHERNIACK, M., TIBBETTS,
R., AND ZDONIK, S. Towards a streaming SQL
standard. Proceedings of the VLDB Endowment 1,
2 (2008), 1379–1390.

[29] JENSEN, C. S., AND SNODGRASS, R. T. Temporal
specialization. In Proceedings of the Eighth Inter-
national Conference on Data Engineering, Febru-
ary 3-7, 1992, Tempe, Arizona (1992), pp. 594–
603.

[30] KREPS, J., NARKHEDE, N., AND RAO, J. Kafka:
A distributed messaging system for log process-
ing. In Proceedings of 6th International Workshop
on Networking Meets Databases (NetDB), Athens,
Greece (2011).

[31] KULKARNI, S., BHAGAT, N., FU, M., KEDIGE-
HALLI, V., KELLOGG, C., MITTAL, S., PATEL,
J. M., RAMASAMY, K., AND TANEJA, S. Twit-
ter Heron: Stream processing at scale. In Pro-
ceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), ACM,
pp. 239–250.

[32] LAADAN, O., VIENNOT, N., AND NIEH, J. Trans-
parent, lightweight application execution replay on
commodity multiprocessor operating systems. In
SIGMETRICS 2010, Proceedings of the 2010 ACM
SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, New
York, New York, USA, 14-18 June 2010 (2010),
pp. 155–166.

[33] LI, K., NAUGHTON, J. F., AND PLANK, J. S.
Real-time, concurrent checkpoint for parallel pro-
grams, vol. 25. ACM, 1990.

[34] LI, K., NAUGHTON, J. F., AND PLANK, J. S.
Low-latency, concurrent checkpointing for parallel
programs. Parallel and Distributed Systems, IEEE
Transactions on 5, 8 (1994), 874–879.

[35] MONTESINOS, P., HICKS, M., KING, S. T., AND
TORRELLAS, J. Capo: A software-hardware inter-
face for practical deterministic multiprocessor re-
play. In Proceedings of the 14th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009,
Washington, DC, USA, March 7-11, 2009 (2009),
pp. 73–84.

[36] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,
ISARD, M., BARHAM, P., AND ABADI, M. Na-
iad: A timely dataflow system. In ACM SIGOPS

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 453

24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6,
2013 (2013), pp. 439–455.

[37] NEUMEYER, L., ROBBINS, B., NAIR, A., AND
KESARI, A. S4: Distributed stream computing
platform. In ICDMW 2010, The 10th IEEE Interna-
tional Conference on Data Mining Workshops, Syd-
ney, Australia, 13 December 2010 (2010), pp. 170–
177.

[38] QIAN, Z., HE, Y., SU, C., WU, Z., ZHU, H.,
ZHANG, T., ZHOU, L., YU, Y., AND ZHANG, Z.
TimeStream: Reliable stream computation in the
cloud. In Eighth Eurosys Conference 2013, Eu-
roSys ’13, Prague, Czech Republic, April 14-17,
2013 (2013), pp. 1–14.

[39] RABKIN, A., ARYE, M., SEN, S., PAI, V. S.,
AND FREEDMAN, M. J. Aggregation and degrada-
tion in JetStream: Streaming analytics in the wide
area. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, NSDI 2014, Seattle, WA, USA, April 2-4,
2014 (2014), pp. 275–288.

[40] WU, Y., AND TAN, K.-L. ChronoStream: Elastic
stateful stream computation in the cloud. In Data
Engineering (ICDE), 2015 IEEE 31th International
Conference on (2015), IEEE.

[41] ZAHARIA, M., CHOWDHURY, M., DAS, T.,
DAVE, A., MA, J., MCCAULY, M., FRANKLIN,
M. J., SHENKER, S., AND STOICA, I. Resilient
Distributed Datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings
of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2012, San
Jose, CA, USA, April 25-27, 2012 (2012), pp. 15–
28.

[42] ZAHARIA, M., DAS, T., LI, H., HUNTER, T.,
SHENKER, S., AND STOICA, I. Discretized
Streams: Fault-tolerant streaming computation at
scale. In ACM SIGOPS 24th Symposium on Op-
erating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013 (2013), pp. 423–438.

[43] ZHOU, J., BRUNO, N., WU, M.-C., LARSON, P.-
Å., CHAIKEN, R., AND SHAKIB, D. SCOPE: Par-
allel databases meet MapReduce. VLDB J. 21, 5
(2012), 611–636.

15

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 455

Social Hash: an Assignment Framework for Optimizing
Distributed Systems Operations on Social Networks

Alon Shalita†, Brian Karrer†, Igor Kabiljo†, Arun Sharma†, Alessandro Presta†, Aaron Adcock†,
Herald Kllapi∗, and Michael Stumm§

†Facebook {alon,briankarrer,ikabiljo,asharma,alessandro,aadcock}@fb.com
∗University of Athens herald@di.uoa.gr

§University of Toronto stumm@eecg.toronto.edu

Abstract
How objects are assigned to components in a distributed
system can have a significant impact on performance
and resource usage. Social Hash is a framework for
producing, serving, and maintaining assignments of ob-
jects to components so as to optimize the operations
of large social networks, such as Facebook’s Social
Graph. The framework uses a two-level scheme to de-
couple compute-intensive optimization from relatively
low-overhead dynamic adaptation. The optimization at
the first level occurs on a slow timescale, and in our ap-
plications is based on graph partitioning in order to lever-
age the structure of the social network. The dynamic
adaptation at the second level takes place frequently to
adapt to changes in access patterns and infrastructure,
with the goal of balancing component loads.

We demonstrate the effectiveness of Social Hash with
two real applications. The first assigns HTTP requests
to individual compute clusters with the goal of minimiz-
ing the (memory-based) cache miss rate; Social Hash de-
creased the cache miss rate of production workloads by
25%. The second application assigns data records to stor-
age subsystems with the goal of minimizing the number
of storage subsystems that need to be accessed on multi-
get fetch requests; Social Hash cut the average response
time in half on production workloads for one of the stor-
age systems at Facebook.

1 Introduction

Almost all of the user-visible data and information
served up by the Facebook app is maintained in a sin-
gle directed graph called the Social Graph [2, 34, 35].
Friends, Checkins, Tags, Posts, Likes, and Comments
are all represented as vertices and edges in the graph. As
such, the graph contains billions of vertices and trillions

of edges, and it consumes many hundreds of petabytes of
storage space.

The information presented to Facebook users is pri-
marily the result of dynamically generated queries on the
Social Graph. For instance, a user’s home profile page
contains the results of hundreds of dynamically triggered
queries. Given the popularity of Facebook, the Social
Graph must be able to service well over a billion queries
a second.

The scale of both the graph and the volume of queries
makes it necessary to use a distributed system design for
implementing the systems supporting the Social Graph.
Designing and implementing such a system so that it op-
erates efficiently is non-trivial.

A problem that repeatedly arises in distributed sys-
tems that serve large social networks is one of assign-
ing objects to components; for example, assigning user
requests to compute servers (HTTP request routing), or
assigning data records to storage subsystems (storage
sharding). How such assignments are made can have
a significant impact on performance and resource us-
age. Moreover, the assignments must satisfy a wide
range of requirements: e.g., they must (i) be amenable
to quick lookup, (ii) respect component size constraints,
and (iii) be able to adapt to changes in the graph, usage
patterns and hardware infrastructure, while keeping the
load well balanced, and (iv) limit the frequency of as-
signment changes to prevent excess overhead.

The relationship between the data of the social net-
work and the queries on the social network is m : n —
a query may require several data items and a data item
may be required by several queries. This makes finding
a good assignment of objects to components non-trivial;
finding an optimal solution for many objective functions
is NP Hard [6]. Moreover, a target optimization goal,
captured by an objective function, may conflict with the

456 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

	

Components	
(e.g.,	 compute	 clusters	 or	
storage	 subsystems)	

Groups	

Objects	 (e.g.,	 data	 records	 or	 HTTP	 requests)	

st
at
ic
	 	

as
si
gn

m
en

t	
dy

na
m
ic
	 	

as
si
gn

m
en

t	

Figure 1: Social Hash Abstract Framework

goal of keeping the loads on the components reasonably
well balanced. In the next subsection, we propose a two-
level framework that allows us to trade off these two con-
flicting objectives.

Social Hash Framework

We have developed a general framework that accommo-
dates the HTTP request routing and storage sharding ex-
amples mentioned above, as well as other variants of the
assignment problem. In our Social Hash framework, the
assignment of objects (such as users or data records) to
components (such as compute clusters or storage subsys-
tems) is done in two steps. (See Fig. 1.)

In the first step, each object is assigned to a group,
where groups are conceptual entities representing clus-
terings of objects. Importantly, there are usually many
more groups than components. This assignment is based
on optimizing a given, scenario-dependent, objective
function. For example, when assigning HTTP requests
to compute clusters, the objective function may seek to
minimize the (main memory) cache miss rate; and when
assigning data records to disk subsystems, the objective
function may seek to minimize the number of disk sub-
systems that must be contacted for multi-get queries. Be-
cause this optimization is typically computationally in-
tensive, objects are re-assigned to groups only periodi-
cally and offline (e.g., daily or weekly). Hence, we refer
to this as the static assignment step.

In the second step, each group is assigned to a com-
ponent. This second assignment is based on inputs
from system monitors and system administrators so as to
rapidly and dynamically respond to changes in the sys-
tem and workload. It is able to accommodate compo-
nents going on or offline, and it is responsible for keep-
ing the components’ loads well balanced. Because the
assignments at this level can change in real time, we re-
fer to this as the dynamic assignment step.

A key attribute of our framework is the decoupling of
optimization in the static assignment step, and dynamic

adaptation in the dynamic assignment step. Our solutions
to the assignment problem rely on being able to benefi-
cially group together relatively small, cohesive sets of
objects in the Social Graph. In the optimizations per-
formed by the static assignment step, we use graph par-
titioning to extract these sets from the Social Graph or
from prior access patterns. Optimization methods other
than graph partitioning could be used interchangeably,
but graph partitioning is expected to be particularly ef-
fective in the context of social networks, because most
requests are social in nature where users that are socially
close tend to consume similar data. The Social in So-
cial Hash reflects this essential idea of grouping socially
similar objects together.

Contributions

This paper describes the Social Hash framework for as-
signing objects to components given scenario-dependent
optimization objectives, while satisfying the require-
ments of fine-grained load balancing, assignment stabil-
ity, and fast lookup in the context of practical difficulties
presented by changes in the workload and infrastructure.

The Social Hash framework and the two applications
described in this paper have been in production use at
Facebook for over a year. Over 78% of Facebook’s
“stateless” Web traffic routing occurs with this frame-
work, and the storage sharding application involves tens
of thousands of storage servers. The framework has also
been used in other settings (e.g., to distribute vertices in a
graph processing system, and to reorder data to improve
compression rates). We do not describe these additional
applications in this paper.

The three most important contributions we make in
this paper are:

1. the two-step assignment hierarchy of our frame-
work that decouples (a) optimization on the Social
Graph or previous usage patterns from (b) adapta-
tion to changes in the workload and hardware in-
frastructure;

2. our use of graph partitioning to exploit the structure
of the social network to optimize HTTP routing in
very large distributed systems;

3. our use of query history to construct bipartite graphs
that are then partitioned to optimize storage shard-
ing.

With respect to (1), the use of a multi-level scheme for
allocating resources in distributed systems is not new, not
even when used with graph partitioning [33]. In par-
ticular, some multi-tenant resource allocation schemes

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 457

have used approaches that are in many respects similar
to the one being proposed here [19, 26, 27, 28]. How-
ever, the specifics of our approach, especially as they re-
late to Facebook’s operating environment and workload,
are sufficiently interesting and unique to warrant a ded-
icated discussion and analysis. Regarding (2), edge-cut
based graph partitioning techniques have been used for
numerous optimization applications, but to the best of
our knowledge not for making routing decisions to re-
duce cache miss rates. Similarly, for (3), graph partition-
ing has previously been applied to storage sharding [33],
but partitioning bipartite graphs based on prior access
patterns is, as far as we know, novel.

We show that the Social Hash framework enables sig-
nificant performance improvements as measured on the
production Social Graph system using live workloads.
Our HTTP request routing optimization cut the cache
miss rate by 25%, and our storage sharding optimization
cut the average response latency in half.

2 Two motivating example applications

In this section, we provide more details of the two exam-
ples we mentioned in the Introduction. We discuss and
analyze these applications in significantly greater detail
in later sections.

HTTP request routing optimization. The purpose of
HTTP request routing is to assign HTTP requests to com-
pute clusters. When a cluster services a request, it fetches
any required data from external storage servers, and then
caches the data in a cluster-local main memory-based
cache, such as TAO [2] or Memcache [24], for later reuse
by other requests. For example, in a social network, a
client may issue an HTTP request to generate the list of
recent posts by a user’s friends. The HTTP request will
be routed to one of several compute clusters. The server
will fetch all posts made by the user’s friends from ex-
ternal databases and cache the fetched data. How HTTP
requests are assigned to compute clusters will affect the
cache hit rate (since a cached data record may be con-
sumed by several queries). It is therefore desirable to
choose a HTTP request assignment scheme which as-
signs requests with similar data requirements to the same
compute cluster.

Storage sharding optimization. The purpose of stor-
age sharding is to distribute a set of data records across
several storage subsystems. A query which requires a
certain record must communicate with the unique host
that serves that record.1 A query may consume sev-

1To simplify our discussion, we disregard the fact that data is typi-
cally replicated across multiple storage servers.

eral records, and a record may be consumed by several
queries. For example, if the dataset consists of recent
posts produced by all the users, a typical query might
fetch the recent posts produced by a user’s friends.

The assignment of data records to storage subsystems
determines the number of hosts a query needs to commu-
nicate with to obtain the required data. A common opti-
mization is to group requests destined to the same storage
subsystem and issue a single request for all of them. Ad-
ditionally, since requests to different storage subsystems
are processed independently, they can be sent in paral-
lel. As a result, the latency of the slowest request will
determine the latency of a multi-get query, and the more
hosts a query needs to communicate with, the higher the
expected latency (as we show in Section 6.1). It is thus
desirable to choose a data record assignment scheme that
collocates the data required by similar queries within a
small number of storage subsystems.

3 The assignment problem

Assigning objects to system components is a challeng-
ing part of scaling an online distributed system. In this
section, we abstract the essential features of our two mo-
tivating examples to formulate the problem we solve in
this paper.

3.1 Requirements

We have the following requirements:
• Minimal average query response time: User satis-

faction can improve with low query response times.
• Load balanced components: The better load-

balanced the components, the higher the efficiency of the
system; a poorly load-balanced system will reach its ca-
pacity earlier and in some cases may lead to increased
latencies.
• Assignment stability: Assignments of objects to

components should not change too frequently in order
to avoid excessive overhead. For example, reassigning a
query from one cluster to another may lead to extra (cold)
cache misses at the new cluster.
• Fast lookup: Low latency lookup of the object-

component assignment is important, given the online na-
ture of our target distributed system.

3.2 Practical challenges

Meeting the requirements listed above is challenging for
a variety of reasons:

458 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

• Scale: The assignment problem typically requires
assigning a large number of objects to a substantially
smaller number of components. The combinatorial ex-
plosion in the number of possible assignments prevents
simple optimization methods from being effective.
• Effects of similarity on load balance: Colocating

similar objects usually results in higher load imbalances
than when colocating dissimilar objects. For example,
similar users likely have similar hours of activity, brows-
ing devices, and favorite product features, leading to load
imbalance when assigning similar users to the same com-
pute clusters.
• Heterogenous and dynamic set of components:

Components are often heterogeneous and thus support
different loads. Further, the desired load on each compo-
nent can change over time; e.g., due to hardware failure.
Finally the set of components will change over time as
new hardware is introduced and old hardware removed.
• Dynamic workload: The relationship between data

and queries can change over time. A previously rarely
accessed data record could become popular, or new types
of queries could start requesting data records that were
previously not accessed. This can happen, for example, if
friendship ties in the network are introduced or removed,
or if product features change their data consumption pat-
tern.
• Addition and removal of objects: Social networks

change and grow constantly, so the set of objects that
must be assigned changes over time. For example, users
may join or leave the service.

The magnitude and relative importance of these prac-
tical challenges will differ depending on the distributed
system being targeted. For Facebook, the scale is enor-
mous; similar users do have similar patterns; and het-
erogeneous hardware is prevalent. On the other hand,
changes to the graph occur at a (relatively) modest rate
(in part because we often only consider subgraphs of the
Social Graph); and rate of hardware failures is reason-
ably constant and predictable.

4 Social Hash Framework

In this section, we propose a framework called the Social
Hash Framework which comprises a solution to the as-
signment problem and, moreover, addresses the practical
challenges listed above.

In Section 1 we introduced the abstract framework
with objects at the bottom, (abstract) groups in the mid-
dle, and components at the top. Recall that objects are
queries, users, or data records, etc., and components are
computer clusters, or storage subsystems, etc..

Objects are first assigned to groups in a optimization-
based static assignment that is updated on a slow
timescale of a day to a week. Groups are then assigned
to components using an adaptation-based dynamic as-
signment that is updated on a much faster timescale.
Dynamic assignment is used to keep the system load-
balanced despite changes in the workload or changes in
the underlying infrastructure. This two-level design is
intended to accommodate the disparate requirements and
challenges of efficiently operating a huge social network,
as described in Section 3.

Below, we give more concrete details on the abstract
framework, how it is implemented, and how it is used.
In Sections 5 and 6 we will become even more concrete
and present specific implementation issues for our two
examples. We begin by presenting our rationale for using
a two-level design.

4.1 Rationale

Our two-level approach for assigning objects to compo-
nents is motivated by the observation that there is a con-
flict between the objectives of optimization and adapta-
tion. In theory, one could assign objects to components
directly, resulting in only one assignment step. However,
this would not work well in practice because of diffi-
culties adapting to changes: as mentioned, component
loads often change unpredictably; components are added
or removed from the system dynamically; and the sim-
ilarity of objects that are naturally grouped together for
optimization leads to unbalanced utilization of resources.
Waiting to rerun the assignment algorithm would leave
the system in a suboptimal state for too long, and chang-
ing assignments on individual objects without re-running
the assignment algorithm would also be suboptimal.

An assignment framework must therefore address both
the optimization and adaptation objectives, and it must
offer enough flexibility to be able to shift emphasis be-
tween these competing objectives at will. With a two-
level approach, the static level optimizes the assignment
to groups where, from the point of view of optimization,
the group is treated as a virtual component. The dynamic
level adapts to changes by assigning groups to compo-
nents. Multiple groups may be assigned to the same
component; however, all objects in the same group are
guaranteed to be assigned to the same component. (See
Figure 1.) As such, what is particularly propitious about
our architecture is that dynamic reassignment of groups
to components does not negate the optimization step be-
cause objects in a group remain collocated to the same
component, even after reassignment.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 459

We are able to seamlessly shift emphasis between
static optimization and dynamic adaptation by means of
the parameter n, the ratio of number of groups to number
of components; that is n := |G|

/
|C|. When n = 1, the

emphasis is entirely on the static optimization. There is
a 1 : 1 correspondence between groups and components.
As noted above, this may not work well for some applica-
tions because it may not be sufficiently adaptive. When
n � 1, we trade off optimization for increased adapta-
tion. When n is too large, the optimization quality may
be severely degraded, and the overhead of dynamic as-
signment may be prohibitive. Clearly, the choice of n,
and thus the tradeoff between optimization and adapta-
tion, is best selected on a per-application basis; as we
show in later sections, some applications require less ag-
gressive adaptation than others, allowing more emphasis
to be placed on optimization.

4.2 Framework Overview
In this subsection, we describe the main elements of
the Social Hash framework, as depicted in Fig. 2: the
static assignment algorithm, the dynamic assignment al-
gorithm, the lookup method, and the missing key assign-
ment. In the discussion that follows it is useful to note
that objects are uniquely identified by a key.

The static assignment algorithm generates a static
mapping from objects to groups using the following in-
put: (i) a context dependent graph, which in our work
can be either a unipartite graph (e.g., friendship graph)
or a bipartite graph based on access logs (e.g., relating
queries and accessed data records); (ii) type of object that
is to be assigned to groups (e.g. data records, users, etc);
(iii) an objective function; (iv) number of groups; and
(v) permissible imbalance between groups. The output
of the static partitioning algorithm is a hash table of (key,
group) pairs, indexed by key. We refer to this hash table
as the Social Hash Table.2

The dynamic assignment uses the following input:
(i) current component loads, (ii) the desired maximum
load per component, and possibly (iii) the historical loads
per group. The desired load for each component is pro-
vided by system operators and monitoring systems, and
the historical loads induced by each group can be de-
rived from system logs. As the observed and desired
loads change over time, the dynamic assignment shifts
groups among components to balance the load. The out-
put of the dynamic assignment is a hash table of (group,
component) pairs, called the Assignment Table.2

2In practice, any key-value store that supports fast lookups can be
used. We describe it as a hash table for ease of comprehension.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Social	 Hash	 Tbl	 Assignment	 Tbl	

group	
g	

Lo
ok

up
	

Re
qu

es
t	

Missing	 key	 	
assignment	

key	

fai
led

	

gr
ou

p	

c	

Graph	
Partitioning	

graph	

specifications	 Dynamic	 	
Assignment	

monitoring	
info	

operator	
console	

key	

Figure 2: Social Hash Architecture

When a client wishes to look up which component an
object has been assigned to, it will do so in two steps:
first the object key is used to index into the Social Hash
Table to obtain the target group, g; second, g is used to
index into the Assignment Table to obtain the component
id c. This is shown in Figure 2.

Because the Social Hash Table is constructed only pe-
riodically, it is possible that a target key is missing in
the Social Hash table; for example, the key could re-
fer to a new user or a user that has not had any activity
in the recent past (and hence is not in the access log).
When an object key is not found in the Social Hash Ta-
ble, then the Missing Key Assignment rule does the ex-
ception handling and assigns the object to a group on the
fly. The primary requirement is that these exceptional as-
signments are generated in a consistent way so that sub-
sequent lookups of the same key return the same group.
Eventually these new keys will be incorporated into the
Social Hash Table by the static partitioning algorithm.

4.3 Static assignment algorithm

We use graph partitioning algorithms to partition objects
into groups in the static assignment step. Graph par-
titioning algorithms have been well-studied [3], and a
number of graph partitioning frameworks exist [5, 18].
However, social network graphs, like Facebook’s Social
Graph, can be huge compared to what much of the ex-
isting literature contemplates. As a result, an approach
is needed that is amenable to distributed computation on
distributed memory systems. We built our custom graph
partitioning solution on top of the Apache Giraph graph
processing system [1], in part because of its ability to par-
tition graphs in parallel; other graph processing systems
could have also potentially been used [10, 11, 20].

The basic strategy in obtaining good static assign-
ments is the following graph partitioning heuristic. We

460 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

assume the algorithm begins with an initial (weight-)
balanced assignment of objects to groups represented as
pairs (v,gv), where v denotes an object and gv denotes the
group to which v is initially assigned. Next, for each v,
we record the group g∗v that gives the optimal assignment
for v to minimize the objective function, assuming all
other assignments remain the same. This step is repeated
for each object to obtain a list of pairs (v,g∗v). Each ob-
ject can be processed in parallel. Finally, via a swap-
ping algorithm, as many reassignments of v to g∗v are car-
ried out under the constraint that group sizes remain un-
changed within each iteration; the swapping can again be
done in parallel as long as it is properly coordinated (in
our implementation with a centralized coordinator). This
overall process is then repeated with the new assignments
taken as the initial condition for the next iteration. The
above process is iterated on until it converges or reaches
a limit on the number of iterations.

The initial balanced assignment required by the static
assignment algorithm is either obtained via a random as-
signment (e.g., when the algorithm is run for the very
first time) or is obtained from the output of the previous
iteration of the static assignment algorithm modulo the
newly added objects that are assigned randomly.

The above procedure manages to produce high quality
results for the graphs underlying Facebook operations in
a fast and scalable manner. Within a day, a small cluster
of a few hundred machines is able to partition the friend-
ship graph of over 1.5B+ Facebook users into 21,000 bal-
anced groups such that each user shares her group with at
least 50% of her friends. And the same cluster is able to
update the assignment starting from the previous assign-
ment within a few hours, easily allowing a weekly (or
even daily) update schedule. Finally, it is worth point-
ing out that the procedure is able to partition the graph
into tens of thousands of groups, and it is amenable to
maintaining stability, since each iteration begins with the
previous assignment and it is easy to limit the movement
of objects across groups.

We have successfully used the above heuristic on both
unipartite and bipartite graphs, as we describe in more
detail in Sections 5 and 6.

4.4 Dynamic assignment

The primary objective of dynamic assignment is to keep
component loads well balanced despite changes in access
patterns and infrastructure. Load balancing has been well
researched in many domains. However, the specific load
balancing strategy used for our Social Hash framework
may vary from application to application so as to provide

the best results. Factors that may affect the the choice of
load balancing strategy include:
• Accuracy in predicting future loads: Low pre-

diction accuracy favors a strategy with a high group-to-
component ratio (e.g., � 1,000) and groups being as-
signed to components randomly. This is the strategy that
is used for HTTP routing. On the other hand, the amount
of storage used by data records is easier to predict (in
our case), and hence warrants a low group-to-component
ratio and non-random component assignment.
• Dimensionality of loads: A system requiring bal-

ancing across multiple different load dimensions (CPU,
storage, queries per second, etc.) favors using a high
group-to-component ratio and random assignment.
• Group transfer overhead: The higher the overhead

of moving a group from one component to another, the
more one would want to limit the rate of moves between
components by increasing the load imbalance threshold
that triggers a move.
• Assignment memory: It can be more efficient to

assign a group back to an underloaded component it was
previously assigned to in order to potentially benefit from
the residual state that may still be present. This favors re-
membering recent assignments, or using techniques sim-
ilar to consistent hashing.

Finally, we note that load balancing strategies used in
other domains will need to be adapted to the Social Hash
framework; e.g., load is transferred from one component
to another in increments of a group; and the load each
group incurs is not homogeneous, in part because of the
similarity of objects within groups.

5 Social Hash for Facebook’s Web Traffic
Routing

In this section, we describe how we applied the Social
Hash framework to Facebook’s global web traffic routing
to improve the efficiency of large cache services. This is
Facebook’s largest application using the framework and
has been in production for over a year.

Facebook operates several worldwide data centers,
each divided into front-end clusters containing web and
cache tiers, and back-end clusters containing database
and service tiers. To fulfill an HTTP request, a front-end
web server may need to access databases or services in
(possibly remote) back-end clusters. The returned data is
cached within front-end cache services, such as TAO [2]
or Memcache [24]. Clearly, the lower the cache miss
rate, the higher the efficiency of hardware usage, and the
lower the response times.

In addition, to reduce latencies for users, Facebook

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 461

has “Point-of-Presence” (PoP) units around the world:
small-scale computational centers which reside close to
users. PoPs are used for multiple purposes, includ-
ing peering with other network operators and media
caching [12]. When an HTTP request to one of Face-
book’s services is issued, the request will first go to a
nearby PoP. A load balancer in the PoP then routes the
request to one of the front-end clusters over fast commu-
nication channels.

5.1 Prior strategy

Prior to using Social Hash, routing decisions were
based on user identifiers, using a consistent hashing
scheme [15]. To make a routing decision, the user identi-
fier was extracted from the request, where it was encoded
within the request persistent attributes (i.e., cookie), and
then used to index into a consistent hash ring to obtain
the cluster id. The segments of the consistent hash ring
corresponded in number and weight to the front-end clus-
ters. The ring’s weights were dynamic and could be
changed at any time, allowing dynamic changes to the
cluster’s traffic load. The large number of users in com-
parison to the small number of clusters, along with the
random nature of the hash ring, ensured that each clus-
ter received a homogeneous traffic pattern. With fixed
cluster weights, a user would repeatedly be routed to the
same cluster, guaranteeing high hit rates for user-specific
data. The consistent nature of the ring also ensured
that changes to cluster weights resulted in relatively mi-
nor changes to the user-to-cluster mapping, reducing the
number of cache misses after such changes.

5.2 Social Hash implementation

For the Social Hash static assignment, we used a uni-
partite graph with vertices representing Facebook’s users
and edges representing the friendship ties between them.
We partition the graph using the edge-cut optimization
criterion, knowing that friends and socially similar users
tend to consume the same data, and that they are there-
fore likely to reuse each other’s cached data records.

We use a relatively large number of groups for two rea-
sons. First, the global routing scheme needs to be able to
shift traffic across clusters in small quantities. Second,
changes in HTTP request routing will affect many sub-
systems at Facebook, not just the cache tiers; and it is
very difficult to predict how much load each group will
incur on each subsystem. Hence, we have found the best
strategy to balance the load overall is to use many groups
and assign the groups to clusters randomly.

For the dynamic assignment step, we kept the existing
consistent hash scheme, which is oblivious to the type of
identifier it receives as input (either user- or group-id).

To be able to make an HTTP request routing decision
at run time, it is necessary to access both the Social Hash
Table and the Assignment Table. The latter is computed
on-the-fly using the consistent hash mechanism, which
requires a fairly small map between clusters and their
weights; it is therefore easy to hold the map in the POP
memories. The former, however, is large, consuming
several gigabytes of storage space when uncompressed.
We considered storing the Social Hash Table close to the
PoP (in its own memory or in a nearby storage service),
but decided not to do so due to added PoP complexity,
fault tolerance considerations, and limited PoP resources
that could be put to better use by other services. We also
considered sending a lookup request to a data center, but
rejected this idea due to latency concerns.

Instead, we encode the user assigned group within the
request persistent attributes (i.e., as a cookie) and de-
code it to make a routing decision when a request arrives.
Requests that do not have the group-id encoded in the
header are routed to a random front-end cluster, where
the session creation mechanism accesses a local copy of
the Social Hash Table to fetch the group assigned to the
user. Because the Social Hash Table is updated once a
week, group-ids in the headers may become stale. For
this reason, a user request will periodically (at least once
an hour) trigger an update process where the group-id is
updated with its latest value from the Social Hash Ta-
ble. This allows long lasting connections to receive fresh
routing information.

Our design eliminates the complexities and overhead
of a Social Hash Table lookup at the PoPs, requiring just
a single header read instead. The design is also more re-
silient to failure, because even if the data store providing
the Social Hash Table is down, group-id’s will mostly be
available in the request headers.

For technical reasons, some requests cannot be tagged
properly with either the user or the group identifier (be-
cause the requests may have been issued by crawlers,
bots or legacy clients). These requests are routed ran-
domly, yet in a consistent manner, to one of the front-
end clusters while respecting load constraints. In the past
three months, 78% of the requests had a valid group-id
that could be used for routing (and those that did not were
not tagged with a user-id, a group-id, or any other identi-
fier.).

Some may argue that the decreased miss rates
achieved with Social Hash leads to a fault tolerance issue,
because the data records are less likely to be present in

462 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

0.00

0.25

0.50

0.75

1.00

10 100 1,000 10,000 100,000
Number of groups

Ed
ge

 lo
ca

lit
y

Figure 3: Edge locality (fraction of edges within groups) vs. the
number of groups for Facebook’s friendship graph.

multiple caches simultaneously. This could be a concern
as the recovery of a cache failure would overwhelm the
backing storage systems with excessive traffic and thus
lead to severely degraded overall performance. How-
ever, our experience indicates that a failure of the main-
memory caches within a cluster only causes a temporary
load increase on the backend storage servers that stays
within the normal operational load thresholds.

5.3 Operational observations

To get a sense of how access patterns of friends relate,
we sampled well over 100 million accesses to TAO data
records from access logs. We found that when two users
access the same data record, there is a 15% chance they
are friends. This is millions of times larger than the prob-
ability of two random users being friends. We conclude
that co-locating the processing of friends’ HTTP requests
as much as possible is an effective strategy.

Figure 3 depicts edge locality vs. the number of groups
used to partition the 1.5B+ Facebook users. Edge lo-
cality measures the fraction of “friend” edges connect-
ing two users that are both assigned to the same group
(thus, the goal of static assignment would be to maxi-
mize edge locality). It is not a surprise that edge locality
decreases with the number of groups. Perhaps a bit more
unexpected is the observation that edge locality remains
reasonably large even when the number of groups in-
creases significantly (e.g., >20% with 1 million groups);
intuitively, this is because the friendship graph contains
many small relatively dense communities. We chose the
smallest number of groups that would satisfy our main
requirement for dynamic assignment, namely to be able
to balance the load by shifting only small amounts of

traffic between front-end clusters. Repeating the process
of assigning different numbers of groups into compo-
nents offline and examining the resulting imbalance on
known loads led us to use 21,000 groups on a few 10’s of
clusters; our group-to-component ratio is thus quite high.

The combination of new users being added to the sys-
tem and changes to the friendship graph causes edge lo-
cality to degrade over time. We measured the decrease of
edge locality from an initial, random assignment of users
to one of 21,000 groups over the course of four weeks.
We observed a nearly linear 0.1% decrease in edge lo-
cality per week. While small, we decided to update the
routing assignment once a week so as to minimize a no-
ticeable decrease in quality. At the same time, we did
not observed a decrease in cache hit rate between up-
dates, implying that 0.1% is a negligible amount. The
decrease in edge locality implies that a longer update
schedule would also be satisfactory, and that Social Hash
can tolerate a long maintenance breakdown without alter-
ing Facebook’s web traffic routing quality.

For the past three months, the Social Hash Table used
for Facebook’s routing has maintained an edge locality of
over 50%, meaning half the friendships are within each
of the 21,000 groups. This edge locality is slightly higher
than the exploratory values shown in Figure 3, because
we iterated longer in the graph partitioning algorithm on
the production system than we did in the experiments
from which we obtained the figure. The static assign-
ment is well-balanced, with the largest group containing
at most 0.8% more users than the average group. Each
weekly update by the static assignment step resulted in
around 1.5% of users switching groups from the previ-
ous assignment. All of these updates were suitably small
to avoid noticeable increases in the cache miss rate when
the updates were introduced into production.

5.4 Live traffic experiment

To measure the effectiveness of Social Hash-based HTTP
routing optimization, we performed a live traffic experi-
ment on two identical clusters with the same hardware,
number of hosts and capacity constraints. These clusters
are typical of what Facebook uses in production. Each
cluster had many hundred TAO servers, which served the
local web tier with cached social data.

For our experiment, we selected a set of groups ran-
domly from the Social Hash Table. We then routed all
HTTP requests from users assigned to these groups to
one “test” cluster, while HTTP requests from a same
number of other users were routed to the second, “con-
trol” cluster. Hence, the control cluster saw traffic with

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 463

−30

−20

−10

0

10

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Day

Pe
rc

en
ta

ge
 c

ha
ng

e
in

 T
AO

 m
is

s
ra

te
 (%

)

−5.0

−2.5

0.0

2.5

5.0

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Day

Pe
rc

en
ta

ge
 c

ha
ng

e
in

 id
le

 C
PU

 (%
)

Figure 4: Percentage change in TAO miss rate (left, where lower is better) and CPU idle rate (right, where higher is better) on
the Social Hash cluster relative to the cluster with random assignment. Area between red dashed lines: period of the test. Orange
dashed lines: traffic shifts. Green dot-dash line: Social Hash Table is updated. The values on the days traffic was shifted (Tuesday
and Wednesday, respectively) are not representative

attributes very similar to the traffic it received with the
prior strategy: the traffic with the prior strategy was sam-
pled from all users, while the traffic for the control clus-
ter was sampled from all users except those associated
with the test cluster. We ran the experiment for 10 days.
During this time, operational changes that would affect
hit rates on the two clusters were prevented.

The left hand side of Figure 4 shows the change in
cache miss rate between the test and control clusters. It
is evident that the miss rate drops by over 25% when
assigning groups to a cluster as opposed to just users.

The right hand side of Figure 4 shows the change in
average CPU idle rate between the test and the control
cluster. The test cluster had up to 3% more idle time
compared to the control cluster.

During the experiment, we updated the Social Hash
Table by applying an updated static assignment. The
time at which this occurred is shown with a vertical green
dot-dash line. We note that the cache miss rate and the
CPU idle time are not affected by the update, demon-
strating that the transition process is smooth.

Figure 5 compares the daily working set size for TAO
objects at both clusters. The daily working set of a clus-
ter is the total size of all objects that were accessed by
the TAO instance on that front-end cluster at least once
during that day. The figure shows that the working set
size dropped by as much as 8.3%.

We conclude from this experiment that Social Hash
is effective at improving the efficiency of the cache for
HTTP requests: fewer requests are sent to backend sys-
tems, and the hardware is utilized in a more efficient way.

6 Storage sharding

In this section, we describe in detail how we applied
the Social Hash framework to sharded storage systems
at Facebook. The assignment problem is to decide how
to assign data records (the objects) to storage subsystems
(the components).

6.1 Fanout vs. Latency
The objective function we optimize is fanout, the number
of storage subsystems that must be contacted for multi-
get queries. We argue and experimentally demonstrate
that fanout is a suitable objective function, since lower
fanout is closely correlated with lower latencies [7].

Multiget queries are typically forced to issue requests
to multiple storage subsystems, and they do so in paral-
lel. As such, the latency of a multi-get query is deter-
mined by the slowest request. By reducing fanout, the
probability of encountering a request that is unexpect-
edly slower than the others is reduced, thus reducing the
latency of the query. This is the fundamental argument
for using fanout as the objective function for the assign-
ment problem in the context of storage sharding. An-
other argument is that lower fanout reduces the connec-
tion overhead per data record.

To further elaborate the relevance of choosing fanout
as the objective function, consider this abstract scenario.
Suppose 1% of individual requests to storage servers
incur a significant delay due to unanticipated system-
specific issues (CPU thread scheduling delays, system

464 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

�

�

�

�
� �

�

� �

�

�

�
�

−8

−4

0
Su

n
Mon Tu

e
Wed Th

u Fri Sa
t

Su
n

Mon Tu
e

Wed Th
u Fri

Day

Pe
rce

nta
ge

 ch
an

ge
 in

 w
ork

ing
 se

t (%
)

Figure 5: Percentage change in daily TAO working set size on
the Social Hash cluster relative to the cluster with random as-
signment. The red dashed lines indicate the first and last days
of the test where the test was running only during part of the
day (so the values for these two days may not be representa-
tive).

interrupts, etc.). If a query must contact 10 storage
servers, then one can calculate that the multi-get request
has a 9.6% chance an individual sub-request will expe-
rience a significant delay. If the fanout can be reduced,
one can reduce the probability of incurring the delay.

We ran a simple experiment to confirm our under-
standing of the relationship between fanout and latency.
We issued trivial remote requests and measured the la-
tency of a single request (fanout=1) and the latency of
two requests sent in parallel (fanout=2). Figure 6 shows
the cumulative latency distribution for both cases. A
fanout of 1 results in lower latencies than a fanout of 2.
If we calculate the expected distribution computed from
two independent samples from the single request distri-
bution, then the observed overall latency for two parallel
requests matches the expected distribution quite nicely.

One possible caveat to our analysis of the relationship
between fanout and latency is that reducing fanout gener-
ally increases the size of the largest request, which could
increase latency. Fortunately, storage subsystems today
have processors with many cores that can be exploited
by the software to increase the parallelism in servicing a
single, large request.

6.2 Implementation

For the static assignment we apply bipartite graph parti-
tioning to minimize fanout. We create the bipartite graph
from logs of queries from the dynamic operations of the

0.00

0.25

0.50

0.75

1.00

0.0 0.5 t 1.0 t 1.5 t 2.0 t
Latency

CD
F Single call

Two calls
Expected

Figure 6: Cumulative distribution of latency for a single re-
quest, two requests in parallel, and the expected distribution
from two independent samples from the single request distribu-
tion, where t is the average latency of a single call
.

social network.3 The queries and data records accessed
by the queries are represented by two types of vertices.
A query vertex is edge-connected to a data vertex iff the
query accesses the data record. The graph partitioning
algorithm is then used to partition the data vertices into
groups so as to minimize the average number of groups
each query is connected to.

Clearly, most data needs to be replicated for fault tol-
erance (and other) reasons. Many systems at Facebook
do this by organizing machines storing data into non-
overlapping sets, each containing each data record ex-
actly once. We refer to such a set as a replica. Since
assignment is independent between replicas, we will re-
strict our analysis to scenarios with just one replica.

6.3 Simplified sharding experiment

We consider the following simple experiment. We use
40 stripped down storage servers, where data is stored in
a memory-based, key-value store. We assume that there
is one data record per user. We run this setup in two
configurations. In the first, “random” configuration, data
records are distributed across the 40 storage servers us-
ing a hash function, which is a common practice. In the
second, “social” configuration, we use our Social Hash
framework to minimize fanout.

We then sampled a live traffic pattern, and issued the
same set of queries to both configurations, and we mea-
sured fanout and latency. With the random configuration,

3In some cases, prior knowledge of which records each query must
retrieve is sufficient to create the graph.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 465

0.00

0.25

0.50

0.75

1.00

0 3 t 6 t 9 t 12 t
Latency

CD
F random parallel

social parallel
social serial

Figure 7: Cumulative latency distribution for fetching data of
friends, where t is the average latency of a single call.

the queries needed to issue requests to 38.8 storage sub-
systems on average. With the social configuration, the
queries needed to issue requests to only 9.9 storage sub-
systems on average. This decrease in fanout resulted in a
2.1X lower average latency for the queries.

The cumulative distribution of latencies for the ran-
dom and social configurations are shown in Figure 7,
where we also include the social configuration’s latency
distribution after disabling parallelism within each ma-
chine. Without parallelism, the average latency is still
lower then with the random configuration, but only by
23%. Furthermore, the slowest 25% queries on the social
configuration without parallelism exhibited substantially
higher latencies than the 25% slowest queries on the ran-
dom configuration. This figure confirms the importance
of using parallelism within each system.

6.4 Operational observations
After we deployed storage sharding optimized with So-
cial Hash to one of the graph databases at Facebook, con-
taining thousands of storage servers, we found that mea-
sured latencies of queries decreased by over 50% on av-
erage, and CPU utilization also decreased by over 50%.

We attribute much of this improvement in perfor-
mance to our method of assigning data records to groups,
using graph partitioning on bi-partite graphs generated
from prior queries. The solid line in Figure 8 shows the
average fanout as a function of the number of groups
when using our method. The dotted line shows the av-
erage fanout when using standard edge-cut optimization
criteria on the (unipartite) friendship graph.

After analyzing expected load balance, we decided on
a group-to-component ratio of 8; the dynamic assign-
ment algorithm then selects which 8 groups to assign to
the same storage subsystem, based on the historical load
patterns. This allowed us to keep fanout small, while still

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10

20

30

40

50

3 10 30 100 300 1,000 3,000 10,000
Number of groups

Av
er

ag
e

fa
no

ut

Figure 8: The average fanout versus number of groups on Face-
book’s friendship graph when using edge locality optimization
(dotted curve) and our fanout optimization (solid curve), re-
spectively.

being able to maintain good load balance.
In practice, fanout degrades over time. For the 40

group solution we used in the simplified application, we
observed a fanout increase of about 2% on average over
the course of a week. A single static assignment update
sufficed to bring the fanout back to what it was previ-
ously, requiring only 1.85% of the data records to have
to be moved. With such low impact, we decided static as-
signment updates were only necessary every few months,
relying on dynamic assignment to move groups when
necessary in between. Even then, we found that dynamic
assignment updates were not necessary more than once
a week on average. We used the same static assignment
for all replicas, but made dynamic assignment decisions
independently for each replica.

7 Related work

As discussed in Section 4.3, graph partitioning has an ex-
tensive literature, and our optimization objectives, edge
locality and fanout, correspond to edge cut and hyper-
graph edge cut. A recent review of graph partitioning
methods can be found online [3]. Many graph partition-
ing systems have been built and are available. For exam-
ple, Metis [16, 18] is one that is frequently used.

A Giraph-based approach to graph partitioning called
“Spinner” was recently announced [21]. Our work is dis-
tinct in that their application was optimizing batch pro-
cessing systems, such as Giraph itself, via increased edge
locality, and our graph partitioning system is embedded
in the Social Hash framework.

Average fanout in a bipartite graph, when presented as
a hypergraph, with vertices being one side of the bipartite
graph, and hyper-edges representing the vertices from

466 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the other side, directly translates into the hypergraph par-
titioning problem. Hypergraph partitioning also has an
extensive literature [4, 17], and one of the publicly avail-
able parallel solutions is PHG [9], which can be found in
the Zoltan toolkit [8].

Partitioning online social networks has previously
been used to improve performance of distributed sys-
tems. Ugander and Backstrom discuss partitioning large
graphs to optimize Facebook infrastructure [33]. Stein
considered a theoretical application of partitioning to
Facebook infrastructure [29]. Tran and Zhang consid-
ered a multi-objective optimization problem based on
edge cut motivated by read and write behaviors in online
social networks [31, 32].

Other research has considered data replication in com-
bination with partitioning for sharding data for online so-
cial networks. Pujol et al. studied low fanout configura-
tions via replication of data between hosts [25] and Wang
et al. suggested minimizing fan-out by random replica-
tion and query optimization [36]. Nguyen et al. con-
sidered how to place additional replicas of users given
a fixed initial assignment of users to servers [22, 30].

Dean and Barroso [7] investigated the effect of latency
variability on fanout queries in distributed systems, and
suggested several means to reduce its influence. Jeon et
al. [14] argued for the necessity of parallelizing execu-
tion of large requests, in order to tame latencies.

Our contribution differs from these lines of research
by presenting a realized framework integrated into pro-
duction systems at Facebook. A production application
to online social networks is provided by Huang et al. who
describe improving infrastructure performance for Ren-
ren through a combination of graph partitioning and data
replication methods [13]. Sharding has been considered
for distributed social network databases by Nicoara, et
al. who propose Hermes [23].

8 Concluding Remarks

We introduced the Social Hash framework for produc-
ing, serving, and maintaining assignments of objects to
components in distributed systems. The framework was
designed for optimizing operations on large social net-
works, such as Facebook’s Social Graph. A key aspect of
the framework is how optimization is decoupled from dy-
namic adaptation, through a two-level scheme that uses
graph partitioning for optimization at the first level and
dynamic assignment at the second level. The first level
leverages the structure of the social network and its us-
age patterns, while the second level adapts to changes in
the data, its access patterns and the infrastructure.

We demonstrated the effectiveness of the Social Hash
framework with the HTTP request routing and storage
sharding applications. For the former, Social Hash was
able to decrease the cache miss rate by 25%, and for
the latter, it was able to cut the average response time in
half, as measured on the live Facebook system with live
traffic production workloads. The approaches we took
with both applications was, to the best of our knowledge,
novel; i.e., graph partitioning the Social Graph to opti-
mize HTTP request routing, and using query history to
construct bipartite graphs that are then partitioned to op-
timize storage sharding.

Our approach has some limitations. It was designed
in the context of optimizing online social networks and
hence will not be suitable for every distributed system.
To be successful, both the static and dynamic assignment
steps rely on certain characteristics, which tend to be ful-
filled by social networks. For the static step, the under-
lying graph must be conducive to partitioning, and the
graph must be reasonably sparse so that the partitioning
is computationally tractable; social graphs almost always
meet those characteristics. The social graph cannot be
changing too rapidly; otherwise the optimized static as-
signment will be obsolete too quickly and the attendant
exception handling becomes too computationally com-
plex. For the dynamic step, we assume that the workload
and the infrastructure does not change too rapidly.

While we have been able to obtain impressive effi-
ciency gains using the Social Hash framework, we be-
lieve there is much room for further improvement. We
are currently: (i) working on improving the performance
of our graph partitioning algorithms, (ii) considering us-
ing historical query patterns and bi-partite graph parti-
tioning to further improve cache miss rates, (iii) incorpo-
rating geo-locality considerations for our HTTP routing
optimizations, and (iv) incorporating alternative repli-
cation schemes for further reducing fanout in storage
sharded systems.

Acknowledgements
We would like to thank Tony Savor, Kenny Lau, Venkat
Venkataramani and Avery Ching for their support, Alex
Laslavic, Praveen Kumar, Jan Jezabek, Alexander Ramirez,
Omry Yadan, Michael Paleczny, Jianming Wu, Chunhui Zhu,
Deyang Zhao and Pavan Athivarapu for helping integrate with
Facebook systems, Sanjeev Kumar, Kaushik Veeraraghavan,
Dionysis Logothetis, Romain Thibaux and Rajesh Nishtala for
their feedback on early drafts, Badr El-Said and Laxman Dhuli-
pala for their contributions to the framework, and Dimitris
Achlioptas for discussions on graph partitioning. We would
also like to thank the reviewers for their constructive and help-
ful comments.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 467

References

[1] Apache Giraph. http://giraph.apache.org/.

[2] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s distributed data store
for the Social Graph. In Proc. 2013 USENIX Annual Tech-
nical Conference (USENIX ATC’13), pages 49–60, 2013.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning. CoRR,
abs/1311.3144, 2013.

[4] U. V. Catalyurek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. on Parallel and
Distributed Systems, 10(7):673–693, 1999.

[5] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for
efficient parallel graph ordering. CoRR, abs/0907.1375,
2009.

[6] R. Cohen, L. Katzi, and D. Raz. An efficient approxima-
tion for the generalized assignment problem. Information
Processing Letters, 100(4):162–166, 2006.

[7] J. Dean and L. A. Barroso. The tail at scale. CACM,
56(2):74–80, Feb. 2013.

[8] K. Devine, E. Boman, L. Riesen, U. Catalyurek, and
C. Chevalier. Getting started with Zoltan: A short tutorial.
In Proc. 2009 Dagstuhl Seminar on Combinatorial Scien-
tific Computing, 2009. Also available as Sandia National
Labs Tech Report SAND2009-0578C.

[9] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bissel-
ing, and U. V. Catalyurek. Parallel hypergraph partition-
ing for scientific computing. In Proc. Intl. Parallel and
Distributed Processing Symposium (IPDPS), pages 10–
20, 2006.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Proc. 10th Symp. on
Operating Systems Design and Implementation (OSDI
12), pages 17–30, 2012.

[11] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in
a distributed dataflow framework. In Proc. 11th Symp.
on Operating Systems Design and Implementation (OSDI
14), pages 599–613, Broomfield, CO, Oct. 2014.

[12] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An analysis of facebook photo caching.
In Proc. 24th Symp. on Operating Systems Principles
(SOSP’13.

[13] Y. Huang, Q. Deng, and Y. Zhu. Differentiating your
friends for scaling online social networks. In Proc. IEEE
Intl. Conf. on Cluster Computing (CLUSTER’12), pages
411–419, Sept 2012.

[14] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L.
Cox, and S. Rixner. Predictive parallelization: Taming
tail latencies in Web search. In Proc. 37th Intl. ACM SI-
GIR Conference on Research & Development in Informa-
tion Retrieval (SIGIR’14), pages 253–262, 2014.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In Proc. 29th Annual ACM
Symp. on Theory of Computing (STOC’97), pages 654–
663, 1997.

[16] G. Karypis and V. Kumar. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM J.
Sci. Comput., 20(1):359–392, Dec. 1998.

[17] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. VLSI design, 11(3):285–300, 2000.

[18] D. Lasalle and G. Karypis. Multi-threaded graph par-
titioning. In Proc. IEEE 27th Intl. Symp. on Parallel
and Distributed Processing (IPDPS’13), pages 225–236,
2013.

[19] H. Lin, K. Sun, S. Zhao, and Y. Han. Feedback-control-
based performance regulation for multi-tenant applica-
tions. In Proc. 15th Intl. Conf. on Parallel and Distributed
Systems (ICPADS’09), pages 134–141, Dec 2009.

[20] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system
for large-scale graph processing. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD’10), pages
135–146, 2010.

[21] C. Martella, D. Logothetis, and G. Siganos. Spin-
ner: Scalable graph partitioning for the cloud. CoRR,
abs/1404.3861, 2014.

[22] K. Nguyen, C. Pham, D. Tran, F. Zhang, et al. Preserv-
ing social locality in data replication for online social net-
works. In Proc. 31st Intl. Conf. on Distributed Computing
Systems Workshops (ICDCSW), pages 129–133, 2011.

[23] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen. Her-
mes: Dynamic partitioning for distributed social network
graph databases. In Proc. 18th Intl. Conf. on Extend-
ing Database Technology (EDBT’15), pages 25–36, Mar.
2015.

[24] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In Proc. 10th USENIX
Conf. on Networked Systems Design and Implementation
(NSDI’13), pages 385–398, 2013.

[25] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The lit-
tle engine(s) that could: Scaling online social networks.
SIGCOMM ComputĊommun. Rev., 40(4):375–386, Aug.
2010.

468 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[26] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
Proc. 10th USENIX Symp. on Operating Systems Design
and Implementation (OSDI 12), pages 349–362, 2012.

[27] D. D. C. Shue. Multi-tenant Resource Allocation For
Shared Cloud Storage. PhD thesis, Princeton University,
2014.

[28] Y. Song, Y. Sun, and W. Shi. A two-tiered on-demand re-
source allocation mechanism for VM-based data centers.
IEEE Trans. on Services Computing, 6(1):116–129, 2013.

[29] D. Stein. Partitioning social networks for data locality on
a memory budget. Master’s thesis, University of Illinois,
Urbana-Champaign, 2012.

[30] D. A. Tran, K. Nguyen, and C. Pham. S-CLONE:
Socially-aware data replication for social networks. Com-
puter Networks, 56(7):2001–2013, 2012.

[31] D. A. Tran and T. Zhang. Socially aware data partition-
ing for distributed storage of social data. In Proc. IFIP
Networking Conference, pages 1–9, May 2013.

[32] D. A. Tran and T. Zhang. S-PUT: An EA-based frame-
work for socially aware data partitioning. Computer Net-
works, 75:504–518, Dec. 2014.

[33] J. Ugander and L. Backstrom. Balanced label propaga-
tion for partitioning massive graphs. In Proc. 6th ACM
Intl. Conf. on Web Search and Data Mining (WSDM-13),
pages 507–516, 2013.

[34] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the Facebook Social Graph. CoRR,
abs/1111.4503, 2011.

[35] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabr-
era III, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Gi-
ardullo, J. Hoon, et al. TAO: How Facebook serves the
Social Graph. In Proc. 2012 ACM SIGMOD Intl. Conf.
on Management of Data, pages 791–792, 2012.

[36] R. Wang, C. Conrad, and S. Shah. Using set cover to opti-
mize a large-scale low latency distributed graph. In Proc
5th USENIX Workshop on Hot Topics in Cloud Comput-
ing, 2013.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 469

The Design and Implementation of the Warp Transactional Filesystem

Robert Escriva, Emin Gün Sirer

Computer Science Department, Cornell University

Abstract

This paper introduces the Warp Transactional Filesys-

tem (WTF), a novel, transactional, POSIX-compatible

filesystem based on a new file slicing API that enables

efficient zero-copy file transformations. WTF provides

transactional access spanning multiple files in a dis-

tributed filesystem. Further, the file slicing API enables

applications to construct files from the contents of other

files without having to rewrite or relocate data. Com-

bined, these enable a new class of high-performance

applications. Experiments show that WTF can qual-

itatively outperform the industry-standard HDFS dis-

tributed filesystem, up to a factor of four in a sorting

benchmark, by reducing I/O costs. Microbenchmarks in-

dicate that the new features of WTF impose only a mod-

est overhead on top of the POSIX-compatible API.

1 Introduction

Distributed filesystems are a cornerstone of modern

data processing applications. Key-value stores such as

Google’s BigTable [11] and Spanner [14], and Apache’s

HBase [7] use distributed filesystems for their underlying

storage. MapReduce [15] uses a distributed filesystem

to store the inputs, outputs, and intermediary processing

steps for offline processing applications. Infrastructure

such as Amazon’s EBS [2] and Microsoft’s Blizzard [28]

use distributed filesystems to provide storage for virtual

machines and cloud-oblivious applications.

Yet, current distributed filesystems exhibit a tension

between retaining the familiar semantics of local filesys-

tems and achieving high performance in the distributed

setting. Often, designs will compromise consistency for

performance, require special hardware, or artificially re-

strict the filesystem interface. For example, in GFS,

operations can be inconsistent or, “consistent, but un-

defined,” even in the absence of failures [19]. GFS-

backed applications must account for these anomalies,

leading to additional work for application programmers.

HDFS [4] side-steps this complexity by prohibiting con-

current or non-sequential modifications to files. This

obviates the need to worry about nuances in filesystem

behavior, but fails to support use cases requiring con-

currency or random-access writes. Flat Datacenter Stor-

age [29] is eventually consistent and requires a network

with full-bisection bandwidth, which can be cost pro-

hibitive and is not possible in all environments.

This paper introduces the Warp Transactional File-

system (WTF), a new distributed filesystem that exposes

transactional support with a new API that provides file

slicing operations. A WTF transaction may span mul-

tiple files and is fully general; applications can include

calls such as read, write, and seek within their transac-

tion. This file slicing API enables applications to ef-

ficiently read, write, and rearrange files without rewrit-

ing the underlying data. For example, applications may

concatenate multiple files without reading them; garbage

collect and compress a database without writing the data;

and even sort the contents of record-oriented files with-

out rewriting the files’ contents.

The key design decision that enables WTF’s advanced

feature set is an architecture that represents filesystem

data and metadata to ensure that filesystem-level transac-

tions may be performed using, solely, transactional oper-

ations on metadata. Custom storage servers hold filesys-

tem data and handle the bulk of I/O requests. These

servers retain no information about the structure of the

filesystem; instead, they treat all data as opaque, im-

mutable, variable-length arrays of bytes, called slices.

WTF stores references to these slices in HyperDex [17]

alongside metadata that describes how to combine the

slices to reconstruct files’ contents. This structure en-

ables bookkeeping to be done entirely at the metadata

level, within the scope of HyperDex transactions.

Supporting this architecture is a custom concurrency

control layer that decouples WTF transactions from

the underlying HyperDex transactions. This layer en-

sures that transactions only abort when concurrently-

executing transactions change the filesystem and gener-

1

470 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

ate an application-visible conflict. This seemingly minor

functionality enables WTF to support concurrent opera-

tions with minimal abort-induced overheads.

Overall, this paper makes three contributions. First,

it describes a new API for filesystems called file slicing

that enables efficient file transformations. Second, it de-

scribes an implementation of a transactional filesystem

with minimal overhead. Finally, it evaluates WTF and

the file slicing interfaces, and compares them to the non-

transactional HDFS filesystem.

2 Design

WTF’s distributed architecture consists of four compo-

nents: the metadata storage, the storage servers, the repli-

cated coordinator, and the client library. Figure 1 sum-

marizes this architecture. The metadata storage builds

on top of HyperDex and its expansive API. The storage

servers hold filesystem data, and are provisioned for high

I/O workloads. A replicated coordinator service serves

as a rendezvous point for all components of the system,

and maintains the list of storage servers. The client li-

brary contains the majority of the functionality of the

system, and is where WTF combines the metadata and

data into a coherent filesystem.

In this section, we first explore the file slicing abstrac-

tion to understand how the different components con-

tribute to the overall design. We will then look at the

design of the storage servers to understand how the sys-

tem stores the majority of the filesystem information. Fi-

nally, we discuss performance optimizations and addi-

tional functionality that make WTF practical, but are not

essential to the core design, such as replication, fault tol-

erance, and garbage collection.

2.1 The File Slicing Abstraction

WTF represents a file as a sequence of byte arrays that,

when overlaid, comprise the file’s contents. The central

abstraction is a slice, an immutable, byte-addressable,

arbitrarily sized sequence of bytes. A file in WTF,

then is a sequence of slices and their associated off-

sets. This representation has some inherent advantages

over block-based designs. Specifically, the abstraction

provides a separation between metadata and data that

enables filesystem-level transactions to be implemented

using, solely, transactions over the metadata. Data is

stored in the slices, while the metadata is a sequence of

slices. WTF can transactionally change these sequences

to change the files they represent, without rewriting data.

Concretely, file metadata consists of a list of slice

pointers that indicate the exact location on the storage

servers of each slice. A slice pointer is a tuple consist-

ing of the unique identifier for the storage server holding

the slice, the local filename containing the slice on that

storage server, the offset of the slice within the file, and

Metadata

Storage

Replicated

Coordinator

Storage Servers

Client

Library

End User

Application

Figure 1: WTF employs a distributed architecture consisting

of metadata storage, data storage, a replicated coordinator, and

the client library. The client library unifies the metadata storage

and storage servers to provide a filesystem interface.

the length of the slice. Associated with each slice pointer

is an integer offset that indicates where the slice should

be overlaid when reconstructing the file. Crucially, this

representation is self-contained: everything necessary to

retrieve the slice from the storage server is present in the

slice pointer, with no need for extra bookkeeping else-

where in the system. As we will discuss later, the meta-

data also contains standard info found in an inode, such

as modification time, and file length.

This slice pointer representation enables WTF to eas-

ily generate new slice pointers that refer to subsequences

of existing slices. Because the representation directly re-

flects the global location of a slice on disk, WTF may use

simple arithmetic to create new slice pointers.

This representation also enables applications to mod-

ify a file with only localized modifications to the meta-

data. Figure 2 shows an example file consisting of five

different slices. Each slice is overlaid on top of previous

slices. Where slices overlap, the latest additions to the

metadata take precedence. For example, slice C takes

precedence over slices A and B; similarly, slice E com-

pletely obscures slice D and part of C. The file, then,

consists of the corresponding slices of A, C, E , and B.

The figure also shows the compacted metadata for the

same file. This compacted form contains the minimal

slice pointers necessary to reconstruct the file without

reading data that is hidden by another slice. Crucially,

all file modifications can be performed by appending to

the list of slice pointers.

The procedures for reading and writing follow directly

from the abstraction. A writer creates one or more slices

on the storage servers, and overlays them at the appro-

priate positions within the file by appending their slice

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 471

0MB

1MB

2MB

3MB

4MB

A A

B

A

B

C

A

B

C

D

A

B

C

E

Time

Final Metadata:

A@[0,2], B@[2,4], C@[1,3], D@[2,3], E@[2,3]

Compacted Final Metadata:

A@[0,1], C@[1,2], E@[2,3], B@[3,4]

Figure 2: Writers append to the metadata list to change the

file. Every prefix of the shown metadata list represents a valid

state of the file at some point in time. The compacted metadata

occupies less space by rearranging the metadata list to remove

overwritten data.

pointers to the metadata list. Readers retrieve the meta-

data list, compact it, and determine which slices must be

retrieved from the storage servers to fulfill the read.

The correctness of this design relies upon the meta-

data storage providing primitives to atomically read and

append to the list. HyperDex natively supports both of

these operations. Because each writer writes slices be-

fore appending to the metadata list, it is guaranteed that

any transaction that can see these immutable slices is se-

rialized after the writing transaction commits. It can then

retrieve the slices directly. The transactional guarantees

of WTF extend directly from this design as well: a WTF

transaction will execute a single HyperDex transaction

consisting of multiple append and retrieve operations.

2.2 Storage Server Interface

The file slicing abstraction greatly simplifies the design

of the storage servers. Storage servers deal exclusively

with slices, and are oblivious to files, offsets, or concur-

rent writes. The minimal API required by file slicing

consists of just two calls to create and retrieve slices.

A storage server processes a request to create a slice

by writing the data to disk and returning a slice pointer

to the caller. The structure of this request intentionally

grants the storage server complete flexibility to store the

slice anywhere it chooses because the slice pointer con-

taining the slice’s location is returned to the client only

after the slice is written to disk. A storage server can

A BC C

0 MB 1 MB 2 MB 2 MB 3 MB 4 MB

Region 1 Region 2

Region 1 Metadata:

A@[0,2], C@[1,2]

Region 2 Metadata:

B@[2,4], C@[2,3]

Figure 3: Files are partitioned into multiple regions to decouple

the size of metadata lists from the size of the file. This figure

shows the fourth state of the file from Figure 2 partitioned into

2 MB regions. Writes that are entirely within a single region

are appended solely to that region’s metadata. Writes that cross

regions are transactionally appended to multiple lists.

retrieve slices by following the information in the slice

pointer to open the named file, read the requisite number

of bytes, and return them to the caller.

The direct nature of the slice pointer minimizes the

bookkeeping required of the storage server implementa-

tion and permits a wide variety of implementation strate-

gies. In the simplest strategy, which is the strategy used

in the WTF implementation, each WTF storage server

maintains a directory of slice-containing backing files

and information about their own identities in the system.

Each backing file is written sequentially as the storage

server creates new slices.

As an optimization, each storage server maintains

multiple backing files to which slices are appended. This

serves three purposes: First, it allows servers to avoid

contention when writing to the same file; second, it al-

lows the storage server to spread data across multiple

filesystems if configured to do so; and, finally, it allows

the storage server to use hints provided by writers to im-

prove locality on disk, as described in Section 2.7.

2.3 File Partitioning

Practically, it is desirable to keep the list of slice pointers

small so that they can be stored, retrieved, and transmit-

ted with low overhead; however, it would be impractical

to achieve this by limiting the number of writes to a file.

In order to achieve support for both arbitrarily large files

and efficient operations on the list of slice pointers, WTF

partitions a file into fixed size regions, each with its own

list. Each region is stored as its own object in HyperDex

under a deterministically derived key.

Operations on these partitioned metadata lists directly

follow from the behavior of the system with a single

metadata list. When an operation spans multiple regions,

it is decomposed into one operation per region, and the

decomposed operations execute within the context of a

single HyperDex transaction. This guarantees that multi-

region operations execute as one atomic action. Figure 3

shows a sample partitioning of a file, and how operations

can span multiple metadata lists.

3

472 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

API Description

yank(fd,sz):slice,[data] Copy sz bytes from fd; return slice pointers and optionally the data

paste(fd, slice) Write slice to fd and increment the offset

punch(fd, amount) Zero-out amount bytes at the fd offset, freeing the underlying storage

append(fd, slice) Append slice to the end of file fd

concat(sources, dest) Concatenate the listed files to create dest

copy(source, dest) Copy source to dest using only the metadata

Table 1: WTF’s new file slicing API. Note that these supplement the POSIX API, which includes calls for moving a file descriptor’s

offset via seek. concat and copy are provided for convenience and may be implemented with yank and paste.

2.4 Filesystem Hierarchy

The WTF filesystem hierarchy is modeled after the tra-

ditional Unix filesystem, with directories and files. Each

directory contains entries that are named links to other

directories or files, and WTF enables files to be hard

linked to multiple places in the filesystem hierarchy.

WTF implements a few changes to the traditional

filesystem behavior to reduce the scope of a transaction

when opening a file. Path traversal, as it is traditionally

implemented, puts every directory along the path within

the scope of a transaction, and requires multiple round

trips to both HyperDex and the storage servers.

WTF avoids traversing the filesystem on open by

maintaining a pathname to inode mapping. This en-

ables a client to map a pathname to the corresponding

inode with just one HyperDex lookup, no matter how

deeply nested the pathname. To enable applications to

enumerate the contents of a single directory, WTF main-

tains traditional-style directories, implemented as special

files, alongside the one-lookup mapping. The two data

structures are atomically updated using HyperDex trans-

actions. This optimization simplifies the process of open-

ing files, without significant loss of functionality.

Inodes are also stored in HyperDex, and contain

standard information, such as link count and modifica-

tion time. The inode also maintains ownership, group,

and permissions information, though WTF differs from

POSIX in that permissions are not checked on the full

pathname from the root. Each inode also stores a ref-

erence to the highest-offset region for the file, enabling

applications to find the end of the file. The inode refers

to a region instead of a particular offset so that the inode

is only written when the file grows beyond the bounds of

a region, instead of every time the file changes in size.

Because HyperDex permits transactions to span mul-

tiple keys across independent schemas, updates to the

filesystem hierarchy remain consistent. For example, to

create a hardlink for a file, WTF atomically creates a new

pathname to inode mapping for the file, increments the

inode’s link count, and inserts the pathname and inode

pair into the destination directory, which requires a write

to the file holding the directory entries.

2.5 File Slicing Interface

The file slicing interface enables new applications to

make more efficient use of the filesystem. Instead of op-

erating on bytes and offsets as traditional POSIX systems

do, this new API allows applications to manipulate sub-

sequences of files at the structural level, without copying

or reading the data itself.

Table 1 summarizes the new APIs that WTF provides

to applications. The yank, paste, and append calls

are analogous to read, write, and append, but operate on

slices instead of sequences of bytes. The yank call re-

trieves slice pointers for a range of the file. An appli-

cation may provide these slice pointers to a subsequent

call to paste or append to write the data back to the

filesystem, reusing the existing slices. These write oper-

ations bypass the storage servers and only incur costs at

the metadata storage component.

The append call is internally optimized to improve

throughput. A naive append call could be implemented

as a transaction that seeks to the end of the file, and per-

forms a paste. While not incorrect, such an imple-

mentation would prohibit concurrency because only one

append could commit for each value for the end of file.

Instead, WTF stores alongside the metadata list an off-

set representing the end of the region. An append call

translates to a conditional list append call within Hyper-

Dex that only succeeds when the current offset plus the

length of the slice to be appended does not exceed the

bounds of the region. When an append is too large to

fit within a single region, WTF will fall back on reading

the offset of the end of file, and performing a write at

that offset. This enables multiple append operations to

proceed in parallel in the common case.

The remaining calls in the file slicing API are provided

for convenience, as they may be implemented in terms of

yank and paste. concat concatenates multiple files

to create one unified output file. copy copies a file by

copying the file’s compacted metadata.

2.6 Transaction Retry

To guarantee that WTF transactions never spuriously

abort, WTF implements its own concurrency control that

retries aborted metadata transactions. WTF operations in

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 473

the client library often read metadata during the course of

an operation that is not exposed to the calling application.

A change to this data after it is read may force the meta-

data transaction to abort, but to abort the corresponding

WTF transaction would be spurious from the perspective

of the application.

For example, consider a file opened in “append” mode.

Each write to the file must be written at the end-of-

file offset, but the application does not learn this offset

from the write. Internally, the client library computes

the end of file, and then writes data at that offset. If the

file changes in size between these two operations, the

metadata transaction will abort. WTF masks this abort

from the application by re-reading the end of file, and

re-issuing the write at the new offset.

The mechanism that retries transactions is a thin layer

between the WTF client library and the user’s applica-

tion. Each API call the application makes is logged in

this layer by recording the arguments provided to the

call and the value returned from the call. Should a

metadata transaction abort during the WTF transaction

commit, the WTF client library replays each operation

from the log using the originally supplied arguments. If

any replayed operation returns a value different from the

logged call, the WTF transaction signals an abort to the

application. Otherwise, WTF will commit the metadata

changes from the replayed log to HyperDex. This pro-

cess repeats as necessary until the metadata transaction,

and, thus, the WTF transaction, commit, or a replayed

operation triggers an WTF abort. This guarantees that

WTF transactions are lockfree with zero spurious aborts.

To reduce the size of the replay log, the replay log

refers to bytes of data that pass through the interface us-

ing slice pointers instead of copying the data. For exam-

ple, a write of 100 MB will not be copied into the log;

instead, the WTF client library writes the 100 MB to the

requisite number of servers, and records the slice point-

ers in the log. Similarly, reads record slice pointers re-

trieved from the metadata, and not the slices themselves.

2.7 Locality-Aware Slice Placement

As an optimization, the WTF client library carefully

places writes to the same region near each other on the

storage servers to simultaneously improve locality for

readers and to improve the efficiency of metadata com-

paction. When an application writes to a file sequen-

tially, the locality-aware placement algorithm ensures

that, with high probability, writes that appear consec-

utively in the metadata list will be consecutive on the

storage servers’ disks. During metadata compaction, the

slice pointers for these consecutive writes are replaced

by a single slice pointer that directly refers to the entire

contiguous sequence of bytes on each storage server.

Two levels of consistent hashing [23] make it unlikely

that two writes will map to the same backing files on the

same storage server unless they are for the same meta-

data region. The WTF client library chooses the servers

for each write by using consistent hashing across the list

of storage servers. The client then provides the slice and

identity of the metadata region to these servers, which

use a different consistent hashing algorithm to map the

write to disk. When collisions in the hash space do in-

evitably occur, it is unlikely that the colliding writes are

issued so close in time as to be totally interleaved on disk

in a way that eliminates opportunities for optimization.

2.8 Metadata Compaction and Defragmentation

The client library automatically compacts metadata dur-

ing read and write operations to improve efficiency of fu-

ture read and write operations. During write operations,

the client library tracks the number of bytes written to

both the metadata and the data for each region. When the

ratio of metadata to data in a region exceeds a pre-defined

threshold, the library retrieves the metadata list for the

region, compacts it as shown in Figure 2, and writes the

newly compacted list. When reading, the client compacts

the metadata list via the same process.

When metadata compaction alone cannot reduce the

metadata to data ratio below the pre-defined threshold,

the client library defragments the list by rewriting the

data. The library rewrites fragmented data within a

region into one single slice and replaces the metadata

list with a single pointer to this slice. For efficiency’s

sake, defragmentation happens only on read, not on

writes,because the client library necessarily reads the

fragmented slices to fulfill the read; it can rewrite the

slices without the overall system paying the cost of read-

ing the fragmented slices twice. This mechanism is un-

used in the common case because locality-aware slice

placement avoids fragmentation.

2.9 Garbage Collection

WTF employs a garbage collection mechanism to pre-

vent the number of unreferenced slices from growing

without bound. Metadata compaction and defragmenta-

tion ensures that metadata will not grow without bound,

but in the process creates garbage slices that are not ref-

erenced from anywhere in the filesystem.

Because WTF performs all bookkeeping within the

metadata storage, storage servers cannot directly know

which portions of its local data are garbage. One possi-

ble way to inform the storage servers would be to main-

tain a reference count for each slice. This method, how-

ever, would require that the reference count on the stor-

age server be maintained within the scope of the meta-

data transactions. Doing so, while not infeasible, would

significantly complicate WTF’s design and require cus-

tom transaction handling on the storage servers.

5

474 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Instead of reference counting, WTF periodically scans

the entire filesystem metadata and constructs a list of in-

use slice pointers for each storage server. For simplic-

ity of implementation, these lists are stored in a reserved

directory within the WTF filesystem so that they need

not be maintained in memory or communicated out of

band to the storage servers. Storage servers link the WTF

client library and read the list of in-use slices to discover

unused regions in their local storage space. The garbage

collection mechanism runs periodically at a configurable

interval that exceeds the longest-possible runtime of a

transaction. Storage servers do not collect an unused

slice until it appears in two or more consecutive scans.

Storage servers implement garbage collection by cre-

ating sparse files on the local disk. To compress a file

containing garbage slices, a storage server rewrites the

file, seeking past each unused slice. This creates a sparse

file that occupies disk space proportional to the in-use

slices it contains. Files with the most garbage are the

most efficient to collect, because the garbage collection

thread seeks past large regions of garbage and only writes

the small number of remaining slices. Backing files with

little garbage incur much more I/O, because there are

more in-use slices to rewrite. WTF chooses the file with

the most garbage to compact first, because it will simul-

taneously delete the most garbage and incur the least

I/O. Some filesystems enable applications to selectively

punch holes in the file without rewriting the data; al-

though our implementation does not use these capabil-

ities, an improved implementation could do so.

2.10 Fault Tolerance

WTF uses replication to add fault tolerance to the system.

Changing WTF to be fault tolerant requires modifying

the metadata lists’ structure so that each entry references

multiple replicas of the same data, each with a different

slice pointer. On the write path, writers create multiple

replica slices on distinct servers and append their point-

ers atomically as one list entry. Readers may read from

any replica, as they hold identical data.

The metadata storage derives its fault tolerance from

the guarantees offered by HyperDex. Specifically, that it

can tolerate f concurrent failures for a user-configurable

value of f . HyperDex uses value-dependent chaining

to coordinate between the replicas and manage recovery

from failures [16].

3 Implementation

Our implementation of WTF implements the file slicing

abstraction. The implementation is approximately 30 k

lines of code written. It relies upon HyperDex with trans-

actions, which is approximately 85 k lines of code, with

an additional 37 k lines of code of supporting libraries

written for both projects. The replicated coordinator for

both HyperDex and WTF is an additional 19 k lines of

code. Altogether, WTF constitutes 171 k lines of code

that were written for WTF or HyperDex.

WTF’s fault tolerant coordinator maintains the list of

storage servers and a pointer to the HyperDex cluster. It

is implemented as a replicated object on top of Replicant,

a Paxos-based replicated state machine service. The co-

ordinator consists of just 960 lines of code that are com-

piled into a dynamically linked library that is passed to

Replicant. Replicant deploys multiple copies of the li-

brary, and sequences function calls into the library.

4 Evaluation

To evaluate WTF, we will look at a series of both end-to-

end and micro benchmarks that demonstrate WTF under

a variety of conditions. The first part of this section looks

at how the features of WTF may be used to implement a

variety of end-to-end applications. We will then look at

a series of microbenchmarks that characterize the perfor-

mance of WTF’s conventional filesystem interface.

All benchmarks execute on a cluster of fifteen dedi-

cated servers. Each server is equipped with two Intel

Xeon 2.5 GHz L5420 processors, 16 GB of DDR2 mem-

ory with ECC, and between 500 GB and 1 TB SATA

spinning-disks. The servers are connected with gigabit

ethernet via a single top of rack switch. Installed on

each server is 64-bit Ubuntu 14.04, HDFS from Apache

Hadoop 2.7, and WTF with HyperDex.

For all benchmarks, HDFS and WTF are configured

similarly. Both systems are deployed with three nodes re-

served for the meta-data—a single HDFS name node, or

a HyperDex cluster—and the remaining twelve servers

are allocated as storage nodes for the data. Clients

are spread across the twelve storage nodes. Except for

changes necessary to achieve feature parity, both sys-

tems were deployed in their default configuration. To

bring the semantics of HDFS up to par with WTF, each

write is followed by an hflush call to ensure that

the write is flushed from the client-side buffer to HDFS.

The hflush ensures that writes are visible to readers,

and does not flush to disk. This is analogous to changing

from the C library’s fwrite to a UNIX write in a tra-

ditional application. The resulting guarantees are equiv-

alent to those provided by WTF.

Additionally, in order to work around a bug with ap-

pend operations [5], the HDFS block size was set to

64 MB. Without this change to the configuration, HDFS

can report an out-of-disk-space condition when only 3%

of the disk space is in use. Instead of gracefully han-

dling the condition and falling back to other replicas as

is done in WTF, the failure cascades and causes multi-

ple writes to fail, making it impossible to complete some

benchmarks. The change is unlikely to impact the perfor-

mance of data nodes because the increase from 64 MB to

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 475

0

20

40

60

80

HDFS WTFE
x
ec

u
ti

o
n

T
im

e
(m

in
u
te

s)

Figure 4: Total execution time for sorting

100 GB with map-reduce (512 kB rec.).

0

20

40

60

80

100

HDFS WTF

%
o
f

to
ta

l
ex

ec
u
ti

o
n

ti
m

e

Bucket
Sort
Merge

Figure 5: Execution time of sort broken

down by stage of the map-reduce.

0

50

100

150

200

HDFS WTF

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Figure 6: A concurrent work queue imple-

mentation.

128 MB was not motivated by performance [6]. WTF is

also configured to use 64 MB regions.

Except where otherwise noted, both systems replicate

all files such that two copies of the file exist. This allows

the filesystem to tolerate the failure of any one storage

server throughout the experiment without loss of data or

availability. It is possible to tolerate more failures so long

as all the replicas for a file do not fail simultaneously.

4.1 Applications

This section examines multiple applications that each

demonstrate a different aspect of WTF’s feature set.

Map Reduce: Sorting MapReduce [15] applications

often build on top of filesystems like HDFS and GFS.

In MapReduce, sorting a file is a three-step process that

breaks the sort into two map jobs followed by a reduce

job. The first map task partitions the input file into buck-

ets, each of which holds a disjoint, contiguous section of

the keyspace. These buckets are sorted in parallel by the

second map task. Finally, the reduce phase concatenates

the sorted buckets to produce the sorted output.

Each intermediate step of this application is written

to the filesystem and the entire data set will be read or

written several times over. Here, WTF’s file slicing API

can improve the efficiency of the application by reducing

this excessive I/O. Instead of reading and writing whole

records, WTF-based sort uses yank and paste to re-

arrange records. File slicing eliminates almost all I/O of

the reduce phase using a concat operation.

Empirically, file slicing operations improve the run-

ning time of WTF-based sort. Figure 4 shows the total

running time of both systems to sort a 100 GB file con-

sisting of 500 kB records indexed by 10 B keys that were

generated uniformly at random. In this benchmark, the

intermediate files are written without replication because

they may easily be recomputed from the input. We can

see that WTF sorts the entire file in one fourth the time

taken to perform the same task on HDFS.

The speedup is largely attributable file-slicing. From

Figure 5, we can see that the WTF-based sorting appli-

cation spends less time in the partitioning and merging

steps than the HDFS-based sort. HDFS spends the ma-

jority of its execution time performing I/O tasks; just

8.5% of execution time is spent in the CPU-intensive sort

1

10

100

1000

10000

100000

HDFS WTF

E
x
ec

u
ti

o
n

T
im

e
(s

)

Figure 7: Time taken to generate a readily-playable video file

from individual scenes.

task. In contrast, WTF spends 74.1% of its time in the

CPU intensive task and seconds in the merge task.

Work Queue Work queues are a common component

of large scale applications. Large work units may be

durably written to the queue and handled by the appli-

cation at a later point in time in FIFO order.

One simple implementation of a work queue is to use

an append-only file as the queue itself. The applica-

tion appends each work unit to the file, and can de-

queue from the work queue by reading through the file

sequentially—the file itself encodes the FIFO nature of

the queue. This benchmark consists of an application

with multiple writers that concurrently write to a single

file on the filesystem. Each work unit is 1 MB in size and

written atomically. The application runs on each client

server, for a total of twelve application instances.

Figure 6 shows the aggregate throughput for the work

queue built on top of both HDFS and WTF. We can see

that WTF’s throughput is 19× that of HDFS for this

workload. Each work unit is saved to WTF in 55 ms,

while the application built on HDFS waits 1.3 s on aver-

age to enqueue each work unit.

Image Host Image hosting sites, such as flickr or

imgur have become the de-facto way of sharing images

on the Internet. While imgur’s implementation serves

images from Amazon S3, Facebook’s image serving so-

lution, called Haystack [9], stores multiple photos in a

single file to reduce the costs of reading and maintaining

metadata. In Haystack, servers read into memory a map

of the photos’ locations on disk so that reading a single

photo from disk does not entail any additional disk reads.

This example application models an imgur-like web-

site built using the multi-photo file technique used within

7

476 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Haystack. Photos are written to multi-gigabyte files,

each of which has a footer mapping photos to their off-

sets in the files. The application loads this map into mem-

ory so that it may serve requests by locating the file’s off-

set within the map, and then reading the file directly from

the offset in the filesystem.

To better simulate a real photo-sharing website, pho-

tos are randomly generated to match the size of pho-

tos served by imgur. The distribution of photo sizes

was collected from the front page of imgur.com over a

24-hour period. Because imgur serves both static im-

ages and gifs, the size of photos varies widely. Median

image size is 332 kB, while the average image size is

8.5 MB. Because the precise request distribution of re-

quests is not available from imgur, the workload re-uses

the Zipf request distribution specified for YCSB work-

loads [13]. For this workload, we measured that WTF

achieves 88.8% the throughput of the same application

on top of HDFS. The performance difference is largely

attributable to the reads of smaller files. As we will ex-

plore in the microbenchmarks section, WTF needs fur-

ther optimization for small read and write operations.

Video Editing WTF’s file slicing API can be used to

reorganize large files with orders of magnitude less I/O.

One particular domain where this can be useful is video

editing of high-definition raw video. Such videos tend to

be large in size, and will be rearranged frequently dur-

ing the editing process. While specialized applications

can edit and then play back videos, WTF enables another

point in the design space.

This application uses WTF’s file slicing to move

scenes around in a video file without physically rewrit-

ing the video. The chief benefit of this design, over edi-

tors on existing filesystems, is that an off-the-shelf video

player can play the edited video file because it is in a

standard container format. To benchmark this applica-

tion, we used our video editor to randomly rearrange the

scenes in a 2 h movie, such that the movie out of chrono-

logical order. The source material was 1080p raw video

dumped from a Bluray disk. Overall the raw video/audio

occupies approximately 377 GB or 52 MB/s. Figure 7

shows the time taken to rewrite the file using HDFS’s

conventional API compared to WTF’s file-slicing API.

WTF takes three orders of magnitude less time to make

a file readable—on the order of seconds—while conven-

tional techniques require nearly three hours.

Sandboxing The transactional API of WTF makes it

easy to use the filesystem as a sandbox where tasks may

be committed or aborted depending on their outcome.

The WTF implementation includes a FUSE module that

enables users to mount the filesystem as if it were a local

filesystem. This enables shell navigation of the filesys-

tem hierarchy and allows regular applications to read and

write WTF filesystems without modification. In addition

wtf fuse ./mnt

cd ./mnt

wtf fuse-begin-transaction

ls

/data.0000 /data.0001

/data.0002 /data.0003

....

rm *
ls

wtf fuse-abort-transaction

ls

/data.0000 /data.0001

/data.0002 /data.0003

....

Figure 8: WTF’s transactional functionality enables users to

manipulate the filesystem in isolation.

0

25

50

75

100

125

Write Read Seq. Read Rand.
T

h
ro

u
g
h
p
u
t

(M
B

/s
) POSIX

HDFS
WTF

Figure 9: Performance of a one-server deployment of HDFS

and WTF compared with the ext4 filesystem. Error bars indi-

cate the standard error of the mean across seven trials.

to implementing the full filesystem interface, the FUSE

bridge exposes special ioctls to permit users to control

transactions. Users may begin, abort, or commit transac-

tions via command-line tools that wrap these ioctls.

The transactional features of the FUSE bridge enables

users to perform risky actions within the context of a

transaction; the transactional isolation provides a degree

of safety users would otherwise not be afforded. The ac-

tions taken by the user are not visible until the user com-

mits, and should the user abort, the actions will never

be persisted to the filesystem. Figure 8 shows a sam-

ple interaction with an WTF filesystem containing data

for a sample research project. We can see that the user

begins a transaction and inadvertently removes all of the

research data. Because the errantrm command happened

in a transaction, the data remains untouched.

4.2 Micro Benchmarks

In this section we examine a series of microbenchmarks

that quantify the performance of the POSIX API for both

HDFS and WTF. Here HDFS serves as a gold-standard.

With ten years of active development, and deployment

across hundreds of nodes, including large deployments at

both Facebook and LinkedIn [12], HDFS provides a rea-

sonable estimate of distributed filesystem performance.

Although we cannot expect WTF to grossly outperform

HDFS—both systems are limited by the speed of the

hard disks in the cluster—we can use the degree to which

WTF and HDFS differ in performance to estimate the

overheads present in WTF’s design.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 477

0

100

200

300

400

500

64B 2KB 64KB 2MB 64MB

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Block Size (bytes)

HDFS
WTF

Figure 10: Throughput of a sequential

write workload. Error bars report the stan-

dard error of the mean across seven trials1.

1

10

100

1k

10k

256KB 1MB 4MB 16MB 64MB

L
at

en
cy

(m
s)

Block Size (bytes)

HDFS
WTF

Figure 11: Median latency of write oper-

ations. Error bars report the 5th and 95th

percentile latencies.

0

100

200

300

400

500

256KB 1MB 4MB 16MB 64MB

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Block Size (bytes)

WTF (Seq.)
WTF (Rand.)

Figure 12: Throughput of a random write

workload. Error bars report the standard

error of the mean across seven trials.

Setup The workload for these benchmarks is generated

by twelve distinct clients, one per storage server in the

cluster, that all work in parallel. This configuration was

chosen after experimentation because additional clients

do not significantly increase the throughput, but do in-

crease the latency significantly. All benchmarks oper-

ate on 100 GB of data, or over 16 GB per machine once

replication is accounted for. This is large enough that our

workload blocks on disk on Linux [25].

Single server performance This first benchmark exe-

cutes on a single server to establish the baseline perfor-

mance of a one node cluster. Here, we’ll compare the

two systems to each other and the same workload im-

plemented on a local ext4 filesystem. The comparison

to a local filesystem provides an upper bound on per-

formance. To reduce the impact of round trip time in

each distributed system the client and storage server are

collocated. Figure 9 shows the throughput of write and

read operations in the one-server cluster. From this we

can see that the maximum throughput of a single node is

87 MB/s, which means the total throughput of the clus-

ter peaks at approximately 1 GB/s.
Sequential Writes WTF guarantees that all readers in

the filesystem see a write upon its completion. This

benchmark examines the impact that write size has on

the aggregate throughput achievable for filesystem-based

applications. Figure 10 shows the results for block sizes

between 64 B and 64 MB. For writes greater than 1 MB,

WTF achieves 97% the throughput of HDFS. For 256 kB

writes, WTF achieves 84% of the throughput of HDFS.

The latency for the two systems is similar, and directly

correlated with the block size. Figure 11 shows the la-

tency of writes across a variety of block sizes. We can

see that WTF’s median latency is very close to HDFS’s

median latency for larger writes, and that the 95th per-

centile latency for WTF is often lower than for HDFS.

Random Writes WTF enables applications to write

at random offsets in a file without restriction. Because

HDFS does not support random writes, we cannot use it

as a baseline; instead, we will compare against the se-

quential write performance of WTF.

1Blocks <256 kB wrote smaller files to limit execution time.

Figure 12 shows the aggregate throughput achieved by

clients writing to random offsets within WTF files. We

see that the random write throughput is always within

a factor of two of the sequential throughput, and that

throughput converges as the size of the writes approaches

8 MB.

Because the common case for a sequential write and

a random write in WTF differ only at the stage where

metadata is written to HyperDex, we expect that such

a difference in throughput is directly attributable to the

metadata stage. HyperDex provides lower latency vari-

ance to applications with a small working set than ap-

plications with a large working set with no locality of

access. We can see the difference this makes in the tail

latency of WTF writes in Figure 13, which shows the

median and 99th percentile latencies for both the sequen-

tial and random workloads. The median latency for both

workloads is the same for all block sizes. For block sizes

4 MB and larger, the 99th percentile latencies are approx-

imately the same as well. Writes less than 4 MB in size

exhibit a significant difference in 99th percentile latency

between the sequential and random workloads. These

smaller writes spend more time updating HyperDex than

writing to storage servers. We expect that further opti-

mization of HyperDex would close the gap between se-

quential and random write performance.

Sequential Reads Batch processing applications of-

ten read large input files sequentially during both the

map and reduce phases. Although a properly-written

application will double-buffer to avoid small reads, the

filesystem should not rely on such behavior to enable

high throughput. This experiment shows the extent to

which WTF can be used by batch applications by read-

ing through a file sequentially using a fixed-size buffer.

Figure 14 shows the aggregate throughput of concur-

rent readers reading through a 100 GB of data. We can

see that for all read sizes, WTF’s throughput is at least

80% the throughput of HDFS. The throughput reported

here is double the throughput reported in the write bench-

marks because only one of the two active replicas is con-

sulted on each read. For smaller reads, WTF’s through-

put matches that of HDFS. The difference at larger sizes

9

478 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1

10

100

1k

10k

256KB 1MB 4MB 16MB 64MB

L
at

en
cy

(m
s)

Block Size (bytes)

Seq. 50%
Rand. 50%
Seq. 99%
Rand. 99%

Figure 13: 50th/99th percentile latencies

for sequential and random WTF writes.

0

250

500

750

1000

1250

256KB 1MB 4MB 16MB 64MB

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Block Size (bytes)

HDFS
WTF

Figure 14: Throughput of a sequential

read workload. Error bars report the stan-

dard error of the mean across seven trials.

0

250

500

750

1000

1250

256KB 1MB 4MB 16MB 64MB

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Block Size (bytes)

HDFS
WTF

Figure 15: Throughput of a random read

workload. Error bars indicate the standard

error of the mean across seven trials.

is largely an artifact of the implementations. HDFS uses

readahead on both the clients and storage servers in or-

der to improve throughput for streaming workloads. By

default, the HDFS readahead is configured to be 4 MB,

which is the point at which the systems start to exhibit

different characteristics. Our preliminary WTF imple-

mentation does not have any readahead mechanism, and

exhibits lower throughput.

Random Reads Applications built on a distributed

filesystem, such as key-value stores or record-oriented

applications often require random access to the files. Fig-

ure 15 shows the aggregate throughput of twelve concur-

rent random readers reading from randomly chosen off-

sets within 100 GB of data. We can see that for reads

of less than 16 MB, WTF achieves significantly higher

throughput—at its peak, WTF’s throughput is 2.4× the

throughput of HDFS. Here, the readahead and client-

side caching that helps HDFS with larger sequential read

workloads adds overhead to HDFS that WTF does not

incur. The 95th percentile latency of a WTF read is less

than the median latency of a HDFS read for block sizes

less than 4 MB.

Scaling Workload This experiment varies the num-

ber of clients writing to the filesystem to explore how

concurrency affects both latency and throughput. This

benchmark employs the workload from the sequential-

write benchmark with a 4 MB write size and a variable

number of workload-generating clients.

Figures 16 and 17 shows the resulting throughput

and latency for between one and twelve clients. We

can see that the single client performance is approxi-

mately 60 MB/s, while twelve clients sustain an aggre-

gate throughput of approximately 380 MB/s. WTF’s

throughput is approximately the same as the throughput

of HDFS for each data point. Running the same work-

load with forty-eight clients did not increase the through-

put of either system beyond the throughput achieved with

twelve clients, but did result in higher latency.

Fault Tolerance WTF’s fault tolerance mechanism en-

ables it to rapidly recover from failures. To demon-

strate this mechanism, this benchmark performs sequen-

tial writes at a target throughput of 200 MB/s. Figure 18

shows the throughput of the benchmark over time. Thirty

seconds into the benchmark, one storage server is taken

offline; ten seconds later, the coordinator reconfigures

the system to remove the failed storage server. In the

time between the failure and reconfiguration, clients may

try to use the failed server, fail to write to it, and fall

back to another server. This increased effort is reflected

in the lower throughput between failure and reconfigura-

tion. After reconfiguration, throughput returns to to its

rate before the failure. During the entire experiment, no

writes failed, and the cluster as a whole remained avail-

able.

Garbage Collection This benchmark calculates the

overhead of garbage collection on a storage server. As

mentioned in Section 2.9, it is more efficient to collect

files with more garbage than files with less garbage, and

WTF preferentially garbage collects these larger files.

Figure 19 shows the rate at which the cluster can col-

lect garbage, for varying amounts of randomly located

garbage, when all resources are dedicated to the task. We

can see that when the cluster consists of 90% garbage,

the cluster can reclaim this garbage at a rate of over 9 GB

of garbage per second, because it need only write 1 GB/s

to reclaim the garbage.

It is, however, impractical to dedicate all resources

to garbage collection; instead, WTF dedicates only a

fraction of I/O to the task. Storage servers initiate

garbage collection when disk usage exceeds a config-

urable threshold, and ceases when the amount of garbage

drops below 20%. Figure 19 shows that the maximum

overhead required to maintain the system below this

threshold is 4%.

Small Writes WTF’s design is optimized for larger

writes. The performance of smaller writes will largely be

determined by the cost of updating the metadata. Writing

a slice to the storage servers requires just one round trip

because replicas are written to in parallel. Writing to the

metadata store requires one round trip between client and

the cluster, and multiple round trips within the cluster to

propagate and commit the data. Further each write to the

metdata requires writing approximately 50 B to Hyper-

Dex, so as writes to WTF shrink in size, the dominating

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 479

0

100

200

300

400

500

// 480 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Concurrent Clients

HDFS
WTF

Figure 16: Throughput for varying num-

bers of writers. Error bars show the stan-

dard error of the mean across seven trials.

10

100

1k

10k

// 482 4 6 8 10 12

L
at

en
cy

(m
s)

Concurrent Clients

HDFS
WTF

Figure 17: Median write latency for vary-

ing numbers of writers. Error bars show

the 5th and 95th percentile latencies.

0

50

100

150

200

250

300

0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Time (s)

WTF

Figure 18: WTF tolerates failures—the

failure occurs at the 30s mark—without a

loss of availability.

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100
0
1
2
3
4
5
6
7
8
9

G
ar

b
ag

e
C

o
ll

ec
ti

o
n

R
at

e
(G

B
/s

)

P
er

ce
n
t

D
is

k
D

ed
ic

at
ed

to
G

C

Percentage of Garbage in the System

GC Rate
Dedicated I/O %

Figure 19: The maximum rate of garbage collection is posi-

tively correlated with the amount of garbage to be collected.

Consequently, WTF dedicates a small fraction of its overall I/O

to garbage collection.

cost becomes related to metadata.

Figure 20 focuses on a portion of the experiment

shown in Figure 10, specifically writes less than 1 kB

in size. HDFS achieves 140× higher throughput for

64 B writes, while the difference is only a factor of 2.8×
for 1 kB writes. The figure also shows the calculated

theoretical maximum throughput when the latency in-

volved in writing to the metadata server is 2 ms, 5 ms,

and 10 ms. This shows that the throughput of small oper-

ations is largely dependent upon the latency of metadata

operations. Most workloads can avoid small operations

with client side buffering, and further optimization of the

metadata component could improve the throughput for

small WTF writes.

5 Related Work

Filesystems have been an active research topic since the

earliest days of systems research. Existing approaches

related to WTF can be broadly classified into two cate-

gories based upon their design.

Distributed filesystems Distributed filesystems ex-

pose one or more units of storage over a network to

clients. AFS [22] exports a uniform namespace to work-

stations, and stores all data on centralized servers. Other

systems [21, 31, 33], most notably xFS [3] and Swift [10]

stripe data across multiple servers for higher perfor-

mance than can be achieved with a single disk. Petal [24]

provides a virtual disk abstraction that clients may use

0

1

2

3

4

5

6

7

64B 128B 256B 512B 1KB
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Block Size (bytes)

HDFS
WTF
2ms metadata
5ms metadata
10ms metadata

Figure 20: The time spent in metadata operations establishes

an upper bound on the total throughput achievable by the sys-

tem. This figure plots a portion of Figure 10 and theoretical

maximum throughput for multiple metadata latencies.

as a traditional block device. Frangipani [38] builds a

filesystem abstraction on top of Petal. NASD [20] and

Panasas [42] employ customized storage devices that at-

tach to the network to store the bulk of the metadata.

In contrast to these systems, WTF provides transactional

guarantees that can span hundreds or thousands of disks

because its metadata storage scales independently of the

number of storage servers.

Farsite [1] separates data from metadata to implement

a byzantine fault tolerant filesystem where only the meta-

data replicas employ BFT algorithms. WTF uses a simi-

lar insight to leverage the transactional guarantees pro-

vided by the metadata storage to enable transactional

guarantees to extend across the whole filesystem.

Recent work focuses on building large-scale

datacenter-centric filesystems. GFS [19] and HDFS [4]

employ a centralized master server that maintains the

metadata, mediates client access, and coordinates the

storage servers. Salus [41] improves HDFS to support

storage and computation failures without loss of data,

but retains the central metadata server. This centralized

master approach, however, suffers from scalability

bottlenecks inherent to the limits of a single server [27].

WTF overcomes the metadata scalability bottleneck

using the scalable HyperDex key-value store [17].

CalvinFS [39] focuses on fast metadata management

using distributed transactions in the Calvin [40] trans-

action processing system. Transactions in CalvinFS

11

480 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

are limited, and cannot do read-modify-write opera-

tions on the filesystem without additional mechanism.

Further, CalvinFS addresses file fragmentation using

a heavy-weight garbage collection mechanism that en-

tirely rewrites fragmented files; in the worst case, a se-

quential writer could incur I/O that scales quadratically

in the size of the file. In contrast, WTF provides fully

general transactions and carefully arranges data to im-

prove sequential write performance.

Another approach to scalability is demonstrated by

Flat Datacenter Storage [29], which enables applications

to access any disk in a cluster via a CLOS network

with full bisection bandwidth. To eliminate the scalabil-

ity bottlenecks inherent to a single master design, FDS

stores metadata on its tract servers and uses a central-

ized master solely to maintain the list of servers in the

system. Blizzard [28] builds block storage, visible to ap-

plications as a standard block device, on top of FDS, us-

ing nested striping and eventual durability to service the

smaller writes typical of POSIX applications. These sys-

tems are complementary to WTF, and could implement

the storage server abstraction.

“Blob” storage systems behave similarly to file sys-

tems, but with a restricted interface that permits creating,

retrieving, and deleting blobs, without efficient support

for arbitrarily changing or resizing blobs. Facebook’s

f4 [37] ensures infrequently accessed files are readily

available. Pelican [8] enables power-efficient cold stor-

age by over provisioning storage, and selectively turning

on subsets of disks to service requests. The design goals

of these systems are different from the applications that

WTF enables; WTF could be used in front of these sys-

tems to generate, maintain, and modify data before plac-

ing it into blob storage.

Transactional filesystems Transactional filesystems

enable applications to offload much of the hard work re-

lating to update consistency and durability to the filesys-

tem. The QuickSilver operating system shows that trans-

actions across the filesystem simplify application devel-

opment [32]. Further work showed that transactions

could be easily added to LFS, exploiting properties of the

already-log-structured data to simplify the design [35].

Valor [36] builds transaction support into the Linux ker-

nel by interposing a lock manager between the kernel’s

VFS calls and existing VFS implementations. In contrast

to the transactions provided by WTF, and the underlying

HyperDex transactions, these systems adopt traditional

pessimistic locking techniques that hinder concurrency.

Optimistic concurrency control schemes often en-

able more concurrency for lightly-contended workloads.

PerDiS FS adopts an optimistic concurrency control

scheme that relies upon external components to recon-

cile concurrent changes to a file [18]. This allows users

and applications to concurrently work on the same file.

Liskov and Rodrigues show that much of the overhead of

a serializable filesystem can be avoided by running read-

only transactions in the recent past, and employing an op-

timistic protocol for read-write transactions [26]. WTF

builds on top of HyperDex’s optimistic concurrency and

provides operations such as append that avoid creating

conflicts between concurrent transactions.

WTF is not the first system to choose to employ

a transactional datastore as part of its design. Inver-

sion [30] builds on PostgreSQL to maintain a complete

filesystem. KBDBFS [36] and Amino [43] both build

on top of BerkeleyDB; the former is an in-kernel imple-

mentation of BerkeleyDB, while the latter eschews the

complexity and takes a performance hit with a userspace

implementation. WTF differs from these designs in that

it stores solely the metadata in the transactional data

store; data is stored elsewhere and not managed within

the transactional component.

Stasis [34] makes the argument that no one design

support all use cases, and that transactional components

should be building blocks for applications. WTF’s ap-

proach is similar: HyperDex’s transactions are used as a

base primitive for managing WTF’s state, and WTF sup-

ports a transactional API. Applications built on WTF can

use this API to achieve their own transactional behavior.

6 Conclusion

This paper described the Warp Transactional Filesystem

(WTF), a new distributed filesystem that enables applica-

tions to operate on multiple files transactionally without

requiring complex application logic. A new filesystem

abstraction called file slicing further boosts performance

by completely changing the filesystem interface to focus

on metadata manipulation instead of data manipulation.

Together, these features are a potent combination that en-

ables a new class of high performance applications.

A broad evaluation shows that WTF achieves through-

put and latency similar to industry-standard HDFS, while

simultaneously offering stronger guarantees and a richer

API. Sample applications show that WTF is usable in

practice, and applications will often those built on a tra-

ditional filesystem—sometimes by orders of magnitude.

Acknowledgments

We’d like to thank our shepherd, Jon Howell, our anony-

mous reviewers, and Robbert van Renesse for their help-

ful feedback. We would like to thank Sean Ogden for

his assistance in implementing WTF. This work is sup-

ported by the National Science Foundation under Grant

No. CNS-1518779 and the Facebook Graduate Fellow-

ship program. Any opinions, findings, and conclusions

or recommendations expressed in this material are those

of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 481

References

[1] Atul Adya, William J. Bolosky, Miguel Castro,

Gerald Cermak, Ronnie Chaiken, John R. Douceur,

Jon Howell, Jacob R. Lorch, Marvin Theimer, and

Roger Wattenhofer. FARSITE: Federated, Avail-

able, And Reliable Storage For An Incompletely

Trusted Environment. In Proceedings of the Sympo-

sium on Operating System Design and Implementa-

tion, Boston, Massachusetts, December 2002.

[2] Amazon Web Services. Elastic Block Store.

http://aws.amazon.com/ebs/.

[3] Thomas E. Anderson, Michael Dahlin, Jeanna M.

Neefe, David A. Patterson, Drew S. Roselli, and

Randolph Y. Wang. Serverless Network File Sys-

tems. In Proceedings of the Symposium on Oper-

ating Systems Principles, pages 109-126, Copper

Mountain, Colorado, December 1995.

[4] Apache Hadoop. http://hadoop.apache.

org/.

[5] Apache Hadoop Jira. DFS Used Space Is

Not Correct Computed On Frequent Append Op-

erations. https://issues.apache.org/

jira/browse/HDFS-6489.

[6] Apache Hadoop Jira. Increase The Default

Block Size. https://issues.apache.org/

jira/browse/HDFS-4053.

[7] Apache HBase. http://hbase.apache.

org/.

[8] Shobana Balakrishnan, Richard Black, Austin Don-

nelly, Paul England, Adam Glass, David Harper,

Sergey Legtchenko, Aaron Ogus, Eric Peterson,

and Antony I. T. Rowstron. Pelican: A Building

Block For Exascale Cold Data Storage. In Proceed-

ings of the Symposium on Operating System Design

and Implementation, pages 351-365, Broomfield,

Colorado, October 2014.

[9] Doug Beaver, Sanjeev Kumar, Harry C. Li, Ja-

son Sobel, and Peter Vajgel. Finding A Needle In

Haystack: Facebook’s Photo Storage. In Proceed-

ings of the Symposium on Operating System De-

sign and Implementation, pages 47-60, Vancouver,

Canada, October 2010.

[10] Luis-Felipe Cabrera and Darrell D. E. Long. Swift:

Using Distributed Disk Striping To Provide High

I/O Data Rates. In Computing Systems, 4(4):405-

436, 1991.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-

son C. Hsieh, Deborah A. Wallach, Michael Bur-

rows, Tushar Chandra, Andrew Fikes, and Robert

Gruber. Bigtable: A Distributed Storage System

For Structured Data. In Proceedings of the Sympo-

sium on Operating System Design and Implementa-

tion, pages 205-218, Seattle, Washington, Novem-

ber 2006.

[12] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman,

Sachin Katti, John K. Ousterhout, and Mendel

Rosenblum. Copysets: Reducing The Frequency

Of Data Loss In Cloud Storage. In Proceedings

of the USENIX Annual Technical Conference, San

Jose, California, June 2013.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam,

Raghu Ramakrishnan, and Russell Sears. Bench-

marking Cloud Serving Systems With YCSB. In

Proceedings of the Symposium on Cloud Comput-

ing, pages 143-154, Indianapolis, Indiana, June

2010.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein,

Andrew Fikes, Christopher Frost, J. J. Furman,

Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, Wilson C. Hsieh, Sebas-

tian Kanthak, Eugene Kogan, Hongyi Li, Alexan-

der Lloyd, Sergey Melnik, David Mwaura, David

Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,

Yasushi Saito, Michal Szymaniak, Christopher

Taylor, Ruth Wang, and Dale Woodford. Spanner:

Google’s Globally-Distributed Database. In Pro-

ceedings of the Symposium on Operating System

Design and Implementation, pages 261-264, Hol-

lywood, California, October 2012.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

A Flexible Data Processing Tool. In Communica-

tions of the ACM, 53(1):72-77, 2010.

[16] Robert Escriva, Bernard Wong, and Emin Gün

Sirer. HyperDex: A Distributed, Searchable Key-

Value Store. In Proceedings of the SIGCOMM

Conference, pages 25-36, Helsinki, Finland, Au-

gust 2012.

[17] Robert Escriva, Bernard Wong, and Emin Gün

Sirer. Warp: Lightweight Multi-Key Transactions

For Key-Value Stores. Cornell University, Ithaca,

Technical Report, 2013.

[18] João Garcia, Paulo Ferreira, and Paulo Guedes. The

PerDiS FS: A Transactional File System For A Dis-

tributed Persistent Store. In Proceedings of the Eu-

ropean SIGOPS Workshop, pages 189-194, Sintra,

Portugal, September 1998.

13

482 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google File System. In Proceedings

of the Symposium on Operating Systems Principles,

pages 29-43, Bolton Landing, New York, October

2003.

[20] Garth A. Gibson, David Nagle, Khalil Amiri, Jeff

Butler, Fay W. Chang, Howard Gobioff, Charles

Hardin, Erik Riedel, David Rochberg, and Jim Ze-

lenka. A Cost-Effective, High-Bandwidth Storage

Architecture. In Proceedings of the Architectural

Support for Programming Languages and Operat-

ing Systems, pages 92-103, San Jose, California,

October 1998.

[21] John H. Hartman and John K. Ousterhout. The Ze-

bra Striped Network File System. In ACM Transac-

tions on Computer Systems, 13(3):274-310, 1995.

[22] John H. Howard, Michael L. Kazar, Sherri G. Me-

nees, David A. Nichols, Mahadev Satyanarayanan,

Robert N. Sidebotham, and Michael J. West. Scale

And Performance In A Distributed File System. In

ACM Transactions on Computer Systems, 6(1):51-

81, 1988.

[23] David R. Karger, Eric Lehman, Frank Thomson

Leighton, Rina Panigrahy, Matthew S. Levine, and

Daniel Lewin. Consistent Hashing And Random

Trees: Distributed Caching Protocols For Relieving

Hot Spots On The World Wide Web. In Proceedings

of the ACM Symposium on Theory of Computing,

pages 654-663, El Paso, Texas, May 1997.

[24] Edward K. Lee and Chandramohan A. Thekkath.

Petal: Distributed Virtual Disks. In Proceedings

of the Architectural Support for Programming Lan-

guages and Operating Systems, pages 84-92, Cam-

bridge, Massachusetts, October 1996.

[25] Linux Kernel Developers. Documentation For

/proc/sys/vm/*. https://www.kernel.org/

doc/Documentation/sysctl/vm.txt.

[26] Barbara Liskov and Rodrigo Rodrigues. Transac-

tional File Systems Can Be Fast. In Proceedings of

the European SIGOPS Workshop, page 5, Leuven,

Belgium, September 2004.

[27] Kirk McKusick and Sean Quinlan. GFS: Evolution

On Fast-Forward. In Communications of the ACM,

53(3):42-49, 2010.

[28] James W. Mickens, Edmund B. Nightingale,

Jeremy Elson, Darren Gehring, Bin Fan, Asim Ka-

dav, Vijay Chidambaram, Osama Khan, and Kr-

ishna Nareddy. Blizzard: Fast, Cloud-Scale Block

Storage For Cloud-Oblivious Applications. In Pro-

ceedings of the Symposium on Networked System

Design and Implementation, pages 257-273, Seat-

tle, Washington, April 2014.

[29] Edmund B. Nightingale, Jeremy Elson, Jinliang

Fan, Owen S. Hofmann, Jon Howell, and Yutaka

Suzue. Flat Datacenter Storage. In Proceedings

of the Symposium on Operating System Design and

Implementation, pages 1-15, Hollywood, Califor-

nia, October 2012.

[30] Michael A. Olson. The Design And Implementa-

tion Of The Inversion File System. In Proceedings

of the USENIX Winter Technical Conference, pages

205-218, San Diego, California, January 1993.

[31] Frank B. Schmuck and Roger L. Haskin. GPFS:

A Shared-Disk File System For Large Computing

Clusters. In Proceedings of the Conference on File

and Storage Technologies, pages 231-244, Mon-

terey, California, January 2002.

[32] Frank B. Schmuck and James C. Wyllie. Expe-

rience With Transactions In QuickSilver. In Pro-

ceedings of the Symposium on Operating Systems

Principles, pages 239-253, Pacific Grove, Califor-

nia, October 1991.

[33] Seagate Technology LLC. Lustre Filesystem.

http://lustre.org/.

[34] Russell Sears and Eric A. Brewer. Stasis: Flexi-

ble Transactional Storage. In Proceedings of the

Symposium on Operating System Design and Im-

plementation, pages 29-44, Seattle, Washington,

November 2006.

[35] Margo I. Seltzer. Transaction Support In A Log-

Structured File System. In Proceedings of the

IEEE International Conference on Data Engineer-

ing, pages 503-510, Vienna, Austria, April 1993.

[36] Richard P. Spillane, Sachin Gaikwad, Manjunath

Chinni, Erez Zadok, and Charles P. Wright. En-

abling Transactional File Access Via Lightweight

Kernel Extensions. In Proceedings of the Confer-

ence on File and Storage Technologies, pages 29-

42, San Francisco, California, February 2009.

[37] Muralidhar Subramanian, Wyatt Lloyd, Sabyasachi

Roy, Cory Hill, Ernest Lin, Weiwen Liu, Satadru

Pan, Shiva Shankar, Sivakumar Viswanathan, Lin-

peng Tang, and Sanjeev Kumar. F4: Facebook’s

Warm BLOB Storage System. In Proceedings of

the Symposium on Operating System Design and

Implementation, pages 383-398, Broomfield, Col-

orado, October 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 483

[38] Chandramohan A. Thekkath, Timothy Mann, and

Edward K. Lee. Frangipani: A Scalable Distributed

File System. In Proceedings of the Symposium

on Operating Systems Principles, pages 224-237,

Saint Malo, France, October 1997.

[39] Alexander Thomson and Daniel J. Abadi. Calv-

inFS: Consistent WAN Replication And Scalable

Metadata Management For Distributed File Sys-

tems. In Proceedings of the Conference on File

and Storage Technologies, pages 1-14, Santa Clara,

California, February 2015.

[40] Alexander Thomson, Thaddeus Diamond, Shu-

Chun Weng, Kun Ren, Philip Shao, and Daniel J.

Abadi. Calvin: Fast Distributed Transactions For

Partitioned Database Systems. In Proceedings of

the SIGMOD International Conference on Man-

agement of Data, pages 1-12, Scottsdale, Arizona,

May 2012.

[41] Yang Wang, Manos Kapritsos, Zuocheng Ren,

Prince Mahajan, Jeevitha Kirubanandam, Lorenzo

Alvisi, and Mike Dahlin. Robustness In The Salus

Scalable Block Store. In Proceedings of the Sym-

posium on Networked System Design and Imple-

mentation, pages 357-370, Lombard, Illinois, April

2013.

[42] Brent Welch, Marc Unangst, Zainul Abbasi, Garth

A. Gibson, Brian Mueller, Jason Small, Jim Ze-

lenka, and Bin Zhou. Scalable Performance Of The

Panasas Parallel File System. In Proceedings of

the Conference on File and Storage Technologies,

pages 17-33, San Jose, California, February 2008.

[43] Charles P. Wright, Richard P. Spillane, Gopalan Si-

vathanu, and Erez Zadok. Extending ACID Seman-

tics To The File System. In ACM Transactions on

Storage, 3(2), 2007.

15

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 485

BlowFish: Dynamic Storage-Performance Tradeoff in Data Stores

Anurag Khandelwal
UC Berkeley

Rachit Agarwal
UC Berkeley

Ion Stoica
UC Berkeley

Abstract
We present BlowFish, a distributed data store that admits
a smooth tradeoff between storage and performance for
point queries. What makes BlowFish unique is its abil-
ity to navigate along this tradeoff curve efficiently at fine-
grained time scales with low computational overhead.

Achieving a smooth and dynamic storage-performance
tradeoff enables a wide range of applications. We apply
BlowFish to several such applications from real-world
production clusters: (i) as a data recovery mechanism dur-
ing failures: in practice, BlowFish requires 5.4× lower
bandwidth and 2.5× lower repair time compared to state-
of-the-art erasure codes, while reducing the storage cost
of replication from 3× to 1.9×; and (ii) data stores with
spatially-skewed and time-varying workloads (e.g., due
to object popularity and/or transient failures): we show
that navigating the storage-performance tradeoff achieves
higher system-wide utility (e.g., throughput) than selec-
tively caching hot objects.

1 Introduction
Random access and search are the two fundamental op-
erations performed on modern data stores. For instance,
key-value stores [3, 5, 11, 15, 16, 18, 23, 25] and NoSQL
stores [1, 4, 7, 12, 13, 17, 21, 30] support random access at
the granularity of records. Many of these [1,4,7,17,21,22]
also support search on records. These data stores typically
store an amount of data that is larger than available fast
storage1, e.g., SSD or main memory. The goal then is to
maximize the performance using caching, that is, execut-
ing as many queries in faster storage as possible.

The precise techniques for efficiently utilizing cache
vary from system to system. At a high-level, most data
stores partition the data across multiple shards (par-
titions), with each server potentially storing multiple
shards [1, 7, 21, 23]. Shards may be replicated and cached
across multiple servers and the queries are load balanced
across shard replicas [1, 4, 7, 12, 21].

1To support search, many of these systems store indexes in addition
to the input, which further adds to the storage overhead. We collectively
refer to the indexes combined with the input as “data”.

To cache more shards, many systems use compres-
sion [1, 4, 7, 21]. Unfortunately, compression leads to
a hard tradeoff between throughput and storage for the
cached shards — when stored uncompressed, a shard can
support high throughput but takes a larger fraction of
available cache size; and, when compressed, takes smaller
cache space but also supports lower throughput. Further-
more, switching between these two extreme points on
the storage-performance tradeoff space cannot be done at
fine-grained time scales since it requires compression or
decompression of the entire shard. Such a hard storage-
performance tradeoff severely limits the ability of existing
data stores in many real-world scenarios when the under-
lying infrastructure [28,29], workload [9,10,14,26,31], or
both changes over time. We discuss several such scenarios
from real-world production clusters below (§1.1).

We present BlowFish, a distributed data store that en-
ables a smooth storage-performance tradeoff between the
two extremes (uncompressed, high throughput and com-
pressed, low throughput), allowing fine-grained changes
in storage and performance. What makes BlowFish
unique is that applications can navigate from one oper-
ating point to another along this tradeoff curve dynami-
cally over fine-grained time scales. We show that, in many
cases, navigating this smooth tradeoff has higher system-
wide utility (e.g., throughput per unit of storage) than
existing techniques. Intuitively, this is because BlowFish
allows shards to increase/decrease the storage “fraction-
ally”, just enough to meet the performance goals.

1.1 Applications and summary of results
BlowFish, by enabling a dynamic and smooth storage-
performance tradeoff, allows us to explore several prob-
lems from real-world production clusters from a different
“lens”. We apply BlowFish to three such problems:

Storage and bandwidth efficient data repair during
failures. Existing techniques either require high storage
(replication) or high bandwidth (erasure codes) for data
repair, as shown in Table 1. By storing multiple replicas at
different points on tradeoff curve, BlowFish can achieve
the best of the two worlds — in practice, BlowFish re-
quires storage close to erasure codes while requiring re-

1

486 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Table 1: Storage and bandwidth requirements for erasure
codes, replication and BlowFish for data repair during failures.

Erasure Replication BlowFish
(RS) Code

Storage 1.2× 3× 1.9×
Repair

Bandwidth 10× 1× 1×

pair bandwidth close to replication. System state is re-
stored by copying one of the replicas and navigating along
the tradeoff curve. We explore the corresponding storage-
bandwidth-throughput tradeoffs in §4.2.

Skewed workloads. Existing data stores can benefit sig-
nificantly using compression [1, 4, 7, 12, 21]. However,
these systems lose their performance advantages in case
of dynamic workloads where (i) the set of hot objects
changes rapidly over time [9, 14, 26, 31], and (ii) a single
copy is not enough to efficiently serve a hot object. Studies
from production clusters have shown that such workloads
are a norm [9, 10, 14, 26, 31]. Selective caching [8], that
caches additional replicas for hot objects, only provides
coarse-grained support to handle dynamic workloads —
each replica increases the throughput by 2× while incur-
ring an additional storage overhead of 1×.

BlowFish not only provides a finer-grained tradeoff (in-
creasing the storage overhead fractionally, just enough
to meet the performance goals), but also achieves a bet-
ter tradeoff between storage and throughput than selec-
tive caching of compressed objects. We show in §4.3 that
BlowFish achieves 2.7–4.9× lower storage (for compa-
rable throughput) and 1.5× higher throughput (for fixed
storage) compared to selective caching.

Time-varying workloads. In some scenarios, production
clusters delay additional replica creation to avoid unnec-
essary traffic (e.g., for 15 minutes during transient fail-
ures [28, 29]). Such failures contribute to 90% of the fail-
ures [28, 29] and create high temporal load across re-
maining replicas. We show that BlowFish can adapt to
such time-varying workloads even for spiked variations
(as much as by 3×) by navigating along the storage-
performance tradeoff in less than 5 minutes (§4.4).

1.2 BlowFish Techniques
BlowFish builds upon Succinct [7], a system that sup-
ports queries on compressed data2. At a high-level, Suc-
cinct stores two sampled arrays, whose sampling rate acts
as a proxy for the compression factor in Succinct. Blow-

2Unlike Succinct, BlowFish does not enforce compression; some
points on the tradeoff curve may have storage comparable to systems
that store indexes along with input data.

Fish introduces Layered Sampled Array (LSA), a new data
structure that stores sampled arrays using multiple layers
of sampled values. Each combination of layers in LSA
correspond to a static configuration of Succinct. Layers in
LSA can be added or deleted transparently, independent
of existing layers and query execution, thus enabling dy-
namic navigation along the tradeoff curve.

Each shard in BlowFish can operate on a different
point on the storage-performance tradeoff curve. This
leads to several interesting problems: how should shards
(within and across servers) share the available cache?
How should shard replicas share requests? BlowFish
adopts techniques from scheduling theory, namely back-
pressure style Join-the-shortest-queue [19] mechanism, to
resolve these challenges in a unified and near-optimal
manner. Shards maintain request queues that are used both
to load balance queries as well as to manage shard sizes
within and across servers.

In summary, this paper makes three contributions:

• Design and implementation of BlowFish, a distributed
data store that enables a smooth storage-performance
tradeoff, allowing fine-grained changes in storage and
performance for each individual shard.

• Enables dynamic adaptation to changing workloads by
navigating along the smooth tradeoff curve at fine-
grained time scales.

• Uses techniques from scheduling theory to perform
load balancing and shard management within and
across servers.

2 BlowFish Overview
We briefly describe Succinct data structures in §2.1, with a
focus on how BlowFish transforms these data structures to
enable the desired storage-performance tradeoff. We then
discuss the storage model and target workloads for Blow-
Fish (§2.2). Finally, we provide a high-level overview of
BlowFish design (§2.3).

2.1 Succinct Background
Succinct internally supports random access and search on
flat unstructured files. Using a simple transformation from
semi-structured data to unstructured data [7], Succinct
supports queries on semi-structured data, that is, a col-
lection of records. Similar to other key-value and NoSQL
stores [1,3,4,12,15,21,23], each record has a unique iden-
tifier key, and a potentially multi-attribute value. Suc-
cinct supports random access via get, put and delete
operations on keys; in addition, applications can search
along individual attributes in values.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 487

Succinct supports random access and search using four
data structures — Array-of-Suffixes (AoS), Input2AoS,
AoS2Input and NextCharIdx (see Figure 1). AoS stores
all suffixes in the input file in lexicographically sorted or-
der. Input2AoS enables random access by mapping off-
sets in the input file to corresponding suffixes in the AoS.
AoS2Input enables search by mapping suffixes in AoS to
corresponding offsets in the input file. The Input2AoS and
AoS2Input arrays do not possess any special structure,
and require n�logn� space each for a file with n charac-
ters (since each entry is an integer in range 0 to n− 1);
Succinct reduces their space requirement using sampling.
The fourth array, NextCharIdx, allows computing unsam-
pled values in Input2AoS and AoS2Input. The AoS and
the NextCharIdx arrays have certain structural properties
that enable a compact representation. The description of
AoS, NextCharIdx, and their compact representations is
not required to keep the paper self-contained; we refer the
reader to [7]. We provide necessary details on representa-
tion of Input2AoS and AoS2Input below.

Sampled Arrays: Storage versus Performance. Suc-
cinct reduces the space requirements of Input2AoS and
AoS2Input using sampling — only a few sampled values
(e.g., for sampling rate α , value at indexes 0,α,2α, ..)
from these two arrays are stored. NextCharIdx allows
computing unsampled values during query execution.

The tradeoff is that for a sampling rate of α , the
storage requirement for Input2AoS and AoS2Input is
2n�logn�/α and the number of operations required for
computing each unsampled value is α .

Succinct thus has a fixed small storage cost for AoS and
NextCharIdx, and the sampling rate α acts as a proxy for
overall storage and performance in Succinct.

2.2 BlowFish data model and assumptions
BlowFish enables the same functionality as Succinct
(§2.1) — support for random access and search queries
on flat unstructured files, with extensions for key-value
stores and NoSQL stores.

Assumptions. BlowFish makes two assumptions. First,
systems are limited by capacity of faster storage, that is
operate on data sizes that do not fit entirely into the fastest
storage. Indeed, indexes to support search queries along
with the input data makes it hard to fit the entire data in
fastest storage especially for purely in-memory data stores
(e.g., Redis [5], MICA [23], RAMCloud [25]). Second,
BlowFish assumes that data can be sharded in a manner
that a query does not require touching each server in the
system. Most real-world datasets and query workloads ad-
mit such sharding schemes [14, 26, 31].

$
ato$

mato$
o$

omato$
to$

tomato$

0
1
2
3
4
5
6

AoS

t
o
m
a
t
o
$

Input

6
4
2
1
5
3
0

Input2Aos

(a)

$
ato$

mato$
o$

omato$
to$

tomato$

0
1
2
3
4
5
6

AoS

0
1
2
3
4
5
6

t
o
m
a
t
o
$

Input

6
3
2
5
1
4
0

AoS2Input

(b)

Figure 1: AoS stores suffixes in the input in lexicographically
sorted order. (a) Input2AoS maps each index in the input to the
index of the corresponding suffix in AoS. (b) Aos2Input maps
each suffix index in AoS to the corresponding index in the input.

2.3 BlowFish Design Overview
BlowFish uses a system architecture similar to existing
data stores, e.g., Cassandra [21] and ElasticSearch [1].
Specifically, BlowFish comprises of a set of servers that
store the data as well as execute queries (see Figure 2).
Each server shares a similar design, comprising of mul-
tiple data shards (§3.1), a request queue per shard that
keeps track of outstanding queries, and a special module
server handler that triggers navigation along the storage-
performance curve and schedules queries (§3.2).

