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Over the years, NSDI has established itself as the top venue for work on networked and distributed systems. This 
year’s iteration is no exception, and we have an excellent program that spans the gamut from novel distributed 
 systems to wireless technologies to data analytics.

We are particularly excited about the increasing popularity of the Operational Systems Track that is intended for 
a different breed of papers. Rather than pure research results, these papers describe experience with large-scale, 
deployed systems and networks. They offer a behind-the-scenes look at real networked and distributed systems, and 
insights which are otherwise hard to come by. This year’s session includes papers that span a broad range of topics, 
such as high-performance packet processing, scalable distributed systems, and services over the wide area.

We received 213 submissions (about the same as last year), and we accepted a record number of 42 papers. Our 
 program committee had 45 members, including the co-chairs, with diverse expertise and experiences. The review 
process included two rounds of reviews, plenty of online discussion, and an in-person PC meeting. In the first 
round, each paper received three independent reviews. We advanced to the second round more than half of the sub-
mitted papers. In the second round, each paper received at least two additional reviews. Based on the reviews and 
online discussions, 81 papers were selected for discussion at the PC meeting. We sought external reviews sparingly, 
mostly in cases where the PC did not have sufficient expertise.

A conference like NSDI cannot succeed without the collective effort and support of many individuals and organiza-
tions. This effort starts with the authors, and we thank them for submitting the product of their hard work. Our PC 
members invested significant effort in the reviewing process, and we are grateful for their reviews, online discus-
sions, and meeting participation. Special thanks to Geoff Voelker for managing papers with which both chairs were 
conflicted. We are also grateful to our external reviewers for lending their expertise, often on short notice. We thank 
Rama Ramasubramanian and Franzi Roesner for serving as Poster chairs. USENIX does a remarkable job of man-
aging all non-technical aspects of the conference, and this year’s NSDI was no exception. Working with their staff, 
including Casey Henderson, Michele Nelson, and Julie Miller, was a pleasure. Sophie Ostlund at the University of 
Washington helped organize the PC meeting.

Finally, we thank you—the NSDI ’15 attendees. It is your participation and interest that sustains and nourishes the 
conference and our community.

Paul Barham, Google 
Arvind Krishnamurthy, University of Washington 
NSDI ’15 Program Co-Chairs
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Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand† Jon Crowcroft

University of Cambridge Computer Laboratory
† now at Google, Inc.

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications.
To mitigate network interference, QJUMP applies Inter-
net QoS-inspired techniques to datacenter applications.
Each application is assigned to a latency sensitivity level
(or class). Packets from higher levels are rate-limited
in the end host, but once allowed into the network can
“jump-the-queue” over packets from lower levels. In set-
tings with known node counts and link speeds, QJUMP
can support service levels ranging from strictly bounded
latency (but with low rate) through to line-rate through-
put (but with high latency variance).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300×, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction

Many datacenter applications are sensitive to tail la-
tencies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can

Please see http://www.cl.cam.ac.uk/netos/qjump for full details in-
cluding the QJUMP source-code. In the electronic version of this paper,
most of the figures and tables are clickable with links to a full experi-
mental description and original datasets.

cause queueing that extends memcached request latency
tails by 85 times the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop. Of
course, multiple instances of memcached may still inter-
fere with each other, causing long queues or incast col-
lapse [10]. If each memcached instance can be appropri-
ately rate-limited at the origin, this too can be mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single au-
thority. In this environment, we can enforce system-wide
policies, and calculate specific rate-limits which take into
account worst-case behavior, ultimately allowing us to
provide a guaranteed bound on network latency.

QJUMP is implemented via a simple rate-limiting
Linux kernel module and application utility. QJUMP has
four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].
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Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, (b) memcached and (c) Naiad traffic.

Setup 50th% 99th%
one host, idle network 85 126μs

two hosts, shared switch 110 130μs
shared source host, shared egress port 228 268μs
shared dest. host, shared ingress port 125 278μs

shared host, shared ingress and egress 221 229μs
two hosts, shared switch queue 1,920 2,100μs

Table 1: Median and 99th percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation
We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?
Network interference may occur at various places on the
network path. Applications may share ingress or egress
paths in the host, share the same network switch, or share
the same queue in the same network switch. To assess the
impact of interference in each of these situations, we em-
ulate a latency-sensitive RPC application using ping and
a throughput-intensive bulk transfer application by run-
ning two instances of iperf. Table 1 shows the results of
arranging ping and iperf with various degrees of net-
work sharing. Although any sharing situation results in
interference, the effect is worst when applications share a
congested switch queue.. In this case, the 99th percentile
ping latency is degraded by over 16× compared to the
unshared case.

2.2 How bad is it really?
Different applications use the network in different ways.
To demonstrate the degree to which network interfer-
ence affects different applications, we run three represen-
tative latency-sensitive applications (PTPd, memcached
and Naiad) on a network shared with Hadoop (details

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google’s
Spanner [11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure 1a, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop’s shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200–500μs out of syn-
chronization; 50× worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator2

and measure the request latency. Figure 1b shows the
distribution of request latencies on an idle network and a
network shared with Hadoop. With Hadoop running, the
99th percentile request latency degrades by 1.5× from
779μs to 1196μs. Even worse, approximately 1 in 6,000
requests take over 200ms to complete3, over 85× worse
than the maximum latency seen on an idle network.

3. Iterative Data-Flow Naiad is a framework for dis-
tributed data-flow computation [24]. In iterative com-
putations, Naiad’s performance depends on low-latency
state synchronization between worker nodes. To test Na-
iad’s sensitivity to network interference, we execute a
barrier synchronization benchmark (provided by the Na-
iad authors) with and without Hadoop running. Figure 1c
shows the distribution of Naiad synchronization laten-
cies in both situations. On an idle network, Naiad takes
around 500μs at the 99th percentile to perform a four-way
barrier synchronization. With interference, this grows to
1.1–1.5ms, a 2–3× performance degradation.

2http://libmemcached.org
3Likely because packet loss triggers the TCP minRTO timeout.
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Figure 2: Packets fanning in to a four-port, virtual output
queued switch. Output queues shown for port 3 only.

3 QJUMP System Design
Our exploratory experiments demonstrate that applica-
tions are sensitive to network interference, and that net-
work interference occurs primarily as a result of shared
switch queues. QJUMP therefore tackles network inter-
ference by reducing switch queueing: essentially, if we
can reduce the amount of queueing in the network, then
we will also reduce network interference. In the extreme
case, if we can place a low, finite bound on queueing,
then we can fully control network interference. This idea
forms the basis of QJUMP.

In this section, we derive an intuitive model to place
such a bound on queueing in any datacenter network
topology. We first consider a single switch case, before
extending the model to cover multiple switches. We then
relax our model’s throughput constraints and quantify the
latency variance vs. throughput tradeoff. Finally, we de-
scribe how latency-sensitive traffic is allowed to “jump-
the-queue” over high-throughput traffic.

Although the model we present is intuitive, it amounts
to a simplification of the classic Parekh-Gallager theo-
rem [27, 28]. The theorem shows that end-to-end de-
lay can be bounded in a Weighted Fair Queueing (WFQ)
network, provided that the network remains undersub-
scribed. In the Appendix, we show the relationship be-
tween our model and the theorem. In essence, we use the
fact that datacenter networks have a well-known struc-
ture (unlike the Internet) to simplify the theorem, result-
ing in the version that we now present.

3.1 Bounded Queues – Bounded Latency
To begin, we assume an initially idle network in which
each host is connected by a single link. We also assume
that the link rate never decreases from the edge to the
core of the network—an assumption that is true in any
reasonable datacenter network.

Single Switch Queueing Model Consider the simpli-
fied model of a typical virtual-output queued (VOQ)
layer 2 switch shown in Figure 2. The figure shows four
input ports which are connected to four output ports via
a crossbar. Only the output queues for port 3 are shown.
One of two scenarios might occur at an instant in time:
(i) only one input port sends packets to output port 3; or
(ii) multiple input ports send packets to output port 3.

In the first case, a single sender can communicate with
the destination port without queueing. Packets are only
delayed by the processing delay across the switch, which
is typically less than 0.5μs.

In the second case, packets arrive concurrently and
only one packet can exit from the output port at a time.
The switch scheduler must share access to this output
by serializing the concurrent arrivals. In the worst case,
the number of packets that arrive concurrently is equal to
the maximum fan-in of the switch (see Figure 2), which
is the number of input ports on the switch (four in this
example). Thus, a packet may have to wait for up to
max fan-in−1 packets before it is serviced .

Multi Switch Queueing Model We can easily expand
this understanding to cover multi-hop networks by treat-
ing the whole network as a single “big switch” (this is
a version of the hose-constraint [15] model). Since we
assume that each host has only one connection to the net-
work, all packets “fanning in” to a host must eventually
use this one link. This represents a mandatory serial-
ization point, regardless of the core network topology.
Given n hosts in the network, a packet may therefore
experience at most max network fan-in− 1 = n− 2 ≈ n
packets worth of delay. Knowing that a packet of size P
will take P/R seconds to transmit at link-rate R, we can
therefore bound the maximum interference delay at:

worst case end-to-end delay ≤ n× P
R
+ ε (1)

where n is the number of hosts, P the maximum packet
size (in bits), R is the rate of the slowest link in bits per
second and ε is the cumulative processing delay intro-
duced by switch hops.

Network epochs So far, our model assumes that
switch queues are initially empty and that the network
is undersubscribed. In this case, Equation 1 offers an up-
per bound on end-to-end network delay. We refer to the
result from Equation 1 as a network epoch. Intuitively, a
network epoch is the maximum time that an idle network
will take to service one packet from every sending host,
regardless of the source, destination or timing of those
packets. If all hosts are rate-limited so that they can-
not issue more than one packet per epoch, no permanent
queues can build up and the end-to-end network delay
bound will be maintained forever.

One problem with a network epoch is that it is a global
concept: to maintain it, all hosts must agree on when
an epoch begins and when an epoch ends. This requires
scheduling and precise timing. If all hosts in the network
share a single time source, network epochs can be syn-
chronized. Hardware time-stamped PTP synchronization
on modern hardware can be used for micro-second gran-
ularity network scheduling [29]. PTP synchronization
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hardware is not yet ubiquitous. As an alternative, we can
allow the network to become mesochronous. That is, we
require all network epochs in the system to occur at the
same frequency, but impose no restriction on the phase
relationship between epochs. In this case, host-based
timing is sufficient, so long as drift remains minimal over
the sub-millisecond timespan of a network epoch.

This mesochronous relaxation does, however, affect
our assumption of an initially idle network. A phase
misalignment between hosts (or switches) means that a
switch may encounter two packets within a host’s net-
work epoch: the first packet being issued at the end of
an epoch and the second packet issued immediately at
the start of the next epoch. The probability of this unfor-
tunate alignment occurring decreases exponentially with
scale. With as few as ten machines, the likelihood of
waiting behind more than n packets is very small. Nev-
ertheless, to ensure that the latency bound is guaranteed,
we can accommodate the mesochronous case by dou-
bling our worst-case latency bound. Our network epoch
calculation thus becomes:

network epoch = 2n× P
R
+ ε (2)

This is a key property of QJUMP: if we rate-limit all
hosts so that they can only issue one packet every net-
work epoch, then no packet will take more than one net-
work epoch to be delivered in the worst case.

3.2 Latency Variance vs. Throughput
Although the equation derived above provides an abso-
lute upper bound on in-network delay, it also has the ef-
fect of aggressively restricting throughput. Formulating
Equation 2 for throughput, we obtain:

throughput =
P

network epoch
≈ R

2n
(3)

That is, as we increase the number of hosts n linearly, we
decrease the throughput capacity for each host by a factor
of 2n. For example, with 1,000 hosts and a 10Gb/s edge
we obtain an effective throughput of less than 5Mb/s per
host. Clearly, this is not ideal.

We can improve this situation by making two observa-
tions. First, Equation 2 is pessimistic: it assumes that all
hosts transmit to one destination at the worst time, which
is unlikely given a realistic network and traffic distribu-
tion. Second, some applications (e.g. PTP) are more sen-
sitive to interference than others (e.g. memcached, Na-
iad) whereas still other applications (e.g. Hadoop) are
more sensitive to throughput restrictions.

From the first observation, we can relax the throughput
constraints in Equation 2 by assuming that fewer than n
hosts send to a single destination at the worst time. For
example, if we assume that only 500 of the 1,000 hosts

concurrently send to a single destination, then those 500
hosts can send at twice the rate and maintain the same
network delay. More generally, we define a scaling factor
f so that the assumed number of senders n� is given by:

n� =
n
f

where 1 ≤ f ≤ n. (4)

Intuitively, f is a “throughput factor”: as the value of f
grows, so does the amount of bandwidth available.

From the second observation, some (but not all) appli-
cations can tolerate some degree of latency variance. For
these applications, we aim for a statistical reduction in la-
tency variance. This re-introduces a degree of statistical
multiplexing to the network, but one that is more tightly
controlled than in current networks. When the the value
of f is too optimistic (i.e. the actual number of senders is
greater than n�), some queueing may occur, resulting in
network interference.

The probability that interference occurs increases with
increasing values of f . At the upper bound ( f = n), la-
tency variance is no worse than in existing networks and
full network throughput is available. At the lower bound
( f = 1), latency is guaranteed, but with much reduced
throughput. In essence, f quantifies the latency variance
vs. throughput tradeoff.

3.3 Jump the Queue with Prioritization
We would like to use multiple values of f concurrently,
so that different applications can benefit from the latency
variance vs. throughput tradeoff that suits them best. To
achieve this, we partition the network so that traffic from
latency-sensitive applications (e.g. PTPd, memcached,
Naiad) can “jump-the-queue” over traffic from through-
put intensive applications (e.g. Hadoop).

Datacenter switches support the IEEE 802.1Q [18]
standard which provides eight (0–7) hardware enforced
“service classes” or “priorities”. Priorities are rarely used
in practice because priority selection can become a “race
to the top”. For example, memcached developers may
assume that memcached traffic is the most important and
should receive the highest priority. Meanwhile, Hadoop
developers may assume that Hadoop traffic is the most
important, and should similarly receive the highest pri-
ority. Since there is a limited number of priorities, nei-
ther can achieve an advantage and prioritization loses its
value. QJUMP is different.

QJUMP couples priority values and rate-limits: for
each priority, we assign a distinct value of f , with higher
priorities receiving smaller values. Since a small value of
f implies an aggressive rate limit, priorities become use-
ful because they are no longer “free”: QJUMP users must
choose between low latency variance at low throughput
(high priority) and high latency variance at high through-
put (low priority).
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We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. This means that just eight
rate-limiters per host are sufficient when using IEEE
802.1Q priorities. As a result, QJUMP rate-limiters can
be implemented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU times-
tamp counter (rdtsc, line 6). This provides us with ex-
tremely fine-grained timing for the price of just one in-
struction on the critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set this priority directly
in the application code, or assign priorities to unmodi-
fied binaries using our application utility. Next, the rate-
limiter checks if a new epoch has begun. If so, it issues
a fresh allocation of bytes to itself (lines 8–10). It then
checks to see if sufficient bytes are remaining to send the
packet in this network epoch (line 12). If so, the packet is
forwarded to the driver (line 15–16), if not, the packet is
dropped (line 13). In practice, packets are rarely dropped
because our application utility also resizes socket buffers
to apply early back-pressure.

Forwarded packets are mapped onto individual driver
queues depending on the priority level. QJUMP there-

1 long epoch_cycles = to_cycles(network_epoch);

2 long timeout = start_time;

3 long bucket[NUM_QJUMP_LEVELS];

4

5 int qJumpRateLimiter(struct sk_buff* buffer) {

6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;

8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;

10 bucket[level] = tokens[level];

11 }

12 if (buffer->len > bucket[level]) {

13 return DROP; /* tokens for epoch exhausted */

14 }

15 bucket[level] -= buffer->len;

16 sendToHWQueue(buffer, level);

17 return SENT;

18 }

Listing 1: QJUMP rate-limiter pseudocode.

fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(σ = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ≈8,000 cycles. This amounts to less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).
The utility performs two tasks: (i) it configures socket

priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an appli-
cation sends more data than its QJUMP level permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).

5 Configuring QJUMP

A QJUMP deployment requires five parameters to be con-
figured: (i) n, the number of hosts; (ii) P, the maximum
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packet size; (iii) R, the rate of the slowest edge link; (iv)
ε , the edge-to-edge cumulative switch processing delay;
and (v) fi, the assumed fraction of concurrently transmit-
ting hosts at each level.

Configuring R and ε As the topology of a datacenter
network is static, the minimum link speed R and the cu-
mulative switching delay ε do not vary. Typical values
are R = 10Gb/s or 40Gb/s and ε = 1μs to 4μs.

Configuring P In §3.1, we defined P as the “maximum
packet size”. However, it is more correctly defined as the
maximum number of bytes that can be issued into the
network at the guaranteed latency level in a single net-
work epoch. From Equation 2, the network epoch grows
linearly with increasing P, so P should be kept small to
keep the network epoch short. However, we also want P
to be big enough to be useful. Benson et al. found that
30%–50% of packets in many datacenters contain fewer
than 256 bytes [5]. This suggests that ≤256B packets are
sufficient for some applications. For 1,000 hosts, setting
P to 256 bytes results in a worst-case delay of <500μs.

Configuring n This usefulness of QJUMP depends on
the size of the latency bound, which scales as a func-
tion of n. If all hosts in the network use QJUMP, then n
can take a value of between 1,000 and 4,000 hosts and
maintain a bound of 100-500μs using small messages of
64–256B. QJUMP can also be configured with n set as a
subset of the hosts, provided that the remainder of hosts
only use the lowest network priority.

Application-specific knowledge may also be exploited
to increase the number of hosts that can participate in a
QJUMP network. For example, a distribute/aggregate ser-
vice may send requests to 10,000 hosts, but can be certain
that fewer than 1,000 will respond. In this case, n can still
be set to 1,000 hosts, but all 10,000 hosts can use QJUMP
with guarantees. Finally, QJUMP scales with the network
speed. On a faster network (e.g. a 40Gb/s edge), the same
delay can be maintained for larger n (e.g. 16,000).

Configuring fi The most complicated parameters to
determine are the throughput factors fi. Fortunately, each
value of fi is easily expressible as a rate-limit (e.g in
Mb/s) which makes choosing values relatively intuitive
(see §6 for examples). The best value for fi depends on
the desired latency distribution and the workload. The
simplest configuration is to use only two QJUMP lev-
els: (i) guaranteed latency ( f1 = 1) and (ii) maximum
throughput ( f7 = n). Alternatively, a set of fi values can
be configured for a known application mix or for a known
traffic distribution.

1. Known Application Mix Datacenter application
mixes are often known, or information on application
profiles can be obtained from users [4, 20, 21]. If ap-
plication latency and throughput requirements can be es-
timated or measured, the QJUMP levels can be set to ac-

commodate their needs.4 In practice, simple benchmarks
at different rate limits make it easy to characterize an ap-
plication. We show an example in §6.5.

2. Known Traffic Distribution While the applica-
tion mix in large datacenters can be complex, moni-
toring infrastructure supplies aggregate traffic statistics.
An approximate distribution of flow sizes is often avail-
able [1, 5, 16]. For a known flow size distribution, fi
values can be configured to partition the traffic accord-
ing to a desired latency variance vs. throughput distribu-
tion. We applied this method on a flow size CDF using a
simple spreadsheet. This worked well in our experiments
and simulations in §6.4.

6 Evaluation
We evaluate QJUMP both on a small deployment and in
simulation. Our evaluation shows that QJUMP:

1. resolves network interference for a collection of
real-world datacenter applications (§6.2);

2. outperforms Ethernet Flow Control (802.3x), ECN
and DCTCP in our deployment (§6.3);

3. provides excellent flow completion times, close to
or better than DCTCP [1] and pFabric [3] (§6.4);

4. is easily configurable, illustrated by examples of
methods to determine QJUMP parameters (§6.5).

6.1 Experimental setup
Our physical test-bed comprises an otherwise idle, 12
node cluster of recent AMD Opteron and Intel Xeon-
based machines running Ubuntu 14.04 with Linux ker-
nel 3.4.55. Each machine has one two-port 10Gb/s
NIC installed. Our network is comprised of four Arista
DCS-7124fx switches arranged as per Figure 4. We use
ptpd v2.1.0 and memcached v1.4.14. We generate load
for memcached using memaslap from libmemcached

v1.0.15 running a binary protocol, mixed GET/SET
workload of 1 KB requests in TCP mode with 128 con-
current requests. The Naiad experiments use v0.2.3 and
the barrier-sync microbenchmark was supplied by the
Naiad authors. Hadoop 2.0.0-mr1-cdh4.5.1 is deployed
on eight of our twelve nodes, with the HDFS data in
tmpfs and the replication factor set to six.5 The Hadoop
workload is a natural join between two uniformly ran-
domly generated 512 MB data sets (39M rows each),
which produces an output of 29 GB (1.5B rows).

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal

4 There may be more applications than QJUMP levels. In this case,
some levels will need to be shared between applications.

5This simulates the traffic a larger Hadoop cluster would generate.



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 7

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

5 300 600 9001200
Latency in μs

alone
+ iperf
+ iperf w/ QJ

(a) CDF of ping packet latency across a
switch. Note the change in x-axis scale.

0 500 1000 1500 2000
Latency in μs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.

0 500 1000 1500 2000
Latency in μs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

Figure 4: Network topology of our test-bed.

performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

Low Latency RPC vs. Bulk Transfer Remote Proce-
dure Calls (RPCs) and bulk data transfers represent ex-
treme ends of the latency-bandwidth spectrum. QJUMP
resolves network interference at these extremes. As in
§2.1, we emulate RPCs and bulk data transfers using
ping and iperf respectively. We measure in-network
latency for the ping traffic directly using a high resolu-
tion Endace DAG capture card and two optical taps on
either side of a switch. This verifies that queueing la-
tency at switches is reduced by QJUMP. By setting ping

to the highest QJUMP level ( f7 = 1), we reduce its pack-
ets’ latency at the switch by over 300× (Figure 3a). The
small difference between idle switch latency (1.6μs) and
QJUMP latency (2–4μs) arises due a small on-chip FIFO
through which the switch must process packets in-order.
The switch processing delay, represented as ε in Equa-
tion 2, is thus no more than 4μs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see

§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with
QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824μs in the shared case to 476μs, a nearly 2× im-
provement.6

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600μs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5× improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this

6The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign
ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =⇒ f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ≈30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
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Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

10,000 requests/sec observed on an idle network. By
contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5× the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (≈40μs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments,
we measure the degree to which it affects applications
using the root mean square (RMS) of each application-
specific metric.7 For Hadoop, PTPd and memcached, the
metrics are job runtime, synchronization offset and re-
quest latency, respectively. Figure 7 shows six cases: an
ideal case, a contended case and one for each of the four
schemes used to mitigate network interference. All cases
are normalized to the ideal case, which has each applica-
tion running alone on an idle network. We discuss each
result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages

7RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 7: QJUMP comes closest to ideal performance for
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when their queues are nearly full, alerting senders to slow
down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

6.4 QJUMP Improves Flow Completion

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.8 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, ∞). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

8An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/qjump/sims.html.
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Figure 9: Normalized flow completion times in a 144-host simulation (1 is ideal): QJUMP outperforms TCP, DCTCP
and pFabric for small flows. N.B.: log-scale y-axis; QJUMP and pFabric overlap in (a), (d) and (e).

outperforms pFabric by up to 20% at high load, but loses
to pFabric by 15% at low load (Fig. 9c). On the data min-
ing workload, QJUMP’s average FCTs are between 30%
and 63% worse than pFabric’s (Fig. 9f).

In the data-mining workload, 85% of all flows transfer
fewer than 100kB, but over 80% of the bytes are trans-
ferred in flows of greater than 100MB (less than 15%
of the total flows). QJUMP’s short epoch intervals can-
not sense the difference between large flows, so it does
not apply any rate-limiting (scheduling) to them. This
results in sub-optimal behavior. A combined approach
where QJUMP regulates interactions between large flows
and small flows, while DCTCP regulates the interactions
between different large flows might improve this.

6.5 QJUMP Configuration
As described in §5, QJUMP levels can be determined
in several ways. One approach is to tune the levels to
a specific mix of applications. For some applications,
it is clear that they perform best at guaranteed latency
(e.g. ptpd at f7 = 1) or high rate (e.g. Hadoop at f0 = n).
For others, their performance at different throughput fac-
tors is less straightforward. Memcached is an example
of such an application. It needs low request latency vari-
ance as well as reasonable request throughput. Figure 10
shows memcached’s request throughput and latency as
a function of rate-limiting. Peak throughput is reached
at a rate allocation of around 5Gb/s. At the same point,
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

the request latency also stabilizes. Hence, a rate-limit of
5Gb/s gives the best tradeoff for memcached. This point
has the strongest interference control possible without
throughput restrictions. To convert this to a throughput
factor, we get fi =

nTi
R by rearranging Equation 2 for fi.

On our test-bed (n = 12 at R =10Gb/s), Ti =5Gb/s yields
a throughput factor of f = 6. We can therefore choose
a QJUMP level for memcached (e.g. f4) and set it to a
throughput factor ≥6.

QJUMP offers a bounded latency level at throughput
factor f7. At this level, all packets admitted into the net-
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Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

work must reach the destination by the end of the net-
work epoch (§3.1). We now show that our model and
the derived configuration perform correctly. To do this,
we perform a scale-up emulation using a 60-host virtual-
ized topology running on ten physical machines (see Fig-
ure 12). In this topology, each machine runs a “hypervi-
sor” (Linux kernel) with a 10Gb/s uplink to the network.
Each hypervisor runs six “guests” (processes) each with
a 1.6Gb/s network connection. We provision QJUMP for
the number of guests and run two applications on each
guest: (i) a coordination service that generates one 256
byte packet per network epoch at the highest QJUMP
level, and (ii) a bulk sender that issues 1500 byte packets
as fast as possible at the lowest QJUMP level. All coordi-
nation requests are sent to a single destination.

Figure 11 shows the latency distribution of coordina-
tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,

the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against
in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;9 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time dividing network access, but requires
invasive kernel changes and centralized coordination.

9Only one in five 10Gb/s switches we looked at supports ECN.
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D3 [35] � � � � � � � �∗, softw.
PDQ [17] � � � � � � � �

pFabric [3] � � � � � �∗ � �

DeTail [37] � � � � �∗ � � �∗, softw.
Silo [21] � � � �∗ �∗ �∗, SLAs � �

TDMA Eth. [34] �∗ �∗ � �∗ � � � �

Table 2: Comparison of related systems. ∗with caveats, see text; ‡implementation publicly available.

8 Discussion and Future Work
It would be ideal if applications were automatically clas-
sified into QJUMP levels. This requires overcoming a few
challenges. First, the rate-limiter needs to be extended
to calculate an estimate of instantaneous throughput for
each application. Second, applications that exceed their
throughput allocation must be moved to a lower QJUMP
level, while applications that underutilize their allocation
must be lifted to a higher QJUMP level. Third, some
applications (e.g. Naiad) have latency-sensitive control
traffic as well as throughput-intensive traffic that must be
treated separately [19]. We leave this to future work.

9 Conclusion
QJUMP applies QoS-inspired concepts to datacenter ap-
plications to mitigate network interference. It offers mul-
tiple QJUMP levels with different latency variance vs.
throughput tradeoffs, including bounded latency (at low
rate) and full utilization (at high latency variance). In an
extensive evaluation, we have demonstrated that QJUMP
attains near-ideal performance for real applications and
good flow completion times in simulations. Source code
and data sets are available from http://goo.gl/q1lpFC.
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Appendix
The Parekh-Gallager theorem [27, 28] shows that
Weighted Fair Queueing (WFQ) achieves a worst case
delay bound given by the equation

end to end delay ≤ σ
g
+

K−1

∑
i=1

P
gi

+
K

∑
i=1

P
ri
, (5)

where all sources are governed by a leaky bucket ab-
straction with rate ρ and burst size σ , packets have a
maximum size P and pass through K switches. For each
switch i, there is a total rate ri of which each connection
(host) receives a rate gi. g is the minimum of all gi. It is
assumed that ρ ≤ g, i.e. the network is underutilized.

The final term in the equation adjusts for the difference
between PGPS and GPS (Generalized Processor Shar-
ing) for a non-idle network. Since we assume an idle
network in our model (3.1), Equation 5 simplifies to

end to end delay ≤ σ
g
+

K−1

∑
i=1

P
gi

(6)

If we assume that all hosts are given a fair share of the
network—i.e. Fair Queueing rather than WFQ—then,

gi =
ri

n
(7)

where n is the number of hosts. Therefore the g (the min-
imum gi) dominates. Since we assume an idle network,
the remaining terms sum to zero. For a maximum burst
size ρ = P, the equation therefore simplifies to

end to end delay ≤ P
g
= n× P

R
(8)

which is equivalent to the equation derived in Equation 1
(§3.1). The Parekh-Gallager theorem does not take into
account the switch processing delay ε , since it is negligi-
ble compared to the end-to-end delay on the Internet.
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Abstract
Many data center network (DCN) applications require
explicit routing path control over the underlying topolo-
gies. This paper introduces XPath, a simple, practical
and readily-deployable way to implement explicit path
control, using existing commodity switches. At its core,
XPath explicitly identifies an end-to-end path with a path
ID and leverages a two-step compression algorithm to
pre-install all the desired paths into IP TCAM tables of
commodity switches. Our evaluation and implementa-
tion show that XPath scales to large DCNs and is readily-
deployable. Furthermore, on our testbed, we integrate
XPath into four applications to showcase its utility.

1 Introduction

Driven by modern Internet applications and cloud com-
puting, data centers are being built around the world. To
obtain high bandwidth and achieve fault tolerance, data
center networks (DCNs) are often designed with multi-
ple paths between any two nodes [3, 4, 13, 17, 18, 31].
Equal Cost Multi-Path routing (ECMP) [23] is the state-
of-the-art for multi-path routing and load-balancing in
DCNs [5, 17, 31].

In ECMP, a switch locally decides the next hop from
multiple equal cost paths by calculating a hash value,
typically from the source and destination IP addresses
and transport port numbers. Applications therefore can-
not explicitly control the routing path in DCNs.

However, many emerging DCN applications such as
provisioned IOPS, fine-grained flow scheduling, band-
width guarantee, etc. [5, 7, 8, 19, 21, 22, 25, 26, 39, 45],
all require explicit routing path control over the underly-
ing topologies (§2).

Many approaches such as source routing [36],
MPLS [35], and OpenFlow [29] can enforce explicit path
control. However, source routing is not supported in the
hardware of the data center switches, which typically
only support destination IP based routing. MPLS needs
a signaling protocol, i.e., Label Distribution Protocol, to
establish the path, which is typically used only for traffic
engineering in core networks instead of application-level

or flow-level path control. OpenFlow in theory can estab-
lish fine-grained routing paths by installing flow entries
in the OpenFlow switches via the controller. But in prac-
tice, there are practical challenges such as limited flow
table size and dynamic flow path setup that need to be
addressed (see §6 for more details).

In order to address the scalability and deployment
challenges faced by the above mentioned approaches,
this paper presents XPath for flow-level explicit path
control. XPath addresses the dynamic path setup chal-
lenge by giving a positive answer to the following ques-
tion: can we pre-install all desired routing paths between
any two nodes? Further, XPath shows that we can pre-
install all these paths using the destination IP based for-
warding TCAM tables of commodity switches1.

One cannot enumerate all possible paths in a DCN as
the number can be extremely large. However, we observe
that DCNs (e.g., [2–4, 17, 18, 20]) do not intend to use
all possible paths but a set of desired paths that are suf-
ficient to exploit the topology redundancy (§2.2). Based
on this observation, XPath focuses on pre-installing these
desired paths in this paper. Even though, the challenge
is that the sheer number of desired paths in large DCNs
is still large, e.g., a Fattree (k = 64) has over 232 paths
among ToRs (Top-of-Rack switches), exceeding the size
of IP table with 144K entries, by many magnitudes.

To tackle the above challenge, we introduce a two-
step compression algorithm, i.e., paths to path sets ag-
gregation and path ID assignment for prefix aggregation,
which is capable of compressing a large number of paths
to a practical number of routing entries for commodity
switches (§3).

To show XPath’s scalability, we evaluate it on various
well-known DCNs (§3.3). Our results suggest that XPath
effectively expresses tens of billions of paths using only
tens of thousands of routing entries. For example, for
Fattree(64), we pre-install 4 billion paths using ∼64K
entries2; for HyperX(4,16,100), we pre-install 17 billion
paths using ∼36K entries. With such algorithm, XPath

1The recent advances in switching chip technology make it ready
to support 144K entries in IP LPM (Longest Prefix Match) tables of
commodity switches (e.g., [1, 24]).

2The largest routing table size among all the switches.
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easily pre-installs all desired paths into IP LPM tables
with 144K entries, while still reserving space to accom-
modate more paths.

To demonstrate XPath’s deployability, we implement
it on both Windows and Linux platforms under the um-
brella of SDN, and deploy it on a 3-layer Fattree testbed
with 54 servers (§4). Our experience shows that XPath
can be readily implemented with existing commodity
switches. Through basic experiments, we show that
XPath handles failure smoothly.

To showcase XPath’s utility, we integrate it into
four applications (from provisioned IOPS [25] to Map-
reduce) to enable explicit path control and show that
XPath directly benefits them (§5). For example, for pro-
visioned IOPS application, we use XPath to arrange ex-
plicit path with necessary bandwidth to ensure the IOPS
provisioned. For network update, we show that XPath
easily assists networks to accomplish switch upgrades at
zero traffic loss. For Map-reduce data shuffle, we use
XPath to identify non-contention parallel paths in ac-
cord with the many-to-many shuffle pattern, reducing the
shuffle time by over 3× compared to ECMP.

In a nutshell, the primary contribution of XPath is that
it provides a practical, readily-deployable way to pre-
install all the desired routing paths between any s-d pairs
using existing commodity switches, so that applications
only need to choose which path to use without worry-
ing about how to set up the path, and/or the time cost or
overhead of setting up the path.

To access XPath implementation scripts, please visit:
http://sing.cse.ust.hk/projects/XPath.

The rest of the paper is organized as follows. §2
overviews XPath. §3 elaborates XPath algorithm and
evaluates its scalability. §4 implements XPath and per-
forms basic experiments. §5 integrates XPath into appli-
cations. §6 discusses the related work, and §7 concludes
the paper.

2 Motivation and Overview

2.1 The need for explicit path control

Case #1: Provisioned IOPS: IOPS are input/output op-
erations per second. Provisioned IOPS are designed to
deliver predictable, high performance for I/O intensive
workloads, such as database applications, that rely on
consistent and fast response times. Amazon EBS provi-
sioned IOPS storage was recently launched to ensure that
disk resources are available whenever you need them re-
gardless of other customer activity [25, 34]. In order to
ensure provisioned IOPS, there is a need for necessary
bandwidth over the network. Explicit path control is re-
quired for choosing an explicit path that can provide such
necessary bandwidth (§5.1).

Undesired pathDesired path

X

Figure 1: Example of the desired paths between two
servers/ToRs in a 4-radix Fattree topology.

Case #2: Flow scheduling: Data center networks are
built with multiple paths [4, 17]. To use such multi-
ple paths, state-of-the-art forwarding in enterprise and
data center environments uses ECMP to statically stripe
flows across available paths using flow hashing. Because
ECMP does not account for either current network uti-
lization or flow size, it can waste over 50% of network
bisection bandwidth [5]. Thus, to fully utilize network
bisection bandwidth, we need to schedule elephant flows
across parallel paths to avoid contention as in [5]. Ex-
plicit path control is required to enable such fine-grained
flow scheduling, which benefits data intensive applica-
tions such as Map-reduce (§5.4).

Case #3: Virtual network embedding: In cloud com-
puting, virtual data center (VDC) with bandwidth guar-
antees is an appealing model for cloud tenants due to
its performance predictability in shared environments [7,
19, 45]. To accurately enforce such VDC abstraction
over the physical topology with constrained bandwidth,
one should be able to explicitly dictate which path to use
in order to efficiently allocate and manage the bandwidth
on each path (§5.3).

Besides the above applications, the need for explicit
path control has permeated almost every corner of data
center designs and applications, from traffic engineering
(e.g., [8, 22]), energy-efficiency (e.g., [21]), to network
virtualization (e.g., [7, 19, 45]), and so on. In §5, we will
study four of them.

2.2 XPath overview
To enable explicit path control for general DCNs, XPath
explicitly identifies an end-to-end path with a path ID
and attempts to pre-install all desired paths using IP LPM
tables of commodity switches, so that DCN applications
can use these pre-installed explicit paths easily without
dynamically setting up them. In what follows, we first
introduce what the desired paths are, and then overview
the XPath framework.

Desired paths: XPath does not try to pre-install all
possible paths in a DCN because this is impossible and
impractical. We observe that when designing DCNs,

2
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operators do not intend to use all possible paths in
the routing. Instead, they use a set of desired paths
which are sufficient to exploit the topology redundancy.
This is the case for many recent DCN designs such as
[2–4, 17, 18, 20, 31]. For example, in a k-radix Fat-
tree [4], they exploit k2/4 parallel paths between any two
ToRs for routing (see Fig. 1 for desired/undesired paths
on a 4-radix Fattree); whereas in an n-layer BCube [18],
they use (n+ 1) parallel paths between any two servers.
These sets of desired paths have already contained suffi-
cient parallel paths between any s-d pairs to ensure good
load-balancing and handle failures. As the first step,
XPath focuses on pre-installing all these desired paths.

XPath framework: Fig. 2 overviews XPath. As many
prior DCN designs [11, 17, 18, 31, 40], in our imple-
mentation, XPath employs a logically centralized con-
troller, called XPath manager, to control the network.
The XPath manager has three main modules: routing
table computation, path ID resolution, and failure han-
dling. Servers have client modules for path ID resolution
and failure handling.

• Routing table computation: This module is the heart
of XPath. The problem is how to compress a large
number of desired paths (e.g., tens of billions) into IP
LPM tables with 144K entries. To this end, we de-
sign a two-step compression algorithm: paths to path
sets aggregation (in order to reduce unique path IDs)
and ID assignment for prefix aggregation (in order to
reduce IP prefix based routing entries). We elaborate
the algorithm and evaluate its scalability in §3.

• Path ID resolution: In XPath, path IDs (in the format
of 32-bit IP, or called routing IPs3) are used for rout-
ing to a destination, whereas the server has its own IP
for applications. This entails path ID resolution which
translates application IPs to path IDs. For this, the
XPath manager maintains an IP-to-ID mapping table.
Before a new communication, the source sends a re-
quest to the XPath manager resolving the path IDs to
the destination based on its application IP. The man-
ager may return multiple path IDs in response, provid-
ing multiple paths to the destination for the source to
select. These path IDs will be cached locally for sub-
sequent communications, but need to be forgotten pe-
riodically for failure handling. We elaborate this mod-
ule and its implementation in §4.1.

• Failure handling: Upon a link failure, the detecting
devices will inform the XPath manager. Then the
XPath manager will in turn identify the affected paths
and update the IP-to-ID table (i.e., disable the affected
paths) to ensure that it will not return a failed path
to a source that performs path ID resolution. The

3We use routing IPs and path IDs interchangeably in this paper.

 

























Figure 2: The XPath system framework.

XPath source server handles failures by simply chang-
ing path IDs. This is because it has cached multiple
path IDs for a destination, if one of them fails, it just
uses a new live one instead. In the meanwhile, the
source will request, from the manager, the updated
path IDs to the destination. Similarly, upon a link re-
covery, the recovered paths will be added back to the
IP-to-ID table accordingly. The source is able to use
the recovered paths once the local cache expires and a
new path ID resolution is performed.
We note that XPath leverages failure detection and re-
covery outputs to handle failures. The detailed fail-
ure detection and recovery mechanisms are orthogo-
nal to XPath, which focuses on explicit path control.
In our implementation (§4.2), we adopt a simple TCP
sequence based approach for proof-of-concept exper-
iments, and we believe XPath can benefit from ex-
isting advanced failure detection and recovery litera-
tures [15, 27].

Remarks: In this paper, XPath focuses on how to pre-
install the desired paths, but it does not impose any con-
straint on how to use the pre-installed paths. On top of
XPath, we can either let each server to select paths in
a distributed manner, or employ an SDN controller to
coordinate path selection between servers or ToRs in a
centralized way (which we have taken in our implemen-
tation of this paper). In either case, the key benefit is that
with XPath we do not need to dynamically modify the
switches.

We also note that XPath is expressive and is able to
pre-install all desired paths in large DCNs into commod-
ity switches. Thus XPath’s routing table recomputation
is performed infrequently, and cases such as link failures
or switch upgrade [26] are handled through changing
path IDs rather than switch table reconfiguration. How-
ever, table recomputation is necessary for extreme cases
like network wide expansion where the network topology
has fundamentally changed.

3
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path1

disjointconvergent divergent

path2

path1 path2

path1 path2

Figure 3: Three basic relations between two paths.

s1 s2

d1 d2

s3

d3

p1 p2 p3 p4 p5 p6 p7 p8 p9 Convergent: {p1, p4, p7}, {p2, p5, p8}, {p3, p6, p9}

Disjoint: {p1, p5, p9}, {p2, p6, p7}, {p3, p4, p8}

Mix of two: {p1, p4, p8}, {p2, p6, p9}, {p2, p5, p7}

Figure 4: Different ways of path aggregation.

3 XPath Algorithm and Scalability

We elaborate the XPath two-step compression algorithm
in §3.1 and §3.2. Then, we evaluate it on various large
DCNs to show XPath’s scalability in §3.3.

3.1 Paths to path sets aggregation (Step I)

The number of desired paths is large. For example, Fat-
tree(64) has over 232 paths between ToRs, more than
what a 32-bit IP/ID can express. To reduce the number
of unique IDs, we aggregate the paths that can share the
same ID without causing routing ambiguity into a non-
conflict path set, identified by a unique ID.

Then, what kinds of paths can be aggregated? Without
loss of generality, two paths have three basic relations be-
tween each other, i.e., convergent, disjoint, and divergent
as shown in Fig. 3. Convergent and disjoint paths can
be aggregated using the same ID, while divergent paths
cannot. The reason is straightforward: suppose two paths
diverge from each other at a specific switch and they have
the same ID path1 = path2 = path id, then there will
be two entries in the routing table: path id → portx and
path id → porty , (x �= y). This clearly leads to am-
biguity. Two paths can be aggregated without conflict if
they do not cause any routing ambiguity on any switch
when sharing the same ID.

Problem 1: Given the desired paths P = {p1, · · · , pn}
of a DCN, aggregate the paths into non-conflict path sets
so that the number of sets is minimized.

We find that the general problem of paths to non-
conflict path sets aggregation is NP-hard since it can be
reduced from the Graph vertex-coloring problem [41].
Thus, we resort to practical heuristics.

Based on the relations in Fig. 3, we can aggregate the
convergent paths, the disjoint paths, or the mix into a
non-conflict path set as shown in Fig. 4. Following this,

Path set Egress port ID assignment (bad) ID assignment (good)

pathset0 0 0 4

pathset1 1 1 0

pathset2 2 2 2

pathset3 0 3 5

pathset4 1 4 1

pathset5 2 5 3

pathset6 0 6 6

pathset7 0 7 7

Table 1: Path set ID assignment.

Path set ID Prefix Egress port

pathset1,4 0, 1 00∗ 1

pathset2,5 2, 3 01∗ 2

pathset0,3,6,7 4, 5, 6, 7 1∗∗ 0

Table 2: Compressed table via ID prefix aggregation.

we introduce two basic approaches for paths to path sets
aggregation: convergent paths first approach (CPF) and
disjoint paths first approach (DPF). The idea is simple. In
CPF, we prefer to aggregate the convergent paths into the
path set first until no more convergent path can be added
in; Then we can add the disjoint paths, if exist, into the
path set until no more paths can be added in. In DPF,
we prefer to aggregate the disjoint paths into the path set
first and add the convergent ones, if exist, at the end.

The obtained CPF or DPF path sets have their own
benefits. For example, a CPF path set facilitates many-
to-one communication for data aggregation because such
an ID naturally defines a many-to-one communication
channel. A DPF path set, on the other hand, identifies
parallel paths between two groups of nodes, and such
an ID identifies a many-to-many communication chan-
nel for data shuffle. In practice, users may have their
own preferences to define customized path sets for dif-
ferent purposes as long as the path sets are free of routing
ambiguity.

3.2 ID assignment for prefix aggregation
(Step II)

While unique IDs can be much reduced through Step I,
the absolute value is still large. For example, Fattree(64)
has over 2 million IDs after Step I. We cannot allocate
one entry per ID flatly with 144K entries. To address
this problem, we further reduce routing entries using ID
prefix aggregation. Since a DCN is usually under cen-
tralized control and the IDs of paths can be coordinately
assigned, our goal of Step II is to assign IDs to paths in
such a way that they can be better aggregated using pre-
fixes in the switches.

3.2.1 Problem description

We assign IDs to paths that traverse the same egress port
consecutively so that these IDs can be expressed using

4
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one entry via prefix aggregation. For example, in Ta-
ble 1, 8 path sets go through a switch with 3 ports. A
naı̈ve (bad) assignment will lead to an uncompressable
routing table with 7 entries. However, if we assign the
paths that traverse the same egress port with consecutive
IDs (good), we can obtain a compressed table with 3 en-
tries as shown in Table 2.

To optimize for a single switch, we can easily achieve
the optimal by grouping the path sets according to the
egress ports and encoding them consecutively. In this
way, the number of entries is equal to the number of
ports. However, we optimize for all the switches simul-
taneously instead of one.

Problem 2. Let T = {t1, t2, · · · , t|T |} be the path
sets after solving Problem 1. Assigning (or ordering) the
IDs for these path sets so that, after performing ID prefix
aggregation, the largest number of routing entries among
all switches is minimized.

In a switch, a block of consecutive IDs with the same
egress port can be aggregated using one entry4. We call
this an aggregateable ID block (AIB). The number of
such AIBs indicates routing states in the switch5. Thus,
we try to minimize the maximal number of AIBs among
all the switches through coordinated ID assignment.

To illustrate the problem, we use a matrix M to de-
scribe the relation between path sets and switches. Sup-
pose switches have k ports (numbered as 1...k), then we
use mij ∈ [0, k] (1 ≤ i ≤ |S|, 1 ≤ j ≤ |T |) to indicate
whether tj goes through switch si, and if yes, which the
egress port is. If 1 ≤ mij ≤ k, it means tj goes through
si and the egress port is mij , and 0 otherwise means tj
does not appear on switch si.

M =




t1 t2 t3 . . . t|T |

s1 m11 m12 m13 . . . m1|T |
s2 m21 m22 m23 . . . m2|T |
s3 m31 m32 m33 . . . m3|T |
...

...
...

...
. . .

...
s|S| m|S|1 m|S|2 m|S|3 . . . m|S||T |




To assign IDs to path sets, we use f(tj) = r (1 ≤
r ≤ |T |) to denote that, with an ID assignment f, the ID
for tj is r (or ranks the r-th among all the IDs). With
f, we actually permutate columns on M to obtain N.
Column r in N corresponds to column tj in M, i.e.,

4The consecutiveness has local significance. Suppose path IDs 4, 6,
7 are on the switch (all exit through port p), but 5 are not present, then
4, 6, 7 are still consecutive and can be aggregated as 1∗∗→p.

5Note that the routing entries can be further optimized using subnet-
ting and supernetting [16], in this paper, we just use AIBs to indicate
entries for simplicity, in practice the table size can be even smaller.

[n1r, n2r, · · · , n|S|r]
T = [m1j ,m2j , · · · ,m|S|j ]

T.

N =f(M) =




1 2 3 . . . |T |
s1 n11 n12 n13 . . . n1|T |
s2 n21 n22 n23 . . . n2|T |
s3 n31 n32 n33 . . . n3|T |
...

...
...

...
. . .

...
s|S| n|S|1 n|S|2 n|S|3 . . . n|S||T |




With matrix N, we can calculate the number of AIBs
on each switch. To compute it on switch si, we only need
to sequentially check all the elements on the i-th row.
If there exist sequential non-zero elements that are the
same, it means all these consecutive IDs share the same
egress port and belong to a same AIB. Otherwise, one
more AIB is needed. Thus, the total number of AIBs
on switch si is:

AIB(si) = 1 +

|T |−1∑
r=1

(nir ⊕ ni(r+1)) (1)

where u ⊕ v = 1 if u �= v (0 is skipped), and 0 oth-
erwise. With Equation 1, we can obtain the maximal
number of AIBs among all the switches: MAIB =
max

1≤i≤|S|
{AIB(si)}, and our goal is to find an f that min-

imizes MAIB.

3.2.2 Solution

ID assignment algorithm: The above problem is NP-
hard as it can be reduced from the 3-SAT problem [37].
Thus, we resort to heuristics. Our practical solution is
guided by the following thought. Each switch si has its
own local optimal assignment fi. But these individual
local optimal assignments may conflict with each other
by assigning different IDs to a same path set on differ-
ent switches, causing an ID inconsistency on this path
set. To generate a global optimized assignment f from
the local optimal assignments fis, we can first optimally
assign IDs to path sets on each switch individually, and
then resolve the ID inconsistency on each path set in an
incremental manner. In other words, we require that each
step of ID inconsistency correction introduces minimal
increase on MAIB.

Based on the above consideration, we introduce our
ID Assignment(·) in Algorithm 1. The main idea behind
the algorithm is as follows.
• First, we assign IDs to path sets on each switch in-

dividually. We achieve the optimal result for each
switch by simply assigning the path sets that have the
same egress ports with consecutive IDs (lines 1–2).

• Second, we correct inconsistent IDs of each path set
incrementally. After the first step, the IDs for a path

5
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M =




t1 t2 t3 t4 t5 t6

s1 1 1 1 2 1 2
s2 2 1 1 2 3 4
s3 1 2 2 2 3 2


→M′

0 =




t1 t2 t3 t4 t5 t6

s1 1(1) 1(2) 1(3) 2(5) 1(4) 2(6)
s2 2(3) 1(1) 1(2) 2(4) 3(5) 4(6)
s3 1(1) 2(2) 2(3) 2(4) 3(6) 2(5)


→M′

1 =




t1 t2 t3 t4 t5 t6

s1 1(3) 1(2) 1(1) 2(5) 1(4) 2(6)
s2 2(3) 1(1) 1(2) 2(4) 3(5) 4(6)
s3 1(3) 2(2) 2(1) 2(4) 3(6) 2(5)


→

M′
2 =




t1 t2 t3 t4 t5 t6
s1 1(3) 1(2) 1(1) 2(5) 1(4) 2(6)
s2 2(3) 1(2) 1(1) 2(4) 3(5) 4(6)
s3 1(3) 2(2) 2(1) 2(4) 3(6) 2(5)


→ . . . →M′

6 =




t1 t2 t3 t4 t5 t6
s1 1(3) 1(2) 1(1) 2(4) 1(6) 2(5)
s2 2(3) 1(2) 1(1) 2(4) 3(6) 4(5)
s3 1(3) 2(2) 2(1) 2(4) 3(6) 2(5)


→N =




1 2 3 4 5 6

s1 1 1 1 2 2 1
s2 1 1 2 2 4 3
s3 2 2 1 2 2 3




Figure 5: Walk-through example on Algorithm 1: for any element x(y) in M′
k (1 ≤ k ≤ 6), x is the egress port

and y is the ID assigned to a path set tj on switch si, red/green ys mean inconsistent/consistent IDs for path sets.

Algorithm 1 Coordinated ID assignment algorithm
ID Assignment(M) /* M is initial matrix, N is
output */;

1 foreach row i of M (i.e., switch si) do
2 assign path sets tj(1 ≤ j ≤ |T |) having the

same mij values (i.e., egress ports) with con-
secutive IDs;

/* path sets are optimally encoded on each switch
locally, but one path set may have different IDs as-
signed with respect to different switches */;

3 M′ ← M with IDs specified for each tj in each si;
4 foreach column j of M′ (i.e., path set tj) do
5 if tj has inconsistent IDs then
6 let C = {c1, c2, · · · , ck}, (1 < k ≤ |S|) be

the set of inconsistent IDs;
7 foreach c ∈ C do
8 tentatively use c to correct the inconsis-

tency by swapping ci with c on each rel-
evant switch;

9 compute MAIB;

10 ID(tj) ← c with the minimal MAIB;

11 return N ← f(M′); /* M′ is inconsistency-free */

set on different switches may be different. For any
path set having inconsistent IDs, we resolve this as
follows: we pick one ID out of all the inconsistent IDs
of this path set and let other IDs be consistent with
it provided that such correction leads to the minimal
MAIB (lines 4–10). More specifically, in lines 6–9,
we try each of the inconsistent IDs, calculate the as-
sociated MAIB if we correct the inconsistency with
this ID, and finally pick the one that leads to the min-
imal MAIB. The algorithm terminates after we re-
solve the ID inconsistencies for all the path sets.
In Fig. 5 we use a simple example to walk readers

through the algorithm. Given M with 6 path sets across 3
switches, we first encode each switch optimally. This is
achieved by assigning path sets having the same egress
port with consecutive IDs. For example, on switch s1,
path sets t1, t2, t3, t5 exit from port1 and t4, t6 from
port2, then we encode t1, t2, t3, t5 with IDs 1, 2, 3, 4 and

t4, t6 with 5, 6 respectively. We repeat this on s2 and
s3, and achieve M′

0 with MAIB = 4. However, we
have inconsistent IDs (marked in red) for all path sets.
For example, t1 has different IDs 1, 3, 1 on s1, s2, s3 re-
spectively. Then, we start to correct the inconsistency
for each path set. For t1 with inconsistent IDs 1, 3, 1,
we try to correct with IDs 1 and 3 respectively. To cor-
rect with ID 1, we exchange IDs 3 and 1 for t1 and t2
on switch s2, and get MAIB = 5. To correct with
ID 3, we exchange IDs 1 and 3 for t1 and t3 on switch
s1 and s3, and get MAIB = 4. We thus choose to
correct with ID 3 and achieve M′

1 as it has minimal
MAIB = 4. We perform the same operation for the
remaining path sets one by one and finally achieve M′

6

with MAIB = 4. Therefore, the final ID assignment is
f : (t1, t2, t3, t4, t5, t6) → (3, 2, 1, 4, 6, 5).

We note that the proposed algorithm is not optimal and
has room to improve. However, it is effective in com-
pressing the routing tables as we will show in our eval-
uation. One problem is the time cost as it works on a
large matrix. We intentionally designed our Algorithm 1
to be of low time complexity, i.e., O(|S|2|T |) for the
|S|×|T | matrix M. Even though, we find that when the
network scales to several thousands, it cannot return a re-
sult within 24 hours (see Table 4). Worse, it is possible
that |S|∼104−5 and |T |∼106 or more for large DCNs. In
such cases, even a linear time algorithm can be slow, not
to mention any advanced algorithms.