Each shard admits the desired storage-performance
tradeoff using Layered Sampled Array (LSA), a new data
structure that allows transparently changing the sampling
factor α for Input2AoS and AoS2Input over fine-grained
time scales. Smaller values of α indicate higher stor-
age requirements, but also lower latency (and vice versa).
Layers can be added and deleted without affecting exist-
ing layers or query execution thus enabling dynamic navi-
gation along the tradeoff curve. We describe LSA and the
layer addition-deletion process in LSA in §3.1.

BlowFish allows each shard to operate at a different op-
erating point on the storage-performance tradeoff curve
(see Figure 3). Such a flexibility comes at the cost of
increased dynamism and heterogeneity in system state.
Shards on a server can have varying storage footprint and
as a result, varying throughput. Moreover, storage foot-
print and throughput may vary across shard replicas. How
should shards (within and across servers) share the avail-
able cache? How should shard replicas share requests?
When should a shard trigger navigation along the storage-
performance tradeoff curve?

3

488 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

search(string str)

Server
Handler

{Search result,Queue lengths}

. . .

Server
Handler

Server
Handler

Server
Handler

Figure 2: Overall BlowFish architecture. Each server has an architecture similar to the one shown in Figure 3. Queries are
forwarded by Server Handlers to appropriate servers, and query responses encapsulate both results and queue lengths at that server.

Server
Handler

Server
Handler

Figure 3: Main idea behind BlowFish: (left) the state of the system at some time t; (right) the state of the shards after BlowFish
adapts — the shards that have longer outstanding queue lengths at time t adapt their storage footprint to a larger one, thus serving
larger number of queries per second than at time t; the shards that have smaller outstanding queues, on the other hand, adapt their
storage footprint to a smaller one thus matching the respective load.

BlowFish adopts techniques from scheduling theory,
namely Join-the-shortest-queue [19] mechanism, to re-
solve the above questions in a unified manner. BlowFish
servers maintain a request queue per shard, that stores out-
standing requests for the respective shard. A server han-
dler module periodically monitors request queues for lo-
cal shards, maintains information about request queues
across the system, schedules queries and triggers naviga-
tion along the storage-performance tradeoff curve.

Upon receiving a query from a client for a particu-
lar shard, the server handler forwards the query to the
shard replica with shortest request queue length. All in-
coming queries are enqueued in the request queue for the
respective shard. When the load on a particular shard is no
more than its throughput at the current operating point on
the storage-performance curve, the queue length remains
minimal. On the other hand, when the load on the shard
increases beyond the supported throughput, the request
queue length for this shard increases (see Figure 3 (left)).
Once the request queue length crosses a certain thresh-
old, the navigation along the tradeoff curve is triggered
either using the remaining storage on the server or by re-
ducing the storage overhead of a relatively lower loaded
shard. BlowFish internally implements a number of op-
timizations for selecting navigation triggers, maintaining
request hysteresis to avoid unnecessary oscillations along
the tradeoff curve, storage management during navigation
and ensuring correctness in query execution during the
navigation. We discuss these design details in §3.2.

3 BlowFish Design
We start with the description of Layered Sampled Array
(§3.1) and then discuss the system details (§3.2).

3.1 Layered Sampled Array
BlowFish enables a smooth storage-performance trade-
off using a new data structure, Layered Sampled Ar-
ray (LSA), that allows dynamically changing the sam-
pling factor in the two sampled arrays — Input2AoS and
AoS2Input. We describe LSA below.

Consider an array A, and let SA be another array that
stores a set of sampled-by-index values from A. That is,
for sampling rate α , SA[idx] stores A value at index
α×idx. For instance, if A = {6, 4, 3, 8, 9, 2}, the
sampled-by-index array with sampling rate 4 and 2 are
SA4 = {6, 9} and SA2 = {6, 3, 9}, respectively.

LSA emulates the functionality of SA, but stores the
sampled values in multiple layers, together with a few
auxiliary structures (Figure 4). Layers in LSA can be
added or deleted transparently without affecting the ex-
isting layers. Addition of layers results in higher storage
(lower sampling rate α) and lower query latency; layer
deletion, on the other hand, reduces the storage but also
increases the query latency. Furthermore, looking up a
value in LSA is agnostic to the existing layers, indepen-
dent of how many and which layers exist (pseudo code in
Appendix A). This allows BlowFish to navigate along the
storage-performance curve without any change in query
execution semantics compared to Succinct.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 489

Idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Values 9 11 15 2 3 1 0 6 12 13 8 7 14 4 5 10

LayerID
Exists

Layer?

8 1 9 12
4 1 3 14

2 1 15 0 8 5

LayerID 8 2 4 2 8 2 4 2
LayerIdx 0 0 0 1 1 2 1 3

LayerID 8 4 2
Count 1 1 2

Figure 4: Illustration of Layered Sampled Array (LSA). The original unsampled array is shown above the dashed line (gray values
indicate unsampled values). In LSA, each layer stores values for sampling rate given by LayerID, modulo values that are already
stored in upper layers (in this example, sampling rates 8,4,2). Layers are added and deleted at the bottom; that is, LayerID=2 will
be added if and only if all layers with sampling rate 4,8,16, .. exist. Similarly, LayerID=2 will be the first layer to be deleted. The
ExistsLayer bitmap indicates whether a particular layer exists (1) or not (0). LayerID and ExistsLayer allow checking whether
or not value at any index idx is stored in LSA — we find the largest existing LayerID that is a proper divisor of idx. Note that
among every consecutive 8 values in original array, 1 is stored in topmost layer, 1 in the next layer and 2 in the bottommost layer.
This observation allows us to find the index into any layer LayerIdx where the corresponding sampled value is stored.

Layer Addition. The design of LSA as such allows ar-
bitrary layers (in terms of sampling rates) to coexist; fur-
thermore, layers can be added or deleted in arbitrary order.
However, our implementation of LSA makes two simplifi-
cations. First, layers store sampled values for indexes that
are power of two. Second, new layers are always added at
the bottom. The rationale is that these two simplifications
induce a certain structure in LSA, that makes the increase
in storage footprint as well as time taken to add the layer
very predictable. In particular, under the assumption that
the unsampled array is of length n = 2k for some inte-
ger k, the number of sampled values stored at any layer is
equal to the cumulative number of sampled values stored
in upper layers (see Figure 4). If the sampling rate for
the new layer is α , then this layer stores precisely n/2α
sampled values; thus, the increase in storage becomes pre-
dictable. Moreover, since the upper layers constitute sam-
pling rate 2α , computing each value in the new layer re-
quires 2α operations (§2.1). Hence, adding a layer takes a
fixed amount of time independent of the sampling rate of
layer being added.

BlowFish supports two modes for creating new layers.
In dedicated layer construction, the space is allocated for
a new layer3 and dedicated threads populate values in the
layer; once all the values are populated the ExistsLayer
bit is set to 1. The additional compute resources required

3using free unused cache or by deleting layers from relatively lower
loaded shards, as described in §3.2.4.

in dedicated layer construction may be justified if the time
spent in populating the new layer is smaller than the pe-
riod of increased throughput experienced by the shard(s).
However, such may not be the case for many scenarios.

The second mode for layer creation in BlowFish is op-
portunistic layer construction. This mode exploits the fact
that the unsampled values for the two arrays are com-
puted on the fly during query execution. A subset of the
these values are the ones to be computed for populating
the new layer. Hence, the query execution phase can be
used to populate the new layer without using dedicated
threads. The challenge in this mode is when to update the
ExistsLayer flag — if set during the layer creation, the
queries may incorrectly access values that have not yet
been populated; on the other hand, the layer may remain
unused if the flag is set after all the values are populated.
BlowFish handles this situation by using a bitmap that
stores a bit per sampled value for that layer. A set bit in-
dicates that the value has already been populated and vice
versa. The algorithm for opportunistic layer construction
is outlined in Algorithm 2 in Appendix A.

It turns out that opportunistic layer construction per-
forms really well for real-world workloads that typically
follow a zipf-like distribution (repeated queries on certain
objects). Indeed, the required unsampled values are com-
puted during the first execution of a query and are thus
available for all subsequent executions of the same query.
Interestingly, this is akin to caching the query results with-
out any explicit query result caching implementation.

5

490 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Layer Deletion. Deleting layers is relatively easier in
BlowFish. To maintain consistency with layer additions,
layer deletion proceeds from the bottom most layer. Layer
deletions are computationally inexpensive, and do not re-
quire any special strategy. Upon the request for layer dele-
tion, the ExistsLayer bitmap is updated to indicate that
the corresponding layer is no longer available. Subsequent
queries, thus, stop accessing the deleted layer. In order to
maintain safety, we delay the memory deallocation for a
short period of time after updating the ExistsLayer flag.

3.2 BlowFish Servers
We now provide details on the design and implementation
of BlowFish servers.

3.2.1 Server Components
Each BlowFish server has three main components (see
Figure 2 and Figure 3):

Data shards. Each server stores multiple data shards, typ-
ically one per CPU core. Each shard stores the two sam-
pled arrays — Input2AoS and AoS2Input — using LSA,
along with other data structures in Succinct. This enables
a smooth storage-performance tradeoff, as described in
§3.1. The aggregate storage overhead of the shards may
be larger than available main memory. Each shard is mem-
ory mapped; thus, only the most accessed shards may be
paged into main memory.

Request Queues. BlowFish servers maintain a queue
of outstanding queries per shard, referred to as request
queues. The length of request queues provide a rough ap-
proximation to the load on the shard — larger request
queue lengths indicate a larger number of outstanding re-
quests for the shard, implying that the shard is observing
more queries than it is able to serve (and vice versa).

Server Handler. Each server in BlowFish has a server
handler module that acts as an interface to clients as well
as other server handlers in the system. Each client con-
nects to one of the server handlers that handles the client
query (similar to Cassandra [21]). The server handler in-
teracts with other server handlers to execute queries and to
maintain the necessary system state. BlowFish server han-
dlers are also responsible for query scheduling and load
balancing, and for making decisions on how shards share
the cache available at the local server. We discuss these
functionalities below.

3.2.2 Query execution
Similar to existing data stores [1, 4, 21], an incoming
query in BlowFish may touch one or more shards depend-
ing on the sharding scheme. The server handler handling
the query is responsible for forwarding the query to the

server handler(s) of the corresponding shard(s); we dis-
cuss query scheduling across shard replicas below. When-
ever possible, the query results from multiple shards on
the same server are aggregated by the server handler.

Random access and search. BlowFish does not require
changes in Succinct algorithms for executing queries at
each shard, with the exception of looking up values in
sampled arrays4. In particular, since the two sampled ar-
rays in Succinct — Input2AoS and AoS2Input — are
replaced by LSA, the corresponding lookup algorithms
are replaced by lookup algorithms for LSA (§2.3, Fig-
ure 4). We note that, by using ExistsLayer flag, Blow-
Fish makes LSA lookup algorithms transparent to existing
layers and query execution.

Updates. BlowFish implements data appends exactly as
Succinct [7] does. Specifically, BlowFish uses a multi-
store architecture with a write-optimized LogStore that
supports fine-grained appends, a query-optimized Suffix-
Store that supports bulk appends and a memory-optimized
SuccinctStore. LogStore and SuffixStore, for typical clus-
ter configurations, store less than 0.1% of the entire
dataset (the most recently added data). BlowFish does not
require changes in LogStore and SuffixStore implemen-
tation, and enables the storage-performance tradeoff for
data only in SuccinctStore. Since the storage and the per-
formance of the system is dominated by SuccinctStore,
the storage-performance tradeoff curve of BlowFish is not
impacted by update operations.

3.2.3 Scheduling and Load Balancing
BlowFish server handlers maintain the request queue
lengths for each shard in the system. Each server han-
dler periodically monitors and records the request queue
lengths for local shards. For non-local shards, the request
queue lengths are collected during the query phase —
server handlers encapsulate the request queue lengths for
their local shards in the query responses. Upon receiving a
query response, a server handler decapsulates the request
queue lengths and updates its local metadata to record the
new lengths for the corresponding shards.

Each shard (and shard replica) in BlowFish may oper-
ate on a different point on the storage-performance curve
(Figure 3). Thus, different replicas of the same shard may
have different query execution time for the same query. To
efficiently schedule queries across such a heterogeneous
system, BlowFish adopts techniques from scheduling the-
ory literature — a back-pressure scheduling style Join-
the-shortest-queue [19] mechanism. An incoming query

4The description of these algorithms is not required to keep the paper
self-contained; we refer the reader to [7] for details.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 491

for a shard is forwarded to the replica with the small-
est request queue length. By conceptually modeling this
problem as replicas having the same speed but varying
job sizes (for the same query), the analysis for Join-the-
shortest-queue [19] applies to BlowFish, implying close
to optimal load balancing.

3.2.4 Dynamically Navigating the Tradeoff
BlowFish uses the request queues not only for scheduling
and load balancing, but also to trigger navigation along
the storage-performance tradeoff curve for each individ-
ual shard. We discuss below the details on tradeoff naviga-
tion, and how this enables efficient cache sharing among
shards within and across servers.

One challenge in using request queue lengths as an ap-
proximation to load on the shard is to differentiate short-
term spikes from persistent overloading of shards (Fig-
ure 5). To achieve this, BlowFish server handlers also
maintain exponentially averaged queue lengths for each
local shard — the queue lengths are monitored every δ
time units, and the exponentially averaged queue length
at time t is computed as:

Qavg
t = β ×Qt +(1−β)×Qavg

t−δ (1)

The parameters β and δ provide two knobs for approx-
imating the load on a shard based on its request queue
length. β is a fraction (β < 1) that determines the con-
tribution of more recent queue length values to the av-
erage — larger β assigns higher weight to more recent
values in the average. δ is the periodicity at which queue
lengths are averaged — smaller values of δ (i.e., more
frequent averaging) results in higher sensitivity to bursts
in queue length. Note that a small exponentially average
queue length implies a persistently underloaded shard.

We now describe how shards share the available cache
within and across servers by dynamically navigating
along the storage-performance tradeoff curve. We start
with the relatively simpler case of shards on the same
server, and then describe the case of shards across servers.

Shards on the same server. Recall that BlowFish imple-
mentation adds and deletes layers in a bottom-up fash-
ion, with each layer storing sampled values for powers
of two. Thus, at any instant, the sampling rate of LSA
is a power of two (2,4,8, . . .). For each of these sam-
pling rates, BlowFish stores two threshold values. The
upper threshold value is used to trigger storage increase
for any particular shard — when the exponentially aver-
aged queue length of a shard S crosses the upper thresh-
old value, S must be consistently overloaded and must in-
crease its throughput.

However, the server may not have extra cache to sustain
the increased storage for S. For such scenarios, BlowFish

Q(t)

t(a)

Q(t)

t(b)

Q(t)

t(c)

Figure 5: Three different scenarios of queue length (Q(t))
variation with time (t). (a) shows a very short-lasting “spike”,
(b) shows a longer lasting spike while (c) shows a persistent
“plateau” in queue-length values. BlowFish should ideally ig-
nore spikes as in (a) and attempt to adapt to the queue length
variations depicted in (b) and (c).

stores a lower threshold value which is used to trigger
storage reduction. In particular, if the exponentially av-
eraged queue length and the instantaneous request queue
length for one of the other shards S’ on the same server
is below the lower threshold, BlowFish reduces the stor-
age for S’ before triggering the storage increase for S. If
there is no such S’, the server must already be throughput
bottlenecked and the navigation for S is not triggered.

We make two observations. First, the goals of expo-
nentially averaged queue lengths and two threshold val-
ues are rather different: the former makes BlowFish stable
against temporary spikes in load, while the latter against
“flap damping” of load on the shards. Second, under stable
loads, the above technique for triggering navigation along
the tradeoff curve allows each shard on the same server to
share cache proportional to its throughput requirements.

Shard replicas across servers. At the outset, it may seem
like shards (and shard replicas) across servers need to co-
ordinate among themselves to efficiently share the total
system cache. It turns out that local cache sharing, as
described above, combined with BlowFish’s scheduling
technique implicitly provides such a coordination.

Consider a shard S with two replicas R1 and R2, both
operating at the same point on the tradeoff curve and hav-
ing equal queue lengths. The incoming queries are thus
equally distributed across R1 and R2. If the load on S
increases gradually, both R1 and R2 will eventually ex-
perience load higher than the throughput they can sup-
port. At this point, the request queue lengths at R1 and R2
start building up at the same rate. Suppose R2 shares the
server with other heavily loaded shards (that is, R2 can
not navigate up the tradeoff curve). BlowFish will then
trigger a layer creation for R1 only. R1 can thus support
higher throughput and its request queue length will de-
crease. BlowFish’s scheduling technique kicks in here: in-
coming queries will now be routed to R1 rather than equal
load balancing, resulting in lower load at R2. It is easy to
see that at this point, BlowFish will load balance queries
to R1 and R2 proportional to their respective throughputs.

7

492 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

4 Evaluation
BlowFish is implemented in ≈ 2K lines of C++ on top of
Succinct [7]. We apply BlowFish to application domains
outlined in §1.1 and compare its performance against
state-of-the-art schemes for each application domain.

Evaluation Setup. We describe the setup used for each
application in respective subsections. We describe here
what is consistent across all the applications: dataset
and query workload. We use the TPC-H benchmark
dataset [6], that consists of records with 8 byte keys and
roughly 140 byte values on an average; the values com-
prise of 15 attributes (or columns). We note that several
of our evaluation results are independent of the underly-
ing dataset (e.g., bandwidth for data repair, time taken to
navigate along the tradeoff curve, etc.) and depend only
on amount of data per server.

We use a query workload that comprises of 50% ran-
dom access queries and 50% search queries; we discuss
the impact of varying the fraction of random access and
search queries in §4.1. Random access queries return the
entire value, given a key. Search queries take in an (at-
tribute, value) pair and return all keys whose entry for the
input attribute matches the value. We use three query dis-
tributions in our evaluation for generating queries over the
key space (for random access) and over the attribute val-
ues (for search). First, uniform distribution with queries
distributed uniformly across key space and attribute val-
ues; this essentially constitutes a worst-case scenario for
BlowFish5. The remaining two query workloads follow
Zipf distribution with skewness 0.99 (low skew) and 0.01
(heavily skewed), the last one constituting the best-case
scenario for BlowFish.

All our distributed experiments run on Amazon EC2
cluster comprising of c3.2xlarge servers, with 15GB
RAM backed by two 80GB SSDs and 8 vCPUs. Unless
mentioned otherwise, all our experiments shard the input
data into 8GB shards and use one shard per CPU core.

4.1 Storage Performance Tradeoff
We start by evaluating the storage-performance tradeoff
curve enabled by BlowFish. Figure 6 shows this tradeoff
for query workload comprising of 50% random access and
50% search queries; Appendix B presents the curves for
other workloads. Note that the tradeoff for mixed work-
load has characteristics similar to 100% searchworkload
(Appendix B) since, similar to other systems, execution
time for search is significantly higher than random access.
The throughput is, thus, dominated by search latency.

5Intuitively, queries distributed uniformly across shards and across
records alleviates the need for shards having varying storage footprints.

 1

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

Figure 6: Storage-throughput tradeoff curve (per thread) en-
abled by BlowFish. The y-axis is normalized by the throughput
of smallest possible storage footprint (71ops) in BlowFish.

We make two observations in Figure 6. First, BlowFish
achieves storage footprint varying from 0.5× to 8.7× the
input data size (while supporting search functionality; the
figure shows only up to 1.5× the data size for clarity)6. In
particular, BlowFish does not enforce compression. Sec-
ond, increase in storage leads to super-linear increase in
throughput (moving from ≈ 0.5 to ≈ 0.75 leads to 20×
increase in throughput) due to non-linear computational
cost of operating on compressed data [7].

4.2 Data Repair During Failures
We now apply BlowFish to the first application: efficient
data recovery upon failures.

Existing techniques and BlowFish tradeoffs. Two tech-
niques exist for data repair during failures: replication and
erasure codes. The main tradeoff is that of storage and
bandwidth, as shown in Table 1. Note that this tradeoff
is hard; that is, for both replication and erasure codes,
the storage overhead and the bandwidth for data repair is
fixed for a fixed fault tolerance. We discuss related work
in §5, but note that erasure codes remain inefficient for
data stores serving small objects due to high repair time
and/or bandwidth requirements.

4.2.1 Experimental Setup
We perform evaluation along four metrics: storage over-
head, bandwidth and time required for data repair, and
throughput before and during failures. Since none of the
open-source data stores support erasure codes, we use an
implementation of Reed-Solomon (RS) codes [2]. The
code use 10 data blocks and 2 parity blocks, similar to
those used at Facebook [24, 29], but for two failure case.
Accordingly, we use 3× replication. For BlowFish, we
use an instantiation that uses three replicas with storage
0.9×,0.5× and 0.5×, aggregating to 1.9× storage — an
operating point between erasure codes and replication.

6The smallest footprint is 0.5× since TPC-H data is not very com-
pressible, achieving compression factor of 3.1 using gzip.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 493

50

100

150
B

an
dw

id
th

U
sa

ge
(G

B
)

EC Rep BlowFish

(a) Bandwidth

Transfer Reconstruction

10

30

50

R
ep

ai
rt

im
e

(m
in

s)

EC Rep BlowFish

(b) Repair Time

EC Rep BlowFish

50

100

150

T
hr

ou
gh

pu
t(

K
O

ps
)

Before During

(c) Throughput

Figure 7: Comparison of BlowFish against RS erasure codes and replication (discussion in §4.2.2). BlowFish requires 5.4× lower
bandwidth for data repair compared to erasure codes, leading to 2.5× faster repair time. BlowFish achieves throughput comparable
to erasure codes and replication under no failures, and 1.4−1.8× higher throughput during failures.

We use 12 server EC2 cluster to put data and parity
blocks on separate servers; each server contains both data
and parity blocks, but not for the same data. Replicas
for replication and BlowFish were also distributed simi-
larly. We use 160GB of total raw data distributed across
20 shards. The corresponding storage for erasure codes,
replication and BlowFish is, thus, 192, 480 and 310GB.
Note that the cluster has 180GB main memory. Thus, all
data shards for erasure codes fit in memory, while a part of
BlowFish and replication data is spilled to disk (modeling
storage-constrained systems).

We use uniform query distribution (across shards and
across records) for throughput results. Recall that this dis-
tribution constitutes a worst-case scenario for BlowFish.
We measure the throughput for the mixed 50% random
access and 50% search workload.

4.2.2 Results

Storage and Bandwidth. As discussed above, RS codes,
replication and BlowFish have a storage overhead of
1.2×, 3× and 1.9×. In terms of bandwidth, we note that
the three schemes require storing 16,40 and 26GB of data
per server, respectively. Figure 7(a) shows the correspond-
ing bandwidth requirements for data repair for the three
schemes. Note that while erasure codes require 10× band-
width compared to replication for each individual failed
shard, the overall bandwidth requirements are less than
10× since each server in erasure coded case also stores
lesser data due to lower storage footprint of erasure codes
(best case scenario for erasure codes along all metrics).

Repair time. The time taken to repair the failed data is a
sum of two factors — time taken to copy the data required
for recovery (transfer time), and computations required by
the respective schemes to restore the failed data (recon-
struction time). Figure 7(b) compares the data repair time
for BlowFish against replication and RS codes.

RS codes require roughly 5× higher transfer time com-
pared to BlowFish. Although erasure codes read the re-
quired data in parallel from multiple servers, the access
link at the server where the data is being collected be-
comes the network bottleneck. This is further exacerbated
since these servers are also serving queries. The decod-
ing time of RS codes is similar to reconstruction time for
BlowFish. Overall, BlowFish is roughly 2.5× faster than
RS codes and 1.4× slower than replication in terms of
time taken to restore system state after failures.

Throughput. The throughput results for the three
schemes expose an interesting tradeoff (see Figure 7(c)).

When there are no failures, all the three schemes
achieve comparable throughput. This is rather non-
intuitive since replication has three replicas to serve
queries while erasure codes have only one and Blow-
Fish has replicas operating at smaller storage footprints.
However, recall that the cluster is bottlenecked by the ca-
pacity of faster storage. If we load balance the queries
in replication and in BlowFish across the three replicas,
many of these queries are executed off SSD, thus reduc-
ing the overall system throughput (much more for repli-
cation since many more queries are executed off SSD). To
that end, we evaluated the case of replication and Blow-
Fish where queries are load balanced to only one replica;
in this case, as expected, all the three schemes achieve
comparable throughput.

During failures, the throughput for both erasure codes
and replication reduces significantly. For RS codes, 10
out of (remaining) 11 servers are used to both read the
data required for recovery as well as to serve queries. This
severely affects the overall RS throughput (reducing it by
2×). For replication, note that the amount of failed data
is 40GB (five shards). Recovering these shards results in
replication creating two kinds of interference: interfering

9

494 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

2.5

5

7.5

L
oa

d
(K

O
ps

)

Shard ID 4 8 12 16 20

(a) Load distribution across shards

40

80

120

T
hr

ou
gh

pu
t(

K
O

ps
)

Sel. Rep. BlowFish Ideal

(b) Throughput for a fixed storage

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

S
y
s
te

m
 S

to
ra

g
e

 /
 I

n
p

u
t

S
iz

e

Load (x 100Kops)

Sel. Rep.
BlowFish

(c) Storage required to sustain load

Figure 8: Comparison of BlowFish and selective caching for skewed workload application. See §4.3 for discussion.

with queries being answered on data unaffected by fail-
ures and queries answered on failed server now being an-
swered off-SSD from remaining servers. This interference
reduces the replication throughput by almost 33%. Note
that both these interferences are minimal in BlowFish:
fewer shards need be constructed, thus fewer servers are
interfered with, and fewer queries go to SSD. It turns out
that the interference is minimal, and BlowFish observes
minimal throughput reduction (less than 12%) during fail-
ures. As a result, BlowFish throughput during failures is
is 1.4−1.8× higher than the other two schemes.

4.3 Skewed Workloads
We now apply BlowFish to the problem of efficiently uti-
lizing the system cache for workloads with skewed query
distribution across shards (e.g., more queries on hot data
and fewer queries on warm data). The case of skew across
shards varying with time is evaluated in next subsection.

State-of-the-art. The state-of-the-art technique for han-
dling spatially-skewed workloads in Selective caching [8]
that caches, for each object, number of replicas propor-
tional to the load on the object.

4.3.1 Experimental Setup
We use 20 data shards, each comprising of 8GB of raw
data, for this experiment. We compare BlowFish and Se-
lective caching using two approaches. In the first ap-
proach, we fix the cluster (amount of fast storage) and
measure the maximum possible throughput that each
scheme can sustain. In the second approach, we vary the
load for the two schemes and compute the amount of fast
storage required by each scheme to sustain that load.

For the former, we use a cluster with 8 EC2 servers. A
large number of clients generate queries with a Zipf dis-
tribution with skewness 0.01 (heavily skewed) across the
shards. As shown in Figure 8(a), the load on the heaviest
shard using this distribution is 20× the load on the light-
est shard — this models the real-world scenario of a few

shards being “hot” and most of the shards being “cold”.
For selective caching, each shard has number of replicas
proportional to its load (recall, total storage is fixed); for
BlowFish, the shard operates at a point on the tradeoff
curve that can sustain the load with minimal storage over-
head. We distribute the shards randomly across the avail-
able servers. For the latter, we vary the load and compute
the amount of fast storage required by the two schemes
to meet the load assuming that the entire data fits in fast
storage. Here, we increase the number of shards to 100 to
perform computations for a more realistic cluster size.

4.3.2 Results

For fixed storage. The storage required for selective
caching and BlowFish to meet the load is 155.52GB
and 118.96GB, respectively. Since storage is constrained,
some shards in selective caching can not serve queries
from faster storage. Intuitively, this is because BlowFish
provides a finer-grained tradeoff (increasing the storage
overhead fractionally, just enough to meet the perfor-
mance goals) compared to the coarse-grained tradeoff of
selective replication (throughput can be increased only by
2× by adding another replica requiring 1× higher storage
overhead). Thus, BlowFish utilizes the available system
cache more efficiently. Figure 8(b) shows that this leads
to BlowFish achieving 1.5× higher throughput than selec-
tive caching. Interestingly, BlowFish achieves 89% of the
ideal throughput, where the ideal is computed by taking
into account the load skew across shards, the total system
storage, the maximum possible per-shard throughput per
server, and by placing heavily loaded shards with lightly
loaded shards. The remaining 11% is attributed to the ran-
dom placement of shards across servers, resulting in some
servers being throughput bottlenecked.

Fixed load. Figure 8(c) shows that, as expected, BlowFish
requires 2.7 – 4.9× lower amount of fast storage com-
pared to selective caching to sustain the load.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 495

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120

L
o
a
d
 (

K
O

p
s
),

T
h
ro

u
g
h
p
u
t
(K

O
p
s
)

Time (mins)

load

throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0

 50

 100

 150

 200

 250

L
o
a
d
 (

K
O

p
s
)

Q
u
e
u
e
 L

e
n
g
th

 (
K

O
p
s
)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o
a
d
 (

K
O

p
s
)

S
to

ra
g
e
 R

a
ti
o

Time (mins)

load
storage-ratio

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120

L
o
a
d
 (

K
O

p
s
),

T
h
ro

u
g
h
p
u
t
(K

O
p
s
)

Time (mins)

load
throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

L
o
a
d
 (

K
O

p
s
)

Q
u
e
u
e
 L

e
n
g
th

 (
K

O
p
s
)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o
a
d
 (

K
O

p
s
)

S
to

ra
g
e
 R

a
ti
o

Time (mins)

load
storage-ratio

Figure 9: Opportunistic layer construction with spiked changes in load for uniform workload (top three) and skewed workload
(bottom three). The figures show variation in throughput (left), request queue length (center) and storage footprint (right).

4.4 Time-varying workloads
We now evaluate BlowFish’s ability to adapt to time-
varying load, in terms of time taken to adapt and queue
stability. We also evaluate the performance of BlowFish’s
scheduling technique during such time-varying loads.

4.4.1 Experimental Setup
We perform micro-benchmarks to focus on adaptation
time, queue stability and per-thread shard throughput for
time-varying workloads. We use a number of clients to
generate time-varying load on the system. We performed
four sets of experiments: uniform and skewed (Zipf with
skewness 0.01) query distribution (across queried keys
and search terms); and, gradual and spiked variations in
load. It is easy to see that (uniform, spiked) and (skewed,
gradual) are the worst-case and the best-case scenario for
BlowFish, respectively. We present results for spiked vari-
ations in load (e.g., due to transient failures) for both uni-
form and skewed query distribution; the remaining results
are in Appendix C. We perform micro-benchmarks by in-
creasing the load on the shard from 600ops to 1800ops
suddenly (3× increase in load models failures of two
replicas, an extremely unlikely scenario) at time t = 30
and observe the system for an hour before dropping down
the load back to 600ops at time t = 90.

4.4.2 Results

BlowFish adaptation time and queue stability. As the
load is increased from 600ops to 1800ops, the throughput
supported by the shard at that storage ratio is insufficient
to meet the increased load (Figures 9(a) and 9(d)). As a re-

sult, the request queue length for the shard increases (Fig-
ures 9(b) and 9(e)). At one point, BlowFish triggers op-
portunistic layer creation — the system immediately al-
locates additional storage for the two sampled arrays (in-
creased storage ratio in Figures 9(c) and 9(f)); the sampled
values are filled in gradually as queries are executed.

At this point, the results for uniform and skewed query
distribution differ. For the uniform case, the already filled
sampled values are reused infrequently. Thus, it takes
BlowFish longer to adapt (≈ 5 minutes) before it starts
draining the request queue (the peak in Figure 9(b)).
BlowFish is able to drain the entire request queue within
15 minutes, making the system stable at that point.

For the skewed workload, the sampled values computed
during query execution are reused frequently since queries
repeat frequently. Thus, BlowFish is able to adapt much
faster (≈ 2minutes) and drain the queues within 5 min-
utes. Note that this is akin to caching of results, explicitly
implemented in many existing data stores [1, 4, 21] while
BlowFish provides this functionality inherently.

BlowFish scheduling. To evaluate the effectiveness and
stability of BlowFish scheduling, we turn our attention to
a distributed setting. We focus our attention on three repli-
cas of the same shard. We make the server storing one of
these replicas storage constrained (replica #3); that is, irre-
spective of the load, the replica cannot trigger navigation
along the storage-performance tradeoff curve. We then
gradually increase the workload from 3KOps to 8KOps
in steps of 1KOps per 30 minutes (Figure 10) and observe
the behavior of request queues at the three replicas.

11

496 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 30 60 90 120 150 180

L
o

a
d

,

T
h

ro
u

g
h

p
u

t
(K

O
p

s
)

Time (mins)

load

replica-1

replica-2

replica-3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 30 60 90 120 150 180
 0

 1

 2

 3

 4

 5

 6

L
o

a
d

 (
K

O
p

s
)

Q
u

e
u

e
 L

e
n

g
th

 (
K

O
p

s
)

Time (mins)

load
replica-1
replica-2
replica-3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 30 60 90 120 150 180
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o

a
d

 (
K

O
p

s
)

S
to

ra
g

e
 R

a
ti
o

Time (mins)

load
replica-1
replica-2
replica-3

Figure 10: The effectiveness and stability of BlowFish’s query scheduling mechanism in a replicated system (discussion in
§4.4). Variation in throughput (left), request queue lengths (center) and storage-footprints (right) for the three replicas.

Initially, each of the three replicas observe a load of
1KOps since queue sizes are equal, and BlowFish sched-
uler equally balances the load. As the load is increased
to 4KOps, the replicas are no longer able to match the
load, causing the request queues at the replicas to build up
(Figure 10(c)). Once the queue lengths cross the thresh-
old, replica #1 and #2 trigger layer construction to match
higher load (Figure 10(a)).

As the first two replicas opportunistically add layers,
their throughput increases; however, the throughput for
the third replicas remains consistent (Figure 10(b)). This
causes the request queue to build up for the third replica
at a rate higher than the other two replicas (Figure 10(c)).
Interestingly, the BlowFish reduces quickly adapts, and
stops issuing queries to replica#3, causing its request
queue length to start dropping. We observe a similar trend
when the load increases to 5KOps. BlowFish does observe
queue length oscillations during adaptation, albeit of ex-
tremely small magnitude.

5 Related Work
BlowFish’s goals are related to three key areas:

Storage-performance tradeoff. Existing data stores usu-
ally support two extreme operating points for each cached
shard — compressed but low throughput, and uncom-
pressed but high throughput. Several compression tech-
niques (e.g., gzip) can allow achieving different com-
pression factors by changing parameters. However, these
require decompression and re-compression of the entire
data on the shard. As shown in the paper, a smooth and
dynamic storage-performance tradeoff not only provides
benefits for existing applications but can also enable a
wide range of new applications.

Data repair. The tradeoff between known techniques for
data repair — replication and erasure codes — is that of
storage overhead and bandwidth. Studies have shown that
the bandwidth requirement of traditional erasure codes

is simply too high to use them in practice [29]. Several
research proposals [20, 27, 29] reduce the bandwidth re-
quirements of traditional erasure codes for batch process-
ing jobs. However, these codes remain inefficient for data
stores serving small objects. As shown in §4, BlowFish
achieves storage close to erasure codes, while maintaining
the bandwidth and repair time advantages of replication.

Selective Caching. As discussed in §1 and §4, selec-
tive caching can achieve good performance for work-
loads skewed towards a few popular objects. However,
it only provides a coarse-grained support — increasing
the throughput by 2× by increasing the storage overhead
by 1×. BlowFish, instead, provides a much finer-grained
control allowing applications to increase the storage frac-
tionally, just enough to meet the performance goals.

6 Conclusion
BlowFish is a distributed data store that enables a smooth
storage-performance tradeoff between two extremes —
compressed but low throughput and uncompressed but
high throughput. In addition, BlowFish allows applica-
tions to navigate along this tradeoff curve over fine-
grained time scales. Using this flexibility, we explored
several problems from real-world production clusters
from a new “lens” and showed that the tradeoff exposed
by BlowFish can offer significant benefits compared to
state-of-the-art techniques for the respective problems.

Acknowledgments
This research is supported in part by NSF CISE Ex-
peditions Award CCF-1139158, DOE Award SN10040
DE-SC0012463, and DARPA XData Award FA8750-12-
2-0331, and gifts from Amazon Web Services, Google,
IBM, SAP, The Thomas and Stacey Siebel Foundation,
Adatao, Adobe, Apple Inc., Blue Goji, Bosch, Cisco,
Cray, Cloudera, Ericsson, Facebook, Fujitsu, Guavus,
HP, Huawei, Intel, Microsoft, Pivotal, Samsung, Schlum-
berger, Splunk, State Farm, Virdata and VMware.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 497

References
[1] Elasticsearch. http://www.elasticsearch.org.

[2] Longhair: Fast Cauchy Reed-Solomon Erasure
Codes in C. https://github.com/catid/
longhair.

[3] MemCached. http://www.memcached.org.

[4] MongoDB. http://www.mongodb.org.

[5] Redis. http://www.redis.io.

[6] TPC-H. http://www.tpc.org/tpch/.

[7] R. Agarwal, A. Khandelwal, and I. Stoica. Succinct:
Enabling Queries on Compressed Data. In USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI), 2015.

[8] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters. In ACM European Conference
on Computer Systems (EuroSys), 2011.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale
Key-value Store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64,
2012.

[10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-
jgel. Finding a Needle in Haystack: Facebook’s
Photo Storage. In USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2010.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. C. Li, et al. TAO: Facebook’s Distributed
Data Store for the Social Graph. In USENIX Techni-
cal Conference (ATC), 2013.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A Distributed Storage Sys-
tem for Structured Data. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2006.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s Globally-
distributed Database. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2012.

[14] C. Curino, E. Jones, Y. Zhang, and S. Madden.
Schism: a Workload-Driven Approach to Database
Replication and Partitioning. Proceedings of the
VLDB Endowment, 3(1-2):48–57, 2010.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
Highly Available Key-value Store. In ACM Sym-
posium on Operating Systems Principles (SOSP),
2007.

[16] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[17] R. Escriva, B. Wong, and E. G. Sirer. HyperDex:
A Distributed, Searchable Key-value Store. In ACM
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication
(SIGCOMM), 2012.

[18] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), 2013.

[19] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt.
Analysis of Join-the-Shortest-Queue Routing for
Web Server Farms. 2007.

[20] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, S. Yekhanin, et al. Erasure Cod-
ing in Windows Azure Storage. In USENIX Annual
Technical Conference (ATC), 2012.

[21] A. Lakshman and P. Malik. Cassandra: A Decen-
tralized Structured Storage System. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[22] B. Langmead, C. Trapnell, M. Pop, and S. L.
Salzberg. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome.
Genome Biology, 10(3):1–10, 2009.

[23] H. Lim, D. Han, D. G. Andersen, and M. Kamin-
sky. MICA: A Holistic Approach to Fast In-memory
Key-value Storage. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2014.

[24] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,

13

498 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

and S. Kumar. f4: Facebook’s Warm BLOB Stor-
age System. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[25] J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-
tra, A. Narayanan, G. Parulkar, M. Rosenblum,
et al. The Case for RAMClouds: Scalable High-
performance Storage Entirely in DRAM. ACM
SIGOPS Operating Systems Review, 43(4):92–105,
2010.

[26] A. Pavlo, C. Curino, and S. Zdonik. Skew-Aware
Automatic Database Partitioning in Shared-Nothing,
Parallel OLTP Systems. In ACM International Con-
ference on Management of Data (SIGMOD), 2012.

[27] K. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A hitchhiker’s
guide to fast and efficient data reconstruction in
erasure-coded data centers. In ACM Conference on
Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM),
2014.

[28] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A Solu-
tion to the Network Challenges of Data Recov-
ery in Erasure-coded Distributed Storage Systems:
A Study on the Facebook Warehouse Cluster. In
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage), 2013.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopou-
los, A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur. XORing Elephants: Novel Erasure
Codes for Big Data. In International Conference on
Very Large Data Bases (VLDB), 2013.

[30] S. Sivasubramanian. Amazon dynamoDB: A Seam-
lessly Scalable Non-relational Database Service. In
ACM International Conference on Management of
Data (SIGMOD), 2012.

[31] C. B. Walton, A. G. Dale, and R. M. Jenevein. A
Taxonomy and Performance Model of Data Skew
Effects in Parallel Joins. In International Confer-
ence on Very Large Data Bases (VLDB), 1991.

A Layered Sampled Array Lookup,
and Opportunistic layer creation

We outline how lookups are performed on the LSA (§3.1)
in Algorithm 1. At a high level, given the LSA index, we
obtain the layer ID and index into the corresponding layer
using LSA’s auxiliary structures (see Figure 4). We use the
layer ID to locate the layer, and obtain the required value
using the index into the layer.

Algorithm 2 describes how BlowFish creates new lay-
ers opportunistically (§3.1); that is, rather than using ded-
icated resources to compute the required sampled values
upon a new layer creation, BlowFish uses the computa-
tions performed during query execution to opportunisti-
cally populate the sampled values in the new layer.
Algorithm 1 LookupLSA

1: procedure GetLayerID (idx) � Get the layer ID given the index
into the sampled array; α is the sampling rate.

2: return LayerID[idx % α]
3: end procedure

4: procedure GetLayerIdx(idx) � Get the index into LayerID given
the index into the sampled array; α is the sampling rate.

5: count ← Count[LayerID(idx)]

6: return count × (idx / α) + LayerIdx[idx % α]
7: end procedure

8: procedure LookupLSA (idx) � Performs lookup on the LSA.

9: if IsSampled(idx) then
10: lid ← GetLayerID(idx) � Get layer ID.

11: lidx ← GetLayerIdx(idx) � Get index into layer.

12: return SampledArray[lid][lidx]

13: end if
14: end procedure

B Storage-throughput Tradeoff for
different workloads

Figure 6 in §4 shows the storage-throughput tradeoff en-
abled by BlowFish for query workload comprising of
50% random access and 50% search queries. Figure 11
shows this tradeoff for other workloads. In particular, Fig-
ure 11(a) and Figure 11(b) show the storage-throughput
tradeoff for workloads comprising of 100% random ac-
cess and 100% search queries, respectively. Note that the
tradeoff for mixed workload has characteristics similar to
100% search workload since, similar to other systems,
execution time for search is significantly higher than ran-
dom access. The throughput of the system is, thus, domi-
nated by latency of search queries.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 499

 1

 5

 10

 15

 20

 25

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

(a) 100% random access

 1

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

(b) 100% search

 1

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

(c) 50% random access + 50% search

Figure 11: Storage-throughput tradeoff curve (per thread) enabled by BlowFish for three workloads with varying fraction of
random access and search queries. The y-axis is normalized by the throughput of smallest possible storage footprint in BlowFish
(3874ops for random access only, 37ops for search only, and 71ops for the mixed workload).

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210

L
o

a
d

 (
K

O
p

s
),

T
h

ro
u

g
h

p
u

t
(K

O
p

s
)

Time (mins)

load

throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0

 5

 10

 15

 20

 25

 30

 35

 40

L
o

a
d

 (
K

O
p

s
)

Q
u

e
u

e
 L

e
n

g
th

 (
K

O
p

s
)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o

a
d

 (
K

O
p

s
)

S
to

ra
g

e
 R

a
ti
o

Time (mins)

load
storage-ratio

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210

L
o

a
d

 (
K

O
p

s
),

T
h

ro
u

g
h

p
u

t
(K

O
p

s
)

Time (mins)

load
throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

L
o

a
d

 (
K

O
p

s
)

Q
u

e
u

e
 L

e
n

g
th

 (
K

O
p

s
)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o

a
d

 (
K

O
p

s
)

S
to

ra
g

e
 R

a
ti
o

Time (mins)

load
storage-ratio

Figure 12: Opportunistic layer construction with gradual changes in load for uniform workload (top three) and skewed workload
(bottom three). The figures show variation in throughput (left), request queue length (center) and storage footprint (right).

C Gradual Workload Variation
We present the results for how BlowFish adapts to time-
varying workloads with a setup identical to §4.4, but for
slightly different variations in the workload. In particular,
instead of increasing the load on the shard from 600ops
to 1800ops suddenly (as in the results of Figure 9), we
increase the load from 600ops to 2000ops, with a grad-
ual increase of 350ops at 30 minute intervals. This gran-
ularity of increase in load is similar to those reported in
real-world production clusters [9], and constitutes a much
easier case for BlowFish compared to the spiked increase
in load considered in §4.4.

Uniform query distribution (Figure 12, top). As the

load increases from 600ops to 950ops (Figure 12(a)), the
load becomes higher than the throughput supported by the
shard at that storage ratio (800ops). Consequently, the re-
quest queue length starts building up (Figure 12(b)), and
BlowFish triggers a layer addition by allocating space
for the new layers (Figure 12(c)). BlowFish opportunis-
tically fills up values in the new layer, and the throughput
for the shard increases gradually. This continues until the
throughput matches the load on the shard; at this point,
however, the throughput continues to increase even be-
yond the load to deplete the outstanding requests in the
queue until the queue length reduces to zero and the sys-
tem resumes normal operation. A similar trend can be
seen when the load is increased to 1650ops.

15

500 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Algorithm 2 CreateLayerOpportunistic

1: procedure CreateLayerOpportunistic(lid) � Marks layer lid
for creation, and initializes bitmap marking layer’s sampled values;
α is the sampling rate.

2: Mark layer lid for creation.

3: LayerSize ← InputSize/2α
4: for lidx in (0, LayerSize − 1) do
5: IsLayerValueSampled[lid][lidx] ← 0

6: end for
7: end procedure

8: procedure OpportunisticPopulate(val, idx) �
Exploit query execution to populate layers opportunistically; val is
the unsampled values computed during query execution, and idx is
its index into the unsampled array.

9: lid ← GetLayerID(idx) � Get layer ID.

10: if layer lid is marked for creation then
11: lidx ← GetLayerIdx(idx) � Get index into layer.

12: SampledArray[lid][lidx] ← val

13: IsLayerValueSampled[lid][lidx] ← 1

14: end if
15: end procedure

Skewed query distribution (Figure 12, bottom). The
trends observed for the skewed workload are similar to
those for the uniform worklod, with two key differences.
First, we observe that BlowFish triggers layer creation
at different points for this workload. In particular, the

throughput for the skewed workload at the same storage
footprint (0.8 in Figure 12(c) and 12(f)) is higher than that
for the uniform workload. To see why, note that the perfor-
mance of search operations varies significantly based on
the queries; while the different queries contribute equally
for the uniform workload, the throughput for the skewed
workload is shaped by the queries that occur more fre-
quently. This effect attributes for the different throughput
characteristics for the two workloads at the same storage
footprint.

Second, as noted before (§4.4), BlowFish adaptation
benefits from the repetitive nature of queries in the skewed
workload, since repeated queries can reuse the values pop-
ulated during their previous execution. In comparison to
uniform query distribution, this leads to faster adaptation
to increase in load and quicker depletion of the increased
request queue lengths.

Comparison with results for the spiked case. Note the
difference in results for the case of spiked increase in load
(Figure 9) and gradual increase in load (Figure 12). In
the former case, the increase in load leads to significantly
higher request queue lengths and hence, it takes much
longer for the sytem to return to normal operations. In the
latter, however, due to gradual increase in load, the sys-
tem can drain the outstanding request queue significantly
faster, can resume normal operations faster, and thus pro-
vides adaptation at much finer time granularity.

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 501

Universal Packet Scheduling

Radhika Mittal† Rachit Agarwal†
†UC Berkeley

Sylvia Ratnasamy†

‡ICSI
Scott Shenker†‡

Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that
the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms. We then evaluate whether LSTF
can be used in practice to meet various network-wide ob-
jectives by looking at popular performance metrics (such as
average FCT, tail packet delays, and fairness); we find that
LSTF performs comparable to the state-of-the-art for each
of them. We also discuss how LSTF can be used in con-
junction with active queue management schemes (such as
CoDel and ECN) without changing the core of the network.

1 Introduction
There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes
such as priority scheduling [38], to more complicated
mechanisms for achieving fairness [20,34,39], to schemes
that help reduce tail latency [19] or flow completion
time [10], and this short list barely scratches the surface
of past and current work. In this paper we do not add to
this impressive collection of algorithms, but instead ask
if there is a single universal packet scheduling algorithm
that could obviate the need for new ones. In this context,
we consider a packet scheduling algorithm to be both
how packets are served inside the network (based on their
arrival times and their packet headers) and how packet
header fields are initialized and updated; this definition
includes all the classical scheduling algorithms (FIFO,
LIFO, priority, round-robin) as well as algorithms that
incorporate dynamic packet state [19, 44, 45].

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers

a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve different
desired performance objectives (such as fairness, reducing
tail latencies and minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. 1

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance
objectives evolve. Moreover, this would make a strong
argument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [42]; in fact, it was the
eloquent argument in this paper that caused us to initially
ask the question about universality).

However, if there is indeed a UPS, then it changes the
lens through which we view the design and evaluation of
scheduling algorithms: e.g., rather than asking whether a
new scheduling algorithm meets a performance objective,
we should ask whether it is easier/cheaper to implement/-
configure than the UPS (which could also meet that perfor-
mance objective). Taken to the extreme, one might even
argue that the existence of a (practical) UPS greatly dimin-
ishes the need for programmable scheduling hardware.2

Thus, while the rest of the paper occasionally descends into
scheduling minutiae, the question we are asking has im-
portant practical (and intriguing theoretical) implications.

This paper starts from the theoretical perspective,
defining a formal model of packet scheduling and our

1For this definition of universality, we allow the header initialization to
depend on the objective being optimized. That is, while the basic schedul-
ing operations must remain constant, the header initialization can depend
on whether you are seeking fairness or minimal flow completion time.

2Note that the case for programmable hardware as made in recent
work on P4 and the RMT switch [14, 15] remains: these systems target
programmability in header parsing and in how a packet’s processing
pipeline is defined (i.e., how forwarding ‘actions’ are applied to a packet).
The P4 language does not currently offer primitives for scheduling
and, perhaps more importantly, the RMT switch does not implement
a programmable packet scheduler; we hope our results can inform the
discussion on whether and how P4/RMT might be extended to support
programmable scheduling.

1

502 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

notion of replayability in §2. We first prove that there
is no UPS, but then show that Least Slack Time First
(LSTF) [28] comes as close as any scheduling algorithm
to achieving universality. We also demonstrate empirically
(via simulation) that LSTF can closely approximate the
schedules of many scheduling algorithms. Thus, while not
a perfect UPS in terms of replayability, LSTF comes very
close to functioning as one.

We then take a more practical perspective in §3, showing
(via simulation) that LSTF is comparable to the state
of the art in achieving various objectives relevant to
an application’s performance. We investigate in detail
LSTF’s ability to minimize average flow completion times,
minimize tail latencies, and achieve per-flow fairness.
We also consider how LSTF can be used in multitenant
situations to achieve multiple objectives simultaneously,
while highlighting some of its key limitations.

In §4, we look at how network feedback for active queue
management (AQM) can be incorporated using LSTF.
Rather than augmenting the basic LSTF logic (which is
restricted to packet scheduling) with a queue management
algorithm, we show that LSTF can, instead, be used to
implement AQM at the edge of the network. This novel ap-
proach to AQM is a contribution in itself, as it allows the al-
gorithm to be upgraded without changing internal routers.

We then discuss the feasibility of implementing LSTF
(§5) and provide an overview of related work (§6) before
concluding with a discussion of open questions in §7.

2 Theory: Replaying Schedules
This section delves into the theoretical viewpoint of a UPS,
in terms of its ability to replay a given schedule.

2.1 Definitions and Overview

Network Model: We consider a network of store-and-
forward output-queued routers connected by links. The
input load to the network is a fixed set of packets {p∈P},
their arrival times i(p) (i.e., when they reach the ingress
router), and the path path(p) each packet takes from its
ingress to its egress router. We assume no packet drops,
so all packets eventually exit. Every router executes a
non-preemptive scheduling algorithm which need not be
work-conserving or deterministic and may even involve
oracles that know about future packet arrivals. Different
routers in the network may use different scheduling logic.
For each incoming load {(p,i(p),path(p))}, a collection
of scheduling algorithms {Aα} (router α implements
algorithm Aα) will produce a set of packet output times
{o(p)} (the time a packet p exits the network). We call
the set {(path(p),i(p),o(p))} a schedule.

Replaying a Schedule: Applying a different collection
of scheduling algorithms {A′

α} to the same set of packets
{(p,i(p),path(p))} (with the packets taking the same path
in the replay as in the original schedule), produces a new

set of output times {o′(p)}. We say that {A′
α} replays

{Aα} on this input if and only if ∀p∈P, o′(p)≤o(p).3

Universal Packet Scheduling Algorithm: We say a
schedule {(path(p),i(p),o(p))} is viable if there is at least
one collection of scheduling algorithms that produces that
schedule. We say that a scheduling algorithm is universal
if it can replay all viable schedules. While we allowed
significant generality in defining the scheduling algorithms
that a UPS seeks to replay (demanding only that they
be non-preemptive), we insist that the UPS itself obey
several practical constraints (although we allow it to be
preemptive for theoretical analysis, but then quantitatively
analyze the non-preemptive version in §2.3).4 The three
practical constraints we impose on a UPS are:
(1) Uniformity and Determinism: A UPS must use the same
deterministic scheduling logic at every router.
(2) Limited state used in scheduling decisions: We restrict
a UPS to using only (i) packet headers, and (ii) static in-
formation about the network topology, link bandwidths,
and propagation delays. It cannot rely on oracles or other
external information. However, it can modify the header of
a packet before forwarding it (resulting in dynamic packet
state [45]).
(3) Limited state used in header initialization: We assume
that the header for a packet p is initialized at its ingress
node. The additional information available to the ingress
for this initialization is limited to: (i) o(p) from the original
schedule5 and (ii) path(p). Later, we extend the kinds of in-
formation the header initialization process can use, and find
that this is a key determinant in whether one can find a UPS.

We make three observations about the above model.
First, our model assumes greater capability at the edge than
in the core, in keeping with common assumptions that the
network edge is capable of greater processing complexity,
exploited by many architectural proposals [16,36,44]. Sec-
ond, when initializing a packet p’s header, a UPS can only
use the input time, output time and the path information for
p itself, and must be oblivious [24] to the corresponding
attributes for other packets in the network. Finally, the key
source of impracticality in our model is the assumption that
the output times o(p) are known at the ingress. However,

3We allow the inequality because, if o′(p)<o(p), one can delay the
packet upon arrival at the egress node to ensure o′(p)=o(p).

4The issue of preemption is somewhat complicated. Allowing the
original scheduling algorithms to be preemptive allows packets to
be fragmented, which then makes replay extremely difficult even in
simple networks (with store-and-forward routers). However, disallowing
preemption in the candidate UPS overly limits the flexibility and would
again make replay impossible even in simple networks. Thus, we take
the seemingly hypocritical but only theoretically tractable approach
and disallow preemption in the original scheduling algorithms but allow
preemption in the candidate UPS. In practice, when we care only about
approximately replaying schedules, the distinction is of less importance,
and we simulate LSTF in the non-preemptive form.

5Note that this ingress router can directly observe i(p) as the time
the packet arrives.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 503

a different interpretation of o(p) suggests a more practical
application of replayability (and thus our results): if we
assign o(p) as the “desired” output time for each packet in
the network, then the existence of a UPS tells us that if these
goals are viable then the UPS will be able to meet them.

2.2 Theoretical Results

For brevity, in this section we only summarize our key
theoretical results. The detailed proofs are in Appendix A.

Existence of a UPS under omniscient initialization: Sup-
pose we give the header-initialization process extensive
information in the form of times o(p,α) which represent
when p was scheduled by router α in the original schedule.
We can then insert an n-dimensional vector in the header
of every packet p, where the ith element contains o(p,αi)
with αi being the ith hop in path(p). Every time a packet
arrives at a router, the router can pop the value at the head
of this vector and use that as its priority (earlier values of
output times get higher priority). This can perfectly replay
any viable schedule (proof in Appendix A.2), which is not
surprising, as having such detailed knowledge of the inter-
nal scheduling of the network is tantamount to knowing all
the scheduling decisions made by the original algorithm.
For reasons discussed previously, our definition limited the
information available to the output time from the network
as a whole, and not from each individual router; we call
this black-box initialization.

Nonexistence of a UPS under black-box initialization:
We can prove by counter-example (described in Appendix
A.3) that there is no UPS under the conditions stated in
§2.1. We provide some intuition for the counter-example
later in this section. Given this impossibility result, we now
ask how close can we get to a UPS?

Natural candidates for a near-UPS: Simple priority
scheduling 6 can reproduce all viable schedules on a single
router, so it would seem to be a natural candidate for a
near-UPS. However, for multihop networks it may be
important to make the scheduling of a packet dependent
on what has happened to it earlier in its path. For this, we
consider Least Slack Time First (LSTF) [28].

In LSTF, each packet p carries its slack value
in the packet header, which is initialized to
slack(p) = (o(p)− i(p)− tmin(p,src(p),dest(p))) at the
ingress; where src(p) is the ingress of p, dest(p) is the
egress of p and tmin(p,α,β) is the time p takes to go from
router α to router β in an uncongested network. Therefore,
the slack of a packet indicates the maximum queueing time
(excluding the transmission time at any router) that the
packet could tolerate without violating the replay condi-
tion. Each router, then, schedules the packet which has the

6By simple priority scheduling, we mean that the ingress assigns
priority values to the packets and the routers simply schedule packets
based on these static priority values.

least remaining slack at the time when its last bit is trans-
mitted. Before forwarding the packet, the router overwrites
the slack value in the packet’s header with its remaining
slack (i.e., the previous slack time minus the duration for
which it waited in the queue before being transmitted).

An alternate way to implement this algorithm is having
a static packet header as in Earliest Deadline First (EDF)
and using additional state in the routers (reflecting the
value of tmin) to compute the priority for a packet at each
router, but here we chose to use an approach with dynamic
packet state. We provide more details about EDF and
prove its equivalence to LSTF in Appendix A.5.

Key Results: Our analysis shows that the difficulty of
replay is determined by the number of congestion points,
where a congestion point is defined as a node where a
packet is forced to “wait” during a given schedule. 7 Our
theorems show the following key results:
1. Priority scheduling can replay all viable schedules with
no more than one congestion point per packet, and there are
viable schedules with no more than two congestion points
per packet that it cannot replay. (Proof in Appendix A.6.)
2. LSTF can replay all viable schedules with no more than
two congestion points per packet, and there are viable
schedules with no more than three congestion points per
packet that it cannot replay. (Proof in Appendix A.7.)
3. There is no scheduling algorithm (obeying the afore-
mentioned constraints on UPSs) that can replay all viable
schedules with no more than three congestion points
per packet, and the same holds for larger numbers of
congestion points. (Proof in Appendix A.3.)
Main Takeaway: LSTF is closer to being a UPS than
simple priority scheduling, and no other candidate UPS
can do better in terms of handling more congestion points.

Intuition: It is clear why LSTF is superior to priority
scheduling: by carrying information about previous
delays in the packet header (in the form of the remaining
slack value), LSTF can “make up for lost time” at later
congestion points, whereas for priority scheduling packets
with low priority might repeatedly get delayed (and thus
miss their target output times).

We now provide some intuition for why LSTF works for
two congestion points and not for three, by presenting an
outline of the proof detailed in Appendix A.7. We define the
local deadline of a packet p at a router α as the time when p
is scheduled by α in the original schedule. The global dead-
line of p at α is defined as the time by when p must leave α

7For our theoretical results, we adopt a pessimistic definition of a
congestion point, where a router that falls in the path of more than one
flow is a congestion point (along with routers having output link capacity
less than input link capacity or non work-conserving original schedules
that make a packet wait explicitly). Since this definition is independent
of per-packet dynamics, the set of congestion points remains the same
in the original schedule and in the replay. This pessimistic definition is
not required in practice, where the difficulty of replay would depend on
the number of routers in a packet’s path which see significant queuing.

3

504 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

in order to meet its target output time, assuming that it sees
no queuing delay after α . Hence, global deadline is the
time when p’s slack at α becomes zero. We can prove that
as long as all packets arrive at a router at or before their
local deadlines during the LSTF replay, no packet can miss
its global deadline at α (i.e. no packet can have a negative
slack at α). The proof for this follows from the fact that
if all packets arrive at or before their local deadline at α ,
there exists a feasible schedule where no packet misses its
global deadline at α (this feasible schedule is the same as
the original schedule at α). We can now apply the standard
LSTF (or EDF) optimality proof technique for a single pro-
cessor [30], to show that this feasible schedule can be itera-
tively transformed to a feasible LSTF schedule at router α .

When there are only two congestion points per packet,
it is guaranteed that every packet arrives at or before its
local deadline at each congestion point during the LSTF
replay. A packet can never arrive after its local deadline at
its first congestion point, because it sees no queuing before
that. Moreover, the local deadline is the same as the global
deadline at the last congestion point. Therefore, if a packet
arrives after its local deadline at its second (and last)
congestion point, it means that it must have already missed
its global deadline earlier, which, again, is not possible.

However, when there are three congestion points per
packet, there is no guarantee that every packet arrives
at or before its local deadline at each congestion point
during the LSTF replay (due to the presence of a “middle”
congestion point). One can, therefore, create counterexam-
ples where unless LSTF (or, in fact, any other scheduling
algorithm) makes precisely the right choice at the first con-
gestion point of a packet p, at least one packet will miss its
target output time, due to p arriving after its local deadline
at its middle congestion point. We present such a counter-
example in Appendix A.3, where we illustrate two ways of
scheduling the same set of packets (having the same input
times and paths) on a given topology with three congestion
points per packet, resulting in two cases. The output times
for two of the packets (named a and x), which compete with
each other at the first congestion point (α0), remains the
same in both cases. However, one case requires scheduling
a before x at α0 and the second case requires scheduling
x before a at α0, else a packet will end up missing its target
output time at the second (or middle) congestion points
of a and x respectively. Since the information available
for header initialization for the two packets is the same
in both cases, no deterministic scheduling algorithm with
blackbox header initialization can make the correct choice
at the first congestion point in both cases.

2.3 Empirical Results

The previous section clarified the theoretical limits on
a perfect replay. Here we investigate, via ns-2 simula-
tions [6], how well (a non-preemptable version of) LSTF

can approximately replay schedules in realistic networks.

Experiment Setup: Default scenario. We use a simplified
Internet-2 topology [3], identical to the one used in [31]
(consisting of 10 core routers connected by 16 links). We
connect each core router to 10 edge routers using 1Gbps
links and each edge router is attached to an end host via
a 10Gbps link. The number of hops per packet is in the
range of 4 to 7, excluding the end hosts. We refer to this
topology as I2 1Gbps-10Gbps. Each end host generates
UDP flows using a Poisson inter-arrival model, with the
destination picked randomly for each flow. Our default
scenario runs at 70% utilization. The flow sizes are picked
from a heavy-tailed distribution [11, 12]. Since our focus
is on packet scheduling, not dropping policies, we use
large buffer sizes that ensure no packet drops. Note that
we use higher than usual access bandwidths for our default
scenario to increase the stress on the schedulers in the core
routers, where the number of congestion points seen by
most packets is two, three or four for 22%, 44% and 24%
packets respectively. 8 We also present results for smaller
(and more realistic) access bandwidths, where most
packets see smaller number of congestion points (one,
two or three for 18%, 46% and 26% packets respectively),
resulting in better replay performance.
Varying parameters. We tested a wide range of experimen-
tal scenarios by varying different parameters from their
default values. We present results for a small subset of
these scenarios here: (1) the default scenario with network
utilization varied from 10-90% (2) the default scenario but
with 1Gbps link between the endhosts and the edge routers
(I2 1Gbps-1Gbps), with 10Gbps links between the edge
routers and the core (I2 10Gbps-10Gbps) and with all link
capacities in the I2 1Gbps-1Gbps topology reduced by a
factor of 10 (I2 / 10) and (3) the default scenario applied to
two different topologies, a bigger Rocketfuel topology [43]
(with 83 core routers connected by 131 links) and a
full bisection bandwidth datacenter (fat-tree) topology
from [10] (with 10Gbps links). Note that our other results
were generally consistent with those presented here.
Scheduling algorithms. Our default case, which we
expected to be hard to replay, uses completely arbitrary
schedules produced by a random scheduler (which
picks the packet to be scheduled randomly from the
set of queued up packets). We also present results for
more traditional packet scheduling algorithms: FIFO,
LIFO, fair queuing [20], and SJF (shortest job first using
priorities). We also looked at two scenarios with a mixture
of scheduling algorithms: one where half of the routers
run FIFO+ [19] and the other half run fair queuing, and
one where fair queueing is used to isolate two classes of
traffic, with one class being scheduled with SJF and the

8To compute this, we record the number of non-empty queues
(excluding the endhost queues) encountered by each packet.

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 505

Topology Avg. Link
Utilization

Scheduling
Algorithm

Fraction of
packets overdue
Total >T

I2 1Gbps-10Gbps 70% Random 0.0021 0.0002

I2 1Gbps-10Gbps
10%

Random
0.0007 0.0

30% 0.0281 0.0017
50% 0.0221 0.0002
90% 0.0008 4×10−6

I2 1Gbps-1Gbps 70% Random 0.0204 8×10−6

I2 10Gbps-10Gbps 0.0631 0.0448
I2 / 10 0.0127 0.00001

Rocketfuel 70% Random 0.0246 0.0063
Datacenter 0.0164 0.0154

I2 1Gbps-10Gbps 70%

FIFO 0.0143 0.0006
FQ 0.0271 0.0002
SJF 0.1833 0.0019

LIFO 0.1477 0.0067
FQ/FIFO+ 0.0152 0.0004

FQ: SJF/FIFO 0.0297 0.0003

Table 1: LSTF replay performance across various scenarios. T represents
the transmission time at the bottleneck link.

other class being scheduled with FIFO.

Evaluation Metrics: We consider two metrics. First, we
measure the fraction of packets that are overdue (i.e., which
do not meet the original schedule’s target). Second, to cap-
ture the extent to which packets fail to meet their targets, we
measure the fraction of packets that are overdue by more
than a threshold value T , where T is one transmission time
on the bottleneck link (≈ 12µs for 1Gbps). We pick this
value of T both because it is sufficiently small that we can
assume being overdue by this small amount is of negligible
practical importance, and also because this is the order of
violation we should expect given that our implementation
of LSTF is non-preemptive. While we may have many
small violations of replay (because of non-preemption),
one would hope that most such violations are less than T .

Results: Table 1 shows the simulation results for LSTF
replay for various scenarios, which we now discuss.
(1) Replayability. Consider the column showing the
fraction of packets overdue. In all but three cases (we
examine these shortly) over 97% of packets meet their
target output times. In addition, the fraction of packets
that did not arrive within T of their target output times is
much smaller; even in the worst case of SJF scheduling
(where 18.33% of packets failed to arrive by their target
output times), only 0.19% of packets are overdue by more
than T . Most scenarios perform substantially better: e.g.,
in our default scenario with Random scheduling, only
0.21% of packets miss their targets and only 0.02% are
overdue by more than T . Hence, we conclude that even
without preemption LSTF achieves good (but not perfect)
replayability under a wide range of scenarios.
(2) Effect of varying network utilization. The second
row in Table 1 shows the effect of varying network
utilization. We see that at low utilization (10%), LSTF
achieves exceptionally good replayability with a total of

only 0.07% of packets overdue. Replayability deteriorates
as utilization is increased to 30% but then (somewhat
surprisingly) improves again as utilization increases. This
improvement occurs because with increasing utilization,
the amount of queuing (and thus the average slack across
packets) in the original schedule also increases. This
provides more room for slack re-adjustments when packets
wait longer at queues seen early in their paths during the re-
play. We observed this trend in all our experiments though
the exact location of the “low point” varied across settings.
(3) Effect of varying link bandwidths. The third row
shows the effect of changing the relative values of ac-
cess/edge vs. core links. We see that while decreasing ac-
cess link bandwidth (I2 1Gbps-1Gbps) resulted in a much
smaller fraction of packets being overdue by more than T
(0.0008%), increasing the edge-to-core link bandwidth (I2
10Gbps-10Gbps) resulted in a significantly higher fraction
(4.48%). For I2 1Gbps-1Gbps, packets are paced by the
endhost link, resulting in few congestion points thus im-
proving LSTF’s replayability. In contrast, with I2 10Gbps-
10Gbps, both the access and edge links have a higher band-
width than most core links; hence packets (that are no
longer paced at the endhosts or the edges) arrive at the core
routers very close to one another and hence the effect of one
packet being overdue cascades over to the following pack-
ets. Decreasing the absolute bandwidths in I2 / 10, while
keeping the ratio between access and edge links the same
as that in I2 1Gbps-1Gbps, did not produce significantly
different results compared to I2 1Gbps-1Gbps, indicating
that the relative link capacities have a greater impact on
the replay performance than the absolute link capacities.
(4) Effect of varying topology. The fourth row in Table 1
shows our results using different topologies. LSTF
performs well in both cases: only 2.46% (Rocketfuel) and
1.64% (datacenter) of packets fail replay. These numbers
are still somewhat higher than our default case. The
reason for this is similar to that for the I2 10Gbps-10Gbps
topology – all links in the datacenter fat-tree topology are
set to 10Gbps, while in our simulations, we set half of the
core links in the Rocketfuel topology to have bandwidths
smaller than the access links.
(5) Varying Scheduling Algorithms. Row five in Table 1
shows LSTF’s ability to replay different scheduling
algorithms. We see that LSTF performs well for FIFO, FQ,
and the combination cases (a mixture of FQ/FIFO+ and
having FQ share between FIFO and SJF); e.g., with FIFO,
fewer than 0.06% of packets are overdue by more than T .
However, there are two problematic cases: SJF and LIFO
fare worse with 18.33% and 14.77% of packets failing
replay (although only 0.19% and 0.67% of packets are
overdue by more than T respectively). The reason stems
from a combination of two factors: (1) for these algorithms
a larger fraction of packets have a very small slack value
(as one might expect from the scheduling logic which

5

506 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 1: Ratio of queuing delay with varying packet scheduling
algorithms, on I2 1Gbps-10Gbps topology at 70% utilization.

produces a larger skew in the slack distribution), and (2)
for these packets with small slack values, LSTF without
preemption is often unable to “compensate” for misspent
slack that occurred earlier in the path. To verify this
intuition, we extended our simulator to support preemption
and repeated our experiments: with preemption, the frac-
tion of packets that failed replay dropped to 0.24% (from
18.33%) for SJF and to 0.25% (from 14.77%) for LIFO.
(6) End-to-end (Queuing) Delay. Our results so far
evaluate LSTF in terms of measures that we introduced
to test universality. We now evaluate LSTF using the more
traditional metric of packet delay, focusing on the queueing
delay a packet experiences. Figure 1 shows the CDF of the
ratios of the queuing delay that a packet sees with LSTF to
the queuing delay that it sees in the original schedule, for
varying packet scheduling algorithms. We were surprised
to see that most of the packets actually have a smaller queu-
ing delay in the LSTF replay than in the original schedule.
This is because LSTF eliminates “wasted waiting”, in that
it never makes packet A wait behind packet B if packet B
is going to have significantly more waiting later in its path.
(7) Comparison with Priorities. To provide a point of
comparison, we also did a replay using simple priorities
for our default scenario, where the priority for a packet
p is set to o(p) (which seemed most intuitive to us). As
expected, the resulting replay performance is much worse
than LSTF: 21% packets are overdue in total, with 20.69%
being overdue by more than T . For the same scenario,
LSTF has only 0.21% packets overdue in total, with
merely 0.02% packets overdue by more than T.

Summary: We observe that, in almost all cases, less than
1% of the packets are overdue with LSTF by more than T .
The replay performance initially degrades and then starts
improving as the network utilization increases. The distri-
bution of link speeds has a bigger influence on the replay
results than the scale of the topology. Replay performance
is better for scheduling algorithms that produce a smaller
skew in the slack distribution. LSTF replay performance
is significantly better than simple priorities replay
performance, with the most intuitive priority assignment.

3 Practical: Achieving Various Objectives
While replayability demonstrates the theoretical flexibility
of LSTF, it does not provide evidence that it would be
practically useful. In this section we look at how LSTF

Expt. Setup Avg FCT (s)
FIFO SRPT SJF LSTF

I2 1Gbps-10Gbps at 30% util. 0.189 0.183 0.182 0.182
I2 1Gbps-10Gbps at 50% util. 0.212 0.189 0.185 0.185
I2 1Gbps-10Gbps at 70% util. 0.288 0.208 0.194 0.195
I2 1Gbps-1Gbps at 70% util. 0.252 0.209 0.202 0.202

I2 / 10 at 70% util. 0.899 0.658 0.620 0.621
Rocketfuel at 70% util. 0.305 0.240 0.228 0.228
Datacenter at 70% util. 0.058 0.018 0.016 0.015

Figure 2: The graph shows the average FCT bucketed by flow size
obtained with FIFO, SRPT and SJF (using priorities and LSTF) for I2
1Gbps-10Gbps at 70% utilization. The legend indicates the average FCT
across all flows. The table indicates the average FCTs for varying settings.

can be used in practice to meet the following performance
objectives: minimizing average flow completion times,
minimizing tail latencies, and achieving per-flow fairness.

Since the knowledge of a previous schedule is unavail-
able in practice, instead of using a given set of output times
(as done in §2.3), we now use heuristics to assign the slacks
in an effort to achieve these objectives. Our goal here is
not to outperform the state-of-the-art for each objective
in all scenarios, but instead we aim to be competitive with
the state-of-the-art in most common cases.

In presenting our results for each objective, we first
describe the slack initialization heuristic we use and then
present some ns-2 [6] simulation results on (i) how LSTF
performs relative to the state-of-the-art scheduling algo-
rithm and (ii) how they both compare to FIFO scheduling
(as a baseline to indicate the overall impact of specialized
scheduling for this objective). As our default case, we use
the I2 1Gbps-10Gbps topology using the same workload as
in the previous section (running at 70% average utilization).
We also present aggregate results at different utilization
levels and for variations in the default topology (I2 1Gbps-
1Gbps and I2 / 10), for the bigger Rocketfuel topology,
and for the datacenter topology (for selected objectives).
The switches use non-preemptive scheduling (including
for LSTF) and have finite buffers (packets with the
highest slack are dropped when the buffer is full). Unless
otherwise specified, our experiments use TCP flows with
router buffer sizes of 5MB for the WAN simulations (equal
to the average bandwidth-delay product for our default
topology) and 500KB for the datacenter simulations.

3.1 Average Flow Completion Time

While there have been several proposals on how to
minimize flow completion time (FCT) via the transport
protocol [21, 31], here we focus on scheduling’s impact on
FCT, while using standard TCP New Reno at the endhosts.
In [10] it is shown that (i) Shortest Remaining Processing

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 507

Time (SRPT) is close to optimal for minimizing the mean
FCT and (ii) Shortest Job First (SJF) produces results
similar to SRPT for realistic heavy-tailed distribution.
Thus, these are the two algorithms we use as benchmarks.

Slack Initialization: We make LSTF emulate SJF by
initializing the slack for a packet p as slack(p)= fs(p)∗D,
where fs(p) is the size of the flow to which p belongs (in
terms of the number of MSS-sized packets in the flow) and
D is a value much larger than the queuing delay seen by
any packet in the network. We use a value of D=1 sec for
our simulations.

Evaluation: Figure 2 compares LSTF with three other
scheduling algorithms – FIFO, SJF and SRPT with
starvation prevention as in [10]. Both SJF and SRPT have
significantly lower mean FCT than FIFO. The LSTF based
execution of SJF produces nearly the same results as the
strict priorities based execution.

We also look at how in-network scheduling can be used
along with changes in the endhost TCP stack to achieve
the same objective in Appendix B.

3.2 Tail Packet Delays

Clark et. al. [19] proposed the FIFO+ algorithm, where
packets are prioritized at a router based on the amount of
queuing delay they have seen at their previous hops, for
minimizing the tail packet delays in multi-hop networks.
FIFO+ is identical to LSTF scheduling where all packets
are initialized with the same slack value.

Slack Initialization: All incoming packets are initialized
with the same slack value (we use an initial slack value of
1 second in our simulations). With the slack update taking
place at every router, the packets that have waited longer
in the network queues are naturally given preference over
those that have waited for a smaller duration.

Evaluation: We compare LSTF (which, with the above
slack initialization, is identical to FIFO+) with FIFO,
the primary metric being the 99%ile end-to-end one way
delay seen by the packets. Figure 3 shows our results.
To better understand the impact of the two scheduling
policies on the packet delays, our evaluation uses an
open-loop setting with UDP flows. With LSTF, packets
that have traversed through more number of hops, and have
therefore spent more slack in the network, get preference
over shorter-RTT packets that have traversed through
fewer hops. While this might produce a slight increase in
the average packet delay, it reduces the tail. This is in-line
with the observations made in [19].

3.3 Fairness

Fairness is a common scheduling goal, which involves two
different aspects: asymptotic bandwidth allocation (even-
tual convergence to the fair-share rate) and instantaneous
bandwidth allocation (enforcing this fairness on small

Expt. Setup Avg Delay (s) 99%ile Delay (s)
FIFO LSTF FIFO LSTF

I2 1Gbps-10Gbps at 30% util. 0.0411 0.0411 0.0911 0.0868
I2 1Gbps-10Gbps at 50% util. 0.0516 0.0517 0.1288 0.1195
I2 1Gbps-10Gbps at 70% util. 0.0780 0.0786 0.2142 0.1958
I2 1Gbps-1Gbps at 70% util. 0.0771 0.0771 0.2163 0.216

I2 / 10 at 70% util. 0.5762 0.5765 1.9393 1.9367
Rocketfuel at 70% util. 0.1891 0.1883 3.8139 3.7199
Datacenter at 70% util. 0.0250 0.0240 0.1352 0.1100

Figure 3: Tail packet delays for LSTF compared to FIFO. The graph
shows the complementary CDF of packet delays for the I2 1Gbps-10Gbps
topology at 70% utilization with the average and 99%ile packet delay
values indicated in the legend. The table shows the corresponding results
for varying settings.

time-scales, so every flow experiences the equivalent of
a per-flow pipe). The former can be measured by looking
at long-term throughput measures, while the latter is
best measured in terms of the flow completion times
of relatively short flows (which measures bandwidth
allocation on short time scales). We now show how LSTF
can be used to achieve both of these goals, but more
effectively the former than the latter. Our slack assignment
heuristic can also be easily extended to achieve weighted
fair queuing, but we do not present those results here.
Slack Initialization: The slack assignment for fairness
works on the assumption that we have some ballpark
notion of the fair-share rate for each flow and that it does
not fluctuate wildly with time. Our approach to assigning
slacks is inspired from [46]. We assign slack = 0 to the
first packet of the flow and the slack of any subsequent
packet pi is then initialized as:

slack(pi)=max
(

0, slack(pi−1)+
size(pi)

rest
−
(
i(pi)−i(pi−1)

))

where i(p) is the arrival time of a packet p at the ingress,
size(p) is its size in bits, and rest is an estimate of the
fair-share rate r∗ in bps. We show that the above heuristic
leads to asymptotic fairness, for any value of rest that is
less than r∗, as long as all flows use the same value. The
same heuristic can also be used to provide instantaneous
fairness, when we have a complex mix of short-lived flows,
where the rest value that performs the best depends on the
link bandwidths and their utilization levels. A reasonable
value of rest can be estimated using knowledge about the
network topology and traffic matrices, though we leave
a detailed exploration of this to future work.

Evaluation: Asymptotic Fairness. We evaluate the
asymptotic fairness property by running our simulation
on the Internet2 topology with 10Gbps edges, such that all
the congestion happens at the core. However, we reduce
the propagation delay to 10µs for each link, to make

7

508 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 4: Fairness for long-lived flows on Internet2 topology. The legend
indicates the value of rest used for LSTF slack initialization.

Figure 5: CDF of FCTs for the I2 1Gbps-10Gbps topology at 70%
utilization.

Expt. Setup Avg FCT
across bytes (s)

Best
rest

Reasonable
rest Range

FIFO FQ LSTF (Mbps) (Mbps)
I2 1Gbps-10Gbps at 30% util. 0.563 0.537 0.538 300 10-900
I2 1Gbps-10Gbps at 50% util. 0.626 0.549 0.555 200 10-800
I2 1Gbps-10Gbps at 70% util. 0.811 0.622 0.632 100 50-200
I2 1Gbps-1Gbps at 70% util. 0.766 0.630 0.652 100 50-400

I2 / 10 at 70% util. 4.838 2.295 2.759 10 10-20
Rocketfuel at 70% util. 0.964 0.796 0.824 100 50-300

Table 2: FCT averaged across bytes for FIFO, FQ and LSTF (with best
rest value) across varying settings. The last column indicates the range
of rest values that produce results within 10% of the best rest result.

the experiment more scalable, while the buffer size is
kept large (50MB) so that fairness is dominated by the
scheduling policy and not by how TCP reacts to packet
drops. We start 90 long-lived TCP flows with a random
jitter in the start times ranging from 0-5ms. The topology
is such that the fair share rate of each flow on each link
in the core network (which is shared by up to 13 flows) is
around 1Gbps. We use different values for rest ≤1Gbps for
computing the initial slacks and compare our results with
fair queuing (FQ). Figure 4 shows the fairness computed
using Jain’s Fairness Index [27], from the throughput each
flow receives per millisecond. Since we use the throughput
received by each of the 90 flows to compute the fairness
index, it reaches 1 with FQ only at 5ms, after all the flows
have started. We see that LSTF is able to converge to
perfect fairness, even when rest is 100X smaller than r∗. It
converges slightly sooner when rest is closer to r∗, though
the subsequent differences in the time to convergence
decrease with decreasing values of rest .

The detailed explanation of how this works along with

more evaluation (on multiple bottlenecks and weighted
fairness) has been provided in Appendix C.

Evaluation: Instantaneous Fairness. As one might ex-
pect, the choice of rest has a bigger impact on instantaneous
fairness than on asymptotic fairness. A very high rest value
would not provide sufficient isolation across flows. On the
other hand, a very small rest value can starve the long flows.
This is because the assigned slack values for the later
packets of long flows with high sequence numbers would
be much higher than the actual slack they experience. As a
result, they will end up waiting longer in the queues, while
the initial packets of newer flows with smaller slack values
would end up getting a higher precedence.

To verify this intuition, we evaluated our LSTF slack
assignment scheme by running our standard workload
with a mix of TCP flows ranging from sizes 1.5KB -
3MB on our default I2 1Gbps-10Gbps topology at 70%
utilization, with 50MB buffer size. Note that the traffic
pattern is now bursty and the instantaneous utilization of
a link is often lower or higher than the assigned average
utilization level. The CDF of the FCTs thus obtained is
shown in Figure 5. As expected, the distribution of FCTs
looks very different between FQ and FIFO. FQ isolates
the flows from each-other, significantly reducing the FCT
seen by short to medium size flows, compared to FIFO.
The long flows are also helped a little by FQ, again due
to the isolation provided from one-another.

LSTF performance varies somewhere in between
FIFO and FQ, as we vary rest values between 500Mbps
to 10Mbps. A high value of rest = 500Mbps does not
provide sufficient isolation and the performance is close to
FIFO. As we reduce the value of rest , the “isolation-effect”
increases. However, for very small rest values (e.g.
10Mbps), the tail FCT (for the long flows) is much higher
than FQ, due to the starvation effect explained before.

We try to capture this trade-off between isolation for
short and medium sized flows and starvation for long
flows, by using average FCT across bytes (in other words,
the average FCT weighted by flow size) as our key metric.
We term the rest value that achieves the sweetest spot
in this trade-off as the “best” rest value. The rest values
that produce average FCT which is within 10% of the
value produced by the best rest are termed as “reasonable”
rest values. Table 2 presents our results across different
settings. We find that (1) LSTF produces significantly
lower average FCT than FIFO, performing only slightly
worse than FQ (2) As expected, the best rest value
decreases with increasing utilization and with decreasing
bandwidths (as in the case of I2 / 10 topology), while
the range of reasonable rest values gets narrower with
increasing utilization and with decreasing bandwidths.

Thus, for instantaneous fairness, LSTF would require
some estimate of the per-flow rate. We believe that this can
be obtained from the knowledge of the network topology

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 509

(in particular, the link bandwidths), which is available to
the ISPs, and on-line measurement of traffic matrices and
link utilization levels, which can be done using various
tools [14, 18, 35]. However, this does impose a higher
burden on deploying LSTF than on FQ or other such
scheduling algorithms.

3.4 Limitations of LSTF: Policy-based objectives

So far we showed how LSTF achieves various perfor-
mance objectives. We now describe certain policy-based
objectives that are hard to achieve with LSTF.

Multi-tenancy: As network virtualization becomes more
popular, networks are often called upon to support multiple
tenants or traffic classes, with each having their own
networking objectives. Network providers can enforce
isolation across such tenants (or classes of traffic) through
static bandwidth provisioning, which can be implemented
via dedicated hard-wired links [1,5] or through multiqueue
scheduling algorithms such as fair queuing or round
robin [20]. LSTF can work in conjunction with both of
these isolation mechanisms to meet different desired
performance objectives for each tenant (or class of traffic).

However, without such multiqueue support it cannot
provide such isolation or fairness on a per-class or
per-tenant basis. This is because for class-based fairness
(which also includes hierarchical fairness) the appropriate
slack assignment for a packet at a particular ingress
depends on the input from other ingresses (since these
packets can belong to the same class). Note, however,
that if two or more classes/tenants are separated by strict
prioritization, LSTF can be used to enforce the appropriate
precedence order, along with meeting the individual
performance objective for each class.

Traffic Shaping: Shaping or rate limiting flows at a
particular router requires non-work-conserving algorithms
such as Token Bucket Filters [8]. LSTF itself is a
work-conserving algorithm and cannot shape or rate limit
the traffic on its own. We believe that shaping the traffic
only at the edge, with the core remaining work-conserving,
would also produce the desired network-wide behavior,
though this requires further exploration.

4 Incorporating Network Feedback
Up until now we have considered packet scheduling in iso-
lation, whereas in the Internet today routers send implicit
feedback to hosts via packet drops [22, 32] (or marking, as
in ECN [37]). This is often called Active Queue Manage-
ment (AQM), and its goal is to reduce the per-packet delays
while keeping throughput high. We now consider how we
might generalize our LSTF approach to incorporate such
network feedback as embodied in AQM schemes.

LSTF is just a scheduling algorithm and cannot
perform AQM on its own. Thus, at first glance, one might
think that incorporating AQM into LSTF would require

implementing the AQM scheme in each router, which
would then require us to find a universal AQM scheme in
order to fulfill our pursuit of universality. On the contrary,
LSTF enables a novel edge-based approach to AQM
based on the following insights: (1) As long as appropriate
packets are chosen, it does not matter where they are being
dropped (or marked) – whether it is inside the core routers
or at the edge. (2) In addition to scheduling packets LSTF
produces a very useful by-product, carried by the slack
values in the packets, which gives us a precise measure of
the one-way queuing delay seen by the packet and can be
used for AQM. For obtaining this by-product, an extra field
is added to the packet header at the ingress which stores the
assigned slack value (called the initial slack field), which
remains untouched as the packet traverses the network.
The other field where the ingress stores the assigned slack
value is updated as per the LSTF algorithm; we call this the
current slack field. The precise amount of queuing delay
seen by the packet within the network (or the used slack
value) can be computed at the edge by simply comparing
the initial slack field and the current slack field.

We evaluate our edge-based approach to AQM in the
context of (1) CoDel [32], the state-of-the-art AQM scheme
for wide area networks and (2) ECN used with DCTCP [9],
the state-of-the-art AQM scheme for datacenters.

4.1 Emulating CoDel from Edge

Background: In CoDel, the amount of time a packet has
spent in a queue is recorded as the sojourn time. A packet
is dropped if its sojourn time exceeds a fixed target (set
to 5ms [33]), and if the last packet drop happened beyond
a certain interval (initialized to 100ms [33]). When a
packet is dropped, the interval value is reduced using a
control law, which divides the initial interval value by the
square root of the number of packets dropped. The interval
is refreshed (re-initialized to 100ms) when the queue
becomes empty, or when a packet sees a sojourn time less
than the target.9 An extension to CoDel is FQ-CoDel [25],
where the scheduler round-robins across flows and the
CoDel control loop is applied to each flow individually.
The interval for a flow is refreshed when there are no more
packets belonging to that flow in the queue. FQ-CoDel
is considered to be better than CoDel in all regards , even
by one of the co-developers of CoDel [4].

Edge-CoDel: We aim to approximate FQ-CoDel from
the edge by using LSTF to implement per-flow fairness in
routers (as in §3.3). We then compute the used slack value
at the egress router for every packet, as described above,
and run the FQ-CoDel logic for when to drop packets for
each flow, keeping the control law and the parameters (the
target value and the initial interval value) the same as in

9CoDel is a little more complicated than this, and while our
implementation follows the CoDel specification [33], our explanation
has been simplified, highlighting only the relevant points for brevity.

9

510 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Expt. Setup rest Avg FCT across bytes (s) Avg RTT across bytes (s)
(Mbps) FIFO FQ FQ-

CoDel
FQ w/ Edge-

CoDel
LSTF

w/ Edge-
CoDel

FIFO FQ FQ-
CoDel

FQ w/ Edge-
CoDel

LSTF
w/ Edge-
CoDel

I2 1Gbps-10Gbps at 70% util. 100 0.811 0.622 0.642 0.633 0.641 0.0756 0.0733 0.0642 0.0646 0.0661
I2 1Gbps-1Gbps at 70% util. 100 0.766 0.630 0.642 0.637 0.658 0.0716 0.0702 0.0639 0.0643 0.0666

I2 / 10 at 30% util. 40 0.918 0.836 0.897 0.887 0.907 0.0998 0.1085 0.0792 0.0798 0.0826
I2 / 10 at 50% util. 30 1.706 1.214 1.430 1.369 1.427 0.1384 0.1752 0.0901 0.0918 0.1001
I2 / 10 at 70% util. 10 4.837 2.295 3.687 3.738 3.739 0.2779 0.3752 0.1182 0.1281 0.1388

I2 / 10, half RTTs at 70% util. 10 4.569 2.023 3.196 3.245 3.405 0.2555 0.3607 0.0995 0.1131 0.1165
I2 / 10, double RTTs at 70% util. 10 5.098 2.769 4.243 4.125 4.389 0.325 0.4172 0.1591 0.1640 0.1843

Rocketfuel at 70% util. 100 0.964 0.796 0.840 0.813 0.835 0.0922 0.0991 0.0794 0.0788 0.0836

Figure 6: The figures show the average FCT and RTT values for I2 / 10 at 70% utilization (LSTF uses fairness slack assignment with rest =10Mbps).
The error bars indicate the 10th and the 99th percentile values and the y-axis is in log-scale. The table indicates the average FCT and RTTs (across
bytes) for varying settings.

FQ-CoDel. We call this approach Edge-CoDel.
There are only two things that change in Edge-CoDel

as compared to FQ-CoDel. First, instead of looking at
the sojourn time of each queue individually, Edge-CoDel
looks at the total queuing time of the packet across the
entire network. The second change is with respect to how
the CoDel interval is refreshed. As mentioned before, in
traditional FQ-CoDel, there are two events that trigger a
refresh in the interval (i) when a packet’s sojourn time is
less than the target and (ii) when all the queued-up packets
for a given flow have been transmitted. While Edge-CoDel
can react to the former, it has no explicit way of knowing
the latter. To address this, we refresh the interval if the
difference in the send time of two consecutive packets
(found using TCP timestamps that are enabled by default)
is more than a certain threshold. Clearly, this refresh
threshold must be greater than CoDel’s target queuing
delay value. We find that a refresh threshold of 2-4 times
the target value (10-20ms) works reasonably well.

Evaluation: In our experiments, we compare four differ-
ent schemes: (1) FIFO without AQM (to set a baseline), (2)
FQ without AQM (to see the effects of FQ on its own), (3)
FQ-CoDel (to provide the state-of-the-art comparison) (4)
LSTF scheduling (with slacks assigned to meet the fairness
objective using appropriate rest values) in conjunction with
Edge-CoDel. As we move from (3) to (4), we make two
transitions – first is with respect to the scheduling done in-
side the network (perfect isolation with FQ vs approximate
isolation with LSTF) and the second is the shift of AQM
logic from inside the network to the edge. Therefore, as
an incremental step in between the two transitions, we also
provide results for FQ with Edge-CoDel, where routers
do FQ across flows (with the slack values maintained only

for book-keeping) and AQM is done by Edge-CoDel. This
allows us see how well Edge-CoDel works with perfect
per-router isolation. The refresh threshold we use for
Edge-CoDel in both cases is 20ms (4 times the CoDel
target value). The buffer size is increased to 50MB so that
AQM kicks in before a natural packet drop occurs.

Figure 6 shows our results for varying settings and
schemes. The main metrics we use for evaluation are the
FCTs and the per-packet RTTs, since the goal of an AQM
scheme is to maintain high throughput (or small FCTs)
while keeping the RTTs small. The two graphs show the
average FCT and the average RTT across flows bucketed
by their size for the I2 / 10 topology at 70% utilization
(where AQM produces a bigger impact compared to our
default case). As expected, we find that while FQ helps
in reducing the FCT values as compared to FIFO, it results
in significantly higher RTTs than FIFO for long flows.
FQ-CoDel reduces the RTT seen by long flows compared
to FQ (with the short flows having RTT smaller than FIFO
and comparable to FQ). What is new is that, shifting the
CoDel logic to the edge through Edge-CoDel while doing
FQ in the router makes very little difference as compared
to FQ-CoDel. As we experiment with varying settings,
we find that in some cases, FQ with Edge-CoDel results
in slightly smaller FCTs at the cost of slightly higher
RTTs than FQ-CoDel. We believe that this is due to the
difference in how the CoDel interval is refreshed with
Edge-CoDel and with in-router FQ-CoDel. Replacing the
scheduling algorithm with LSTF again produces minor
differences in the results compared to FQ-CoDel. Both
the FCT and the RTT are slightly higher than FQ-CoDel
for almost all cases, and we attribute the differences to
LSTF’s approximation of round-robin service across flows.
Nonetheless, the average FCTs obtained are significantly

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 511

Util. Avg FCT (s) Avg RTT (ms)
FIFO
w/ No
ECN

FIFO
w/

ECN

LSTF
w/ Edge-

ECN

FIFO
w/ No
ECN

FIFO
w/

ECN

LSTF
w/ Edge-

ECN
30% 0.0020 0.0011 0.0011 0.2069 0.1123 0.1077
50% 0.0219 0.0086 0.0079 0.3425 0.1601 0.1477
70% 0.0501 0.0241 0.0240 0.4497 0.2616 0.2494

Table 3: DCTCP performance with no ECN, ECN (in-switch) and
Edge-ECN for the datacenter topology at varying utilizations.

lower than FIFO and the average RTTs are significantly
lower than both FIFO and FQ for all cases.

Varying the refresh threshold used for Edge-CoDel
produces minor differences in the aggregate results, a
detailed evaluation of which can be found in Appendix D.

4.2 Emulating ECN for DCTCP from Edge

Background: DCTCP [9] is a congestion control scheme
for datacenters that uses ECN marks as a congestion signal
to control the queue size before a packet drop occurs. It
requires the routers to mark the packets whenever the
instantaneous queue size goes beyond a certain threshold
K. These markings are echoed back to the sender with the
acknowledgments and the sender decreases its sending
rate in proportion to the ECN marked packets.

Edge-ECN: The marking process can be moved to the
edge (or the receiving endhost) by simply marking a
packet if its queuing delay (computed, as in §4.1, by
subtracting the initial slack value from the current slack
value) is greater than the transmission time of K packets.
This transmission time is easy to compute in datacenters
where the link capacities are known.

Evaluation: The results for varying utilization levels are
shown in Table 3. We compare Edge-ECN running LSTF
in the routers (with all packets initialized to the same slack
value) with in-switch ECN running FIFO in the routers,
both using the same unmodified DCTCP algorithm at
the endhosts. We use the DCTCP default value of K=15
packets as the marking threshold. We also present results
for DCTCP with no ECN marks (which reduces to TCP)
and FIFO scheduling, as a comparison point. We see
that both in-switch ECN and Edge-ECN DCTCP have
comparable performance, with significantly lower average
FCTs and RTTs than no ECN TCP.

Summary: The used slack information available as a
by-product from LSTF can be effectively used to emulate
an AQM scheme from the edge of the network.

5 LSTF Implementation
In this section, we study the feasibility of implementing
LSTF in the routers. We start with showing that given a
switch that supports fine-grained priority scheduling, it
is trivial to implement LSTF on it using programmable
header processing mechanisms [14, 15]. We then explore
two different proposals for implementing fine-grained
priorities in hardware.

Using fine-grained priorities to implement LSTF: Con-
sider a packet p that arrives at a router α at time i(p,α),
with slack slack(p,α). As mentioned in §2, LSTF prior-
itizes packets based on their remaining slack value at the
time when their last bit is transmitted. This term is given by
(slack(p,α)−(t−i(p,α))+T (p,α)) at any time t while p
is waiting at α . T (p,α) is the transmission time of p at α ,
which is added to account for the remaining slack of p, rel-
ative to other packets, when its last bit is transmitted. Since
t is same for all packets at any given point of time when
the packets are being compared at α , the deciding term is
(slack(p,α)+ i(p,α)+T (p,α)). With slack(p,α) being
available in the packet header and the values of i(p,α) and
T (p,α) being available at α when the packet arrives at the
router, this term can be easily computed and attached to
the packet as its priority value. Right before a packet p is
transmitted by the router, its slack can be overwritten by
the remaining slack value, computed by subtracting the
stored priority value (slack(p,α)+i(p,α)+T (p,α)) with
the sum of the current time and T (p,α). We verified that
these steps can be easily executed using P4 [14].

Implementing fine-grained priorities in hardware:
Fine-grained priorities can be implemented by using
specialized data-structures such as pipelined heap
(p-heap) [13, 26], which can scale to very large buffers
(>100MB), because the pipeline stage time is not affected
by the queue size. However, p-heaps are difficult to
implement and verify due to their intricate design and large
chip area, thus resulting in higher costs. The p-heap imple-
mented by Ioannou et. al. [26] using a 130nm technology
node has a per-port area overhead of 10% (over a typical
switching chip with minimum area of 200mm2 [23]) 10.

Leveraging the advancement in hardware technology
over the years, Sivaraman et. al. [41] propose a simpler
solution, based on bucket-sort algorithm. The area over-
head reduces to only 1.65% (over a baseline single-chip
shared-memory switch such as the Broadcom Trident [2]),
when implemented using a 16nm technology node. While
this approach is much cheaper to implement, it cannot
scale to very large buffer sizes (beyond a few tens of MBs).

Thus, given these choices, it does not appear a signif-
icant challenge to implement LSTF at linespeed, though
the key trade-offs between cost, simplicity and buffer
limits need to be taken into consideration. To support
a scale-out infrastructure, most datacenters today use a
large number of inexpensive single chip shared memory
switches [40], which have shallow buffers (around 10MB).
The low overhead bucket-sort based approach [41] towards
implementing LSTF would be ideal in such a setup. Core
routers in wide area, on the other hand, have deep buffers (a
few hundred MBs) and would require the more expensive

10130nm technology node was developed in 2001; the overheads
would be lower for an implementation using the latest technology (14nm).

11

512 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

p-heap based implementation [13, 26]. While they are
fewer in number [29], they may cost up to millions of dol-
lars. Supporting the slightly more expensive, but flexible
LSTF implementation would, to a large extent, obviate the
need for replacing these expensive routers with changing
demands, resulting in long-term savings. We are also op-
timistic that advancements in hardware technology would
further reduce the cost overheads of implementing LSTF.

6 Related Work
The literature on packet scheduling is vast. Here we only
touch on a few topics most relevant to our work.

The real-time scheduling literature has studied the
optimality of scheduling algorithms11 (in particular EDF
and LSTF) for single and multiple processors [28, 30].
Liu and Layland [30] proved the optimality of EDF for
a single processor in hard real-time systems. LSTF was
then shown to be optimal for single-processor scheduling,
while being more effective than EDF (though not optimal)
for multi-processor scheduling [28]. In the context of
networking, [17] provides theoretical results on emulating
the schedules produced by a single output-queued switch
using a combined input-output queued switch with a
smaller speed-up of at most two. To the best of our
knowledge, the optimality or universality of a scheduling
algorithm for a network of inter-connected resources (in
our case, switches) has never been studied before.

The authors of [42] propose the use of programmable
hardware in the dataplane for packet scheduling and queue
management, in order to achieve various objectives. The
proposal shows that there is no “silver bullet” solution, by
simulating three schemes (FQ, CoDel+FQ, CoDel+FIFO)
competing on three different metrics. As mentioned earlier,
our work is inspired by the questions the authors raise; we
adopt a broader view of scheduling in which packets can
carry dynamic state leading to the results presented here. A
recent proposal for programmable packet scheduling [41],
developed in parallel to UPS, uses an hierarchy of priority
and calendar queues to express different scheduling
algorithms on a single switch hardware. The proposed
solution is able to achieve better expressiveness than LSTF
by allowing packet headers to be re-initialized at every
switch. UPS assumes a stronger model, where the header
initialization is restricted to the ingress routers, while the
core switches remain untouched. Moreover, we provide
theoretical results which shed light on the effectiveness
of both of these models.

7 Conclusion
This paper started with a theoretical perspective by
analyzing whether there exists a single universal packet
scheduling algorithm that can perfectly replay all viable

11A scheduling algorithm is said to be optimal if it can (feasibly)
schedule a set of tasks that can be scheduled by any other algorithm.

schedules. We proved that while such an algorithm cannot
exist, LSTF comes closest to being one (in terms of the
number of congestion points it can handle). We then
empirically demonstrated the ability of LSTF to approxi-
mately replay a wide range of scheduling algorithms under
varying network settings. Replaying a given schedule,
while of theoretical interest, requires the knowledge of
viable output times, which is not available in practice.

Hence, we next considered if LSTF can be used in prac-
tice to achieve various performance objectives. We showed
via simulation how LSTF, combined with heuristics to set
the slack values at the ingress, can do a reasonable job of
minimizing average flow completion time, minimizing
tail latencies, and achieving per-flow fairness. We also
discussed some limitations of LSTF (with respect to
achieving class-based fairness and traffic shaping).

Noting that scheduling is often used along with AQM
to prevent queue build up, we then showed how LSTF can
be used to implement versions of AQM from the network
edge, with performance comparable to FQ-CoDel and to
DCTCP with ECN (the state-of-the art AQM schemes for
wide-area and datacenters respectively).

While an initial step towards understanding the notion of
a Universal Packet Scheduling algorithm, our work leaves
several theoretical questions unanswered, three of which
we mention here. First, we showed existence of a UPS
with omniscient header initialization, and nonexistence
with limited-information initialization. What is the least
information we can use for header initialization in order to
achieve universality? Second, we showed that, in practice,
the fraction of overdue packets is small, and most are only
overdue by a small amount. Are there tractable bounds on
both the number of overdue packets and/or their degree of
lateness? Third, while we have a formal characterization
for the scope of LSTF with respect to replaying a given
schedule, and we have simulation evidence of LSTF’s
ability to meet several performance objectives, we do
not yet have any formal model for the scope of LSTF in
meeting these objectives. Can one describe the class of
performance objectives that LSTF can meet? Also, are
there any new objectives that LSTF allows us to achieve?

8 Acknowledgments
We are thankful to Satish Rao for his helpful tips regarding
the theoretical aspects of this work and to Anirudh Sivara-
man for liberally sharing his insights on hardware imple-
mentation of fine-grained priorities. We would also like
to thank Aisha Mushtaq, Kay Ousterhout, Aurojit Panda,
Justine Sherry, Ion Stoica and our anonymous HotNets and
NSDI reviewers for their thoughtful feedback. Finally, we
would like to thank our shepherd Srikanth Kandula for help-
ing shape the final version of this paper. This work was sup-
ported by Intel Research and by the National Science Foun-
dation under Grant No. 1117161, 1343947 and 1040838.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 513

References
[1] Global Consortium to Construct New Cable

System Linking US and Japan to Meet In-
creasing Bandwidth Demands. http://
googlepress.blogspot.com/2008/02/
global-consortium-to-construct-new_
26.html.

[2] High Capacity StrataXGSTrident II Ethernet
Switch Series. http://www.broadcom.com/
products/Switching/Data-Center/
BCM56850-Series.

[3] Internet2. http://www.internet2.edu/.

[4] Kathie Nichol’s CoDel presented by Van Jacobson.
http://www.ietf.org/proceedings/
84/slides/slides-84-tsvarea-4.pdf.

[5] Microsoft Invests in Subsea Cables to Connect Data-
centers Globally. http://goo.gl/GoXfxH.

[6] NS-2. http://www.isi.edu/nsnam/ns/.

[7] NS-3. http://www.nsnam.org/.

[8] Token Bucket Filters. http://lartc.org/
manpages/tc-tbf.html.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. Data Center TCP (DCTCP). In Proc. ACM
SIGCOMM, 2010.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pFabric:
Minimal Near-optimal Datacenter Transport. In
Proc. ACM SIGCOMM, 2013.

[11] M. Allman. Comments on bufferbloat. ACM SIG-
COMM Computer Communication Review, 2013.

[12] T. Benson, A. Akella, and D. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc.
ACM Internet Measurement Conference (IMC),
2012.

[13] R. Bhagwan and B. Lin. Fast and Scalable Priority
Queue Architecture for High-Speed Network
Switches. In Proc. IEEE Infocom, 2000.

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Programming
Protocol-independent Packet Processors. ACM SIG-
COMM Computer Communication Review, 2014.

[15] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware
for SDN. In Proc. ACM SIGCOMM, 2013.

[16] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian. Fabric: A Retrospective on
Evolving SDN. In Proc. ACM HotSDN, 2012.

[17] S.-T. Chuang, A. Goel, N. McKeown, and B. Prab-
hakar. Matching output queueing with a combined
input/output-queued switch. IEEE Journal on
Selected Areas in Communications, 1999.

[18] B. Claise. Cisco systems NetFlow services export
version 9. RFC 3954, 2004.

[19] D. D. Clark, S. Shenker, and L. Zhang. Supporting
Real-time Applications in an Integrated Services
Packet Network: Architecture and Mechanism.
ACM SIGCOMM Computer Communication Review,
1992.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. ACM SIG-
COMM Computer Communication Review, 1989.

[21] N. Dukkipati and N. McKeown. Why Flow-
Completion Time is the Right Metric for Congestion
Control. ACM SIGCOMM Computer Communica-
tion Review, 2006.

[22] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Trans. Netw., 1993.

[23] G. Gibb, G. Varghese, M. Horowitz, and N. McK-
eown. Design principles for packet parsers. In
ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS), 2013.

[24] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Oblivious
Network Design. In Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, 2006.

[25] T. Hoeiland-Joergensen, P. McKenney, D. Taht,
J. Gettys, and E. Dumazet. FlowQueue-Codel. IETF
Informational, 2013.

[26] A. Ioannou and M. G. H. Katevenis. Pipelined
Heap (Priority Queue) Management for Advanced
Scheduling in High-speed Networks. IEEE/ACM
Trans. Netw., 2007.

[27] R. Jain, D.-M. Chiu, and W. Hawe. A Quantitative
Measure Of Fairness And Discrimination For

13

514 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Resource Allocation In Shared Computer Systems.
CoRR, 1998.

[28] J. Y.-T. Leung. A new algorithm for scheduling
periodic, real-time tasks. Algorithmica, 1989.

[29] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
First-principles Approach to Understanding the
Internet’s Router-level Topology. In Proc. ACM
SIGCOMM, 2004.

[30] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM (JACM), 1973.

[31] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Recursively Cautious Congestion Control. In Proc.
USENIX NSDI, 2014.

[32] K. Nichols and V. Jacobson. Controlling Queue
Delay. Queue, 2012.

[33] K. Nichols and V. Jacobson. Controlled delay active
queue management: draft-nichols-tsvwg-codel-02.
Internet Requests for Comments-Work in Progress,
http://tools. ietf. org/id/draft-nichols-tsvwg-codel-01.
txt, Tech. Rep, 2014.

[34] A. K. Parekh and R. G. Gallager. A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single-node
Case. IEEE/ACM Trans. Netw., 1993.

[35] P. Phaal, S. Panchen, and N. McKee. InMon
corporation’s sFlow: A method for monitoring traffic
in switched and routed networks. RFC 3176, 2001.

[36] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker. Software-defined
Internet Architecture: Decoupling Architecture from
Infrastructure. In Proc. ACM HotNets, 2012.

[37] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN)
to IP, 2001.

[38] S. Blake and D. Black and M. Carlson and E. Davies
and Z. Wang and W. Weiss. An Architecture for
Differentiated Services. RFC 2475, 1998.

[39] M. Shreedhar and G. Varghese. Efficient Fair Queue-
ing Using Deficit Round Robin. ACM SIGCOMM
Computer Communication Review, 1995.

[40] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stu-
art, and A. Vahdat. Jupiter Rising: A Decade of Clos

Topologies and Centralized Control in Google’s Dat-
acenter Network. In Proc. ACM SIGCOMM, 2015.

[41] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole,
S.-T. Chuang, T. Edsall, M. Alizadeh, S. Katti,
N. McKeown, and H. Balakrishnan. Towards
Programmable Packet Scheduling. In Proc. ACM
HotNets, 2015.

[42] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No Silver Bullet: Extending SDN
to the Data Plane. In Proc. ACM HotNets, 2013.

[43] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP Topologies with Rocketfuel. In Proc. ACM
SIGCOMM, 2002.

[44] I. Stoica, S. Shenker, and H. Zhang. Core-stateless
Fair Queueing: A Scalable Architecture to Approx-
imate Fair Bandwidth Allocations in High-speed
Networks. IEEE/ACM Trans. Netw., 2003.

[45] I. Stoica and H. Zhang. Providing Guaranteed
Services Without Per Flow Management. In Proc.
ACM SIGCOMM, 1999.

[46] L. Zhang. Virtual Clock: A New Traffic Control
Algorithm for Packet Switching Networks. ACM SIG-
COMM Computer Communication Review, 1990.

Appendix
A Proofs for Theoretical Results
This section contains theoretical proofs for the analytical
replayability results presented in §2. We begin with
defining some notations used throughout in the proofs.

A.1 Notations

We use the following notations for our proofs, some of
which have been already defined in the main text:

Relevant nodes:
src(p): Ingress of a packet p.
dest(p): Egress of a packet p.

Relevant time notations:
T (p,α): Transmission time of a packet p at node α .
o(p,α): Time when the first bit of p is scheduled by node
α in the original schedule.
o(p)= o(p,dest(p))+T (p,dest(p)): Time when the last
bit of p exits the network in the original schedule (which
is non-preemptive).
o′(p): Time when the last bit of p exits the network in
the replay (which may be preemptive in our theoretical
arguments).
i(p,α) and i′(p,α): Time when p arrives at node α in the
original schedule and in the replay respectively.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 515

i(p)= i(p,src(p))= i′(p): Arrival time of p at its ingress.
This remains the same for both the original schedule and
the replay.
tmin(p,α,β): Minimum time p takes to start from node
α and exit from node β in an uncongested network.
It therefore includes the propagation delays and the
store-and-forward delays of all links in the path from α
to β and the transmission delays at α and β . Handling the
edge case: tmin(p,α,α)=T (p,α)
slack(p) = o(p)− i(p)− tmin(p, src(p),dest(p)): Total
slack of p that gets assigned at its ingress. It denotes the
amount of time p can wait in the network (excluding the
time when any of its bits are getting serviced) without
missing its target output time.
slack(p,α,t) = o(p)− t − tmin(p,α,dest(p)) + T (p,α):
Remaining slack of the last bit of p at time t when it is at
node α . We derive this expression in Appendix A.4.

Other miscellaneous notations:
path(p,α,β): The ordered set of nodes and links in the
path taken by p to go from α to β . The set also includes
α and β as the first and the last nodes.
path(p)=path(p,src(p),dest(p))
pass(α): Set of packets that pass through node α .

A.2 Existence of a UPS under Omniscient Header
Initialization

Algorithm: At the ingress, insert an n-dimensional
vector in the packet header, where the ith element contains
o(p,αi), αi being the ith hop in path(p). Every time a
packet p arrives at the router, the router pops the value at
the head of the vector in p’s header and uses that as the
priority for p (earlier values of output times get higher
priority). This can perfectly replay any schedule.

Proof: We can prove that the above algorithm will result
in no overdue packets (which do not meet their original
schedule’s target) using the following two theorems:
Theorem 1: If for any node α , ∃p′ ∈ pass(α), such
that using the above algorithm, the last bit of p′

exits α at time (t ′ > (o(p′, α) + T (p′, α))), then
(∃p∈pass(α) | i′(p,α)≤ t ′ and i′(p,α)>o(p,α)).
Proof by contradiction: Consider the first such p∗ ∈
pass(α) that gets late at α (i.e. its last bit exits α at time
t∗>(o(p∗,α)+T (p∗,α))). Suppose the above condition is
not true i.e. (∀p∈pass(α) | i′(p,α)≤o(p,α) or i′(p,α)>
t∗). In other words, if p arrives at or before time t∗, it also
arrives at or before time o(p,α). Given that all bits of p∗

arrive at or before time t∗, they also arrive at or before time
o(p∗,α). The only reason why the last bit of p∗ would
wait until time (t∗ > o(p∗,α) + T (p∗,α)) in our work-
conserving replay is if some other bits (belonging to higher
priority packets) were being scheduled after time o(p∗,α),
resulting in p∗ not being able to complete its transmission
by time (o(p∗,α)+T (p∗,α)). However, as per our algo-

rithm, any packet phigh having a higher priority than p∗ at α
must have been scheduled before p∗ in the original sched-
ule, implying that (o(phigh,α)+T (phigh,α))≤ o(p∗,α).
12 Therefore, some bits of phigh being scheduled after
time o(p∗,α), implies them being scheduled after time
(o(phigh, α) + T (phigh, α)). This means that phigh is
already late and contradicts our assumption that p∗ is the
first packet to get late. . Hence, Theorem 1 is proved by
contradiction.
Theorem 2: ∀α,(∀p∈pass(α) | i′(p,α)≤ i(p,α)).
Proof by contradiction: Consider the first time when
some packet p∗ arrives late at some node α∗ (i.e.
i′(p∗,α∗)> i(p∗,α∗)). In other words, α∗ is the first node
in the network to see a late packet arrival, and p∗ is the
first late arriving packet. Let αprev be the node visited
by p∗ just before arriving at α∗. p∗ can arrive at a time
later than i(p∗,α∗) at α∗ only if the last bit of p∗ exits
αprev at time tprev > o(p∗,αprev) + T (p∗,αprev). As per
Theorem 1 above, this is possible only if some packet
p′ (which may or may not be the same as p∗) arrives
at αprev at time i′(p′,αprev) > o(p′,αprev) ≥ i(p′,αprev)
and i′(p′,αprev)≤ tprev < i′(p∗,α∗). This contradicts our
assumption that α∗ is the first node to see a late arriving
packet. Therefore, ∀α,(∀p∈pass(α) | i′(p,α)≤ i(p,α)).

Combining the two theorems above: Since
∀α(∀p ∈ pass(α) | i′(p, α) ≤ i(p, α)), with the
above algorithm, ∀α(∀p ∈ pass(α)), all bits of p exit α
before (o(p,α)+T (p,α)). Therefore, the algorithm can
perfectly replay any viable schedule.

A.3 Nonexistence of a UPS under black-box initial-
ization

Proof by counter-example: Consider the example shown
in Figure 7. For simplicity, assume all the propagation
delays are zero, the transmission time for each congestion
point (shaded in gray) is 1 unit and the uncongested (white)
routers have zero transmission time. 13 All packets are of
the same size.

The table illustrates two cases. For each case, a
packet’s arrival and scheduling time (the time when the
packet is scheduled by the router) at each node through
which it passes are listed. A packet represented by p
belongs to flow P, with ingress SP and egress DP, where
P ∈ {A,B,C,X ,Y,Z}. The packets have the same path in
both cases. For example, a belongs to Flow A, starts at
ingress SA, exits at egress DA and passes through three con-
gestion points in its path α0, α1 and α2; x belongs to Flow
X, starts at ingress SX , exits at egress DX and passes through
three congestion points in its path α0, α3 and α4; and so on.

The two critical packets we care about in this example
12Given that the original schedule is non-preemptible, the next packet

gets scheduled only after the previous one has completed its transmission.
13These assignments are made for simplicity of understanding.

The example will hold for any reasonable value of propagation and
transmission delays.

15

516 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

SX	

SA	
 DA	

DX	

SB	

DB	

SC	

DC	

SY	

SZ	
 DY	

DZ	

α0	
 α1	
 α2	

α3	

α4	

Node Packet(arrival time, scheduling time)
Case 1

α0 a(000,0); x(000,1)
α1 a(1,1), b1(2,2), b2(3,3),b3(4,4)
α2 c1(2,2), c2(3,3); a(2,444)
α3 x(2,2), y1(2,3), y2(3,4)
α4 z(2,2), x(3,333)

Case 2
α0 x(000,0); a(000,1)
α1 a(2,2), b1(2,3), b2(3,4),b3(4,5)
α2 c1(2,2), c2(3,3), a(3,444)
α3 x(1,1), y1(2,2), y2(3,3)
α4 z(2,2), x(2,333)

Figure 7: Example showing non-existence of a UPS with Blackbox
Initialization. A packet represented by p belongs to flow P, with ingress
SP and egress DP, where P ∈ {A,B,C,X ,Y,Z}. For simplicity assume
all packets are of the same size and all links have a propagation delay
of zero. All uncongested routers (white), ingresses and egresses have
a transmission time of zero. The congestion points (shaded gray) have
transmission times of T =1 unit.

are a and x, which interact with each-other at their first
congestion point α0, being scheduled by α0 at different
times in the two cases (a before x in Case 1 and x before
a in Case 2). But, notice that for both cases,
1. a enters the network from its ingress SA at congestion

point α0 at time 0, and passes through two other
congestion points α1 and α2 before exiting the network
at time (4+1) 14.

2. x enters the network from its ingress SX at congestion
point α0 at time 0, and passes through two other
congestion points α3 and α4 before exiting the network
at time (3+1).
a interacts with packets from Flow C at its third

congestion point α2, while x interacts with a packet from
Flow Z at its third congestion point α4. For both cases,
1. Two packets of Flow C (c1,c2) enter the network at

times 2 and 3 at α2 before they exit the network at time
(2+1) and (3+1) respectively.

2. z enters the network at time 2 at α4 before exiting at

14+1 is added to indicate transmission time at the last congestion
point. As mentioned before, we assume the propagation delay to the
egress and the transmission time at the egress are both 0.

time 2+1.
The difference between the two cases comes from how a

interacts with packets from Flow B at its second congestion
point α1 and how x interacts with packets from Flow Y
at its second congestion points α3. Note that α1 and α3 are
the last congestion points for Flow B and Flow Y packets
respectively and their exit times from these congestion
points directly determine their exit times from the network.
1. Three packets of Flow B (b1,b2,b3) enter the network

at times 2, 3 and 4 respectively at α1. In Case 1, they
leave α1 at times (2+1),(3+1),(4+1) respectively.
This provides no lee-way for a at α0, which leaves α1 at
time (1+1), since it is required that α1 must schedule
a by at most time 3 in order for it to exit the network
at its target output time. In Case 2, (b1,b2,b3) leave
at times (3+1),(4+1),(5+1) respectively, providing
lee-way for a at α0, which leaves α1 at time (2+1).

2. Two packets of Flow Y (y1,y2) enter the network at
times 2 and 3 respectively at α3. In Case 1, they leave at
times (3+1),(4+1) respectively, providing a lee-way
for x at α0, which leaves α3 at time (2+ 1). In Case
2, (y1,y2) exit at times (2+ 1),(3+ 1), providing no
lee-way for x at α0, which leaves α3 at time (1+1).
Note that the interaction of a and x with Flow C and

Flow Z at their third congestion points respectively, is
what ensures that their eventual exit time remains the same
across the two cases inspite of the differences in how a
and x are scheduled in their previous two hops.

Thus, we can see that i(a), o(a), i(x), o(x) are the same
in both cases (also indicated in bold blue). Yet, Case 1
requires a to be scheduled before x at α0, else packets will
get delayed at α1, since it is required that α1 schedules a at
a time no more than 3 units if it is to meet its target output
time. Case 2 requires x to be scheduled before a at α0,
else packets will be delayed at α3, where it is required to
schedule x at a time no more than 2 units if it is to meet its
target output time. Since the attributes (i(·),o(·),path(·))
for both a and x are exactly the same in both cases, any
deterministic UPS with Blackbox Initialization will
produce the same order for the two packets at α0, which
contradicts the situation where we want a before x in one
case and x before a in another.

A.4 Deriving the Slack Equation

We now prove that for any packet p waiting at
any node α at time tnow, the remaining slack of
the last bit of p is given by slack(p, α, tnow) =
o(p)−tnow−tmin(p,α,dest(p))+T (p,α).

Let twait(p,α, tnow) denote the total time spent by p
on waiting behind other packets at the nodes in its path
from src(p) to α (including these two nodes) until time
tnow. We define twait(p,α,tnow), such that it excludes the
transmission times at previous nodes which gets captured
in tmin, but includes the local service time received by the

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 517

packet so far at α itself.
slack(p,α,tnow)=slack(p)−twait(p,α,tnow)+T (p,α) (1a)

=o(p)−i(p)−tmin(p,src(p),dest(p))

−twait(p,α,tnow)+T (p,α) (1b)

=o(p)−i(p)−(tmin(p,src(p),α)

+tmin(p,α,dest(p))−T (p,α))

−twait(p,α,tnow)+T (p,α) (1c)

=o(p)−tmin(p,α,dest(p))+T (p,α)

−(i(p)+tmin(p,src(p),α)

−T (p,α)+twait(p,α,tnow)) (1d)

=o(p)−tmin(p,α,dest(p))+T (p,α)−tnow
(1e)

(1a) is straightforward from our definition of LSTF
and how the slack gets updated at every time slice.
T (p,α) is added since α needs to locally consider the
slack of the last bit of the packet in a store-and-forward
network. (1c) then uses the fact that for any α in
path(p), (tmin(p, src(p), dest(p)) = tmin(p, src(p),α) +
tmin(p,α,dest(p))−T (p,α)). T (p,α) is subtracted here as
it is accounted for twice when we break up the equation for
tmin(p,src(p),dest(p)). (1e) then follows from the fact that
the difference between tnow and i(p) is equal to the total
amount of time the packet has spent in the network until
time tnow i.e. (tnow−i(p)=(tmin(p,src(p),α)−T (p,α))+
twait(p,α,tnow)). We need to subtract T (p,α), since by our
definition, tmin(p,src(p),α) includes transmission time of
the packet at α .

A.5 LSTF and EDF Equivalence

In our network-wide extension of EDF scheduling,
every router computes a deadline (or priority) for a
packet p based on the static header value o(p) and
additional state information about the minimum time
the packet would take to reach its destination from
the router. More precisely, each router (say α), uses
priority(p) = (o(p)−tmin(p,α,dest(p))+T (p,α)) to do
priority scheduling, with o(p) being the value carried by
the packet header, initialized at the ingress and remaining
unchanged throughout. EDF is equivalent to LSTF, in that
for a given original schedule, the two produce exactly the
same replay schedule.
Proof: Consider a node α and let P(α,tnow) be the set of
packets waiting at the output queue of α at time tnow. A
packet will then be scheduled by α as follows:
With EDF: Schedule packet ped f (α,tnow), where

ped f (α,tnow)= argmin
p∈P(α,tnow)

(priority(p,α))

priority(p,α)=o(p)−tmin(p,α,dest(p))+T (p,α)

With LSTF: Schedule packet plst f (α,tnow), where

plst f (α,tnow)= argmin
p∈P(α,tnow)

(slack(p,α,tnow))

slack(p,α,tnow)=o(p)−tmin(p,α,dest(p))+T (p,α)−tnow

SA DA

SC

SB

α1 (T = 1)

DB

DC

α3 (T = 0.2)

α2 (T = 0.5)

L

Node Packet(arrival time, scheduling time)
α1 a(0,0),b(0,1)
α2 b(2,2),c(2,2.5)
α3 c(3,3),a(3,3.2)

Figure 8: Example showing replay failure with simple priorities for a
schedule with two congestion points per packet. A packet represented by
p belongs to flow P, with ingress SP and egress DP, where P∈{A,B,C}.
All packets are of the same size. For simplicity assume all links (except
L) have a propagation delay of zero. L has a propagation delay of 2. All
uncongested routers (white circles), ingresses and egresses have a trans-
mission time of zero. The three congestion points – α1,α2,α3 have trans-
mission times of T =1 unit, T =0.5 units and T =0.2 units respectively.

The above expression for slack(p, α, tnow) has
been derived in §A.4. Thus, slack(p, α, tnow) =
priority(p,α)−tnow. Since tnow is the same for all packets,
we can conclude that:

argmin
p∈P(α,tnow)

(slack(p,α,tnow))= argmin
p∈P(α,tnow)

(priority(p,α))

=⇒ plst f (α,tnow)= ped f (α,tnow)

Therefore, at any given point of time, all nodes will
schedule the same packet with both EDF and LSTF
(assuming ties are broken in the same way for both EDF
and LSTF, such as by using FCFS). Hence, EDF and LSTF
are equivalent.

A.6 Simple Priorities Replay Failure for Two
Congestion Points Per Packet

In Figure 8, we present an example which shows that
simple priorities can fail in replay when there are two
congestion points per packet, no matter what infor-
mation is used to assign priorities. At α1, we need to
have priority(a) < priority(b), at α2 we need to have
priority(b) < priority(c) and at α3 we need to have
priority(c) < priority(a). This creates a priority cycle
where we need priority(a)< priority(b)< priority(c)<
priority(a), which can never be possible to achieve with
simple priorities.

We would also like to point out here that priority assign-
ment for perfect replay in networks with single conges-
tion point per packet requires detailed knowledge about
the topology and the input load. More precisely, if a
packet p passes through congestion point αp, then its
priority needs to be assigned as priority(p) = o(p) −
tmin(p,αp,dest(p))+T (p,αp). The proof that this would
always replay schedules with at most one congestion point
per packet follows from the fact that the only scheduling
decision made in a packet p’s path is at the single conges-

17

518 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

tion point αp. This decision, at the single congestion point
in a packet’s path, is the same as what will be made with the
network-wide extension of EDF, which we proved is equiv-
alent to LSTF in §A.5. LSTF, in turn, can always replay
schedules with one (or to be more precise, at most two)
congestion points per packet, as we shall prove in §A.7.

Hence, in order to replay schedules with at most one
congestion per packet using simple priorities, we need to
know where the congestion point occurs in a packet’s path,
along with the final output times, to assign the priorities.
In the absence of this knowledge, priorities cannot replay
even a single congestion point.

A.7 LSTF: Perfect Replay for at most Two Conges-
tion Points per Packet

A.7.1 Main Proof

We now prove that LSTF can replay all schedules with
at most two congestion points per packet. Note that we
work with bits in our proof, since we assume a preemptive
version of LSTF. Due to store-and-forward routers, the
remaining slack of a packet at a particular router is repre-
sented by the slack of the last bit of the packet (with all
other bits of the packet having the same slack as the last bit).

In order for a replay failure to occur, there must be at
least one overdue packet, where a packet p is said to be over-
due if o�(p)>o(p). This implies that p must have spent all
of its slack while waiting behind other packets at a queue
in some node α at say time t, such that slack(p,α,t)< 0.
Obviously, α must be a congestion point.

Necessary Condition for Replay Failure with LSTF:
If a packet p∗ sees negative slack at a congestion point
α when its last bit exits α at time t∗ in the replay (i.e.
slack(p∗,α, t∗) < 0), then (∃p ∈ pass(α) | i�(p,α) ≤
t∗ and i�(p,α)>o(p,α)). We prove this in §A.7.2.

We use the term “local deadline of p at α” for o(p,α),
which is the time at which α schedules p in the original
schedule.

Key Observation: When there are at most two congestion
points per packet, then no packet p can arrive at any con-
gestion point α in the replay, after its local deadline at α
(.i.e. i�(p,α)> o(p,α) is not possible). Therefore, by the
necessary condition above, no packet can see a negative
slack at any congestion point.
Proof by contradiction: Suppose that there exists α∗,
which is the first congestion point (in time) that sees a
packet which arrives after its local deadline at α∗. Let p∗
be this first packet that arrives after its local deadline at α∗
(i�(p∗,α∗)> o(p∗,α∗)). Since there are at most two con-
gestion points per packet, either α∗ is the first congestion
point seen by p∗ or the last (or both).
(1) If α∗ is the first congestion point seen by p∗, then
clearly, i�(p∗,α∗)= i(p∗,α∗)≤o(p∗,α∗). This contradicts
our assumption that i�(p∗,α∗)>o(p∗,α∗).

(2) If α∗ is not the first congestion point seen by p∗, then
it is the last congestion point seen by p∗. If i�(p∗,α∗)>
o(p∗,α∗), then it would imply that p∗ saw a negative slack
before arriving at α∗. Suppose p∗ saw a negative slack at a
congestion point αprev, before arriving at α∗ when its last
bit exited αprev at time tprev. Clearly, tprev < i�(p∗,α∗).
As per our necessary condition, this would imply that
there must be another packet p�, such that i�(p�,αprev)>
o(p�,αprev) and i�(p�,αprev)≤ tprev < i�(p∗,α∗). This con-
tradicts our assumption that α∗ is the first congestion point
(in time) that sees a packet which arrives after its corre-
sponding scheduling time in the original schedule.

Hence, no congestion point can see a packet that arrives
after its local deadline at that congestion point (and there-
fore no packet can get overdue) when there are at most two
congestion points per packet.

A.7.2 Proof for Necessary Condition for Replay Fail-
ure with LSTF

We start this proof with the following observation:

Observation 1: If all bits of a packet p exit a router α by
time o(p,α)+T (p,α), then p cannot see a negative slack
at α .
Proof for Observation 1: As shown previously in §A.4,

slack(p,α,t)=o(p)−tmin(p,α,dest(p))+T (p,α)−t

Therefore,

slack(p,α,o(p,α)+T (p,α))

=o(p)−tmin(p,α,dest(p))+T (p,α)−(o(p,α)+T (p,α))

But, o(p)=o(p,α)+tmin(p,α,dest(p))+wait(p,α,dest(p))

=⇒ slack(p,α,o(p,α)+T (p,α))=wait(p,α,dest(p))

=⇒ slack(p,α,o(p,α)+T (p,α))≥0

where wait(p,α,dest(p)) is the time spent by p in waiting
behind other packets in the original schedule, after it left
α , which is clearly non-negative.

We now move to the main proof for the necessary con-
dition.

Necessary Condition for Replay Failure: If a packet
p∗ sees negative slack at a congestion point α when its last
bit exits α at time t∗ in the replay (i.e. slack(p∗,α,t∗)<0),
then (∃p∈pass(α) | i�(p,α)≤ t∗ and i�(p,α)>o(p,α)).

Proof by Contradiction: Suppose this is not the case
.i.e. there exists p∗ whose last bit exits α at time t∗, such
that slack(p∗,α,t∗) < 0 and (∀p ∈ pass(α) | i�(p,α) >
t∗ or i�(p,α)≤o(p,α)). We can show that if the latter con-
dition holds, then p∗ cannot see a negative slack at α , thus
violating our assumption.

We take the set of all bits which exit α at or before
time t∗ in the LSTF replay schedule. We denote this set
as Sbits(α,t∗). As per our assumption, (∀b∈ Sbits(α,t∗) |
i�(pb,α)≤o(pb,α)), where pb denotes the packet to which

18

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 519

bit b belongs. Note that Sbits(α,t∗) also includes all bits of
p∗, since they all arrive before time t∗.

We now prove that no bit in Sbits(α,t∗) can see a nega-
tive slack (and therefore p∗ cannot see a negative slack at
α), leading to a contradiction. The proof comprises of two
steps:
Step 1: Using the same input arrival times of each packet
at α as in the replay schedule, we first construct a feasi-
ble schedule at α up until time t∗, denoted by FS(α,t∗),
where by feasibility we mean that no bit in Sbits(α,t∗) sees
a negative slack.
Step 2: We then do an iterative transformation of FS(α,t∗)
such that the bits in Sbits(α,t∗) are scheduled in the order of
their least remaining slack times. This reproduces the LSTF
replay schedule from which FS(α,t∗) was constructed in
the first place. However, while doing the transformation we
show how the schedule remains feasible at every iteration,
proving that the LSTF schedule finally obtained is also
feasible up until time t∗. In other words, no packet sees a
negative slack at α in the resulting LSTF replay schedule
up until time t∗, contradicting our assumption that p∗ sees
a negative slack when it exits α at time t∗ in the replay.
We now discuss these two steps in details.

Step 1: Construct a feasible schedule at α up until time t∗
(denoted as FS(α,t∗)) for which no bit in Sbits(α,t∗) sees
a negative slack.
(i) Algorithm for constructing FS(α,t∗): Use priorities to
schedule each bit in Sbits(α,t∗), where ∀b ∈ Sbits(α,t∗) |
priority(b)=o(pb,α). (Note that since both FS(α,t∗) and
LSTF are work-conserving, FS(α,t∗) is just a shuffle of the
LSTF schedule up until t∗. The set of time slices at which
a bit is scheduled in FS(α,t∗) and in the LSTF schedule
up until t∗ remains the same, but which bit gets scheduled
at a given time slice is different.)
(ii) In FS(α, t∗), all bits b in Sbits(α, t∗) exit α by time
o(pb,α)+T (pb,α).
Proof by contradiction: Suppose the statement is not true
and consider the first bit b∗ that exits after time (o(pb∗ ,α)+
T (pb∗ ,α)). We term this as b∗ got late at α due to FS(α,t∗).
Remember that, as per our assumption, (∀b∈Sbits(α,t∗) |
i�(pb,α) ≤ o(pb,α)). Thus, given that all bits of pb∗ ar-
rive at or before time o(pb∗ ,α), the only reason why the
delay can happen in our work-conserving FS(α,t∗) is if
some other higher priority bits were being scheduled after
time o(pb∗ ,α), resulting in pb∗ not being able to complete
its transmission by time (o(pb∗ ,α) + T (pb∗ ,α)). How-
ever, as per our priority assignment algorithm, any bit
b� having a higher priority than b∗ at α must have been
scheduled before the first bit of pb∗ in the non-preemptible
original schedule, implying that (o(pb� ,α)+T (pb� ,α))≤
o(pb∗ ,α). Therefore, a bit b� being scheduled after time
o(pb∗ ,α), implies it being scheduled after time (o(pb� ,α)+
T (pb� ,α)). This contradicts our assumption that b∗ is the
first bit to get late at α due to FS(α,t∗). Therefore, all bits

b in Sbits(α,t∗) exit α by time o(pb,α)+T (pb,α) as per
the schedule FS(α,t∗).
(iii) Since all bits in Sbits(α, t∗) exit by time o(pb,α) +
T (pb,α) due to FS(α,t∗), no bit in Sbits(α,t∗) sees a neg-
ative slack at α (from Observation 1).

Step 2: Transform FS(α, t∗) into a feasible LSTF
schedule for the single switch α up until time t∗.

(Note: The following proof is inspired from the standard
LSTF optimality proof that shows that for a single switch,
any feasible schedule can be transformed to an LSTF (or
EDF) schedule [30]).

Let fs(b,α,t∗) be the scheduling time slice for bit b in
FS(α,t∗). The transformation to LSTF is carried out by
the following pseudo-code:

1: while true do
2: Find two bits, b1 and b2, such that:

(fs(b1,α,t∗)< fs(b2,α,t∗)) and
(slack(b2,α,fs(b1,α,t∗))
<slack(b1,α,fs(b1,α,t∗))) and
(i�(b2,α,t∗)≤ fs(b1,α,t∗))

3: if no such b1 and b2 exist then
4: FS(α,t∗) is an LSTF schedule
5: break
6: else
7: swap(fs(b1,α,t∗),fs(b2,α,t∗)) �

swap the scheduling times of the two bits. 15

8: end if
9: end while

10: Shuffle the scheduling time of the bits belonging to
the same packet, to ensure that they are in order.

11: Shuffle the scheduling time of the same-slack bits
such that they are in FIFO order

Line 7 above will not cause b1 to have a negative
slack, when it gets scheduled at fs(b2,α, t∗) instead of
fs(b1,α,t∗). This is because the difference in slack(b2,α,t)
and slack(b1,α,t) is independent of t and so:

slack(b2,α,fs(b1,α,t∗))<slack(b1,α,fs(b1,α,t∗))
=⇒slack(b2,α,fs(b2,α,t∗))<slack(b1,α,fs(b2,α,t∗))

Since FS(α, t∗) is feasible before the swap,
slack(b2, α, fs(b2, α, t∗)) ≥ 0. Therefore,
slack(b1,α, fs(b2,α,t∗)) > 0 and the resulting FS(α,t∗)
after the swap remains feasible.

Lines 10 and 11 will also not result in any bit getting a
negative slack, because all bits participating in the shuffle
have the same slack at any fixed point of time in α .

Therefore, no bit in Sbits(α,t∗) has a negative slack at
α after any iteration.

Since no bit in Sbits(α,t∗) has a negative slack at α in
the swapped LSTF schedule, it contradicts our statement

15Note that we are working with bits here for easy expressibility. In
practice, such a swap is possible under the preemptive LSTF model.

19

520 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

SB

SA DA

DB

SC

DC

SD

DD

α0 α1 α2

Original Schedule
Node Packet(arrival time, scheduling time)

α0 a(0,0),b(0,1)
α1 a(1,1),c1(2,2),c2(3,3)
α2 d1(2,2),d2(3,3),a(2,4)

LSTF Replay
Node Packet(arrival time, scheduling time)

α0 b(0,0),a(0,1)
α1 c1(2,2),a(2,3), c2(3,4)
α2 d1(2,2),d2(3,3),a(4,4)

Figure 9: Example showing replay failure with LSTF when there is a flow
with three congestion points. A packet represented by p belongs to flow
P, with ingress SP and egress DP, where P∈{A,B,C,D}. For simplicity
assume all links have a propagation delay of zero. All uncongested routers
(white), ingresses and egresses have a transmission time of zero. The three
congestion points (shaded gray) have transmission times of T =1 unit

that p∗ sees a negative slack when its last bit exits α at time
t∗. Hence proved that if a packet p∗ sees a negative slack at
congestion point α when its last bit exits α at time t∗ in the
replay, then there must be at least one packet that arrives at
α in the replay at or before time t∗ and later than the time
at which it is scheduled by α in the original schedule.

A.7.3 Replay Failure Example with LSTF

In Figure 9, we present an example where a flow passes
through three congestion points and a replay failure occurs
with LSTF. When packet a arrives at α0, it has a slack of
2 (since it waits behind d1 and d2 at α2), while at the same
time, packet b has a slack of 1 (since it waits behind a at α0).
As a result, b gets scheduled before a in the LSTF replay. a
therefore arrives at α1 with slack 1 at time 2. c1 with a zero
slack is prioritized over a. This reduces a’s slack to zero
at time 3, when c2 is also present at α1 with zero slack.
Scheduling a before c2, will result in c2 being overdue
(as shown). Likewise, scheduling c2 before a would have
resulted in a getting overdue. Note that in this failure case,
a arrives at α1 at time 2, which is greater than o(a,α1)=1.

B Minimizing Average FCT by using RC3
with LSTF

We now look at how in-network scheduling can be used
along with changes in the endhost TCP stack to minimize
average flow completion times. We use RC3 [31] as
our comparison-point for this objective (as it has better
performance than RCP [21] and is simple to implement).
In RC3 the senders aggressively send additional packets
to quickly use up the available network capacity, but these
packets are sent at lower priority levels to ensure that
the regular traffic is not penalized. Therefore, it allows

Expt. Setup Avg FCT (s)
TCP-
FIFO

RC3-
priorities

RC3-
LSTF

I2 1Gbps-10Gbps at 30% util. 0.145 0.083 0.082
I2 1Gbps-10Gbps at 50% util. 0.159 0.094 0.089
I2 1Gbps-10Gbps at 70% util. 0.180 0.107 0.102
I2 1Gbps-1Gbps at 30% util. 0.134 0.075 0.073

I2 / 10 at 30% util. 0.32 0.215 0.233
Rocketfuel at 30% util. 0.171 0.102 0.101

Figure 10: The graph shows the mean FCT bucketed by flow size for
the I2 1Gbps-10Gbps topology with 30% utilization for regular TCP
using FIFO and for RC3 using priorities and LSTF. The legend indicates
the mean FCT across all flows. The table indicates the mean FCTs for
varying settings.

Figure 11: 20 flows share a single bottleneck link of 1Gbps and a 21st
flow is added after 5ms. The graph shows the rate allocations for an old
flow and the new flow with Fair Queuing and for LSTF with varying rest .

near-optimal bandwidth utilization, while maintaining the
cautiousness of TCP.
Slack Initialization: The slack for a packet p is initialized
as slack(p) = priorc3 ∗D, where priorc3 is the priority of
the packet assigned by RC3 and D is a value much larger
than the queuing delay seen by any packet in the network.
We use a value of D=1 sec for our simulations.
Evaluation: To evaluate RC3 with LSTF, we reuse the
ns-3 [7] implementation of RC3 (along with the same TCP
parameters used by RC3, such as an initial congestion
window of 4), and implement LSTF in ns-3. Figure 10
shows our results. We see that using LSTF with RC3
performs comparable to (and often slightly better than)
using priorities with RC3, both giving significantly lower
FCTs than regular TCP with FIFO.

C Fairness Deep Dive
C.1 Understanding how LSTF provides long-term

fairness

The reason behind why any slack assignment with rest <r∗
leads to convergence to fairness is quite straight-forward
and is explained by the control experiment shown in

20

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 521

Figure 11. 20 long-lived TCP flows share a single
bottleneck link of 1Gbps (giving a fair share rate of
50Mbps) and a 21st flow is added after 5ms. Since the first
20 flows have started early, the queue at the bottleneck link
already contains packets belonging to these flows.

When rest = 50Mbps, the actual queuing delay
experienced by a packet is almost equal to the slack value
assigned to it. Therefore, at any given point of time, the
first packet of each flow present in the queue will have a
slack value which is approximately equal to zero. The next
packet of each flow will have a higher slack value (around
1500bytes/50Mbps = 0.24ms). By the time the correspond-
ing first packets of every flow in the queue have been
transmitted, the slack values of the next packet would also
have been reduced to zero and so on. It therefore produces
a round-robin pattern for scheduling packets across flows,
as is done by FQ. Therefore, when the 21st flow starts at
5ms, with the first packet coming in with zero slack, the
next one with 0.24ms slack and so on, it immediately starts
following the round-robin pattern as well.

However, when rest is smaller than 50Mbps, then the
packets of the old flows already present in the queue have
a higher slack value than what they actually experience
in the network. The first packet of every flow in the queue
therefore has a slack which is more than 0 when the 21st
flow comes in at 5ms. The earlier packets of the new flow
therefore get precedence over any of the existing packets
of the old flows, resulting in the spike in the rate allocated
to the new flow as shown in Figure 11. Nonetheless, with
the slack of every newly arriving packet of the 21st flow
being higher than the previous one and with the slack of
the already queued up packet decreasing with time, the
slack value of the first packet in the queue for new flow
and the old flows soon catch up with each other and the
schedule starts following a round robin pattern again. The
closer rest is to the fair-share rate, the sooner the slack
values of the old flows and the new flow catch up with each
other. The duration for which a packet ends up waiting
in the queue is upper-bounded by the time it would have
waited, had all the flows arrived at the same time and were
being serviced at their fair share rate.

C.2 Weighted Fairness with multiple-bottlenecks

One can see how the above logic can be extended for
achieving weighted fairness. Moreover, when a packet
sees multiple bottlenecks, the slack update (subtraction
of the duration for which the packet waits) at the first
bottleneck ensures that the next bottleneck takes into
account the rate-limiting happening at the first one and
the packets are given precedence accordingly.

We did a control experiment to evaluate weighted fair-
ness with LSTF on a multi-bottleneck topology. We started
three UDP flows with a start-time jitter between 0 and 1ms,

on the topology as shown in Figure 12. We ran the sim-

8Gbps

10Gbps 10Gbps

10Gbps

10Gbps 10Gbps

10Gbps 5Gbps 1Gbps

rest value (Mbps) Expected
Throughput (Mbps)

Achieved
Throughput (Mbps)

A B C A B C A B C

2000 100 100 4761 238 762 4762 238 763
900 100 100 4500 500 500 4499 501 500
500 100 100 4167 500 500 4166 501 500
200 100 100 3333 500 500 3333 501 500
100 100 100 2500 500 500 2500 500 501
100 100 500 2500 167 833 2500 167 834

Figure 12: Weighted Fairness on a multi-bottleneck topology (drawn
above). The link capacities and the source/destination of each flow are
indicated in the figure. Flows A and B share a 5Gbps link and then Flows
B and C share a 1Gbps link.

Refresh
Threshold (ms)

Avg FCT
across bytes (s)

Avg RTT
across bytes (s)

10 3.578 0.143
20 3.739 0.139
30 3.954 0.135
40 4.079 0.132

Table 4: Effect of varying refresh threshold on I2/10 topology at 70%
utilization running LSTF (rest = 10Mbps) with Edge-CoDel.

ulation for 30ms and computed the throughput each flow
received for the last 15ms. We varied the values of rest used
for assigning slacks to each flow, relative to one another,
to assign different weights to different flows. For example,
rest assignment {A :900Mbps,B :100Mbps,C :100Mbps}
results in Flow A getting 9 times more share on the 5Gbps
link than Flow B, with Flows B and C sharing the 1Gbps
link equally. We compute the expected throughput based
on the assigned rest values and find that the throughput
actually achieved is almost the same, as shown in the table.

D Effect of Refresh Threshold on Edge-
CoDel

To see whether our results for Edge-CoDel were highly
dependent on the refresh threshold value, consider Table 4
which shows the average FCT and RTT values for varying
refresh thresholds. We find that there are very minor dif-
ferences in the results as we vary this threshold, because
the dominating cause for refreshing the interval is when
a packet sees a queuing delay less than the CoDel target.
However, the general trend is that increasing the refresh
threshold increases the FCT and decreases the RTT. This
is because with increasing refresh threshold, the interval
is reset to the larger 100ms value less frequently. This re-
sults in more packet drops for the long flows, causing an
increase in FCTs, but a decrease in the RTT values.

21

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 523

Maglev: A Fast and Reliable Software Network Load Balancer

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,

Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,

Wentao Shang†* and Jinnah Dylan Hosein‡*

Google Inc. †UCLA ‡SpaceX

maglev-nsdi@google.com

Abstract

Maglev is Google’s network load balancer. It is a

large distributed software system that runs on commodity

Linux servers. Unlike traditional hardware network load

balancers, it does not require a specialized physical rack

deployment, and its capacity can be easily adjusted by

adding or removing servers. Network routers distribute

packets evenly to the Maglev machines via Equal Cost

Multipath (ECMP); each Maglev machine then matches

the packets to their corresponding services and spreads

them evenly to the service endpoints. To accommodate

high and ever-increasing traffic, Maglev is specifically

optimized for packet processing performance. A single

Maglev machine is able to saturate a 10Gbps link with

small packets. Maglev is also equipped with consistent

hashing and connection tracking features, to minimize

the negative impact of unexpected faults and failures on

connection-oriented protocols. Maglev has been serving

Google’s traffic since 2008. It has sustained the rapid

global growth of Google services, and it also provides

network load balancing for Google Cloud Platform.

1 Introduction

Google is a major source of global Internet traffic [29,

30]. It provides hundreds of user-facing services, in ad-

dition to many more services hosted on the rapidly grow-

ing Cloud Platform [6]. Popular Google services such as

Google Search and Gmail receive millions of queries per

second from around the globe, putting tremendous de-

mand on the underlying serving infrastructure.

To meet such high demand at low latency, a Google

service is hosted on a number of servers located in mul-

tiple clusters around the world. Within each cluster, it

is essential to distribute traffic load evenly across these

servers in order to utilize resources efficiently so that no

single server gets overloaded. As a result, network load

∗Work was done while at Google.

Figure 1: Hardware load balancer and Maglev.

balancers form a critical component of Google’s produc-

tion network infrastructure.

A network load balancer is typically composed of

multiple devices logically located between routers and

service endpoints (generally TCP or UDP servers), as

shown in Figure 1. The load balancer is responsible for

matching each packet to its corresponding service and

forwarding it to one of that service’s endpoints.

Network load balancers have traditionally been imple-

mented as dedicated hardware devices [1, 2, 3, 5, 9, 12,

13], an approach that has several limitations. First, their

scalability is generally constrained by the maximum ca-

pacity of a single unit, making it impossible to keep up

with Google’s traffic growth. Second, they do not meet

Google’s requirements for high availability. Though of-

ten deployed in pairs to avoid single points of failure,

they only provide 1+1 redundancy. Third, they lack the

flexibility and programmability needed for quick itera-

tion, as it is usually difficult, if not impossible, to modify

a hardware load balancer. Fourth, they are costly to up-

grade. Augmenting the capacity of a hardware load bal-

ancer usually involves purchasing new hardware as well

as physically deploying it. Because of all these limita-

tions, we investigated and pursued alternative solutions.

With all services hosted in clusters full of commodity

servers, we can instead build the network load balancer

as a distributed software system running on these servers.

A software load balancing system has many advantages

524 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

over its hardware counterpart. We can address scalabil-

ity by adopting the scale-out model, where the capac-

ity of the load balancer can be improved by increasing

the number of machines in the system: through ECMP

forwarding, traffic can be evenly distributed across all

machines. Availability and reliability are enhanced as

the system provides N+1 redundancy. By controlling

the entire system ourselves, we can quickly add, test,

and deploy new features. Meanwhile, deployment of the

load balancers themselves is greatly simplified: the sys-

tem uses only existing servers inside the clusters. We

can also divide services between multiple shards of load

balancers in the same cluster in order to achieve perfor-

mance isolation.

Despite all the benefits, the design and implementation

of a software network load balancer are highly complex

and challenging. First, each individual machine in the

system must provide high throughput. Let N be the num-

ber of machines in the system and T be the maximum

throughput of a single machine. The maximum capac-

ity of the system is bounded by N×T . If T is not high

enough, it will be uneconomical for the system to pro-

vide enough capacity for all services [22]. The system as

a whole must also provide connection persistence: pack-

ets belonging to the same connection should always be

directed to the same service endpoint. This ensures qual-

ity of service as clusters are very dynamic and failures

are quite common [23, 40].

This paper presents Maglev, a fast and reliable soft-

ware network load balancing system. Maglev has been a

critical component of Google’s frontend serving infras-

tructure since 2008, and currently serves almost all of

Google’s incoming user traffic. By exploiting recent ad-

vances in high-speed server networking techniques [18,

41, 35, 31], each Maglev machine is able to achieve line-

rate throughput with small packets. Through consistent

hashing and connection tracking, Maglev provides reli-

able packet delivery despite frequent changes and unex-

pected failures. While some of the techniques described

in this paper have existed for years, this paper shows how

to build an operational system using these techniques.

The major contributions of this paper are to: 1) present

the design and implementation of Maglev, 2) share ex-

periences of operating Maglev at a global scale, and 3)

demonstrate the capability of Maglev through extensive

evaluations.

2 System Overview

This section provides an overview of how Maglev works

as a network load balancer. We give a brief introduction

to Google’s frontend serving architecture, followed by a

description of how the Maglev system is configured.

Figure 2: Maglev packet flow.

2.1 Frontend Serving Architecture

Maglev is deployed in Google’s frontend-serving loca-

tions, including clusters of varying sizes. For simplicity,

we only focus on the setup in the smaller clusters in this

paper, and briefly describe the larger cluster setup below.

Figure 2 shows an overview of Google’s frontend serving

architecture in the small cluster setup.

Every Google service has one or more Virtual IP ad-

dresses (VIPs). A VIP is different from a physical IP in

that it is not assigned to a specific network interface, but

rather served by multiple service endpoints behind Ma-

glev. Maglev associates each VIP with a set of service

endpoints and announces it to the router over BGP; the

router in turn announces the VIP to Google’s backbone.

Aggregations of the VIP networks are announced to the

Internet to make them globally accessible. Maglev han-

dles both IPv4 and IPv6 traffic, and all the discussion

below applies equally to both.

When a user tries to access a Google service served on

www.google.com, her browser first issues a DNS query,

which gets a response (possibly cached) from one of

Google’s authoritative DNS servers. The DNS server as-

signs the user to a nearby frontend location taking into

account both her geolocation and the current load at each

location, and returns a VIP belonging to the selected lo-

cation in response [16]. The browser will then try to es-

tablish a new connection with the VIP.

When the router receives a VIP packet, it forwards

the packet to one of the Maglev machines in the clus-

ter through ECMP, since all Maglev machines announce

the VIP with the same cost. When the Maglev machine

receives the packet, it selects an endpoint from the set

of service endpoints associated with the VIP, and encap-

sulates the packet using Generic Routing Encapsulation

(GRE) with the outer IP header destined to the endpoint.

When the packet arrives at the selected service end-

point, it is decapsulated and consumed. The response,

when ready, is put into an IP packet with the source ad-

dress being the VIP and the destination address being

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 525

Figure 3: Maglev config (BP stands for backend pool).

the IP of the user. We use Direct Server Return (DSR) to

send responses directly to the router so that Maglev does

not need to handle returning packets, which are typically

larger in size. This paper focuses on the load balancing

of incoming user traffic. The implementation of DSR is

out of the scope of this paper.

The setup for large clusters is more complicated: to

build clusters at scale, we want to avoid the need to

place Maglev machines in the same layer-2 domain as the

router, so hardware encapsulators are deployed behind

the router, which tunnel packets from routers to Maglev

machines.

2.2 Maglev Configuration

As described in the previous subsection, Maglev is re-

sponsible for announcing VIPs to the router and forward-

ing VIP traffic to the service endpoints. Therefore, each

Maglev machine contains a controller and a forwarder

as depicted in Figure 3. Both the controller and the for-

warder learn the VIPs to be served from configuration

objects, which are either read from files or received from

external systems through RPC.

On each Maglev machine, the controller periodically

checks the health status of the forwarder. Depending on

the results, the controller decides whether to announce or

withdraw all the VIPs via BGP. This ensures the router

only forwards packets to healthy Maglev machines.

All VIP packets received by a Maglev machine are

handled by the forwarder. At the forwarder, each VIP

is configured with one or more backend pools. Unless

otherwise specified, the backends for Maglev are service

endpoints. A backend pool may contain the physical IP

addresses of the service endpoints; it may also recur-

Figure 4: Maglev forwarder structure.

sively contain other backend pools, so that a frequently-

used set of backends does not need to be specified repeat-

edly. Each backend pool, depending on its specific re-

quirements, is associated with one or more health check-

ing methods with which all its backends are verified;

packets will only be forwarded to the healthy backends.

As the same server may be included in more than one

backend pool, health checks are deduplicated by IP ad-

dresses to avoid extra overhead.

The forwarder’s config manager is responsible for

parsing and validating config objects before altering the

forwarding behavior. All config updates are committed

atomically. Configuration of Maglev machines within

the same cluster may become temporarily out of sync

due to delays in config push or health checks. However,

consistent hashing will make connection flaps between

Maglevs with similar backend pools mostly succeed even

during these very short windows.

It is possible to deploy multiple shards of Maglevs in

the same cluster. Different Maglev shards are configured

differently and serve different sets of VIPs. Sharding is

useful for providing performance isolation and ensuring

quality of service. It is also good for testing new features

without interfering with regular traffic. For simplicity,

we assume one shard per cluster in this paper.

3 Forwarder Design and Implementation

The forwarder is a critical component of Maglev, as it

needs to handle a huge number of packets quickly and re-

liably. This section explains the design and implementa-

tion details of the key modules of the Maglev forwarder,

as well as the rationale behind the design.

3.1 Overall Structure

Figure 4 illustrates the overall structure of the Maglev

forwarder. The forwarder receives packets from the

3

526 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

NIC (Network Interface Card), rewrites them with proper

GRE/IP headers and then sends them back to the NIC.

The Linux kernel is not involved in this process.

Packets received by the NIC are first processed by the

steering module of the forwarder, which calculates the 5-

tuple hash1 of the packets and assigns them to different

receiving queues depending on the hash value. Each re-

ceiving queue is attached to a packet rewriter thread. The

packet thread first tries to match each packet to a con-

figured VIP. This step filters out unwanted packets not

targeting any VIP. Then it recomputes the 5-tuple hash

of the packet and looks up the hash value in the connec-

tion tracking table (covered in Section 3.3). We do not

reuse the hash value from the steering module to avoid

cross-thread synchronization.

The connection table stores backend selection results

for recent connections. If a match is found and the se-

lected backend is still healthy, the result is simply reused.

Otherwise the thread consults the consistent hashing

module (covered in Section 3.4) and selects a new back-

end for the packet; it also adds an entry to the connection

table for future packets with the same 5-tuple. A packet

is dropped if no backend is available. The forwarder

maintains one connection table per packet thread to avoid

access contention. After a backend is selected, the packet

thread encapsulates the packet with proper GRE/IP head-

ers and sends it to the attached transmission queue. The

muxing module then polls all transmission queues and

passes the packets to the NIC.

The steering module performs 5-tuple hashing instead

of round-robin scheduling for two reasons. First, it helps

lower the probability of packet reordering within a con-

nection caused by varying processing speed of different

packet threads. Second, with connection tracking, the

forwarder only needs to perform backend selection once

for each connection, saving clock cycles and eliminat-

ing the possibility of differing backend selection results

caused by race conditions with backend health updates.

In the rare cases where a given receiving queue fills up,

the steering module falls back to round-robin scheduling

and spreads packets to other available queues. This fall-

back mechanism is especially effective at handling large

floods of packets with the same 5-tuple.

3.2 Fast Packet Processing

The Maglev forwarder needs to process packets as fast

as possible in order to cost-effectively scale the serv-

ing capacity to the demands of Google’s traffic. We

engineered it to forward packets at line rate – typically

10Gbps in Google’s clusters today. This translates to

813Kpps (packets per second) for 1500-byte IP packets.

1The 5-tuple of a packet refers to the source IP, source port, desti-

nation IP, destination port and IP protocol number.

Figure 5: Packet movement into and out of the forwarder.

However, our requirements are much more stringent: we

must handle very small packets effectively because in-

coming requests are typically small in size. Assuming IP

packet size is 100 bytes on average, the forwarder must

be able to process packets at 9.06Mpps. This subsection

describes the key techniques we employed to reach and

exceed this packet processing speed.

Maglev is a userspace application running on com-

modity Linux servers. Since the Linux kernel network

stack is rather computationally expensive, and Maglev

doesn’t require any of the Linux stack’s features, it is

desirable to make Maglev bypass the kernel entirely for

packet processing. With proper support from the NIC

hardware, we have developed a mechanism to move

packets between the forwarder and the NIC without any

involvement of the kernel, as shown in Figure 5. When

Maglev is started, it pre-allocates a packet pool that is

shared between the NIC and the forwarder. Both the

steering and muxing modules maintain a ring queue of

pointers pointing to packets in the packet pool.

Both the steering and muxing modules maintain three

pointers to the rings. At the receiving side, the NIC

places newly received packets at the received pointer

and advances it. The steering module distributes the re-

ceived packets to packet threads and advances the pro-

cessed pointer. It also reserves unused packets from the

packet pool, places them into the ring and advances the

reserved pointer. The three pointers chase one another

as shown by the arrows. Similarly, on the sending side

the NIC sends packets pointed to by the sent pointer and

advances it. The muxing module places packets rewrit-

ten by packet threads into the ring and advances the

ready pointer. It also returns packets already sent by the

NIC back to the packet pool and advances the recycled

pointer. Note that the packets are not copied anywhere

by the forwarder.

To reduce the number of expensive boundary-crossing

operations, we process packets in batches whenever pos-

sible. In addition, the packet threads do not share any

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 527

data with each other, preventing contention between

them. We pin each packet thread to a dedicated CPU core

to ensure best performance. With all these optimizations,

Maglev is able to achieve line rate with small packets, as

shown in Section 5.2.

Further, the latency that Maglev adds to the path taken

by each packet is small. Normally it takes the packet

thread about 350ns to process each packet on our stan-

dard servers. There are two special cases in which packet

processing may take longer. Since the forwarder pro-

cesses packets in batches, each batch is processed when

it grows large enough or when a periodic timer expires.

In practice we set the timer to be 50µs. Therefore if Ma-

glev is significantly underloaded, a 50µs delay will be

added to each packet in the worst case. One possible

optimization to this case is to adjust batch sizes dynam-

ically [32]. The other case where Maglev may add ex-

tra processing delay is when Maglev is overloaded. The

maximum number of packets that Maglev can buffer is

the size of the packet pool; beyond that the packets will

be dropped by the NIC. Assuming the packet pool size

is 3000 and the forwarder can process 10Mpps, it takes

about 300µs to process all buffered packets. Hence a

maximum of 300µs delay may be added to each packet

if Maglev is heavily overloaded. Fortunately, this case

can be avoided by proper capacity planning and adding

Maglev machines as needed.

3.3 Backend Selection

Once a packet is matched to a VIP, we need to choose a

backend for the packet from the VIP’s backend pool. For

connection-oriented protocols such as TCP, it is critical

to send all packets of a connection to the same backend.

We accomplish this with a two part strategy. First, we

select a backend using a new form of consistent hashing

which distributes traffic very evenly. Then we record the

selection in a local connection tracking table.

Maglev’s connection tracking table uses a fixed-size

hash table mapping 5-tuple hash values of packets to

backends. If the hash value of a packet does not exist

in the table, Maglev will assign a backend to the packet

and store the assignment in the table. Otherwise Maglev

will simply reuse the previously assigned backend. This

guarantees that packets belonging to the same connec-

tion are always sent to the same backend, as long as the

backend is still able to serve them. Connection tracking

comes in handy when the set of backends changes: for

instance, when backends go up and down, are added or

removed, or when the backend weights change.

However, per-Maglev connection tracking alone is in-

sufficient in our distributed environment. First, it as-

sumes all packets with the same 5-tuple are always sent

to the same Maglev machine. Because the router in front

of Maglev does not usually provide connection affinity,

this assumption does not hold when the set of Maglev

machines changes. Unfortunately, such changes are in-

evitable and may happen for various reasons. For exam-

ple, when upgrading Maglevs in a cluster we do a rolling

restart of machines, draining traffic from each one a few

moments beforehand and restoring it once the Maglev

starts serving again. This process may last over an hour,

during which the set of Maglevs keeps changing. We also

sometimes add, remove, or replace Maglev machines.

All of these operations make standard ECMP implemen-

tations shuffle traffic on a large scale, leading to connec-

tions switching to different Maglevs in mid-stream. The

new Maglevs will not have the correct connection table

entries, so if backend changes occur at the same time,

connections will break.

A second theoretical limitation is that the connection

tracking table has finite space. The table may fill up un-

der heavy load or SYN flood attacks. Since Maglev only

evicts entries from the connection table when they are

expired, once the table becomes full, we will need to

select a backend for each packet that doesn’t fit in the

table. While in practice there is plenty of memory on

a modern machine, in deployments where we share ma-

chines between Maglev and other services, we may need

to sharply limit the connection table size.

If any of the above cases occur, we can no longer rely

on connection tracking to handle backend changes. Thus

Maglev also provides consistent hashing to ensure reli-

able packet delivery under such circumstances.

3.4 Consistent Hashing

One possible approach to address the limitations of con-

nection tracking is to share connection state among all

Maglev machines, for example in a distributed hash ta-

ble as suggested in [34]. However, this would negatively

affect forwarding performance – recall that connection

states are not even shared among packet threads on the

same Maglev machine to avoid contention.

A better-performing solution is to use local consistent

hashing. The concept of consistent hashing [28] or ren-

dezvous hashing [38] was first introduced in the 1990s.

The idea is to generate a large lookup table with each

backend taking a number of entries in the table. These

methods provide two desirable properties that Maglev

also needs for resilient backend selection:

• load balancing: each backend will receive an al-

most equal number of connections.

• minimal disruption: when the set of backends

changes, a connection will likely be sent to the same

backend as it was before.

5

528 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Pseudocode 1 Populate Maglev hashing lookup table.

1: function POPULATE

2: for each i< N do next[i]← 0 end for

3: for each j <M do entry[j]←−1 end for

4: n← 0

5: while true do

6: for each i< N do

7: c← permutation[i][next[i]]
8: while entry[c]≥ 0 do

9: next[i]← next[i]+ 1

10: c← permutation[i][next[i]]
11: end while

12: entry[c]← i

13: next[i]← next[i]+ 1

14: n← n+ 1

15: if n=M then return end if

16: end for

17: end while

18: end function

Both [28] and [38] prioritize minimal disruption over

load balancing, as they were designed to optimize web

caching on a small number of servers. However, Maglev

takes the opposite approach for two reasons. First, it is

critical for Maglev to balance load as evenly as possible

among the backends. Otherwise the backends must be

aggressively overprovisioned in order to accommodate

the peak traffic. Maglev may have hundreds of backends

for certain VIPs, our experiments show that both [28]

and [38] will require a prohibitively large lookup table

for each VIP to provide the level of load balancing that

Maglev desires. Second, while minimizing lookup table

disruptions is important, a small number of disruptions is

tolerable by Maglev. Steady state, changes to the lookup

table do not lead to connection resets because connec-

tions’ affinity to Maglev machines does not change at the

same time. When connections’ affinity to Maglevs does

change, resets are proportional to the number of lookup

table disruptions.

With these considerations in mind, we developed a

new consistent hashing algorithm, which we call Maglev

hashing. The basic idea of Maglev hashing is to assign

a preference list of all the lookup table positions to each

backend. Then all the backends take turns filling their

most-preferred table positions that are still empty, until

the lookup table is completely filled in. Hence, Maglev

hashing gives an almost equal share of the lookup table

to each of the backends. Heterogeneous backend weights

can be achieved by altering the relative frequency of the

backends’ turns; the implementation details are not de-

scribed in this paper.

Let M be the size of the lookup table. The prefer-

ence list for backend i is stored in permutation[i], which

Table 1: A sample consistent hash lookup table.

B1 B2 B3

2 1 5

4 5 6

6 2 7

1 6 1

3 3 2

5 7 3

7 4 4

Permutation tables for the

backends.

Before After

B2 B1

B1 B1

B2 B1

B1 B1

B3 B3

B3 B3

B1 B3

Lookup table before and

after B2 is removed.

is a random permutation of array (0 ..M − 1). As an

efficient way of generating permutation[i], each back-

end is assigned a unique name. We first hash the back-

end name using two different hashing functions to gen-

erate two numbers offset and skip. Then we generate

permutation[i] using these numbers as follows:

offset← h1(name[i]) mod M

skip← h2(name[i]) mod (M−1)+1

permutation[i][j]← (offset+ j× skip) mod M

M must be a prime number so that all values of skip

are relatively prime to it. Let N be the size of a VIP’s

backend pool. Its lookup table is populated using Pseu-

docode 1. We use next[i] to track the next index in

the permutation to be considered for backend i; the fi-

nal lookup table is stored in the array entry. In the body

of the outer while loop, we iterate through all the back-

ends. For each backend i we find a candidate index c

from permutation[i] which has not been filled yet, and

fill it with the backend. The loop keeps going until all

entries in the table have been filled.

The algorithm is guaranteed to finish. Its worst case

time complexity is O(M2) which only happens if there

are as many backends as lookup table entries and all the

backends hash to the same permutation. To avoid this

happening we always choose M such that M ≫ N. The

average time complexity is O(M logM) because at step

n we expect the algorithm to take M
M−n

tries to find an

empty candidate index, so the total number of steps is

∑
M
n=1

M
n

. Each backend will take either ⌊M
N
⌋ or ⌈M

N
⌉ en-

tries in the lookup table. Therefore the number of entries

occupied by different backends will differ by at most 1.

In practice, we choose M to be larger than 100×N to

ensure at most a 1% difference in hash space assigned to

backends. Other methods of generating random permu-

tations, such as the Fisher-Yates Shuffle [20], generate

better quality permutations using more state, and would

work fine here as well.

We use the example in Table 1 to illustrate how Ma-

glev hashing works. Assume there are 3 backends, the

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 529

lookup table size is 7, and the (offset, skip) pairs of the

three backends are (3, 4), (0, 2) and (3, 1). The generated

permutation tables are shown in the left column, and the

lookup tables before and after backend B2 is removed are

presented in the right column. As the example shows, the

lookup tables are evenly balanced among the backends

both with and without B2. After B2 is removed, aside

from updating all of the entries that contained B2, only

one other entry (row 7) needs to be changed. In prac-

tice, with larger lookup tables, Maglev hashing is fairly

resilient to backend changes, as we show in Section 5.3.

4 Operational Experience

Maglev is a highly complex distributed system that has

been serving Google for over six years. We have learned

a lot while operating it at a global scale. This section

describes how Maglev has evolved over the years to ac-

commodate our changing requirements, and some of the

tools we’ve built to monitor and debug the system.

4.1 Evolution of Maglev

Today’s Maglev differs in many details from the original

system. Most of the changes, such as the addition of IPv6

support, happened smoothly as a result of the extensi-

ble software architecture. This subsection discusses two

major changes to the implementation and deployment of

Maglev since its birth.

4.1.1 Failover

Maglev machines were originally deployed in active-

passive pairs to provide failure resilience, as were the

hardware load balancers they replaced. Only active ma-

chines served traffic in normal situations. When an ac-

tive machine became unhealthy, its passive counterpart

would take over and start serving. Connections were usu-

ally uninterrupted during this process thanks to Maglev

hashing, but there were some drawbacks to this setup. It

used resources inefficiently, since half of the machines

sat idle at all times. It also prevented us from scaling any

VIP past the capacity of a single Maglev machine. Fi-

nally, coordination between active and passive machines

was complex. In this setup, the machines’ announcers

would monitor each other’s health and serving priority,

escalating their own BGP priority if they lost sight of

each other, with various tie-breaking mechanisms.

We gained a great deal of capacity, efficiency, and

operational simplicity by moving to an ECMP model.

While Maglev hashing continues to protect us against oc-

casional ECMP flaps, we can multiply the capacity of a

VIP by the maximum ECMP set size of the routers, and

all machines can be fully utilized.

Figure 6: Maglev VIP matching.

4.1.2 Packet Processing

Maglev originally used the Linux kernel network stack

for packet processing. It had to interact with the NIC us-

ing kernel sockets, which brought significant overhead to

packet processing including hardware and software in-

terrupts, context switches and system calls [26]. Each

packet also had to be copied from kernel to userspace and

back again, which incurred additional overhead. Maglev

does not require a TCP/IP stack, but only needs to find a

proper backend for each packet and encapsulate it using

GRE. Therefore we lost no functionality and greatly im-

proved performance when we introduced the kernel by-

pass mechanism – the throughput of each Maglev ma-

chine is improved by more than a factor of five.

4.2 VIP Matching

In Google’s production networks, each cluster is as-

signed an external IP prefix that is globally routable.

For example, cluster C1 in Figure 6 has prefix

74.125.137.0/24. The same service is configured as dif-

ferent VIPs in different clusters, and the user is directed

to one of them by DNS. For instance, Service1 is config-

ured as 74.125.137.1 in C1 and 173.194.71.1 in C2.

Google has several different classes of clusters, serv-

ing different sets of VIPs. External prefix lengths are the

same for clusters of the same class, but may be different

for different cluster classes. Sometimes, in emergencies,

we need to redirect traffic to a different cluster via Ma-

glev encapsulation. Therefore, we need the target Ma-

glevs to be able to correctly classify traffic for arbitrary

other clusters. One possible solution is to define all VIPs

in all the clusters that may receive redirected traffic, but

that would cause synchronization and scalability issues.

Instead, we implemented a special numbering rule and

a novel VIP matching mechanism to cope with the prob-

lem. For each cluster class, we assign each VIP the same

suffix across all clusters of that class. Then we use a pre-

7

530 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

fix/suffix matching mechanism for VIP matching. First,

the incoming packet goes through longest prefix match-

ing, to determine which cluster class it was destined for.

Then it goes through longest suffix matching specific to

that cluster class, to determine which backend pool it

should be sent to. In order to reduce the need to keep

configs globally in sync on a tight time scale, we precon-

figure maglevs with a large prefix group for each cluster

class, from which prefixes for new clusters of the same

class are allocated. This way a Maglev can correctly

serve traffic originally destined for a cluster that it has

never heard of.

As a result, each VIP is configured as a<Prefix Group,

IP suffix, port, protocol> tuple. Take Figure 6 as an ex-

ample. Assuming C2 and C3 are of the same class, if a

packet towards 173.194.71.1 is received in C2 but Ma-

glev determines none of the endpoints in C2 can serve

the packet, it will encapsulate and tunnel the packet

towards the VIP address in C3 for the same service

(173.194.72.1). Then a Maglev in C3 will decapsulate

the packet and match the inner packet to Service1 using

prefix/suffix matching, and the packet will be served by

an endpoint in C3 instead.

This VIP matching mechanism is specific to Google’s

production setup, but it provides a good example of the

value of rapid prototyping and iteration that a software-

based load balancer can offer.

4.3 Fragment Handling

One special case that is not covered by the system de-

scribed so far is IP fragmentation. Fragments require

special treatment because Maglev performs 5-tuple hash-

ing for most VIPs, but fragments do not all contain the

full 5-tuple. For example, if a large datagram is split

into two fragments, the first fragment will contain both

L3 and L4 headers while the second will only contain

the L3 header. Thus when Maglev receives a non-first

fragment, it cannot make the correct forwarding decision

based only on that packet’s headers.

Maglev must satisfy two requirements in order to han-

dle fragments correctly. First, all fragments of the same

datagram must be received by the same Maglev. Sec-

ond, the Maglev must make consistent backend selection

decisions for unfragmented packets, first fragments, and

non-first fragments.

In general, we cannot rely on the hardware in front of

Maglev to satisfy the first requirement on its own. For

example, some routers use 5-tuple hashing for first frag-

ments and 3-tuple for non-first fragments. We therefore

implemented a generic solution in Maglev to cope with

any fragment hashing behavior. Each Maglev is config-

ured with a special backend pool consisting of all Ma-

glevs within the cluster. Upon receipt of a fragment,

Maglev computes its 3-tuple hash using the L3 header

and forwards it to a Maglev from the pool based on the

hash value. Since all fragments belonging to the same

datagram contain the same 3-tuple, they are guaranteed

to be redirected to the same Maglev. We use the GRE

recursion control field to ensure that fragments are only

redirected once.

To meet the second requirement, Maglev uses the

same backend selection algorithm to choose a backend

for unfragmented packets and second-hop first fragments

(usually on different Maglev instances.) It maintains a

fixed-size fragment table which records forwarding de-

cisions for first fragments. When a second-hop non-first

fragment is received by the same machine, Maglev looks

it up in the fragment table and forwards it immediately if

a match is found; otherwise it is cached in the fragment

table until the first one is received or the entry expires.

This approach has two limitations: it introduces extra

hops to fragmented packets, which can potentially lead to

packet reordering. It also requires extra memory to buffer

non-first fragments. Since packet reordering may happen

anywhere in the network, we rely on the endpoints to

handle out-of-order packets. In practice only a few VIPs

are allowed to receive fragments, and we are easily able

to provide a big enough fragment table to handle them.

4.4 Monitoring and Debugging

We consistently monitor the health and behavior of Ma-

glev as we do any other production system – for exam-

ple, we use both black box and white box monitoring.

Our black box monitoring consists of agents all over the

world which periodically check the reachability and la-

tency of the configured VIPs. For our white box moni-

toring, we export various metrics from each Maglev ma-

chine via an HTTP server, and the monitoring system pe-

riodically queries each server to learn the latest Maglev

serving status details. The system sends alerts when it

observes abnormal behavior.

Due to Maglev’s distributed nature, multiple paths ex-

ist from the router through Maglev to the service end-

points. However, debugging is much easier when we are

able to discern the exact path that a specific packet takes

through the network. Thus we developed the packet-

tracer tool, similar to X-trace [21]. Packet-tracer con-

structs and sends specially marked Maglev-recognizable

payloads with specified L3 and L4 headers. The pay-

loads contain receiver IP addresses to which Maglev

sends debugging information. The packets usually target

a specific VIP and are routed normally to our frontend

locations. When a Maglev machine receives a packet-

tracer packet, it forwards the packet as usual, while also

sending debugging information, including its machine

name and the selected backend, to the specified receiver.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 531

Figure 7: Average, standard deviation and coefficient of

variation of normalized load on all service endpoints in

one cluster on a typical day.

Packet-tracer packets are rate-limited by Maglev, as they

are expensive to process. This tool is extremely helpful

in debugging production issues, especially when there is

more than one Maglev machine on the path, as happens

in the case of fragment redirection.

5 Evaluation

In this section we evaluate Maglev’s efficiency and per-

formance. We present results from one of Google’s pro-

duction clusters, as well as some microbenchmarks.

5.1 Load Balancing

As a network load balancer, Maglev’s major responsibil-

ity is to distribute traffic evenly across multiple service

endpoints. To illustrate the load balancing performance

of Maglev, we collected connections per second (cps)

data from 458 endpoints in a cluster located in Europe.

The data is aggregated from multiple HTTP services in-

cluding Web Search. The granularity of data collection

is 5 minutes, and the load is normalized by the average

cps throughout the day. Figure 7 shows the average and

standard deviation of the load across all endpoints on a

typical day. The traffic load exhibits a clear diurnal pat-

tern. The standard deviation is always small compared to

the average load; the coefficient of variation is between

6% and 7% most of the time.

Figure 7 also presents the overprovision factor com-

puted as the maximum load over the average load at each

time point. It is an important metric because we must en-

sure even the busiest endpoints will always have enough

capacity to serve all the traffic. The overprovision fac-

tor is less than 1.2 over 60% of the time. It is notably

higher during off-peak hours, which is the expected be-

havior because it is harder to balance the load when there

is less traffic. Besides, a higher overprovision factor dur-

ing off-peak hours does not require the addition of Ma-

Figure 8: Throughput with and without kernel bypass.

glev machines. This provides a guideline of how much

to overprovision at this specific location.

5.2 Single Machine Throughput

Since each Maglev machine receives a roughly equal

amount of traffic through ECMP, the overall throughput

of Maglev can be estimated as the number of Maglev

machines times the throughput of each single machine.

The more traffic each machine can handle, the fewer ma-

chines will be required to provide the same frontend ca-

pacity. Thus single machine throughput is essential to

the efficiency of the system.

The throughput of a Maglev machine is affected by

many factors, including the number of packet threads,

NIC speed, and traffic type. In this subsection we report

results from a small testbed to evaluate the packet pro-

cessing capability of a Maglev machine under various

conditions. Unless otherwise specified, all experiments

are conducted on servers equipped with two 8-core re-

cent server-class CPUs, one 10Gbps NIC and 128GB of

memory. We only use one CPU for Maglev. Everything

else, including the operating system, runs on the other

CPU. The testbed consists of two senders, two receivers

and one Maglev machine located in the same Ethernet

domain. The senders slowly increase their sending rates,

and the throughput of Maglev is recorded as the maxi-

mum number of packets per second (pps)2 that Maglev

can handle before starting to drop packets. We use two

senders to ensure Maglev eventually gets overloaded.

5.2.1 Kernel Bypass

In this experiment, we run Maglev in both vanilla Linux

network stack mode as well as kernel bypass mode to

evaluate the impact of kernel bypass on the throughput of

2Note that we report throughput by pps instead of bps because the

effect of packet size on the pps throughput is negligible. Hence we

measure the pps throughput using minimum-sized packets. The bps

throughput is equal to min(pps× packet size, line rate bps).

9

532 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 9: Throughput with different TCP packet types.

Maglev. The senders are configured to send minimum-

sized UDP packets from different source ports so that

they are not assigned to the same packet thread by the

steering module. Due to limitations of the test environ-

ment, the minimum size of UDP packets the senders can

send is 52 bytes, slightly larger than the theoretical mini-

mum for Ethernet. We vary the number of packet threads

in each run of the experiment. Each packet thread is

pinned to a dedicated CPU core (as we do in production)

to ensure best performance. We use one core for steering

and muxing, thus there can be at most 7 packet threads.

We measure Maglev’s throughput with and without ker-

nel bypass and present the results in Figure 8.

The figure shows the clear advantage of running Ma-

glev in kernel bypass mode. There, Maglev is the bottle-

neck when there are no more than 4 packet threads; its

throughput increases with the number of packet threads.

When there are 5 or more packet threads, however, the

NIC becomes the bottleneck. On the other hand, Maglev

is always the bottleneck when using the vanilla Linux

network stack, and the maximum throughput achieved is

less than 30% that of kernel bypass.

5.2.2 Traffic Type

Depending on the code execution paths within a packet

thread, Maglev handles different types of traffic at differ-

ent speeds. For example, a packet thread needs to select

a backend for a TCP SYN packet and record it in the con-

nection tracking table; it only needs to do a lookup in the

connection tracking table for non-SYN packets. In this

experiment we measure how fast Maglev handles differ-

ent types of TCP packets.

Three traffic types are considered: SYN, non-SYN and

constant-5-tuple. For SYN and non-SYN experiments,

only SYN and non-SYN TCP packets are sent, respec-

tively. The SYN experiment shows how Maglev behaves

during SYN flood attacks, while the non-SYN experi-

ment shows how Maglev works with regular TCP traf-

fic, performing backend selection once and using con-

Figure 10: Throughput with different NIC speeds.

nection tracking afterwards. For the constant-5-tuple ex-

periment, all packets contain the same L3 and L4 head-

ers. This is a special case because the steering module

generally tries to send packets with the same 5-tuple to

the same packet thread, and only spreads them to other

threads when the chosen one is full. The senders vary the

source ports for SYN and non-SYN experiments to gen-

erate different 5-tuples, but always use the same source

port for the constant-5-tuple experiment. They always

send minimum-sized TCP packets, which are 64 bytes in

our test environment.

As in the previous experiment, Maglev reaches the

NIC’s capacity with 5 packet threads in the non-SYN

and constant-5-tuple experiments. However, for SYN

packets, we see that Maglev needs 6 packet threads to

saturate the NIC. This is because Maglev needs to per-

form backend selection for every SYN packet. Ma-

glev performs best under constant-5-tuple traffic, show-

ing that the steering module can effectively steer poorly-

distributed packet patterns. Since all packets have the

same 5-tuple, their connection tracking information al-

ways stays in the CPU cache, ensuring the highest

throughput. For non-SYN packets, there are sporadic

cache misses for connection tracking lookup, and so the

throughput is slightly lower than that for constant-5-tuple

traffic when there are fewer than 5 packet threads.

5.2.3 NIC Speed

In the previous experiments, the NIC is the bottleneck

as it is saturated by 5 packet threads. To understand

Maglev’s full capability, this experiment evaluates its

throughput using a faster NIC. Instead of the 10Gbps

NIC, we install a 40Gbps NIC on the Maglev machine,

and use the same setup as in Section 5.2.1. The results

are illustrated in Figure 10. When there are no more

than 5 packet threads, the 40Gbps NIC provides slightly

higher throughput as its chip is faster than the 10Gbps

one. However, the throughput growth for the 40Gbps

NIC does not slow down until 7 packet threads are used.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 533

Figure 11: Load balancing efficiency of different hash-

ing methods. M, K and R stand for Maglev, Karger and

Rendezvous, respectively. Lookup table size is 65537 for

small and 655373 for large.

Because the NIC is no longer the bottleneck, this figure

shows the upper bound of Maglev throughput with the

current hardware, which is slightly higher than 15Mpps.

In fact, the bottleneck here is the Maglev steering mod-

ule, which will be our focus of optimization when we

switch to 40Gbps NICs in the future.

5.3 Consistent Hashing

In this experiment we evaluate Maglev hashing and com-

pare it against Karger [28] and Rendezvous [38] hash-

ing. We are interested in two metrics: load balancing

efficiency and resilience to backend changes.

To evaluate the load balancing efficiency of the meth-

ods, we populate one lookup table using each method,

and count the number of table entries assigned to each

backend. We set the total number of backends to be 1000

and the lookup table size to be 65537 and 6553733. For

Karger we set the number of views to be 1000. Figure 11

presents the maximum and minimum percent of entries

per backend for each method and table size.

As expected, Maglev hashing provides almost perfect

load balancing no matter what the table size is. When ta-

ble size is 65537, Karger and Rendezvous require back-

ends to be overprovisioned by 29.7% and 49.5% respec-

tively to accommodate the imbalanced traffic. The num-

bers drop to 10.3% and 12.3% as the table size grows to

655373. Since there is one lookup table per VIP, the ta-

ble size must be limited in order to scale the number of

VIPs. Thus Karger and Rendezvous are not suitable for

Maglev’s load balancing needs.

Another important metric for consistent hashing is re-

silience to backend changes. Both Karger and Ren-

dezvous guarantee that when some backends fail, the

entries for the remaining backends will not be affected.

3There is no special significance to these numbers except that they

need to be prime.

Figure 12: Resilience of Maglev hashing to backend

changes.

Therefore we only evaluate this metric for Maglev. Fig-

ure 12 presents the percent of changed table entries as

a function of the percent of concurrent backend failures.

We set the number of backends to be 1000. For each fail-

ure number k, we randomly remove k backends from the

pool, regenerate the lookup table and compute the per-

cent of changed entries. We repeat the experiment 200

times for each k value and report the average results.

Figure 12 shows that the ratio of changed entries in-

creases with the number of concurrent failures. Maglev

hashing is more resilient to backend changes when the

table size is larger. In practice we use 65537 as the de-

fault table size because we expect concurrent backend

failures to be rare, and we still have connection track-

ing as the primary means of protection. In addition,

microbenchmarks show that the lookup table generation

time increases from 1.8ms to 22.9ms as the table size

grows from 65537 to 655373, which prevents us from

increasing the table size indefinitely.

6 Related Work

Unlike traditional hardware load balancers [1, 2, 3, 5, 9,

12, 13], Maglev is a distributed software system which

runs on commodity servers. Hardware load balancers

are usually deployed as active-passive pairs. Maglev

provides better efficiency and resiliency by running all

servers in active mode. In addition, upgrading hardware

load balancer capacity requires purchasing new hardware

as well as physically deploying it, making on demand ca-

pacity adjustment difficult. On the other hand, Maglev’s

capacity can easily be adjusted up or down without caus-

ing any service disruption. Some hardware vendors also

provide load balancing software that runs in virtualized

environments. Maglev provides much higher throughput

than these virtual load balancers.

Ananta [34] is a distributed software load balancer.

Like Maglev, it employs ECMP to scale out the sys-

tem and uses a flow table to achieve connection affinity.

11

534 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

However, it does not provide a concrete mechanism to

handle changes to the load balancer pool gracefully, and

it is not specially optimized for single machine perfor-

mance. Maglev does not have a component similar to

Ananta’s HostAgent which provides NAT services, but

there is an external system (not described here) that of-

fers similar functionality. Ananta allows most internal

VIP traffic to bypass the load balancer. Maglev does

not provide a similar feature because it has enough ca-

pacity for the internal traffic. Embrane [4] is a similar

system developed for virtual environments. However, its

throughput optimization can be difficult due to the limi-

tations of virtualization. Duet [22] is a hybrid hardware

and software load balancer which aims to address the low

throughput issue of pure software load balancers. Ma-

glev is able to achieve sufficiently high throughput, thus

a hybrid solution becomes unnecessary.

There are also many generic load balancing software

packages, the most popular of which are NGINX [14],

HAProxy [7], and Linux Virtual Server [11]. They usu-

ally run on single servers, but it is also possible to deploy

multiple servers in an ECMP group behind a router to

achieve the scale-out model. They all provide consistent

hashing mechanisms. Compared to Maglev, they mostly

prioritize minimum disruption over even load balancing

as is done by [28] and [38]. Because they are designed

for portability, they are not aggressively optimized for

performance.

Consistent hashing [28] and rendezvous hashing [38]

were originally introduced for the purpose of distributed

cache coordination. Both methods provide guaranteed

resilience such that when some backends are removed,

only table entries pointing to those backends are updated.

However, they don’t provide good load balancing across

backends, which is an essential requirement for load bal-

ancers. On the contrary, Maglev’s consistent hashing

method achieves perfect balance across the backends at

the cost of slightly reduced resilience, which works well

in practice when paired with connection tracking. An-

other option for implementing consistent hashing is dis-

tributed hash tables such as Chord [37], but this would

add extra latency and complexity to the system.

Some of the performance optimization techniques

used in Maglev have been extensively studied since

1990s. Smith et al [36] suggested to improve appli-

cation throughput by reducing interrupts and memory

copying. Mogul et al [33] developed a polling-based

mechanism to avoid receive livelock caused by inter-

rupts. Edwards et al [19] explored the idea of userspace

networking but did not manage to bypass the kernel

completely. Marinos et al [31] showed that special-

ized userspace networking stacks with kernel bypass

can significantly improve application throughput. Han-

ford et al [25] suggested to distribute packet processing

tasks across multiple CPU cores to improve CPU cache

hit ratio. CuckooSwitch [41] is a high-performance soft-

ware L2 switch. One of its key techniques is to mask

memory access latency through batching and prefetch-

ing. RouteBricks [18] explained how to effectively uti-

lize multi-core CPUs for parallel packet processing.

Several kernel bypass techniques have been devel-

oped recently, including DPDK [8], OpenOnload [15],

netmap [35], and PF RING [17], etc. A good summary

of popular kernel bypass techniques is presented in [10].

These techniques can be used to effectively accelerate

packet processing speed, but they all come with certain

limitations. For example, DKPK and OpenOnload are

tied to specific NIC vendors while netmap and PF RING

both require a modified Linux kernel. In Maglev we im-

plement a flexible I/O layer which does not require kernel

modification and allows us to conveniently switch among

different NICs. As with other techniques, Maglev takes

over the NIC once started. It uses the TAP interface to

inject kernel packets back to the kernel.

GPUs have recently started becoming popular for

high-speed packet processing [24, 39]. However,

Kalia et al [27] recently showed that CPU-based solu-

tions are able to achieve similar performance with more

efficient resource utilization if implemented correctly.

7 Conclusion

This paper presents Maglev, a fast, reliable, scalable and

flexible software network load balancer. We built Maglev

to scale out via ECMP and to reliably serve at 10Gbps

line rate on each machine, for cost-effective performance

with rapidly increasing serving demands. We map con-

nections consistently to the same backends with a combi-

nation of connection tracking and Maglev hashing. Run-

ning this software system at scale has let us operate our

websites effectively for many years, reacting quickly to

increased demand and new feature needs.

Acknowledgements

We are grateful to Adam Lazur, Alex Tumko, Amin Vah-

dat, Angus Lees, Aspi Siganporia, Ben Treynor, Bill

Coughran, Brad Calder, Craig Bergstrom, Doug Orr,

Dzevad Trumic, Elliott Karpilovsky, Jeff Mogul, John

T. Reese, Kyle Moffett, Luca Bigliardi, Mahesh Kalla-

halla, Mario Fanelli, Mike Dalton, Mike Shields, Natalya

Etina, Nori Heikkinen, Pierre Imai, Roberto Peon, Simon

Newton, Tina Wong, Trisha Weir, Urs Hölzle, and many

others for their significant contributions to this paper and

the success of Maglev. We would also like to thank our

shepherd Nathan Bronson and the anonymous reviewers

for their insightful feedback.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 535

References

[1] A10. http://www.a10networks.com.

[2] Array networks. http://www.arraynetworks.com.

[3] Barracuda. http://www.barracuda.com.

[4] Embrane. http://www.embrane.com.

[5] F5. http://www.f5.com.

[6] Google cloud platform. http://cloud.google.com.

[7] Haproxy. http://www.haproxy.org.

[8] Intel dpdk. http://www.dpdk.org.

[9] Kemp. http://www.kemptechnologies.com.

[10] Kernel bypass. http://blog.cloudflare.com/kernel-bypass.

[11] Linux virtual server. http://www.linuxvirtualserver.org.

[12] Load balancer .org. http://www.loadbalancer.org.

[13] Netscaler. http://www.citrix.com.

[14] Nginx. http://www.nginx.org.

[15] Openonload. http://www.openonload.org.

[16] F. Chen, R. K. Sitaraman, and M. Torres. End-user mapping:

Next generation request routing for content delivery. In Proceed-

ings of SIGCOMM, 2015.

[17] L. Deri. Improving passive packet capture: Beyond device

polling. In Proceedings of SANE, 2004.

[18] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-

naccone, A. Knies, M. Manesh, and S. Ratnasamy. Routebricks:

Exploiting parallelism to scale software routers. In Proceedings

of SOSP, 2009.

[19] A. Edwards and S. Muir. Experiences implementing a high per-

formance tcp in user-space. In Proceedings of SIGCOMM, 1995.

[20] R. A. Fisher and F. Yates. Statistical tables for biological, agri-

cultural and medical research. Edinburgh: Oliver and Boyd,

1963.

[21] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-

trace: A pervasive network tracing framework. In Proceedings of

NSDI, 2007.

[22] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and

M. Zhang. Duet: Cloud scale load balancing with hardware and

software. In Proceedings of SIGCOMM, 2014.

[23] P. Gill, N. Jain, and N. Nagappan. Understanding network fail-

ures in data centers: Measurement, analysis, and implications. In

Proceedings of SIGCOMM, 2011.

[24] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: A gpu-

accelerated software router. In Proceedings of SIGCOMM, 2010.

[25] N. Hanford, V. Ahuja, M. Balman, M. K. Farrens, D. Ghosal,

E. Pouyoul, and B. Tierney. Characterizing the impact of end-

system affinities on the end-to-end performance of high-speed

flows. In Proceedings of NDM, 2013.

[26] V. Jacobson and B. Felderman. Speeding up networking.

http://www.lemis.com/grog/Documentation/vj/lca06vj.pdf.

[27] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen. Raising

the bar for using gpus in software packet processing. In Proceed-

ings of NSDI, 2015.

[28] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,

and D. Lewin. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web.

In Proceedings of ACM Symposium on Theory of Computing,

1997.

[29] C. Labovitz. Google sets new internet record.

http://www.deepfield.com/2013/07/google-sets-new-internet-

record/.

[30] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and

F. Jahanian. Internet inter-domain traffic. In Proceedings of SIG-

COMM, 2010.

[31] I. Marinos, R. N. Watson, and M. Handley. Network stack spe-

cialization for performance. In Proceedings of SIGCOMM, 2014.

[32] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren.

Stout: An adaptive interface to scalable cloud storage. In Pro-

ceedings of USENIX ATC, 2010.

[33] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive live-

lock in an interrupt-driven kernel. In Proceedings of USENIX

ATC, 1996.

[34] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.

Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and

N. Karri. Ananta: Cloud scale load balancing. In Proceedings

of SIGCOMM, 2013.

[35] L. Rizzo. netmap: A novel framework for fast packet i/o. In

Proceedings of USENIX Security, 2012.

[36] J. Smith and C. Traw. Giving applications access to gb/s network-

ing. Network, IEEE, 7(4):44–52, 1993.

[37] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of SIGCOMM, 2001.

[38] D. G. Thaler and C. V. Ravishankar. Using name-based mappings

to increase hit rates. IEEE/ACM Transactions on Networking,

6(1):1–14, 1998.

[39] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman. Multi-layer

packet classification with graphics processing units. In Proceed-

ings of CoNEXT, 2014.

[40] K. V. Vishwanath and N. Nagappan. Characterizing cloud com-

puting hardware reliability. In Proceedings of SoCC, 2010.

[41] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Ander-

sen. Scalable, high performance ethernet forwarding with cuck-

ooswitch. In Proceedings of CoNEXT, 2013.

13

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 537

Enabling ECN in Multi-Service Multi-Queue Data Centers

Wei Bai1, Li Chen1, Kai Chen1, Haitao Wu2

1SING Group @ HKUST 2Microsoft

Abstract
Recent proposals have leveraged Explicit Congestion
Notification (ECN) to achieve high throughput low la-
tency data center network (DCN) transport. However,
most of them implicitly assume each switch port has one
queue, making the ECN schemes they designed inappli-
cable to production DCNs where multiple service queues
per port are employed to isolate different traffic classes
through weighted fair sharing.

In this paper, we reveal this problem by leveraging ex-
tensive testbed experiments to explore the intrinsic trade-
offs between throughput, latency, and weighted fair shar-
ing in multi-queue scenarios. Using the guideline learned
from the exploration, we design MQ-ECN, a simple yet
effective solution to enable ECN for multi-service multi-
queue production DCNs. Through a series of testbed
experiments and large-scale simulations, we show that
MQ-ECN breaks the tradeoffs by delivering both high
throughput and low latency simultaneously, while still
preserving weighted fair sharing.

1 Introduction

Data centers host a variety of applications and ser-
vices with diverse network requirements: some services
(e.g., monitoring services) demand low latency for spo-
radic short messages; some (e.g., data-parallel computa-
tion [13]) require high throughput for large flows; while
others (e.g., online data-intensive applications) desire
both high throughput and low latency for a large num-
ber of concurrent flows [18].

To meet these requirements, ECN has been employed
as a powerful tool by recent DCN transport proposals
such as [6, 8, 29, 31, 32], and they show that a properly
tuned ECN marking scheme can deliver high through-
put and low latency simultaneously [31]. Due to their
simplicity and effectiveness, ECN-based transports such
as DCTCP [6] and DCQCN [32] are widely used in
industry—DCTCP has been integrated into various OS
kernels [3, 4] and deployed in DCNs of Google [27] and
Morgan Stanley [19]; while DCQCN has been deployed
in DCNs of Microsoft [32] to enable RDMA.

A further look at these proposals reveals that their

ECN marking schemes are mostly designed based on the
implicit assumption that each switch port only has one
queue. However, the industry trend in production DCNs
is going beyond such one queue per port paradigm [8, 9].
Today’s commodity switches already support 4–8 classes
of service queues per port [9, 10, 20]. Current oper-
ation practice is to leverage queues to segregate traffic
from different services and enforcing weighted fair shar-
ing among different queues [8, 9, 19]. For example, op-
erators assign a higher weight to all traffic belonging to a
more important real-time search application over a back-
ground backup application, thus providing differentiated
network performance. A key question in such single-
queue to multi-queue transition is the applicability of
ECN, which remains unexplored.

We point out, via extensive testbed experiments, that
the prior ECN schemes developed for the single queue
model fall short when directly migrated to the multi-
queue scenarios (§2). There exist fundamental trade-
offs between high throughput, low latency, and weighted
fair sharing. Our experiments demonstrate: 1) apply-
ing per-queue ECN with the standard marking thresh-
old derived before on each queue independently en-
sures high throughput, but can incur high latency when
many queues are active; while apportioning this thresh-
old among all the queues statically according to their
weights guarantee low latency, but can degrade through-
put when few queues are live; 2) applying per-port ECN
with such standard threshold can maintain both high
throughput and low latency, but violating weighted fair
sharing across different queues.

Motivated by above problem, we seek a solution that
can break the tradeoffs and enable ECN for multi-service
multi-queue DCNs. To this end, we present MQ-ECN, a
simple yet effective solution that achieves our goal (§3).
First, MQ-ECN takes the per-queue ECN approach to
preserve weighted fair sharing. Then, at its heart, MQ-
ECN adjusts the ECN marking threshold for each queue
based on its dynamic weighted fair share rate, rather than
sticking to its static fair share weight, which enables MQ-
ECN to well adapt to traffic variations while maintain-
ing both high throughput and low latency in a highly dy-
namic DCN environment.

We explain that MQ-ECN is feasible to implement on

1

538 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

existing commodity switch hardware as MQ-ECN just
requires one additional moving average register per port
compared to the standard ECN/RED switch implementa-
tion (§4.1). We also present a MQ-ECN software imple-
mentation for testbed evaluation (§4.2). In our software
prototype, MQ-ECN is implemented as a Linux qdisc
kernel module running on a multi-NIC server to emulate
switch behaviors.

We build a small-scale testbed with 9 Dell servers
connected to a 9-port server-emulated MQ-ECN-enabled
switch. We evaluate the basic properties of MQ-ECN on
the testbed using realistic workloads [6, 16, 25]. Our
experiments demonstrate that MQ-ECN achieves both
high throughput and low latency simultaneously, while
strictly preserving weighted fair sharing. For example,
compared to per-queue ECN with the standard thresh-
old, MQ-ECN achieves up to 72.8% lower 99th per-
centile FCT for small flows while delivering similar per-
formance (e.g., within 2.7%) for large flows (§5.1).

To complement small-scale testbed experiments, we
conduct large-scale ns-2 [5] simulations to deep-dive into
MQ-ECN. Our simulation results further confirm the su-
perior performance of MQ-ECN. For example, compared
to per-queue ECN with the standard threshold, MQ-ECN
reduces the 99th percentile FCT for small flows by up
to 43.7%. In addition, MQ-ECN achieves up to 13.2%
lower average FCT for large flows compared to per-
queue ECN with the minimum threshold (§5.2). Finally,
we show, through a series of targeted simulations, that
MQ-ECN is robust to different network environments
and parameter settings, such as the number of queues,
queue weights, transport protocols, and so on (§5.3).

To make our work easy to reproduce, we make our
codes available online at: http://sing.cse.ust.
hk/projects/MQ-ECN.

2 Problem Exploration

In this section, we begin by introducing the ECN mecha-
nisms supported by existing commodity switching chips.
Then, we explore the problems and tradeoffs of applying
ECN in multi-service multi-queue DCNs. Finally, we
summarize our design goals.

2.1 ECN on Commodity Switching Chips
Today’s commodity switching chips provide multiple
ECN/RED configuration options. For example, in our
testbed, the Broadcom BCM-56538 chip supports per-
queue, per-port, and per service pool ECN markings. For
all schemes, the marking decision is made when a packet
is enqueued (required by RED [15]). The main differ-
ence among them is that they use buffer occupancy in
different egress entities to make marking decisions.

0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

RTT (us)

C
D

F queue=1
queue=2
queue=4
queue=8

Figure 1: [Testbed] RTT: under per-queue ECN with the
standard threshold, more queues lead to worse latency.

Briefly, in per-queue ECN marking, each queue has
its own threshold and performs ECN marking indepen-
dently to other queues. In per-port ECN marking, each
port is assigned a single marking threshold. When the
sum of queue buffer occupancy belonging to the same
port is larger than the marking threshold, packets will get
ECN marking. In per service pool ECN marking, pack-
ets are marked when total buffer occupancy in a shared
buffer pool exceeds the marking threshold.

2.2 Problems and Tradeoffs
Before exploring the problems, we first introduce the
standard ECN marking threshold derived by prior
works [7, 31] based on the single queue model. Con-
sider synchronized flows with identical round-trip times
sharing the only queue of a bottleneck link, accord-
ing to [7, 31], to fully utilize the link bandwidth while
achieving low latency, the ECN marking threshold K1

should be set as follows:

K = C ×RTT × λ (1)

where RTT is average round-trip time, C is link capac-
ity, and λ is a tunable parameter closely related to con-
gestion control algorithms2. In production DCNs, round-
trip times are relatively stable and operators can estimate
RTT through large-scale measurements to compute the
standard ECN marking threshold [17, 31].

2.2.1 Per-queue ECN with the standard threshold
In multi-queue environment, per-queue ECN marking
is widely employed by operators for its good isola-
tion among different queues. However, how to set the
ECN marking threshold for each queue is a challenge.
DCN traffic is well known for its volatility and bursti-
ness [11, 16]. Thus, to achieve high utilization in any

1We are aware that ECN/RED has two (low and high) thresholds.
Many ECN-based transports [6, 29, 31] set them to the same value.
Without loss of generality, we also assume that the low and high thresh-
olds are set to the same value to simplify analysis.

2For example, λ = 1 for regular ECN-enabled TCP which simply
cuts window by half in the presence of ECN [31].

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 539

20 40 60 800

20

40

60

80

Load (%)

FC
T

(m
s)

K=16
K=2

(a) Overall

20 40 60 800

0.5

1

1.5

2

Load (%)

FC
T

(m
s)

K=16
K=2

(b) (0,100KB]

20 40 60 800

50

100

Load (%)

FC
T

(m
s)

K=16
K=2

(c) (100KB,10MB]

20 40 60 800

200

400

600

800

1000

Load (%)

FC
T

(m
s)

K=16
K=2

(d) (10MB,∞)

Figure 2: [Testbed] Average FCT statistics: under per-queue ECN with minimum threshold (e.g., K=2), it suffers from
degraded throughput as only one queue is active, thus leading to higher FCT overall.

condition, some network operators have configured the
standard marking threshold, e.g., C×RTT ×λ, for each
queue. Under this configuration, any queue can fully uti-
lize link capacity independently. However, the problem
is that when N queues are busy simultaneously, the to-
tal buffer occupancy can easily reach N times the stan-
dard threshold, thus introducing high queueing delay and
huge buffer pressure3.

To quantify such impairment, we build a small testbed
consisting of 15 servers connected to a Pica8 P-3295
GbE switch. DCTCP is enabled on all the servers4. We
configure Deficit Weighted Round Robin [26] with equal
quantum per queue on the switch. We set the per-queue
ECN marking threshold to 16 packets. We generate 8
long-lived flows using iperf from 8 servers to the same
receiver. We vary the number of queues from 1 to 8 and
evenly classify all the flows into these queues by setting
different Differentiated Services Code Point (DSCP) val-
ues. Given all the queues should have similar queueing
delay, we run ping in an active queue to measure RTT.
Figure 1 shows RTT distributions. Clearly, more queues
lead to worse latency. Compared to the single queue, the
average and 99th percentile RTTs achieved by 8 queues
degrade by 5.7X (279µs to 1582µs) and 4.9X (375µs to
1850µs), respectively.

Observation 1: Per-queue ECN with the standard
threshold suffers from poor latency when many queues
are concurrently active.

2.2.2 Per-queue ECN with the minimum threshold

To address the defect above, a natural way is to apportion
the standard threshold among all the queues according to
their fair share weights. Assume each port has N queues
in total and the weight of queue i is Wi, then the mini-
mum threshold for queue i, Ki, can be set as:

3Taking Pica8 P-3922 10GbE switch [1] as an example, it has 9MB
buffer shared by 384 queues (48 ports×8 queues/port). DCTCP [6] rec-
ommends using at least 65 packets as the threshold for 10G networks.
Hence, when 97 queues are busy simultaneously, the buffer is likely to
be overfilled. Frequent packet drops can also severely degrade latency.

4By default, we choose DCTCP as the transport protocol for all
experiments/simulations in this paper except special declaration.

Ki =
Wi∑N
j=1 Wj

× C ×RTT × λ (2)

Note that Wi∑N
j=1 Wj

is the normalized weight for queue i

and Wi∑N
j=1 Wj

×C is the minimum guaranteed rate for this

queue. Hence, the minimum threshold Ki ensures that
each queue can receive its minimum guaranteed band-
width. Since Ki is proportional to Wi, it can also pre-
serve weighted fair sharing among different queues. Fur-
thermore, given that

∑N
j=1 Kj = C × RTT × λ, such

configuration can achieve good latency and burst toler-
ance regardless of the total number of queues.

However, the problem of this method is that it can seri-
ously degrade link utilization, especially when only few
queues are active. The reason is that the bandwidth for
inactive queues cannot be fully utilized by active queues
as they are throttled by the statically-configured mini-
mum ECN marking thresholds. The low throughput di-
rectly degrades the flow completion times (FCT).

To quantify this impact, we develop a client/server ap-
plication to generate traffic according to the web search
workload [6]. The client instance, running on one server,
periodically generates requests to server instances, run-
ning on the other 14 machines, to fetch data. All the
traffic is classified into the same switch queue. Since
only one queue is active, to fully utilize link capacity,
we should assign the standard threshold, e.g., 16 pack-
ets, for this queue. Given we have 8 queues with equal
weights, the corresponding minimum threshold for one
queue is 2 packets. Thus, we evaluate the performance
of both 16 packets and 2 packets in the experiment. Fig-
ure 2 shows the FCT results across different flow size
regions. It turns out that the scheme with the threshold
of 16 packets achieves 7.2 − 23.5% lower overall av-
erage FCT (due to higher throughput) compared to that
with the minimum threshold of 2 packets. This perfor-
mance improvement stems mainly from the flows larger
than 100KB.

Observation 2: Per-queue ECN with the minimum
threshold cannot maintain high throughput especially
when few queues are concurrently active.

3

540 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0 5 100

200

400

600

800

1000

Time (seconds)

G
oo

dp
ut

 (M
bp

s)
Service 1
Service 2

(a) 1 flow : 4 flows

0 5 100

200

400

600

800

1000

Time (seconds)

G
oo

dp
ut

 (M
bp

s)

Service 1
Service 2

(b) 1 flow : 8 flows

Figure 3: [Testbed] Aggregate goodput statistics: in per-
port ECN, a queue with more flows grabs more bandwidth.

2.2.3 Per-port and per service pool ECN

Unlike above two approaches, per-port ECN can achieve
both high throughput and low latency with the standard
threshold. However, the problem is that it cannot ensure
isolation among different queues of the same port [10].
This is because packets from one queue may get marked
due to buffer occupancy of the other queues belonging to
the same port. This undesirable interaction can severely
violate weighted fair sharing among queues. We believe
the problem will deteriorate under per service pool ECN
marking because in such case queues belonging to even
different ports may interfere with each other.

To understand this impairment, we start several long-
lived TCP flows from two senders to the same re-
ceiver. We classify traffic into two services based on
their senders. On the switch, both services have a equal-
quantum dedicated queue. The per-port marking thresh-
old is 16 packets. We vary the numbers of flows and
measure aggregate goodputs for two services. Ideally,
both services should always equally share the link capac-
ity. Figure 3 shows the actual share results. When ser-
vice 1 has 1 flows and service 2 has 4 flows, their aggre-
gate goodputs are 403Mbps and 539Mbps, respectively.
When the number of flows in service 2 is increased to
8, its aggregate goodput further reaches 688Mbps. This
suggests that under per-port ECN marking, packets of
service queue 1 get over-marked due to the aggressive-
ness of packets in service queue 2, thus making service 1
fail to achieve its weighted fair share rate.

Observation 3: Per port and per service pool ECN can
violate weighted fair sharing among different queues.

2.3 Design Goals
Motivated by the above problems, we aim to design an
ECN marking scheme for multi-service multi-queue pro-
duction DCNs with the following properties:

• High throughput: Our scheme must be work-
conserving. Active services should be able to fully
utilize the network bandwidth as long as they have
enough demands.

• Low latency: Our scheme should maintain low buffer
occupancy in order to provide low queueing delay and
good burst tolerance.

• Weighted fair sharing: Our solution should strictly
preserve the weighted fair sharing policy among dif-
ferent service queues at any time.

• Compatible with legacy ECN/RED implementa-
tion: Although there are a few ECN improvements
that leverage dequeue marking [31], to the best of our
knowledge, few chip providers have offered the sup-
port. Therefore, we choose to design a scheme that
can benefit from most ECN features that are available
on existing switching commodity chips.
We show how MQ-ECN achieves the first three goals

in the next section. To achieve the last goal, we require
MQ-ECN to perform RED-like enqueue marking, e.g.,
comparing the average queue length against a threshold
at the enqueue side. And we discuss our implementation
requirements in §4.1.

3 The MQ-ECN Design

3.1 Design Guideline
The above problem exploration has guided our design of
MQ-ECN. The lesson we learned is two-fold:

• To avoid interference among different queues and pre-
serve weighted fair sharing, the ECN marking should
be performed on a per queue basis while complying
with the weights across different queues.

• To achieve both high throughput and low latency si-
multaneously, we should not set static ECN marking
thresholds for queues—applying the standard thresh-
old on each queue independently can cause high la-
tency (observation 1), while apportioning this thresh-
old among all queues statically according to their
weights can lead to low throughput (observation 2).
Instead, the ECN marking threshold for each queue
should adapt to traffic dynamics, and it should be set
in a way that can barely maintain its weighted fair
share rate while not introducing extra queueing delay.
More specifically, for each queue, if its input rate is
larger than its weighted fair share rate, we should use
ECN to properly throttle it for latency; otherwise, we
should not impose any constraint in order not to affect
its throughput. As a result, the core of MQ-ECN is to
derive such a proper ECN marking threshold for each
queue according to its weighted fair share rate.
In our implementation, we find that the ECN threshold

setting is closely related to the underlying packet sched-
uler that enforce the weighted fair sharing. Thus, in the
following, we first describe the base design of MQ-ECN
with ideal Generalized Processor Sharing (GPS) [23].

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 541

Then we discuss how to extend the base design to prac-
tical packet scheduling algorithms that are widely imple-
mented in existing commodity switching chips.

3.2 MQ-ECN with Ideal GPS
3.2.1 Base Model
We consider a switch output link with the capacity C.
The switch uses GPS as the underlying scheduler. There
are N flows in total and the demand of flow i is ri. Flow
i is mapped to queue i with the weight of wi

5. The total
demand is A, and A =

∑N
i=1 ri. Let α denote the fair

share rate and wiα is the corresponding weighted fair
share rate for flow i. According to [28], if A > C, the
link is congested and α is the unique solution for equa-
tion C =

∑N
i=1 min(ri, wiα); if A ≤ C, then there is

no congestion and α = max{ ri
wi

}. The output rate of
queue i is given by min(ri, wiα).

According to design guideline in §3.1, we classify the
queues into two categories based on the relations be-
tween their input rates and weighted fair share rates. For
queues whose ri > wiα, we use the following Equa-
tion (3) to throttle their input rates to keep queue oc-
cupancy and maintain low latency. For queues whose
ri ≤ wiα, they should not be constrained.

Ki = wiα×RTT × λ (3)

However, in order to enforce the scheme, the premise
is to identify the queues whose ri > wiα and estimate
their weighted fair share rates (e.g., output rates) wiα,
which was a challenge. Some previous works [22, 28]
first estimate the input rates ri and then calculate the
weighted fair share rates wiα using various complicated
heuristics in the context of FIFO scheduling. Accurate
rate estimation is challenging in data centers as traffic is
volatile and bursty. Unlike previous approaches, we use
GPS as the underlying scheduler. Thus, we can take ad-
vantage of the special properties of GPS to address this
challenge in a much simpler way.

Note that GPS serves all backlogged queues in a bit-
by-bit round-robin fashion. Assume quantumi = wi

bits is the quantum for queue i in a round, and Tround

is the total time to serve all queues once. In case ri >
wiα for queue i, the data in the queue will keep growing
and eventually use up its quantumi in a round, then we
can use quantumi

Tround
to calculate the output rate of queue i,

which is wiα. Thus, Equation (3) can be translated to:

Ki =
quantumi

Tround
×RTT × λ (4)

where quantumi, RTT and λ are known while Tround

can be well estimated through continuous sampling as
we show later in §3.3.

5Given each queue only has one flow, we use ‘flow’ and ‘queue’
interchangeably in §3.

Interestingly, though intended for queues whose ri >
wiα, we find that Equation (4) can also be applied to
queues whose ri ≤ wiα with no harm. Here is the rea-
son. For a queue i whose ri ≤ wiα, the data drained
in a round is no more than quantumi, this means that
we can use quantumi

Tround
to safely cap the output rate of

queue i, which is ri. Thus applying Equation (4) to
queue i does not throttle its input rate, but still allows it to
grow beyond its weighted fare rate before taking effect.
This greatly simplifies our design because, we can ap-
ply Equation (4) to every queue with no differentiation,
without the need of explicitly identifying the relations
between their input rates and weighted fair share rates.
As a result, Equation (4) establishes the ECN marking
scheme of MQ-ECN with the ideal GPS scheduler.

3.2.2 Why it works?
We find Equation (4) well achieves our design goals in
§2.3. First, quantumi ensures that different queues have
thresholds in proportion to their weights, thus preserv-
ing the weighted fair sharing. Second, Tround reflects
traffic dynamics of the link and automatically balances
its throughput and latency. When there are more queues
whose input rates exceed their weighted fair share rates,
Tround tends to become larger, then Ki automatically
becomes smaller to maintain low latency. When there
are fewer queues reach their weighted fair share rates,
Tround becomes smaller, then Ki automatically becomes
larger to maintain high throughput.

Furthermore, in practice, Tround may change drasti-
cally because data center traffic is volatile and bursty.
Accurately estimating Tround is challenging and devia-
tion is unavoidable. However, we find that MQ-ECN can
be self-healing:
• Assume that Tround is over-estimated initially, we get

a smaller Ki which degrades throughput. Then more
and more queues will be over-throttled by MQ-ECN
and cannot achieve their weighted fair share rates. As
a consequence, Tround becomes smaller.

• Assume that Tround is under-estimated initially, we
get a larger Ki which increases latency. Then more
and more queues will ramp up and exceed their
weighted fair share rates. As a consequence, Tround

becomes larger.
Therefore, an inaccurate initial estimation for Tround can
be cured by itself eventually in the later stages. Further-
more, in our implementation, to prevent any temporary
impact of under-estimation, we use Equation (5) below
to bound it, considering that the weighted fair share rate
should never be larger than the link capacity. Our eval-
uation results in §5 further confirm that MQ-ECN works
well in practice.

Ki = min(
quantumi

Tround
, C)×RTT × λ (5)

5

542 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

3.3 MQ-ECN with Practical Packet Sched-
ulers

In this section, we show how to extend the solution de-
rived from ideal GPS to practical packet scheduling algo-
rithms that try to approximate GPS. These schemes can
be generally divided into two classes: fair queueing and
round robin. Fair queueing schemes, such as Weighted
Fair Queueing [14], achieve good fairness in general, but
they are expensive to implement due to high O(log(n))
time complexity (n is the number of queues). Round
robin schemes [21, 26] suffer from short-term burstiness
and unfairness, but they are widely implemented in com-
modity switching chips for their O(1) time complexity.
For example, some dominant chipsets such as Broad-
com Trident-I&II [2] adopted in many production data
centers only support several round-robin schemes, such
as Weighted Round Robin (WRR) and Deficit Weighted
Round Robin (DWRR). Hence, we mainly focus on
round robin schemes in this paper.

To apply Equation (5) for a packet scheduling algo-
rithm, we need to obtain average round time Tround

and per-queue quantum quantumi in the new context
of this algorithm. Here, we show how to get Tround and
quantumi for two popular round-robin schemes: WRR
and DWRR. We envision that similar approaches can be
extended to other round-robin schemes.

3.3.1 Estimate Tround

Round-robin packet scheduling algorithms usually serve
queues in a circular order. Intuitively, one can obtain a
sample of Tround whenever the scheduler finishes serv-
ing all the queues in a round. However, the sample fre-
quency of this approach is directly affected by the to-
tal number of active queues. When many queues are
concurrently active, it cannot track traffic dynamics ef-
ficiently. Hence, we propose to sample Tround whenever
a queue just finishes its service in a round. A benefit is
that such sampling frequency is independent to the num-
ber of queues. We assume that each queue i maintains a
variable Tpre to store the time stamp when queue i fin-
ishes the service in previous round. Every time queue
i finishes its service, it records the current time stamp
Tnow and calculates a round time sample Tsample as:
Tsample = Tnow − Tpre. Then we reset Tpre with Tnow.
Every time we get a sample, we smooth Tround using
exponential filter as follows:

Tround = β × Tround + (1− β)× Tsample (6)

where β is a parameter in (0, 1). We note that the above
approach may have two potential limitations. First,
Tround will be updated too frequently when there are
many empty queues. Second, sampling stalls when the

link is idle. To address the first limitation, we only sam-
ple Tround on active queues. If queue i is empty, we just
reset Tpre with Tnow and move forward to next queue.
To address the second limitation, we simply set Tround

as β × Tround (as if we get a Tsample of 0) when the
switch port is idle for a pre-defined Tidle time.

3.3.2 Derive quantumi

Deriving quantumi for WRR and DWRR is relatively
simple. Recall that quantumi defines the maximum
amount of data a queue can send in a round.
• WRR: In the latest implementation of WRR on chips,

each queue is configured with a quantum Qi worth of
bits, and in each round queue i can at most transmit
Qi (rather than a fixed number of packets in earlier
proposals [21]). Thus, quantumi = Qi for WRR.

• DWRR: In the implementation of DWRR, each queue
is also configured with a quantum Qi worth of bits.
Typically, Qi should be no smaller than maximum
transmission unit (MTU) to provide O(1) time com-
plexity [26]. Instead of Qi, the DWRR scheduler
maintains a deficit counter for each queue to bound
the maximum amount of data to send in each round.
This deficit counter maintains the unused quota left in
previous round, and is incremented by Qi in current
round (or reset to 0 if the queue is empty). Consider-
ing queue i keeps backlogged for M rounds, let senti
denote the total amount of bits sent by queue i in this
period. We can bound senti as follows [26]:

M ×Qi −MTU ≤ senti ≤ M ×Qi +MTU (7)

On average, the amount of data queue i can send in
each round is: senti

M = [Qi−MTU
M , Qi+

MTU
M] ≈ Qi.

Thus, we set quantumi = Qi for DWRR.

3.4 Discussion

Weighted Fair Queueing: The reader may wonder how
to extend MQ-ECN to weighted fair queueing (WFQ)
or other fair queueing schemes. Unlike round robin
schemes, WFQ does not have the explicit round concept.
So it is difficult to directly apply Equation (5) to WFQ.

A straightforward approach is to divide the standard
ECN marking threshold to all backlogged queues. For
example, we can define a queue is backlogged if it is not
empty. We use wsum to denote the sum of weights of all
backlogged queues, and wsum can also be updated using
exponential filter like Tround. The ECN marking thresh-
old for queue i can be set as wi

wsum
× C × RTT × λ.

However, this formula is built on an implicit assumption
that a non-empty queue is able to use up its weighted fair
share rate, which may not always hold in all cases. In
fact, wi

wsum
× C is the lower bound for wiα when link

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 543

is congested. Hence, the above approach may under-
estimate weighted fair share rates and derive lower ECN
marking thresholds. We believe a key factor for this ap-
proach is to accurately define the backlogged queues and
quickly identify them, which may not be so easy. How-
ever, a more general MQ-ECN scheme that better sup-
ports WFQ is our future work.

Strict Priority Queueing: In production DCNs, net-
work operators may reserve few (typically one) extra
queues with strict higher priority to deliver a small
amount of important control messages. The remaining
queues are typically scheduled using DWRR/WRR in the
lowest priority. MQ-ECN does not directly apply to such
scenario as well. As an approximation, for strict higher
priority queues without round concept, we statically set
their marking thresholds to the standard marking thresh-
old C×RTT×λ. For DWRR/WRR queues in the lowest
priority, we still apply MQ-ECN (Equation (5)) to calcu-
late dynamic marking thresholds.

Probabilistic Marking: ECN/RED actually has two
thresholds and a maximum marking probability to per-
form a probabilistic marking. When two thresholds
are set to the same value, the maximum marking prob-
ability no longer takes effect. Some transports, e.g.,
DCQCN [32], require such probabilistic marking by
setting different values for two thresholds. MQ-ECN
can be easily extended to perform such probabilistic
marking. Let Kmin, Kmax and Pmax denote the low
standard threshold, the high standard threshold and the
maximum marking probability derived under the single
queue model. The low/high thresholds and the maxi-
mum probability for queue i of MQ-ECN are Ki,min,
Ki,max and Pi,max, respectively. They can be given
as: Ki,min = Kmin × min(quantumi

C×Tround
, 1), Ki,max =

Kmax ×min(quantumi

C×Tround
, 1), and Pi,max = Pmax.

4 Implementation
In this section, we first analyze the feasibility of MQ-
ECN implementation on switching chips, and then de-
scribe a software prototype of MQ-ECN in detail. An
implementation of MQ-ECN on switching chip hardware
is under negotiation but beyond the scope of this work.

4.1 Switch Implementation
In typical switch implementation for ECN/RED, there is
a comparison for an averaged queue length and a static
threshold, which is setup using registers. In MQ-ECN’s
implementation, the comparison is between the same av-
erage queue length and a dynamic threshold. In this sec-
tion, we discuss the implementation complexity for the
dynamic threshold. To calculate Ki for a queue, we need
to calculate Tround. The calculation of Tround can be

Figure 4: MQ-ECN software stack.

implemented by the moving average of round robin time
taken on scheduling. Compared to the per queue aver-
age queue length, Tround is per port. Therefore, MQ-
ECN keeps the same scale implementation complexity
as ECN/RED, as we just need one additional register per
port to store Tround.

However, one potential challenge is that too frequent
moving average calculation cannot be easily achieved by
switching chips. This problem becomes more and more
serious as the link capacity of production DCNs keeps
increasing in recent years. To the best of our knowledge,
some chip vendors take a time based moving average cal-
culation to address this challenge. For example, for av-
erage queue length calculation of ECN/RED, the mov-
ing average is taken for a static interval at microseconds
granularity rather than each packet arrival/departure.
Similarly, our Tround moving average update can also be
implemented using a time based version. In our discus-
sion, we prefer a time related to the transmission time of
an MTU. Taking 10G link capacity and MTU=9KB as an
example, the transmission time is 7.2µs. The moving av-
erage calculation at this time granularity can be achieved
by most switching chip vendors as we know.

In summary, MQ-ECN maintains the same scale im-
plementation complexity as ECN/RED as it just requires
one addition moving average register per port.

4.2 Software Prototype
Since we cannot program our switching chips, we use a
server with multiple Network Interface Cards (NICs) to
emulate the switch and implement MQ-ECN on top of
that. MQ-ECN is implemented as a new Linux queue-
ing discipline (qdisc) kernel module. Hence, we can
avoid the overhead of data copy and context switch be-
tween user and kernel space. Figure 4 shows the soft-
ware stack of MQ-ECN. MQ-ECN prototype has three
components: a packet classifier, a packet scheduler, and
a rate limiter. Instead of modifying the Linux tc, we ex-
pose new sysctl interfaces for users to configure the
new qdisc module in user space.

Packet Classifier: MQ-ECN kernel module maintains
multiple FIFO transmit queues. Packets are classified
into different queues based on the IP DSCP field. When

7

544 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

MQ-ECN kernel module receives a packet from IP layer,
it: 1) classifies the packet based on DSCP value, 2) cal-
culates the ECN marking threshold of the corresponding
queue, 3) performs ECN marking if needed, and 4) en-
queues the packet.

Packet Scheduler: The packet scheduler of MQ-ECN
kernel module is built on the top of the DWRR sched-
uler available in Linux. Our implementation can also be
easily extended to WRR by resetting deficit counter to 0
whenever a queue finishes its service in a round.

The DWRR scheduler maintains a linked list for all
active queues. When an empty queue receives a packet,
it is inserted to the tail of the linked list. The scheduler
always serves the head node of the linked list. If a queue
just finishes its service and but still has packets, it is in-
serted to the tail of the linked list again. Each queue has
a variable Tstart to store the time stamp when this queue
is inserted to the linked list last time. Whenever a queue
finishes its service, we use current time minus Tstart to
get a sample of Tround. In this way, we only sample
Tround on active queues, just as §3.3.1 described.

Rate Limiter: One implementation challenge is to make
the buffer occupancy in qdisc reflect the real buffer
occupancy of the emulated switch port. A packet de-
queued by qdisc further goes through NIC driver and
NIC hardware before it is delivered to the wire. If we
dequeue packets from qdisc as fast as possible, many
packets can still get queued on NIC driver and hardware.
Consequently, the buffer occupancy in qdisc is likely
to be smaller than the actual buffer occupancy of the em-
ulated switch port. To avoid such impact, we implement
a Token Bucket rate limiter to rate-limit the outgoing
traffic from qdisc at 99.5% of the line rate. The bucket
size is ∼1.67 MTU (2.5KB) in our experiment, which is
large enough to saturate more than 99% of link capac-
ity while introducing little burstiness. In this way, we
can eliminate undesirable buffering in other places and
make the buffer occupancy in qdisc accurately reflect
the buffer occupancy of the emulated switch port.

To confirm the effectiveness of the rate limiter, we in-
stall MQ-ECN kernel module on a server with 10 GbE
NICs to emulate switch. Two other servers are connected
to this software switch. The shaping rate is 995Mbps.
The bucket size is 2.5KB. We start a long-lived TCP
flow to measure goodput. The goodputs with and without
kernel module are 937Mbps and 942Mbps, respectively.
MQ-ECN module introduces ∼0.53% goodput degrada-
tion, exactly enforcing the desired rate (995Mbps).

5 Evaluation

In this section, we use testbed experiments and ns-2 [5]
simulations to answer following three key questions:

100 101 102 103 104 105 1060

0.2

0.4

0.6

0.8

1

Flow Size (KBytes)

C
D

F

Web search
Data mining
Cache
Hadoop

Figure 5: Flow size distributions used for evaluation.

• How does MQ-ECN perform in practice? In a static
flow experiment (§5.1.1), we show that MQ-ECN
strictly preserves weighted fair sharing while main-
taining high throughput and low latency. Using realis-
tic workloads in our testbed experiments (§5.1.2), we
show that MQ-ECN outperforms the other schemes.
For example, it achieves up to 72.8% lower 99th per-
centile FCT for small flows compared to the per-queue
ECN with standard threshold.

• Does MQ-ECN scale to large data center topolo-
gies? Using large-scale ns-2 simulations (§5.2), we
show that MQ-ECN scales to multi-hop topologies
and delivers the best overall performance. For exam-
ple, it reduces the 99th percentile FCT for small flows
by up to 43.7% compared to the standard threshold,
while achieving up to 13.2% lower average FCT for
large flows compared to the minimum threshold.

• How robust is MQ-ECN to network environments
and parameter settings? Using a series of targeted
simulations (§5.3), we show that MQ-ECN is robust to
1) the number of queues (§5.3.1), 2) transport protocol
(§5.3.2), and 3) parameter settings (§5.3.3).

Benchmark traffic: We use four traffic distributions
based on measurements from production DCNs (Fig-
ure 5): a web search workload [6], a data mining work-
load [16], a cache workload [25], and a Hadoop work-
load [25]. In general, all the workloads are heavy-
tailed. Among them, the web search workload and the
cache workload are more challenging since they are less
skewed. For example, ∼60% of all bytes in the web
search workload are from flows smaller than 10MB.
Consequently, in the web search workload, it is likely
that several flows are concurrently active in the same
link, thus increasing network contention. Ideally, dif-
ferent services have different traffic distributions. How-
ever, to create more challenges, we hypothetically use the
most challenging web search workload for all services in
the testbed experiments. We use all the four workloads
in the large-scale simulations.

Schemes compared: We evaluate the performance of
three schemes, MQ-ECN, per-queue ECN with the stan-
dard threshold and per-queue ECN with the minimum

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 545

0 2 4 6 8 100

200

400

600

800

1000

Time (s)

G
oo

dp
ut

 (M
bp

s)
Service 1
Service 2

(a) Aggregate goodput

200 400 600 8000

0.2

0.4

0.6

0.8

1

RTT (us)

C
D

F

Empirical CDF

MQ−ECN
Per−queue standard

(b) RTT

Figure 6: [Testbed] (a) Aggregate goodput of two services
achieved by MQ-ECN. (b) RTT distributions.

threshold. We exclude per-port ECN as it can violate
weighted fair sharing. For MQ-ECN, there are only two
parameters to configure (§3.3.1): β and Tidle. In both
testbed experiments and simulations, we set β to 0.75
and Tidle to the transmission time of a MTU (12µs in 1G
testbed and 1.2µs in 10G simulation). We further analyze
the sensitivity to above parameters in §5.3.

Performance metric: We use the flow completion time
(FCT) as the performance metric. We consider the over-
all average FCT of all flows and average FCT across dif-
ferent flow sizes (small, medium and large). To evalu-
ate tail latency, we also show the 99th percentile FCT of
small flows. For clear comparison, we normalize the fi-
nal FCT results (not per flow FCT) to the values achieved
by per-queue ECN with the standard threshold.

5.1 Testbed Experiments

Testbed setup: We build a small-scale testbed with 9
servers connected to a 9-port server-emulated MQ-ECN-
enabled switch. Each server is a Dell PowerEdge R320
with a 4-core Intel E5-1410 2.8GHz CPU, 8G memory, a
500GB hard disk, and the server-emulated switch has 10
Broadcom BCM5719 NetXtreme Gigabit Ethernet NICs.
We reserve one NIC on the server-emulated switch for
control access. All the servers run Linux kernel 3.18.11
and DCTCP is enabled. We set TCP RTOmin to 10ms
as many proposals suggest [6, 19, 30]. On the server-
emulated switch, we deploy a MQ-ECN qdisc kernel
module with 4 queues (per port) scheduled by DWRR.
The quantum of each queue is 1MTU. We disable of-
floading techniques on the switch to avoid large seg-
ments. Each switch port has 96KB buffer which is com-
pletely shared by all the queues in a first-in-first-serve
bias. The base RTT is ∼250µs. Given that, we set the
standard ECN marking threshold to 32KB.

5.1.1 Static Flow Experiment
We begin with a basic static flow experiment to show that
MQ-ECN can achieve high throughput, low latency and
weighted fair sharing simultaneously. We start 5 TCP
flows from two senders to the same receiver and classify

them into two services based on their senders. Service 1
has 1 flow and service 2 has 4 flows. Both services have a
equal-quantum dedicated queue on the switch. We eval-
uate the performance of MQ-ECN and per-queue ECN
with the standard threshold.

Figure 6(a) shows the sharing results achieved by MQ-
ECN. The sharing result achieved by the standard thresh-
old is quite similar to Figure 6(a). We omit it due to
space limitation. In contrast to Figure 3(a), both services
roughly achieve the same goodput. We also use ns-2 sim-
ulation to reproduce the experiment and find that MQ-
ECN achieves similar convergence time as the standard
threshold. This suggests that MQ-ECN can strictly pre-
serve weighted fair sharing. Furthermore, the sum of ag-
gregate goodputs of two services achieved by MQ-ECN
is ∼936Mbps. This suggests that MQ-ECN can fully uti-
lize the link capacity.

We also measure RTT of the dedicated queue of ser-
vice 2 using ping. Figure 6(b) gives the RTT distribu-
tions achieved by MQ-ECN and the standard threshold.
Compared to the standard threshold, MQ-ECN achieves
32.3% (651µs to 441µs) and 31.5% (782µs to 536µs)
lower RTT in average and the 99th percentile. Recall
that the base RTT is ∼250µs. Hence, MQ-ECN reduces
queueing delay by ∼50%. This suggests that MQ-ECN
can achieve low latency.

5.1.2 Realistic Workloads

For this experiment, we develop a client/server appli-
cation to generate dynamic traffic according to the web
search workload [6]. The client application, running on
1 server, generates requests through persistent TCP con-
nections to the other 8 servers to fetch based on a Poisson
process. The server applications, running on the other 8
servers, respond with requested data. To map a flow to a
service queue, the server application uses setsockopt
to set DSCP for outgoing packets. We create two traffic
patterns: balanced traffic and unbalanced traffic. In bal-
anced traffic, each flow is randomly mapped to a service
queue. In unbalanced traffic, each flow is mapped to 4
service queues with probabilities of 10%, 20%, 30% and
40%. We vary the network load from 10% to 90%.

Figure 7 and 8 show the overall average FCT (a), FCT
across small (0,100KB] (b,c) and large (10MB,∞) flows,
respectively. Due to space limitation, we omit the re-
sults for the medium (100KB,10MB] flows whose per-
formance is quite similar to that of overall average FCT.
We make the following three observations.

Overall: MQ-ECN generally achieves the best overall
average FCT. Compared to the standard threshold, MQ-
ECN delivers similar performance at low loads (≤ 50%)
and achieves up to ∼2.85% (balanced) and ∼1.65% (un-
balanced) lower FCT at high loads. When the load is

9

546 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

10 20 30 40 50 60 70 80 900.6

0.7

0.8

0.9

1

1.1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

Per−queue standard
MQ−ECN
Per−queue minimum

(a) Overall

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (0,100KB]: Avg

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(c) (0,100KB]: 99th percentile

10 20 30 40 50 60 70 80 900.6

0.7

0.8

0.9

1

1.1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(d) (10MB,∞): Avg

Figure 7: [Testbed] Balanced traffic pattern: FCT statistics across different flow sizes.

10 20 30 40 50 60 70 80 900.6

0.7

0.8

0.9

1

1.1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

Per−queue standard
MQ−ECN
Per−queue minimum

(a) Overall

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (0,100KB]: Avg

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(c) (0,100KB]: 99th percentile

10 20 30 40 50 60 70 80 900.6

0.7

0.8

0.9

1

1.1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(d) (10MB,∞): Avg

Figure 8: [Testbed] Unbalanced traffic pattern: FCT statistics across different flow sizes.

low, it is not likely that multiple queues are concurrently
active. Hence, both MQ-ECN and the standard thresh-
old can achieve good FCT due to their high throughput.
When the load is high, MQ-ECN achieves better perfor-
mance by efficiently reducing packet latency. Compared
to the minimum threshold, MQ-ECN outperforms it at
all loads for both traffic patterns.

Small flows: MQ-ECN performs similar as the mini-
mum threshold for small flows while significantly out-
performing the standard threshold. Compared to the
standard threshold, MQ-ECN reduces the average FCT
for small flows by up to ∼61.3% (balanced) and ∼42.9%
(unbalanced). The performance gap on 99th percentile
FCT is even larger: MQ-ECN achieves up to ∼72.8%
(balanced) and ∼71.3% (unbalanced) lower 99th per-
centile FCT for small flows. We attribute the large tail
FCT of the standard threshold to its poor burst tolerance.
When all the 4 queues are concurrently active, the total
buffer occupancy achieved by the standard threshold can
easily reach 128KB (4× 32KB), thus overfilling shallow
switch buffer (96KB).

Large flows: MQ-ECN also achieves good performance
for large flows. Compared to the standard threshold,
the average FCT for large flows of MQ-ECN is within
∼2.7% for the balanced traffic pattern and ∼1.8% for
the unbalanced traffic pattern. This is expected be-
cause MQ-ECN adjusts the ECN marking threshold for
each queue based on its dynamic weighted fair share
rate, thus not adversely affecting its throughput. By
contrast, the minimum threshold, due to its throttle on
rates, delivers the worst performance for large flows: it
achieves ∼1.2–4.4% (balanced) and ∼1.8–7.4% (unbal-
anced) larger FCT compared to the standard threshold.

5.2 Large-scale NS-2 Simulations
In this section, we use ns-2 [5] simulations to evaluate
MQ-ECN’s performance in large-scale DCNs.

Topology: We use a 144-host leaf-spine topology with
12 leaf (ToR) switches and 12 spine (Core) switches.
Each leaf switch has 12 10Gbps downlinks to hosts and
12 10Gbps uplinks to spines, forming a non-blocking
network. The base RTT across the spine (4 hops) is
85.2µs. We employ ECMP for load balancing.

Workloads: We use all the 4 flow size distributions in
Figure 5. Since there are 144 hosts, we have 144 × 143
communication pair in total. We evenly map these pairs
to 8 services. Every two services share a flow size distri-
bution. All simulations last for 50000 flows.

Transport: We use DCTCP by default. The initial win-
dow is 16 packets. We set both initial and minimum
value of TCP RTO to 5ms.

Switch: Each switch port has 300KB buffer shared by
all the 8 queues in a first-in-first-serve bias. We set the
standard marking threshold to 65 packets. We use both
DWRR and WRR in our simulations. All the queues
have the same quantum of 1.5KB.

Figure 9 and 10 give the FCT results across different
flow sizes. In the interest of space, we omit the results for
the medium flows (100KB,10MB] whose performance
trend is very similar to that of overall average FCT. We
have the following three observations.

Overall: MQ-ECN generally achieves the best overall
performance, consistent with our testbed experiments in
§5.1. Compared to the standard threshold, MQ-ECN
achieves up to ∼4.1% lower average FCT. The perfor-
mance of the minimum threshold is volatile. Compared

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 547

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

Per−queue standard
MQ−ECN
Per−queue minimum

(a) Overall

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (0,100KB]: Avg

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

(c) (0,100KB]: 99th percentile

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

(d) (10MB,∞): Avg

Figure 9: [Simulation] DWRR: FCT statistics across different flow sizes

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

Per−queue standard
MQ−ECN
Per−queue minimum

(a) Overall

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (0,100KB]: Avg

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

(c) (0,100KB]: 99th percentile

10 20 30 40 50 60 70 80 900.2

0.4

0.6

0.8

1

1.2

1.4

Load (%)

N
or

m
al

iz
ed

 F
C

T

(d) (10MB,∞): Avg

Figure 10: [Simulation] WRR: FCT statistics across different flow sizes

to the other schemes, it shows obvious performance gap
at low loads. For example, it achieves ∼11% larger FCT
at 10% load compared to the standard threshold. This is
because, at low loads, it is likely that only few queues are
active. In such scenario, the minimum threshold severely
degrades throughput. When the load increases, the min-
imum threshold shows better performance as expected.
However, at extremely high loads, the performance of
the minimum threshold degrades again, which is counter-
intuitive. We suspect the reason is because ECMP is ag-
onistic to both flow sizes and service classes, and it does
not guarantee to spread large flows from the same service
class across different paths. When the load is unbalanced
or large flows from the same class are concentrated (even
overall traffic is balanced), the problem may arise.

Small flows: MQ-ECN greatly outperforms the standard
threshold for small flows. Compared to the standard
threshold, MQ-ECN reduces the average and 99th per-
centile FCT for small flows by up to 23.7% and 43.7%,
respectively. Compared to the minimum threshold, the
average FCT for small flows with MQ-ECN is within
24.3% for DWRR and 26.4% for WRR. The performance
gap is because that the minimal threshold trades through-
put for better latency. In our simulation, 65.1% of small
flows are smaller than 24KB (16 packets), which are
small enough to complete within one RTT. The minimum
threshold can provide ideal performance for such mice
flows since their FCTs are only determined by latency.

Large flows: For large flows, MQ-ECN achieves com-
parable performance as the standard threshold while sig-
nificantly outperforming the minimum threshold. This
suggests MQ-ECN achieves high throughput. MQ-ECN
even slightly outperforms the standard threshold at ex-

tremely high loads. For example, compared to the
standard threshold, MQ-ECN with WRR achieves 2.1%
lower average FCT for large flows at 80% load. This
is because MQ-ECN can provide better burst tolerance,
thus greatly reducing packets drops and retransmissions.
As we check, at 80% load, the standard threshold with
WRR causes 720 TCP timeouts while MQ-ECN only has
45. As expected, the minimum threshold performs the
worst. For example, it is 13.2% worse than MQ-ECN
with WRR at 90% load for large flows.

5.3 MQ-ECN deep dive
In this section, we conduct a series of targeted simula-
tions to evaluate MQ-ECN’s robustness to network en-
vironments and parameters. By default, we use DCTCP
as the transport protocol and DWRR (8 queues) as the
packet scheduler. The other settings are same as §5.2

5.3.1 Impact of the Number of Queues

In the future, switching chips may support more and
more queues. To verify whether MQ-ECN can scale to
a larger number of queues, we increase the number of
queues per switch port to 32. In the interest of space,
we only show overall performance and average FCT for
large flows in Figure 11.

We find that MQ-ECN still maintains the best over-
all performance. However, the performance of the min-
imum threshold degrades significantly, particularly at
high loads. It is 35.7% worse than MQ-ECN at 90%
load for overall average FCT. The reason behind this is:
at a given load, the more queues we use, the less likely
that the majority of queues are concurrently active. Thus,

11

548 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

10 20 30 40 50 60 70 80 900.4

0.6

0.8

1

1.2

1.4

1.6

Load (%)

N
or

m
al

iz
ed

 F
C

T

Per−queue standard
MQ−ECN
Per−queue minimum

(a) Overall

10 20 30 40 50 60 70 80 900.4

0.6

0.8

1

1.2

1.4

1.6

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (10MB,∞): Avg

Figure 11: [Simulation] FCT with 32 queues.

10 20 30 40 50 60 70 80 900.4

0.6

0.8

1

1.2

1.4

1.6

Load (%)

N
or

m
al

iz
ed

 F
C

T

Per−queue standard
MQ−ECN
Per−queue minimum

(a) Overall

10 20 30 40 50 60 70 80 900.4

0.6

0.8

1

1.2

1.4

1.6

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (10MB,∞): Avg

Figure 12: [Simulation] FCT with ECN∗.

the throughput of the minimum threshold is affected, en-
larging FCT for large flows. By contrast, MQ-ECN can
effectively adjust ECN marking thresholds based on traf-
fic dynamics to maintain high throughput. This indicates
that MQ-ECN is robust to the number of queues.

5.3.2 Impact of Transport Protocol

In addition to DCTCP, there are many other ECN-based
DCN transport protocols, such as ECN∗ [31]. Unlike
DCTCP, ECN∗ simply reduces the window by half in the
presence of ECN. Hence, ECN∗ is more sensitive than
DCTCP. A lower ECN marking threshold can greatly af-
fect the throughput of ECN∗ [31]. For example, with
zero buffering, DCTCP can maintain 94% throughput in
theory [7] while ECN∗ only achieves 75% throughput.

We evaluate the performance of all the three schemes
with ECN∗. We set the standard ECN marking threshold
to 84 packets. As Figure 12 shows, MQ-ECN still out-
performs the other schemes under ECN∗. This indicates
that MQ-ECN can efficiently maintain high throughput
by adjusting ECN marking thresholds based on dynamic
weighted fair share rates. As expected, the throughput of
the minimum threshold degrades severely. Compared to
MQ-ECN, it increases FCT for large flows by ∼22–36%.

5.3.3 Sensitivity to Parameters

We now try to explore MQ-ECN’s sensitivity to param-
eters. Recall that MQ-ECN has two parameters to con-
figure: β and Tidle. In our simulation, β is 0.75 and
Tidle is 1.2µs (1.5KB/10Gbps) by default. Here, we
compare the default setting with the other 3 settings:
1) β=0.875, Tidle=7.2µs, 2) β=0.5, Tidle=1.2µs, and 3)
β=0.75, Tidle=7.2µs.

10 20 30 40 50 60 70 80 900.6

0.8

1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

Default
Setting 1
Setting 2
Setting 3

(a) Overall

10 20 30 40 50 60 70 80 900.6

0.8

1

1.2

Load (%)

N
or

m
al

iz
ed

 F
C

T

(b) (0,100KB]: Avg

Figure 13: [Simulation] FCT with different parameters.
FCT is normalized to the value achieved by default setting.

Figure 13 gives the FCT results achieved by above
4 settings. Note that FCT is normalized to the value
achieved by the default setting. In general, compared
to the default setting, the other 3 settings achieve very
close performance. Their performance is within 0.37%
for overall average FCT and 1.05% for average FCT of
small flows. The results suggest that MQ-ECN is robust
to different parameter settings.

6 Related Work
Tons of literatures working along the general ECN/RED,
e.g., [6, 12, 15, 24, 29, 31, 32], are related to MQ-ECN.
For space limitation, we do not introduce these literatures
one by one. However, the key difference is that MQ-ECN
is perhaps the first effort that investigates the problem of
applying ECN in multi-service multi-queues production
DCNs. MQ-ECN does not challenge the fundamental
principle of prior work on ECN; instead it builds on the
theory (e.g., the standard ECN marking threshold) devel-
oped by prior work especially [6, 7, 31], and extends its
applicability to a new production environment.

7 Conclusion
In this paper, we have presented MQ-ECN for multi-
service multi-queue DCN that is capable of delivering
both high throughput and low latency simultaneously,
while maintaining weighted fair sharing. We have shown
that MQ-ECN achieves all its properties without requir-
ing advanced features and is readily implementable with
existing commodity chips. At last, we performed a se-
ries of testbed experiments and large-scale simulations
to validate its performance as well as robustness to dif-
ferent network environments and parameter settings.

Acknowledgements
This work is supported in part by the Hong Kong RGC
ECS-26200014, GRF-16203715, GRF-613113, CRF-
C703615G and the China 973 Program under Grant
No.2014CB340303. We would like to thank the anony-
mous NSDI reviewers and our shepherd Changhoon Kim
for their constructive feedback and suggestions.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 549

References

[1] http://www.pica8.com/documents/
pica8-datasheet-64x10gbe-p3922-p3930.pdf.

[2] “Broadcom BCM56850,” https://www.broadcom.com/
collateral/pb/56850-PB03-R.pdf.

[3] “DCTCP in Linux kernel 3.18 ,” http://kernelnewbies.org/
Linux 3.18.

[4] “DCTCP in Windows Server 2012 ,” http://technet.
microsoft.com/en-us/library/hh997028.aspx.

[5] “The Network Simulator NS-2,” http://www.isi.edu/
nsnam/ns/.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data
center TCP (DCTCP),” in SIGCOMM 2010.

[7] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis
of DCTCP: stability, convergence, and fairness,” in SIG-
METRICS 2011.

[8] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda, “Less is more: trading a lit-
tle bandwidth for ultra-low latency in the data center,” in
NSDI 2012.

[9] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker, “pfabric: Minimal near-
optimal datacenter transport,” in SIGCOMM 2013.

[10] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-Agnostic Flow Scheduling for Commodity
Data Centers,” in NSDI 2015.

[11] T. Benson, A. Akella, and D. A. Maltz, “Network Traf-
fic Characteristics of Data Centers in the Wild,” in IMC
2010.

[12] L. Chen, S. Hu, K. Chen, H. Wu, and D. Tsang, “Towards
Minimal-Delay Deadline-Driven Data Center TCP,” in
HotNets 2013.

[13] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the
ACM, pp. 107–113, 2008.

[14] A. Demers, S. Keshav, and S. Shenker, “Analysis and sim-
ulation of a fair queueing algorithm,” in ACM SIGCOMM
Computer Communication Review, vol. 19, no. 4. ACM,
1989, pp. 1–12.

[15] S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Trans. Netw.,
pp. 397–413.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“VL2: a scalable and flexible data center network,” in
SIGCOMM 2009.

[17] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W. Lin, and
V. Kurien, “Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis,” in
SIGCOMM 2015.

[18] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo:
Predictable Message Latency in the Cloud,” in SIG-
COMM 2015.

[19] G. Judd, “Attaining the Promise and Avoiding the Pitfalls
of TCP in the Datacenter,” in NSDI 2015.

[20] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. Liu,
and F. Dogar, “Friends, not Foes - Synthesizing Existing
Transport Strategies for Data Center Networks,” in SIG-
COMM 2014.

[21] J. Nagle, “On Packet Switches with Infinite Storage,”
IEEE Transactions on Communications, vol. 35, no. 4,
pp. 435–438, Apr 1987.

[22] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Ap-
proximate fairness through differential dropping,” ACM
SIGCOMM Computer Communication Review, vol. 33,
no. 2, pp. 23–39, 2003.

[23] A. K. Parekh and R. G. Gallager, “A generalized pro-
cessor sharing approach to flow control in integrated ser-
vices networks: the single-node case,” IEEE/ACM Trans-
actions on Networking (ToN), vol. 1, no. 3, pp. 344–357,
1993.

[24] K. Ramakrishnan, S. Floyd, D. Black et al., “RFC 3168:
The addition of explicit congestion notification (ECN) to
IP,” 2001.

[25] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the Social Network’s (Datacenter) Network,” in
SIGCOMM 2015.

[26] M. Shreedhar and G. Varghese, “Efficient fair queuing us-
ing deficit round-robin,” Networking, IEEE/ACM Trans-
actions on, vol. 4, no. 3, pp. 375–385, 1996.

[27] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano et al., “Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Googles Datacen-
ter Network,” in SIGCOMM 2015.

[28] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless
fair queueing: a scalable architecture to approximate
fair bandwidth allocations in high-speed networks,”
IEEE/ACM Transactions on Networking (TON), vol. 11,
no. 1, pp. 33–46, 2003.

[29] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-
aware datacenter tcp (d2tcp),” in SIGCOMM 2012.

[30] V. Vasudevan et al., “Safe and effective fine-grained TCP
retransmissions for datacenter communication,” in SIG-
COMM 2009.

[31] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang,
“Tuning ECN for data center networks,” in CoNEXT
2012.

[32] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang, “Congestion Control for Large-Scale RDMA
Deployments,” in SIGCOMM 2015.