Speedup with equivalence reduction: To speed up,
we exploit DCN topology characteristics to reduce the
runtime of our algorithm. The observation is that most
DCN topologies are regular and many nodes are equiva-
lent (or symmetric). These equivalent nodes are likely to
have similar numbers of routing states for any given ID
assignment, especially when the path sets are symmetri-
cally distributed. The reason is that for two equivalent
switches, if some path sets share a common egress port
on one switch, most of these path sets, if not all, are likely
to pass through a common egress port on another switch.
As a result, no matter how the path sets are encoded, the
ultimate routing entries on two equivalent switches tend
to be similar. Thus, our hypothesis is that, by picking
a representative node from each equivalence node class,

6
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DCNs Nodes # Links #
Original
paths#

Max. entries #
without compression

Path sets # after
Step I compression

Max. entries # after
Step I compression

Max. entries # after
Step II compression

Fattree(8) 208 384 15,872 944 512 496 116
Fattree(16) 1,344 3,072 1,040,384 15,808 8,192 8,128 968
Fattree(32) 9,472 24,576 66,977,792 257,792 131,072 130,816 7,952
Fattree(64) 70,656 196,608 4,292,870,144 4,160,512 2,097,152 2,096,128 64,544
BCube(4, 2) 112 192 12,096 576 192 189 108
BCube(8, 2) 704 1,536 784,896 10,752 1,536 1,533 522
BCube(8, 3) 6,144 16,384 67,092,480 114,688 16,384 16,380 4,989
BCube(8, 4) 53,248 163,840 5,368,545,280 1,146,880 163,840 163,835 47,731

VL2(20, 8, 40) 1,658 1,760 31,200 6,900 800 780 310
VL2(40, 16, 60) 9,796 10,240 1,017,600 119,600 6,400 6,360 2,820
VL2(80, 64, 80) 103,784 107,520 130,969,600 4,030,400 102,400 102,320 49,640

VL2(100, 96, 100) 242,546 249,600 575,760,000 7,872,500 240,000 239,900 117,550
HyperX(3, 4, 40) 2,624 2,848 12,096 432 192 189 103
HyperX(3, 8, 60) 31,232 36,096 784,896 4,032 1,536 1,533 447
HyperX(4, 10, 80) 810,000 980,000 399,960,000 144,000 40,000 39,996 8,732

HyperX(4, 16, 100) 6,619,136 8,519,680 17,179,607,040 983,040 262,144 262,140 36,164

Table 3: Results of XPath on the 4 well-known DCNs.

we can optimize the routing tables for all the nodes in the
topology while spending much less time.

Based on the hypothesis, we improve the runtime of
Algorithm 1 with equivalence reduction. This speedup
makes no change to the basic procedure of Algorithm 1.
Instead of directly working on M with |S| rows, the key
idea is to derive a smaller M∗ with fewer rows from M
using equivalence reduction, i.e., for all the equivalent
nodes sis in M we only pick one of them into M∗, and
then apply ID Assignment(·) on M∗. To this end, we
first need to compute the equivalence classes among all
the nodes, and there are many fast algorithms available
for this purpose [10, 14, 28]. This improvement enables
our algorithm to finish with much less time for various
well-known DCNs while still maintaining good results
as we will show subsequently.

3.3 Scalability evaluation

Evaluation setting: We evaluate XPath’s scalability on
4 well-known DCNs: Fattree [4], VL2 [17], BCube [18],
and HyperX [3]. Among these DCNs, BCube is a server-
centric structure where servers act not only as end hosts
but also relay nodes for each other. For the other 3 DCNs,
switches are the only relay nodes and servers are con-
nected to ToRs at last hop. For this reason, we consider
the paths between servers in BCube and between ToRs
in Fattree, VL2 and HyperX.

For each DCN, we vary the network size (Table 3). We
consider k2/4 paths between any two ToRs in Fattree(k),
(k + 1) paths between any two servers in BCube(n, k),
DA paths between any two ToRs in VL2(DA, DI , T ),
and L paths between any two ToRs in HyperX(L, S, T )6.

6DCNs use different parameters to describe their topologies.
In Fattree(k), k is the number of switch ports; in BCube(n, k),
n is the number of switch ports and k is the BCube lay-
ers; in VL2(DA, DI , T ), DA/DI are the numbers of aggrega-
tion/core switch ports and T is the number of servers per rack; in

These paths do not enumerate all possible paths in the
topology, however, they cover all desired paths sufficient
to exploit topology redundancy in each DCN.

Our scalability experiments run on a Windows server
with an Intel Xeon E7-4850 2.00GHz CPU and 256GB
memory.

Main results: Table 3 shows the results of XPath algo-
rithm on the 4 well-known DCNs, which demonstrates
XPath’s high scalability. Here, for paths to path sets ag-
gregation we used CPF.

We find that XPath can effectively pre-install up to
tens of billions of paths using tens of thousands of rout-
ing entries for very large DCNs. Specifically, for Fat-
tree(64) we express 4 billion paths with 64K entries; for
BCube(8,4) we express 5 billion paths with 47K entries;
for VL2(100,96,100) we express 575 million paths with
117K entries; for HyperX(4,16,100) we express 17 bil-
lion paths with 36K entries. These results suggest that
XPath can easily pre-install all desired paths into IP LPM
tables with 144K entries, and in the meanwhile XPath
is still able to accommodate more paths before reaching
144K.

Understanding the ID assignment: The most difficult
part of the XPath compression algorithm is Step II (i.e.,
ID assignment), which eventually determines if XPath
can pre-install all desired paths using 144K entries. The
last two columns of Table 3 contrast the maximal entries
before and after our coordinated ID assignment for each
DCN.

We find that XPath’s ID assignment algorithm can ef-
ficiently compress the routing entries by 2× to 32× for
different DCNs. For example, before our coordinated ID
assignment, there are over 2 million routing entries in the
bottleneck switch (i.e., the switch with the largest rout-
ing table size) for Fattree(64), and after it, we achieve

HyperX(L, S, T ), L is the number of dimensions, S is the number of
switches per dimension, and T is the number of servers per rack.

7
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DCNs
Time cost (Second)

No equivalence reduction Equivalence reduction

Fattree(16) 8191.121000 0.078000
Fattree(32) >24 hours 4.696000
Fattree(64) >24 hours 311.909000
BCube(8, 2) 365.769000 0.046000
BCube(8, 3) >24 hours 6.568000
BCube(8, 4) >24 hours 684.895000

VL2(40, 16, 60) 227.438000 0.047000
VL2(80, 64, 80) >24 hours 3.645000

VL2(100, 96, 100) >24 hours 28.258000
HyperX(3, 4, 40) 0.281000 0.000000

HyperX(4, 10, 80) >24 hours 10.117000
HyperX(4, 16, 100) >24 hours 442.379000

Table 4: Time cost of ID assignment algorithm with
and without equivalence reduction for the 4 DCNs.

64K entries via prefix aggregation. In the worst case, we
still compress the routing states from 240K to 117K in
VL2(100,96,100). Furthermore, we note that the rout-
ing entries can be further compressed using traditional
Internet IP prefix compression techniques, e.g., [16], as
a post-processing step. Our ID assignment algorithm
makes this prefix compression more efficient.

We note that our algorithm has different compression
effects on different DCNs. As to the 4 largest topolo-
gies, we achieve a compression ratio of 2,096,128

64,544 =32.48

for Fattree(64), 262,140
36,164 = 7.25 for HyperX(4,16,100),

163,835
47,731 = 3.43 for BCube(8,4), and 239,900

117,550 = 2.04 for
VL2(100,96,100) respectively. We believe one important
decisive factor for the compression ratio is the density of
the matrix M. According to Equation 1, the number of
routing entries is related to the non-zero elements in M.
The sparser the matrix, the more likely we achieve better
results. For example, in Fattree(64), a typical path set tra-
verses 1

32 aggregation switches and 1
1024 core switches,

while in VL2(100,96,100), a typical path set traverses
1
2 aggregation switches and 1

50 core switches. This in-
dicates that MFattree is much sparser than MVL2, which
leads to the effect that the compression on Fattree is bet-
ter than that on VL2.

Time cost: In Table 4, we show that equivalence re-
duction speeds up the runtime of the ID assignment al-
gorithm. For example, without equivalence reduction, it
cannot return an output within 24 hours when the net-
work scales to a few thousands. With it, we can get re-
sults for all the 4 DCNs within a few minutes even when
the network becomes very large. This is acceptable be-
cause it is one time pre-computation and we do not re-
quire routing table re-computation as long as the network
topology does not change.

Effect of equivalence reduction: In Fig. 6, we compare
the performance of our ID assignment with and without
equivalence reduction. With equivalence reduction, we
use M∗ (i.e., part of M) to perform ID assignment, and it
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Figure 6: Effect of ID assignment algorithm with and
without equivalence reduction for the 4 DCNs.

turns out that the results are similar to that without equiv-
alence reduction. This partially validates our hypothesis
in §3.2.2. Furthermore, we note that the algorithm with
equivalence reduction can even slightly outperform that
without it in some cases. This is not a surprising result
since both algorithms are heuristic solutions to the origi-
nal problem.

Results on randomized DCNs: We note that most
other DCNs such as CamCube [2] and CiscoDCN [13]
are regular and XPath can perform as efficiently as
above. In recent work such as Jellyfish [39] and
SWDC [38], the authors also discussed random graphs
for DCN topologies. XPath’s performance is indeed un-
predictable for random graphs. But for all the Jellyfish
topologies we tested, in the worst case, XPath still man-
ages to compress over 1.8 billion paths with less than
120K entries. The runtime varies from tens of minutes to
hours or more depending on the degree of symmetry of
the random graph.

4 Implementation and Experiments

We have implemented XPath on both Windows and
Linux platforms, and deployed it on a 54-server Fat-
tree testbed with commodity switches for experiments.
This paper describes the implementation on Windows. In
what follows, we first introduce path ID resolution (§4.1)
and failure handling (§4.2). Then, we present testbed
setup and basic XPath experiments (§4.3).

4.1 Path ID resolution

As introduced in §2.2, path ID resolution addresses how
to resolve the path IDs (i.e., routing IPs) for a destina-
tion. To achieve fault-tolerant path ID resolution, there
are two issues to consider. First, how to distribute the
path IDs of a destination to the source. The live paths to
the destination may change, for example, due to link fail-
ures. Second, how to choose the path for a destination,
and enforce such path selection in existing networks.

8
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Application XPath 
User Mode Daemon

XPath Kernel Driver

User
Kernel

NDIS Filter Driver

XPath User Mode Daemon

Flow Table

Packet Header Modifier

Packet Header 
Parser

Path Selection

TCP/IP

NIC Driver

Figure 7: The software stacks of XPath on servers.

These two issues look similar to the name resolution in
existing DNS. In practice, it is possible to return multiple
IPs for a server, and balance the load by returning differ-
ent IPs to the queries. However, integrating the path ID
resolution of XPath into existing DNS may challenge the
usage of IPs, as legacy applications (on socket commu-
nication) may use IPs to differentiate the servers instead
of routing to them. Thus, in this paper, we develop a
clean-slate XPath implementation on the XPath manager
and end servers. Each server has its original name and IP
address, and the routing IPs for path IDs are not related
to DNS.

To enable path ID resolution, we implemented a XPath
software module on the end server, and a module on the
XPath manager. The end server XPath software queries
the XPath manager to obtain the updated path IDs for a
destination. The XPath manager returns the path IDs by
indexing the IP-to-ID mapping table. From the path IDs
in the query response, the source selects one for the cur-
rent flow, and caches all (with a timeout) for subsequent
communications.

To maintain the connectivity to legacy TCP/IP stacks,
we design an IP-in-IP tunnel based implementation.
The XPath software encapsulates the original IP packets
within an IP tunnel: the path ID is used for the tunnel IP
header and the original IP header is the inner one. After
the tunnel packets are decapsulated, the inner IP packets
are delivered to destinations so that multi-path routing
by XPath is transparent to applications. Since path IDs
in Fattree end at the last hop ToR, the decapsulation is
performed there. The XPath software may switch tunnel
IP header to change the paths in case of failures, while
for applications the connection is not affected. Such IP-
in-IP encapsulation also eases VM migration as VM can
keep the original IP during migration.

We note that if VXLAN [42] or NVGRE [32] is intro-
duced for tenant network virtualization, XPath IP header
needs to be the outer IP header and we will need 3 IP
headers which looks awkward. In the future, we may
consider more efficient and consolidated packet format.
For example, we may put path ID in the outer NVGRE
IP header and the physical IP in NVGRE GRE Key field.
Once the packet reaches the destination, the host OS then
switches the physical IP and path ID.

In our implementation, the XPath software on end

servers consists of two parts: a Windows Network Driver
Interface Specification (NDIS) filter driver in kernel
space and a XPath daemon in user space. The soft-
ware stacks of XPath are shown in Fig. 7. The XPath
filter driver is between the TCP/IP and the Network In-
terface Card (NIC) driver. We use the Windows filter
driver to parse the incoming/outgoing packets, and to in-
tercept the packets that XPath is interested in. The XPath
user mode daemon is responsible for path selection and
packet header modification. The function of the XPath
filter driver is relatively fixed, while the algorithm mod-
ule in the user space daemon simplifies debugging and
future extensions.

In Fig. 7, we observe that the packets are transferred
between the kernel and user space, which may degrade
the performance. Therefore, we allocate a shared mem-
ory pool by the XPath driver. With this pool, the packets
are not copied and both the driver and the daemon oper-
ate on the same shared buffer. We tested our XPath im-
plementation (with tunnel) and did not observe any visi-
ble impact on TCP throughput at Gigabit line rate.

4.2 Failure handling

As introduced in §2.2, when a link fails, the devices on
the failed link will notify the XPath manager. In our im-
plementation, the communication channel for such no-
tification is out-of-band. Such out-of-band control net-
work and the controller are available in existing produc-
tion DCNs [44].

The path IDs for a destination server are distributed us-
ing a query-response based model. After the XPath man-
ager obtains the updated link status, it may remove the
affected paths or add the recovered paths, and respond to
any later query with the updated paths.

For proof-of-concept experiments, we implemented a
failure detection method with TCP connections on the
servers. In our XPath daemon, we check the TCP se-
quence numbers and switch the path ID once we detect
that the TCP has retransmitted a data packet after a TCP
timeout. The motivation is that the TCP connection is
experiencing bad performance on the current path (ei-
ther failed or seriously congested) and the XPath driver
has other alternative paths ready for use. We note that
this TCP based approach is sub-optimal and there are
faster failure detection mechanisms such as BFD [15] or
F10 [27] that can detect failures in 30µs, which XPath
can leverage to perform fast rerouting (combining XPath
with these advanced failure detection schemes is our fu-
ture work). A key benefit of XPath is that it does not re-
quire route re-convergence and is loop-free during failure
handling. This is because XPath pre-installs the backup
paths and there is no need to do table re-computation un-
less all backup paths are down.
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Figure 8: Fattree(6) testbed with 54 servers. Each
ToR switch connects 3 servers (not drawn).
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Figure 9: The CDF of path ID resolution time.

4.3 Testbed setup and basic experiments

Testbed setup: We built a testbed with 54 servers con-
nected by a Fattree(6) network (as shown in Fig. 8) using
commodity Pronto Broadcom 48-port Gigabit Ethernet
switches. On the testbed, there are 18 ToR, 18 Agg, and
9 Core switches. Each switch has 6 GigE ports. We
achieve these 45 virtual 6-port GigE switches by par-
titioning the physical switches. Each ToR connects 3
servers; and the OS of each server is Windows Server
2008 R2 Enterprise 64-bit version. We deployed XPath
on this testbed for experimentation.

IP table configuration: On our testbed, we consider
2754 explicit paths between ToRs (25758 paths between
end hosts). After running the two-step compression al-
gorithm, the number of routing entries for the switch IP
tables are as follows, ToR: 31∼33, Agg: 48, and Core:
6. Note that the Fattree topology is symmetric, the num-
bers of routing entries after our heuristic are almost the
same for the switches at the same layer, which confirms
our hypothesis in §3.2.2 that equivalent nodes are likely
to have similar numbers of entries.

Path ID resolution time: We measure the path ID reso-
lution time at the XPath daemon on end servers: from the
time when the query message is generated to the time the
response from the XPath manager is received. We repeat
the experiment 4000 times and depict the CDF in Fig. 9.
We observe that the 99-th percentile latency is 4ms. The
path ID resolution is performed for the first packet to a
destination server that is not found in the cache, or cache
timeout. A further optimization is to perform path ID
resolution in parallel with DNS queries.

XPath routing with and without failure: In this exper-
iment, we show basic routing of XPath, with and with-
out link failures. We establish 90 TCP connections from
the 3 servers under ToR T1 to the 45 servers under ToRs
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Figure 10: TCP goodput of three connections versus
time on three phases: no failure, in failure, and recov-
ered.

T4 to T18. Each source server initiates 30 TCP connec-
tions in parallel, and each destination server hosts two
TCP connections. The total link capacity from T1 is
3×1G=3G, shared by 90 TCP connections.

Given the 90 TCP connections randomly share 3 up
links from T1, the load should be balanced overall. At
around 40 seconds, we disconnect one link (T1 to A1).
We use TCP sequence based method developed in §4.2
for automatic failure detection and recovery in this ex-
periment. We then resume the link at time around 80
seconds to check whether the load is still balanced. We
log the goodput (observed by the application) and show
the results for three connections versus time in Fig. 10.
Since we find that the throughput of all 90 TCP connec-
tions are very similar, we just show the throughput of one
TCP connection for each source server.

We observe that all the TCP connections can share the
links fairly with and without failure. When the link fails,
the TCP connections traversing the failed link (T1 to A1)
quickly migrate to the healthy links (T1 to A2 and A3).
When the failed link recovers, it can be reused on a new
path ID resolution after the timeout of the local cache. In
our experiment, we set the cache timeout value as 1 sec-
ond. However, one can change this parameter to achieve
satisfactory recovery time for resumed links. We also run
experiments for other traffic patterns, e.g., ToR-to-ToR
and All-to-ToR, and link failures at different locations,
and find that XPath works as expected in all cases.

5 XPath Applications

To showcase XPath’s utility, we use it for explicit path
support in four applications. The key is that, built on
XPath, applications can freely choose which path to use
without worrying about how to set up the path and the
time cost or overhead of setting up the path. In this re-
gard, XPath emerges as an interface for applications to
use explicit paths conveniently, but does not make any
choice on behalf of them.
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Figure 11: XPath utility case #1: we leverage XPath
to make necessary bandwidth easier to implement for
provisioned IOPS.

5.1 XPath for provisioned IOPS

In cloud services, there is an increasing need for provi-
sioned IOPS. For example, Amazon EBS enforces pro-
visioned IOPS for instances to ensure that disk resources
can be accessed with high and consistent I/O perfor-
mance whenever you need them [25]. To enforce such
provisioned IOPS, it should first provide necessary band-
width for the instances [9]. In this experiment, we show
XPath can be easily leveraged to use the explicit path
with necessary bandwidth.

As shown in Fig. 11(a), we use background UDP flows
to stature the ToR-Agg links and leave the remaining
bandwidth on 3 paths (P1, P2 and P3) between X-Y as
300Mpbs, 100Mbps, and 100Mbps respectively. Sup-
pose there is a request for provisioned IOPS that requires
500Mbps necessary bandwidth (The provisioned IOPS is
about 15000 and the chunk size is 4KB.). We now lever-
age XPath and ECMP to write 15GB data (≈4 million
chunks) through 30 flows from X to Y, and measure the
achieved IOPS respectively. The storage we used for the
experiment is Kingston V+200 120G SSD, and the I/O
operations on the storage are sequential read and sequen-
tial write.

From Fig. 11(c), it can be seen that using ECMP we
cannot provide the necessary bandwidth between X-Y
for the provisioned IOPS although the physical capac-
ity is there. Thus, the actual achieved IOPS is only 4547,
and the write under ECMP takes much longer time than
that under XPath as shown in Fig. 11(c). This is be-
cause ECMP performs random hashing and cannot spec-
ify the explicit path to use, hence it cannot accurately
make use of the remaining bandwidth on each of the
multiple paths for end-to-end bandwidth provisioning. In
contrast, XPath can be easily leveraged to provide the re-
quired bandwidth due to its explicit path control. With
XPath, we explicitly control how to use the three paths
and accurately provide 500Mbps necessary bandwidth,
achieving 15274 IOPS.





























(a) Path P1: T1 →A1 →T3; P2: T1 →A2 →T3; P3:
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Figure 12: XPath utility case #2: we leverage XPath
to assist zUpdate [26] to accomplish DCN update with
zero loss.

5.2 XPath for network updating
In production data centers, DCN update occurs fre-
quently [26]. It can be triggered by the operators, ap-
plications and various networking failures. zUpdate [26]
is an application that aims to perform congestion-free
network-wide traffic migration during DCN updates with
zero loss and zero human effort. In order to achieve its
goal, zUpdate requires explicit routing path control over
the underlying DCNs. In this experiment, we show how
XPath assists zUpdate to accomplish DCN update and
use a switch firmware upgrade example to show how traf-
fic migration is conducted with XPath.

In Fig. 12(a), initially we assume 4 flows (f1, f2, f3
and f4) on three paths (P1, P2 and P3). Then we move f1
away from switch A1 to do a firmware upgrade for switch
A1. However, neither P2 nor P3 has enough spare band-
width to accommodate f1 at this point of time. Therefore
we need to move f3 from P2 to P3 in advance. Finally,
after the completion of firmware upgrade, we move all
the flows back to original paths. We leverage XPath to
implement the whole movement.

In Fig. 12(b), we depict the link utilization dynamics.
At time t1, when f3 is moved from P2 to P3, the link uti-
lization of P2 drops from 0.6 to 0.4 and the link utiliza-
tion of P3 increases from 0.7 to 0.9. At time t2, when f1
is moved from P1 to P2, the link utilization of P1 drops
from 0.5 to 0 and the link utilization of P2 increases from
0.4 to 0.9. The figure also shows the changes of the link
utilization at time t3 and t4 when moving f3 back to P2

and f1 back to P1. It is easy to see that with the help of
XPath, P1, P2 and P3 see no congestion and DCN update
proceeds smoothly without loss.
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Figure 13: XPath utility case #3: we leverage XPath
to accurately enforce VDC with bandwidth guaran-
tees.

5.3 Virtual network enforcement with
XPath

In cloud computing, virtual data center (VDC) abstrac-
tion with bandwidth guarantees is an appealing model
due to its performance predictability in shared environ-
ments [7, 19, 45]. In this experiment, we show XPath
can be applied to enforce virtual networks with band-
width guarantees. We assume a simple SecondNet-based
VDC model with 4 virtual links, and the bandwidth re-
quirements on them are 50Mbps, 200Mbps, 250Mbps
and 400Mbps respectively as shown in Fig. 13(a). We
then leverage XPath’s explicit path control to embed this
VDC into the physical topology.

In Fig. 13(b), we show that XPath can easily be em-
ployed to use the explicit paths in the physical topology
with enough bandwidth to embed the virtual links. In
Fig. 13(c), we measure the actual bandwidth for each
virtual link and show that the desired bandwidth is accu-
rately enforced. However, we found that ECMP cannot
be used to accurately enable this because ECMP cannot
control paths explicitly.

5.4 Map-reduce data shuffle with XPath

In Map-reduce applications, many-to-many data shuf-
fle between the map and reduce stages can be time-
consuming. For example, Hadoop traces from Facebook
show that, on average, transferring data between suc-
cessive stages accounts for 33% of the running times of
jobs [12]. Using XPath, we can explicitly express non-
conflict parallel paths to speed up such many-to-many
data shuffle. Usually, for a m-to-n data shuffle, we can
use (m+n) path IDs to express the communication pat-
terns. The shuffle patterns can be predicted using exist-
ing techniques [33].

In this experiment, we selected 18 servers in two pods
of the Fattree to emulate a 9-to-9 data shuffle by letting
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Figure 14: XPath utility case #4: we leverage XPath
to select non-conflict paths to speed up many-to-many
data shuffle.

9 servers in one pod send data to 9 servers in the other
pod. We varied the data volume from 40G to over 400G.
We compared XPath with ECMP.

In Fig. 14, it can be seen that by using XPath for data
shuffle, we can perform considerably better than random-
ized ECMP hash-based routing. More specifically, it re-
duces the shuffle time by over 3× for most of the exper-
iments. The reason is that XPath’s explicit path IDs can
be easily leveraged to arrange non-interfering paths for
shuffling, thus the network bisection bandwidth is fully
utilized for speedup.

6 Related Work

The key to XPath is explicit path control. We note
that many other approaches such as source routing [36],
MPLS [35], OpenFlow [29] and the like, can also enable
explicit path control. However, each of them has its own
limitation.

OpenFlow [29] has been used in many recent pro-
posals (e.g., [5, 8, 21, 22, 26]) to enable explicit path
control. OpenFlow can establish fine-grained explicit
routing path by installing flow entries in the switches
via the OpenFlow controller. But in current practice,
there are still challenges such as small flow table size
and dynamic flow entries setup that need to be solved.
For example, the on-chip OpenFlow forwarding rules in
commodity switches are limited to a small number, typ-
ically 1–4K. To handle this limitation, recent solutions,
e.g. [22], dynamically change, based on traffic demand,
the set of live paths available in the network at different
times through dynamic flow table configurations, which
could potentially introduce non-trivial implementation
overhead and performance degradation. XPath addresses
such challenge by pre-installing all desired paths into IP
LPM tables. In this sense, XPath complements exist-
ing OpenFlow-based solutions in terms of explicit path
control, and in the meanwhile, the OpenFlow framework
may still be able to be used as a way for XPath to pre-
configure the switches and handle failures.
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Source routing is usually implemented in software and
slow paths, and not supported in the hardware of the data
center switches, which typically only support destination
IP based routing. Compared to source routing, XPath
is readily deployable without waiting for new hardware
capability; and XPath’s header length is fixed while it is
variable for source routing with different path lengths.

With MPLS, paths can also be explicitly set up before
data transmission using MPLS labels. However, XPath is
different from MPLS in following aspects. First, because
MPLS labels only have local significance, it requires a
dynamic Label Distribution Protocol (LDP) for label as-
signments. In contrast, XPath path IDs are unique, and
we do not need such a signaling protocol. Second, MPLS
is based on exact matching (EM) and thus MPLS labels
cannot be aggregated, whereas XPath is based on longest
prefix matching (LPM) and enables more efficient rout-
ing table compression. Furthermore, MPLS is typically
used only for traffic engineering in core networks instead
of application-level or flow-level path control. In addi-
tion, it is reported [6, 22] that the number of tunnels that
existing MPLS routers can support is limited.

SPAIN [30] builds a loop-free tree per VLAN and uti-
lizes multiple paths across VLANs between two nodes,
which increases the bisection bandwidth over the tradi-
tional Ethernet STP. However, SPAIN does not scale well
because each host requires an Ethernet table entry per
VLAN. Further, its network scale and path diversity are
also restricted by the number of VLANs supported by
Ethernet switches, e.g., 4096.

PAST [40] implements a per-address spanning tree
routing for data center networks using the MAC table.
PAST supports more spanning trees than SPAIN, but
PAST does not support multi-paths between two servers,
because a destination has only one tree. This is decided
by the MAC table size and its exact matching on flat
MAC addresses.

Both SPAIN and PAST are L2 technologies. Rela-
tive to them, XPath builds on L3 and harnesses the fast-
growing IP LPM table of commodity switches. One rea-
son we choose IP instead of MAC is that it allows prefix
aggregation. It is worth noting that our XPath frame-
work contains both SPAIN and PAST. XPath can express
SPAIN’s VLAN or PAST’s spanning tree using CPF, and
it can also arrange paths using DPF and perform path ID
encoding and prefix aggregation for scalability.

Finally, there are various DCN routing schemes that
come with specific topologies, such as those introduced
in Fattree [4], PortLand [31], BCube [18], VL2 [17],
ALIAS [43], and so on. For example, PortLand [31]
leverages Fattree topology to assign hierarchical Pseudo-
MACs to end hosts, while VL2 [17] exploits folded Clos
network to allocate location-specific IPs to ToRs. These
topology-aware addressing schemes generally benefit

prefix aggregation and can lead to very small routing ta-
bles, however they do not enable explicit path control
and still rely on ECMP [31] or Valiant Load Balanc-
ing (VLB) [17] for traffic spreading over multiple paths.
Relative to them, XPath enables explicit path control for
general DCN topologies.

7 Conclusion

XPath is motivated by the need for explicit path control
in DCN applications. At its very core, XPath uses a path
ID to identify an end-to-end path, and pre-installs all the
desired path IDs between any s-d pairs into IP LPM ta-
bles of commodity switches using a two-step compres-
sion algorithm. Through extensive evaluation and imple-
mentation, we show that XPath is scalable and easy to
implement with existing commodity switches. Finally,
we used testbed experiments to show that XPath can di-
rectly benefit many popular DCN applications.
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Abstract
Various full bisection designs have been proposed for dat-
acenter networks. They are provisioned for the worst case
in which every server sends flat out and there is no con-
gestion anywhere in the network. However, these topolo-
gies are prone to considerable underutilisation in the av-
erage case encountered in practice. To utilise spare ca-
pacity we propose GRIN, a simple, cheap and easily de-
ployable solution that simply wires up any free ports dat-
acenter servers may have. GRIN allows each server to
use up to a maximum amount of bandwidth dependent on
the number of available ports and the distribution of idle
uplinks in the network. Our evaluation found significant
benefits for bandwidth-hungry applications running over
our testbed, as well as on 1000 EC2 instances. GRIN can
be used to augment any existing datacenter network, with
a small initial effort and no additional maintenance costs.

1 Introduction
Datacenter networks are provisioned for peak load, as op-
erators want performance guarantees even when the net-
work is highly utilised. At the extreme, operators pro-
vision their network to fully support any possible traf-
fic pattern: the network core is guaranteed never to be-
come a bottleneck, regardless of the traffic patterns gen-
erated by the servers; such networks are said to provide
full-bisection bandwidth. FatTree [3] and VL2 [9] are
full-bisection datacenter topologies deployed in produc-
tion networks. A high profile example is Amazon’s EC2
cloud that was using a topology resembling VL2 for their
regular instances until recently (see Section 2 in [18]), and
are now deploying 10Gbps FatTrees.1

Measurement studies show that datacenter networks are
underutilised: the traffic has on-off patterns leading many
links to run hot for certain periods of time, while even
more links are idle, leaving the network core underutilised
most of the time [9, 13, 6]. Datacenters heavily rely on the
concept of resource pooling: different applications’ work-
loads are multiplexed onto the hardware, and any applica-
tion can in principle expand to utilise as many resources as
it needs as long as there is any available capacity left. Re-
source pooling does not apply to datacenter networks: al-
though the core is underutilised, hosts cannot take advan-
tage because they are often bottlenecked by their NICs.

1Private conversation with Amazon engineers.

In this paper we set out to make datacenter networks
better at resource pooling, which would increase their
average utilisation and provide better performance per
dollar. The obvious solution is to use bigger links be-
tween servers and Top-of-Rack switches: in a 10Gbps
full-bisection network this means either 40Gbps links or
using multiple 10Gbps links (i.e. multihoming). This
technique improves performance: when few servers are
sending data, they can send many times faster. Unfor-
tunately, it is also very expensive: 40Gbps links are not
commodity yet and switches supporting them have small
port densities. Multihoming seems more viable economi-
cally, but even dual-homing requires doubling the number
of ToR switches in the network.

We propose GRIN, a simple change to existing data-
center networks where any free port existing in any server
is connected to a free port of another server in the same or
a neighboring rack. Servers can then communicate using
a path provided by the original topology, or via one of the
servers they are directly connected to. GRIN can function
seamlessly over existing datacenter networks, and the best
case benefits are obvious: for every additional port used,
a server can send 1 or 10 Gbps more traffic if the neigh-
bour’s uplink is idle. As modern NICs are often dual or
quad-ports, these additional interfaces should be already
available in most servers on the market. 2

We tested our GRIN implementation with various
workloads and applications, using both a small local clus-
ter and on 1000 EC2 hosts. GRIN can significantly
increase end-to-end application performance; a 2-port
GRIN setup speeds up HDFS, NFS, Spark and Cassandra
by a factor of two or more in certain scenarios. While un-
modified applications can benefit from GRIN, these gains
depend on the traffic pattern of the neighbouring servers.
Many datacenter apps run on multiple nodes, and schedul-
ing work across these is already an important component
for performance. We have modified a few such apps to
be GRIN-aware when taking their scheduling decisions
(namely HDFS, Hadoop and Spark [25]). By jointly op-
timising addressing, routing and applications, GRIN can
achieve performance similar to multihoming.

2 Problem Statement
To understand why full-bisection networks are under-
utilised most of the time, we measure the network utili-

2Our brief survey shows most adapters on the market are dual and
quad port, and price per port decreases significantly for multi-port NICs.



30 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Figure 1: Network utilisation of a simple Map/Reduce job

sation of a small cluster of ten servers connected to non-
blocking switch and running a map-reduce job, a typical
datacenter application [8]. The servers run Hadoop word-
count over a collection of web pages (50GB) and they
store at replication level 3. We plot the network through-
put measured for one server in Figure 1.

In the map phase, there will be a small percentage of
tasks whose data is non-local ([26] estimates 1%-10%),
thus requiring filesystem reads from other servers, which
will be bottlenecked by the host NIC capacities, assum-
ing appropriate storage provisioning. The shuffle phase
will move the data generated by the mappers to the re-
ducers. The shuffle phase is notoriously bandwidth hun-
gry, but this depends on the number of reducers. In the
worst case, all servers are reducers and download data at
the same time, leading to an all-to-all traffic pattern that
fully utilises the network core—in fact, this is the main
motivation given for building full-bisection networks [3].
In practice, the number of reducers is an order of magni-
tude smaller then the number of mappers, and the shuffle
phase starts earlier for some servers, thus the core network
utilisation will be a lot smaller; still, some reducers will
be bottlenecked by their servers’ NIC. Finally, the output
of the reduce phase is written to disk leading to point-to-
point transfers, again bottlenecked by the host NIC.

We want to change existing topologies to allow hosts to
utilise as much of the idle parts of the network as possible
when other hosts are not active (in the map or output phase
of the job above, for example). Good solutions share the
following properties:
• Ability to scale: cost is a major factor that deter-

mines what is feasible to deploy in practice. Using
more server ports should increase performance and
incur little to no additional costs.

• Fairness and isolation: access to neighbour links
must be mediated such that each server gets a fair
share of the total bandwidth. Misbehaving servers
should be penalized, and they should not adversely
affect the performance of the network.

• Widely applicable: it should be possible to apply
the solution to existing or future networks.

• Incrementally deployable: it should be possible to
deploy the solutions on live datacenter networks with

minimal disruption. This implies hardware or soft-
ware changes to the network core (including rout-
ing algorithms) are out-of-scope. Further, upgrading
only a subnet should bring appropriate benefits.

Barring extensive changes to the original topology, the
most straightforward solution is to multihome servers by
using additional TOR switches. We add a TOR switch
for every additional server port (see Fig.2b), so that each
server is connected to each of the multiple TOR switches
from its rack. In order to keep the rest of the topology
unchanged, we evenly divide the uplinks of the original
TOR switch between all the local TOR switches. The re-
sulting topology is oversubscribed, but now each server
can potentially use much more bandwidth. Multihoming
brings additional costs in terms of switching equipment,
rack-space, energy usage and maintenance. As every ad-
ditional server port could require an extra switch, this so-
lution does not scale well with the number of server ports.

3 GRIN
Our solution is to interconnect servers directly using ad-
ditional ports (some of which are already installed, and
effectively free), while keeping the original topology un-
changed. Each pair of servers that are directly connected
in this manner become neighbours. Intuitively, when a
server does not need to use its main network interface, it
may allow one or more of its neighbours to “borrow” it,
by forwarding packets received from them (or packets ad-
dressed to them) to their final destination. This solution is
depicted in Figure 2c and we call it GRIN.

When a server wishes to transmit, it can use both its
uplink and the links leading to its neighbours. Conversely,
the destination can be reached through both its uplink and
via its neighbours. We call the links used to interconnect
servers, horizontal (or GRIN) links, and reserve the term
uplinks for those that connect servers to the switch in the
original topology. The network interface where the uplink
is connected becomes the primary interface of the server,
while the others are considered to be secondary interfaces.
If every server has n GRIN neighbours, we say that the
degree of the GRIN topology is equal to n.

Cabling. The baseline GRIN implementation relies on
servers being interconnected within the same rack. This is
the cheapest solution, and should work at even the high-
est link speeds. From a performance point of view, it is
best to connect those servers that usually do not need to
access the network at the same time, otherwise intercon-
nection will not bring major gains beyond improving local
throughput. Traditionally, distributed applications tend to
localize traffic within racks or pods (multiple racks) be-
cause inter-pod bandwidth used to be scarce. In such cases
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Figure 2: Enhancing a VL2 topology to improve network utilisation

and when nearby servers run the same distributed appli-
cation, we can enhance the application’s scheduler to be-
come GRIN aware (see §3.4). Whenever possible, we can
also connect servers from neighbouring racks. Cross-rack
cabling is more complex to wire but ensures better fault
tolerance to ToR switch failures.

Path Length. Most datacenter topologies have multiple
equal cost paths between servers. With GRIN, the set of
paths can grow to include elements consisting of increas-
ingly large number of hops. When choosing a path be-
tween two random servers, we can select (1) one of the
paths available in the original topology, (2) a path that
consists entirely of GRIN links, and (3) any number of
intermediate servers, and form a path using the concate-
nation of all intermediate paths.

A compromise must be found between limiting path
length and trying to make the most of the available net-
work capacity. One limitation is the fact that any path
should traverse at most two uplinks: once in the full-
bisection bandwidth network core, there is no reason for
traffic to be bounced via another “waypoint” server. Thus,
in a GRIN topology a path consists of three segments:
• the first horizontal segment, which is a group of

horizontal links going from the source to the server
whose uplink is used to reach the first switch

• the path taken from the first to the second uplink
through the original network core

• the second horizontal segment, which also consists
of a number of GRIN links and goes from the second
uplink to the destination server

A horizontal segment can also be empty; for example,
any path that was also available in the original topology
does not include any horizontal links. We use the term
horizontaln routing (or hn routing) to describe the fact
that in a given GRIN topology we are only interested in
paths which have horizontal segments of length at most n;
by this definition, the original topology uses h0 routing.

3.1 A strawman design

For GRIN to work, it needs five key components:
• An algorithm to assign addresses to horizontal GRIN

interfaces. We term these secondary addresses.
• Techniques to enable servers to discover secondary

addresses of other servers, so that they can use them
to send traffic.

• Ability to efficiently route traffic to secondary ad-
dresses via the appropriate neighbour.

• Ability to create paths spanning multiple horizontal
GRIN links.

• A mechanism to spread traffic over the multiple paths

Designing all these seems simple at first sight, and
a strawman solution is the following. First, assign
datacenter-unique addresses to secondary interfaces in a
different subnet from the uplinks to allow servers to dis-
tinguish primary and secondary addresses. To enable dis-
covery of secondary addresses, simply use DNS, assum-
ing it is already deployed in the datacenter: register a new
”A” record for every secondary interface of server s in the
DNS entry for s. Servers discover secondary interfaces by
running a DNS lookup.

Routing traffic to a secondary address via a neighbour
is trickier. The routing system needs to be informed of
the neighbours reachable via a server, and the straight-
forward solution is to run the datacenter routing proto-
col (e.g. OSPF) all the way down to the servers, and
have neighbour addresses announced in the routing sys-
tem. This solution is unwieldy: link-state protocols such
as OSPF do not scale well beyond a few thousand routers,
and pushing servers into OSPF breaks this boundary. Sec-
ondly, we need to significantly reconfigure the datacenter
routing protocol. Even assuming the routing system can
be upgraded, we still have the problem of routing via mul-
tiple horizontal links. For this to work, the source must
be able to specify a list of intermediary addresses for the
packet, and the simplest solution is to use loose source
routing. LSR support exists in most operating systems,
but it raises performance problems: it does not work well
with hardware offloading on some NICs, and LSR packets
could even find themselves on the slow path of routers.

One last mechanism is needed to spread traffic over the
available paths. As TCP is the de-facto standard trans-
port protocol in datacenter, the straightforward solution is
to pin each connection to one path (i.e. round robin), but
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there is a danger than a neighbour link is highly congested.
In such cases we should move traffic back to the uplink
quickly, which is easier said than done—to ensure proper
routing we need to change the addresses in the packets
which will break the TCP connection. To solve this prob-
lem we need to either change the host stack (add some sort
of mobility support) or modify the applications.
Towards a solution. The main conclusion arising from
the strawman solution above is that dealing with the sub-
problems in isolation is inefficient because one solution
affects many others. For instance, independent addressing
forces us to use unscalable routing schemes, and neigh-
bour discovery mechanisms might be redundant if we
have a mobility solution in the host stack.

That is why we take a holistic approach to design-
ing these mechanisms, co-optimising them to enable a
cheaper and easier to deploy solution. Our first insight
is that we could avoid source routing if we limit ourselves
to one horizontal hop after the source and one before the
destination (h1 routing). In a h1 network, the sender can
steer outgoing traffic over either the uplink or GRIN links
by simply placing them on the appropriate interface. To
route via a neighbour of the destination we leverage our
addressing scheme (described below). On the other hand,
h1 routing appears to have the least potential of actually
using spare network capacity. How much of an improve-
ment, if any, can be achieved by increasing the length of
horizontal segments? The results of our evaluation in sec-
tion 5.1, show that h1 routing utilises most of the capacity,
while being the cheapest from a forwarding point-of-view.
That is why we focus on h1 routing alone in our solution.

The two main building blocks of GRIN, described next,
are an addressing scheme that works without changes to
the routing system, and using Multipath TCP to efficiently
utilise network capacity.

3.2 GRIN addressing

To solve the routing system scalability issues, we relate
the assignment of secondary addresses with the addresses
of the uplinks, as follows. All network addresses addr are
split into two meaningful groups of bits: the most signifi-
cant 24 bits are the server identifier, I(addr), which must
be unique in the datacenter. The last 8 bits represent the
GRIN identifier G(addr), which is set to 1 for primary
interfaces and larger values for secondary interfaces.

The address of a secondary interface has the same
server identifier as the address of the primary interface
of the neighbour it connects to; the only difference is the
GRIN identifier. Formally, for any server s, let ups be
the address used by its primary interface and ns be the

A	   C	  B	  

10.0.2.1	  
	  

10.0.1.1	  
	  

10.0.3.1	  

10.0.1.2	   10.0.1.3	  
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Figure 3: Grin Address Assignment Algorithm

number of neighbours s has connected with already; ns is
zero when we start the address assignment algorithm. To
connect server t to server s, the address of the secondary
interface is grint,s and has the following structure:

I(grint,s) = I(ups) G(grint,s) = 2 + ns

Given a secondary address, we can infer the primary
address of its neighbour by merely substituting the least
significant byte with 1. This scheme also provides an
easy way to differentiate between multiple secondary in-
terfaces connected to same neighbour s, because ns will
increase after each subsequent interconnection.

Consider the example in Figure 3, where there are
two additional network ports available on each server.
Initially we choose to connect servers A and B. Since
upA = 10.0.1.1 and upB = 10.0.2.1, we will assign the
address 10.0.2.2 to grinA,B and 10.0.1.2 to grinB,A (be-
cause both nA and nB are 0 initially). Now nA = 1, and
nC = 0, so if we interconnect servers A and C grinA,C

will be 10.0.3.2, and grinC,A will be 10.0.1.3.
Routing is greatly simplified with this addressing

scheme: a simple router configuration change should be
enough for most networks to be adapted to GRIN. In fact,
many networks already assign subnets instead of individ-
ual addresses to servers, to support direct addressing for
virtual machines running on them. Finally, the servers
will need to be configured to forward traffic they receive
for their neighbours. Our addressing scheme sacrifices
8 bits for the GRIN identifier, supporting more than 250
horizontal links. The remaining 24 bits can uniquely iden-
tify up to 16 million servers. Fewer bits can be used for
GRIN links (e.g. 4) to support a larger number of servers.

3.3 Packet Forwarding
To implement GRIN we can reuse forwarding support
provided by modern OSes. Linux, for instance, peaks at a
rate of about 570Kpps in our tests. This is good enough
for gigabit links, or even at 10 Gbps with jumbo frames,
but cannot really keep up as NICs become faster.

Can we do better? When processing packets for
its GRIN neighbours, a server is fulfilling three main
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functions: identification of packets intended for another
server, rewriting some header fields and forwarding the
result. For packet identification, we can leverage hard-
ware filtering capabilities present in modern NICs which
allow packets to be received on different queues based on
various discriminants, such as destination address. With
IP forwarding, each server must write at least the MAC
source and destination addresses in the packet. As no
hardware support exists for IP forwarding in commodity
NICs, this operation must be performed in software.

In theory, GRIN allows us to avoid this extra work by
using bridging instead of forwarding. In this context,
bridging means simply passing a packet from one inter-
face to another, without doing any kind of software pro-
cessing on it. The origin server knows the MAC address
of the next IP hop for a packet. In an L2 network this
is the primary interface of the destination (if the packet
is heading for a primary address) or the primary interface
of one of the destination’s neighbours. For a L3 network,
the next hop is the designated first router. In both cases,
we use ARP to find the proper MAC address, as the IP
address is already known (directly from the packet for L2
and by configuration for L3).

This concept is presented in Figure 4: servers A and
B are neighbours, and the default gateway for B’s uplink
traffic is router R. When A sends a packet to C, with basic
forwarding the packet will have the destination IP address
Dip(p) = c1 and destination MAC address Dmac(p) =
mac(b2). The latter will change over the following hops,
first to mac(r1) and, eventually, mac(c1). With bridging,
the packet leaves A with Dip(p) = c1 and Dmac(p) =
mac(r1); it can find mac(r1) by sending an ARP request.
B can simply pass the packet to the uplink upon reception;
the original contents are enough to steer it toward C, since
the router knows how to reach c1.

If p is sent to a secondary interface of C, for example
c2, that is connected to a server D, then there is one more
significant step to be mentioned. The packet will leave
A, and reach R as in the previous case. The routers are
configured to send packets with secondary destination ad-
dresses to the appropriate neighbour (D for c2, in this ex-
ample). Once p reaches server D, it can be placed directly
on the link which is connected to c2, based on the destina-
tion IP address. As C receives p, it will have to ignore the
incorrect destination MAC address (the last change to this

field was made by the router before D). We consider this
behaviour to be acceptable, as secondary interfaces only
receive packets from their neighbours.

In summary, h1 routing allows GRIN to not only
avoid source routing, but also IP forwarding: intermediate
servers can just copy packets between interfaces without
“touching” them. Modern commodity 10Gbps NICs (e.g.
based on the popular Intel 82599 chipset) already have a
simple hardware switch, but it can only move frames be-
tween different queues of a single NIC in the tx→rx sce-
nario; GRIN needs to pass packets from one rx queue of
an interface to a tx queue of another interface (the two in-
terfaces will likely belong to the same multi-port card).
With this in place, we could eliminate forwarding over-
head altogether. Until hardware support is available, we
continue to rely on Linux forwarding for our implementa-
tion, described in Section 4, where we also present a pro-
totype that shows the viability of the bridging solution.

3.4 Efficiently using GRIN Topologies

TCP binds a connection to a single NIC, so several paral-
lel TCP connections are needed to utilise the GRIN links
available via neighbours. However, according to measure-
ments there are few large (“elephant”) flows at any time
on a given server [9]; simply adding more NICs should
not bring significant performance benefits for most appli-
cations over regular TCP. Changing every application to
spread data over multiple TCP connections is not feasi-
ble: such changes are complex, and there is too much to
be changed.

GRIN enables unmodified apps to opportunistically
increase their network performance by using Multipath
TCP [19]. MPTCP allows a transport connection to grow
beyond one NIC (the uplink) and effectively utilise the
neighbours’ spare capacity. MPTCP also provides dy-
namic load-balancing across paths: when a path is con-
gested (e.g. via a neighbour) traffic will be automatically
shifted to less congested paths [24]. While MPTCP is just
one of many possible multi-path forwarding designs, we
consider it an ideal enabler for a lightweight implemen-
tation, that does not warrant any changes to user applica-
tions or the network itself (beyond horizontal links).
Path selection algorithm. Let’s see how MPTCP works
over a GRIN network. In the example from Fig. 3, assume
the only GRIN links are those shown, and that server B
wants to send data to server C. The connection begins like
regular TCP between the primary interfaces of the two
servers. After the initial handshake is complete, server
B will be notified via the MPTCP address advertisement
mechanism of any additional addresses it can use to con-
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tact server C—this mechanism enables neighbour discov-
ery without needing DNS at all.

The set of additional addresses for server C will con-
sist of only one element, 10.0.1.3. Server B will then
attempt to establish a full mesh of subflows between its
own addresses (both primary and secondary) and those
just received. Thus, we can rely on MPTCP to deal with
path selection, and only add small tweaks to the process,
as mentioned in Section 4. How soon should we use
the additional paths? The easiest answer is to setup ad-
ditional subflows as soon as address advertisment com-
pletes, but this might not always be desirable, especially
for short flows—sending few packets over a different sub-
flow raises the probability of a timeout, in case one of the
packets gets lost. To protect small flows our implementa-
tion uses a configurable threshold, sending all bytes below
that via the uplink (100KB for a 1Gbps network); MPTCP
will use the other subflows thereafter.

3.5 GRIN-aware applications
A downside of opportunistic usage is the probability than
two neighbours will be using their uplinks at the same
time; the busier the network is, the higher this probability.
However, most datacenter applications have centralized
schedulers that decide how to partition the work across
the many workers in the system. We can gain performance
comparable to multihoming solutions without the associ-
ated costs if we modify application schedulers to take into
account GRIN links. We have implemented such optimi-
sations for Hadoop, HDFS and Spark [25].

Scatter-gather applications (such as web search) open
multiple TCP connections from a frontend server to mul-
tiple backend servers. They are bottlenecked by the fron-
tend server’s NIC, and susceptible to the “incast” prob-
lem [22]. Scatter-gather apps can be easily optimised for
GRIN: they just should disable MPTCP and “pin” dif-
ferent TCP flows onto the different available paths for
best performance. We have optimised a synthetic scatter-
gather frontend server to spread its connections evenly
across the GRIN neighbours, thus increasing the total
buffer size available to the frontend. We present experi-
mental results for GRIN-aware applications in § 5.6.

4 Implementation
The GRIN implementation works with a MPTCP-enabled
Linux kernel and mainly deals with address assignment
to secondary interfaces in user-space. We have also made
minor changes to the MPTCP kernel in order to improve
performance and prevent some unwanted interactions.

The GRIN addressing scheme allows us to use any rout-
ing mechanism that was already in place in the original
topology, as long as the original addresses can be adapted
to the new structure. The assignment itself relies on pre-
existing mechanisms, e.g. DHCP.

To automatically configure secondary interfaces, we
have implemented a simple server that runs on every com-
puter. It only serves requests that arrive on GRIN inter-
faces, and its primary functionality is the dissemination
of proper secondary addresses to neighbours. After the
endpoints of a horizontal link exchange addresses in this
manner, each server also adds the required information to
the local routing tables. There are two such entries needed
per neighbour: one to designate it as the default gateway
for all traffic leaving that particular secondary interface,
and another to state that the address of the remote end-
point is reachable via the same interface. Additionally, we
use Proxy ARP to make servers reply to ARP requests for
their neighbours’ secondary interfaces, while also making
them ignore queries for their own such interfaces.

The first change we made to the MPTCP kernel is re-
lated to subflow initiation. Establishing a full mesh, espe-
cially for higher GRIN degrees, would setup a very large
number of subflows, which is often undesirable. The de-
fault behavior for GRIN is to establish the smallest num-
ber of subflows such that every horizontal link is used
at least once. Thus, in a GRIN topology with degree n,
MPTCP will establish n additional subflows. There is
also the option of specifying a certain number of subflows,
which are going to be selected at random in a manner con-
sistent with the goals of the default behaviour. Another
modification was to adjust the MPTCP subflow selection
process, which decides what subflow to use when send-
ing each particular packet. In most situations, we want to
send data using the direct subflow whenever its conges-
tion window allows it. MPTCP selects the subflow with
the smallest RTT when multiple subflows could send a
packet, but the RTT estimation alone is noisy and might
sent packets on horizontal links even when the uplink is
idle. That is why we added bias in favor of the direct
connection: the estimated RTT of the uplink is halved for
comparison purposes.

Bridged implementation. We have also implemented the
prototype of a bridged GRIN1 topology that uses netmap
[20] as a stand-in for the missing hardware functionality.
Outgoing packets that are heading to a primary interface
receive no special treatment. For all others, we make sure
that the MAC destination address field contains the L2
address of the proper gateway. For both primary and sec-
ondary NICs, we use ethtool to enable ntuple filtering and
add filters that make sure any packet destined for the local
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server arrives on rx queue 0, while all others are received
on queue 1. Finally, the netmap bridge ensures that pack-
ets received on queue 0 of each NIC are sent to the host
TCP stack and packets coming from the host stack are sent
using tx queue 0. Also, packets received on rx queue 1 of
any interface are simply sent to tx queue 1 of the other in-
terface. This could easily be extended to work with higher
GRIN degrees by using an additional rx/tx pair of queues
for each secondary interface added.

For the setup in Figure 4, when a packet p going from
a2 to c1 reaches B, it will be placed in rx queue 1, be-
cause Dip(p) �= ip(b2), the netmap bridge will transfer
it to tx queue 1 of b1. The switch will direct the packet
towards r1, based on the destination MAC address, and
from R it will make its way to the destination. We used the
routing implementation in our evaluation because netmap
does not support hardware offload when exchanging pack-
ets with the Linux TCP stack, affecting performance.

5 Evaluation

This section starts with an analysis of the effect hn rout-
ing can have on GRIN’s ability to utilise spare capacity—
the result led us to choose h1 routing and build our solu-
tion around it. We continue by evaluating the performance
benefits of GRIN, both in synthetic scenarios and for real
applications. We also include an assessment of the po-
tential negative impact that GRIN may have in terms of
fairness, latency and forwarding overhead. This can be
especially important for opportunistic usage.

5.1 How many horizontal hops are needed?

The advantages of h1 routing in terms of reduced com-
plexity are obvious, but is there anything we lose by using
it? We intend to find out if there is any correlation be-
tween the maximum allowed path length and the amount
of capacity that can be discovered. We model a GRIN
topology as racks of computers connected to a single, suf-
ficiently large switch. The computers are interconnected
using a variable number of GRIN links (1 to 6), and the
entire setup is represented as a directed graph.