13

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 551

DFC: Accelerating String Pattern Matching for Network Applications

Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park, Dongsu Han

KAIST

Abstract
Middlebox services that inspect packet payloads have be-
come commonplace. Today, anyone can sign up for cloud-
based Web application firewall with a single click. These
services typically look for known patterns that might ap-
pear anywhere in the payload. The key challenge is that
existing solutions for pattern matching have become a
bottleneck because software packet processing technolo-
gies have advanced. The popularization of cloud-based
services has made the problem even more critical.

This paper presents an efficient multi-pattern string
matching algorithm, called DFC. DFC significantly re-
duces the number of memory accesses and cache misses
by using small and cache-friendly data structures and
avoids instruction pipeline stalls by minimizing sequen-
tial data dependency. Our evaluation shows that DFC
improves performance by 2.0 to 3.6 times compared to
state-of-the-art on real traffic workload obtained from a
commercial network. It also outperforms other algorithms
even in the worst case. When applied to middlebox appli-
cations, such as network intrusion detection, anti-virus,
and Web application firewalls, DFC delivers 57-160%
improvement in performance.

1 Introduction
Multi-pattern string matching is a performance-critical
task for many middlebox applications that perform deep
packet inspection (DPI), such as network intrusion de-
tection systems (IDS) [18, 21], Web application fire-
walls [13, 17], traffic classification [7], and network cen-
sorship/surveillance [9, 10, 22]. These applications com-
monly apply pattern matching to select flows or packets
of interest that are subjected to further extensive process-
ing. The common practice for Web application firewalls
and IDS is to initially perform pattern matching on the
traffic and apply regular expression matching to a rel-
atively small number of packets that contain the string
patterns [18, 21, 39, 66]. Many studies have shown that
string pattern matching is one of the primary performance
bottlenecks for these systems [25, 39, 48, 66, 67].

The key challenge to multi-pattern string matching
is that its performance requirement has increased dra-
matically (e.g., from multi-Gbps [35] to multi-10s of
Gbps [6]), outpacing the performance of existing solu-
tions [39, 66]. The popularization of cloud-based third-

party middlebox services [58], such as CloudFlare and
Akamai’s Web application firewall (WAF), requires that
they handle large amounts of traffic efficiently [3, 5, 66].

Multi-pattern matching algorithms for network applica-
tions must satisfy three requirements: 1) they must support
exact string matching to ensure correctness, while iden-
tifying the patterns matched, 2) they must support small
and variable size patterns, ranging from a single byte to
hundreds of bytes [8, 19], and 3) it must provide efficient
online lookup against a stream of data (e.g., network traf-
fic) as opposed to batched processing.

The classic Aho-Corasick (AC) algorithm [24] satis-
fies these requirements, and therefore is used by many
applications, including intrusion detection systems, such
as those of Snort [18] and Suricata [21], and Web appli-
cation firewalls, such as ModSecurity [13] and Cloud-
Flare’s WAF [66]. AC constructs a deterministic finite
automaton (DFA) based on the pattern set and is known
to deliver asymptotically optimal performance. However,
the main problem is that it references memory frequently
and causes a large number of cache misses, resulting in
poor performance. In particular, the size of DFA it con-
structs increases linearly with the number of states and
causes severe performance degradation [53]. Although
many efforts have been attempted to reduce the memory
footprint, they come with undesirable performance trade-
offs because they often require additional computation
and/or memory lookups [20].

This paper presents DFC, a memory-efficient and
cache-friendly data structure designed to deliver high
performance. Our central tenet is that to obtain high per-
formance we must minimize CPU stalls and maximize
instruction level parallelism, while reducing the amount
of per-byte operations and memory lookups. However,
achieving this while satisfying the three requirements is
not trivial. In particular, it is especially difficult to support
exact matching with short and variable size patterns. Fur-
thermore, its worst case performance must also be better
than that of other algorithms.

To achieve our goal, DFC combines a number of small,
efficient data structures by leveraging two key ideas. First,
at its heart is a small data structure, called direct filter
(DF) that, using a small sliding window, is designed to
quickly reject parts of text that will not generate a match.
It increases instruction-level parallelism by avoiding data

1

552 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

1-4 byte 5-8 byte >9 byte Total

ET-PRO May 2015 7.3K (28%) 6.7K (26%) 12.1K (46%) 26.2K
ET-Open May 2015 5.3K (30%) 4.6K (26%) 7.8K (44%) 17.7K
Snort VRT 2.9.7.0 1.2K (21%) 1.0K (17%) 3.6K (62%) 5.9K
ModSecurity 2.2.9 0.7K (13%) 1.7K (32%) 2.9K (55%) 5.2K

Table 1: String length distribution in the pattern set

dependencies in the critical path and occupies a small
memory footprint (8 KB) for cache efficiency. Moreover,
its lookup does not require hash computation. Second, to
support exact matching, we use multiple layers of direct
filters designed to classify patterns based on their lengths
and to filter out the window in a progressive fashion. The
key premise is that the longer the pattern is the more one
has to inspect to reduce false positives.

Our evaluation shows that DFC outperforms existing
solutions by a large margin. In particular, DFC delivers
2.0-2.5 times the performance of AC with 1-26K vari-
able size patterns on real traffic workloads. DFC refer-
ences memory 1.8 times less frequently and incurs 3.8
times fewer L1 data cache misses. Its memory footprint
is four times smaller than that of AC with 26K patterns.
Even under malicious and adversarial workloads, DFC
outperforms AC by a factor of 1.7 to 2.0. Finally, we
implement four applications that use DFC—IDS, Web
application firewalls, traffic classification, and anti-virus—
and demonstrate that DFC improves their performance by
57 to 160%.

In summary, we make the following contributions:
1. New algorithm: We present a new algorithm for

exact multi-pattern string matching that gracefully
handles short and variable size patterns, and also
works well with a stream of network traffic.

2. Prototype and evaluation: We evaluate DFC using
a variety of deep packet inspection (DPI) patterns
from IDS, anti-virus software, and Web application
firewalls under real and synthetic workloads.

3. Real-world applications: We show four applica-
tions of DFC. When applied to intrusion detection,
DFC delivers up to 2.3X the performance of the next
best solution, in real traffic from a commercial ISP.
When applied to Web application firewalls, DFC
delivers 1.9X the performance. Moreover, DFC im-
proves the performance of traffic classification and
anti-virus by 60% and 75%, respectively.

2 Motivation
Why is it important? Network applications, such as net-
work intrusion detection, traffic classification, and Web
application firewalls, specify pattern signatures using reg-
ular expression and strings [48, 53]. While regular expres-
sion is much more expressive, matching multiple regular
expressions [60] is much more expensive. Matching a
single regular expression (regex) against network traf-
fic is 4X slower than multi-string matching with 2.4K

patterns [39][§4.5]. Matching multiple regex patterns by
constructing a single extended automaton (XFA [60, 61])
is at least two orders of magnitude slower than multi-
string matching.1 Due to the distinct tradeoff between
performance and expressiveness of the two, string pattern
matching is commonly used to accelerate regex-matching.
String matching can filter out the vast majority of in-
put early on and specifies a small set of candidate regex
patterns to inspect [13, 18, 21, 31]. Typically, regex pat-
terns contain at least a few bytes of string [60][Table 2].
SplitScreen [31] leverages this to extract strings from
regex patterns and uses them as a pre-filter to improve the
performance. For the same reason, it is strongly recom-
mended that IDS signatures contain string fields [23].

String matching is also used for protocol classifica-
tion/identification and for testing the presence of key-
words. Because string-pattern matching is a critical build-
ing block for network applications that inspect payloads,
it is reported that string matching is one of the most ex-
pensive operations in Web application firewalls [66] and
accounts for 70 to 80% of CPU cycles for IDS [25, 39].

Today, middlebox services offered over the cloud (e.g.,
CloudFlare’s WAF [66]) allows customers to easily sign
up for these services. One of the reasons for the wide-
spread use of WAF is that it is one of the two ways to
meet Payment Card Industry (PCI) Data Security Stan-
dards (DSS) requirement 6.6 for Web sites that take credit
cards [1, 16]. 2 Decrypted traffic is inspected by Note, a
Web application firewall (WAF), to protect the Web ser-
vice. For this, some WAFs [13] run as part of the Web
server, whereas cloud-based WAF services integrate it-
self with existing SSL acceleration service. We believe
that popularization of cloud-based middlebox services
and the security regulations/best practices make high-
performance multi-pattern matching more important.
Workload: Three key characteristics define our target
workload. First, patterns can appear anywhere in the text.
Second, the number of patterns is large, typically on the
order of 10K patterns, and accumulates over time as new
patterns are discovered. Finally, patterns are typically
short and of variable size.

Table 1 shows the pattern-length distribution from four
popular rulesets for IDS and Web firewalls. Over 54% of
patterns are 8 bytes or shorter in the ET-Pro®ruleset, a
popular commercial pattern set for IDSs [8].
Why is it difficult? We categorize existing approaches
into three classes and show that the characteristics of our
workload make each of these algorithms rather ineffective.

1Note, the main benefit of XFA is that it solves the state explosion
problem of DFAs. But its matching performance is still lower than
that of DFA. Although it is an indirect comparison, XFA’s multi-regex
matching takes hundreds of CPU cycles per byte of input [60, 61],
whereas multi-string matching takes a few cycles.

2The other option is to conduct application vulnerability security
reviews of all Web applications in use.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 553

Figure 1: Memory footprint of AC and
DFC

Figure 2: Throughput and memory foot-
print

DF DFC AC

L1-D cache load 2.0 4.6 8.4
L1-D cache misses 0.003 0.282 1.070
L2 cache misses 0.002 0.036 0.190
L3 cache misses 0.0019 0.011 0.017

Table 2: Number of memory accesses and
cache misses per byte of input text

Aho-Corasick-based algorithms construct finite state
automata (based on the pattern strings) that consume each
character of the input text sequentially. AC is by far the
most popular multi-string matching algorithm used for
deep packet inspection. While it achieves asymptotically
optimal performance, in practice, its performance is far
from ideal because it generates frequent cache misses due
to its large memory footprint [53]. As shown in Figure 1,
its memory footprint increases dramatically as the number
of patterns increases. 3 For a reasonably large pattern set,
the data structure does not fit in a CPU cache, resulting in
a severe performance penalty.

Variants of AC [20, 55] that try to compress the state
transition tables come at the cost of decreased perfor-
mance. Figure 2 illustrates the memory footprint and per-
formance trade-offs of five commonly used AC variants
in Snort [20, 55], in contrast with those of DFC. For AC
implementations, the memory footprint and the through-
put are highly correlated. As a result, Snort defaults to
AC-FULL [20], which achieves the highest throughput at
the cost of the largest memory footprint.

The AC algorithm also frequently accesses memory
because it examines the state table for every byte of text.
Table 2 shows the average number of data accesses (mea-
sured using # of L1 data cache accesses) and the num-
ber of L1 data cache misses per byte of input text, while
matching randomly generated text with 26K patterns from
the ET-Pro ruleset.4 AC accesses the memory at least five
times on average per byte of input text, consisting of ac-
cess to: (1) the state machine, (2) the input text, (3) the
case translation table (for case insensitive lookup), (4) the
state transition table for looking up the next state, and
(5) a field that indicates whether the next state indicates
a valid match. Note, DFC reduces the memory access
frequency by a factor of 1.8 as shown in §5.4.

Heuristic-based algorithms try to achieve sub-linear
time complexity by advancing the sliding window by
multiple characters using the “bad character” and “good
suffix” heuristics [30]. For example, the Wu-Manber algo-
rithm [71] leverages the “bad character” heuristics. After
examining a block of characters, it looks up a shift table

3The patterns were taken from Snort and ET-Pro rulesets [8, 18].
4The performance statistics are obtained using perf and Intel Perfor-

mance Counter Monitor [12].

that indicates by how many bytes it can shift the slid-
ing window. The shift table is constructed so that when a
block of characters never appear in any of the patterns, the
algorithm skips the entire block and advances the sliding
window by multiple characters. However, this has two
main limitations. First, heuristics works well when the
pattern is long and its size is fixed, but is not effective
with short patterns [48, 71]. With short patterns, the shift
distance becomes small because the block size has to be
less than or equal to the shortest pattern, which is one
byte in our workload. Second, the algorithm inherently
has data dependencies that make it difficult to leverage
the performance characteristics of modern CPUs. Until it
retrieves the shift value from memory, it cannot determine
the next window to examine. This limits the instruction-
level parallelism, results in frequent instruction pipeline
stalls, and makes prefetching very difficult. As a result,
heuristics like Wu-Manber introduce severe performance
penalty in practice, as we show in §5.4. 5

Hashing-based algorithms compare the hash of a text
block with the hash of the pattern. They are designed to
quickly filter out non-matching text using its hash values,
but have several practical limitations. First, they introduce
false positives and thus require additional processing to
ensure exact pattern matching [53]. Second, when the pat-
terns are of variable size, the text block to hash must be
shorter than or equal to the shortest pattern to avoid false
negatives, which makes the algorithm ineffective under
our workload. A common solution is to use hashing for
long patterns and to fall back to traditional approaches
(e.g., Aho-Corasick) for short patterns. For example, an
exact matching algorithm based on feed-forward Bloom
filters (FFBF) [53] applies the hash-based approach for
patterns of size greater than 19 bytes, but uses AC for the
remaining patterns. Finally, they require multiple expen-
sive hash computation for every sliding window. Bloom
filters typically use multiple hash functions applied on
every sliding window. Even if a rolling hash function [53]
is to incrementally calculate the hash values, it is far more
expensive (than a simple lookup) as we show in §5.4.

5Note earlier versions of Snort once used a modified Wu-Manber
algorithm.

3

554 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 3: DFC design overview with an example configuation

3 Design
To overcome the limitations of existing approaches, our
main approach is to develop an efficient and simple prim-
itive that we use as a key building block. Making the
basic component efficient is critical because the nature
of the workload—matching a large number of small and
variable sized patterns—forces us to examine every byte
of input text. We show that one can design an efficient
string matching algorithm out of a simple primitive. We
also show that our algorithm not only delivers the best
average case performance but also is robust across many
workloads, including the worst case.

Figure 3 shows the overall design of DFC that consists
of three logical parts:

• Initial filtering phase employs a simple filter that
eliminates windows of input text that fail to match
any string patterns. Only the input text window that is
not filtered advances to the next phase. We describe
the filter design in §3.1.

• Progressive filtering phase first determines the ap-
proximate lengths of potentially matching patterns.
We group patterns into pattern size groups (e.g., 1B,
2-3B, 4-7B, 8+B) and use classifying filters to de-
termine the groups that the current window belongs
to. We then apply additional filtering proportional
to their lengths using additional filters. We use the
same type of filters for both purposes. We describe
the design of progressive filtering in §3.2.

• Verification phase verifies whether the input gen-
erates an exact match by comparing the text with
actual patterns. This is required because the previ-
ous phases do not completely eliminate false posi-
tives. For example, if there are patterns ‘AABB’ and
‘CCDD’, the initial DF can be set for ‘AA’ and ‘CC’
and an additional DF can be set for ‘BB’ and ‘DD’.
In this case, an input sequence ‘AADD’ will pass
both filters even though it is not a match. For verifi-
cation, we use a compact hash tables for each pattern
size class. Depending on the pattern size group deter-
mined by the previous phase, it inspects a different

≫

≪

𝐷𝐷𝐷𝐷(𝑃𝑃, 0)

Figure 4: An initialization example of Direct Filter

table. Its lookup is efficient because the progressive
filtering phase significantly reduces both the false
positives and the set of potentially matching patterns
to inspect. We describe the design in §3.3.

Two-stage hierarchical design: Our algorithm uses pro-
gressive filtering and verification in two stages as shown
in Figure 3. The first stage of progressive filtering classi-
fies patterns by their lengths in a coarse grained manner.
After roughly determining the pattern lengths, it looks
up a hash table for the pattern class in the verification
phase. However, this may be inefficient if there are many
hash collisions. Some buckets may contain many patterns
due to the skewed popularity of patterns. Normally, hash
collisions can be controlled either by using a more uni-
form hash function or adjusting the size of hash table.
However, we find that hash collisions are caused because
real-world pattern sets often contain common string prefix
or segments, and some prefixes (e.g., HOST) appear very
frequently (e.g., more than 100 times). For example, con-
sider a hash table indexed by 4 bytes and holds patterns
of size 4–7B. If many of them start with the same prefix
(e.g., HOST), then all of them will go to the same bucket.
This dramatically worsens the worst case performance
because we must perform verification. However, in this
case, increasing the hash table size or using a better hash
function does not help, but only increases the overhead.

To remedy this, we selectively employ 2nd-stage pro-
gressive filtering on a per-bucket basis. When a bucket
contains a large number of patterns, we apply a 2nd stage
of progressive filtering for finer-grained classification as
shown in Figure 3. For buckets with many collisions, the
1st stage verifies exact matching with the prefix (mini-
mum pattern length in the group) and the 2nd stage only
examines the string that follows the prefix.

3.1 Filter Design
DFC design relies on an efficient filter primitive, called
direct filter (DF), for filtering and classification.
Direct filter is a bitmap indexed by several bytes of input
text. For a 2B DF, a 2B sliding window from the input is
treated as a 16-bit unsigned integer and used as a bit index
to DF. Each bit tells whether the string containing the 2B
window can generate a match with any patterns. For most
cases, we use 2B windows so that the DF fits in lower
levels of the CPU cache. A 2B DF is initialized by taking a

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 555

𝐷𝐷𝐷𝐷(𝑃𝑃, 0)

Figure 5: Initial filtering example

single two-byte fragment (e.g., first two bytes) from each
string pattern and setting the bit indexed by the two bytes,
while the rest of the bits are set to zero. Figure 4 shows
an initialization example of DF for a pattern ‘attack’.

During the initial filtering phase, we take every two-
byte window of the input text and look up whether the cor-
responding bit is set in the DF as shown in Figure 5. A DF
lookup performs three bitwise operations (two SHIFTs
and one AND) and a single memory reference. If the
corresponding DF bit is not set, it indicates that the part
of input text that contains the two-byte window cannot
generate a match. Thus, no pattern of interest can appear
at this location of the input text. We then advance the
window by one byte to examine the next window. If the
corresponding bit is set, it indicates that the location of
text potentially contains patterns of interest. Only then,
we inspect in more detail the sequence starting from the
current window.

The initial filtering phase uses a single DF to filter out
most of the innocent input text. In our experiment with
real traffic and 26K patterns from the ET-Pro ruleset, 94%
of windows are filtered out in this phase.
Size of initial DF: Similar to other filters (e.g., Bloom
filter [29]), the size of DF determines the tradeoff between
the number of cache misses and false positives; DF is
actually a special case of Bloom filter that uses a single
identity function as the hash function. For most cases, we
use a two-byte indexed 8KB DF (2B DF) to achieve a
balance. If we use one-byte indexed DF (1B DF), the size
of DF reduces to 256 bits, but the rate of false positives
will be 256 times higher on average. This would, for
example, cause 34.8% of windows with 26K ET-Pro rules
(compared to 3.6% for 8 KB DF assuming a uniformly
random input) to advance to the next phase. In contrast,
using a three-byte indexed DF (3B DF) further reduces
the false positives, but the size of DF increases to 2 MB.
Because initial DF lookup is performed very frequently,
we would like to minimize the cost by making DF fit
inside lower levels of the CPU cache (2 MB easily exceeds
the typical size of L2 caches).

Our evaluation shows 2B DF delivers better perfor-
mance for workload that contains up to a few tens of
thousands of patterns; using a 3B DF is actually up to
18% slower as we show in §5.4. This is because L3
cache latency is four to seven times higher than that of L2
cache [47]. Thus, we use 2B DF in most cases, but use

𝑃𝑃0

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

Figure 6: A classification example of patterns by lengths

3B DF when there are millions of patterns (e.g., ClamAV
ruleset). We quantify this tradeoff in more detail in §5.4.
Initialization: To make initial filtering more effective,
we try to minimize the number of bits set. A negative
correlation exists between the number of bits set in the
initial DF and its performance because the more the bits
are set, the more windows pass through. We observe that
minimizing the number of bits set in the initial DF deliv-
ers up to 10% performance benefit than a native solution
(i.e., using the first two byte) in the real traffic workload.
We use the following heuristics to achieve this. First, we
classify patterns into their lengths as we do for the pro-
gressive filtering phase. We use the same offset for each
class to avoid looking up additional state in progressive
filtering. In particular, we examine the pattern class size
in the increasing order (i.e., from short patterns to long
patterns) and, for each class, we choose the offset of the
two-byte segment from each class so that it minimizes the
number of additional bits set.

If 1-byte patterns exist, we enumerate all two-byte seg-
ments that start with the single byte in the pattern. Thus,
a 1-byte pattern sets 256 bits in the DF. Each pattern of
size two bytes or more sets a single bit if they are case
sensitive. If they are case insensitive, we enumerate all
cases, setting at most four bits per string pattern.

3.2 Progressive Filtering
The main idea of this phase is to progressively eliminate
false positives to take small steps towards exact pattern
matching using multiple layers of DFs. The key insight
we leverage is that the longer the pattern is, the more one
has to compare it against the input text to reduce false
positives. For example, when the text is filtered using a
single DF, a two-byte pattern does not produce any false
positive, but four-byte patterns can produce as many as
216 false positive patterns.

Thus, we first determine the pattern lengths that the
current window of input might match and apply different
amounts of additional filtering proportional to the lengths
For example in Figure 3, we use three additional DFs for
8+ bytes but only use a single additional DF for 4-7 bytes
in the 1st stage progressive filtering. As the algorithm
progresses, the set of the potentially matching patterns
also reduces, and the likelihood of generating a match
increases exponentially. When the scope is sufficiently

5

556 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

𝑐𝑐𝑐𝑐𝑐𝑐2 𝑐𝑐𝑐𝑐(𝑃𝑃2, 2)

Figure 7: Progressive filtering example

𝐷𝐷𝐷𝐷(𝑃𝑃3, 4) 𝐷𝐷𝐷𝐷(𝑃𝑃3, 6)𝐷𝐷𝐷𝐷(𝑃𝑃3, 2)𝑐𝑐𝐷𝐷𝐷𝐷3

𝑐𝑐𝐷𝐷𝐷𝐷0

𝑐𝑐𝐷𝐷𝐷𝐷1

𝑐𝑐𝐷𝐷𝐷𝐷2

𝑃𝑃3

𝐷𝐷𝐷𝐷(𝑃𝑃2, 2)

Figure 8: An initialization example of cDFs and DFs in Progres-
sive Filtering

reduced, we perform exact comparison in the verification
phase. Progressive filtering consists of two steps: pattern
length classification and additional filtering.
Classification: During initialization of DFC, we classify
the string pattern set P into pattern classes (Pi’s) accord-
ing to their lengths—P0 contains the shortest patterns
and P1, ...,Pn contains longer patterns in increasing or-
der. Figure 6 shows an example with four classes (e.g.,
P0 contains 1-byte patterns, and P3 contains patterns of 8
bytes or longer). For each class, Pi, we create a classifying
direct filter, cDFi, whose bits are set using the patterns
in Pi. For patterns in Pi, to set the cDFi, we use the same
two-byte segment that was used to set the initial DF.

At run time, we look up the classifying DFs (cDFs).
Each cDF determines whether the window might match
the patterns in the class. For example if the corresponding
bit of cDFi is set, we know that we must inspect the
pattern class Pi. Note the classification is not mutually
exclusive; multiple pattern classes can match because
patterns from two different classes may share the same
two-byte segment.
Additional filtering: When the corresponding bit in
cDFi is set, we further filter the input sequence that fol-
lows the current two-byte window with additional DFs.
These additional DFs are designed to inspect different
two-byte text segments in the pattern. We use additional
DFs, DF(Pi,Ok)’s, to test whether the input text might
match patterns in Pi, where Ok denotes the offset from the
initial window—e.g., the initial DF that inspects the first
two byte can be represented as DF(P,0). DF(P2,O = 2)
inspects the third and fourth bytes (two bytes at offset
two) against patterns in P2 as depicted in Figure 7; The
following two-byte text segment is inspected using addi-
tional DF (DF(P2,2)) after passing through classifying

Algorithm 1: Progressive Filtering and Verification
1 # @param cDF Array of Classifying Direct Filters
2 # @param bu f Input text
3 # @param pos Position of window
4 def Progressive_Filtering(cDF, buf, pos):
5 for i = 0 to # o f cDF:
6 if Corresponding bit of buf at pos in cDF[i] is set:
7 if Pass through additional DFs:
8 CT ← corresponding hash table
9 pos ← corresponding position

10 Verification(CT, buf, pos)
11
12 # @param CT (Compact) Hash Table
13 # @param bu f Input text
14 # @param pos Position of window
15 def Verification(CT, buf, pos):
16 H ← hash value of buf at pos
17 Bucket ← CT[H]
18 Second ← Second stage flag in Bucket
19 if Second is true:
20 cDF ← array of cDFs in Bucket
21 pos ← corresponding position
22 Progressive_Filtering(cDF, buf, pos)
23 else:
24 for PID ∈ Bucket:
25 Perform exact matching for PID with buf at pos

DF (cDF2). DF(P2,O = 2) is thus created from using two
bytes from P2 that correspond to offset O. Figure 8 depicts
how cDF and additional DFs are initialized for a pattern
from the pattern class P3. Each DF performs filtering and
we advance to the next phase only if the window passes
through all DFs in the sequence. Algorithm 1 shows the
pseudo code for progressive filtering and verification.

Additional filtering is an optimization to avoid the veri-
fication phase where we perform hash table lookup and
exact string comparison. It is only beneficial, if the benefit
outweighs the cost of additional DF lookups. In general,
the longer the pattern size, we inspect longer segments
that follow the current window. However, because each
additional lookup adds decreasing marginal benefit, we
use a small number of additional filters. We discuss the
configuration issue at the end of the subsection. As we
show in §5, each additional filtering is effective, and once
the input text passes through this phase, it is much more
likely to generate a match.
Optimizations: To minimize the average memory
lookup, we perform two optimizations. First, similar to
the initial DF, we carefully choose the offsets of each
additional DFs to filter text as much as possible. For this,
we choose an offset that minimizes the number of bits set
for each DF. This is done when the DFs are initialized. To
reduce the search space, we first identify non-overlapping
two-byte segments and greedily select the offset. Sec-
ond, we change the order of DFs we inspect so that the
most effective filter comes early. Note that each sequence
of DFs that do not share a parent (e.g., cDF(P3,0) →
DF(P3,2) and cDF(P2,0) → DF(P2,2)) is independent,
and the ordering of DFs within a sequence does not affect
the correctness of the algorithm. However, if we first look
up the one with the smallest number of bits set, the num-
ber of average memory lookups can decrease. Thus, we

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 557

𝐶𝐶𝐶𝐶(𝑃𝑃2)

Hash (‘ ’)

Figure 9: Verification example

order DFs in a non-decreasing order of the number of bits
set.
Configuration: The number of pattern classes and their
ranges are parameters that can be configured. In our eval-
uation with DPI patterns in Table 1, we classify the length
in multiples of two—Pi holds patterns of length 2i to
2(i+1)−1, and the last class holds the rest of the patterns.
Figure 6 illustrates our configuration. P0 holds patterns of
one byte and P1 holds patterns of two to three bytes. We
classify patterns into four classes by their lengths: one-
byte (P0), two to three bytes (P1), four to seven byte (P2),
and 8+-byte (P3) string patterns. In our implementation,
we use an additional filter for P2 and three additional DFs
for longer patterns (≥ 8).

The classification we use in our implementation is de-
termined empirically and can be tuned depending on the
pattern set; e.g., when there is no pattern of size [2,3],
having such a classification is wasteful. Tuning the clas-
sification parameters involves in one time cost that can
be done offline when the pattern size distribution has
changed significantly since the last update. On the one
hand, having a fine-grained classification or a large num-
ber of classes helps in significantly reducing the false
positives in the progressive filtering phase and the number
of patterns to inspect in the verification phase. This is
because we can only filter up to the minimum length in
each pattern set to ensure that there is no false negatives.
However, fine-grained classification increases overhead
because each DF requires an additional memory lookup.
Thus, we must strike a balance in choosing the granularity
of the pattern classes. We evaluate the tradeoffs of having
a finer or coarser classification in §5.

3.3 Verification

The final verification phase ensures exact matching by
comparing the text with the actual patterns in the pattern
class. To perform exact matching, we create a (compact)
hash table, CT (Pi), for each pattern size class, Pi. These
tables are indexed by a hash of text fragments whose
lengths correspond to the shortest pattern in Pi; e.g., for
pattern class P2 of size 4 to 7, a hash table CT (P2) is
indexed by a hash of four-byte segment. Each bucket in
the hash table holds a list of a pattern ID (PID), a text
segment of the pattern, and a pointer to the rest of the
pattern text.

Rulesets ET-Pro (May 2015) ET-Open (May 2015)
Snort VRT 2.9.7.0 ModSecurity CRS 2.2.9

Input workload (1) Random payload
(2)Real traffic traces from a commercial ISP

Table 3: Patterns and inputs

Total volume 68 GB
Number of packets 89,043,284
Number of HTTP packets 77,582,806
Number of TCP sessions 2,213,975
Number of HTTP sessions 1,869,208
Capture duration 57 min 16 sec
Average packet size 757 B
Average flow size 30 KB

Table 4: Statistics of traffic traces from a commercial ISP

During verification, we compare the text segment with
all the pattern segments in the bucket. If a match is found,
we compare with the rest of the string segments to ensure
an exact match. If exact matches are found, we report the
PID and the offset within the input text that generated
the matches; Figure 9 illustrates verification process for
‘attack’ pattern from pattern class P2. A hash table CT (P2)
is indexed by a hash of four byte segment ‘atta’ because
a length of the shortest pattern in P2 is four. Then, the
four byte segment is compared to four byte segment in
the bucket. Because they are same, the rest of the pattern
‘ck’ is compared to the following two-byte segment from
the payload and PID of the pattern is reported. On the
one hand, using a simple hash function is good enough
because the number of possible patterns that can actually
reach this phase is significantly reduced due to progressive
filtering.

We adjust the size of the table so that on average a small
number of PIDs are present (e.g., < 0.1 PIDs). However,
because pattern strings commonly share some popular
string segment hash collisions may be high for some buck-
ets as explained in §3. If the number of PIDs in a bucket
exceeds a threshold, we apply the second stage on a per-
bucket basis as represented in Algorithm 1. In this case,
the 1st stage examines up to the minimum length pattern
in its size classification, and the 2nd stage verifies the
rest. In the 2nd stage progressive filtering, we perform
a more fine-grained classification and verify the rest of
the text in the second stage of verification (Figure 3). For
example, for P2 that holds patterns of size [4,7], the 2nd
stage progressive filtering divides it into three sub-classes.
The 1st stage examines up to four bytes and the 2nd stage
examines the rest.

4 Implementation
DFC is implemented in 2.4K lines of C code. For compar-
ison, we use AC and modified Wu-Manber (MWM) algo-
rithm implementations in Snort, b2g algorithm (2-gram
implementation of the SBNDMq) [36] implementation

7

558 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

(a) ET-Pro rulset (May 2015) (b) Snort VRT 2.9.7.0 ruleset (c) ModSecurity 2.2.9 ruleset

Figure 10: Standalone performance benchmark of AC and DFC under random packet workload.

(a) ET-Pro rulset (May 2015) (b) Snort VRT 2.9.7.0 ruleset (c) ModSecurity 2.2.9 ruleset

Figure 11: Standalone performance benchmark of AC and DFC using packet contents from real traffic.

from Suricata, and FFBF [53]. In FFBF, short patterns
are processed by AC and long patterns are processed by
FFBF. FFBF works as a filter and outputs a subset of
patterns and input set that can potentially match. Then, it
uses AC to remove false positive [53]. To demonstrate the
real-world benefit, we apply DFC to four different appli-
cations: intrusion detection system, Web application fire-
wall, HTTP traffic classification, and anti-virus. For IDS,
we choose an optimized version of Snort, Kargus-CPU,
that uses high performance packet I/O and lightweight
data structures [39]. Note, we do not use its GPU mod-
ule, but only use its CPU version. Its pattern matching
algorithm is almost identical to that of Snort. We replace
AC with DFC by modifying 82 lines of code. For Web
application firewalls, we apply DFC to ModSecurity, a
popular open source implementation. ModSecurity scans
through HTTP requests and responses to match against
malicious patterns. For HTTP traffic classification, we
use nDPI [7]-like traffic classification for HTTP traffic
that looks for popular domain names in the HOST field
of the request header. This classifies which application
(e.g., Netflix, YouTube) generated the traffic. Note, HTTP
consists of 75% of all downstream bytes in modern cellu-
lar networks [70]. For these three implementations, we
thoroughly conduct correctness tests by comparing the
result from DFC with result from AC using two types of
input: randomly generated input and a 68GB traffic trace
from a commercial cellular ISP. We find that the DFC
produces output identical to AC. Finally, for anti-virus,
we modify ClamAV [43] version 0.98.7.

5 Evaluation
We answer four questions about DFC in this section:
• How does it compare with existing algorithms under a

Figure 12: Instruction count and IPC from the benchmark for
real traffic with ET-Pro ruleset

variety of workloads?
• How much gain does it provide when applied to mid-

dlebox applications?
• How does each component affect performance, and

what are the trade-offs involved in parameter settings?
• How does its direct filter compare against other primi-

tives?

5.1 DFC Performance Benchmark

We compare the performance of DFC with that of AC,
modified Wu-Manber (MWM), FFBF, and b2g across
various workloads and configurations. We empirically
choose a window size of FFBF to 32B and a size of bloom
filter to 1MB and use 4 hash functions, showing the best
performance in the workloads and configurations. B2g
does not detect one byte patterns because it processes 2
characters as a single character.

To evaluate the performance on a pure algorithmic
basis, we disable network I/O and feed input directly
from memory. We use four different DPI patterns and
two kinds of input workloads described in Table 3. The
DPI patterns are taken from popular IDSs and a Web
firewall, and the input workloads are either randomly-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 559

Figure 13: Performance with malicious traf-
fic (ET-Pro 26K rules)

Figure 14: Pathological workload: Input
purely consists of all two-byte segments
used to set initial DF

Figure 15: Memory footprint comparison

Figure 16: End-to-end IDS performances
under synthetic traffic (Snort VRT 6K rules)

Figure 17: End-to-end IDS performances
with traffic traces from a commercial ISP

Figure 18: Performance of Apache with
ModSecurity with malicious HTTP requests

generated or taken from a real traffic dump from a 10
Gbps LTE backhaul link at a commercial cellular ISP.
Table 4 summarizes the statistics of the real traffic trace.
Unless specifically noted, the results are measured on an
Intel E5-2690 (Sandy Bridge) machine with 16 cores and
126 GB of memory.6 We use Intel®Compilers (icc) for
all experiments. We inspect the input against all patterns
in the pattern set. Note some applications, such as Web
firewall and anti-virus, match the input against all patterns,
while other applications, such as IDS, specify the flow
group in 5-tuple with the patterns and only the packets
that belong to the group are matched against the patterns.

Figure 10 and 11 show performance comparisons for
each input data, while varying the number of randomly
sampled patterns. We report the average of ten indepen-
dent runs. The error bars in figure show min and max of
throughput. Dotted line shows DFC’s performance im-
provement over AC. 7

With the random traffic workload, DFC outperforms
AC by a factor of 2.6 to 3.6. B2g performs worse than AC
even though it does not detect one byte patterns. FFBF
also shows worse performance than AC due to short pat-
terns in the ruleset (Table 1) that requires traditional Aho-
Corasick based matching. MWM also performs slightly
worse than AC. The existence of short patterns contributes
to the loss in performance. With the real traffic workload,
DFC outperforms AC by a factor of 2.0 to 2.5. DFC’s
relative improvement slightly decreases as the number
of patterns increases. This is because the text generates
more matches. The difference between the real traffic

6We use two CPUs with 16 cores. The actual memory usage depends
on the algorithm (see Figure 15).

7We omit ET-Open result because it is similar to ET-Pro’s.

and random payload is also due to the same reason. The
real traffic contains a relatively larger fraction of string
segments in the pattern set because some string patterns
contain very generic keywords (e.g., GET). Note the rules
that contain these generic patterns also have other options
to evaluate (e.g, traffic direction and user-agent type). In
a real IDS setting, these packets will be filtered by such
options. Our microbenchmark is a conservative one that
purely focuses on the string matching. Nevertheless, DFC
consistently delivers significant performance improve-
ment in all cases.

Figure 12 shows the number of instructions executed
and the instructions per cycle (IPC) of DFC relative to
those of AC. We observe that DFC executes 10 to 30%
more instructions, but the instruction throughput improves
by 130 to 190%; as shown in Table 2, DFC incurs L1
cache misses 3.8 times less frequently and memory ac-
cesses 1.8 times less frequently compared with AC.

Malicious traffic and pathological cases: We now eval-
uate DFC under malicious input traffic by varying the
fraction of packets that contain a pattern string from the
ruleset. We insert a randomly selected malicious pattern
for each packet both for the real traffic workload and ran-
dom traffic. Figure 13 shows the result with 26K patterns
in the ET-Pro ruleset with real traffic. Both algorithms’
performance degrades by approximately 30% as we in-
crease the fraction of malicious packets from 0 to 100%.
DFC consistently outperforms AC by a factor of 1.7 to 2.0
because AC’s performance also degrades due to increased
cache miss rates and the additional cost of book-keeping
the position of matched input and the PID. Even when all
packets contain a malicious pattern, it achieves 1.7 times
the performance of AC. We observe a similar behavior

9

560 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 19: Time to initialize data structures

in the random traffic workload (not shown in the figure)
with performance improvement by a factor of 2.2 to 2.6.

To study the behavior of DFC with more adversarial
input, we generate a pathological case where the input
consists only of two-byte segments used to set the initial
DF. We randomly order the two-byte segments to generate
the input. This forces DFC to pass through the initial
filter on every two bytes of input. Figure 14 shows the
performance of AC and DFC by varying the number of
patterns. Even in this case, DFC performs significantly
better than AC regardless of the number of patterns.

Finally, we examine the two cases where every byte of
input is malicious and nearly malicious. For the first case,
we construct the payload by concatenating randomly se-
lected the strings from the pattern set. For the second case,
we concatenate all but the last byte of randomly selected
patterns, forcing DFC to trigger the verification phase
very often. In these two worst cases, DFC respectively
delivers 1.4X and 1.6X the performance of AC at 1 Gbps.
The reasons is that, even in those cases, DFC shows 1.6X
less L1-D cache misses compared to AC. Note, in the first
case, they also frequently write to the memory to note the
pattern IDs matched. However, these are very unlikely
cases because often an upstream firewall can easily cut the
flow based on the 5-tuple information for flows containing
many malicious patterns or that try to attack the pattern
matching system. Our results show that DFC outperforms
AC both in the average and worst case scenarios.
Memory footprint: Figure 15 shows the memory foot-
print of AC and DFC including the pattern strings. We
see that DFC occupies 3.1 to 4.8 times less memory com-
pared to AC. AC requires 239.2 MB for 26K patterns
from the ET-Pro ruleset. In contrast, DFC takes up only
59.4 MB memory for the same patterns. The memory
footprint of the initial DF is negligible. The total footprint
is actually dominated by compact tables that account for
95.0%. Progressive filtering takes up only 0.2%, and the
string patterns take up 5.0% with 26k ET-Pro patterns.
Throughput with smaller CPU cache: An application
performing multi-pattern matching may share CPU cache
with other middlebox applications in some environments,
such as network function virtualization (NFV). To eval-
uate whether the benefits of DFC still remain in such
circumstances, we launch an additional thread that con-

sumes half (10MB) of the L3 cache. Even in this case,
DFC still outperforms AC by a factor of 1.9 with packet
contents from real traffic and ET-Pro ruleset.
Initialization Time: Due to policy change and newly
discovered attack, patterns used in middlebox applications
are continuously kept updated. For example, new patterns
for IDS are typically released each day [15]. To evaluate
the overhead for updating data structures, we measured
how long it takes to construct data structures for AC and
DFC with ET-Pro ruleset.

As depicted in Figure 19, the gap between DFC and
AC becomes larger; As the number of pattern increases
from 1K to 50K, the speedup improves from 30X to 78X.
It is because the initialization time of AC increases super-
linearly while that of DFC increases linearly.

5.2 Applications of DFC
Intrusion detection: We apply DFC to an intrusion de-
tection system. In particular, we use Kargus-CPU [39]
which is a software IDS that is functionally compatible
with Snort and provides multi-threading support and high-
performance packet I/O. We measure the end-to-end per-
formance of the IDS using synthetic/real traffic work-
loads and ET-Pro ruleset except rules that do not contain
string fields. Note, this is strongly recommended prac-
tice [23]. For synthetic traffic, we use randomly generated
the packet payload. For real traffic workload, we replay
the packets captured from a commercial cellular ISP as
fast as possible to attain a peak transmission rate of up to
70 Gbps. Up to 2 machines are used to generate the traffic.
Because the workload consists of real-life flows, the flow
management module takes up additional CPU cycles to
update per-flow state. The patterns are also grouped based
on the 5-tuple flow information. The IDS performs flow
reassembly and feeds in the stream for pattern matching.
This is representative of how IDSs actual work in a real
environment.

Figure 16 shows the performance with Snort VRT rule-
set for synthetic traffic by varying packet sizes. For large
packets (≥ 512B) DFC improves the performance by a
factor of up to 2.6. For 128B packets, the difference is
small because packet processing overhead is far greater
than that of pattern matching since the amount of pay-
load is only 74B per packet. Figure 17 shows the result
while varying the number of patterns from 1K to 20K
from the ET-Pro ruleset. DFC shows 120% improvement
in performance over AC with 10K patterns. Even though
some fraction of the CPU cycles are being spent in flow
reassembly, DFC improves performance by 50 to 130%.
Note that Kargus-GPU delivers a factor of 1.6 to 2.3 im-
provement over Kargus-CPU using two GPU cards.
Web application firewall: We apply DFC to an L7 Web
firewall, ModSecurity. We benchmark the performance
using the OWASP ModSecurity Core Ruleset [14]. Using

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 561

Figure 20: Performance for various number
of classification

Figure 21: Filtering throughput and instruc-
tion throughput (IPC) of DF and “skip”
heuristics

DF Bloom

Filtering throughput 1 0.42
Instructions/byte 1 2.5

Table 5: Normalized throughput and # of
instructions per byte of text of DF and
Bloom Filter using two light-weight rolling
hashes [53]

ab [2], we request random files of size 10 KB. We choose
10 KB because it is the most frequently found Web ob-
ject size according to HTTP Archive [11]. We vary the
fraction of malicious requests from 0 to 100%. Note, Mod-
Security inspects both the request and the response. When
a malicious pattern is detected in the request, it generates
a 403 forbidden response.

Figure 18 shows the transaction throughput per sec-
ond. We report the performance result. DFC improves
the performance by 90% with innocent request/responses.
When the fraction of malicious requests increases, the
transaction throughput goes up because response body
is not inspected. For 100% malicious requests, pattern
matching is only applied to requests, and the performance
is dominated by the TCP processing overhead.

We also measure the performance with HTTP re-
quest/responses extracted from our real traffic trace where
most of the traffic is HTTP. We modify ab and Apache
to generate the same request and responses. The result
shows that DFC delivers 57% improvement over AC.

Traffic classification: We apply DFC to HTTP traffic
classification using nDPI [7], an open source DPI library.
nDPI performs flow reassembly to gather fragmented
HTTP headers, feeds them in pattern matching module
that uses Aho-Corasick, and classifies which application
generated the traffic by pattern-matching domain names
in the header. We replace AC with DFC. We measure the
performance of the traffic classification using the packets
captured from a commercial cellular ISP and the top 100K
domain names on Alexa [4]. Our result shows that DFC
improves the performance by 60% (from 4.2 Gbps to 6.7
Gbps).

Anti-virus: We apply DFC to an anti-virus application,
ClamAV [43]. ClamAV uses string and regular expression-
like signatures that contain wildcard characters. The AC
algorithm processes signatures containing wildcard char-
acters and Wu-Manber (WM) handles fixed string signa-
tures. We replace WM to use DFC and compare against
SplitScreen that uses feed-forward Bloom filters [31] to
improve ClamAV.

We use 1.5 million ClamAV signatures and scan a clean
install of Microsoft Office 2015. For SplitScreen, we run
both server and client on the same machine, while using
the parameters from the paper [31]. Our result shows that

of patterns 1K 5K 10K 15K 26K

1B DF 41 Gbps 33 Gbps 28 Gbps 25 Gbps 21 Gbps
2B DF 76 Gbps 55 Gbps 45 Gbps 37 Gbps 28 Gbps
3B DF 66 Gbps 47 Gbps 37 Gbps 32 Gbps 25 Gbps

Table 6: Performance sensitivity to DF size (ET-Pro ruleset)

of patterns 1K 50K 1000K 1500K 2000K

1B DF 14 Gbps 6 Gbps 5 Gbps 5 Gbps 5 Gbps
2B DF 84 Gbps 21 Gbps 18 Gbps 18 Gbps 18 Gbps
3B DF 53 Gbps 49 Gbps 28 Gbps 25 Gbps 23 Gbps

Table 7: Performance sensitivity to DF size (ClamAV ruleset)

DFC brings 75% the performance improvement (from
14.3 MB/s to 25.2 MB/s). When the files are malicious,
the gap increases because SplitScreen must perform ex-
act matching with AC using the output of FFBF, which
is expensive. We also perform a standalone microbench-
mark of FFBF and DFC using 1.5 million string patterns.
The result shows that DFC’s exact matching outperforms
FFBF’s inexact matching by a factor of 1.9. We see that
DFC accesses memory (measured in terms of L1-data
cache loads) 1.3 times less frequently, incurs 1.6 times
less L1 cache misses, and uses 2.1X less instructions
compared to FFBF.
5.3 Performance Contributions and Parameters

Performance contribution: Initial filtering and progres-
sive filtering are very effective in screening innocent traf-
fic. We measure the fraction of windows that actually
reach the verification phase. We use real traffic work-
load of Table 4 and the ET-Pro ruleset without network
I/O. With 26K patterns, 6.2% of windows reach progres-
sive filtering. Progressive filtering further filters out up to
83.9% of windows. As a result, 4% reach the verification
phase. A relatively large fraction of windows (8–14%)
that arrives at the verification phase generates an exact
match.

We evaluate the importance of the 2-stage hierarchy
and progressive filtering by measuring the performance
of DFC without each of them using real traffic and 100%
malicious traffic. For the latter, we insert a malicious
pattern for every packet in the real traffic workload.

Without progressive filtering, hash tables are looked up
for verification whenever a window passes through the
initial DF. In this case, the performance drops by 26% for
the real workload and 24% for the malicious workload.

Our 2nd-stage hierarchy is especially beneficial when

11

562 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

there are malicious patterns in the input, improving the
worst case performance. Without the two-stage hierarchy,
the performance drops down by 2.7X in the real traffic
workload and 3.9X in the 100% malicious case. This
is because finer-grained 2nd-state progressive filtering
reduces the false positives in the average case, and reduces
the collision and the number of patterns to be inspected
in the final hash table in the malicious workload.

We now discuss parameters of DFC that affect its per-
formance in the order of their importance.
Size of initial DF: We evaluate the effect of the size of
the initial DF. We compare the performance of DFC by
varying the size of the initial DF only. Table 7 and Ta-
ble 6 show the result by varying the number of patterns
for ClamAV and ET-Pro rulesets respectively. For ET-Pro,
DF indexed by 2 bytes (2B DF) shows the highest perfor-
mance across all cases under our workload. For ClamAV,
DF indexed by 3 bytes (3B DF) peforms better when the
number of patterns exceeds 50K. The difference is that
ClamAV patterns are longer, which makes verification rel-
atively more expensive. At the same time, as the number
of patterns increases the verification phase becomes more
expensive. Because 2B DF triggers verification more of-
ten than 3B DF, using 3B DF becomes more beneficial as
the number of patterns increases.
Classification granularity: We quantify the effect of
classification granularity. With finer-grained classifica-
tion, the number of patterns inspected in the verification
phase decreases at the cost of additional DF lookups in
progressive filtering. We vary the number of classes, n,
from 1 to 5 and measure the performance of DFC. Given n,
we create pattern classes, P0,P1, ...,Pn−1. Figure 20 shows
the performance comparison. As the number of patterns
increases, the benefit of having a finer-grained classifica-
tion becomes noticeable. This is because we can filter out
the long patterns more effectively, if we can identify the
pattern size with finer-grained classification. However, in-
creasing the number of classes provides marginal benefit
because the cost also increases. With 5 classes or more,
the cost out-weights the benefit.

5.4 Comparison of Pattern Matching Primitives

The benefit of DFC comes from effectively leveraging
the simple DF primitive. We benchmark the performance
of our direct filter primitive in comparison with three
other primitives used in existing algorithms: DFA’s state
transition, skip table, and hashing. 8

DFA-based algorithms use state transition tables that
cause frequent memory lookup and cache misses. Table 2
shows the number of memory references and cache misses
for DF, DFC, and AC. DFC reduces memory accesses

8All results are measured on a machine with two Intel Xeon E5-2690
CPUs, using a randomly generated byte stream with 26K string patterns
from the ET-Pro ruleset.

frequency by 1.8 times and L1 cache misses by 3.8 times
compared to AC.

We compare the performance of DF and the “skip”
table used for heuristics-based algorithms [71]. Note the
skip approach has sequential data dependency—the next
window to examine is dependent upon the value of the
skip table entry—whereas DF lookups can be easily be
pipelined. To quantify its performance benefit, we use a
skip table that is indexed by the same two byte window as
DF. Each table entry contains two bits that indicate how
many bytes it can skip. We also increase the size of DF to
16 KB by using two bits for each entry. Thus, skip table
and DF exhibit the same caching behavior. We set all skip
values to be the same, but vary them from 1 to 4 across
different experiments. When the skip value is four, the
skip table is looked up on every five byte of input, whereas
DF is looked up on every byte. Figure 21 shows the lookup
performance of the two tables for our input. Surprisingly,
DF is much faster than the “skip” approach even when the
skip table performs five times less lookup (skip=4). DF’s
instruction throughput, measured in instructions per cycle,
is also 3.5X times faster. This coupled with existence of
many short patterns make the heuristics ineffective.

Finally, we compare the performance of a direct fil-
ter and a Bloom filter lookup that uses two light-weight
rolling hash functions used in feed-forward Bloom filter
(FFBF) [53].9 We set the size of both data structures to
the same value (8 KB). Table 5 shows that DF is 2.4 times
faster than Bloom filter that performs hashing on every
window. This is because hashing requires 2.5X more in-
structions and incurs more frequent memory accesses and
cache misses due to additional memory lookups during
the calculation of a rolling hash.

6 Related Work
Multi-pattern string matching: There have been a
number of multi-string pattern matching algorithms, such
as Aho-Corasick [24], Commentz-Walter [33] and Rabin-
Karp [42] algorithms. Among these, AC is the most pop-
ular in security applications. For example, most software-
based IDSs employ AC as the first-pass filter. For the
traffic caught in the first phase, they perform perl compat-
ible regular expression (PCRE) matching to confirm an
intrusion against more sophisticated attack patterns. Since
AC has to deal with all input traffic, its performance often
determines the overall performance of an IDS in a nor-
mal situation. There have been optimization works that
reduces the state transition table size by compressing DFA
states [65], that splits AC tables into RAM and CAM [34],
or that employs binary transition tables [64]. Some al-
gorithms (e.g., SigMatch [41] and FFBF [53]) perform
filtering at the cost of false positives. To support exact

9The rolling hash we use [53] is known to be 2.5 times faster than a
rolling hash used in the Rabin-Karp algorithm [32, 42].

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 563

matching, these algorithms typically rely on traditional
exact pattern matching.

Many proposals also leverage hardware support, includ-
ing GPUs [39, 44, 67–69], FPGAs [62, 63], many-core
processors [54], new ASIC designs [64], and network
processors [49]. Kargus [39] implements a GPU-based
Aho-Corasick engine that delivers 39 Gbps for randomly-
generated payloads and 2.4K Snort rules with a NVIDIA
GTX 580 GPU and an Intel X5680 CPU. Sourdis and
Pnevmatikatos [63] present a FPGA-based string pattern
matching that reduces the area cost by sharing compara-
tors for different patterns. It achieves 9.7 Gbps of through-
put with 1.5K Snort rules on Virtex2-6000. These studies
focus on enhancing the performance of existing algo-
rithms on hardware, whereas DFC presents a new algo-
rithm that leverages the performance characteristics of
modern CPUs. We believe that DFC can also benefit from
hardware implementations and leave it as future work.
Regular expression matching: Many studies [26–28,45,
46,49,51,52,56,59] have proposed new NFA/DFA-based
algorithms for regular expression matching. These studies
predominantly use FPGA or ASIC to take advantage of
the high degree of parallelism and on-chip memory for
high performance [45]. The overarching goal is to create
a single automaton that matches multiple regular expres-
sions (regex). The core challenge is that a single automa-
ton is fast, but space-inefficient because combining multi-
ple regex into a single DFA causes state explosion [61]. In
contrast, NFA-based solutions are slow, but require small
amount of memory. Thus, many efforts [26, 45, 50] focus
on reducing the memory footprint of DFA to utilize the
fast on-chip memory as much as possible. XFA [60, 61]
presents a design that tries to achieve the best of both
worlds. It uses much less memory than using a single
DFA and is faster than using multiple DFAs. But, the
performance is still much slower (at least 6 times) than
using a single DFA. Note, DFA-based regular expression
matching is much slower than string matching. Due to the
distinct trade off in performance and expressiveness, both
string and regular expression matching are commonly
used for deep packet inspection.
Advances in software-based packet processing: Ad-
vances in packet processing technologies [37, 38, 40, 57]
are accelerating cloud-based middleboxes [58] and net-
work function virtualization, which call for efficient prim-
itives for fast deep packet inspection. Recently, G-opt [40]
showed that CPU can deliver most of the benefits of GPU
by proposing an element switching technique and hiding
the memory latency. DFC accelerates pattern matching by
avoiding dependencies between instructions and reduc-
ing memory access frequency, whereas G-opt proposes
a generic technique for memory latency hiding. The two
approaches are thus orthogonal. Our preliminary evalua-
tion shows that DFC outperforms G-opt’s hand-optimized

pattern matching by 42 to 71% for Snort VRT ruleset,
depending on the number of pattern groups to match.
However, we believe applying memory latency hiding
can further enhance DFC’s performance (e.g., G-opt’s
efficient hash table lookup can be applied to DFC). We
leave this as future work.

7 Conclusion
Middlebox services that inspect packet payloads have
become commonplace. With the popularization of cloud-
based DPI services, their performance and cost-efficiency
have become important. However, for many DPI appli-
cations, pattern matching poses a severe performance
bottleneck. This paper addresses an important problem
of scaling the performance of multi-pattern string match-
ing. Using cache-efficient data structures and progressive
filtering based on the pattern lengths, we develop a high-
performance string matching algorithm that works well
across a variety of pattern sets and workloads. DFC clas-
sifies patterns based on the their size and applies filters
progressively in multiple stages. Our evaluation shows
that DFC improves state-of-the-art by 100 to 150% with a
popular IDS pattern set and real traffic traces. We demon-
strate that replacing existing pattern matching module
with DFC results in a 57-160% performance improve-
ment in four different applications.

Acknowledgement
We would like to thank our shepherd Paolo Costa and
anonymous reviewers for their feedback and suggestions
and Jaehyun Nam, Hyeontaek Lim and Iulian Moraru
for their comments on initial design. We also thank Huy
Hoang for his help on testing. This work was supported by
IITP granted by the Korea government (MSIP) [B0126-
15-1078, Creation of PEP based on automatic protocol
behavior analysis and Resource management for hyper
connected for IoT Services], [B0101-15-1368, Develop-
ment of an NFV-inspired networked switch and an oper-
ating system for multi-middlebox services], and by NRF-
2013R1A1A1076024.

References
[1] A developer’s guide to complying with PCI DSS 3.0 Require-

ment 6. http://www.ibm.com/developerworks/library/
se-pcireq6/index.html. [accessed 01-Sep-2015].

[2] ab - Apache HTTP server benchmarking tool. https://httpd.
apache.org/docs/2.2/en/programs/ab.html. [accessed 01-
Sep-2015].

[3] Akamai Cloud Security Solutions: Kona Web Application
Firewall. https://www.akamai.com/us/en/multimedia/
documents/product-brief/kona-web-application-
firewall-product-brief.pdf. [accessed 01-Sep-2015].

[4] Alexa - Actionable Analytics for the Web. http://www.alexa.
com.

[5] Can the WAF help with a DDoS attack? https://support.
cloudflare.com/hc/en-us/articles/200172116-Can-

13

564 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the-WAF-help-with-a-DDoS-attack-. [accessed 29-Aug-
2015].

[6] Capacity Planning for Snort IDS: Bilbous, Not Tapered. http:
//mikelococo.com/2011/08/snort-capacity-planning/.
[accessed 01-Sep-2015].

[7] Configuring nDPI for custom protocol detection.
http://www.ntop.org/ndpi/configuring-ndpi-for-
custom-protocol-detection/. [accessed 01-Sep-2015].

[8] Emerging Threats Ruleset. http://rules.emergingthreats.
net/.

[9] How The Great Firewall Works. http://cs.stanford.
edu/people/eroberts/cs201/projects/international-
freedom-of-info/china_2.html. [accessed 09-Sep-2015].

[10] How the NSA’s domestic spying program works. https://
www.eff.org/nsa-spying/how-it-works. [accessed 09-Sep-
2015].

[11] HTTP Archive. http://httparchive.org.

[12] Intel Performance Counter Monitor - A better way to mea-
sure CPU utilization. https://software.intel.com/en-us/
articles/intel-performance-counter-monitor.

[13] ModSecurity. https://www.modsecurity.org/.

[14] OWASP ModSecurity Core Rule Set. http://spiderlabs.
github.io/owasp-modsecurity-crs.

[15] Proofpoint ET Pro - Ruleset The Expert Solution. http://www.
emergingthreats.net/products/etpro-ruleset.

[16] Secure, fast, and easy Web Application Firewall. https://www.
cloudflare.com/waf. [accessed 09-Sep-2015].

[17] Shorewall: iptables made simple. http://shorewall.net/.

[18] Snort Intrusion Detection System. https://snort.org.

[19] Snort Ruleset 2.9.7.0 from Snort Downloads. https://www.
snort.org/downloads/. [accessed 01-May-2015].

[20] Snort User Manual 2.9.7. http://manual.snort.org/.

[21] Suricata: Open Source IDS. http://suricata-ids.org/.

[22] The Great Firewall of China: Keywords Used to Filter Web Con-
tent. http://www.washingtonpost.com/wp-dyn/content/
article/2006/02/18/AR2006021800554.html. [accessed 09-
Sep-2015].

[23] Writing Good Rules: Content Matching. http://manual.snort.
org/node36.html#SECTION00491000000000000000. [ac-
cessed 01-Sep-2015].

[24] Aho, Alfred V. and Corasick, Margaret J. Efficient String Match-
ing: An Aid to Bibliographic Search. Communications of the ACM
(CACM), 18(6):333–340, June 1975.

[25] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P.
Markatos. Generating Realistic Workloads for Network Intru-
sion Detection Systems. ACM Special Interest Group on Software
Engineering (SIGSOFT) Software Engineering Notes (SEN), 29(1),
January 2004.

[26] Zachary K. Baker and Viktor K. Prasanna. Time and Area Efficient
Pattern Matching on FPGAs. In Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays
(FPGA), 2004.

[27] Michela Becchi and Patrick Crowley. Extending Finite Automata
to Efficiently Match Perl-compatible Regular Expressions. In
Proceedings of the ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2008.

[28] Michela Becchi and Patrick Crowley. A-DFA: A Time- and Space-
Efficient DFA Compression Algorithm for Fast Regular Expres-
sion Evaluation. ACM Transactions on Architecture and Code
Optimization (TACO), 10(1):4:1–4:26, April 2013.

[29] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Al-
lowable Errors. Communications of the ACM (CACM), 13(7):422–
426, July 1970.

[30] R.S. Boyer and J.S. Moore. A Fast String Searching Algorithm.
Communications of the ACM (CACM), 20(10):762–772, October
1977.

[31] S. K. Cha, I. Moraru, J. Jang, J. Truelovea, D. G. Andersen, and
D. Brumley. SplitScreen: Enabling Efficient, Distributed Mal-
ware Detection. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2010.

[32] J. D. Cohen. Recursive Hashing Functions for N-grams. ACM
Transactions on Information Systems (TOIS), 15:291–320, July
1997.

[33] Beate Commentz-Walter. A String Matching Algorithm Fast on
the Average. In Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), London, UK,
UK, 1979.

[34] Vassilis Dimopoulos, Ioannis Papaefstathiou, and Dionisios Pnev-
matikatos. A Memory-efficient Reconfigurable Aho-Corasick
FSM Implementation for Intrusion Detection Systems. In Pro-
ceedings of the International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS), 2007.

[35] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer.
Operational Experiences with High-volume Network Intrusion
Detection. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2004.

[36] Branislav Durian, Jan Holub, Hannu Peltola, and Jorma Tarhio.
Tuning BNDM with Q-grams. In Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX), 2009.

[37] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Pack-
etShader: a GPU-Accelerated Software Router. In Proceedings
of the ACM Conference of the Special Interest Group on Data
Communication (SIGCOMM), 2010.

[38] Intel. Data Plane Development Kit (DPDK). http://dpdk.org.

[39] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu
Yun, Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park.
Kargus: A Highly-scalable Software-based Intrusion Detection
System. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2012.

[40] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G. An-
dersen. Raising the Bar for Using GPUs in Software Packet Pro-
cessing. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015.

[41] Ramakrishnan Kandhan, Nikhil Teletia, and Jignesh M Patel. Sig-
Match: Fast and Scalable Multi-pattern Matching. Proceedings
of the Very Large Data Bases Endowment (PVLDB), 3(1-2):1173–
1184, 2010.

[42] Richard M Karp and Michael O Rabin. Efficient Randomized
Pattern-matching Algorithms. IBM Journal of Research and De-
velopment, 31(2):249–260, 1987.

[43] T. Kojm. ClamAV. http://www.clamav.net/.

[44] Lazaros Koromilas, Giorgos Vasiliadis, Ioannis Manousakis, and
Sotiris Ioannidis. Efficient Software Packet Processing on Hetero-
geneous and Asymmetric Hardware Architectures. In Proceedings
of the ACM/IEEE symposium on Architectures for Networking and
Communications Systems (ANCS), 2014.

[45] Sailesh Kumar, Jonathan Turner, and John Williams. Advanced
Algorithms for Fast and Scalable Deep Packet Inspection. In
Proceedings of the ACM/IEEE symposium on Architectures for
Networking and Communications Systems (ANCS), 2006.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 565

[46] Janghaeng Lee, Sung Ho Hwang, Neungsoo Park, Seong-Won
Lee, Sunglk Jun, and Young Soo Kim. A High Performance NIDS
using FPGA-based Regular Expression Matching. In Proceedings
of the ACM Symposium on Applied Computing (SAC), 2007.

[47] David Levinthal. Performance Analysis Guide for Intel
Core i7 Processor and Intel Xeon 5500 processors. https:
//software.intel.com/sites/products/collateral/
hpc/vtune/performance_analysis_guide.pdf. [accessed
01-Sep-2015].

[48] Po-Ching Lin, Zhi-Xiang Li, Ying-Dar Lin, Yuan-Cheng Lai, and
F.C. Lin. Profiling and Accelerating String Matching Algorithms
in Three Network Content Security Applications. IEEE Commu-
nications Surveys and Tutorials, 8(2):24–37, 2006.

[49] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen, and Chia-Nan Kao.
A Fast String-matching Algorithm for Network Processor-based
Intrusion Detection System. ACM Transactions on Embedded
Computing Systems (TECS), 3(3):614–633, 2004.

[50] Chad R Meiners, Jignesh Patel, Eric Norige, Alex X Liu, and Eric
Torng. Fast Regular Expression Matching using Small TCAM.
IEEE/ACM Transactions on Networking (TON), 22(1):94–109,
2014.

[51] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and
Alex X. Liu. Fast Regular Expression Matching using Small
TCAMs for Network Intrusion Detection and Prevention Systems.
In Proceedings of the USENIX Conference on Security, 2010.

[52] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling
PCRE to FPGA for Accelerating Snort IDS. In Proceedings of
the ACM/IEEE symposium on Architectures for Networking and
Communications Systems (ANCS), 2007.

[53] Iulian Moraru and David G Andersen. Exact Pattern Matching
with Feed-Forward Bloom Filters. Journal of Experimental Algo-
rithmics (JEA), 17:3–4, 2012.

[54] Jaehyun Nam, Muhammad Jamshed, Byungkwon Choi, Dongsu
Han, and KyoungSoo Park. Haetae: Scaling the Performance of
Network Intrusion Detection with Many-Core Processors. In Pro-
ceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2015.

[55] Marc Norton. Optimizing Pattern Matching for Intrusion Detec-
tion. Sourcefire, Inc., Columbia, MD, 2004.

[56] Jignesh Patel, Alex X Liu, and Eric Torng. Bypassing Space Ex-
plosion in High-speed Regular Expression Matching. IEEE/ACM
Transactions on Networking (TON), 22(6):1701–1714, 2014.

[57] Luigi Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In
Proceedings of the USENIX Annual Technical Conference (ATC),
2012.

[58] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. Making Middleboxes Some-
one else’s Problem: Network Processing As a Cloud Service. In
Proceedings of the ACM Conference of the Special Interest Group
on Data Communication (SIGCOMM), 2012.

[59] Reetinder Sidhu and Viktor K. Prasanna. Fast Regular Expression
Matching Using FPGAs. In Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM),
2001.

[60] Randy Smith, Cristian Estan, and Somesh Jha. XFA: Faster Sig-
nature Matching with Extended Automata. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2008.

[61] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. De-
flating the Big Bang: Fast and Scalable Deep Packet Inspection
with Extended Finite Automata. In Proceedings of the ACM Con-
ference of the Special Interest Group on Data Communication
(SIGCOMM), 2008.

[62] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, Large-Scale
String Match for a 10Gbps FPGA-Based Network Intrusion Detec-
tion System. Field Programmable Logic and Application (FPL),
pages 880–889, 2003.

[63] Ioannis Sourdis and Dionisios Pnevmatikatos. Pre-decoded CAMs
for Efficient and High-speed NIDS Pattern Matching. In Proceed-
ings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2004.

[64] Lin Tan and Timothy Sherwood. A High Throughput String
Matching Architecture for Intrusion Detection and Prevention. In
Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), 2005.

[65] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Vargh-
ese. Deterministic Memory-efficient String Matching Algorithms
for Intrusion Detection. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2004.

[66] Chris Ueland. Scaling cloudflare’s massive waf.
http://www.scalescale.com/scaling-cloudflares-
massive-waf/. [accessed 09-Sep-2015].

[67] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis,
Evangelos P. Markatos, and Sotiris Ioannidis. Gnort: High Perfor-
mance Network Intrusion Detection Using Graphics Processors.
In Proceedings of the International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2008.

[68] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos,
Evangelos P Markatos, and Sotiris Ioannidis. Regular Expression
Matching on Graphics Hardware for Intrusion Detection. In Pro-
ceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2009.

[69] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis.
MIDeA: A Multi-parallel Intrusion Detection Architecture. In
Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), 2011.

[70] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sungh-
wan Ihm, and KyoungSoo Park. Comparison of Caching Strategies
in Modern Cellular Backhaul Networks. In Proceeding of the ACM
International Conference on Mobile systems, applications, and
services (MobiSys), 2013.

[71] Sun Wu and Udi Manber. Fast Text Searching: Allowing Errors.
Communications of the ACM (CACM), 35(10):83–91, October
1992.

15

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 567

Diplomat: Using Delegations to Protect Community Repositories

Trishank Karthik Kuppusamy Santiago Torres-Arias Vladimir Diaz Justin Cappos
Tandon School of Engineering, New York University

Abstract
Community repositories, such as Docker Hub, PyPI,

and RubyGems, are bustling marketplaces that distribute
software. Even though these repositories use common
software signing techniques (e.g., GPG and TLS), at-
tackers can still publish malicious packages after a server
compromise. This is mainly because a community repos-
itory must have immediate access to signing keys in or-
der to certify the large number of new projects that are
registered each day.

This work demonstrates that community repositories
can offer compromise-resilience and real-time project
registration by employing mechanisms that disambiguate
trust delegations. This is done through two delegation
mechanisms that provide flexibility in the amount of trust
assigned to different keys. Using this idea we implement
Diplomat, a software update framework that supports se-
curity models with different security / usability trade-
offs. By leveraging Diplomat, a community repository
can achieve near-perfect compromise-resilience while al-
lowing real-time project registration. For example, when
Diplomat is deployed and configured to maximize se-
curity on Python’s community repository, less than 1%
of users will be at risk even if an attacker controls the
repository and is undetected for a month. Diplomat is
being integrated by Ruby, CoreOS, Haskell, OCaml, and
Python, and has already been deployed by Flynn, LEAP,
and Docker.

1 Introduction
Community repositories, such as Docker Hub [32],

Python Package Index (PyPI) [66], RubyGems [68], and
SourceForge [78] provide an easy way for a developer
to disseminate software. These repositories are run by a
central group of administrators and distribute third-party
software for hundreds of thousands of projects. Unlike
traditional repositories, the administrators of community
repositories do not dictate which projects can or cannot
be hosted; instead, developers are free to curate their own
projects. Community repositories are immensely popu-
lar and collectively serve more than a billion packages
per year. Unfortunately, the popularity of these reposito-
ries also makes them an attractive target to attackers.

Attacks on community repositories are unfortunately a
common occurrence that threaten users who rely on their

software. Major repositories run by Adobe, Apache,
Debian, Fedora, FreeBSD, Gentoo, GitHub, GNU Sa-
vannah, Linux, Microsoft, npm, Opera, PHP, RedHat,
RubyGems, SourceForge, and WordPress repositories
have all been compromised at least once [4,5,7,27,28,30,
31,35,36,39–41,48,59,61,62,67,70,79,80,82,86,87,90].
For example, a compromised SourceForge repository
mirror located in Korea distributed a malicious ver-
sion of phpMyAdmin, a popular database administration
tool [79]. The modified version allowed attackers to gain
system access and remotely execute PHP code on servers
that installed the software. This is despite the use of off-
the-shelf solutions like TLS and GPG, which (for rea-
sons described in Section 4) are known to be ineffective
against practical threats in this domain. For example,
we found that, on PyPI, so few developers sign pack-
ages and so few users download signatures that within a
one month period there was not a single user who down-
loaded only GPG-signed packages and their signatures.

Prior work has shown that delegations [1, 52, 92] help
the users of a repository remain secure even if it is com-
promised [71]. Delegations add security to repositories
when the root of trust is an offline key, such as a key
stored on a disconnected server that must be manually
used. Although using offline keys works for software
repositories that have infrequent release cycles, com-
munity repositories commonly register dozens of new
projects daily, with new packages uploaded every few
minutes. As such, it is not practical to require manual
operations for project registration.

This paper presents Diplomat, a practical security sys-
tem that provides a community repository with immedi-
ate project registration and compromise-resilience. Our
key insights come from delegation techniques that utilize
multiple online and offline keys to take advantage of the
best properties of both. Central to this strategy is the use
of a prioritized delegations [44, 56–58] mechanism for
disambiguating trust statements. Prioritized delegations
enforce an order among parties who would otherwise be
equally trusted. In addition, our work uses terminat-
ing delegations, which prevent statements by less trusted
parties from being trusted for a package. The combina-
tion of prioritized and terminating delegations allows an
offline key’s attestation about a project to be trusted over
information provided by an online key. Placing greater

568 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

trust in the offline key provides compromise-resilience
because an attacker who compromises the repository
cannot modify a package without being detected. How-
ever, the online key may still be used (and trusted) to
create new projects.

We feel one of the main contributions of this work is
how it balances security and usability to solve a prac-
tical, widespread problem. The security models and
experiences we describe in this work are based upon
practical lessons learned from ongoing integrations with
RubyGems [75–77], Haskell [91], CoreOS [64], and
OCaml [38] and production use in Flynn [65], LEAP
(Bitmask) [53], and Docker [63].

Contributions.

• We examine threats to community repositories and
find that current security approaches inadequately ad-
dress these threats. In particular, these techniques are
unable to accommodate both compromise-resilience
and instant registration of new projects.

• We use two types of delegations — prioritized and
terminating delegations — to design and implement
Diplomat, the first security system that achieves both
compromise-resilience and instant registration of new
projects.

• We discuss two different security models — legacy
and maximum — that provide slightly different us-
ability / security trade-offs. Drawing on practical ex-
perience, we discuss procedures for managing offline
key storage, usability for users and developers, recov-
ering from compromises, and procedures to minimize
the effort required of repository administrators.

• We evaluate the effectiveness of Diplomat using re-
quests to PyPI, the main Python community reposi-
tory. Our findings demonstrate that Diplomat will pro-
tect over 99% of PyPI’s users, even if an attacker con-
trols PyPI and is undetected for a month.

2 Background
We first discuss and define community repositories,

paying attention to how they differ from traditional
software repositories. We then provide some back-
ground on roles and delegations, two techniques used
in compromise-resilient repositories [20–23, 71] that we
will leverage to build Diplomat.
2.1 Community Repositories

A community repository hosts and distributes third-
party software. Three groups of people, administra-
tors, developers and users, interact with a community
repository. The administrators, who are usually volun-
teers, manage the community repository software and
hardware. Developers upload software to the repository,

Metadata Packages

projects

Alice

Django-
1.7.1.tar.gz

Dja
ng
o-*

*.tar.gz
Bob

Administrator-
managed

Developer-
managed

Sue
Scapy-
2.3.1.zip

Django-
1.6.8.tar.gz

Scapy-*

Figure 1: An example of delegation of trust in a software
repository. The top-level projects role delegates to Sue for
the Scapy project and Alice for Django. Alice further delegates
to Bob the ability to create tar.gz packages for Django.

which is requested by users. Users install and validate
software using a package manager, which downloads
software through middlemen, such as content delivery
networks and / or mirrors to reduce bandwidth costs.

The software that is uploaded by developers is orga-
nized as follows. A developer registers a project with
a unique name and adds access to other developers that
work on the project. When a specific version of the soft-
ware for that project is ready to be released, the software
is built into a package (e.g., Django-1.7.tar.gz) and
one of the developers uploads that package to the com-
munity repository. The community repository also dis-
tributes metadata about projects and packages (such as a
list of package names) and includes metadata created by
developers (such as a signature for a package).

2.2 Roles
One of the key security concepts used in compromise-

resilient software repositories is that of a role [71]. A role
defines the set of actions that a party is allowed to per-
form. For example, the projects role is trusted to sign
metadata that indicates which developer keys belong to
a project. Similarly, the release role is trusted to sign
metadata that indicates which versions of each package
and metadata are in the latest release. However, if the
release role’s key is used to sign the metadata that indi-
cates which developer key belongs to a project, that sig-
nature will not be trusted because the key is not trusted
for that role. This paper describes techniques that apply
to the projects role’s use of delegations, so the paper
will focus primarily on this role.

2.3 Delegations
The use of delegations is a powerful strategy that has

successfully been used in a variety of contexts, including
distributed systems [92], role-based access control [73],
trust management [16], delegation logic [57], and soft-
ware repositories [20–23, 71]. In the context of soft-
ware repositories, delegations are specifically used to
distribute permissions to sign packages across different

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 569

administrators and developers. If A can sign a package
K, then A can delegate this permission to B so that B
can sign K on behalf of A. The delegation is an indirect
package signature, where B “speaks for” [52] A about K.

Although the projects role may sign packages be-
cause it is the root of trust for all packages, in Fig-
ure 1 the projects role has instead delegated the Django
project (or the package path Django-*) to the public
keys belonging to the developer Alice. Similarly, the
Scapy project has been delegated to Sue. A delegation
is simply a trusted map of which developer keys are re-
sponsible for signing which projects (or sets of pack-
ages). Based on this delegation, users would trust only
Alice’s signature on a Django package. Developers can
further delegate entrusted packages to other developers.
In this case, Alice has delegated some packages (any
package matching the path Django-*.tar.gz) to the de-
veloper Bob. Thus, Bob speaks for Alice for only the
Django-*.tar.gz packages, whereas Alice’s signature
on Django-1.7.1.exe (not shown) would be trusted in-
stead of Bob’s.

3 Threats and Threat Model
There are many risks that users of software reposito-

ries face. Attackers can interject traffic by proxy inter-
ception attacks [43], target weaknesses in TLS [37, 85],
set up a malicious mirror [21, 79], exploit weaknesses in
the network infrastructure [19, 81], compromise signing
keys due to weaknesses [45, 84], or steal keys outright
by exploiting a security vulnerability [25]. Furthermore,
attackers have proven adept at compromising the repos-
itory or signing infrastructure of many companies. This
leads us to consider a threat model where a compromise
of at least some part of the system occurs.
3.1 Threat Model

We assume that an attacker can:

1. Compromise a running repository and / or any keys
stored on the repository, including those situations
where the key itself is unknown (e.g., due to hard-
ware protection) but where the attacker is never-
theless able to sign malicious packages using the
key [67].

2. Respond to user requests. This can be done either
by acting as a man-in-the-middle, or compromising
the repository or one of its mirrors.

An attack will be successful if the attacker can change
the contents of a package that a user installs (e.g., to
insert a backdoor [27, 41, 43, 61, 62, 67]). Existing
software update systems protect against a wide array
of other attacks such as replay and mix-and-match at-
tacks [20–23, 71]. We protect against those attacks by
leveraging the role and delegation layout from these prior

works. Thus, those types of attacks are only briefly dis-
cussed in this paper, so that we may focus on key com-
promise resilience while allowing online registration of
projects.

We assume that projects have trustworthy developers
and that these developers, who store their keys external to
the community repository, take measures to secure them.
If a key corresponding to a project is compromised, we
consider a community repository’s security to be effec-
tive if it limits the impact of an attack to the project
whose key has been compromised.

4 Analysis of Current Systems
In this section, we examine four security approaches

that are used on repositories. These techniques allow ad-
ministrators of community repositories to sign packages
— either themselves or by delegating packages to their
respective project developers. These security models are
illustrated in Figure 2. These models are discussed in
turn in the following subsections.

4.1 Existing Security Models

(a) Repositories sign with online keys

In community repositories such as PyPI, RubyGems
and npm, all packages are signed only by repositories
with online keys (Figure 2(a)). A repository may sign
packages with a transport mechanism such as TLS or
CUP [42]. These private keys are kept online because
community repositories must publish new projects and
packages as soon as possible. Unfortunately, because the
key is online, a compromise of the repository would in-
stantly render all packages vulnerable. For example, the
npm community repository reported that a programming
bug not only leaked its TLS keys, but also allowed at-
tackers to remotely rewrite packages [90]. Since devel-
opers do not sign their packages in this security model,
users who subsequently request packages that have been
tampered with trust the repository’s package signatures
without question. This is because the transport mech-
anism is useful only for establishing the identity of the
repository, but not the authenticity of the packages them-
selves as belonging to their respective developers.

(b) Developers sign with offline keys

Some community repositories, including PyPI and
RubyGems, permit developers to sign their packages
with offline GPG [83] or RSA keys before uploading
them to the repository (Figure 2(b)). Unlike the pre-
vious security model, signatures are used to verify the
authenticity of packages, not to authenticate the repos-
itory’s identity. In this model, users must discover the
correct key for a developer from an out-of-band channel
and then use this to verify packages.

One substantial problem with this model is that finding

570 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

online
keys

developer
keys

offline
keys package

delegates
packages to

foo-2.0

packages

signs for
packages

project
developers

repository
administrators(a)

(c)

foo-2.1

bar-1.0

foo-2.0

projects

(d)

foo-2.1

bar-1.0

foo-2.0

projects foo-2.1

bar-1.0

foo

bar

foo

bar

legend

(b)

foo-2.0

foo-2.1

bar-1.0

foo

barGPG

packagesproject
developers

repository
administrators

Figure 2: Existing security models for community reposito-
ries.

and verifying developer keys remains a manual process,
with the burden placed on both developers and users.
Finding true developer keys can be tricky, especially with
attackers distributing fake keys, as was the case with the
Tor project [24]. The repository is compromise-resilient
only inasmuch as users have found and verified the cor-
rect developer keys. While PyPI and RubyGems support
this model, only 4% of PyPI projects even list a signa-
ture. Moreover, in a month long trace of package re-
quests to PyPI, only 0.07% of users downloaded these
signatures for verification. If signatures are not used,
then attackers who compromise the repository may mod-
ify any package in whatever manner they choose.

Thus, repository administrators across diverse com-
munity repositories are seeking a better solution [33, 47,
91]. To quote the RubyGems security guide [69]: “The
goal is to improve (or replace) the signing system so that
it is easy for authors and transparent for users.”

(c) Repositories delegate to projects with online keys

In this security model (Figure 2(c)), the projects role
for a delegation framework like TUF [71] is signed with
an online key. In order to solve the problem of which
developer keys map to which packages, repositories will
delegate a project (its set of packages) to the public keys
of the developers of that project. For example, PyPI will
delegate all packages of the Django project (matching,
say, the package path Django-*) to the public key of
the lead developer of the project who, in turn, may del-
egate the Django packages to other developers. Since
the projects role key is online, a new project can be
immediately registered by the repository, through a new
delegation to a project.

This model does not build compromise-resilient com-
munity repositories precisely because the projects role
can be compromised by an attacker. (This is true de-
spite the fact that developers sign their respective pack-
ages with offline keys.) This is because the keys for
the projects role are kept online. Thus, once an at-
tacker has compromised a repository, he (or she) is free to
rewrite delegations using the online private keys. Then,

Roles and Responsibilities
root

release

timestamp

projects

The root role is the locus of trust. It indicates which keys are
authorized for the projects, release, and timestamp roles. It also lists
the keys for the root role itself.
The projects role is trusted to validate packages. Often, the projects
role will delegate trust for a project to the responsible developers.
The release role indicates the latest versions of all metadata on the
repository. This prevents a user from later being deceived into
installing an outdated package.
The timestamp role is responsible for indicating if the repository
contents have changed. This role will often be performed by external
parties, such as mirrors.

Figure 3: The top-level roles used within Diplomat.

an attacker can have the projects role delegate trust for
the Django-* packages to a key that the attacker con-
trols. As such, the attacker could deceive users into in-
stalling malicious packages that did not originate from
the project’s developers.

(d) Administrators delegate to projects with offline keys

Unlike the previous TUF security model, which dele-
gates trust using an online key, administrators could al-
ternatively choose to delegate using offline keys (Fig-
ure 2(d)). This means that the projects role key (kept
offline) delegates projects to developer keys. There-
fore, this model does indeed build compromise-resilient
repositories because attackers cannot rewrite delegations
(and thus packages) after a repository compromise. The
attacker’s capabilities are limited to preventing clients
from seeing new packages in a timely manner (freeze
attack) or providing new package updates out of or-
der (mix-and-match attack) [71]. This model is used
by traditional repositories, including LEAP [53]. Un-
fortunately, this model is impractical to use in commu-
nity repositories because new projects, which are created
dozens of times a day, cannot be registered without an
administrator using an offline key.

5 Diplomat: Architecture and Delegations
This section describes the architecture of Diplomat,

a security system designed to allow community repos-
itories to have both compromise-resilience and imme-
diate project registration. It begins with a high-level
overview that explains the roles and use of delega-
tions within Diplomat (Section 5.1). Following this,
we present two problems that a delegation-based sys-
tem would face when used on community repositories
(Section 5.2). Diplomat addresses these problems using
two types of delegations: prioritized delegations (Sec-
tion 5.3) and terminating delegations (Section 5.4). In
the next section, (Section 6) we will demonstrate how to
use these delegations to provide compromise-resilience
so that even if online keys for project registration are
stolen, projects that were previously registered (with of-
fline keys) are not at risk.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 571

5.1 Roles and Delegations in Diplomat
Much like our earlier work on TUF [71], Diplomat

separates trust between different parties using the four
top-level roles shown in Figure 3: root, timestamp,
release, and projects. Each role produces metadata
that fulfills a specific purpose. The root role specifies
the public keys of the top-level roles (including its own)
and can revoke the other top-level role keys, if needed.
The release role indicates the latest version numbers
of all Diplomat metadata (other than timestamp) that is
available on the repository. The timestamp role refer-
ences the latest release role metadata and will signify
the last time the contents of the repository have changed.
The projects role lists the available projects and either
provides cryptographic hashes of packages or delegates
trust to keys that provide those hashes. Each top-level
role is only trusted for its assigned responsibilities; this
minimizes the impact of a compromised role.

Our focus in this work is on the projects role (and
the delegations it makes to non-top-level roles). Hence,
details about any top-level role other than the projects
role are only discussed as needed. Documentation is
available that provides a more holistic discussion about
the roles and their use [49, 50, 71].

The projects role is the root of trust for all pack-
ages on the repository; if a user wishes to download
(and install) some package, he or she must first download
and verify the latest projects role metadata. The user
has the keys for this role because these public keys are
contained within the root metadata file. The top-level
projects role may delegate to other developers or ven-
dors, which may also then delegate to others. A client
can validate a package by following the chain of delega-
tions until they find a trusted developer’s metadata that
contains the cryptographic hash of the package.
5.2 Problems With Delegation Ambiguity

Security problems can occur when a party cannot ef-
fectively control how much trust they place in a party
when performing a delegation. To illustrate the problem,
Figure 4 provides an example we will use throughout this
section. In this example, A is the root of trust for pack-
ages. A delegates trust in any package with a name that
matches the package path bar-* to B, and all packages
(including bar packages) to C. This example illustrates
two problems.

The Ordering Problem. Suppose that A has dele-
gated bar to B and all packages to C. If B and C provide
different cryptographic hashes for bar-1.0, which hash
should be trusted?

Note that there is no “correct” resolution to this ques-
tion, because A’s intent is not clear. In some cases, the
more specific delegation of bar-* to B should be trusted
over the more general delegation of * to C. However, in

ba
r-*

*A

B

*

bar-1.0

C

bar-1.0

bar-1.1

car-1.0

signs
packages

delegates
packages to

Figure 4: An example of ambiguous delegations. The label on
a delegation specifies what packages to delegate.

other cases the reverse should be true. (In fact, the maxi-
mum security model in Section 6.1 has a general delega-
tion which is prioritized over a specific delegation, which
in turn is prioritized over another general delegation.) A
solution must allow a party to express the intended order
in which to resolve delegations.

The Failover Problem. Suppose that A wants B to
be the only trusted party for bar packages, but C can
be trusted with any other package. How can this be ex-
pressed?

There are clearly cases where failover is desirable
(e.g., allowing a second developer to sign a package if
the first does not) and those where it is not desirable (e.g.,
the ability for C to provide bar-1.1, if B is meant to be
the only source of bar packages). A solution must enable
the delegator to specify their intended behavior.

5.3 Prioritized Delegations
Diplomat uses prioritized delegations to order delega-

tions between different parties and address the ordering
problem. The key concept is to prioritize delegations
based upon the order they occur in the metadata file.
(This is similar to the manner in which firewall rules are
processed in the order they are listed [60].) By exploit-
ing the order in which delegations are listed, then the first
delegation will be used before the second delegation, and
so forth. For example, if B is listed before C in Figure 4,
then the user would trust B over C for the bar-1.0 pack-
age.

In case a role both delegates and signs a package, then
the role’s package signature takes precedence over its
delegations. So if A signed the bar-1.0 package, then
A would be trusted for the package despite its delegation
of the package to both B and C.

5.4 Terminating Delegations
Diplomat uses the concept of a terminating delegation

to address the failover problem by halting the processing
of delegations at a specified point. Terminating delega-
tions instruct the client not to consider future trust state-
ments that match the delegation’s pattern. This stops the

572 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

delegation processing once this delegation (and its de-
scendants) have been processed. (Handling this case is
conceptually similar to the use of the cut operator in Pro-
log [18] to stop computation, except that Diplomat uses
this technique for security instead of efficiency.) A termi-
nating delegation for a package causes any further state-
ments about a package that are not made by the delegated
party or its descendants to be ignored.
5.5 Processing Delegations

The algorithm for resolving delegations through the
application of prioritized delegations involves a pre-
order, depth-first search of the projects metadata. This
algorithm is used on a client device when a user instructs
the package manager to install a package.

To install a package, a recursive algorithm begins at
the projects role and searches for the package of inter-
est. First, all of the hashes in the metadata file provided
by the projects role are checked to see if the requested
package is listed. This is the “pre-order” check to see if
the current party has information about the desired pack-
age. Following this, delegations are examined in their
order of priority (i.e., the order they are listed). If a del-
egation selects a portion of the namespace to delegate
(e.g., bar-*), then the algorithm ignores this delegation
if the pattern does not match (e.g., if the request was for
foo-1.0). For any matching delegation, the algorithm
will (in order) recursively search for the package of in-
terest. It does so by repeating the preceding steps on the
highest priority delegatees (in order). If any of the del-
egations is a terminating delegation, then the algorithm
is terminated at that point, even if this terminating dele-
gation does not return with an answer, preventing further
delegations from being considered.

6 Diplomat Security Models In Practice
This section describes how to set up Diplomat

metadata to provide real-time project registration and
compromise-resilience. To exemplify how Diplomat is
used in practice, we describe two security models that
have been standardized for use within the Python com-
munity: the maximum security model (Section 6.1) [50]
and the legacy security model (Section 6.2) [49]. After
describing these two models, we elaborate on other us-
ability aspects of Diplomat, such as handling key com-
promises, setting up roles, and maintenance in Sec-
tion 6.3.

The legacy and maximum security models provide dif-
ferent trade-offs for the security and the availability of
packages for projects we call rarely updated. A rarely
updated project is one for which its developers have not
provided a signing key, often because the package is not
actively maintained. Nevertheless, its packages may be
actively downloaded by users. An example is the Beau-
tifulSoup project on PyPI, which last released package

version 3.2.1 on February 16th, 2012, but nonetheless
was downloaded more than a hundred thousand times
in January 2016. The maximum security model uses
an offline key to sign these projects. If an update is
made, users will not receive it until the repository ad-
ministrators sign the package with an offline key. In
contrast, the legacy security model (Section 6.2) handles
rarely updated projects by signing them with the online
unclaimed-projects role. Due to the fact that online
keys are used, developers can immediately update un-
claimed projects. However, this comes at the cost of
leaving their users vulnerable in the event of a reposi-
tory compromise. Thus, the maximum model provides
higher security but delayed availability of new packages
for rarely updated projects, whereas the legacy model
provides exactly the opposite trade-off. The security
analysis of these models is available in our technical re-
port [51].
6.1 Maximum Security Model

The maximum security model [50] (Figure 5) aims to
reduce the risk to users if the repository is compromised
by an attacker at the cost of making users wait before
retrieving a new package for a rarely updated project.
The top-level projects role of the maximum security
model delegates to three other roles. The first and high-
est priority delegation, claimed-projects, is assigned
to projects who have developers sign their own project
metadata with their own offline key. The next highest pri-
ority delegation, rarely-updated-projects, requires
repository administrators to delegate these projects with
a terminating delegation, and to sign for these packages
with an offline key. Finally, the lowest priority delega-
tion, new-projects, is targeted to new projects, which
are signed by an online key. If an attacker compromises
the repository, they can change the metadata that indi-
cates which key should be trusted for new projects (and
thus can forge packages for those projects), but due to
the higher-priority, terminating delegations to existing
projects, whether rarely updated or not, cannot modify
those packages without being detected.

The highest priority delegation issued by the
projects role is to the claimed-projects role. The
claimed-projects role signs a terminating delegation
of all packages of a project (such as foo or flibble)
to the public keys of its developers. Projects may
choose to delegate trust to developers’ public keys, and
either a project or a developer will sign and upload
metadata about their packages. The use of a terminat-
ing delegation ensures that if a user attempts to ver-
ify a foo package, then the user would only search
for the package among its developers. Most impor-
tantly, the claimed-projects role signs its delegations
to projects with offline keys so that attackers cannot tam-
per with the packages of these projects after a reposi-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 573

flibble-*

foo-*

foo-*

zap-*

projects
foo

Project
claimed-
projects

zap-1.0

flibble-2.2

alice
Developer

foo-mac-1.3

soup-0.1

nuts-0.0.1

Projects
at risk

Compromise-
resilient
projects

*

*

foo-mac-*

foo-*

*

*
*
*

soup-*,

nuts-*

bob
Developer

joe
Developer

flibble
Project

zap
Project

foo
Project

rarely-
updated-
projects

new-
projects

package

signs for package

Legend

developer keys
backtracking
delegation

terminating
delegation offline keys

online keys

zap-1.0

project developersadministrators packages

*

Maximum Security Model

foo-win-1.1

sam
Developer

foo-mac-1.2

foo-win-1.2

wildcard
operator

ambiguous
delegations

flibble-*

foo-*

foo-*

zap-*

projects
foo

Project
claimed-
projects

zap-1.0

flibble-2.2

alice
Developer

foo-mac-1.3

soup-0.1

nuts-0.0.1

Projects
at risk

Compromise-
resilient
projects

*

*

foo-mac-*

foo-*

*

*
*
*

bob
Developer

joe
Developer

flibble
Project

zap
Project

foo
Project

unclaimed-
projects

new-
projects

zap-1.0

project developersadministrators packages

foo-win-1.1

sam
Developer

foo-mac-1.2

foo-win-1.2

*

Legacy Security Model

Figure 5: Maximum and legacy security models for community repositories. The red symbol indicates delegations that are not
used due to earlier trust statements. Delegations that are higher on the figure (toward the top of the page) have higher priority.

tory compromise (without also compromising the pri-
vate keys used by claimed project developers). How-
ever, since the delegation from the projects role to the
claimed-projects role allows backtracking (i.e., it is
not a terminating delegation), any requests for projects
unknown to the claimed-projects role will not be ter-
minated at this role, and will instead continue with the
rarely-updated-projects role.

The second-highest priority delegation pertains to the
rarely-updated-projects role. This role directly
signs, with offline keys, all packages of rarely updated
projects. Since the key used is offline, packages cannot
be signed by this role without an action by the repository
administrators. This delays the release of new packages
of rarely updated projects.

The delegation from the projects role to the
rarely-updated-projects role is a terminating one.
Furthermore, the rarely-updated-projects delega-
tion specifies only the package paths of rarely updated
projects (such as soup-* and nuts-* in Figure 5). Be-
cause of this, no backtracking is performed to search
elsewhere for the package signatures of a project already
delegated to this role.

Finally, the new-projects role is able to assign keys
to package names that were not already defined. This
role is served by an online key that delegates trust to
newly created projects. However, since the role has an
online key, there is a substantial risk of compromise. By
assigning this role the lowest priority (and using priori-
tized, terminating delegations for claimed and rarely up-
dated projects), an attacker will be able to only impact
newly-created projects if the repository is compromised.
For example, in Figure 5, the new-projects role’s sec-
ond delegation of foo is ignored due to the first terminat-
ing delegation of foo having a higher priority delegation
via the claimed-projects role.

6.2 Legacy Security Model
The legacy security model [49] (Figure 5) is very sim-

ilar to the maximum security model, but differs in the
way that it handles rarely updated packages. This model
allows new packages for rarely updated projects to be
available immediately, while still providing security ben-
efits to the users of claimed projects.

Like the maximum security model, the legacy se-
curity model includes the claimed-projects and
new-projects roles. However, in the legacy security
model, the repository uses an online key to sign for
unclaimed projects. Like rarely updated projects, un-
claimed projects are also signed by the repository in-
stead of developers, but with the unclaimed-projects
role that uses online keys. The unclaimed-projects
role has the lowest priority delegation and, since the
key is online, all projects signed with this key are at
risk in the event of a compromise. Prioritized and
terminating delegations of claimed projects signed by
the claimed-projects role ensure that, even when
the repository is compromised, packages of claimed
projects are not at risk. Thus, all packages of unclaimed
projects—unlike rarely updated projects—are available
immediately, but vulnerable in case of a repository com-
promise (just like new projects).

The legacy model is drawn from our integration and
deployment experience with the Python and Docker
community repositories. Both repositories wanted to al-
low the repository to sign packages on behalf of devel-
opers who did not wish to do so. However, since its key
is stored offline, using the rarely-updated-projects
role would prevent administrators from quickly re-
leasing new packages from these developers. The
unclaimed-projects role permits the repository to im-
mediately sign packages on behalf of these developers.

Diplomat enables a repository to smoothly transition

574 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

from the legacy to the maximum security model. The
repository administrators can first have the projects
role delegate to both the rarely-updated-projects
and unclaimed-projects roles. The administrators can
then move projects from the unclaimed-projects to the
rarely-updated-projects role (Section 7.2.2), and /
or require developers to register a project key to upload a
new package. Either way, project developers will be in-
centivized to transition out of the unclaimed-projects
role over time (using policies explored in Section 7), im-
proving security.

Docker Hub uses a similar security model for its de-
ployment of Diplomat. As of February 2016, Docker was
signing the most popular projects, such as Ubuntu (a pol-
icy we explore in Section 7.2.1). Docker plans to explore
options such as incentivizing project developers to sign
their packages (by visually distinguishing or showing
signed packages first in search results on Docker Hub),
or requiring developers to sign packages in order to up-
load a new one (a policy we explore in Section 7.2.3).
6.3 Using Diplomat

Regardless of whether a repository uses the legacy or
maximum security model, Diplomat requires essentially
the same actions by users, developers and administrators.

Users. End users that install software through a pack-
age manager that uses Diplomat do not need to perform
any actions and see no difference in their package man-
ager’s behavior. This is because Diplomat downloads
and verifies its metadata before the package manager is
allowed to install a package. The delegation structure
in Diplomat manages keys on behalf of the user, which
avoids the issues involved with locating and downloading
appropriate project keys (e.g., the model in Figure 2(b)).
The only situation where the user will be aware of Diplo-
mat’s existence is when a repository was compromised
and it produces a message that notifies that signatures on
data provided by the repository do not match.

Developers. To use Diplomat to protect a project, a
developer must create a public / private key pair and up-
load the public key to their community repository. The
repository will associate that key with the project first
through the new-projects role and later through the
claimed-projects role. If the project’s leaders elect to
do so, they may further delegate trust to different mem-
bers of the project, who may also sign packages so that
the project key need not be shared. Whenever a pack-
age is released, a developer must also generate a piece
of signed Diplomat metadata, the format of which is in
our standards document [49], that provides the crypto-
graphic hash of the package. The actions needed to cre-
ate or update this metadata can be added to the project’s
packaging scripts so that it is performed automatically
when a new package is built. Diplomat provides a set
of command-line tools [88] that helps developers to per-

form and automate those actions.
If the project key (i.e., the key that is delegated to di-

rectly by the claimed-projects or new-projects role)
is compromised, the repository administrator will need to
perform an action (discussed below) before trust in this
key is revoked. However, if an individual developer key
is compromised, the project can simply sign and upload
a new piece of metadata that changes the key or removes
that delegation. This action does not involve repository
administrators.

Repository Administrators. Most of the work in-
volved with using Diplomat comes from the initial setup.
Repository administrators need to generate the keys for
the roles and set up the initial delegations in their meta-
data. Offline keys should be stored in one or more de-
vices that are not network connected and high value roles
should require signatures from multiple keys. (We dis-
cuss procedures for this in more detail in the standards
documents [49, 50].) The repository software needs to
be modified so that Diplomat metadata is generated and
updated whenever projects are registered or packages
are uploaded. Diplomat provides administrators with
command-line tools and APIs [89] that automate these
actions and make it easy to integrate them into an exist-
ing repository.

Periodically (e.g., every few weeks), administrators
will perform a maintenance operation on the repository
to help it remain resilient to a key compromise. The
administrators should append the new-projects role
metadata to the claimed-projects role metadata and
sign the resulting metadata with the claimed-projects
key. If the rarely-updated-projects role exists, then
newly uploaded packages that are not signed by their de-
velopers should be added. Revoked project keys, which
are discussed below, are also replaced. Once this up-
dated metadata file is uploaded, this makes it so that an
attacker who compromises the repository cannot replace
the key for any projects included before that point. Ad-
ministrators will also calculate the cryptographic hash of
every package on the repository and store this data on
an offline system. This allows administrators to have a
known-good hash of each package to detect and recover
from a repository compromise.

Securely revoking a project key. When an autho-
rized party wants to revoke trust in a project key, they
notify the repository administrators and undergo an iden-
tity verification procedure [6]. (The exact procedure de-
pends on the deployment and is out of the scope of this
paper.) Once this is done, the administrators will write
the new project key into a revoked role metadata file (not
retrieved by users). When the maintenance operation is
performed to generate the new claimed-projects file,
the revoked keys are replaced. Administrators may pub-
lish revoked project keys to Twitter as both a notification

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 575

service and as a way of having a public log of project
keys that will change in the next maintenance operation.

Securely recovering from a repository compro-
mise. When a repository compromise has been de-
tected, the integrity of three types of information must
be validated. First, the keys for the new-projects and
unclaimed-projects roles of the repository need to be
revoked because they may have been compromised (i.e.,
their online keys have been compromised). The meta-
data for these roles must be discarded or returned to a
known-good state. These keys can be revoked by having
the offline projects role key sign new role metadata that
delegates to a new key.

Second, the role metadata of the repository may
have been changed. Metadata signed by the top-level
timestamp and release roles may have been changed,
enabling the attacker to launch mix-and-match and
freeze attacks [20–23]. These keys should be revoked
by the top-level root role, as is discussed in our prior
work [71].

Third, the packages themselves may have been tam-
pered with. Packages that existed the last time the
claimed-projects and rarely-updated-projects
role files were signed, can be verified using the stored
hash information. Also, new packages that are signed
by developers with the claimed-projects role may be
safely retained. However, any package signed by devel-
opers using the new-projects or unclaimed-projects
role should be discarded.

7 Evaluation
In order to better understand to what extent Diplomat

makes community repositories compromise-resilient, we
investigated the following questions:

• Does using the security models in Diplomat improve
users’ security in the event of a repository compro-
mise? Is Diplomat better than existing solutions like
TLS or GPG signatures? (Section 7.1)

• Suppose that the legacy security model is adopted for
usability reasons. If the goal is to maximize security,
what strategy should be used to get projects to sign
packages? For example:

– How effective is it to target the most popular
projects? (Section 7.2.1)

– What sort of benefit would there be from the
repository signing rarely updated projects? Which
projects should be considered rarely updated? (Sec-
tion 7.2.2)

– What is the effect of requiring developers to claim
projects when uploading a package? (Section 7.2.3)

– Is there an effective way to combine these strate-
gies? (Section 7.3)

Quantitative data used to answer these questions was
generated using anonymized request logs from PyPI
from March 21st to April 19th, 2014. For the purposes
of our analysis, we consider a user to be vulnerable if the
user downloads at least one package that an attacker who
compromised the repository (and thus all online keys)
could have tampered with. Thus, mapping requests to
user devices is important for our analysis. We sanitized
the log to remove situations where a single IP address
had diverse agent strings (likely multiple systems behind
a NAT), or requested the same package more than once
(likely a script), or requested more than 100 packages
(likely a mirror). Sanitizing the request log reduced the
absolute number of IPs in our dataset by about one third
to 398,983 users, but provides a data set where each IP
very likely corresponds to a unique client. This allows
us to take a set of vulnerable packages and understand
roughly what percent of clients would request at least one
package in that set (and thus would be at risk).

For the purpose of our analysis, we assume that attack-
ers have compromised PyPI on March 21st, at the begin-
ning of the anonymized request log. Furthermore, when
analyzing the maximum security model, we assume that
all projects that existed before March 21st are delegated
by the claimed-projects role, and that all projects cre-
ated afterward during the compromise are delegated by
the new-projects role.
7.1 Security of Diplomat vs TLS and GPG

We first perform a comparative analysis of the amount
of risk placed on users if an attacker compromises (a) a
repository protected with TLS, (b) GPG, (c) Diplomat’s
maximum security model, and (d) Diplomat’s legacy se-
curity model. This analysis aims to find how effective
these solutions would be in practice.

Figure 6 compares the effectiveness of TLS and GPG
(the top-most line), and the maximum security model
(very near the x-axis). In the case of TLS, the repository
is trusted to indicate which packages are valid. Thus, if
the repository is compromised, every user is vulnerable
because users trust packages from the repository.

Even if GPG is used in conjunction with TLS, the se-
curity is not improved. So few developers sign packages
and so few users download signatures that there was not a
single user who downloaded only GPG-signed packages
and their signatures.

Diplomat’s maximum security model is not perfect,
but it does protect 99.33% of users even if the repository
compromise is not detected over the full month’s trace.
This is because most users only download packages from
projects that existed before the start of the trace and those
packages are not vulnerable. Users who are vulnerable
are those who download a project that was registered
during the compromise. This can happen when a new
project rapidly becomes popular — often because of the

576 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: The cumulative number of compromised users over
the month when popular projects are signed by developers
(lower is better).

“Slashdot effect” due to promotion on a news site.
7.2 Adoption Strategies in the Legacy Security

Model
The compromise-resilience offered by the legacy se-

curity model can range from the same as TLS and GPG
— none, if no project signs its packages — to as good as
the maximum security model, if administrators delegate
with offline keys all but new projects to their respective
developers. In the rest of this subsection, we explore how
the compromise-resilience of the legacy security model
differs when different types of projects adopt Diplomat.
7.2.1 Targeting popular projects

We first evaluated the impact of requiring developers
of the most popular projects to claim their packages (Fig-
ure 6). Increasing the number of popular packages that
are signed by developers dramatically increases security.
If the most popular 1% of projects are signed by devel-
opers (406 projects), then 73% of users are protected. If
the top 10% of projects sign their project, then 96% of
users are protected. This shows that users overwhelm-
ingly download only popular projects and so focusing on
their protection is highly effective.
7.2.2 Only signing rarely updated projects

We examined the security benefits of the repository
using an offline key to sign rarely updated projects, be-
cause this has very little usability impact until the project
is next updated.

As Figure 7 shows, the security benefit of signing
rarely updated projects is small. This is because many
popular projects are updated frequently. Even if projects
that have not updated merely in the last month are consid-
ered rarely updated, only 167,097 (42%) of users would
be protected if the repository were compromised.

Creating a new package for a rarely updated
project means that users will not see the update un-
til repository administrators sign the package with the

Figure 7: The cumulative number of compromised users over
the month when the rarely-updated-projects role signed
projects that were last updated before the specified time period.

rarely-updated-projects role. This is a major us-
ability problem and so the rate of projects that are con-
sidered rarely updated must be very low. To estimate
this, we examined the distribution of the maximum time
difference between consecutive package updates for all
projects (not shown). Our analysis shows that 12% of all
packages had a gap of at least a year between updates,
but only 4% had a gap of at least two years. We feel that
two years is the most aggressive setting for rarely up-
dated projects that is likely to be considered acceptable
by the Python community. However, due to the high rate
of false positives and low number of users protected, on
its own, this is not an effective strategy.
7.2.3 Requiring projects to sign to upload a package

We considered a strategy wherein PyPI would require
projects to sign packages in order to upload a new pack-
age. (We consider this from a security perspective and
ignore the community’s response to such a policy.) Fig-
ure 8 shows the relative impact on users to be dependent
on how long the policy has been in place. For exam-
ple, the magenta line (“legacy (last 3mo)”) shows that if
developers that updated a package within the last three
months signed that package, 247,969 users (62%) were
vulnerable.

The usefulness of requiring a signature to upload a
package tails off rather sharply. Somewhat surprisingly,
23% of users (90,091) were vulnerable even if all de-
velopers that uploaded a package in the last two years
signed it (27,235 projects). This means that many pop-
ular projects have not been recently updated. (Given
the observation in the previous subsection, many pop-
ular packages are updated frequently, yet many are not.)
In comparison, this is about as effective as signing the
most popular 1% of projects, despite only requiring an
action by 406 projects. Thus, requiring projects to sign
when uploading is not an effective strategy when used in
isolation.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 577

Figure 8: The cumulative number of compromised users over
the month when projects were gradually signed by developers
over time using the legacy security model.

7.3 Summary: Recommended strategy
To summarize, pushing for adoption by the most pop-

ular 1% projects is critical to securing users. Other
strategies, such as signing for rarely updated projects
and pushing projects to sign when uploading a pack-
age, will further help security. While each strategy may
be relatively ineffective on its own, combining all of
these strategies can have minimal usability impact while
greatly increasing the security of PyPI users until the
maximum security model is adopted. The details of this
analysis, as well as our implementation of Diplomat, are
available in our technical report [51]. The Diplomat
source code and standards documents are freely available
at https://theupdateframework.github.io/.

8 Related Work
Role-Based Access Control. Diplomat uses a role-

based access control (RBAC) [72, 73] model. RBAC is a
collection of security models where permissions are as-
sociated with roles. A user may belong to one or more
role and thus possess the permissions those roles provide.
Although delegations in RBAC are well studied [8–10],
ambiguous delegations are not generally studied because
users, permissions, and roles are usually implicitly as-
sumed not to conflict. Schaad [74] used Prolog to de-
tect conflicts in separation of duties between roles, but
discussed no resolution mechanism that is applicable be-
yond RBAC. Stork [20] and OrBAC [14,29] support del-
egation models that allow the simultaneous permission
and prohibition of a privilege, and so could have the same
ambiguity issues as this work. These systems solve the
problem by specifying priorities with every permission
and prohibition. However, unlike Diplomat, these sys-
tems assume that the metadata a party sees cannot be
controlled by the attacker. An attacker that compromises
a community repository can choose to omit, add, or, in
the case of online keys, alter metadata, which is not han-

dled by these schemes.
Trust Management. Although GPG [83] and

X.509 [26] are useful for finding public keys and telling
whether keys have been revoked, they cannot answer
the question [17]: “Is request r authorized by policy P
and credential set C?” In a seminal work [16], Blaze
et al. defined trust management and introduced Pol-
icyMaker, a general trust management engine to en-
force security policies for diverse applications. Policy-
Maker separates secure key distribution (as solved by
GPG or X.509) from distributed authorization. Poli-
cyMaker featured security principles shared by Diplo-
mat such as k-of-n thresholds for authorization, deferred
trust (delegations), local policies, and key revocation.
Later, KeyNote [15] more directly supported public-key
infrastructure-like applications with a simpler syntax and
semantics at the expense of generality. Unlike Diplo-
mat, PolicyMaker and KeyNote do not handle conflict-
ing statements made by apparently equally trustworthy
parties [57]. Like KeyNote, SPKI/SDSI [34] supports
trust management for public key infrastructures (PKI).
SPKI/SDSI chose a delegation model with boolean con-
trol; unlike Diplomat, a key holder can specify the in-
ability to delegate further. SPKI/SDSI considered many
security problems that are relevant to Diplomat: key re-
vocation, the risks of online keys and increased key life-
times, redundancy with a threshold of algorithms or keys,
and applying redundancy to replace root keys. However,
unlike Diplomat, SPKI/SDSI leaves the processing of
delegations, including conflict resolution, to application
developers.

Delegation Logic. Diplomat leverages ideas from
prior work in logic-based distributed authorization.
Much of Diplomat’s functionality may be expressed in
D2LP, an authorization language in delegation logic [44,
56–58]. D2LP extends early works on trust manage-
ment and authorization in distributed systems [1, 52] by
defining a non-monotonic logic that resolves conflicting
conclusions in security policies. D2LP defines a more
general notion of prioritized delegations than in Diplo-
mat. For example, although both allow delegators to con-
strain delegations, D2LP allows delegators to specify ar-
bitrary delegation depth, whereas delegations are always
infinitely deep in Diplomat. Furthermore, D2LP allows
for partial ordering of rules, but Diplomat requires all
delegations to be totally ordered. This means that there
will always be one trusted conclusion for a package’s
metadata, or none at all in case no administrator or de-
veloper has signed for the package.

Secure Software Updates. Problems with software
update security were examined by Bellissimo et al. [13]
and Cappos et al. [21]. More recently, Knockel et al. [46]
observed that man-in-the-middle attacks on third-party
software continue to beleaguer open infrastructure.

578 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

The Stork package manager [20, 22, 23], whose secu-
rity model is also used by popular Linux package man-
agers, addresses a wide array of attacks that involve mali-
cious mirrors. However, this security model assumes that
the repository is trustworthy. TUF [71] is designed to se-
curely handle situations where some or all of a reposi-
tory is compromised. Diplomat leverages the techniques
in TUF to protect against certain types of attacks, such
as attacks that make valid but outdated packages appear
current. However, as was discussed in Section 4, due to
the need for online project registration TUF cannot pro-
tect a community repository against the most impactful
attacks, such providing arbitrarily modified packages.

Revere [55] uses a self-organizing, peer-to-peer over-
lay network to deliver security updates. It is designed to
maximize delivery speed, scalability, high dissemination
assurance, and security. In Revere, each peer indepen-
dently decides on trust relationships with other peers in
the overlay network. Thus from a security standpoint,
Revere functions somewhat like GPG. In contrast, Diplo-
mat works with a central community repository and del-
egates trust to projects which do not host content them-
selves.

Meteor [11] is designed to secure smartphones against
multi-market environments. Relevant to Diplomat is
their assumption that updates can be malicious due to a
compromise of developer keys. They propose indepen-
dent databases of metadata (such as information about
developers, or rating of application binaries by experts)
that users consult to determine whether an application
should be trusted. Baton [12] showed how smartphone
application developers can securely transfer the signing
authority of an application to a new developer key with-
out requiring user intervention and a PKI.

Alhamed et al. [2, 3] studied a different approach to
securing community repositories. They propose a volun-
teer community of independent testers who build bina-
ries from releases, certify that binaries come from trusted
sources, and attach warnings or even praises to binaries.

Secure Software Repository. The Secure Untrusted
Data Repository (SUNDR) [54] addresses a different
threat model from Diplomat. SUNDR assumes that the
software repository itself cannot be trusted with storing
packages. Therefore, each developer checks and signs
the history of all file system operations. Developers com-
pare histories with each other in order to ensure fork con-
sistency, where developers can eventually detect equivo-
cation. SUNDR requires developers and users to mount
a SUNDR file system hosted on the repository, and use
its protocol to verify the file system history.

9 Conclusion
This paper presents an architecture that uses priori-

tized and terminating delegations to secure community

repositories. The architecture demonstrates that it is
possible to have compromise-resilience in a community
repository without sacrificing a defining feature: imme-
diate project registration.

Our system, Diplomat, is flexible enough to enable
community repositories to implement different security
policies and gracefully transition between them. A com-
munity repository can begin with the legacy security
model, which provides sufficiently strong protection, but
does not require any action by developers. The maxi-
mum security model does require that developers sign
their packages (or else, new packages cannot be immedi-
ately released); however, the security gains are substan-
tial. Diplomat’s maximum security model would protect
over 99% of PyPI users, even if an attacker controlled the
repository undetected for a month.

Acknowledgements
We thank our shepherd, Ramakrishna Kotla, as well as

Jon Howell and the anonymous reviewers for their valu-
able comments. We would also like to thank Lois Anne
DeLong and Linda Vigdor for their efforts on this paper,
as well as the Docker, Flynn, Haskell, LEAP, OCaml,
Python, Ruby, and Square communities for their collab-
oration. Our work on Diplomat was supported by U.S.
National Science Foundation grants CNS-1345049 and
CNS-0959138.

References
[1] ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G.

A calculus for access control in distributed systems. ACM Trans.
Program. Lang. Syst. 15, 4 (Sept. 1993), 706–734.

[2] ALHAMED, K., SILAGHI, M. C., HUSSIEN, I., STANSIFER, R.,
AND YANG, Y. ”Stacking the Deck” Attack on Software Up-
dates: Solution by Distributed Recommendation of Testers. In
Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
2013 IEEE/WIC/ACM International Joint Conferences on (2013),
vol. 2, pp. 293–300.

[3] ALHAMED, K., SILAGHI, M. C., HUSSIEN, I., AND YANG, Y.
Security by Decentralized Certification of Automatic-Updates for
Open Source Software controlled by Volunteers. In Workshop on
Decentralized Coordination (2013).

[4] APACHE INFRASTRUCTURE TEAM. apache.org incident report
for 8/28/2009. https://blogs.apache.org/infra/entry/
apache org downtime report, 2009.

[5] APACHE INFRASTRUCTURE TEAM. apache.org incident report
for 04/09/2010. https://blogs.apache.org/infra/entry/
apache org 04 09 2010, 2010.

[6] ARCIERI, T. Let’s figure out a way to start signing
RubyGems. http://tonyarcieri.com/lets-figure-out-a-
way-to-start-signing-rubygems, 2014.

[7] ARKIN, B. Adobe to Revoke Code Signing Certifi-
cate. https://blogs.adobe.com/conversations/2012/09/
adobe-to-revoke-code-signing-certificate.html, 2012.

[8] BARKA, E., AND SANDHU, R. Role-based delegation
model/hierarchical roles (RBDM1). In Computer Security Appli-
cations Conference, 2004. 20th Annual (2004), IEEE, pp. 396–
404.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 579

[9] BARKA, E., AND SANDHU, R. Framework for agent-based role
delegation. In Communications, 2007. ICC’07. IEEE Interna-
tional Conference on (2007), IEEE, pp. 1361–1367.

[10] BARKA, E., SANDHU, R., ET AL. A role-based delegation
model and some extensions. In 23rd National Information Sys-
tems Security Conference (2000), Citeseer, pp. 396–404.

[11] BARRERA, D., ENCK, W., AND VAN OORSCHOT, P. C. Meteor:
Seeding a security-enhancing infrastructure for multi-market ap-
plication ecosystems. IEEE Mobile Security Technologies (2012).

[12] BARRERA, D., MCCARNEY, D., CLARK, J., AND VAN
OORSCHOT, P. C. Baton: Key Agility for Android without
a Centralized Certificate Infrastructure. Tech. Rep. TR-13-03,
School of Computer Science, Carleton University.

[13] BELLISSIMO, A., BURGESS, J., AND FU, K. Secure software
updates: disappointments and new challenges. Proceedings of
USENIX Hot Topics in Security (HotSec) (2006).

[14] BEN-GHORBEL-TALBI, M., CUPPENS, F., CUPPENS-
BOULAHIA, N., AND BOUHOULA, A. A delegation model for
extended RBAC. International journal of information security 9,
3 (2010), 209–236.

[15] BLAZE, M., FEIGENBAUM, J., AND KEROMYTIS, A. D.
Keynote: Trust management for public-key infrastructures. In
Security Protocols (1999), Springer, pp. 59–63.

[16] BLAZE, M., FEIGENBAUM, J., AND LACY, J. Decentralized
trust management. In Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on (1996), IEEE, pp. 164–173.

[17] BLAZE, M., FEIGENBAUM, J., AND STRAUSS, M. Financial
Cryptography: Second International Conference, FC ’98 An-
guilla, British West Indies February 23–25, 1998 Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, ch. Com-
pliance checking in the PolicyMaker trust management system,
pp. 254–274.

[18] BRATKO, I. Prolog programming for artificial intelligence. Pear-
son education, 2001.

[19] BROWN, M., AND DYNAMIC NETWORK SERVICES, INC. Pak-
istan hijacks YouTube. http://research.dyn.com/2008/02/
pakistan-hijacks-youtube-1/, 2008.

[20] CAPPOS, J., BAKER, S., PLICHTA, J., NYUGEN, D., HARDIES,
J., BORGARD, M., JOHNSTON, J., AND HARTMAN, J. H.
Stork: package management for distributed VM environments.
In The 21st Large Installation System Administration Conference,
LISA’07 (2007).

[21] CAPPOS, J., SAMUEL, J., BAKER, S., AND HARTMAN, J. H. A
look in the mirror: Attacks on package managers. In Proceedings
of the 15th ACM conference on Computer and communications
security (2008), ACM, pp. 565–574.

[22] CAPPOS, J., SAMUEL, J., BAKER, S., AND HARTMAN, J. H.
Package management security. University of Arizona Technical
Report (2008), 08–02.

[23] CAPPPOS, J. Stork: Secure Package Management for VM Envi-
ronments. Dissertation, University of Arizona, 2008.

[24] CLARK, E. [tor-talk] Another fake key for my email
address. https://lists.torproject.org/pipermail/tor-
talk/2014-March/032308.html, 2014.

[25] CLOUDFLARE, INC. Answering the Critical Ques-
tion: Can You Get Private SSL Keys Using Heartbleed?
https://blog.cloudflare.com/answering-the-critical-
question-can-you-get-private-ssl-keys-using-
heartbleed/, 2014.

[26] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S.,
HOUSLEY, R., AND POLK, W. RFC 5280: Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. The Internet Society (2008). https://tools.
ietf.org/html/rfc5280.

[27] CORBET, J. An attempt to backdoor the kernel. http://lwn.
net/Articles/57135/, 2003.

[28] CORBET, J. The cracking of kernel.org. http:
//www.linuxfoundation.org/news-media/blogs/browse/
2011/08/cracking-kernelorg, 2011.

[29] CUPPENS, F., CUPPENS-BOULAHIA, N., AND GHORBEL,
M. B. High level conflict management strategies in advanced
access control models. Electronic Notes in Theoretical Computer
Science 186 (2007), 3–26.

[30] DEBIAN. Debian Investigation Report after Server Compromises.
https://www.debian.org/News/2003/20031202, 2003.

[31] DEBIAN. Security breach on the Debian wiki 2012-
07-25. https://wiki.debian.org/DebianWiki/
SecurityIncident2012, 2012.

[32] DOCKER INC. Docker Hub. https://hub.docker.com/.

[33] EKLEKTIX, INC. Docker image ”verification”. https://lwn.
net/Articles/628343/, 2015.

[34] ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R.,
THOMAS, B., AND YLONEN, T. RFC 2693: SPKI certificate
theory. https://tools.ietf.org/html/rfc2693.

[35] FRIELDS, P. W. Infrastructure report, 2008-08-22 UTC 1200.
https://www.redhat.com/archives/fedora-announce-
list/2008-August/msg00012.html, 2008.

[36] GENTOO LINUX. rsync.gentoo.org: rotation server com-
promised. https://security.gentoo.org/glsa/200312-01,
2003.

[37] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R.,
BONEH, D., AND SHMATIKOV, V. The most dangerous code in
the world: validating SSL certificates in non-browser software.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 38–49.

[38] GESBERT, L., AND MEHNERT, H. Signing the OPAM repos-
itory. http://opam.ocaml.org/blog/Signing-the-opam-
repository/, 2015.

[39] GITHUB, INC. Public Key Security Vulnerability and
Mitigation. https://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation, 2012.

[40] GNU SAVANNAH. Compromise2010. https://savannah.gnu.
org/maintenance/Compromise2010/, 2010.

[41] GOODIN, D. Attackers sign malware using crypto certifi-
cate stolen from Opera Software. http://arstechnica.
com/security/2013/06/attackers-sign-malware-using-
crypto-certificate-stolen-from-opera-software/,
2013.

[42] GOOGLE, INC. Open Client Update Protocol. http://omaha.
googlecode.com/svn/wiki/cup.html.

[43] GOSTEV, A. ‘Gadget’ in the middle: Flame malware spread-
ing vector identified. https://www.securelist.com/en/
blog/208193558/Gadget in the middle Flame malware
spreading vector identified, 2012.

[44] GROSOF, B. N. Prioritized conflict handling for logic programs.
In ILPS (1997), vol. 97, pp. 197–211.

[45] INCI, M. S., GULMEZOGLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Seriously, get off my cloud! Cross-VM RSA
Key Recovery in a Public Cloud. Cryptology ePrint Archive, Re-
port 2015/898, 2015. http://eprint.iacr.org/.

[46] KNOCKEL, J., AND CRANDALL, J. R. Protecting Free and Open
Communications on the Internet Against Man-in-the-Middle At-
tacks on Third-Party Software: We’re FOCI’d. In Presented as
part of the 2nd USENIX Workshop on Free and Open Communi-
cations on the Internet (Berkeley, CA, 2012), USENIX.

580 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[47] KRAH, S. [Python-Dev] pip: cdecimal an externally hosted
file and may be unreliable [sic]. https://mail.python.org/
pipermail/python-dev/2014-May/134453.html, 2014.

[48] KUHN, B. M. News: IMPORTANT: Information Regarding Sa-
vannah Restoration for All Users. https://savannah.gnu.org/
forum/forum.php?forum id=2752, 2003.

[49] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND CAPPOS, J.
PEP 458 – Securing the Link from PyPI to the End User. https:
//www.python.org/dev/peps/pep-0458/, 2013.

[50] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND CAPPOS, J.
PEP 480 – Surviving a Compromise of PyPI. https://www.
python.org/dev/peps/pep-0480/, 2014.

[51] KUPPUSAMY, T. K., TORRES-ARIAS, S., DIAZ, V., AND CAP-
POS, J. Diplomat: Using Delegations to Protect Community
Repositories. Tech. Rep. TR-CSE-2016-01, Computer Science
and Engineering, Tandon School of Engineering, New York Uni-
versity.

[52] LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E.
Authentication in distributed systems: Theory and practice. ACM
Trans. Comput. Syst. 10, 4 (Nov. 1992), 265–310.

[53] LEAP ENCRYPTION ACCESS PROJECT. New releases for a new
year - LEAP. https://leap.se/en/2014/darkest-night,
2014.

[54] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. Secure
untrusted data repository (SUNDR). In Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Im-
plementation - Volume 6 (Berkeley, CA, USA, 2004), OSDI’04,
USENIX Association, pp. 9–9.

[55] LI, J., REIHER, P., AND POPEK, G. J. Resilient self-organizing
overlay networks for security update delivery. Selected Areas in
Communications, IEEE Journal on 22, 1 (2004), 189–202.

[56] LI, N. Delegation Logic: A Logic-based Approach to Distributed
Authorization. PhD thesis, New York University, 2000.

[57] LI, N., FEIGENBAUM, J., AND GROSOF, B. N. A logic-based
knowledge representation for authorization with delegation. In
Computer Security Foundations Workshop, 1999. Proceedings of
the 12th IEEE (1999), IEEE, pp. 162–174.

[58] LI, N., GROSOF, B. N., AND FEIGENBAUM, J. A
Nonmonotonic Delegation Logic with Prioritized Conflict
Handling. https://www.cs.purdue.edu/homes/ninghui/
papers/old/d2lp.pdf, 2000.

[59] MAGNUSSON, H. The PHP project and Code Re-
view. http://bjori.blogspot.com/2010/12/php-project-
and-code-review.html, 2010.