We are interested in the maximum network capacity
that can be utilised in each case. Given a set of source-
destination pairs , we use GLPK [1] to solve the maximum
multi-commodity flow problem, which gives the optimal
solution and is a hard upper bound on usable capacity. We
also solve a couple of specializations to MCF in which we
restrict the number of horizontal hops to emulate the best
we can do with the corresponding hn strategy. Due to
computational complexity, our network model consisted

of six twenty server racks. We run experiments vary-
ing the GRIN degree, the maximum number of horizontal
hops (h1, h2 and no limit), and the traffic pattern:
• permutation traffic: each active server sends data to a

single destination, and each destination receives data
from a single source.

• group traffic: servers are randomly assigned to
groups such that every group contains the same num-
ber of servers. One server is randomly chosen from
each group as the destination for the other group
members.

• all-to-all traffic: each active server sends data to ev-
ery other active server.

• random traffic: the endpoints of every connection are
chosen at random.

The results show the total flow is proportional to both
the number of active connections and the GRIN degree.
There are two interesting observations. First, the differ-
ence between h1 and the optimal solution is at most 32%
for GRIN6 and permutation traffic. On average, across all
experiments, the difference between h1 and optimal is just
7%. Also, the difference between the optimal solution and
h2 is seldom more than 1%.

Unfortunately, optimal placement of flows to paths is
impossible to achieve, so it’s quite hard to form an expec-
tation of real-world behavior based on these results. Any
MPTCP connection will only use a limited number sub-
flows in order to prevent performance degradation [24].
Also, it’s not usually possible to make informed decisions
about flow placement in real time; instead flows are spread
over multiple random paths and congestion control bal-
ances traffic to get the most out of the network.

To capture these effects, we devised another perfor-
mance estimation procedure: for a given network and traf-
fic matrix, we start by building the complete set of paths
between any source and destination. The length of a path
is defined as the number of horizontal segments it con-
tains, with one exception: if a path is made of a single
horizontal segment, then its length is zero. The shortest
path that goes through the switch is called the direct path.
For each connection, we randomly select up to 16 paths
(a relatively large number) without replacement and add
them to the chosen path set; the direct path is always in-
cluded. We try to assign the largest possible flow to each
element of this set, in ascending order of length. This is
done by finding the path segment with the least amount of
available capacity, and then using that value to fill the en-
tire path. We applied this method to the same input data as
before. We also considered h3 routing, as without optimal
placement, h2 may no longer be sufficient.

The results are surprising: h1 provides better results in
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GRIN degree
% 1 2 3 4 5 6

10 23/23 30/30 39/40 49/52 55/65 61/70
21/21 29/29 37/33 39/37 41/39 43/42

20 41/41 56/56 65/70 80/90 92/108 101/118
38/38 50/49 61/56 64/60 66/63 68/66

30 57/57 71/71 85/92 103/116 114/136 118/143
52/52 65/65 77/72 81/77 83/80 85/84

40 65/65 88/88 106/114 112/131 131/153 136/160
63/63 78/78 91/85 93/89 95/93 97/96

50 75/75 100/101 120/128 122/139 135/159 140/163
73/73 88/89 100/95 103/99 105/103 107/105

60 87/87 110/110 119/134 129/154 137/169 141/174
83/83 97/99 107/103 109/107 112/110 114/113

70 95/95 121/122 122/134 131/158 140/170 149/192
92/92 103/106 112/110 114/113 118/117 120/120

Figure 5: Hop Analysis Results for Permutation Traffic

most experiments, and the increase is larger as the GRIN
degree increases. This behaviour reflects the fact that
h2 and h3 routing increase contention on horizontal links
which leads to more collisions. In the MCF analysis, this
effect was offset by the very large number of paths used
and exhaustive search used by h2 and h3.

Fig. 5 shows detailed evaluation results for permutation
traffic. The leftmost column represents the percentage of
active servers from each experiment. The first row of each
cell shows the maximum flow for h1 and h2, respectively,
as computed by MCF. The second row has values obtained
using our alternative evaluation procedure (h1 / h2). We
focus on permutation traffic as it exhibits the largest dif-
ferences in both cases (worst relative behaviour for h1).

The maximum flow is not included because it is very
well approximated by h2. Note that the total flow values
can be larger than 120 (the total number of uplinks) be-
cause some connections can be established over entirely
horizontal paths. The largest differences between h1 and
h2 on the first row appear for GRIN degrees unlikely to be
encountered in practice. On the second, there are only a
few instances where h2 is marginally better. We conclude
that h1 is the best solution given our constraints.

For other traffic patterns, the differences between h2

and h1 are smaller than with MCF, and h1 gives better
performance when measured with our alternative method.

5.2 Experimental setup
We deployed our implementation on a small local clus-
ter of ten servers directly connected to a switch to exam-
ine real-world application performance. Each server has a
Xeon E5645 processor, 16 GB of RAM, a quad-port giga-
bit NIC (one port is used for management) and a dual-port
10Gbps NIC. In our testbed, we can build 1Gbps GRIN1
and GRIN2 topologies and a 10Gbps GRIN1 topology.

We use both gigabit and ten gigabit networks in our
evaluation. Gigabit links to servers are still in wide use
today, and GRIN can offer an immediate and much needed

increase in performance for deployed networks assuming
extra server ports are available. Our ten gigabit tests aim
to establish is GRIN is also applicable to newer networks
that use 10Gbps links to the servers.

The small size of the testbed prevented us from build-
ing a useful multihomed setup; even if the bandwidth con-
straints could be enforced, we could only have at most two
racks of five servers each which would allow communica-
tion at double speed with half of the servers in the testbed.
An upper bound is provided instead by simply doubling
the results obtained in the original setup.

We also deployed a larger GRIN1 topology on 1000
Amazon EC2 c3.large instances that allows us get an im-
pression of our solution’s scalability in practice. The in-
stances ran in an Amazon VPC (Virtual Private Cloud),
which offers the illusion of an L2 network, with small
adjustments to the implementation as proxy ARP did not
work in this setting. When dealing with L2 address res-
olution for secondary interfaces in the kernel, we instead
issue an ARP request for the primary address of the corre-
sponding neighbour (which can be easily computed based
on the GRIN addressing scheme).

By default, each instance comes with one ENI (elas-
tic network interface), but more (up to three for c3.large)
can be added. The first is used for management purposes,
the second is the considered the uplink, and the last plays
the role of secondary interface. However, unlike regular
NICs, all these share the same physical link. We employ
dummynet [7] to add bandwidth limitations adding up to
less than the maximum available for a single instance, in
order to achieve virtual separation. The limit for each in-
terface is set to 100Mbps. At higher speeds, our dum-
mynet configuration led to erratic behaviour.

Finally, to understand the basic properties of GRIN
across a wider range of parameters than feasible in prac-
tice, we used simulation in htsim, a scalable packet level
simulator. This has the advantage of giving very precise
results and allows us to study reasonably large networks,
but doesn’t account for factors outside of the transport
protocol itself and cannot be used to evaluate applications.
Our simulations were based on the same 120 server topol-
ogy described in the previous section. Increasing network
sizes up to tenfold provides qualitatively similar results,
however it takes substantially longer to run.

5.3 Basic performance
To understand how GRIN works in practice, we begin our
tests with synthetic traffic patterns that we can easily rea-
son about. We use the same patterns described our hop-
count evaluation, namely permutation, random, group and
all-to-all, and run the experiments in both simulation, on
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Figure 6: GRIN improves performance by 50% to 150% for Random traffic.

Amazon EC2 on 1000 servers and on our local testbed
with gigabit and 10 gigabit networks. In all cases we run
at least the baseline and GRIN1. We also simulate mul-
tihoming, and GRIN3, which we view as an upper bound
of the number of ports that GRIN may use in practice.

In Figure 6 we present average per-server throughput
results for random traffic as we vary the percent of active
servers from 10% to 70%. One thing to keep in mind is
that, due to the small size of our local testbed, connec-
tions between neighbours will happen more often, and the
results will appear better overall. To allow easy compari-
son between graphs, we normalize the resulting through-
put measurements with respect to the best outcome in
the original topology (941Mbps for the 1Gbps network,
9960Mbps for 10Gbps and 100Mbps for EC2). Simula-
tion results are normalized by default.

The results show that, as expected, lower percentages of
active servers lead to significantly better results for GRIN
topologies. Performance improvements are smaller as
more servers become active, GRIN2 and GRIN3 perfor-
mance is better than multihoming until 40% of servers are
active, and match it after that. Note that the simulation re-
sults are matched very well by EC2 results and are quali-
tatively similar to the testbed results, giving us confidence
in our evaluation. The EC2 results underline the scalabil-
ity of our solution: a real-life deployment of GRIN1 can
run on 1000 servers. Running GRIN at 10Gbps is also
worthwhile, doubling the throughput when few servers are
active. The results for permutation traffic are similar; the
interested reader can refer to [2] for details.

We next turn to all-to-all traffic, a pattern mimicking
the shuffle phase of map-reduce. When running this ex-
periment on EC2 we ensure that no server initiates or
receives more than 20 concurrent connections to reduce
the effects of incast. The results in Figure 7 show that
every additional port used with GRIN brings close to
100% performance improvement when few hosts are ac-
tive. Multihoming is almost always dominated by GRIN2
and GRIN3, however it outperforms GRIN1. As ex-
pected, the testbed results are better. The EC2 results ac-

curately track those obtained in simulation.
Finally, the group connection matrix simulates scatter-

gather communication. This is the most favorable situ-
ation for GRIN topologies, because the large number of
sources will fill every link of the receiving server. The re-
sults are consistent across both simulation and actual im-
plementation: we get close to the optimal throughput.
Short flows. We also wanted to find out when GRIN starts
to offer benefits if we have fixed-size transfers, assuming
there is no contention anywhere in the network. We ran a
series of tests using a simple client-server program which
requests and then receives a certain number of bytes. The
results for the 1Gbps network are shown in Figure 8, and
reveal that we need to transmit data on the order hundreds
of kilobytes before any sizeable gain becomes apparent
for a single connection. That is why we have set the mul-
tipath threshold to 100KB in our implementation for this
scenario. Also, for smaller transfers (between 15-75K),
GRIN may add at most 200µs to the completion time.
This issue is caused by the way data is distributed among
subflows. At 10Gbps, the threshold increases to 20MB.

5.4 Opportunistic Usage
GRIN can be used opportunistically by simply deploying
it and running applications. We deployed a number of
real-world applications on a 1Gbps network, where GRIN
can have an immediate impact.

The first application is an NFS [16] server. Our goal
was to measure the time it took to read every file from an
exported directory. We varied the file size from one exper-
iment to another, while ensuring their aggregate size was
2GB. As can be seen in Figure 9, throughput improvement
is directly proportional to file size. After a certain point,
each file is large enough to make the request overhead al-
most negligible in relation to the actual transfer duration.

Another application we considered is HDFS[21]. This
is a natural choice for any GRIN setup because it involves
handling large amounts of data, so we potentially have
a lot to gain in terms of performance. One server was
used to host the NameNode, 8 were running DataNodes,
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Figure 7: GRIN improves performance by 80% to 250% in the All-to-all traffic pattern.

and the last one acted as a client. We measured the time
needed to transfer a 4GB file from HDFS to local storage.
With GRIN1 we got the best possible result, as the file
transferred almost twice as fast. The switch to GRIN2
however, did not bring the threefold increase in speed we
were hoping for. This was apparently caused by the java
process becoming CPU bound. When we requested two
transfers in parallel, each process ran on a different core
and every network interface was fully utilised.

Next, we wanted to see if GRIN can bring any bene-
fits to virtual machine migration. We installed the Xen
Hypervisor[5] version 4.2 on several servers running our
modified version of the MPTCP kernel. The virtual ma-
chine created for the experiments had 4GB of RAM, and
its disk image was shared by an network block device
server. The metric used during each test was the time
required to migrate the VM to another server. Our first
attempts, using the xl toolstack, met with failure because
it uses ssh to send migration data, which incurs a hefty
overhead, so the network is no longer a bottleneck. We
got the best results by switching to xm, which uses plain
TCP. In this case, using GRIN1 increased migration speed
by around 60%, while GRIN2 doubled it.

The last application in our 1Gbps test suite was Apache
Cassandra[14]. We started a Cassandra cluster consisting
of 9 servers, while the last one acted as client. Our goal
was to use the Cassandra-stress tool to measure the time
required to write a constant amount of data in different cir-
cumstances. We used the default values for most parame-
ter, only changing the number of columns to 10, and then
varying the size of each column and the numbers of keys
inserted such that the total transfer size was around 2GB.
The relation between column size and request completion
time is presented in Figure 10. Somewhat unsurprisingly,
the way parameters combine to determine the amount of
data per row is what matters most in terms of perfor-
mance. The operations complete much more quickly for
a smaller number of larger rows. Increasing the number
of columns while decreasing the number of rows will also
lead to better results, but not to the same extent as using
larger rather than more columns.

10Gbps networks. Regular applications don’t scale
nearly as well as the iperf experiments do at 10Gbps, even
with jumbo frames and hardware offload functionality en-
abled. Thus, we focused on a few apps have high band-
width requirements and are fast enough to take advantage
of it: NFS, HDFS and Spark [25].

With NFS, the server hosts a single 12 GB file which
can be transferred by one client in around 10 seconds with
GRIN disabled, and a little less than that with one sec-
ondary interface enabled. GRIN does not help because
the client is CPU-bound. If two clients attempt to trans-
fer the same file simultaneously over a GRIN1 network,
they both finish in around 10.5 seconds, implying that the
server was able to fully utilise both its 10Gbps interfaces.

We used a variable number of Spark workers, con-
nected to a single-node DFS deployment, to count the oc-
currences of a string in the same 12GB file. At first, GRIN
is disabled. A single worker completes the task in 14.5
seconds on average. We need two workers to reduce to
time to 10.5 seconds, which is very close to the duration
of the data transfer, so we can consider the computation to
be finally network-bound. With GRIN1 enabled for both
workers, the completion time drops to 7.5 seconds. By
starting a third one we can improve this result to around
5.5 seconds, and Spark is now network-limited.

5.5 Perils of Opportunistic GRIN Usage
There are a number of issues that may be caused by the
transition to a GRIN topology. The additional flows may
increase buffer pressure and overall latency, while servers
could find themselves competing with neighbours for their
own uplinks. Our main goal in this regard is to do no
worse than the original topology. To deal with these
two issues we employ a simple priority scheme, based on
DSCP. Each direct flow receives a high-priority code point
(such as EF), while secondary flows retain the default low
value. We rely on iperf to test the fair use of uplinks,
and on a simple client-server program to measure the la-
tency of small transfers. GRIN specific contention may
happen in two distinct situations: server-local when mul-
tiple flows use the uplink and at the switch, on the egress
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port leading to a particular server. In order to honor DSCP
markings locally, servers use a priority-aware queuing dis-
cipline, such as PRIO in Linux. Our experiments show
that a single, high-priority flow is able to fully utilise the
uplink, regardless of the presence of low priority flows.

An idle 10Gbps link takes 100µs on average to transfer
1KB, and 140µs for 100KB with TCP. When competing
with several running iperf connections without priorities,
the transfer time increases to around 1.8ms in both situ-
ations. With the PRIO qdisc, it decreases to 350µs for
1KB and 400µs for 100K. On the downlink, the transfer
time grows in both cases to around 2.4ms without priority.
If we add priority and configure the switch to discrimi-
nate based on DSCP marking, the latency drops to around
110µs and 160µs, respectively.

Does enabling GRIN slow down resource-intensive lo-
cal applications? Our tests show that GRIN forwarding
does not impact storage bound apps, but it is interesting
to examine CPU bound and memory bound scenarios.

We ran three resource-intensive applications, Linux
kernel compilation, video transcoding and a memcached
server, on one of our 6-core Xeon servers. Where rele-
vant, we use a ram disk for persistent storage. Running
time is the metric for kernel compilation and transcoding.
For memcached, we preload 220 keys with corresponding
60 byte values, and then measure the number of requests
that can be fulfilled during 20 second intervals. The re-
quests are generated by 60 local threads that connect to
the server using UNIX sockets.

The first two lines from the results in Figure 11 show
that running the app on five cores gives near-identical per-
formance regardless of whether the sixth core is idle or
forwarding traffic bidirectionally at 10Gbps: if we can
spare a core for forwarding, there will be negligible im-
pact on all other apps. The last two lines show the over-
head when we run the app on all cores: here forwarding
decreases application performance by 9%-13%.

We stress, however, that in many cases clusters of com-
puters are dedicated to one distributed application (e.g.
web-search) to avoid bad performance interactions. In
such cases the side-effects of forwarding are irrelevant

as long as the application as a whole runs faster. In the
next section we describe results with GRIN-aware appli-
cations where the total completion time is reduced despite
the negative effect of forwarding.

5.6 GRIN-aware applications
One simple and very effective optimisation is to schedule
bandwidth intensive jobs onto servers that are not direct
GRIN neighbors. We have optimised HDFS for reads by
placing replicas of the same block in this manner. When a
read request comes in, the scheduler replies with the least-
recently accessed server that has a replica, and records
that the server and his neighbor were “accessed”.

We deployed the optimised version of HDFS on 1000
EC2 instances. In each experiment we used a fraction of
the nodes to transfer a 400MB file from HDFS to local
storage. We used a replication factor of three and a block
size equal to 140MB. The results, found in Figure 12,
compare the default implementation of HDFS, HDFS run-
ning over GRIN1 and, finally, HDFS optimised for GRIN.
The results show that running HDFS opportunistically im-
proves download time on average by 14%, and running
optimised HDFS brings a 28% improvement. The results
also show that, as expected, the optimised version is supe-
rior at higher loads, where the probability of GRIN neigh-
bours to be active is much higher.

Next, we optimised Hadoop and Spark by changing the
job placement algorithm to avoid scheduling mappers and
reducers on neighbour nodes, whenever possible. We ran
Spark to run the same string occurrence problem in a large
24GB file over the 1Gbps network. Two HDFS nodes
store the data and two Spark nodes do the actual process-
ing. Without GRIN, the total execution time is around
111 seconds. Even if all nodes are grouped up together,
using GRIN1 brings the execution time down to 106 sec-
onds. This is caused by a somewhat uneven distribution
of the data (one node holds 11G and the other 13G).
Since the application can process it pretty fast, GRIN al-
lows one server to help the other out after it finishes send-
ing all the local data. With optimisations enabled, every
node has an idle neighbour, and the execution time drops
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apps for GRIN

to around 54.5s. A similar optimisation for Hadoop re-
duces the overall shuffle duration by 20%.

A GRIN topology could also be used to lessen the ef-
fects of incast by leveraging the additional switch buffers
available at neighbors. In this case, it makes no sense to
spread data over multiple paths with MPTCP.

Instead, the frontend can disable MPTCP and split its
connections over its uplink and GRIN interfaces in a
round-robin fashion. To test this optimisation, we used
synthetic scatter-gather application to periodically request
data from multiple sources. Figure 13 shows the behav-
ior encountered when one server simultaneously requests
30KB of data over 27 persistent connections, evenly dis-
tributed among the nine remaining servers. There are 50
rounds of transfers, each being followed by a 300ms wait-
ing period. Here we compare the original topology with
a GRIN2 setup using MPTCP and another one using the
incast optimisation. For each case, we plot the CDF of
transfer times. Incast mode provides dramatic improve-
ments, reducing the mean by two orders of magnitude.

6 Related Work
A preliminary version of this paper has appeared as [2].
Various solutions have been proposed for increasing core
utilisation in full bisection networks, such as MPTCP [17]
or Hedera [4]. These, however, aim to make full-bisection
topologies behave like a non-blocking switch by routing
flows in the network to avoid collisions.

Other approaches, such as Flyways [12] or C-Through
[23], are based on augmenting an oversubscribed network
with additional communication channels that can be used
to improve throughput between different groups of servers
when the initial latency is not an issue. They try to create
the illusion of full bisection in oversubscribed networks;
however, the network activity of a single server is still lim-
ited by its uplink.

Using datacenter servers to forward traffic is not a new
idea. In fact, topologies such as DCell[11] or BCube[10]
rely on servers having multiple ports, and most forward-
ing is done by the servers themselves. However, these pro-
posals are very difficult to wire, involve complex routing
schemes and impose a great forwarding effort on servers.

These drawbacks have prevented adoption in practice.
GRIN borrows the idea of server routing but uses it in
a very simple setup where wiring and routing are trivial,
while inherently limiting the amount of forwarded traffic.

Proposals such as ServerSwitch [15] show how for-
warding can be implemented in the NIC, without involv-
ing the host; such proposals would prevent GRIN for-
warding from interfering with host applications.

7 Conclusions
As long as the network is the main bottleneck, wiring up
free server ports with GRIN is a simple yet powerful so-
lution to increase the amount of bandwidth available to
end-hosts. It is cheap and feasible to implement over al-
most any topology used today, and this can be done in an
incremental fashion. While full-bisection networks show
the most potential, we believe it can also be used with
oversubscribed networks as long as there still is signifi-
cant underutilisation.

Even when the additional network ports are not “free”,
GRIN can offer an interesting trade-off where we get more
capacity out of the network by investing at the edge. There
is also the possibility of trading additional cabling costs
and complexity to alleviate ToR-level congestion. The
server forwarding overhead can be considered an issue in
certain opportunistic usage scenarios, but we argue that
it can be eliminated altogether with proper hardware sup-
port. Moreover, making distributed applications GRIN-
aware can significantly diminish any possible shortcom-
ing of the setup. GRIN offers better peak performance,
is cheaper, and scales better than alternative solutions like
multihoming.

Acknowledgements
This work was supported by Trilogy 2, a research project
funded by the European Commission in its Seventh
Framework program (FP7 317756). We would like to
thank the anonymous reviewers for their feedback and our
shepherd George Porter for his help in revising the paper.

12



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 41

References
[1] GNU Linear Programming Kit. http://www.

gnu.org/software/glpk/.

[2] A. Agache and C. Raiciu. Grin: utilizing the empty
half of full bisection networks. In Proceedings of
the 4th USENIX conference on Hot Topics in Cloud
Ccomputing, HotCloud’12, pages 7–7, Berkeley,
CA, USA, 2012. USENIX Association.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In Proceedings of ACM SIGCOMM 2008.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic flow
scheduling for data center networks. In Proceedings
of USENIX NSDI 2010.

[5] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In In SOSP (2003, pages
164–177.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. Un-
derstanding data center traffic characteristics. SIG-
COMM Comput. Commun. Rev., 40(1):92–99, Jan.
2010.

[7] M. Carbone and L. Rizzo. Dummynet revisited.
SIGCOMM Comput. Commun. Rev., 40(2):12–20,
Apr. 2010.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[9] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A scalable
and flexible data center network. In Proceedings of
ACM SIGCOMM 2009.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,
C. Tian, Y. Zhang, and S. Lu. BCube: A high
performance, server-centric network architecture for
modular data centers. In Proceedings of ACM SIG-
COMM 2009.

[11] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
Dcell: a scalable and fault-tolerant network struc-
ture for data centers. In Proceedings of the ACM
SIGCOMM 2008 conference on Data communica-
tion, SIGCOMM ’08, pages 75–86, New York, NY,
USA, 2008. ACM.

[12] D. Halperin, S. Kandula, J. Padhye, P. Bahl and
D. Wetherall. Augmenting data center networks with
multi-gigabit wireless links. In Proceedings of ACM
SIGCOMM 2011.

[13] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The nature of data center traffic: mea-
surements & analysis. In Proceedings of ACM IMC
2009.

[14] A. Lakshman and P. Malik. Cassandra: a decentral-
ized structured storage system. SIGOPS Oper. Syst.
Rev., 44(2):35–40, Apr. 2010.

[15] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu,
Y. Xiong, R. Gao, and Y. Zhang. Serverswitch: a
programmable and high performance platform for
data center networks. In Proceedings of the 8th
USENIX conference on Networked systems design
and implementation, NSDI’11, pages 2–2, Berkeley,
CA, USA, 2011. USENIX Association.

[16] B. Pawlowski, D. Noveck, D. Robinson, and
R. Thurlow. The nfs version 4 protocol. In In
Proceedings of the 2nd International System Admin-
istration and Networking Conference (SANE 2000,
2000.

[17] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,
D. Wischik, and M. Handley. Improving datacen-
ter performance and robustness with multipath TCP.
In Proceedings of ACM SIGCOMM 2011.

[18] C. Raiciu, M. Ionescu, and D. Niculescu. Opening
up black box networks with CloudTalk. In Proceed-
ings of USENIX HotCloud 2012.

[19] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? designing and implementing a de-
ployable multipath tcp. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 29–29, Berke-
ley, CA, USA, 2012. USENIX Association.

[20] L. Rizzo. netmap: a novel framework for fast packet
I/O. In Proceedings of USENIX ATC 2012.

[21] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

13



42 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

[22] V. Vasudevan, A. Phanishayee, H. Shah, E. Kre-
vat, D. G. Andersen, G. R. Ganger, G. A. Gib-
son, and B. Mueller. Safe and effective fine-grained
tcp retransmissions for datacenter communication.
SIGCOMM Comput. Commun. Rev., 39(4):303–314,
Aug. 2009.

[23] G. Wang, D. G. Andersen, M. Kaminsky, K. Pa-
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Abstract
Distributed systems are traditionally designed indepen-
dently from the underlying network, making worst-case
assumptions (e.g., complete asynchrony) about its behav-
ior. However, many of today’s distributed applications are
deployed in data centers, where the network is more re-
liable, predictable, and extensible. In these environments,
it is possible to co-design distributed systems with their
network layer, and doing so can offer substantial benefits.

This paper explores network-level mechanisms for pro-
viding Mostly-Ordered Multicast (MOM): a best-effort
ordering property for concurrent multicast operations. Us-
ing this primitive, we design Speculative Paxos, a state
machine replication protocol that relies on the network to
order requests in the normal case. This approach leads to
substantial performance benefits: under realistic data cen-
ter conditions, Speculative Paxos can provide 40% lower
latency and 2.6× higher throughput than the standard
Paxos protocol. It offers lower latency than a latency-
optimized protocol (Fast Paxos) with the same throughput
as a throughput-optimized protocol (batching).

1 Introduction
Most distributed systems are designed independently from
the underlying network. For example, distributed algo-
rithms are typically designed assuming an asynchronous
network, where messages may be arbitrarily delayed,
dropped, or reordered in transit. In order to avoid making
assumptions about the network, designers are in effect
making worst-case assumptions about it.

Such an approach is well-suited for the Internet, where
little is known about the network: one cannot predict what
paths messages might take or what might happen to them
along the way. However, many of today’s applications are
distributed systems that are deployed in data centers. Data
center networks have a number of desirable properties
that distinguish them from the Internet:

• Data center networks are more predictable. They are
designed using structured topologies [8,15,33], which
makes it easier to understand packet routes and ex-
pected latencies.

• Data center networks are more reliable. Congestion
losses can be made unlikely using features such as
Quality of Service and Data Center Bridging [18].

• Data center networks are more extensible. They are
part of a single administrative domain. Combined with
new flexibility provided by modern technologies like
software-defined networking, this makes it possible to
deploy new types of in-network processing or routing.

These differences have the potential to change the way
distributed systems are designed. It is now possible to
co-design distributed systems and the network they use,
building systems that rely on stronger guarantees avail-
able in the network and deploying new network-level
primitives that benefit higher layers.

In this paper, we explore the benefits of co-designing in
the context of state machine replication—a performance-
critical component at the heart of many critical data center
services. Our approach is to treat the data center as an
approximation of a synchronous network, in contrast to
the asynchronous model of the Internet. We introduce two
new mechanisms, a new network-level primitive called
Mostly-Ordered Multicast and the Speculative Paxos repli-
cation protocol, which leverages approximate synchrony
to provide higher performance in data centers.

The first half of our approach is to engineer the network
to provide stronger ordering guarantees. We introduce a
Mostly-Ordered Multicast primitive (MOM), which pro-
vides a best-effort guarantee that all receivers will receive
messages from different senders in a consistent order.
We develop simple but effective techniques for provid-
ing Mostly-Ordered Multicast that leverage the structured
topology of a data center network and the forwarding
flexibility provided by software-defined networking.

Building on this MOM primitive is Speculative Paxos, a
new protocol for state machine replication designed for an
environment where reordering is rare. In the normal case,
Speculative Paxos relies on MOM’s ordering guarantees
to efficiently sequence requests, allowing it to execute and
commit client operations with the minimum possible la-
tency (two message delays) and with significantly higher
throughput than Paxos. However, Speculative Paxos re-
mains correct even in the uncommon case where messages
are delivered out of order: it falls back on a reconciliation
protocol that ensures it remains safe and live with the
same guarantees as Paxos.

Our experiments demonstrate the effectiveness of this
approach. We find:
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• Our customized network-level multicast mechanism
ensures that multicast messages can be delivered in a
consistent order with greater than 99.9% probability
in a data center environment.

• In these environments, Speculative Paxos provides
40% lower latency and 2.6× higher throughput than
leader-based Paxos.

• Speculative Paxos can provide the best of both
worlds: it offers 20% lower latency than a latency-
optimized protocol (Fast Paxos) while providing the
same throughput as a throughput-optimized protocol
(batching).

We have used Speculative Paxos to implement various
components of a transactional replicated key-value store.
Compared to other Paxos variants, Speculative Paxos al-
lows this application to commit significantly more trans-
actions within a fixed latency budget.

2 Background
Our goal is to implement more efficient replicated ser-
vices by taking advantage of features of the data center
environment. To motivate our approach, we briefly dis-
cuss existing consensus algorithms as well as the design
of typical data center networks upon which they are built.

2.1 Replication and Consensus Algorithms
Replication is widely used to provide highly available
and consistent services in data centers. For example, ser-
vices like Chubby [4] and ZooKeeper [17] provide ap-
plications with support for distributed coordination and
synchronization. Similarly, persistent storage systems like
H-Store [39], Granola [10], and Spanner [9] require mul-
tiple replicas to commit updates. This provides better
availability than using a single replica and also provides
better performance by eschewing costly synchronous disk
writes in favor of maintaining multiple copies in RAM.

Replication systems rely on a consensus protocol (e.g.,
Paxos [24, 25], Viewstamped Replication [29, 35], or
atomic broadcast [3, 19]) to ensure that operations ex-
ecute in a consistent order across replicas. In this paper,
we consider systems that provide a state machine repli-
cation interface [23, 38]. Here, a set of nodes are either
clients or replicas, which both run application code and in-
teract with each other using the replication protocol. Note
that, here, clients are application servers in the data center,
not end-users. Clients submit requests containing an oper-
ation to be executed. This begins a multi-round protocol
to ensure that replicas agree on a consistent ordering of
operations before executing the request.

As an example, consider the canonical state machine
replication protocol, leader-based Paxos. In the normal
case, when there are no failures, requests are processed
as shown in Figure 1. One of the replicas is designated as
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Figure 1: Normal-case execution of Multi-Paxos/Viewstamped
Replication

the leader, and is responsible for ordering requests; the
leader can be replaced if it fails. Clients submit requests
to the leader. The leader assigns each incoming request
a sequence number, and sends a PREPARE message to
the other replicas containing the request and sequence
number. The other replicas record the request in the log
and acknowledge with a PREPARE-OK message. Once
the leader has received responses from enough replicas, it
executes the operation and replies to the client.

Data center applications demand high performance
from replicated systems. These systems must be able
to execute operations with both high throughput and low
latency. The latter is an increasingly important factor for
modern web applications that routinely access data from
thousands of storage servers, while needing to keep the
total latency within strict bounds for interactive applica-
tions [37]. For replication protocols, throughput is typ-
ically a function of the load on a bottleneck entity, e.g.,
the leader in Figure 1, which processes a disproportion-
ate number of messages. Latency is primarily a function
of the number of message delays in the protocol—for
Paxos, four message delays from when a client submits
its request until it receives a reply.

2.2 Data Centers
Today’s data centers incorporate highly engineered net-
works to provide high availability, high throughput, low
latency, and low cost. Operators take advantage of the
following properties to tune their networks:

Centralized control. All of the infrastructure is in a
single administrative domain, making it possible for op-
erators to deploy large-scale changes. Software-defined
networking tools (e.g., OpenFlow) make it possible to
implement customized forwarding rules coordinated by a
central controller.

A structured network. Data center networks are multi-
rooted trees of switches typically organized into three lev-
els. The leaves of the tree are Top-of-Rack (ToR) switches
that connect down to many machines in a rack, with a rack
containing few tens of servers. These ToR switches are
interconnected using additional switches or routers, which
are organized into an aggregation tier in the middle and
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a core tier at the top. Each ToR switch is connected to
multiple switches at the next level, thus providing desired
resilience in the face of link or switch failures. Racks
themselves are typically grouped into a cluster (about ten
to twenty racks) such that all connectivity within a cluster
is provided by just the bottom two levels of the network.

Within the data center, there may be many replicated
services: for example, Google’s Spanner and similar stor-
age systems use one replica group per shard, with hun-
dreds or thousands of shards in the data center. The repli-
cas in each group will be located in different racks (for
failure-independence) but may be located in the same
cluster to simplify cluster management and scheduling.
The service will receive requests from clients throughout
the data center.

Switch support for QoS. The controlled setting also
makes it possible to deploy services that can transmit cer-
tain types of messages (e.g., control messages) with higher
priority than the rest of the data center traffic. These pri-
orities are implemented by providing multiple hardware
or software output queues—one for each priority level.
When using strict priorities, the switch will always pull
from higher priority queues before lower priority queues.
The length and drop policy of each queue can be tuned to
drop lower priority traffic first and can also be tuned to
minimize latency jitter.

3 Mostly-Ordered Multicast
The consensus algorithms described in the previous sec-
tion rely heavily on the concept of ordering. Most Paxos
deployments dedicate a leader node to this purpose; ap-
proaches such as Fast Paxos [27] rely on requests to arrive
in order. We argue instead that the structured, highly-
engineered networks used in data centers can themselves
be used to order operations in the normal case. To that end,
this section explores different network-layer options for
providing a mostly-ordered multicast (MOM) mechanism.
We show that simple techniques can effectively provide
best-effort ordering in a data center.

3.1 Model
We consider multicast primitives that allow clients to com-
municate simultaneously with a group of receivers N.

In this category, the traditional totally-ordered multi-
cast provides the following property: if ni ∈ N processes
a multicast message m followed by another multicast mes-
sage m′, then any other node n j ∈ N that receives m′ must
process m before m′. Primitives like this are common
in group communication systems [3]. Ensuring that this
property holds even in the presence of failures is a prob-
lem equivalent to consensus, and would obviate the need
for application code to run protocols like Paxos at all.

Instead, we consider a relaxed version of this property,
which does not require it to hold in every case. A multicast
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Figure 2: Clients C1 and C2 communicating to a multicast group
comprising of N1, N2, and N3.

implementation is said to possess the mostly-ordered mul-
ticast property if the above ordering constraint is satisfied
with high frequency. This permits occasional ordering
violations: these occur if ni processes m followed by m′

and either (1) n j processes m after m′, or (2) n j does not
process m at all (because the message is lost).

This is an empirical property about the common-case
behavior, not a strict guarantee. As a result, MOMs can
be implemented as a best-effort network primitive. We
seek to take advantage of the properties of the data cen-
ter network previously described in order to implement
MOMs efficiently in the normal case. The property may
be violated in the event of transient network failures or
congestion, so application-level code must be able to han-
dle occasional ordering violations.

In this section, we first examine why existing multi-
cast mechanisms do not provide this property, and then
describe three techniques for implementing MOMs. Each
stems from the idea of equalizing path length between
multicast messages with a topology-aware multicast. The
second adds QoS techniques to equalize latency while
the third leverages in-network serialization to guarantee
correct ordering. In Section 3.4, we evaluate these pro-
tocols using both an implementation on an OpenFlow
switch testbed and a simulation of a datacenter-scale net-
work. We show that the first two techniques are effective
at providing MOMs with a reordering rate of ∼0.01–0.1%
and the third eliminates reorderings entirely except during
network failures.

3.2 Existing Multicast is Not Ordered
We first consider existing network-layer multicast mecha-
nisms to understand why ordering violations occur.

Using IP multicast, a client can send a single multi-
cast message to the target multicast address and have it
delivered to all of the nodes. Multicast-enabled switches
will, by default, flood multicast traffic to all the ports in
a broadcast domain. Unnecessary flooding costs can be
eliminated by using IGMP, which manages the member-
ship of a multicast group.

Using a network-level multicast mechanism, packets
from different senders may be received in conflicting or-
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ders because they traverse paths of varying lengths and
experience varying levels of congestion along different
links. For example, suppose the clients C1 and C2 in Fig-
ure 2 each send a multicast message to the multicast group
{N1,N2,N3} at times t = 0 and t = ε respectively. Let
pi→ j represent the network path traversed by the multi-
cast operation initiated by Ci to Nj, and l(pi→ j) represent
its latency. In this setting, the ordering property is violated
if N1 receives m1 followed by m2 while N3 receives m2 fol-
lowed by m1, which could occur if l(p1→1)< l(p2→1)+ε
and l(p1→3) > l(p2→3) + ε . This is distinctly possible
since the paths p1→1 and p2→3 traverse just two links
each while p2→1 and p1→3 traverse four links each.

In practice, many applications do not even use network-
level multicast; they use application-level multicast mech-
anisms such as having the client send individual unicast
messages to each of the nodes in the target multicast group.
This approach, which requires no support from the net-
work architecture, has even worse ordering properties. In
addition to the path length variation seen in network-level
multicast, there is additional latency skew caused by the
messages not being sent at the same time.

3.3 Our Designs
We can improve the ordering provided by network-level
multicast by building our own multicast mechanisms.
Specifically, we present a sequence of design options that
provide successively stronger ordering guarantees.

1. Topology-aware multicast: Ensure that all multicast
messages traverse the same number of links. This
eliminates reordering due to path dilation.

2. High-priority multicast: Use topology-aware multi-
cast, but also assign high QoS priorities to multicasts.
This essentially eliminates drops due to congestion,
and also reduces reordering due to queuing delays.

3. In-network serialization: Use high-priority multicast,
but route all packets through a single root switch. This
eliminates all remaining non-failure related reorder-
ing.

The common intuition behind all of our designs is that
messages can be sent along predictable paths through the
data center network topology with low latency and high
reliability in the common case.

We have implemented these three designs using Open-
Flow [31] software-defined networking, which allows it to
be deployed on a variety of switches. OpenFlow provides
access to switch support for custom forwarding rules, mul-
ticast replication, and even header rewriting. Our designs
assume the existence of a SDN controller for ease of
configuration and failure recovery. The controller installs
appropriate rules for multicast forwarding, and updates
them when switch failures are detected.

3.3.1 Topology-Aware Multicast

In our first design, we attempt to minimize the disparity
in message latencies by assuring that the messages cor-
responding to a single multicast operation traverse the
same number of links. To achieve this, we route multicast
messages through switches that are equidistant from all
of the nodes in the target multicast group. The routes are
dependent on the scope of the multicast group.

For instance, if all multicast group members are located
within the same cluster in a three-level tree topology, the
aggregation switches of that cluster represent the nearest
set of switches that are equidistant from all members. For
datacenter-wide multicast groups, multicast messages are
routed through the root switches.

Equalizing path lengths can cause increased latency
for some recipients of each multicast message, because
messages no longer take the shortest path to each recipi-
ent. However, the maximum latency—and, in many cases,
the average latency—is not significantly impacted: in
datacenter-wide multicast groups, some messages would
have to be routed through the root switches anyway. More-
over, the cost of traversing an extra link is small in data
center networks, particularly in comparison to the Internet.
As a result, this tradeoff is a good one: Speculative Paxos
is able to take advantage of the more predictable ordering
to provide better end-to-end latency.

Addressing. Each multicast group has a single address.
In the intra-cluster case, the address shares the same prefix
as the rest of the cluster, but has a distinct prefix from
any of the ToR switches. In the datacenter-wide case, the
address should come from a subnet not used by any other
cluster.

Routing. The above addressing scheme ensures that,
with longest-prefix matching, multicast messages are
routed to the correct set of switches without any changes
to the existing routing protocols. The target switches will
each have specific rules that convert the message to a
true multicast packet and will send it downward along
any replica-facing ports. Lower switches will replicate the
multicast packet on multiple ports as necessary.

Note that in this scheme, core switches have a multicast
rule for every datacenter-wide multicast group while ag-
gregation switches have a rule for every multicast group
within its cluster. Typical switches have support for thou-
sands to tens of thousands of these multicast groups.

As an example of end-to-end routing, suppose the client
C1 in Figure 2 wishes to send a message to a three-member
multicast group that is spread across the data center. The
group’s multicast address will be of a subnet not shared
by any cluster, and thus will be routed to either S1 or S2.
Those core switches will then replicate it into three mes-
sages that are sent on each of the downward links. This
simple mechanism guarantees that all messages traverse
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the same number of links.

Failure Recovery. When a link or switch fails, the SDN
controller will eventually detect the failure and route
around it as part of the normal failover process. In many
cases, when there is sufficient path redundancy inside the
network (as with a data center network organized into
a Clos topology [15]), this is sufficient to repair MOM
routing as well. However, in some cases—most notably
a traditional fat tree, where there is only a single path
from each root switch down to a given host—some root
switches may become unusable for certain replicas. In
these cases, the controller installs rules in the network
that “blacklist” these root switches for applicable multi-
cast groups. Note, however, that failures along upward
links in a fat tree network can be handled locally by sim-
ply redirecting MOM traffic to any working root without
involving the controller [30].

3.3.2 High-Priority Multicast

The above protocol equalizes path length and, in an un-
loaded network, significantly reduces the reordering rate
of multicast messages. However, in the presence of back-
ground traffic, different paths may have different queuing
delays. For example, suppose clients C1 and C2 in Figure 2
send multicasts m1 and m2 through S1 and S2 respectively.
The latency over these two switches might vary signifi-
cantly. If there is significant cross-traffic over the links
S1 − S5 and S2 − S4 but not over the links S1 − S4 and
S2 − S5, then N2 is likely to receive m1 followed by m2
while N3 would receive them in opposite order.

We can easily mitigate the impact of cross-traffic on la-
tency by assigning a higher priority to MOM traffic using
Quality of Service (QoS) mechanisms. Prioritizing this
traffic is possible because this traffic is typically a small
fraction of overall data center traffic volume. By assigning
MOM messages to a strict-priority hardware queue, we
can ensure that MOM traffic is always sent before other
types of traffic. This limits the queuing delays introduced
by cross-traffic to the duration of a single packet. With
10 Gbps links and 1500 byte packets, this corresponds to
a worst-case queuing delay of about 1.2 µs per link or a
total of about 2.4 µs from a core switch to a ToR switch.
Our evaluation results show that this leads to a negligible
amount of reordering under typical operating conditions.

3.3.3 In-Network Serialization

Even with QoS, currently-transmitting packets cannot be
preempted. This fact, combined with minor variations
in switch latency imply that there is still a small chance
of message reordering. For these cases, we present an
approach that uses the network itself to guarantee correct
ordering of messages in spite of cross-traffic.

Our approach is to route all multicast operations to
a given group through the same switch. This top-level

switch not only serves as a serialization point, but also
ensures that messages to a given group node traverse the
same path. As a result, it provides perfect ordering as long
as the switch delivers packets to output ports in order (we
have not observed this to be a problem, as discussed in
Section 3.4.1) and there are no failures.

Addressing/Routing. As before, we assign a single ad-
dress to each multicast group. In this design, however,
the SDN controller will unilaterally designate a root or
aggregation switch as a serialization point and install the
appropriate routes in the network. By default, we hash the
multicast addresses across the relevant target switches for
load balancing and ease of routing.

In certain network architectures, similar routing func-
tionality can also be achieved using PIM Sparse Mode
multicast [12], which routes multicast packets from all
sources through a single “rendezvous point” router.

Failure Recovery. Like the failure recovery mechanism
of Section 3.3.1, we can also rely on an SDN controller
to route around failures. If a switch no longer has a valid
path to all replicas of a multicast group or is unreachable
by a set of clients, the controller will remap the multi-
cast group’s address to a different switch that does have
a valid path. This may require the addition of routing ta-
ble entries across a handful of switches in the network.
These rules will be more specific than the default, hashed
mappings and will therefore take precedence. Downtime
due to failures is minimal: devices typically have four or
five 9’s of reliability [14] and path recovery takes a few
milliseconds [30].

We can further reduce the failure recovery time by
letting the end hosts handle failover. We can do this by
setting up n different multicast serialization points each
with their own multicast address and pre-installed rout-
ing table entries. By specifying the multicast address, the
clients thus choose which serialization point to use. A
client can failover from one designated root switch to
another immediately after it receives switch failure notifi-
cations from the fabric controller or upon encountering a
persistent communication failure to a target MOM group.
This approach requires some additional application-level
complexity and increases routing table/address usage, but
provides much faster failover than the baseline.

Load Balancing. In-network serialization is not inher-
ently load-balancing in the same way as our previous de-
signs: all multicast traffic for a particular group traverses
the same root switch. However, as described previously,
there are many replica groups, each with message load far
below the capacity of a data center core switch. Different
groups will be hashed to different serialization switches,
providing load balancing in aggregate. If necessary, the
SDN controller can explicitly specify the root switch for
particular groups to achieve better load balancing.
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Figure 3: Testbed configuration

3.4 Evaluation of MOMs
Can data center networks effectively provide mostly-
ordered multicast? To answer this question, we conducted
a series of experiments to determine the reorder rate of
concurrent multicast transmissions. We perform experi-
ments using a multi-switch testbed, and conduct simula-
tions to explore larger data center deployments.

3.4.1 Testbed Evaluation

We evaluate the ordering properties of our multicast mech-
anism using a testbed that emulates twelve switches in
a fat-tree configuration, as depicted in Figure 3. The
testbed emulates four Top-of-Rack switches in two clus-
ters, with two aggregation switches per cluster and four
root switches connecting the clusters. Host-ToR and ToR-
aggregation links are 1 Gbps, while aggregation-root links
are 10 Gbps. This testbed captures many essential proper-
ties of a data center network, including path length vari-
ance and the possibility for multicast packets to arrive
out of order due to multi-path effects. The testbed can de-
liver multicast messages either using native IP multicast,
topology-aware MOM, or network serialization.

The testbed is realized using VLANs on five switches.
Four HP ProCurve 6600 switches implement the ToR and
aggregation switches, and an Arista 7150S-24 10 Gbps
switch implements the root switches. All hosts are Dell
PowerEdge R610 servers with 4 6-core Intel Xeon L5640
CPUs running Ubuntu 12.04, using Broadcom BCM5709
1000BaseT adapters to connect to the ToRs.

A preliminary question is whether individual switches
will cause concurrent multicast traffic to be delivered in
conflicting orders, which could occur because of paral-
lelism in switch processing. We tested this by connecting
multiple senders and receivers to the same switch, and
verified that all receivers received multicast traffic in the
same order. We did not observe any reorderings on any of
the switches we tested, including the two models in our
testbed, even at link-saturating rates of multicast traffic.

With the testbed configured as in Figure 3, we con-
nected three senders and three receivers to the ToR
switches. The receivers record the order of arriving mul-
ticasts and compare them to compute the frequency of
ordering violations.
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Figure 4: Measured packet reorder rates on 12-switch testbed

In this configuration, ordering violations can occur be-
cause multicast packets traverse different paths between
switches. Figure 4 shows that this occurs frequently for
conventional IP multicast, with as many as 25% of packets
reordered. By equalizing path lengths, our topology-aware
MOM mechanism reduces the reordering frequency by 2–
3 orders of magnitude. Network serialization eliminates
reorderings entirely.

3.4.2 Simulation Results

To evaluate the effectiveness of our proposed multicast de-
signs on a larger network, we use a parallel, packet-level,
event-driven simulator. In addition to the experiments
described below, we have validated the simulator by sim-
ulating the same topology as our testbed, using measured
latency distributions for the two switch types. The simu-
lated and measured results match to within 8%.

The simulated data center network topology consists
of 2560 servers and a total of 119 switches. The switches
are configured in a three-level FatTree topology [1] with
a total oversubscription ratio of about 1:4. The core and
aggregation switches each have 16 10 Gbps ports while
the ToRs each have 8 10 Gbps ports and 40 1 Gbps ports.
Each switch has a strict-priority queue in addition to stan-
dard queues. Both queues use drop-tail behavior and a
switching latency distribution taken from our measure-
ments of the Arista 7150 switch.

In this setup, we configure end hosts to periodically
transmit MOM traffic to a multicast group of 3 nodes
where we observe the frequency of ordering violations.
In addition to MOM traffic, hosts also send background
traffic to one another. We derive the distribution of interar-
rival times and ON/OFF-period length for the background
traffic from measurements of Microsoft data centers [2].

In the experiments in Figure 5, we measure reordering
rates for the four options previously discussed: standard
multicast, topology-aware multicast (MOMs), MOMs
with QoS, and MOMs with in-network serialization.

Reordering. In Figure 5(a), we fix the MOM sending
rate to 50,000 messages per second and vary the amount
of simulated background traffic. The range equates to
about 5–30% average utilization. Note that data center
traffic is extremely bursty, so this range is typical [2]. In
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(b) Reorder rates with varying MOM throughput; background traffic
fixed at 10% average utilization.

Figure 5: Simulated packet reorder rates, in a 160-switch, three-level fat-tree network

Figure 5(b), we vary the MOM sending rate and fix the
average utilization to 10%. Results are similar for other
utilization rates.

As expected, the standard multicast approach has a
relatively high rate of packet reorderings because packets
traverse paths of varying lengths. Simply being aware
of the topology reduces the rate of reorderings by an
order of magnitude, and employing QoS prioritization
mitigates the impact of congestion caused by other traffic.
The in-network serialization approach achieves perfect
ordering: as packets are routed through a single switch,
only congestion losses could cause ordering violations.

Latency. As we previously observed, MOM can in-
crease the path length of a multicast message to the
longest path from a sender to one of the receivers. As a
result, the time until a message arrives at the first receiver
increases. However, for more than 70% of messages, the
average latency over all receivers remains unchanged.
The latency skew, i.e., the difference between maximum
and minimum delivery time to all recipients for any given
message, is in all cases under 2.5 µs for the in-network
serialization approach.

4 Speculative Paxos
Our evaluation in the previous section shows that we can
engineer a data center network to provide MOMs. How
should this capability influence our design of distributed
systems? We argue that a data center network with MOMs
can be viewed as approximately synchronous: it provides
strong ordering properties in the common case, but they
may occasionally be violated during failures.

To take advantage of this model, we introduce Spec-
ulative Paxos, a new state machine replication protocol.
Speculative Paxos relies on MOMs to be ordered in the
common case. Each replica speculatively executes re-
quests based on this order, before agreement is reached.
This speculative approach allows the protocol to run with
the minimum possible latency (two message delays) and
provides high throughput by avoiding communication be-

Client interface

• invoke(operation) → result

Replica interface

• speculativelyExecute(seqno, operation)
→ result

• rollback(from-seqno, to-seqno,
list<operations>)

• commit(seqno)

Figure 6: Speculative Paxos library API

tween replicas on each request. When occasional ordering
violations occur, it invokes a reconciliation protocol to
rollback inconsistent operations and agree on a new state.
Thus, Speculative Paxos does not rely on MOM for cor-
rectness, only for efficiency.

4.1 Model
Speculative Paxos provides state machine replication, fol-
lowing the model in Section 2.1. In particular, it guaran-
tees linearizability [16] provided that there are no more
than f failures: operations appear as though they were ex-
ecuted in a consistent sequential order, and each operation
sees the effect of operations that completed before it. The
API of the Speculative Paxos library is shown in Figure 6.

Speculative Paxos differs from traditional state ma-
chine replication protocols in that it executes operations
speculatively at the replicas, before agreement is reached
about the ordering of requests. When the replica re-
ceives a request, the Speculative Paxos library makes
a speculativelyExecute upcall to the application code,
providing it with the requested operation and an associ-
ated sequence number. In the event of a failed speculation,
the Speculative Paxos library may make a rollback up-
call, requesting that the application undo the most recent
operations and return to a previous state. To do so, it
provides the sequence number and operation of all the
commands to be rolled back. The Speculative Paxos li-
brary also periodically makes commit upcalls to indicate
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that previously-speculative operations will never be rolled
back, allowing the application to discard information (e.g.,
undo logs) needed to roll back operations.

Importantly, although Speculative Paxos executes oper-
ations speculatively on replicas, speculative state is not
exposed to clients. The Speculative Paxos library only re-
turns results to the client application after they are known
to have successfully committed in the same order at a
quorum of replicas. In this respect, Speculative Paxos is
similar to Zyzzyva [22], and differs from systems that
employ speculation on the client side [41].
Failure Model Although the premise for our work is
that data center networks can provide stronger guarantees
of ordering than distributed algorithms typically assume,
Speculative Paxos does not rely on this assumption for
correctness. It remains correct under the same assump-
tions as Paxos and Viewstamped Replication: it requires
2 f + 1 replicas and provides safety as long as no more
than f replicas fail simultaneously, even if the network
drops, delays, reorders, or duplicates messages. It pro-
vides liveness as long as messages that are repeatedly
resent are eventually delivered before the recipients time
out. (This requirement is the same as in Paxos, and is
required because of the impossibility of consensus in an
asynchronous system [13].)

4.2 Protocol
Speculative Paxos consists of three sub-protocols:

• Speculative processing commits requests efficiently
in the normal case where messages are ordered and
< f/2 replicas have failed (Section 4.2.2)

• Synchronization periodically verifies that replicas
have speculatively executed the same requests in the
same order (Section 4.2.3)

• Reconciliation ensures progress when requests are
delivered out of order or when between f/2 and f
nodes have failed (Section 4.2.4)

4.2.1 Replica State

Each replica maintains a status, a log, and a view number.
The replica’s status indicates whether it can process

new operations. Most of the time, the replica is in the
NORMAL state, which allows speculative processing of
new operations. While the reconciliation protocol is in
progress, the replica is in the RECONCILIATION state.
There are also RECOVERY and RECONFIGURATION states
used when a failed replica is reconstructing its state and
when the membership of the replica set is changing.

The log is a sequence of operations executed by the
replica. Each entry in the log is tagged with a sequence
number and a state, which is either COMMITTED or SPEC-
ULATIVE. All committed operations precede all specu-
lative operations. Each log entry also has an associated

Client 

Replica 
1 

Replica 
2 

Replica 
3 

Replica 
5 

request specreply(result,hash)

specexec()

match?

Replica 
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specexec()

specexec()

specexec()

specexec()

Figure 7: Speculative processing protocol.

summary hash. The summary hash of entry n is given by

summaryn = H(summaryn−1 || operationn)

Thus, it summarizes the replica’s state up to that point: two
replicas that have the same summary hash for log entry
n must agree on the order of operations up to entry n. To
simplify exposition, we assume replicas retain their entire
logs indefinitely; a standard checkpointing procedure can
be used to truncate logs.

The system moves through a series of views, each with
a designated view number and leader. Each replica main-
tains its own idea of the current view number. The leader
is selected in a round-robin ordering based on the view
number, i.e., for view v, replica v mod n is the leader. This
is similar to leader election in [6] and [29], but the leader
does not play a special role in the normal-case specu-
lative processing protocol. It is used only to coordinate
synchronization and reconciliation.

4.2.2 Speculative Processing

Speculative Paxos processes requests speculatively in the
common case. When a client application initiates an op-
eration, the Speculative Paxos library sends a REQUEST
message to all replicas. This message includes the op-
eration requested, the identity of a client, and a unique
per-client request identifier. The REQUEST message is
sent using our MOM primitive, ensuring that replicas are
likely to receive concurrent requests in the same order.

Replicas participate in speculative processing when
they are in the NORMAL state. Upon receiving a REQUEST
message, they immediately speculatively execute the re-
quest: they assign the request the next higher sequence
number, append the request to the log in the SPECULA-
TIVE state, and make an upcall to application code to
execute the request. It then sends a SPECULATIVE-REPLY
message to the client, which includes the result of execut-
ing the operation as well as the sequence number assigned
to the request and a summary hash of the replica’s log.

Clients wait for SPECULATIVE-REPLY messages from
a superquorum of f + � f/2�+ 1 replicas, and compare
the responses. If all responses match exactly, i.e., they
have the same sequence number and summary hash, the
client treats the operation as committed. The matching
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responses indicate that the superquorum of replicas have
executed the request (and all previous operations) in the
same order. The replicas themselves do not yet know
that the operation has committed, but the reconciliation
protocol ensures that any such operation will persist even
if there are failures, and may not be rolled back. If the
client fails to receive SPECULATIVE-REPLY messages
from a superquorum of replicas before a timeout, or if
the responses do not match (indicating that the replicas
are not in the same state), it initiates a reconciliation, as
described in Section 4.2.4.

Why is a superquorum of responses needed rather than
a simple majority as in Paxos? The reasoning is the same
as in Fast Paxos1: even correct replicas may receive oper-
ations from different clients in inconsistent orders. Con-
sider what would happen if we had used a quorum of size
f +1, and one request was executed by f +1 replicas and
a different request by the other f . If any of the replicas
in the majority subsequently fail, the recovery protocol
will not be able to distinguish them. As a result, the size
a superquorum must be chosen such that, if an operation
is successful, a majority of active replicas will have that
operation in their log [28].

4.2.3 Synchronization

In the speculative processing protocol, clients learn that
their requests have succeeded when they receive matching
speculative replies from a superquorum of replicas. The
replicas, however, do not communicate with each other
as part of speculative processing, so they do not learn
the outcome of the operations they have executed. The
synchronization protocol is a periodic process, driven by
the leader, that verifies that replicas are in the same state.

Periodically (every t milliseconds, or every k re-
quests), the leader initiates synchronization by sending
a 〈SYNC, v, s〉 message to the other replicas, where v is
its current view number and s is the highest sequence
number in its log. Replicas respond to SYNC messages by
sending the leader a message 〈SYNC-REPLY, v, s, h(s)〉,
where h(s) is the summary hash associated with entry s in
its log. If v is not the current view number, or the replica
is not in the NORMAL state, the message is ignored.

When the leader has received f + � f/2�+ 1 SYNC-
REPLY messages for a sequence number s, including its
own, it checks whether the hashes in the messages match.
If so, the replicas agree on the ordering of requests up to
s. The leader promotes all requests with sequence number
less than or equal to s from SPECULATIVE to COMMIT-
TED state, and makes a commit(s) upcall to the application.
It then sends a message 〈COMMIT, v, s, h(s)〉 to the other

1Fast Paxos is typically presented as requiring quorums of size 2 f +1
out of 3 f + 1, but like Speculative Paxos can be configured such that
2 f +1 replicas can make progress with f failures but need superquorums
to execute fast rounds [27].

replicas. Replicas receiving this message also commit all
operations up to s if their summary hash matches.

If the leader receives SYNC-REPLY messages that do
not have the same hash, or if a replica receives a COMMIT
message with a different hash than its current log entry, it
initiates a reconciliation.

4.2.4 Reconciliation

From time to time, replica state may diverge. This can oc-
cur if messages are dropped or reordered by the network,
or if replicas fail. The reconciliation protocol repairs di-
vergent state and ensures that the system makes progress.

The reconciliation protocol follows the same gen-
eral structure as view changes in Viewstamped Repli-
cation [29]: all replicas stop processing new requests and
send their log to the new leader, which selects a definitive
log and distributes it to the other replicas. The main differ-
ence is that the leader must perform a more complex log
merging procedure that retains any operation that success-
fully completed even though operations may have been
executed in different orders at different replicas.

When a replica begins a reconciliation, it increments
its view number and sets its status to RECONCILIATION,
which stops normal processing of client requests. It then
sends a 〈START-RECONCILIATION, v〉 message to the
other replicas. The other replicas, upon receiving a START-
RECONCILIATION message for a higher view than the
one they are currently in, perform the same procedure.
Once a replica has received START-RECONCILIATION
messages for view v from f other replicas, it sends a
〈RECONCILE, v, v�, log〉 message to the leader of the new
view. Here, v� is the last view in which the replica’s status
was NORMAL.

Once the new leader receives RECONCILE messages
from f other replicas, it merges their logs. The log merg-
ing procedure considers all logs with the highest v� (in-
cluding the leader’s own log, if applicable) and produces
a combined log with two properties:

• If the same prefix appears in a majority of the logs,
then those entries appear in the combined log in the
same position.

• Every operation in any of the input logs appears in the
output log.

The first property is critical for correctness: it ensures that
any operation that might have successfully completed at
a client survives into the new view. Because clients treat
requests as successful once they have received matching
summary hashes from f + � f/2�+ 1 replicas, and f of
those replicas might have subsequently failed, any suc-
cessful operation will appear in at least � f/2�+1 logs.

The second property is not required for safety, but en-
sures that the system makes progress. Even if all multicast
requests are reordered by the network, the reconciliation
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procedure selects a definitive ordering of all requests.
The procedure for merging logs is as follows:

• The leader considers only logs with the highest v�; any
other logs are discarded. This ensures that the results
of a previous reconciliation are respected.

• It then selects the log with the most COMMITTED en-
tries. These operations are known to have succeeded,
so they are added to the combined log.

• Starting with the next sequence number, it checks
whether a majority of the logs have an entry with
the same summary hash for that sequence number. If
so, that operation is added to the log in SPECULATIVE
state. This process is repeated with each subsequent
sequence number until no match is found.

• It then gathers all other operations found in any log
that have not yet been added to the combined log,
selects an arbitrary ordering for them, and appends
them to the log in the SPECULATIVE state.

The leader then sends a 〈START-VIEW, v, log〉 message
to all replicas. Upon receiving this message, the replica
installs the new log: it rolls back any speculative opera-
tions in its log that do not match the new log, and executes
any new operations in ascending order. It then sets its cur-
rent view to v, and resets its status to NORMAL, resuming
speculative processing of new requests.
Ensuring progress with f failures. The reconciliation
protocol uses a quorum size of f + 1 replicas, unlike
the speculative processing protocol, which requires a su-
perquorum of f + � f/2�+1 replicas. This means that rec-
onciliation can succeed even when more than f/2 but no
more than f replicas are faulty, while speculative pro-
cessing cannot. Because reconciliation ensures that all
operations submitted before the reconciliation began are
assigned a consistent order, it can commit operations even
if up to f replicas are faulty.

Upon receiving a START-VIEW message, each replica
also sends a 〈IN-VIEW, v〉 message to the leader to ac-
knowledge that it has received the log for the new view.
Once the leader has received IN-VIEW messages from f
other replicas, it commits all of the speculative operations
that were included in the START-VIEW message, notifies
the clients, and notifies the other replicas with a COMMIT
message. This allows operations to be committed even
if there are more than f/2 failed replicas. This process is
analogous to combining regular and fast rounds in Fast
Paxos: only f + 1 replicas are required in this case be-
cause only the leader is is allowed to propose the ordering
of requests that starts the new view.

4.2.5 Recovery and Reconfiguration

Replicas that have failed and rejoined the system follow a
recovery protocol to ensure that they have the current state.

A reconfiguration protocol can also be used to change the
membership of the replica group, e.g., to replace failed
replicas with new ones. For this purpose, Speculative
Paxos uses standard recovery and reconfiguration pro-
tocols from Viewstamped Replication [29]. The reconfig-
uration protocol also includes the need to add or remove
newly-joined or departing replicas to the multicast group.
For our OpenFlow multicast forwarding prototype, it re-
quires contacting the OpenFlow controller.

Reconfiguration can also be used to change the system
from Speculative Paxos to a traditional implementation
of Paxos or VR. Because reconfiguration can succeed
with up to f failures, this can be a useful strategy when
more than f/2 failures occur, or during transient network
failures that can cause packets to be reordered.

4.3 Correctness

Speculative Paxos treats an operation as successful (and
notifies the client application) if the operation is COMMIT-
TED in at least one replica’s log, or if it is SPECULATIVE
in a common prefix of f + � f/2�+1 replica’s logs.

Any successful operation always survives in the same
serial order. We only need to consider reconciliations
here, as speculative processing will only add new oper-
ations to the end of the log, and synchronization will
cause successful operations to be COMMITTED. Consider
first operations that succeeded because they were specula-
tively executed on f +� f/2�+1 replicas. These operations
will survive reconciliations. The reconciliation process re-
quires f +1 out of 2 f +1 replicas to respond, so � f/2�+1
logs containing these operations will be considered, and
the log merging algorithm ensures they will survive in the
same position.

Operations can also be committed through reconcil-
iation. This can happen only once f + 1 replicas have
processed the START-VIEW message for that view. All of
these replicas agree on the ordering of these operations,
and at least one will participate in the next reconciliation,
because f +1 replicas are required for reconciliation. The
reconciliation procedure only merges logs with the high-
est v�, and the log merging procedure will ensure that the
common prefix of these logs survives.

Only one operation can succeed for a given sequence
number. By itself, the speculative processing protocol
allows only one operation to succeed for a given sequence
number, because an operation only succeeds if specu-
latively committed by a superquorum of replicas. The
reconciliation protocol will not assign a different opera-
tion to any sequence number that could potentially have
speculatively committed at enough replicas, nor one that
committed as the result of a previous reconciliation.
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Latency (Msg Delays) Message Complexity Messages at Bottleneck Replica

Paxos 4 2n 2n
Paxos + batching 4+ 2+ 2n

b 2+ 2n
b

Fast Paxos 3 2n 2n
Speculative Paxos 2 2n+ 2n

s 2+ 2n
s

Table 1: Comparison of Paxos, Fast Paxos, and Speculative Paxos. n is the total number of replicas; b is the batch size for Paxos with
batching, and s is the number of requests between synchronization for Speculative Paxos.

4.4 Discussion
Speculative Paxos offers high performance because it
commits most operations via the fast-path speculative
execution protocol. It improves on the latency of client
operations, an increasingly critical factor in today’s ap-
plications: a client can submit a request and learn its out-
come in two message delays—the optimal latency, and
a significant improvement over the four message delays
of leader-based Paxos, as shown in Table 1. Speculative
Paxos also provides better throughput, because it has no
bottleneck replica that bears a disproportionate amount of
the load. In Speculative Paxos, each replica processes only
two messages (plus periodic synchronizations), whereas
all 2n messages are processed by the leader in Paxos.

Speculative Paxos is closely related to Fast Paxos [27],
which reduces latency by sending requests directly from
clients to all replicas. Fast Paxos also incurs a penalty
when different requests are received by the replicas in a
conflicting order. In Fast Paxos, the message flow is

client → replicas → leader → client
and so the protocol requires three message delays. Spec-
ulative Paxos improves on this by executing operations
speculatively so that clients can learn the result of their
operations in two message delays. The tradeoff is that the
reconciliation protocol is more expensive and speculative
operations might need to be rolled back, making Specu-
lative Paxos slower in conflict-heavy environments. This
tradeoff is an example of our co-design philosophy: Fast
Paxos would also benefit from MOM, but Speculative
Paxos is optimized specially for an environment where
multicasts are mostly ordered.

Speculative Paxos improves throughput by reducing
the number of messages processed by each node. Despite
the name, Fast Paxos does not improve throughput, al-
though it reduces latency: the leader still processes 2n
messages, so it remains a bottleneck. Other variants on
Paxos aim to reduce this bottleneck. A common approach
is to batch requests at the leader, only running the full
protocol periodically. This also eliminates a bottleneck,
increasing throughput dramatically, but increases rather
than reducing latency.

4.5 Evaluation
We have implemented the Speculative Paxos protocol as
a library for clients and replicas. Our library comprises
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Figure 8: Latency vs throughput tradeoff for testbed deployment

about 10,000 lines of C++, and also supports leader-based
Paxos (with or without batching) and Fast Paxos.

We evaluate the performance of Speculative Paxos and
compare it to Paxos and Fast Paxos using a deployment
on the twelve-switch testbed shown in Figure 3, measur-
ing the performance tradeoffs under varying client load.
We then investigate the protocol’s sensitivity to network
conditions by emulating MOM ordering violations.

4.5.1 Latency/Throughput Comparison

In our testbed experiments, we use three replicas, so f = 1,
and a superquorum of all three replicas is required for
Speculative Paxos or Fast Paxos to commit operations
on the fast path. The replicas and multiple client hosts
are connected to the ToR switches with 1 Gbps links.
Speculative Paxos and Fast Paxos clients use the network
serialization variant of MOM for communicating with the
replicas; Paxos uses standard IP multicast.

Figure 8 plots the median latency experienced by
clients against the overall request throughput obtained by
varying the number of closed-loop clients from 2 to 300.
We compare Speculative Paxos, Fast Paxos, and Paxos
with and without batching. In the batching variant, we use
the latency-optimized sliding-window batching strategy
from PBFT [6], with batch sizes up to 64. (This limit
on batch sizes is not reached in this environment; higher
maximum batch sizes have no effect.) This comparison
shows:

• At low to medium request rates, Speculative Paxos
provides lower latency (135 µs) than either Paxos
(220 µs) or Fast Paxos (171 µs). This improvement
can be attributed to the fewer message delays.
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Application Total LoC Rollback LoC

Timestamp Server 154 10
Lock Manager 606 75

Key-value Store 2011 248

Table 2: Complexity of rollback in test applications

• Speculative Paxos is able to sustain a higher through-
put level (∼100,000 req/s) than either Paxos or Fast
Paxos (∼38,000 req/s), because fewer messages are
handled by the leader, which otherwise becomes a
bottleneck.

• Like Speculative Paxos, batching also increases the
throughput of Paxos substantially by eliminating the
leader bottleneck: the two achieve equivalent peak
throughput levels. However, batching also increases la-
tency: at a throughput level of 90,000 req/s, its latency
is 3.5 times higher than that of Speculative Paxos.

4.5.2 Reordering Sensitivity

To gain further insight into Speculative Paxos perfor-
mance under varying conditions, we modified our imple-
mentation to artificially reorder random incoming packets.
These tests used three nodes with Xeon L5640 processors
connected via a single 1 Gbps switch.

We measured throughput with 20 concurrent closed-
loop clients. When packet reordering is rare, Speculative
Paxos outperforms Paxos and Fast Paxos by a factor of 3×,
as shown in Figure 9. As the reorder rate increases, Spec-
ulative Paxos must perform reconciliations and perfor-
mance drops. However, it continues to outperform Paxos
until the reordering rate exceeds 0.1%. Our experiments
in Section 3.4 indicate that data center environments will
have lower reorder rates using topology-aware multicast,
and can eliminate orderings entirely except in rare failure
cases using network serialization. Paxos performance is
largely unaffected by reordering, and Fast Paxos through-
put drops slightly because conflicts must be resolved by
the leader, but this is cheaper than reconciliation.

5 Applications
We demonstrate the benefits and tradeoffs involved in
using speculation by implementing and evaluating several
applications ranging from the trivial to fairly complex.

Since Speculative Paxos exposes speculation at the ap-
plication replicas, it requires rollback support from the
application. The application must be able to rollback op-
erations in the event of failed speculations.

We next describe three applications ranging from a
simple timestamp server to a complex transactional, dis-
tributed key-value store inspired by Spanner [9]. We mea-
sure the performance achieved by using Speculative Paxos
and comment on the complexity of rollback code.
Timestamp Server. This network service generates
monotonically increasing timestamps or globally unique
identifier numbers. Such services are often used for dis-
tributed concurrency control. Each replica maintains its
own counter which is incremented upon a new request.
On rollback, the counter is simply decremented once for
each request to be reverted.
Lock Manager. The Lock Manager is a fault-tolerant
synchronization service which provides a fine-grained
locking interface. Clients can acquire and release locks in
read or write mode. Each replica maintains a mapping of
object locks held by a client and the converse. On rollback,
both these mappings are updated by the inverse operation,
e.g., RELEASE(X) for LOCK(X). Since these operations
do not commute, they must be rolled back in the reverse
order in which they were applied.
Transactional Key-Value Store. We built a distributed
in-memory key-value store which supports serializable
transactions using two-phase commit and strict two-phase
locking or optimistic concurrency control (OCC) to pro-
vide concurrency control. Client can perform GET and
PUT operations, and commit them atomically using BE-
GIN, COMMIT, and ABORT operations.

The key-value store keeps multiple versions of each
row (like many databases) to support reading a consistent
snapshot of past data, and to implement optimistic con-
currency control. Rolling back PUT operations requires
reverting a key to an earlier version, and rolling back PRE-
PARE, COMMIT, and ABORT two-phase commit operations
requires adjusting transaction metadata to an earlier state.

We test the key-value store on the previously-described
testbed. In our microbenchmark, a single client executes
transactions in a closed loop. Each transaction involves
several replicated get and put operations. Speculative
Paxos commits a transaction in an average of 1.01 ms, a
30% improvement over the 1.44 ms required for Paxos,
and a 10% improvement over the 1.12 ms for Fast Paxos.

We also evaluate the key-value store on a more complex
benchmark: a synthetic workload based on a profile of the
Retwis open-source Twitter clone. The workload chooses
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keys based on a Zipf distribution, and operations based
on the transactions implemented in Retwis. Figure 10
plots the maximum throughput the system can achieve
while remaining within a 10 ms SLO. By simultaneously
providing lower latency and eliminating throughput bot-
tlenecks, Speculative Paxos achieves significantly greater
throughput within this latency budget.

6 Related Work
Weak Synchrony. The theoretical distributed systems
literature has studied several models of weak synchrony
assumptions. These include bounding the latency of mes-
sage delivery and the relative speeds of processors [11], or
introducing unreliable failure detectors [7]. In particular,
a single Ethernet LAN segment has been shown to be
nearly synchronous in practice, where even short timeouts
are effective [40] and reorderings are rare [21]. The data
center network is far more complex; we have shown that
with existing multicast mechanisms, reorderings are fre-
quent, but our network-level MOM mechanisms can be
used to ensure ordering with high probability.

In the context of a single LAN, the Optimistic Atomic
Broadcast [36] protocol provides total ordering of mes-
sages under the assumption of a spontaneous total or-
dering property equivalent to our MOM property, and
was later used to implement a transaction processing sys-
tem [21]. Besides extending this idea to the more com-
plex data center context, the Speculative Paxos protocol
is more heavily optimized for lower reorder rates. For
example, the OAB protocol requires all-to-all commu-
nication; Speculative Paxos achieves higher throughput
by avoiding this. Speculative Paxos also introduces addi-
tional mechanisms such as summary hashes to support a
client/server state machine replication model instead of
atomic broadcast.
Paxos Variants. Speculative Paxos is similar to Fast
Paxos [27], which reduces latency when messages arrive
at replicas in the same order. Speculative Paxos takes
this approach further, eliminating another message round
and communication between the replicas, in exchange for
reduced performance when messages are reordered.

Total ordering of operations is not always needed. Gen-
eralized Paxos [26] and variants such as Multicoordinated
Paxos [5] and Egalitarian Paxos [32] mitigate the cost of
conflicts in a Fast Paxos-like protocol by requiring the pro-

grammer to identify requests that commute and permitting
such requests to commit in different orders on different
replicas. Such an approach could allow Speculative Paxos
to tolerate higher reordering rates.
Speculation. Speculative Paxos is also closely related
to recent work on speculative Byzantine fault tolerant
replication. The most similar is Zyzzyva [22], which em-
ploys speculation on the server side to reduce the cost
of operations when replicas are non-faulty. Like Spec-
ulative Paxos, Zyzzyva replicas execute requests spec-
ulatively and do not learn the outcome of their request,
but clients can determine if replicas are in a consistent
state. Zyzzyva’s speculation assumes that requests are
not assigned conflicting orders by a Byzantine primary
replica. Speculative Paxos applies the same idea in a non-
Byzantine setting, speculatively assuming that requests
are not reordered by the network. Eve [20] uses specu-
lation and rollback to allow non-conflicting operations
to execute concurrently; some of its techniques could be
applied here to reduce the cost of rollback.

An alternate approach is to apply speculation on the
client side. SpecBFT [41] modifies the PBFT protocol so
that the primary sends an immediate response to the client,
which continues executing speculatively until it later re-
ceives confirmation from the other replicas. This approach
also allows the client to resume executing after two mes-
sage delays. However, the client cannot communicate over
the network or issue further state machine operations until
the speculative state is committed. This significantly lim-
its usability for data center applications that often perform
a sequence of accesses to different storage systems [37].
Client-side speculation also requires kernel modifications
to support unmodified applications [34].

7 Conclusion
We have presented two mechanisms: the Speculative
Paxos protocol, which achieves higher performance when
the network provides our Mostly-Ordered Multicast prop-
erty, and new network-level multicast mechanisms de-
signed to provide this ordering property. Applied to-
gether with MOM, Speculative Paxos achieves signifi-
cantly higher performance than standard protocols in data
center environments. This example demonstrates the ben-
efits of co-designing a distributed system with its under-
lying network, an approach we encourage developers of
future data center applications to consider.
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Abstract
Network conditions are dynamic; unfortunately, current
approaches to configuring networks are not. Network op-
erators need tools to express how a network’s data-plane
behavior should respond to a wide range of events and
changing conditions, ranging from unexpected failures to
shifting traffic patterns to planned maintenance. Yet, to
update the network configuration today, operators typi-
cally rely on a combination of manual intervention and ad
hoc scripts. In this paper, we present Kinetic, a domain
specific language and network control system that enables
operators to control their networks dynamically in a con-
cise, intuitive way. Kinetic also automatically verifies the
correctness of these control programs with respect to user-
specified temporal properties. Our user study of Kinetic
with several hundred network operators demonstrates that
Kinetic is intuitive and usable, and our performance evalu-
ation shows that realistic Kinetic programs scale well with
the number of policies and the size of the network.

1 Introduction
Network conditions are always changing. Traffic patterns
change, hosts arrive and depart, topologies change, in-
trusions occur, and so forth. Despite the fact that many
of these changes are predictable—and, in some cases,
even planned—an operator’s control over the network re-
mains relatively static. In response to changing conditions,
network operators typically manually change low-level
network configurations. Our previous study of network
configuration changes found that a campus network may
experience anywhere from 1,000 to 18,000 changes per
month [20]. Although tools like Puppet [27] and Chef [3]
can automate some network device configuration tasks,
this level of automation is still relatively hands-on and
error-prone.

To underscore the importance of this problem, we ana-
lyzed acceptable use policies from more than 20 campus
networks (many of which are publicly available [22]) and
also surveyed network operators about their experience
with existing tools for implementing these kinds of poli-
cies. These policies are written in English and typically

express how the network’s forwarding behavior should
change in response to changing network conditions. For
example, the University of Illinois’s network use policy
has an unrestricted class, and four restricted classes of
traffic shaping; a user’s traffic is downgraded into dif-
ferent classes based on their past usage over a 24-hour
sliding window. Such policies sound simple enough when
expressed in prose, but in fact they require complex in-
strumentation and “wrappers” that dynamically change
low-level network configuration. Network operators cur-
rently have no concise way to express these functions, nor
do they have any way of checking whether their changes
will result in the intended behavior. In a recent survey
we conducted that included several hundred network op-
erators, 89% of respondents said that they could not be
certain that the changes they made to network configura-
tion would not introduce new bugs.

Software-defined networking (SDN) is a powerful ap-
proach to managing computer networks [11] because it
provides network-wide visibility of and control over a net-
work’s behavior; the Frenetic [13] family of languages pro-
vides higher-level abstractions for expressing network con-
trol. These languages are embedded in general-purpose
programming languages (specifically, OCaml and Python),
which makes it possible to write control programs that
can respond to arbitrary events. Yet these languages do
not provide intuitive abstractions for automating changes
to network policy in response to dynamic conditions, nor
do they make it possible to verify that these changes will
match the operator’s requirements for how network behav-
ior should react to changing network conditions.

To address these problems, we present Kinetic, a do-
main specific language (DSL) and SDN controller that
enables writing network control programs that capture
responses to changing network conditions in a concise,
intuitive, and verifiable language. Kinetic provides a struc-
tured language for expressing a network policy in terms of
finite state machines (FSMs), which both concisely cap-
ture dynamics and are amenable to verification. States
correspond to distinct forwarding behavior, and events
trigger transitions between states. Kinetic’s event handler
listens to events and triggers transitions in policy, which
in turn update the data plane.
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Kinetic makes it possible to verify that changes to net-
work behavior conform to a higher-level specification of
correctness. For example, a network operator might want
to prove that a control program would never allow a host
access to certain parts of the network once an intrusion has
been detected. Ongoing work has devoted much attention
to verification of the network’s data plane; tools such as
VeriFlow [19] and HSA [18] can determine, for exam-
ple, whether the forwarding table entries in a network’s
switches and routers would result in persistent loops or
reachability problems. However, these tools only oper-
ate on a snapshot of the data plane; they do not allow
operators to reason about network control programs, or
how network control would change in response to various
events or changes in network conditions. They do not pro-
vide any way for a network operator to find errors in the
control programs that install erroneous data-plane state in
the first place. Kinetic’s focus on automating and verifying
the control plane is complementary to this previous work.
Kinetic’s use of computation tree logic (CTL) [6]—and its
ability to automatically verify policies with the NuSMV
model checker [4]— can allow network operators to verify
the dynamic behavior of the controller before the control
programs are ever run.

One significant challenge we faced when designing
Kinetic is the potential for state explosion in Kinetic pro-
grams, due to the large number of hosts, flows, network
events, and policies. A naı̈ve encoding of dynamic poli-
cies in an FSM would result in an exponential number of
states, even for simple programs because every flow, with
all possible combination of fields (e.g., src/dst IP, src/dst
MAC, etc), can have its own state. To control this state
explosion, Kinetic introduces an abstraction called a Lo-
cated Packet Equivalence Class (LPEC), through which a
programmer can specify a division of the flow space and
map an independent copy of an FSM (FSM instance) to
each class of flow space. Using LPECs, a programmer can
define groups of flows that should always map to same
FSM instances (e.g., all flows from the same source MAC
address). Thus, each defined group of flows will be in the
same state. Additionally, because Kinetic is itself based
on Pyretic (a Python-based SDN control language in the
Frenetic family) [25], Kinetic inherits Pyretic’s language
and runtime features. Specifically, Kinetic uses Pyretic’s
composition operators to express larger FSMs as multiple
smaller ones that correspond to distinct network tasks (e.g.,
authentication, intrusion detection, rate-limiting). Apply-
ing Pyretic’s composition operators to independent Kinetic
FSMs and classic product construction of automata [10]
(combining multiple FSMs with union or product) greatly
simplifies the construction of Kinetic’s FSM expressions
and allows the FSM-based policies to scale.

We evaluated two aspects of Kinetic: (1) its usability,
in terms of both conciseness and operators’ facility with

Profession Experience (years) # Users in Network
Operator 216 1 32 1–10 156
Developer 251 1–5 310 10–100 137
Student 123 5–10 187 100–1,000 136
Vendor 80 10–15 150 1,000–10,000 118
Manager 69 15–20 122 > 10,000 322
Other 138 > 20 73
Total 877 874 869

Table 1: Demographics of participants in the Kinetic user study.
We asked these participants about their experiences configuring
existing networks, as well as their experiences using Kinetic.
Section 5 discusses the participants’ experience with Kinetic.
Not all participants answered every question.

expressing realistic network policies; and (2) its perfor-
mance, in terms of its ability to efficiently compile network
policies into flow-table entries, particularly as the number
of policies, the size of the network, and the rate of events
grow. We conducted a user study with Kinetic of more
than 650 participants, many of whom were network opera-
tors with no prior programming experience; most found
Kinetic quite accessible: 79% thought that configuring the
network with Kinetic was easier than current approaches,
and 84% thought that Kinetic makes it easier to verify
network configuration than existing alternatives.

Kinetic is open-source and publicly available; the
project webpage provides access to the source code, a
tutorial on Kinetic, and all of the code for the experimen-
tal evaluation [21]. The system has been used by SDN
practitioners [14] and has served as the basis for projects
and assignments in several university courses, as well as in
a Coursera [8] course, where it has been used by thousands
of students over the past two years.

2 Motivation and Background
To motivate the need for Kinetic, we present the results of
a survey of network operators about problems automating
and verifying network configuration. We then present
background on Pyretic, the language on which Kinetic is
based; and on model checking and computation tree logic,
which we use to design Kinetic’s verification engine.

2.1 Motivation: Network Operator Survey
To gain a better understanding of the extent to which
network operators have to change their network config-
urations, as well as their level of confidence in their
changes, we conducted an institutional review board
(IRB)-approved survey of more than 800 participants, con-
cerning their experience with configuring existing net-
works, as part of a Coursera course on software-defined
networking that we offer [8]. Table 1 summarizes the
demographics of the participants: about 870 students com-
pleted the survey, 216 of whom were full-time network
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operators. The majority of the students who completed
the assignment and survey had more than 5 years of expe-
rience in networking, and many had more than 15 years of
experience. More than 200 of the students had experience
with networks of more than 1,000 devices, and more than
300 of the students had experience with networks with
more than 10,000 users. Most of the participants had the
most experience with campus or enterprise networks.

The responses we received demonstrate a clear need for
better tools for automating and verifying network control.
Nearly 20% of participants said that they must change their
network configurations more than once a day. The most
common causes of changes were provisioning, planned
maintenance, and updates to security policies—exactly
the types of configuration changes that we aim to auto-
mate with Kinetic. More strikingly, 89% of respondents
indicated that they were never completely certain that
their changes to the configuration would not introduce a
new problem or bug, and 82% were concerned that the
changes would introduce problems with existing function-
ality that was unrelated to the change. The two most
common aspects of configuration that operators wanted to
see automated were correctness testing (37%) and quality
of service and performance assurances (24%). The two
most common aspects of configuration that participants
wanted to see verified were general correctness problems
(37%) and security properties (26%). We asked these same
participants to write programs in Kinetic and other SDN
controllers; we discuss the results of that part of our user
study in Section 5.1.

2.2 Background: Pyretic and CTL

Pyretic. To develop a language for expressing control
dynamics that is both concise and easy to use, we based
the Kinetic language on Pyretic [25], a Python-embedded
domain-specific programming language for writing SDN
control programs. It encodes network data-plane behavior
in terms of policy functions that map an incoming “located
packet” (i.e., a packet and its location) to an outgoing set
of located packets. Pyretic has a policy variable that de-
termines the actions that the control program applies to in-
coming packets (e.g., filtering, modification, forwarding).
Pyretic ultimately compiles policies to OpenFlow-based
switches. Pyretic’s composition operators provide straight-
forward mechanisms for composing multiple distinct poli-
cies into a single coherent control program. Pyretic’s
parallel composition operator (+) makes a copy of the
original packet and applies the corresponding policies to
each copy in parallel. Sequential composition (>>) ap-
plies policies to a packet in sequence, so that the second
policy is applied to the packet that is the output of the first
policy. Pyretic is extensible, and its support for composing
distinct policies and dynamically recompiling flow-table

Operator Meaning
(Quantifiers over Groups of Paths)

A φ φ holds for all possible paths from the current state.
E φ There exists a paths from the current state where φ holds.

(Quantifiers over a Specific Path)
X φ φ holds for neXt state.
F φ φ eventually holds sometime in the Future.
G φ φ holds for all current and following states, Globally.
φ U ψ φ holds at least Until ψ .

Table 2: Computation tree logic (CTL) operators.

entries whenever the policy variable is updated are use-
ful features for Kinetic. Still, the language itself does not
provide a framework for writing concise, intuitive policies
that respond to changing conditions, which is Kinetic’s
goal.

Model checking. We wanted to design Kinetic so that
policies were not only easy to automate, but also easy to
verify. To do so, we applied a model checking framework
developed by Clarke and Emerson [5, 6] and subsequently
refined by McMillan [24]. Model checking can guarantee
that a finite state machine (FSM) satisfies certain prop-
erties that are expressed in different types of logics; this
feature makes FSMs a logical choice for expressing Ki-
netic policies. One such logic is computation tree logic
(CTL), a branching-time logic that represents time as a tree
structure. The initial state of an FSM is the root, and each
node represents a different future state. A path through
the tree represents an execution path of the FSM. CTL
allows the expression of various types of temporal logic
statements, such as those expressed in Table 2. NuSMV
is a widely used symbolic model checker for FSMs [4].
The Kinetic compiler automatically translates Kinetic pro-
grams into an SMV model, which can be tested against
various CTL-based assertions.

3 Kinetic by Example

We illustrate various features of Kinetic by way of exam-
ple programs. All of the examples that we present in this
section are verifiable; we defer a discussion of verifica-
tion, as well as the details of the Kinetic language and
runtime, to Section 4. We have selected examples that
demonstrate the design features of Kinetic; the Kinetic
Github repository has more examples [21].

Kinetic programs capture control dynamics with a finite
state machine (FSM) abstraction. To illustrate this abstrac-
tion, we start with a simple example involving intrusion
detection. Although FSMs are intuitive, representing all
possible network states in a monolithic FSM would result
in state explosion; the second and third examples illus-
trate two abstractions that address this challenge: Located
Packet Equivalence Classes (LPECs) and FSM composi-
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Figure 1: Intrusion detection FSM.

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c ( p k t ) :
h1 = p k t [’srcip’ ]
h2 = p k t [’dstip’ ]
r e t u r n ( match ( s r c i p =h1 , d s t i p =h2 ) |

match ( s r c i p =h2 , d s t i p =h1 ) )

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded
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Figure 4: MAC learner FSM.

a usage cap. This independence allows a programmer to
represent the overall network state as a product automaton
that can be decomposed in terms of simpler tasks, where
each task has simpler (and smaller) FSMs. This example
shows the composition of four independent network tasks.

In our survey of campus network policies, we found
nearly 20 university campuses [22] that implemented some
form of usage-based rate-limiting (e.g., [7]). Network op-
erators currently implement these policies using low-level
scripts that interact with monitoring devices. Kinetic pro-
vides intuitive mechanisms for implementing such a policy.
Figure 3 illustrates the FSM for a usage-based rate limiter,
which forward traffic with different delays depending on
the user’s historical data usage patterns. By default, traffic
is forwarded with no delay; depending on the events that
the controller receives concerning usage, the controller
may institute a policy that introduces additional delay on
user traffic. (OpenFlow 1.0 does not support traffic shap-
ing, so we use variable delay as an illustrative example;
Kinetic could be coupled with controllers that support later
versions of OpenFlow that can do traffic shaping.)

Naturally, a real network would not only have policies
involving quality-of-service, but also other policies, such
as those relating to authentication and security. For exam-
ple, a control program might first check whether a host is
authenticated, either through a Web login or via 802.1X
mechanism. Subsequently, the host’s traffic might be sub-
ject to an intrusion detection policy that allows traffic by
default but blocks the traffic if an infection event occurs.
Finally, it might be sequentially composed with the rate-
limiting policy above, yielding the resulting policy:

( web au th + 802 .1 X auth ) >> i d s >>
r a t e l i m i t e r

To verify this program, Kinetic generates a single FSM
model for input to a model checker. Thus, programmers
can write CTL specifications for the resulting composed
policy, not only for individual policies. For example, a
logic statement involving the combination of policies such
as “If a host is authenticated either by the web authen-
tication system or with 802.1X and is not infected, the
resulting policy should never drop packets” can be ver-
ified with a single CTL assertion, as shown in Table 3.
(Section 4.4 discusses verification in more detail.)
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Kinetic 
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Kinetic 
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Event Hookup 
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Eers Et D i
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Figure 5: Kinetic architecture.

3.4 Handling General Event Types
Figure 4 shows a Kinetic FSM for a MAC learner that
responds to both packets from hosts and topology changes.
Although the implementation of a MAC learning switch is
just as simple in other languages (indeed, it is the “canoni-
cal” reference program for SDN controllers), we present
this example to illustrate that Kinetic programs can handle
a variety of event types, including packet arrivals.

This program responds to two different types of events:
TC (topo change) and port events. The TC event is a
built-in event that is invoked automatically whenever a
topology change occurs. In Kinetic, programs can register
and react to this built-in event. The port events are
generated by a Pyretic query that collects the first packet
for each (switch,srcmac) pair. The values of policy
are defined by that of port: the value is flood when
port is 0, and fwd(n) when port=n. Initially port
is 0 (indicating the port has not yet been learned), and TC
is False. When a (port,n) event arrives, which is
invoked by the Pyretic runtime when it sees a packet from
an unseen host, a transition occurs, setting the port to the
value learned and the policy to unicast out that port. The
MAC learner then unicasts packets to the appropriate hosts
until a topology change occurs, triggering the transition
to the right-most state in which TC is True, resulting
in flooding for packets corresponding to that LPEC (i.e.,
switch-source MAC address pair).

4 Kinetic Design & Implementation
We describe the details of Kinetic’s architecture, language,
runtime, and verification engine.

4.1 Architecture
We now describe the Kinetic system architecture, includ-
ing the design of the Kinetic programming language. Fig-
ure 5 shows the Kinetic architecture, which is built on the
Pyretic runtime. At the highest level, a Kinetic program
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Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.

Total # of states: 2N Total # of transitions: 22N 

  (omitted for cleaner look) 
# of hosts: N 

(a) Explicit encoding is exponential in N.

H_1 FSM H_2 FSM H_3 FSM 

allow 

drop 

allow 

drop 

allow 

drop 

  + + 

H_N FSM 

allow 

drop 

+ 

Total # of states: 2N Total # of transitions: 2N # of hosts: N 

Default state 

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-
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(a) Actual implementation of the Kinetic FSM.

1 @ t r a n s i t i o n
2 def i n f e c t e d ( s e l f ) :
3 s e l f . c a s e ( o c c u r r e d ( s e l f . e v e n t ) , s e l f . e v e n t )
4
5 @ t r a n s i t i o n
6 def p o l i c y ( s e l f ) :
7 s e l f . c a s e ( i s t r u e (V(’infected’ ) ) ,C( drop ) )
8 s e l f . d e f a u l t (C( i d e n t i t y ) )
9

10 s e l f . f s m d e f = FSMDef (
11 i n f e c t e d =FSMVar ( t y p e =BoolType ( ) ,
12 i n i t = F a l s e ,
13 t r a n s = i n f e c t e d ) ,
14 p o l i c y =FSMVar ( t y p e =Type ( P o l i c y ,{ drop , i d e n t i t y }) ,
15 i n i t = i d e n t i t y ,
16 t r a n s = p o l i c y ) )
17
18 def l p e c ( p k t ) :
19 r e t u r n match ( s r c i p = p k t [’srcip’ ] )
20
21 f s m p o l = FSMPolicy ( lpec , s e l f . f s m d e f )

(b) Kinetic code that implements the Kinetic FSM.

Figure 8: Logical FSM for an IDS in Kinetic, and the Kinetic
code that implements the policy.

dependently and compose them in parallel, as shown in
Figure 7b.

Each LPEC has an FSM, which has a set of states,
where each state has a Pyretic policy; and a set of tran-
sitions between those states, where transitions occur in
response to events that the operators defines. When
events arrive, the respective LPEC FSMs may transi-
tion between states, ultimately inducing the Pyretic run-
time to recompile the policy and push updated rules to
the switches. In Kinetic, a programmer can specify an
LPEC in terms of a Pyretic filter policy. For example,
match(srcip=pkt[’srcip’]) defines an LPEC
FSM for each unique source IP address.

Returning to our IDS example from Section 3 (Figure 1),
Figure 8b shows the code for the Kinetic program that
implements the simple intrusion detection example from
Section 3. Each host (i.e., source IP address) can have
a distinct state, so we need an LPEC FSM per source IP
address; lines 18–19 define the LPEC. To define an FSM
that is amenable to model checking, we must separate the
infected variable and the corresponding policy vari-
able into two separate states, as shown in Figure 8a. Exoge-
nous events trigger transitions between the infected
variable states; a change in this variable’s value in turn
triggers an endogenous transition of the policy variable,
which ultimately causes the Pyretic runtime to recompile

A0:Authenticated
A1:Unauthenticated

I0:Infected
I1:Clean

C0:Capped
C1:Uncapped

>> >> 

(a) Without composition (b) With composition

Figure 9: Composing independent tasks in sequence.

W0:Web-Authenticated     X0: 802.1X-Authenticated
W1:Web-Unauthenticated X1: 802.1X-Unauthenticated

+

(a) Without composition (b) With composition

Figure 10: Composing multiple authentication tasks in parallel.
Any successful authentication would result in allowing the host’s
traffic.

flow-table entries for the network switches. Lines 1–3 in
Figure 8b define the exogenous transition for infected;
lines 5–8 defined the endogenous transition for policy
(note that the value of policy is defined in terms of the
value of infected). Finally, lines 10–16 define the FSM
itself, in terms of the two variables; the FSM definition is
simply a set of FSM variables, each of which has a type,
an initial value, and a transition function.

4.2.3 FSM Composition

In Section 3, we showed an example of a campus network
policy that composed FSMs for independent network tasks
to control state explosion. Without FSM composition, a
programmer would need to define FSMs for ΠN

i=1ai pos-
sible states, where ai is the number of possible states for
task i and N is the total number of tasks. Decomposing the
product automaton reduces state complexity from expo-
nential to linear in the number of independent tasks. For
example, given ten tasks, each with two states, a mono-
lithic program would require 1,024 states, as opposed to
just 20.

Pyretic allows policies to be composed either in parallel
(i.e., on independent copies of the same packet) or in
sequence (i.e., where the second policy is applied to the
output from the first). It turns out that these operators
are also useful for reducing state explosion. Figure 9
illustrates how sequential composition can reduce state

7



66 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

complexity by decomposing a larger product automaton.
Consider a simple control program that puts the host into
a walled-garden until it has authenticated, quarantines the
host if an infection has been detected, and rate limits a
host if it has exceeded a usage cap. Each of these tasks
has two possible states: authenticated or not, quarantined
or not, capped or not, resulting in 23 possible states. By
applying auth >> IDS >> cap, the same network
control program requires only 2 ·3 states.

Figure 10 shows how parallel composition reduces state
complexity. A Kinetic program might specify that either a
network flow should be authenticated by a Web authentica-
tion mechanism or 802.1X. If either of these tasks places
the host in an authenticated state, the host should be al-
lowed to send traffic. Without composition, the network
state machine would need a second set of states, requiring
2N states, where N is the number of authentication tasks
(in this case, N = 2). (Clearly, even more states would
be needed if any independent task could assume more
than two states.) As before, decomposition reduces this to
ΣN

i=1ai states, where ai is the number of possible states for
task i, and N is the number of tasks.

4.3 Runtime

We now explain optimizations to the Kinetic runtime to
support the efficient compilation of the large finite state
machines that might result from networks with many hosts
and policies and high event rates. The Kinetic runtime’s
main challenge is storing and processing the joint state of
all LPEC FSMs to produce a single set of forwarding table
entries in the network switch. To accomplish this goal, the
runtime first decomposes the FSMs with combinators to
achieve a representation of the network state that is linear
in the number of hosts and policies. Second, Kinetic opti-
mizes the compilation process itself by recognizing that
the LPEC FSMs typically operate on disjoint flow space,
which allows for optimizations that dramatically speed up
parallel composition. Finally, Kinetic only expands the
LPEC FSMs for which a transition has actually occurred.
We describe each of these optimizations below.

Decomposing the product automata. A Kinetic
FSMPolicy encodes the complete FSM as the product
automaton [10] of the individual LPEC FSMs. We can
represent the Pyretic policy for the entire network, given a
global network state s as the following product automata:

policy =
N

∑
i=1

(lpeci >> lfsmi(s))

where the summation operator represents parallel com-
position of the corresponding policies, and each LPEC

H_1 FSM H_M FSM 

allow 

drop 

allow 

drop 

+ + 

Total # of states: 2M Total # of transitions: 2M # of hosts: N 
# of infected hosts: M 

  

Default state 

aa

Current state 

d

Figure 11: Expanding only M LPEC FSMs that have changed.

generator produces the appropriate packets that are pro-
cessed by the corresponding LPEC FSM in state s.

Fast compilation of disjoint LPECs. Compilation of
policies that are composed in parallel is computationally
expensive, as it requires producing the cross-product of
all match and action rules: it involves computing the inter-
section of match statements and the union of actions, for
every pair of match and action pairs between the two poli-
cies. If LPECs are disjoint, however, the resulting policies
can simply be combined without explicitly computing the
intersection of the match statements: the rules from each
LPEC FSM can simply be inserted into the flow tables.

Default policies and on-demand LPEC FSM expan-
sion. Even a linear-sized representation may not scale.
For example, the LPEC generator shown in Section 4.2.2
would generate 232 LPECs if it were fully expanded, while
a generator for each pair of hosts (based on hardware ad-
dress) would produce 296 LPECs. Fortunately, because all
LPEC FSMs are generated from the same FSM specifica-
tion, they start with the same initial state and, hence, the
same default policy. Thus, Kinetic does not need to ex-
pand the FSM for an LPEC unless and until it experiences
a state transition; until that point, the Kinetic runtime can
simply apply whatever default policy is defined for that
FSM. Figure 11 highlights this on-demand expansion.

Kinetic’s runtime optimizations reduce the computa-
tional complexity of compilation from exponential in the
number of LPECs (Figure 7a), to linear in the number
of LPECs (Figure 7b), and finally to linear in the (much
smaller) number of LPECs that have actually experienced
a transition (Figure 11). Kinetic additionally employs
additional optimizations, such as memoizing previously
compiled policies, as other applications have used [15].

4.4 Verification

When the programmer executes a Kinetic program, Ki-
netic automatically creates an FSM model for the NuSMV
model checker. Kinetic obtains information about each
state variable (e.g., type, initial value, and transition rela-
tionship) by parsing the fsm def data structure; Kinetic
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1 MODULE main
2 VAR
3 p o l i c y : { i d e n t i t y , d rop } ;
4 i n f e c t e d : b o o l e a n ;
5 ASSIGN
6 i n i t ( p o l i c y ) := i d e n t i t y ;
7 i n i t ( i n f e c t e d ) := FALSE ;
8 n e x t ( i n f e c t e d ) :=
9 c a s e

10 TRUE : {FALSE , TRUE} ;
11 e s a c ;
12 n e x t ( p o l i c y ) :=
13 c a s e
14 i n f e c t e d : drop ;
15 TRUE : i d e n t i t y ;
16 e s a c ;

Figure 12: NuSMV FSM model for IDS policy from Figure 8b.

parses the transition function for additional information
about transitions, which often depend on other variables.

Kinetic then uses NuSMV to test CTL specifications
that the programmer writes against the FSM model. Ki-
netic outputs the CTL specifications that passed; for any
failed specifications, Kinetic produces a counterexample,
showing the sequence of events and variable changes
that violated the specification. In addition to single
FSMPolicy objects, Kinetic can convert composed poli-
cies into a single model that can be verified. For example,
although the programmer specifies a composed policy as
in Figure 9b and Figure 10b, verification will execute on a
combined FSM model as in Figure 9a and Figure 10a.

Figure 12 shows the NuSMV FSM model correspond-
ing to the IDS policy from Figure 8b. The model definition
has two parts. The first is VAR, which declares the names
and types of each variable (lines 2–4). The second is
ASSIGN, where current and future variable values are as-
signed, using two functions for each variable: an init
function that determines the variable’s initial value (line
5–7), and a next function that specifies what value or
values the variable may take, as a function of the current
values of other variables in the model (line 8–16).

Within the case clause of each next function, the
left-hand side shows the condition, while the right-hand
side shows the variable’s next value if the condition holds.
TRUE on the left-hand side refers to a default transition.
Lines 8–11 indicate that the infected variable can
change between FALSE and TRUE, independent of any
other state variable (in reality, the value changes based on
external event of the same name). The policy variable
in lines 12–16 shows that the value transitions to drop
if infected is True, while the default is identity.
Thus, it shows that policy’s next value depends on the
infected variable. Table 3 shows examples of the types
of temporal properties that Kinetic can verify.

5 Evaluation

In this section, we evaluate two aspects of Kinetic:
(1) Does Kinetic make it easier for network operators
to configure realistic network policies? (Section 5.1); and
(2) How does Kinetic’s performance scale with the number
of flows, users, and policies? (Section 5.2).

5.1 Programming in Kinetic: User Study

Evaluating whether a new network configuration paradigm
such as Kinetic makes it easier for network operators to
write network policies is challenging. Network operators
already know how to use existing tools and infrastructure,
and deploying a new control framework requires over-
coming both the inertia of network infrastructure that is
already deployed and the knowledge base of network op-
erators, many of whom are not programmers by training.
We needed to find a way to ask many network operators
to evaluate Kinetic in light of these obstacles. Fortunately,
the Coursera course on software-defined networking that
we teach [8] offers precisely this captive audience, as the
course’s demographic includes many network operators
who are both educated about SDN and willing to exper-
iment with cutting-edge tools. (Section 2 and Table 1
explained the initial survey and described the demograph-
ics of the participants.) We obtained approval from our
institutional review board (IRB) to ask students to use
Kinetic and other SDN controllers to complete a simple
network management task and subsequently survey them.

We asked the students in the course to write a “walled
garden” controller program that is inspired from real en-
terprise network management task that we have learned
about in our discussions with network operators [9]. In
summary, the students were asked to write a program that
permitted all traffic to and from the Internet unless a host
was deemed to be infected (e.g., as determined from an
intrusion detection system alert) and not a host that was
exempt from the policy (one might imagine that certain
classes of users, such as high-ranking administrators or
executives would get different treatment than strict in-
terruption of service). In the assignment, we asked the
students to: (1) Write a Kinetic program that implements
the policy; (2) Choose either Pyretic or POX to implement
the same policy; (3) Optionally implement the policy in
the remaining controller; (4) Answer survey questions
about their experiences with each controller.

The course devoted one week each to each of the three
controller platforms, and students had already completed
assignments in both POX and Pyretic, so if anything, stu-
dents should have found those platforms at least as familiar
as Kinetic. In fact, there were three programming assign-
ments in Pyretic while there was only one for Kinetic.
Kinetic was discussed in only one lecture out of eight
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Program CTL Description

Mac learner

AG (topo change → AX policy=flood) Always resets to flooding when topology changes.
AG (policy=flood → AG EF (port>0)) Can always go from flooding to unicasting a learned port.
! AG (port=1 → EX port=2) It is impossible to update the learned port without first flooding.
AG (port>0 → A [port>0 U topo change]) Port will stay learned until there is a topology change.

Stateful firewall
AG (outgoing & !timeout → AX policy=identity)

If first packet originated from internal host and timeout did not
occur, the system should allow traffic.

AG (outgoing & timeout → AX pol-
icy=matchFilter)

If first packet originated from internal host, but timeout occurred,
the system should shut down traffic (apply match filter).

AG (!outgoing → AX policy=matchFilter) If first packet is not from internal host, the system should not allow
traffic (apply match filter).

Composed policy
AG (infected → AX policy=drop) If host is infected, drop packets.
AG ( (authenticated web | authenticated 1x) & !in-
fected → AX policy!=drop )

If host is authenticated either by Web or 802.1X, and is not infected,
packets should never be dropped.

AG (authenticated web & !infected & rate=2 →
AX policy=delay200)

If host is authenticated by Web, not infected, and the rate is 2,
delay packets by 200ms.

Table 3: NuSMV CTL rules for different Kinetic programs.

Figure 13: The lines of code required to implement the walled-
garden program in different controller languages.

Programs FL Pox Pyretic Kinetic
ids/firewall 416 22 46 17
mac learner 314 73 17 33
server load balancer 951 145 34 37
stateful firewall – – 25 41
usage-based rate limiter – – – 30

Table 4: Lines of code to implement programs in each controller.

lectures in the course, and was not treated specially. To
further minimize the bias in favor of Kinetic, students were
instructed to complete the assignment in Kinetic first, as
the first attempt is usually the hardest. With better under-
standing of the assignment, it is likely that programming
in Pyretic or POX would have been easier.

Of the students who completed the survey from Sec-
tion 2, 667 attempted the assignment, and 631 successfully
completed it (a 95% completion rate), and 70% of those
students completed the programming assignment in less
than three hours. We asked students who did not complete
the assignment why they did not complete it; most refer-
enced external factors such as time constraints, as opposed
to anything pertinent to Kinetic.

To compare the complexity of the different control pro-
grams, we compare the lines of code in programs im-

plemented with different controllers; we then conduct
qualitative measurements by surveying the students of the
course. Although the lines of code for a program depends
on the language, programmer, and implementation style, a
high-level comparison can nevertheless yield a rough but
meaningful sense for the relative simplicity of a Kinetic
program. Figure 13 shows the distribution of the lines of
code that students needed to implement the walled-garden
program in different controller languages. About 80%
of the implementations using Kinetic required about 22
lines of code; in contrast, more than half of the Pyretic
implementations required more than 50 lines, and half of
the assignments written in POX required more than 75
lines of code. The fact that Kinetic requires fewer lines
of code to implement this program highlights the utility
of the abstractions that Pyretic provides. In addition to
the experiment from the Coursera course, where we could
find publicly available implementations on the Web, we
compared the number of lines of code for several different
programs to our own implementations of the same pro-
grams in Kinetic. (Blank entries in the table indicate that
no implementation was available.) Table 4 shows these
results, for four different controllers: Floodlight, POX,
Pyretic, and Kinetic. The public Pyretic programs are oc-
casionally slightly shorter than the corresponding Kinetic
programs because they only handle built-in events such as
packet arrivals and topology changes. Programs that need
to handle arbitrary events would likely always be shorter
in Kinetic.