[60] MICROSOFT, INC. Order of Windows Firewall with Advanced
Security Rules Evaluation. https://technet.microsoft.com/
en-us/library/cc755191%28v=ws.10%29.aspx, 2009.

[61] MICROSOFT, INC. Flame malware collision attack explained.
http://blogs.technet.com/b/srd/archive/2012/06/06/
more-information-about-the-digital-certificates-
used-to-sign-the-flame-malware.aspx, 2012.

[62] MULLENWEG, M. Passwords Reset. https://wordpress.org/
news/2011/06/passwords-reset/, 2011.

[63] MÓNICA, D., AND DOCKER, INC. Introducing Docker Content
Trust. https://blog.docker.com/2015/08/content-trust-
docker-1-8/, 2015.

[64] PHILIPS, B. Evaluate The Update Framework. https://
github.com/appc/spec/issues/211, 2015.

[65] PRIME DIRECTIVE, INC. Development - Flynn. https://
flynn.io/docs/development, 2015.

[66] PYTHON SOFTWARE FOUNDATION. PyPI - the Python Pack-
age Index: Python Package Index. https://pypi.python.org/
pypi.

[67] RED HAT, INC. Infrastructure report, 2008-08-22 UTC
1200. https://rhn.redhat.com/errata/RHSA-2008-0855.
html, 2008.

[68] RUBYGEMS.ORG. RubyGems.org — your community gem host.
https://rubygems.org/.

[69] RUBYGEMS.ORG. Security. http://guides.rubygems.org/
security/.

[70] RUBYGEMS.ORG. Data Verification. http://blog.rubygems.
org/2013/01/31/data-verification.html, 2013.

[71] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND DINGLE-
DINE, R. Survivable key compromise in software update sys-
tems. In Proceedings of the 17th ACM conference on Computer
and communications security (2010), ACM, pp. 61–72.

[72] SANDHU, R. S. Role-based access control. Advances in comput-
ers 46 (1998), 237–286.

[73] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND
YOUMAN, C. E. Role-based access control models. Computer
29, 2 (1996), 38–47.

[74] SCHAAD, A. Detecting conflicts in a role-based delegation
model. In Computer Security Applications Conference, 2001.
ACSAC 2001. Proceedings 17th Annual (2001), IEEE, pp. 117–
126.

[75] SHAY, X., AND SQUARE, INC. Securing RubyGems with TUF,
Part 1. https://corner.squareup.com/2013/12/securing-
rubygems-with-tuf-part-1.html, 2013.

[76] SHAY, X., AND SQUARE, INC. Securing RubyGems with TUF,
Part 2. https://corner.squareup.com/2013/12/securing-
rubygems-with-tuf-part-2.html, 2013.

[77] SHAY, X., AND SQUARE, INC. Securing RubyGems with TUF,
Part 3. https://corner.squareup.com/2013/12/securing-
rubygems-with-tuf-part-3.html, 2013.

[78] SLASHDOT MEDIA. About. http://sourceforge.net/about.

[79] SLASHDOT MEDIA. phpMyAdmin corrupted copy on Korean
mirror server. https://sourceforge.net/blog/phpmyadmin-
back-door/, 2012.

[80] SMITH, J. K. Security incident on Fedora infrastructure on 23
Jan 2011. https://lists.fedoraproject.org/pipermail/
announce/2011-January/002911.html, 2011.

[81] STEWART, J. DNS cache poisoning–the next genera-
tion. http://www.secureworks.com/research/articles/
dns-cache-poisoning, 2003.

[82] THE FREEBSD PROJECT. FreeBSD.org intrusion announced
November 17th 2012. http://www.freebsd.org/news/2012-
compromise.html, 2012.

[83] THE GNUPG PROJECT. The GNU Privacy Guard. https://
gnupg.org/.

[84] THE MITRE CORPORATION. CVE 2008-0166.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-0166, 2008.

[85] THE MITRE CORPORATION. CVE 2014-0092.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0092, 2014.

[86] THE PHP GROUP. php.net security notice. http://www.php.
net/archive/2011.php#id2011-03-19-1, 2011.

[87] THE PHP GROUP. A further update on php.net. http://php.
net/archive/2013.php#id2013-10-24-2, 2013.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 581

[88] THE UPDATE FRAMEWORK. Developer Tools. https:
//github.com/theupdateframework/tuf/blob/develop/
tuf/README-developer-tools.md.

[89] THE UPDATE FRAMEWORK. Repository Management.
https://github.com/theupdateframework/tuf/blob/
develop/tuf/README.md.

[90] VOSS, L. Newly Paranoid Maintainers. http://blog.npmjs.
org/post/80277229932/newly-paranoid-maintainers,

2014.

[91] WELL-TYPED LLP. Improving Hackage security.
http://www.well-typed.com/blog/2015/04/improving-
hackage-security/, 2015.

[92] WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B.
Authentication in the Taos operating system. ACM Transactions

on Computer Systems (TOCS) 12, 1 (1994), 3–32.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 583

AnonRep: Towards Tracking-Resistant Anonymous Reputation

Ennan Zhai† David Isaac Wolinsky‡ Ruichuan Chen§

Ewa Syta† Chao Teng‡ Bryan Ford∗

†Yale University ‡Facebook Inc. §Nokia Bell Labs ∗EPFL

Abstract

Reputation systems help users evaluate information qual-

ity and incentivize civilized behavior, often by tallying

feedback from other users such as “likes” or votes and

linking these scores to a user’s long-term identity. This

identity linkage enables user tracking, however, and ap-

pears at odds with strong privacy or anonymity. This

paper presents AnonRep, a practical anonymous reputa-

tion system offering the benefits of reputation without en-

abling long-term tracking. AnonRep users anonymously

post messages, which they can verifiably tag with their

reputation scores without leaking sensitive information.

AnonRep reliably tallies other users’ feedback (e.g., likes

or votes) without revealing the user’s identity or exact

score to anyone, while maintaining security against score

tampering or duplicate feedback. A working prototype

demonstrates that AnonRep scales linearly with the num-

ber of participating users. Experiments show that the la-

tency for a user to generate anonymous feedback is less

than ten seconds in a 10,000-user anonymity group.

1 Introduction

Online services such as eBay, Yelp, and Stack Overflow

employ reputation systems to evaluate information qual-

ity and filter spam. In Yelp, for example, users post mes-

sages (e.g., reviews), and offer feedback on other users’

posts (e.g., votes) based on perceived utility. User repu-

tations increase or decrease based on this feedback, and

reputation affects how widely a user’s future posts are

viewed. This long-term linkage between user behavior

and reputation, however, can quickly de-anonymize users

wishing to hide their true identities [4,23,28,31]. For ex-

ample, Minkus et al. [28] revealed eBay users’ sensitive

purchase histories by analyzing only pseudonyms’ trans-

actions and feedback. As privacy has become a major

concern for online users, we raise the question: can we

combine the benefits of reputation with the privacy af-

forded by fully anonymous, unlinkable messaging? Can

we build an anonymous reputation system?

In an anonymous reputation system, no entity – ei-

ther users or servers implementing the reputation sys-

tem – should be able to link posted messages and feed-

back to any user identity. Maintaining reputation without

identity in principle offers the benefits of reputation with

unprecedented user privacy [5]. Achieving this goal is

challenging, however, since the requirement to associate

users with their historical activities seems to preclude

anonymity [38]. Establishing reputation while maintain-

ing unlinkability of activities appears to be a paradox.

Prior efforts have addressed this problem [2, 5, 7, 15],

but none have yet proven practical or sufficiently gen-

eral for realistic deployment. For example, Androulaki

et al. [2] proposed blind signatures for anonymous peer-

to-peer reputation transactions, but this protocol relies

on a centralized honest entity and cannot support nega-

tive feedback (e.g., about trolls or otherwise misbehav-

ing users). Similarly, Bethencourt et al. [5] proposed to

use zero-knowledge proofs to construct signatures of rep-

utation, thus keeping unlinkability of users’ historical be-

haviors. This approach supports limited reputation algo-

rithms, however, and is computationally expensive.

This paper presents AnonRep, the first practical anony-

mous reputation system supporting diverse reputation

schemes without leaking sensitive information about

users’ long-term identities or historical activities. Anon-

Rep represents a novel integration of known crypto-

graphic primitives – verifiable shuffles [32], linkable ring

signatures [26], and homomorphic crypto [17] – in a

multi-provider deployment architecture. AnonRep builds

on the anytrust model [41], like Dissent [42] and Vu-

vuzela [39], for scalability and robustness to client churn.

An AnonRep group consists of a potentially large set

of client nodes representing users, and a smaller set of

third-party commodity servers implementing the anony-

mous reputation service. Each client trusts that at least

one server is honest and not colluding with the others,

but the client need not know which server to trust.

AnonRep operates in a series of message-and-

feedback rounds. Each round might in practice last a few

minutes, hours, or even a full day, depending on the ap-

plication scenario. At the beginning of each round, the

servers maintain a database containing all clients’ long-

term identities and their respective encrypted reputation

scores. During each round, the servers successively run

a scheduling protocol based on verifiable shuffles [32],

which transforms the reputation list into an anonymously

permuted list consisting of a one-time pseudonym for

each client and an associated plaintext reputation score.

While exact reputation scores could themselves link

clients across rounds, AnonRep allows users to reveal

only approximate reputations (§6). AnonRep’s schedul-

ing protocol is decentralized: neither servers nor clients

1

584 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

(a) A typical message board equipped with conventional reputation

technique which potentially has linkability issues.

(b) The same message board equipped with AnonRep. Adversary can-

not link different activities to any specific identity.

Figure 1: Motivating example. We use a typical message board with different reputation technique. The sample mes-

sage board evaluates the quality of posted messages based on the reputation of these messages’ authors. Feedback is

represented as votes.

(other than the owner) can link one-time pseudonyms or

reputations to long-term identities.

Clients then post messages anonymously using these

one-time pseudonyms. The servers can associate these

messages with their corresponding reputation scores

without learning clients’ sensitive information. Each

client may then provide feedback (e.g., votes) on other

clients’ posted messages. Each vote is signed by a link-

able ring signature [26], enabling the servers to ver-

ify that each client votes only once without revealing

which client submitted each vote. This design enables the

servers to tally positive and negative feedback without

linking this feedback with long-term identities.

Finally, the servers tally the feedback received for

each one-time pseudonym, update the reputation score,

and then perform a “reverse scheduling” to transform

these one-time pseudonyms and their updated reputation

scores back to the original long-term identities and their

encrypted updated reputation scores.

We have implemented an AnonRep prototype in Go.

Experimental results show that the AnonRep server

scales linearly with the number of clients. With a 10,000-

client anonymity group, for example, each server’s com-

putational cost is about one minute per round. The time

required for a client to construct an anonymous vote to

provide feedback is less than ten seconds in a 10,000-

client anonymity group. While the current prototype has

many limitations and would benefit from further develop-

ment, we nevertheless believe that AnonRep represents a

significant step towards building a practical anonymous

reputation system for realistic online services.

In summary, this paper makes the following contribu-

tions. First, we propose the first practical anonymous rep-

utation system, AnonRep, offering the benefits of reputa-

tion while maintaining the unlinkability and anonymity

of users’ historical activities. Second, we provide a fully-

functional open-source prototype illustrating AnonRep’s

functionality and practicality.

2 Motivation and Challenges

This section first presents a simple but illustrative exam-

ple to motivate AnonRep’s goals (§2.1), then discusses

key technical challenges (§2.2).

2.1 Motivating Example

Figure 1a shows a typical reputation system, which uti-

lizes a message board to evaluate information quality and

filter out spam. The message board maintains a reputa-

tion score for each client. Each client has an identity or

pseudonym, which remains fixed throughout the client’s

lifetime. Suppose a client, Alice, posts a message on the

message board. The message board associates the mes-

sage with Alice’s reputation score, which other users or

content curation algorithms might use to determine how

widely Alice’s message is seen. Other clients who view

Alice’s message can then give positive or negative feed-

back to express subjective opinions on the quality of

Alice’s message. Based on this feedback, the message

board updates Alice’s reputation, enabling Alice to post

new messages with the updated reputation. Precisly how

user feedback affects clients’ reputation scores varies de-

pending on the specific reputation algorithm.

Message board reputation systems of this kind have

been widely employed by many online services, e.g.,

eBay, Yelp, and Stack Overflow. However, in such a sys-

tem, each client’s reputation score is associated with ei-

ther her real identity or a long-lived pseudonym. As a

result, even with pseudonyms, a client’s historical activ-

ities can be easily tracked and linked, leaking sensitive

information. For example, in Figure 1a, an adversary can

observe that the first and third messages are posted by the

same pseudonym aflo23p2, and the second message is

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 585

posted by another pseudonym dged2p. The adversary can

also learn the voters of each message. For example, the

client with pseudonym aflo23p2 casts a negative vote to

the second message. Even in the absence of clients’ real

identities, Minkus et al. [28] have successfully exposed

eBay clients’ sensitive purchase histories and feedback

by analyzing only pseudonyms’ transactions.

The goal of this paper is to design a practical anony-

mous reputation system providing the utility of a rep-

utation system, while hiding clients’ sensitive informa-

tion – including the linkage between messages posted by

the same user. With AnonRep, as shown in Figure 1b,

a client appears as different one-time pseudonym ev-

ery time the client posts a message. These one-time

pseudonyms avoid revealing information that can link

any clients’ messages, reputation scores, or votes across

posting rounds. Meanwhile, AnonRep can still privately

update each client’s reputation score without any partici-

pants learning sensitive information.

While content-based attacks such as stylometry [30]

could still link one user’s message across rounds, these

techniques are uncertain and prone to false positives, es-

pecially operating on short messages (e.g., tweets). Re-

gardless, AnonRep’s goal is not to address content-based

linkage risks, but to ensure that feedback and reputation

management does not leak any more sensitive informa-

tion beyond what the user-provided content itself might.

2.2 Technical Challenges

We face two main technical challenges to build a practi-

cal anonymous reputation system.

Challenge 1: Protecting the association between rep-

utation and identity. The calculation of a user’s rep-

utation score relies on the historical activities associ-

ated with this user’s identity. It seems that maintaining

this reputation would preclude any possibility of identity

anonymity [2, 5]. Two straightforward solutions are 1)

to introduce a trusted third party that updates reputation

scores for clients, or 2) to use secure multi-party compu-

tation (SMPC) [44] to update reputation scores privately.

Unfortunately, the former solution offers weak security

by requiring every user to trust a third party, while the

latter solution is slow and computation-intensive and has

not proven scalable in practice. Therefore, keeping the

association between reputation and user identity private

presents a significant challenge.

Challenge 2: Detection of misbehavior. A centralized

reputation system can readily enforce well-defined rules

for handling reputation and feedback fairly – such as

“one client, one vote” – because a trusted entity can see

all clients’ activities and enforce these rules. In a decen-

tralized anonymous reputation system without a trusted

party, however, clients might misbehave, e.g., by casting

multiple votes on the same message to amplify the user’s

Figure 2: AnonRep’s multi-provider deployment model,

and its basic communication topology. In an AnonRep

group, each client communicates with a single upstream

server, while each server can communicate with all other

servers.

feedback unfairly. Such misbehavior is non-trivial to de-

tect in an anonymous reputation system [5].

3 AnonRep Overview

In this section, we first sketch the architecture of Anon-

Rep in §3.1. Then, we present our assumptions and threat

model in §3.2. Finally, we give our security goals in §3.3.

3.1 Architecture

As illustrated in Figure 2, AnonRep relies on a multi-

provider model to achieve scalability and resilience to

link failures [16, 41, 42]. A typical AnonRep group in-

cludes two types of members: 1) a potentially large num-

ber of unreliable client nodes representing individual

users, and 2) a small number of servers, which are as-

sumed to be highly available and well-provisioned.

In practice, each server in an AnonRep group should

be operated independently (i.e., each managed by a sepa-

rate operator) to limit the risks of all servers being com-

promised or colluding against clients.

Each client directly communicates with at least one up-

stream server, while each server can communicate with

any other servers (see Figure 2). Such a communication

topology reduces the communication and computational

overhead at the clients, and enables the system to toler-

ate client churn [42]. More specifically, each client does

not need to know which other clients are online while

posting messages or feedback to the upstream server.

3.2 Threat Model and Assumptions

In an AnonRep group, clients need not assume any par-

ticular server is trustworthy, and they need not even trust

their respective upstream servers. Instead, we assume the

anytrust model, i.e., each client trusts only that there ex-

ists at least one honest server without knowing which

this server is [16, 41, 42]. An AnonRep group member

(server or client) is honest if the member follows the spec-

ified protocol faithfully and does not collude with or leak

sensitive information to other group members. A mem-

ber is dishonest (or malicious) otherwise.

3

586 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

A malicious client may wish to link or track sensi-

tive information such as reputation scores, messages, and

feedback to specific victim clients. Multiple malicious

clients may collude with each other.

A malicious server may refuse to service honest

clients, but such refusal should not compromise clients’

anonymity. Moreover, a malicious server may try to tam-

per with clients’ reputation scores, and even collude with

malicious clients.

We assume that public and symmetric key encryptions,

key-exchange mechanisms, signature schemes and hash

functions are all correctly used. We also assume that

public keys of AnonRep servers and clients are publicly

available. We assume the network connections between

clients and servers are established over anonymous com-

munication channels (e.g., Tor [19], or traffic analysis re-

sistant networks like Dissent [42] and Vuvuzela [39]).

3.3 Security Goals

Anonymity. The main goal of AnonRep is to achieve

anonymity for its clients in face of a strong adversary,

i.e., malicious servers and clients as defined above. In

AnonRep, anonymity means not only the privacy of each

client’s data such as profile and IP location, but also the

unlinkability of clients’ historical activities. No Anon-

Rep group member should be able to link a specific

client’s sensitive information such as posted messages,

reputation scores, or feedback to the client’s identity.

AnonRep provides the above anonymity guarantee

among the set of honest group members, that is, members

who faithfully follow our protocol. AnonRep does not at-

tempt to provide anonymity to malicious group members

as they can may collude with others and reveal their iden-

tities and association to their messages themselves.

Other goals. Besides anonymity, AnonRep should en-

sure that the misbehaviors of malicious group mem-

bers are detectable. In addition, AnonRep should bal-

ance the trade-offs between practicality and security. The

more clients an anonymity group contains, the stronger

anonymity it can offer but at the cost of higher overhead.

Non-goals. Like many prior reputation systems, Anon-

Rep is not designed against the Sybil attack where at-

tackers generate a large number of fake clients to ma-

nipulate the reputation of honest clients. How to make

AnonRep resistant to the Sybil attack is out of the scope

of this paper. In addition, AnonRep is not resilient to

network-level Denial-of-Service (DoS) attacks where at-

tackers, for instance, could target the AnonRep servers.

The servers, however, are assumed to be highly available.

Nevertheless, some well-known defenses (e.g., server

provisioning and proof-of-work challenges) could be de-

ployed to mitigate DoS attacks.

Figure 3: A simple Mix-Net example with three mix-

servers. Each mix-server performs the verifiable shuffle

protocol. The input is a two-column list with four entries.

Each mix-server 1) encrypts and decrypts the elements in

the first and second columns with different keys, respec-

tively; 2) permutes the order of entries in the list; and 3)

sends the permuted list to the next mix-server.

4 Cryptographic Building Blocks

Before we elaborate on the design details of AnonRep

in §5, we first describe several cryptographic techniques

that AnonRep builds upon.

4.1 Mix-Net and Verifiable Shuffles

Mix-Net [12] is a decentralized cryptographic protocol

that creates hard-to-trace communications by using a

chain of servers (called mixes or mix-servers) which take

in a list of objects, shuffle them, and then output them

in random order. As shown in Figure 3, such a primitive

ensures unlinkability between the source and the destina-

tion of the list.

The shuffle phase in a Mix-Net protocol contains en-

cryption, decryption and permutation operations. For ex-

ample in Figure 3, each mix-server adds one ciphertext

layer on each element in the first column of the received

list, strips one ciphertext layer from each element in the

second column, then permutes entries in the list, and fi-

nally sends the resulting list to the next mix-server.

In order to ensure the correctness of the operations

performed in shuffle phases, many verifiable shuffle pro-

tocols have been proposed [25, 32, 33]. In a typical ver-

ifiable shuffle protocol, besides performing the shuffle

operartions, each mix-server generates a zero-knowledge

proof, which can be used by any observer (i.e., verifier)

to check whether the mix-server correctly performed its

shuffle.

Here, we detail a verifiable shuffle primitive

Shuffle(gi, �Li, zi, ei) that we use in the AnonRep

design (§5.3). Figure 3 presents an example where three

mix-servers successively run this primitive. In a typical

Shuffle primitive execution, each mix-server i performs

the following four operations.

1. Use the public key ei to encrypt each element in the

first column of list �Li; use the private key zi to strip

one ciphertext layer from each element in the second

column of the list �Li;

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 587

2. Permute entries in the resulting list, producing �Li+1;

3. Use the public key ei to encrypt the received generator

gi, i.e., gi+1 = gi
ei mod p; and

4. Generate a (zero-knowledge) proof fi attesting that

the above operations are correctly performed.

After running the primitive, the mix-server i sends �Li+1,

gi+1 with the proof fi to the next mix-server i+1.

4.2 Linkable Ring Signatures

Liu et al. proposed linkable ring signatures [26], a variant

of traditional ring signatures [37]. A linkable ring signa-

ture allows any of n group members to produce a ring sig-

nature on some message such that no one knows which

group member produced the signature but all signatures

from the same member can be linked together.

Each group member holds a public/private key pair

(PKi,SKi). Member i can compute a ring signature σ on a

message m, on input (m,SKi,PK1, ...,PKn). Anyone can

check the validity of a ring signature given (σ , m) and

the public key list L = {PK1, ...,PKn} of all group mem-

bers; however, nobody knows who signed the message

m. It is hard for anyone to create a valid ring signature

on any message on behalf of some group without know-

ing at least one secret key of a member of this group.

Another important property of linkable ring signature is

linkability: given any two signatures, a verifier can deter-

mine whether they were produced by the same member

in the group but still without learning the specific mem-

ber’s identity.

In particular, linkable ring signature consists of the fol-

lowing four steps [26].

Initialization step: Each member i (i = 1, ...,n) has a

public key Yi, and private key yi, where (Yi = gyi). Each

member knows the list of n members’ public keys L =
{Y1, ...,Yn}, and a public hash function H(·).

Signature generation step: Suppose a member i, called

a signer, wants to use linkable ring signature scheme to

sign a message m. She first needs to compute the linka-

bility tag t = H(L). Then, i runs the primitive Sign(m, L,

yi, t) to get m’s linkable ring signature σ(m). Finally, i

sends m and σ(m) to the verifier.

Verification step: The verifier receives the message m

and the signature σ(m). He knows the public key list L.

The verifier runs Verify(t, m, L, σ(m)) to check whether

σ(m) is produced by one of the members in the group

specified by L.

Linkability checking step: Given two signatures σ ′(m′)
and σ ′′(m′′), the verifier can check whether the two signa-

tures are from the same signer by running Check(σ ′(m′),
σ ′′(m′′)). Because each linkable ring signature is gener-

ated based on a linkability tag t = H(L) and the private

key of signer yi, if the two signatures are from the same

signer, the verifier would successfully confirm this fact.

Figure 4: AnonRep’s session, rounds and phases. An Anon-

Rep session contains a continuous series of message-and-

feedback rounds. Each round has three phases: 1) announce-

ment phase, 2) message posting phase, and 3) feedback phase.

All the online (or available) members, including servers and

clients, synchronously participate in these rounds.

5 AnonRep System Design

This section details AnonRep’s basic design (§5.1-§5.5),

followed by practical considerations (§5.6).

5.1 AnonRep Workflow

A typical AnonRep session, as shown in Figure 4, con-

sists of a series of message-and-feedback rounds. All

online AnonRep group members (including servers and

clients) synchronously participate in these rounds. In

practice, the duration of each round may be a few hours

or even one day, depending on the application scenario.

The input to each round is a two-column reputation

list. The first column records the long-term identity of

each registered client, and the second column is the

client’s reputation score encrypted by all servers (see

§5.2). A client’s long-term identity is her public key,

which corresponds to a private key maintained by the

client herself. The output of each round is a similar rep-

utation list with updated clients’ reputation scores. The

output list of one round serves as input to the next round,

as shown in Figure 4. Any newcomer client can partici-

pate in the AnonRep session after she completes the reg-

istration process (details in §5.2).

Each round consists of three phases. The duration of

each phase may be significantly different.

• Announcement phase: Servers run scheduling proto-

cols to assign a one-time pseudonym to each client.

Only the client knows and can use the one-time

pseudonym assigned to her (§5.3).

• Message posting phase: Clients anonymously post

messages using the assigned one-time pseudonyms,

and the upstream servers associate the corresponding

reputation scores with the messages, without learning

clients’ long-term identities (§5.4).

5

588 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 5: AnonRep’s announcement phase via schedul-

ing protocols. Each entry in the reputation list records

some client’s long-term identity and the ciphertext of

her reputation score E(Ri), which has been encrypted

by all the servers. On the other side, each entry in

the fresh pseudonym list records some client’s one-time

pseudonym for this round and the plaintext of her reputa-

tion score Ri.

• Feedback phase: Clients anonymously provide feed-

back to posted messages. At the end of this phase,

servers update each one-time pseudonym’s reputation

score based on the received feedback, and then update

the long-term scores in the reputation list by running

“reverse scheduling” protocols (§5.5).

With the system overview in place, we now describe

the details of the system design.

5.2 Client Registration

Any newcomer client who wants to use AnonRep needs

to register with the servers.

Specifically, each new client i first generates a key-pair

�Yi = gyi ,yi�, where g is a generator shared among servers

and clients. Here, Yi and yi are the client i’s long-term

public and private keys, respectively. Then, the client i

uploads the public key Yi to a randomly selected Anon-

Rep server S j, called the client i’s upstream server. Next,

S j creates an initial reputation score ri for the client i,

and then encrypts this initial reputation score by using its

public key Z j, and sends the ciphertext to the next server,

i.e., S j+1. All servers use their public keys to encrypt

this initial reputation in sequence. Once the client i’s

upstream server S j receives the client’s reputation score

E(ri) which has been encrypted by all servers, S j creates

a tuple �Yi,E(ri)�, and broadcasts this tuple to the servers.

Finally, each AnonRep server appends this tuple to a lo-

cal reputation list.

5.3 Announcement Phase

As shown in Figure 4, the announcement phase is the

first phase of a message-and-feedback round. In a typical

announcement phase, as shown in Figure 5, the servers

take the reputation list as input, and successively per-

form scheduling protocols to generate a fresh pseudonym

list, in order to enable each client to have a “temporary

identity” to post message and provide feedback in the

following phases. The entries in the fresh pseudonym

list are in a permuted order. Each entry corresponds to

one client, and contains a one-time pseudonym as well

as the plaintext reputation score for this client. Because

the announcement phase is executed by multiple inde-

pendent servers, no server can link the original reputa-

tion list to the generated fresh pseudonym list as long as

at least one server does not collude with others. More-

over, each client only knows her own entry in the fresh

pseudonym list, and cannot learn the associations be-

tween other clients and their pseudonyms.

At the beginning of an announcement phase, each

server j locally maintains an ephemeral secret e j (differ-

ent in each round), a public generator g, and its own pri-

vate key z j, which corresponds to a public key, Z j, used

to encrypt the new client’s reputation score during the

client registration. The servers perform the scheduling

protocol (shown in Algorithm 1), transforming the input

reputation list�L and the public generator g into the fresh

pseudonym list �pk and the final generator gm+1 = ge1...em .

After all the servers finish the scheduling protocol,

each client learns the fresh pseudonym list, i.e., �pk, and

the final generator, gm+1, from her upstream server. Then,

each client i is able to compute and find her own one-time

pseudonym, pkπ(i), in �pk by: pkπ(i) = gm+1
yi , where yi

is the client i’s private key (corresponding to her long-

term public key Yi, defined in §5.2), and π(i) denotes

the location of client i’s one-time pseudonym in the fresh

pseudonym list �pk.

Based on the working principle of verifiable shuffle

primitive (see §4.1 and Algorithm 1), client i’s long-term

pseudonym key Yi is encrypted by all the servers, i.e.,

Yi
e1...em = pkπ(i). Because Yi = gyi (see §5.2), we have:

pkπ(i) = Yi
e1...em = (gyi)e1...em = (ge1...em)yi = gm+1

yi

Only the client i learns pkπ(i), since only i knows her pri-

vate key yi. In the current round, each client i is assigned

a new public/private key-pair �pkπ(i),yi� based on the fi-

nal generator gm+1: pkπ(i) = gm+1
yi . Each client can use

this one-time pseudonym to post messages and provide

feedback later, without leaking the long-term identity.

The scheduling protocol uses verifiable shuffles [32].

Therefore, during the announcement, each server com-

putes and attaches a zero-knowledge proof of correctness

to each “intermediate list” sent to its successive server.

This step ensures that if a server misbehaves, it will be

detectable by other servers.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 589

Algorithm 1 Scheduling protocol.

All members (including clients and servers) know the

reputation list�L and the public generator g. Each server j

knows its private key z j and an ephemeral secret e j, and

each client i knows her public key Yi = gyi , where yi is i’s

private key.

1. The first server S1 takes the reputation list �L1 =�L as

input, and performs the verifiable shuffle primitive,

Shuffle(g = g1, �L1, z1, e1), to obtain outputs: g2, �L2

and a proof. Then, S1 sends �L2, g2 with the proof to

the next server S2.

2. Each server S j (j = 2, ...,m) successively runs the

same verifiable shuffle primitive as S1. Namely, S j

runs Shuffle(g j, �L j, z j, e j) to obtain g j+1, �L j+1 and

a proof about the correctness. Then, S j sends �L j+1,

g j+1 with the proof to the next server S j+1.

3. After the final server Sm performs the shuffle primi-

tive, Sm outputs the fresh pseudonym list, �pk = �Lm+1,

and the final generator, gm+1, which has been en-

crypted by all the servers. Note: Reputation scores in
�pk are plaintexts now, since all the ciphertext layers

have already been decrypted by all the servers. Then,

servers distribute all results (�L j,g j∀ j ∈m with proofs)

to all the other servers.

4. Each server k verifies each �Lj, g j, and proofs. If they

match, server k transmits a signature, sigk, of �pk to all

other servers.

5. Upon collecting a signature sig j from every other

server j, servers distribute �pk, gm+1, and sig j∀ j ∈ m

to their clients.

5.4 Message Posting Phase

After the announcement phase, group members enter the

message posting phase. A client’s message posting pro-

cess is in principle a public key signature verification

procedure. A given client signs her message using her

private key, and then submits it to her upstream server.

The server verifies the signature using a public key from

the fresh pseudonym list. If the verification succeeds, the

server posts the message and associates the correspond-

ing reputation score with the message. This works, be-

cause each client has been assigned a “temporary” public-

private pair, �pkπ(i),yi� based on gm+1 in the announce-

ment phase (§5.3).

AnonRep uses ElGamal signature scheme for message

verification. Suppose some client i wants to post a mes-

sage m. She first chooses a random k so that 1< k < p−1

and gcd(k, p − 1) = 1. Then, the client computes r =
gm+1

kmod(p− 1), where gm+1 is the final generator ob-

tained from the announcement phase. With r in hand, the

client computes s= (H(m)−yi ·r)k
−1mod(p−1), where

yi is i’s private key and H(m) is the message m’s hash

value. Finally, the client sends her upstream server the

signature σ = (r,s) and message m through anonymous

communication tool (e.g., Tor [19] or Vuvuzela [39]),

which can hide the client’s local information.

After receiving the message and signature pair (m,σ),

the upstream server verifies it by checking gm+1
H(m) ?

=
pkr

π(i)r
s. If the verification is correct, then the server

concludes that the message m was sent by some client

whose one-time pseudonym is pkπ(i). Thus, the server

associates m with the reputation score corresponding to

pkπ(i) in the fresh pseudonym list. Such message posting

design enables servers to attach the corresponding rep-

utation scores to clients’ one-time pseudonyms without

learning their long-term identities.

If a client posts multiple messages in the same

round, each message would be associated with the same

pseudonym. Thus, we suggest that clients post one mes-

sage in each round to avoid tracking at best-effort.

5.5 Feedback Phase

Finally, group members enter the feedback phase. Clients

can provide feedback (either positive or negative) to dif-

ferent messages to indicate the quality of the messages.

At the end of this phase, the servers update the reputa-

tion of each one-time pseudonym based on the feedback

on its messages. Then, the servers perform the announce-

ment phase in reverse to “transform” the updated fresh

pseudonym list back to the reputation list consisting of

clients’ long-term identities and their now updated and

again encrypted reputations. The feedback phase could

start at the same time as message posting phase or after

message posting phase, but should not end before mes-

sage posting phase.

Feedback collecting. In our design, during a feedback

phase, any client can submit her upstream servers her

feedback on messages posted by other clients. In vari-

ous applications, feedback may take a different form. For

example, in a message board application like Yelp, feed-

back consists of votes clients cast while in Twitter, feed-

back is in a form of following another person. In Anon-

Rep, we use +1 and -1 to denote positive and negative

feedback, respectively.

Suppose some client wants to provide some feedback

F (i.e., +1 or -1) to a message m, she creates a tuple in

the form of �F,m�, and generates a linkable ring signature

for this tuple σ(�F,m�), by following the signature gen-

eration step in §4.2. The client uses anonymous commu-

nication tool (the same as in the message posting phase)

to send the tuple and the signature to her upstream server.

Note: When the client generates the linkability tag, she

needs to use t = H(H ′(m)+ �pk) rather than t = H(�pk)
mentioned in §4.2, where H ′(·) is another public hash

7

590 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

function, H ′(m) is message m’s hash value, and �pk is the

fresh pseudonym list in the current round. The goal of

this design is to prevent clients from submitting dupli-

cate feedback on the same message. If a malicious client

signs and submits duplicate feedback on the same mes-

sage m, then this behavior would be detected by the Check

primitive (in §4.2), because both linkable ring signatures

are generated by the same t = H(H ′(m) + �pk) and pri-

vate key. In this case, the duplicate feedback would be

ignored by AnonRep. On the other hand, if a client signs

feedback on different messages, the generated signatures

would be different since they have different hash values.

If the upstream server’s verifications succeed (includ-

ing both verification and linkability checking steps in

§4.2), the server associates the received feedback with

the message m.

In summary, AnonRep derives two capabilities from

linkable ring signatures. First, no member learns who

provided feedback on the messages, except that it came

from a member of the AnonRep group. Thus, each

client’s activities remain unlinkable, even if she provides

feedback on multiple messages in the same round. Sec-

ond, if some dishonest client submits duplicate feedback

to the same message, such behavior is detected.

Reputation updating. At the end of the feedback phase,

the servers update the reputation of every one-time

pseudonym based on the feedback received on the mes-

sages associated with it. Because the collected feedback

is stored in plaintext, AnonRep can utilize diverse repu-

tation algorithms. For example, one-time pseudonym x’s

message receives 3 positive and 2 negative votes. If x’s

current reputation score is 4, then AnonRep will update

x’s reputation to 4 + (3-2) = 5.

After the reputation updates, servers successively per-

form the reverse scheduling protocol to “transfer” the

current fresh pseudonym list containing each client’s one-

time pseudonym and updated reputation score back to

the reputation list. Note: This new reputation list is sim-

ilar to the input reputation list for the current round, but

the encrypted reputation score of each long-term identity

in the new reputation list has been updated.

So far, we described one message-and-feedback round,

which has updated clients’ reputation scores based on

their activities while protecting their privacy. The new

reputation list would be used as the input for the next

round (see Figure 4).

5.6 Practical Considerations

This section presents several practical issues AnonRep

faces and possible solutions to address them.

5.6.1 Performance Optimization

The announcement phase and the feedback collecting

phase may cause long latencies when the client popula-

tion is large, e.g., ≥ 100,000. This is because the crypto-

graphic primitives used in these two phases – verifiable

shuffle and linkable ring signatures – become more com-

putationally expensive as the number of clients grows.

AnonRep addresses this issue by randomly assign-

ing clients into multiple sub-groups, and each sub-group

operates in parallel. For instance, with 100,000 clients

in total, the original design takes about 15 minutes on

each server to run the scheduling protocol. With 20 sub-

groups of 5,000 clients each, running scheduling pro-

tocol on each server takes only 50 seconds thanks to

the parallelization. There is a trade-off to make, how-

ever. Larger sub-groups provide better anonymity while

smaller sub-groups provide better performance.

5.6.2 Misbehavior Detection

Under our trust model, servers may misbehave. There

are two possible cases. First, honest servers may notice

that some announcement(s) have not been performed cor-

rectly by checking the zero-knowledge proofs of cor-

rectness generated in the announcement phase when per-

forming the scheduling protocol. It is straightforward for

honest servers to check the proofs to detect misbehaving

servers. If a proof produced by server j fails, this indi-

cates the server’s misbehavior.

Second, clients may find that their reputation scores

appear incorrect. There can be multiple causes: a) an up-

stream server incorrectly attaches the client’s reputation

score to its posted message; b) the reputation update is

performed incorrectly; or c) a reputation is incorrectly

initialized during the registration process. In order to de-

tect these types of misbehaviors, the victim client enters

into a blame phase where AnonRep randomly selects

a witness (e.g., an AnonRep server) to replay the cor-

responding operations and check all the signatures dur-

ing the replay. Specifically, for case a) and b), the wit-

ness checks the corresponding upstream server who at-

taches and updates the reputation score, and then identi-

fies whether the server is at fault. Even if the selected wit-

ness is dishonest and it does not perform the blame phase

properly, no sensitive information is leaked, and the vic-

tim client simply needs to re-launch the blame process

until she finds an honest witness. For case c), we discuss

the solution in §5.6.3.

5.6.3 Registration Verification

The reputation score might be incorrectly initialized dur-

ing the registration phase, in two ways: 1) a malicious

server initializes an incorrect reputation score for a hon-

est newcomer (mentioned in §5.6.2); and 2) a malicious

newcomer colludes with a malicious server to assign her-

self a very high reputation score.

AnonRep can address this problem by asking each

server to additionally run a verifiable encryption shuf-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 591

fle [32], which is similar to the version described in §4.1,

but only includes the encryption operation. This is be-

cause performing a verifiable encryption shuffle enables

a server to generate a proof on whether the encryption op-

eration is correctly performed and whether the encrypted

value has a desired value (i.e., a correct, initial reputation

in this case). In particular, for any newcomer client, each

server first adds one ciphertext layer on her initial reputa-

tion score, which is a public value in the system setting,

then produces a corresponding proof based on verifiable

encryption shuffle, and finally sends the above results (ci-

phertext and proof) to the next server. If some malicious

server does not use a correct initial reputation score or

does not correctly perform the encryption, then it would

be detected by some honest server(s) (at least one).

6 A Security-Enhanced AnonRep

In the design of AnonRep described so far, the reputa-

tion scores of AnonRep clients are operated as plaintexts

during each round. Such a design, however, may intro-

duce some potential information leakage in certain situa-

tions. Suppose in a certain AnonRep group, for instance,

a client has a significantly higher reputation score (e.g.,

1000) than all the other clients’ reputations (e.g., lower

than 10). Even though AnonRep enables clients to post

messages with different one-time pseudonyms in differ-

ent rounds, this client’s messages could still be tracked

across rounds, since her reputation score is too excep-

tional to hide herself in this group.1

The insight on avoiding the privacy leakage through

exceptional reputations is to encrypt reputation scores.

Thus, we propose a security-enhanced system design

called the reputation budget scheme. Below we present

the design of the security-enhanced AnonRep.

Client registration. When a client i registers, her up-

stream server Si generates this client’s initial reputation

score. Then, all the servers successively encrypt this

score using a homomorphic encryption scheme (e.g., El-

Gamal [20] or Paillier [34]). We use EHom(ri) to denote

the client i’s reputation score ri which has been homo-

morphically encrypted by all the servers. Once Si re-

ceives EHom(ri), it takes EHom(ri) as the input to perform

the basic client registration protocol as usual (§5.2), fi-

nally obtaining E(EHom(ri)).

Announcement phase. The servers perform the same an-

nouncement phase as in the basic design. Notice however

that, the reputations in the generated fresh pseudonym

list are no longer in plaintext. Rather, the reputation

1 We make no claim that such situations always happen in reality,

because: 1) most reputation systems have an upper bound for reputation

scores, and 2) the number of clients with “the highest reputation scores”

is normally not too low, as shown in the Stack Overflow dataset [1].

Nevertheless, we still manage to enhance AnonRep to accommodate

such situations.

scores are homomorphically encrypted by all the servers.

This means servers in security-enhanced AnonRep no

longer can see reputation scores in plaintext.

Message posting phase. When a client i wants to post a

message in some round, she may leverage the Camenisch

et al. proof system [11] or Peng et al. [36] to generate

a zero-knowledge reputation budget proof, PoK, claim-

ing that 1) her actual reputation score is not lower than

a budget b, and 2) she wants to use b as the reputation

score to post this message. For example, if a client has

a reputation score 5, she can use any score no higher

than 5 to post her message, e.g., b = 2. b is called the

reputation budget, and is plaintext. Note: we just apply

the above proof systems [11, 36] as black-box to con-

struct the needed reputation budget proofs. These two

proof systems correspond to differnet homomorphic en-

cryption schemes (i.e., ElGamal and Paillier) used during

the client registration, respectively.

After generating the reputation budget proof, the

client i sends her upstream server a tuple containing the

reputation budget and its proof.2

Upon receiving the tuple, the upstream server verifies

the proof contained in the tuple. The server learns two

things: 1) whether the client i is the owner of her claimed

one-time pseudonym; and 2) whether the client i’s reputa-

tion budget is no more than her actual reputation score. If

the verification passes, the server posts the client’s mes-

sage with the reputation budget b.

Because the reputation budget proof is zero-

knowledge proof, servers cannot know clients’ actual

reputation scores. As a result, for a client who has a

distinctive reputation score (say, 1000), she can use

a relatively low reputation budget (e.g., 5) to post

messages, hiding herself in the group. In practice, how

to choose an optimal reputation budget depends on the

security considerations of specific scenarios.

Feedback phase. Feedback collection is the same as the

basic design. Reputation updating is different. In partic-

ular, at the end of feedback phase, servers first succes-

sively encrypt the received feedback (e.g., votes) lever-

aging the same homomorphic scheme as used in the

registration phase. Servers then update the clients’ en-

crypted reputation scores in the fresh pseudonym list. Re-

call: both the reputation scores in the fresh pseudonym

lists and the reputation values from the feedback are en-

crypted by the same homomorphic encryption scheme.

Thus, servers can directly operate the ciphertexts to up-

date the reputation scores for clients due to the homo-

morphic property.

2For different zero-knowledge proof constructions, the tuple may be

different. For example, for an ElGamal-style construction (i.e., choos-

ing Camenisch et al. proof system [11]), the tuple is 〈Ri,Ci,b,PoK〉,

where Ci is the i’s actual reputation in ciphertext (i.e., EHom(ri)), and b

is the reputation budget, Ri is another ciphertext serving for the proof.

9

592 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

R
u
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Number of clients

Verification

Proof generation

Key encryption + shuffle

(a) Neff verifiable shuffle.

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000

R
u
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Number of clients

Linkable ring signature generation

Verification

(b) Linkable ring signature.

Figure 6: Microbenchmark (run time) evaluation of cryptographic operations.

This concludes our enhanced system design. Through-

out the process, no server learns the actual reputation

score of any client, only the reputation budget, thus pre-

serving clients’ information even if some clients’ reputa-

tion scores are significantly different from all others.

7 Implementation and Evaluation

In this section, we first describe our prototype implemen-

tation, and then evaluate the prototype.

7.1 Implementation

We have implemented a functional AnonRep prototype.

The prototype consists of 2700 lines of Go code as mea-

sured by CLOC [18]. Our implementation heavily de-

pends on an open-source Go library of advanced crypto

primitives including verifiable Neff shuffle [32], link-

able ring signature [26], and various zero-knowledge

proofs [11]. More specifically, our prototype implements

the complete basic AnonRep design, and all group mem-

bers in our prototype use UDP to communicate. We

support only a limited reputation budget proof construc-

tion. The source code of our prototype is available on

GitHub.3

7.2 Evaluation

Our experiments used NIST QR-512 quadratic residues,

although the implementation also works and has been

tested with other options such as NIST QR-1024 and QR-

2048. We deployed servers in Amazon EC2 as virtual

machines. In particular, we used the c4.8xlarge instances

each with 36 Intel Xeon E5-2666 v3 CPU cores, 60 GB

of RAM, and 10 Gbps of network bandwidth. We used

laptops as the AnonRep clients each equipped with Intel

Core i7 2.6 GHz and 16 GB of RAM.

7.2.1 Microbenchmark

A major performance bottleneck in AnonRep is the over-

head of the two cryptographic operations: verifiable shuf-

fle and linkable ring signature.

Figure 6a shows the computational overheads of Neff

verifiable shuffle’s three main building blocks: 1) key

3https://github.com/anonyreputation/anonCred

encryption and shuffle, 2) proof generation, and 3) ver-

ification. The key encryption and shuffle operation is

very efficient, since it only involves simple ElGamal en-

cryptions and element permutations. On the contrary, the

proof generation and verification are more expensive,

since they need to generate and verify a non-interactive

zero knowledge proof, respectively.

Figure 6b shows the run time of generating and veri-

fying linkable ring signatures with different number of

clients. Both operations are of very similar cost, and they

cost less than 100 seconds even with 10,000 clients. Fur-

thermore, we observe that the computational overheads

of both Neff verifiable shuffle and linkable ring signature

increase linearly with the number of participating clients.

7.2.2 System Overheads

To understand the practicality of AnonRep, we measured

server’s and client’s computational and bandwidth over-

heads during each phase.

Announcement phase. Figure 7a and Figure 7b show

the computational and bandwidth overheads in the an-

nouncement phase. Here, each server performs the

scheduling protocol, which contains 1) verifying the

proof from the former server, 2) encrypting keys and

striping one layer from the reputation ciphertext, and 3)

generating the proof. To speedup the system, the server

performs the proof generation (i.e., step 1 and 2) and the

verification (i.e., step 3) in parallel. As shown in Fig-

ure 7a, with 100,000 clients, each server needs about

1,000 seconds to execute the scheduling protocol. The

computational overhead at client is much less. This is be-

cause each client only needs to find its fresh pseudonym

whose complexity is O(logn).
Regarding the bandwidth overhead, each server needs

to send its successive server an “intermediate” list con-

taining all clients’ keys and encrypted reputation scores,

as well as a proof, as shown in Figure 7b. This results

in about 40 MB bandwidth overhead if there are 10,000

clients in the network. This is acceptable in practice

given the fact that servers are reliably connected. Fig-

ure 7b also shows that the client’s bandwidth overhead

is about 1.5 orders of magnitude smaller than server’s

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 593

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

R
u
n
 t
im

e
 (

s
e
c
o
n
d
)

Number of clients

Server

Clients

(a) Announcement phase: computational overhead

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000

T
ra

ff
ic

 (
K

B
)

Number of clients

Server

Clients

(b) Announcement phase: bandwidth overhead

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

T
ra

ff
ic

 (
K

B
)

Number of clients

Clients

Server

Server Reverse Annon

(c) Feedback phase: bandwidth overhead

Figure 7: Comparison of computational and bandwidth overheads between server and client in different phases.

bandwidth overhead. This effectively allows even mobile

devices to join our system as the clients.

Message posting phase. In the message posting phase,

the only crypto operations are the well-known ElGamal

signature generation (client side) and verification (server

side). In particular, we want to understand the client’s

throughput, i.e., how many messages a client can create

and sign per second. With different message lengths, we

find that a client can generate and sign ten 10MB mes-

sages per second, and a server can verify about one hun-

dred 1MB messages per second.

Feedback phase. The feedback phase consists of two

steps: feedback collection and reverse scheduling. We

mainly measured the overhead of feedback collection, be-

cause the overhead of reverse scheduling is the same as

the overhead in the announcement phase.

The overheads in the feedback phase are mainly

caused by the linkable ring signature operations whose

computational overheads have been shown in Figure 6b.

Figure 7c shows the bandwidth overhead of each client

and server in the feedback phase. We observe that the

bandwidth overhead of each feedback is reasonable. For

example, in a scenario with 10,000 clients, the bandwidth

overheads at the client and server are 500KB and 5MB,

respectively.

7.2.3 Practical Deployment

We now discuss and evaluate the AnonRep’s deployment

in practice, i.e., how to set the duration of each phase

and how many servers should be used for an anonymity

group. Answering these questions is not straightforward.

It depends on specific application scenarios.

In this section, we take Stack Overflow as a sample

scenario. We utilize the analytical results from a large

Stack Overflow dataset [1]. In particular, we first extract

the analytical results conducted by Bhat et al. [6], and

then discuss how to deploy AnonRep in Stack Overflow

based on these results. Finally, we evaluate this AnonRep

deployment.

From the measurement study [6], we extract the fol-

lowing features of Stack Overflow: F-1) more than 80%

questions receive the accepted answers within 16 hours,

and F-2) questions receiving more positive feedback can

 1

 10

 100

 1000

 100 1000 10000

0.115%

1.15%

D
e

la
y
 (

s
e

c
o

n
d

)

P
e

rc
e

n
ta

g
e

 o
f

a
 r

o
u

n
d

Number of clients

Server (3)

Server (4)

Server (5)

Figure 8: Delay of announcement phase.

get accepted answers more quickly (e.g., less than 10

hours).

According to the feature F-1, we suggest AnonRep set

the message posting phase to 16 hours, thus enabling the

majority of questions to receive accepted answers within

one round. Due to the feature F-2, we allow the feedback

phase to start at the same time as the message posting

phase in each round. This enables questions to receive

answers as soon as possible.

We deployed our prototype on multiple Amazon EC2

c4.8xlarge virtual machines, and measured the delay

caused by the announcement phase with different num-

bers of clients and servers. Figure 8 shows that even

though we use five servers for the announcement phase,

the delay caused by the announcement phase is within

1% of a 24-hour round.

8 Discussion and Limitations

This section discusses some of AnonRep’s limitations,

and potential solutions.

Intersection attacks via online status. Current Anon-

Rep cannot defend against long-term intersection at-

tacks [24] which target otherwise-honest clients who re-

peatedly come and go during an interaction period, leak-

ing information to an adversary who can correlate on-

line status with activities across multiple rounds. There

is no perfect defense against such intersection attacks

when online status changes over time [24]. AnonRep

may adopt a buddy system [43] whereby a client posts

messages and feedback only when all of a fixed set of

buddies are online. With certain caveats, this discipline

11

594 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

ensures that a client’s anonymity set includes at least his

honest buddies, at the availability cost of making the user

unable to transmit (safely) when any buddy is offline.

Weighted feedback. Our current design does not support

weighted feedback. Namely, all the feedback in our cur-

rent design has equal impact. Weighted feedback can dif-

ferentiate clients’ feedback. To enable this, the system

needs to know the reputation scores of clients who are

providing feedback. A possible solution is to introduce

another announcement phase between the message post-

ing phase and feedback phase, associating each feedback

with its corresponding weight (i.e., reputation score).

Malicious servers. Given the fact that AnonRep applies

verifiable shuffle, any malicious servers can be detected

and it is possible for an honest server to reveal a mali-

cious server. However, it does not yet have a mechanism

to prevent m−1 malicious servers from claiming that the

other honest server is malicious, since the clients do not

know the identity of the truly honest server. Although

this can hardly happen as the servers in AnonRep are as-

sumed to be managed by separate operators, it would ob-

viously be better to be able to defeat malicious servers.

9 Related Work

Building an anonymous reputation system is challeng-

ing [5, 28]. To our knowledge, AnonRep is the first prac-

tical system in this domain.

Electronic cash based schemes. Various anonymous

electronic cash (e-cash) protocols [3, 8, 10, 27] have

been proposed to maintain the unlinkability of individ-

ual users’ Peer-to-Peer transactions [13]. Some of them

have been applied to build anonymous reputation sys-

tems [2, 9, 29]. For example, Androulaki et al. proposed

RepCoin [2], which attempts to achieve a goal particu-

larly close to AnonRep. However, a general disadvan-

tage of e-cash based anonymous reputation systems, in-

cluding RepCoin, is that they are incapable of support-

ing negative feedback, which means reputation of ma-

licious users cannot be confiscated [45]. In addition, e-

cash based systems cannot offer fine-grained reputation

representations and updates, since all the reputation coins

have the same value.

Signature-based approaches. Applying reputation sig-

natures is another approach to preventing users from be-

ing tracked. Existing efforts [2, 14, 40] leverage blind

signatures to hide the origin and destination of each

reputation-based transaction. However, blind signature

based approaches heavily depend on the assumption that

the centralized authority behaves correctly. Another ef-

fort close to our work is to use the signature of reputa-

tion [5]. Specifically, each user may express trust in oth-

ers by voting for them, collect votes to build up her own

reputation, and attach a proof of her reputation to any

message she posts, while maintaining the unlinkability of

her activities. Similar to e-cash based approaches, how-

ever, with signature of reputation users cannot express

negative feedback, and this approach is also computation-

ally expensive.

Electronic voting based schemes. Electronic voting (e-

voting) schemes allow the casting of votes while protect-

ing user privacy [21,22]. However, e-voting schemes are

specifically designed for an election scenario where the

candidates have no need to track their historical activities

or publish any messages with updated reputation.

Others. Pavolv et al. [35] proposed a decentralized sys-

tem allowing for partial privacy preservation on the user

side and easy additive aggregation of users’ reputation

across the system. A malicious user, however, can easily

track other users’ activities by assigning specific reputa-

tion to victims. In addition, Clauß et al. [15] proposed

two privacy requirements for reputation systems, i.e., k-

anonymity and weak rating secrecy. These enable the

specification of practical reputation systems for provid-

ing strong privacy guarantees.

10 Conclusion

AnonRep is the first practical reputation system which

supports regular reputation utilities while maintaining

the unlinkability and anonymity of users’ historical ac-

tivities. AnonRep achieves this goal by an elegant inte-

gration of cryptographic techniques, e.g., verifiable shuf-

fles and linkable ring signatures, with a multi-provider

deployment architecture. The experimental evaluation

based on our functional prototype suggests that AnonRep

can be applied to existing online services to provide the

anonymous reputation utility.

Acknowledgements

We thank the anonymous reviewers and our shep-

herd, Ratul Mahajan, for their insightful comments. We

also thank Mahesh Balakrishnan, Henry Corrigan-Gibbs,

Michael J. Fischer, Krishna P. Gummadi, Jon Howell,

and Nickolai Zeldovich for their valuable feedback on

earlier drafts of this paper. This research was supported

in part by the NSF under grants CNS-1149936, CNS-

1409599, and CNS-1407454.

References

[1] Stackoverflow dataset. http://www.ics.uci.edu/

˜duboisc/stackoverflow/.

[2] Elli Androulaki, Seung Geol Choi, Steven M.

Bellovin, and Tal Malkin. Reputation systems for

anonymous networks. In 8th Privacy Enhancing

Technologies (PETS), July 2008.

[3] Man Ho Au, Willy Susilo, and Yi Mu. Practical

anonymous divisible e-cash from bounded accumu-

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 595

lators. In 12th Financial Cryptography and Data

Security (FC), January 2008.

[4] Lars Backstrom, Cynthia Dwork, and Jon M. Klein-

berg. Wherefore art thou r3579x?: anonymized

social networks, hidden patterns, and structural

steganography. In 16th International Conference

on World Wide Web (WWW), May 2007.

[5] John Bethencourt, Elaine Shi, and Dawn Song. Sig-

natures of reputation. In 14th Financial Cryptogra-

phy and Data Security (FC), January 2010.

[6] Vasudev Bhat, Adheesh Gokhale, Ravi Jadhav, Ja-

gat Sastry Pudipeddi, and Leman Akoglu. Min(e)d

your tags: Analysis of question response time in

StackOverflow. In IEEE/ACM International Con-

ference on Advances in Social Networks Analysis

and Mining (ASONAM), August 2014.

[7] Johannes Blömer, Jakob Juhnke, and Christina

Kolb. Anonymous and publicly linkable reputation

systems. In 19th Financial Cryptography and Data

Security (FC), January 2015.

[8] Jan Camenisch, Susan Hohenberger, and Anna

Lysyanskaya. Compact e-cash. In 24th Interna-

tional Conference on the theory and Applications

of Cryptographic Techniques (EUROCRYPT), May

2005.

[9] Jan Camenisch, Susan Hohenberger, and Anna

Lysyanskaya. Balancing accountability and privacy

using e-cash (extended abstract). In 5th Security

and Cryptography for Networks (SCN), September

2006.

[10] Jan Camenisch, Anna Lysyanskaya, and Mira

Meyerovich. Endorsed e-cash. In 28th IEEE Sym-

posium on Security and Privacy (S&P), May 2007.

[11] Jan Camenisch and Markus Stadler. Proof systems

for general statements about discrete logarithms.

Technical Report 260, Dept. of Computer Science,

ETH Zurich, March 1997.

[12] David Chaum. Untraceable electronic mail, return

addresses, and digital pseudonyms. Communica-

tions of the ACM, 24(2):84–88, 1981.

[13] Guihai Chen and Zhenhua Li. Peer-to-Peer net-

work: Structure, application and design. Beijing:

Tsinghua University Press, 2007.

[14] Delphine Christin, Christian Roßkopf, Matthias

Hollick, Leonardo A. Martucci, and Salil S. Kan-

here. IncogniSense: An anonymity-preserving rep-

utation framework for participatory sensing applica-

tions. Pervasive and Mobile Computing, 9(3):353–

371, 2013.

[15] Sebastian Clauß, Stefan Schiffner, and Florian Ker-

schbaum. k-anonymous reputation. In 8th ACM

Symposium on Information, Computer and Commu-

nications Security (AsiaCCS), May 2013.

[16] Henry Corrigan-Gibbs, David Isaac Wolinsky, and

Bryan Ford. Proactively accountable anonymous

messaging in Verdict. In 22nd USENIX Security

Symposium, August 2013.

[17] Ronald Cramer, Rosario Gennaro, and Berry

Schoenmakers. A secure and optimally efficient

multi-authority election scheme. In Conference

on Theory and applications of cryptographic tech-

niques (EUROCRYPT), May 1997.

[18] Al Danial. Counting Lines of Code. http://cloc.

sourceforge.net/.

[19] Roger Dingledine, Nick Mathewson, and Paul

Syverson. Tor: the second-generation onion router.

In 13th USENIX Security Symposium, August 2004.

[20] Taher ElGamal. A public key cryptosystem and

a signature scheme based on discrete logarithms.

In George Blakley and David Chaum, editors, Ad-

vances in Cryptology, Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 1985.

[21] Jens Groth. Evaluating security of voting schemes

in the universal composability framework. In

2nd Applied Cryptography and Network Security

(ACNS), June 2004.

[22] Jens Groth. Non-interactive zero-knowledge argu-

ments for voting. In 3rd Applied Cryptography and

Network Security (ACNS), June 2005.

[23] Shouling Ji, Weiqing Li, Neil Zhenqiang Gong,

Prateek Mittal, and Raheem A. Beyah. On your

social network de-anonymizablity: Quantification

and large scale evaluation with seed knowledge.

In 22nd Network and Distributed System Security

Symposium (NDSS), April 2015.

[24] Dogan Kedogan, Dakshi Agrawal, and Stefan Penz.

Limits of anonymity in open environments. In

Workshop on Information Hiding, October 2002.

[25] Albert Kwon, David Lazar, Srinivas Devadas, and

Bryan Ford. Riffle: An efficient communication

system with strong anonymity. In 16th Privacy En-

hancing Technologies (PETS), July 2016.

13

596 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[26] Joseph K Liu and Duncan S Wong. Linkable

ring signatures: Security models and new schemes.

In Computational Science and Its Applications

(ICCSA), May 2005.

[27] Ian Miers, Christina Garman, Matthew Green, and

Aviel D. Rubin. Zerocoin: Anonymous distributed

e-cash from Bitcoin. In 34th IEEE Symposium on

Security and Privacy (S&P), May 2013.

[28] Tehila Minkus and Keith W. Ross. I know what

you’re buying: Privacy breaches on eBay. In 14th

International Symposium on Privacy Enhancing

Technologies (PETS), July 2014.

[29] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maf-

fei, and Kim Pecina. Privacy preserving payments

in credit networks: Enabling trust with privacy in

online marketplaces. In 22th Annual Network and

Distributed System Security Symposium (NDSS),

February 2015.

[30] Arvind Narayanan, Hristo S. Paskov, Neil Zhen-

qiang Gong, John Bethencourt, Emil Stefanov, Eui

Chul Richard Shin, and Dawn Song. On the fea-

sibility on Internet-scale author identification. In

IEEE Symposium on Security and Privacy (S&P),

May 2012.

[31] Arvind Narayanan and Vitaly Shmatikov. Robust

de-anonymization of large sparse datasets. In 29th

IEEE Symposium on Security and Privacy (S&P),

May 2008.

[32] C. Andrew Neff. A verifiable secret shuffle and its

application to e-voting. In 8th ACM Conference

on Computer and Communications Security (CCS),

November 2001.

[33] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru

Kurosawa. Verifiable shuffles: a formal model and

a Paillier-based three-round construction with prov-

able security. Int. J. Inf. Sec., 5(4):241–255, 2006.

[34] Pascal Paillier. Public-key cryptosystems based on

composite degree residuosity classes. In Advances

in Cryptology (EUROCRYPT), May 1999.

[35] Elan Pavlov, Jeffrey S. Rosenschein, and Zvi Topol.

Supporting privacy in decentralized additive repu-

tation systems. In 2nd Trust Management (iTrust),

March 2004.

[36] Kun Peng, Colin Boyd, Ed Dawson, and By-

oungcheon Lee. Ciphertext comparison, a new so-

lution to millionaire problem. In 7th Information

and Communications Security (ICICS), December

2005.

[37] Ronald L. Rivest, Adi Shamir, and Yael Tauman.

How to leak a secret. In 7th International Confer-

ence on the Theory and Application of Cryptology

and Information Security (ASIACRYPT), December

2001.

[38] Stefan Schiffner, Andreas Pashalidis, and Elmar

Tischhauser. On the limits of privacy in reputation

systems. In Workshop on Privacy in the Electronic

Society (WPES), October 2011.

[39] Jelle van den Hooff, David Lazar, Matei Zaharia,

and Nickolai Zeldovich. Scalable private messag-

ing resistant to traffic analysis. In 25th ACM Sympo-

sium on Operating Systems Principles (SOSP), Oc-

tober 2015.

[40] Xinlei Oscar Wang, Wei Cheng, Prasant Mohapa-

tra, and Tarek F. Abdelzaher. ARTSense: Anony-

mous reputation and trust in participatory sensing.

In 32nd IEEE International Conference on Com-

puter Communications (INFOCOM), April 2013.

[41] David Isaac Wolinsky, Henry Corrigan-Gibbs,

Bryan Ford, and Aaron Johnson. Scalable anony-

mous group communication in the anytrust model.

In European Workshop on System Security (Eu-

roSec), April 2012.

[42] David Isaac Wolinsky, Henry Corrigan-Gibbs,

Aaron Johnson, and Bryan Ford. Dissent in num-

bers: Making strong anonymity scale. In 10th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), October 2012.

[43] David Isaac Wolinsky, Ewa Syta, and Bryan Ford.

Hang with your buddies to resist intersection at-

tacks. In 20th Conference on Computer and Com-

munications Security (CCS), November 2013.

[44] Andrew Chi-Chih Yao. Protocols for secure compu-

tations (Extended abstract). In 23rd Annual Sympo-

sium on Foundations of Computer Science (FOCS),

November 1982.

[45] Ennan Zhai, Ruichuan Chen, Zhuhua Cai, Long

Zhang, Huiping Sun, Eng Keong Lua, Sihan Qing,

Liyong Tang, and Zhong Chen. Sorcery: Could

we make P2P content sharing systems robust to

deceivers? In 9th IEEE Peer-to-Peer Computing

(P2P), September 2009.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 597

Mind the Gap: Towards a Backpressure-Based Transport Protocol
for the Tor Network

Florian Tschorsch Björn Scheuermann
Humboldt University of Berlin

Abstract
Tor has become the prime example for anonymous com-
munication systems. With increasing popularity, though,
Tor is also faced with increasing load. In this paper,
we tackle one of the fundamental problems in today’s
anonymity networks: network congestion. We show that
the current Tor design is not able to adjust the load ap-
propriately, and we argue that finding good solutions to
this problem is hard for anonymity overlays in general.
This is due to the long end-to-end delay in such networks,
combined with limitations on the allowable feedback due
to anonymity requirements. We introduce a design for
a tailored transport protocol. It combines latency-based
congestion control per overlay hop with a backpressure-
based flow control mechanism for inter-hop signalling.
The resulting overlay is able to react locally and thus
rapidly to varying network conditions. It allocates avail-
able resources more evenly than the current Tor design;
this is beneficial in terms of both fairness and anonymity.
We show that it yields superior performance and im-
proved fairness—between circuits, and also between the
anonymity overlay and concurrent applications.

1 Introduction
Tor [15] is currently the first choice to preserve online
privacy. Implementing what has become the standard ar-
chitecture for low-latency anonymity services, it routes
application-layer data, packaged into equally-sized cells,
along a cryptographically secured virtual circuit through
an overlay network. Clients build a circuit by selecting
three relays (an entry, a middle, and an exit) and estab-
lishing cryptographic key material with each of them. A
circuit can carry data from one or more application-layer
streams. In every overlay hop, one “skin” of encryption
is added (or removed, depending on the direction of com-
munication). Intermediate relays are neither able to read
the cell contents nor to link streams to a specific source
and destination at the same time. This is the foundation
for achieving anonymity.

Unfortunately, the current overlay design faces major
performance issues. Previous work on improving this
more often than not focused on isolated symptoms: for
instance, cells that dwell for a too long time in socket
buffers [22, 37], a too rigid end-to-end sliding window
mechanism [6, 46], security threats due to unbounded
buffer growth [25], or unfairness effects caused by dif-
ferent traffic patterns [5, 24, 42]. We note that all of the
named problems boil down to unsuitably chosen or un-
favorably parameterized algorithms for congestion con-
trol, scheduling and buffer management. While this
has been pointed out before [37, 45], a consistent and
superior overall protocol design—beyond treating the
symptoms—is still missing.

Designing such a protocol raises interesting chal-
lenges, because the requirements in anonymity overlays
deviate in several important points from those of con-
gestion control in the general Internet. First, anonymity
demands that relays used along one circuit should be lo-
cated in different legislations and autonomous systems.
This implies typically long end-to-end latencies. Con-
sequently, end-to-end feedback loops (typically stretch-
ing over three overlay hops) are necessarily slow. At the
same time, though, relays in an anonymity network are
aware of individual circuits, because they perform per-
circuit cryptography. Therefore, stateful processing per
circuit at relays is easily possible, also for the purpose
of congestion/flow control. This motivates a protocol de-
sign that leverages active participation of the relays.

Second, anonymity demands that control feedback
must not reveal user identities, neither directly nor in-
directly. Therefore, feedback—especially end-to-end-
feedback—must be limited and well considered. This
is seen as a reason why reliability should not be imple-
mented end-to-end, but instead hop-wise; this matches
Tor’s current approach.

Third, relay operators donate resources, in particular
bandwidth, to the anonymity overlay. The anonymity
traffic typically competes with other traffic on the dona-

598 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

tor’s network. To incentivize relay operation, anonymity
traffic should therefore not be overly aggressive.

Other desirable properties include the standard set
of requirements in networks with multiple independent
users, including, in particular, good resource utilization,
fairness between users/circuits and reasonable latencies.

Tor currently multiplexes all circuits between a con-
secutive pair of relays into one joint TCP connection.
Circuits carry application-layer data, not transport-layer
or network-layer packets; that is, the anonymized TCP
connection to the destination server is established by the
Tor exit relay, where the payload byte stream is handed
over from the circuit to this connection and vice versa.
In each relay, cells arriving over one of the inter-relay
TCP connections are demultiplexed, kept in per-circuit
queues, and then multiplexed again, according to the next
outgoing connection for the respective circuits. This de-
sign is complemented with an end-to-end sliding window
mechanism with a fixed, constant window size. Due to
its fixed size, this window, quite obviously, lacks adaptiv-
ity. As a result, excessive numbers of cells often pile up
in the per-circuit queues and/or in the socket buffers of
a relay—that is, in the “gap” between the incoming and
outgoing TCP connections. The large number of inter-
relay standard TCP connections furthermore results in
aggressive aggregate traffic, and thus causes unfairness
towards other applications in the same network. Last but
not least, multiplexing varying numbers of circuits into
one joint TCP connection is also the root of substantial
inter-circuit unfairness within Tor [44, 45].

In this paper we propose a new design, which we call
BackTap: Backpressure-based Transport Protocol. With
BackTap, we replace Tor’s end-to-end sliding window
by a hop-by-hop backpressure algorithm between relays.
Through per-hop flow control on circuit granularity, we
allow the upstream node to control its sending behav-
ior according to the variations of the queue size in the
downstream node. Semantically, the employed feedback
implies “I forwarded a cell”. The circuit queue in the
downstream relay is therefore, in essence, perceived as
nothing but one of the buffers along the (underlay) net-
work path between the outgoing side of the local relay
and the outgoing side of the next relay. This includes
circuit queues and socket buffers into the per-hop con-
gestion control feedback loop, yielding responsiveness
and adaptivity. At the same time, it couples the feedback
loops of consecutive hops along a circuit, thereby closing
the above-mentioned gap. The result is backpressure that
propagates along the circuit towards the source if a bot-
tleneck is encountered, because each local control loop
will strive to keep its “own” queue short, while its out-
flow is governed by the next control loop downstream.

We stick to Tor’s paradigm of hop-by-hop reliability,
and also to Tor’s design decision to tunnel application

layer data. However, we implement it in a slightly differ-
ent way: relays in our architecture have a choice whether
to accept or to drop a cell on a per-circuit basis. To
this end, congestion control and reliability decisions are
shifted to the overlay layer, instead of using TCP be-
tween relays. This architecture also avoids reliability-
related security flaws as they have been found in Tor [25].

We also do not use a fixed window size, neither end-to-
end nor per hop. Instead, we adjust the per-hop window
size using an appropriately adapted delay-based conges-
tion control algorithm. In previous applications of delay-
based congestion control, first and foremost in TCP Ve-
gas [11], its properties have often been seen as a weak-
ness [1,12]: it is less aggressive than its loss-based coun-
terparts and therefore tends to be disadvantaged in com-
petitive situations. In our approach, this weakness be-
comes a strength, because the aggressiveness of aggre-
gate Tor traffic can be a significant problem otherwise.

BackTap, including all congestion control and reli-
ability mechanisms, can be implemented on the over-
lay nodes’ application layer, based on UDP transport.
Consequently, lower-layer changes are not required. A
simulation-based evaluation confirms the benefits of the
proposed architecture and demonstrates a huge relief of
the network regarding congestion.

Our key contributions are (1) identifying the “feed-
back gap” as the primary cause of Tor’s performance
problems, (2) a novel approach to flow control for envi-
ronments where data is forwarded over multiple overlay
hops, (3) a hop-by-hop backpressure design that avoids
network congestion with quick, local adjustments and
is therefore well suited to long-delay overlay paths, and
(4) an in-depth evaluation including a simulation frame-
work for Tor with a specific focus on network aspects.

The remainder of this paper is structured as follows.
First, we review related work in Section 2. In Section 3,
we discuss the problems and the design space and de-
velop the transport protocol. In Section 4, we evalu-
ate the proposed protocol, before we conclude this paper
with a summary in Section 5.

2 Related Work
Since Tor’s introduction more than a decade ago [15], it
has received significant attention in the research commu-
nity (and beyond). For obvious reasons, this attention has
focused on security and privacy aspects. In recent years,
though, performance aspects of Internet anonymity in
general and the awareness for network congestion issues
in particular have become part of the research agenda.

Performance enhancements have been proposed, for
instance, by considering an alternative circuit selection
algorithm [3, 7, 47] or through an adaptive prioritization
of circuits [5, 24, 42]. These research directions are or-
thogonal to our approach and remain applicable.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 599

The authors of [22, 37] find that cells reside in socket
buffers for a long time. In [22], it is suggested to fix
this by actively querying all sockets before blindly writ-
ing to a socket. Thereby the majority of queued cells is
kept in the application layer, so that scheduling on circuit
granularity becomes possible with a smaller backlog be-
tween data leaving the application and leaving the host.
This follows the general intentions of [44,45]. However,
it does not solve the fundamental problem of excessive
standing queues due to circuit windows that often far
exceed the end-to-end bandwidth-delay product—it only
moves these queues to a different place.

Transport-related modifications for Tor have been con-
sidered before [6, 8, 17, 27, 33, 37, 46]. A comparative
summary of most approaches is provided in [31]. Even
though each proposal improves individual aspects, most
of them [8, 17, 27, 33, 37] still use the same sliding win-
dow mechanism and hence inherit the exact same issues.

As observed by [37], a missing TCP segment carry-
ing data from one circuit will also temporarily stall any
other circuit on the same connection until the missing
segment has been recovered. This results in head-of-line
blocking upon TCP segment losses. The manifest rem-
edy is to use separate (loss-based) TCP connections per
circuit [8, 37]. However, as we point out in [45], such
a modification would largely increase the (already very
high) aggressiveness of the traffic, due to the higher num-
ber of parallel loss-based TCP connections. It also does
not overcome the fundamental problems with the end-to-
end window mechanism and the corresponding feedback
gap. In this work, we tackle all these issues.

Only [46] and [6] get rid of Tor’s sliding window. The
author of [46] builds upon UDP to tunnel an end-to-
end TCP connection through the entire circuit. However,
while this may be considered a very clean design, it soon
comes to its limits because of the long round trip times
of a full circuit, which impairs the responsiveness of both
reliability and congestion control. Using complex proto-
cols like TCP end-to-end also come at a significant risk
of leaking identifying attributes and providing a finger-
print (e. g., via the source port or specific combinations
of TCP options), so that end-to-end designs are generally
not favorable [8, 45].

The authors of [6] substitute the end-to-end window
by a hop-by-hop window, with a scheme adapted from
congestion control in ATM networks. However, head-
of-line blockings and the choice of window parameters
remain open issues. Virtually all transport-related ap-
proaches continue to use standard TCP with its built-in
congestion control. We instead develop a tailored trans-
port design for anonymity overlays, which eliminates the
need for an end-to-end window.

Looking beyond the area of anonymity overlays, the
design of a Tor relay resembles a Split TCP setting as

it also occurs in performance-enhancing proxies (PEPs):
data is forwarded from an incoming to an outgoing TCP
connection, linked by an application-layer queue. A
survey on PEPs, including case studies, can be found
in [10]. Split TCP was originally developed in the con-
text of wireless communication and satellites, but nowa-
days also finds use in content distribution networks [35].
It basically subdivides an end-to-end TCP connection
into a sequence of typically two concatenated connec-
tions, where a middlebox (e. g., a wireless access point
or a router) acts as PEP.

By terminating the connection at the middlebox and
acknowledging data before the actual destination re-
ceived it, Split TCP, in fact, violates TCP’s end-to-end
semantics. If desired, this can be avoided by acknowl-
edging data upstream only after it has been acknowl-
edged by the downstream node [48]. In the context
of anonymity networks, such a strict adherence to TCP
semantics is generally considered unnecessary, though
(just like for most practically deployed PEPs). Since
Split TCP aims for maximizing the utilization of link ca-
pacities, PEPs buffer data and hence congestion might
become a problem. As it has been noted before [30],
using Split TCP in an overlay network poses particular
challenges in this and many other regards. Therefore,
even though we focus on the case of anonymity net-
works, some of our results may also be applied in the
area of PEPs and for other overlay designs.

3 The BackTap Design
BackTap performs reliability, in-order delivery and flow
control on circuit granularity on the application layer.
It can be encapsulated in UDP transport, so that there
is no need for modifications to the operating system;
of course, a transport-layer implementation of the same
concepts in the kernel is, in principle, likewise conceiv-
able, but not pursued here. In fact, the approach to tun-
nel tailored transport protocols has become more and
more widespread in recent years, the likely best-known
examples are µTP [41] as used in BitTorrent [41] and
QUIC [18] designed for HTTP/2. UDP transport can be
combined with DTLS [38] or IPsec to provide message
integrity and confidentiality, just like Tor currently uses
TLS to secure its TCP-based overlay links.

In this section, we motivate and present the building
blocks of our transport approach in detail. In order to
emphasize the changes that we propose and to point out
the major design challenges in anonymity networks, we
use the current Tor design as a reference architecture
throughout the discussion.

3.1 Tor’s Feedback Gap
Tor implements another instance of data forwarding and
transport functionality on the application layer, i. e., on

3

600 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 1: Overview of the layered Tor architecture: re-
lays build a TCP-based overlay, multiplexing circuits,
while using an end-to-end sliding window.

top of the existing Internet protocol stack. For this rea-
son, overlay mechanisms will interact with the behav-
ior of underlay protocols and the properties of underlay
network paths. This is hardly taken into account in the
current design of anonymity overlays in general and of
Tor in particular. There are multiple cases where differ-
ent mechanisms on both layers have overlapping aims.
Figure 1 illustrates the various layers of the Tor architec-
ture. The prime example is Tor’s end-to-end (E2E) slid-
ing window mechanism between a client’s Tor software
and an exit relay: it will obviously interact with TCP con-
gestion and flow control, which is used between adjacent
overlay nodes. This is also at the heart of the feedback
gap in Tor’s current design, so that the interplay of these
two mechanisms is worth a closer look. This will moti-
vate the key design decisions behind our approach.

Recall, Tor relays forward cells according to the cir-
cuit switching principle, but the individual relay does not
know about the full path of the circuit. Leaving cryp-
tography aside, relays receive cells over TCP, enqueue
them to the respective outgoing circuit queue and then
forward them to the downstream node, again via TCP.
Between any two adjacent relays, circuits share the same
TCP connection. The number of cells in flight for any
given circuit is limited by an end-to-end sliding window
with a fixed size of 1000 cells (= 512 kB of data).

A node on the receiving side of a Tor circuit signals to
send more data by issuing a circuit-level cell for
every 100 delivered cells. Receiving such a in-
crements the circuit’s transmission window by 100. An
additional, analogous mechanism exists on the stream
level: a stream is Tor’s notion for the data carried through
a circuit, belonging to one anonymized TCP session.
Only the end points of a circuit can associate cells with
a stream. Intermediate relays, i. e., entry and middle,

only differentiate circuits. The stream-level window’s
fixed size is 500 cells, and stream-level s worth
50 cells each are used. Due to the end-to-end sliding
window there will be no more than 500 cells in flight
on a stream, which is capped by 1000 cells in sum on
the circuit level. 1000 cells, though, can be significantly
more than the bandwidth-delay product of a circuit, so
that long queues build up often: excessive queuing is one
of the major causes for huge delays, which Tor painfully
experiences [13, 27]. In addition, long queues give im-
plicit preference to bulk flows which constantly keep the
queue filled, when compared to more interactive flows,
like for instance web traffic.

Even if the end-to-end window size were not fixed (a
possible modification which, of course, has been taken
into consideration before [6]), the end-to-end delay of
a circuit is too high to dynamically adjust it with rea-
sonable responsiveness. Given the specific situation in
anonymity overlays, it is fortunately also not necessary to
find an end-to-end solution: because intermediate nodes
are aware of individual circuits anyway, relay-supported
hop-by-hop feedback with local readjustments based on
perceived local congestion is a reasonable way out.

What happens, now, if the flow control and congestion
control mechanisms of the TCP connections between re-
lays come into play? For the inflight traffic permitted by
the end-to-end sliding window, TCP will determine the
local data flow. Congestion control will adapt to the un-
derlay network path between adjacent relays. Flow con-
trol will specifically depend on the receiving relay’s pol-
icy for reading from sockets.

This is where the feedback gap appears, which we il-
lustrate in Figure 2a: Tor relays read from incoming TCP
connections regardless of the current fill level of corre-
sponding circuit queues in the relay. Therefore, limited
outflow of a circuit does not propagate back to the in-
coming side of the relay. For this reason, the end-to-end
sliding window with its non-adaptive constant size and
its long feedback loop is the only mechanism that limits
the number of cells in flight along the circuit, and it is the
only mechanism that will eventually throttle the source.

One may then, of course, ask whether it would suf-
fice to stop reading from a circuit’s incoming socket if a
queue for that circuit builds up locally. This, however, is
infeasible because, as discussed before, circuits are mul-
tiplexed over joint TCP connections. A relay therefore
cannot selectively read cells from one specific circuit;
stopping to read from one socket could result in massive
head-of-line blocking for other circuits.

Using separate standard, loss-based TCP connections
per circuit is also not a good design avenue: this would
result in excessive numbers of parallel connections, and
therefore in very aggressive traffic and high packet loss.
In accordance with TCP models such as [34], we ar-

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 601

gue that more (loss-based) TCP connections imply a
smaller rate per connection and thus inevitably a higher
packet loss probability per connection [45]. In addition,
Bufferbloat phenomena [16] cause long reaction times
due to excessively large buffers. Thus, approaches such
as [8, 37] still suffer from the feedback gap in the same
way as Tor does.

These observations motivate our design based on
delay-based per-circuit congestion control loops, which
can be expected to be much less aggressive than a corre-
sponding loss-based design.

3.2 Realizing Backpressure
A naive realization of the ideas sketched so far—with
separate transport-layer connections per circuit, each
with delay-based congestion control—would now likely
proceed as follows: if an application-layer queue builds
up for one circuit, the inflow might be throttled for that
circuit by ceasing to read from its incoming connection.
The incoming connection’s input buffer would conse-
quently fill up, so that the flow control window is not re-
opened; a zero window would be triggered. This would,
in turn, throttle the outflow of the upstream node, so that
the outgoing socket buffer fills up. The outgoing socket
in the upstream node would then no longer be writable,
an application-layer queue would build up there, and so
on. Thereby, congestion feedback would propagate indi-
rectly through backpressure.

However, this implies that upstream of the bottleneck,
in each relay there must be enough queued data to fill
up a) the outgoing socket buffer, b) the application-layer
circuit buffer, and c) the incoming socket buffer. Even
keeping technical difficulties related to sizing and man-
agement of socket buffers in various operating systems
aside, incoming and outgoing socket buffers must at least
be sufficiently large to cover the bandwidth-delay prod-
uct of the respective link, in order not to waste perfor-
mance. Together with the additional application-layer
buffer, the total amount of queued data per overlay hop
and circuit would once again have to be very significant,
and feedback propagation would once again be slow.

To mitigate these effects, we follow a somewhat dif-
ferent, more consequent path: our solution also per-
forms congestion control per circuit, and it likewise
does so without multiplexing circuits into joint connec-
tions. However, we virtually extend the network into and
through the application layer, by emitting flow control
feedback only when a cell has been forwarded out of the
local relay. The application-layer circuit queues in our
design therefore take the role of a fused version of the re-
spective ingress and egress socket buffers. Such a queue
is illustrated in Figure 2b, and contrasted with the design
that is currently followed in Tor, shown in Figure 2a. The
feedback gap in the latter is clearly visible, whereas the

(a) Tor’s queuing mechanism with cell multiplexing and a feedback gap
between ingress and egress, i. e., TCP sockets.

(b) Fused circuit queue triggers flow control feedback () not until a
cell has been forwarded to the successor to achieve backpressure.

Figure 2: Comparison of feedback loops.

local feedback loops in our protocol are directly coupled
so that backpressure can build up and propagate immedi-
ately upon a deterioration of the available bandwidth.

In BackTap, arriving cells from the predecessor are
read from the UDP socket and processed as usual; that
is, in particular the cryptographic operations demanded
by the anonymity overlay are performed. The cell is sub-
sequently enqueued in the respective circuit queue. The
variable tailSeq points to the last cell that has been re-
ceived in order. tailSeq is updated when new cells are re-
ceived. Cells received out of order may also be queued,
with respective gaps in the buffer.

On the other end of the queue, headSeq points to the
frontmost unacknowledged cell. As soon as we learn that
the successor has successfully received the cell, headSeq
is incremented and the respective cell may be discarded
from the buffer.

The third pointer, nextTxSeq, is incremented when a
cell is forwarded to the downstream relay. The key point
that distinguishes our design is: this forwarding at the
same time also triggers the transmission of correspond-
ing flow control feedback upstream. In the practical im-
plementation this event triggers the transmission of a
message. Similar to an , an carries a sequence
number that refers to a cell. The upstream node can make
use of s to determine a sending window (swnd) based
on the provided feedback. It is allowed to keep at most
swnd cells in the transmission pipe.

The resulting design is a hybrid between flow con-
trol and congestion control: the swnd adjustment strat-
egy follows a delay-based approach, based on the latency

5

602 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

experienced before receiving an . It will therefore ad-
just both to the outflow in the downstream node (because
only then the is issued) and to the conditions of the
network path between consecutive relays (because this
path, too, will influence the delays). In essence, it there-
fore turns the application-layer circuit buffer into yet an-
other buffer along the network path, without a special
role from the perspective of the load feedback.

Moreover, tying transmissions to the forwarding
of the corresponding cell yields tight feedback coupling
between consecutive overlay hops: if the swnd adjust-
ment control loop of one overlay hop in a circuit re-
sults in a throttled outflow of cells, the arrival de-
lay over the preceding overlay hop will increase accord-
ingly within a one-way local-hop delay. swnd can there-
fore be adjusted quickly. This way, hop-by-hop feed-
back emerges, and backpressure propagates back to the
source. Because delay-based congestion control strives
to maintain very short queues, the emerging queues will
be small, while available capacity can be fully utilized.

3.3 Reliable Transfer
Tor circuits—or, more precisely, Tor streams—carry
application-layer data that expects TCP-like reliable
bytestream service. The anonymity overlay design relies
on each intermediate hop to ensure reliable in-order de-
livery. That is, there is no end-to-end ARQ (i. e., reliabil-
ity/acknowledgment/retransmission) scheme. Reliability
on the individual hop in Tor uses the per-hop TCP con-
nections’ reliability mechanism; relays are not allowed to
drop or re-order cells residing in their per-circuit queues.

We stick to this model also in our proposed transport
protocol, i. e., we implement reliability on a per-hop ba-
sis. To this end, we use cell sequence numbers to deter-
mine the order of cells and to detect losses. The mech-
anisms generally adhere closely to those employed by
TCP. The sender infers, either by a timeout or by dupli-
cate acknowledgments, that cells have likely been lost
and retransmits them. The key point where we deviate
from TCP’s mechanism is where the circuit queue in the
downstream node and the coupling between consecutive
hop feedback loops comes into play.

The most consequent version of the philosophy of tak-
ing the application-layer circuit queue as “yet another
network buffer” would use the packets as acknowl-
edgments. This might actually be expected to work rea-
sonably well under many circumstances. However, we
argue that it entails a pitfall: after all, when a cell has
arrived at the next relay, it is already under the control of
the downstream application-layer instance, but reliabil-
ity feedback is not yet generated. This creates a risk for
spurious timeouts, and it might take unnecessarily long
to recognize and fix losses.

(a) Extended Cell Header (*new header field).

(b) New Feedback Cell.

Figure 3: Cell structure.

For this reason, as an optimization, we separate reli-
ability on the one hand and congestion/flow control on
the other hand in terms of feedback. We provide reliabil-
ity feedback as early as possible, namely upon arrival of
a cell, by sending a corresponding . The calculation
of the retransmission timeout (RTO) and the fast retrans-
mit mechanism follow RFCs 6298 [36] and 5681 [4], re-
spectively. Both s and s are cumulative. Hand-
shakes upon circuit establishment and teardown can like-
wise closely follow their respective counterparts in TCP,
and can easily be integrated with Tor’s handshakes.

Implementing reliability on the application layer
makes it possible to drop arriving cells by a deliberate
decision (only before the respective has been sent, of
course). This opens up new ways out of a difficult prob-
lem: the fact that Tor relays in the current overlay design
can be attacked by overloading them with cells which
they are not allowed to drop [25]. Dropping excessive
cells for a given circuit is a much cleaner and simpler so-
lution than the heuristics that are currently used to relieve
Tor from this threatening attack vector.

In an extended cell structure, we introduce new header
fields: a sequence number (4 Byte) and a field for flags
(1 Byte). They fulfill comparable roles to the respective
fields in the TCP header. However, since cells have a
fixed size for anonymity reasons, sequence numbers re-
fer to cells rater than bytes. The extended cell header is
illustrated in Figure 3a.

For s and s, we introduce a separate message
format, much smaller than a Tor cell. Smaller feedback
messages can be considered safe and per se do not affect
anonymity, because they occur in TCP anyway. More-
over, regular cells and feedback messages—not neces-
sarily for the same circuits—can be encapsulated in one
UDP packet traveling between two relays. In a typical
MTU up to two regular cells and a number of /
messages fit in. The freedom to combine s/ s with
cells also from other circuits (or, of course, to send them
separately if no cells travel in the opposite direction) cor-
responds to a generalized variant of piggybacking.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 603

Since the Tor protocol already exchanges hop-by-hop
control messages and supports variable cell lengths and
the negotiation of protocol versions [14], our modifi-
cations of the cell structure are resonably easy to inte-
grate. Generally speaking, hop-by-hop feedback mes-
sages of any kind and size are allowable under Tor’s at-
tacker model, i. e., a local adversary with a partial view
of the network. Moreover, our modifications affect the
cell preamble only. The preamble is not part of the
onion encryption and therefore remains unencrypted on
the application layer. Likewise, / messages are
not application-layer encrypted. However, the DTLS en-
cryption between consecutive relays shields the pream-
ble from observers on the wire, and also s and s.
The BackTap design therefore provides additional pro-
tection in comparison to the current TCP-based trans-
port: when using kernel-level TCP as in Tor today, TCP
flow control and ACKs are not encrypted by TLS.

3.4 Window Adjustment
In the proposed protocol design, each node determines
the size of its local swnd based on the feedback from
the next hop downstream. s are used for reliability,
but do not influence the window adjustment.

Most transport protocols, and in particular most TCP
variants, use packet loss as an indicator of congestion
and therefore as a basis for adjusting their window size
or transmission rate; details highly depend on the TCP
flavor [1]. Here, we use a delay-based approach as orig-
inally used in TCP Vegas [11]. Delay-based congestion
control uses latency variations rather than packet losses
as a signal for congestion. If queues start to build up—
that is, before losses due to exceeded buffers occur—
such a control algorithm re-adjusts the congestion win-
dow. Thus, they are less aggressive in the sense that
they do not force losses and do typically not fully utilize
buffers in intermediate nodes.

This reduced aggressiveness constitutes a significant
benefit for an anonymity overlay. The Tor overlay at
this time is formed by more than 6000 relays (with in-
creasing trend [43]) in a fully connected topology. All
currently active connections to other relays compete for
the available capacity. The resulting traffic, in sum,
is very aggressive and inevitably provokes significant
packet loss—also for other traffic traversing the same
bottleneck. One may expect that this can significantly
be reduced by using delay-based controllers.

Following the ideas of TCP Vegas, we calculate the
difference between expected and actual window size as

diff = swnd · actualRtt
baseRtt

− swnd,

where actualRtt and baseRtt are the RTT with and with-
out load. In the literature they are also referred to as the

“experienced RTT” and the “real RTT”. We sample the
RTT based on the flow control feedback by measuring
the time difference between sending a cell and receiving
the respective . The actualRtt is estimated by taking
the smallest RTT sample during the last RTT. This re-
duces the effect of outliers due to jitter on the network
path. The baseRtt is the minimum over all RTT samples
of all circuits directed to the same relay. Hence, the in-
dividual diff calculations per circuit use a joint baseRtt
estimate. This mitigates potential intra-fairness issues of
delay-based approaches.

Depending on the value of diff, we adjust the sending
window every RTT as follows:

swnd′ =

swnd+1 if diff < α
swnd−1 if diff > β
swnd otherwise.

(1)

Since swnd changes by at most one, it follows an additive
increase additive decrease (AIAD) policy. Typically α
and β are chosen as 2 and 4 (here measured in cells).
Therefore, one may expect that swnd does not exceed
the bandwidth-delay product by much. This is sufficient
to achieve full utilization of the available capacities.

Combined with a locally operating scheduling al-
gorithm that round robins all circuits, this adjustment
scheme yields a rate allocation that achieves global max-
min fairness between circuits [44], because it aims for
maintaining a non-empty queue at the bottleneck. In ad-
dition, prioritization heuristics such as [5, 24, 42] can be
applied, if a prioritization of certain traffic types and pat-
terns is desired. End-to-end windows and corresponding
feedback (in Tor: s) are no longer necessary.

4 Evaluation
A deployment in a real-world anonymity overlay
will only be realistic after very thorough preceding
evaluations and in-depth discussion in the research
community—a process which we hope to initiate with
this work. Even deployments in an emulated or testbed-
based anonymity network, are also notoriously hard to
analyze—because the anonymity itself, of course, pro-
hibits in-depth traceability and measureability. We there-
fore evaluated the proposed protocol in a large-scale sim-
ulation study.

In fact, setting up such a simulation study is a chal-
lenging task by itself. As it turned out, there is a missing
link in the tool chain when it comes to experimenting
with network protocols for Tor under thorough consid-
eration of protocol behavior below the application layer.
Some tools focus only on specific aspects, such as the
Tor Path Simulator (TorPS) for circuit paths [26]. Oth-
ers, such as Shadow [23] and ExperimenTor [9], run real

7

604 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to first byte [s]

torperf (all)
nstor (all)

(a) Bulk and web circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to last byte [s]

torperf (50 KiB)
torperf (1 MiB)

nstor (320 KiB)

(b) Web circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to last byte [s]

torperf (5 MiB)
nstor (5 MiB)

(c) Bulk circuits.

Figure 4: Calibration of the simulation evironment.

Tor code, which results in a high degree of realism re-
garding the application logic, but at the same time re-
quires extensive development efforts to evaluate experi-
mental protocols [28]. While all approaches have their
benefits and drawbacks [40], all miss the “noise” of the
real Internet and have no real user behavior. Therefore,
assumptions about traffic patterns and user behavior are
inevitable anyway. The opportunities, though, to vary pa-
rameters, scale the setting, and prototype experimental
protocols are much more favorable with advanced net-
work simulators such as ns-3 [19].

Therefore, as a further contribution of this work, we
introduce nstor, a Tor module for ns-3. It is modeled
along the lines of the original Tor software, but clearly
focuses on the network aspects. In particular, it includes
the transport protocol, the cell transmission scheduler,
the traffic shaper (Tor includes a token bucket which can
be used by a relay operator to constrain the rate and burst
that is used), and the multiplexing. First and foremost,
it allows direct and reproducible comparisons of proto-
col design alternatives in both toy examples and larger
scenarios. In addition, with ns-3 the Linux kernel can
be hooked, so that practically deployed and widely used
transport protocol implementations can be used in the
simulations, for additional realism. The code of nstor
is publicly available on Github1.

The key point in setting up an environment for a valid
evaluation of Tor is to model the overlay appropriately.
The Tor model from [21] serves as a guideline here. In
our simulations, we use a star topology for simple, easy-
to-analyze toy scenarios, and a dumbbell topology for
larger-scale, more realistic experiments. Since approx-
imately 93 % of all Tor relays are currently hosted in
North America or Europe [43], the dumbbell topology
can be thought to approximate the geographical cluster-
ing. For this reason, we adjusted the delay according
to the iPlane [29] RTT measurements and the client ac-
cess rates according to Akamai’s state of the Internet re-
port [2] by inverse transform sampling, i. e., generating

1 .

random samples from its cumulative distribution func-
tion (CDF). In addition, we scaled and sampled the Tor
consensus (as of 2015/08/04) and generated a large set
of circuit paths by feeding this consensus to TorPS [26].
Unless otherwise specified, we assumed neither the phys-
ically available bandwidth of the relays’ access link nor
the Internet backbone to be a bottleneck, but that the re-
lay capacity is bounded by the operators using the above-
mentioned token bucket rate limiter.

In accordance to the model proposed in [21], we de-
liberately distinguish only two types of circuits, bulk
and web circuits. Bulk circuits continuously transfer
5 MiB files, i. e., after completing such a download they
immediately request another one. Web circuits request
320 KiB files with a random “think time” of 1 to 20 sec-
onds between consecutive requests. Although apparently
being very simplistic, it is the common approach used
by the Tor community and hence increases the compa-
rability to related research. As [21] stresses, the ratio of
simulated web and bulk circuits in relation to the number
of relays requires calibration to produce network char-
acteristic that approximate Tor. Therefore, we used the
publicly available torperf data set [43], which consists
of measurements of various file downloads over the live
Tor network. The time-to-last-byte (TTLB) and time-to-
first-byte (TTFB) results (as of August 2015) are shown
in Figure 4 as CDF plots. For our analysis in a larger
setting, we observed that a scenario with 100 relays and
375 circuits with 10 % bulk circuits approximates Tor’s
performance reasonably well (cf. Figure 4). This con-
figuration corresponds to one of Shadow’s example sce-
narios (as of Shadow v1.9.2). In this setting, we simu-
lated a period of 300 seconds (simulation time), started
the clients at random times during the first 30 seconds
and left the system another 30 seconds lead time before
evaluating. For statistically sound results, all simulations
in this paper were repeated with varying random seeds
and are presented either with 95 % confidence intervals
or as cumulative distribution functions.

In addition to “vanilla” Tor and our approach, Back-
Tap, we also implemented the N23 protocol as proposed

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 605

in [6] and PCTCP [8] (which is conceptually identical to
TCP-over-DTLS [37]). This constitutes the first qualita-
tive comparison among alternative transport design pro-
posals for Tor. It also underlines the flexibility of nstor,
our ns-3-based simulation module.

4.1 Steady State
First, we take a look at the steady state behavior, i. e.,
when long-term flows reach equilibrium. For the analysis
of the steady state, we focus on the cumulative amount of
delivered data of a circuit: by W (t) we denote the amount
of payload data delivered to the client up to time t. The
counterpart on the sender side is R(t), which denotes the
cumulative amount of data injected into a circuit up to
time t. Obviously, both functions are non-negative, non-
decreasing and R(t)≥W (t) must hold true at all times.

Given R and W , the end-to-end backlog can be defined
as R(t)−W (t), the end-to-end delay as t2 − t1 for t1 ≤ t2
and R(t1) =W (t2), and the achieved end-to-end data de-
livery rate during an interval [t1, t2] as

W (t2)−W (t1)
t2 − t1

.

Intuitively, these are the vertical difference, the horizon-
tal difference and the slope of the respective functions.
For our simulation, we sampled R(t) and W (t) at the
sender side (in Tor often called the “packaging edge”)
and the receiver side (the “delivering edge”) of a circuit
every 10 ms (simulation time). After the steady state is
reached, we performed a linear regression on our data
points and calculated the rate, backlog and delay accord-
ingly. The results for a single circuit with a bottleneck
rate of 1 500 kB/s (enforced through an application layer
limit at the middle relay) and varying end-to-end RTT
are given in Figure 5 as a mean of 20 runs with 95 %
confidence intervals.

Since Tor has a fixed window size that it will fully uti-
lize, the results with the standard Tor protocol heavily de-
pend on how this window size relates to the bandwidth-
delay product (BDP), and thus to the end-to-end RTT. In
our example, the circuit window size matches the BDP
at an RTT of approximately

1000 · 512B
1500kB/s

≈ 341ms.

Before this point, the backlog significantly increases
the delivery delay; for higher RTTs, the download rate
drops and asymptotically converges to zero, because the
window does not suffice to fully utilize the available
bandwidth. This clearly demonstrates Tor’s fundamen-
tal problem: on the end-to-end level, the only control
mechanism is the fixed window, which, however, does
not adapt to the network path.

There are some noteworthy phenomena that might be
confusing at first sight. In a first approximation accord-
ing to theory, one would expect that half of a circuit win-
dow’s worth of data (i. e., approx. 250 kB) is travelling
in downstream direction, while the other half of the win-
dow is on its way back in the form of cells. The
end-to-end backlog (as defined above: the difference be-
tween the amount of sent and received data at a given
point in time) should therefore be approximately 250 kB.
However, recall that the rate limit is enforced on the ap-
plication layer by a token bucket. Our model follows the
implementation in Tor, where this token bucket is refilled
periodically every 100 ms. The bottleneck operates at
its capacity limit, always draining its bucket and sending
corresponding cell bursts. Thus, about every 100 ms ap-
proximately 1500kB/s · 100ms = 150kB (300 cells) ar-
rive at the client, consequently triggering three s.
As a result, as long as the RTT is lower than the 100 ms
refill interval, only three s are on the way back,
so that the upstream amount of data is correspondingly
higher (approx. 350 kB). For higher RTTs, the observed
backlog approaches the theoretical limit without this ef-
fect, i. e., 250 kB. Both levels, 350 kB and 250 kB, can be
observed in Figure 5b for vanilla Tor (“circuit win”).

The respective end-to-end delay, as seen in Figure 5c,
behaves according to the built up backlog. That is, while
the circuit window is larger than the BDP, there is a not-
icable delay. Ideally, the end-to-end delay should be half
the end-to-end RTT, though.

It is important to note that with a fixed window size
there is only one sweet spot, i. e., the BDP. If this point is
not met, either the backlog and hence the delay increases
or the circuit becomes underutilized. A heterogeneous
and volatile network such as Tor is condemned to yield
poor performance when employing a static mechanism.

Of course, the same applies to simulations where the
(smaller) stream window is the limiting factor: the rate
drops much earlier, at 500 · 512B/1500kB/s ≈ 171ms.
While the end-to-end RTT is less than 100 ms, the three

s in upstream direction cause a backlog of about
100 kB, this time slightly less than half the window size.
Beyond this point, the results meet theory and the back-
log levels at half the stream window, that is 125 kB.

We also observed that Nagle’s algorithm [32] can in-
terfere with Tor’s window mechanism. In a nutshell, Na-
gle’s algorithm suspends transmission for a short period
and tries to combine small chunks of data to reduce the
overhead. This behavior causes extra delays upon trans-
mission of s, and thereby artificially increases the
experienced RTT. As a consequence, the rate drops much
earlier and the backlog settles at a lower level accord-
ingly, because a larger fraction of the window is spent
on the upstream () direction (not shown in the
figure). However, as soon as scenarios become more

9

606 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500

a
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 r

a
te

 [
k
B

/s
]

end-to-end RTT [ms]

vanilla (circuit win)
vanilla (stream win)

BackTap

(a) End-to-end rate.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 100 200 300 400 500

a
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 b

a
c
k
lo

g
 [
k
B

]

end-to-end RTT [ms]

vanilla (circuit win)
vanilla (stream win)

BackTap

(b) End-to-end backlog.

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500

a
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 [
m

s
]

end-to-end RTT [ms]

vanilla (circuit win)
vanilla (stream win)

BackTap

(c) End-to-end delay.

Figure 5: Single circuit scenario clearly demonstrates Tor’s fundamental problem and the benefits of our approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Jain’s Fairness Index

vanilla
PCTCP

N23
BackTap

(a) Intra-fairness.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 0 20 40 60 80 100 120

a
v
e
ra

g
e
 r

e
la

y
 g

o
o
d
p
u
t
[k

B
/s

]

number of concurrent circuits

application layer limit
nTcp = 1
nTcp = 5

nTcp = 10

(b) Inter-fairness (application layer bottleneck).

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 0 20 40 60 80 100 120 140 160

a
v
e
ra

g
e
 r

e
la

y
 g

o
o
d
p
u
t
[k

B
/s

]

number of concurrent circuits

nTcp = 1
nTcp = 5

nTcp = 10

(c) Inter-fairness (access link bottleneck).

Figure 6: Fairness evaluation.

complex including more traffic flows, the effect van-
ishes. By default Nagle is enabled in today’s deploy-
ments and hence also in Tor. Therefore, we disabled it
only to make the previous simulations more easily com-
prehensible; in all our following simulations Nagle will
be enabled. Nevertheless, either with or without Nagle
enabled or with the stream or circuit window in place,
a fixed-size window is not able to adapt and obviously
comes at a severe cost in performance.

In contrast, our approach is able to adjust to the net-
work in all situations. It maintains the rate, while the
backlog increases linearly with the RTT (and thus with
the BDP). As a result, we achieve an end-to-end delay
that always just slightly exceeds the physical RTT. This
is the behavior a good transport protocol should exhibit.

4.2 Fairness
For those readers familiar with delay-based congestion
control, a number of typical issues will likely come to
mind. In particular, they relate to intra-fairness and inter-
fairness. We therefore now assess these aspects.

Intra-Fairness Delay-based congestion control de-
pends on accurate RTT measurements. In particular,
“late coming” circuits may suffer from an overestimated
baseRTT. This leads to intra-fairness issues, i. e., to
drawbacks in the competition with other delay-based cir-
cuits. We mitigate this issue by sharing baseRTT infor-
mation among circuits directed to the same successor.

Thus, circuits established later will still base their calcu-
lations on sound baseRTT measurements. This is a fea-
ture of our approach that becomes possible, because the
transport logic is implemented in the application layer.

Furthermore, our approach enables cell scheduling on
circuit granularity. This avoids fairness issues due to
varying numbers of active circuits multiplexed into one
transport layer connection, as described in [44]. Fig-
ure 6a shows Jain’s fairness index [20] calculated over
per-circuit goodputs at the respective bottlenecks. This
index quantifies fairness as a value between zero and
one, where one means perfect fairness. For this simula-
tion, a star topology with 50 relays and 100 circuits gen-
erated according to the real-world Tor consensus were
used. We started infinite large downloads (i. e., bulk traf-
fic) over each circuit, where the starting times were ran-
domly distributed during the first 30 seconds. We let
the simulation settle for another 60 seconds to reach a
steady state before evaluating the mean per-circuit end-
to-end rates. The results of 20 runs are given as a cumu-
lative distribution plot. Our approach, in fact, achieves
a much fairer distribution than all other protocols, which
the larger fraction of higher fairness indices confirms.

In these simulations, we also investigated the overhead
by comparing the ratio of the achieved goodput (on the
application layer) and the actually transmitted bytes (on
the MAC layer), i. e., the throughput. The results, as seen
in Table 1, show an insignificant difference of approxi-

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 607

Table 1: Overhead and backlog comparison

protocol goodput
throughput ratio avg. backlog

10
0

ci
rc

s BackTap 0.89 29 kB
N23 0.86 112 kB
PCTCP 0.90 181 kB
vanilla 0.90 184 kB

Table 2: Completed downloads (#dwnlds) and mean rate

bulk web

protocol #dwnlds avg. rate #dwnlds avg. rate

37
5

ci
rc

s BackTap 7 503 587 kB/s 52 102 357 kB/s
N23 4 563 378 kB/s 49 065 215 kB/s
PCTCP 5 426 424 kB/s 49 513 223 kB/s
vanilla 5 493 426 kB/s 49 522 228 kB/s

80
0

ci
rc

s BackTap 12 108 439 kB/s 110 142 302 kB/s
N23 9 067 346 kB/s 104 641 204 kB/s
PCTCP 10 388 376 kB/s 105 288 207 kB/s
vanilla 10 491 382 kB/s 105 276 217 kB/s

mately 1 % compared to vanilla Tor. Note that Tor reg-
ulalry sends at least one (512 Byte) cell every
250 kB and produces constantly s on the transport
layer, while our appraoch sends a comparable amount
of s but emits much smaller flow control feedback
messages with a higher frequency. As the results suggest
the overhead approximately balances out. We also found
that our approach largely reduces the number of in-flight
cells in the network: the total backlog is about three (for
N23) to six times (for vanilla and PCTCP) lower.

Inter-Fairness One of the most prominent caveats of
delay-based approaches is that they are “over-friendly”
to concurrent loss-based connections. Basically, they re-
duce the sending rate before loss-based approaches do,
because they detect congestion earlier. In some cases
this is an intended behavior (cf. LEDBAT [39]), while
in the case of TCP Vegas this was generally perceived
as an issue [1, 12]. However, if a number of delay-based
sessions come together, they are in sum able to compete
well [12]. We exploit the properties of delay-based con-
gestion control, because it allows the anonymity overlay
to compete more reasonably with other applications (us-
ing loss-based TCP) in the relay operators’ networks.

We simulated a scenario with a varying number of par-
allel circuits (on the x axis) and a likewise varying num-
ber of competing loss-based TCP connections (nTcp).
The TCP connections represent downloads that are per-
formed on the same machine as the Tor relay. In a first
setting, we limited the anonymity relay bandwidth to
1 MB/s (by the token bucket), while the access link has
twice that capacity. In a second setting, we left Tor virtu-
ally unlimited (token bucket configured to 10 MB/s) and
let the access link become the bottleneck. For small num-
bers of circuits, the results in Figure 6b and 6c clearly

demonstrate in both settings the over-friendly behavior
of the delay-based controller, relative to the number of
TCP connections. A higher number of active circuits still
leaves a good fraction of the total 2 MB/s for the compet-
ing non-anonymity connections. For typical relays today
one may expect between a few hundred and several thou-
sand concurrently open circuits [8]; of course, not all of
them are active all the time.

We believe that the over-friendly inter-fairness of
BackTap constitutes an important incentive for relay op-
erators to donate more bandwidth. Typically, relay op-
erators use Tor’s token bucket to impose conservative
bandwidth limits on their relays. If Tor, however, will ap-
propriately reduce its bandwidth consumption while an-
other application’s traffic demand temporarily increases,
relay operators will be more willing to operate a Tor relay
with less restrictive bandwidth limits. In addition perfor-
mance penalties of loss-based protocols in environments
like Tor [45] will be mitigated.

4.3 Larger-Scale Analysis
For an analysis in a larger setting, we simulated scenarios
with a dumbbell topology and paths generated according
to the real-world Tor consensus, as described above. The
time-to-first-byte and time-to-last-byte results of the cali-
brated setting are shown in Figure 7 (a)–(c) as CDF plots.

In Figure 7a, we show the TTFB results for web and
bulk traffic. Virtually all initial byte sequences of an-
swers to requests are delivered faster with BackTap than
with any other protocol. In fact, BackTap’s TTFB results
are very close to the optimum, i. e., the network’s physi-
cal end-to-end RTT (denoted as “E2E RTT” in the plot).
TTFB is an important measure for the interactivity and
has a significant impact on the overall user experience.
The lower achieved TTFB would likely result in an in-
creased user satisfaction, due to increased reactivity.

The performance gain of our approach becomes ap-
parent when looking at the TTLB results in Figures 7b
and 7c. While the download times for web requests typ-
ically vary between 1 and 3 s, we achieve significantly
better performance, where almost half of all the requests
are already completed in less than 1 s. Also the bulk
transfers yield better results, i. e. approximately 30 %
more bulk downloads are completed in less than 10 s.

In order to assess the performance of our approach in
a very congested network, we additionally simulated a
scenario with 800 circuits. The results are shown in Fig-
ure 7 (d)–(e). Also in this “stress test” scenario, BackTap
is able to achieve reasonable results, which in all cases
yield shorter download times. Particularly a look at Fig-
ure 7f provides a deeper explanation for these results. It
shows that the CDF of our approach is closer to the other
protocols and “flattens” quicker than in Figure 7c, i. e.,
more bulk downloads take longer to finish. As a con-

11

608 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to first byte [s]

vanilla
PCTCP

N23
BackTap
E2E RTT

(a) Bulk and web circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to last byte [s]

vanilla
PCTCP

N23
BackTap

(b) Web circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to last byte [s]

vanilla
PCTCP

N23
BackTap

(c) Bulk circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to first byte [s]

vanilla
PCTCP

N23
BackTap
E2E RTT

(d) Bulk and web circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to last byte [s]

vanilla
PCTCP

N23
BackTap

(e) Web circuits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

time to last byte [s]

vanilla
PCTCP

N23
BackTap

(f) Bulk circuits.

Figure 7: Time to download files over Tor (10 runs, 100 relays, (a)–(c) 375 circuits, (d)–(f) 800 circuits).

sequence, bulk traffic is prevented from “clogging” the
network as with the other protocols. However, this does
not mean that bulk traffic is treated unfairly: quite in con-
trast, all of the circuits and flows are treated equally. This
is an important feature of our approach: it gives all cir-
cuits, web and bulk, a fair share of the network capacity,
without the need for (complex, error-prone) explicit traf-
fic pattern analysis and prioritization.

Another perspective on the performance of the vari-
ous protocols is provided by Table 2. There, we sum-
marize the number of completed downloads (within the
simulation time) and the mean download rate for both
larger-scale simulation scenarios. In the stress test with
800 circuits, BackTap is able to complete approximately
5 % and 15 % more web and bulk requests, respectively,
compared to vanilla Tor. Eventually, the mean download
rate is in all cases higher as well. On a more general
level, we note that vanilla Tor shows, particularly for the
web traffic, a much higher variance of TTFB and TTLB.
There is, for instance, always a non-negligible fraction
of connections that takes far longer than average. This
observation is in line with practical experiences of Tor
users and the results presented in [21,43]. Our approach,
according to the results presented here, typically reduces
the overall variance by more than 17 %.

5 Conclusion
Aware of Tor’s fundamental problems and the specific
requirements of anonymity overlays, we developed a tai-
lored transport protocol, namely BackTap. In particular,

we presented a novel way to couple the local feedback
loops for congestion and flow control. It builds upon
backpressure between consecutive application-layer re-
lays along a circuit, and a delay-based window size con-
troller. We showed that this can bring a huge relief re-
garding network congestion by closing the gap between
local controllers, so that the need for slow end-to-end
control vanishes. In packet level simulations we con-
firmed the expected improvement.

Besides, there are good reasons why our approach also
makes Tor more resilient. First, due to the backpres-
sure, congestion-based attacks will have less influence
on other circuits. Second, the much fairer resource al-
location makes circuits “look” more “similar”, thereby
improving the cover traffic properties of concurrent cir-
cuits. However, the trade-off between anonymity and
performance needs further investigation. In particular,
the use of delayed and aggregated feedback to impede
traffic confirmation is on our agenda for future work.
Generally, we believe that an advanced network traffic
control can make Tor’s degree of anonymity stronger.

Overall, our approach shows new ways for designing
suitable transport mechanisms for anonymity overlays.

Acknowledgements
We thank our students Manuel Rüger and Tobias Schall
for valuable discussions. We also like to thank the anony-
mous reviewers and our shepherd Paul Francis for their
constructive, detailed and very helpful feedback.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 609

References
[1] AFANASYEV, A., TILLEY, N., REIHER, P. L., AND KLEIN-

ROCK, L. Host-to-host congestion control for TCP. IEEE Com-
munications Surveys and Tutorials 12, 3 (2010), 304–342.

[2] AKAMAI. State of the Internet report, Q1 2015.

[3] AKHOONDI, M., YU, C., AND MADHYASTHA, H. V. LASTor:
A low-latency AS-aware Tor client. In SP ’12: Proceedings of
the 33th IEEE Symposium on Security and Privacy (May 2012).

[4] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP Conges-
tion Control. RFC 5681 (Draft Standard), Sept. 2009.

[5] ALSABAH, M., BAUER, K., AND GOLDBERG, I. Enhanc-
ing Tor’s performance using real-time traffic classification. In
CCS ’12: Proceedings of the 19th ACM Conference on Computer
and Communications Security (Oct. 2012), pp. 73–84.

[6] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUNWALD, D.,
MCCOY, D., SAVAGE, S., AND VOELKER, G. DefenestraTor:
Throwing out windows in Tor. In PETS ’11: Proceedings of the
11th Privacy Enhancing Technologies Symposium (July 2011).

[7] ALSABAH, M., BAUER, K. S., ELAHI, T., AND GOLDBERG, I.
The path less travelled: Overcoming tor’s bottlenecks with traffic
splitting. In PETS ’13: Proceedings of the 13th Workshop on
Privacy Enhancing Technologies (July 2013), pp. 143–163.

[8] ALSABAH, M., AND GOLDBERG, I. PCTCP: per-circuit tcp-
over-ipsec transport for anonymous communication overlay net-
works. In CCS ’13: Proceedings of the 20th ACM Conference on
Computer and Communications Security (Oct. 2013), pp. 349–
360.

[9] BAUER, K. S., SHERR, M., AND GRUNWALD, D. Experi-
mentor: A testbed for safe and realistic tor experimentation. In
CSET ’11: Proceedings of the 4th Workshop on Cyber Security
Experimentation and Test (Aug. 2011).

[10] BORDER, J., KOJO, M., GRINER, J., MONTENEGRO, G., AND
SHELBY, Z. Performance Enhancing Proxies Intended to Miti-
gate Link-Related Degradations. RFC 3135 (Informational), June
2001.

[11] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON, L. L.
TCP vegas: New techniques for congestion detection and avoid-
ance. In SIGCOMM ’94: Proceedings of the 1994 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications (Aug. 1994), pp. 24–35.

[12] BUDZISZ, L., STANOJEVIC, R., SCHLOTE, A., BAKER, F.,
AND SHORTEN, R. On the fair coexistence of loss- and delay-
based TCP. IEEE/ACM Transactions Networking 19, 6 (2011),
1811–1824.

[13] DHUNGEL, P., STEINER, M., RIMAC, I., HILT, V., AND ROSS,
K. Waiting for anonymity: Understanding delays in the tor over-
lay. In P2P ’10: Proceedings of the 10th IEEE International
Conference on Peer-to-Peer Computing (Aug. 2010).

[14] DINGLEDINE, R., AND MATHEWSON, N. Tor protocol spec-
ification. . . .

. .

[15] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In USENIX Security ’04:
Proceedings of the 13th USENIX Security Symposium (Aug.
2004), pp. 303–320.

[16] GETTYS, J., AND NICHOLS, K. Bufferbloat: Dark buffers in the
internet. Queue 9, 11 (Nov. 2011).

[17] GOPAL, D., AND HENINGER, N. Torchestra: reducing inter-
active traffic delays over tor. In WPES ’12: Proceedings of the
ACM Workshop on Privacy in the Electronic Society (Oct. 2012),
pp. 31–42.

[18] HAMILTON, R., IYENGAR, J., SWETT, I., AND WILK, A.
QUIC: A UDP-based secure and reliable transport for HTTP/2.
IETF Internet Draft, 2016.

[19] HENDERSON, T. R., LACAGE, M., RILEY, G. F., DOWELL,
C., AND KOPENA, J. Network simulations with the ns-3 sim-
ulator. In SIGCOMM ’08: Proceedings of the 2008 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications (Aug. 2008).

[20] JAIN, R., CHIU, D., AND HAWE, W. A quantitative measure of
fairness and discrimination for resource allocation in shared com-
puter systems. DEC Research Report TR-301, Digital Equipment
Corporation, Maynard, MA, USA, Sept. 1984.

[21] JANSEN, R., BAUER, K., HOPPER, N., AND DINGLEDINE, R.
Methodically modeling the Tor network. In CSET ’12: Proceed-
ings of the 5th Workshop on Cyber Security Experimentation and
Test (Aug. 2012).

[22] JANSEN, R., GEDDES, J., WACEK, C., SHERR, M., AND
SYVERSON, P. F. Never been KIST: tor’s congestion man-
agement blossoms with kernel-informed socket transport. In
USENIX Security ’14: Proceedings of the 23rd USENIX Security
Symposium (Aug. 2014), pp. 127–142.

[23] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a box
for accurate and efficient experimentation. In NDSS ’12: Pro-
ceedings of the Network and Distributed System Security Sympo-
sium (Feb. 2012).

[24] JANSEN, R., SYVERSON, P. F., AND HOPPER, N. Throttling tor
bandwidth parasites. In USENIX Security ’12: Proceedings of the
21th USENIX Security Symposium (Aug. 2012), pp. 349–363.

[25] JANSEN, R., TSCHORSCH, F., JOHNSON, A., AND SCHEUER-
MANN, B. The sniper attack: Anonymously deanonymizing and
disabling the tor network. In NDSS ’14: Proceedings of the Net-
work and Distributed System Security Symposium (Feb. 2014).

[26] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. F. Users get routed: traffic correlation on tor
by realistic adversaries. In CCS ’13: Proceedings of the 20th
ACM Conference on Computer and Communications Security
(Oct. 2013), pp. 337–348.

[27] KIRALY, C., BIANCHI, G., AND LO CIGNO, R. Solving per-
formance issues in anonymization overlays with a L3 approach.
Tech. Rep. DISI-08-041, Ver. 1.1, Univ. degli Studi di Trento,
Sept. 2008.

[28] LOESING, K., MURDOCH, S. J., AND JANSEN, R. Evaluation
of a libutp-based Tor datagram implementation. Tech. Rep. 2013-
10-001, The Tor Project, Oct. 2013.

[29] MADHYASTHA, H. V., KATZ-BASSETT, E., ANDERSON, T.,
KRISHNAMURTHY, A., AND VENKATARAMANI, A. iplane:
An information plane for distributed services.

. . . .

[30] MAKI, I., HASEGAWA, G., MURATA, M., AND MURASE, T.
Performance analysis and improvement of tcp proxy mecha-
nism in tcp overlay networks. In ICC ’05: Proceedings of the
IEEE International Conference on Communications (May 2005),
pp. 184–190.

[31] MURDOCH, S. J. Comparison of Tor datagram designs. Tech.
rep., Nov. 2011.

[32] NAGLE, J. Congestion Control in IP/TCP Internetworks. RFC
896, Jan. 1984.

[33] NOWLAN, M. F., WOLINSKY, D. I., AND FORD, B. Reduc-
ing latency in tor circuits with unordered delivery. In FOCI ’13:
Proceedings of the USENIX Workshop on Free and Open Com-
munications on the Internet (Aug. 2013).

13

610 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[34] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. Mod-
eling TCP throughput: A simple model and its empirical valida-
tion. In SIGCOMM ’98: Proceedings of the 1998 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications (Aug. 1998), pp. 303–314.

[35] PATHAK, A., WANG, A., HUANG, C., GREENBERG, A. G.,
HU, Y. C., KERN, R., LI, J., AND ROSS, K. W. Measuring
and evaluating TCP splitting for cloud services. In PAM ’10:
Proceedings of the 11th International Conference on Passive and
Active Measurement (Apr. 2010), pp. 41–50.

[36] PAXSON, V., ALLMAN, M., CHU, J., AND SARGENT, M. Com-
puting TCP’s Retransmission Timer. RFC 6298 (Proposed Stan-
dard), June 2011.

[37] REARDON, J., AND GOLDBERG, I. Improving tor using a TCP-
over-DTLS tunnel. In USENIX Security ’09: Proceedings of the
18th USENIX Security Symposium (Aug. 2009).

[38] RESCORLA, E., AND MODADUGU, N. Datagram Transport
Layer Security Version 1.2. RFC 6347 (Proposed Standard), Jan.
2012.

[39] SHALUNOV, S., HAZEL, G., IYENGAR, J., AND KUEHLEWIND,
M. Low Extra Delay Background Transport (LEDBAT). RFC
6817 (Experimental), Dec. 2012.

[40] SHIRAZI, F., GOEHRING, M., AND DÍAZ, C. Tor experimenta-
tion tools. In SPW ’15: Proceedings of the 36th IEEE Symposium
on Security and Privacy Workshops (May 2015), pp. 206–213.

[41] STRIGEUS, L., HAZEL, G., SHALUNOV, S., NORBERG, A.,
AND COHEN, B. BEP 29: µTorrent transport protocol, June
2009.

[42] TANG, C., AND GOLDBERG, I. An improved algorithm for Tor
circuit scheduling. In CCS ’10: Proceedings of the 17th ACM
Conference on Computer and Communications Security (Oct.
2010), pp. 329–339.

[43] THE TOR PROJECT. Tor Metrics Portal.
. . .

[44] TSCHORSCH, F., AND SCHEUERMANN, B. Tor is unfair – and
what to do about it. In LCN ’11: Proceedings of the 36th An-
nual IEEE International Conference on Local Computer Net-
works (Oct. 2011), pp. 432–440.

[45] TSCHORSCH, F., AND SCHEUERMANN, B. How (not) to build
a transport layer for anonymity overlays. ACM SIGMETRICS
Performance Evaluation Review 40 (Mar. 2013), 101–106.

[46] VIECCO, C. UDP-OR: A fair onion transport design. In Hot-
PETS ’08: 1st Workshop on Hot Topics in Privacy Enhancing
Technologies (July 2008).

[47] WANG, T., BAUER, K. S., FORERO, C., AND GOLDBERG, I.
Congestion-aware path selection for tor. In FC ’12: Proceedings
of the 16th International Conference on Financial Cryptography
and Data Security (Mar. 2012), pp. 98–113.

[48] XIE, F., JIANG, N., HO, Y. H., AND HUA, K. A. Semi-
split TCP: maintaining end-to-end semantics for split TCP. In
LCN ’07: Proceedings of the 32nd Annual IEEE International
Conference on Local Computer Networks (Oct. 2007), pp. 303–
314.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 611

Sieve: Cryptographically Enforced Access Control for User Data in
Untrusted Clouds

Frank Wang
MIT CSAIL

James Mickens
Harvard University

Nickolai Zeldovich
MIT CSAIL

Vinod Vaikuntanathan
MIT CSAIL

Abstract

Modern web services rob users of low-level control over
cloud storage—a user’s single logical data set is scattered
across multiple storage silos whose access controls are
set by web services, not users. The consequence is that
users lack the ultimate authority to determine how their
data is shared with other web services.

In this paper, we introduce Sieve, a new platform which
selectively (and securely) exposes user data to web ser-
vices. Sieve has a user-centric storage model: each user
uploads encrypted data to a single cloud store, and by
default, only the user knows the decryption keys. Given
this storage model, Sieve defines an infrastructure to sup-
port rich, legacy web applications. Using attribute-based
encryption, Sieve allows users to define intuitively un-
derstandable access policies that are cryptographically
enforceable. Using key homomorphism, Sieve can re-
encrypt user data on storage providers in situ, revoking
decryption keys from web services without revealing new
keys to the storage provider. Using secret sharing and
two-factor authentication, Sieve protects cryptographic
secrets against the loss of user devices like smartphones
and laptops. The result is that users can enjoy rich, legacy
web applications, while benefiting from cryptographically
strong controls over which data a web service can access.