In addition to analyzing quantitative measures such as
lines of code, we asked students more qualitative questions
about their experiences using Kinetic to implement the
walled-garden assignment, relative to their experiences
with Pyretic and POX. We asked students to rank the con-
trollers based on ease of use, as well as which platform
they preferred. Figure 14 shows some highlights from this
part of the survey. Of the three controllers, more than half
of the students preferred writing the assignment in Kinetic
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Figure 14: Number of students who preferred each controller.

versus either Pyretic or POX. We asked students whether
Kinetic could make it easier to configure and verify poli-
cies in their networks. About 79% of students thought that
configuring the network with Kinetic would be easier than
current approaches, and about 84% agreed that Kinetic
would make it easier to verify network policies.

Students who chose Kinetic as the language that they
preferred best cited its abstractions, FSM-based structure,
and support for intuition (e.g., “Kinetic is more intuitive:
the only thing I need to do is to define the FSM variable.”,
“intuitive and easy to understand”, “reduces the number of
lines of code”, “programming state transitions in FSMs
makes much more sense”, “the logic is more concise”).
Some students still preferred Kinetic, despite the fact that
the syntax had a steeper learning curve: “Kinetic took
less time and was actually more understandable using
the templates even though the structure was very ’cryp-
tic’... I thought the Pyretic would be the easiest...[but]
I spent a lot more time chasing down weird bugs I had
because of things I left out or perhaps didn’t understand.”
Interestingly, many of the students actually preferred the
lower-level trappings of POX to Pyretic (e.g., “Pyretic was
friendly, but the logic more intricate”). The results of this
experiment and survey highlight both the advantages and
disadvantages of Kinetic’s design, as well as the difficulty
of designing “northbound” languages for SDN controllers:
without intuitive abstractions, operators may even prefer
the lower-level APIs to higher-level abstractions.

5.2 Performance and Scalability

We evaluate Kinetic’s performance and scalability when
handling incoming events, as well as the performance and
scalability of verification, as those are the two main contri-
butions of our work. We evaluated the Kinetic controller
on a machine with an Intel Xeon CPU E5-1620 3.60 GHz
processor and 32 GB of memory. We measured raw packet
forwarding performance but do not focus those numbers,
as the forwarding performance is not the focus of our work
and is equivalent to what can be achieved with POX and
Pyretic, in any case. Similarly, the rate at which updated

Statistic # per day
Total Unique Authenticated Users 22,586
Total Unique Devices Authenticated 41,937
Number of WPA authentication Events 1,330,220
Number of WEB authentication Events 1,850

Table 5: The frequency of network events on a primary campus
network, which we use for a trace-driven evaluation of Kinetic.

Figure 15: Time to handle a batch of incoming events and re-
compile policies in Kinetic, for different event arrival rates and
policies.

rules can be installed depends on lower layers (e.g., POX).
Optimizing the number of rule updates [32] and applying
them consistently [28] have been studied in previous work,
so we do not focus on those aspects here.

Event handling and policy recompilation. Because Ki-
netic recompiles the policy whenever an event causes a
state transition, we must evaluate how fast Kinetic can
react to events and recompile the policy for realistic net-
work scenarios. We used the wireless network from a large
university campus with more than 4,300 access points de-
ployed across 200 buildings; the network authenticates
nearly 42,000 unique devices for more than 22,000 users
every day. Table 5 summarizes these statistics. On such a
network, Kinetic would have to keep track of an equivalent
number of devices, and each authentication event (about
1.3 million per day) would require Kinetic to recompile
policy, resulting in an average of 15 events per second
(though certainly higher during peak periods). We evalu-
ate Kinetic for event arrival rates for up to 1,000 events
per second, for both a single-FSM policy and a policy
involving the composition of multiple FSMs, based on the
example in Section 3.3. We create a Kinetic program that
results in 42,000 LPEC FSMs and randomly distribute
authentication events across these FSMs (i.e., devices).

Figure 15 presents the results of this experiment. Re-
compilation time is longer for the program with multiple
FSMs composed together as it embeds a more complex
policy than the program with a single FSM. For both pro-
grams, event handling time increases as event arrival rate
increases. Even for event arrival rates that are several or-
ders of magnitude more frequent than an actual campus
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Figure 16: Verification time as a function of the number of CTL
properties that Kinetic checks, for a policy with a single FSM
and a policy with a composition of multiple FSMs.

network, Kinetic’s event handling and recompilation times
are around (or less than) a few hundred milliseconds.
Verification. The speed of verification depends on the
performance of NuSMV, which in turn depends on three
factors: (1) the size of the given FSM (i.e., number of
states and transitions), (2) the number of properties to
verify, and (3) the kinds of properties to verify. To ob-
serve whether Kinetic’s verification time is reasonable,
we evaluate Kinetic’s verification performance with the
same programs that we used to evaluate Kinetic’s event
handling and recompilation performance. The single-FSM
authentication program produces an FSM with four states,
and the program with multiple FSMs produces a combined
FSM with 384 states. To test Kinetic with more than the
handful of CTL specifications we manually created, we
generate over one hundred specifications using random
combinations of CTL operators. They are all syntactically
correct (i.e., NuSMV will not complain about the syntax),
but are generated regardless of whether they will be true
or false when each goes through the model checker, as our
goal is merely to measure verification time.

Figure 16 shows the time to complete verification for
different Kinetic programs with different numbers of prop-
erties. Each experiment had 1,000 independent trials; the
variance across experiments was small, so we do not show
the error bars. As expected, a Kinetic program with a
larger FSM model takes longer to finish. The figure also
shows that the number of properties affects verification
time, but all verification finishes within 35 milliseconds.
Kinetic performs verification before the Kinetic program
ever runs, so this process has no effect on performance.

6 Related Work
We discuss SDN controllers with verifiable properties,
approaches for formally verifying data-plane behavior,
and other high-level SDN control languages.
Formal verification of SDN control programs.
FlowLog [26] provides a database-like programming

model that unifies the control-plane logic with data-plane
state and controller state. Aspects of FlowLog programs
can be verified, but because the language does not natu-
rally capture state transitions and temporal relationships,
it cannot verify arbitrary temporal relationships, such as
those that can be verified with CTL in Kinetic. FlowLog
uses Alloy to perform bounded verification, so its analysis
is not complete, and certain aspects of verification are
manual. FlowLog has not been evaluated for realistic
network policies or for large networks. It requires storing
multiple database entries for each network state variable
and handles certain aspects of control logic by sending
data packets to the controller, so it is unlikely to scale.
VeriCon [1] verifies that a program written in its language
(CSDN) is correct for all topology and packet events
(e.g., packet arrivals, switch joins). It does not handle
arbitrary network events, and there is no OpenFlow-based
implementation, so its practicality is unclear.

Formal verification of data-plane behavior. Recent
work in network verification has focused on verify-
ing static properties of the data-plane state [19, 28, 29].
Anteater [23] and HSA [17, 18] can verify properties of
a static snapshot of a network’s data-plane state. These
systems can determine whether a static snapshot of data-
plane state violates some invariant, but they do not verify
the logic of the control program that generated the state in
the first place, making it difficult to identify which aspect
of the network’s control-plane logic caused the incorrect
data-plane state. In contrast, Kinetic helps operators ver-
ify control logic, such as “if an intrusion detection system
determines that a host is infected, the host’s traffic should
be dropped”. This capability helps operators both reason
about future data-plane states that a control program could
install and troubleshoot incorrect behavior when it does
arise. Because Kinetic’s verifies the static programs them-
selves, it can detect logic errors before the control program
is ever run on a live network. NICE [2] can test control-
plane properties that might result from arbitrary sequences
of standard OpenFlow events; it is not a controller, but
rather a test harness for control programs written in exist-
ing low-level controllers (e.g., NOX) and hence does not
permit reasoning about arbitrary events.

Other SDN control languages. Many languages raise the
level of abstraction for writing network control programs,
yet these languages do not offer constructs for concisely
encoding policies that capture network dynamics, nor do
they incorporate formal verification of control-plane be-
havior. FML [16] allows network operators to write and
maintain policies in a declarative style. Nettle [30] is a
domain specific language in Haskell. Procera [31] applies
functional reactive programming to help operators express
policies. Frenetic [12] is a family of languages that share
fundamental constructs and techniques for efficient com-
pilation to OpenFlow switches.
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7 Conclusion

One of the reasons that network configuration is so chal-
lenging is that network conditions are continually chang-
ing, and network operators must adapt the network con-
figuration whenever these conditions change. Network
operators need means not only to automate these configu-
ration changes but also to verify that the changes will be
correct. Existing general-purpose SDN controllers lack in-
tuitive constructs for expressing dynamic policy and ways
to efficiently verify that the control programs conform to
expected behavior.

To address these problems, we designed and developed
Kinetic, a domain specific language and SDN controller
for implementing dynamic network policies in a concise,
verifiable language. Kinetic exposes a language that al-
lows operators to express network policy in an intuitive
language that maps directly to a CTL-based model checker.
We evaluated Kinetic’s usability and performance through
both a large-scale user study and trace-driven performance
evaluation on realistic policies and found that network
operators find Kinetic easy to use for expressing dynamic
policies and that Kinetic can scale to a large number of
policies, hosts, and network events.

Kinetic sits squarely in the realm of ongoing work on
network verification and complements the growing body
of work on data-plane verification, such as Veriflow [19]
and NetPlumber [17]. As these tools can help network op-
erators ask questions about snapshots of data-plane state,
and Kinetic can help network operators reason about the
dynamics of network policies (which ultimately compile
to the corresponding data-plane state), the approaches are
complementary. Similarly, Kinetic needs the path guar-
antees that consistent updates [28] provide to guarantee
that the properties it verifies are preserved during state
transitions; conversely, consistent updates could be ex-
tended to reason about temporal properties such as those
that Kinetic can express. One natural next step would be
to combine these approaches.
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Abstract
It is critical to ensure that network policy remains con-

sistent during state transitions. However, existing tech-
niques impose a high cost in update delay, and/or FIB
space. We propose the Customizable Consistency Gener-
ator (CCG), a fast and generic framework to support cus-
tomizable consistency policies during network updates.
CCG effectively reduces the task of synthesizing an up-
date plan under the constraint of a given consistency pol-
icy to a verification problem, by checking whether an
update can safely be installed in the network at a par-
ticular time, and greedily processing network state tran-
sitions to heuristically minimize transition delay. We
show a large class of consistency policies are guaranteed
by this greedy heuristic alone; in addition, CCG makes
judicious use of existing heavier-weight network update
mechanisms to provide guarantees when necessary. As
such, CCG nearly achieves the “best of both worlds”:
the efficiency of simply passing through updates in most
cases, with the consistency guarantees of more heavy-
weight techniques. Mininet and physical testbed evalu-
ations demonstrate CCG’s capability to achieve various
types of consistency, such as path and bandwidth proper-
ties, with zero switch memory overhead and up to a 3×
delay reduction compared to previous solutions.

1 Introduction
Network operators often establish a set of correctness

conditions to ensure successful operation of the network,
such as the preference of one path over another, the pre-
vention of untrusted traffic from entering a secure zone,
or loop and black hole avoidance. As networks become
an increasingly crucial backbone for critical services, the
ability to construct networks that obey correctness cri-
teria is becoming even more important. Moreover, as
modern networks are continually changing, it is critical
for them to be correct even during transitions. Thus,
a key challenge is to guarantee that properties are pre-
served during transitions from one correct configuration
to a new correct configuration, which has been referred
as network consistency [25].

Several recent proposed systems [13, 16, 19, 25] con-
sistently update software-defined networks (SDNs), tran-
sitioning between two operator-specified network snap-
shots. However, those methods maintain only specific

properties, and can substantially delay the network up-
date process. Consistent updates [25] (CU), for example,
only guarantees coherence: during a network update any
packet or any flow is processed by either a new or an old
configuration, but never by a mix of the two. This is a rel-
atively strong policy that is sufficient to guarantee a large
class of more specific policies (no loop, firewall traver-
sal, etc.), but it comes at the cost of requiring a two-phase
update mechanism that incurs substantial delay between
the two phases and doubles flow entries temporarily. For
networks that care only about a weaker consistency prop-
erty, e.g., only loop freedom, this overhead is unneces-
sary. At the same time, networks sometimes need prop-
erties beyond what CU provides: CU only enforces prop-
erties on individual flows, but not across flows (e.g., “no
more than two flows on a particular link”). SWAN [13]
and zUpdate [19] also ensure only a specific property, in
their case congestion freedom.

That leads to a question: is it possible to efficiently
maintain customizable correctness policies as the net-
work evolves? Ideally, we want the “best of both
worlds”: the efficiency of simply immediately installing
updates without delay, but the safety of whatever correct-
ness properties are relevant to the network at hand.

We are not the first to define this goal. Recently,
Dionysus [15] proposed to reduce network update time to
just what is necessary to satisfy a certain property. How-
ever, Dionysus requires a rule dependency graph for each
particular invariant, produced by an algorithm specific to
that invariant (the paper presents an algorithm for packet
coherence). For example, a waypointing invariant would
need a new algorithm. Furthermore, the algorithms work
only when forwarding rules match exactly one flow.

We take a different approach that begins with an ob-
servation: synthesizing consistent updates for arbitrary
consistency policies is hard, but network verification on
general policies is comparatively easy, especially now
that real-time data plane verification tools [5, 17, 18] can
verify very generic data-plane properties of a network
state within milliseconds. In fact, as also occurs in do-
mains outside of networking, there is a connection be-
tween synthesis and verification. A feasible update se-
quence is one which the relevant properties are verifiable
at each moment in time. Might a verifier serve as a guide
through the search space of possible update sequences?
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Based on that insight, we propose a new consistent
update system, the Customizable Consistency Generator
(CCG), which efficiently and consistently updates SDNs
under customizable properties (invariants), intuitively by
converting the scheduling synthesis problem to a series
of network verification problems. With CCG, network
programmers can express desired invariants using an in-
terface (from [18]) which allows invariants to be defined
as essentially arbitrary functions of a data plane snap-
shot, generally requiring only a few tens of lines of code
to inspect the network model. Next, CCG runs a greedy
algorithm: when a new rule arrives from the SDN con-
troller, CCG checks whether the network would satisfy
the desired invariants if the rule were applied. If so, the
rule is sent without delay; otherwise, it is buffered, and
at each step CCG checks its buffer to see if any rules can
be installed safely (via repeated verifications).

This simplistic algorithm has two key problems. First,
the greedy algorithm may not find the best (e.g., fastest)
update installation sequence, and even worse, it may get
stuck with no update being installable without violat-
ing an invariant. However, we identify a fairly large
scope of policies that are “segment-independent” for
which the heuristic is guaranteed to succeed without
deadlock (§5.2). For non-segment-independent policies,
CCG needs a more heavyweight update technique, such
as Consistent Updates [25] or SWAN [13], to act as a
fallback. But CCG triggers this fallback mechanism only
when the greedy heuristic determines it cannot offer a
feasible update sequence. This is very rare in practice
for the invariants we test (§7), and even when the fall-
back is triggered, only a small part of the transition is
left to be handled by it, so the overhead associated with
the heavyweight mechanism (e.g., delay and temporarily
doubled FIB entries) is avoided as much as possible.

The second challenge lies in the verifier. Existing
real-time data plane verifiers, such as VeriFlow and Net-
Plumber, assume that they have an accurate network-
wide snapshot; but the network is a distributed system
and we cannot know exactly when updates are applied.
To address that, CCG explicitly models the uncertainty
about network state that arises due to timing, through
the use of uncertain forwarding graph (§4), a data struc-
ture that compactly represents the range of possible net-
work behaviors given the available information. Al-
though compact, CCG’s verification engine produces po-
tentially larger models than those of existing tools due to
this “uncertainty” awareness. Moreover, as a subroutine
of the scheduling procedure, the verification function is
called much more frequently than when it is used purely
for verification. For these reasons, a substantial amount
of work went into optimization, as shown in §7.1.

In summary, our contributions are:
• We developed a system, CCG, to efficiently synthe-

size network update orderings to preserve customiz-
able policies as network states evolve.

• We created a graph-based model to capture network
uncertainty, upon which real-time verification is per-
formed (90% of updates verified within 10 μs).

• We evaluate the performance of our CCG implemen-
tation in both emulation and a physical testbed, and
demonstrate that CCG offers significant performance
improvement over previous work—up to 3× faster
updates, typically with zero extra FIB entries—while
preserving various levels of consistency.

2 Problem Definition and Related Work
We design CCG to achieve the following objectives:

1) Consistency at Every Step. Network changes can
occur frequently, triggered by the control applications,
changes in traffic load, system upgrades, or even failures.
Even in SDNs with a logically centralized controller, the
asynchronous and distributed nature implies that no sin-
gle component can always obtain a fully up-to-date view
of the entire system. Moreover, data packets from all
possible sources may traverse the network at any time
in any order, interleaving with the network data plane
updates. How can we continuously enforce consistency
properties, given the incomplete and uncertain network
view at the controller?

2) Customizable Consistency Properties. The range
of desired consistency properties of networks is quite di-
verse. For example, the successful operations of some
networks may depend on a set of paths traversing a fire-
wall, certain “classified” hosts being unreachable from
external domains, enforcement of access control to pro-
tect critical assets, balanced load across links, loop free-
dom, etc. As argued in [21], a generic framework to
handle general properties is needed. Researchers have
attempted to ensure certain types of consistency proper-
ties, e.g., loop freedom or absence of packet loss [13,19],
but those studies do not provide a generalized solution.
Dionysus [15], as stated earlier, generalizes the scope of
consistency properties it deals with, but still requires de-
signing specific algorithms for different invariants. Con-
sistent Updates [25] is probably the closest solution to
support general consistency properties because it pro-
vides the relatively strong property of packet coherence
which is sufficient to guarantee many other properties;
but as we will see next, it sacrifices efficiency.

3) Efficient Update Installation. The network
controller should react in a timely fashion to network
changes to minimize the duration of performance drops
and network errors. There have been proposals [13, 16,
19, 23, 25] that instill correctness according to a specific
consistency property, but these approaches suffer sub-
stantial performance penalties. For example, the wait-
ing time between phases using the two-phase update
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scheme proposed in CU [25] is at least the maximum
delay across all the devices, assuming a completely par-
allel implementation. Dionysus [15] was recently pro-
posed to update networks via dynamic scheduling atop
a consistency-preserving dependency graph. However, it
requires implementing a new algorithm and dependency
graph for each new invariant to achieve good perfor-
mance. For example, a packet coherence invariant needs
one algorithm and a waypoint invariant would need an-
other algorithm. In contrast, our approach reduces the
consistency problem to a general network verification
problem, which can take a broad range of invariants as
inputs. In particular, one only needs to specify the ver-
ification function instead of designing a new algorithm.
This approach also grants CCG the ability to deal with
wildcard rules efficiently, in the same way as general ver-
ification tools, whereas Dionysus only works for applica-
tions with exact match on flows or classes of flows.

3 Overview of CCG
CCG converts the update scheduling problem into a

network verification problem. Our overall approach
is shown in Figure 1. Our uncertainty-aware network
model (§4.2) provides a compact symbolic representa-
tion of the different possible states the network could be
in, providing input for the verification engine. The ver-
ification engine is responsible for verifying application
updates against specified invariants and policies (§4.4).
Based on verification results, CCG synthesizes an effi-
cient update plan to preserve policy consistency during
network updates, using the basic heuristic and a more
heavyweight fallback mechanism as backup (§5.1 and
§5.3). One key feature of CCG is that it operates in a
black-box fashion, providing a general platform with a
very flexible notion of consistency. For example, one can
“plug in” a different verification function and a fallback
update scheduling tool to meet one’s customized needs.

Uncertainty-aware
Network Model

Verication
Engine

Controller

Fail

Pass

Buffer of 
pending updates

Conrmations

No loop//black hole,
Resource isolation,

No suboptimal routing,
No VLAN leak,

... 

Fallback
Mechanism

Stream of 
UpdatesCCG

Figure 1: System architecture of CCG.

4 Verification under Uncertainty
We start by describing the problem of network uncer-

tainty (§4.1), and then present our solution to model a
network in the presence of uncertainty (§4.2 and §4.3).

Our design centers around the idea of uncertain forward-
ing graphs, which compactly represent the entire set of
possible network states from the standpoint of packets.
Next, we describe how we use our model to perform
uncertainty-aware network verification (§4.4).

4.1 The Network Uncertainty Problem
Networks must disseminate state among distributed

and asynchronous devices, which leads to the inherent
uncertainty that an observation point has in knowing the
current state of the network. We refer to the time period
during which the view of the network from an observa-
tion point (e.g., an SDN controller) might be inconsistent
with the actual network state as temporal network uncer-
tainty. The uncertainty could cause network behaviors to
deviate from the desired invariants temporarily or even
permanently.

Figure 2 shows a motivating example. Initially, switch
A has a forwarding rule directing traffic to switch B. Now
the operator wants to reverse the traffic by issuing two
instructions in sequence: (1) remove the rule on A, and
(2) insert a new rule (directing traffic to A) on B. But it
is possible that the second operation finishes earlier than
the first one, causing a transient loop that leads to packet
losses. That is not an uncommon situation; for example,
three out of eleven bugs found by NICE [7] (BUG V,
IX and XI) are caused by the control programs’ lack of
knowledge of the network states.

Figure 2: Example: challenge of modeling networks in the
presence of uncertainty.

Such errors may have serious consequences. In the
previous example, the resulting packet losses could cause
a significant performance drop. A recent study [9] shows
TCP transfers with loss may take five times longer to
complete. Other transient errors could violate security
policy, e.g., malicious packets could enter a secure zone
because of a temporary access control violation [25].

To make matters worse, errors caused by unawareness
of network temporal uncertainty can be permanent. For
instance, a control program initially instructs a switch to
install one rule, and later removes that rule. The two
instructions can be reordered at the switch [11], which
ultimately causes the switch to install a rule that ought to
be removed. The view of the controller and the network
state will remain inconsistent until the rule expires. One
may argue that inserting a barrier message in between
the two instructions would solve the problem. However,
this may harm performance because of increasing control
traffic and switch operations. There are also scenarios in
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which carefully crafting an ordering does not help [25].
In addition, it is difficult for a controller to figure out
when to insert the barrier messages. CCG addresses that
by serializing only updates that have potential to cause
race conditions that violate an invariant (§6).

4.2 Uncertainty Model
We first briefly introduce our prior work VeriFlow, a

real-time network-wide data plane verifier. VeriFlow in-
tercepts every update issued by the controller before it
hits the network and verifies its effect in real time. Ver-
iFlow first slices the set of possible packets into Equiv-
alence Classes (ECs) of packets using all existing for-
warding rules and the new update. Each EC is a set
of packets that experiences the same forwarding ac-
tions throughout the network. Next, VeriFlow builds
a forwarding graph for each EC affected by the up-
date, by collecting forwarding rules influencing the EC.
Lastly, VeriFlow traverses each of these graphs to verify
network-wide invariants.

Naively, to model network uncertainty, for every up-
date, we need two graphs to symbolically represent the
network behavior with and without the effect of the up-
date for each influenced EC, until the controller is certain
about the status of the update. If n updates are concur-
rently “in flight” from the controller to the network, we
would need 2n graphs to represent all possible sequences
of update arrivals. Such a state-space explosion will re-
sult in a huge memory requirement and excessive pro-
cessing time to determine consistent update orderings.

To address that, we efficiently model the network
forwarding behavior as a uncertain forwarding graph,
whose links can be marked as certain or uncertain. A
forwarding link is uncertain if the controller does not yet
have information on whether that corresponding update
has been applied to the network. The graph is maintained
by the controller over time. When an update is sent, its
effect is applied to the graph and marked as uncertain.
After receipt of an acknowledgment from the network
that an update has been applied (or after a suitable time-
out), the state of the related forwarding link is changed to
certain. Such a forwarding graph represents all possible
combinations of forwarding decisions at all the devices.

In this way, the extra storage required for uncertainty
modeling is linearly bounded by the number of uncertain
rules. We next examine when we can resolve uncertainty,
either confirming a link as certain or removing it.

4.3 Dynamic Updating of the Model
In order to model the most up-to-date network state,

we need to update the model as changes happen in the
network. At first glance, one might think that could be
done simply by marking forwarding links as uncertain
when new updates are sent, and then, when an ack is re-
ceived from the network, marking them as certain. The

Figure 3: CCG’s uncertain forwarding graph.

problem with that approach is that it may result in incon-
sistencies from the data packets’ perspective. Consider a
network consisting of four switches, as in Figure 4.

t0

t1

t2
s1 s2 s3 s4

packet

switch

Time

Figure 4: Example: challenge of dealing with non-atomicity
of packet traversal.

The policy to enforce is that packets from a particu-
lar source entering Switch s1 should not reach Switch s4.
Initially, at time t0, Switch s3 has a filtering rule to drop
packets from that source, whereas all the other switches
simply pass packets through. The operator later wants to
drop packets on s1 instead of s3. To perform the transi-
tion in a conservative way, the controller first adds a fil-
tering rule on s1 at t1, then removes the filtering rule on
s3 at t2, after the first rule addition has been confirmed.

The forwarding graphs at all steps seem correct. How-
ever, if a packet enters s1 before t1 and reaches s3 after
t2, it will reach s4, which violates the policy. Traversal
of a packet over the network is not atomic, interleaving
with network updates, as also observed in [25]. More-
over, [20] recently proved that there are situations where
no correct update order exists. To deal with it, upon re-
ceiving an ack from the network, CCG does not imme-
diately mark the state of the corresponding forwarding
link as certain. Instead, it delays application of the con-
firmation to its internal data structure. In fact, confirma-
tions of additions of forwarding links in the graph model
can be processed immediately, and only confirmations of
removals of forwarding links need to be delayed. The
reason is that we want to ensure we represent all the pos-
sible behaviors of the network. Even after a forwarding
rule has been deleted, packets processed by the rule may
still exist in the network, buffered in an output queue of
that device, in flight, or on other devices.

We have proved that our uncertainty-aware model is
able to accurately capture the view of the network from
the packets’ perspective [2], even for in-flight packets
that have been affected by rules not currently present.
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Definition 1. A packet P’s view of the network agrees
with the uncertainty-aware model, if at any time point
during its traversal of the network, the data plane state
that the packet encounters is in the model at that time
point. More specifically, at time t, to P if a link l
• is reachable, l is in the graph model for P at t;
• otherwise, l is definitely not certain in the graph at t.
Theorem 1. Assuming that all data plane changes are
initiated by the controller, any packet’s view of the net-
work agrees with the uncertainty-aware model.

4.4 Uncertainty-aware Verification
Construction of a correct network verification tool is

straightforward with our uncertainty-aware model. By
traversing the uncertainty graph model using directed
graph algorithms, we can answer queries such as whether
a reachable path exists between a pair of nodes. That can
be done in a manner similar to existing network verifi-
cation tools like HSA [17] and VeriFlow [18]. However,
the traversal process needs to be modified to take into
account uncertainty. When traversing an uncertain link,
we need to keep track of the fact that downstream infer-
ences lack certainty. If we reach a node with no certain
outgoing links, it is possible that packets will encounter
a black-hole even with multiple uncertain outgoing links
available. By traversing the graph once, CCG can reason
about the network state correctly in the presence of un-
certainty, determine if an invariant is violated, and output
the set of possible conterexamples (e.g., a packet and the
forwarding table entries that caused the problem).

5 Consistency under Uncertainty
In this section, we describe how we use our model to

efficiently synthesize update sequences that obey a set of
provided invariants (§5.1). We then identify a class of in-
variants that can be guaranteed in this manner (§5.2), and
present our technique to preserve consistency for broader
types of invariants (§5.3).

5.1 Enforcing Correctness with Greedily
Maximized Parallelism

The key goal of our system is to instill user-specified
notions of correctness during network transitions. The
basic idea is relatively straightforward. We construct a
buffer of updates received from the application, and at-
tempt to send them out in FIFO order. Before each up-
date is sent, we check with the verification engine on
whether there is any possibility, given the uncertainty in
network state, that sending it could result in an invariant
violation. If so, the update remains buffered until it is
safe to be sent.

There are two key problems with this approach. The
first is head-of-line blocking: it may be safe to send an
update, but one before it in the queue, which isn’t safe,
could block it. This introduces additional delays in prop-
agating updates. Second, only one update is sent at a

time, which is wasteful—if groups of updates do not con-
flict with each other, they could be sent in parallel.

To address this, CCG provides an algorithm for syn-
thesizing update sequences to networks that greedily
maximizes parallelism while simultaneously obeying the
supplied properties (Algorithm 1).

Whenever an update u is issued from the controller,
CCG intercepts it before it hits the network. Network
forwarding behavior is modeled as an uncertainty graph
(Guncertain) as described previously. Next, the black-
box verification engine takes the graph and the new up-
date as input, and performs a computation to determine
whether there is any possibility that the update will cause
the graph state to violate any policy internally specified
within this engine. If the verification is passed, the up-
date u is sent to the network and also applied to the net-
work model Model, but marked as uncertain. Otherwise,
the update is buffered temporarily in Bu f .

When a confirmation of u from the network arrives,
CCG also intercepts it. The status of u in Model is
changed to certain, either immediately (if u doesn’t re-
move any forwarding link from the graph), or after a de-
lay (if it does, as described in §4.3). The status change of
u may allow some pending updates that previously failed
the verification to pass it. Each of the buffered updates
is processed through the routine of processing a new up-
date, as described above.

In this way, CCG maintains the order of updates only
when it matters. Take the example in Figure 2. If the
deletion of rule 1 is issued before the addition of rule 2 is
confirmed, CCG’s verification engine will capture a pos-
sible loop, and thus will buffer the deletion update. Once
the confirmation of adding rule 2 arrives, CCG checks
buffered updates, and finds out that now it’s safe to issue
the deletion instruction.

5.2 Segment Independence

Next, we identify a class of invariants for which a fea-
sible update ordering exists, and for which CCG’s heuris-
tic will be guaranteed to find one such order. As defined
in [25], trace properties characterize the paths that pack-
ets traverse through the network. This covers many com-
mon network properties, including reachability, access
control, loop freedom, and waypointing. We start with
the assumption that a network configuration applies to
exactly one equivalence class of packets. A network con-
figuration can be expressed as a set of paths that packets
are allowed to take, i.e., a forwarding graph. A configu-
ration transition is equivalent to a transition from an ini-
tial forwarding graph, G0, to a final graph, G f , through a
series of transient graphs, Gt , for t ∈ {1, . . . , f −1}. We
assume throughout that the invariant of interest is pre-
served in G0 and G f .
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Algorithm 1 Maximizing network update parallelism
ScheduleIndividualUpdate(Model,Bu f ,u)

On issuing u:
Guncertain = ExtractGraph(Model,u)
veri f y = BlackboxVerification(Guncertain,u)
if veri f y == PASS then

Issue u
Update(Model,u,uncertain)

else
Buffer u in Bu f

On confirming u:
Update(Model,u,certain)
Issue updates ← /0
for ub ∈ Bu f do

Guncertain = ExtractGraph(Model,ub)
veri f y = BlackboxVerification(Guncertain,ub)
if veri f y == PASS then

Remove ub from Bu f
Update(Model,ub,uncertain)
Issue updates ← Issue updates+ub

Issue Issue updates

Loop and black-hole freedom The following theo-
rems were proved for loop freedom [10]: First, given
both G0 and G f are loop-free, during transition, it is safe
(causing no loop) to update a node in any Gt , if that node
satisfies one of the following two conditions: (1) in Gt
it is a leaf node, or all its upstream nodes have been up-
dated with respect to G f ; or (2) in G f it reaches the des-
tination directly, or all its downstream nodes in G f have
been updated with respect to G f . Second, if there are
several updatable nodes in a Gt , any update order among
these nodes is loop-free. Third, in any loop-free Gt (in-
cluding G0) that is not G f , there is at least one node safe
to update, i.e., a loop-free update order always exists.

Similarly, we have the following proved for the black-
hole freedom property [2].
Lemma 1. (Updatable condition): A node update does
not cause any transient black-hole, if in G f , the node
reaches the destination directly, or in Gt , all its down-
stream nodes in G f have already been updated.
Proof. By contradiction. Let N0, N1,...Nn be downstream
nodes of Na in G f . Assume N0, N1,...Nn have been up-
dated with respect to G f in Gt . After updating Na in
Gt , N0, N1,...Nn become Na’s downstream nodes and all
nodes in the chain from Na to Nn have been updated. Na’s
upstream with respect to Gt can still reach Na, and thus
reach the downstream of Na. If we assume there is a
black-hole from updating Na, there exists a black-hole in
the chain from Na to Nn. Therefore, the black-hole will
exist in G f , and there is a contradiction.
Lemma 2. (Simultaneous updates): Starting with any
Gt , any update order among updatable nodes is black-
hole-free.

Proof. Consider a updatable node Na such that all its
downstream nodes in G f have already been updated in
Gt (Lemma 1). Then updating any other updatable node
does not change this property. When a node is updatable
it remains updatable even after updating other nodes.
Therefore, if there are several updatable nodes, they can
be updated in any order or simultaneously.

Theorem 2. (Existence of a black-hole-free update or-
der): In any black-hole-free Gt that is not G f (including
G0), at least one of the nodes is updatable, i.e., there is a
black-hole-free update order.

Proof. By contradiction. Assume there is a transient
graph Gt such that no node is updatable. All nodes are ei-
ther updated or not updatable. As nodes with direct links
to the destination are updatable (Lemma 1), these nodes
can only be updated. Then nodes at previous hop of these
nodes in Gt are also updatable (Lemma 1), and therefore
these nodes must also be updated. Continuing, it follows
that all nodes are updated, which is a contradiction as Gt
= G f . As there is always a node updatable in a consis-
tent Gt , and the updatable node can be updated to form a
new consistent Gt , the number of updated nodes will in-
crease. Eventually, all nodes will be updated. Therefore
there is a black-hole free update order.

Any update approved by CCG results in a consistent
transient graph, so CCG always finds a consistent update
sequence to ensure loop and black-hole freedom.

Generalized Trace Properties To get a uniform ab-
straction for trace properties, let us first visit the ba-
sic connectivity problem: node A should reach node
B (A → B). To make sure there is connectivity be-
tween two nodes, both black-hole and loop freedom
properties need to hold. Obviously, black-hole free-
dom is downstream-dependent (Theorem 2), whereas
loop freedom is upstream- (updatable condition (1)) or
downstream-dependent (updatable condition (2)), and
thus weaker than black-hole freedom. In other words,
connectivity is a downstream-dependent property, i.e.,
updating from downstream to upstream is sufficient to
ensure it. Fortunately, a number of trace properties,
such as waypointing, access control, service/middle box
chaining, etc., can be broken down to basic connectivity
problems. A common characteristic of such properties is
that flows are required to traverse a set of waypoints.
Definition 2. Waypoints-based trace property: A
property that specifies that each packet should traverse
a set of waypoints (including source and destination) in
a particular order.

Definition 3. Segment dependency: Suppose a trace
property specifies n waypoints, which divide the old
and the new flow path each into (n − 1) segments:
old1,old2, ...,oldn−1 and new1,new2, ...,newn−1. If new j
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crosses oldi (i �= j), then the update of segment j is de-
pendent on the update of segment i, i.e., segment j can-
not start to update until segment i’s update has finished,
in order to ensure the traversal of all waypoints.

Otherwise, if segment j starts to update before i has
finished, there might be violations. If j < i, there might
be a moment when the path between waypoints j and
i+ 1 consists only of new j and part of oldi, i.e., way-
points ( j+ 1)...i are skipped. As in Figure 5(b), B may
be skipped if the AB segment is updated before BC, and
the path is temporarily A → 2 →C.

If j > i, there might be a moment when the
path between waypoints i and ( j + 1) consists of
oldi,oldi+1, ...,new j, and a loop is formed. As in Fig-
ure 5(c), the path could temporarily be A → B → 1 → B.

If there is no dependency among segments (Figure 5
(a)), then each can be updated independently simply by
ensuring connectivity between the segment’s endpoints.
That suggests that for paths with no inter-segment de-
pendencies, a property-compliant update order always
exists. Another special case is circular dependency be-
tween segments, as depicted in Figure 5(d), in which no
feasible update order exists.
Theorem 3. If there is no circular dependency between
segments, then an update order that preserves the re-
quired property always exists. In particular, if policies
are enforcing no more than two waypoints, an update or-
der always exists.

If a policy introduces no circular dependency, i.e., at
least one segment can be updated independently (Fig-
ure 5(a-c)), then we say the policy is segment indepen-
dent. However, in reality, forwarding links and paths
may be shared by different sets of packets, e.g., multi-
ple flows. Thus it is possible that two forwarding links
(smallest possible segments) l1 and l2 will have conflict-
ing dependencies when serving different groups of pack-
ets, e.g., in forwarding graphs destined to two differ-
ent IP prefixes. In such cases, circular dependencies are
formed across forwarding graphs. Fortunately, forward-
ing graphs do not share links in many cases. For exam-
ple, as pointed out in [15], a number of flow-based traf-
fic management applications for the network core (e.g.,
ElasticTree, MicroTE, B4, SWAN [6, 12–14]), any for-
warding rule at a switch matches at most one flow.

Other Properties There are trace properties which are
not waypoint-based, such as quantitative properties like
path length constraint. To preserve such properties and
waypoint-based trace properties that are not segment in-
dependent, we can use other heavyweight techniques as
a fallback (see 5.3), such as CU [25]. Besides, there
are network properties beyond trace properties, such as
congestion freedom, and it has been proven that care-
ful ordering of updates cannot always guarantee conges-
tion freedom [13, 27]. To ensure congestion freedom,

one approach is to use other heavyweight tools, such as
SWAN [13], as a fallback mechanism that the default
heuristic algorithm can trigger only when necessary.

5.3 Synthesis of Consistent Update Sched-
ules

When desired policies do not have the segment-
independence property (§5.2), it is possible that some
buffered updates (through very rare in our experiments)
never pass the verification. For instance, consider a cir-
cular network with three nodes, in which each node has
two types of rules: one type to forward packets to desti-
nations directly connected to itself, and one default rule,
which covers destinations connected to the other two
switches. Initially, default rules point clockwise. They
later change to point counterclockwise. No matter which
of the new default rules changes first, a loop is imme-
diately caused for some destination. The loop freedom
property is not segment-independent in this case, because
each default rule is shared by two equivalence classes
(destined to two hosts), which results in conflicting de-
pendencies among forwarding links.

To handle such scenarios, we adopt a hybrid approach
(Algorithm 2). If the network operators desire some
policies that can be guaranteed by existing solutions,
e.g., CU or SWAN, such solutions can be specified and
plugged in as the fallback mechanism, FB. The stream
of updates is first handled by CCG’s greedy heuristic (Al-
gorithm 1) as long as the policy is preserved. Updates
that violate the policy are buffered temporarily. When
the buffering time is over threshold T , configured by the
operator, the fallback mechanism is triggered. The re-
maining updates are fed into FB to be transformed to a
feasible sequence, and then Algorithm 1 proceeds with
them again to heuristically maximize update parallelism.
In that way, CCG can always generate a consistent update
sequence, assuming a fallback mechanism exists which
can guarantee the desired invariants.1 Note that even
with FB triggered, CCG achieves better efficiency than
using FB alone to update the network, because: 1) in the
common case, most of updates are not handled by FB;
2) CCG only uses FB to “translate” buffered updates and
then heuristically parallelize issuing the output of FB,
but doesn’t wait explicitly as some FB mechanism does,
e.g., the waiting time between two phases in CU.

To show the feasibility of that approach, we imple-
mented both CU [25] (see §7) and SWAN [13] as our
fallback mechanisms in CCG. We emulated traffic engi-

1If no appropriate fallback exists, and the invariant is non-segment-
independent, CCG can no longer guarantee the invariant. In this case,
CCG can offer a “best effort” mechanism to maintain consistency dur-
ing updates by simply releasing buffered updates to the network after a
configurable threshold of time. This approach might even be preferable
for certain invariants where operators highly value update efficiency;
we leave an evaluation to future work.
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A B C

(a) No segment crossing, update dif-
ferent segments in parallel, as long
as each segment’s updating follows
downstream dependency

A B C2

(b) Old path: A → B → 2 → C, new
path: A → 2 → B → C. New AB
crosses old BC, so AB depends on
BC

A B C1

(c) Old path: A → 1 → B → C, new
path: A → B → 1 → C. New BC
crosses old AB, so BC depends on
AB

A B C21

(d) Old path: A →→ 1 → B → 2 → C,
new path: A → 2 → B → 1 → C.
New BC crosses old AB, and new AB
crosses old BC, so BC and AB have
circular dependency between them-
selves.

Figure 5: Examples: dependencies between segments. Path AC is divided into two segments AB and BC by three waypoints A,
B, and C, with old paths in solid lines, and new paths in dashed lines.

Algorithm 2 Synthesizing update orderings
ScheduleUpdates(Model,Bu f ,U,FB,T )

for u ∈U do
ScheduleIndividualUpdate(Model,Bu f ,u)

On timeout(T ):
Ũ = Translate(Bu f ,FB)
for u ∈ Ũ do

ScheduleIndividualUpdate(Model,Bu f ,u)

neering (TE) and failure recovery (FR), similar to Diony-
sus [15], in the network shown in Figure 6. Network up-
dates were synthesized to preserve congestion-freeness
using CCG (with SWAN as plug-in), and for compari-
son, using SWAN alone. In the TE case, we changed the
network traffic to trigger new routing updates to match
the traffic. In the FR case, we turned down the link S3-
S8 so that link S1-S8 was overloaded. Then the FR ap-
plication computed new updates to balance the traffic.
The detailed events that occurred at all eight switches
are depicted in Figure 7. We see that CCG ensured the
same consistency level, but greatly enhanced parallelism,
and thus achieved significant speed improvement (1.95×
faster in the TE case, and 1.97× faster in the FR case).

S1

S8

S6 S5

S7

S2

S4S3

Figure 6: Topology for CCG and SWAN bandwidth tests
6 Implementation

We implemented a prototype of CCG with 8000+ lines
of C++ code. CCG is a shim layer between an SDN con-
troller and network devices, intercepting and scheduling
network updates issued by the controller in real time.

CCG maintains several types of state, including
network-wide data plane rules, the uncertainty state of
each rule, the set of buffered updates, and bandwidth in-
formation (e.g., for congestion-free invariants). It stores
data plane rules within a multi-layer trie in which each
layer’s sub-trie represents a packet header field. We de-
signed a customized trie data structure for handling dif-
ferent types of rule wildcards, e.g., full wildcard, subnet
wildcard, or bitmask wildcard [24], and a fast one-pass
traversal algorithm to accelerate verification. To han-
dle wildcarding for bitmasks, each node in the trie has

three child branches, one for each of {0, 1, don’t care}.
For subnetting, the wildcard branch has no children, but
points directly to a next layer sub-trie or a rule set. Thus,
unlike other types of trie, the depth of subnet wildcard
tries is not fixed as the number of bits in this field, but
instead equals to the longest prefix among all the rules it
stores. Accordingly, traversal cost is reduced compared
with general tries. For full wildcard fields, values can
only be non-wildcarded or full wildcarded. The special-
ized trie structure for this type of field is a plain binary
tree plus a wildcard table.

When a new update arrives, we need to determine the
set of affected ECs, as well as the rules affecting each
EC. VeriFlow [18] performs a similar task via a two-
pass algorithm, first traversing the trie to compute a set of
ECs, and then for each of the discovered ECs, traversing
the trie again to extract related rules. In CCG, using call-
back functions and depth first searching, the modeling
work is finished with only one traversal. This algorithm
eliminates both the unnecessary extra pass over the trie
and the need to allocate memory for intermediate results.

In addition to forwarding rules, the data structure and
algorithm are also capable of handling packet trans-
formation rules, such as Network Address Translation
(NAT) rules, and rules with VLAN tagging, which are
used by CU for versioning, and verified by CCG when
the CU plug-in is triggered (see §7).

To keep track of the uncertainty states of rules, we de-
sign a compact state machine, which enables CCG to de-
tect rules that cause potential race conditions. If desired,
our implementation can be configured to insert barrier
messages to serialize those rule updates.

To bound the amount of time that the controller is
uncertain about network states, we implemented two
alternate types of the confirmation mechanisms: (1)
an application-level acknowledgment by modifying the
user-space switch program in Mininet, and (2) leverag-
ing the barrier and barrier reply messages for our physi-
cal SDN testbed experiments.

CCG exposes a set of APIs that can be used to write
general queries in C++. The APIs allow the network op-
erator to get a list of affected equivalence classes given an
arbitrary forwarding rule, the corresponding forwarding
graphs, as well as traverse these graphs in a controlled
manner and check properties of interest. For instance,
an operator can ensure packets from an insecure source

8
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Figure 7: Time series
of events that occurred
across all switches:
(a) SWAN + CCG,
traffic engineering; (b)
SWAN, traffic engi-
neering; (c) SWAN +
CCG, failure recovery;
(d) SWAN, failure
recovery. In both cases,
CCG + SWAN finishes
about 2x faster.

encounter a firewall before accessing an internal server.

7 Evaluation
7.1 Verification Time

To gain a baseline understanding of CCG’s perfor-
mance, we micro-benchmarked how long the verification
engine takes to verify a single update. We simulated BGP
routing changes by replaying traces collected from the
Route Views Project [4], on a network consisting of 172
routers following a Rocketfuel topology (AS 1755) [1].
After initializing the network with 90,000 BGP updates,
2,559,251 updates were fed into CCG and VeriFlow [18]
(as comparison). We also varied the number of concur-
rent uncertain rules in CCG from 100 to 10,000. All ex-
periments were performed on a 12-core machine with In-
tel Core i7 CPU at 3.33 GHz, and 18 GB of RAM, run-
ning 64-bit Ubuntu Linux 12.04. The CDFs of the update
verification time are shown in Figure 8.
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Figure 8: Microbenchmark results.

CCG was able to verify 80% of the updates within 10
μs, with a 9 μs mean. CCG verifies updates almost two
order of magnitude faster than VeriFlow because of data
structure optimizations (§6). Approximately 25% of the
updates were processed within 1 μs, because CCG ac-
curately tracks the state of each rule over time. When a
new update matches the pattern of some existing rule, it’s
likely only a minimum change to CCG’s network model
is required (e.g., only one operation in the trie, with no
unnecessary verification triggered). We observed long
tails in all curves, but the verification time of CCG is
bounded by 2.16 ms, almost three orders of magnitude

faster than VeriFlow’s worst case. The results also show
strong scalability. As the number of concurrent uncer-
tainty rules grows, the verification time increases slightly
(on average, 6.6 μs, 7.3 μs, and 8.2 μs for the 100-
, 1000-, and 10000-uncertain-rule cases, respectively).
Moreover, CCG offers a significant memory overhead re-
duction relative to VeriFlow: 540 MB vs 9 GB.

7.2 Update Performance Analysis
7.2.1 Emulation-based Evaluation
Segment-independent Policies: We used Mininet to em-
ulate a fat-tree network with a shortest path routing ap-
plication and a load-balancing application in a NOX con-
troller. The network consists of five core switches and
ten edge switches, and each edge switch connects to five
hosts. We change the network (e.g., add links, or mi-
grate hosts) to trigger the controller to update the data
plane with a set of new updates. For each set of exper-
iments, we tested six update mechanisms: (1) the con-
troller immediately issues updates to the network, which
is Optimal in terms of update speed; (2) CCG with the
basic connectivity invariants, loop and black-hole free-
dom, enabled (CCG); (3) CCG with an additional invari-
ant that packets must traverse a specific middle hop be-
fore reaching the destination (CCG-waypoint); (4) Con-
sistent Updates (CU) [25]; (5) incremental Consistent
Updates (Incremental CU) [16]; and (6) Dionysus [15]
with its WCMP forwarding dependency graph genera-
tor. We configure our applications as the same type
as in Dionysus, with forwarding rules matching exactly
one flow, i.e., no overlapping forwarding graphs. Thus,
loop and black-hole freedom are segment-independent as
proved in §5.2. Because of the fat-tree structure, there
is no crossing between path segments (as in Fig 5(a)),
so the waypoint policy is also segment independent. A
mix of old and new configurations, e.g., oldAB+newBC
in Figure 5(a), is allowed by CCG, but forbidden when
using CU. Note here, we used our own implementation
of the algorithms introduced in Dionysus paper, specifi-
cally the algorithm for packet coherence. Therefore, this
is not a full evaluation of the Dionysus approach: one
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can develop special-purpose algorithms that build cus-
tomized dependency graphs for weaker properties, and
thus achieve better efficiency. We leave such evaluation
to future work.

We first set the delay between the controller issuing an
update and the corresponding switch finishing the appli-
cation of the update (i.e, the controller-switch delay) to
a normal distribution with 4 ms mean and 3 ms jitter, to
mimic a dynamic data center network environment. The
settings are in line with that of other data center SDN ex-
periments [8, 26]. We initialized the test with one core
switch enabled and added the other four core switches
after 10 seconds. The traffic eventually is evenly dis-
tributed across all links because of the load balancer ap-
plication. We measured the completion time of updating
each communication path, repeated each experiment 10
times. Figure 9(a) shows the CDFs for all six scenarios.

The performance of both “CCG” and “CCG-
waypoint” is close to optimal, and much faster (47 ms
reduction on average) than CU. In CU, the controller is
required to wait for the maximum controller-switch delay
to guarantee that all packets can only be handled by ei-
ther the old or the new rules. CCG relaxes the constraints
by allowing a packet being handled by a mixture of old
and new rules along the paths, as long as the impact of
the new rules passed verification. By doing so, CCG can
apply any verified updates without explicitly waiting for
irrelevant updates. CU requires temporary doubling of
the FIB space for each update, because it does not delete
old rules until all in-flight packets processed by the old
configuration have drained out of the network. To ad-
dress this, incremental-CU was proposed to trade time
against flow table space. By breaking a batch of updates
into k subgroups (k = 3 in our tests), incremental-CU re-
duced the extra memory usage to roughly one kth at the
cost of multiplying the update time k times. In contrast,
when dealing with segment-independent policies, as in
this set of experiments, CCG never needs to trigger any
heavyweight fallback plug-in, and thus requires no ad-
ditional memory, which is particularly useful as switch
TCAM memory can be expensive and power-hungry.

To understand how CCG performs in wide-area net-
works, where SDNs have also been used [13, 14], we
set the controller-switch delay to 100 ms (normal dis-
tribution, with 25ms jitter), and repeated the same tests
(Figure 9(b)). CCG saved over 200 ms update com-
pletion time compared to CU, mainly due to the longer
controller-switch delay, for which CU and incremental-
CU have to wait between the two phases of updates.

As for Dionysus, we observed in Figure 9 that it speeds
up updates compared to CU in both local and wide-area
settings, as it reacts to network dynamics rather than
pre-determining a schedule. But because its default al-
gorithm for WCMP forwarding produces basically the
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Figure 9: Emulation results: update completion time com-
parison.
same number of updates as CU, CCG (either CCG or
CCG-waypoint) outperforms it in both time and memory
cost. We further compared CCG-waypoint with Diony-
sus in other dynamic situations, by varying controller-
switch delay distribution. Figure 10 shows the 50th, 90th

and 99th percentile update completion time, under vari-
ous controller-switch delays (normal distributed with dif-
ferent (mean, jitter) pairs, (a,b)) for four update mecha-
nisms: optimal, CCG, Dionysus, and CU. In most cases,
both CCG and Dionysus outperform CU, with one ex-
ception (4ms delay, zero jitter). Here, Dionysus does not
outperform CU because it adjusts its schedule accord-
ing to network dynamics, which was almost absent in
this scenario. The cost of updating dependency graphs in
this scenario is relatively large compared to the small net-
work delay. When the mean delay was larger (100ms),
even with no jitter, Dionysus managed to speed the tran-
sition by updating each forwarding path independently.
On the other hand, CCG’s performance is closer to Opti-
mal than Dionysus. For example, in the (4,0) case, CCG
is 37%, 38%, and 52% faster than Dionysus in the 50th,
90th and 99th percentile, respectively; in the (100,25)
case, CCG is 50%, 50%, and 53% faster than Dionysus
in the 50th, 90th and 99th percentile, respectively. Also,
we observe that Dionysus’s performance is highly depen-
dent on the variance of the controller-switch delay (the
larger the jitter is, the faster the update speed) because of
the dynamic scheduling, but CCG’s performance is in-
sensitive to the jitter.
Non-segment-independent Policies: We then explored
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Figure 10: Update completion time with [50th, 90th, 99th per-
centile]; x-axis label {a, b}: a is the mean controller-switch
delay, b is the jitter following a normal distribution.

scenarios in which CCG’s lightweight heuristic cannot
always synthesize a correct update ordering and needs
to fall back to the more heavyweight algorithm to guar-
antee consistency. The traces we used were collected
from a relatively large enterprise network that consists of
over 200 layer-3 devices. During a one-day period (from
16:00 7/22/2014 to 16:00 7/23/2014), we took one snap-
shot of the network per hour, and used Mininet to emu-
late 24 transitions, each between two successive snap-
shots. We processed the network updates with three
mechanisms: immediate application of updates, CCG,
and CU. Updates were issued such that new rules were
added first, then old rules deleted. Thus, all three mech-
anisms experience the trend that the number of stored
rules increases then decreases.. The controller-switch
delay was set to 4 ms. We selected 10 strongly con-
nected devices in the network, and plotted the number
of rules in the network over time during four transition
windows, as shown in Figure 11. As the collected rules
overlapped with longest prefix match, the resulting for-
warding graphs might share links, so unlike previous ex-
periments, segment-independency was not guaranteed.

The update completion time (indicated by the width
of the span of each curve) using CCG was much shorter
than CU, and the memory needed to store the rules was
much smaller. In fact, the speed and memory require-
ments of CCG were close to those of the immediate up-
date case, because CCG rarely needs to fall back to CU.
In 22 out of 24 windows, there was a relatively small
number of network updates (around 100+), much as in
the [22:00, 23:00) window shown in Figure 11, in which
CCG passed through most of the updates with very few
fallbacks. During the period 23:00 to 1:00, there was a
burst of network dynamics (likely to have been caused
by network maintenance), in which 8000+ network up-
dates occurred. Even for such a large number of updates,
the number of updates forced to a fallback to CU, was
still quite small (10+). Since CCG only schedules up-
dates in a heuristic way, the waiting time of a buffered
update could be suboptimal, as in this hour’s case, where
the final completion time of CCG was closer to CU. CCG
achieves performance comparable to the immediate up-
date mechanism, but without any of its short-term net-

work faults (24 errors in the 0:00 to 2:00 period).
7.2.2 Physical-testbed-based Evaluation

We also evaluated CCG on a physical SDN testbed [3]
consisting of 176 server ports and 676 switch ports, using
Pica8 Pronto 3290 switches via TAM Networks, NIA-
GARA 32066 NICs from Interface Masters, and servers
from Dell. We compared the performance of CCG and
CU by monitoring the traffic throughput during network
transitions. We first created a network with two sender-
receiver pairs transmitting TCP traffic on gigabit links,
shown in Figure 12. Initially, a single link was shared by
the pairs, and two flows competed for bandwidth. After
90 seconds, another path was added (the upper portion
with dashed lines in Figure 12). Eventually, one flow was
migrated to the new path and each link was saturated. We
repeated the experiment 10 times, and recorded the aver-
age throughput in a 100-ms window during the network
changes. We observed repeatable results. Figure 13(a)
shows the aggregated throughput over time for one trial.

CCG took 0.3 seconds less to finish the transition than
CU because: (1) unlike CU, CCG does not require packet
modification to support versioning, which takes on the
order of microseconds for gigabit links, while packet for-
warding is on the order of nanoseconds; (2) CU requires
more rule updates and storage than CCG, and the speed
of rule installation is around 200 flows per second; and
(3) Pica8 OpenFlow switches (with firmware 1.6) cannot
simultaneously process rule installations and packets.2

Figure 12: eight-switch topology.
To test CCG in a larger setting, we then utilized all

13 physical switches. Each physical switch was devided
into 6 “virtual” switches by creating 6 bridges. Due to the
fact that the switches are physically randomly connected,
this division results in a “pseudo-random” network con-
sisting of 78 switches, each with 8 ports. Initially, the
topology consisted of 60 switches, and we randomly se-
lected 10 sender-receiver pairs to transmit TCP traffic.
After 90 seconds, we enabled the remaining 18 switches
in the network. The topology change triggered instal-
lations of new rules to balance load. We repeated the
experiments 10 times, and selected two flows from one
trial that experienced throughput changes (Figure 13(b)).
The trend of the two flows is consistent with the overall
observed throughput change.

CCG again outperformed CU in convergence time and
average throughput during transitions. Compared to CU,
CCG spent 20 fewer seconds to complete the transition
(a reduction of 2/3), because CU waits for confirmation

2All the performance specifications reported in this paper have been
confirmed with the Pica8 technical team.
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Figure 11: Network-trace-driven emulations: (1) immediate application of updates; (2) CCG (with CU as fallback); and (3) CU.
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Figure 13: Physical testbed results: comparison of through-
put changes during network transitions for CCG and CU.

of all updates in the first phase before proceeding to the
second. In contrast, CCG’s algorithm significantly short-
ened the delay, especially for networks experiencing a
large number of state changes. In CCG, the through-
put never dropped below 0.9 Gb/s, while CU experienced
temporary yet significant drops during the transition, pri-
marily due to the switches’ lack of support for simulta-
neous application of updates and processing of packets.

8 Discussion
Limitations: CCG synthesizes network updates with
only heuristically maximized parallelism, and in the
cases where required properties are not segment inde-
pendent, relies on heavier weight fallback mechanisms
to guarantee consistency. When two or more updates
have circular dependencies with respect to the consis-
tency properties, fallback will be triggered. One safe way
of using CCG is to provide it with a strong fallback plug-
in, e.g., CU [25]. Any weaker properties will be auto-
matically ensured by CCG, with fallback triggered (rare
in practice) only for a subset of updates and when nec-
essary. In fact, one can use CCG even when fallback is
always on. In this case, CCG will be faster most of the
time, as discussed in §5.3.

Related work: Among the related approaches, four
warrant further discussion. Most closely related to our
work is Dionysus [15], a dependency-graph based ap-
proach that achieves a goal similar to ours. As discussed
in §2, our approach has the ability to support 1) flexible
properties with high efficiency without the need to im-
plement new algorithms, and 2) applications with wild-
carded rules. [22] also plans updates in advance, but us-
ing model checking. It, however, does not account for
the unpredictable time switches take to perform updates.
In our implementation, CU [25] and VeriFlow [18] are
chosen as the fallback mechanism and verification en-
gine. Nevertheless, they are replaceable components of
the design. For instance, when congestion freedom is the
property of interest, we can replace CU with SWAN [13].

Future work: We plan to study the generality of seg-
ment independent properties both theoretically and prac-
tically, test CCG with more data traces, and extend its
model to handle changes initiated from the network. As
comparison, we will test CCG against the original im-
plementation of Dionysus with dependency graphs cus-
tomized to properties of interest. We will also investi-
gate utilizing possible primitives in network hardware to
facilitate consistent updates.

9 Conclusion
We present CCG, a system that enforces customizable

network consistency properties with high efficiency. We
highlight the network uncertainty problem and its ramifi-
cations, and propose a network modeling technique cor-
rectly derives consistent outputs even in the presence of
uncertainty. The core algorithm of CCG leverages the
uncertainty-aware network model, and synthesizes a fea-
sible network update plan (ordering and timing of control
messages). In addition to ensuring that there are no vi-
olations of consistency requirements, CCG also tries to
maximize update parallelism, subject to the constraints
imposed by the requirements. Through emulations and
experiments on an SDN testbed, we show that CCG is
capable of achieving a better consistency vs. efficiency
trade-off than existing mechanisms.

We thank our shepherd, Katerina Argyraki, for helpful
comments, and the support of the Maryland Procurement
Office under Contract No. H98230-14-C-0141.

12



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 85

References
[1] Rocketfuel: An ISP topology mapping en-

gine. http://www.cs.washington.edu/
research/networking/rocketfuel/.

[2] Tech report. http://web.engr.illinois.
edu/˜wzhou10/gcc_tr.pdf.

[3] University of illinois ocean testbed.
http://ocean.cs.illinois.edu/.

[4] University of Oregon Route Views Project. http:
//www.routeviews.org/.

[5] E. Al-Shaer and S. Al-Haj. FlowChecker: Config-
uration analysis and verification of federated Open-
Flow infrastructures. In SafeConfig, 2010.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang.
Microte: Fine grained traffic engineering for data
centers. CoNEXT, 2011.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE way to test OpenFlow applica-
tions. In NSDI, 2012.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagan-
dula, P. Sharma, and S. Banerjee. DevoFlow: Scal-
ing flow management for high-performance net-
works. In ACM SIGCOMM Computer Communi-
cation Review, volume 41, pages 254–265. ACM,
2011.

[9] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-
Bassett, and R. Govindan. Reducing web latency:
the virtue of gentle aggression. In SIGCOMM,
2013.

[10] J. Fu, P. Sjodin, and G. Karlsson. Loop-free up-
dates of forwarding tables. IEEE Transactions on
Network and Service Management, March 2008.

[11] A. Guha, M. Reitblatt, and N. Foster. Machine-
verified network controllers. Programming Lan-
guages Design and Implementation, 2013.

[12] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiak-
oumis, P. Sharma, S. Banerjee, and N. McKeown.
ElasticTree: Saving energy in data center networks.
In NSDI, volume 3, pages 19–21, 2010.

[13] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven WAN. ACM
SIGCOMM, 2013.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
et al. B4: Experience with a globally-deployed
software defined WAN. In ACM SIGCOMM, pages
3–14. ACM, 2013.

[15] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Ma-
hajan, M. Zhang, J. Rexford, and R. Wattenhofer.
Dynamic scheduling of network updates. In ACM
SIGCOMM, 2014.

[16] N. P. Katta, J. Rexford, and D. Walker. Incremental
consistent updates. HotSDN, 2013.

[17] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network
policy checking using header space analysis. In
NSDI, 2013.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying network-wide invari-
ants in real time. In NSDI, 2013.

[19] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Watten-
hofer, and D. Maltz. zUpdate: Updating data center
networks with zero loss. ACM SIGCOMM, 2013.

[20] A. Ludwig, M. Rost, D. Foucard, and S. Schmid.
Good network updates for bad packets: Way-
point enforcement beyond destination-based rout-
ing policies. HotNets, 2014.

[21] R. Mahajan and R. Wattenhofer. On consistent up-
dates in software defined networks. HotNets, 2013.

[22] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Ef-
ficient synthesis of network updates. Programming
Languages Design and Implementation, 2015. to
appear.

[23] A. Noyes, T. Warszawski, P. Černỳ, and N. Foster.
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Abstract

We present CoVisor, a new kind of network hypervisor
that enables, in a single network, the deployment of mul-
tiple control applications written in different program-
ming languages and operating on different controller
platforms. Unlike past hypervisors, which focused on
slicing the network into disjoint parts for separate control
by separate entities, CoVisor allows multiple controllers
to cooperate on managing the same shared traffic. Con-
sequently, network administrators can use CoVisor to as-
semble a collection of independently-developed “best of
breed” applications—a firewall, a load balancer, a gate-
way, a router, a traffic monitor—and can apply those ap-
plications in combination, or separately, to the desired
traffic. CoVisor also abstracts concrete topologies, pro-
viding custom virtual topologies in their place, and al-
lows administrators to specify access controls that regu-
late the packets a given controller may see, modify, mon-
itor, or reroute. The central technical contribution of the
work is a new set of efficient algorithms for composing
controller policies, for compiling virtual networks into
concrete OpenFlow rules, and for efficiently processing
controller rule updates. We have built a CoVisor pro-
totype, and shown that it is several orders of magnitude
faster than a naive implementation.

1 Introduction

A foundational principle of Software-Defined Network-
ing (SDN) is to decouple control logic from vendor-
specific hardware. Such a separation allows network ad-
ministrators to deploy both the software and the hard-
ware most suited to their needs, rather than being forced
to compromise on one or both fronts because of the lack
of availability of the perfect box. To fully realize this
vision of freely assembling “best of breed” solutions, ad-
ministrators should be able to run any combination of
controller applications on their networks. If the optimal
monitoring application is written in Python on Ryu [1]
and the best routing application is written in Java on
Floodlight [2], the administrator should be able to deploy
both of them in the network.

A network hypervisor is a natural solution to this prob-
lem of bringing together disparate controllers. However,
existing hypervisors [3, 4] restrict each controller to a

distinct slice of network traffic. While useful in scenar-
ios like multi-tenancy in which each tenant controls its
own traffic, they do not enable multiple applications to
collaboratively process the same traffic. Thus, an SDN
hypervisor must be capable of more than just slicing.
More specifically, in this paper, we show how to bring
together the following key hypervisor features and im-
plement them efficiently in a single, coherent system.

(1) Assembly of multiple controllers. A network ad-
ministrator should be able to assemble multiple con-
trollers in a flexible and configurable manner. Inspired
by network programming languages like Frenetic [5],
we compose data plane policies in three ways: in par-
allel (allow multiple controllers to act independently on
the same packets at the same time), sequentially (allow
one controller to process certain traffic before another),
and by overriding (allow one controller to choose to act
or to defer control to another controller). However, un-
like Frenetic and related systems, our hypervisor is in-
dependent of the specific languages, libraries, or con-
troller platforms used to construct client applications. In-
stead, the hypervisor intercepts and processes industry-
standard OpenFlow messages, assembling and trans-
forming them to match administrator-specified compo-
sition policies. Doing so efficiently requires new incre-
mental algorithms for processing rule updates.

(2) Definition of abstract topologies. To protect the
physical infrastructure, an administrator should be able
to limit what each controller can see of the physical
topology. Our hypervisor supports this by allowing the
administrator to provide a custom virtual topology to
each controller, thereby facilitating reuse of (physical)
topology-independent code. For example, to a firewall
controller the administrator may abstract the network as
a “big virtual switch”; the firewall does not need to know
the underlying topology to determine if a packet should
be forwarded or dropped. In contrast, a routing controller
needs the exact topology to perform its task effectively.
In addition, topology abstraction helps the administrator
implement complex functionality in a modular manner.
Some switches, such as a gateway between an Ethernet
island and the IP core, may play multiple roles in the
network. The hypervisor can create one virtual switch
for each role, assign each to a controller application pre-
cisely tailored to its single task, and compile policies
written for the virtual network into the physical network.
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(3) Protection against misbehaving controllers. In ad-
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Second, CoVisor translates the composed
policy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
At both stages, CoVisor employs efficient data structures
to further reduce compilation overhead by exploiting
knowledge of the structure of policies provided by the
access-control restrictions. After compiling the policy,
CoVisor sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
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Figure 1: CoVisor overview.

tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 15, 16] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
have a brief discussion in §8, followed by related work
in §9 and the conclusion in §10.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles the
policies of individual controllers, written for their own
virtual networks, into a composed policy for the whole
virtual network. The second phase compiles this com-
posed policy for the virtual network into a policy for the
physical network that realizes the intent expressed by the
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virtual policy. Algorithms for these phases are covered
in §3 and §4, respectively.

2.1 Composition of Multiple Controllers

CoVisor allows network administrators to combine the
packet-processing specifications of multiple controllers
into a single specification for the physical network. We
call these “packet-processing specifications” output by
each controller member policies and the single specifica-
tion a composed policy. In practice, the member policies
are defined by OpenFlow commands issued from a con-
troller to CoVisor. We use the terms policy implementa-
tion or just implementation to refer specifically to the list
of OpenFlow rules used to express a policy.

The network administrator configures CoVisor to
compose controllers with a simple language of com-
mands. Let T range over policies defined in the com-
mand language. This language allows administrators to
specify that some default action (a) should be applied to a
set of packets, that a particular member policy (x) should
be applied, that two separate policies should be applied
in parallel (T1 +T2), that two separate policies should be
applied in sequence (T1 � T2), or that one member policy
should be applied, and if it fails to match a packet, some
other policy should act as a default (x�T ). The follow-
ing paragraphs explain these policies in greater detail.

Actions (a): The most basic composed policy is an
atomic packet-processing action a. Such actions in-
clude any function from a packet to a set of packets im-
plementable in OpenFlow, such as the actions to drop
a packet (drop), to forward a packet out a particular
port ( f wd(3)), or to send a packet to the controller
(to controller(x)).

Parallel operator (+): The parallel composition of two
policies T1 +T2 operates by logically (though not neces-
sarily physically) copying the packet, applying T1 to one
copy and T2 to the other, and taking the union of the re-
sults. For example, let M be a monitoring policy and Q
be a routing policy. If M counts packets based on source
IP prefix and Q forwards packets based on destination IP
prefix, M+Q does both operations on all packets.

Sequential operator (�): The sequential operator en-
ables two controllers to process traffic one after another.
For example, let L be a load-balancing policy, and let Q
be a routing policy. More specifically, for packets des-
tined to anycast IP address 3.0.0.0, L rewrites the des-
tination IP to a server replica’s IP based on source IP
prefix, and Q forwards packets based on destination IP
prefix. To obtain the combined behavior of L and Q—to
first rewrite the destination IP address and then forward
the rewritten packet to the correct place—the network ad-
ministrator uses the policy L � Q.

Command Parameters
createVSw pSw1 <pSw2, ..., pSwn>
createVPort vSw <pSw pPort>
createVLink vSw1 vPort1 vSw2 vPort2
connectHost vSw vPort host

Table 1: API to construct a virtual network. Brackets <>
indicate optional arguments.

E = createVSw S // vswitch E
G = createVSw S // vswitch G
I = createVSw S // vswitch I
E1 = createVPort E S 1 // port 1 on E
E2 = createVPort E S 2 // port 2 on E
E3 = createVPort E // port 3 on E
G1 = createVPort G // port 1 on G
L1 = createVLink E 3 G 1 // link E −G
. . . remaining commands omitted for brevity.

Figure 2: Administrator configuration to create (a subset
of) the physical-virtual mapping shown in Figure 1.

Override operator (�): Each controller x provides Co-
Visor with a member policy specifying how x wants the
network to process packets. The policy x� T attempts
to apply x’s member policy to any incoming packet t. If
x’s policy does not specify how to handle t, then T is
used as a default. For example, suppose one controller
x is running an elephant flow routing application and an-
other controller y is running an infrastructure routing ap-
plication. If we want x to override y for elephant flow
packets, y to route all regular traffic, and any packet not
covered by either policy to be dropped, we use the policy
x� (y�drop).

2.2 Constraints on Individual Controllers
In addition to composing member policies, CoVisor al-
lows the administrator to virtualize the underlying topol-
ogy and restrict the packet-processing capabilities avail-
able to each controller. This helps administrators hide
infrastructure information from third-party controllers,
reuse topology-independent algorithms, and provide se-
curity against malicious or buggy control software.

2.2.1 Constraints on Topology Visibility

Rather than exposing the full details of the physical
topology to each controller, CoVisor provides each with
its own virtual topology. Table 1 shows the API to con-
struct a custom virtual network. createVSw creates
a virtual switch. It can be used to create two kinds
of physical-virtual mappings as follows. (1) many-to-
one (many physical switches map to one virtual switch):
call the function once with a list of physical switch
identifiers; (2) one-to-many (a single physical switch
maps to many virtual switches): call the function mul-
tiple times with the same physical switch identifier.

3



90 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

createVPort creates a virtual port. To map it to a
physical port, the administrator includes the correspond-
ing physical switch and port number. createVLink
creates a virtual link by connecting two virtual ports.
connectHost connects a host to a virtual port.

Example. Consider the example physical-virtual
topology mapping shown in Figure 1. The physical
topology represents an enterprise network consisting of
an Ethernet island (shown in blue in Figure 1) connected
by a gateway router (multicolored and labeled S) to the IP
core (red). We abstract gateway switch S to three virtual
switches: E, G, and I. Figure 2 shows how the adminis-
trator uses CoVisor’s API to create the virtual mapping.

These four commands allow the administrator to cre-
ate one level of virtual topology on top of a physical net-
work. To create multiple levels of topology abstraction,
the administrator can run one CoVisor instance on top of
another. Supporting this behavior in a single instance of
CoVisor is part of our future work.

2.2.2 Constraints on Packet Handling

CoVisor imposes fine-grained access control on how
a controller can process packets by virtualizing switch
functionality. The administrator sets custom capabilities
on each controller’s virtual switches, thereby choosing
which functionalities of the physical network to expose
on a controller-by-controller basis.

Pattern: The administrator specifies which header fields
a controller can match and how each field can be matched
(i.e., exact-match, prefix-match, or arbitrary wildcard-
match). CoVisor currently supports the 12 fields in the
OpenFlow 1.0 specification, with prefix-match an option
only for source and destination IP addresses.

Action: The administrator specifies the actions a con-
troller can perform on matched packets. CoVisor cur-
rently supports the actions in the OpenFlow 1.0 specifi-
cation, including forward, drop (indicated by an empty
action list), and modify (the administrator determines
which fields can be modified). The administrator also
controls whether a controller can query packets and
counters from switches and send packets to switches.

Example. In the example in Figure 1, the administra-
tor can restrict the MAC learner to match only on source
and destination MAC and inport and the firewall to match
only on the five tuple. Also, the administrator can disal-
low both applications from modifying packets.

2.3 Handling Failures

Controllers, switches, and CoVisor itself can fail during
operation. We describe how CoVisor responds to them.

Controller failure: The administrator configures CoV-
isor with a default policy for each controller to execute
in the event of controller failure. The default policy is
application-dependent. For example, a logical default for
a firewall controller is drop (erase all installed rules and
install a rule that drops all packets), because a firewall
should fail safe. In contrast, the default policy for a mon-
itoring controller can be id (identical, i.e., leave all rules
in the switch), as monitoring rules are not critical to the
operation of a network, and the counters can be reused if
the monitoring controller recovers.

Switch failure: If a switch fails, all its rules are removed
and CoVisor notifies the relevant controllers. Moreover,
in the case of many-to-one virtualization, CoVisor allows
the virtual switch to remain functional by rerouting traf-
fic around the failed physical switch (if possible in the
physical network).

Hypervisor failure: We currently do not deal with hy-
pervisor failure. Replication techniques in distributed
systems may be applied to CoVisor, but a full exploration
is beyond the scope of this work.

3 Incremental Policy Compilation

Network management is a dynamic process. Applica-
tions update their policies in response to various network
events, like a change in the traffic matrix, switch and link
failures, and detection of attacks [6, 7, 8, 9, 10, 11, 12,
13, 14]. Therefore, CoVisor receives streams of member
policy updates from controllers and has to recompile and
update the composed policy frequently. In this section,
we first review policy compilation and introduce a straw-
man solution, and then we describe an efficient solution
based on a convenient algebra on rule priorities.

3.1 Background on Policy Compilation

The first stage of policy compilation entails combining
member policies into a single composed policy. Con-
trollers implement member policies by sending Open-
Flow rules to CoVisor. A rule r is a triple r = (p;m;a)
where p is a priority, m is a match pattern, and a is an
action list. Given a rule r = (p;m;a), we use the no-
tation r.priority to refer to p, r.match to refer to m, and
r.action to refer to a. We denote the set of packets match-
ing r.match as r.mSet. Now we describe how to compile
each composition operator outlined in §2.1. We assume
all policy implementations include only OpenFlow 1.0
rules and that each switch has a single flow table.

Parallel operator (+): To compile T1+T2, we first com-
pile T1 and T2 into implementations R1 and R2. (In prac-
tice, each controller communicates its member policy to
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Monitoring MR(
1; srcip = 1.0.0.0/24; count

)
(
0; ∗; drop

)

Routing QR(
1; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
0; ∗; drop

)

Load balancing LR(
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

)
(
1; dstip = 3.0.0.0; dstip = 2.0.0.2

)
(
0; ∗; drop

)

Elephant flow routing ER(
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

)

Parallel composition: comp+(MR,QR)(
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

)
(
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

)
(
3; srcip = 1.0.0.0/24; count

)
(
2; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
0; ∗; drop

)

Sequential composition: comp�(LR,QR)(
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

)
(
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

)
(
0; ∗; drop

)

Override composition: comp�(ER,QR)(
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

)
(
2; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
0; ∗; drop

)

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) ∈ R1 × R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet ∩ q1.mSet �= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)∈R1×R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) ∈ LR ×QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR(
1; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
1; dstip=2.0.0.3; fwd(3)

)
(
0; ∗; drop

)

Parallel composition: comp+(MR,QR)(
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

)
(
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

)
(
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

)
(
4; srcip=1.0.0.0/24; count

)
(
3; dstip=2.0.0.1; fwd(1)

)
(
2; dstip=2.0.0.2; fwd(2)

)
(
1; dstip=2.0.0.3; fwd(3)

)
(
0; ∗; drop

)

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.

Override operator (�): To compile T1 � T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp�(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp�(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.

Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of
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Monitoring MR(
1; srcip = 1.0.0.0/24; count

)
(
0; ∗; drop

)

Routing QR(
1; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
1; dstip=2.0.0.3; fwd(3)

)
(
0; ∗; drop

)

Load balancing LR(
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

)
(
2; srcip=0.0.0.0/1,dstip=3.0.0.0; dstip=2.0.0.3

)
(
1; dstip = 3.0.0.0; dstip = 2.0.0.2

)
(
0; ∗; drop

)

Elephant flow routing ER(
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

)

Parallel composition: comp+(MR,QR)(
2; srcip = 1.0.0.0/24,dstip = 2.0.0.1; f wd(1),count

)
(
2; srcip = 1.0.0.0/24,dstip = 2.0.0.2; f wd(2),count

)
(
2; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

)
(
1; srcip = 1.0.0.0/24; count

)
(
1; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
1; dstip=2.0.0.3; fwd(3)

)
(
0; ∗; drop

)

Sequential composition: comp�(LR,QR)(
25; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

)
(
17; srcip=0.0.0.0/1,dstip=3.0.0.0; dstip=2.0.0.3,fwd(3)

)
(
9; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

)
(
0; ∗; drop

)

Override composition: comp�(ER,QR)(
9; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

)
(
1; dstip = 2.0.0.1; f wd(1)

)
(
1; dstip = 2.0.0.2; f wd(2)

)
(
1; dstip=2.0.0.3; fwd(3)

)
(
0; ∗; drop

)

Figure 5: Example of incremental update.

pseudo-rules is prioritized in the sense that each pseudo-
rule’s position indicates its relative priority, but we have
not addressed how to assign a particular priority value to
each pseudo-rule. Priority assignment is important for
minimizing the overhead of policy update. Ideally, a sin-
gle rule addition in one member policy implementation
should not require recomputing the entire composed pol-
icy from scratch, nor should it require clearing the phys-
ical switch’s flow table and installing thousands of flow-
mods. (A flowmod is an OpenFlow message to update a
rule in a switch.) In concrete terms, the update problem
involves minimizing the following two overheads:
• Computation overhead: The number of rule pairs

over which the composition function comp iterates
to recompile the composed policy.

• Rule update overhead: The number of flowmods
needed to update a switch to the new policy.

Strawman solution: The strawman solution is to assign
priorities to rules in the composed implementation from
bottom to top starting from 0 by increment of 1. Then,
it installs the difference between the old implementation
and the new one. For example, the priorities of rules in
Figure 3 are assigned in this way. This approach incurs
high computation and rule update overhead, because it
requires recompiling the whole policy to determine each
rule’s new relative position and updates rules that only
change priorities. For example, when a new rule is in-
serted to QR (in bold in Figure 4), although only the third
and the seventh rules in comp+(MR,QR) are new, five
rules change their priorities. We have to update these
five existing rules as well as add two new rules. Rules in

bold in Figure 4 count toward this rule update overhead.

3.2 Incremental Update

Ideally, the priority of rule r in the composed implemen-
tation is a function solely of the rules in the member im-
plementations from which it is generated. In this way,
any updates of other rules in member implementations
will not affect r. We observe that rule priorities form a
convenient algebra which allows us to achieve this goal.

Add for parallel composition: Let R be the composed
implementation of comp+(R1,R2). If rule rk ∈ R is com-
posed from r1i ∈ R1 and r2 j ∈ R2, then rk.priority is the
sum of r1i.priority and r2 j.priority:

rk.priority = r1i.priority+ r2 j.priority. (1)

We show the example of comp+(MR,QR) in Figure 5.
The first rule in comp+(MR,QR) is composed from m1
and q1. Hence, its priority is m1.priority+q1.priority =
2. Suppose a new rule (in bold in Figure 5) is inserted
to QR. We only need to iterate over rule pairs (mi,q3)
for all mi ∈ MR, rather than iterate over all the rule pairs.
This generates two new rules (in bold in Figure 5). All
existing rules do not change.

Concatenate for sequential composition: Let R be the
composed implementation of comp�(R1,R2). If rk ∈ R
is composed from r1i ∈ R1 and r2 j ∈ R2, then rk.priority
is the concatenation of r1i.priority and r2 j.priority:

rk.priority = r1i.priority◦ r2 j.priority. (2)
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Symbol ◦ in Equation 2 represents the concatenation of
two priorities, where each priority is represented as a
fixed-width bit string. Concatenation enforces a lexico-
graphic ordering on the pair of priorities. Specifically,
let a1 = b1 ◦ c1 and a2 = b2 ◦ c2. Then a1 > a2 if and
only if

(
b1 > b2 or (b1 = b2 and c1 > c2)

)
, and a1 = a2

if and only if (b1 = b2 and c1 = c2). In practice, concate-
nation is computed as follows. Let r2 j be in the range
[0,MAXR2) where MAXR2 −1 is the highest priority that
R2 may use1. Then rk.priority is computed by

rk.priority = r1i.priority×MAXR2 + r2 j.priority.

We show the example of comp�(LR,QR) in Figure 5. Let
MAXQR = 8. The first rule in comp�(LR,QR) is com-
posed from l1 and q1. Thus, its priority is l1.priority×
8+ q1.priority = 25. Suppose a new rule is inserted to
LR

(
in bold in Figure 5

)
. We only need to iterate over

rule pairs (l3,q j) for all q j ∈ QR. This generates a new
rule with priority 17

(
in bold in Figure 5

)
. All existing

rules do not change.

Stack for override composition: Let R be the composed
implementation of comp�(R1,R2), and let R2’s priority
space be [0,MAXR2). To assign priorities in R, we in-
crease the priorities of R1’s rules by MAXR2 and keep the
priorities of R2’s rules unchanged. This process essen-
tially stacks R1’s priority space on top of R2’s priority
space. Specifically, let rk ∈ R. By definition of comp�,
rk is in either R1 or R2. Let rk.mPriority be rk’s priority
in the member implementation from which it comes. We
assign priority to rk as follows.

rk.priority =

{
rk.mPriority+MAXR2 if rk ∈ R1

rk.mPriority, if rk ∈ R2
(3)

We show the example of ER � QR in Figure 5. Let
MAXQR = 8. The first rule in comp�(ER,QR) is gener-
ated from e1, so it is assigned priority e1.priority+8= 9.
The second rule in comp�(ER,QR) is generated from q1,
so it is assigned priority q1.priority = 1. When a new
rule q3 that matches dstip = 1.0.0.3 is inserted to QR, we
simply add a new rule with priority 1 (in bold in Figure 5)
to comp�(ER,QR) without affecting existing rules.

Remark 1 We show the proofs of correctness for paral-
lel and sequential composition in [17]. A similar proof
for override composition is straightforward.

With the algebra on rule priorities above, CoVisor pro-
cesses the three kinds of rule updates as follows. Let R
be the composed policy implementation of R1 and R2.

Rule addition: When a new rule r∗1 is added to R1 (or
r∗2 to R2), CoVisor composes this rule with each rule in
R2 (or R1). It assigns priorities to new rules according to

1CoVisor limits the priority space of each member policy, because
the bits for priority in hardware are limited in practice.

Algorithm 1 Symbolic path generation
1: function GENPATHS(pkt)
2: pkt.children← {evaluate policy on pkt}
3: for all child in pkt.children do
4: if not child.reachedEgress() then
5: GENPATHS(child)

Equations 1, 2, and 3 and installs them to switches. All
existing rules are untouched.

Rule deletion: When an old rule r∗1 is deleted from R1
(or r∗2 from R2), CoVisor finds all rules in R that are com-
posed from this rule and deletes them from switches. All
other rules are untouched.

Rule modification: Modifying a rule is equivalent to
deleting an old rule and then inserting a new rule.

4 Compiling Topology Transformations

The first phase of compilation (§3) generates a composed
policy for the virtual network. The second phase, which
we describe in this section, compiles a policy for the vir-
tual topology into one for the physical network. It com-
prises two sub-cases as described in §2.2.1: many-to-one
and one-to-many. One-to-one is a degenerate case of
these two. While previous work has explored compila-
tion of the many-to-one case [18, 19], there does not ex-
ist any compilation algorithm for the one-to-many case.
Pyretic [20] offers the one-to-many feature but imple-
ments it by sending the first packet of each flow to the
controller and then installing micro-flow rules, a strategy
which incurs prohibitive overhead. We present the first
compilation algorithm for the one-to-many case.

Our algorithm is a novel combination of symbolic
analysis [21] and incremental sequential composition.
Intuitively, we inject a symbolic packet into the virtual
network, follow all possible paths to egress ports, and
sequentially compose the rules along each path. In this
way, we derive rules for the physical switch to process
traffic as intended by the controller’s policy for the vir-
tual network. To handle rule updates incrementally, we
keep all the symbolic paths computed during this anal-
ysis and minimally modify them when the virtual pol-
icy changes. We divide our description into three parts:
symbolic path generation (§4.1), sequential composition
on symbolic paths (§4.2), and incremental update (§4.3).

4.1 Symbolic Path Generation
For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
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Figure 6: One-to-many virtualization.

packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ∗, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 → BR1; and (3)
p22 : AR2 → BR2 →CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
(
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

)
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

(
comp�(AR2,BR2),CR1

)
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
(
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

)

SR3 =
(
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
)

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1◦6= 14) and SR3
is calculated from one with three hops (1◦1◦4 = 76). To
address the mismatch, we set a hop length l∗. If a path is
fewer than l∗ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l∗, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1◦6◦0= 112
and 4 ◦ 0 ◦ 0 = 256. Figure 7 shows the rules for S with
priorities calculated in this manner. We repeat the above
procedure for all ingress ports of the virtual topology to
get the final policy for S.

4.3 Incremental Update
By storing all the symbolic paths we generate when com-
piling a policy and partially modifying them upon a rule
insertion or deletion, we can incrementally update a pol-
icy. This strategy obviates the need to compile the whole
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Flow table of S(
256; inport = 1,dstip = 2.0.0.0/16; f wd(2)

)
(
112; inport = 1,dstip = 1.0.0.0/24; f wd(3)

)
(
76; inport = 1,dstip = 1.0.0.0/8; dstip = 2.0.0.0, f wd(4)

)

Figure 7: Flow table of switch S in Figure 6.

policy from scratch upon every rule update. In partic-
ular, when virtual switch V receives a rule update, we
reevaluate V ’s policy on all symbolic packets that enter
V . As a result, we may generate new symbolic packets,
which we then follow until they reach egress ports. V ’s
policy update may also modify the headers of or elimi-
nate existing symbolic packets. Accordingly, we update
the paths of modified symbolic packets and remove the
paths of deleted packets. Then, we add and remove rules
from the physical switch as described in §4.2. Our prior-
ity assignment algorithm ensures that these rule additions
and deletions do not affect existing rules generated from
symbolic paths that have not changed.

5 Exploiting Policy Structures

CoVisor imposes fine-grained access control on how
each controller can match and modify packets. These
restrictions both enhance security and provide hints that
allow CoVisor to further optimize the compilation pro-
cess. First, by knowing which fields individual poli-
cies match on and modify, we can build custom data
structures to index rules, instead of resorting to general
R-tree-based data structures for multi-dimensional clas-
sifiers as in [22, 23, 24]. Second, by correlating the
matched or modified fields of two policies being com-
posed, we can simplify their indexing data structures by
only considering the fields they both care about.

We first describe the optimization problem, and then
we show how to use the above two insights to solve it.
For ease of explanation, we first assume that member
policies are connected by the parallel operator. Later,
we’ll describe how to handle the sequential and override
operators. Now suppose we have a parallel composition
T1 +T2 with implementation comp+(R1,R2), and a new
rule, r∗1, is inserted into R1. With our incremental update
algorithm (§3.2), we need to iterate over all (r∗1,r2 j) pairs
where r2 j ∈R2. The iteration processes |R2| pairs in total,
where |R2| denotes the number of rules in R2. However,
if we know the structure of R2, we can index its rules in
a way that allows us to skip the rules that don’t intersect
with r∗1, thereby further reducing computation overhead.

Index policies based on structure hints: Our goal is to
reduce the number of rule pairs to iterate in compilation.
A policy’s structure indicates which fields should be in-
dexed and how. For example, if R2 is permitted only to
do exact-match on destination MAC, then we can store

Hash Map 
(proto) 

Trie 
(srcip) A 

(a) Example rule index.

dstip srcip, dstip, 
srcprt, dstprt, 
proto 

srcip, 
proto R1 

R3 

R2 

+1 

+2 

(b) Example syntax tree.

Figure 8: Example of exploiting policy structures.

its rules in a hash map keyed on destination MAC. If r∗1
also does exact-match on destination MAC, we simply
use the destination MAC as key to search for rules in
R2’s hash map. No rules in R2 besides those stored un-
der this key can intersect with r∗1, because they differ on
destination MAC. If r∗1 wildcards destination MAC, we
return all rules in R2, as they all intersect with r∗1.

The preceding example is a simple case in which R2
matches on one field. In general, a policy may match on
multiple fields. We use single-field indexes (hash table
for exact-match, trie for prefix-match, list for arbitrary
wildcard-match) as building blocks to build a multi-layer
index for multiple fields. Specifically, we first choose
one field f1 the policy can match and index the policy on
this field. We store all rules with the same value in f1 in
the same bucket of the index. This forms the first layer
of the index. Then we choose the second field f2 and
index rules in each f1 bucket on f2. We repeat this pro-
cess for all the fields on which the policy can match. We
choose the order of fields according to simple heuristics
like preferring exact-match fields to prefix-match fields.
In practice, a policy normally matches on a small number
of fields, which means the number of layers is small.

Consider a policy that does exact-match on proto (pro-
tocol number) and prefix-match on srcip. We first index
the policy based on proto. All rules with the same value
in proto go to the same bucket, as shown in Figure 8(a).
Note that the hash map contains a bucket keyed on ∗ for
rules that do not match on proto. Then, we index all the
rules that contain the same proto value on srcip. Be-
cause our example policy does prefix match on srcip, the
second level of our multi-layer index comprises a trie for
each bucket in the hash map. Figure 8(a) shows this sec-
ond level for rules with proto = 1; bucket A contains all
the rules with proto = 1 and srcip = 128.0.0.0/1.

Correlate policy structures to reduce indexing fields:
When composing policies, we can leverage the informa-
tion we know about both to reduce the work we do to in-
dex each. Suppose R1 matches on dstip and R2 matches
on the five tuple (srcip, dstip, srcport, dst port, proto).
Instead of storing R2 in a five-layer index, we need only
index the dstip. Because dstip is the only field on which
any rule r∗1 added to R1 can match, r∗1 will intersect with

9



96 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

a rule in R2 as long as they intersect on dstip. Formally,
let Ri. f ields be the set of fields on which Ri matches and
Ri.index be the set of fields Ri indexes. Given Ri and R j
in a composition, we have

Ri.index = R j.index = Ri. f ields∩R j. f ields. (4)

Back to our example, we have R1.index = R2.index =
R1. f ields∩R2. f ields = {dstip}.

A policy Ri itself may be composed from other poli-
cies R j and Rk. Unlike in the previous example, we do
not a priori know Ri. f ields and instead rely on the ob-
servation that a rule in a composed policy can match on a
field f if and only if at least one of its component mem-
ber policies can match on f . Hence, we get

Ri. f ields = R j. f ields∪Rk. f ields. (5)

Let’s look at an example (R1 +R2)+R3, which we show
as a syntax tree in Figure 8(b). Initially, we know the
match fields only for the leaf nodes. Then we cal-
culate the match fields for node +1 with R1. f ields ∪
R2. f ields = {srcip,dstip,srcprt,dst prt, proto}. Then,
we use Equation (4) to index +1 and R3 with +1. f ields∩
R3. f ields = {srcip, proto}.

Sequential and override composition: Suppose we
have sequential composition T1 � T2 with implementa-
tion comp�(R1,R2). Then R1. f ields not only contains
the fields R1 matches but also the fields it modifies in
its action set. This is because, for r1 ∈ R1 and r2 ∈ R2,
the pair (r1,r2) generates a rule for the composed policy
if the intersection of r2.mSet and the set of packets re-
sulting from applying r1.action to r1.mSet is not empty.
Similarly, when we index R1, the key for any rule r1i is
the value resulting from applying r1.action to r1.match.
We do not need to index policies for override composi-
tion, since we directly stack their rules.

6 Implementation

We implemented a prototype of CoVisor with 4000+
lines of Java code added to and modifying OpenVir-
teX [3]. We replaced the core logic of OpenVirteX,
which isolates multiple controllers, with our composi-
tion and incremental update logic (§3). To OpenVir-
teX’s built-in many-to-one virtualization, we added sup-
port for the one-to-many abstraction and our proactive
compilation algorithm (§4). We further optimized com-
pilation by exploiting the structure of policies as de-
scribed in §5. We used HashMap in the Java stan-
dard library [25] to index rules with exact-match fields
and RadixTree in the Concurrent-trees library [26] to
index rules with prefix-match fields. Given a key (e.g.,
1.0.0.0/16), RadixTree in the Concurrent-trees library
only returns values for keys starting with this key (e.g.,
1.0.0.0/24 and 1.0.0.0/30). We modified it to also give

values for keys included by this key (e.g., 1.0.0.0/8). Co-
Visor currently supports the OpenFlow flowmod mes-
sage; other commands, such as barrier messages and
querying counters, will be supported in later versions.

7 Evaluation

7.1 Methodology

Experiment Setup: We evaluate CoVisor under three
scenarios, the first two of which evaluate composition ef-
ficiency and the third of which evaluates devirtualization
efficiency. In each scenario, we stress CoVisor with a
wide range of policy sizes. Since compiling policies to
individual physical switches is independent in these sce-
narios, we show the results for a single physical switch.
We run CoVisor on Mininet [27] and use Floodlight con-
trollers [2]. The server is equipped with an Intel XEON
W5580 processor with 8 cores and 6GB RAM. We de-
scribe each scenario in more detail below.
• L2 Monitor + L2 Router: L2 Monitor counts pack-

ets for source MAC and destination MAC pairs;
L2 Router forwards packets based on destination
MAC. The MAC addresses are randomly generated.

• L3-L4 Firewall � L3 Router: L3-L4 Firewall filters
packets based on the five tuple; L3 Router forwards
packets according to destination IP prefix. The fire-
wall policy is generated from ClassBench [28], a
tool for benchmarking firewalls. The L3 router pol-
icy is generated with IP prefixes extracted from the
firewall policy.

• Gateway virtualization: This is the topology vir-
tualization discussed in §2.2.1. A switch that con-
nects an Ethernet island to the IP core is abstracted
to three virtual switches, which operate as a MAC
learner, gateway, and IP router.

Metrics: We use the following metrics to measure effi-
ciency. The thick bars in Figures 9 and 11 indicate the
median, and the error bars show the 10th and 90th per-
centiles.
• Compilation time: The time to compile the policy

composition or topology devirtualization.
• Rule update overhead: The number of flowmods

to update the switch to the new flow table.
• Total update time: The sum of compilation time,

rule update time, and additional system overhead
like OpenFlow message (un)marshalling. Since
hardware switches and software switches takes very
different time in rule updates, we show both of
them. As the software switches in Mininet do not
mimic the rule update latency of hardware switches
and do not give accurate timing on the actual rule
installation in software switches, we use the rule up-
date latency in [29] for hardware switches and that
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Figure 9: Per-rule update overhead of L2 Monitor + L2 Router as a function of L2 Router size (log-log scale).
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Figure 10: Per-rule update overhead of L3-L4 Firewall � L3 Router (x-axis log scale).

in [30] for software switches when calculating rule
update times.

Comparison: We compare the following approaches.
• Strawman: Recompile the new policy from scratch

for every policy update.
• Incremental: Incrementally compile the new policy

using our algebra of rule priorities for policy com-
position (§3) and keeping symbolic path informa-
tion for topology devirtualization (§4).

• IncreOpt: Further optimize Incremental by exploit-
ing the structures of policies (§5).

7.2 Composition Efficiency

Figure 9 shows the result of L2 Monitor + L2 Router. In
this experiment, we initialize the L2 Monitor policy with
1000 rules, and then add 10 rules to measure the over-
head for each. We repeat this process 10 times. We vary
the size N of L2 Router policy from 1000 to 32,000 to
show how overhead increases with larger policies. Fig-
ure 9(a) shows the compilation time. As expected, the
compilation time of Strawman and Incremental increases
with the policy size, because larger policies force our al-
gorithm to consider more rule pairs. Since Strawman re-
compiles the whole policy, it is by far the slowest. On
the other hand, IncreOpt has almost constant compilation
time, because it indexes L2 Router’s rules in a hash table
keyed on destination MAC. When a rule is inserted to
L2 Monitor’s policy, the algorithm simply uses the rule’s
destination MAC to look up rules in the hash table.

Figure 9(b) shows the rule update overhead in terms
of number of rules (same for hardware and software
switches). Because of its naive priority assignment

scheme, Strawman unnecessarily changes priorities of
many existing rules and thus generates more flowmods
than Incremental and IncreOpt. Incremental and Incre-
Opt generate the same policy, and therefore they have
the same rule update overhead. We also observe that the
rule update overhead does not increase with the size of L2
Router’s policy. This is because the size of L2 Monitor’s
policy is fixed, and each monitor rule only intersects with
one rule in L2 Router, since they both do exact-match on
destination MAC.

Finally, Figures 9(c) and 9(d) show the total time. No-
tably, Incremental and IncreOpt are significantly faster
than Strawman, and the gap between Incremental and In-
creOpt is larger when using software switches. This is
because software switches update rules faster than hard-
ware switches, and therefore the compilation time ac-
counts for a larger fraction of the total time for software
switches.

Figure 10 shows the result of L3-L4 Firewall � L3
Router. As before, we initialize L3-L4 Firewall’s policy
with 1000 rules and add 10 rules. Since the trend is simi-
lar to Figure 9 when we vary the size N of L3 Router, we
instead show the CDF when L3 Router policy has 8,000
rules. Figure 10(a) shows the compilation time. Again,
Strawman is several orders of magnitude slower than In-
cremental and IncreOpt. However, unlike in our previous
experiment, we see a stepwise behavior of Incremental,
and the difference between Incremental and IncreOpt also
disappears after 80th percentile. This is an artifact of the
content of L3-L4 Firewall from ClassBench. The firewall
policy comprises approximately 80% rules matching on
very specific destination IP prefix (/31, /32) and around
20% rules matching very general destination IP prefix
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Figure 11: The switch connecting an Ethernet island to the IP core is virtualized to switches that operate as MAC
learner, gateway, and IP router. Figures show the overhead of adding a host to the Ethernet island as a function of IP
router policy size (log-log scale).

(/1, /0). A firewall rule with a very specific destination
IP prefix only composes with a few router rules, in which
case IncreOpt processes fewer rule pairs in compilation
than Incremental. On the other hand, a firewall rule with
a very general destination IP prefix like /1 or /0 com-
poses with half or all rules in the router policy, in which
case Incremental and IncreOpt process a similar number
of rule pairs and have similar compilation time. This rea-
soning also explains the shape of Incremental and Incre-
Opt in Figures 10(b), 10(c) and 10(d). Finally, note that
the overhead of inserting a new rule to L3-L4 Firewall by
Incremental and IncreOpt is bounded by the number of
rules in L3 Router, while that by Strawman is bounded by
the product of the number of rules in L3-L4 Firewall and
L3 Router.

7.3 Devirtualization Efficiency

We use the gateway scenario to evaluate the efficiency of
the devirtualization phase of compilation. In this exper-
iment, we have 100 hosts in the Ethernet island. The
MAC learner installs forwarding rules for connections
between host pairs. To the Ethernet island, switch G sim-
ply appears as another host; hosts use G’s MAC as des-
tination MAC when they want to reach hosts across the
IP core. We initialize the MAC learner policy with 1000
rules in switch E. Then, we add a new host to the Eth-
ernet island. When the new host tries to talk to another
host across the IP core, the MAC learner adds two rules
to establish a bidirectional connection between the host
and switch G. To compile this update, we compose the
two new rules with the existing rules in switches G and
I. The gateway policy at G is simply a MAC-rewriting
repeater and ARP server. The IP router forwards packets
based on destination IP prefix. We vary the size of the
IP router policy at I from 1000 to 32,000 to evaluate how
the overhead increases with larger policies.

Figure 11 shows the overhead. Strawman exhibits a
long compilation time, as it has to recompile the policy
from scratch. Strawman also generates more flowmods
than necessary, because its priority assignment scheme

may change the priorities of existing rules. In contrast,
Incremental and IncreOpt incur significantly less over-
head, because they keep all the symbolic paths and only
need to change a few upon receiving the new rules. Fi-
nally, we notice that Incremental and IncreOpt do not
show much difference in this experiment and the abso-
lute values of total update time are high. This is because
the MAC learner policy in switch E and the IP router
policy in switch I match on different fields. Thus, when
we do sequential composition on virtual paths, Incremen-
tal and IncreOpt iterate over a similar number of rule
pairs and the result policy is almost a cross-product of the
two policies at E and I. The cross-product is inevitable
when compiling to a single flow table as the two poli-
cies match on different fields. Finally, we note that the
multi-table support in OpenFlow 1.3 and newer hardware
platforms like P4 [31] can make devirtualization more ef-
ficient. If multiple tables in a switch can be configured to
in a pipeline to mirror the virtual network topology, then
updating virtual switch tables can be directly mapped to
updating physical tables. This can dramatically reduce
compilation and rule update overhead. A complete ex-
ploration of this direction is part of our future work.

8 Proposed OpenFlow Extensions

The current language for communicating between Co-
Visor and its controllers is OpenFlow. We made this
choice because OpenFlow is the current lingua franca
of software-defined networks. Nevertheless, it is well-
known that OpenFlow is not the ultimate SDN control
protocol; both researchers and practitioners have been
exploring extensions and revisions to the protocol for
years. However, our use of OpenFlow in CoVisor has
highlighted additional limitations that researchers might
consider when revising the OpenFlow standard or when
designing future protocols.

In particular, a single OpenFlow rule can only express
positive properties of packets in a compact manner. For
example, a single rule can forward a packet with type
SSH out port 3, but it cannot forward a packet that does

12



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 99

not have type SSH out port 3. This lack of expressive-
ness can be problematic if one would like to construct
a hypervisor that allows controller A to choose to handle
some traffic, while other traffic falls through to controller
B. Such a situation is expressed naturally as A� B in
our system. However, if A chooses (during the course of
operation) to control forwarding for packets that do not
have type SSH, it can only do so by providing rules for
all types of packets other than SSH packets. If OpenFlow
supplied a don’t care action (analogous to Pyretic’s pass-
through action [20]), controllers could generate just two
rules to deal with such situations: a high-priority rule for
SSH traffic with a don’t care action and a lower priority
rule that forwards all other traffic as desired. Of course,
it would be possible for us to “hack” the OpenFlow pro-
tocol so controllers can transmit such information coded
somehow, but hacking protocols in this fashion is brittle
and leads to long-term software engineering nightmares.

9 Related Work

Slicing: Existing network hypervisors mostly focus on
slicing; they target multi-tenancy scenarios in which each
tenant operates on a disjoint subset, or slice, of the traf-
fic [3, 4, 32, 33]. In contrast, CoVisor allows multiple
controllers to collaborate on processing the same traffic.

Topology abstraction: Many projects studied the many-
to-one case [20, 18, 19, 34]. Pyretic [20] explored the
one-to-many case, but its implementation reactively in-
stalls micro-flow rules. CoVisor provides the first proac-
tive compilation algorithm by leveraging symbolic anal-
ysis to build symbolic paths [21] and applying incremen-
tal sequential composition to generate the rules.

Composition: The parallel and sequential operators are
proposed in the Frenetic project [5, 20], and the over-
ride operator is described in [15, 16, 35]. An incremen-
tal compilation algorithm for Frenetic policies is intro-
duced in [16]. CoVisor is novel in using these operators
to compose policies written on a variety of controller
platforms, rather than just Frenetic. Furthermore, Co-
Visor takes advantage of the OpenFlow rules’ explicit
priorities; it uses a convenient algebra to calculate pri-
orities for composed rules, thereby eliminating the need
to build dependency graphs for rules and maintain scat-
tered priority distributions [16]. Moreover, [16] only op-
timizes priority assignment for Frenetic policies; it is not
a hypervisor to compose controllers, and does not have
algorithms to compile topology virtualizations and opti-
mizations by exploiting policy structures. Finally, it is an
open problem to design a good interface for Frenetic to
aid incremental update.

CoVisor is built upon our previous workshop pa-
per [17], which presents the rule priority algebra for the

parallel and sequential operators. This work includes
new results on the algebra for the override operator,
a proactive and incremental compilation algorithm for
one-to-many virtualization, further optimization of com-
pilation algorithms by exploiting policy structures, and a
prototype implementation and evaluation.

Switch table type patterns: Table Type Patterns [36]
and P4 [37] provide a syntax for describing flow table
capabilities (e.g., fields that can be matched and modi-
fied). CoVisor uses this kind of information to build a
customized data structure to optimize compilation. CoV-
isor’s optimization technique differs from existing ways
to index and accelerate multi-dimensional classifiers that
don’t know policy structures a priori [22, 23, 24, 38].

10 Conclusion

We present CoVisor, a compositional hypervisor that al-
lows administrators to combine multiple controllers to
collaboratively process a network’s traffic. CoVisor uses
a combination of novel algorithms and data structures
to efficiently compile policies in an incremental manner.
Evaluations on our prototype show that it is several or-
ders of magnitude faster than a naive implementation,
and we believe this is just the start of research on com-
positional hypervisors. There are many interesting future
directions. In particular, extending existing and explor-
ing new compilation techniques for multi-table support
in compositional hypervisor setting is a very promising
direction [31, 39]. First, this allows us to make efficient
use of hardware capabilities and reduce the size of final
policies for composition and devirtualization. Second,
it introduces an incremental deployment path for hard-
ware with OpenFlow 1.3 support as legacy applications
written in OpenFlow 1.0 can run on top of CoVisor with
CoVisor compiling them to OpenFlow 1.3.
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Compiling Packet Programs to Reconfigurable Switches
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Abstract

Programmable switching chips are becoming more com-
monplace, along with new packet processing languages
to configure the forwarding behavior. Our paper explores
the design of a compiler for such switching chips, in par-
ticular how to map logical lookup tables to physical ta-
bles, while meeting data and control dependencies in the
program. We study the interplay between Integer Linear
Programming (ILP) and greedy algorithms to generate
solutions optimized for latency, pipeline occupancy, or
power consumption. ILP is slower but more likely to fit
hard cases; further, ILP can be used to suggest the best
greedy approach. We compile benchmarks from real pro-
duction networks to two different programmable switch
architectures: RMT and Intel’s FlexPipe. Greedy solu-
tions can fail to fit and can require up to 38% more stages,
42% more cycles, or 45% more power for some bench-
marks. Our analysis also identifies critical resources in
chips. For a complicated use case, doubling the TCAM
per stage reduces the minimum number of stages needed
by 12.5%.

1 Introduction
The Internet pioneers called for “dumb, minimal and
streamlined” packet forwarding [11]. However, over
time, switches have grown complex with the addition
of access control, tunneling, overlay formats, etc., spec-
ified in over 7,000 RFCs. Programmable switch hard-
ware called NPUs [10, 17] were an initial attempt to ad-
dress changes. Yet NPUs, while flexible, are too slow:
the fastest fixed-function switch chips today operate at
over 2.5Tb/s, an order of magnitude faster than the fastest
NPU, and two orders faster than a CPU.

As a consequence, almost all switching today is done
by chips like Broadcom’s Trident [9]; arriving packets
are processed by a fast sequence of pipeline stages, each
dedicated to a fixed function. While these chips have
adjustable parameters, they fundamentally cannot be re-
programmed to recognize or modify new header fields.
Fixed-function processing chips have two major disad-
vantages: first, it can take 2–3 years before new protocols
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Figure 1: A top-down switch design.

are supported in hardware. For example, the VxLAN
field [21]—a simple encapsulation header for network
virtualization—was not available as a chip feature until
three years after its introduction. Second, if the switch
pipeline stages are dedicated to specific functions but
only a few are needed in a given network, many of the
switch table and processing resources are wasted.

A subtler consequence of fixed-function hardware is
that networking equipment today is designed bottom-up
rather than top-down. The designer of a new router must
find a chip datasheet conforming to her requirements
before squeezing her design bottom-up into a predeter-
mined use of internal resources. By contrast, a top-down
design approach would enable a network engineer to de-
scribe how packets are processed and adjust the sizes of
various forwarding tables, oblivious to the the underly-
ing hardware capabilities (Figure 1). Further, if the engi-
neer changes the switch mid-deployment, she can simply
install the existing program onto the new switch. The
bottom-up design style is also at odds with other areas
of high technology: for example, in graphics, the fastest
DSPs and GPU chips [23, 28] provide primitive oper-
ations for a variety of applications. Fortunately, three
trends suggest the imminent arrival of top-down net-
working design:
1. Software-Defined Networking (SDNs): SDNs [18,
24] are transforming network equipment from a verti-
cally integrated model towards a programmable software
platform where network owners and operators decide
network behavior once deployed.
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Figure 2: Compiler input and output.