1 Introduction

A single person often uses multiple web services. Concep-
tually, the user has one logical data set, and she selectively
exposes a portion of that data to each web service. In prac-
tice, the services control her data: each service keeps a
portion of the user’s objects in a walled garden which
neither the user nor external services can directly access.
Web services often provide user-configurable settings for
access control, but the web services (not users) define
the semantics of the controls, and users must trust web
services to faithfully implement the restrictions. By ced-
ing control of storage to web services, a user also loses
the ability to enumerate all of her data, since that data
is scattered across a variety of services which hide raw
storage via high-level, curated APIs.

Data silos are problematic not only for users, but for
applications whose value often scales with the amount

of user data that is accessible to the application. For
example, quantified self applications [62], which track a
user’s health and personal productivity, work best when
given data from a variety of sensors and environmental
locations. Similarly, applications which analyze a user’s
medical records [2] or financial transactions [34] produce
the best results when they have access to all of the user’s
medical or financial data. Unfortunately, the storage silos
of modern web services limit a user’s ability to share data
outside of a silo. For example, wearable fitness-tracking
sensors typically upload data to vendor-specific cloud
storage, and medical records are often bound to storage
that belongs to the medical specialist who measured the
data.

The Challenges of Centralized Data: In a user-centric
storage model, a user’s entire data set would reside in a
single, logically centralized cloud store; the user would
selectively disclose portions of that data to individual
third party applications. Systems like Amber [19] and
BStore [20] have explored the benefits of decoupling ap-
plications from user data. However, a centralized data
store increases the damage that results from a subverted
or curious storage provider, because all of a user’s data is
at risk, instead of a service-specific subset.

To protect against untrusted or incompetent storage
providers, users can encrypt data before uploading it.
However, the ultimate purpose of uploading data is to
share it with third party services. Thus, users need a
way to selectively expose pointers to encrypted objects
(and the associated decryption keys). Protocols exist for
sharing cloud data across multiple services, but these pro-
tocols have major usability and security problems. For
example, the popular OAuth protocol [37] enables cross-
site data sharing via delegated API calls (i.e., API calls
that act with the authority of a user). However, OAuth
policies are invariably defined by web services, not by
users. Furthermore, OAuth does not enforce cryptograph-
ically strong constraints on the data that delegated APIs
can access. So, even if a user could generate her own
OAuth policies, she would lack strong assurances about
what those policies mean, and how they are enforced.

Given the discussion above, logically centralized stor-
age seems good for users in theory, but difficult to imple-
ment in practice. This paper addresses three challenges

1

612 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Sieve import
daemon

Application

Sieve storage
 daemon

User device Storage provider
Third party
web service

Unmodified storage
provider IO stack

Unmodified service
logic

Sieve user
 client

1
2

3

Figure 1: Sieve’s high-level architecture. 1) The user
uploads ABE-encrypted data to a storage provider. 2)
The user generates a data policy for a third party web ser-
vice. Sieve translates the policy into an ABE decryption
key, and sends the key to the web service. 3) The web
service pulls encrypted data from the storage provider, de-
crypts it locally, and injects the data into the unmodified
application pipeline.

that emerge from a logically centralized storage architec-
ture. The first is security: how do we provide cryptograph-
ically strong access controls that protect user data against
the compromise of storage providers and user devices?
The second challenge is usability: how can we express
access policies in a way that layperson users will under-
stand, but is translatable to cryptographically enforceable
mechanisms? The final challenge is application richness:
after we have moved user data out of per-application silos
and into user-controlled storage, how can we support the
complex applications that users currently enjoy?

Our Solution: To address these challenges, we propose
Sieve, a new system for delegating access to private cloud
data. Figure 1 depicts Sieve’s high-level workflow. A
user generates raw data on her computational devices,
and uploads encrypted versions of that data to a single
cloud repository; the user manages and pays for the stor-
age. When a third party web service requests access,
e.g., during the first time that a user visits a site, the user
generates a high-level access policy (§3.5) for the ser-
vice. Sieve splits the policy into two pieces: the storage
provider learns which objects a third party can access (but
not the cleartext versions of those objects), and the third
party learns the objects that it can access, and the corre-
sponding decryption keys, while learning nothing about
the rest of the user’s data set. Once the third party has
downloaded the necessary objects and decrypted them, it
feeds the cleartext data to a legacy pipeline for handling
user content.

Sieve leverages three techniques to implement the
workflow in Figure 1:

• Sieve uses attribute-based encryption (ABE) [29]
to implement cryptographically strong access con-
trols. In ABE, encrypted data is associated with at-

(type="Fitness" OR type="Medical") AND
(date > 2012) AND (source="FitBit")

Figure 2: Example policy for an exercise application.

tributes, which are key-value pairs like “date=2012”.
Decryption keys are associated with policies like
the one shown in Figure 2. Policies are defined in
terms of attributes and attribute operators like equal-
ity and less than. A decryption key can decrypt only
ciphertexts whose attributes satisfy the key’s policy.
Before a user uploads objects to the storage provider,
she (or her local device) tags the objects with at-
tributes like the date, the user’s current location, or
the object type. The uploading device encrypts the
objects with the relevant attributes before sending
the objects to the storage provider. Later, when a
third party web service requests access to the user’s
data, the user creates a policy for that service. The
user’s local device translates the policy into an ABE
decryption key, and sends the key to the web service.
Afterwards, the service uses the key to download and
decrypt the subset of user objects that are covered
by the key’s policy.

• To revoke a third party’s access to data, the user in-
forms the storage provider that the third party should
no longer be able to download encrypted user objects.
However, the third party still possesses a decryption
key, and can decrypt leaked ciphertext if the storage
server is later compromised. To prevent this scenario,
Sieve uses key homomorphism [15] to implement
revocation. Key homomorphism allows the storage
provider to re-encrypt user data without learning
the underlying cleartext–the storage provider merely
reads the old ciphertext, and overwrites it with the
output of a function that accepts the old ciphertext
and a user-specified re-keying token as input. Using
this in situ re-encryption, users avoid the need to
re-encrypt data on local devices and then re-upload
it. Additionally, if storage providers are honest at the
time of key revocation, subsequent storage provider
compromises will not reveal data that is encrypted
with keys that are revoked (but possibly still in the
wild). To the best of our knowledge, Sieve is the first
ABE storage system to support re-keying of both
metadata and data.

• ABE uses a master secret key to generate decryption
keys. The loss of this key results in the compro-
mise of the entire cryptosystem. In standard ABE
schemes, the master secret is kept by a single trusted
authority. In the context of Sieve, this would mean
keeping the master secret on a single user device.
This is unattractive, since user devices are often lost
or stolen. Thus, Sieve uses secret-sharing and two-

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 613

factor authentication to partition the master secret
across multiple devices, and prevent unauthorized
devices from arbitrarily participating in Sieve’s cryp-
tographic protocols.

Sieve represents a middle ground between today’s web
services (which provide weak user control over data
access), and proposed systems from the research com-
munity which strengthen user control, but greatly re-
strict server-side computation [57] or eliminate it alto-
gether [13, 20, 25, 40, 47]. Sieve explores a different point
in the design space, one that provides cryptographically
strong, user-centric access controls, while still permitting
the server-side computation that popular web services
require to add value to user data.

To demonstrate Sieve’s practicality, we integrated Sieve
with two open-source web services. Open mHealth [66]
allows users to store and visualize data series for metrics
like blood pressure and heart rate; Piwigo [3] is an online
photo manager that is similar to Flickr [72]. Integrating
Sieve with Open mHealth and Piwigo was straightfor-
ward, requiring approximately 200 and 250 lines of code
modifications respectively. Experimental results show
that the modified systems can handle realistic workloads.

2 Security Goals

We focus on three kinds of principals. A user is someone
who wants to store data online and selectively expose
it to a third party web service. The user keeps her (en-
crypted) data on a cloud storage provider. Each user has
one storage provider, but potentially many third parties
which need delegated access. Potential storage providers
include Amazon S3 and Microsoft Azure. Potential third
party web services are FitBit, Lark, Mint, and any other
application that generates new value from sensitive user
data.

The user has a financial agreement with the storage
provider: the user pays for the provider to keep her data
and participate in the Sieve protocol on her behalf. The
user places encrypted data on the storage provider, but
never reveals the decryption keys to the provider. This
protects the confidentiality of user data if the storage
service is malicious or compromised. Using signatures,
Sieve also protects the data’s integrity. However, Sieve
cannot guarantee the availability or freshness of the data
that the storage provider delivers to a web service. If
desired, Sieve can be layered atop storage systems like
CloudProof [55] which do provide those properties.

Sieve does not hide access patterns or object metadata
(i.e., ABE attributes) from the storage provider. Thus,
a curious provider can learn which encrypted objects a
third party has been authorized to read, as well as the
attributes that are associated with those objects. If users
are concerned about data leakage via access patterns, they

can layer Sieve atop an ORAM protocol [44]. To hide
attributes from the storage provider, Sieve could use pred-
icate encryption [38, 61]. However, ORAM and predicate
encryption incur heavy performance overheads (§6), so
Sieve uses lighter-weight cryptography that reduces ser-
vice latency at the cost of leaking more metadata. We
believe that this trade-off is reasonable for many users
and companies, given the importance of low latencies in
modern web services [69, 71].

With respect to third party web services, Sieve’s goal
is to reveal user data only as permitted by the user’s dis-
closure policies. After Sieve transmits information to a
third party server, Sieve cannot restrict what the third
party does with the data. For example, third parties may
cache user data locally, even after the user has revoked
access to the canonical versions that reside on her storage
server. Third parties can also share decrypted user data
with other principals via out-of-band, non-Sieve protocols.
Preventing these behaviors is beyond the scope of this pa-
per. However, if a web service shares its user-issued ABE
key, Sieve can revoke that key, preventing anyone who
possesses the key from using it to access user data through
the storage provider (§3.6).

Sieve does not prevent client-side attacks like social
engineering [9] or cross-site scripting [54]. Sieve also
does not protect against a subverted device that the user
believes is functioning properly, e.g., a smartphone that is
infected with a rootkit. However, Sieve uses secret sharing
to protect system-wide secrets like the ABE master key
from the loss of a single device (§3.7).

3 Design

As shown in Figure 1, Sieve consists of three components:
a user client, a storage provider daemon, and an import
daemon that is run by third party web services. The Sieve
client runs on each user device. The client provides a
GUI for defining high-level access policies, and insulates
the user from the low-level management of cryptographic
keys and data uploading. The storage provider daemon
communicates with Sieve clients, writing encrypted user
data to cloud storage, and using the data’s ABE attributes
to build an index. The index allows for fast data retrieval
by the import daemons which belong to web services.
An import daemon receives ABE decryption keys from
Sieve clients; each key allows the daemon to decrypt a
subset of a user’s encrypted data.

In Sieve, there are five types of cryptographic keys, all
of which are automatically managed by a user’s Sieve
client. The per-user ABE master key helps to gener-
ate the individual ABE decryption keys which are given
to web services. The user’s ABE public key encrypts
metadata blocks with user-provided attributes; note that a
storage provider keeps both data and metadata blocks for

3

614 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

a user. A web service’s ABE decryption keys determine
which metadata blocks can be decrypted by the service
(§3.4). Metadata blocks point to data blocks, each of
which is signed by a per-user RSA key, and encrypted by
a symmetric key that is contained within the associated
metadata block. Importantly, all of these cryptographic
operations are hidden from the user. A user merely tags
data and generates access policies; the Sieve client trans-
parently converts those high-level activities into low-level
cryptographic operations.

From the perspective of a third party, a user’s Sieve
storage is read-only, i.e., only the user can write new
objects and update old ones. Third parties use their own
storage for data that is derived from a user’s Sieve objects.

3.1 Usage Model
In theory, any web service that imports user data is com-
patible with Sieve. In practice, certain kinds of web ser-
vices and user data are easier to integrate with Sieve.
Sieve works best with
• data streams that are tightly bound to a particular

user, and
• web services that can tolerate those data streams be-

ing read-only (and perhaps only partially disclosed).
Examples of Sieve-amenable data streams include de-
mographic information like age and location; financial
and medical records; sensor data from quantified self ap-
plications; longitudinal, cross-site histories of browsing
behavior and e-commerce transactions; and multimedia
data streams containing photos, videos, and audio. Ex-
amples of web services that consume such data streams
are social media applications like Instagram [1], exercise
trackers like Open mHealth [66], and financial analysis
sites like Mint [34] that require access to a user’s spending
habits.

Applications like Reddit [4] and StackOverflow [6] are
less appropriate for Sieve. In these applications, user data
has less standalone value to the owner; instead, most of
the value derives from embedding the data in a larger,
service-specific context like a Reddit discussion. Web-
based email is also an awkward fit for the Sieve model,
since email services require mutable, per-user state like
mailboxes, but Sieve exports read-only storage. An email
service could pull read-only outgoing messages from
Sieve storage, and implement the mutable mailbox state
on the service’s own machines. However, such an archi-
tecture would be awkward, since users would have no
way to selectively expose incoming messages to the mail
service.

3.2 Overview of ABE
Attribute-based encryption [29] is a public-key encryption
scheme in which a cleartext object is associated with at-

Ktype=“photo” AND
(location=“home” OR “work”) AND
year ≥ 2000

K type=“photo” AND
location=“work” AND
year < 2015

Encrypted
object0 type=“photo”,

location=“home”,
year=2015

type=“photo”,
location=“work”,
year=2014

Encrypted
object1

type=“medical”,
location=“work”,
year=2014

Encrypted
object2

Figure 3: In this example, there are two ABE keys at the
top, and three ABE-encrypted objects at the bottom. An
arrow indicates that a key can decrypt a particular object.

tributes that govern how the object is encrypted. Each de-
cryption key has an access control structure (ACS) which
enumerates one or more attributes. An ACS can test an
attribute for equality (e.g., location=“Paris”) or com-
parative value (e.g., age > 35). An ACS can also chain
those simple tests using ANDs, ORs, and NOTs. As shown
in Figure 3, a key can decrypt an object only if the key’s
ACS matches the object’s attribute values.

We use the shorthand notation Ka0,...,aN to refer to
an ABE key whose ACS contains the attribute tests
a0, . . . ,aN . All tests are implicitly joined via ANDs un-
less we explicitly note otherwise.

3.3 Assigning Attributes to User Data

Raw user data comes from a variety of sources. Some
of it is directly generated by a user’s devices; for ex-
ample, a user might enter financial information directly
into a spreadsheet. Data might also come from an exter-
nal source, like an email attachment. Sieve associates
each object, regardless of its provenance, with a set of
attributes.

Some attributes can be automatically assigned by hard-
ware, like the GPS coordinates for a running route. Other
attributes can be extracted by software, using application-
specific transducers or semantic file systems [28, 39, 63].
Users can also manually tag objects. Sieve is agnostic to
the manner in which attributes are assigned, although our
implementation of the Sieve client provides a GUI which
simplifies manual tag assignment. The GUI also allows
users to retag an object after it has already been encrypted
(§3.9).

Users and web services must agree on data schemas, so
that web services can meaningfully aggregate and process
information from different users. In particular, web ser-
vices need to know a standardized set of attributes which
are associated with various data types. To define this stan-

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 615

dardized set, Sieve uses FOAF [17] as the schema model
for data about human users, and RDF [21] as the schema
model for data about user objects.

Each Sieve user has a standardized FOAF record which
stores basic scalar information like her name, location,
and birthday. Sieve associates each entry in the FOAF
record with an ABE attribute; for example, a user’s name
is associated with the userName attribute. Sieve does not
upload the actual FOAF record to the storage provider,
since the only purpose of the FOAF record is to stan-
dardize the metadata that is associated with each user.
Instead, Sieve uploads individual FOAF entries, encrypt-
ing each one with the associated ABE attribute (e.g.,
〈“Alice”〉Kfield=userName , where “Alice” is the encrypted data
and Kfield=userName means that the data can be decrypted
only by web services whose ABE keys have access to the
userName field attribute).

Sieve associates each data object with a type-specific
RDF schema. For example, a W2 tax record has attributes
for the user’s pre-tax income, her number of dependents,
and so on. Similar to FOAF records, RDF records are
used to define a standard attribute set for each data type.
Sieve uploads individual encrypted RDF entries to the
storage provider.

Some data objects like images are not decomposable,
i.e., each object is disclosed or not disclosed at the gran-
ularity of the entire object. For objects like this, Sieve
uploads the entire object, encrypting it using the standard-
ized RDF attributes and any manually added user tags.
For example, a photo has standard attributes like height
and width, and may also possess user-defined tags like
“Vacation” or “Family.”

As applications evolve, RDF and FOAF schemas may
change. Sieve is compatible with preexisting techniques
for synchronizing schema changes across a distributed
system [51, 58, 59].

3.4 Uploading Data to the Storage
Provider

Suppose that a user wishes to upload a file F that has
attributes a0, . . . ,aN . Before uploading the file, the Sieve
client must encrypt the file such that decryption is possible
only with the ABE key whose ACS matches a0, . . . ,aN .
The naïve approach is to directly encrypt F with Ka0,...,aN .
However, ABE is a form of public key cryptography, and
it is significantly slower than symmetric key cryptography.
Thus, Sieve uses a hybrid encryption scheme, encrypting
the file data with a symmetric key, and encrypting the
symmetric key with ABE.

The end-to-end upload protocol is the following. First,
the Sieve client generates a symmetric key k, and uses that
key to encrypt F . Sieve uploads the encrypted 〈F〉k to the

storage provider. The storage provider responds with a
GUID for the file. Sieve then uploads a metadata block for
F . The metadata block is an encrypted pointer containing
〈GUID,k〉Ka0,...,aN

. Only principals which possess keys
that match a0, . . . ,aN can decrypt the pointer, fetch the
object, and decrypt the object.

In the next section, we describe how web services ac-
quire ABE keys. For now, we merely say that users do
not share ABE keys with storage providers. Thus, a stor-
age provider cannot inspect the data that it stores. The
provider can try to modify the data or produce fake user
data, but Sieve clients sign each object with a user-specific
RSA key before encrypting the object; the signatures al-
low web services to detect tampering.

From the perspective of a third party web service, Sieve
storage is read-only. However, a user is free to create new
objects, delete old ones, and update objects that reside
at preexisting GUIDs. If a user’s device has cached the
GUID and the symmetric key for a particular object, the
user can update that object directly, without having to
fetch the associated metadata block and incur ABE over-
head to decrypt it.

3.5 Defining and Enforcing Access Policies

In Sieve, all user data is private by default, since users
must explicitly share ABE decryption keys that provide
access to data. When a third party requests access per-
missions, e.g., upon the first time that a user visits a
web site, the user generates an access policy for the
site. Policies are defined in terms of attributes, and
the Sieve client provides a GUI which makes it easy
for users to explore which attributes her data contains,
and which objects would be exposed for a given pol-
icy. Policies are simple boolean expressions; for ex-
ample, a web service used by a physician might re-
ceive the policy (fileType=“medicalRecord” AND
year>2010 AND doctor=“John”).

After the user defines a policy, her Sieve client assem-
bles the ABE master secret (§3.7) and generates an ABE
key with the appropriate ACS. The Sieve client then
sends the key and the name of the user’s storage provider
to the remote web service. The message is protected with
TLS [22] to ensure confidentiality and integrity.

Later, when the web service desires to access user data,
the service does not need to interact with the user. Instead,
the service sends an access request directly to the user’s
storage provider. The request contains a list of the at-
tributes which belong to the data of interest. The storage
provider returns the encrypted metadata blocks for the
relevant objects. The web service decrypts the metadata,
revealing the GUIDs for the requested objects as well as
their symmetric encryption keys. The web service uses

5

616 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the GUIDs to fetch the encrypted objects. After decrypt-
ing the objects locally, the service feeds the cleartext data
into an application-specific data pipeline.

Once this happens, Sieve is uninvolved in the applica-
tion workflow. Thus, Sieve is compatible with the current
web ecosystem which uses third party computation and
storage to add value to user data. However, Sieve provides
users with cryptographically strong control over the raw
data that each service receives. Sieve’s access policies
also have three attractive properties:
• The number of policies scales with the number of

web services that a user shares data with, not the
much larger number of objects that she owns.

• Policy generation is decoupled from object genera-
tion. At object creation time, users do not have to
speculate a priori about whom a new object might
be shared with.

• Policies safeguard objects using cryptography, but
users are insulated from the details of key manage-
ment.

Given all of this, we believe that Sieve strikes a good
balance between security, usability, and backwards com-
patibility with current web services.

3.6 Key Revocation

In Sieve, an individual object is encrypted with a symmet-
ric key k; the object’s metadata block (which contains k
and the object’s GUID) is encrypted with ABE attributes
a0, . . . ,aN . A web service caches its ABE key, and it may
also cache symmetric keys and GUIDs, to avoid repeated
fetches and decryptions of metadata blocks. Caching
makes revocation tricky, since a user that wants to revoke
a service’s access rights cannot force the service to delete
cached keys. An honest storage provider can refuse ac-
cess requests from deprivileged third parties, but if the
storage provider is compromised, it can leak data that is
encrypted with ostensibly revoked keys that are still in
the wild.

To protect against storage server compromise, Sieve
revokes keys by re-encrypting user data and metadata
with new keys that are not shared with the newly deprivi-
leged third party. If the storage provider is honest at the
time of re-keying, then even if it is compromised later, it
will never leak data that is encrypted with revoked keys.
Leveraging homomorphic encryption [27], the storage
provider re-encrypts the data locally, using a re-keying
token provided by the user. The storage provider learns
nothing about the old encryption key, the new encryp-
tion key, or the underlying cleartext; the user avoids the
need to download, re-encrypt, and re-upload data from
her personal devices.

In the rest of this section, we first describe how data is
re-encrypted, and then explain how the associated meta-
data is re-encrypted.

Re-encrypting data: To enable storage providers to re-
encrypt data in situ, Sieve employs a key homomorphic
pseudorandom function [15, 50]. We define that function
F as

F(k,x) = H(x)k

where H is a hash function and k is the secret key
associated with each object. F is additively key ho-
momorphic, which means that, for two keys k and k′,
F(k,x) ·F(k′,x) = F(k+ k′,x). All operations described
in this section are done modulo p, where p is a large
prime.

Using F , we define an encryption scheme whose secu-
rity is similar to that of AES. Like AES-CTR, our new
encryption scheme operates on blocks of data, and uses
a random counter to convert a block cipher into a stream
cipher. In our new scheme, the jth ciphertext block c j is
equal to

c j = m j ·F(k,N + j)

where m j is the jth cleartext block, and N is a public
nonce that is equivalent to the initialization vector in AES-
CTR. To decrypt, a third party extracts k from a metadata
block and performs the following calculation:

m j = c j ·F(−k,N + j)

To revoke the ABE key Ka0,...,aN , a user’s Sieve client gen-
erates a re-keying token for each object that is accessible
via Ka0,...,aN . For an object encrypted by k, the re-keying
token is δ =−k+ k′, where k′ represents the new encryp-
tion key for the object. The client sends δ to the storage
provider; this operation is safe because the provider can-
not recover k or k′ from δ . The storage provider uses δ
to compute a new version of each ciphertext block c j:

c j,new = c j ·F(δ ,N + j)

= m j ·F(k,N + j) ·F(−k+ k′,N + j)

= m j ·F(k′,N + j)

In this manner, the storage provider re-encrypts objects
without learning the encryption keys or the underlying
cleartext.

Re-encrypting metadata: Each user device maintains
an integer counter called the epoch counter. The counter
is initialized to zero, and represents the number of revo-
cations that the user has performed. When a user device
generates a new ABE key, Sieve automatically tags the
key with an epoch attribute that is set to the current value
of the epoch counter. The epoch attribute is a standard
ABE attribute; until now, we have elided the epoch at-
tribute in key descriptions, but we explicitly represent it
in this section.

Suppose that a web service possesses the ABE key
Ka0,...,aN ,epoch=i, where i is a whole number. To remove

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 617

the service’s access permissions, the user first re-encrypts
the affected data using homomorphic encryption. The
user then increments the epoch counter to i+1. Next, the
user generates a new metadata block for each re-encrypted
object, inserting the new k. The user encrypts the new
metadata block and uploads it to the storage provider;
the metadata is encrypted using the updated ABE key
Ka0,...,aN ,epoch=i+1. Finally, the user sends the new ABE
key to any non-revoked web services who possess the old
version of the key from epoch i (remember that if the user
gives multiple web services access to a0, . . . ,aN , those
services will receive the same ABE key).

Additional web services may require new ABE keys,
depending on how the attributes in ABE keys over-
lap. For example, consider two web services: the
first possesses K(a0 OR a1) AND epoch=0, and the second has
K(a1 OR a2) AND epoch=0. Both keys grant access to a meta-
data block with attributes a1 AND epoch = 0. To re-
voke the first ABE key, Sieve re-encrypts the metadata
block using the attributes a1 AND epoch = 1. As a re-
sult, the second, non-revoked web service loses access
to the block. Thus, Sieve must give an updated key
K(a1 OR a2) AND epoch=1 to the second service.

When Sieve re-encrypts a data object, the object’s
GUID stays the same, but its symmetric key changes.
This invalidates any cached symmetric keys that are held
by web services. So, when a service receives an updated
ABE key, the service discards any cached symmetric keys
that were decrypted using the old version of the ABE
key. Note that object signatures are unaffected by revo-
cation, because signatures are on cleartext data which is
unmodified by the revocation process.

Additional details: A Sieve user will often possess
multiple devices; for example, a single user might possess
a smartphone, a laptop, and a quantified self device like
a FitBit. If a user has multiple devices, then the device
which initiates a revocation will broadcast the revoked
key and the new epoch counter to the other devices. This
ensures that the other devices do not use an old epoch
number to encrypt new metadata blocks. Network parti-
tions may delay the rate at which devices learn about a
revocation, so when a device receives a revocation notice,
the device proactively re-keys any data and metadata that
it mistakenly encrypted using the revoked key. Each re-
vocation notice has an issue time, which allows devices
to identify which data needs re-keying. Computationally
weak devices like FitBits can delegate re-keying work to
more powerful devices like laptops.

A revocation message is signed by the public key of the
device that issued the message. Devices learn about each
other’s public keys at Sieve initialization time, and later,
when the user adds a new device. By signing revocation
messages, Sieve prevents arbitrary devices from injecting
fraudulent revocation notices.

To the best of our knowledge, Sieve is the first ABE
system which supports full re-keying of both data and
metadata. Prior ABE systems either cannot revoke keys
at all [73], or can revoke access only to metadata [10,
52, 65]; in the latter case, data remains encrypted with
revoked symmetric keys, leaving that data vulnerable to
storage server compromise or negligence.

3.7 Protecting Against Device Loss

At initialization time, Sieve creates an ABE master secret.
Sieve uses the master secret to derive the ABE decryption
keys that are given to web services. Thus, the entire
cryptosystem is compromised if the master secret is lost.

In a straightforward implementation of ABE, each user
device has a copy of the master secret. However, portable
devices like smartphones and tablets are often lost [70],
meaning that a naïve implementation of ABE exposes
the master secret to great risk. Even if users encrypt the
master secret with a password-derived key [68], users
often pick weak passwords [26], giving the master secret
weak protection in practice if a device is lost.

To mitigate the impact of lost devices, Sieve uses
Shamir secret sharing [60] to partition the master secret
across a user’s devices. In a (k,n) sharing scheme, the se-
cret is divided across n devices, and k shares are required
to reconstruct the secret. In the context of Sieve, this
means that when a user device needs to generate an ABE
key, the device must first gather k−1 shares from other
devices. Only then can the device assemble the master
secret, generate the ABE decryption key, send the key
to a web service, and then delete the local copy of the
assembled master secret.

When the master secret is being assembled, Sieve re-
quires the user to explicitly authorize each participating
device to release its local share. By default, Sieve uses
a k of 2, so this authorization scheme is similar to two-
factor authentication [7]—a user cannot generate an ABE
decryption key unless she controls two separate devices
(e.g., a laptop and a smartphone). This means that, if
an attacker finds a single lost device, that device cannot
generate the master secret.

Sieve also employs secret sharing to protect the user’s
RSA signature key. During uploads to the storage
provider, the signature key is used to authenticate the
client-side of the TLS session. Thus, the storage provider
can reject fraudulent upload attempts from arbitrary de-
vices.

Secret sharing protects the ABE master secret and the
user’s signing key. However, a lost device possesses a
device key that is used to authenticate messages from
that device. An attacker with a lost device can try to use
the device key to subvert the revocation protocol (§3.6).
For example, if a malicious lost device can roll back the
epoch to a smaller number, uncompromised devices will

7

618 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

upload new data that can be decrypted with revoked keys.
To prevent attacks like this, Sieve relies on the multi-
factor authentication that is built into the secret sharing
protocol—revocation requires a device to assemble the
master secret, and assembling the master secret requires
the user to possess multiple devices.

To add or remove devices from the secret sharing
scheme, or to change k, the user must invalidate the old
shares. To do so, the user must find k devices to par-
ticipate in a new secret sharing exchange that uses the
updated k and n.

Sieve provides no protections against a subverted de-
vice that a user believes is not lost or malfunctioning. For
example, if a user wants to upload data from the smart-
phone that she is currently using, and the smartphone has
a rootkit, the phone can arbitrarily delete the user’s data,
upload garbage, or improperly revoke keys.

3.8 Minimizing ABE Overheads

Until now, we have assumed that clients perform two
encryptions for every object upload: an ABE encryption
for the metadata block, and a symmetric encryption for
the data block. ABE is a public key cryptosystem, so
ABE operations are much slower than symmetric ones.
Fortunately, Sieve clients can use several techniques to
reduce the frequency of ABE operations.

The simplest approach is for clients to store multiple
objects inside each data block. Creating the associated
metadata block will still require an ABE encryption, but
subsequent writes and reads of the data block will incur
only symmetric cryptography costs—clients can update
the data block in-place, without changing the metadata,
and third parties can cache the data block’s symmetric key
to use during reads. For example, a smartphone with a
GPS unit might use a single data block to store a month’s
worth of location data. The phone appends new location
samples to the current month’s data block, creating a new
data block and metadata block when a new month begins.

Clients can also use more complex storage-based data
structures. For example, as shown in Figure 4, a Sieve
client can use indirect GUIDS in the same way that a Unix
file system uses indirect data pointers. In this scheme, the
top-level GUID for a storage-based data structure refers to
a metadata block that points to a GUID map. The GUID
map is just a data block that contains a symmetric key and
additional GUIDs; those GUIDs point to raw data blocks
that are encrypted with the symmetric key. Once again,
clients eliminate ABE costs by encrypting many objects
with the same symmetric key, and caching that key.

Having many, smaller data blocks instead of fewer,
larger data blocks is useful if the storage provider does not
allow partial block writes (meaning that all writes force

kGUID

k
GUID GUID GUID GUID

Ka ,…, a0 N

Data
k

Data

k
GUID
GUID
GUID k

Data
k

Data

Figure 4: An example of a storage-based data structure.
Using indirect GUIDs, the metadata block at the top
points to a data block that contains only GUIDs. Those
GUIDs point to raw data blocks. Raw data blocks can
also embed pointers, as demonstrated by the simple tree
structure that links the data blocks.

the client to upload at least a block’s worth of data).1

Multiple small blocks are also useful if the symmetric
cipher does not allow updates to random offsets in the
ciphertext.2

A raw data block can also embed GUIDs which refer-
ence other data blocks. This allows a client to build more
complex data structures than flat arrays of data blocks.
For example, Figure 4 shows a simple tree with a single
parent and three children; by convention, the parent of the
tree is the first entry in the GUID map. Each data block
can hold multiple items, but when a block fills up, the
client creates a new data block, adds the associated GUID
to the GUID map, and then updates any internal GUIDs
within preexisting data blocks. A third party whose ABE
key decrypts the metadata block can traverse the tree struc-
ture without additional ABE operations, since all of the
data blocks are encrypted with the same symmetric key.

Each storage-based data structure defines a Python API
for adding and removing objects, as well as traversing
the entire structure. Sieve clients and web services cache
the metadata blocks for storage-based data structures, and
use the Python APIs to interact with the structures. Thus,
Sieve clients and web services are insulated from the low-
level details of GUID maps (although both parties can
access raw storage if desired, and if Sieve’s ABE policies
allow such accesses).

Sieve’s revocation protocol (§3.6) is compatible with
storage-based data structures. When Sieve determines
that a metadata block must be re-keyed, Sieve checks
whether the metadata refers to a storage-based data struc-
ture. If so, Sieve must traverse the structure, identifying

1For example, Amazon’s S3 allows partial reads, but not partial
writes [8].

2Many commonly used block cipher modes, such as CBC and CTR,
do not easily support new writes to random offsets.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 619

GUIDs and re-keying the associated data blocks. Note
that GUID maps are re-encrypted in place, just like any
other data block. The revocation protocol does not change
the GUIDs that are associated with re-keyed data blocks,
so embedded GUIDs inside data blocks remain valid after
re-keying.

Each data block that is referenced by a particular GUID
map is encrypted with the same k. However, Sieve uses
counter-mode encryption [42], and employs a different
counter for each block. Thus, if an attacker learns the
cleartext for one ciphertext block, the attacker does not
have an easier job of decrypting other ciphertext blocks
with the same k.

3.9 Relabeling
In Sieve, a user may relabel an object. For example, a
user can restrict access by adding an additional attribute
to the object. A user can also remove attributes, or swap
one attribute for another.

To implement relabeling, a user’s Sieve client performs
three actions. First, the client replaces the old metadata
block on the storage server with a new one that contains a
new symmetric key and is ABE-encrypted using the new
attributes. Second, the client uses homomorphic encryp-
tion to re-encrypt the object under the new symmetric key
on the storage server. Finally, the client updates storage-
based references to the object, ensuring that the references
adhere to the object’s new access policy. The client can
locate these references because the client knows the old
attributes for the object, the new attributes for the object,
and the attributes for all of the user’s metadata blocks.
Thus, the client can determine which references must
be patched. For example, suppose that a user has two
storage-based data structures S0 and S1; further suppose
that, due to relabeling, an object must move from S0 to
S1. By inspecting the object’s old attributes, the client
determines that the object was originally referenced by S0.
The client homomorphically re-encrypts the object using
symmetric key k′, traverses S0 to remove any references
to the object, and then adds a 〈GUID,k′〉 reference for
the object to S1. Sieve performs the traversals, removals,
and additions using the APIs defined by the storage-based
data structures.

3.10 Discussion
Alternative policy languages: Attribute-based disclo-
sure policies are easy for users to understand, and these
policies naturally map to ABE cryptosystems. However,
ABE cannot express arbitrarily complex policy functions.
Garbled circuits [41] and functional encryption [16] are
Turing complete, but they are prohibitively slow. For ex-
ample, garbled circuits decrypt AES data at a rate that is

four orders of magnitude slower than native AES decryp-
tion [12]. Relative to functional encryption and garbled
circuits, ABE is several orders of magnitude faster.

Paying for storage: In Sieve, each user places her ob-
jects in private cloud storage. Someone must pay for that
storage. One option is for ad networks to pay. In Sieve, ad
networks can be third parties, and they can receive ABE
keys to access user data. Using a micropayment system
like FileTeller [35], advertisers could pay for the right
to collect longitudinal data about a user, and generate
targeted advertisements based on that data. By deferring
user storage costs, advertisers would encourage users to
continue to declassify a subset of their data. Indeed, since
each user now stores all of her data in a single place
instead of multiple locations, ad networks would gain
access to more contextual information than in the current
web ecosystem, even if users choose which objects to
reveal [67]. Thus, Sieve might enable a happy middle
ground in which users gain explicit control over the data
seen by third parties, and third parties willingly subsi-
dize private user storage in return for better contextual
information.

If ad-driven storage subsidies are poorly designed, they
may lead to perverse trade-offs between subsidy amounts
and the required levels of data disclosure. A full study
of such interactions is beyond the scope of this paper.
For now, we merely observe that some users may opt out
of the subsidy system entirely. These users will have to
pay for their own storage, but there is reason to believe
that they would do so. Well-known sites like Pandora,
Slashdot, and OkCupid already allow users to pay a small
monthly fee to remove advertisements, so there is a pre-
existing demographic that is willing to pay money in ex-
change for better privacy. The popularity of open source
applications also demonstrates that developers are willing
to make high quality software without the expectation of
direct payments from users. Thus, we believe that Sieve’s
application model is realistic.

Efficient data importing: In the current web ecosys-
tem, users explicitly submit data to web services, making
it easy for those services to determine when new infor-
mation has been created. In Sieve, users submit new data
to the storage provider. However, user devices know the
tags which are associated with both new data items and
web service ABE keys; thus, when a device uploads an
object of interest to a particular service, the device can
proactively notify the service of the upload.

Storage-based data structures (§3.8) also make it easy
for services to identify new data. For example, using a
storage-based log, user devices can append new data to
the head of the log. A service can cache the GUID and the

9

620 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

symmetric key for the log head, and periodically check
the beginning of the log for new objects.

Anonymity across services: Some users may not want
to be tracked across different web services. For example,
a user might be comfortable sharing data with services
X and Y , but uncomfortable with X knowing how she
interacts with Y , and vice versa. Sieve cannot restrict
what services do once they possess user data, so Sieve
cannot prevent X and Y from pooling their data and trying
to correlate user behavior across both services.

Users can employ various techniques to make tracking
more difficult. For example, proxies like Tor [23] allow
users to hide their IP addresses from web services. Users
can also establish a unique login identity for each web ser-
vice, or lobby web services to use anonymous credential
systems [18]. Unfortunately, Tor and anonymous creden-
tial systems rely on network proxies that hurt application
responsiveness, and seemingly anonymized data sets can
still reveal sensitive user information to machine learning
algorithms [24]. Thus, providing anonymity on the web
is still an important area for future research.

4 Implementation

Our Sieve prototype consists of a Sieve client, a storage
provider daemon, and a Sieve import daemon that is run
by third parties. Each component is written in Python,
and uses PyCrypto [43] to implement RSA and AES.
For ABE operations, we use the libfenc [30] library with
elliptic curves [48] from the Stanford Pairing-Based Cryp-
tography library [45]. To build Sieve’s key homomorphic
symmetric cipher [15], we use the Ed448-Goldilocks el-
liptic curve library [31].

The storage provider daemon uses BerkeleyDB [53]
to store encrypted data blocks, and MongoDB [49] to
store metadata blocks. For each data block, the key is a
GUID, and the value is a symmetrically encrypted object.
For a metadata block, the key is a set of cleartext ABE
attributes, and the value is an ABE-encrypted GUID and
symmetric key. Metadata blocks are indexed by their
attribute fields, and all metadata blocks for a particular
user are stored in a MongoDB collection.

The JavaScript code in a web site interacts with the
local Sieve client using a small RPC library that we pro-
vide. When a web site initially requests access to a user’s
data, the site’s JavaScript sends an XMLHttpRequest to
a localhost webserver run by the Sieve client. The Sieve
client then displays a GUI that allows the user to define
an access policy for the site, and send the associated ABE
key to the site’s web server.

5 Evaluation

In this section, we explore one high-level question:
is Sieve practical? To answer this question, we inte-
grated Sieve with two applications. The first was Open
mHealth [66], an open-source web service that allows
users to analyze their health data. We also integrated
Sieve with Piwigo [3], an open-source online photo man-
ager. We show that the integrations were straightforward,
and that the end-to-end application pipelines can handle
realistic workloads.

All experiments ran on a 10-core machine with 2.4
GHz Intel Xeon E7-8870 CPUs and 256 GB of RAM. We
ran each experiment 50 times, and we report the average
(standard deviations were small). Sieve used 2048 bit
RSA with SHA256 to sign user objects. ABE operations
used 224-bit MNT curves [48]. To symmetrically encrypt
objects, Sieve used 128-bit AES in CTR mode, or Ed448-
Goldilocks elliptic curves in randomized counter mode.
The latter cipher is key homomorphic, but the former is
not; by comparing Sieve’s performance with these ciphers,
we could measure the cost of supporting key revocation
(§3.6). All web servers ran on the test machine’s loop-
back interface, to minimize network latency and focus on
Sieve’s cryptographic overheads.

All GUIDs were 64 bits long. Thus, a metadata block
which contained a GUID and an AES key was 24 bytes in
size, whereas a metadata block which contained a GUID
and an Ed448 key was 64 bytes long.

5.1 Case Studies

Open mHealth: Open mHealth allows users to upload
medical data to a web server that will analyze the data
and provide explanatory visualizations. To integrate Sieve
with Open mHealth, we first modified the Open mHealth
client to upload data via the Sieve client instead of di-
rectly to the Open mHealth server. We then ran a Sieve
import daemon on the Open mHealth web server, config-
uring the daemon with the data schema used by the Open
mHealth analytics engine. These modifications required
approximately 200 lines of code to be changed in the
Open mHealth platform.

To test the end-to-end performance of the application
pipeline, we used Open mHealth’s data generator to create
a week’s worth of health data. The data included infor-
mation like blood pressure, weight, physical activity, and
heart rate. Each day had approximately 14 data points.
For each data point, the Sieve client added attributes like
the date that the sample was collected, the name of the
associated user, and the type of data represented by the
sample. The Sieve client used a single storage-based data
structure to store the samples for an entire week.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 621

(a) Encryption speed: ABE and Ed448 in randomized counter mode. (b) Encryption speed: ABE and AES in CTR mode.

Figure 5: Encryption throughput for Sieve, as a function of 1) the size of the data to symmetrically encrypt, 2) the
percentage of symmetric data encryptions which also require the ABE encryption of a metadata block, and 3) whether
the cipher is AES or key homomorphic Ed448. All experiments assume that each metadata block has five attributes, and
each ABE key has 10 attributes. Performance trends for decryption are similar.

The cost for the user to upload the first data point at
the beginning of a week was 0.56 seconds; the cost was
dominated by ABE encryption. Uploading subsequent
data points proceeded at the throughput of the symmetric
cipher, requiring 17.1 ms per data point for AES, and 38.5
ms for Ed448.

The mHealth server used the Sieve import daemon to
download user data. If the server had no cached GUIDs or
symmetric keys, then importing a week of data required
0.49 seconds with AES and 0.78 seconds with Ed448. In
this scenario, the server had to download the metadata
block, decrypt it with ABE, download the data block, and
then decrypt that block using a symmetric cipher. If the
server possessed cached GUIDs and symmetric keys, then
importing a week of data took only 135 ms with AES,
and 469 ms with Ed448.

Piwigo: The standard Piwigo client allows users to up-
load photos from local storage to the Piwigo web service.
We modified the client to upload data to a Sieve storage
provider, and we modified the server-side Piwigo code
to fetch user data via the Sieve import daemon. These
modifications required approximately 250 lines of new
Piwigo code.

To test the end-to-end performance, we uploaded a
375 KB photo which had three tags (location, date, and
username). If the Piwigo client used AES, the upload
required 0.57 seconds if a new, ABE-encrypted metadata
block had to be generated. If the client used a storage-
based list to avoid the creation of a new metadata block,
the upload cost was only 0.06 seconds.

As we explain in more detail in Section 5.2, current
Ed448 implementations are slower and less optimized
than equivalent AES implementations. Thus, when ap-
plications use Ed448, the upload time for a large object
is dominated by Ed448 encryption costs, regardless of
whether ABE costs are incurred. If the Piwigo client used
Ed448, the upload cost for a 375 KB photo was 6.1 sec-
onds if the client also had to generate a new metadata
block. By using storage-based data structures to avoid
ABE operations, the upload cost dropped to 4.2 seconds.
Note that, from the user’s perspective, uploads are asyn-
chronous. Thus, multi-second upload times are not in the
critical path of user-facing activities.

Download times for the Piwigo server demonstrated
similar trends. With cached GUIDs and symmetric keys,
downloading a photo required 0.14 seconds using AES,
and 5.9 seconds using Ed448. Without cached metadata,
a download required 0.44 seconds with AES, and 6.3
seconds with Ed448.

Server-side per-core throughput: The storage dae-
mon uses BerkeleyDB to store data objects. The dae-
mon logic is simple, meaning that the daemon can import
data at the raw speed of the BerkeleyDB write path. For
Open mHealth, the write speed was roughly 50 MB/s per
server core, which represented 16,500 users uploading a
week’s worth of data every second. For Piwigo, the write
speed was roughly 200 MB/s per core, corresponding to
550 photo uploads per second (assuming a photo size of
375 KB). Write throughput was better for Piwigo due to
BerkeleyDB handling large writes faster than small ones.

11

622 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Operation Time

Generating 10 attribute key 0.46 sec
Generating 20 attribute key 0.64 sec
Re-encrypting a metadata block (10 attrs) 0.63 sec
Re-encrypting a metadata block (20 attrs) 0.91 sec
Re-key 100 KB data block 0.66 sec

Figure 6: Computational overheads for key generation
and revocation.

We also tested per-core throughput for the import dae-
mon. For Open mHealth using AES, a single core could
download and decrypt a week’s worth of data for 420
users in one minute; with Ed448, a core could import 70
users’ data in one minute. Given a photo size of 375 KB,
Piwigo was able to import 235 AES-encrypted photos or
14 Ed448-encrypted photos in one minute. In all experi-
ments, 20% of object imports required the download and
ABE-decryption of a metadata block. We believe that
20% is high, since an arbitrary number of objects can be
referenced by a single metadata block.

5.2 Microbenchmarks

Encryption speed: Sieve requires clients to symmetri-
cally encrypt each data object before uploading it. Some
fraction of uploads will also require clients to ABE-
encrypt a metadata block. Figure 5 quantifies the per-
formance of ABE and the symmetric ciphers. For 10 KB
objects, pure ABE encryption throughput is 1.1 KB/s,
whereas pure Ed448 throughput is 23.8 KB/s and pure
AES throughput is 43.5 KB/s. Although clients can per-
form data uploads asynchronously, in the background, the
computational costs for ABE are still quite high. Thus,
hybrid encryption (§3.4) and the optimizations from Sec-
tion 3.8 are crucial for minimizing the number of ABE
operations.

For 1 MB objects, the performance gap between AES
and Ed448 grows–AES throughput is 12 MB/s, but Ed448
throughput is only 120 KB/s. However, Ed448 is a new
elliptic curve, with immature implementations relative to
AES. We expect Ed448’s performance to improve as its
implementations receive more optimization effort.

Key generation and revocation: Figure 6 describes
the costs that Sieve pays for generating new ABE keys,
re-encrypting metadata blocks, and re-keying a 100 KB
data block. The creation of new ABE keys is rare, and
occurs only when a new service requests access permis-
sions, or an old service receives modified permissions
(possibly as the result of an epoch number increasing af-
ter a revocation (§3.6)). During revocation, the metadata

blocks associated with the revoked ABE key must be re-
encrypted; however, those metadata blocks will typically
point to a much larger number of raw data blocks (§3.8),
so the overall re-encryption cost of revocation is governed
by the speed with which raw data can be re-keyed.

Attribute matching: When the storage provider re-
ceives an access request from a third party, the storage
provider must locate the metadata blocks whose attributes
match those of the access request. Sieve makes the match-
ing process fast by storing metadata blocks in a database
that indexes those blocks by their attributes.

Due to space constraints, we omit a full description
of matching performance. However, the results are un-
surprising, since modern databases are good at building
indices. For example, in one experiment, we injected a
million metadata blocks into MongoDB; each metadata
block had 10 randomly selected attributes from a uni-
verse of 35 possible attributes. Then, we submitted access
queries in which each query contained 5 random attributes
joined with a random set of ANDs and ORs. Each query
took 0.13 ms to complete on average.

Secret-sharing: Sieve partitions the ABE master key
and the RSA signing key across multiple devices, ensuring
that a lost or stolen device will not store a full copy of
sensitive cryptographic information. The secret sharing
protocol is cheap: ignoring network latency, and assuming
that k = 2 and n = 5, splitting a 2048 bit object like an
RSA key requires 0.04 ms, and reconstructing that key
requires 0.09 ms.

6 Related Work

Untrusted servers: Browser extensions like Shad-
owCrypt [32] transparently encrypt the data that a browser
sends to unmodified cloud servers. Intentionally en-
crypted cloud stores like SUNDR [40], Depot [47], and
SPORC [25] provide stronger consistency semantics in
the face of server-side misbehavior; application logic runs
solely on the client-side, over cleartext data, with clients
exchanging encrypted data with servers. Other systems
that store encrypted data on servers and run application
logic on the client-side include BStore [20] and Dep-
Sky [13]. All of these systems prevent data leakage due to
server compromise or malice. However, these systems are
incompatible with applications that leverage server-side
computation to add value to raw user data. In contrast,
Sieve is totally compatible with server-side computation.

In CryptDB [56], a web application consists of clients,
an application server, and a back-end database. The
database contains only encrypted data. Using SQL-aware
encryption, the application server can execute queries

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 623

over the encrypted data without revealing cleartext to
the database. However, the application server does see
cleartext, and can leak user data if compromised. My-
lar [57] eliminates the need for an application server, but
restricts the encrypted server-side computation to key-
word searches. In both CryptDB and Mylar, applications
control how user data is shared. In Sieve, user data is
decoupled from applications, with users selectively dis-
closing individual objects to third parties.

Privly [5] allows users to upload encrypted data to
a storage server, and share hyperlinks to that data. The
hyperlinks can be embedded in sites like a Facebook page,
but the hyperlinks reveal no cleartext to the owner of
the embedding site. Users register their decryption keys
with Privly’s browser extension. Later, when the user
visits a page and her extension finds a Privly hyperlink,
the extension transparently fetches the encrypted data,
decrypts it, and rewrites the page’s HTML, replacing the
Privly link with the cleartext data. Privly does not support
the server-side computation that is enabled by Sieve.

ABE-protected storage: Persona [10], Priv.io [73],
and Cachet [52] use ABE to selectively expose encrypted
user data. In Persona and Priv.io, each user keeps her
data in private cloud storage; in Cachet, data is stored in
a peer-to-peer, distributed hash table. Unlike Sieve, these
systems cannot delegate access to arbitrary third party
services. Persona, Priv.io, and Cachet also trust each de-
vice for the lifetime of the system, whereas Sieve can
recover from the loss of individual devices. Finally, Sieve
provides a concrete revocation protocol that safeguards
user data if storage servers are compromised. Priv.io has
no revocation strategy, and Persona suggests re-keying
data, but does not provide a specific mechanism. Cachet
does implement revocation, but requires a trusted proxy
which must interpose on all decryption operations, even
in the common case that revocation is not underway [36].
Cachet’s revocation scheme also does not re-encrypt data
on storage providers; thus, objects that are encrypted with
revoked keys are vulnerable to subsequent compromises
of the storage provider.

Predicate encrypted storage: GORAM [46] allows
users to selectively share their cloud data with other users.
Clients place encrypted data on servers so that servers
cannot inspect it, and clients hide their access patterns
from servers using ORAM shuffling techniques [44]. Like
Sieve, GORAM tags data objects with attributes; unlike
Sieve, GORAM uses attribute-hiding predicate encryp-
tion [38, 61] to prevent storage servers from learning
attribute values.

GORAM’s use of oblivious RAM and predicate encryp-
tion provides stronger security than Sieve, but there is a

performance cost. To hide data access patterns from stor-
age servers, GORAM clients must perform O(polylog(n))
additional accesses. Hiding attribute values using predi-
cate encryption substantially increases GORAM’s cipher-
text size, and slows both encryption and decryption.

GORAM is also less user-friendly than Sieve. For
example, GORAM forces users to determine a priori the
maximum number of principals that can be mentioned in
access control lists; if this list changes, a user must re-
initialize her database. GORAM also has no revocation
scheme, and no protocol to recover from lost user devices.

Access delegation schemes: OAuth [37] is a widely
used protocol for sharing cloud data across different web
services. OAuth policies are written by web services, not
by users, so users lack true authority over their access
controls. OAuth also does not leverage cryptography to
protect user storage or enforce access policies. As a result,
users have no strong assurances about how their data is
exposed. OAuth is also vulnerable to various kinds of
data leaks [33, 64]. AAuth [65] is an extension of OAuth
which uses cryptography to delegate access to encrypted
data. However, AAuth relies on the existence of various
trusted parties to enforce access policies. In Sieve, users
generate their own policies and distrust the storage server
and third party applications. Sieve’s policy language is
also richer than AAuth’s fixed policy schemas.

The OAuth protocol generates a token that principals
use to access sensitive data. Web services define many
other types of “bearer tokens.” HTTP cookies [11] are
a classic example. Macaroons [14] improve upon cook-
ies, using chained HMACs to verify and attenuate capa-
bilities as a macaroon is passed between multiple par-
ties. Cookies and macaroons vouch for a principal’s
post-authorization status, whereas Sieve deals with the
authorization itself.

7 Conclusions

Sieve is a new access control system that allows users to
selectively expose their private cloud data to third party
web services. Sieve uses attribute-based encryption to
translate human-understandable access policies into cryp-
tographically enforceable restrictions. Unlike prior solu-
tions for encrypted storage, Sieve is compatible with rich,
legacy web applications that require server-side compu-
tation. Sieve is also the first ABE system that protects
against device loss and supports full revocation of both
data and metadata. As a proof of concept, we integrated
Sieve with two open-source web services, demonstrating
that Sieve is a practical approach for restricting access to
sensitive user data.

13

624 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Acknowledgments

We thank our anonymous reviewers and our shepherd
Brad Karp for their useful feedback. This work was
partially supported by an NSF Graduate Research Fel-
lowship (Grant No. 2013135952) and by NSF awards
CNS-1053143 and CNS-1413920.

References

[1] Instagram. http://www.instagram.com.
[2] Lark. http://www.web.lark.com.
[3] Piwigo. http://piwigo.org/.
[4] Reddit. https://www.reddit.com.
[5] Share priv(ate).ly. https://priv.ly.
[6] Stack overflow. http://www.stackoverflow.

com.
[7] F. Aloul, S. Zahidi, and W. El-Hajj. Two factor

authentication using mobile phones. In Proceed-
ings of the ACS/IEEE International Conference on
Computer Systems and Applications, pages 641–644,
2009.

[8] Amazon. Put object. http://docs.aws.amazon.
com/AmazonS3/latest/API/RESTObjectPUT.
html.

[9] S. D. Applegate. Social engineering: Hacking the
wetware! Information Security Journal: A Global
Perspective, 18(1):40–46, Jan. 2009.

[10] R. Baden, A. Bender, N. Spring, B. Bhattachar-
jee, and D. Starin. Persona: an online social net-
work with user-defined privacy. ACM SIGCOMM
Computer Communication Review, 39(4):135–146,
2009.

[11] A. Barth. HTTP state management mechanism. RFC
6265, Internet Engineering Task Force, Apr. 2011.

[12] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rog-
away. Efficient garbling from a fixed-key blockci-
pher. In Proceedings of the 34th IEEE Symposium
on Security and Privacy, pages 478–492, San Fran-
cisco, CA, May 2013.

[13] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: dependable and secure storage
in a cloud-of-clouds. ACM Transactions on Storage,
9(4):12, 2013.

[14] A. Birgisson, J. G. Politz, U. Erlingsson, A. Taly,
M. Vrable, and M. Lentczner. Macaroons: Cookies
with contextual caveats for decentralized authoriza-
tion in the cloud. In Proceedings of the 2014 Annual
Network and Distributed System Security Sympo-
sium, San Diego, CA, Feb. 2014.

[15] D. Boneh, K. Lewi, H. Montgomery, and A. Raghu-

nathan. Key homomorphic PRFs and their appli-
cations. In Proceedings of the 33rd Annual Inter-
national Cryptology Conference (CRYPTO), pages
410–428. Santa Barbara, CA, Aug. 2013.

[16] D. Boneh, A. Sahai, and B. Waters. Functional
encryption: Definitions and challenges. In Proceed-
ings of the 8th IACR Theory of Cryptography Con-
ference (TCC), pages 253–273, Providence, RI, Mar.
2011.

[17] D. Brickley and L. Miller. FOAF vocabulary spec-
ification 0.99. http://xmlns.com/foaf/spec/,
Jan. 2014.

[18] J. Camenisch and A. Lysyanskaya. An efficient
system for non-transferable anonymous credentials
with optional anonymity revocation. In Proceed-
ings of the 20th Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), pages 93–118, Innsbruck,
Austria, May 2001.

[19] T. Chajed, J. Gjengset, J. van den Hooff, M. F.
Kaashoek, J. Mickens, R. Morris, and N. Zeldovich.
Amber: Decoupling user data from web applications.
In Proceedings of the 15th Workshop on Hot Topics
in Operating Systems (HotOS), Kartause Ittingen,
Switzerland, May 2015.

[20] R. Chandra, P. Gupta, and N. Zeldovich. Separating
web applications from user data storage with BStore.
In Proceedings of the USENIX Conference on Web
Application Development, pages 1–14, Boston, MA,
June 2010.

[21] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1
concepts and abstract syntax. https://www.w3.
org/TR/rdf11-concepts/, Feb. 2014.

[22] T. Dierks and E. Rescorla. The transport layer secu-
rity (TLS) protocol. RFC 5246, Network Working
Group, Aug. 2008.

[23] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings
of the 13th Usenix Security Symposium, pages 303–
320, San Diego, CA, Aug. 2004.

[24] C. Dwork. Differential privacy. In Encyclope-
dia of Cryptography and Security, pages 338–340.
Springer, 2011.

[25] A. J. Feldman, W. P. Zeller, M. J. Freedman, and
E. W. Felten. SPORC: Group collaboration using
untrusted cloud resources. In Proceedings of the
9th Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct.
2010.

[26] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In Proceedings of the

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 625

2nd Symposium On Usable Privacy and Security,
pages 44–55, Pittsburgh, PA, July 2006.

[27] C. Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

[28] D. K. Gifford, P. Jouvelot, M. Sheldon, and
J. O’Toole. Semantic file systems. In Proceedings
of the 13th ACM Symposium on Operating Systems
Principles (SOSP), pages 16–25, Pacific Grove, CA,
Oct. 1991.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the
13th ACM Conference on Computer and Communi-
cations Security (CCS), pages 89–98, Alexandria,
VA, Oct.–Nov. 2006.

[30] M. Green, A. Akinyele, and M. Rushanan. libfenc:
The functional encryption library. https://code.
google.com/p/libfenc/.

[31] M. Hamburg. Ed448-goldilocks, a new elliptic
curve. Cryptology ePrint Archive, Report 2015/625,
June 2015. http://eprint.iacr.org/.

[32] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song.
ShadowCrypt: Encrypted web applications for ev-
eryone. In Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS),
pages 1028–1039, Scottsdale, AZ, Nov. 2014.

[33] E. Homakov. How we hacked Facebook with
OAuth2 and Chrome bugs, February 2013. http:
//homakov.blogspot.com/2013/02/hacking-
facebook-with-oauth2-and-chrome.html.

[34] Intuit. Mint. http://www.mint.com.
[35] J. Ioannidis, S. Ioannidis, A. Keromytis, and V. Pre-

velakis. Fileteller: Paying and getting paid for file
storage. In Proceedings of the 6th International Fi-
nancial Cryptography Conference, pages 282–299,
Southampton, Bermuda, Mar. 2002.

[36] S. Jahid, P. Mittal, and N. Borisov. EASiER:
Encryption-based access control in social networks
with efficient revocation. In Proceedings of the 6th
ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 411–
415, Hong Kong, Mar. 2011.

[37] M. Jones and D. Hardt. The OAuth 2.0 authorization
framework: Bearer token usage. RFC 6750, Internet
Engineering Task Force, Oct. 2012.

[38] J. Katz, A. Sahai, and B. Waters. Predicate en-
cryption supporting disjunctions, polynomial equa-
tions, and inner products. In Proceedings of the
27th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EU-
ROCRYPT), pages 146–162. Istanbul, Turkey, Apr.

2008.
[39] J. Leskovec, N. Milic-Frayling, M. Grobelnik, and

J. Leskovec. Extracting summary sentences based
on the document semantic graph. Technical Report
MSR-TR-2005-07, Microsoft Research, Jan. 2005.

[40] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), pages 91–106,
San Francisco, CA, Dec. 2004.

[41] Y. Lindell and B. Pinkas. A Proof of Security of
Yao’s Protocol for Two-Party Computation. Journal
of Cryptology, 22(2):161–188, 2009.

[42] H. Lipmaa, P. Rogaway, and D. Wagner. Ctr-mode
encryption. In Proceedings of the 1st NIST Work-
shop on Modes of Operation, Baltimore, MD, Oct.
2000.

[43] D. Litzenberger. PyCrypto: The Python cryptog-
raphy toolkit, June 2014. https://www.dlitz.
net/software/pycrypto/.

[44] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova,
and J. Schiffman. Shroud: ensuring private access
to large-scale data in the data center. In Proceedings
of the 11th USENIX Conference on File and Storage
Technologies (FAST), pages 199–213, San Jose, CA,
Feb. 2013.

[45] B. Lynn. On the implementation of pairing-based
cryptosystems. PhD thesis, Stanford University,
2007.

[46] M. Maffei, G. Malavolta, M. Reinert, and
D. Schröder. Privacy and access control for out-
sourced personal records. In Proceedings of the
36th IEEE Symposium on Security and Privacy, San
Jose, CA, May 2015.

[47] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud stor-
age with minimal trust. In Proceedings of the 9th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Vancouver, Canada, Oct. 2010.

[48] A. Miyaji, M. Nakabayashi, and S. Takano. New
explicit conditions of elliptic curve traces for FR-
reduction. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sci-
ences, E84-A(5):1234–1243, 2001.

[49] MongoDB. MongoDB. https://www.mongodb.
org/.

[50] M. Naor, B. Pinkas, and O. Reingold. Distributed
pseudo-random functions and KDCs. In Proceed-
ings of the 18th Annual International Conference
on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 327–346, Prague,

15

626 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Czech Republic, May 1999.
[51] I. Neamtiu, J. Bardin, M. R. Uddin, D.-Y. Lin, and

P. Bhattacharya. Improving cloud availability with
on-the-fly schema updates. In Proceedings of the
19th International Conference on Management of
Data, pages 24–34, 2013.

[52] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and
A. Kapadia. Cachet: A decentralized architecture for
privacy-preserving social networking with caching.
In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technolo-
gies (CoNEXT), pages 337–348, Nice, France, Dec.
2012.

[53] Oracle. BerkeleyDB. http://www.oracle.
com/technetwork/database/database-
technologies/berkeleydb/overview/index.
html.

[54] OWASP. Cross-site scripting (XSS).
https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS).

[55] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang,
and L. Zhuang. Enabling security in cloud storage
SLAs with CloudProof. In Proceedings of the 2011
USENIX Annual Technical Conference, Portland,
OR, June 2011.

[56] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidential-
ity with encrypted query processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), pages 85–100, Cascais, Portugal,
Oct. 2011.

[57] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zel-
dovich, M. F. Kaashoek, and H. Balakrishnan. Build-
ing web applications on top of encrypted data us-
ing Mylar. In Proceedings of the 11th Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), pages 157–172, Seattle, WA, Apr.
2014.

[58] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vin-
gralek. Online, asynchronous schema change in F1.
Proceedings of the VLDB Endowment, 6(11):1045–
1056, 2013.

[59] E. A. Rundensteiner, A. Koeller, and X. Zhang.
Maintaining data warehouses over changing infor-
mation sources. Communications of the ACM,
43(6):57–62, 2000.

[60] A. Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, 1979.

[61] E. Shen, E. Shi, and B. Waters. Predicate privacy in
encryption systems. In Proceedings of the 6th IACR
Theory of Cryptography Conference (TCC), pages

457–473, San Francisco, CA, Mar. 2009.
[62] R. P. Singh, C. Shen, A. Phanishayee, A. Kansal,

and R. Mahajan. A case for ending monolithic apps
for connected devices. In Proceedings of the 15th
Workshop on Hot Topics in Operating Systems (Ho-
tOS), Kartause Ittingen, Switzerland, May 2015.

[63] C. A. Soules and G. R. Ganger. Toward automatic
context-based attribute assignment for semantic file
systems. Technical Report CMU-PDL-04-105, Par-
allel Data Laboratory, Carnegie Mellon University,
June 2004.

[64] S.-T. Sun and K. Beznosov. The devil is in the
(implementation) details: an empirical analysis of
OAuth SSO systems. In Proceedings of the 19th
ACM Conference on Computer and Communica-
tions Security (CCS), pages 378–390, Raleigh, NC,
Oct. 2012.

[65] A. Tassanaviboon and G. Gong. OAuth and ABE
based authorization in semi-trusted cloud comput-
ing: AAuth. In Proceedings of the 2nd Interna-
tional Workshop on Data Intensive Computing in
the Clouds, pages 41–50, 2011.

[66] Tides Center. Open mHealth. http://www.
openmhealth.org/.

[67] V. Toubiana, A. Narayanan, D. Boneh, H. Nis-
senbaum, and S. Barocas. Adnostic: Privacy pre-
serving targeted advertising. In Proceedings of the
17th Annual Network and Distributed System Secu-
rity Symposium, San Diego, CA, Feb.–Mar. 2010.

[68] M. S. Turan, E. Barker, W. Burr, and L. Chen. Rec-
ommendation for password-based key derivation.
Technical Report SP 800-132, NIST, Dec. 2010.

[69] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying page load perfor-
mance with WProf. In Proceedings of the 10th
Symposium on Networked Systems Design and Im-
plementation (NSDI), pages 473–485, Lombard, IL,
Apr. 2013.

[70] Y. Wang, K. Streff, and S. Raman. Smartphone
security challenges. IEEE Computer, 45(12):52–58,
Dec. 2012.

[71] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bob-
tail: Avoiding long tails in the cloud. In Proceedings
of the 10th Symposium on Networked Systems De-
sign and Implementation (NSDI), pages 329–341,
Lombard, IL, Apr. 2013.

[72] Yahoo. Flickr. https://flickr.com.
[73] L. Zhang and A. Mislove. Building confederated

web-based services with Priv.io. In Proceedings of
the 1st ACM Conference on Online Social Networks,
pages 189–200, 2013.

16

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 627

Earp: Principled Storage, Sharing, and Protection for Mobile Apps

Yuanzhong Xu Tyler Hunt Youngjin Kwon Martin Georgiev
Vitaly Shmatikov† Emmett Witchel

The University of Texas at Austin †Cornell Tech

Abstract
Modern mobile apps need to store and share structured

data, but the coarse-grained access-control mechanisms in
existing mobile operating systems are inadequate to help
apps express and enforce their protection requirements.

We design, implement, and evaluate a prototype of
Earp, a new mobile platform that uses the relational model
as the unified OS-level abstraction for both storage and
inter-app services. Earp provides apps with structure-
aware, OS-enforced access control, bringing order and
protection to the Wild West of mobile data management.

1 Introduction

Modern mobile apps communicate and exchange data
with other apps almost as much as they communicate and
exchange data with the operating system. Many popular
apps now occupy essential places in the app “ecosystem”
and provide other apps with services, such as storage,
that have traditionally been the responsibility of the OS.
For example, an app may rely on Facebook to authenti-
cate users, Google Drive to store users’ data, WhatsApp
to send messages to other users, Twitter to publicly an-
nounce users’ activities, etc.

Traditionally, operating systems have provided abstrac-
tions and protection for storing and sharing data. The
data model in UNIX [34] is byte streams, stored in files
protected by owner ID and permission bits and accessed
via file descriptors. UNIX has a uniform access-control
model for both storage and inter-process communication:
users specify permissions on files, pipes, and sockets, and
the OS dynamically enforces these permissions.

Modern mobile platforms provide higher-level abstrac-
tions to manage structured data, and relational databases
have become the de facto hubs for apps’ internal data [40].
These abstractions, however, are realized as app-level li-
braries. Platform-level access control in Android and iOS
inherits UNIX’s coarse-grained model and has no visibil-
ity into the structure of apps’ data. Today, access control

in mobile platforms is a mixture of basic UNIX-style
mechanisms and ad hoc user-level checks spread through-
out different system utilities and inter-app services. Apps
present differing APIs with ad hoc access-control seman-
tics, different from those presented by the OS or other
apps. This leaves apps without a clear and consistent
model for managing and protecting access to users’ data
and leads to serious security and privacy vulnerabilities
(see §2).

In this paper, we explore the benefits and challenges of
using the relational model as the unified, platform-level
abstraction of structured data. We design, implement, and
evaluate a prototype of Earp, a new mobile platform that
uses this model for both storage and inter-app services,
and demonstrate that it provides a principled, expressive,
and efficient foundation for the data storage, data sharing,
and data protection needs of modern mobile apps.

Our contributions. First, we demonstrate how apps can
use the relational model not just to define data objects
and relationships, but also to specify access rights directly
as part of the data model. For example, an album may
contain multiple photos, each of which has textual tags;
the right to access an album confers the right to access
every photo in it and, indirectly, all tags of these photos.

Second, we propose a uniform, secure data-access ab-
straction and a new kind of reference monitor that has
visibility into the structure of apps’ data and can thus
enforce fine-grained, app-defined access-control policies.
This enables apps to adhere to the principle of least privi-
lege [36] and expose some, but not all, of users’ private
data to other apps. App developers are thus relieved of
the responsibility for writing error-prone access-control
code. The unifying data-access abstraction in Earp is a
subset descriptor. Subset descriptors are capability-like
handles that enable the holder to operate on some rows
and columns of a database, subject to restrictions defined
by the data owner. Our design preserves efficiency of both
querying and access control.

628 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Third, we implement and evaluate a prototype of Earp
based on Firefox OS, a browser-based mobile platform
where all apps are written in Web languages such as
HTML5 and JavaScript. Apps access data and system
resources via the trusted browser runtime, which acts as
the OS from the app’s viewpoint. The browser-based de-
sign enables Earp to conveniently add its data abstractions
and access-control protections to the platform layer while
maintaining support for legacy APIs.

Fourth, to demonstrate how apps benefit from Earp’s
structured access control, we adapt or convert several
essential utilities and apps. We show how local apps,
such as the photo manager, contacts manager, and email
client, can use Earp to impose fine-grained restrictions
on other apps’ access to their data—for example, elide
sensitive data fields, support private photos and albums,
filter contacts based on categories, or temporarily grant
access to an attachment file. We also show how remote
services, such as Google Drive and an Elgg-based social-
networking service, can implement local proxy apps that
use Earp to securely share data with other apps without
relying on protocols like OAuth.

We hope that by providing efficient, easy-to-use stor-
age, sharing, and protection mechanisms for structured
data, Earp raises the standards that app developers expect
from their mobile platforms and delivers frontier justice
to the insecure, ad hoc data management practices that
plague existing mobile apps.

2 Inadequacy of existing platforms

In today’s mobile ecosystem, many apps act as data “hubs.”
They store users’ data such as photos and contacts, make
this data available to other apps, and protect it from unau-
thorized access. The data in question is often quite com-
plex, involving multiple, inter-related objects—for ex-
ample, a photo gallery is a collection of photos, each of
which is tagged with user’s notes.

Inadequate protection for storage. Existing platforms
do not provide adequate support for mobile apps’ data
management. Without system abstractions for storing
and protecting data, app developers roll their own and
predictably end up compromising users’ privacy. For
example, Dropbox on Android stores all files in public
external storage, giving up all protection. WhatsApp on
iOS automatically saves received photos to the system’s
gallery. When the email app on Firefox OS invokes a
document viewer to open an attachment, the attachment
is copied to the SD card shared by all apps.

A systematic study [54] in 2013 discovered 2,150 An-
droid apps that unintentionally make users’ data—SMS
messages, private contacts, browsing history and book-
marks, call logs, and private information in instant mes-

saging and social apps (e.g., the most popular Chinese
social network, Sina Weibo)—available to any other app.

Inadequate protection for inter-app services. Ser-
vices and protocols that involve multiple apps have suf-
fered from serious security vulnerabilities and logic
bugs [27, 44, 48, 49, 51]. While vulnerabilities in indi-
vidual apps can be patched, the root cause of this sorry
state of affairs is the inadequacy of the protection mech-
anisms on the existing mobile platforms, which cannot
support the principle of least privilege [36].

Existing platforms provide limited facilities for sharing
data via inter-app services. Android apps can use content
providers to define background data-sharing services with
a database-like API, where data are located via URIs. An-
droid’s reference monitor enforces only coarse-grained
access control for content providers based on static per-
missions specified in app manifests [2]. Even though
permissions can be specified for particular URI paths,
they can only be used for static, coarse categories (e.g.,
images or audio in Media Content Provider) because it
is impossible to assign different permissions to dynam-
ically created objects, nor enforce custom policies for
different client apps. If a service app needs fine-grained
protection, writing the appropriate code is entirely the app
developer’s responsibility. Unsurprisingly, access control
for Android apps is often broken [38, 54].

Android also has a URI permission mechanism [1]
for fine-grained, temporary access granting. The access-
control logic still resides in the application itself, making
URI permissions difficult to use for programmatic access
control. Android mostly uses them to involve the user in
access-control decisions, e.g., when the user clicks on a
document and chooses an app to receive it.

In iOS, apps cannot directly share data via the file
system or background services. For example, to share a
photo, apps either copy it to the system’s gallery, or use
app extensions [24] which require user involvement (e.g.,
using a file picker) for every operation.

Without principled client-side mechanisms for pro-
tected sharing, mobile developers rely on server-side au-
thentication protocols such as OAuth that give third-party
apps restricted access to remote resources. For example,
Google issues OAuth tokens with restricted access rights,
and any app that needs storage on Google Drive attaches
these tokens to its requests to Google’s servers [18, 19].
Management of OAuth tokens is notoriously difficult and
many apps badly mishandle them [48], leaving these apps
vulnerable to impersonation and session hijacking due
to token theft, as well as identity misbinding and ses-
sion swapping attacks such as cross-site login request
forgery [44]. In 2015, a bug in Facebook’s OAuth pro-
tocol allowed third-party apps to access users’ private
photos stored on Facebook’s servers [14].

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 629

Inadequate protection model. Protection mechanisms
on the existing platforms are based on permissions at-
tached to individual data objects. These objects are typi-
cally coarse-grained, e.g., files. Even fine-grained permis-
sions (e.g., per-row access control lists in a database) do
not support the protection requirements of modern mobile
apps. The fundamental problem is that data objects used
by these apps are inter-related, thus any inconsistency in
permissions breaks the semantics of the data model.

Per-object permissions fail to support even simple, com-
mon data sharing patterns in mobile apps. Consider a
photo collection where an individual photo can be ac-
cessed directly via the camera roll interface, or via any
album that includes this photo. As soon as the user wants
to share an album with another app, the per-object per-
missions must be changed for every single photo in the
album. Since other types of data may be related to pho-
tos (e.g., text tags), the object-based permission system
must compute the transitive closure of reachable objects
in order to update their permissions. This is a challenge
for performance and correctness.

In practice, writing permission management code is
complex and error-prone. App developers thus tend to
choose coarse-grained protection, which does not allow
them to express, let alone enforce their desired policies.

3 Design goals and overview

Throughout the design of Earp, we rely on the platform
(i.e., the mobile OS) to protect the data from unauthorized
access and to confine non-cooperative apps. Earp provides
several platform-enforced mechanisms and abstractions
to make data storage, sharing, and protection in mobile
apps simpler and more robust.

• Apps in Earp store and manage data using a uniform,
relational model that can easily express relationships be-
tween objects as well as access rights. This allows app
developers to employ standard database abstractions and
relieves them of the need to implement their own data
management.
• Apps in Earp give other apps access to the data via

structured, fine-grained, system-provided abstractions.
This relieves app developers of the need to implement
ad hoc data-access APIs.
• Apps in Earp rely on the platform to enforce their

access-control policies. This separation of policy and
mechanism relieves app developers of the need to imple-
ment error-prone access-control code.

Efficient system-level enforcement requires the plat-
form to have visibility into the data structures used by
apps to store and share data. In the rest of the paper, we
describe how this is achieved in Earp.

3.1 Data model

UNIX has a principled approach for protecting both stor-
age and IPC channels, based on a unifying API—file
descriptors. On modern mobile platforms, however, data
management has moved away from files to structured
storage such as databases and key/value stores.

In Earp, the unifying abstraction for both storage and
inter-app services is relational data. This approach (1)
helps express relationships between objects, (2) integrates
access control with the data model, and (3) provides a
uniform API for data access, whether by the app that owns
the data or by other apps.

Unifying storage and services is feasible because Earp
apps access inter-app services by reading and writing
structured, inter-related data objects via relational APIs
that are similar to those of storage. A service is defined
by four service callbacks (§5), which Earp uses as the
primitives to realize the relational API.

Earp uses the same protection mechanism for remote
resources. For example, a remote service such as Google
Drive can have a local proxy app installed on the user’s
device, which defines an inter-app service that acts as
the gateway for other apps to access Google’s remote
resources. Earp enforces access control on the proxy ser-
vice in the same way as it does with all inter-app services,
avoiding the need for protocols such as OAuth.

Earp not only makes it easier to manage structured
data that is pervasive in mobile apps, but also maintains
efficient, protected access to files and directories. Earp
uses files and directories internally, thus avoiding the
historical performance problems of implementing a file
system on top of a database [50].

3.2 Access rights

All databases and services in Earp have an owner app.
The owner has the authority to define policies that govern
other apps’ access, making Earp a discretionary access
control system. The names of databases and services are
unique and prefixed by the name of the owner app.

Earp’s protection is fine-grained and captures the re-
lationships among objects. In the photo gallery exam-
ple, each photo is associated with some textual tags, and
photos can be included in zero, one, or several albums.
Fine granularity is achieved by simple per-row ACLs,
allowing individual photos to each have different permis-
sions. However, per-object permissions alone can create
performance and correctness problems when apps share
collections of objects (§2).

To enable efficient and expressive fine-grained permis-
sions for inter-related objects, Earp introduces capabil-
ity relationships—relationships that confer access rights
among related data. For example, if an app that has ac-

630 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

cess rights to an album traverses the album’s capability
relationship to a photo, the app needs to automatically
obtain access rights to this photo, too. Capability rela-
tionships only confer access rights when traversed in one
direction. For example, having access to a photo does not
grant access to all albums that include this photo.

Capability relationships make it easy for apps to share
ad hoc collections. For example, the photo gallery can
create an album for an ephemeral messaging app like
Snapchat, enabling the user to follow the principle of
least privilege and install Snapchat with permissions to
access only this album (and, transitively, all photos in this
album and their tags).

Capability relationships also enable Earp to use very
simple ACLs without sacrificing the expressiveness of ac-
cess control. There are no first-class concepts like groups
or roles, but they can be easily realized as certain capabil-
ity relationships.

3.3 Data-access APIs
In Earp, access to data is performed via subset descrip-
tors. A subset descriptor is a capability “handle” used by
apps to operate on a database or service. The capability
defines the policy that mediates access to the underlying
structured data, allowing only restricted operations on a
subset of this data.

The holder of a subset descriptor may transfer it to
other apps, possibly downgrading it beforehand (remov-
ing some of the access rights). Intuitively, a subset de-
scriptor is a “lens” through which the holder accesses a
particular database or service.

Critically, the OS reference monitor ensures that all
accesses comply with the policy associated with a given
descriptor. Therefore, app developers are only responsible
for defining the access-control policy for their apps’ data
but not for implementing the enforcement code.

Capability relationships make access rights for one ob-
ject dependent on other objects. This is a challenge for
efficiency because transitively computing access-control
decisions would be expensive. To address this problem,
apps can create subset descriptors on demand to buffer
access-control decisions for future tasks. For example, an
app can use a descriptor to perform joins (as opposed to
traversal) to find all photos with a certain tag, then create
another descriptor to edit a specific photo based on the
result of a previous join. The photo access rights are com-
puted once and bound to the descriptor upon its creation.
Earp thus enjoys the benefits of both the relational rep-
resentation (efficient joins) and the graph representation
(navigating a collection to enumerate its members).

To facilitate programming with structured data, Earp
provides a library that presents an object graph API
backed by databases or inter-app services (see an example

backend database (or service)

relational
representation

albums photos tags

p
la

tf
o
rm

lib
ra

ry

security reference monitor

a
p

p

a

p
p

p

t
tt

a

pp

tt

fetchGraph: queryPaths:

fetch all contents in an album
find photos in the album with
a certain tag

multiple query operations join on multiple tables

Figure 1: Platform- and library-level representations of
structured data in Earp.

in Figure 1). This API is functionally similar to the Core
Data API in iOS, but each internal node is mapped to a
platform-level data object under Earp’s protection. This
API relieves developers of the need to explicitly handle
descriptors or deal with the relational semantics of the
underlying data.

3.4 Choosing the platform

Mobile apps are often written in portable Web languages
such as HTML5 and JavaScript [46, 47]. Browser-based
mobile/Web platforms (e.g., Firefox OS, Chrome, and uni-
versal Windows apps) support this programming model
by exposing high-level resource abstractions such as “con-
tacts” and “photo gallery” to Web apps, as well as generic
structured storage like IndexedDB; they are implemented
in a customized, UI-less browser runtime, instead of app-
level libraries. All resource accesses by apps are mediated
by the browser runtime, although it only enforces all-or-
nothing access control.

For our Earp prototype, we chose a browser-based plat-
form, Firefox OS, allowing us to easily add fine-grained
protection to many new and legacy APIs. Earp also re-
tains coarse-grained protection on other legacy APIs (e.g.,
raw files), allowing us to demonstrate Earp’s power and
flexibility with substantial apps (§7.1).

It is possible to adapt Earp to a conventional mobile
platform like Android. For storage, we could port SQLite
into the kernel and add access-control enforcement to
system calls; alternatively, we could create dedicated sys-
tem services to mediate database accesses and enforce
access-control policies. Non-cooperative apps would be
confined by the reference monitor in either the kernel, or
the services. For content providers, we could modify the
reference monitor to support capability relationships, and
require apps to provide unforgeable handles that are simi-
lar to subset descriptors when they access data in content
providers.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 631

album photo tag

Full data

A subset

album_data

1-to-n n-to-1 1-to-n

Figure 2: A relational representation of structured data.
We show the entire data set and a subset chosen by a
combination of row and column filtering. Relationships
across tables are always bidirectional, but capability rela-
tionships are unidirectional as indicated by solid arrows.

4 Data storage and protection

UNIX stores byte streams in files protected by owner ID
and permission bits and accessed via file descriptors. Earp
stores structured data in relational databases protected
by permission policies and accessed via subset descrip-
tors. Because structured data is more complex than byte
streams, Earp must provide more sophisticated protection
mechanisms than what is needed for files. Before describ-
ing these mechanisms, we give a brief overview of the
relational data model and how it’s used in Earp.

4.1 Data model
Earp represents structured data using a relational model.
The same relational API is used for storage and inter-app
services (§5). The back end of this API can be, respec-
tively, a database or a service provided by another app.

Each data object in Earp is a row in some table, as
shown in Figure 2. An object in one table can have re-
lationships with objects in other tables. For example, a
photo object is a row in the photo table with a column for
raw image data, several columns for EXIF data (standard
metadata such as the location where the photo was taken),
and a relationship with the tag table, where tags store tex-
tual notes. Storing tags in a separate table allows photos
to have an arbitrary number of tags that can be queried
individually. Relationships in Earp are standard database
relationships, as summarized below, but the concept of
a capability relationship (§4.2) is a new contribution and
the cornerstone of efficient access control in Earp.

Relationships have different cardinalities. For example,
the relationship between a photo and its tags is 1-to-n
from the photo to its tags, or, equivalently, n-to-1 from the
tags to the photo. 1-to-1, or, more precisely (1|0)-to-1, is
a special case of n-to-1. For example, each digital camera
has a single product profile which may or may not be
present in the photo’s EXIF.

Logically, the relationship between albums and photos
is n-to-n, because a photo can be included in multiple

albums and an album can contain multiple photos. Like
many relational stores, Earp realizes n-to-n relationships
by adding an intermediate table. In our example, we call
the intermediate table album data. The album-album data
relationship is 1-to-n, and the album data-photo relation-
ship is n-to-1. All four tables are illustrated in Figure 2.

4.2 Access rights

Access control lists. Each database in Earp is owned by
a single app. Rows have very simple access control lists
(ACLs) to control their visibility to other apps. Each row
is either public, or private to a certain app. If a table does
not have an AppId column, it can be directly accessed
only by the owner of the database. If an Earp table has an
AppId column, its value encodes the ACL: zero means
that the row is public, positive n means that the row is
private to the app whose ID is n. Any app can read
or write public rows. Without an appropriate capability
relationship (see below), apps can only read or write their
own private rows.

Relationships create challenges for ACLs because they
are traversed at run time and their transitive closure may
include many objects. If ACLs were the only protec-
tion mechanism, an app that wants to share a photo
with another app would have to modify the ACLs for
all tags—either by making each ACL a list containing
both apps, or by creating a group.

Capability relationships. A relationship is logically
bidirectional. For example, given a photo, it is possible to
retrieve its tags, and given a tag, it is possible to retrieve
the photo to which it is attached. In Earp, however, only
a single direction can confer access rights, as specified in
the schema definition. These capability relationships are
denoted as solid arrows in Figure 2.

We use x 1:n y to denote a 1-to-n capability relation-
ship between tables x and y, which confers access rights
when moving from the 1-side (x) to the n-side (y). Sim-
ilarly, x n:1 y denotes an n-to-1 capability relationship
that confers access when moving from the n-side to the
1-side. x n:1 y denotes a non-capability relationship that
does not confer access rights.

In the photo gallery example,
• photo 1:n tag. Having a reference to a photo

grants the holder the right to access all of that photo’s
tags, but not the other way around. Therefore, if an app
asks for all photos with a certain tag, it will receive only
the matching photos that are already accessible to it (via
ownership, ACL, or capability relationship).
• album 1:n album data n:1 photo. The interme-

diate table album data realizes an n-to-n relationship
with capability direction from album to photo. Hav-
ing access to an album thus confers access to the related

632 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

objects in album data and photo.

album data and tag are both on the n-side of some
x 1:n y relationship, and they are intended to be accessed
only via capability relationships. For example, each tag is
attached to a single photo and is useful only if the photo
is accessible. Typically, such tables do not need ACLs.

We have not needed bidirectional capability relation-
ships in Earp, and they would create cycles that make the
access-control model confusing. Therefore, we decided
not to support bidirectional capability relationships at the
platform level. Earp prevents capabilities from forming
cycles, ensuring that the transitive closure of all capability
relationships is a directed acyclic graph (DAG).

Groups. A group can be created in Earp by defining a
table with an appropriate schema. For example, to sup-
port albums that are shared by a group of apps, the app
can define another table album access, with album -

access n:1 album. Each row in album access is
owned by one app and confers access to an album. With
this table, even if an album is private to a certain app, it can
be shared with other apps via entries in album access.

Primary and foreign keys. Earp requires that all tables
have immutable, non-reusable primary keys generated
by the platform. The schema can also define additional
keys. Therefore, the (database, table, primary key) tuple
uniquely identifies a database row.

Cross-table relationships are represented via foreign
keys in relational databases. A foreign key specifies an
n-to-1 relationship: the table that contains the foreign key
column is on the n-side, the referenced table is on the
1-side. If the foreign key column is declared with the
UNIQUE constraint, the relationship is (1|0)-to-1.

Earp enforces that a foreign key references the primary
key of another table and must guarantee referential in-
tegrity when the referenced row is deleted [41].

For x 1:n y where y does not have ACLs, when the
referenced row (e.g., a photo) is deleted, the referencing
rows (e.g., tags) will be deleted as well, because they are
inaccessible and the deleting app has the (transitive) right
to delete them.

For other types of relationships, when the referenced
row (e.g., a photo) is deleted, Earp by default sets
the foreign keys of the referencing rows (e.g., rows in
album data) to NULL. If these rows no longer contain
useful data without the foreign key, the schema can
explicitly prescribe that they should be deleted. For
album data, it is reasonable to delete the rows because
they are merely intermediate relations between albums
and photos.

4.3 App-defined access policies

ACLs and capability relationships are generic and en-
forced by Earp once the schema of a database or service is
defined. To enable more expressive access control tailored
for relational data, Earp also lets apps define schema-level
permission policies on their databases and services. These
policies govern other apps’ access to the data.

A policy defines the following for each table:
1. AppID and default insert mode.
2. Permitted operations: insert, query, update, and/or

delete.
3. A set of accessible columns (projection).
4. A set of columns with fixed values on insert/update.
5. A set of accessible rows (selected by a WHERE

clause, in addition to ACL-based filtering).
The AppID is a number that identifies the controlling

app as the basis for ACLs, much like the user ID identifies
the user as the basis for interpreting file permission bits.
The default insert mode indicates if data inserted into the
database is public or private to the inserting app.

Data access in Earp is expressed by four SQL oper-
ations—insert, query, update, and delete—inspired by
Android’s SQLite API (omitting administrative functions
like creating tables). Read-only access is realized by re-
stricting the available SQL operations to query only. Con-
trol over writing is fine-grained: for example, an app can
limit a client of the API to only insert into the database,
without giving it the ability to modify existing entries.

The permission policy can filter out certain rows (e.g.,
private photos) and columns (e.g., phone numbers of
contacts), making them “invisible” to the client app. In
addition, values of certain columns can be fixed on in-
sert/update. For example, a Google Drive app can enforce
that apps create files only in directories named by their
official identifiers.

Just like the owner ID and permission bits of a file con-
strain the file descriptor obtained by a user when opening
a file in UNIX, the permission policy constrains the subset
descriptor (see below) obtained by a user when opening
a database. While permission bits specify a policy for
all users using coarse categories (owner, group, others),
Earp lets apps specify initial permission policies for indi-
vidual AppIDs, as well as the default policy. Figure 6 in
Section 7.1 shows examples of policy definitions.

4.4 Data-access APIs

Earp provides two levels of APIs to access relational
data: direct access via subset descriptors and object-graph
access via a library.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 633

a1 p2

t1

p4 t4

p1

p3 t3

t2 p2

t1

t2

t1

t2

d0: initial descriptor via opening the

database (bold lines denote a join.)
d1: descriptor for a

specific photo

d2: descriptor for

the photo's tags

var d0 = navigator.openDB('sys/gallery');
var cursor = d0.joinTransClosure(['album','album_data',

'photo', 'tag'], where); // join
cursor.onsuccess = function(event) {
 ... // navigate to a row (the first bold line above)
 // d1: descriptor for photo in cursor's current row
 var d1 = cursor.getSelfDesc('photo');
 // d2: descriptor for the current photo's tags
 var d2 = cursor.getRefDesc('photo', 'tag');
}

directly accessible entries indirectly accessible entries

Figure 3: A database join using an initial subset descriptor,
then creating new descriptors to represent subsets of the
result. The figure includes a visual depiction of the data
accessible from the different descriptors.

4.4.1 Subset descriptors

Apps in Earp access databases and services via subset
descriptors. When an app opens a database or service that
it owns, it obtains a full-privilege descriptor. If it opens
another app’s database or service, it obtains a descriptor
with the owner’s (default or per-app) permission policy.

Subset descriptors are created and maintained by Earp;
apps manipulate opaque references to descriptors. There-
fore, Earp initializes descriptors in accordance with the
database owner’s permission policy, and apps cannot tam-
per with the permissions of a descriptor (though descrip-
tors can be downgraded, as discussed below).

Efficiently working with descriptors. An example of
working with descriptors is shown in Figure 3. The app
receives descriptor d0 when it opens the database. It can
use d0 to access albums or photos as permitted by their
ACLs. The code in Figure 3 will succeed in performing a
join using d0 because Earp verifies that all tables can be
reached by traversing the capability relationships from a
root table (album in this case), and that entries in different
tables are related via corresponding foreign keys.

However, using d0 is not always efficient for all tasks,
because access rights on some objects can only be com-
puted transitively. To minimize expensive cross-table
checks, an app can create more descriptors that directly
encode computed access rights over transitively accessi-
ble objects. Once such a descriptor is created, the app
can use it to access the corresponding objects without
recomputing access rights. In Figure 3, when the app suc-
cessfully performs a query, join, or insert for a particular
photo via d0, this proves to Earp that it can access the
photo in question. Therefore, Earp lets it obtain a new
descriptor d2, which allows the app to operate only on the
entries in the tag table whose foreign key matches the
photo’s primary key. Access rights are verified and bound

to d2 upon its creation, thus subsequent operations on
d2 are not subject to cross-table checks. Any tag created
using the d2 descriptor will belong to the same photo
because d2 fixes the foreign key value to be the photo’s
primary key. As discussed in §4.4.2, the object graph li-
brary automates creation and management of descriptors.

Transferring and downgrading descriptors. An app
can pass its descriptor to another app or it can create a new
descriptor based on the one it currently holds (e.g., create
d1 based on d0 in Figure 3). When a new descriptor is
generated based on an existing one, all access restrictions
are inherited. For example, if the existing descriptor does
not include some columns, the new one will not have
those columns, either; if the existing descriptor is query-
only, so will be the new one; fixed values for columns, if
any, are inherited, too.

When delegating its access rights, an app may create
a downgraded descriptor. For example, an app that has
full access to an album may create a read-and-update
descriptor for a single photo before passing it to a photo
editor. A downgraded descriptor can also deny access to
certain relationships by making the column containing
the foreign key inaccessible.

Revoking descriptors. By default, a subset descriptor
is valid until closed by the holding app. However, some-
times an app needs more control over a descriptor passed
to another app. Therefore, Earp supports transitive revoca-
tion. When an app explicitly revokes a subset descriptor,
all descriptors derived from it will also be revoked, in-
cluding descriptors that are copied or transferred1 from
it, as well as those generated based on query results. In
this way, App A can temporarily grant access to App B
by passing a descriptor d to it, then revoke App B’s copy
of d (and derived descriptors) afterwards by revoking the
original copy in App A itself.

Creating relationships. A foreign key in Earp may
imply access rights. For x 1:n y, foreign keys are never
specified by the app. For example, inserting a tag for a
photo can only be done via a descriptor generated for that
photo’s tags, i.e., d2 in Figure 3, which fixes the foreign
key value. This prevents an app from adding tags to a
photo that it cannot access.

For x n:1 y, however, the app needs to provide a for-
eign key when creating a new row in x. For example,
to add an existing photo to an album, the app needs to
add a row in album data with a foreign key referencing
the photo. In this case, Earp must ensure that the app
has some administrative rights over the referenced photo,
because this operation makes the photo accessible to any-
one that has access to the album. An analogy is changing
file permissions in UNIX via chmod, which also requires

1Transferring a descriptor generates a new copy of the descriptor in
the receiving app. This copy is derived from the original descriptor.

634 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

administrative rights (matching UID or root).
To create such a reference, Earp requires an app to

specify the foreign key value in the form of an unforgeable
token. The app can obtain such a token via a successful
insert or query on the referenced row, provided that the
row is public or owned by the app. This proves that the
app has administrative rights over the row.

4.4.2 Object graph library

As mentioned in Section 3, Earp provides a library that
implements an object graph API on top of the relational
data representation. Rows (e.g., photos) are represented
as JavaScript objects. Related objects (e.g., photos and
tags) are attached to each other via object references. The
corresponding descriptors are computed and managed
internally by the library. As Figure 1 illustrates for our
running photo gallery example, an album can be retrieved
(or stored) as a graph, and searching for photos with a
certain tag can be done via a path query in this graph.

An app can use this library to conveniently construct
a subgraph from an entry object that has capability or
non-capability relationships with other objects. The
lightweight nature of subset descriptors allows the library
to proactively create descriptors as the app is perform-
ing queries. Internally, the library automates descriptor
management and chooses appropriate descriptors for each
operation. For example, it has dedicated descriptors for
simple function APIs such as addObjectRef to create
objects that have relationships with existing ones, as well
as APIs that facilitate more complex operations, such as:
• populateGraph: populate a subgraph from a start-

ing node (e.g., fetch all data from an album);
• storeGraph: store objects from a subgraph to mul-

tiple tables (e.g., store a new photo along with its tags);
• queryPaths: find paths in a subgraph that satisfy a

predicate (e.g., find photos with a certain tag in an album).

5 Data sharing via inter-app services

In Earp, sharing non-persistent data between apps relies
on the same relational abstractions as storage. In par-
ticular, data is accessed through subset descriptors that
control which operations are available and which rows
and columns are visible (just like for storage). The OS
in Earp interposes on inter-app services, presents a rela-
tional view of the shared data, and is fully responsible for
enforcing access control.

Figure 4 illustrates inter-app services in Earp. The
server app is the provider of the data, the client app is
a recipient of the data. In Earp, the server app defines
and registers a named service, implemented with four
service callbacks. To client apps, this service appears
as a database with a set of virtual tables and clients use

client
app

server
app

Earp services ref. monitor

registered service

callbacks

register
open

subset
desc

DB operations
client
operation

service
callbacks

query list

insert add

update list, alter

delete list, remove

Earp translates DB operations
into service callbacks

Figure 4: Inter-app services in Earp.

subset descriptors to access this “database.” Defining
virtual tables via callbacks is a standard idea, and a similar
mechanism exists in SQLite [42]. Earp uses a subset of
this interface tailored for the needs of mobile apps.

Virtual tables have the same relational model and are
accessed through the same subset descriptors as conven-
tional database tables (§4). The server app can define
permission policies on virtual tables, in the same way
as for storage databases. Like conventional tables, a vir-
tual table can have a foreign key to another virtual table,
defining a capability or non-capability relationship.

5.1 Implementing a relational service API
A service is implemented by defining four service call-
backs: list, add, alter, and remove. The callbacks
operate on virtual tables as follows.
• list: The server app provides a list of rows in the

requested virtual table. This is the only set operation
among the four callbacks. The server app also supplies
values for the ACL column of any directly accessible table.
Many use cases (§7.1), however, only rely on schema-
level permission policies, so the server app may simply
provide a dummy public value.
• add: Given a single row object, the server app adds

it to the requested virtual table.
• alter: Given a single row object and new values

for a set of columns, the server app updates that row in
the requested virtual table.
• remove: Given a single row object, the server app

deletes it from the requested virtual table.
Implementation of the service callbacks is necessarily

app-specific. An app can retrieve data in response to a
list invocation from an in-memory data structure, or
fetch it on demand from a remote server via HTTP(S)
requests. For example, list for the Google Drive service
may involve fetching files, while add for the Facebook
service may result in posting a status update.

5.2 Using a relational service API
Earp interposes on client apps’ accesses to a service and
converts standard database operations on virtual tables
(query, insert, update, delete) into invocations of service
callbacks. The reference monitor filters out inaccessible

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 635

rows and columns and fixes column values according to
the subset descriptor held by the client app.
• query: Earp invokes list, then filters the result set

before returning to the client. Multi-table queries (joins)
are converted to multiple list calls.
• insert: Earp sanitizes the client app’s input row

object by setting the values of fixed columns as specified
in the descriptor, then passes the sanitized row to add.
• update: Earp invokes the list callback, performs

filtering, sanitizes the new values, then invokes alter
for each row in the filtered result set. This ensures that
only the rows to which the client app has access will be
updated, and that the client cannot modify columns that
are inaccessible or whose values are fixed.
• delete: Earp invokes the list callback, performs

filtering, then invokes remove for each row in the filtered
result set.

5.3 Optimizing access-control checks

Earp’s strategy of active interposition to enforce access
control on inter-app services could reduce performance
for certain server implementation patterns. We use sev-
eral techniques to mitigate the performance impact on
important use cases.

Separate data and metadata. Earp’s filtering for list
happens after the server app provides the data. Therefore,
if the server returns a lot of unstructured “blob” data (e.g,
raw image data associated with photos), possibly from a
remote host, access control checks could be expensive.

In the common scenario where only metadata columns
are used to define selection and access control criteria, the
server app can greatly improve performance by separating
the metadata and the blob data into two tables. The meta-
data table is directly visible to the client apps, and Earp
performs filtering on it. The blob table is only accessible
via a capability relationship (i.e., metadata n:1 blob).
The client app receives the filtered result from the meta-
data table and can only fetch blobs that are referenced by
the metadata rows.

Leverage indexing and query information. Although
Earp does not require the server app to check the correct-
ness or security of the data it returns in response to list,
the server app can significantly reduce the amount of sent
data if it already maintains indices on the data and takes
advantage of the fact that Earp lets it see the actual client
operation that invoked a particular callback.

For example, when a service exports a key/value inter-
face, the server app can learn the requested key from Earp
and return only the value for that key. Similarly, if the ser-
vice acts as a proxy for a local database (e.g., a photo filter
for the gallery), Earp sanitizes the client requests based on
the client’s descriptor and passes the sanitized operations

to the service. The service uses Earp’s database layer,
which has a safe implementation of the relational model.

6 Implementation of Earp

We modified Firefox OS 2.1 to create the Earp proto-
type. The backend for storage is SQLite, a lightweight
relational database that is already used by Firefox OS
internally. Firefox OS supports inter-app communica-
tion based on a general message passing mechanism. It
presents low-level APIs to send and receive JavaScript
objects (similar to Android Binder IPC). Earp’s inter-app
service support is built on top of message passing, but
presents higher-level APIs that facilitate access-control en-
forcement for structured data (similar to Android Content
Providers which are built on top of Binder IPC). Our im-
plementation of Earp consists of 7,785 lines of C++ code
and 1,472 lines of JavaScript code (counted by CLOC [9])
added to the browser runtime and libraries.

6.1 Storing files
There are two ways to store files in Earp. When per-file
metadata (e.g., photo EXIF data and ACLs) is needed,
files can be co-located with the metadata in a database
with file-type columns. Apps store large, unstructured
blob data (e.g., PDF files) using file-type columns, and
the only way for them to get handles to these files is by
reading from such columns. This eliminates the need
for a separate access-control mechanism for files. In-
ternally, Earp stores the blob data in separate files and
keeps references to these files in the database. This is a
common practice for indexing files, used, for example,
in Android’s photo manager and email client. Inserting a
row containing files is atomic from the app’s point of view.
This allows Earp to consistently treat data and metadata,
e.g., a photo and its EXIF.

If per-file metadata and access control are not needed,
an app can store and manage raw files via directory han-
dles. Access control is provided at directory granularity,
and apps can have private or shared directories. Internally,
Earp reuses the access-control mechanism for database
rows to implement per-directory access control, simply
by adding a directory-type column which stores directory
references. The permissions on a directory are determined
by the permissions on the corresponding database row.

6.2 Events and threads
JavaScript is highly asynchronous and relies heavily on
events. Therefore, the API of Earp is asynchronous and
apps get the results of their requests via callbacks.

Thread pool. Internally, all requests to storage and ser-
vices are dispatched to a thread pool to avoid blocking the

636 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

queryqueryinsert

store file

insert

store file

query

update
prepare & wait

DB access

clean-up & notify

Notation

time

req issued

Figure 5: Constraints on request processing order in the
thread pool.

app’s main thread for UI updates. The thread pool han-
dles all I/O operations for database access and performs
result filtering for inter-app services. After completing
its processing of a request, Earp dispatches a success or
error event to the main thread of the app, which invokes
an appropriate callback.

A request may be processed by multiple concurrent
threads to maximize parallelism. For example, inserting
a row that contains n files will be processed by n+ 1
threads, where the first n threads store the files and the
last thread inserts metadata into the database. Although
processed concurrently, such an insert request is atomic
to apps, because they are not allowed to access the files
until the insert finishes. If any thread fails, Earp aborts
the operation and removes any written data.

Similarly, a request to a service can also be parallelized.
For example, when processing an update request, Earp
first uses a thread to invoke the list callback of the server
app and to filter the result; for each row that passes the
filter, Earp immediately dispatches an event to invoke the
alter callback. If alter has high latency due to remote
access, the server app can also parallelize its processing,
e.g., by sending concurrent HTTP(S) requests.

Request ordering. When processing requests, Earp
preserves the program order of all write requests (insert,
update and delete) and guarantees that apps read (query)
their writes. The critical section (database access) of a
write waits for all previous requests to complete, while
a read waits only for previous writes. Storing blob-type
columns, as part of inserts or updates, is parallelized;
however, a read must wait for the previous blob stores to
complete. Note that an app could request an editable file
or directory handle from a database query, but Earp does
not enforce the order of reads and writes on the handle.
It enforces the order when storing or replacing the whole
blob using inserts or updates. Figure 5 shows an example
of runtime request ordering.

6.3 Connections and transactions
A subset descriptor is backed by a database connection or
a service connection. The program’s order of requests is
preserved per connection. When an app opens a database
or a service, Earp creates a new connection for it. Descrip-
tors that are derived from an existing descriptor inherit

the same connection. However, the app can also request a
new connection for an existing descriptor.

Earp exposes SQLite’s support for transactions to apps.
An app can group multiple requests in a transaction. If
it does not explicitly use the API for transactions, each
individual request is considered a transaction. Note that a
transaction is for operations on a connection; requests on
multiple descriptors could belong to a same transaction if
they share the connection. The object graph library uses
transactions across descriptors to implement the atomic
version of storeGraph.

6.4 Safe SQL interface
SQL queries require WHERE clauses, but letting apps di-
rectly write raw clauses would create an SQL injection
vulnerability. Earp uses structured objects to represent
WHERE clauses and column-value pairs to avoid parsing
strings provided by apps and relies on prepared statements
to avoid SQL injection.

6.5 Reference monitor
The reference monitor mediates apps’ access to data by
creating appropriate descriptors for them and enforcing
the restrictions encoded in the descriptor when processing
apps’ requests. Descriptors, requests, and tokens for for-
eign keys can only be created by the reference monitor;
they cannot be forged by apps. They are implemented
as native C++ classes with JavaScript bindings so that
their internal representation is invisible to apps. These ob-
jects are managed by the reference counting and garbage
collection mechanisms provided by Firefox OS.

App identity. An app (e.g., Facebook) often consists of
local Web code, remote Web code from a trusted origin
(e.g., https://facebook.com) specified in the app’s
manifest, and remote Web code from untrusted (e.g., ad-
vertising) origins. Earp adopts the app identity model
from PowerGate [17], and treats the app’s local code and
remote code from trusted origins as the same principal,
“the app.” Web code from other origins is considered
untrusted and thus has no access to databases or services.

Policy management. Earp has a global registry of poli-
cies for databases and services, specified by their owners.
Earp also has a trusted policy manager that can modify
policies on any database or service.

7 Evaluation

7.1 Apps
To illustrate how Earp supports sharing and access-control
requirements of mobile apps, we implemented several es-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 637

sential apps based on Firefox OS native apps and utilities.

Photo gallery and editor. Gallery++ provides a user in-
terface for organizing photos into albums and applying
tags to photos (as in our running example). With the
schema shown in Figure 2, Earp automates access con-
trol enforcement for Gallery++ and lets it define flexible
policies for other apps. For example, when other apps
open the photo database, they are granted access to their
private photos and albums as well as public photos and
albums, but certain fields like EXIF may be excluded.

Gallery++ can also share individual photos or entire
albums with other apps (optionally including EXIF and
tag information), by passing subset descriptors. For ex-
ample, we ported a photo editing app called After Effects
to Earp but blocked it from directly opening the photo
database. Instead, this app can only accept descriptors
from Gallery++ when the user explicitly invokes it for
the photos she selected in Gallery++. When she finishes
editing and returns from After Effects, Gallery++ revokes
the descriptor to prevent further access.

Contacts manager. The Earp contacts manager provides
an API identical to the Firefox OS contacts manager,
thus legacy applications interacting with the manager all
continue to work, yet their access is restricted according
to the policies imposed by the Earp contacts manager.

The contacts manager stores contacts using seven ta-
bles: the main contact table in which the columns
are simple attributes, five tables to manage attributes
that allow multiple entries (e.g., contact 1:n phone

and contact 1:n email), and the final table that holds
contact categories with category n:1 contact. Cate-
gories can be used to restrict apps’ access to groups of
related contacts. Such a schema enables Earp-enforced
custom policies, e.g., a LinkedIn app can be given access
only to contacts in the “Work” category, without home
address information.

Email. The Firefox OS built-in email client saves at-
tachments to the world-readable device storage (SD card)
when it invokes a viewing app to open the attachment.

The Earp email client allows attachments to be exported
only to an authorized viewing app, which obtain a subset
descriptor to the email app’s database. The Earp email
client also supports flexible queries from the viewing app,
such as “show all pictures received in the past week,” or
“export all PDF attachments received two days ago”.

Elgg social service and client apps. We use Elgg [12],
an open-source social networking framework, to demon-
strate Earp’s support for controlled sharing of app-defined
content. We customized Elgg to provide a Facebook-like
social service where users can see posts from their friends.
There are three components: the Elgg Web server, the
Elgg local proxy app, and local client apps. Client apps
are not authorized to directly contact the Elgg Web server.

Activity Map:
 {post: {ops: ['query'],
 cols: ['location']},
 image: {ops: [], cols: []}} // no access

Social Collection:
 {post: {ops: ['query'],
 // WHERE clause (group='public') encoded
 // as a JS object to prevent SQL injection
 rows: {op: '=', group: 'public'}},
 image: {}} // image access implied by post

News:
 {post: {ops: ['insert'],
 fixedCols: [{category: 'news'}]},
 image: {}} // image access implied by post

Figure 6: Policies defined for Elgg client apps, repre-
sented as JavaScript objects.

Instead, they must communicate with the Elgg local app
which defines a service. This service acts as a local proxy
and accesses remote resources hosted on the Web server.

A post in Elgg is a text message with associated images.
The Elgg app maintains two virtual tables, one for the
post text (called post), the other for the images (called
image), with a post 1:n image relationship.

The service callbacks use asynchronous HTTP requests
to fetch data. To optimize bandwidth usage, images are
only fetched when the requesting client app has access to
the post with which they are associated.

Local access control in Earp provides a simple and
secure alternative to OAuth. The Elgg local app defines
policies for other apps based on user actions, e.g., via
prompts. We implemented several client apps, and the
policies for them are shown in Figure 6.
• An “activity map” app can read the location col-

umn in post, but not any textual or image data. The
post-to-image capability relationship is unavailable to it,
so it cannot fetch images even for accessible posts.
• A “social collection” app gathers events from differ-

ent social networks. It can read all posts and associated
images from the “public” group.
• A “news” app has insert-only access to the service,

which is sufficient for sharing news on Elgg. The policy
fixes the category column of any inserted post to be
“news”, preventing it from posting into other categories.

Google Drive and client apps. The Google Drive proxy
app in Earp provides a local service that mediates other
apps’ access to cloud storage, avoiding the need for
OAuth. Client apps enjoy the benefits of cloud storage
without having to worry about provider-specific APIs or
managing access credentials. The proxy app presents a
collection of file objects containing metadata (folder and
file name) and data (file contents) to other apps. It ser-
vices requests from client apps by making corresponding
HTTPS requests to Google’s remote service. We have
ported two client apps to use the service.
• DriveNote is a note-taking app which stores notes

on the user’s Google Drive account via the local proxy.
The proxy allows it to read/write files only in a dedicated

638 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Inter−App Service

Get Large Photo
Get Small Photo

Insert Large Photo
Insert Small Photo

Create Large File
Create Small File
Delete Empty File
Create Empty File

Enumerate Contacts
Find Contact By Phone
Find Contact By Name

Insert Contact

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Earp Run Time Normalized to Firefox OS

Figure 7: Microbenchmark results for storage and ser-
vices. Smaller run time indicates better performance.

folder. Earp enforces this policy, ensuring that queries
do not return files outside of this folder, and fixing the
folder column on any update or insert operation.

• Gallery++ is a system utility, thus the Google Drive
proxy app trusts it with access to all files. Gallery++ can
scan and download all images stored on Google Drive.

7.2 Performance

We evaluate the performance of Earp on a Nexus 7 tablet,
which has 2GB of DDR3L RAM and 1.5GHz quad-core
Qualcomm Snapdragon S4 Pro CPU.

7.2.1 Microbenchmarks

We run various microbenchmarks to measure Earp’s per-
formance for storage and inter-app services. Figure 7
shows Earp’s run time relative to Firefox OS.

DB-only workloads (contacts). We measure the time
to insert new contacts, enumerate 500 contacts, and find a
single contact matching a name or a phone number from
the 500; the base line is the contacts manager in Firefox
OS which uses IndexedDB. Earp outperforms the baseline
for all workloads except enumerating contacts, where it
is about only 3% slower.

Earp’ performance is explained by its (1) directly using
SQLite, while Firefox OS uses IndexedDB built on top of
SQLite, (2) directly maping an object’s fields into table
columns, whereas IndexedDB uses expensive serialization
to store the entire object, (3) using SQLite’s built-in index
support, whereas IndexedDB needs to create rows in an
index table for all queryable fields of every object, (4)
more complex data structure for contacts (six tables as
opposed to a single serialized row for the baseline), which
affords sophisticated access control but requires a bit more
time to perform joins.

File-only workloads. We measure the time to cre-
ate/delete empty files and write small (18KB)/large

Baseline Earp slowdown
Elgg: read 50 posts 1623±102 1755± 99 8%
Elgg: upload 50 posts 5748±152 5888±117 2%
Google Drive: read 10 files 1310± 77 1392±120 6%
Google Drive: write 10 files 2828±217 2923±253 3%
Email: sync 200 emails 4725±433 4416±400 -6%

Table 1: Latency (msec) measured for macrobenchmarks
on Earp applications.

(3.4MB) files using Earp’s directory API; the base line
is Firefox OS’ DeviceStorage API. Earp has comparable
performance to the baseline, where the -11%∼4% differ-
ence in run time is due to different implementations of
these APIs. Note that the measured times include event
handling, e.g., dispatching to I/O threads and complete
notification to the app.

DB-and-file workloads (photos). The measurements
include inserting small, 18 KB, and large, 3.4 MB, pho-
tos with metadata, and retrieving them; the baseline is
inserting/retrieving the same photo files and their meta-
data into the MediaDB library in Firefox OS, which
uses IndexedDB. Earp largely outperforms the baseline,
mostly because of the differences between SQLite and In-
dexedDB, as explained in the contacts experiments. When
inserting large photos the run time is dominated by writing
files so performance is very close (<1%) to the baseline.

Inter-app service. We measure the run time for re-
trieving 4,000 2 KB messages from a different app us-
ing Earp’s inter-app service framework. The baseline
uses Firefox OS’ raw inter-app communication channel
to implement an equivalent service, where requests are
dispatched to Web worker threads (equivalent to Earp’s
thread pool). Figure 7 shows that Earp performs roughly
the same as the baseline, and the time spent for access
control (result filtering) is negligible.

7.2.2 Macrobenchmarks

Table 1 reports end-to-end latency for several real-world
workloads described in Section 7.1.

Remote services. We measure the latency of client apps
(Elgg client and DriveNote) accessing remote services
(Elgg and Google Drive) by communicating with local
proxy apps for these services. The baseline is the local
proxy apps performing the same tasks by directly sending
requests to their remote servers. The workloads include
reading/uploading fifty posts with images via Elgg and
reading/uploading ten 2KB text files via Google Drive.
Table 1 shows that communicating with local proxy apps
adds 3%∼8% latency, due to extra data serialization and
event handling.

Email. We measure the latency of downloading 200
emails. The baseline is Firefox OS’ email app which

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 639

stores emails using IndexedDB. As shown in the “Email:
sync” row of Table 1, Earp achieves similar performance
storing the emails in an app-defined database.

8 Related work

Fine-grained, flexible protection on mobile platforms.
TaintDroid [13] is a fine-grained taint-tracking system
for Android. Several systems [21, 40, 45] rely on Taint-
Droid for fine-grained data protection. Pebbles [40] is
most related to Earp: it modifies Android’s SQLite and
XML libraries and uses TaintDroid to discover app-level
structured data across different types of storage. Pebbles
relies on developers using certain design patterns consis-
tently to infer the structure of data and it is implemented
in an app-level library, not in the platform. Pebbles can
help cooperative apps avoid mistakes, like preserving an
attachment of a deleted email, but, unlike Earp, it cannot
confine uncooperative apps.

Many systems extend Android to support more flexible
and expressive permission policies [3, 4, 10, 11, 15, 30, 31,
52,53] or mandatory access control [6,39]. FlaskDroid [6]
provides fine-grained data protection by implementing a
design pattern that lets content providers present differ-
ent views of shared data to different apps. FlaskDroid
is limited to SQLite-based content providers and does
not support cross-table capabilities. By contrast, Earp’s
framework supports all types of services, including prox-
ies for remote servers. Moreover, in contrast to all existing
systems, Earp integrates access-control policies with the
data model itself, via capability relationships.

Fine-grained protection in databases. Traditional ac-
cess control systems for relational databases [5, 7, 16, 20,
26,32,35] are based on users or roles with relatively static
policies. Recently, IFDB [37] showed how decentralized
information flow control (DIFC) can be integrated with a
relational database. IFDB also discusses foreign key is-
sues, but focuses on potential information leakage due to
referential integrity enforcement. This is a very different
problem than the one solved by Earp’s capability rela-
tionships. The key contribution of Earp is identifying the
relational model as the unified foundation for protecting
data storage and sharing on mobile platforms.

Protection on Web platforms. BSTORE [8] provides
a file system API to Web apps and uses tags to enable
flexible access control on files. It is similar to Earp in
that access control is enforced by a central reference mon-
itor regardless of where the resource is hosted (local or
remote). Unlike Earp, BSTORE’s data abstraction is un-
structured files.

Several systems enable flexible policies [25, 29], con-
trolled object sharing [28, 33], or confinement [22, 23, 43]
for JavaScript in a Web browser. Earp puts protection

much lower in the system stack. For Web code interacting
directly with the OS and other apps, Earp provides a uni-
fying abstraction for both storage and inter-app services
and adds access control directly into the data model.

Native relational stores. Like Earp, there are previous
efforts to make relational data directly supported by the
OS, notably Microsoft’s cancelled project WinFS [50].
WinFS contained a database engine to natively support
SQL, and implemented files and directories on top of the
database. While WinFS had fine-grained access control,
it was still based on per-object permissions.

WinFS was developed before mobile platforms become
popular, and traditional desktop apps that rely on files suf-
fered performance penalties due to database-managed
metadata. Earp’s database-centric approach fits the cur-
rent mobile development practice where databases are the
de facto storage hubs [40]. Crucially, Earp uses an unmod-
ified file system (unlike WinFS) to store blob data and to
provide compatibility file APIs that have no performance
overhead.

9 Conclusion

Earp is a new mobile app platform built on a unified
relational model for data storage and inter-app services.
Earp directly exposes fine-grained, inter-related structured
data as platform-level objects and mediates apps’ access
to these objects, enabling it to enforce app-defined access-
control policies with simple building blocks, both old
(ACLs) and new (capability relationships). Earp securely
and efficiently supports key storage and sharing tasks of
essential apps such as email, contacts manager, photo
gallery, social networking and cloud storage clients, etc.

Acknowledgments. We thank the anonymous reviewers,
Simon Peter, Michael Walfish, and our shepherd, Brad
Karp, for valuable feedback and suggestions. This work
was partially supported by NSF grants CNS-1223396 and
140894 and the NIH grant R01 LM011028-01.

References

[1] Android developers: URI permissions.
http://developer.android.com/
guide/topics/security/permissions.
html#uri. [Online; accessed 21-September-
2015].

[2] Android Developers: Using content providers.
http://developer.android.com/
training/articles/security-
tips.html#ContentProviders. [On-
line; accessed 21-September-2015].

640 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[3] BACKES, M., GERLING, S., HAMMER, C., MAF-
FEI, M., AND VON STYP-REKOWSKY, P. App-
Guard – real-time policy enforcement for third-party
applications. Tech. Rep. A/02/2012, MPI-SWS,
2012.

[4] BERESFORD, A. R., RICE, A., SKEHIN, N., AND
SOHAN, R. MockDroid: Trading privacy for ap-
plication functionality on smartphones. In Interna-
tional Workshop on Mobile Computing Systems and
Applications (HotMobile) (2011), ACM.

[5] BERTINO, E., JAJODIA, S., AND SAMARATI,
P. Supporting multiple access control policies in
database systems. In IEEE Symposium on Security
and Privacy (1996).

[6] BUGIEL, S., HEUSER, S., AND SADEGHI, A.-R.
Flexible and fine-grained mandatory access control
on Android for diverse security and privacy policies.
In USENIX Security Symposium (2013).

[7] BYUN, J.-W., AND LI, N. Purpose based access
control for privacy protection in relational database
systems. The VLDB Journal 17, 4 (2008), 603–619.

[8] CHANDRA, R., GUPTA, P., AND ZELDOVICH, N.
Separating web applications from user data storage
with BSTORE. In USENIX Conference on Web
Application Development (WebApps) (2010).

[9] CLOC – count lines of code. http://cloc.
sourceforge.net/. [Online; accessed 17-
September-2015].

[10] CONTI, M., NGUYEN, V. T. N., AND CRISPO,
B. CRePE: Context-related policy enforcement for
Android. In Information Security Conference (ISC)
(2010).

[11] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU,
A., AND WALLACH, D. S. Quire: Lightweight
provenance for smart phone operating systems. In
USENIX Security Symposium (2011).

[12] Elgg - open source social networking engine.
https://www.elgg.org. [Online; accessed
17-September-2015].

[13] ENCK, W., GILBERT, P., CHUN, B.-G., COX,
L. P., JUNG, J., MCDANIEL, P., AND SHETH, A.
TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In
USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2010).

[14] How I exposed your private photos -
Facebook private photo hack. http:

//www.7xter.com/2015/03/how-i-
exposed-your-private-photos.html.
[Online; accessed 17-September-2015].

[15] FELT, A. P., WANG, H. J., MOSHCHUK, A.,
HANNA, S., AND CHIN, E. Permission re-
delegation: Attacks and defenses. In USENIX Secu-
rity Symposium (2011).

[16] FERRAIOLO, D. F., SANDHU, R., GAVRILA, S.,
KUHN, D. R., AND CHANDRAMOULI, R. Proposed
NIST standard for role-based access control. ACM
Transactions on Information and System Security
(TISSEC)4, 3 (2001), 224–274.

[17] GEORGIEV, M., JANA, S., AND SHMATIKOV, V.
Rethinking security of Web-based system applica-
tions. In International World Wide Web Conference
(WWW) (2015).

[18] Google Drive API for Android: authorizing Android
apps. https://developers.google.com/
drive/android/auth. [Online; accessed 18-
September-2015].

[19] Google Drive API for iOS: authorizing requests
of iOS apps. https://developers.google.
com/drive/ios/auth. [Online; accessed 18-
September-2015].

[20] GUARNIERI, M., AND BASIN, D. Optimal security-
aware query processing. In International Confer-
ence on Very Large Data Bases (VLDB) (2014).

[21] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER,
S., AND WETHERALL, D. These aren’t the droids
you’re looking for: Retrofitting Android to protect
data from imperious applications. In ACM Confer-
ence on Computer and Communications Security
(CCS) (2011).

[22] HOWELL, J., PARNO, B., AND DOUCEUR, J. R.
Embassies: Radically refactoring the Web. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2013).

[23] INGRAM, L., AND WALFISH, M. Treehouse:
JavaScript sandboxes to help web developers help
themselves. In USENIX Annual Technical Confer-
ence (2012).

[24] iOS developer library: App extension programming
guide. https://developer.apple.com/
library/ios/documentation/General/
Conceptual/ExtensibilityPG/
index.html#//apple_ref/doc/uid/
TP40014214. [Online; accessed 17-September-
2015].

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 641

[25] JAYARAMAN, K., DU, W., RAJAGOPALAN, B.,
AND CHAPIN, S. J. Escudo: A fine-grained pro-
tection model for web browsers. In IEEE Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS) (2010).

[26] JELOKA, S., ET AL. Oracle Label Security Ad-
ministrator’s Guide, release 2 (11.2) ed. Oracle
Corporation, 2009.

[27] LI, T., ZHOU, X., XING, L., LEE, Y., NAVEED,
M., WANG, X., AND HAN, X. Mayhem in the
push clouds: Understanding and mitigating security
hazards in mobile push-messaging services. In ACM
Conference on Computer and Communications Se-
curity (CCS) (2014).

[28] MEYEROVICH, L. A., FELT, A. P., AND MILLER,
M. S. Object views: Fine-grained sharing in
browsers. In International World Wide Web Confer-
ence (WWW) (2010).

[29] MEYEROVICH, L. A., AND LIVSHITS, B. Con-
script: Specifying and enforcing fine-grained secu-
rity policies for JavaScript in the browser. In IEEE
Symposium on Security and Privacy (2010).

[30] NAUMAN, M., KHAN, S., AND ZHANG, X. Apex:
Extending Android permission model and enforce-
ment with user-defined runtime constraints. In ACM
Symposium on Information, Computer and Commu-
nications Security (AsiaCCS) (2010).

[31] ONGTANG, M., MCLAUGHLIN, S., ENCK, W.,
AND MCDANIEL, P. Semantically rich application-
centric security in Android. Security and Communi-
cation Networks 5, 6 (2012), 658–673.

[32] OSBORN, S., SANDHU, R., AND MUNAWER, Q.
Configuring role-based access control to enforce
mandatory and discretionary access control policies.
ACM Transactions on Information and System Secu-
rity (TISSEC)3, 2 (2000), 85–106.

[33] PATIL, K., DONG, X., LI, X., LIANG, Z., AND
JIANG, X. Towards fine-grained access control in
JavaScript contexts. In IEEE International Confer-
ence on Distributed Computing Systems (ICDCS)
(2011).

[34] RITCHIE, D. M., AND THOMPSON, K. The UNIX
time-sharing system. Communications of the ACM
(CACM) 17, 7 (1974).

[35] RIZVI, S., MENDELZON, A., SUDARSHAN, S.,
AND ROY, P. Extending query rewriting techniques
for fine-grained access control. In ACM SIGMOD
International Conference on Management of Data
(SIGMOD) (2004).

[36] SALTZER, J. H. Protection and the control of infor-
mation sharing in multics. Communications of the
ACM (CACM) 17, 7 (1974).

[37] SCHULTZ, D., AND LISKOV, B. IFDB: Decen-
tralized information flow control for databases. In
ACM European Conference in Computer Systems
(EuroSys) (2013).

[38] SHAHRIAR, H., AND HADDAD, H. Content
provider leakage vulnerability detection in Android
applications. In SIN (2014).

[39] SMALLEY, S., AND CRAIG, R. Security enhanced
(SE) Android: Bringing flexible MAC to Android.
In Network and Distributed System Security Sympo-
sium (NDSS) (2013).

[40] SPAHN, R., BELL, J., LEE, M. Z., BHAMIDI-
PATI, S., GEAMBASU, R., AND KAISER, G. Peb-
bles: Fine-grained data management abstractions for
modern operating systems. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2014).

[41] Sqlite foreign key support. https://www.
sqlite.org/foreignkeys.html. [Online;
accessed 18-September-2015].

[42] The virtual table mechanism of SQLite. https://
www.sqlite.org/vtab.html. [Online; ac-
cessed 17-September-2015].