2. Reconfigurable Chips: Emerging switch chip ar-
chitectures are enabling programmers to reconfigure the
packet processing pipeline at runtime. For example,
the Intel FlexPipe [25], the RMT [8], and the Cav-
ium XPA [4] follow a flexible match+action process-
ing model that maintains performance comparable to
fixed-function chips. Yet to accommodate flexibility, the
switches have complex constraints on their programma-
bility.
3. Packet Processing Languages: Recently, new lan-
guages have been proposed to express packet process-
ing, like Huawei’s Protocol Oblivious Forwarding [3, 27]
and P4 [1, 2, 6]. Both POF and P4 describe how packets
are to be processed abstractly—in terms of match+action
processing—without referencing hardware details. P4
can be thought of as specifying control flow between a
series of logical match+action tables.

With the advent of programmable switches and high-
level switch languages, we are close to programming
networking behavior top-down. However, a top-down
approach is impossible without a compiler to map the
high-level program down to the target switch hardware.
This paper is about the design of such a compiler, which
maps a given program configuration—using an interme-
diate representation called a Table Dependency Graph,
or TDG (Section 2.1)—to a target switch. The com-
piler should create two items: a parser configuration,
which specifies the order of headers in a packet, and
a table configuration, which is a mapping that assigns
the match+action tables to memory in a specific target
switch pipeline (Figure 2). Previous research has shown
how to generate parsing configurations [16]; the second
aspect, table configuration, is the focus of this paper.

To understand the compilation problem, we first need
to understand what a high-level packet processing lan-
guage specifies and how an actual switch constrains fea-
sible table configurations.

1.1 Packet Processing Languages

High-level packet processing languages such as P4 [6]
must describe four things:
Abstract Switch Model: P4 uses the abstract switch

model in Figure 1 with a programmable parser fol-

lowed by a set of match+action tables (in parallel
and/or in series) and a packet buffer.

Headers: P4 declares names for each header field, so
the switch can turn incoming bit fields into typed data
the programmer can reference. Headers are expressed
using a parse graph, which can be compiled into a state
machine using the methods of [16, 19].

Tables: P4 describes the logical tables of a program,
which are match+action tables with a maximum size;
examples are a 48-bit Ethernet address exact match ta-
ble with at most 32,000 entries, or an 8K-entry table
of 256-bit wide ACL matches.

Control Flow: P4 specifies the control flow that dictates
how each packet header is to be processed, read, and
modified. A compiler must map the program while
preserving control flow; we give a more detailed ex-
ample of this requirement in Section 2.1.

1.2 Characteristics of Switches
Once we have a high-level specification in a language,
the compiler must work within the constraints of a target
switch, which include the following:
Table sizes: Hardware switches contain memories that

can be accessed in parallel and whose number and
granularity are constrained.

Header field sizes: The width of the bus carrying the
headers limits the size and number of headers that the
switch can process.

Matching headers: There are constraints on the width,
format, and number of lookup keys to match against
in each match+action stage.

Stage Diversity: A stage might have limited functional-
ity; for example, one stage may be designed for match-
ing IP prefixes, and another for ACL matching.

Concurrency: The biggest constraints often come from
concurrency options. The three recent flexible switch
ASICs (FlexPipe, RMT, XPA) are built from a sequen-
tial pipeline of match+action stages, with concurrency
possible within each stage. A compiler must analyze
the high-level program to find dependencies that limit
concurrency; for example, a data dependency occurs
when a piece of data in a header cannot be processed
until a previous stage has finished modifying it. We
follow the lead of Bosshart, et al. [8] and express de-
pendencies using a TDG (Section 2.1).

1.3 Approach and Contributions
This paper is the first to define and systematically ex-
plore how to build a switch compiler by using abstrac-
tions to hide hardware details while capturing the essence
required for mapping (Sections 2 and 3). Ideally we
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(a) The parse graph specifies the order of the packet headers (green); the metadata (blue)
is separate. All field names and lengths (in bits) are also specified.

Table name l Match type el nl
MAC learning 1 exact 4000 (2)

Routable 2 exact 64 (3, 4, 5)
Unicast 3 prefix 2000 (5)

Multicast 4 prefix 500 (6)
Switching 5 exact 4000 (7)

IGMP 6 ternary 500 (to CPU)
ACL 7 ternary 1000 (exit)

(b) Each logical table l has a table name, maximum
entry count el, and next table addresses nl.
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(c) The control flow program. Each table l has match fields fl and modified fields al.

Figure 3: A packet processing program named L2L3 describing a simple L2/L3 IPv4 switch.

would like a switch-dependent front-end preprocessor,
and a switch-independent back-end; we show how to
relegate some switch-specific features to a preproces-
sor. We identify key issues for any switch compiler:
table sizes, program control flow, and switch memory
restrictions. In a sense, we are adapting instruction re-
ordering [20], a standard compilation mechanism, to effi-
ciently configure a packet-processing pipeline. We rein-
terpret traditional control and data dependencies [20] in a
match+action context using a Table Dependency Graph
(TDG).

A second contribution is to compare greedy heuristic
designs to Integer Linear Programming (ILP) ones; ILP
is a more general approach that lets us optimize across
a variety of objective functions (e.g., minimizing latency
or power). We analyze four greedy heuristics and several
ILP solutions on two switch designs, FlexPipe and RMT.
For the smaller FlexPipe architecture, we show that ILP
can often find a solution when greedy fails. For RMT, the
best greedy solutions can require 38% more stages, 42%
more cycles, or 45% more power than ILP. We argue that
with more constrained architectures and more complex
programs (Section 6), ILP approaches will be needed.

A third contribution is exploring the interplay between
ILP and greedy, given ILP’s optimal mappings despite its
longer runtime. For each switch architecture, we design
a tailored greedy algorithm to use when a quick fit suf-
fices. Further, by analyzing the ILP for the “tightest”
constraints, we find we can improve the greedy heuris-
tics. Finally, a sensitivity analysis shows that the most
important chip constraints that limit mapping for our
benchmarks are the degree of parallelism and per-stage
memory.

We proceed as follows. Section 2 defines the map-

ping problem and TDG, Section 3 abstracts FlexPipe and
RMT architectures, Section 4 presents our ILP formula-
tion, and Section 5 describes greedy heuristics. Section
6 presents experimental results, and Section 7 describes
sensitivity analysis to determine critical constraints.

2 Problem Statement
Our objective is to solve the table configuration prob-
lem in Figure 2. We focus on mapping P4 programs
to FlexPipe and RMT, while respecting hardware con-
straints and program control flow. Since the abstract
switch model in Figure 1 does not model realistic con-
straints such as concurrency limits, finite table space, and
finite processing stages, the compiler needs two more
pieces of information. First, the compiler creates a table
dependency graph (TDG) from the P4 program to deduce
opportunities for concurrency, described below. Second,
the compiler must be given the physical constraints of the
target switch; we consider constraints for specific chips
in Section 3.

2.1 Table Dependency Graph

We describe program control flow using an example P4
program called L2L3. Figure 3 describes the program by
showing three of the four items described in Section 1.1:
headers, tables, and control flow. The fourth item, the
abstract switch model, is described in Section 3.

Our L2L3 program supports unicast and multicast
routing, Layer 2 forwarding and learning, IGMP snoop-
ing, and a small Access Control List (ACL) check. Fig-
ure 3a is a parse graph declaring three different header
fields (Ethernet, IPv4, and VLAN) and metadata used
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Figure 4: Table dependency graph for the L2L3 program.

during processing. The features and control flow of the
six logical tables in L2L3 are shown in Figure 3b and 3c.

Table l has attributes ( fl,el,al,nl) that determine how
a program should be allocated onto a target switch. A
set of match fields fl, from the packet header or meta-
data, are matched against el table entries. For example,
the IPv4 Unicast routing table in L2L3 matches a 32-bit
IPv4 destination address and holds up to 2,000 entries.
In practice, table l may have much less than el entries,
but the programmer provides el as an upper bound. Ta-
bles can have different match types: exact, prefix (longest
prefix match), or ternary (wildcard). If the match type
is ternary or prefix, the set fl also specifies a bit mask.
Based on the match result, the table performs actions on
modified fields al and jumps to one of the tables specified
in the set of next table addresses, nl.

Figure 3c illustrates how header fields are processed
by logical tables in an imperative control flow program.
For example, the Unicast Routing table sets a new des-
tination MAC address and VLAN tag before visiting the
Switching table, which sets the egress port, and so on.
The compiler must ensure that the matched and modi-
fied headers in each table correctly implement the control
flow program.

We define a Table Dependency Graph (TDG) as a di-
rected, acyclic graph (DAG) of the dependencies (edges)
between the N logical tables (vertices) in the control
flow. Dependencies arise between logical tables that lie
on a common path through the control flow, where table
outcomes can affect the same packet.

Figure 4 shows the TDG for our L2L3 program, which
is generated directly from the P4 control flow and table
description in Figure 3. From the next table addresses it
is evident that some tables precede others in an execution
pipeline; more precisely, Table A would precede Table
B in an execution pipeline if there is a chain of tables
l1, l2, . . . , lk from A to B, where l1 ∈ nA, l2 ∈ nl1 , etc., and
B ∈ nlk . If the result of Table A affects the outcome of
Table B, we say that Table B has a dependency on Table
A. In this case, there is an edge from Table A to B in the
table dependency graph.

Different types of dependencies affect both the ar-
rangement of tables in a pipeline and the pipeline la-
tency.We present the three dependencies described in [8]
and introduce a fourth below.

1. Match dependency: Table A modifies a field that

Switch compiler Traditional compiler
Match dependency Read-After-Write
Action dependency Write-After-Write

Successor dependency Control dependence
Reverse-match dependency Write-After-Read

Table 1: Mapping switch compiler dependencies to traditional
compiler dependencies.

a subsequent Table B matches.
2. Action dependency: Table A and B both change

the same field, but the end-result should be that of the
later Table B.

3. Successor dependency: Table A’s match result
determines whether Table B should be executed or not.
More formally, there is a chain of tables l1, . . . , lk from A
to B, where l1 ∈ nA, l2 ∈ nl1 , etc., and B ∈ nlk , such that
every table li � A in this chain is followed by B in each
possible execution path. Additionally, there is a chain of
next table adresses from A that does not go through B.
For example, the Routable table’s outcome determines
whether Multicast Routing and IGMP will be executed.
Thus, both have successor dependencies on Routable.
On the other hand, IGMP does not have a successor de-
pendency on Multicast Routing or vice-versa.

4. Reverse match dependency: Table A matches on
a field that Table B modifies, and Table A must finish
matching before Table B changes the field. This often
occurs as in our example, where source MAC learning is
an item that occurs early on, but the later Unicast table
modifies the source MAC for packet exit.

Note that these dependencies roughly map to control
and data dependencies in traditional compiler literature
[5], where a match on a packet header field (or metadata)
corresponds to a read and an action that updates a packet
header (or metadata) corresponds to a write (Table 1).

While the TDG is strictly a multigraph, as there can
be multiple dependencies between nodes, the mapping
problem only depends on the strictest dependency that
affects pipeline layout; the other dependencies can be re-
moved to leave a graph. In summary, a TDG is a DAG
of N logical tables (vertices) and dependencies (edges),
where table l ∈ {1, . . . ,N} has match fields, maximum
match entries, modified fields, and next table addresses,
denoted by fl,el,al, and nl, respectively.

3 Target Switches
The two backends we use—RMT [8] and Intel’s
FlexPipe [25]—represent real high-performance, pro-
grammable switch ASICs. Both conform to our abstract
forwarding model (Figure 1) by implementing a pipeline
of match+action stages and can run the L2L3 program
in Figure 3. While both switches have different con-
straints, we can define hardware abstractions common
to both chips: a pipeline DAG, memory types, and as-
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106 blocks 
1K (80b) 
SRAM 

16 blocks 2K 
(160b) TCAM 

... 

106 blocks 
1K (80b) 
SRAM 

16 blocks 2K 
(160b) TCAM 

(a) RMT switch as described in [8].

2 blocks 
64(48b) 
Mapper 

12 blocks 
1K (36b) FFU 

12 blocks 
1K (36b) FFU 

4 blocks 
16K (36b) 
BST 

4 blocks 
16K (72b) 
Hash table 

(b) Intel FlexPipe switch as described in [25].

RMT

s Mem. Type m bm wm dmName

1-32 SRAM exact 1 106 80b 1K
TCAM ternary 2 16 40b 2K

(c) Memory information for RMT.

FlexPipe

s Mem. Type m bs,m wm dmName
1 Mapper exact 1 1 48b 64

2-3 FFU ternary 2 12 36b 1K
4 BST prefix 3 4 36b 16K

5 Hash exact 4 4 72b 16K
Table

(d) Memory information for FlexPipe.

Figure 5: Switch configurations for RMT and FlexPipe. The tuple (s,m) refers to memory type m (m ∈ {1, ...,K}) in the stage indexed by
s ∈ {1, ...,M}. Each (s,m) has attributes (bs,m,wm,dm), where bs,m is the number of blocks of the m-th memory type, and each of these blocks can
match dm words (the “depth” of each block) of maximum width wm bits.

signment overhead. We describe these abstractions and
switch-specific features, and highlight how our compiler
represents each chip’s constraints.

Pipeline Concurrency: We model the physical pipeline
of each switch using a DAG of stages as shown in Fig-
ures 5a and 5b; a path from the i-th stage to the j-th stage
implies that stage i starts execution before stage j. In the
FlexPipe model (Figure 5b), the second Frame Forward-
ing Unit (FFU) stage and the Binary Search Tree (BST)
stage can execute in parallel because there is no path be-
tween them.
Memory types: Switch designers decide in advance the
allocation of different memory blocks based on programs
they anticipate supporting. We abstract each memory
block as having a memory type that supports various log-
ical match types (Section 2.1). For example, in RMT, the
TCAM allows ternary match type tables, while SRAM
supports exact match only; in FlexPipe, FFU, hash ta-
bles, and BST memory types support ternary, exact, and
prefix match, respectively.

Memory information for RMT and FlexPipe are in Ta-
bles 5c and 5d. We annotate the DAG to show the num-
ber, type and size of the memory blocks in each stage.
Assignment overhead: A table may execute actions or
record statistics based on match results; these actions and
statistics are also stored in the stage they are referenced.
The number of blocks for action and statistics memory,
collectively referred to as assignment overhead, is lin-
early dependent on the amount match memory a table has
in a stage. In RMT, both TCAM and SRAM match mem-
ory store their overhead memory in SRAM; we ignore
action and statistics memory in FlexPipe.
Combining entries: RMT allows a field to efficiently
match against multiple words in the same memory block
at a time, a feature we call word-packing. Different pack-
ing formats allow match entries to be efficiently stored

1K words/ 
  1 block 
 
3K words/ 
  2 block 
 
5K words/ 
  3 block 

 
  (80b) 
48b  

 
48b  

 
48b 

 
 

 
 

 
 

 
 

(a) Word-packing for SRAM blocks
with (wm,dm) = (80b,1000).

   

IPv6 network prefix 
(64b) 

IPv4 
(32b) 

IPv4 
(32b) 

      

flag: match on IPv6 or IPv4 

(b) Table-sharing.

Figure 6: Block layout features in different switches.

in memory; for example, a packing format of 3 creates a
packing unit that strings together two memory blocks and
allows a 48b MAC address field to match against three
MAC entries simultaneously in a 144b word (Figure 6a).
FlexPipe only supports stringing together the minimum
number of blocks required to match against one word,
but does allow table-sharing in which multiple logical
tables share the same block of SRAM or BST memory,
provided the two tables are not on the same execution
path. Table-sharing is shown in Figure 6b: since routing
tables make decisions on either IPv4 or IPv6 prefixes,
both sets of prefixes can share memory.
Per-stage resources: RMT uses three crossbars per
stage to connect subsets of the packet header vector to the
match and action logic. Matches in SRAM and TCAM,
and actions all require crossbars composed of eight 80b-
wide subunits for a total of 640 bits. A stage can match
on at most 8 tables and modify at most 8 fields. There
appears to be no analogous constraints for FlexPipe.
Latency: Generally, processing will begin in each
pipeline stage as soon as data is ready, allowing for over-
lapping execution. However, logical dependencies re-
strict the overlap (Figure 7). In RMT, a match depen-
dency means no overlap is possible, and the delay be-
tween two stages will be the latency of match and action
in a stage: 12 cycles. Action dependent stages can have
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Figure 7: Dependency types and latency delays in RMT. In this
figure, Table B in Stage 2 depends on Table A in Stage 1.

their match phases overlap, and so the minimum delay
is 3 cycles between the stages. Successor and reverse-
match dependencies can share stages, provided that ta-
bles can be run speculatively [8]. Note that even if there
are no dependencies there is a one cycle delay between
successive stages.

While RMT’s architecture requires that match or ac-
tion dependent tables be in strictly separate stages, Flex-
Pipe’s architecture resolves action dependencies at the
end of each stage, and thus only match dependencies re-
quire separate stages. In summary, the compiler models
specific switch designs abstractly using a DAG, multiple
memory blocks per stage, constraints on packing, per-
stage resources and latency characteristics. While we
have described how to model RMT and FlexPipe (the
only two currently published reconfigurable switches),
new switches can be described using the same model if
they use some form of physical match+action pipeline.

4 Integer Linear Programming
To build a compiler, we must map programs (parse
graphs, table declarations and control flow) to target
switches (modeled by a DAG of stages with per-stage re-
sources) while maximizing concurrency and respecting
all switch constraints. Because constraints are integer-
valued (table sizes, crossbar widths, header vectors), it
is natural to use Integer Linear Programming (ILP). If
all constraints are linear constraints on integer variables
and we specify an objective function (e.g., “use the least
number of stages” or “minimize latency”), then fast ILP
solvers (like CPLEX [12]) can find an optimal mapping.

We now explain how to encode switch and program
constraints and specify objective functions. We di-
vide the ILP-based compiler into a switch-specific pre-
processor (for switch-specific resource calculation) and
a switch-dependent compiler. We start with switch-
independent common constraints.

4.1 Common Constraints

The following constraints are common to both switches:

Assignment Constraint: All logical tables must be as-
signed somewhere in the pipeline. For example, if a ta-
ble l has el = 5000 entries, the total number of entries
assigned to that logical table, or Ws,l,m over all memory
types m and stages s, should be at least 5000. Hence, we
require:

∀l :
∑
s,m

Ws,l,m ≥ el. (1)

Capacity Constraint: For each memory type m, the
aggregate memory assignment of table l to stage s, Us,l,m,
must not exceed the physical capacity of that stage, bs,m:

∀s,m :
∑

l

Us,l,m ≤ bs,m. (2)

We define the assignment overhead as λm,l, which de-
notes the necessary number of action or statistics blocks
required for assigning one match block of table l in mem-
ory type m. Thus the aggregate memory assignment is
the sum of match memory blocks µs,l,m and assignment
overhead blocks:

Us,l,m = µs,l,m
(
1+λl,m

)
.

Dependency Constraint: The solution must respect de-
pendencies between logical tables. We use boolean vari-
able DA,B to indicate whether table B depends on A, and
the start and end stage numbers of any table l are de-
noted by S l and El, respectively. If table B depends on
A’s results, then the first stage of B’s entries, S B, must
occur after the match results of table A are known, which
is at the earliest EA (tables are allowed to span multiple
pipeline stages):

∀DA,B > 0 : EA ≤ S B. (3)

If A must completely finish executing before B begins
(e.g., match dependencies), then the inequality in Equa-
tion 3 becomes strict.

4.2 Objective Functions
A key advantage of ILP is that it can find an optimal so-
lution for an objective function. In the remainder of the
paper we focus our attention on three objective functions.

Pipeline stages: To minimize the number of pipeline
stages a program uses, σ, we ask ILP to minimize:

min σ, (4)

where for all stages s:

If
∑
l,m

Us,l,m > 0 : σ ≥ s.

Latency: We can alternatively pick an objective func-
tion to minimize the total pipeline latency, which is more
involved. Consider RMT, in which match and action de-
pendencies both affect when a pipeline stage can start
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(whereas successor and reverse-match dependencies do
not affect when a stage starts). If a table in stage s has a
match or action dependency on a table in stage s′, then
s′ cannot start until 12 or 3 clock cycles, respectively,
after s. Building on how we expressed dependencies in
Equation 3, we assign stage s a start time, ts, where ts is
strictly increasing with s. Now consider two tables A and
B, and assume B has a match dependency (i.e. 12 cycle
wait) on table A. EA is the last stage A resides in, and S B
is the first stage B resides in. We constrain S B as follows:

tEA +12 ≤ tS B .

We write the same constraints for all pairs of tables with
action dependencies (3 cycle wait). Then we minimize
the start time of the last stage, stage M:

min tM . (5)

Power: Our third objective function minimizes power
consumption by minimizing the number of active mem-
ory blocks, and where possible uses SRAM instead of
TCAM. The objective function is therefore as follows:

min
∑

m

gm

(∑
s,l

Us,l,m

)
, (6)

where gm(·) returns the power consumed for memory
type m.

4.3 Switch-Specific Constraints
Our ILP model requires switch-specific constraints, and
we push as many details as possible to our preprocessor.

RMT: We start with RMT’s ability to pack memory
words together to create wider matches. Recall from Sec-
tion 3 that a packing format p packs together p words in
a single wide match; Bl,m,p specifies the number of mem-
ory type m blocks required for packing format p of table
l. While Bl,m,p is precomputed by the preprocessor from
the widths of the table entries and memory blocks, the
ILP solver decides the number of packing units Ps,l,m,p
for each stage. We can thus find the number of match
memory blocks µs,l,m and number assigned entries Ws,l,m
for each stage:

µs,l,m =

pmax∑
p=1

Ps,l,m,pBl,m,p.

Ws,l,m =

pmax∑
p=1

Ps,l,m,p(p ·dm),

where p ·dm is the number of table l’s entries that can fit
in a single packing unit of format p in memory type m.

Per-Stage Resource Constraints: We must incorpo-
rate RMT-specific constraints such as the input action
and match crossbars. The preprocessor can compute the
number of input and action subunits needed for a logical

b: 1 b: 2 b: 3 b: 4 

!"#$%&%'()%*+,%!"#$%-%'()%-+%
'-.%"!/(+%

!"#$%*%'*%"!/+%
!"#$%-%
'0%"!/(+%

!"#$%*%
'&%"!/(+%

!"#$%*%
'-1%"!/(+%

row 1 
row 2 

row 6 

Figure 8: FlexPipe table sharing in detail. The pink table occupies
the first two memory blocks, but different sets of tables share the first
two memory blocks.

table as a function of the width of the fields on which it
matches or modifies, respectively.

FlexPipe: FlexPipe can share memory blocks at a finer
granularity than RMT, and so we need to preprocess the
constraints differently for FlexPipe.

To support configurations as in Figure 8, we need to
know which rows within a set of blocks are assigned to
each logical table. This is because multiple tables can
share a block, and different blocks associated with the
same table can have very different arrangement of tables,
such as blocks 1 and 2 assigned to the pink table.

Note that this issue does not arise in RMT; all memory
blocks that contain a logical table will be uniform, and a
solution can be rearranged to group together all memory
blocks of a particular table assignment in a stage. We
thus index the memory blocks b ∈ 1, . . . ,bs,m, where bs,m
is the maximum number of blocks of type m in stage s.

The solver decides how many logical table entries to
assign to each block in each stage. For the remainder
of this discussion, we differentiate between logical table
entries and physical memory block entries by referring
to the latter as rows, where row 1 and row em are the first
and last rows, respectively, of a block of memory type m.

For table l assigned to start in the bth block of mem-
ory type m, we use the variable r̂l,m,b to denote the start-
ing row, and the variable rl,m,b to denote the number of
consecutive rows that follow. 1

To make sure rows do not overlap within a block, we
constrain their placement by introducing the notion of
order. Order is defined by the variable θ ∈ {1, . . . , θmax},
where θmax is the maximum number of logical tables that
can share a given memory block. In Figure 8, the light
blue assignment has order θ = 1, because it has the earli-
est row assignment. We define two additional variables,
ρ̂m,b,θ and ρm,b,θ, the start row and the number of rows of
table with order θ, and we prevent overlaps by constrain-
ing the assignment as follows.

If θ-th order is assigned:

ρ̂m,b,θ−1+ρm,b,θ ≤ ρ̂m,b,θ
1Note that if a second table, l′, has entries in an adjacent

block b′, but the entries are wide and overflow into block b,
r̂l′,m,b = 0 because the starting row for l′ was not assigned in
this block; similarly, rl,m,b is irrelevant.
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(a) FFL: Tables are placed in order of level. This configuration takes
five stages and wastes all of the TCAMs in the second stage.five stages and wastes all of the TCAMs in the second stage.
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(b) FFLS: The first purple table with a large ternary table following it
is placed first, even though the blue table has more match dependencies
following it. This configuration uses only four stages.

Figure 9: Multiple-metric heuristics. A toy RMT example where a
table with a single, dependent large ternary table must be placed before
a table with a longer dependency chain.

To calculate the assignment constraint (Equation 1), the
total number of words assigned to table l in stage s is:

Ws,l,m =

bs,m∑
b=1

rl,m,b.

where rl,m,b denotes the number of rows assigned for
table l in all orders θ in block b of memory type m.

While the capacity constraint in Equation 2 is per
stage, in FlexPipe we must also implement a capacity
constraint per block. We restrict the number of rows we
can assign to a block by checking the last row of the last
order, θmax:

ρ̂m,b,θmax +ρm,b,θmax ≤ dm.

Dependency Constraints: Fortunately, the dependency
analysis is similar to RMT in Section 4.3, with the ad-
ditional feature that only match dependencies require a
strict inequality; action, successor, and reverse-match de-
pendencies can be resolved in the same stage.

Objectives: Since FlexPipe has a short pipeline, we
minimize the number of blocks used across all stages.

5 Greedy Heuristics
Since a full-blown optimal ILP algorithm takes a long
time to run, we also explored four simpler greedy heuris-
tics for our compiler: First Fit by Level (FFL), First Fit
Decreasing (FFD), First Fit by Level and Size (FFLS),
and Most Constrained First (MCF). All four greedy
heuristics work as follows: First, sort the logical tables
according to a metric. For each logical table in sorted
order, pick the first set of memory blocks in the first
pipeline stage the table can fit in without violating any
capacity constraints, dependencies, or switch-specific re-
sources. If it cannot fit, the heuristic finds the next avail-
able memory blocks, in the same stage or a subsequent
stage. Like ILP, we leave switch-specific resource calcu-
lation like crossbar units and packing formats to a pre-
processor. A heuristic terminates when all tables have
been assigned or when it runs out of resources.

5.1 Ordering tables

The quality of the mapping depends heavily on the sort
order. Three sorting metrics seem to matter most in our
experiments, described in more detail below.

Dependency: Tables that come early in a long depen-
dency chain should be placed first because we need at
least as many stages left as there are match/action depen-
dencies. We thus define the level of a table to be the num-
ber of match+action dependencies in the longest path of
the TDG from the table to the end.

Word width: In RMT, tables with wide match or ac-
tion words use up a large fraction of the fixed resources
(action/input crossbars) and should be prioritized; they
may not have room if smaller tables are assigned first. In
FlexPipe, tables with larger match word width should be
assigned first because there is less memory per stage.

Memory Types: While blocks with memory types like
TCAM, BST, and FFU can also fit exact-match tables,
exact memory like SRAM is generally more abundant
than flexible memory due to switch costs. Thus in Flex-
Pipe, heuristics should prioritize the assignment of more
restrictive tables, or tables that can only go in ternary
or prefix memories; otherwise, assigning exact match ta-
bles to flexible memories first can quickly lead to mem-
ory shortage. In RMT, restrictive tables go into TCAM,
available in every stage. But large TCAM tables in a long
dependency chain push back tables that follow them. So
we should prioritize tables that imply high TCAM usage
in their dependency chain.

Single-metric heuristics: Two of our greedy heuristics
sort on a single metric: FFL is inspired by bin packing
with dependencies [15] and sorts on table level, where
tables at the head of long dependency chains are placed
earlier. FFD is based on the First Fit Decreasing Heuris-
tic for bin packing [15]. In our case, we prioritize tables
that have wider action or match words and consequently
use more action or input crossbar subunits. This heuristic
should work well when fixed switch resources—and not
program table sizes—are the limiting factor.

Multi-metric heuristics: Some programs fit well if we
consider only one metric: if there are plenty of resources
at each stage, we need only worry about long dependency
chains. Our next two heuristics sort on multiple metrics.
Sometimes being greedy on just one metric might not
work, as shown in Figure 9: here, our first multi-metric
heuristic FFLS incorporates dependencies and TCAM
usage, where tables with larger TCAM tables in their de-
pendency chains are assigned earlier.

Our other multi-metric heuristic, MCF, is motivated
by FlexPipe’s smaller pipeline with more varied mem-
ory types. We pick the “most constrained” table first:
a table restricted to a particular memory type and with a
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Figure 10: Greedy performing much worse than ILP (RMT). In
this toy example, the blue and purple tables form separate match de-
pendency chains. The initial blue table in the optimal mapping is nar-
rower and has a lower level than the purple table, counterintuitive to
both FFD and FFL metrics.

exact 
exact 
ternary exact exact 

(a) Toy example program. The ternary green table has the most restric-
tive memory type, while the exact blue table is least restrictive. The
violet/pink tables form a match dependency chain.
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(b) MCF solution (infeasible). The ternary stage is initially filled with
the higher priority green and pink tables, leaving no room for the wider
blue table.
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(c) Optimal solution. The pink table is split across ternary blocks, leav-
ing enough room for the blue table.

Figure 11: Greedy performing much worse than ILP (FlexPipe).

high level should have higher priority. Ties are broken by
placing the table with wider match words first. FFL and
FFD which ignore the memory type do not work well for
FlexPipe, which does not have uniform memory layout
per stage like RMT; for example, ternary match tables
can only go in stages 2 or 3 in FlexPipe.

Variations: Each of the basic four heuristics has two
variants: by default, an exact match table spills into
TCAMs if it runs out of SRAMs in a stage. Our first
variant prevents the spillage to preserve the TCAMs for
ternary tables. Second, by default, when we reserve
space for a TCAM table, we do not reserve space in
SRAM to hold the associated action data, which means
we may run out of SRAM and not be able to use the
TCAM. Our second variant sets aside SRAM for action
memory from yet-to-be allocated ternary tables; in our
experiments we fix the amount to be 16 SRAMs.

There can be cases where the best combination of met-
rics is unclear, as in Figure 10 for RMT and Figure 11 for
FlexPipe. Our experiments in Section 6 seek the right
combination of metrics for an efficient greedy compiler.

6 Experiments
We tested our algorithms by compiling the four bench-
mark programs listed in Table 2 for the RMT and Flex-

Name Switch N Dependencies
Match Action Other

L2L3 RMT 24 23 2 10-Complex
L2L3 RMT 16 4 0 15

-Simple FlexPipe 13 12 0 4
L2L3 RMT 19 6 1 16
-Mtag FlexPipe 11 9 1 3
L3DC RMT 13 7 3 1

Table 2: Logical program benchmarks for RMT and Flexpipe.
N is the number of tables.

Pipe switches. The benchmarks are in Table 2: L2L3-
Simple, a simple L2/L3 program with large tables; L2L3-
Mtag, which is L2L3-Simple plus support for the mTag
toy example described in [7]; L2L3-Complex, a complex
L2/L3 program for an enterprise DC aggregation router
with large host routing tables, and L3DC, which is a pro-
gram for Layer 3 switching in a smaller enterprise DC
switch. Differently sized, smaller variations of the L2L3-
Simple and L2L3-Mtag programs are used for FlexPipe.
L2L3-Complex and L3DC cannot run on Flexpipe be-
cause the longest dependency chain for each program
needs 9 and 6 stages respectively, exceeding FlexPipe’s
5-stage pipeline.
ILP: We used three ILP objective functions for RMT:
number of stages (ILP-Stages), pipeline latency (ILP-
Latency), and power consumption (ILP-Power). For
FlexPipe, since we struggle to fit the program, we simply
looked for a feasible solution that fit the switch. All of
our ILP experiments were run using IBM’s ILP solver,
CPLEX. 2

Greedy heuristics: For each RMT program, we ran all
four greedy heuristics (FFD, FFL, FFLS, MCF). We also
ran the variant that set aside 16 SRAM blocks for ternary
action memory (labeled as FFD-16, etc.) and a com-
bination of the two variants to also avoid spilling exact
match tables into TCAM (labeled as FFD-exact16, etc.).
For each FlexPipe program, we simply ran the greedy
heuristic MCF. The other three heuristics do not combine
enough metrics to fit either of our FlexPipe benchmarks.

All of our experiments were run on an Amazon AWS
EC2 c3.4xlarge instance with 16 processor cores and 30
GB of memory. For FlexPipe, we generated 20 and 10
versions of the L2L3-Simple and L2L3-Mtag programs,
respectively, with varying table sizes and checked how
many greedy and ILP mappings fit the switch (Table 3).
For RMT, we compiled every program 10 times for each
of the greedy heuristics and the ILP objective functions

2CPLEX has a gap tolerance parameter, which sets the ac-
ceptable gap between the best integer objective and the current
solution’s objective. For ILP-Stage, we required zero-gap tol-
erance. For ILP-Latency and ILP-Power, we set the gap toler-
ance to be within 70% and 5%, respectively, of the best integer
value; we found that lower gaps highly increased runtime with
little improvement in objective value.
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Solver L2L3-Simple L2L3-Mtag
% solved % solved

MCF 75 60
ILP 75 80

Table 3: Benchmark results for 5-stage FlexPipe.

Solver L2L3-Complex
St. Lat. Pwr RT.

FFD 22 135 4.98 0.25
FFD-16 21 135 5.51 0.27
FFD-exact16 21 135 4.62 0.27
FFL 19 131 5.61 0.25
FFL-16 19 131 6.09 0.27
FFL-exact16 17 132 4.61 0.24
FFLS 19 130 5.66 0.33
FFLS-16 19 130 6.42 0.35
FFLS-exact16 17 131 4.66 0.32
MCF 20 132 4.67 0.26
MCF-16 19 132 6.43 0.27
MCF-exact16 18 132 4.67 0.25
ILP-Latency 32 104 7.78 233.84
ILP-Stages 16 131 6.66 12.13
ILP-Power 32 131 4.44 147.10

Table 4: Benchmark results for RMT for L2L3-Complex. All
greedy heuristics and variants are shown (St: number of stages occu-
pied, Lat.: Latency [cycles], Pwr.: Power [Watts], RT.: Time to run
solver [secs]).

and report the medians of the number of stages used,
pipeline latency, and power consumed for each algo-
rithm. We show in detail L2L3-Complex results in Table
4. To facilitate presentation, for all other programs we
display results for ILP and the ‘-exact16’ greedy variant
only (Table 5), since this variant generally tended to have
better stage and power usage than other greedy heuris-
tics.

7 Analysis of Results
We analyze Tables 3, 4 and 5 for major findings. A
salient observation is that the MCF heuristic for Flex-
Pipe fits 16 out of the 20 versions of L2L3Simple. For
some programs where the heuristic could not fit, it was
difficult to manually analyze the incomplete solution for
feasibility. However, ILP can both detect infeasible pro-
grams and find a fitting when feasible (assuming match
tables are reasonably large,3 e.g., occupy at least 5% of a
hash table memory block.)

Another important observation for reconfigurable
chips where one can optimize for different objectives, is
that the best greedy heuristic can perform 25% worse on
the objectives than ILP; for example, the optimal 104 cy-
cle latency for ILP in the second column of Table 4 is
far better than the best latency of 130 cycles by FFLS. A
detailed comparison follows.

3The minimum table size constraint helps us scale the ILP
to handle FlexPipe, where a table can be assigned any number
of rows in each memory block. Since the size of logical tables
and memory blocks are at least on the order of hundreds, it
seems reasonable to impose a minimum match table size of at
least a hundred in these memory blocks.

7.1 ILP vs Greedy

The following observations can be made after closely
comparing ILP and greedy solutions in Figure 12.
1. Global versus local optimization: For the L2L3-
Complex use case (Figure 12a), even the best greedy
heuristic FFL-exact16 takes 17 stages, while ILP takes
only 16 stages. Figures 12c and 12d show FFL-16 and
ILP solutions, respectively. ILP breaks up tables over
stages to pack them more efficiently, whereas greedy
tries to assign as many words as possible in each stage
per table, eventually wasting some SRAMs in some
stages and using up more stages overall

In switch chips with shorter pipelines than RMT’s, this
could be the difference between fitting and not fitting. If
all features in a program are necessary, then infeasibil-
ity is not an option. Unlike register allocation, there is
no option to “spill to memory”; on the other hand, the
longer runtime for ILP may be acceptable when adding
a new router feature. Therefore it seems very likely that
programmers will resort to optimal algorithms, such as
ILP, when they really need to squeeze a program in.
2. Greedy poor for pipeline latency: Our greedy
heuristics minimize the stages required to fit the pro-
gram, and are good at minimizing power—the best
greedy is only 4% worse than optimal (for L2L3-
Complex, FFL-exact16 consumes 4.61W, versus ILP’s
4.44W); technically, this is true only because the ‘-exact’
variant avoids using power hungry TCAMs. But greedy
heuristics are much worse for pipeline latency; minimiz-
ing latency with greedy algorithms will require improved
heuristics.

7.2 Comparing greedy heuristics

1. Prioritize dependencies, not table sizes: In L2L3-
Mtag, both FFL and FFLS assign the exact-match tables
in the first stage, but differ in how they assign ternary
tables. FFLS prioritizes the larger ACL table over the
IPv6-Prefix and IPv6-Fwd tables, which are early tables
in the long red dependency chain in Figure 13a. As a
result, the IPv6-Prefix and IPv6-Fwd tables cannot start
until stages 16 and 17, and FFLS ends up using two more
stages than FFL. Though FFLS prioritizes large TCAM
tables and avoids the problem discussed in Figure 9, it is
not sophisticated enough to recognize other opportunities
for sharing stages between dependency chains.
2. Sorting metrics matter: FFD results show that in-
correct sorting order can be expensive (22 stages versus
the optimal 16 for L2L3-Complex). We predict that FFD
will only be useful for use cases with many wide logical
tables or more limited per-stage switch resources, neither
of which was a limiting factor in our experiments.
3. Set aside SRAM for TCAM actions: The ‘-16’ vari-
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Solver L2L3-simple L2L3-Mtag L3DC
St. Lat. Pwr RT. St. Lat. Pwr RT. St. Lat. Pwr RT.

FFD-exact16 21 64 7.54 0.18 22 75 7.65 0.21 7 88 2.34 0.08
FFL-exact16 19 55 7.55 0.19 19 66 7.66 0.21 7 88 2.34 0.08
FFLS-exact16 20 64 7.88 0.23 21 75 8.10 0.27 7 88 2.34 0.12
MCF-exact16 19 55 7.54 0.18 19 66 7.65 0.21 7 88 2.34 0.09
ILP-Latency 32 51 9.18 2.22 32 53 9.65 3.62 32 62 3.21 23.16
ILP-Stages 19 55 7.52 2.57 19 72 9.62 3.52 7 88 2.46 1.88
ILP-Power 32 62 7.55 2.27 32 71 7.63 2.53 9 86 2.34 1.87

Table 5: Benchmark results for 32-stage RMT for L2L3-simple, L2L3-Mtag, and L3DC. See Table 4 for units.

ation of our greedy heuristics estimates the number of
SRAMs needed for ternary tables (for their action mem-
ory) in each stage and blocks them off when initially as-
signing SRAMs to exact match tables. Our experiments
show that this local optimization usually avoids having
to move a ternary table to a new stage because it doesn’t
have enough SRAMs for action memory.

7.3 Sensitivity Experiments

In this section, we analyze ILP solutions by ignoring and
relaxing various constraints in order to improve the run-
ning time of ILP and the optimality of greedy heuris-
tics. We run these ILP experiments for our most com-
plicated use case (L2L3 Complex) on the RMT chip, for
two different objectives: minimum stages and minimum
pipeline latency. For reference, the original ILP yields
solution 16 stages in 12.13s and 104 cycles in 233.84s,
respectively, for the two objectives.

To improve ILP runtime, we measure how long the
ILP solver takes while ignoring or relaxing each con-
straint, which is a proxy for how hard it is to fit programs
in the switch. This help us identify constraints that are
currently “bottlenecks” in runtime for the ILP solver and
also helps us understand how future switches can be de-
signed to expedite ILP-based compilation.

We identify candidate metrics for greedy heuristics to
optimize a given objective by ignoring constraints and
identifying which have a significant impact on the quality
of the solution. Our experiments also help identify the
critical resources needed in the chip for typical programs,
so chipmakers can design for better performance.

Sensitivity Results for ILP runtime: First, sizing
particular resources can speed up IBM’s ILP solver,
CPLEX; for example, increasing the width of SRAM
blocks by 37.5% (from 80b to 110b) reduces ILP runtime
from 12.13s to 7.1s when minimizing stages. ILP run
time is reduced considerably if action memory is not al-
located, and this leads to a simple way to accelerate ILP:
We first ran a greedy solution to estimate action memory
needed per stage which is then set aside. We then ran the
ILP without fitting the action memory, and finally added
the action memory at the end. For minimizing pipeline
latency, this reduced the ILP runtime from 233.84 sec-
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(b) Number of TCAMs required to fit the wide match words of ternary
IP routing tables in L2L3Complex with packing factor 1.

(c) FFL-16 solution (19 stages). FFL-16 uses five 3-wide packing
units to assign IPv4-Mcast in stages 7 to 9, leaving one TCAM per
stage that cannot be used by any other ternary table. Overall, FFL-16
wastes a total of 6 TCAMs between stages 3 and 10.

(d) ILP solution (16 stages). ILP utilizes all TCAMs in stages 4, 7,
8, and 11 by sharing the TCAMs between IPv4-Mcast (four 3-wide
packing units) and IPv6-Mcast (one 4-wide packing unit).

Figure 12: FFL-16 and ILP solutions for L2L3-Complex. In as-
signing packing units to the ternary IP routing tables, FFL-16 locally
maximizes the number of words per stage whereas ILP optimizes over
a set of stages. Each stage has 106 SRAMs (top row) and 16 TCAMs
(bottom row) and is colored according to the amount of match memory
assigned to each logical table in the program TDG; all action memory
is colored in black.
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(c) FFL solution (19 stages). FFL prioritizes the IPv6-Prefix and IPv6-
Fwd tables and fits them in stages 1 and 2, allowing earlier assignment
of Nexthop and other dependent tables. As a result, FFL needs two
stages less than FFLS.

Figure 13: FFLS and FFL solutions for L2L3-Mtag. FFL prioritizes
dependencies over table sizes and uses two fewer stages than FFLS.

onds to 66.29 seconds on average, without compromis-
ing our objective.

Sensitivity Results for optimality of greedy heuristics:
We discovered that the dependency constraint for ILP has
the largest impact on the minimum stages objective. If
we remove dependencies from the TDGs, we can reduce
the number of stages used from 16 to 13 and pipeline la-
tency by 2 cycles. This explains why greedy heuristics
focusing on the dependency metric (i.e., FFL and FFLS)
do particularly well. Ignoring other constraints (like re-
source constraints) makes no difference to the number
of stages used or latency. In addition, relaxing various
resource constraints showed that some resources impact
fitting more than others. For example, doubling the num-
ber of TCAM blocks per stage reduced the number of
stages needed from 16 to 14. But doubling the number
(or width) of crossbars made no difference. This explains
why our FFD greedy heuristic (which focuses on non-
limiting resources in the RMT switch) performs worse
than other algorithms.

Lessons for chipmakers: Our results above indicate
that chipmakers can improve turnaround for optimal ILP
compilers by carefully selecting memory width. More-
over, if flexible memory is a rare resource, then increas-
ing a non-limiting resource like crossbar complexity will

not improve performance.

8 Related Work
Compiling packet programs to reconfigurable switches
differs from compiling to FPGAs [26], other spatial
architectures such as PLUG [14] or to NPUs [13].
We focus on packing match+action tables into memo-
ries in pipelined stages while satisfying dependencies.
Nowatzki, et al. [22] develops an ILP scheduler for a spa-
tial architecture that maps instructions entailed by pro-
gram blocks to hardware, by allocating computational
units for instructions and routing data between units. The
corresponding problems for reconfigurable switches—
assigning action units and routing data among the packet
header, memories and action units—are less challenging
once we have a table placement (and not in the scope
of this paper.) NPUs such as the IXP network processor
architecture [17] have multithreaded packet processing
engines that can be pipelined. Approaches like that of
Dai, et al. [13] map a sequential packet processing ap-
plication into pipelined stages. However the processing
engines have a large shared memory; thus NPU compil-
ers do not need to address the problem of packing logical
tables into physical memories.

9 Conclusion
We define the problem of mapping logical tables in
packet processing programs. We evaluate greedy heuris-
tics and ILP approaches for mapping logical tables on
realistic benchmarks. While fitting tables is the main
criterion, we also compute how well solvers minimize
pipeline latency on the long RMT pipeline. We find
that for RMT, there are realistic configurations where
greedy approaches can fail to fit and need up to 38%
more memory resources on the same benchmark. Three
situations when ILP outperforms greedy are when there
are multiple conflicting metrics, multiple memory types
and complicated objectives. We believe future packet
programs will get more complicated with more con-
trol flows, more different size tables, more dependencies
and more complex objectives, arguing for an ILP-based
approach. Further, sensitivity analysis of critical ILP
constraints provides insight into designing fast tailored
greedy approaches for particular targets and programs,
marrying compilation speed to optimality.
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Abstract
We describe the design and implementation of Open

vSwitch, a multi-layer, open source virtual switch for all
major hypervisor platforms. Open vSwitch was designed
de novo for networking in virtual environments, result-
ing in major design departures from traditional software
switching architectures. We detail the advanced flow
classification and caching techniques that Open vSwitch
uses to optimize its operations and conserve hypervisor
resources. We evaluate Open vSwitch performance, draw-
ing from our deployment experiences over the past seven
years of using and improving Open vSwitch.

1 Introduction

Virtualization has changed the way we do computing
over the past 15 years; for instance, many datacenters are
entirely virtualized to provide quick provisioning, spill-
over to the cloud, and improved availability during periods
of disaster recovery. While virtualization is still to reach
all types of workloads, the number of virtual machines
has already exceeded the number of servers and further
virtualization shows no signs of stopping [1].

The rise of server virtualization has brought with it a
fundamental shift in datacenter networking. A new net-
work access layer has emerged in which most network
ports are virtual, not physical [5] – and therefore, the
first hop switch for workloads increasingly often resides
within the hypervisor. In the early days, these hypervi-
sor “vSwitches” were primarily concerned with provid-
ing basic network connectivity. In effect, they simply
mimicked their ToR cousins by extending physical L2
networks to resident virtual machines. As virtualized
workloads proliferated, limits of this approach became
evident: reconfiguring and preparing a physical network
for new workloads slows their provisioning, and coupling
workloads with physical L2 segments severely limits their
mobility and scalability to that of the underlying network.

These pressures resulted in the emergence of network
virtualization [19]. In network virtualization, virtual
switches become the primary provider of network ser-
vices for VMs, leaving physical datacenter networks with
transportation of IP tunneled packets between hypervi-
sors. This approach allows the virtual networks to be
decoupled from their underlying physical networks, and
by leveraging the flexibility of general purpose proces-
sors, virtual switches can provide VMs, their tenants, and
administrators with logical network abstractions, services
and tools identical to dedicated physical networks.

Network virtualization demands a capable virtual
switch – forwarding functionality must be wired on a
per virtual port basis to match logical network abstrac-
tions configured by administrators. Implementation of
these abstractions, across hypervisors, also greatly ben-
efits from fine-grained centralized coordination. This
approach starkly contrasts with early virtual switches for
which a static, mostly hard-coded forwarding pipelines
had been completely sufficient to provide virtual machines
with L2 connectivity to physical networks.

It was this context: the increasing complexity of vir-
tual networking, emergence of network virtualization, and
limitations of existing virtual switches, that allowed Open
vSwitch to quickly gain popularity. Today, on Linux, its
original platform, Open vSwitch works with most hyper-
visors and container systems, including Xen, KVM, and
Docker. Open vSwitch also works “out of the box” on the
FreeBSD and NetBSD operating systems and ports to the
VMware ESXi and Microsoft Hyper-V hypervisors are
underway.

In this paper, we describe the design and implementa-
tion of Open vSwitch [26, 29]. The key elements of its
design, revolve around the performance required by the
production environments in which Open vSwitch is com-
monly deployed, and the programmability demanded by
network virtualization. Unlike traditional network appli-
ances, whether software or hardware, which achieve high
performance through specialization, Open vSwitch, by

1
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contrast, is designed for flexibility and general-purpose
usage. It must achieve high performance without the lux-
ury of specialization, adapting to differences in platforms
supported, all while sharing resources with the hypervi-
sor and its workloads. Therefore, this paper foremost
concerns this tension – how Open vSwitch obtains high
performance without sacrificing generality.

The remainder of the paper is organized as follows.
Section 2 provides further background about virtualized
environments while Section 3 describes the basic design
of Open vSwitch. Afterward, Sections 4, 5, and 6 describe
how the Open vSwitch design optimizes for the require-
ments of virtualized environments through flow caching,
how caching has wide-reaching implications for the en-
tire design, including its packet classifier, and how Open
vSwitch manages its flow caches. Section 7 then evaluates
the performance of Open vSwitch through classification
and caching micro-benchmarks but also provides a view
of Open vSwitch performance in a multi-tenant datacen-
ter. Before concluding, we discuss ongoing, future and
related work in Section 8.

2 Design Constraints and Rationale

The operating environment of a virtual switch is dras-
tically different from the environment of a traditional
network appliance. Below we briefly discuss constraints
and challenges stemming from these differences, both to
reveal the rationale behind the design choices of Open
vSwitch and highlight what makes it unique.

Resource sharing. The performance goals of tradi-
tional network appliances favor designs that use dedicated
hardware resources to achieve line rate performance in
worst-case conditions. With a virtual switch on the other
hand, resource conservation is critical. Whether or not
the switch can keep up with worst-case line rate is sec-
ondary to maximizing resources available for the primary
function of a hypervisor: running user workloads. That is,
compared to physical environments, networking in virtu-
alized environments optimizes for the common case over
the worst-case. This is not to say worst-case situations
are not important because they do arise in practice. Port
scans, peer-to-peer rendezvous servers, and network mon-
itoring all generate unusual traffic patterns but must be
supported gracefully. This principle led us, e.g., toward
heavy use of flow caching and other forms of caching,
which in common cases (with high hit rates) reduce CPU
usage and increase forwarding rates.

Placement. The placement of virtual switches at the
edge of the network is a source of both simplifications
and complications. Arguably, topological location as a
leaf, as well as sharing fate with the hypervisor and VMs

remove many standard networking problems. The place-
ment complicates scaling, however. It’s not uncommon
for a single virtual switch to have thousands of virtual
switches as its peers in a mesh of point-to-point IP tunnels
between hypervisors. Virtual switches receive forwarding
state updates as VMs boot, migrate, and shut down and
while virtual switches have relatively few (by network-
ing standards) physical network ports directly attached,
changes in remote hypervisors may affect local state. Es-
pecially in larger deployments of thousands (or more)
of hypervisors, the forwarding state may be in constant
flux. The prime example of a design influenced by this
principle discussed in this paper is the Open vSwitch clas-
sification algorithm, which is designed for O(1) updates.

SDN, use cases, and ecosystem. Open vSwitch has
three additional unique requirements that eventually
caused its design to differ from the other virtual switches:

First, Open vSwitch has been an OpenFlow switch
since its inception. It is deliberately not tied to a single-
purpose, tightly vertically integrated network control
stack, but instead is re-programmable through Open-
Flow [27]. This constrasts with a feature datapath model
of other virtual switches [24, 39]: similar to forwarding
ASICs, their packet processing pipelines are fixed. Only
configuration of prearranged features is possible. (The
Hyper-V virtual switch [24] can be extended by adding
binary modules, but ordinarily each module only adds
another single-purpose feature to the datapath.)

The flexibility of OpenFlow was essential in the early
days of SDN but it quickly became evident that advanced
use cases, such as network virtualization, result in long
packet processing pipelines, and thus higher classifica-
tion load than traditionally seen in virtual switches. To
prevent Open vSwitch from consuming more hypervisor
resources than competitive virtual switches, it was forced
to implement flow caching.

Third, unlike any other major virtual switch, Open
vSwitch is open source and multi-platform. In contrast
to closed source virtual switches which all operate in a
single environment, Open vSwitch’s environment is usu-
ally selected by a user who chooses an operating system
distribution and hypervisor. This has forced the Open
vSwitch design to be quite modular and portable.

3 Design

3.1 Overview

In Open vSwitch, two major components direct packet
forwarding. The first, and larger, component is
ovs-vswitchd, a userspace daemon that is essentially
the same from one operating system and operating en-
vironment to another. The other major component, a

2
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Figure 1: The components and interfaces of Open vSwitch. The
first packet of a flow results in a miss, and the kernel module
directs the packet to the userspace component, which caches the
forwarding decision for subsequent packets into the kernel.

datapath kernel module, is usually written specially for
the host operating system for performance.

Figure 1 depicts how the two main OVS components
work together to forward packets. The datapath module
in the kernel receives the packets first, from a physical
NIC or a VM’s virtual NIC. Either ovs-vswitchd has
instructed the datapath how to handle packets of this type,
or it has not. In the former case, the datapath module
simply follows the instructions, called actions, given by
ovs-vswitchd, which list physical ports or tunnels on
which to transmit the packet. Actions may also specify
packet modifications, packet sampling, or instructions to
drop the packet. In the other case, where the datapath
has not been told what to do with the packet, it delivers
it to ovs-vswitchd. In userspace, ovs-vswitchd deter-
mines how the packet should be handled, then it passes
the packet back to the datapath with the desired handling.
Usually, ovs-vswitchd also tells the datapath to cache
the actions, for handling similar future packets.

In Open vSwitch, flow caching has greatly evolved
over time; the initial datapath was a microflow cache,
essentially caching per transport connection forwarding
decisions. In later versions, the datapath has two layers of
caching: a microflow cache and a secondary layer, called
a megaflow cache, which caches forwarding decisions for
traffic aggregates beyond individual connections. We will
return to the topic of caching in more detail in Section 4.