[43] STEFAN, D., YANG, E. Z., MARCHENKO, P.,
RUSSO, A., HERMAN, D., KARP, B., AND
MAZIERES, D. Protecting users by confining
JavaScript with COWL. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2014).

[44] SUN, S.-T., AND BEZNOSOV, K. The devil is in
the (implementation) details: An empirical analy-
sis of OAuth SSO systems. In ACM Conference
on Computer and Communications Security (CCS)
(2012).

[45] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI,
A., GEAMBASU, R., AND SARDA, N. CleanOS:
Limiting mobile data exposure with idle eviction. In
USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2012).

[46] HTML5 trumping iOS among app develop-
ers in emerging mobile markets. http:
//www.zdnet.com/article/html5-
trumping-ios-among-app-developers-
in-emerging-mobile-markets/. [Online;
accessed 17-September-2015].

642 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[47] Survey: Most developers now prefer
HTML5 for cross-platform development.
http://techcrunch.com/2013/02/26/

survey-most-developers-now-prefer-

html5-for-cross-platform-development/.
[Online; accessed 17-September-2015].

[48] VIENNOT, N., GARCIA, E., AND NIEH, J. A mea-
surement study of Google Play. In ACM Interna-
tional Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS) (2014).

[49] WANG, R., XING, L., WANG, X., AND CHEN,
S. Unauthorized origin crossing on mobile plat-
forms: Threats and mitigation. In ACM Conference
on Computer and Communications Security (CCS)
(2013).

[50] Introducing “Longhorn” for developers, Chapter 4:
Storage. https://msdn.microsoft.com/
en-us/library/Aa479870.aspx. [Online;
accessed 17-September-2015].

[51] XING, L., BAI, X., LI, T., WANG, X., CHEN, K.,
LIAO, X., HU, S., AND HAN, X. Cracking app iso-
lation on Apple: Unauthorized cross-app resource
access on MAC OS X and iOS. In ACM Conference
on Computer and Communications Security (CCS)
(2015).

[52] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium:
Practical policy enforcement for Android applica-
tions. In USENIX Security Symposium (2012).

[53] XU, Y., AND WITCHEL, E. Maxoid: Transparently
confining mobile applications with custom views of
state. In ACM European Conference in Computer
Systems (EuroSys) (2015).

[54] ZHOU, Y., AND JIANG, X. Detecting passive con-
tent leaks and pollution in Android applications. In
Network and Distributed System Security Sympo-
sium (NDSS) (2013).

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 643

iCellular: Device-Customized Cellular Network Access
on Commodity Smartphones

Yuanjie Li1, Haotian Deng2, Chunyi Peng2, Zengwen Yuan1, Guan-Hua Tu1, Jiayao Li1, Songwu Lu1

1 University of California, Los Angeles 2 The Ohio State University

Abstract
Exploiting multi-carrier access offers a promising direc-
tion to boost access quality in mobile networks. How-
ever, our experiments show that, the current practice
does not achieve the full potential of this approach be-
cause it has not utilized fine-grained, cellular-specific do-
main knowledge. In this work, we propose iCellular,
which exploits low-level cellular information at the de-
vice to improve multi-carrier access. Specifically, iCel-
lular is proactive and adaptive in its multi-carrier selec-
tion by leveraging existing end-device mechanisms and
standards-complaint procedures. It performs adaptive
monitoring to ensure responsive selection and minimal
service disruption, and enhances carrier selection with
online learning and runtime decision fault prevention. It
is readily deployable on smartphones without infrastruc-
ture/hardware modifications. We implement iCellular on
commodity phones and harness the efforts of Project Fi
to assess multi-carrier access over two US carriers: T-
Mobile and Sprint. Our evaluation shows that, iCellular
boosts the devices with up to 3.74x throughput improve-
ment, 6.9x suspension reduction, and 1.9x latency decre-
ment over the state-of-the-art selection scheme, with
moderate CPU, memory and energy overheads.

1 Introduction
Mobile Internet access has become an essential part of
our daily life with our smartphones. From the user’s
perspective, (s)he demands for high-quality, anytime,
and anywhere network access. From the infrastructure’s
standpoint, carriers are migrating towards faster tech-
nologies (e.g., from 3G to 4G LTE), while boosting net-
work capacity through dense deployment and efficient
spectrum utilization. Despite such continuous efforts, no
single carrier can ensure complete coverage or highest
access quality at any place and anytime.

In addition to infrastructure upgrades from carriers, a
promising alternative is to leverage multiple carrier net-
works at the end device. In reality, most regions are cov-
ered by several carriers (say, Verizon, T-Mobile, Sprint,
and AT&T in the US). With multi-carrier access, the de-

vice may select the best carrier over time and improve
its overall access quality. The exciting Google Project
Fi [26] has taken the lead to provide 3G/4G multi-carrier
access in practice. Other similar efforts through univer-
sal SIM card include Apple SIM [14] and Samsung e-
SIM [24]. The upcoming 5G standards also seek to sup-
port multiple, heterogenous access technologies [34].

Our empirical study shows that, the full benefits of
multi-carrier access can be constrained by today’s de-
sign. We examine Google Project Fi over two carriers
(T-Mobile and Sprint), and discover three issues, all of
which are independent of its excellent implementations
(§3): (P1) The anticipated switch is never triggered even
when the serving carrier’s coverage is pretty weak; (P2)
The switch takes rather long time (tens of seconds or
minutes) and prolongs service unavailability; and (P3)
the device fails to choose the high-quality network (e.g.,
selecting 3G with weaker coverage rather than 4G with
stronger coverage).

It turns out that, the above issues can be effectively
addressed by using low-level cellular information (e.g.,
available carriers, which carriers to scan, and radio/QoS
profile for each carrier) and mechanisms. However, such
fine-grained knowledge is not available to commodity
phones in their default operations. This is rooted in
the fundamental design of 3G/4G networks. With the
single-carrier scenario in mind, 3G/4G follows the de-
sign paradigm of “smart core, dumb end”. It thus does
not expose its low-level information to the device in nor-
mal operations. For multi-carrier access, however, end
intelligence is a necessity, since individual carrier does
not have global view on all carriers, which can only
be constructed at the device through accessing low-level
cellular events. Without using such knowledge, today’s
carrier selection could encounter issues P1-P3.

While the problem can be solved by the future ar-
chitecture redesign (say, 5G), it usually takes years to
accomplish. Instead, we seek to devise a solution that
works with the current 3G/4G network, in line with the
ongoing industrial efforts, e.g., Google Project Fi, Apple
SIM and Samsung e-SIM. Specifically, we address the
following problem: Can we leverage low-level cellular

644 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

PLMN - n
PLMN - 1 Serving-PLMN

PLMN
Selection

1. No home
PLMN 3. Select

Handoff

2. Scan carriers

Other
PLMNs

Cells

Figure 1: Multi-carrier network access (left) and
inter-carrier switch via PLMN selection (right).

information and mechanisms at the device to further im-
prove multi-carrier access? Our study yields a positive
answer.

We propose iCellular, a client-side service to let mo-
bile devices customize their own cellular network ac-
cess. Complementing the design of Project Fi, iCellu-
lar further leverages low-level, runtime cellular informa-
tion at the device during its carrier selection. iCellular is
built on top of current 3G/4G mechanisms at the device,
but applies cross-layer adaptations to ensure responsive
multi-carrier access with minimal disruption. To facili-
tate the device to make proper decisions, iCellular ex-
ploits online learning to predict the performance of het-
erogenous carriers, and provides built-in strategies for
better usability. It further safeguards access decisions
with fault prevention techniques. We implement iCel-
lular on commodity phone models (Nexus 6 and Nexus
6P) and assess its performance with Project Fi. Our eval-
uation shows that, iCellular can achieve 3.74x through-
put improvement and 1.9x latency reduction on average
by selecting the best mobile carrier. Meanwhile, iCel-
lular has negligible impacts on the device’s data ser-
vice and OS resource utilization (less than 2% CPU us-
age), approximates the lower bounds of responsiveness
and switch disruption, and shields its selection strategies
from decision faults.

The rest of the paper is organized as follows. §2 in-
troduces the background. §3 describes our findings and
uncovers root causes of multi-carrier access. §4, §5, and
§6 present the design, implementation and evaluation of
iCellular, respectively. §7 discusses remaining issues,
and §8 presents the related work. §9 concludes the work.

2 Mobile Network Access Primer
A cellular carrier deploys and operates its mobile net-
work (called public land mobile network or PLMN) to
offer services to its subscribers. Each PLMN has many
cells across geographical areas. Each location is covered
by multiple cells within one PLMN and across several
PLMNs (e.g., Verizon, AT&T, T-Mobile, Sprint).
Single-carrier network access. Today’s cellular net-
work is designed under the premise of single-carrier ac-
cess. A mobile device is supposed to gain access directly
from its home PLMN. It obtains radio access from the

serving cell and further connects to the core carrier net-
work and the external Internet, as shown in the left plot
of Figure 1. When the current cell can no longer serve
the device (e.g., out of its coverage), the device is mi-
grated to another available cell within the same PLMN.
This is called handoff.

Roaming between carriers. When the home PLMN
cannot serve its subscribers (e.g., in a foreign country),
the device may roam to other carriers (visiting networks).
This is realized through the PLMN selection procedure
between carriers [12], which is a mandatory function for
all commodity phones. It supports both automatic (based
on a pre-defined PLMN priority list) and manual modes.
As shown in the right plot of Figure 1, once triggered by
certain events (e.g. no home PLMN service), PLMN se-
lection should first scan the available carriers, and then
choose one based on the pre-defined criteria (e.g. prefer-
ence) or the user manual operation. If the device decides
to switch, it will deregister from the current carrier net-
work and then register to a new one. In this process,
network access may be temporarily unavailable. This is
acceptable since inter-carrier switch is assumed to be in-
frequent, thus having limited impacts.

Multi-carrier access with universal SIM card. Re-
cent industrial efforts aim at providing mobile device ac-
cess to multiple carriers with a single SIM card. They in-
clude Google Project Fi [26], Apple SIM [14], and Sam-
sung e-SIM [24]. With the SIM card, the device can ac-
cess multiple cellular carriers (e.g., T-Mobile and Sprint
in Project Fi). Given only one cellular interface, the de-
vice uses one carrier at a time.

3 Multi-carrier Access: Promises & Issues
We run experiments to quantify the benefits of multi-
carrier access, and identify the downsides of the today’s
efforts. The identified limitations are independent of im-
plementations, but rooted in the 3G/4G design.

Methodology. We conduct both controlled experi-
ments and a one-month user study using two Nexus 6
phones with Google Project Fi [26], which was released
in May 2015. Project Fi provides access to two U.S. car-
riers (T-Mobile and Sprint) at this time. It develops an
automatic carrier selection on commodity phones using
a proprietary mechanism. Unfortunately, details of its
switching algorithm have not been published. We con-
tacted Project Fi team and learned that this algorithm
aims at optimizing consumer experience, and consid-
ers network performance, battery usage and data activ-
ity during selection. We further inferred its decision and
execution strategies from our experiments.

In each controlled test, we use a Nexus 6 phone with
a Project Fi SIM card, and test with Project Fi’s auto-
matic carrier selection mode. We walk along two routes

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 645

N/A
S-3G
S-4G
T-3G
T-4G

P1 P3 P2
P1 P2+P3

Route 1 Route 2

-130
-110

-90
-70

T-Mobile 4G Sprint 4G

-110

-90

-70

0 30 60 90 120 150 180 210 240 270 300 330

ra
d

io
 s

ig
n

a
l
(d

B
m

)

Time (second)

T-Mobile 3G Sprint 3G

(a) An example log over two walking routes

T-Mobile 4G
Sprint 4G

240 245 250 255

T-Mobile 3G
Sprint 3G

(b) P1: no switch

 T-Mobile 4G

Sprint 4G

140 150 160

T-Mobile 3G
Sprint 3G

(c) P2: disruption

T-Mobile 4G
Sprint 4G

85 95 260 270

T-Mobile 3G
Sprint 3G

(d) P3: unwise switch
Figure 2: An example log for serving carriers and networks and three problematic instances through Project
Fi.

within the campus buildings at UCLA and OSU at the
idle mode (no data/voice, screen off). We walk slowly
(< 1 m/s) and record the serving carrier (“T” for T-
Mobile, “S” for Sprint) and its network type (4G or 3G)
per second. Meanwhile, we carry other accompanying
phones to record the radio signal strength of each access
option (T-4G, T-3G, S-4G, S-3G). We run each test 10
times and similar results are consistently observed in all
the tests. In the user study (07/31/15 to 09/02/15), we
use the Project Fi-enabled phone as usual and collect
background device and cellular events with MobileIn-
sight, an in-phone cellular monitoring tool [4]. We have
collected 4.9GB logs with MobileInsight in total, with
274,351 messages from radio resource control (RRC),
16,470 messages from mobility management (MM), and
5,365 messages from session management (SM). We
next present the results from the controlled experiments
as motivating examples. The user study to be described
in §4 and §6 confirms that these issues are common in
practice.

3.1 Motivating Examples
Merits of multi-carrier access. We first verify that
exploiting multiple carriers is indeed beneficial to ser-
vice availability and access quality. Figure 2a shows the
results from the controlled experiments over two routes.
On the first route [0s,190s), Sprint gradually becomes
weaker and then fades away, but its dead zone is covered
by T-Mobile; On the second route [190s, 330s], in con-
trast, Sprint offers stronger coverage, even at locations
with extremely weak coverages from T-Mobile. Multi-
carrier access indeed helps to enhance network service
availability by boosting radio coverage. For example, in
[160s, 180s], the phone switches to T-Mobile and retains
its radio access while Sprint is not available. Moreover,
we confirm that it further improves data access through-
put and user experiences. The Project Fi indeed offers a
major step forward on mobile Internet access.

Our examples further reveal three issues, which
demonstrate that the benefits of multi-carrier access have
not been fully achieved.

P1. No anticipated inter-carrier switch. It is desir-

able for the device to migrate to another available carrier
network for better access quality, when the device per-
ceives degraded quality from its current, serving carrier.
However, our experiments show that, the device often
gets stuck in one carrier network, and misses the better
network access (e.g., during [40s, 60s] and [240s, 260s]
of Figure 2). As shown in Figure 2b, T-Mobile experi-
ences extremely weak radio coverage (< -130 dBm in
4G and < -110 dBm in 3G), but the phone never makes
any attempt to move to Sprint, regardless of how strong
Sprint’s radio signal is. As a result, the device fails to
improve its access quality. Moreover, we find that the
expected switch often occurs until its access to the orig-
inal carrier (here, T-Mobile) is lost. This is rooted in
the fact that the inter-carrier switch is triggered when the
serving carrier fails. Therefore, the device becomes out
of service in this scenario, although better carrier access
remains available.

P2. Long switch time and service disruption. Even
when inter-carrier switch is eventually triggered, it may
disrupt access for tens of seconds or even several minutes
(see Figure 6 for the user-study results). In the example
of Figure 2c, the phone starts Sprint→T-Mobile roaming
at the 140th second, but it takes 17.3s to gain access to
T-Mobile 4G. This duration is much longer than the typ-
ical handoff latency (possibly several seconds [42]). It
is likely to halt or even abort any ongoing data service.
We look into the event logs (Figure 3) to examine why
the switch is slow. It turns out that, most of the switch
time is wasted on an exhaustive scanning of all possible
cells, including nearby cells from AT&T and Verizon.
In this example, it spends 14.7s on radio-band scanning
and 2.6s on completing the registration (attachment) to
the new carrier (here, T-Mobile). Note that, such heavy
scanning overhead is not incurred by any implementa-
tion glitch. Instead, it is rooted in the Project Fi’s design,
which selects a new carrier network only after an exhaus-
tive scanning process. In this work, we want to show that
such large latency is unnecessary. It can be reduced with-
out compromising inter-carrier selection.

P3. Unwise decision and unnecessary performance
degradation. Our next finding is that, the device fails

3

646 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Time Event
11:19:57.414 Out-of-service. Start network search
11:19:57.628 Scanning AT&T 4G cell 1, unavailable
11:19:57.748 Scanning AT&T 4G cell 2, unavailable
… …
11:20:11.788 Scanning Verizon 4G cell 1, unavailable
… …
11:20:12.188 Scanning T-Mobile 4G cell 1, available
11:20:12.771 Attach request (to T-Mobile 4G)
11:20:14.788 Attach accept

RF band
scanning:
14.7s

Network
registration:
2.6s

Figure 3: Event logs during P2 (disruption) of Fig. 2c.

to migrate to the better choice, thus unable to enjoy the
full benefits of multi-carrier access. The phone often
moves to 3G offered by the same carrier, rather than
the 4G network from the other carrier that yields higher
speed. Figure 2d illustrates two such instances. After
entering an area without Sprint 4G at the 91st second,
the device switches to Sprint 3G, despite stronger radio
signals from T-Mobile 4G. This indicates that the intra-
carrier handoff is preferred over the inter-carrier switch
in practice. Unfortunately, such a preference choice pre-
vents the inter-carrier switch from taking effect. Even
worse, obstacles still remain even when the network ac-
cess to the original carrier has been shortly disrupted.
For instance, during [267s, 273s], the original carrier (T-
Mobile 3G) is still chosen. In this case, T-Mobile 4G and
3G networks almost have no coverage. In short, the de-
vice acts as a single-carrier phone in most cases, even
with the multi-carrier access capability. Inter-carrier
switch is not triggered as expected.

3.2 Insights
The above examples also shed lights on how to solve the
three problems. The key is to leverage low-level cellular
information and mechanisms at the device when select-
ing access from multiple carriers.

Specifically, performing the anticipated switch (P1)
states that, the device performs inter-carrier switch upon
detecting a better carrier, even when the serving carrier is
still available. This further requires the device to learn all
available carriers and their quality at runtime. Note that
such information can be obtained from the low-level cel-
lular events. However, the default operation on commod-
ity phones will not do so. Moreover, the naive approach
of forcing the phone to proactively scan other carriers at
any time may lead to temporary disconnection from the
current carrier network. We elaborate on how we address
these issues in §4.1.

To reduce the switch time (P2), the device should re-
frain from exhaustive search of all carriers at all times.
This requires the device to perform fine-grained control
on which carriers should be scanned. It can be done by
configuring the low-level mechanism for monitoring.

To make a wise selection decision (P3), the device
should treat all intra-carrier handoffs and inter-carrier
switches equally, and select the best carrier network.
This requires the device to directly initiate the inter-
carrier switch when needed. This also calls for lever-

Adaptive
Direct
Switch

PLMN
Selection

Manual
Net Search

SwitchTo () Monitor()iCellular
APIs

iCellular
Daemon

Cellular
Interface

Predictor()

Cellular Events

Adaptive
Active

Monitor

Decision Fault
Prevention

Prediction
Service

Heterogeneity
Profile

Cmd/config Feedback

Figure 4: iCellular system architecture.

aging the low-level cellular mechanism.
In summary, low-level domain knowledge can be ex-

ploited to effectively address all three issues. However,
the default operation mode on commodity phones does
not expose such fine-grained cellular information and
mechanisms to higher layers. The reason is that, the
3G/4G network follows the design paradigm of “smart
core, dumb end” with the single-carrier usage scenario in
mind. The end device does not need to exploit such infor-
mation when selecting its carrier access. Since such low-
level, cellular-specific domain knowledge is not available
for the default operation mode, it might be the reason
why Project Fi has not explored this direction in its cur-
rent design.

4 iCellular Design
We now present iCellular, which explores an alterna-
tive dimension to improve multi-carrier access. iCellular
complements the design of Project Fi by leveraging low-
level cellular information and mechanisms. It seeks to
further empower the end device to have more control on
its carrier selection, while addressing the issues in §3.1.

For incremental deployability, iCellular is built on top
of the PLMN selection [11, 12], a standardized mecha-
nism mandatory on all phones. Note that, however, the
basic PLMN selection suffers from similar issues in §3.1:
migrating to other carriers is not preferred unless the
home carrier fails (P1); the exhaustive scanning (P2) and
the preferable intra-carrier handoffs (P3) are still in use.
The reason is that, the default PLMN selection scheme
is designed under the premise of single-carrier access.
While roaming to other carriers is allowed, it is not pre-
ferred by the home carrier unless it fails to offer network
access to its subscribers. So the basic PLMN selection
has the following features: (1) Passive triggering/mon-
itoring: When being served by one carrier, the device
should not monitor other carriers or trigger the selec-
tion until the current one fails (i.e., out of coverage); (2)
Network-controlled selection: The device should select
the new carrier based on the preferences pre-defined by
the home carrier and stored in the SIM card; (3) Hard
switch: The device should deregister from the old car-

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 647

Function Method Cellular Events Type

Active
monitor

(§4.1)

Disruption Paging Meas
avoidance Paging cycle Config
Minimal Radio meas Meas
search RRC SIB 1 Config

Prediction
service
(§4.3)

QoS profile EPS/PDP setup Config
Radio profile RRC reconfig Config

Decision
fault

prevention
(§4.4)

Access control RRC SIB1 Config
Interplay with Cell reselection Config
net mobility in RRC SIB 3-8

Function GMM/EMM Config
completeness location update

Table 1: Cellular events used in iCellular.

rier first, and then register to the new one. We thus need
to adapt the PLMN selection scheme to the multi-carrier
context by using low-level cellular events.

Figure 4 illustrates an overview of iCellular. In brief,
iCellular systematically enhances the devices’ role in
every step of inter-carrier switch with runtime cellu-
lar information, spanning triggering/monitoring, deci-
sion making and switch execution. To be incrementally
deployable on commodity phones, we build iCellular on
top of the existing mechanisms from the phone’s cellular
interface [7]. We exploit the freedom given by the stan-
dards, which allow devices to tune configurations and op-
erations to some extent. To ensure responsiveness and
minimal disruption, iCellular applies cross-layer adap-
tations over existing mechanisms (§4.1 and §4.2). To
facilitate the devices to make wise decisions, iCellular
offers cross-layer online learning service to predict net-
work performance (§4.3), and protects devices from de-
cision faults (§4.4). To enable adaptation, prediction and
decision fault prevention, iCellular incorporates realtime
feedbacks extracted from low-level cellular events. Dif-
ferent from approaches using additional diagnosis engine
(e.g., QXDM [37]) or software-defined radio (e.g., LT-
Eye [30]), we devise an in-phone mechanism to collect
realtime cellular events (§4.5, cellular events are summa-
rized in Table 1). These components are designed to be
scalable, without incurring heavy signaling overhead to
both the device and the network.

4.1 Adaptive Monitoring
To enable device-initiated selection, the first task is to
gather runtime information on available carrier networks.
This is done through active monitoring. It allows a de-
vice to scan other carriers even while being served by
one. This would prevent the device from missing a bet-
ter carrier network (P1 and P3 in §3). For this purpose,
the only viable mechanism on commodity phones is the
manual network search [12]. It was designed to
let a device manually scan all available carriers. Once
initiated, the device scans neighbor carriers’ frequency
bands, extracts the network status from the broadcasted
system information block, and measures their radio qual-
ity. No extra signaling overhead is incurred, since the
active monitoring approach does not activate signaling

exchanges between the device and the network. To be in-
crementally deployable, we decide to realize active mon-
itoring on top of the manual network search.

Note that naive manual search does not satisfy prop-
erties of minimal-disruption and responsiveness. First,
scanning neighbor carriers may disrupt the network ser-
vice. The device has to re-synchronize to other carri-
ers’ frequency bands, during which it cannot exchange
traffic with the current carrier. Second, it is exhaustive
to all carriers by design. Even if the device is not in-
terested in certain carriers (e.g., no roaming contract),
this function would still scan them, thus delaying the
device’s decision and wasting more power. The chal-
lenge is that, both issues cannot be directly addressed
with application-level information only. iCellular thus
devises cross-layer adaptions for both issues.

Disruption avoidance. To minimize disruptions on
ongoing services, iCellular schedules scanning events
only when the device has no application traffic delivery.
This requires iCellular to monitor the uplink and down-
link traffic actvities. While the uplink one can be directly
known from the device itself, the status for downlink traf-
fic is hard to predict. Traffic may arrive while the device
has re-synchronized to other carriers’ cells. If so, its re-
ception could be delayed or even lost.

iCellular prevents this by using the low-level cellular
event feedback. We observe that in the 3G/4G network,
the downlink data reception is regulated by the periodical
paging cycle (e.g., discontinuous reception in 4G [9,38]).
To save power, the 3G/4G base station assigns inactiv-
ity timers for the device. The device periodically wakes
up from the sleep mode, monitors the paging channel to
check downlink data availability, and moves to the sleep
mode again if no traffic is coming. iCellular obtains
this cycle configuration from the radio resource control
(RRC) messages, and schedules its scanning operations
only during the sleep mode. Figure 5 shows our one-
month logs of 4G per-cell search time at a mobile de-
vice with Project Fi. It shows that, 79.2% of cells can be
scanned in less than one paging cycle. Others need more
cycles to complete the scanning. With this design, no
paging event is interrupted by monitoring.

One valid concern is that, the monitoring results may
become obsolete due to continuous data transmissions,
thus leading to wrong decisions. This is unlikely to hap-
pen in practice for two reasons. First, most traffic tends
to be bursty, which leaves sufficient idle period for back-
ground monitoring. Second, network performance tends
to vary smoothly, and stale monitoring results do not af-
fect the final selection decision. Furthermore, iCellular
compares the elapsed time between the decision making
and the measurement. Obsolete measurements outside
the time window (say, 1 minute) will not be used.

5

648 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 20

 40

 60

 80

 100

0 1 2 4 6 8 10 12 14

C
D

F
 (

%
)

Per-cell scanning (s)

Paging cycle

(T-Mobile/Sprint)

Figure 5: Cell scan time.

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Switch time(s)

Bound
iCellular

Project Fi

Figure 6: Switch time.
Minimal search. Instead of exhausting all carrier net-
works, iCellular scales the monitoring by restricting the
manual search only to those specified by the device. To
realize this idea, the practical issue is that no such option
is available in the manual network search mechanism.
We thus leverage adaptation of the PLMN preference.
Given the list of carrier networks of interests , iCellu-
lar configures the cellular interface to let the manual net-
work search scan these carriers first. This is achieved by
assigning them with highest PLMN preferences. During
the manual search, iCellular listens to the cellular events
to see which carrier is being scanned. These events in-
clude the per-cell radio quality measurements, and its
system information block with PLMN identifiers. Once
iCellular detects that the device has finished scanning
of the device-specified carriers, it terminates the manual
network search function.

Monitoring-decision parallelism. Sometimes there
is no need to complete all the monitoring to determine the
target carrier network. For example, if the user prefers
4G, it can decide to switch whenever a good 4G is re-
ported, without waiting for 3G results. To support this,
iCellular allows devices to make decisions with partial
results, thus further accelerating the process. Instead of
waiting for all scanning results, iCellular triggers the de-
cision callback whenever new results are available.

4.2 Direct Inter-carrier Switch
iCellular aims at reducing the disruption time incurred
by inter-carrier switching as much as it can. We find that,
there is enough room for this because most service dis-
ruption time is caused by frequency band scanning (§3).
With the active monitoring function, iCellular does not
need to scan the carrier networks during switch. Specif-
ically, given a target carrier network, iCellular makes a
direct switch by configuring the target carrier with high-
est PLMN preference. It then triggers a manual PLMN
selection to the target carrier network. This way, the de-
vice would directly switch to the target without unneces-
sary scanning.

We next show how iCellular approximates to the
lower bound of the switch time. In cellular net-
works, switching to another network requires at least de-
registration from the old network (detach), and registra-
tion to the new network (attach). According to [10], the
detach time is negligible, since the device can detach di-
rectly without interactions to the old carrier network. So

the minimal disruption time in switch is roughly equal to
the attach time, i.e., Tswitch,min ≈ Tattach. For iCellular, no
extra attempts to other carrier networks are made. Since
it is on top of the PLMN selection, the scanning of the
target carrier still remains. Therefore, the switch time is

Tswitch,iCellular = ntTt +Tattach = ntTt +Tswitch,min (1)
where nt and Tt are the cell count and per-cell scanning
time for the target carrier network, respectively. Com-
pared with the attach time, this extra overhead is usu-
ally negligible in practice. Figure 6 verifies this with our
one-month background monitoring results in Project Fi.
It shows that, iCellular indeed approximates the lower
bound, despite this minor overhead.

4.3 Prediction for Heterogeneous Carriers
To decide which carrier network to switch to, the device
may gather performance information on each carrier net-
work. Ideally, the device needs to measure every avail-
able carrier network’s current performance (e.g., latency
or throughput) and make decisions. Unfortunately, this
is deemed impossible. The device can only measure the
serving network’s performance; other candidates’ perfor-
mances cannot be measured without registration.

Given this fact, iCellular decides to assist the device
to predict each carrier’s performance. Our predication is
based on the regression tree algorithm [19]. It models
the network/application performance (y) as a function of
a feature vector (x1,x2), where x1 is runtime radio mea-
surement and x2 is carrier network profiles (elaborated
below). The model is established using a pre-stored tree
at bootstrap and then recursively updated with new on-
line samples. Note that radio measurement alone is in-
sufficient to predict performance, because different car-
riers may apply heterogeneous radio technologies and re-
source configurations. Our prediction works as follows.
Prediction metric (y). This metric is used to rank
the performances of all available networks. We explore
both network-level (link throughput, radio latency) and
application-level ones (e.g., web loading latency, video
suspension time). They are obtained from both network
and application events, for example, Appendix B shows
how to obtain app-specific metrics. We want to point out
that the app-specific metric often leads to the same selec-
tion decision (see the evaluation §6). This is because the
performance characteristics of a carrier network tend to
have consistent impacts on all applications.
Training sample collection. The training sample
(x,y) for a network is collected in the background, with-
out interrupting the device’s normal usage. A new train-
ing sample is collected when a new observation of the
performance metric y is generated (e.g., throughput from
physical layer, loading time for Web-page download, la-
tency per second for VoIP). In the meantime, radio mea-

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 649

Sprint T-Mobile
Profile Value Prob Value Prob

QoS

Traffic class Background 100% Interactive 97.5%
Delay class 4 (best effort) 100% 1 100%

Max dlink rate 200Mbps 100% 256Mbps 100%
Max ulink rate 200Mbps 100% 44Mbps 100%

Radio
Duplex type TDD 88.3% FDD 100%
Paging cycle 100–200ms 81.5% 100ms 99.4%

Handoff priority 2/3/6 100% 2/3/6 100%

Table 2: Heterogeneous cellular network profiles.

surement and network profiles for the serving network
are recorded as x = (x1,x2). For the radio quality x1,
iCellular extracts the serving network’s RSRP (if 4G) or
RSCP (if 3G) from the runtime active monitor (§4.1).
For the network profile, iCellular currently collects two
types (Table 2): (1) QoS profile from the data bearer
context in session management, which includes the de-
lay class and peak/maximum throughput; (2) radio pa-
rameters from the RRC configuration message, which in-
cludes the physical and MAC layer configurations. Note
that the device cannot gain these profiles at runtime with-
out registration to the carrier network of interest. To
address this issue, we observe that network profiles are
quite predictable. This is validated by our 1-month user
study. Table 2 lists the predictability of some parameters
from this log. For each parameter, we choose the one
with the highest probability, and shows its occurrence
probability. Note that, most QoS and radio configura-
tions are invariant of time and location. The reason is
that, the carriers tend to apply well-tested operation rules
(e.g., link adaptation and scheduling), with minor tunings
to each base station/controller. As a result, we only store
a set of unique values, and reuse it for all the applicable
samples until changes are found.

Online predication and training. iCellular uses an
online regression tree algorithm [19] as its predictor. The
predictor is represented as a tree, with each interior node
as a test condition over x (radio measurements and profile
fields). Each decision is made upon the arrival of the
feature vector x. It estimates the per-network metric y
and selects the one with the highest rank.

iCellular updates the predictor’s decision tree in the
online fashion when a new sample arrives. At the boot-
strap phase, it pre-stores a regression tree based on
an offline training as the basis. Given a new sample
(x,y), iCellular first determines whether a predictor up-
date is needed. It runs the existing predictor over the
heterogeneity information and runtime radio measure-
ments, and obtains an estimated metric y′. If |y− y′| =
minz∈lea f |y − z|, which implies the current sample fits
well with the existing model, no update is needed. Oth-
erwise, the predictor is updated as follows. Given the
new sample and the existing tree, iCellular searches a
new field (measurement or profile) that best splits the
samples by minimizing the impurities in the two chil-

(Sprint 4G) (T-Mobile 4G)

(Sprint 4G) (T-Mobile 4G)

(Sprint 4G) (T-Mobile 4G) (T-Mobile 3G)

Voice call
(CSFB)

Cell
Reselection

Non-accessible

(T-Mobile 3G)

No 3G cells exit

Failure 1

Failure 2

Failure 3

Figure 7: Three types of improper switch decisions.

dren nodes (based on the least-square criterion). Given
this new split, we create a new pair of leaves for this new
field, and completes the update of the prediction tree.
Note that iCellular responds to new changes, and does
not need to permanently store all training samples. This
way, iCellular is scalable in storage and computation.

4.4 Decision Fault Prevention
Letting a device customize its access strategy can be a
double-edged sword. With improper strategies, the de-
vice may make faulty switch decisions and cause un-
expected service disruption. Figure 7 shows three cat-
egories of failures caused by decision faults, all of which
can only be detected with low-level cellular information:

Failure 1: No network access. Certain networks may
be temporarily inaccessible. For example, our user study
reports that, a Sprint 4G base station experiences a 10-
min maintenance, during which access is denied.

Failure 2: No voice service. In some scenarios, the
target carrier network cannot provide complete voice ser-
vices. Figure 8 shows an instance from our user study. T-
Mobile provides its voice service using circuit-switched-
fall-back (CSFB), which moves the device to 3G for the
voice call. However, there exist areas not covered by T-
Mobile 3G (e.g., signal strength lower than -95dBm ac-
cording to [8]). In this scenario, the user in Sprint 4G
should not switch to T-Mobile 4G, which cannot support
voice calls without the 3G infrastructure.

Failure 3: Unexpected low-speed data service. The
user selection may not be honored by the individual car-
rier’s handoff rules. Figure 9 reports an instance from
our user study. The user under Sprint 4G may de-
cide to switch to one T-Mobile 4G. However, under the
same condition, T-Mobile’s mobility rules (e.g., cell re-
selection [11]) would switch its 4G users to its 3G. In this
case, the user’s decision to T-Mobile 4G is improper, be-
cause the target network (T-Mobile 3G) is not preferred,
and this switch incurs unnecessary disruptions.

To prevent decision faults, iCellular chooses to safe-
guard the device’s decisions from those faulty ones. It
checks whether each carrier network has any of the above
problems, and excludes such carriers from the moni-
toring results. This prevents the device from switch-

7

650 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

N/A
S-3G
S-4G
T-3G
T-4G

Switch to T-4G

Dials

Dialing fails

-140
-120
-100

-80

T-4G
S-4G

-120

-100

-80

0 20 40 60 80
Time (second)

No signal
T-3G
S-3G

Figure 8: Switch to a net-
work with no voice support.

Time Event
17:49:07.520 Deregister from Sprint 4G
17:49:13.433 Scanning T-Mobile 4G cell

1, available
17:49:13.508 Cell reselection config in

SIB6: switch to 3G when
RSRP4G<-120dBm

17:49:15.142 Attach accept
17:49:20.106 RSRP4G= -122dBm

17:49:21.326 Cell reselection to T-
Mobile 3G

Figure 9: Interplay be-
tween user and net-
work’s mobility.

ing to these carrier networks. To this end, iCellular
first profiles each carrier’s low-level access-control list
from the RRC system-info-block message [9], data/voice
preference configuration from registration/location up-
date messages [10], and the network-side mobility rules
from the RRC configuration message [9,11]. At runtime,
for each candidate carrier, it checks if it is in the forbid-
den list (Failure 1), has no voice service with satisfac-
tory 3G radio quality (Failure 2), or has satisfied mobil-
ity rules for further switch (Failure 3). If any condition is
satisfied, it would be removed from the monitoring list.

4.5 Cellular Events Collection
As shown in §4.1-§4.4, iCellular relies on low-level cel-
lular events to perform cross-layer adaptations over the
existing mechanisms, predict the network performance,
and avoid possible switch faults. The cellular events in-
clude the signaling messages exchanged between the de-
vice and the network, and radio quality/load measure-
ments. Table 1 summarizes the events required by iCel-
lular. Note that some events (e.g., paging) should be ex-
tracted at realtime for feedbacks. Unfortunately, obtain-
ing realtime cellular events on commodity phones is not
readily available today. These events are not exposed to
mobile OS or applications. There exist commercial tools
(e.g., QXDM [37]) and research projects (e.g., LTEye
[30]) to extract them. However, they require an exter-
nal platform (e.g., laptop or a special hardware (USRP))
to connect to the mobile device, which limits the de-
vice’s flexible movement and its applicability. They can-
not meet iCellular’s realtime requirements. To this end,
we develop an in-phone solution MobileInsight [4] by
exploiting the existing cellular diagnostic mode. We en-
able the diagnostic mode on the phone, modify the the
virtual device for it (root access needed), and finally ex-
pose them to iCellular. This solution can be deployed on
commodity phones without hardware changes.

5 Implementation
We have implemented iCellular on Motorola Nexus 6
and Huawei Nexus 6P. They run Android OS 5.1 and
6.0 using Qualcomm Snapdragon 805 and 810 chipsets,

Cellular Interface (Baseband processor)

Android OS
Project Fi

Service

iCellular
Daemon

SwitchTo()

Direct
Switch MobileInsight

AT-cmd
Port

Decision Fault
Tolerance

Diagnostic
Mode Port

Prediction
Service

Heterogeneity
Profile

Predictor() Monitor()

Active Monitor

Cmd/config
Feedback

Figure 10: Overview of iCellular implementation.

respectively. Both support 4G LTE, 3G HSPA/UMT-
S/CDMA and 2G GSM. To activate access to multi-
ple cellular networks, we have installed Project Fi SIM
card on Nexus 6/6P, which supports T-Mobile and Sprint
3G/4G. Figure 10 illustrates the system implementation.
iCellular runs as a daemon service on a rooted phone.
To enable interactions with the cellular interface, we ac-
tivate the baseband processing tools (in bootloader), and
turn on the diagnostic mode [2] and AT-command inter-
faces.

Basic APIs. iCellular allows the device to
control its cellular access strategies through three
APIs: Monitor() for active monitoring (§4.1),
Predictor() for performance prediction (§4.3) and
SwitchTo() for direct switching (§4.2). The decision
fault tolerance is enabled by default (§4.4). Appendix A
presents an illustrative example on how to use them.

Usability-Flexibility tradeoff. The above basic APIs
provide most flexible means to customize access strate-
gies. In practice, however, there is no need for most nor-
mal users to customize the strategies from the scratch. To
support better usability, iCellular provides some built-in
strategies on top of the basic APIs. Devices can choose
these pre-defined ones, rather than build customized ver-
sions by themselves. We have developed three strategies:
prediction-based, radio quality only and profile only (see
§6 for performance comparisons).

Adaptive active monitoring (§4.1). We implement
Monitor() with manual search and adaptations. Our
prototype initiates the search with an AT query command
AT+COPS=?. The non-disruption and minimal search
adaptations are implemented for events of Table 1.

Adaptive direct switch (§4.2). We implement
the SwitchTo() on top of PLMN selection,
with dynamic adaptations for direct switch. Ide-
ally, this can be executed with the AT command
AT+COPS=manual,carrier,network. However,
this command is forbidden by the cellular interface of
Nexus 6/6P. We thus take an alternative approach. We
modify the preferred network type through Android’s
API setPreferredNetworkType, and change the

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 651

carrier with Project Fi’s secret code. Admittedly, this
approach may incur extra switch overhead, but it is still
acceptable (§6.2).

Prediction for heterogenous carriers (§4.3). We im-
plement Predictor() in two steps. First, we imple-
ment the online sample collection, which collects ra-
dio measurements, RRC configurations and QoS pro-
files as features. We also define a callback to collect the
network/application-level performance metrics. We then
implement the online regression tree algorithm for train-
ing and prediction.

Decision fault prevention (§4.4). The fault preven-
tion function is implemented as a shim layer between
active monitoring and basic APIs. It detects the poten-
tial switch faults based on monitoring results and hetero-
geneity profiling, and excludes the unreachable carrier
networks from the monitoring results. We further add a
runtime checker in SwitchTo(), and prevent devices
from selecting carriers not in the scanning results.

Cellular events collection (§4.5). We use the built-
in realtime cellular loggers from MobileInsight. We de-
velop a proxy daemon for the diagnostic port (/dev/diag),
and redirect the events to the phone memory.

6 Evaluation
We evaluate iCellular along two dimensions. We first
present the overall performance improvement by iCel-
lular with smart multi-carrier access (§6.1), and then
show iCellular satisfies various design properties in §4
(§6.2). All experiments are conducted on commodity
Nexus 6 phones with iCellular in two cities of Los Ange-
les (west coast) and Columbus (Midwest), mainly around
two campuses. The results on Nexsus 6P are similar.

6.1 Overall Performance
We use four representative applications to assess iCellu-
lar: SpeedTest (bulk file transfer), Web (interactive la-
tency for small volume traffic), Youtube (video stream-
ing) and Skype (realtime VoIP). We evaluate each appli-
cation with quality-of-experience metrics whenever pos-
sible, i.e., downlink speed for SpeedTest, page-loading
time for Web [13] (measured with Firefox), video sus-
pension time for Youtube [32] (measured by its APIs),
and latency for Skype [27] (measured with its tech info
panel). The details to collect application performance
metrics are given in Appendix B. We run both pedestrian
mobility and static tests. Along the walking routes, we
uniformly sample locations. Note that Project Fi’s au-
tomatic selection protects the device’s data connectivity
by deferring its switch to the idle mode. For fair compar-
isons, we move to each sampled location in the idle mode
(no voice/data, screen off), wait for sufficiently long time
(≥1min) for potential switch during idle, and then start

 0

 10

 20

 30

 40

 50

S
p
e
e
d
te

s
t

 (
M

b
p
s
)

Project Fi

Radio-only

Profile-only

Prediction

Optimal

 0

 2

 4

 6

W
e
b

lo

a
d
ti
m

e
 (

s
)

 0

 5

 10

 15

Y
o
u
T

u
b
e

 p
a
u
s
e
 (

s
)

 0

 100

 200

1 2 3 4 5 6 7 8

S
k
y
p
e

 (
m

s
)

39.3s

Figure 11: Performance of Speedtest, Web, Youtube,
Skype using various multi-carrier access schemes.

to test each application. We have at least five test runs
and use the median value for evaluation.

We compare iCellular and its variants, with two base-
lines: (i) Project Fi’s automatic selection and (ii)
Optimal strategy: We obtain the optimal access op-
tion by exhausting the application or network perfor-
mance at each location. It may not be achieved in re-
ality, but it serves as an ideal performance benchmark.
We test three built-in iCellular decision strategies (§5):
(1) Prediction-based: the default strategy in iCellular,
which chooses the carrier with the best ranking metric
from the predictor §4.3. The predictor is trained based on
our one-month user-study logs, and tested over different
routes. (2) Radio-only: the de-facto handoff strategy in
3G/4G. We implement the standardized cell re-selection
scheme [11]. Whenever a network 4G with its signal
strength higher than -110dBm (defined in [11]) exists,
the strongest 4G carrier is chosen. Otherwise, we choose
the strongest 3G network. (3) Profile-only: the device
is migrated to the carrier network with the highest QoS
(see Table 2). For our iCellular strategies, we use the
carrier list with all network types supported by Project
Fi (i.e., 3G and 4G in T-Mobile and Sprint).

Figure 11 plots their performances in eight instances
(locations), which belong to three categories: both car-
riers with acceptable coverage (Case 1-2), one carrier
with acceptable coverage but the other not (Case 3-5),
both carriers with weak coverage and one is even weaker
(Case 6-8). We further compare them with the optimal
one in two dimensions: accuracy toward the optimality,
and the performance gap/improvement.
Accuracy toward optimality. We compare the prob-
ability that each scheme reaches the optimal network.
Let I and Iopt be the access options chosen by the test
scheme and the optimal strategy. We define the hit ratio
as the matching samples |(I .

= Iopt)| over all test sam-
ples. Table 3 shows the hit ratios of all schemes by dif-
ferent applications. iCellular’s prediction-based strategy

9

652 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Project Fi Radio-only Profile-only Prediction
Speedtest 47.3% 63.1% 36.8% 73.6%

Web 57.9% 73.6% 31.6% 57.8%
Youtube 16.9% 22.6% 49.1% 50.9%
Skype 24.5% 7.6% 84.9% 92.5%

Table 3: Statistics of accuracy toward the optimality.
SpeedTest Web Youtube Skype

Radio meas 36.5% 72.7% 26.4% 8.7%
Heterogeneity profile 63.5% 27.3% 73.6% 91.3%

Table 4: Weights of radio measurement and network
profiles in iCellular’s prediction strategy.

makes a wiser multi-carrier access decision. The hit ra-
tios are 73.6%, 57.8%, 50.9% and 92.5% in SpeedTest,
Web, Youtube and Skype, respectively. They are rela-
tively small in Web and Youtube, but do not incur much
performance degradation (explained later). They are usu-
ally higher than Project Fi’s automatic selection except
for Web. The mobility speed has minor impact on the
prediction accuracy, since it does not affect sample col-
lection. Both radio measurements and cellular network
profiles contribute to the high accuracy, but their impacts
on all apps vary. We calculate their normalized variable
importance in the regression tree (defined in [31]) and
Table 4 shows their weights for four apps. We also find
that, the metric specific for one app often locates the bet-
ter network for other apps at the same location. The rea-
son is that, the characteristics of one carrier network tend
to have consistent impact on all apps. When the perfor-
mance gap between two carriers is significant, it would
exhibit on all application-level metrics.
Data service performance. We next examine the
data performance by different schemes. We define the
gap ratio γ = |x − x∗|/x∗, where x is the performance
using various access strategies, xopt is the optimal per-
formance. We plot CDF of γ in Figure 12 and present
the hit ratios and statistics of γ+ in Table 5. Com-
pared with Project Fi, iCellular narrows its performance
gap (e.g., reducing the maximal speed loss from 73.7%
(19.7Mbps) to 25.7%, and the maximal video suspen-
sion time gap from 28.1s to 3.2s). The performance gain
varies with locations (see Figure 11). With acceptable
coverage (Case 1-2), Project Fi’s performance also ap-
proximates the optimal one. However, at locations with
weak coverage, iCellular improves the device perfor-
mance more visibly. The performance gain varies with
applications (traffic patterns). Compared with other traf-
fic, iCellular provides relatively small improvement for
Web browsing. The reason is that, the Web traffic vol-
ume is relatively small, and no large performance dis-
tinction appears among various access options. How-
ever, for heavy traffic (e.g., file transfer), video streaming
and voice calls, iCellular substantially improves the per-
formance. The average improvement of iCellular over
Project Fi approximates γ f i−γicellular. On average, iCel-
lular increases 23.8% downlink speed and reduces 7.3%
loading time in Web, 37% suspension time in Youtube,

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Project Fi

iCellular-prediction

 0 0.2 0.4 0.6 0.8 1

Project Fi

iCellular-prediction

0

20

40

60

80

100

 0 1 2 3 4 5 6 7 8

Project Fi

iCellular-prediction

 0 0.5 1 1.5 2

Speedtest Web

Youtube Skype

Gap = |x - Optimal| / Optimal

C
D

F
 (

%
)

Project Fi

iCellular-prediction

Figure 12: The performance gaps from Project Fi and
iCellular’s prediction strategy to the optimality.

Project Fi iCellular-prediction
med(γ) max(γ) med(γ) max(γ)

(|x− x∗|) (|x− x∗|) (|x− x∗|) (|x− x∗|)
SpeedTest 36.2% 73.3% 12.4% 25.7%

(speed) 3.8Mbps 19.8Mbps 1.4Mbps 9.8Mbps
Web 8.5% 46.5% 1.2% 17%

(loadtime) 0.5s 2.3s 0.2s 0.7s
Youtube 55% 690% 18% 111%
(Pause) 1.4s 28.1s 0.3s 3.2s
Skype 62.9% 193.8% 2.5% 6.7%

(Latency) 64ms 117ms 4.4ms 4.5ms

Table 5: Performance gaps from the optimal one.

60.4% latency in Skype. Since iCellular often selects the
optimal access, the maximal gain over Project Fi can be
up to 46.5% in Web, 6.9x in Youtube, 1.9x in Skype, and
3.74x in Speedtest.
Comparison between iCellular’s built-in strategies.
iCellular’s prediction strategy best approximates the op-
timal strategy. It outperforms radio-only and profile-
only variants (§4.3). We also see that, the importance
of profile and radio measurements varies across applica-
tions. For example, our log-event analysis shows that, T-
Mobile assigns Project Fi devices to the interactive traf-
fic class (Table 2), which is optimized for delay-sensitive
service [6]1. Instead, Sprint only allocates the best-effort
traffic class to these devices. This explains why the
profile-only strategy’s performance approximates the op-
timal strategy for Skype. It also implies that, for a given
application (e.g., Skype), simpler strategy (rather than
prediction), which incurs smaller system overhead, can
be available for close-to-optimal performance.

6.2 Efficiency and Low Overhead
We next present the micro-benchmark evaluations on
iCellular’s key components, and validate that they are ef-
ficient. We examine the active monitoring, direct switch
and fault prevention, as well as the overhead of signaling,
CPU, memory and battery usage.

Efficiency. We examine iCellular’s efficiency through
two adaptive module tests. First, we show that, iCel-

1This QoS is specific to Project Fi. For example, we verify that a
T-Mobile device with Samsung S5 is assigned lower background class.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 653

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
D

F
 (

%
)

Manual
iCellular

(a) Total search time

 0
 20
 40
 60
 80

 100

 0 5 10 15 20 25

C
D

F
 (

%
)

Manual
iCellular

(b) Cell count
Figure 13: iCellular’s adaptive monitoring avoids ex-
haustive search.

 0
 10
 20
 30
 40
 50
 60
 70

Project Fi iCellular Bounds

S
w

it
c
h
 t
im

e
 (

s
)

Save 76.7%
Save 96.1%

Figure 14: Inter-carrier
switch time.

 0

 10

 20

 30

Idle Monitor Switch

M
s
g

/s

Radio signaling
Core-net signaling

Total signaling

Figure 15: Cellular sig-
naling overhead.

lular’s adaptive monitoring is able to accelerate carrier
scanning. We compare it with the default manual search,
and record the total search time and the number of cells
scanned at 100 different locations. Figure 13 shows that,
with adaptive search, 70% of the complete search can be
completed within 10s, 64% shorter than the exhaustive
manual search. Note that devices are allowed to switch
before the complete search (§5), so it waits shorter in
practice. Figure 13b counts the scanned cells, and val-
idates that such savings come from avoiding those un-
necessary cell scans. The search time and the number of
cells vary with locations and the cell density.

Second, we examine how well iCellular’s adaptive
switch reduces service disruption. In this experiment, we
place the phone at the border of two carriers’ coverages,
and test the switch time needed for iCellular and Project
Fi for 50 runs. The inter-carrier switch time is defined
as the duration from the de-registration from the old car-
rier to the registration to the new carrier. For compari-
son purposes, we also calculate the lower bound based
on the MobileInsight event logs, described in §4.2. Fig-
ure 14 shows that, iCellular saves 76.7% switch time on
average, compared with Project Fi. However, the current
iCellular prototype has not achieved the minimal switch
time: it still requires 8.8s on average. Under high-speed
mobility, this may delay the switch to the optimal car-
rier network. We dig into the event logs, and discover
that, the current bottleneck lies in the SIM card recon-
figuration. The current iCellular implementation relies
on Project Fi’s system service. It has to wait until the
SIM card is reconfigured to switch to another carrier. In
the experiments, we find that most of the switch times
(7.3s on average) are spent on the SIM card reconfigura-
tion, which is beyond the control of iCellular. The phone
has no network service in this period. The lower bound
implies that, with better SIM card implementation, iCel-
lular could save up to 96.1% of switch time compared
with the Project Fi.

 0
 1
 2
 3
 4
 5
 6

T-4G T-3G S-4G S-3G

S
u

s
p

e
n

s
io

n
 (

s
)

w/o icellular
w icellular

(a) Youtube

 0
 50

 100
 150
 200
 250
 300
 350

T-4G T-3G S-4G S-3G

L
a

te
n

c
y
 (

m
s
) w/o icellular

w icellular

(b) Skype
Figure 16: iCellular’s active monitoring has minor
impacts on data performance.

Fault prevention. We next verify that iCellular han-
dles fault scenarios and prevents devices from switch-
ing to unwise carrier networks. All three failure types
in §4.4 have been observed in our one-month user study.
Note that the failure scenarios are not very common in
reality. We observe one instance of the forbidden access,
where a Sprint 4G base station sets the access-barring op-
tion for 10 min (possibly under maintenance). We ob-
serve another instance of Figure 8, where T-mobile 4G
is available but T-Mobile 3G is not available. Since T-
Mobile 4G does not provide Voice over LTE (VoLTE)
to Project Fi and has to rely on its 3G network (using
circuit-switching Fallback) for voice calls [41]. Conse-
quently, the correct decision should be to not switch to
T-Mobile 4G, since voice calls are not reachable there.
iCellular detects it from the profiled call preference and
location update messages, and excludes this access op-
tion from the candidate list. We also observe uncoor-
dinated mobility rules between the network and the de-
vice (Figure 9). We validate that iCellular can detect and
avoid them.

Impact on applications in monitoring. We show that
iCellular’s active monitor does not disrupt the ongoing
data service at the device. We run the active monitor 100
times with/without applications and its active data trans-
fer. We test with four applications and the results with-
/without iCellular’s monitoring are similar. Figure 16
shows the performance with/without iCellular’s moni-
toring for Youtube and Skype. Enabling/disabling active
monitoring has comparable application performance. As
explained in §4.1, this is because the carrier scanning
procedure is performed only in the absence of traffic.

Signaling overhead. We show that iCellular incurs
moderate signaling messages to the device and the net-
work. We record the device-side signaling message rate
under three conditions (when running our performance
tests): (1) Idle: No monitoring/switch functions are ac-
tive. No extra cellular signaling messages are gener-
ated; (2) Monitor: iCellular initiates its active monitor-
ing. The device should receive more broadcasted signals.
However, no extra signaling messages are generated to
the network; (3) Switch: iCellular initiates the switch to
the new carrier network. Because of the registration, ex-
tra signaling messages are generated to both the device
and the network. For all scenarios, we count the radio-

11

654 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0
 1
 2
 3
 4
 5

 0 300 600 900 1200

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

(a) CPU usage

WeChat 21.03%
iCellular 4.75%
Skype: 4.54%
Gmail: 3.33%
GO Power Master 1.21%
Google Play 0.73%
...

(b) Battery usage
Figure 17: CPU and battery usage of iCellular.

level (from RRC layer), core-network level (from mobil-
ity and session management layers) and the total signal-
ing rate. Figure 15 shows that, the maximum observed
signaling message rate is 32 message/sec.

CPU and memory. In all our tests, the maximum
CPU utilization is below 2%, while the maximum mem-
ory usage is below 20 MB (including virtual memory).
Figure 17a shows a 20-min log during a driving test,
where its maximum memory usage is 16.45MB.

Energy consumption. Since we cannot directly mea-
sure the consumed power at Nexus 6/6P with an external
power meter (its battery is sealed, and hard to remove),
we take an application-level approach. We use a fully-
charged Nexus 6 phone and run it for 24 hours. We use
an app called GO-Power-Master [3] to record energy
consumption for each component/app. Figure 17b shows
one record, where iCellular explicitly consumes about
4.75% of battery. Its energy can be further optimized
(e.g., with sleep mode and periodical monitoring).

7 Discussion

Working with network-side solution. Despite a
device-side solution, iCellular can work in concert with
carrier-side mechanisms for better performance. For ex-
ample, during the inter-carrier switch, iCellular could
benefit from the network-side buffering and tunneling of
downlink traffic, and support more seamless migration.
For each individual carrier, its network-side solution can
also benefit from iCellular with device-side feedbacks on
all available carriers. Note that the carrier network still
retains its final say on the switch decision by rejecting
the device-initiated switch requests.

Hints for future mobile network design. The fu-
ture multi-carrier access design (e.g., 5G) can benefit
from our iCellular’s design experience. For example,
the idea of adaptive monitoring (§4.1) and direct switch
(§4.2) may be instrumental to designing a new inter-
carrier switch mechanism beyond the popular PLMN se-
lection. The heterogeneity predictor (§4.3) and decision
fault prevention (§4.4) are also directly applicable to 5G.

8 Related Work
In recent years, exploiting multiple cellular carriers at-
tracts research efforts on both network and device sides.

The network-side efforts include sharing the radio re-
source [22, 28, 36, 36] and infrastructure [17, 18, 29, 44]
between carriers, which helps to reduce deployment cost.
On the device side, both clean-slate design with dual SIM
cards [1,20] and single universal SIM card [14,24,26] are
used for multi-carrier access. But multi-SIM phones pro-
vide multi-carrier access in a constrained fashion. The
number of accessible carriers is limited by the number
of SIM cards (usually two due to energy and radio inter-
ference constraints). Our work complements the single-
SIM approach for incremental deployment. It differs
from existing efforts by leveraging low-level cellular in-
formation, and offering device-defined selections in a re-
sponsive and non-disruptive manner.

iCellular leverages the rich cellular connectivity on
the device. Similar efforts use multiple physical inter-
faces from WiFi and cellular, including WiFi offload-
ing [16,21,23] and multipath-TCP [35,43]. iCellular dif-
fers from all these in that it still uses a single cellular in-
terface. [15] reports similar problems, but we further un-
veil their root causes. Similar issues may also occur with
traditional handoffs within a single carrier [39, 40, 45],
which are caused by the carrier’s own problematic man-
agement. Instead, iCellular targets inter-carrier migra-
tion, and chooses to let end devices customize the selec-
tion strategies among carriers.

9 Conclusion

The current design of cellular networks limits the de-
vice’s ability to fully explore multi-carrier access. The
fundamental problem is that, existing 3G/4G mobile net-
works place most decisions and operational complexity
on the infrastructure side. This network-centric design
is partly inherited from the legacy telecom-based archi-
tecture paradigm. As a result, the increasing capability
of user devices is not properly exploited. In the multi-
carrier access context, devices may suffer from low-
quality access while incurring unnecessary service dis-
ruption. In this work, we describe iCellular, which seeks
to leverage the fine-grained cellular information and the
available mechanism at the device. It thus dynamically
selects better mobile carrier through adaptive monitoring
and online learning. Our initial evaluation validates the
feasibility of this approach.

Acknowledgments: We thank the anonymous review-
ers for their constructive comments. We greatly appreci-
ate our shepherd, Dr. Matt Welsh for his continuous and
timely guidance to improve the work. We also appreciate
Dr. Richard Liu and the Project Fi team for their valu-
able feedback. This work is supported in part by NSF
awards (CNS-1423576, CNS-1421440, CNS-1526456,
and CNS-1526985).

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 655

References
[1] Dual sim phone. https://en.wikipedia.org/wiki/Dual_SIM.

[2] Enabling diagnostic mode in mobileinsight.
http://metro.cs.ucla.edu/mobile_ins
ight/diag_reference.html.

[3] Go power master. https://play.google.com/
store/apps/details?id=com.gau.go.launc
herex.gowidget.gopowermaster&hl=en.

[4] Mobileinsight project. http://metro.cs.ucla.ed
u/mobile_insight.

[5] 3GPP. Lte ue category. http://www.3gpp.org/k
eywords-acronyms/1612-ue-category.

[6] 3GPP. TS23.107: Quality of Service (QoS) concept and
architecture.

[7] 3GPP. TS27.007: AT command set for User Equipment
(UE), 2011.

[8] 3GPP. TS25.304: User Equipment (UE) Procedures in
Idle Mode and Procedures for Cell Reselection in Con-
nected Mode, 2012.

[9] 3GPP. TS36.331: Radio Resource Control (RRC), 2012.

[10] 3GPP. TS24.301: Non-Access-Stratum (NAS) for EPS; ,
Jun. 2013.

[11] 3GPP. TS36.304: User Equipment Procedures in Idle
Mode, 2013.

[12] 3GPP. TS23.122: Non-Access-Stratum (NAS) functions
related to Mobile Station (MS) in idle mode, 2015.

[13] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek, C. Scott,
M. Welsh, and B. Yin. Flywheel: Google‘s Data Com-
pression Proxy for the Mobile Web. In USENIX NSDI,
2015.

[14] Apple. Apple SIM for iPad. https://www.apple.
com/ipad/apple-sim/.

[15] N. Armstrong. Network handover in google fi,
2015. http://nicholasarmstrong.com/2015/08/network-
handover-google-fi/.

[16] A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting Mobile 3G Using WiFi. In ACM MobiSys,
2010.

[17] R. Copeland and N. Crespi. Resolving ten MVNO is-
sues with EPS architecture, VoLTE and advanced policy
server. In IEEE International Conference on Intelligence
in Next Generation Networks (ICIN), pages 29–34, 2011.

[18] X. Costa-Pérez, J. Swetina, T. Guo, R. Mahindra, and
S. Rangarajan. Radio Access Network Virtualization for
Future Mobile Carrier Networks. IEEE Communications
Magazine, 51(7):27–35, 2013.

[19] S. L. Crawford. Extensions to the cart algorithm. Interna-
tional Journal of Man-Machine Studies, 31(2):197–217,
1989.

[20] S. Deb, K. Nagaraj, and V. Srinivasan. MOTA: Engineer-
ing an Operator Agnostic Mobile Service. In ACM Mobi-
Com, pages 133–144, 2011.

[21] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrish-
nan. WiFi, LTE, or Both? Measuring Multi-Homed Wire-
less Internet Performance. In ACM IMC, pages 181–194,
2014.

[22] P. Di Francesco, F. Malandrino, and L. A. DaSilva. Mo-
bile Network Sharing Between Operators: A Demand
Trace-driven Study. In ACM CSWS, 2014.

[23] S. Dimatteo, P. Hui, B. Han, and V. O. K. Li. Cellu-
lar Traffic Offloading through WiFi Networks. In IEEE
MASS, 2011.

[24] Engadget. Apple and Samsung in talks to adopt e-SIM
technology. http://www.engadget.com/2015/
07/16/apple-samsung-e-sim/.

[25] Google. Youtube android player api. https:
//developers.google.com/youtube/androi
d/player/reference/com/google/android/
youtube/player/YouTubePlayer.

[26] Google. Project fi, 2015. https://fi.google.co
m/about/.

[27] S. Jelassi, G. Rubino, H. Melvin, H. Youssef, and G. Pu-
jolle. Quality of Experience of VoIP Service: A Survey
of Assessment Approaches and Open Issues. IEEE Com-
munications Surveys & Tutorials, 14(2):491–513, 2012.

[28] M. Jokinen, M. Mäkeläinen, and T. Hänninen. Demo: Co-
primary Spectrum Sharing with Inter-operator D2D Trial.
In ACM MobiCom, 2014.

[29] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan.
NVS: A Substrate for Virtualizing Wireless Resources in
Cellular Networks. IEEE/ACM Transactions on Network-
ing (TON), 20(5):1333–1346, 2012.

[30] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. LTE Ra-
dio Analytics Made Easy and Accessible. In ACM SIG-
COMM, pages 211–222, 2014.

[31] MathWorks. Variable importance in regression tree.
http://www.mathworks.com/help/stats/c
ompactregressiontree.predictorimportan
ce.html.

[32] R. K. Mok, E. W. Chan, and R. K. Chang. Measuring
the Quality of Experience of HTTP Video Streaming. In
IFIP/IEEE Integrated Network Management (IM), pages
485–492, 2011.

[33] Mozilla. Remotely debugging firefox for android.
https://developer.mozilla.org/en-US/do
cs/Tools/Remote_Debugging/Firefox_for_
Android.

[34] NGMN. Ngmn 5g white paper. https://www.ngmn
.org/work-programme/5g-initiative/.

[35] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and
O. Bonaventure. Exploring Mobile/WiFi Handover with
Multipath TCP. In ACM CellNet, 2012.

[36] J. S. Panchal, R. Yates, and M. M. Buddhikot. Mobile
Network Resource Sharing Options: Performance Com-
parisons. IEEE Transactions on Wireless Communica-
tions, 12(9):4470–4482, 2013.

13

656 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[37] Qualcomm. QxDM Professional - QUALCOMM eXten-
sible Diagnostic Monitor. http://www.qualcomm
.com/media/documents/tags/qxdm.

[38] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui,
A. Drake, and K. Lau. Discovering Fine-grained RRC
State Dynamics and Performance Impacts in Cellular
Networks. In ACM MobiCom, pages 177–188, 2014.

[39] A. Salkintzis, M. Hammer, I. Tanaka, and C. Wong. Voice
Call Handover Mechanisms in Next-Generation 3GPP
Systems. Communications Magazine, IEEE, 47(2):46–
56, 2009.

[40] K. E. Suleiman, A.-E. M. Taha, and H. S. Hassanein.
Understanding the interactions of handover-related self-
organization schemes. In Proceedings of the 17th ACM
International Conference on Modeling, Analysis and Sim-
ulation of Wireless and Mobile Systems, MSWiM ’14,
pages 285–294, 2014.

[41] G. Tu, C. Peng, H. Wang, C. Li, and S. Lu. How Voice
Calls Affect Data in Operational LTE Networks. In Mo-
biCom, Oct. 2013.

[42] G.-H. Tu, C. Peng, C.-Y. Li, X. Ma, H. Wang, T. Wang,
and S. Lu. Accounting for Roaming Users on Mobile
Data Access: Issues and Root Causes. In ACM MobiSys,
2013.

[43] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Hand-
ley. Design, Implementation and Evaluation of Conges-
tion Control for Multipath TCP. In USENIX NSDI, 2011.

[44] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel. Lte mo-
bile network virtualization. Springer Mobile Networks
and Applications, 16(4):424–432, 2011.

[45] H. Zhang, X. Wen, B. Wang, W. Zheng, and Y. Sun.
A novel handover mechanism between femtocell and
macrocell for lte based networks. In Proceedings of the
2010 Second International Conference on Communica-
tion Software and Networks (ICCSN), 2010.

Appendices
A An Example of iCellular APIs
We use a simple example to illustrate how they work. Consider
a device who has access to T-Mobile and Sprint 3G/4G net-
works, and would like to choose in the network with minimal

radio link latency. To do so, the device first initiates an active
monitor, and specifies the list of the carrier networks s/he is
interested in:

monitor = Monitor(["T-4G","T-3G","S-4G"]);

To choose the target carrier network, the user may want to learn
each network’s performance. The following code shows how
user can initiate a latency predictor:

predictor = Predictor("Latency");

To let devices make responsive decisions, iCellular let selec-
tion strategy be triggered by the latest and even partial search
results. To do so, the device should overload an event-driven
decision callback function. Devices are given the runtime mon-
itoring results of available carrier networks. Optionally, the
device can use the predictor to help determine the target car-
rier network. The device can call SwitchTo() function to
perform the switch. The following code shows a strategy that
minimizes latency:

def decision_callback(monitor):
min_latency = inf; target = null;
for network in monitor:
latency = predictor.predict(network);
if latency < min_latency:
min_latency = latency;
target = network;

SwitchTo(target);

B Collecting App-specific Performance
For SpeedTest, we directly record the downlink speed for each
test. Note that Nexus 6 supports LTE category 4, which
can yield up to 150Mbps downlink bandwidth in theory [5].
This is why we observe 40+Mbps downlink speed in our
tests, which is much higher than most previous measurements.
For Web, currently we use Firefox and get the web loading
time from its debugging console [33]. For Youtube, we ex-
tract its buffering time by tracking OnBuffer(True) and
OnBuffer(False) events from Youtube Android player
API [25], and calculating the elapsed time in between, during
which the user has to pause the video. For Skype, we collect
round-trip latencies (in ms) as the performance metric. To get
it, We enabled the Technical info panel in the Skype app,
which shows the latency in the call. Then we record the round-
trip latency in every second.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 657

Diamond: Nesting the Data Center Network with
Wireless Rings in 3D Space

Yong Cui1, Shihan Xiao1, Xin Wang2, Zhenjie Yang1, Chao Zhu1, Xiangyang Li1,3, Liu Yang4,
and Ning Ge1

1Tsinghua University
2Stony Brook University

3University of Science and Technology of China
4Beijing University of Posts and Telecommunications

Abstract

The introduction of wireless transmissions into the da-
ta center has been shown to be promising in improving
the performance of data center networks (DCN) cost ef-
fectively. For high transmission flexibility and perfor-
mance, a fundamental challenge is to increase the wire-
less availability and enable fully hybrid and seamless
transmissions over both wired and wireless DCN com-
ponents. Rather than limiting the number of wireless ra-
dios by the size of top-of-rack (ToR) switches, we pro-
pose a novel DCN architecture, Diamond, which nests
the wired DCN with radios equipped on all servers. To
harvest the gain allowed by the rich reconfigurable wire-
less resources, we propose the low-cost deployment of
scalable 3D Ring Reflection Spaces (RRSs) which are in-
terconnected with streamlined wired herringbone to en-
able large number of concurrent wireless transmissions
through high-performance multi-reflection of radio sig-
nals over metal. To increase the number of concurrent
wireless transmissions within each RRS, we propose a
precise reflection method to reduce the wireless interfer-
ence. We build a 60GHz-based testbed to demonstrate
the function and transmission ability of our proposed ar-
chitecture. We further perform extensive simulations to
show the significant performance gain of Diamond, in
supporting up to five times higher server-to-server capac-
ity, enabling network-wide load balancing, and ensuring
high fault tolerance.

1 Introduction
The high-performance data center network (DCN) is
an essential infrastructure for cloud computing. There
is a quick growth of large-scale services (e.g., Google
Search, Hadoop, MapReduce, etc.) in the cloud, and
recent measurements show tremendous traffic variations
over space and time in DCNs [5, 7, 8, 20]. Convention-
al wired DCNs generally adopt the fixed and symmetric
network design. This may lead to prevalent hot spots

across different layers of the architecture which signifi-
cantly reduces the performance of DCNs [7, 20, 37].

There are some recent interests on constructing hybrid
DCNs [18, 19, 33, 38, 39] with the introduction of new
network components such as optical circuit switches or
wireless radios into the DCNs to provide configurable
links [9,13,25,28]. Although these hybrid infrastructures
show the potential in achieving higher DCN capacity and
lower transmission delay, their wired structures are kept
unchanged even though they are not primitively designed
to work with new network techniques, which limits the
performance of hybrid DCN. Specifically, the new net-
work components are added directly into conventional
DCNs or are applied to replace part of existing network
switches [18, 33, 38, 39]. Considering only the local per-
formance improvement, it is hard for existing schemes to
achieve the global optimal performance in the presence
of network-wide traffic changes. The key challenge of a
fully hybrid network design is to form a novel hybrid net-
work architecture that can take full advantage of differen-
t network techniques and enable coherent and seamless
transmissions for much higher DCN performance.

The low cost of today’s commodity 60GHz radios
makes their wide deployment a better option in a ful-
ly hybrid network design [39]. Providing high wireless
availability in the data center is the key to achieving high
performance gain in a hybrid architecture. In existing
proposals for hybrid DCNs, wireless radios are generally
deployed on a flat 2D plane at the top of racks, which
is susceptible to signal blocking [38]. Although a flat
reflector on the room ceiling was proposed to alleviate
the problem [19,38], the ceiling height is quite restricted
(3 meters [38]) and the method requires clearance above
racks, which is usually infeasible in conventional data
centers. The small rack size also restricts the number of
radios that can be placed on each rack (at most eight ra-
dios per rack [38, 39]). If radios are densely deployed
on top of racks, the strong inter-ratio interference would
restrict the number of concurrent wireless links thus con-

658 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

straining the system performance [39]. The need of de-
ploying more radios and links in the hybrid network for
higher wireless availability calls for a completely new
DCN architecture design.

In this work, we propose a novel fully-hybrid network
architecture, named Diamond, which ensures high wire-
less availability for efficient and high-performance DCN
communications. Rather than restricting the radios to
be on top of racks, we propose to deploy wireless ra-
dios along with a large number of servers. To avoid
the interference among dense radios at the 2D plane,
we propose to construct multiple Ring Reflection Spaces
(RRSs) to make the radios sparsely distributed in the
3D space. Inside each RRS, we develop a novel multi-
reflection method to address the blocking problem on
building wireless links. With our design, there is no need
of changing the room plan above racks. Diamond has
three key design features:

Novel hybrid network topology (§2): Rather than
adding wireless radios directly on top of racks, we pro-
pose a fully hybrid network topology by constructing
RRSs in Diamond to facilitate wireless transmissions and
isolate the wireless interference. It also supports direc-
t server-to-server wireless links rather than conventional
rack-to-rack links. Then we apply a streamlined wired
herringbone to interconnect the RRSs at low cost.

Precise multi-reflection of wireless links (§3): The
susceptibility to blocking and the interference are two
major issues that limit the wireless performance in DCN-
s. To the best of our knowledge, this is the first work that
develops the multi-reflection transmission method to ad-
dress the challenge of signal blocking. We further design
a novel precise reflection scheme to efficiently restrict the
wireless interference in the presence of a large number of
concurrent wireless links.

Wireless & wired hybrid routing (§4): We propose
an opportunistic hybrid routing scheme to allow for low
transmissions delay and graceful fault tolerance. We fur-
ther show that the network diameter of Diamond can s-
cale logarithmically with the server number to effectively
bound the route length.

We implement a 60GHz-based testbed, and our exper-
imental results confirm the high performance of multi-
reflection, and demonstrate that proper reflection holes
can efficiently reduce the interference in 3D space (§6).
Driven by the testbed parameters, our simulations show
that Diamond can support up to five times higher server-
to-server capacity and ensure graceful fault tolerance
(§7). Finally, we introduce the related work (§8) and
draw the conclusions (§9).

2 Architecture
In this section, we first introduce the basic architecture
and methodologies used in the Diamond system, and

then present its hybrid topology design.

2.1 Diamond system overview

At a high level, the Diamond system should meet the data
center needs at different timescales. First, the configura-
tion of wireless links should be updated periodically so
that the network topology can better accommodate the
current traffic of the data center. Second, given a con-
figured network, we need to efficiently route the flows in
real time.

Dynamic wireless configuration: Following the pri-
or studies, the Diamond system exploits the controller
of software-defined networking (SDN) for flexible and
efficient configuration of the wireless links and routing
paths [4,11,26,27]. More specifically, the Diamond con-
troller periodically updates the configuration of the wire-
less links based on the traffic conditions reported from
SDN-controllable ToR switches. Servers are equipped
with high-capacity wireless radios (60GHz radio [18] or
FSO transceivers [19]). To dynamically configure the
wireless links, they are allowed to communicate with
each other either directly by steering and aligning the
antennas (physically or electronically driven [18, 19]) or
using a multi-reflection method we propose. The con-
troller first builds wireless links to alleviate the heavy
traffic from the hot spots, and then randomly forms addi-
tional wireless links using the remaining available radios
to achieve the benefits of random networking [31].

Hybrid routing: The controller only computes the
routing paths of hot-spot server pairs during the wire-
less configuration to alleviate the hot-spot traffic globally
for the network-wide load balancing thus higher network
throughput. For other light-loaded server pairs, the rout-
ing decision is made distributedly by servers and switch-
es so that their traffic can go through available wireless
links opportunistically to cut short the routing paths in
real time.

2.2 Key methodologies

There are two main challenges to implement a fully hy-
brid network: (1) When a large number of wireless links
are enabled, the interference will restrict the number of
concurrent transmissions; and (2) When a large number
of wireless radios are deployed, the high-frequency wire-
less links are easily blocked by obstacles such as the sup-
ply pipes of air conditioning or the steel structures above
racks. In light of these problems, Diamond applies a 3D
deployment of the wireless radios to facilitate high num-
ber of concurrent wireless transmissions taking advan-
tage of the following key techniques:

Space division multiplexing: To disperse the wireless
radios, the radios in Diamond are installed with servers
at different heights. Rather than deploying the wireless

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 659

radios densely on only one flat 2D plane, we place the
wireless radios on several separated large annular sur-
faces. Thus the deployment density of wireless radios is
much lower than that of previous studies [38, 39]. The
adjacent annular surfaces form a RRS where the signal
can run from one radio to another. Due to the space di-
vision, the same set of wireless channels can be multi-
plexed across different RRSs, which helps isolate the in-
terference in Diamond.

Multi-reflection transmission: Although more radios
can be deployed in a 3D space, many radios cannot reach
each other with existing direct point-to-point transmis-
sion or the one-reflection transmission [18, 19, 38, 39]
due to the obstacle blocking. Instead, in Diamond, we
utilize multiple reflections to bounce the signal emitted
from one server to another. This helps to greatly increase
the number of available wireless links. Following the pri-
or work [38], our testbed experiment confirms that using
the flat metal board as reflector can offer very good spec-
ular reflection with little energy loss or changing path
loss during each reflection. This avoids the overhead of
buffering and switching packets in multiple hops over in-
termediate switches.

Different types of directional antennas may have d-
ifferent beam widths [18]. For a multi-reflection path,
there is a tradeoff between the antenna beam width and
the tolerance for the antenna alignment error. The nar-
rower the beam width, the higher the antenna gains,
but the less the alignment error tolerance. In the ex-
treme case of using FSO with nearly zero beam width,
previous study shows that using electrically-driven Gal-
vo mirrors is possible to implement precise steering
control [19]. For conventional 60GHz antennas, the
electrically-driven antenna array is promising to satisfy
this requirement [18, 39].

Precise reflection technology: Since the wireless an-
tenna may have a wide beam width [18], multiple re-
flections would introduce unexpected interference inside
the 3D space due to the signal leakage of the beam
(e.g., the undesired side lobes of the 60GHz wireless
beam [18, 29]). In order to efficiently restrict and con-
trol the interference caused by reflections, we develop a
precise reflection method with the careful placement of
absorbing materials on the reflection boards. Most areas
of the board are covered by absorbing paper while small
holes are left so that only the intended signal reflections
are made by hitting the hole, which leads to very little
signal leakage.

2.3 Topology design
The basic motivation of the Diamond topology design is
to enable more concurrent wireless transmissions. In our
design, we separate the specific transmission functions
of wireless and wired links in the network, so that both

Reflector Wireless Link Source Server
(a) Top View (b) Side View

Dest Server

A

B

A

B

RRS

A

Reflection
Point

Layer

Reflection
Point

RRS Width

Figure 1: Brief view of the wireless ring in Diamond
(N=4 rings and H=4 layers)

their distinct advantages on the transmission can be ful-
ly explored. We construct a ring-shape basic structure
that enables wireless-only transmissions inside the ring
employing the multi-reflections (§2.2). Then we apply
the stable wired links to address the transmissions across
different ring structures.

From the top view in Fig. 1, Diamond’s topology is
constructed by several concentric regular polygons with
increasing radius. Polygons are numbered from inside
to outside and named by rings, i.e., {Ri}, 1 ≤ i ≤ N,
where N is the total number of polygons. The ith ring
has 4i edges. The racks are placed at the vertex points of
each ring, and there are totally 1≤i≤N (4i) = 2(N2+N)
racks, while flat metal reflectors are put at the edge of
each ring. Rather than mounting the reflectors [19,38] on
the ceiling, reflectors in Diamond stand in perpendicular
to the ground and have the same height as that of racks,
which avoids the need of using clear ceiling space for
wireless transmissions in data centers. In the following,
we introduce the designs of major Diamond components.

Server and rack. Each rack holds multiple servers
at different height. The servers inside different racks at
the same height form a layer, and the layers are num-
bered from the top to the bottom as {l j}, 1 ≤ j ≤ H. The
height of each layer equals the height of a server at con-
ventional racks, and the number of layers H equals to the
number of servers in one rack. Therefore, a Diamond
topology can accommodate totally 2(N2 +N)H server-
s. Each server is equipped with 1 Ethernet port and 2
wireless ports with directional antennas. The network-
ing principles in Diamond are: (1) the links between two
servers are wireless; (2) the links between a server and
its ToR switch or between two ToR switches are wired.

Wireless links: The 3D space between two neighbor-
ing rings is called an RRS. For each server, one of its
antennas points to RRS at its inner side and the other
points to RRS at its outer side. By adjusting the antenna
directions in the RRS, each server at ring Ri can flexi-
bly communicate with other servers at different heights
on rings Ri, Ri−1 and Ri+1 through direct transmissions
or multiple reflections on different reflectors (Fig. 1 and
Fig. 3).

660 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Virtual Switch
Row

ToR Switch

Reflector

Column

(a) Logical view (b) Physical view

ToR Switch
Virtual Link (Row) Virtual Link (Column)

Reflector

Figure 2: Top view of the wired herringbone of Diamond
(N=3 rings)

Wired links: With wireless links formed locally
inside each RRS, the wired links are applied to intercon-
nect different RRSs. Fig. 2 gives a top view of the wired
connections in Diamond. Similar to conventional DCN-
s, the servers on each rack are connected to the common
ToR switch. Fig. 2(a) shows the logical view of the wired
herringbone. We number the horizontal lines in Fig. 2(a)
from the top to the bottom as rows {ri}, 1 ≤ i ≤ 2N,
and number the vertical lines from the left to the right
as columns {ci}, 1 ≤ i ≤ 2N. Fig. 2(b) shows the phys-
ical connections of the wired herringbone. The princi-
ple of Diamond to interconnect the RRSs is that the ToR
switches on the same row (or column) are interconnected
by a virtual switch, while the ToR switches on different
rows and different columns are not directly connected.

To implement the function of virtual switch, we have
the option of applying any existing structure, e.g., the
tree-based structure (Fat-tree [3]) or cube-based structure
(BCube [16]), to interconnect the ToR switches on each
row and each column. These structures may make the
wired design of Diamond complex and costly. In Di-
amond, we prefer to apply the de-Bruijn graph [12] so
that no additional switches are required. De-bruijn is at-
tractive for providing constant link degree at each node
and logarithmic network diameter. Then the path length
is bounded and the routing structure is still simple (§4).
Although using de-Bruijn structure often involves com-
plex wiring [17], the wiring is kept simple in Diamond
because only one row (or column) of ToR switches are
connected as one de-Bruijn.

2.4 Rack and reflector arrangement
There are two requirements to arrange the racks in Dia-
mond to facilitate its practical and scalable deployment:
first, all the reflector boards should be flat and have the
same length to facilitate their economical production;
second, the RRS width should be kept stable, with the
RRS width close to a fixed value when the number of
rings increases. We call the physical distance between
two neighboring rings Ri and Ri+1 as the RRS width Δi
(Fig. 1). Too large a RRS width will make Diamond oc-

C

Reflection Path Wireless/Wired Hybrid Path

Wired LinkWireless Link Source Server Dest Server

Reflection Points

Figure 3: Routing in the 3D wireless ring

cupy too much room area, while too small a RRS width
will not leave enough space for wireless transmissions.

As mentioned earlier, all the polygons in Diamond are
regular with the same edge length and are put concen-
trically in a symmetric way as shown in Fig. 2. The re-
flector height equals the height of racks, and the reflector
length is denoted as L. Then our design ensures the RRS
width Δi at ith ring to have the following property:

Property 1. lim
i→∞

Δi = 2L/π

Proof. Based on the topology of Diamond, the radius
di of ring Ri is di = (cot π

4i)
L
2 . Then we have Δi =

di+1−di = (cot π
4(i+1) −cot π

4i)
L
2 =

sin(π
4

1
i(i+1))

sin[(π
4)

2 1
i(i+1)]

L
2 . Hence

we have lim
i→∞

Δi = 2L/π .

Based on the above proof, the RRS width Δi decreas-
es as the ring number i becomes larger. Property 1 en-
sures that the RRS width does not fall to zero but reach-
es a fixed limit value. For a setting L=2.5m, the RRS
width Δi can keep a value close to the fixed limit value
1.6m. We can see that the RRS width becomes stable and
approaches the fixed limit value quickly when the ring
number increases, which demonstrates the scalability of
the Diamond design.

3 Wireless configuration

In this section, we first introduce our schemes of find-
ing the reflection path when building a wireless link and
eliminating the wireless interference during the reflec-
tions, and then present our strategies in forming flexible
wireless configurations for network-wide load balancing.

3.1 Reflection path
Since the physical topology of Diamond is fixed, the re-
flection paths can be easily calculated between any two
servers. The calculation of the reflection path table is
done offline at the initial deployment of Diamond. If
there are multiple paths available between two servers,
we choose the one with the least number of reflection

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 661

4 5 6 7 8 9
0

20

40

60

80
N

um
be

r o
f r

ea
ch

ab
le

 ra
ck

s

Index of ring

 0-reflection
 1-reflection
 2-reflection
 3-reflection
 Upper bound

Figure 4: Number of reach-
able racks per server at dif-
ferent rings and within dif-
ferent reflection times

5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Index of ring

R
eu

se
 ra

tio

Figure 5: Reuse ratio of re-
flection points on a board at
different rings

times (direct transmission is considered as zero times of
reflection). Given a source server and a destination serv-
er in Diamond, if a reflection path can be found in the
table, the antenna angles can be adjusted by the servers
according to the table values to build the wireless link.

Based on the Diamond topology, we simulate the re-
flection paths between all the server pairs. Fig. 4 shows
the average communication range of a wireless radio,
i.e., the reachable rack number at both its current ring Ri
and inner ring Ri−1. We can see that no more than three
reflections can cover above 90% racks in the RRS when
the ring number is less than 9. For a ring number larger
than 4, a server can reach at least 10 racks through the di-
rect transmission, 20 racks within a single reflection and
28 racks within two reflections.

3.2 Reduction of wireless interference
We design a precise reflection method to alleviate the
wireless interference during reflections. Specifically, we
carefully place the absorbing materials on the reflection
board and leave small holes for only the intended reflec-
tion points. In the following, we analyze the density and
distribution of reflection points (i.e., the reflection holes)
on the reflector boards.

To simplify the analysis, we first present a special cir-
cle case where the flat reflectors are replaced by curved
reflectors so that all the polygons are transformed to
their circumcircles. We consider the communication of
servers inside the kth RRS, i.e., the communication be-
tween a server on ring k and another on ring k+1 and the
communication between two servers on ring k+ 1. The
reflection times are limited within three. The commu-
nication of servers in different rings is achieved by zero
and double reflections. The double reflection forms the
reflection points on the outer side of ring k and the inner
side of ring k+1.

Considering the distribution of reflection points on
ring k, we have the following property:

Property 2. At each layer of Diamond, for an arbitrary
reflector on ring k, there are at most six reflection points
on the reflector board.

Proof. Based on the coordinates of a server n on ring
k+1 and a server m on ring k, we obtain the central an-
gle for each reflection point, denoted as 2

3 · π(2n−1)
4(k+1) + 1

3 ·
π(2m−1)

4k , m,n ∈ Z+. We shift the value of m and n to find
the minimum change of the central angle of the reflection
point. The minimum change π

12k is the minimum inter-
val of two reflection points. As the central angle for the
reflector on ring k is π

2k , there are at most six reflection
points at each layer of the reflector board. This com-
pletes the proof.

We obtain the expressions of the central angle for each
reflection point in ring k+ 1 following the same proce-
dure of ring k. We examine the distribution of reflection
points on each reflector in ring k+1 based on simulation
results, and found that at each layer from the ring 5 to
the ring 50, there are average ten reflection points on the
board of the ring k+1. One hole may be reused by a large
number of reflection points for different reflection paths,
i.e., the distance between two reflection points is small
enough to overlap with each other. With the reuse ratio
equal to the ratio of reused points to the total number of
reflection points, Fig. 5 shows that the reuse ratio is high
and increases when the ring number becomes larger.

3.3 Configuration for hot-spot traffic
Since the above techniques enable a large number of
server-to-server wireless links, Diamond can implemen-
t a network-wide reconfigurable topology for balancing
the identified hot-spot traffic, which contributes to high
throughput and effective routing.

Configuration problem: The wireless configuration
is determined by the network controller in DCNs. The
controller input is a traffic demand matrix where an en-
try describes the traffic demand between a pair of servers.
Given a hybrid topology G, we can construct its interfer-
ence graph GI

1 to describe the conflict relations among
all the wireless links based on offline measurements [18].
The objective of our wireless configuration is to select
the optimal independent set (IS) 2 to minimize the max-
imum link utilization of the entire network during each
scheduling period. We thus have an integer linear pro-
gramming (ILP) problem HLBP (Hybrid Load Balance
Problem). Our HLBP problem mainly differs from pre-
vious study Firefly [19] on the additional wireless inter-
ference constraint on IS selections. Finding all the ISs
is NP-complete in general [14]. We find that even the
state-of-art ILP solver LINGO or ILP toolbox in MAT-
LAB may take above tens of minutes to solve the HLBP.

1The independent graph GI of G is defined as a graph where each
link in G corresponds to a vertex in GI , and if two links have conflict
in G, then there is a link between them in GI .

2An independent set (IS) in an interference graph GI is defined as a
vertex subset where any two vertices do not conflict.

662 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

DH DW BC 3DB FT0

0.2

0.4

0.6

0.8

1
P

at
h

Le
ng

th
 R

at
io

6

5

4

3

2

1

Hops

Figure 6: Path length ratio of different topologies

There are some existing studies [21–23, 34–36] on find-
ing an approximate IS solution in some special interfer-
ence graphs. In the following, in order to make Diamond
support various types of antennas, we turn to the develop-
ment of a fast heuristic solution for a general interference
graph.

Greedy scheduling: We design a greedy algorithm
HDF (Highest Demand First) to provide a faster and sim-
pler solution for HLBP. The algorithm assigns a weight
value to wireless links related to the flows, and then s-
elects a set of non-conflict wireless links that maximize
the sum of weights. We define the weight of a wireless
link as the ratio between the flow demand and the link
length. For a link with reflections, the link length is the
total geometric length of the reflection path. The intu-
ition is that a link can provide larger benefit when serving
higher flow demand over a shorter link length, as a short-
er wireless link allows for smaller interference range and
higher SNR thus higher link capacity. We greedily select
the links with the largest weight to build first and remove
the links that conflict with the selected links. Next, the
traffic demands are split into their shortest paths. Denote
the minimum remaining capacity of links along a path
as the path capacity. The server pair with the highest
demand first splits the traffic to transmit over the set of
shortest paths in proportional to the path capacity. Then
the remaining link capacities are updated and the proce-
dure repeats until no server pair is left. The gap between
HDF and the optimal solution is evaluated in §7.

3.4 Random networking for high capacity
and low delay

Since the wireless resources are rich in Diamond, after
offloading the hot-spot traffic by HDF, some wireless ra-
dios may be left unused, particularly when the number of
hot spots in the network is not big in a scheduling peri-
od. Random networking is shown to have the features of
small average path length, high path diversity and high
server-to-server network capacity [31, 32]. Thus we ex-
pect that the random formulation of wireless links helps
to shorten the path length in Diamond.

To verify this effect, we compare the percentage of the
path length for all the server pairs under different DCN
topologies with 512 servers in Fig. 6. DH is for Diamond
where wireless links are built randomly; DW is for Dia-
mond with the wired connections only; BC is the BCube

topology [16]; FT is the Fat-tree topology [3]; 3DB is
a Fat-tree topology augmented by 3D-beamforming ra-
dios at ToR switches [38]. We can see that the number of
long paths in DW is larger than that in BCube. Howev-
er, when introducing random wireless links, the ratio of
short paths in DH is higher than all the other topologies.
The short path length generally implies small hop delay
and high end-to-end throughput due to fewer congestion
points at intermediate routing hops [31, 32].

To benefit from the random networking in Diamond,
we extend the IS selected by the HDF algorithm to a
maximal IS, named the MIS, by randomly adding addi-
tional wireless links into the IS without creating conflic-
t until no such kind of wireless link is available. The
random formulation of wireless links in Diamond avoids
the problem of complex wiring and costly management
appearing in the previous work on using random wired
links in DCNs [32].

4 Routing Design

Diamond is built upon a topology-adaptive network,
while existing routing protocols often impose a relative-
ly long convergence time when the topology changes [6].
For more efficient routing, we propose to use a set of s-
trategies in Diamond.

4.1 Overall scheme
The setup of wireless links is performed by the Dia-
mond controller periodically. We denote the time in-
terval for the controller to execute the wireless recon-
figuration as one period. At the beginning of each pe-
riod, a set of operations will be performed as follows:
(1) The controller computes the wireless configuration
and the routing paths for hot-spot server pairs using the
methods described in §3, and sends out the instruction-
s to both servers and their associated ToR switches. (2)
The servers receiving the configuration instructions will
adjust their antenna directions accordingly.

To summarize, there are three choices for a server or
ToR switch to route its traffic. First, a server or ToR
switch tries to match the routing rules designated by the
controller. If matched, it delivers the packet according-
ly. This first choice helps to balance the hot-spot traffic
following the controller’s decisions. Otherwise, it oppor-
tunistically utilizes its available wireless radios (if it is a
server) or the available radios on its rack (if it is a ToR
switch) to create a short-cut hop to the destination. This
second choice contributes to shorter routing path through
opportunistic hybrid routing. If no wireless radios are
proper to use, it delivers the packet to the next-hop node
following a default wired routing path. This last choice
efficiently bounds the worst-case performance by routing
through the wired herringbone.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 663

4.2 Default wired routing
For the Diamond topology introduced in §2.3, a 3-tuple
(x,y,z) labels a server at the xth row, yth column and zth
layer. For simplicity, we use a 3-tuple (x,y,0) to label a
ToR switch on the xth row and yth column. Fig. 7 shows
a simple example to route from an arbitrary source serv-
er s1 = (x1,y1,z1) to a destination server s2 = (x2,y2,z2).
Let w1 = (x1,y1,0) and w2 = (x2,y2,0) denote their
corresponding ToR switches respectively. The shortest
wired routing path can be established as follows. First,
the packet routes from s1 to w1 and then we change one
of the two coordinates of source ToR switch w1 at a time
to match that of switch w2: (x1,y1,0) → (x2,y1,0) →
(x2,y2,0). Finally, the packet routes from w2 to s2. Note
that each coordinate change corresponds to hops through
a virtual switch.

Suppose we apply de-Bruijn structure to implemen-
t the virtual switch, and the Diamond topology has total-
ly H = 2p layers and N rings. Then we need 4p ports per
ToR switch, where 2p ports connect to the servers on the
rack and 2p ports are used for constructing the de-Bruijn
on its row and column. Since the diameter of a de-Brujin
graph is logp N, the path length through a virtual switch
(i.e., the path length between two ToR switches on one
row or column) can be bounded by logp N. Based on the
above routing procedure, we have the property:

Property 3. The network diameter, which is the longest
shortest path among all the server pairs, of Diamond is
bounded by 2logp N +2.

Since the Diamond with H layers and N rings can sup-
port totally n = 2(N2 +N)H servers, we have the diame-
ter of Diamond as O(logp n). Compared to conventional
approaches (e.g., the Fat-tree [3] or VL2 [15] topology)
which has a constant diameter but the number of switch
ports increase with the number of servers, Diamond has
much better scalability. As the server number increases,
its network diameter extends logarithmically while the
port number can be kept as a constant. This is similar to
the recursion-based DCN topology such as BCube [16]
and DCell [17]), which also has a logarithmic diameter
when keeping a constant number of switch ports.

4.3 Opportunistic hybrid routing
The wired herringbone of Diamond provides the basic
assurance of the connectivity and route length bound.
Now we integrate the wireless transmissions into the
default wired paths opportunistically. Suppose a serv-
er s1 = (x1,y1,z1) receives a packet for a server s2 =
(x2,y2,z2), and the ToR switches of s1 and s2 are w1 =
(x1,y1,0) and w2 = (x2,y2,0). The server s1 is e-
quipped with two radios, which are pointed to servers
s�1 = (x3,y3,z3) and s��1 = (x4,y4,z4), respectively. Define

Virtual switch

ToR switch

Server

Source server

Dest server

Virtual link

Wired link

Wireless link

Figure 7: Opportunistic hybrid routing in Diamond

a hamming distance D(s1,s2) as the number of the un-
matched coordinates between the tuples s1 and s2. Then
the value range of D(s1,s2) is {0,1,2,3}.

To perform the opportunistic hybrid routing (OHR),
each server in Diamond simply follows two steps for the
packet forwarding: (1) Call d1 = D(s1,s2). If all three
are matched (i.e., d1 = 0), then it is the destination serv-
er. (2) Call d�

1 =D(s�1,s2) and d��
1 =D(s��1 ,s2). If d�

1 < d1
or d��

1 < d1, forward the packet to the server s�1 or s��1 ac-
cordingly through a wireless radio. Otherwise, forward
the packet to the switch w1 by default.

Similar to the servers, each ToR switch in Diamond
forwards the packet as follows: (1) Call d1 = D(w1,s2).
If the first two are matched (i.e., d1 = 1), it forwards the
packet to s2 directly; Otherwise, it randomly chooses one
coordinate among the unmatched ones. Assume that ToR
switch picks x1 where x1 �= x2, then the default next hop
is w f = (x2,y1,0). (2) For each server si in the rack,
suppose its wireless radios point to two servers s�i and
s��i . Call d�

i = D(s�i,s2) and d��
i = D(s��i ,s2). If d�

1 < d1 or
d��

1 < d1, forward the packet to the sever si in the rack;
Otherwise, forward the packet to the ToR switch w f by
default.

4.4 Fault-tolerance

The redundancy of available paths between any pair
of servers make Diamond attractive for fault-tolerance.
There are two types of failures to handle in Diamond:
node failure and link failure. Three classes of node fail-
ure should be considered: (a) switch failure, (b) server
failure and (c) wireless radio failure. A link failure will
be resulted from a node failure, or the change of the en-
vironment such as the blocking of wireless communica-
tions due to the human movement in the RRSs. Clearly,
due to the nested structure of Diamond, any single node
or link failure does not lead to the network disconnec-
tion. We describe link failures here because other node
failures trigger the same responses.

In Diamond, each server has three different output
links to forward the packets: (a) forward to the ToR
switch it connects to; (b) forward to one of its two wire-
less radios. When a server finds one of its output links
fails, it removes that wired/wireless connection from its

664 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

connection list, and chooses one of the remaining avail-
able output links as its next hop based on the routing rules
described in Section 4.3. Benefited from the distributed
routing property of OHR, the routing paths can be recov-
ered quickly in Diamond to ensure high fault tolerance.

5 Discussion on deployment issues

Circle vs. Polygon reflector. We have so far suggested
using the flat mental board as the reflector to facilitate its
economic production and easy deployment. If the cost is
not a concern, however, a curved mental reflector would
allow the wireless communication range of each server to
be larger than that of the flat reflector for the same con-
straint on reflection times. Considering that the curved
reflectors are used to construct the circumcircle of each
ring, with the ring number varying from 5 to 100 and the
reflection times set to be within three, we find that the
average wireless communication range per server in the
polygon case is above 80% that of the circle case. When
the number of rings is smaller than 5, both cases ensure
the communications of all the servers of the entire ring.
The results indicate that using flat reflector is a better
choice for the deployment in a large-size data center.

Design of virtual switch. Diamond introduces a virtu-
al switch to interconnect the ToR switches on a line (row
or column) and the virtual switch can be implemented
by any existing interconnection structures, e.g., the tree-
based structure [3, 15] or cube-based structure [2, 16],
with different trade-offs between the cost and perfor-
mance. However, the number of ports required by a vir-
tual switch on different rows and columns may not be the
same in Diamond. Consider a Diamond topology with 2n
rows and 2n columns, the port numbers of virtual switch
from row r1 to rn are {2,4,6, ...,n− 2,n}. The uneven
port numbers make it difficult to deploy conventional in-
terconnection structures as some structures do not scale
continuously [3,16,17]. To address this issue, we suggest
using one virtual switch to interconnect two rows (or two
columns) together to make a balance of the port number.
Then each virtual switch requires n+2 ports by combin-
ing every two rows as (r1,rn), (r2,rn−1), (r3,rn−2) and so
on. We can obtain the same result as that of 2n+1 rows
and columns by excluding the median row and column.

Rack density and wireless link number. To pro-
vide an idea of the deployment density of Diamond, we
give an example. A room of data center with the size
100×100m2 can hold 2k racks if using Diamond, and

Table 1: Total cost of different DCN architectures
Topology Cost (k$) Power

NIC Switch Radio Wire Total (kw)
FatTree 80 2080 - 80 2240 3486

3DB 80 2080 192 80 2432 3486
FireFly 80 416 2400 16 2912 4281

Diamond 240 832 1920 32 3024 3428

hold 3.7k racks if using the conventional row-based ar-
chitecture, so the density of the conventional architec-
ture is about 1.8 times that of Diamond. The lower rack
density in Diamond ensures a proper space for both the
wireless transmissions and cooling when the network s-
cales up. However, our simulation results with different
room sizes of a data center show that, the server-to-server
throughput in Diamond on average doubles that of a con-
ventional three-layer fat-tree DCN topology for the same
room size [3]. As Fig. 4 shows, if we limit the reflection
times of a path to be less than two, for a medium-size
data center with 1000 servers, there will be more than
0.1 million potential wireless links available for use. The
rich wireless links contribute a lot to the network-wide
adaptive topology formulation and can support efficient
routing and fault-tolerance in Diamond.

Cabling complexity. The cabling complexity is an
important issue to consider in the deployment of DCNs.
Despite their contributions to big performance improve-
ments, both the tree-like topologies [3] and recursion-
based topologies [16, 17] introduce complex cabling
among racks and thus high maintenance cost in prac-
tice. This is because the physical row-by-row rack de-
ployment does not work well with their logical tree or
recursive topologies. In contrast, the cabling in Diamond
is much easier with its wired structure simplified to be
several rows and columns both logically and physically.
As Fig. 2(a) shows, the row lines and column lines are in-
dependent from each other and thus are simple for both
cabling and maintenance.

Cooling and maintenance. Heat dissipation is im-
portant for a data center to run healthily. In convention-
al DCN architectures, the most challenging heat issue
comes from the closely placed racks in multiple rows. S-
ince the rack density in Diamond is both lower and more
balanced (i.e., the distance between any two neighboring
racks is similar) than conventional architectures, the heat
is distributed more evenly and lightly. For better cool-
ing effect in Diamond, we suggest piping the cooling air
from bottom to top in each ring. In addition, we sug-
gest leaving four gaps at the polygon corners evenly on
each ring to form four tunnels through the innermost to
the outermost, through which the engineers can go inside
each ring for device maintenance. When there is human
moving inside, some wireless links may be blocked and
failed. However, Diamond can handle the failure of wire-
less links easily (§4.4) and fast redirect the flows to wired
links until the wireless link is available again.

Moreover, the antenna steering delay may be an issue
to affect the system performance. The delay of steer-
ing 60GHz antenna can potentially be controlled within
250us if using phase array technology [18], while if de-
ploying FSO in Diamond, the steering delay can be with-
in 0.5ms using Galvo mirrors [19]. To further alleviate

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 665

Signal
Receiver

Signal
Transmitter

 Receiver System

Transmitter System

PC

PC

AWG

60GHz
Antenna

0.37W Power
Amplifier

USB Controller

USB Controller

60GHz
Antenna

Oscilloscope

Signal
Transmitter

Signal
Receiver

(a) Transmit control panel

60GHz Antenna

Oscilloscope

(b) Direct communication

Reflector
Board

60GHz Antenna

(c) Multiple reflection
Figure 8: 60GHz antenna testbed for Diamond

the side effect, our system ensures that the transmissions
through wireless links during the antenna steering to be
easily migrated to the stable wired links.

Deployment cost. A set of hybrid DCNs are proposed
recently, such as the 3D-beamforming(3DB) [38] (8 ra-
dios per rack) and FireFly [19]. We use Fat-tree to repre-
sent the conventional wired architecture and compare the
cost of different architectures in Table. 1. We consider
the cost and power of NICs on the server, switches, wire-
less radios and wires. We conservatively estimate each
wireless radio costs $60 [39], each 40-port switch costs
$1040, each port in the NIC costs $5 and needs 5W [16],
each port in the FSO device costs $150 [19], and an av-
erage cost of $1 per meter for cabling [19] and $1 per
square meter of absorbing paper. We assume the reflec-
tors used in Firefly, 3DB and Diamond have negligible
cost. All the architectures hold 16 thousand servers. We
can see that although Diamond uses a large number of ra-
dios, its cost is only 24% higher than that of 3DB because
it uses 60% fewer switches. This trade-off is reasonable
as a larger number of wireless links are enabled in Dia-
mond than 3DB. Firefly can offer higher bandwidth at a
higher deployment cost. However, the ceiling mirror it
requires may not be applicable in most modern data cen-
ters. An alternative solution is to replace 60Ghz radios
in Diamond with FSO devices, which will provide simi-
lar performance as Firefly without the need of deploying
ceiling mirrors but at a higher deployment cost.

6 Implementation
We implement a 60GHz testbed to evaluate the trans-
mission performance of our architecture under different
wireless communication conditions.

Experiment setup: To demonstrate the feasibility
of 60GHz wireless communication in our architecture,
we build a testbed (Fig. 8a) to carry out the relevan-
t experiments. The testbed was composed by Vubiq
Networks Inc’s commercial millimeter wave transceiv-
er components, self-designed 60GHz Power Amplifier
and AINFO Inc’s 60GHz rectangular waveguide horn an-
tenna. The system enables 60 GHz experiments on the
use of integrated transmitter/receiver waveguide mod-
ules. 60GHz Power Amplifier is placed at the end of
the transmitter to increase the transmission power. It has

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ph
as

e

Amplitude

SNR = 16.194dB BER = 0

(a) Direct communication

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ph
as

e

Amplitude

SNR = 15.23dB BER = 0

(b) Single reflection

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
SNR = 14.80dB BER = 0

Ph
as

e

Amplitude
(c) Double reflection

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ph
as

e

Amplitude

SNR = 12.75dB BER = 1.325e-3

(d) Deflection
Figure 9: Measured constellation diagram: performance
of different transmission ways

5 10 15 20
11

12

13

14

15

16

 SNR
 BER

Diameter (cm)

SN
R

 (d
B)

0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

BER

Figure 10: Performance over different hole sizes

a gain of 30dB and a saturated output power of 0.37W.
The testbed encodes the data file with LPDC and applies
the QPSK modulation to generate the waveform. The
receiver module samples the signal and recovers the o-
riginal data file.

We first carry out four experiments, including the di-
rect communication, communication through single re-
flection, communication through double reflections and
communication through deflection (i.e., the misalign-
ment of two communicating antennas). In this group of
experiments, to ensure the transmission ability of the ar-
chitecture, the distance between the sender radio and the
receiver radio is set to 25 m. The communication rate is
2.5 Gbps and the LPDC encoding rate is 3/4. We show
the results in Fig. 9. For the second group of experi-
ments, we change the hole size to test the performance
of precise reflection for both the single and double re-
flection cases. To make an accurate measurement of hole
size, the distance between the sender and receiver is set
to 3m. The results are presented in Fig. 10 and Fig. 11.

Experiment result on signal reflection: As Fig. 9

666 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
SNR = 15.4392dB BER = 0

Ph
as

e

Amplitude
(a) Single reflection without ab-
sorbing

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ph
as

e

Amplitude

SNR = 14.5201dB BER = 0

(b) Single reflection on one 10cm
x10cm hole

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ph
as

e

Amplitude

SNR = 11.0104dB BER = 1.3951e-4

(c) Double reflections without
absorbing

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Ph
as

e

Amplitude

SNR = 11.6358dB BER = 6.9754e-5

(d) Double reflections on two
10cm x10cm holes

Figure 11: Measured constellation diagram: performance of precise reflection

shows, the direct communication and the communica-
tions through single reflection and double reflections
present a good communication quality and the corre-
sponding SNR are 16.194 dB, 15.23 dB and 14.80 dB
respectively. For all the experiments on our testbed, the
measured data rates of both the directional and reflection-
al 60GHz links are shown to keep a value above 2.5Gbp-
s over a distance of 25m. Therefore, the bandwidth of
60GHz wireless link is high enough for multiple-gigabit
data transmissions in Diamond.

Experiment result on receiver alignment: During
the measurement, we find that the communication qual-
ity through deflection changes with the deflection angle
between two radios. As Fig. 9d shows, when the devia-
tion angle becomes 20◦, the SNR is 12.75 dB, which is
the critical value of the communication quality. When
the deviation angle further increases, the communication
quality becomes too bad for the receiver to decode the o-
riginal data. This indicates that our 60GHz radio is high-
ly directional and has a small main-lobe width less than
20◦, which contributes to a small angular interference to
other radios when constructing the wireless interference
graph. At the same time, the main-lobe angle provides
a certain degree of fault tolerance on the antenna align-
ment between two servers in Diamond. We studied the
impact of antenna misalignment through simulation with
the above experimental parameters as input, and our re-
sult show that the average flow throughout drop is within
10% when the misaligned degree is within ±20◦, which
demonstrates that Diamond has a good tolerance to the
fault as a result of the misalignment of antennas.

Experiment result on the precise reflection: We ex-
amine the impact of hole size on the reflector and show
the single-reflection performance in Fig.10. We are not
showing the results with hole size larger than 20cm, be-
cause they are the same as the 20cm case. We can see
that when the hole size is 10cm, the SNR gets a slight
decrease but BER is kept at zero. When the hole size fur-
ther decreases to 5cm, the SNR drops quickly and results
in the transmission failure.

After obtaining the proper hole size as 10cm, we mea-
sure the constellation diagram for both the single and
double reflections. Fig. 11(a) and Fig. 11(c) show the
results of reflections without any absorbing materials on

the reflector. Fig. 11(b) and Fig. 11(d) show the cor-
responding results with one 10cm x10cm hole on each
reflector. We can see that the transmission performance
keeps nearly the same for both cases. Another interesting
finding is that for double reflections, the SNR even gets s-
lightly better when the reflectors are full of absorbing pa-
per with only one hole left. The gain may be achieved as
a result of the reduction of the multiple-path interference
with the use of absorbing material. This demonstrates
the feasibility of using precise reflection in Diamond.

7 Simulation

Setup and workloads. Our simulations are performed
by a customized flow-level simulator. We use the same
settings of TCP for the flow-level simulator as that uti-
lized in [4], where the additive increase factor of flow rate
is set to 15 MB/s. The wireless transmission follows the
general physical interference and path loss model [10].
The related wireless parameters, such as the signal fad-
ing due to the misalignment of antennas, are all set fol-
lowing the testbed-based measurement results shown in
Section 6.

For comparative analysis, we consider two classes of
typical DCN topologies respectively: (1) wired topolo-
gy and (2) hybrid topology. In the first part, we evalu-
ate the performance of the wired backbone of Diamond
(named Diamond-Wired) and other typical wired DCN
topologies. The wired link capacity is set to 1Gbps, and
we use Fat-tree [3] and BCube [16] as the representa-
tives for the tree-based DCN topology and the recursion-
based DCN topology respectively. In the second part, we
evaluate the performance of Diamond and the state-of-
art hybrid architecture 3D-beamforming [38]. We apply
Fat-tree as the oversubscribed core for 3D-beamforming.
Since 3D-beamforming deploys the wireless radios only
at the ToR layer, to make a fair comparison, we apply t-
wo radios on top of each rack for both 3D-beamforming
and Diamond. Thus, only the first layer of servers in Di-
amond are equipped with wireless radios and the radio
numbers are the same for both topologies. To compare
the performance only under distributed routing, we fur-
ther disable the HDF (Highest Demand First algorithm)
function and only use the OHR (Opportunistic Hybrid

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 667

100 200 300 400 500 600 7000

0.2

0.4

0.6

0.8

1

Throuthput(Mb/s)

C
D

F

FatTree
BCube
DiamondWired

(a) Flow Throughput
0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Flow Completion Time(s)

C
D

F

FatTree
BCube
DiamondWired

(b) Flow Completion Time

Figure 12: Flow Performance of Wired Architectures

Routing) routing in Diamond (named Diamond-OHR),
while 3D-beamforming uses ECMP routing. Limited by
the memory space of our simulator, the number of rings
in Diamond is set to six.

To compare the performance on load balancing and
fault tolerance, we evaluate Diamond and other DCN
topologies under different traffic patterns and number of
node failures. The HDF routing and wireless radios are
all enabled for Diamond (named Diamond-HDF) in the
comparison cases. We transfer 200 random flows with
their sizes set within 200MB, and show the performance
results of flow throughput and flow completion time.

Performance of wired architecture. In Fig. 12a, we
can see that BCube performs the best while Diamond-
Wired has similar flow throughput as Fat-tree. The num-
ber of flows whose throughput is larger than 300Mbps
takes 10% in BCube, while the percentage is less than
1% in the other two topologies. This is because that Dia-
mondWired simplifies its wired backbone by using much
fewer switches and wires. Similar trends on the perfor-
mance of flow completion time can be found in Fig. 12b.

Performance of hybrid architecture. Consider the
original traffic as long flows. We add another 200 ran-
dom short flows (whose average size is one tenth that of
the original traffic) to study the performance of mixed
flows in hybrid architectures. In Fig. 13a, the through-
put of long flows in Diamond-OHR is higher than that
of 3D-beamforming. The number of long flows whose
throughput is larger than 225Mbps takes above 90% in
Diamond, while the number takes less than 40% in 3D-
beamforming. Moreover, in Fig. 13b, the maximum
completion time of short flows in Diamond is about 25%
less than that of 3D-beamforming. In Diamond, a larger
number of concurrent wireless links can be supported to
increase the transmission capacity, which contributes to
both higher throughput for long flows and smaller com-
pletion time for short flows.

Performance of load balancing. Following the pri-
or work [19], we use a uniform model where flows be-
tween pairs of racks arrive independently with a Poisson
arrival-rate as the baseline. We also consider the hotspot
model [23], where in addition to the uniform baseline, a
subset of rack pairs have higher arrival rates and larger
flow sizes. We use a tuple (X ,Y) to describe the hotspot
traffic model: the X element represents the average flow

0 150 300 450 600 750 900
0

0.2

0.4

0.6

0.8

1

Throughput(Mb/s)

C
D

F

p

3D−Beamforming
Diamond−OHR

(a) Throughput (Long Flows)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Flow Completion Time(ms)

C
D

F

3D−Beamforming
Diamond−OHR

(b) Completion Time (Short Flows)

Figure 13: Flow Performance of Hybrid Architectures

(1,0) (1,25) (1,50) (5,0) (5,25) (5,50)
0

500

1000

1500

2000

2500

3000

T
hr

ou
gh

pu
t (

M
b)

 Diamond-HDF
 BCube
 3D-Beamforming
 FatTree

(a) Flow Throughput
(1,0) (1,25) (1,50) (5,0) (5,25) (5,50)

0

1x104

2x104

3x104

4x104

F
lo

w
 C

om
pl

et
io

n
T

im
e

(m
s) Diamond-HDF

 BCube
 3D-Beamforming
 FatTree

(b) Flow Completion Time

Figure 14: Flow Performance for Traffic Patterns

size, where 1 denotes the average flow size is 100MB,
and 5 corresponds to 500MB; the Y element denotes the
percentage of the number of hot nodes.

As Fig. 14 shows, the flow performance of the
four topologies deteriorates as expected when increas-
ing the average flow size and the number of hot n-
odes. Diamond-HDF performs the best, providing the
largest flow throughput and lowest flow completion time.
Benefited from the rich server-level wireless links, the
throughput of Diamond is about 5 times that of oth-
er topologies in the lightest traffic case (1,0), and 9
times that of the other topologies in the worst traffic case
(5,50). Correspondingly, the flow completion time of
Diamond is about 70% lower than that of other topolo-
gies. This demonstrates the high performance gains of
Diamond-HDF and its capability of effectively balanc-
ing the load upon heavy traffic.

Performance of fault tolerance. In Fig. 15, we
evaluate the flow performance of Diamond-HDF and
Diamond-Wired when different percentages of nodes
fail. To ensure that every flow can be routed under the n-
ode failures, we first randomly disable certain percentage
of nodes and then randomly generate 100 flows to trans-
mit for the remaining nodes. As Fig. 15 shows, the flow
throughput of both the Diamond-HDF and Diamond-
Wired decreases with the increasing node failure ratio.
However, the flow throughout of Diamond-HDF decreas-
es much slower than that of Diamond-Wired. Consider-
ing the failure ratio from 0% to 20%, the flow throughput
of Diamond-HDF decreases about 13% while Diamond-
Wired decreases about 28%. This illustrates the grace-
ful performance degradation of Diamond-HDF for node
failures. Similar trends on flow completion time can be
found in Fig. 15b.

Performance of wireless reconfiguration. In Table 2,
we compare the computation delay and performance of
the greedy solution HDF in Diamond with the optimal

668 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

5 10 15 20
0

100

200

300

400
Th

ro
ug

hp
ut

 (M
b)

Failure Degree (%)

 Diamond-HDF
 Diamond-Wired

(a) Flow Throughput

5 10 15 20
0

1000

2000

3000

4000

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Failure Degree (%)

 Diamond-HDF
 Diamond-Wired

(b) Flow Completion Time
Figure 15: Flow Performance for Fault Tolerance

solution (named Full-ILP) of the HLBP problem. We
use the ILP solver LINGO to compute the global optimal
solution of ILP for routing (we obtained the same result-
s when using the ILP toolbox in MATLAB for calcula-
tion). Limited by the memory constraint of LINGO, we
evaluate the scales of Diamond with up to 5 rings which
contains totally 60 racks and each rack holds 48 server-
s. We can see that the computation delay of Full-ILP
increases quickly with the number of rings while HDF
keeps a stable and low computation delay around 30m-
s. The tradeoff is HDF gets up to 15% gap on the per-
formance of throughput and flow completion time when
compared with Full-ILP. For a practical network scale
within 20 rings, Full-ILP can not provide the solution
in reasonable time, while HDF still achieves a low de-
lay within 100ms, which is comparable to the feasible
scheduling overhead illustrated in [4].

8 Related Work
Conventional data center: There exist prevalent hot

spots in hierarchical data centers [3, 15, 18, 39], which
limits the DCN performance. Many DCN architectures
have been proposed to address the hot-spot problem in
tree-based data center networks. Some efforts [30–32]
propose to construct a random networking topology to
achieve smaller network diameter, less hot spots and
higher performance than state-of-art structured architec-
tures. But the wiring and routing are quite challenging
in a totally random wired network. In [16, 17], authors
propose to build the network recursively to efficiently e-
liminate the structured bottleneck. However, the routing
is restricted to follow its recursive structure, which does
not consider the high dynamics in traffic demands and
thus may lead to more hot spots.

Hybrid data center networking: Recent efforts turn
to hybrid data center networking with flexible new net-
working components (e.g., the optical circuit switches,
60GHz wireless radios or FSO transceivers) to address
the dynamic traffic demands [13,18,19,24,25,28,33,38].

Table 2: Performance of reconfiguration
Ring Delay (ms) Throughput Flow Completion Time

Full-ILP HDF Gap Gap
2 219 15 0.08 0.11
3 313 31 0.08 0.15
4 625 31 0.12 0.01
5 11625 32 0.15 0.15

Flyway first illustrates the feasibility of applying 60GHz
wireless technology in DCNs [18]. The work in [38]
further enhances the Flyway performance by using the
ceiling reflector to bounce signals to avoid blocking on
the 2D plane. Using the same method, Firefly explores
the feasibility of running free-space-optical (FSO) trans-
missions in DCNs [19]. This method, however, requires
a height-restricted ceiling and also complete clearance
above racks, which is infeasible in most data centers due
to the existence of air conditioning pipes and steel struc-
tures above the racks [1]. Moreover, existing methods
only considered the local performance improvement at
the rack level and part of network layers. In contrast,
Diamond can run a larger number of network-wide wire-
less links (either 60GHz or FSO) without involving any
engineering efforts to change the room plan above racks.
Both wireless technologies can be applied in Diamond
at the server level with different trade-offs: commodity
60GHz antenna is much cheaper and smaller than FSO
transceivers while FSO has little interference footprint
and longer transmission distance. With the decreasing
cost of optical transceivers, FSO shows great promise to
run in Diamond in the future.

9 Conclusion
We propose Diamond, a novel hybrid network architec-
ture, to enable high capacity and seamless data transmis-
sions over both wired and wireless network links. Specif-
ically, we introduce the concept of Ring Reflection Space
(RRS) to enable the wide deployment of wireless radios
at servers and high number of concurrent wireless trans-
missions through low-cost multi-reflection over the met-
al, and develop a precise reflection scheme to reduce the
wireless interference inside an RRS. The rich wireless re-
sources allow Diamond to flexibly configure the network
topology and form the transmission path to avoid cre-
ating hot traffic spots while enabling transmissions over
random network topology for low delay. We also prove
the scalability of the proposed architecture. We imple-
ment the proposed techniques over 60Ghz testbed and
demonstrate its functionality. Our results from extensive
simulations show that the cohesive structure of Diamond
enables fine-grained and network-wide load balancing,
effective routing and graceful fault-tolerance.

Acknowledgments
This work is supported by National Natural Science
Foundation of China (no. 61120106008, 61422206), Ts-
inghua National Laboratory for Information Science and
Technology (TNList). Xin Wang’s research is support-
ed by NSF CNS 1526843, and Xiangyang Li’s research
is supported by NSF ECCS-1247944. We would like to
thank our shepherd Alex C. Snoeren and the anonymous
reviewers for their valuable feedback and suggestions.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 669

References
[1] Google data center image. http://www.google.com/about/

datacenters/gallery/#/all.

[2] ABU-LIBDEH, H., COSTA, P., ROWSTRON, A., O’SHEA, G.,
AND DONNELLY, A. Symbiotic routing in future data centers. In
SIGCOMM (2011).

[3] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scal-
able, commodity data center network architecture. In SIGCOMM
(2008).

[4] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic flow schedul-
ing for data center networks. In NSDI (2010).

[5] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data center tcp (dctcp). In SIGCOMM (2011).

[6] BASU, A., AND RIECKE, J. Stability issues in ospf routing. In
SIGCOMM (2001).

[7] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

[8] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M. Un-
derstanding data center traffic characteristics. ACM SIGCOMM
Computer Communication Review 40, 1 (2010), 92–99.

[9] CHEN, K., SINGLA, A., SINGH, A., RAMACHANDRAN, K., X-
U, L., ZHANG, Y., WEN, X., AND CHEN, Y. Osa: an optical
switching architecture for data center networks with unprecedent-
ed flexibility. In NSDI (2012).

[10] CUI, Y., WANG, H., CHENG, X., LI, D., AND YLÄ-JÄÄSKI,
A. Dynamic scheduling for wireless data center networks. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 24, 12
(2013), 2365–2374.

[11] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGAN-
DULA, P., SHARMA, P., AND BANERJEE, S. Devoflow: scaling
flow management for high-performance networks. In SIGCOMM
(2011).

[12] DE BRUIJN, N. G., AND ERDOS, P. A combinatorial prob-
lem. Koninklijke Nederlandse Akademie v. Wetenschappen 49,
49 (1946), 758–764.

[13] FARRINGTON, N., PORTER, G., RADHAKRISHNAN, S., BAZ-
ZAZ, H. H., SUBRAMANYA, V., FAINMAN, Y., PAPEN, G.,
AND VAHDAT, A. Helios: a hybrid electrical/optical switch ar-
chitecture for modular data centers. In SIGCOMM (2011).

[14] GAREY, M. R., AND JOHNSON, D. S. Computers and in-
tractability: A guide to the theory of np-completeness. WH Free-
man & Co., San Francisco (1979), 61–62.

[15] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. Vl2: a scalable and flexible data center network. In
SIGCOMM (2009).

[16] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y., TIAN,
C., ZHANG, Y., AND LU, S. Bcube: a high performance, server-
centric network architecture for modular data centers. In SIG-
COMM (2009).

[17] GUO, C., WU, H., TAN, K., SHI, L., ZHANG, Y., AND LU,
S. Dcell: a scalable and fault-tolerant network structure for data
centers. In SIGCOMM (2008).

[18] HALPERIN, D., KANDULA, S., PADHYE, J., BAHL, P., AND
WETHERALL, D. Augmenting data center networks with multi-
gigabit wireless links. In SIGCOMM (2011).

[19] HAMEDAZIMI, N., QAZI, Z., GUPTA, H., SEKAR, V., DAS,
S. R., LONGTIN, J. P., SHAH, H., AND TANWER, A. Firefly: a
reconfigurable wireless data center fabric using free-space optics.
In SIGCOMM (2014).

[20] KANDULA, S., SENGUPTA, S., GREENBERG, A., PATEL, P.,
AND CHAIKEN, R. The nature of data center traffic: measure-
ments & analysis. In SIGCOMM (2009).

[21] LI, X.-Y. Multicast capacity of wireless ad hoc networks.
IEEE/ACM Transactions on Networking (TON) 17, 3 (2009),
950–961.

[22] LI, X.-Y., TANG, S.-J., AND FRIEDER, O. Multicast capacity
for large scale wireless ad hoc networks. In MOBICOM (2007).

[23] LI, X.-Y., AND WANG, Y. Simple approximation algorithms and
ptass for various problems in wireless ad hoc networks. Journal
of Parallel and Distributed Computing 66, 4 (2006), 515–530.

[24] LIU, H., LU, F., FORENCICH, A., KAPOOR, R., TEWARI, M.,
VOELKER, G. M., PAPEN, G., SNOEREN, A. C., AND PORTER,
G. Circuit switching under the radar with reactor. In NSDI
(2014).

[25] LIU, Y. J., GAO, P. X., WONG, B., AND KESHAV, S. Quartz: a
new design element for low-latency dcns. In SIGCOMM (2014).

[26] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review 38,
2 (2008), 69–74.

[27] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH, D.,
AND FUGAL, H. Fastpass: A centralized zero-queue datacenter
network. In SIGCOMM (2014).

[28] PORTER, G., STRONG, R., FARRINGTON, N., FORENCICH, A.,
CHEN-SUN, P., ROSING, T., FAINMAN, Y., PAPEN, G., AND
VAHDAT, A. Integrating microsecond circuit switching into the
data center. In SIGCOMM (2013).

[29] SHIN, J.-Y., SIRER, E. G., WEATHERSPOON, H., AND
KIROVSKI, D. On the feasibility of completely wirelesss dat-
acenters. IEEE/ACM Transactions on Networking (TON) 21, 5
(2013), 1666–1679.

[30] SHIN, J.-Y., WONG, B., AND SIRER, E. G. Small-world dat-
acenters. In Proceedings of the 2nd ACM Symposium on Cloud
Computing (2011), ACM, p. 2.

[31] SINGLA, A., GODFREY, P. B., AND KOLLA, A. High through-
put data center topology design. In NSDI (2014).

[32] SINGLA, A., HONG, C.-Y., POPA, L., AND GODFREY, P. B.
Jellyfish: Networking data centers randomly. In NSDI (2012).

[33] WANG, G., ANDERSEN, D. G., KAMINSKY, M., PAPAGIAN-
NAKI, K., NG, T., KOZUCH, M., AND RYAN, M. c-through:
Part-time optics in data centers. In SIGCOMM (2010).

[34] WANG, W., WANG, Y., LI, X.-Y., SONG, W.-Z., AND
FRIEDER, O. Efficient interference-aware tdma link scheduling
for static wireless networks. In MOBICOM (2006).

[35] WANG, Y., WANG, W., LI, X.-Y., AND SONG, W.-Z.
Interference-aware joint routing and tdma link scheduling for
static wireless networks. IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS) 19, 12 (2008), 1709–1726.

[36] XU, X., LI, X.-Y., WAN, P.-J., AND TANG, S. Efficien-
t scheduling for periodic aggregation queries in multihop sensor
networks. IEEE/ACM Transactions on Networking (TON) 20, 3
(2012), 690–698.

[37] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J.,
YUAN, L., KANDULA, S., AND KIM, C. Profiling network per-
formance for multi-tier data center applications. In NSDI (2011).

[38] ZHOU, X., ZHANG, Z., ZHU, Y., LI, Y., KUMAR, S., VAHDAT,
A., ZHAO, B. Y., AND ZHENG, H. Mirror mirror on the ceiling:
flexible wireless links for data centers. In SIGCOMM (2012).

[39] ZHU, Y., ZHOU, X., ZHANG, Z., ZHOU, L., VAHDAT, A.,
ZHAO, B. Y., AND ZHENG, H. Cutting the cord: a robust wire-
less facilities network for data centers. In MOBICOM (2014).

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 671

Ripple II: Faster Communication through Physical Vibration

Nirupam Roy, Romit Roy Choudhury

University of Illinois at Urbana Champaign

Abstract
We envision physical vibration as a new modality of
data communication. In NSDI 2015, our paper reported
the feasibility of modulating the vibration of a smart-
phone’s vibra-motor. When in physical contact with an-
other smartphone, the accelerometer of the second phone
was able to decode the vibrations at around 200 bits/s.
This paper builds on our first prototype, but redesigns
the entire radio stack to now achieve 30 kbps. The core
redesign includes (1) a new OFDM-based physical layer
that uses the microphone as a receiver (instead of the ac-
celerometer), and (2) a MAC layer that detects collision
at the transmitter and performs proactive symbol retrans-
missions. We also develop two example applications on
top of the vibratory radio: (1) a finger ring that trans-
mits vibratory passwords through the finger bone to en-
able touch based authentication, and (2) surface commu-
nication between devices placed on the same table. The
overall system entails unique challenges and opportuni-
ties, including ambient sound cancellation, OFDM over
vibrations, back-EMF based carrier sensing, predictive
retransmissions, bone conduction, etc. We call our sys-
tem Ripple II to suggest the continuity from the NSDI
2015 paper. We close the paper with a video demo that
streams music as OFDM packets through vibrations and
plays it in real time through the receiver’s speaker.

1 Introduction
Motivation: Project Ripple [34] is an attempt to en-
able communication through physical vibrations. The
core idea is to harness the vibration motor (present in
all smartphones and wearable devices) as a transmitter,
and a motion sensor (like an accelerometer) as a receiver.
When two smartphones come in physical contact to each
other, the transmitter phone can vibrate to transfer bits
of information. Transmission is even possible through
other solid channels, such as between devices placed on a
tabletop, or a finger ring communicating to a smartphone
through bone conduction. While the exact application
remains an open question (especially in the presence of
NFC-like technologies), areas such as Internet of Things
(IoT), intra-body networks, wearable security, and mo-
bile payments are calling for new forms for short range
communication. Qualities of a vibratory radio, includ-

ing zero RF radiation, contact-only authentication, mass-
scale availability, and intuitive usability, may together fill
an emerging business need. This project is motivated by
this “bottom up” thinking and focuses on pushing for-
ward the vibratory capabilities.

Prior Work: Of course, the fundamental idea of utiliz-
ing vibration as a communication modality dates back
to acoustics – speakers modulate bits of information into
air vibrations that are picked up by microphones. Air
vibrations were later extended to water, enabling under
water communication [7, 6, 11] and various applications,
such as SONAR [41]. In recent years, vibration through
solids has been of interest, motivated primarily by the
need for proximal communication. Authors in [22, 38]
used Morse-style communication at 5 bit/s to exchange
security keys between two mobile phones in contact.
Last year, Ripple [34] broke away from ON/OFF com-
munication, and developed a viable radio through tech-
niques such as multi-carrier amplitude modulation, vi-
bration braking, and simultaneous transmission over the
3 axes of the accelerometer. A self-sound cancellation
technique also prevented acoustic eavesdroppers from
decoding the sounds of vibration, offering improved se-
curity over RF based approaches. As a first attempt to vi-
bratory radio design, Ripple achieved data rates of ≈ 200
bits/s, but left various challenges and opportunities unad-
dressed. This paper presents a subsequent work – Ripple
II – aimed at a far more mature radio stack and two ex-
ample applications.

Technical Core: Ripple II’s core redesign entails the
following: (1) Replacing the accelerometer with the mi-
crophone as a receiver of vibrations. The key challenge
pertains to separating vibrations from ambient sounds
“picked up” by the microphone. While the availabil-
ity of a second microphone offers the opportunity for
sound cancellation, vibrations partly pollute the second
microphone as well. Moreover, techniques such as active
noise cancellation are inadequate since residual phase
mismatches – often tolerable in human hearing applica-
tions [37] – seriously affect demodulation. We develop
variants of adaptive filtering schemes, enhanced with an
understanding of the interference conditions. (2) We
also discover an opportunity that allows the vibra-motor

1

672 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

to partially sense ambient sound interference, through a
phenomenon called back-EMF in electronic circuits. The
transmitter extrapolates from this partial information, us-
ing curve fitting techniques, and develops a proactive
symbol retransmission scheme. The problem is new to
the best of our knowledge – unlike existing wireless sys-
tems, here the transmitter is aware of the receiver’s in-
terference conditions and can adapt at the granularity of
symbols. This opens both challenges and opportunities.

System and Apps: We engineer a completely func-
tional prototype, which entails a full OFDM stack, cop-
ing with ADC saturation, synchronization, error coding,
interleaving, etc. Towards real applications, we develop
a (clunky) wearable finger ring and demonstrate the vi-
ability of transmitting vibratory signals through finger
bones. While signals attenuate through human tissues
and muscles, effective bit rates of 7.41 Kbps is still possi-
ble, adequate for applications like two-factor authentica-
tion (i.e., when the user unlocks the phone, the vibratory
password decoded by the phone serves as a second chan-
nel of authentication). We also explore a second applica-
tion where devices are placed on tabletops, allowing for
one-to-many multicast communication (e.g., a presenter
sharing slides with all members in the meeting). Lastly,
we include a video demo on our project website [3] –
the demo shows the transmitter streaming music through
OFDM packets over vibrations and the receiver’s speaker
playing it in real time.

Platform and Evaluation: Our evaluation platform
is composed of laptops, signal generators, vibra-motor
chips, microphone chips, and home-grown circuits that
interconnect them. In the basic scenario, the vibra-motor
is attached to a short pencil to emulate a “stylus” like de-
vice, which then touches a microphone chip to transfer
information. We generate various ambient sounds in the
lab, including soft and loud music, people talking, ma-
chine hums, loud thuds and vibrations, and their combi-
nations. Our PHY and MAC layer schemes are evaluated
in these settings, against metrics such as SNR gain, bit er-
ror rate (BER), throughput, etc. At the application layer,
we compute end to end data rate under modestly realis-
tic settings, such as the human wearing the (vibra-motor
embedded) ring and touching the microphone chip. We
emulate wrist watches as well (2.23 Kbps), and perform
an informal user study to understand if they feel the vi-
brations. We also explore achievable bit rates for tabletop
communication, with devices placed at increasing dis-
tances on wooden surfaces.

Next Steps: There is much room for continued research
and improvement. First, we have little understanding of
PHY capacity and MAC layer optimality; intuitively, we
believe that modeling the devices and the channel can

yield reasonable performance bounds. Second, the sound
cancellation techniques can perhaps benefit from deeper
signal processing expertise – we have initiated collab-
oration towards this goal. Third, microphones and ac-
celerometers may together present new opportunities that
remain untapped in this paper. Fourth, while our prior pa-
per mitigated attacks on vibratory sounds, visual attacks
still remain a threat – a high speed camera, with line of
sight to the device, may be able to decode vibrations. Fi-
nally, we need guidance on other possible use-cases and
applications [5] of vibratory radios. Our ongoing work is
focused on all these aspects.

In summary, the contributions of this paper are:

• An OFDM based vibratory radio with microphones
as the receiver. The PHY layer uses variants of
adaptive filtering to isolate vibrations from ambi-
ent sounds at the microphone; the MAC layer de-
velops a transmitter side carrier sensing mechanism
and uses it for proactive symbol retransmission.

• A completely functional system borne out of signif-
icant engineering effort. The effort includes hard-
ware circuits on bread boards, to drivers for the
vibra-motor, to bone conduction and real-time mu-
sic streaming. Instantiation of the system in two ap-
plications: touch based authentication and surface
communication.

The overall architecture of Ripple II is illustrated in Fig-
ure 1. The rest of the paper expands on the main modules
(shaded in gray) and briefly touches upon the techniques
borrowed from literature, and the engineering effort in
building the prototype.

Vibra-motor Driver

Symbol Selective Adaptive Filtering

Radio (Tx) Radio (Rx)

Microphone Driver

OFDM

Channel Coding MAC

Transmitter side Carrier Sensing

Proactive Symbol Retransmission (PSR)

Application
Vibratory

finger ring, watch
Tabletop
Multicast

Device
To Device

Figure 1: Ripple II’s system architecture.

2 Development Platform and Overview

2.1 Vibratory Transmitter
A vibration motor (also called “vibra-motor”) is an
electro-mechanical device that moves a metallic mass

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 673

rhythmically around a neutral position to generate vibra-
tions. While there are various kinds of vibra-motors, a
popular one is called Linear Resonant Actuators (LRA)
shown in Figure 2. With LRA, vibration is generated
by the linear movement of a magnetic mass suspended
near a coil, called the “voice coil”. Upon applying AC
current to the motor, the coil also behaves like a magnet
(due to the generated electromagnetic field) and causes
the mass to be attracted or repelled, depending on the
direction of the current. This generates vibration at the
same frequency as the input AC signal, while the ampli-
tude of vibration is dictated by the signal’s peak-to-peak
voltage. Thus LRAs offer control on both the magnitude
and frequency of vibration. As an aside, most mobile
phones today use LRA based vibra-motors.

Figure 2: Basic sketch of an LRA vibra-motor.

We control the vibra-motor through an Agilent 33500B
waveform generator, which is indirectly controlled by
MATLAB running on a laptop. The laptop generates
the desired digital samples; the waveform generator con-
verts the samples to an analog wave and transmits to the
vibra-motor. The peak-to-peak output voltage is stabi-
lized at 5V, the maximum supported by the vibra-motor
chip. We generate OFDM symbols through MATLAB
and drive the motor as desired.

2.2 Microphone as a Receiver
Our prior work [34] used a vibra-motor as the transmitter
and an accelerometer as the receiver1. The accelerome-
ter demodulated vibratory QPSK symbols and corrected
for errors using simple gray coding techniques. The low
bandwidth of accelerometer chips (800Hz) proved to be
the main bottleneck to link capacity, resulting in ≈ 200
bits/s. This paper breaks away from accelerometers and
identifies the possibility of using microphones as a vibra-
tion receiver.

Like accelerometers, microphones also transduce phys-
ical motion to electrical signals using a diaphragm that
responds to changes in (acoustic) air pressure. Figure 3
shows a microphone chip and the basic internal architec-
ture – as the diaphragm vibrates inside a magnetic field,
the produced electrical signals are amplified and sampled
by an ADC. Unsurprisingly, the diaphragm can also be

1Accelerometers are MEMS devices that transduce physical motion
into electrical signals by measuring the extent to which a tiny seismic
mass moves inside fixed electrodes (see [24] for details).

made to vibrate by physically touching a vibra-motor to
the microphone chip. Since microphones are designed
for greater sensitivity and operate over a wider frequency
range, they can serve as a better receiver (an alternative
to accelerometers). The tradeoff, however, is that the vi-
bration measured at the ADC is actually an aggregate of
the physical vibration and the air vibration from ambi-
ent sounds (e.g., people talking). Ripple II needs to iso-
late physical from acoustic vibrations to accomplish high
bandwidth vibratory communication.

Figure 3: (a) MEMS microphone chip, the diaphragm
hole near bottom left (b) Microphone circuit sketch.

Figure 4 shows our overall hardware set-up. The vibra-
motor is taped to the back of a short pencil and the tip
of the pencil now acts like a stylus, touching the micro-
phone chip. Transmission bits produced by the laptop
are converted to a signal waveform by the signal gener-
ator, which then drives the transmitter; the microphone
decodes these bits through realtime processing on a lap-
top. The following subsections detail the technical mod-
ules in the PHY, MAC, and Application layers.

Figure 4: Ripple II’s experimentation set-up (3 vibra-
motors attached to a pencil, ring, and watch). The stylus
touching a microphone, the second microphone nearby.

3 PHY: Vibratory Radio
We begin with the design of the microphone-receiver,
followed by our implementation of OFDM.

3.1 Separating Vibration from Sound
While the microphone offers larger bandwidth compared
to the accelerometer, its sensitivity to ambient sound is

3

674 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

a disadvantage. Unless filtered out, the vibration SINR
will be low, especially in loud environments. We at-
tempted various techniques (algorithms and hacks); we
detail the ones that worked and touch upon the failures.

Covering the Sound Hole
The microphone chip has a circular opening (like a small
hole) that exposes the diaphragm to air pressure. To pre-
vent ambient sounds from polluting Ripple II’s vibratory
signals, we covered the hole with a stiff synthetic rubber
sheet (somewhat like a stethoscope). However, when a
vibrating object comes in contact with this rubber sheet,
the air trapped inside the hole still oscillates, causing the
diaphragm to produce the desired signals. Figure 5 com-
pares the frequency responses of the altered and the stan-
dard microphones for vibration and sound, respectively.
Figure 5(a) shows an average 18.2dB gain for vibration
signals over the standard microphone; at some frequen-
cies the difference is 43.8dB. On the other hand, Figure
5(b) shows that the average sound attenuation at the al-
tered microphone is around 12.3dB. For both the signal
(i.e., vibration) and the noise (i.e., ambient sounds), the
higher frequency proves better (useful later in Section 5).

Frequency (KHz)
0 5 10 15

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-120

-100

-80

-60

-40

-20
Alt. Mic
Std. Mic

Frequency (KHz)
0 5 10 15

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-120

-100

-80

-60

-40

-20
Alt. Mic
Std. Mic

Figure 5: Covering the sound hole offers (a) improved
vibration signal and (b) attenuated sound signals in com-
parison to the standard microphone.

Canceling Ambient Sound
Let us denote the vibration signal from the stylus as
V (t) and the ambient sound signal as S(t). Ripple II
aims to subtract S(t) from the aggregate signal (A(t) =
V (t)+ S(t))) received through the microphone. A sec-
ond microphone present in many devices today is a nat-
ural opportunity. In an ideal case, the second micro-
phone should only receive the ambient sound S(t) and
none of the physical vibration V (t) since the stylus is not
in direct contact with it. In reality, however, physical
vibrations also leak into the second microphone. Also,
both microphones are affected by a high intensity electri-
cal noise, E(t), caused by their common supply voltage.
Frequencies of this noise range from 300Hz to 2500Hz
and its amplitude is comparable to V (t). Finally, the mi-
crophone output also includes a native hardware noise,
typically assumed to be uncorrelated additive Gaussian,
denoted N1 and N2 for the respective microphones.

Based on the above factors, the overall system can be
modeled as shown in Figure 6. The signal output from
the ith microphone, Yi can thus be expressed as:

Yi = HviV +HsiS+HeE +Ni

Figure 6: Modeling the signals and interferences at each
of the microphones; H denotes the channel matrix and
V , S, E, denotes vibration, sound, and electrical noise,
respectively.

We note that extraneous physical vibrations may occur
when Ripple II is transmitting information (for example,
in a moving vehicle). Such vibrations are included in S
since it is likely to affect both the microphones similarly.
We also note that the electrical noise E is highly corre-
lated and synchronized at both microphones, since they
share a common power source. Under this model, our
goal is to extract V from Y1 and decode the content.

Failed Attempts (MIMO, NC, rPCA)
MIMO: We discovered early that electrical noise E
can be removed effectively by low pass filtering Y2 and
subtracting from Y1. Since E dominates and is phase
matched across both microphones, the residue after sub-
traction minimally impacts V . Thus, we can rewrite
Yi = HviV +HsiS+Ni. This appears to be in the form of
MIMO and hence solvable without difficulty. Unfortu-
nately, the channel matrix for ambient sound, Hsi , cannot
be easily measured since Ripple II has no control over
the sound sources. Also, due to the time-varying nature,
statistical estimates are difficult.

Classical Noise Cancellation seems applicable [25],
however, the statistical nature of this algorithm does not
mitigate phase mismatches. The result after subtraction
does preserve the amplitude of the desired signal, which
is often adequate for human perception [37]. In Ripple
II, however, we need phase alignment too, or else, QAM
based demodulation falters. Put differently, requirements
to improve human hearing experience is less stringent
than the requirements for data communication.

Robust PCA is an algorithm from 2009 used for back-
ground separation [8]. The technique builds on the result
that, under certain conditions, a given matrix can be fac-
torized into a sparse and low rank matrix. For instance, in

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 675

a talk show video, static background walls could serve as
the low rank matrix (due to high similarity across video
frames) and the talking people could make up the sparse
matrix. In our case, we envisioned the ambient sound
to be sparse and the vibration to be low rank (since the
cyclic prefix of OFDM symbols can be organized to look
identical across time2.). Unfortunately, we could not de-
sign the matrices to attain adequate amount of both spar-
sity and low rank-ness. During the short time shifts for
which the OFDM vibration symbols were identical, the
sound signal changed enough that they were not sparse.
When sound proved to be sparse over longer time frames,
the low rank-ness disappeared. The outcomes of factor-
ization yielded marginal gain.

Symbol Selective Adaptive Noise Filtering
Adaptive filtering (AF) is an established technique that
can accept the two microphones’ signals as inputs, say
(Y1 = V1 + S1) and (Y2 = V2 + S2), and can attempt to
adapt the filter coefficients for Y2 such that the Y1 −Y2 is
V1. Conceptually, AF bolsters Y2 in the regions where
it correlates well with S1, and then subtracts from Y1.
This works best when S1 and Y2 are somewhat correlated
to each other, but neither is correlated to V1. However,
in our system, when ambient interference is low (i.e., V
dominates S), then Y2 correlates well with V1 – this is why
AF subtracts away the vibratory signals from Y1, defeat-
ing the purpose. However, we observe that if we could
identify OFDM symbols that are in error (i.e., S domi-
nates V), then perhaps only the erroneous symbols could
be subjected to AF. Since S1 and Y2 would correlate well
in such cases, the result of Y1 −Y2 could converge to V1.
Using this intuition, we design Symbol Selective Adap-
tive Noise Filtering (SANF), sketched in Figure 7.

Figure 7: SANF infers erroneous symbols and only feeds
these to the AF module.

Erroneous Symbol Detection. The main opportunity
emerges from measurements that revealed that the vibra-
tory channel responses at the primary and secondary mi-
crophones – Hv1 and Hv2 – maintain a constant ratio un-
der light or no interference. This is likely due to the same

2Without too much details, note that time domain signals can be
shifted by several samples and yet, by OFDM design, they will map
to the same frequency domain symbol – this is why we could generate
low rank-ness.

solid channel between the two microphones. In the pres-
ence of sound, however, the same ratio gets polluted and
thereby loses the constancy property (since sound varies
over time). Thus, we first perform channel estimation for
pilot subcarriers scattered across the OFDM symbol. We
synchronize the secondary microphone and estimate the
channel for that same pilot (the slight time offset does
not affect due to the protection from the cyclic prefix).
Now, deconvolution of the primary and secondary signal
in the frequency domain yields the complex gain, αp for
each pilot p.

Recall, the goal is to estimate the pristine ratio of Hv1 and
Hv2 in the presence of sound interference; the αp we have
is still polluted by sound interferences. Thus, we per-
form a least square estimation of the ratio and compute
α∗ for each subcarrier. Now, for any non-pilot symbol
to be erroneous, the computed complex gain between the
primary and secondary must be far from α∗ for that sub-
carrier. Once the erroneous symbols are identified, we
convert only those to the time domain, leaving the error-
free subcarriers untouched. We obtain the time domain
signals from both of the primary and secondary micro-
phone and feed them to an adaptive filter for noise can-
cellation. The output of the adaptive filter is then demod-
ulated to recover the vibratory symbols.

Amplifier Gain and Clipping
To maximize the power of the vibratory signal, we oper-
ate the receiver signal amplifier at near-maximum gain
and leave just enough headroom for typical ambient
sound (measured empirically). Of course, sometimes
the ambient sound exceeds the headroom and drives the
amplifier to saturation [33]. Figure 8(a) shows the out-
put of the unsaturated amplifier; Figure 8(b) shows the
saturated case – a truncated waveform. Unsurprisingly,
this “clipping” effect spills energy into other frequencies,
causing interference in an OFDM system. We alleviate
such frequency distortion effects by replacing the flat sat-
uration region with a cubic spline interpolation of the sig-
nal – Figure 8(c).

Our measurements also recorded consistent interference
at lower frequencies (< 500Hz), caused by a combina-
tion of winds from air vents, thermal noise from electri-
cal equipment, as well as vibrations of the human hand
while holding the transmitter. The vibra-motor also ex-
hibits resonance frequency at around 232Hz, causing the
system to destabilize due to the high power gain. We
deemed it suitable to sidestep these problems and moved
the transmission band to begin from 500Hz.

3.2 OFDM over Vibration
We implement OFDM [12] over the vibra-motor and
microphone link. Although an engineering effort, we

5

676 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

200 400 600 800 1000 1200

−0.4

−0.2

0

0.2

0.4

0.6

Time (ms)

Vo
lta

ge
 (n

or
m

al
ize

d)

200 400 600 800 1000 1200

−0.4

−0.2

0

0.2

0.4

0.6

Time (ms)

Vo
lta

ge
 (n

or
m

al
ize

d)

200 400 600 800 1000 1200

−0.4

−0.2

0

0.2

0.4

0.6

Time (ms)

Vo
lta

ge
 (n

or
m

al
ize

d)

0
4

8
12

16
20

0

1.5

3

4.5

6

7.5
−20

0

20

Time (ms)

Frequency (KH
z)

A
m

pl
itu

de
 (

dB
)

0
4

8
12

16
20

0

1.5

3

4.5

6

7.5
−20

0

20

Time (ms)

Frequency (KH
z)

A
m

pl
itu

de
 (

dB
)

0
4

8
12

16
20

0

1.5

3

4.5

6

7.5
−20

0

20

Time (ms)

Frequency (KH
z)

A
m

pl
itu

de
 (

dB
)

Figure 8: The waveform (1st row) and spectrogram (2nd
row) of the (a) actual signal, (b) distorted signal after
clipping, (3) corrected signal after spline interpolation.

briefly summarize the parameter selection process, par-
ticularly those influenced by the vibratory channel.

Channel Impulse Response
Although the vibratory channel is dominantly time-
invariant and frequency selective, human factors such as
hand movements and varying angle of contact inject vari-
ability. Measurements suggest similarity to a Rician fad-
ing model [40], with a strong line of sight path. The
weaker multipath components are caused by the iner-
tial movement of the motor mass – reverberation of the
medium distorts the signal and multiple reflected/delayed
replicas combine to create an elongated decaying re-
sponse at the output. We measure the impulse response
of our system using the exponential sine-sweep method
[14] during which sinusoids of exponentially increasing
frequency drives the motor. The output from the micro-
phone is de-convolved with the weighted reverse sine-
sweep to obtain the impulse response (the technique of-
fers robustness against noise and non-linear distortions).
Figure 9(a) and (b) show the measured impulse response
and the corresponding power delay profile (PDP).

0 5 10 15−0.5

0

0.5

1

Time (ms)

Vo
lta

ge
 (n

or
m

al
iz

ed
)

2 4 6
−40

−30

−20

−10

0

Time (ms)

Po
w

er
 (d

B)

Figure 9: (a) Channel impulse response (b) Power delay
profile of the vibratory channel.

Parameter Selection
Cyclic Prefix: The PDP shows 0.4ms before the multi-
path energy falls below 10dB of the highest peak, called
“10DB maximum excess delay”. This should be the sep-
aration between symbols to avoid inter symbol interfer-

ence (ISI). We set the guard interval conservatively to
1ms, however, instead of leaving the channel idle during
this interval, we insert 1ms of the last part of the sym-
bol. This is called the cyclic prefix (CP) which helps
cope with time synchronization errors without affecting
the orthogonality of sub-carriers.

Subcarrier Bandwidth: The vibratory channel, as men-
tioned earlier, offers long channel coherence time, al-
lowing for small subcarrier spacing. In practice, how-
ever, due to unpredictable phase noise, the inter carrier
interference (ICI) becomes severe with small subcarrier
spacing. On the other hand, the subcarriers become fre-
quency selective for bandwidths larger than the coher-
ence bandwidth of the channel. In such cases, the chan-
nel is no longer flat and hence equalization techniques
falter [13, 35]. We measure the coherence bandwidth
to be 480Hz (see Figure 10) – this is the width of the
frequency-correlation function using a threshold of 0.95.
We then choose the subcarrier bandwidth conservatively
to 40Hz, less than the 1

10
th

of the coherence bandwidth.

−5 0 50.8

0.85

0.9

0.95

1

Frequency (KHz)
Fr

eq
ue

nc
y

C
or

r.
Fu

nc
.

Figure 10: (a) Temporal stability of the channel, (b) The
frequency-correlation function indicates the coherence
bandwidth of 480Hz for the width threshold of 0.95.

Total Bandwidth: We choose the total bandwidth to be
12KHz, equal to the coherence bandwidth at correlation
threshold of 0.7.

With this PHY layer in place, we now focus on a vi-
bratory MAC layer, with the goal of reliably delivering
packets to the receiver even under interference.

4 MAC Layer Design

Reliable packet delivery entails retransmitting a packet
when it is received in error. In wireless systems, since
the transmitter is unaware of the receiver’s channel con-
ditions, the error detection happens reactively, through
an ACK from the receiver. Vibra-motors offer a new op-
portunity – we find that the receiver’s interference con-
ditions can be sensed at the transmitter through what is
known as back EMF. Thus, the transmitter could poten-
tially transmit and listen at the same time, infer sym-
bol collisions, and retransmit symbols proactively. Ef-
ficiency can improve but some issues need mitigation.

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 677

0 1 2 3 4 5−140

−120

−100

−80

−60

−40

−20

Frequency (KHz)

P
o
w

e
r/

F
re

q
u
e
n
cy

 (
d
B

/H
z)

0 1 2 3 4 5−140

−120

−100

−80

−60

−40

−20

Frequency (KHz)

P
ow

er
/F

re
qu

en
cy

 (
dB

/H
z)

0 5 10 15 20 25−160

−140

−120

−100

−80

−60

−40

Frequency (KHz)

P
o

w
e

r/
F

re
q

u
e

n
cy

 (
d

B
/H

z)

Figure 11: (a) Vibra-motor driven by a 3KHz voltage and no interference in the environment. (b) Interference in-
troduced in the environment raises the noise floor, especially at lower frequency bands. (c) Clear detection of 7KHz
interference caused by a nearby vibrator. (d) Spectrogram of acoustic chirp detected through back-EMF – the chirp
was played through a speaker placed 4 feet away.

4.1 Sensing Interference from Back-EMF
Back-EMF is an electro-magnetic effect observed in
magnet-based motors where relative motion occurs be-
tween the current carrying armature/coil and the mag-
netic field. In our vibra-motor, when the permanent mag-
net oscillates near the coil, the flux linkage with the coil
changes due to the driving voltage and/or vibration noise.
According to the Faraday’s law of electromagnetic in-
duction [16], this changing flux induces an electromotive
force in the coil. Lenz’s law [39] says this electromotive
force acts in the reverse direction of the driving voltage,
called back-EMF of the motor. As the rate of change
of the magnetic flux is proportional to the speed of the
magnetic mass, the back-EMF serves as an indicator of
the extraneous vibration experienced by the mass.

Unsurprisingly, the interfering vibrations generate subtle
movements of the vibra-motor mass, causing the voltage
changes around a small resistor to be in milli-volts (be-
low the ADC noise floor)3. We design a low noise am-
plifier, limiting the parasitic inductance/capacitance, to
amplify this voltage 100x before feeding it to the ADC
sampling circuit. Figures 11(a,b) show the difference
between interference-free and interfered transmissions,
as sensed through back-EMF. The noise floor increases,
especially at lower frequencies where the interference
is dominant. Figure 11(c) shows another case where a
7KHz interferer – a second interfering vibra-motor – is
placed on the same table as our experiment; the trans-
mitting vibra-motor detects the corresponding spike at
7KHz. We also played an acoustic chirp on a speaker
4 feet away from our devices – Figure 11(d) shows the
chirp spectrogram, a reasonable reproduction of the ac-
tual. The findings extend hope that back-EMF can be
useful to designing transmitter-side collision inference
protocols.

3The measuring circuit samples the induced current as a voltage
drop across a series resistor. We keep this resistor value below 0.02% of
the motor’s coil resistance so that the electrical property of the system
remains unaffected.

4.2 Vibratory Interference
Before moving into protocol design, we characterize the
nature of vibratory interference experienced by the mi-
crophone. Interferences are broadly of two kinds. (1)
Ambient acoustic sounds, such as people talking, back-
ground music, machine hums, etc. and (2) physical vi-
brations caused by objects such as running table fans,
taps and thuds on table-tops, and even natural vibration
of human hands when they are holding the devices. Fig-
ure 12 shows the spectral graph of several example in-
terferences, measured in isolation. The key observation
is that interferences are heavily biased to the lower fre-
quency bands; frequencies higher than 6KHz are rarely
impacted.

100 200 300 400 500 600 0
2

4
6

8

0

0.2

0.4

0.6

0.8

1

Noise Category
Subcarrier # (spacing 40Hz)

M
ag

ni
tu

de
 (n

or
m

al
iz

ed
)

Figure 12: Spectral properties of various interferences
occurring in the natural environment.

Figure 13 shows the 3D contour of acoustic interference
across frequency and time – the interference stems from
loud human voices. The key observation is that for any
given frequency, the signal amplitude of the interference
rises with time, reaches a peak, and decays again. This
characteristic is highly common in a wide range of in-
terferences, primarily because instantaneously starting or
stopping strong signals is difficult. Occasionally, we find

7

678 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

certain machines capable of producing a sudden spike,
however, their decay is still slow. We leverage back-EMF
along with these properties of the interference to design a
MAC protocol, called Proactive Symbol Recovery (PSR).

0
504321

15

-5
0
5

10

Am
pl

itu
de

 (d
B)

Time (ms)
Freq. (KHz)

Figure 13: 3D contour of acoustic interference across
frequency and time.

4.3 PSR Protocol: The Problem Definition
The protocol problem can be abstracted as follows. Con-
sider a packet P composed of many OFDM symbols,
[S1,S2,S3, ...], each symbol composed of n subcarriers
[f1, f2, f3, ... fn]. Figure 14 shows the pictorial represen-
tation of such a packet, in the form of a time-frequency
grid. Assume that the gray region denotes the inci-
dence of interference, essentially the top view of Fig-
ure 13. Now, with back-EMF, the transmitter is able to
sense receiver-side interference, however, the sensing is
not accurate. To be able to reliably detect interference
(i.e., reduce false positives), the transmitter can increase
the sensing threshold – interference detected above this
threshold is strongly indicative of actual interference.
Assume that the interference above a given threshold is
the black region in Figure 14.

f1 f2 f3 f4 fn

OFDM Subcarriers

t1

t2

t3

t4

t5

t6

t7

t8

Time
S1

S2

S3

S4

S5

S6

S7

S8

Symbol

Figure 14: A packet represented in terms of OFDM sym-
bol, each symbol to be transmitted over time.

The protocol question is: which symbols should the

transmitter retransmit, and when? Transmitting only the
symbols that are affected by the black color may still
leave too many erroneous symbols – the coding scheme
at the receiver may not be able to recover the packet. The
transmitter essentially needs to estimate the symbols af-
fected by the gray region too, and retransmit a subset of
those symbols [23, 19]. Clearly, not all the gray-color
affected symbols need to be transmitted since the coding
scheme can indeed correct for some errors.

A second question pertains to interference adaptation.
Once interference is detected at time t4, the transmitter
must adjust the subsequent transmissions to cope with
the interference. Any adjustments – such as rate control
– would need to be communicated to the receiver through
some control information. However, unlike packets,
symbols are not prefaced with headers; dedicating some
subcarriers to a control channel will be wasteful in gen-
eral. Under this constraint, the protocol needs to adapt
to interference and concisely convey its adaptations to
the receiver. The basic problem is new to the best of
our knowledge, since existing protocols assume that the
receiver has better estimates of error than the transmit-
ter [23, 19]. In our case, the transmitter is better aware
of the interference but has no control bits to convey its
adaptations.

4.4 Proactive Symbol Recovery Protocol
The PSR protocol develops 2 heuristics – interference
extrapolation and implicit control signaling – described
next.

(1) Interference Extrapolation. Only the contour of the
interference within the black region (in Figure 14) is vis-
ible to the transmitter – one could metaphorically envi-
sion it as the “part of the iceberg above water”. Based
on the visible shape, the transmitter may be able to ex-
trapolate the “submerged” shape, generating an estimate
of the gray region. Our measurements have consistently
indicated that the interference decay is well-behaved, of
course with some jitter. Hence, we model this as a curve
fitting problem, and use a 3rd order cubic spline (the
high frequency jitters are not captured). Given multi-
ple silhouettes, one per-subcarrier, we pick the silhouette
whose peak is at 80th percentile among all peaks. Using
this we develop an estimate of the gray region.

(2) Implicit Control Signaling. As mentioned earlier,
the transmitter needs some control bits for signaling its
actions to the receiver. To this end, we use a simple inter-
leaving idea from the basics of signal processing. Specif-
ically, when alternate subcarriers are loaded with data
(and the ones in-between left empty), the time domain
representation of the OFDM signal exhibits two identi-
cal copies (Figure 15). We call this the 2x interleaving

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 679

mode. When every 4th subcarrier is loaded, the time do-
main signal shows 4 identical copies of the same signal.
The receiver recognizes these identical copies in time do-
main and decodes the control information. In frequency
domain, it extracts the data from every 2nd (or 4th) sub-
carrier and ignores the others. Of course, we are aware
that the control bits are not free – the 2x and 4x inter-
leaving modes reduce the bandwidth. However, we also
note that energy on the loaded subcarriers increases – a
2x mode exhibits a 3dB gain (nearly double), lowering
chances of demodulation error.

0 10 20 300

2

4

6

Frequency bin #

M
ag

ni
tu

de

0 10 20 30

0

0.5

1

1.5

2

Time

Am
pl

itu
de

Figure 15: (a) 2x interleaving in frequency, (b) identical
signal parts in time domain.

Protocol Design: We now describe the basic operation
of the PSR protocol (we continue to refer to the toy ex-
ample in Figure 14). When no interference is detected
by the transmitter’s back-EMF sensor (i.e., until time t4),
symbols are sent as usual. Upon detecting interference
at t4, the transmitter records the symbol that was affected
(namely, S4), and performs the subsequent symbol trans-
missions (S5) at 2x interleaving mode. This continues
until the interference has subsided below the transmit-
ter’s threshold. At this point, the transmitter performs
the extrapolation using the interference decay data, start-
ing from the last-observed interference peak. The inter-
polation suggests that the receiver may continue to ex-
perience interference until some time in the future, say
till t7. Therefore, the transmitter continues symbol trans-
missions in 2x mode, after which it falls back to no-
interleaving. Observe that this interleaving mechanism
is akin to halving the rate, except that it helps inform the
receiver about the rate reduction.

Ideally, the interference extrapolation may help recover
the symbols S6 and S7, however, symbols S2 and S3 could
also be heavily interfered. To this end, the transmitter
also extrapolates the front portion of the interference, and
remembers the symbols that need retransmission. Once
all the symbols have been transmitted, it now retransmits
these symbols (S2, S3, and S4 in this toy case), at the
appropriate interleaving mode permissible by the then
channel conditions. Importantly, the receiver must iden-
tify that these symbols are actually duplicates of prior
symbols. Hence, the transmitter marks the start of these
retransmissions with a 4x interleaved packet – the packet

includes indices of all symbols that are being retrans-
mitted. The encoding of indices is efficiently done to
utilize the fewest bits possible, telling the receiver how
many retransmissions to expect and which prior symbols
to replace. The receiver demodulates all the symbols,
performs the appropriate replacements, and feeds them
through the decoder.

Coding for Error Correction: Needless to say, extrap-
olation will incur errors, and back-EMF sensing will ex-
perience false negatives. This will leave erroneous sym-
bols at the receiver even after retransmissions. In fact,
it would be inefficient for the transmitter to recover all
symbols since the decoder at the receiver would be able
to correct for some of them anyway. We implement a
standard 2/3 convolutional code, with constrain length 7,
to cope with inherent symbol errors in the transmission.
We implement a hard decision Viterbi decoder with trace
back depth of 30 to recover the bits. To cope with heavy
bursts in error, we use an interleaver to spread out the
bursts.

5 System Evaluation

5.1 Complete Hardware Prototype
Figure 16 shows the complete interconnection of the
hardware elements in Ripple II. Very briefly, the re-
ceiver (on the left side) draws power from the USB port
of a Dell laptop (or any mobile device or raspberry-
pi/arduino) serving as the controller. Instead of using
a separate ADC, we abuse the Line-in audio input port
of the laptop, which comes equipped with a high speed
ADC and a driver to push samples to user space. We con-
nect signals from each microphone to one of the chan-
nels in the line-in port with the help of a three-conductor
(TRS) audio jack. We run the appropriate driver to sam-
ple the signal at 48KHz, 16bit stereo mode.

The transmitter (shown on the right side) also uses a sim-
ilar approach. The software controller generates digital
samples that are converted to analog via the DAC of the
audio port. This output signal (with appropriate amplifi-
cation and shaping) feeds into the vibra-motor, which is
in turn attached to the stylus or ring. We sample this line-
in port at 48KHz to collect the back-emf signal along
with the reference voltage. Offline processing is per-
formed in MATLAB; realtime music streaming is per-
formed on GNURadio.

5.2 Performance Results
We present end to end results first, followed by zoomed
in results from acoustic noise cancellation (SANF) and
proactive symbol retransmission (PSR). Our final results

9

680 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 16: The complete hardware internals of Ripple II.

are drawn from 100+ sessions of experiments, each ses-
sion either 1− 3 min. long, and entails vibratory trans-
mission against diverse ambient sounds, ambient vibra-
tions, modulations, etc. We collected 800 samples of
ambient sound (e.g., supermarket ambience, in class-
room noise, music nearby, etc.) and 15 ambient vibra-
tions (e.g., walking, moving in a car, tapping on table).
Half of sessions were against the natural lab sound con-
ditions; for the other half, we played external ambience
sounds through a speaker and generated vibrational noise
through an external vibra-motor placed on the table. As
a baseline we use the basic OFDM microphone receiver
running on our hardware platform (including the covered
sound hole). We compare this baseline against (1) base-
line + coding, (2) baseline + coding + SANF, and (3)
baseline + coding + SANF + PSR.

Ripple II Results:
Figure 17(a) shows the CDF of throughput gain com-
puted from all the experimentation data, across all
possible noise environments. The communication link
operates in a high bit error rate (BER) regime and
coding schemes perform worse than expected. The
median gain with SANF is around 10%, with a small
fraction of cases leading to negative gain. However, PSR
brings appreciable benefits, mainly from retransmitting
erroneous symbols and bringing the errors below the
tolerable threshold. Median throughput gain with PSR
is 26.6%. Figure 17(b) reports the breakup of raw
throughput under various ambient sound categories.
Under mechanical sound spikes alone, the performances
of SANF and PSR are weak – the interpolation in
PSR falters, while SANF’s symbol error detection
scheme is not sensitive enough. However, in other
categories of noises, throughput improves – the me-
dian throughput in the “All” noise category is ≈ 27 Kbps.

SANF Results:
Figure 18(a) zooms into symbol selective aspect of
SANF, and shows the fraction of symbols corrected over
normal adaptive noise filtering. The correction gain im-

−40 −20 0 20 40 600

0.2

0.4

0.6

0.8

1

Throughput Gain (%)

C
D

F

Basic+coding
+Noise cancel
+PSR

Mech. House Human Song Nature All15

20

25

30

35

Noise category
M

ed
ia

n
Th

ro
ug

hp
ut

 (K
bp

s)

Basic+coding
+Noise cancel
+PSR

Figure 17: (a) Throughput gain across all experiments.
(b) Median throughput across different ambient sound
categories.

proves with higher SNR, but falls beyond 15dB. This is
because at > 15dB SNR, SANF is unable to detect the
symbol errors correctly since the interference is less pro-
nounced – the inability to identify the erroneous symbols
derails adaptive noise filtering. The sensitivity curve cap-
tures this behavior, suggesting that the symbol correction
efficacy is both a function of SNR and sensitivity. Figure
18(b) shows the gain across each subcarrier – the graph
is for the best SNR, 15dB.

0 10 200

20

40

60

80

SNR (dB) Se
ns

iti
vi

ty
 /

C
or

rc
tn

. G
ai

n
(%

)

Sensitivity
Correction Gain

0 100 200 3000

20

40

60

80

100

Subcarrier#

C
or

re
ct

ed
 s

ym
bo

ls
 (%

)

Average

Figure 18: (a) Variation of SANF’s cancellation gain and
sensitivity against increasing SNR; sensitivity is the frac-
tion of erroneous symbols detected by SANF. (b) The
noise cancellation gain as the percentage of erroneous
symbol per subcarrier.

PSR Results:
The core design elements in PSR pertains to (1) back-
EMF based sensing and extrapolation of the interference,

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 681

and (2) reducing symbol errors via 2x/4x interleaving
(expected to increase energy). To evaluate extrapolation,
we first identify the set of truly erroneous symbols that
should have been retransmitted by the transmitter. We
know the set of symbols that PSR actually retransmitted.
From these two sets, we compute the precision and recall
of PSR, reflecting the combined efficacy of back-EMF
sensing and interpolation. Figure 19(a) shows the results
– the precision is strong but the recall is weak, indicat-
ing that PSR is conservative. This is expected/desirable
since we intend to not retransmit excessively, which re-
duces inflation of the packet and also allows the decoder
to correct for the residual errors. Of course, there is room
to tune the interpolation scheme and the back-EMF sen-
sitivity – we leave this to future work.

0 0.5 10

0.2

0.4

0.6

0.8

1

Recall/Precision

C
D

F

Recall
Precision

0
4

8
12

1

1/2

1/4

0

0.5

1

Frequency (KHz)
Used subcarriers

(fraction)

Sy
m

bo
l E

rro
r R

at
e

Figure 19: (a) Precision and recall to evaluate the back-
EMF sensing and interference extrapolation scheme. (b)
The per subcarrier symbol error rates using all, 1/2, and
1/4 of the subcarriers, while the noise power is constant.

Figure 19(b) shows the reduction in symbol error rate
when half and one-forth subcarriers are loaded with data
(recall we denoted this as 2x and 4x modes of transmis-
sion). Under heavy channel interference, 2x mode sub-
stantially reduces symbol errors, offering effects similar
to rate control. However, the 2x mode also implicitly in-
cludes a control bit that the receiver can recognize. Mea-
surements show that the control signaling was near per-
fect, meaning the receiver almost always extracted the
correct data from 2x and 4x transmissions.

5.3 Applications and Capabilities
We explore potential applications of Ripple II, namely a
vibratory ring and watch; tabletop communication; and
device to device transfers.

(1) Finger Ring for Authentication
We envision touch based two-factor authentication – a
user wearing a Ripple II ring or watch could touch the
smartphone screen and the vibratory password can be
conducted through the bones. The core notion general-
izes to other scenarios, including unlocking car doors,
door knobs, etc. While a usable system would need ma-
turity in interfaces, energy, etc., this section only dis-
cusses the communication aspects of through-bone trans-

mission. Figure 20(a) shows the crude finger ring pro-
totype, placed on the index finger of the user. For our
prototype, the ring is powered by a battery located out-
side the ring and connected via long wires. The cylin-
drical vibra-motor is placed horizontally on the finger to
maximize area of contact, however, placement influences
communication.

Frequency (KHz)
0 2 4 6 8

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-120

-100

-80

-60

-40

-20

0 degree
45 degree
90 degree

Frequency (KHz)
12 14 16 18

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-120

-100

-80

-60

-40

-20

0 degree
45 degree
90 degree

Figure 20: (a) Finger ring operated at 8KHz. (b) Inci-
dence angles affect lower frequencies less. (c) Higher
frequencies in a piston oscillator become directional and
hence delivers less energy in unaligned directions.

Figure 20(b,c) shows the variation of signal power for 3
different incidence angles between the vibra-motor and
the finger – incidence angle defined as the angle between
the finger bone and the direction along which the vibrator
mass oscillates (which is perpendicular to the base of the
cylinder). Evidently, at lower frequencies, the incidence
angle does not impact the signal, however, at higher fre-
quencies the higher incidence angles reduce SNR. More-
over, higher frequencies are also less effective for signal
propagation through the human body. Thus, we decide
to operate the ring at 90◦ incidence but focus the power
budget to within 8KHz.

We also performed similar experiments with a watch
– pasting the vibra-motor on the wrist-bone below the
watch. Performance degrades as expected, due to a
longer conduction path from the wrist to the microphone.
The table below summarizes results. 5 student volunteers
experimented with our prototype and none of them were
able to feel or hear the vibrations at all.

Bandwidth Modu. Code Tput:Kbps
Ring 8 KHz QPSK 1/2 7.41

Watch 3 KHz QPSK 1/2 2.23

5.4 Tabletop Communication
Multicast communication is often useful – a group pic-
ture at a restaurant needs to be shared with everyone

11

682 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

in the group; presentation slides need to be shared in a
meeting. We envision placing all phones on the table,
near each other, and performing one vibratory multicast.
Figure 21 shows the outcome of such an experiment –
we used the stylus to touch different locations on a table,
while 2 microphone receivers were at fixed locations on
this otherwise empty table. Even at nearly 2 feet away,
the throughput is around 4Kbps (the X-axis has duplicate
values since there were multiple distinct locations at the
same distance from the microphone).

6 6 8.5 12 13.4 13.4 16.9 18 19 21.60

1

2

3

4

5

6

7

8

Distance (inch)

Th
rou

gh
pu

t (K
bp

s)

Receiver 1
Receiver 1

Figure 21: Throughput against varying tabletop range.

5.5 P2P Money Transfer
In developing regions, mobile payments may be vi-
able with basic phones with vibra-motor and micro-
phones. Perhaps a USB stick can transfer data to
phones/tablets on physical contact. Such apps obvi-
ously need higher data rates and some may require
real time operation. The table below shows possibili-
ties when vibra-motor on stylus’ and smartphones are
touched to microphones. We have also built a demon-
stration of a real time music streaming system over vi-
brations – please see video demo here: http://synrg.
csl.illinois.edu/ripple/

Bandwidth Modu. Code Tput:Kbps
Stylus 12 KHz 16 QAM 2/3 29.19
Phone 12 KHz 16 QAM 2/3 26.13

6 Related Work
Vibratory communication: Authors in [38] and [22]
were the first to conceive the idea of communicating
through physical vibrations. They both encode vibrations
through (ON/OFF) Morse code, with pulse durations of
around one second (i.e., 1 bits/s). This is adequate for ap-
plications like secure pairing between two smart phones,
or sending a tiny URL over tens of seconds. Our prior
work in NSDI 2015 [34] developed a fuller vibratory ra-
dio through multi-frequency modulation, self-jamming
based security, and resonance braking, ultimately trans-
lating to 200 bits/s. Ripple II is a push-forward of the
Ripple project, but with microphone as the receiver, and
augmented with a new PHY/MAC layer offering 150x
throughput gain. Ripple II still preserves Ripple’s secu-
rity properties via self-sound cancellation.

Dhwani [31] and Chirp [2] address conceptually simi-
lar problems, although on the acoustic platform; vibra-
motors bring about new set of challenges and opportuni-
ties. Technologies like Bump [1, 28, 36, 9, 20, 18, 26] use
accelerometer/vibrator-motor responses to facilitate se-
cure pairing between devices. TagTile [4] uses high fre-
quency sound to achieve association between phones and
point-of-sale devices. However, these techniques are pri-
marily designed for few bits of exchange; Ripple II aims
high bitrate transmission with the same ease as Bump
and Tagtile. Further, as indicated by researchers [38, 17],
the lack of the dynamic secret message in Bump-like
techniques makes them less secure in the wild. These
modes also require Internet connectivity and trusted third
party servers to function, none of which is needed in Rip-
ple II.

Vibration generation and sensing: Creative research
in the domain of haptic feedback has investigated the
state-of-the-art in electro-mechanical vibrations [32, 10].
Applications in assisted learning, touch-augmented en-
vironments, and haptic learning have used vibrations for
communication to humans [30, 15, 21, 32, 10]. How-
ever, the push for high communication data rates be-
tween vibrators and microphones/accelerometers is un-
explored to the best of our knowledge. Off late, per-
sonal/environment sensing on mobile devices has gained
research attention. Applications like (sp)iPhone [27] and
TapPrints[29] demonstrate the ability to infer keystrokes
through background motion sensing. While many more
efforts are around activity recognition from vibration sig-
natures, this paper aims to modulate vibration for com-
munication.

7 Conclusion
Ripple II is an attempt to enable touch-based vibra-
tory communication between a vibra-motor and a micro-
phone. We develop a vibratory radio at the PHY and
MAC layer, and explore a few possible applications in
authentication, device to device streaming, and table-
top communication. While additional work is needed
to attain maturity, we believe this paper is a concrete
step towards demonstrating an alternative communica-
tion mode, that has remained relatively unexplored in the
past.

Acknowledgement
We sincerely thank our shepherd Dr. Jonathan Smith and
the anonymous reviewers for their valuable feedback.
We are also thankful to Prof. Pramod Viswanath and
Shaileshh Venkatakrishnan for the various discussions on
this topic. We are grateful to Qualcomm, Huawei, and
NSF (grant CNS-1430033) for partially funding this re-
search.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 683

References
[1] Bump Technologies. http://blog.bu.mp. Accessed: 7th

February, 2016.

[2] Chirp. http://www.chirp.io. Accessed: 7th February, 2016.

[3] Ripple webpage. http://synrg.csl.illinois.edu/

ripple/. Accessed: 7th February, 2016.

[4] Tagtile report. http://www.mybanktracker.com/news/

2011/10/07/tagtile-easier-reward/. Accessed: 24th
September, 2015.

[5] ADKINS, J., FLASPOHLER, G., AND DUTTA, P. Ving: Boot-
strapping the Desktop Area Network with a Vibratory Ping. Ann
Arbor 1001 (2015), 48109.

[6] AKYILDIZ, I. F., POMPILI, D., AND MELODIA, T. Underwater
acoustic sensor networks: research challenges. Ad hoc networks
3, 3 (2005), 257–279.

[7] BURDIC, W. S. Underwater acoustic system analysis. Prentice
Hall, 1991.

[8] CANDÈS, E. J., LI, X., MA, Y., AND WRIGHT, J. Robust prin-
cipal component analysis? Journal of the ACM (JACM) 58, 3
(2011), 11.

[9] CASTELLUCCIA, C., AND MUTAF, P. Shake them up!: a
movement-based pairing protocol for cpu-constrained devices. In
Proceedings of the 3rd international conference on Mobile sys-
tems, applications, and services (2005), ACM, pp. 51–64.

[10] CHO, Y.-J., YAND, T., AND KWON, D.-S. A New Miniature
Smart Actuator based on Piezoelectric material and Solenoid for
Mobile Devices. In The 5th International Conference on the Ad-
vanced Mechatronics, ICAM (2010), pp. 615–620.

[11] COATES, R. F. Underwater acoustic systems. Halsted Press,
1989.

[12] DEBBAH, M. Short introduction to OFDM. White Paper, Mobile
Communications Group, Institut Eurecom (2004).

[13] ENGELS, M., AND PETRÉ, F. Broadband fixed wireless access:
a system perspective. Springer Science & Business Media, 2006.

[14] FARINA, A. Simultaneous measurement of impulse response and
distortion with a swept-sine technique. In Audio Engineering So-
ciety Convention 108 (2000), Audio Engineering Society.

[15] FEYGIN, D., KEEHNER, M., AND TENDICK, F. Haptic guid-
ance: Experimental evaluation of a haptic training method for a
perceptual motor skill. In Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, 2002. HAPTICS 2002. Proceed-
ings. 10th Symposium on (2002), IEEE, pp. 40–47.

[16] GALILI, I., KAPLAN, D., AND LEHAVI, Y. Teaching Fara-
days law of electromagnetic induction in an introductory physics
course. American journal of physics 74, 4 (2006), 337–343.

[17] HALEVI, T., AND SAXENA, N. On pairing constrained wire-
less devices based on secrecy of auxiliary channels: The case of
acoustic eavesdropping. In Proceedings of the 17th ACM confer-
ence on Computer and communications security (2010), ACM,
pp. 97–108.

[18] HALPERIN, D., HEYDT-BENJAMIN, T. S., RANSFORD, B.,
CLARK, S. S., DEFEND, B., MORGAN, W., FU, K., KOHNO,
T., AND MAISEL, W. H. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses.
In Security and Privacy, 2008. SP 2008. IEEE Symposium on
(2008), IEEE, pp. 129–142.

[19] HAN, B., SCHULMAN, A., GRINGOLI, F., SPRING, N., BHAT-
TACHARJEE, B., NAVA, L., JI, L., LEE, S., AND MILLER, R. R.
Maranello: Practical Partial Packet Recovery for 802.11. In NSDI
(2010), pp. 205–218.

[20] HOLMQUIST, L. E., MATTERN, F., SCHIELE, B., ALAHUHTA,
P., BEIGL, M., AND GELLERSEN, H.-W. Smart-its friends: A
technique for users to easily establish connections between smart
artefacts. In Ubicomp 2001: Ubiquitous Computing (2001),
Springer, pp. 116–122.

[21] HUANG, K., DO, E.-L., AND STARNER, T. PianoTouch: A
wearable haptic piano instruction system for passive learning of
piano skills. In Wearable Computers, 2008. ISWC 2008. 12th
IEEE International Symposium on (2008), IEEE, pp. 41–44.

[22] HWANG, I., CHO, J., AND OH, S. Privacy-aware communica-
tion for smartphones using vibration. In Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2012 IEEE
18th International Conference on (2012), IEEE, pp. 447–452.

[23] JAMIESON, K., AND BALAKRISHNAN, H. PPR: Partial packet
recovery for wireless networks. ACM SIGCOMM Computer
Communication Review 37, 4 (2007), 409–420.

[24] KAAJAKARI, V., ET AL. Practical MEMS: Design of microsys-
tems, accelerometers, gyroscopes, RF MEMS, optical MEMS,
and microfluidic systems. Las Vegas, NV: Small Gear Publishing
(2009).

[25] KRAWCZYK, M., AND GERKMANN, T. STFT phase re-
construction in voiced speech for an improved single-channel
speech enhancement. Audio, Speech, and Language Processing,
IEEE/ACM Transactions on 22, 12 (2014), 1931–1940.

[26] LESTER, J., HANNAFORD, B., AND BORRIELLO, G. Are
You with Me?–Using Accelerometers to Determine If Two De-
vices Are Carried by the Same Person. In Pervasive computing.
Springer, 2004, pp. 33–50.

[27] MARQUARDT, P., VERMA, A., CARTER, H., AND TRAYNOR,
P. (sp) iPhone: decoding vibrations from nearby keyboards using
mobile phone accelerometers. In Proceedings of the 18th ACM
conference on Computer and communications security (2011),
ACM, pp. 551–562.

[28] MAYRHOFER, R., AND GELLERSEN, H. Shake well before use:
Intuitive and secure pairing of mobile devices. Mobile Comput-
ing, IEEE Transactions on 8, 6 (2009), 792–806.

[29] MILUZZO, E., VARSHAVSKY, A., BALAKRISHNAN, S., AND
CHOUDHURY, R. R. Tapprints: your finger taps have fin-
gerprints. In Proceedings of the 10th international conference
on Mobile systems, applications, and services (2012), ACM,
pp. 323–336.

[30] MORRIS, D., TAN, H. Z., BARBAGLI, F., CHANG, T., AND
SALISBURY, K. Haptic feedback enhances force skill learning.
In WHC (2007), vol. 7, pp. 21–26.

[31] NANDAKUMAR, R., CHINTALAPUDI, K. K., PADMANABHAN,
V., AND VENKATESAN, R. Dhwani: secure peer-to-peer acous-
tic NFC. In Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM (2013), ACM, pp. 63–74.

[32] NIWA, M., YANAGIDA, Y., NOMA, H., HOSAKA, K., AND
KUME, Y. Vibrotactile apparent movement by DC motors and
voice-coil tactors. In Proceedings of the 14th International
Conference on Artificial Reality and Telexistence (ICAT) (2004),
pp. 126–131.

[33] ROBERGE, J. K. Operational amplifiers: theory and practice.
John Wiley & Sons, 1975.

[34] ROY, N., GOWDA, M., AND CHOUDHURY, R. R. Ripple: Com-
municating through physical vibration. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
15) (2015), pp. 265–278.

[35] RUMNEY, M., ET AL. LTE and the evolution to 4G wireless:
Design and measurement challenges. John Wiley & Sons, 2013.

13

684 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[36] SAXENA, N., AND WATT, J. H. Authentication technologies for
the blind or visually impaired. In Proceedings of the USENIX
Workshop on Hot Topics in Security (HotSec) (2009), vol. 9,
p. 130.

[37] SMARAGDIS, P., RAJ, B., AND SHASHANKA, M. Missing data
imputation for spectral audio signals. In Machine Learning for
Signal Processing, 2009. MLSP 2009. IEEE International Work-
shop on (2009), IEEE, pp. 1–6.

[38] STUDER, A., PASSARO, T., AND BAUER, L. Don’t bump, shake
on it: The exploitation of a popular accelerometer-based smart
phone exchange and its secure replacement. In Proceedings of the

27th Annual Computer Security Applications Conference (2011),
ACM, pp. 333–342.

[39] TANNER, P., LOEBACH, J., COOK, J., AND HALLEN, H. A
pulsed jumping ring apparatus for demonstration of Lenzs law.
American Journal of Physics 69, 8 (2001), 911–916.

[40] TSE, D., AND VISWANATH, P. Fundamentals of wireless com-
munication. Cambridge university press, 2005.

[41] WAITE, A. D., AND WAITE, A. Sonar for practising engineers,
vol. 3. Wiley London, 2002.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 685

PhyCloak: Obfuscating Sensing from Communication Signals

Yue Qiao, Ouyang Zhang, Wenjie Zhou, Kannan Srinivasan and Anish Arora
Department of Computer Science and Engineering

The Ohio State University
{qiaoyu, zhouwe, kannan, anish}@cse.ohio-state.edu

zhang.4746@buckeyemail.osu.edu

ABSTRACT

Recognition of human activities and gestures using pre-
existing WiFi signals has been shown to be feasible in
recent studies. Given the pervasiveness of WiFi sig-
nals, this emerging sort of sensing poses a serious pri-
vacy threat. This paper is the first to counter the threat of
unwanted or even malicious communication based sens-
ing: it proposes a blackbox sensor obfuscation technique
PhyCloak which distorts only the physical information
in the communication signal that leaks privacy. The data
in the communication signal is preserved and, in fact,
the throughput of the link is increased with careful de-
sign. Moreover, the design allows coupling of the Phy-
Cloak module with legitimate sensors, so that their sens-
ing is preserved, while that of illegitimate sensors is ob-
fuscated. The effectiveness of the design is validated via
a prototype implementation on an SDR platform.

1 Introduction

A new form of threat has emerged recently that leaks pri-
vate information about the whereabouts and activities of
physical targets merely by observing the ongoing wire-
less communications in the scene. Broadly speaking, as
a wireless signal gets reflected off of people and other
objects in the scene, information about them is leaked
to eavesdroppers by computational analysis of the signal
distortions. Increasingly, researchers have been demon-
strating proofs of concept where not only people pres-
ence but also fine-grain information about their locations
and even breathing, lip movement or keystrokes is leaked
[18, 28, 30, 1, 24]—all from observing communication
signals that are widely prevalent in our homes. While the
upside is that legitimate users can detect these physical
“signatures” simply using existing signals, a burglar can
also detect that there are no people in a house, a passerby
can decipher key presses without leaving a trace [8], and
a neighbor can snoop on the activities in our homes [30].

There is little doubt that several of these privacy exploits
will in due course be realized robustly and commoditized
for broad use. And, given the pervasive nature of wire-
less communications, the privacy implications of such at-
tacks will undoubtedly be of major social importance.

It is thus timely and important to develop suitable
counter-measures for this type of privacy leakage. We
take the first step at tackling this problem by proposing a
solution to address a single-antenna eavesdropping sen-
sor. At first glance, it might appear that an obvious way
to prevent or deter the privacy leakage is to simply jam
the signals [21, 11]. However, jamming is an overkill for
this problem, as the protection we wish lies in physical
and not in the logical (data) layer. Jamming distorts the
information of both layers, therefore it hurts the chan-
nel capacity of the network. In contrast to jamming, our
approach is to distort the physical information that is en-
vironmentally superimposed on the signal as opposed to
the data itself. To make clear the distinction between
these two forms of signal distortion, we refer to the latter
as signal obfuscation.

To avoid any modification of existing receivers, we
need to build an obfuscator (Ox) that works indepen-
dently from a receiver (Rx) and can yet deter privacy
leakage against a single-antenna eavesdropper. At the
same time, Ox should not hurt the ongoing reception at
the intended receiver. In addition, given the diversity of
the design of RF based sensors and invisibility of eaves-
droppers, it is not reasonable to assume Ox that uses
a specific obfuscation approach against a specific Eve.
Thus, our goal is to build a black-box solution which
distorts only the privacy sensitive information while not
affecting the logical information. We design Ox by an-
swering the two questions below:

1. How to distort physical information regardless of
the RF-sensing mechanism? To answer this question,
let us first examine what kind of physical information
is contained in RF signals. Assume the received sig-
nal at a reflector is s(t), then the received signal r(t)

1

686 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

reflected by the reflector can be expressed as follow:
r(t) = a× s(t)× e j2π(fc+Δ f)(t+Δt), where a is the ampli-
tude gain, fc is the carrier frequency, Δ f is the Doppler
shift caused by a reflector that moves at a constant speed
relative to the receiver, and Δt is the delay due to trans-
mission over the path. Here, we can see that the reflec-
tor modifies the reflected copies by controlling three or-
thogonal components: amplitude gain a, delay Δt and
Doppler shift Δ f . All the features exploited by single-
antenna RF based sensors are created by these three de-
grees of freedom (DoFs). Hence, if an Ox distorts the
three orthogonal bases respectively, any features that re-
veal physical information are distorted too.

2. How to preserve logical information (data com-
munication)? As the previous observation suggests, Ox
needs to change the 3 degrees of freedom (DoFs) of a sig-
nal in order to deter eavesdropping of physically sensed
features. Note that in a wireless environment, signals tra-
verse through many paths and experience Doppler shifts:
These effects are similar to dynamic multipath reflec-
tions. Thus, Ox can be a relay node that introduces dy-
namically changing multipath components of the com-
munication signal. In other words, Ox receives the in-
coming communication signal, manipulates the signals
and forwards them back to the environment. To a legiti-
mate receiver, this forwarded signal will simply look like
a multipath component of the signal from the legitimate
transmitter (Tx). Commercial off-the-shelf (COTS) Rx
is capable of tolerating and even exploiting multipath re-
flections to decode data. Thus, a carefully designed Ox
can distort sensing and still preserve communication.

Challenges: PhyCloak works as a full-duplex
amplify-and-forward (A&F) relay at logic layer, and an
Ox at physical layer by distorting the 3 DoFs. While the
solution may appear at first blush to be a simple instance
of full-duplex A&F forwarder [6, 3], there are key chal-
lenges that arise from this design that need to be resolved.
1. Online self-channel estimation with an ongoing ex-
ternal transmission: Online self-channel estimation is
needed for an Ox as it works in an environment where
the channel is varying as a result of target movement,
gestures and activities. When we combine the Ox mod-
ule with a legitimate sensor the self-channel variation be-
comes more significant due to the moving object close to
the sensor. Therefore an Ox has to transmit training sym-
bols to acquire channel estimation every channel coher-
ence interval (∼100ms). But a complication arises that
the training needs to co-exist with ongoing data transmis-
sion. A straightforward way to overcome this problem is
to adopt medium access control (MAC), however, that
would introduce contention and hurt throughput of legit-
imate data transmission given the frequent self-channel
updates.
2. Effectiveness of obfuscating physical information: No

work has been done in validating a full-duplex A&F for-
warder’s capability of controlling physical information
contained in the forwarded copy. In addition, the effec-
tiveness of superposing an Ox’s distorted signal and a
target’s reflected signal in obfuscating an eavesdropping
sensor has yet to be shown.

Contributions: We propose PhyCloak to protect pri-
vacy information from unwanted or even malicious sens-
ing with no modification to existing wireless infrastruc-
tures. In this work, we make the following contributions:

1. To our knowledge, we are the first to address the
potential threats due to the recent development of
communication-based sensing.

2. We propose PhyCloak, the first full-duplex forwarder-
based solution that hides physical information superim-
posed by the channel via adding interference in a 3-
dimensional orthogonal basis so that illegitimate sensing
is disabled and meanwhile data transmission is not af-
fected (and even improved). We go further and add the
capability to spoof human gestures to further confuse il-
legitimate sensors.

3. We propose an alternative online self-channel estima-
tion scheme that is contention-free and operates in the
presence of an ongoing transmission. By doing so we
also allow for legitimate sensing by integrating the sen-
sor with our obfuscator.

4. We build a prototype PhyCloak on PXIe-1082, an
SDR platform. Experimental results (Section 5.3) on a
state-of-the-art sensor show that PhyCloak successfully
obfuscates illegitimate sensing, enables legitimate sens-
ing and improves overall throughput of data transmis-
sion. Gesture spoofing to the same type of sensor is also
proved to be feasible.

2 Related Work

RF sensing from communications has been of great inter-
est in the last few years, as it allows data signals to be
exploited to infer remarkable details about the physical
world. Although the primary purpose of the communi-
cation signals is to carry logical information, concepts
of radar analysis [14, 5, 23, 16, 15, 25, 27, 22, 19, 26,
10, 13, 17] are adapted to extract these details. There
are however several challenges in the adaptation since
communication signal is defined particularly for carry-
ing data. For example, radar systems control their res-
olution by specially encoding their transmitting signals,
say in the form of Frequency-Modulated Carrier Waves
(FMCW) for spectrum sweeping, but when sensing from
RF communication a similar sort of transmitter coopera-
tion typically cannot be leveraged. As another example,

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 687

Existing Work Feature Basis Device Sensing Task
WiSEE: Pu et al. [24] Doppler Shift USRP-N210 Gesture recognition

Wi-Vi: Adib and Katabi [1] Phase USRP-N210 Gesture based communication,tracking
E-eyes: Wang et al. [30] RSSI, CSI COTS 802.11n devices Activity classification
Gonzalez-Ruiz et al. [12] RSSI IEEE 802.11g wireless card Obstacle mapping

Wang et al. [29] Phase, CSI COTS 802.11ac devices Activity classification
WiKey: Ali et al. [2] CSI COTS 802.11n devices Key recognition
RSA: Zhu et al. [32] RSS HXI Gigalink 6451 60GHz radios Object imaging

Table 1: Summary of recent SISO sensing systems

sophisticated radar signal processing techniques, say cre-
ating a synthetic aperture using a large number of anten-
nas, cannot be implemented directly in communication
systems due to resource limitations.

Many techniques have been developed and demon-
strated to address the above mentioned challenges for di-
verse sensing tasks including motion tracking [1], activ-
ity/gesture recognition [24, 30, 29], and obstacle/object
mapping/imaging [32, 12], and even minor motions like
keystrokes recognition [8, 2] and lip reading [28]. One
idea is to use one antenna to emulate an antenna array in
the presence of human movement. By tracking the an-
gle of the reflected signal from the target (human) [1],
the system is able to track the motion of the target as
a form of inverse synthetic aperture radar (ISAR). Ubi-
carse [18] exploits the idea of circular synthetic aper-
ture radar (SAR), in which the system rotates a single
antenna so as to emulate a circular antenna array. As
SAR does not require the target to be in motion, un-
like the case of ISAR, Ubicarse proposes a method of
using a handheld device to create circular antenna ar-
ray to perform localization. To overcome any impreci-
sion in the circle created by the rotation, it refines the
formulation of SAR by using the relative trajectory be-
tween two receive antennas. Some other techniques char-
acterize signatures corresponding to the channel varia-
tion caused by human activities. E-eyes [30] shows that
temporal RSS and CSI features, which are available in
COTS devices, can be used in activity classification, al-
beit this requires relatively heavy training. WiSee [24]
proposes a method to extract Doppler shifts from OFDM
symbols by applying a large FFT over repeated symbols,
and gesture recognition is then shown to be possible from
the extracted Doppler shifts. Another interesting tech-
nique used by communication based sensors maps ob-
stacles/objects [12, 20]. The Tx-Rx pairs detect the pres-
ence of obstacles via wireless measurements and thereby
co-operatively draw the indoor obstacle map.

As our protection system is single-input-single-output
(SISO), we focus on breaking any SISO illegitimate
sensing system in this work. Although SISO sensing
systems use diverse techniques exemplified in Table 1,
they all leverage a subset of the 3 DoFs discussed in Sec-
tion 1. Since PhyCloak provides a generic tool to obfus-
cate in all these three dimensions, it can protect against
any SISO sensor.

In contrast, for a multi-antenna sensing system,
there is an additional DoF—the relative placement of
antennas—that yields other types of information like
angle of arrival (AoA) and time difference of arrival
(TDoA). Nevertheless, by rotating PhyCloak’s transmit
antenna or extending our framework to a multi-antenna
protection system, we would have the freedom to also
obfuscate the fourth dimension provided by a multi-
antenna sensing system.

3 Overview

3.1 Threat Model
Assume there is an adversary who is interested in infer-
ring physical information from a SISO wireless commu-
nication channel. The adversary may be active or pas-
sive, i.e., it can transmit itself or just exploit ongoing
wireless transmissions. In both cases, we assume that
the adversary uses a single-antenna receiver to sniff the
wireless transmission. In general, the design and imple-
mentation of adversarial sensing is unknown to the pro-
tection system designer.

Note that some types of sensing require a training
phase to tune recognition patterns with respect to the en-
vironment of interest. To protect against stronger adver-
saries, we assume that the adversary is well trained for
the environment at hand. The details of this training,
whether it occurs concurrently with the training of a le-
gitimate sensor or is based on some historical knowledge,
are outside the scope of our interest here.

Alice Ox Sx

Eve

Bob

unprotected sensing
protect Carol’s
sensing

CarolIIOx

Figure 1: 4 single-input-single-output (SISO) nodes exist
in the system: Alice, Bob, Carol and Eve: Alice and Bob
perform data transmission and reception; Eve performs
illegitimate sensing by exploiting Alice’s transmission;
Carol also performs sensing, but her obfuscator module
forwards the received signal in a way that distorts physi-
cal information but preserves logical information

3

688 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

3.2 System and Goals
Our protection system comprises 4 SISO nodes as shown
in Figure 1: Alice (data transmitter), Bob (data receiver),
Carol (legitimate sensor) and Eve (illegitimate sensor).
Both Alice and Bob can be controlled by Eve, thus Carol
does not assume that Alice and Bob are honest.
Goals: 3 tasks co-exist in the network: data transmis-
sion between Alice and Bob, illegitimate sensing at Eve
and legitimate sensing at Carol. By adding Ox to Carol
with no cooperation from any of the other nodes, the pro-
tection system must satisfy the following three goals:

1. Obfuscate Eve’s sensing.
2. Preserve Carol’s sensing.
3. Not degrade the throughput of the link between Alice

and Bob, nor introduce extra computation at Alice and
Bob; i.e., Alice’s and Bob’s behaviors stay unaltered
when Ox operates.

3.3 Three Degrees of Freedom
Usually a forwarder relays the signal directly, but in the
context of an Ox a forwarder can do far more. In fact, a
forwarder can be viewed as a special type of reflector; in
theory, whatever change a natural reflector can induce on
a signal, a forwarder can induce likewise. We begin by
examining how a reflector changes the signal.

Letting the received signal at a reflector be s(t), the
received signal r(t) that it reflects can be expressed as

r(t) = a× s(t)× e j2π(fc+Δ f)(t+Δt) (1)

where a is the amplitude gain due to reflection and propa-
gation, fc is the carrier frequency, Δ f is the Doppler shift
caused by a reflector that moves at a constant speed rela-
tive to the receiver, and Δt is the delay due to propagation
over the path. We see that a reflector modifies signals by
changing three components: a, Δ f and Δt. Namely re-
flectors enjoy three DoFs when modifying signals.

We examine what kind of signal processing is needed
at the Ox to effect similar changes in the signal being
forwarded. Rewrite Equation 1 into the following form:

r(t) = a× s(t)× e j2πΔ f t × e j2π(fc+Δ f)Δt × e j2π fct (2)

Amplitude gain a: It is clear that if a forwarder re-
ceives s(t) from the source, then by amplifying the sam-
ples with different levels, a can be easily changed.
Doppler shift Δ f : To emulate a Doppler shift of
Δ f , a forwarder can rotate the nth received sample by
2πnΔ f Δt, where Δt = sampling interval.
Delay Δt: A delay of Δt can be introduced by simply
delaying the to-be-forwarded signals in either the digital
domain or the analog domain at the forwarder. A prob-
lem with delaying signals in the digital domain is that
digital delays are discrete and do not match the speed of
human movement. For example, if an ADC works with

a sampling rate 100MHz, then the minimum delay that
can be introduced in digital domain is 10ns, which cor-
responds to a distance of 3m. Controlling analog delay
while feasible, however requires effort in modifying ex-
isting SDR platforms. Our solution then is to rotate the
to-be-forwarded samples by a fixed phase 2π(fc+Δ f)Δt
in the digital domain, which matches the expected delay
of Δt. In our NI PXIe platform, this calculation can be
made in two clock cycles (1

ADC sampling rate).

Time (Second)
9 18

Fr
eq

ue
nc

y
(H

z)

-20

-10

0

10

20
20

30

40

50

60

(a) By multiplying the nth
to-be-forwarded sample with
2πnΔ f Δt, and changing Δ f
from 20Hz to -20Hz, the
Doppler shift profile at the re-
ceiver is as expected

0 0.5 1 1.5 2 2.5−180

−90

0

90

180

Time (Second)

P
ha

se

(b) By rotating the to-be-
forwarded signals with a cer-
tain phase which changes by
36◦ every 30ms at the for-
warder, the phase of the signal
changes ∼ 36◦ every 30ms

Figure 2: Expected Doppler shift and phases are gener-
ated at a forwarder

Figure 2(a) depicts the Doppler shift profile of the re-
ceived signals that are sent by a forwarder who keeps
changing the to-be-forwarded samples’ Doppler shift
from 20Hz to -20Hz according to the above algorithm.
Similarly, from Figure 2(b) we can see that by multiply-
ing the to-be-forwarded samples with a phase ϕ which
increases 0.2π every 30ms at the forwarder, the phase
of the received samples changes by ∼ 0.2π every 30ms.
These results show that a forwarder can predictably con-
trol Doppler shift and phase.

4 Design

Figure 3 shows a simplified block diagram of our sys-
tem PhyCloak. The physical distortion is introduced af-
ter self-interference cancellation and then the distorted
signal is then forwarded to the transmit antenna.

An
al
og

ca
nc
el
la
tio

n

Di
gi
ta
l

ca
nc
el
la
tio

n

Tx
Rx

Conventional fullduplex design Physical distortion

Clean signals used for legitimate sensing

Figure 3: High-level block diagram of PhyCloak

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 689

4.1 Online Maintenance of Self-Channel
Estimates

As mentioned earlier, PhyCloak is a full-duplex system
that needs to cancel self-interference to operate. How-
ever, human movement close to the full-duplex radio
changes the self channel and affects cancellation. Fig-
ure 4 illustrates this phenomenon as it depicts the power
of the residual noise after cancellation over time when
a human target walks around the fulld-uplex radio. The
full-duplex radio re-estimates the channel every 1s. We
see that if we set the residual threshold to -95dBm, which
is 5 dB above the maximum digital cancellation capabil-
ity (noise = -100dBm), the channel estimation works fine
only for a short duration (∼100ms) after each channel es-
timation update. This observation implies that frequent
self-channel re-tuning (∼100ms) is required.

0 1 2

−95

−85

−75

Time (s)

R
es

id
ua

l n
oi

se
 (d

B
m

)

105ms171ms

Power induced by training
sequence every 1 second

124ms

Figure 4: With human movement going on, the self-
interference cancellatoin works fine only for a short du-
ration (∼100ms)

A complication, however, arises when an update is at-
tempted during an ongoing external transmission: the ex-
ternal transmission may distort self-channel estimation
while the transmission that helps with self-channel esti-
mation may interfere with external data reception. There
are two straightforward solutions to this problem: 1)
using MAC; 2) exploiting the silent period defined by
wireless protocols, like short inter-frame space (SIFS) in
WiFi. The former hurts the throughput of data transmis-
sion and moreover interrupted external transmission de-
grades coupling legitimate sensors with the Ox. And in
addition, both of the solutions require a big effort to de-
sign careful adaptation to various wireless communica-
tion protocols.

We therefore propose a self-channel estimation algo-
rithm for PhyCloak that addresses this complication. It
uses two main elements: 1) oversampling and differen-
tial to get rid of any ongoing external transmission, and
2) a special training sequence that yields minimum inter-
ference to external transmissions.

4.1.1 Self-channel estimation with and without ex-
ternal interference

Before we describe our self-channel estimation algo-
rithm, let us first see the impact of training with and
without external interference. Assume A= {a−m,a−m+1,
. . . ,am} is the transmitted training sequence, B= {b0,b1,
. . . ,bm} is the received sample sequence, and H =
{h0,h1, . . . ,hm} is the channel coefficient vector in time
domain with m+1 taps. Therefore, we have

⎧⎪⎪⎨
⎪⎪⎩

b0
b1
. . .
bm

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

a0 . . . a−m
a1 . . . a−m+1
.
am . . . a0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h0
h1
. . .
hm

⎫⎪⎪⎬
⎪⎪⎭

(3)

In the presence of external transmission, B becomes:
⎧⎪⎪⎨
⎪⎪⎩

b0
b1
. . .
bm

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

a0 . . . a−m
a1 . . . a−m+1
.
am . . . a0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h0
h1
. . .
hm

⎫⎪⎪⎬
⎪⎪⎭
+

⎧⎪⎪⎨
⎪⎪⎩

s0 . . . s−m
s1 . . . s−m+1
.
sm . . . s0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h
�
0

h
�
1

. . .

h
�
m

⎫⎪⎪⎬
⎪⎪⎭

(4)

where S = {s−m,s−m+1, . . . ,si, . . . ,sm} is the external
transmitted sample sequence, and H

�
= {h

�
0,h

�
1, . . . ,h

�
m}

is the channel coefficient vector which corresponds to the
channel between the transmit antenna of the external de-
vice and the receive antenna of the Ox.

4.1.2 Oversampling and differential to get rid of ex-
ternal interference

To overcome the external interference in Equation 4,
which is unknown to PhyCloak, we exploit oversam-
pling. Say PhyCloak samples at a rate 2m times higher
than the sampling rate of the external transmitter, it fol-
lows that approximately s−m = . . .= sm. So
⎧⎪⎪⎨
⎪⎪⎩

s0 . . . s−m
s1 . . . s−m+1
.
sm . . . s0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h
�
0

h
�
1

. . .

h
�
m

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

s0 × (h
�
0 + . . .+h

�
m)

s0 × (h
�
0 + . . .+h

�
m)

. . .

s0 × (h
�
0 + . . .+h

�
m)

⎫
⎪⎪⎬
⎪⎪⎭
(5)

Therefore, by differential we have
⎧⎪⎪⎨
⎪⎪⎩

b1 −b0
b2 −b1
. . .

bm −bm−1

⎫⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

a1 −a0 . . . a−m+1 −a−m
a2 −a1 . . . a−m+2 −a−m+1
.

am −am−1 . . . a1 −a0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧
⎪⎪⎨
⎪⎪⎩

h0
h1
. . .
hm

⎫⎪⎪⎬
⎪⎪⎭

(6)

It may appear that we have already been able to get rid
of external interference, however, A is an m× (m+ 1)
matrix, so the rank of A is less than m+ 1. This means
that we can get only a unique solution for at most m

5

690 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

of the m + 1 unknowns contained in H, where H =
{h0,h1, . . . ,hm}T and

A =

⎧⎪⎪⎨
⎪⎪⎩

a1 −a0 . . . a−m+1 −a−m
a2 −a1 . . . a−m+2 −a−m+1
.

am −am−1 . . . a1 −a0

⎫⎪⎪⎬
⎪⎪⎭

(7)

4.1.3 A special training sequence

To ensure that Equation 6 has a unique solution for
{h0,h1, . . . ,hm−1}T , we leverage a special training se-
quence, namely a square wave, which is shown in Fig-
ure 5(a). As shown in Figure 5(b), the fundamental fre-
quency of the square wave is the square wave frequency,
and its odd harmonics are decreasing in size. To be more
specific, for a square wave over a period consisting of
N samples with B MHz sample rate, the frequency com-
ponents are at 1 f , 3 f ,. . ., (2i+ 1) f , . . . with decreasing
amplitude, where f = B

N MHz.

0 1 2
−1

0

1

Time (µs)

A
m

pl
itu

de

(a) Training sequence in
time domain

0 10 20 30 40 500

2000

4000

6000

Frequency (MHz)

A
m

pl
itu

de

(b) Training sequence in fre-
quency domain

Figure 5: Training sequence
The rationale for using this training sequence is two-

fold: First, the square wave has a unique solution to
{h0,h1, . . . , hm−1}T as long as a−m = a−m+1 = . . . =
a0 = a1 + c = . . . = am + c, where c is a non-zero con-
stant. And second, the spikes it produces in the frequency
domain are sparse. For example, with B = 100MHz
and N = 16, the space between neighboring spikes is
12.5MHz. Such sparse spikes are tolerable in wireless
systems. For example, in a 20MHz WiFi band using
OFDM, as claimed by Flashback [9], existing WiFi sys-
tems have a relatively large SNR margin. And because
the interference of any such spike is constrained to at
most one subcarrier, the loss of a few bits does not sig-
nificantly affect decoding, as successful packet transmis-
sions always respect SNR margins.

4.1.4 The training procedure

Training is performed as follows: PhyCloak samples at
a rate n times higher than that of external transmission.
A training sequence which is the concatenation of con-
secutive 1s and -1s is sent during training. The received
samples corresponding to the transition points (1 to -1

0

4000

8000

12000

16000

20000

1 2 3 4 5 6 7 8 9 10 11

Am
pl

itu
de

Channel Taps

50M 40M 30M 20M 10M

Figure 6: Channel coefficients measured at different
sampling rates

or vice versa) are used to calculate the channel coeffi-
cients. More specifically, the received sample b0 which
corresponds to the point right before the transition oc-
curs is equal to h0 + · · ·+hm, and the next received sam-
ple b1 is equal to −h0 + · · ·+hm. Thus, we can compute
h0 = (b0 − b1)/2. The rest of the channel coefficients
are calculated in a similar way. One concern is whether
the desired oversampling rate can be supported. Take
802.11g as an instance, which has the smallest band-
width (20MHz) among WiFi standards. If training were
to require a 20X oversampling rate, we would need a
platform that supports 400MHz sampling rate, which is
very expensive. We figure out that, however, a 4X over-
sampling rate is sufficient to eliminate the effect of an
external transmission of 802.11g. The reason is that the
delay spread of non-ultra-wideband transmission in an
indoor setting does not expand more than 3 taps.

To understand that, we need to know the fact that
power delay profile is decided by two factors: multi-
path propagation and inter-symbol-interference (ISI). Let
us study them one by one. First is the multipath prop-
agation. For a 20MHz radio, one tap corresponds to
3×108m/s

20MHz = 15m. So the fourth tap corresponds to a 60-
meter reflective path. The power conveyed by the 60-
meter reflective path is significantly smaller than that
conveyed by the short (∼10cm) line-of-sight path be-
tween the co-located transmitting and receiving anten-
nas. Second, due to ISI each received sample is affected
by not only the intended transmitted symbol, but also its
two neighboring symbols. Therefore the delay spread
expands across 3 taps. Figure 6 plots the channel esti-
mation of the self channel under different sampling rates
in the same environment. We see that in all cases, the
main energy is always spread across 3 taps. So as long
as we can accurately estimate the three dominant taps in
non-ultra-wideband, we can achieve good cancellation
performance. That implies we need the external inter-
ference to be stable during the reception of at least four
consecutive samples at the transition point of the training
sequence so as to get the three main taps by differential.
Namely 4X oversampling is required.

Note that 4X oversampling does not guarantee the re-

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 691

Time (Second)
3 6 9

Fr
eq

ue
nc

y
(H

z)
-20

-10

0

10

20 20

30

40

50

60

(a) 1s

Time (Second)
3 6 9

 F
re

qu
en

cy
 (H

z) -20

-10

0

10

20
20

30

40

50

60

(b) 0.5s

Time (Second)
3 6 9

Fr
eq

ue
nc

y
(H

z) -20

-10

0

10

20 20

30

40

50

60

(c) 0.125s

Time (Second)
3 6 9

Fr
eq

ue
nc

y
(H

z)

-20

-10

0

10

20 20

30

40

50

60

(d) 0.05s

Figure 7: The granularity of the spectral decreases as the Doppler shifts change from 1s to 0.05s
ception of the desired 4 samples happen in the duration
of one external interference sample. But we can leverage
the interference reduction provided by averaging over
multiple transition points, and partially accurate estima-
tion of the channel taps, and still achieve good perfor-
mance. Even lower oversampling rate (2X/3X) also per-
forms well according to the experiment (see Section 5.2).

4.2 Obfuscation of Patterns in 3 DoFs
To motivate how we obfuscate patterns in the three DoFs,
let us first examine the result of superposing a signal via
one path with an obfuscated version via another path.

Assume we have two paths: one with {a1,Δ f1,Δt1},
and the other via the Ox with {a2,Δ f2,Δt2}. The super-
position of the signals through these two paths is given
by the following formula:

r̂(t) =a1 × s(t)× e j2π(fc+Δ f1)(t+Δt1)

+a2 × s(t)× e j2π(fc+Δ f2)(t+Δt2)
(8)

Now, is superposing an obfuscated signal sufficient for
hiding the original triplet {a1,Δ f1,Δt1}? The answer is
partially yes: The amplitudes and delays are instanta-
neously covered in the superposed signal, but the respec-
tive Doppler shifts remain distinguishable after superpo-
sition. So, a and Δt can be hidden instantly by randomly
changing amplitude and delay of the signal by the Ox.1
To see why Doppler shifts are distinct even after super-
position, consider the frequency response of the received
signals:

R(f) =
∫

r̂(t)e−2π j f t dt

=
∫
(a1 × s(t)× e j2π(fc+Δ f1)(t+Δt1))e− j2π f t dt

+
∫
(a2 × s(t)× e j2π(fc+Δ f2)(t+Δt2))e− j2π f t dt

=a1e j2π(fc+Δ f1)Δt1 S(f − f c−Δ f1)

+a2e j2π(fc+Δ f2)Δt2 S(f − f c−Δ f2)

(9)

where S(f) is the frequency response of s(t). In an
OFDM system, we can see two frequency components
that are shifted by Δ f1 and Δ f2 around the subcarrier f .

1In theory for a high sampling rate receiver, delays might be separa-
ble in the brief prefix that arrives before the obsfuscated signal arrives,
but how much information a sensor can accurately extract from the
brief clean prefix is questionable.

4.2.1 Doppler shift obfuscation

As amplitude and delay can be instantly changed by su-
perposition with an obfuscated signal, patterns that rely
only on amplitude and delay can be hidden by Ox, by
randomly changing them on a per packet basis. At first
glance, it may appear that this scheme cannot be made to
work for patterns that rely on Doppler shift, but it turns
out the scheme can be made to work for Doppler shift,
assuming the moments of change are carefully chosen.

The rationale for choosing the moments of change is
based on the fact that a t-second observation in the time
domain leads to 1/t Hz granularity in the frequency do-
main. To choose the appropriate Δ f at 1/t Hz granu-
larity, there is an implicit requirement that the Δ f needs
to last for at least t seconds. Therefore, if the forwarder
changes its Δ f every t seconds while the other copy’s
Δ f does not change, an observer would still only see 1/t
Hz granularity. Since human movements typically result
in -20Hz to 20Hz Doppler shifts in the 2.4GHz band,
a Doppler shift of the forwarded copy that changes ev-
ery 0.1s creates sufficient confusion at an observer. Fig-
ure 7 shows that when the Doppler shifts of the transmit-
ted signals are varied from every 1s to every 0.05s, the
spectral seen by an observer with 1s observation interval
have progressively finer granularity, to the point where a
time-frequency pattern gets hidden.

4.2.2 Effect of superposing with randomly changing
obfuscated signals

The basic idea of PhyCloak then is to superpose sig-
nals from the target with naturally changing {a,Δ f ,Δφ}
with the obfuscated signals with randomly changing
{a,Δ f ,Δφ}. More specifically, as analyzed above, Phy-
Cloak changes the value of the triple every 0.1s. We illus-
trate the blackbox effect of obfuscation experimentally
using two state-of-the-art sensors, WiSee [24] and Wi-
Vi [1], which we implemented. WiSee performs gesture
recognition by extracting Doppler shifts from OFDM
symbols, whereas Wi-Vi uses ISAR to track the angle
of human motion with respect to the receive antenna of
the sensor.

For the case of obfuscating Doppler shift patterns, Fig-
ure 8 shows the superposition of a signal with the syn-

7

692 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Time (Second)
0 9 18

Fr
eq

ue
nc

y
(H

z)
-20

-10

0

10

20 10

20

30

40

50

60

(a) 0dB

Time (Second)
0 9 18

Fr
eq

ue
nc

y
(H

z)

-20

-10

0

10

20 20

30

40

50

60

(b) -3dB

Time (Second)
0 9 18

Fr
eq

ue
nc

y
(H

z)

-20

-10

0

10

20 20

30

40

50

60

(c) -6dB

Time (Second)
9 18

Fr
eq

ue
nc

y
(H

z)

-20

-10

0

10

20 30

40

50

60

70

(d) -9dB

Figure 8: The pattern that a WiSee sensor sees in Figures 2(a) is hidden by an obfuscated signal where Doppler shift
changes every 0.1 second

Time (Second)
0 9 18 27 36

-

- /2

0

20

40

60

80

100

(a) Motion towards a Wi-Vi
style sensor with constant angle

Time (Second)
0 9 18 27 36

-

- /2

0

50

100

150

200

(b) 0dB

Time (Second)
0 9 18 27 36

-

- /2

0

20

40

60

80

100

120

(c) -3dB

Time (Second)
0 9 18 27 36

-

- /2

0
20

40

60

80

100

120

140

160

(d) -6dB

Figure 9: The constant angle of human motion (starting from 9th second) that a Wi-Vi style sensor sees in (a) is hidden
by an obfuscated signal where phase changes randomly every 0.1 second

thetically generated Doppler shift pattern described in
Figure 2(a) and an obfuscated copy of the pattern where
Doppler shift changes randomly every 0.1s. We see that
pattern of Figure 2(a) is covered by the “noise map” cre-
ated by the randomly changing copy. As the strength
ratio of the former relative to the latter, which we define
as signal to obfuscation ratio (SOR), decreases from 0dB
to -9dB, the visibility of the artificial pattern decreases.

For the case of obfuscating phase-based patterns, we
synthetically emulated a human moving towards the re-
ceive antenna of our Wi-Vi style sensor at a constant an-
gle, as shown in Figure 9(a), and then superposed the
signal with a randomly obfuscated copy where phase
changes every 0.1s. Figure 9 shows that as SOR de-
creases from 0dB to -6dB, the pattern shown in Fig-
ure 9(a) becomes progressively invisible at the Wi-Vi
style sensor.

It is worth noting that power passively reflected by hu-
man is much smaller compared to that actively forwarded
by an Ox that has its own power supply. Therefore 0dB
SOR can be readily achieved. To illustrate this point, we
can build a simplified power model of our system. In
our system Ox’s goal is to minimize SOR at Eve with no
knowledge of the locations of any of the other parties,
so its best strategy is to work at the maximum transmis-
sion power. If we assume free-space attenuation, then
SOR ∼ a

A (
d3d4
d1d2

)2, where a and A are the reflection gains
at target and Ox respectively, and d1,d2,d3 and d4 are
the distances as shown in Figure 10(a). Figure 10(b)
plots the simulation result of the CDF of SOR when we
randomly place Alice, Eve, Ox and human target in a
10m×5m room, with reflection gains being set to -3dB

Eve

Ox

Alice

(a) Placement of all the involved parties

−60 −40 −20 0 20 400
0.2
0.4
0.6
0.8

1

SOR (dB)

C
D

F 88%

(b) SOR distribution
Figure 10: A simplified power model

and 10dB respectively. We see that in around 88% cases,
SOR is smaller than 0dB.

4.2.3 Security analysis

We believe that our system is robust against a single an-
tenna eavesdropper given certain SOR because of the
fact: little information can be extracted from two random
signals which occupy similar bands as long as the power
of the undesired signal is higher than that of the desired
one. In our case, the desired signal is the natural channel
variation induced by target, while the undesired one is
the artificial channel variation induced by PhyCloak. It is
worth noting that as human motion is slow, natural chan-
nel variation has a small bandwidth, which is comparable
to that of the artificial channel variation that changes ev-

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 693

0 10 20

−10

0

10

Time (second)

R
S

S
I (

dB
)

(a) RSSI variation caused by
human motion

0 10 20

−10

0

10

Time (second)

R
S

S
I (

dB
)

(b) RSSI variation caused by
Ox

−200 −100 0 100 2000

20

40

Frequency (Hz)

P
ow

er
 (d

B
)

(c) Power spectrum of the
RSSI trace in (a)

−200 −100 0 100 2000

20

40

Frequency (Hz)

P
ow

er
 (d

B
)

(d) Power spectrum of the
RSSI trace in (b)

Figure 11: The signal (real channel state information)
and the noise (artificial channel state information) have
similar bandwidths

ery 0.1s.
To illustrate the above point, we compare the RSSI

variations induced by human and PhyCloak. Fig-
ure 11(a) and 11(b) plot the RSSI changes caused by
human movement and PhyCloak respectively, and Fig-
ure 11(c) and 11(d) plot the corresponding power spec-
trums. From the figure, we see that the occupied band-
widths of the two channel state traces are similar.

Time (Second)

Fr
eq

ue
nc

y
(H

z)

0 3 6 9

20

0

−20

(a) Doppler shifts created by
a human gesture (pull)

Time (Second)

Fr
eq

ue
nc

y
(H

z)

0 3 6 9

−20

0

20

(b) Doppler shifts emulated
by an Ox

Figure 12: Spoofing

4.3 Spoofing
According to the above discussion, our design succeeds
in obfuscating any RF-based single-antenna sensors by
creating false negative results. But an Ox can achieve
more than that: it can create false positives also by spoof-
ing changes in the 3 DoFs that are similar to the changes
created by a target. By splitting the to-be-forwarded sam-
ples into multiple streams, applying different instantia-
tions of the triple {a,Δ f ,Δt} to them, and forwarding the
combination of the processed streams as one stream, an
Ox can emulate multiple reflectors corresponding to dif-
ferent parts of the target (say a human body). But unlike
the case of false negatives, the effectiveness of creating
false positives at a sensor grows as the Ox knows more

about the features and algorithms used by the sensor. For
example, if an Ox knows a sensor uses the WiSee algo-
rithm [24], it can create a Doppler shift profile accord-
ingly without making an effort to model accurate human
movement. Figure 12 depicts the extracted Doppler pro-
file of a human gesture (pull) and that spoofed by an Ox.
WiSee segments a Doppler profile into positive and nega-
tive parts according to its power distribution and encodes
them into 1s and -1s respectively. Since both of the pro-
files contain positive Doppler shifts of negligible power,
they will be encoded as -1s and mapped to the same tar-
get by a WiSee sensor.

4.4 PhyCloak

By obfuscating using random physical distortion, an Ox
is able to confuse Eve, and by online maintenance of self-
channel estimates, Ox is able to output interference-free
signals to Carol for legitimate sensing. However, one
critical requirement is still not met: preserving the com-
munication throughput in the presence of Ox.

Although PhyCloak works as a relay at logical layer
which can potentially improve the throughput [31], it is
not clear that obfuscation would not hurt the decoding
process. We find that, however, as long as the change
of the triplet {a,Δ f ,Δφ} does not happen in the mid-
dle of packet transmission, obfuscation is safe with re-
spect to data communication. The reason for this is that
from the perspective of a data receiver, the Ox effec-
tively just adds variability to the channel. Since data
receivers usually perform channel estimation at the be-
ginning of the received packet, as long as the channel is
stable during the reception of the packet, decoding can
be successful. We, therefore, refine the design of Phy-
Cloak as follows: PhyCloak switches between two trans-
mitting modes: training and forwarding. In the training
phase, the PhyCloak sends the above mentioned training
sequence and computes its self-channel estimate accord-
ing to Section 4.1.4; in the forwarding phase, PhyCloak
then performs self-interference cancellation, applies the
physical distortion {a,Δ f ,Δφ} to the interference-free
signal and forwards the distorted signal via the transmit
antenna. The PhyCloak randomly chooses an instance of
{a,Δ f ,Δφ} in the predefined pool and updates the cur-
rent value when the channel is free and the last update
happened more than 0.1s ago. In this way, PhyCloak
avoids interfering with the transmission. And in theory,
there is still a chance that due to the delay caused by
free-channel detection, PhyCloak changes the channel
after several samples of a packet has been transmitted,
but that chance is quite low. Even if it happens, because
PhyCloak only affects a few samples at the beginning,
the packet might still be decodable.

9

694 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

5 Validation

We now describe a prototype of PhyCloak that we have
built, and our experiments to validate its performance.

5.1 Experimental Setup
Our prototype is based on PXIe 1082 SDR platform. We
built the transmitter, receiver, eavesdropping sensor and
legitimate sensor on the same platform, which all fol-
low the 802.11g standard, i.e., working at 2.4GHz with
a 20MHz band. PhyCloak works at the same center fre-
quency but with a 50MHz sampling rate, about 3 times
the rate of an external data transmission, which gives it
a reasonable margin to perform self-channel estimation
with an ongoing external transmission (see Section 5.2).

PhyCloak contains two RF chains, one for transmit-
ting and one for receiving. Each of the RF chains con-
tains an NI-5791 (FlexRIO RF transceiver equipped with
one antenna) for transmitting or receiving and an NI
PXIe-7965R (a Xilinx Virtex-5 FPGA) for digital pro-
cessing. Analog cancellation is implemented according
to our earlier design [7, 4]. The self-channel estimation,
digital cancellation and physical layer distortion are im-
plemented on the FPGA. The distortion processing intro-
duces a latency of about 100ns. Our experiments were
conducted in a 5m×7m lab.

5.2 Self-Interference Cancellation

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 Ref

Ca
nc

el
la

tio
n(

dB
)

Oversampling Rate
(a) Cancellation performance of square-wave based training in-
creases when oversampling rate increases from 1 to 4

0
10
20
30
40
50

0 5 10 15 20

Po
w

er
 (

dB
)

Time (s)

Before Cancellation After Cancellation
External Transmission

(b) Insensitivity of square-wave based training to external
transmission power variation, which is necessary for preserv-
ing legitimate amplitude based sensing

Figure 13: Self-interference cancellation performance

We begin with the performance of the digital cancel-
lation of our self-channel estimation algorithm. As dis-
cussed in Section 4.1.4, Ox tolerates external interfer-

ence during self-channel estimation using oversampling.
So, we first examine the oversampling rate needed to
achieve reasonably accurate self-channel estimates in the
presence of external transmission. We let a full-duplex
transceiver operate at 50MHz with a 10-tap filter for self-
interference (digital) cancellation. Self-channel estima-
tion is obtained by averaging over 128 training rounds,
which altogether takes about 20μs.

Figure 13(a) plots the self-interference cancellation
performance of our square-wave based training. In the
figure, as we fixed the sampling rate of the full-duplex
radio (50MHz), different oversampling rates correspond
to different external transmission rates with the received
power of the external transmissions being the same as
that of self-interference signal at Ox’s receive antenna2.
1X oversampling rate corresponds to the case when the
training and data communication use the same sampling
rate, in which case square-wave based training and tradi-
tional pilot based training would achieve similar perfor-
mance. We see that the performance of self-interference
cancellation of square-wave based training gets better as
the oversampling rate increases from 1 to 4, but it stops
increasing after 4, and achieves similar performance as
that in the case when there is no external transmission
going on (indicated by the red bar). It shows that Ox can
reliably estimate and cancel self-interference even in the
presence of strong external transmission when the over-
sampling parameter is 4X as supported by our observa-
tion in Section 4.1. In addition, 2X and 3X oversam-
pling rates also produce high cancellation as they ben-
efit from two factors: 1) accurate estimation of part of
the channel taps, and 2) averaging over multiple tran-
sition points. Takeaway: Our oversampling technique
makes self-interference cancellation reliable at modest
oversampling rates even in the presence of strong ongo-
ing external transmission.

The analysis above considers external interference
sent at a fixed power. To enable legitimate sensing, self-
interference cancellation performance needs to be sta-
ble even when the received power from external trans-
mission is varying. For example, an unstable self-
interference canceler can render an amplitude-based sen-
sor useless since the (varying) residual self-interference
will affect the received signal amplitude. Figure 13(b)
plots the full-duplex radio’s cancellation performance
with 3X oversampling rate over time during which the re-
ceived power from the external transmitter fluctuates. We
see that the self-interference cancellation performance of
square-wave based training is insensitive to the variation
of external interference. Takeaway: Our oversampling
technique results in a stable cancellation performance at

2Note that this is a very strong external interference and we choose
this setting to show oversampling strategy’s performance even under
strong external interference.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 695

modest oversampling rates even when the received signal
from external transmitter is varying.

5.3 Obfuscation Performance
5.3.1 Obfuscation vs. SOR in 3 DoFs

We first measure the different levels of obfuscation cre-
ated by PhyCloak by comparing the correlation of the
amplitude, phase and Doppler shift with and without the
presence of PhyCloak. The transmitter is programmed to
send continuous OFDM symbols with QPSK modulation
with varying amplitude and phase. An artificial Doppler
shift of 10Hz is also added at the transmitter. PhyCloak
performs obfuscation by randomly changing the ampli-
tude, phase and Doppler shifts every 0.1s.

0

0.2

0.4

0.6

0.8

1

-15 -5 5 15 25

Co
rr

el
at

io
n

SOR (dB)

Doppler Shift Amplitude Phase

Figure 14: Obfuscation level of each of the three features
decreases as SOR (original signal over obfuscation sig-
nal) increases

Figure 14 depicts the correlation between the pairs of
amplitude, phase, and Doppler shifts at different SORs:
Again, SOR is the signal strength ratio of original signal
over obfuscation signal (see Section 4.2.2). We see that
as SOR increases, the correlation of each pair of the three
features increases, i.e., the obfuscation degree decreases.
Amplitude sequence pair and phase sequence pair see
lower correlation than Doppler shift pair when SOR is
high. This is because amplitude and phase are instan-
taneous quantities, while Doppler is a statistical quan-
tity that is derived from multiple instantaneous samples.
But, even for Doppler shift, a 10dB SOR is low enough
to hide the patterns contained in signals reflected by tar-
gets. It’s worth noting that in practice, as PhyCloak is in-
dependently powered while the target only passively re-
flects signals, the desired SOR to successfully obfuscate
is readily achieved. Takeaway: PhyCloak effectively ob-
fuscates sensing even at a relatively high SOR.

As different sensors differ in their robustness to noise,
PhyCloak’s effectiveness is sensor dependent. While we
are unaware of any research on the robustness of the
communication-based sensors, we may infer from Fig-
ures 8, 9 and 14 that less obfuscation power is needed to
confuse a phase or amplitude based sensor as compared

to a Doppler shift based sensor. Therefore, we choose
to validate the PhyCloak’s capability of confusing ille-
gitimate sensing and preserving legitimate sensing in the
context of WiSee, which is the state-of-the-art Doppler
shift based sensor.

5.3.2 Degradation of illegitimate sensing

We built a Doppler-based sensor in our platform per the
method proposed by WiSee [24]. The method consists of
two parts: 1) extraction of Doppler shifts from repeated
OFDM symbols by applying a large size FFT; and 2)
using sequence matching to classify gestures. We note
since we could not get to the original WiSee code and
some of the details are missing, we implement WiSee
with a few adaptations. For example, we randomly map
the sequence to the predefined classes with uniform dis-
tribution in case the sequence does not match any of
the predefined sequence. Our implementation shows a
classification accuracy of 93% across 5 gestures in none-
line-of-sight (NLoS) setting with the human target 5 feet
away from the WiSee sensor, while WiSee reports 94%
across 9 gestures. While there is this small discrepancy
in replication, the core algorithm is the same and our
main goal is to study obfuscation performance.

We examine the performance of an illegitimate WiSee
sensor with obfuscation from a PhyCloak. We conduct
two sets of experiments to validate PhyCloak’s coverage
range and its overall effectiveness under different chan-
nel conditions respectively.

Obfuscation coverage: First, we randomly choose
10 pairs of locations to place Tx and Eve, and then place
Ox in locations such that the distance dT E between Tx
and Eve is equal to the distance dTO between Tx and
Ox as shown in Figure 15(a), but the distance dEO be-
tween Eve and Ox varies from 0.5dT E to 2dT E . The
channels between any two of the three parties are line-
of-sight (LoS).3 A human target performs five gestures
drag, push, pull, circle and dodge close to Eve. With no
obfuscation, Eve’s classification accuracy in this place-
ment is about 90% across the five gestures.

For simplicity, we normalize dEO by dTO (dT E), and
plot the classification accuracy against the normalized
dEO in Figure 15(b). As we know, the received obfusca-
tion power at Eve from Ox is a function of dTO and dOE ,
therefore as dEO increases the power ratio of obfuscation
over human reflection decreases. From the figure we see
that classification accuracy of Eve increases as dEO in-
creases as expected. Note that since we have 5 classes,

3WiSEE sensors have a slightly worse performance in LoS (≈ 90%)
than NLoS (≈ 93%) as strong direct power from the transmitter hides
the information provided by target’s reflection. For the next two experi-
ments, we choose LoS instead of NLoS because it makes the placement
easier to make sure dEO is the only variable which would change the
power ratio of the obfuscation and human reflection.

11

696 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

a classification accuracy of 0.2 means a random guess.
PhyCloak can obfuscate Eve near perfectly when dEO is
smaller than 0.8, and it totally fails when it is larger than
1.7. Takeaway: The closer Ox is to Eve, the better the
achieved obfuscation.

Tx

Eve

0x

1

1

(a) Placement of Tx,
Ox and Eve with all
three channels LoS

0.21 0.23

0.41

0.66

0.90 0.90

0

0.2

0.4

0.6

0.8

1

0.5 0.8 1.1 1.4 1.7 2

Ac
cu

ra
cy

(b) Classification accuracy of Eve in
the presence of PhyCloak increases
as dEO increases

Figure 15: Eve’s classification accuracy vs dEO

Tx

Eve

0x

1

1

(a) Placement of Tx,
Ox and Eve with all
three channels LoS.

0.22 0.19 0.22

0.54
0.70

0.91

0

0.2

0.4

0.6

0.8

1

0.5 0.8 1.1 1.4 1.7 2

Ac
cu

ra
cy

(b) Classification accuracy of Eve in
the presence of PhyCloak increases
as dTO increases

Figure 16: Eve’s classification accuracy vs dTO

In the second experiment, we make dT E = dOE , and
vary dTO as shown in Figure 16(a). And again in Fig-
ure 16(b), we see that as dTO increases, Eve’s classifica-
tion accuracy increases. Takeaway: the closer Ox is to
Tx, the better obfuscation is achieved.

In other experiments we vary either the human-Eve or
human-Ox distance while keeping the power received by
Ox and human from Tx stay constant. As these distances
respectively reduced, the effectiveness of the sensing and
obfuscation respectively increased.

Eve

Ox

Tx

LoS

LoS

human

(a) Example of
LoS/LoS placement in
the lab

0.93

0.65

0.38 0.40

0.20

0

0.2

0.4

0.6

0.8

1

no ox NLoS/NLoS LoS/NLoS NLoS/LoS LoS/LoS

Ac
cu

ra
cy

Channel Condition

(b) Obfuscation degrades some-
what if Tx-Ox or Ox-Eve chan-
nels are NLoS

Figure 17: Eve’s classification accuracy under different
Tx-Ox and Ox-Eve channel conditions

Obfuscation effectiveness under different channel
conditions: In addition to the coverage range in LoS set-
ting, we also measure Eve’s classification accuracy when

channels between the transmitter and obfuscator and the
channel between the obfuscator and Eve are under dif-
ferent LoS and NLoS combinations. Intuitively, when
both channels are NLoS, Eve receives the least power
forwarded by the obfuscator, and therefore, she achieves
the best performance. We care about these channel con-
ditions because in some scenarios the transmitter is under
control of the adversary, and therefore the adversary may
enjoy the freedom to create “good” channels to mitigate
PhyCloak’s obfuscation.

In the experiment, we make the channel between Tx
and Eve NLoS, and the channel between Tx and the hu-
man and that between human and Eve LOS, so as to
make sure Eve sees high classification accuracy when
no obfuscation is going on. The channel between Tx
and Ox and the channel between Ox and Eve have four
possible channel condition combinations. A human tar-
get performs 500 times of the 5 predefined gestures near
Eve in each of the four combinations. Figure 17(a) is
an example of how we create a channel combination of
Los/Los in the lab, where the first LoS refers to the chan-
nel condition of the channel between Tx and Ox, while
the second refers to that of the channel between Ox and
Eve. NLoS channels are created by placing obstacles in
the direct propagation paths.

Figure 17(b) depicts Eve’s classification accuracy
without obfuscator and with obfuscator in four channel
combinations. We can see that as expected, Eve sees
the highest classification accuracy (65%) in NLoS/NLoS
setting among the four channel conditions, but it is still
smaller than the case when no obfuscation is happening
(93%). Eve sees similar performance in Los/NLoS and
NLoS/LoS scenarios as power forwarded by obfuscator
in both the settings is similar. Takeaway: although NLoS
channel degrades the received power at Eve from Ox, the
degradation is not dramatic since there is rich multipath
propagation in indoor environment.

drag push pull circle dodge

drag spoof 0.907 0.030 0.01 0.03 0.02

push spoof 0.01 0.9375 0 0.02 0.03

pull spoof 0 0 0.957 0.03 0.01

circle spoof 0.03 0.052 0.03 0.833 0.05

dodge spoof 0.03 0.05 0.04 0.08 0.80

Figure 18: False positives with a spoofing Ox

5.3.3 Feasibility of spoofing

We built a spoofing obfuscator by reverse engineering
the five predefined sequences corresponding to the five
gesture types that our WiSee sensor recognizes. The ba-
sic difference between this spoofing obfuscator and Phy-
Cloak is that the former changes Doppler shift according
to the five well-defined gestures, while the latter changes

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 697

Doppler shift randomly. The result is shown in Figure 18.
Takeaway: the spoofing obfuscator fools a WiSee sensor
with a high success rate, averaging 88.69% across the 5
gestures, in the absence of human gesturing.

0.93 0.91 0.91 0.87

0.20 0.21

0

0.5

1

NLoS LoS

Ac
cu

ra
cy

Channel Condition

Obfuscation Free Squarewave-based training

Pilot-based training

Figure 19: Square wave based training preserves legiti-
mate sensing

5.3.4 Preservation of legitimate sensing

Next, we examine PhyCloak’s capability of supporting
coupled legitimate sensing. That is, we evaluate whether
our self-channel estimation method produces consistent
and sufficient self-interference cancellation in a chang-
ing environment to preserve legitimate sensing. Fig-
ure 19 depicts the legitimate sensor’s classification ac-
curacy for three different sensing modes: 1) obfuscation
free sensing; 2) legitimate WiSee sensing coupled with
a PhyCloak module that uses the proposed square-waved
based self-channel estimation; 3) legitimate WiSee sens-
ing coupled with a PhyCloak module that uses traditional
pilot based self-channel estimation. We also vary the
channel between Tx and the legitimate sensor by plac-
ing and removing obstacles. From the figure we see
that the WiSee sensor equipped with PhyCloak module
that uses square-wave based training achieves compara-
ble performance as obfuscation-free sensing in both LoS
and NLoS, while the WiSee sensor equipped with Phy-
Cloak module that uses traditional training fails dramat-
ically. This is because not enough self-interference can-
cellation is achieved in the presence of external transmis-
sions using extant self-channel estimation techniques.
Takeaway: Square wave based training provides suffi-
cient self-interference cancellation to preserve legitimate
sensing with external transmission going on.

5.4 Throughput Performance

As discussed in Section 4.4, PhyCloak would not hurt
the average throughput by virtue of being a relay as long
as it avoids parameter changes in the middle of packet
transmissions. And, its online training would introduce
some interference albeit of small measure. To validate
that the net throughput benefit that a data receiver ob-
tains from PhyCloak is not affected but even improved,
we measured the throughput performance of a data link
with and without PhyCloak in our testbed. We randomly

0

0.25

0.5

0.75

1

5 15 25 35 45

CD
F

Throughput (Mbps)

without Ox with Ox

Figure 20: Throughput

picked 20 location triples to place a data transmitter, a
data receiver, and PhyCloak. The data transmitter trans-
mits back-to-back packets continuously, and we can thus
see the throughput performance in the worst case where
PhyCloak performs parameter updates in the middle of
some packets. Figure 20 plots the CDF of the throughput
with and without the PhyCloak. Takeaway: The average
throughput increases with the help of PhyCloak.

6 Conclusion

We have shown that the threat created by recent devel-
opments in communication based sensing can be coun-
tered in a black-box fashion. PhyCloak obfuscates multi-
dimensional physical signatures of human targets. We
have empirically validated this for certain state-of-the-
art sensors. We have also shown that when white box de-
tails of particular sensors can be obtained, PhyCloak can
be refined to spoof those sensors. Notably, the method-
ology not only preserves but in fact improves the link
throughput of the ongoing data transmissions, and sup-
ports co-existence of legitimate sensors while obfuscat-
ing illegitimate sensors.

Looking beyond the scope of the present work, we
find that the methodology is readily generalized to pro-
tect against sensing of other types of physical targets
and their properties, and allows for a network of Phy-
Cloak devices to collaboratively cover a large region, the
details of which are topics for future studies. In addi-
tion, when we extend our current single-antenna Phy-
Cloak to a multiple-antenna system, how to fully exploit
the space diversity provided by the multiple antennas is
worth studying.

References

[1] Fadel Adib and Dina Katabi. See through walls with
WiFi!, volume 43. ACM, 2013.

[2] Kamran Ali, Alex Xiao Liu, Wei Wang, and Muhammad
Shahzad. Keystroke recognition using wifi signals. In
Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking, pages 90–102.
ACM, 2015.

13

698 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[3] Dinesh Bharadia and Sachin Katti. Fastforward: fast and
constructive full duplex relays. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 199–210.
ACM, 2014.

[4] Dinesh Bharadia, Emily McMilin, and Sachin Katti. Full
duplex radios. In ACM SIGCOMM Computer Communi-
cation Review, volume 43, pages 375–386. ACM, 2013.

[5] Igal Bilik and Joseph Tabrikian. Radar target classifica-
tion using doppler signatures of human locomotion mod-
els. IEEE Transactions on Aerospace and Electronic Sys-
tems, 43(4):1510–1522, 2007.

[6] Bo Chen, Yue Qiao, Ouyang Zhang, and Kannan Srini-
vasan. Airexpress: Enabling seamless in-band wireless
multi-hop transmission. In Proceedings of the 21st An-
nual International Conference on Mobile Computing and
Networking, pages 566–577. ACM, 2015.

[7] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan.
Flexradio: Fully flexible radios and networks. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 205–218, 2015.

[8] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan.
Tracking keystrokes using WiFi. In Proceedings of ACM
MobiSys, 2015.

[9] Asaf Cidon, Kanthi Nagaraj, Sachin Katti, and Pramod
Viswanath. Flashback: decoupled lightweight wireless
control. ACM SIGCOMM Computer Communication Re-
view, 42(4):223–234, 2012.

[10] Theodoros Damoulas, Jin He, Rich Bernstein, Carla P
Gomes, and Anish Arora. String kernels for complex
time-series: Counting targets from sensed movement. In
2014 22nd International Conference on Pattern Recogni-
tion (ICPR), pages 4429–4434. IEEE, 2014.

[11] Shyamnath Gollakota, Haitham Hassanieh, Benjamin
Ransford, Dina Katabi, and Kevin Fu. They can hear your
heartbeats: non-invasive security for implantable medical
devices. ACM SIGCOMM Computer Communication Re-
view, 41(4):2–13, 2011.

[12] Alejandro Gonzalez-Ruiz, Alireza Ghaffarkhah, and
Yasamin Mostofi. An integrated framework for obsta-
cle mapping with see-through capabilities using laser and
wireless channel measurements. Sensors Journal, IEEE,
14(1):25–38, 2014.

[13] Jin He and Anish Arora. A regression-based radar-mote
system for people counting. In International Conference
on Pervasive Computing and Communications (PerCom),
2014 IEEE, pages 95–102, March 2014. doi: 10.1109/
PerCom.2014.6813949.

[14] Chih-Wei Huang and Kun-Chou Lee. Application of ica
technique to pca based radar target recognition. Progress
In Electromagnetics Research, 105:157–170, 2010.

[15] Youngwook Kim and Hao Ling. Human activity classifi-
cation based on micro-doppler signatures using an artifi-
cial neural network. In Antennas and Propagation Society
International Symposium, 2008. AP-S 2008. IEEE, pages
1–4. IEEE, 2008.

[16] Youngwook Kim and Hao Ling. Human activity classifi-
cation based on micro-doppler signatures using a support

vector machine. IEEE Transactions on Geoscience and
Remote Sensing, 47(5):1328–1337, 2009.

[17] Vinit Kizhakkel, Rajiv Ramnath, and at el. Pulsed doppler
radar target recognition based on micro-doppler signa-
tures using wavelet analysis. In IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Septem-
ber 2014.

[18] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela
Rus. Accurate indoor localization with zero start-up cost.
In Proceedings of the 20th Annual International Confer-
ence on Mobile Computing and Networking, pages 483–
494. ACM, 2014.

[19] Kun-Chou Lee, Jhih-Sian Ou, and Ming-Chung Fang.
Application of svd -reduction technique to pca based
radar target recognition. Progress In Electromagnetics
Research, 81:447–459, 2008.

[20] Yasamin Mostofi. Cooperative wireless-based obsta-
cle/object mapping and see-through capabilities in robotic
networks. IEEE Transactions on Mobile Computing, 12
(5):817–829, 2013.

[21] Rajalakshmi Nandakumar, Krishna Kant Chintalapudi,
Venkat Padmanabhan, and Ramarathnam Venkatesan.
Dhwani: secure peer-to-peer acoustic NFC. In ACM SIG-
COMM Computer Communication Review, volume 43,
pages 63–74. ACM, 2013.

[22] Jeffrey A Nanzer and Robert L Rogers. Bayesian classi-
fication of humans and vehicles using micro-doppler sig-
nals from a scanning-beam radar. Microwave and Wire-
less Components Letters, IEEE, 19(5):338–340, 2009.

[23] Byung-Kwon Park, Olga Boric-Lubecke, and Victor M
Lubecke. Arctangent demodulation with DC offset
compensation in quadrature doppler radar receiver sys-
tems. IEEE Transactions on Microwave Theory and Tech-
niques, 55(5):1073–1079, 2007.

[24] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and
Shwetak Patel. Whole-home gesture recognition using
wireless signals. In Proceedings of the 19th Annual Inter-
national Conference on Mobile Computing & Network-
ing, pages 27–38. ACM, 2013.

[25] RG Raj, VC Chen, and R Lipps. Analysis of radar human
gait signatures. Signal Processing, IET, 4(3):234–244,
2010.

[26] Graeme E Smith, Karl Woodbridge, and Chris J Baker.
Radar micro-doppler signature classification using dy-
namic time warping. IEEE Transactions on Aerospace
and Electronic Systems, 46(3):1078–1096, 2010.

[27] Thayananthan Thayaparan, Sumeet Abrol, Edwin Rise-
borough, LJ Stankovic, Denis Lamothe, and Grant Duff.
Analysis of radar micro-doppler signatures from experi-
mental helicopter and human data. IET Radar, Sonar &
Navigation, 1(4):289–299, 2007.

[28] Guanhua Wang, Yongpan Zou, Zimu Zhou, Kaishun Wu,
and Lionel M Ni. We can hear you with Wi-Fi! In
Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking, pages 593–604.
ACM, 2014.

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 699

[29] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling,
and Sanglu Lu. Understanding and modeling of wifi sig-
nal based human activity recognition. In Proceedings
of the 21st Annual International Conference on Mobile
Computing and Networking, pages 65–76. ACM, 2015.

[30] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie
Yang, and Hongbo Liu. E-eyes: device-free location-
oriented activity identification using fine-grained WiFi
signatures. In Proceedings of the 20th Annual Interna-
tional Conference on Mobile Computing and Networking,
pages 617–628. ACM, 2014.

[31] Yang Yang and Ness B Shroff. Scheduling in wireless net-
works with full-duplex cut-through transmission. In 2015
IEEE Conference on Computer Communications (INFO-
COM), pages 2164–2172. IEEE, 2015.

[32] Yanzi Zhu, Yibo Zhu, Ben Y Zhao, and Haitao Zheng.
Reusing 60ghz radios for mobile radar imaging. In Pro-
ceedings of the 21st Annual International Conference
on Mobile Computing and Networking, pages 103–116.
ACM, 2015.

15

	Conference Organizers
	External Reviewers
	Contents
	Message from the NSDI '16 Program Co-Chairs
	An Industrial-Scale Software Defined Internet Exchange Point
	XFabric: A Reconfigurable In-Rack Network for Rack-Scale Computers
	Be Fast, Cheap and in Control with SwitchKV
	Bitcoin-NG: A Scalable Blockchain Protocol
	Exploring Cross-Application Cellular Traffic Optimization with Baidu TrafficGuard
	Efficiently Delivering Online Services over Integrated Infrastructure
	Scalable and private media consumption with Popcorn
	Speeding up Web Page Loads with Shandian
	Polaris: Faster Page Loads Using Fine-grained Dependency Tracking
	CFA: A Practical Prediction System for Video QoE Optimization
	Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions
	Decimeter-Level Localization with a Single WiFi Access Point
	A Scalable Multi-User Uplink for Wi-Fi
	BeamSpy: Enabling Robust 60 GHz Links Under Blockage
	Compiling Path Queries
	Simplifying Software-Defined Network Optimization Using SOL
	Paving the Way for NFV: Simplifying Middlebox Modifications using StateAlyzr
	Embark: Securely Outsourcing Middleboxes to the Cloud
	BUZZ: Testing Context-Dependent Policies in Stateful Networks
	Minimizing Faulty Executions of Distributed Systems
	FlowRadar: A Better NetFlow for Data Centers
	Sibyl: A Practical Internet Route Oracle
	VAST: A Unified Platform for Interactive Network Forensics
	Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics
	Cliffhanger: Scaling Performance Cliffs in Web Memory Caches
	FairRide: Near-Optimal, Fair Cache Sharing
	HUG: Multi-Resource Fairness for Correlated and Elastic Demands
	Consensus in a Box: Inexpensive Coordination in Hardware
	STREAMSCOPE: Continuous Reliable Distributed Processing ofBig Data Streams
	Social Hash: An Assignment Framework for Optimizing Distributed Systems Operations on Social Networks
	The Design and Implementation of the Warp Transactional Filesystem
	BlowFish: Dynamic Storage-Performance Tradeoff in Data Stores
	Universal Packet Scheduling
	Maglev: A Fast and Reliable Software Network Load Balancer
	Enabling ECN in Multi-Service Multi-Queue Data Centers
	DFC: Accelerating String Pattern Matching for Network Applications
	Diplomat: Using Delegations to Protect Community Repositories
	AnonRep: Towards Tracking-Resistant Anonymous Reputation
	Mind the Gap: Towards a Backpressure-Based Transport Protocol for the Tor Network
	Sieve: Cryptographically Enforced Access Control for User Data in Untrusted Clouds
	Earp: Principled Storage, Sharing, and Protection for Mobile Apps
	iCellular: Device-Customized Cellular Network Access on Commodity Smartphones
	Diamond: Nesting the Data Center Network with Wireless Rings in 3D Space
	Ripple II: Faster Communication through Physical Vibration
	PhyCloak: Obfuscating Sensing from Communication Signals