Open vSwitch is commonly used as an SDN switch,
and the main way to control forwarding is OpenFlow [27].
Through a simple binary protocol, OpenFlow allows a
controller to add, remove, update, monitor, and obtain
statistics on flow tables and their flows, as well as to
divert selected packets to the controller and to inject pack-
ets from the controller into the switch. In Open vSwitch,
ovs-vswitchd receives OpenFlow flow tables from an
SDN controller, matches any packets received from the
datapath module against these OpenFlow tables, gathers
the actions applied, and finally caches the result in the

kernel datapath. This allows the datapath module to re-
main unaware of the particulars of the OpenFlow wire
protocol, further simplifying it. From the OpenFlow con-
troller’s point of view, the caching and separation into
user and kernel components are invisible implementation
details: in the controller’s view, each packet visits a series
of OpenFlow flow tables and the switch finds the highest-
priority flow whose conditions are satisfied by the packet,
and executes its OpenFlow actions.

The flow programming model of Open vSwitch largely
determines the use cases it can support and to this end,
Open vSwitch has many extensions to standard OpenFlow
to accommodate network virtualization. We will discuss
these extensions shortly, but before that, we turn our focus
on the performance critical aspects of this design: packet
classification and the kernel-userspace interface.

3.2 Packet Classification

Algorithmic packet classification is expensive on general
purpose processors, and packet classification in the con-
text of OpenFlow is especially costly because of the gen-
erality of the form of the match, which may test any com-
bination of Ethernet addresses, IPv4 and IPv6 addresses,
TCP and UDP ports, and many other fields, including
packet metadata such as the switch ingress port.

Open vSwitch uses a tuple space search classifier [34]
for all of its packet classification, both kernel and
userspace. To understand how tuple space search works,
assume that all the flows in an Open vSwitch flow ta-
ble matched on the same fields in the same way, e.g., all
flows match the source and destination Ethernet address
but no other fields. A tuple search classifier implements
such a flow table as a single hash table. If the controller
then adds new flows with a different form of match, the
classifier creates a second hash table that hashes on the
fields matched in those flows. (The tuple of a hash table
in a tuple space search classifier is, properly, the set of
fields that form that hash table’s key, but we often refer
to the hash table itself as the tuple, as a kind of useful
shorthand.) With two hash tables, a search must look in
both hash tables. If there are no matches, the flow table
doesn’t contain a match; if there is a match in one hash
table, that flow is the result; if there is a match in both,
then the result is the flow with the higher priority. As the
controller continues to add more flows with new forms of
match, the classifier similarly expands to include a hash
table for each unique match, and a search of the classifier
must look in every hash table.

While the lookup complexity of tuple space search is
far from the state of the art [8, 18, 38], it performs well
with the flow tables we see in practice and has three attrac-
tive properties over decision tree classification algorithms.
First, it supports efficient constant-time updates (an up-
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date translates to a single hash table operation), which
makes it suitable for use with virtualized environments
where a centralized controller may add and remove flows
often, sometimes multiple times per second per hyper-
visor, in response to changes in the whole datacenter.
Second, tuple space search generalizes to an arbitrary
number of packet header fields, without any algorithmic
change. Finally, tuple space search uses memory linear in
the number of flows.

The relative cost of a packet classification is further
amplified by the large number of flow tables that so-
phisticated SDN controllers use. For example, flow ta-
bles installed by the VMware network virtualization con-
troller [19] use a minimum of about 15 table lookups per
packet in its packet processing pipeline. Long pipelines
are driven by two factors: reducing stages through cross-
producting would often significantly increase the flow
table sizes and developer preference to modularize the
pipeline design. Thus, even more important than the per-
formance of a single classifier lookup, it is to reduce the
number of flow table lookups a single packet requires, on
average.

3.3 OpenFlow as a Programming Model

Initially, Open vSwitch focused on a reactive flow pro-
gramming model in which a controller responding to
traffic installs microflows which match every supported
OpenFlow field. This approach is easy to support for soft-
ware switches and controllers alike, and early research
suggested it was sufficient [3]. However, reactive pro-
gramming of microflows soon proved impractical for use
outside of small deployments and Open vSwitch had to
adapt to proactive flow programming to limit its perfor-
mance costs.

In OpenFlow 1.0, a microflow has about 275 bits of in-
formation, so that a flow table for every microflow would
have 2275 or more entries. Thus, proactive population
of flow tables requires support for wildcard matching to
cover the header space of all possible packets. With a
single table this results in a “cross-product problem”: to
vary the treatment of packets according to n1 values of
field A and n2 values of field B, one must install n1 ×n2
flows in the general case, even if the actions to be taken
based on A and B are independent. Open vSwitch soon
introduced an extension action called resubmit that allows
packets to consult multiple flow tables (or the same table
multiple times), aggregating the resulting actions. This
solves the cross-product problem, since one table can con-
tain n1 flows that consult A and another table n2 flows
that consult B. The resubmit action also enables a form
of programming based on multiway branching based on
the value of one or more fields. Later, OpenFlow vendors
focusing on hardware sought a way to make better use

of the multiple tables consulted in series by forwarding
ASICs, and OpenFlow 1.1 introduced multi-table support.
Open vSwitch adopted the new model but retained its sup-
port for the resubmit action for backward compatibility
and because the new model did not allow for recursion
but only forward progress through a fixed table pipeline.

At this point, a controller could implement programs
in Open vSwitch flow tables that could make decisions
based on packet headers using arbitrary chains of logic,
but they had no access to temporary storage. To solve that
problem, Open vSwitch extended OpenFlow in another
way, by adding meta-data fields called “registers” that
flow tables could match, plus additional actions to mod-
ify and copy them around. With this, for instance, flows
could decide a physical destination early in the pipeline,
then run the packet through packet processing steps identi-
cal regardless of the chosen destination, until sending the
packet, possibly using destination-specific instructions.
As another example, VMware’s NVP network virtual-
ization controller [19] uses registers to keep track of a
packet’s progress through a logical L2 and L3 topology
implemented as “logical datapaths” that it overlays on the
physical OpenFlow pipeline.

OpenFlow is specialized for flow-based control of a
switch. It cannot create or destroy OpenFlow switches,
add or remove ports, configure QoS queues, associate
OpenFlow controller and switches, enable or disable
STP (Spanning Tree Protocol), etc. In Open vSwitch,
this functionality is controlled through a separate com-
ponent, the configuration database. To access the con-
figuration database, an SDN controller may connect to
ovsdb-server over the OVSDB protocol [28], as shown
in Figure 1. In general, in Open vSwitch, OpenFlow con-
trols potentially fast-changing and ephemeral data such
as the flow table, whereas the configuration database con-
tains more durable state.

4 Flow Cache Design

This section describes the design of flow caching in Open
vSwitch and how it evolved to its current state.

4.1 Microflow Caching

In 2007, when the development of the code that would
become Open vSwitch started on Linux, only in-kernel
packet forwarding could realistically achieve good per-
formance, so the initial implementation put all OpenFlow
processing into a kernel module. The module received a
packet from a NIC or VM, classified through the Open-
Flow table (with standard OpenFlow matches and actions),
modified it as necessary, and finally sent it to another port.
This approach soon became impractical because of the
relative difficulty of developing in the kernel and distribut-
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ing and updating kernel modules. It also became clear
that an in-kernel OpenFlow implementation would not be
acceptable as a contribution to upstream Linux, which is
an important requirement for mainstream acceptance for
software with kernel components.

Our solution was to reimplement the kernel module
as a microflow cache in which a single cache entry ex-
act matches with all the packet header fields supported
by OpenFlow. This allowed radical simplification, by
implementing the kernel module as a simple hash table
rather than as a complicated, generic packet classifier,
supporting arbitrary fields and masking. In this design,
cache entries are extremely fine-grained and match at
most packets of a single transport connection: even for a
single transport connection, a change in network path and
hence in IP TTL field would result in a miss, and would
divert a packet to userspace, which consulted the actual
OpenFlow flow table to decide how to forward it. This
implies that the critical performance dimension is flow
setup time, the time that it takes for the kernel to report a
microflow “miss” to userspace and for userspace to reply.

Over multiple Open vSwitch versions, we adopted
several techniques to reduce flow setup time with the
microflow cache. Batching flow setups that arrive to-
gether improved flow setup performance about 24%, for
example, by reducing the average number of system calls
required to set up a given microflow. Eventually, we
also distributed flow setup load over multiple userspace
threads to benefit from multiple CPU cores. Drawing in-
spiration from CuckooSwitch [42], we adopted optimistic
concurrent cuckoo hashing [6] and RCU [23] techniques
to implement nonblocking multiple-reader, single-writer
flow tables.

After general optimizations of this kind customer feed-
back drew us to focus on performance in latency-sensitive
applications, and that required us to reconsider our simple
caching design.

4.2 Megaflow Caching

While the microflow cache works well with most traffic
patterns, it suffers serious performance degradation when
faced with large numbers of short lived connections. In
this case, many packets miss the cache, and must not only
cross the kernel-userspace boundary, but also execute a
long series of expensive packet classifications. While
batching and multithreading can somewhat alleviate this
stress, they are not sufficient to fully support this work-
load.

We replaced the microflow cache with a megaflow
cache. The megaflow cache is a single flow lookup
table that supports generic matching, i.e., it supports
caching forwarding decisions for larger aggregates of
traffic than connections. While it more closely resembles

a generic OpenFlow table than the microflow cache does,
due to its support for arbitrary packet field matching, it
is still strictly simpler and lighter in runtime for two pri-
mary reasons. First, it does not have priorities, which
speeds up packet classification: the in-kernel tuple space
search implementation can terminate as soon as it finds
any match, instead of continuing to look for a higher-
priority match until all the mask-specific hash tables are
inspected. (To avoid ambiguity, userspace installs only
disjoint megaflows, those whose matches do not overlap.)
Second, there is only one megaflow classifier, instead of
a pipeline of them, so userspace installs megaflow en-
tries that collapse together the behavior of all relevant
OpenFlow tables.

The cost of a megaflow lookup is close to the general-
purpose packet classifier, even though it lacks support
for flow priorities. Searching the megaflow classifier re-
quires searching each of its hash tables until a match is
found; and as discussed in Section 3.2, each unique kind
of match in a flow table yields a hash table in the clas-
sifier. Assuming that each hash table is equally likely
to contain a match, matching packets require searching
(n+ 1)/2 tables on average, and non-matching packets
require searching all n. Therefore, for n > 1, which is
usually the case, a classifier-based megaflow search re-
quires more hash table lookups than a microflow cache.
Megaflows by themselves thus yield a trade-off: one must
bet that the per-microflow benefit of avoiding an extra trip
to userspace outweighs the per-packet cost of the extra
hash lookups in form of megaflow lookup.

Open vSwitch addresses the costs of megaflows by
retaining the microflow cache as a first-level cache, con-
sulted before the megaflow cache. This cache is a hash ta-
ble that maps from a microflow to its matching megaflow.
Thus, after the first packet in a microflow passes through
the kernel megaflow table, requiring a search of the kernel
classifier, this exact-match cache allows subsequent pack-
ets in the same microflow to get quickly directed to the
appropriate megaflow. This reduces the cost of megaflows
from per-packet to per-microflow. The exact-match cache
is a true cache in that its activity is not visible to userspace,
other than through its effects on performance.

A megaflow flow table represents an active subset of
the cross-product of all the userspace OpenFlow flow
tables. To avoid the cost of proactive crossproduct com-
putation and to populate the megaflow cache only with
entries relevant for current forwarded traffic, the Open
vSwitch userspace daemon computes the cache entries
incrementally and reactively. As Open vSwitch processes
a packet through userspace flow tables, classifying the
packet at every table, it tracks the packet field bits that
were consulted as part of the classification algorithm. The
generated megaflow must match any field (or part of a
field) whose value was used as part of the decision. For
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example, if the classifier looks at the IP destination field
in any OpenFlow table as part of its pipeline, then the
megaflow cache entry’s condition must match on the des-
tination IP as well. This means that incoming packets
drive the cache population, and as the aggregates of the
traffic evolve, new entries are populated and old entries
removed.

The foregoing discussion glosses over some details.
The basic algorithm, while correct, produces match con-
ditions that are more specific than necessary, which trans-
lates to suboptimal cache hit rates. Section 5, below, de-
scribes how Open vSwitch modifies tuple space search to
yield better megaflows for caching. Afterward, Section 6
addresses cache invalidation.

5 Caching-aware Packet Classification

We now turn our focus on the refinements and improve-
ments we made to the basic tuple search algorithm (sum-
marized in Section 3.2) to improve its suitability for flow
caching.

5.1 Problem

As Open vSwitch userspace processes a packet through
its OpenFlow tables, it tracks the packet field bits that
were consulted as part of the forwarding decision. This
bitwise tracking of packet header fields is very effective in
constructing the megaflow entries with simple OpenFlow
flow tables.

For example, if the OpenFlow table only looks at
Ethernet addresses (as would a flow table based on L2
MAC learning), then the megaflows it generates will
also look only at Ethernet addresses. For example, port
scans (which do not vary Ethernet addresses) will not
cause packets to go to userspace as their L3 and L4 header
fields will be wildcarded resulting in near-ideal megaflow
cache hit rates. On the other hand, if even one flow entry
in the table matches on the TCP destination port, tuple
space search will consider the TCP destination port of
every packet. Then every megaflow will also match on the
TCP destination port, and port scan performance again
drops.

We do not know of an efficient online algorithm to gen-
erate optimal, least specific megaflows, so in development
we have focused our attention on generating increasingly
good approximations. Failing to match a field that must
be included can cause incorrect packet forwarding, which
makes such errors unacceptable, so our approximations
are biased toward matching on more fields than neces-
sary. The following sections describe improvements of
this type that we have integrated into Open vSwitch.

function PRIORITYSORTEDTUPLESEARCH(H)
B ← NULL /* Best flow match so far. */
for tuple T in descending order of T.pri max do

if B �= NULL and B.pri ≥ T.pri max then
return B

if T contains a flow F matching H then
if B = NULL or F.pri > B.pri then

B ← F
return B

Figure 2: Tuple space search for target packet headers H, with
priority sorting.

5.2 Tuple Priority Sorting

Lookup in a tuple space search classifier ordinarily re-
quires searching every tuple. Even if a search of an early
tuple finds a match, the search must still look in the other
tuples because one of them might contain a matching flow
with a higher priority.

We improved on this by tracking, in each tuple T , the
maximum priority T.pri max of any flow entry in T . We
modified the lookup code to search tuples from greatest
to least maximum priority, so that a search that finds a
matching flow F with priority F.pri can terminate as soon
as it arrives at a tuple whose maximum priority is F.pri
or less, since at that point no better match can be found.
Figure 2 shows the algorithm in detail.

As an example, we examined the OpenFlow table in-
stalled by a production deployment of VMware’s NVP
controller [19]. This table contained 29 tuples. Of those
29 tuples, 26 contained flows of a single priority, which
makes intuitive sense because flows matching a single
tuple tend to share a purpose and therefore a priority.
When searching in descending priority order, one can al-
ways terminate immediately following a successful match
in such a tuple. Considering the other tuples, two con-
tained flows with two unique priorities that were higher
than those in any subsequent tuple, so any match in ei-
ther of these tuples terminated the search. The final tu-
ple contained flows with five unique priorities ranging
from 32767 to 36866; in the worst case, if the lowest
priority flows matched in this tuple, then the remaining
tuples with T.pri max > 32767 (up to 20 tuples based
on this tuple’s location in the sorted list), must also be
searched.

5.3 Staged Lookup

Tuple space search searches each tuple with a hash ta-
ble lookup. In our algorithm to construct the megaflow
matching condition, this hash table lookup means that
the megaflow must match all the bits of fields included
in the tuple, even if the tuple search fails, because every
one of those fields and their bits may have affected the
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lookup result so far. When the tuple matches on a field
that varies often from flow to flow, e.g., the TCP source
port, the generated megaflow is not much more useful
than installing a microflow would be because it will only
match a single TCP stream.

This points to an opportunity for improvement. If one
could search a tuple on a subset of its fields, and determine
with this search that the tuple could not possibly match,
then the generated megaflow would only need to match
on the subset of fields, rather than all the fields in the
tuple.

The tuple implementation as a hash table over all its
fields made such an optimization difficult. One cannot
search a hash table on a subset of its key. We considered
other data structures. A trie would allow a search on any
prefix of fields, but it would also increase the number of
memory accesses required by a successful search from
O(1) to O(n) in the length of the tuple fields. Individual
per-field hash tables had the same drawback. We did not
consider data structures larger than O(n) in the number
of flows in a tuple, because OpenFlow tables can have
hundreds of thousands of flows.

The solution we implemented statically divides fields
into four groups, in decreasing order of traffic granularity:
metadata (e.g., the switch ingress port), L2, L3, and L4.
We changed each tuple from a single hash table to an
array of four hash tables, called stages: one over metadata
fields only, one over metadata and L2 fields, one over
metadata, L2, and L3 fields, and one over all fields. (The
latter is the same as the single hash table in the previous
implementation.) A lookup in a tuple searches each of its
stages in order. If any search turns up no match, then the
overall search of the tuple also fails, and only the fields
included in the stage last searched must be added to the
megaflow match.

This optimization technique would apply to any subsets
of the supported fields, not just the layer-based subsets
we used. We divided fields by protocol layer because,
as a rule of thumb, in TCP/IP, inner layer headers tend
to be more diverse than outer layer headers. At L4, for
example, the TCP source and destination ports change on
a per-connection basis, but in the metadata layer only a
relatively small and static number of ingress ports exist.

Each stage in a tuple includes all of the fields in earlier
stages. We chose this arrangement, although the tech-
nique does not require it, because then hashes could be
computed incrementally from one stage to the next, and
profiling had shown hash computation to be a significant
cost (with or without staging).

With four stages, one might expect the time to search a
tuple to quadruple. Our measurements show that, in fact,
classification speed actually improves slightly in practice
because, when a search terminates at any early stage, the
classifier does not have to compute the full hash of all the

fields covered by the tuple.

This optimization fixes a performance problem ob-
served in production deployments. The NVP controller
uses Open vSwitch to implement multiple isolated logi-
cal datapaths (further interconnected to form logical net-
works). Each logical datapath is independently configured.
Suppose that some logical datapaths are configured with
ACLs that allow or deny traffic based on L4 (e.g., TCP
or UDP) port numbers. Megaflows for traffic on these
logical datapaths must match on the L4 port to enforce the
ACLs. Megaflows for traffic on other logical datapaths
need not and, for performance, should not match on L4
port. Before this optimization, however, all generated
megaflows matched on L4 port because a classifier search
had to pass through a tuple that matched on L4 port. The
optimization allows megaflows for traffic on logical dat-
apaths without L4 ACLs to avoid matching on L4 port,
because the first three (or fewer) stages are enough to
determine that there is no match.

5.4 Prefix Tracking

Flows in OpenFlow often match IPv4 and IPv6 subnets to
implement routing. When all the flows that match on such
a field use the same subnet size, e.g., all match /16 sub-
nets, this works out fine for constructing megaflows. If,
on the other hand, different flows match different subnet
sizes, like any standard IP routing table does, the con-
structed megaflows match the longest subnet prefix, e.g.,
any host route (/32) forces all the megaflows to match full
addresses. Suppose, for example, Open vSwitch is con-
structing a megaflow for a packet addressed to 10.5.6.7. If
flows match subnet 10/8 and host 10.1.2.3/32, one could
safely install a megaflow for 10.5/16 (because 10.5/16
is completely inside 10/8 and does not include 10.1.2.3),
but without additional optimization Open vSwitch installs
10.5.6.7/32. (Our examples use only octet prefixes, e.g., /8,
/16, /24, /32, for clarity, but the implementation and the
pseudocode shown later work in terms of bit prefixes.)

We implemented optimization of prefixes for IPv4 and
IPv6 fields using a trie structure. If a flow table matches
over an IP address, the classifier executes an LPM lookup
for any such field before the tuple space search, both to de-
termine the maximum megaflow prefix length required, as
well as to determine which tuples can be skipped entirely
without affecting correctness.1 As an example, suppose
an OpenFlow table contained flows that matched on some
IPv4 field, as shown:

1This is a slight simplification for improved clarity; the actual imple-
mentation reverts to prefix tracking if staged lookups have concluded to
include an IP field to the match.
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20 /8
10.1 /16
10.2 /16
10.1.3 /24
10.1.4.5/32

These flows correspond to the following trie, in which a
solid circle represents one of the address matches listed
above and a dashed circle indicates a node that is present
only for its children:

root

10 20

1 2

3 4.5

To determine the bits to match, Open vSwitch traverses
the trie from the root down through nodes with labels
matching the corresponding bits in the packet’s IP address.
If traversal reaches a leaf node, then the megaflow need
not match the remainder of the address bits, e.g., in our
example 10.1.3.5 would be installed as 10.1.3/24 and
20.0.5.1 as 20/8. If, on the other hand, traversal stops
due to the bits in the address not matching any of the
corresponding labels in the tree, the megaflow must be
constructed to match up to and including the bits that
could not be found, e.g., 10.3.5.1 must be installed as
10.3/16 and 30.10.5.2 as 30/8.

The trie search result also allows Open vSwitch to skip
searching some tuples. Consider the address 10.1.6.1.
A search of the above trie for this address terminates
at the node labeled 1, failing to find a node to follow
for the address’s third octet. This means that no flow in
the flow table with an IP address match longer than 16
bits matches the packet, so the classifier lookup can skip
searching tuples for the flows listed above with /24 and
/32 prefixes.

Figure 3 gives detailed pseudocode for the prefix match-
ing algorithm. Each node is assumed to have members
bits, the bits in the particular node (at least one bit, ex-
cept that the root node may be empty); left and right, the
node’s children (or NULL); and n rules, the number of
rules in the node (zero if the node is present only for its
children, otherwise nonzero). It returns the number of
bits that must be matched, allowing megaflows to be im-
proved, and a bit-array in which 0-bits designate matching
lengths for tuples that Open vSwitch may skip searching,
as described above.

While this algorithm optimizes longest-prefix match
lookups, it improves megaflows even when no flow ex-
plicitly matches against an IP prefix. To implement a

function TRIESEARCH(value, root)
node ← root, prev ← NULL
plens ← bit-array of len(value) 0-bits
i ← 0
while node �= NULL do

c ← 0
while c < len(node.bits) do

if value[i] �= node.bits[c] then
return (i+1,plens)

c ← c+1, i ← i+1
if node.n rules > 0 then

plens[i−1]← 1
if i ≥ len(value) then

return (i,plens)
prev ← node
if value[i] = 0 then

node ← node.left
else

node ← node.right
if prev �= NULL and prev has at least one child then

i ← i+1
return (i,plens)

Figure 3: Prefix tracking pseudocode. The function searches
for value (e.g., an IP address) in the trie rooted at node root. It
returns the number of bits at the beginning of value that must be
examined to render its matching node unique, and a bit-array of
possible matching lengths. In the pseudocode, x[i] is bit i in x
and len(x) the number of bits in x.

longest prefix match in OpenFlow, the flows with longer
prefix must have higher priorities, which will allow the
tuple priority sorting optimization in Section 5.2 to skip
prefix matching tables after the longest match is found,
but this alone causes megaflows to unwildcard address
bits according to the longest prefix in the table. The main
practical benefit of this algorithm, then, is to prevent poli-
cies (such as a high priority ACL) that are applied to a
specific host from forcing all megaflows to match on a
full IP address. This algorithm allows the megaflow en-
tries only to match with the high order bits sufficient to
differentiate the traffic from the host with ACLs.

We also eventually adopted prefix tracking for L4 trans-
port port numbers. Similar to IP ACLs, this prevents high-
priority ACLs that match specific transport ports (e.g., to
block SMTP) from forcing all megaflows to match the
entire transport port fields, which would again reduce the
megaflow cache to a microflow cache [32].

5.5 Classifier Partitioning

The number of tuple space searches can be further reduced
by skipping tuples that cannot possibly match. OpenFlow
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supports setting and matching metadata fields during a
packet’s trip through the classifier. Open vSwitch parti-
tions the classifier based on a particular metadata field. If
the current value in that field does not match any value in
a particular tuple, the tuple is skipped altogether.

While Open vSwitch does not have a fixed pipeline like
traditional switches, NVP often configures each lookup in
the classifier as a stage in a pipeline. These stages match
on a fixed number of fields, similar to a tuple. By storing
a numeric indicator of the pipeline stage into a specialized
metadata field, NVP provides a hint to the classifier to
efficiently only look at pertinent tuples.

6 Cache Invalidation

The flip side of caching is the complexity of managing the
cache. In Open vSwitch, the cache may require updating
for a number of reasons. Most obviously, the controller
can change the OpenFlow flow table. OpenFlow also
specifies changes that the switch should take on its own in
reaction to various events, e.g., OpenFlow “group” behav-
ior can depend on whether carrier is detected on a network
interface. Reconfiguration that turns features on or off,
adds or removes ports, etc., can affect packet handling.
Protocols for connectivity detection, such as CFM [10]
or BFD [14], or for loop detection and avoidance, e.g.,
(Rapid) Spanning Tree Protocol, can influence behavior.
Finally, some OpenFlow actions and Open vSwitch exten-
sions change behavior based on network state, e.g., based
on MAC learning.

Ideally, Open vSwitch could precisely identify the
megaflows that need to change in response to some event.
For some kinds of events, this is straightforward. For ex-
ample, when the Open vSwitch implementation of MAC
learning detects that a MAC address has moved from one
port to another, the datapath flows that used that MAC
are the ones that need an update. But the generality of
the OpenFlow model makes precise identification difficult
in other cases. One example is adding a new flow to an
OpenFlow table. Any megaflow that matched a flow in
that OpenFlow table whose priority is less than the new
flow’s priority should potentially now exhibit different
behavior, but we do not know how to efficiently (in time
and space) identify precisely those flows.2 The problem is
worsened further by long sequences of OpenFlow flow ta-
ble lookups. We concluded that precision is not practical
in the general case.

Therefore, early versions of Open vSwitch divided
changes that could require the behavior of datapath flows
to change into two groups. For the first group, the changes
whose effects were too broad to precisely identify the

2Header space analysis [16] provides the algebra to identify the flows
but the feasibility of efficient, online analysis (such as in [15]) in this
context remains an open question.

needed changes, Open vSwitch had to examine every dat-
apath flow for possible changes. Each flow had to be
passed through the OpenFlow flow table in the same way
as it was originally constructed, then the generated ac-
tions compared against the ones currently installed in the
datapath. This can be time-consuming if there are many
datapath flows, but we have not observed this to be a
problem in practice, perhaps because there are only large
numbers of datapath flows when the system actually has a
high network load, making it reasonable to use more CPU
on networking. The real problem was that, because Open
vSwitch was single-threaded, the time spent re-examining
all of the datapath flows blocked setting up new flows
for arriving packets that did not match any existing dat-
apath flow. This added high latency to flow setup for
those packets, greatly increased the overall variability of
flow setup latency, and limited the overall flow setup rate.
Through version 2.0, therefore, Open vSwitch limited the
maximum number of cached flows installed in the data-
path to about 1,000, increased to 2,500 following some
optimizations, to minimize these problems.

The second group consisted of changes whose effects
on datapath flows could be narrowed down, such as MAC
learning table changes. Early versions of Open vSwitch
implemented these in an optimized way using a technique
called tags. Each property that, if changed, could require
megaflow updates was given one of these tags. Also,
each megaflow was associated with the tags for all of
the properties on which its actions depended, e.g., if the
actions output the packet to port x because the packet’s
destination MAC was learned to be on that port, then the
megaflow is associated with the tag for that learned fact.
Later, if that MAC learned port changed, Open vSwitch
added the tag to a set of tags that accumulated changes.
In batches, Open vSwitch scanned the megaflow table for
megaflows that had at least one of the changed tags, and
checked whether their actions needed an update.

Over time, as controllers grew more sophisticated and
flow tables more complicated, and as Open vSwitch added
more actions whose behavior changed based on network
state, each datapath flow became marked with more and
more tags. We had implemented tags as Bloom filters [2],
which meant that each additional tag caused more “false
positives” for revalidation, so now most or all flows re-
quired examination whenever any state changed. By
Open vSwitch version 2.0, the effectiveness of tags had
declined so much that to simplify the code Open vSwitch
abandoned them altogether in favor of always revalidating
the entire datapath flow table.

Since tags had been one of the ways we sought to mini-
mize flow setup latency, we now looked for other ways.
In Open vSwitch 2.0, toward that purpose, we divided
userspace into multiple threads. We broke flow setup into
separate threads so that it did not have to wait behind
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revalidation. Datapath flow eviction, however, remained
part of the single main thread and could not keep up with
multiple threads setting up flows. Under heavy flow setup
load, though, the rate at which eviction can occur is criti-
cal, because userspace must be able to delete flows from
the datapath as quickly as it can install new flows, or the
datapath cache will quickly fill up. Therefore, in Open
vSwitch 2.1 we introduced multiple dedicated threads for
cache revalidation, which allowed us to scale up the reval-
idation performance to match the flow setup performance
and to greatly increase the kernel cache maximum size,
to about 200,000 entries. The actual maximum is dynami-
cally adjusted to ensure that total revalidation time stays
under 1 second, to bound the amount of time that a stale
entry can stay in the cache.

Open vSwitch userspace obtains datapath cache statis-
tics by periodically (about once per second) polling the
kernel module for every flow’s packet and byte counters.
The core use of datapath flow statistics is to determine
which datapath flows are useful and should remain in-
stalled in the kernel and which ones are not processing a
significant number of packets and should be evicted. Short
of the table’s maximum size, flows remain in the datapath
until they have been idle for a configurable amount of
time, which now defaults to 10 s. (Above the maximum
size, Open vSwitch drops this idle time to force the table
to shrink.) The threads that periodically poll the kernel for
per flow statistics also use those statistics to implement
OpenFlow’s per-flow packet and byte count statistics and
flow idle timeout features. This means that OpenFlow
statistics are themselves only periodically updated.

The above describes how userspace invalidates the dat-
apath’s megaflow cache. Maintenance of the first-level
microflow cache (discussed in Section 4) is much simpler.
A microflow cache entry is only a hint to the first hash ta-
ble to search in the general tuple space search. Therefore,
a stale microflow cache entry is detected and corrected
the first time a packet matches it. The microflow cache
has a fixed maximum size, with new microflows replac-
ing old ones, so there is no need to periodically flush old
entries. We use a pseudo-random replacement policy, for
simplicity, and have found it to be effective in practice.

7 Evaluation

The following sections examine Open vSwitch perfor-
mance in production and in microbenchmarks.

7.1 Performance in Production

We examined 24 hours of Open vSwitch performance data
from the hypervisors in a large, commercial multi-tenant
data center operated by Rackspace. Our data set contains
statistics polled every 10 minutes from over 1,000 hy-
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Figure 4: Min/mean/max megaflow flow counts observed.

pervisors running Open vSwitch to serve mixed tenant
workloads in network virtualization setting.

Cache sizes. The number of active megaflows gives
us an indication about practical megaflow cache sizes
Open vSwitch handles. In Figure 4, we show the CDF
for minimum, mean and maximum counts during the
observation period. The plots show that small megaflow
caches are sufficient in practice: 50% of the hypervisors
had mean flow counts of 107 or less. The 99th percentile
of the maximum flows was still just 7,033 flows. For the
hypervisors in this environment, Open vSwitch userspace
can maintain a sufficiently large kernel cache. (With the
latest Open vSwitch mainstream version, the kernel flow
limit is set to 200,000 entries.)

Cache hit rates. Figure 5 shows the effectiveness of
caching. The solid line plots the overall cache hit rate
across each of the 10-minute measurement intervals
across the entire population of hypervisors. The over-
all cache hit rate was 97.7%. The dotted line includes just
the 25% of the measurement periods in which the fewest
packets were forwarded, in which the caching was less
effective than overall, achieving a 74.7% hit rate. Intu-
itively, caching is less effective (and unimportant) when
there is little to cache. Open vSwitch caching is most
effective when it is most useful: when there is a great
deal of traffic to cache. The dashed line, which includes
just the 25% of the measurement periods in which the
most packets were forwarded, demonstrates this: during
these periods, the hit rate rises slightly above the overall
average to 98.0%.

The vast majority of the hypervisors in this data center
do not experience high volume traffic from their work-
loads. Figure 6 depicts this: 99% of the hypervisors see
fewer than 79,000 packets/s to hit their caches (and fewer
than 1500 flow setups/s to enter userspace due to misses).

CPU usage. Our statistics gathering process cannot sep-
arate Open vSwitch kernel load from the rest of the kernel
load, so we focus on Open vSwitch userspace. As we

10



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 127

0.0 0.2 0.4 0.6 0.8 1.0

Cache hit rate

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

 o
f 

m
ea

su
re

m
en

t 
p

er
io

d
s

Figure 5: Hit rates during all (solid), busiest
(dashed), and slowest (dotted) periods.
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Figure 6: Cache hit (solid) and miss
(dashed) packet counts.
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Figure 7: Userspace daemon CPU load as
a function of misses/s entering userspace.

will show in Section 7.2, the megaflow CPU usage itself
is in line with Linux bridging and less of a concern. In
Open vSwitch, the userspace load is largely due to the
misses in kernel and Figure 7 depicts this. (Userspace
CPU load can exceed 100% due to multithreading.) We
observe that 80% of the hypervisors averaged 5% CPU
or less on ovs-vswitchd, which has been our traditional
goal. Over 50% of hypervisors used 2% CPU or less.

Outliers. The upper right corner of Figure 7 depicts a
number of hypervisors using large amounts of CPU to pro-
cess many misses in userspace. We individually examined
the six most extreme cases, where Open vSwitch averaged
over 100% CPU over the 24 hour period. We found that
all of these hypervisors exhibited a previously unknown
bug in the implementation of prefix tracking, such that
flows that match on an ICMP type or code caused all TCP
flows to match on the entire TCP source or destination
port, respectively. We believe we have fixed this bug in
Open vSwitch 2.3, but the data center was not upgraded
in time to verify in production.

7.2 Caching Microbenchmarks

We ran microbenchmarks with a simple flow table de-
signed to compactly demonstrate the benefits of the
caching-aware packet classification algorithm. We used
the following OpenFlow flows, from highest to lowest pri-
ority. We omit the actions because they are not significant
for the discussion:

arp (1)
ip ip dst=11.1.1.1/16 (2)
tcp ip dst=9.1.1.1 tcp src=10 tcp dst=10 (3)
ip ip dst=9.1.1.1/24 (4)

With this table, with no caching-aware packet classifi-
cation, any TCP packet will always generate a megaflow
that matches on TCP source and destination ports, be-
cause flow #3 matches on those fields. With priority
sorting (Section 5.2), packets that match flow #2 can omit
matching on TCP ports, because flow #3 is never consid-
ered. With staged lookup (Section 5.3), IP packets not

Optimizations ktps Flows Masks CPU%
Megaflows disabled 37 1,051,884 1 45/ 40
No optimizations 56 905,758 3 37/ 40
Priority sorting only 57 794,124 4 39/ 45
Prefix tracking only 95 13 10 0/ 15
Staged lookup only 115 14 13 0/ 15
All optimizations 117 15 14 0/ 20

Table 1: Performance testing results for classifier optimizations.
Each row reports the measured number of Netperf TCP CRR

transactions per second, in thousands, along with the number of
kernel flows, kernel masks, and user and kernel CPU usage.

Microflows Optimizations ktps Tuples/pkt CPU%
Enabled Enabled 120 1.68 0/ 20
Disabled Enabled 92 3.21 0/ 18
Enabled Disabled 56 1.29 38/ 40
Disabled Disabled 56 2.45 40/ 42

Table 2: Effects of microflow cache. Each row reports the
measured number of Netperf TCP CRR transactions per second,
in thousands, along with the average number of tuples searched
by each packet and user and kernel CPU usage.

destined to 9.1.1.1 never need to match on TCP ports,
because flow #3 is identified as non-matching after con-
sidering only the IP destination address. Finally, address
prefix tracking (Section 5.4) allows megaflows to ignore
some of the bits in IP destination addresses even though
flow #3 matches on the entire address.
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Figure 8: Forwarding rate in terms of the average number of
megaflow tuples searched, with the microflow cache disabled.
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Cache layer performance. We measured first the base-
line performance of each Open vSwitch cache layer. In all
following tests, Open vSwitch ran on a Linux server with
two 8-core, 2.0 GHz Xeon processors and two Intel 10-Gb
NICs. To generate many connections, we used Netperf’s
TCP CRR test [25], which repeatedly establishes a TCP
connection, sends and receives one byte of traffic, and
disconnects. The results are reported in transactions per
second (tps). Netperf only makes one connection attempt
at a time, so we ran 400 Netperf sessions in parallel and
reported the sum.

To measure the performance of packet processing in
Open vSwitch userspace, we configured ovs-vswitchd

to disable megaflow caching, by setting up only microflow
entries in the datapath. As shown in Table 1, this yielded
37 ktps in the TCP CRR test, with over one million kernel
flow entries, and used about 1 core of CPU time.

To quantify the throughput of the megaflow cache by
itself, we re-enabled megaflow caching, then disabled the
kernel’s microflow cache. Table 2 shows that disabling
the microflow cache reduces TCP CRR performance from
120 to 92 ktps when classifier optimizations are enabled.
(When classifier optimizations are disabled, disabling the
microflow cache has little effect because it is overshad-
owed by the increased number of trips to userspace.)

Figure 8 plots packet forwarding performance for long-
lived flows as a function of the average number of tuples
searched, with the kernel microflow cache disabled. In
the same scenarios, with the microflow cache enabled, we
measured packet forwarding performance of long-lived
flows to be approximately 10.6 Mpps, independent of the
number of tuples in the kernel classifier. Even searching
only 5 tuples on average, the microflow cache improves
performance by 1.5 Mpps, clearly demonstrating its value.
To put these numbers in perspective in terms of raw hash
lookup performance, we benchmarked our tuple space
classifier in isolation: with a randomly generated table of
half a million flow entries, the implementation is able to
do roughly 6.8M hash lookups/s, on a single core – which
translates to 680,000 classifications per second with 10
tuples.

Classifier optimization benefit. We measured the ben-
efit of our classifier optimizations. Table 1 shows the
improvement from individual optimizations and all of
the optimizations together. Each optimization reduces
the number of kernel flows needed to run the test. Each
kernel flow corresponds to one trip between the kernel
and userspace, so each reduction in flows also reduces
userspace CPU time used. As can be seen from the ta-
ble, as the number of kernel flows (Flows) declines, the
number of tuples in the kernel flow table (Masks) in-
creases, increasing the cost of kernel classification, but
the measured reduction in kernel CPU time and increase

in TCP CRR shows that this is more than offset by the
microflow cache and by fewer trips to userspace. The
TCP CRR test is highly sensitive to latency, demonstrating
that latency decreases as well.

Comparison to in-kernel switch. We compared Open
vSwitch to the Linux bridge, an Ethernet switch imple-
mented entirely inside the Linux kernel. In the sim-
plest configuration, the two switches achieved identi-
cal throughput (18.8 Gbps) and similar TCP CRR con-
nection rates (696 ktps for Open vSwitch, 688 for the
Linux bridge), although Open vSwitch used more CPU
(161% vs. 48%). However, when we added one flow to
Open vSwitch to drop STP BPDU packets and a similar
iptables rule to the Linux bridge, Open vSwitch per-
formance and CPU usage remained constant whereas the
Linux bridge connection rate dropped to 512 ktps and
its CPU usage increased over 26-fold to 1,279%. This
is because the built-in kernel functions have per-packet
overhead, whereas Open vSwitch’s overhead is generally
fixed per-megaflow. We expect enabling other features,
such as routing and a firewall, would similarly add CPU
load.

8 Ongoing, Future, and Related Work

We now briefly discuss our current and planned efforts to
improve Open vSwitch, and briefly cover related work.

8.1 Stateful Packet Processing

OpenFlow does not accommodate stateful packet opera-
tions, and thus, per-connection or per-packet forwarding
state requires the controller to become involved. For this
purpose, Open vSwitch allows running on-hypervisor “lo-
cal controllers” in addition to a remote, primary controller.
Because a local controller is an arbitrary program, it can
maintain any amount of state across the packets that Open
vSwitch sends it.

NVP includes, for example, a local controller that im-
plements a stateful L3 daemon responsible for sending
and processing ARPs. The L3 daemon populates an L3
ARP cache into a dedicated OpenFlow table (not man-
aged by the primary controller) for quick forwarding of
common case (packets with a known IP to MAC bind-
ing). The L3 daemon only receives packets resulting in an
ARP cache miss and emits any necessary ARP requests to
remote L3 daemons based on the packets received from
Open vSwitch. While the connectivity between the local
controller and Open vSwitch is local, the performance
overhead is significant: a received packet traverses first
from kernel to userspace daemon from which it traverses
across a local socket (again via kernel) to a separate pro-
cess.
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For performance critical stateful packet operations,
Open vSwitch relies on kernel networking facilities.
For instance, a solid IP tunneling implementation re-
quires (stateful) IP reassembly support. In a similar man-
ner, transport connection tracking is a first practical re-
quirement after basic L2/L3 networking; even most basic
firewall security policies call for stateful filtering. Open-
Flow is flexible enough to implement static ACLs but not
stateful ones. For this, there’s an ongoing effort to provide
a new OpenFlow action that invokes a kernel module that
provides metadata which the subsequent OpenFlow tables
may use the connection state (new, established, related)
in their forwarding decision. This “connection tracking”
is the same technique used in many dedicated firewall ap-
pliances. Transitioning between kernel networking stack
and kernel datapath module incurs overhead but avoids
the duplication of functionality, critical in upstreaming
kernel changes.

8.2 Userspace Networking

Improving the virtual switch performance through
userspace networking is a timely topic due to NFV [9,22].
In this model, packets are passed directly from the NIC
to VM with minimal intervention by the hypervisor
userspace/kernel, typically through shared memory be-
tween NIC, virtual switch, and VMs. To this end, there is
an ongoing effort to add both DPDK [11] and netmap [30]
support to Open vSwitch. Early tests indicate the Open
vSwitch caching architecture in this context is similarly
beneficial to kernel flow cache.

An alternative to DPDK that some in the Linux commu-
nity are investigating is to reduce the overhead of going
through the kernel. In particular, the SKB structure that
stores packets in the Linux kernel is several cache lines
large, contrary to the compact representation in DPDK
and netmap. We expect the Linux community will make
significant improvements in this regard.

8.3 Hardware Offloading

Over time, NICs have added hardware offloads for com-
monly needed functions that use excessive host CPU time.
Some of these features, such as TCP checksum and seg-
mentation offload, have proven very effective over time.
Open vSwitch takes advantage of these offloads, and most
others, which are just as relevant to virtualized environ-
ments. Specialized hardware offloads for virtualized envi-
ronments have proven more elusive, though.

Offloading virtual switching entirely to hardware is a
recurring theme (see, e.g., [12]). This yields high per-
formance, but at the cost of flexibility: a simple fixed
function hardware switch effectively replaces the soft-
ware virtual switch with no ability for the hypervisor to

extend its functionality. The offload approach we cur-
rently find most promising is to enable NICs to accelerate
kernel flow classification. The Flow Director feature on
some Intel NICs has already been shown to be useful for
classifying packets to separate queues [36]. Enhancing
this feature simply to report the matching rule, instead
of selecting the queue, would make it useful as such for
megaflow classification. Even if the TCAM size were
limited, or if the TCAM did not support all the fields that
the datapath uses, it could speed up software classification
by reducing the number of hash table searches – without
limiting the flexibility since the actions would still take
place in the host CPU.

8.4 Related Work

Flow caching. The benefits of flow caching generally
have been argued by many in the community [4, 13, 17,
31, 41]. Lee et al. [21] describes how to augment the
limited capacity of a hardware switch’s flow table using a
software flow cache, but does not mention problems with
flows of different forms or priorities. CacheFlow [13],
like Open vSwitch, caches a set of OpenFlow flows in a
fast path, but CacheFlow requires the fast path to directly
implement all the OpenFlow actions and requires building
a full flow dependency graph in advance.

Packet classification. Classification is a well-studied
problem [37]. Many classification algorithms only work
with static sets of flows, or have expensive incremental
update procedures, making them unsuitable for dynamic
OpenFlow flow tables [7, 8, 33, 38, 40]. Some classifiers
require memory that is quadratic or exponential in the
number of flows [8, 20, 35]. Other classifiers work only
with 2 to 5 fields [35], whereas OpenFlow 1.0 has 12 fields
and later versions have more. (The effective number of
fields is much higher with classifiers that must treat each
bit of a bitwise matchable field as an individual field.)

9 Conclusion

We described the design and implementation of Open
vSwitch, an open source, multi-platform OpenFlow vir-
tual switch. Open vSwitch has simple origins but its
performance has been gradually optimized to match the
requirements of multi-tenant datacenter workloads, which
has necessitated a more complex design. Given its op-
erating environment, we anticipate no change of course
but expect its design only to become more distinct from
traditional network appliances over time.
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Abstract
As Internet video goes mainstream, we see increas-
ing user expectations for higher video quality and new
global policy requirements for content providers. In-
spired by the case for centralizing network-layer control,
we present C3, a control system for optimizing Internet
video delivery. The design of C3 addresses key chal-
lenges in ensuring scalability and tackling data plane het-
erogeneity. First, to ensure scalability and responsive-
ness, C3 introduces a novel split control plane architec-
ture that can tolerate a small increase in model staleness
for a dramatic increase in scalability. Second, C3 sup-
ports diverse client-side platforms via a minimal client-
side sensing/actuation layer and offloads complex mon-
itoring and control logic to the control plane. C3 has
been operational for eight years, and today handles more
than 100M sessions per day from 244 countries for 100+
content providers and has improved the video quality sig-
nificantly. In doing so, C3 serves as a proof point of the
viability of fine-grained centralized control for Internet-
scale applications. Our experiences reinforce the case
for centralizing control with the continued emergence of
new use case pulls (e.g., client diversity) and technology
pushes (e.g., big data platforms).

1 Introduction
Internet video is a significant and growing segment of In-
ternet traffic today [2]. In conjunction with these grow-
ing traffic volumes, users’ expectations of high qual-
ity of experience (e.g., high resolution video, low re-
buffering, low startup delays) are continuously increas-
ing [35, 3, 14]. Given the ad- and subscription-driven
revenue model of the Internet video ecosystem, con-
tent providers strive to deliver high quality of experience
while meeting diverse policy and cost objectives [4, 38].

In this respect, several previous efforts have shown
that the observed video quality delivered by individual
CDNs can vary substantially across clients (e.g., across
different ISPs or content providers) and also across time
(e.g., flash crowds) [39, 37]. Similarly, because the video
player has only a few seconds worth of buffering and the
bandwidth could fluctuate significantly, we need to make
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Sensing/actuation Layer 

Decision Layer 

Sensing/actuation Layer 
Sensing/actuation Layer 

Hypothetical two-layer architecture 
of a control plane 

Address scale 
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client-side 
diversity 

Architecture of C3: 
Split control plane and thin client 

Figure 1: Conceptual two-layer architecture and the
ideas of split control plane and thin client
quick decisions (e.g., future bitrates) based on the current
client buffer level and bandwidth so that the buffer does
not drain out [27].

These observations have made the case for a logi-
cally centralized control plane for Internet video that
uses a global and real time view of network conditions
to choose the best CDN and bitrate for a given client.1

Furthermore, content providers have complex system-
wide policy and optimization objectives such as balanc-
ing costs across CDNs or servicing premium customers,
which are also difficult to achieve without a global real-
time view.

Conceptually, one can consider a hypothetical two-
layer architecture (the left part of Figure 1) of a con-
trol plane consisting of a global controller and a client-
side sensing/actuation layer. The controller uses real-
time measurements of client performance observed by
the sensing/actuation layer to create a model of expected
performance, uses this model to decide suitable parame-
ters (e.g., CDN and bitrate) for the clients and sends them
to sensing/actuation layer to execute. Unfortunately, re-
alizing such an Internet-scale control plane is easier said
than done! For instance, at peak load we have had to
handle over 3M concurrent users and we expect this to
grow by up to two orders of magnitude. This scale makes
it challenging to maintain up-to-date global views while
simultaneously being responsive to client-side events.

1Conceptually, this can be viewed as a management layer overlaid
on top of multiple CDNs and this optimization is orthogonal to the
server allocation optimizations done by the individual CDNs.
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To address this fundamental scaling challenge, our so-
lution, called C3, introduces a split control plane archi-
tecture that logically decouples the modeling and deci-
sion functions of the controller as shown in the right part
of Figure 1. The key insight underlying this unique split
control plane architecture is an observation that we can
tolerate a small increase in amount of staleness in the
global modeling for a dramatic increase in scalability;
i.e., our decisions will be close to optimal even if the
global view used for decision making is out of date by a
few minutes (§3).

Building on this insight, the modeling layer operating
at a coarse time granularity is updated every tens of sec-
onds or minutes to build a global model based on global
view of client quality information. The decision layer
makes real-time decisions using the global model from
the modeling layer at a sub-second timescale in response
to client-side events; e.g., arrivals or bandwidth drops or
quality changes. Note that in contrast to traditional web
serving architectures, the decision layer is not a dumb
replicated caching layer but is actively making real-time
decisions merging global (but stale) models with local
(but up-to-date) data. An immediate consequence of the
decoupling is that the decision layer interfacing with the
clients is horizontally scalable.

Now, for any such control architecture to be effective,
we need a sensing/actuation layer to (a) accurately mea-
sure video quality from video players and (b) execute the
control decisions. Here, we observe a practical challenge
due to client-side diversity. For instance, we see close
to 100 distinct application combinations of framework
(i.e., providing libraries to support video players) and
streamer (i.e., the module responsible for downloading
and rendering video). The diversity of video players cou-
pled with practical challenges in players’ long software
update cycles makes it difficult to implement new mea-
surement techniques or control algorithms. To address
this client-side diversity, we make an explicit choice to
make the sensing/actuation layer functionality as mini-
mal as possible. Thus, we eschew complex control and
data summarization logic in the video players in favor
of a very thin sensing/actuation layer that exports raw
quality-related events using a common data model (§4).
These designs simplify adding support for new content
providers, accelerate testing and integration, and also en-
able independent evolution of client-side platforms and
C3’s control logic.

Over the 8 years of operation, C3 has optimized over
100M sessions each day from over 100 name brand
content providers. Our operational experience and mi-
crobenchmarks confirm that: (1) C3 controller is hor-
izontally scalable; (2) our client-side sensing/actuation
layer imposes small bandwidth overhead on the clients;
and (3) C3 can dramatically improve the video quality of

C3’s customers within the bounds of global policies.
While C3 has evolved in response to video-specific

technology trends and use-cases (§2), we believe that
our lessons and design decisions are more broadly ap-
plicable to other aspects of network control (§7). First,
we observe more drivers for centralized control due to
greater client-side heterogeneity and more complex pol-
icy demands. Second, we see more enablers for cen-
tralizing control with the advent of big-data solutions
and the ability to elastically scale service instances via
cloud providers. Third, our journey reinforces the be-
lief that separation of control and data and moving more
functionality to the controller is a powerful architectural
choice that enables rapid and independent evolution for
different stakeholders.

2 Evolutionary Perspective
Operational systems such as C3 do not exist in
vacuum—they have to constantly evolve in response to
use case pulls (e.g., more complex provider policies and
multi-CDN deployments) and technology trends (e.g.,
move from P2P to CDNs or RTMP to HTTP). In this
section, we provide an evolutionary perspective of the
8-year operation of C3. This retrospective is useful be-
cause it gives us the context to understand both how
the requirements (e.g., scale, diversity) have evolved and
how our design decisions have adapted accordingly. We
conclude with major trends that reinforce our decision to
centralize the control plane.

2.1 Overview of evolution
We identify three high-level phases in the evolution of
C3 (shown in Figure 2).
Phase I: The origins of C3 can be traced back to a very
different operational context. The original C3 architec-
ture was motivated by the problem of optimizing P2P live
streaming. This was around 2006, when video streaming
via CDNs was quite expensive with an effective cost of
≈ 40 cents/GB. At the time, P2P was widely perceived
as an alternative low-cost solution. Unfortunately, exist-
ing overlay schemes were unreliable and unable to de-
liver high-quality streams equivalent to CDN-based per-
formance. Inspired by concurrent work on the 4D archi-
tecture for network control [45], C3 was a centralized
solution to manage the overlay tree in order to deliver
high (CDN equivalent) quality streaming over P2P. This
centralized view also enabled to implement simple per-
stream global policies; e.g., limiting total bandwidth or
number of viewers on a specific live channel.

During this early stage, most video streaming was
based on Flash/RTMP and clients were largely homoge-
neous. They were largely desktop clients that needed to
explicitly download/install our P2P client software, simi-
lar to other P2P systems at the time. This software would
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Phases 
(Time) 

Environments Design overview 

Video delivery User scale Platform Policy Key decisions Major considerations 

I  
(2006-2009) 

P2P Live 100s-10Ks Single Per-stream Centralized overlay-tree construction in the  
controller. Frequent update and control. 

Modest size of users. Existing protocols not  
sufficient for high-quality streams. 

II  
(2009-2011) 

CDN, Live/VoD 1M-10Ms Single Global Joint control: Controller changes the logic and  
bitrate/CDN list. Clients run real-time control. 

Controller unable to support real-time control at  
scale. Flash supports dynamical loading plugin. 

III  
(2011-now) 

CDN, Live/VoD 10Ms-100Ms Diverse Global 
Complex 

Minimal clients: push all decision making and  
quality summary to the controller. 

Diverse client platforms, long software update  
cycle. Advent of big-data technology. 

Figure 2: Overview of C3 evolution.

work in close coordination with the C3 controller to con-
struct a robust overlay tree that gracefully handled user
churn.

Moreover, Internet video was still in its infancy, and
many premium providers were yet to step in to the mar-
ket. Thus, the scale of the client demand was also rel-
atively small. As such, C3’s controller was deployed
using custom server software running in dedicated data-
centers. This was sufficient to provide the desired sub-
second responsiveness to handle tens of thousands of
clients.

Phase II: Around 2009, we saw an inflection point with
several key technology and industry shifts. First, the
cost of streaming using CDNs dropped significantly to
≈ 5 cents/GB. Second, many mainstream providers (e.g.,
iTunes, Hulu) started warming up to the potential of In-
ternet video and started discovering monetization strate-
gies for online video, for both live and VoD content.
While Flash/RTMP still dominated as the de-facto plat-
form for video streaming, we saw the emergence of al-
ternatives (e.g., due to Apple refusing to support Flash).
On a practical note, given that content was now being
monetized, as opposed to the free video over P2P, there
was some understandable reluctance from the providers
to force clients to install a new client software.

These transitions had significant effects on the de-
sign of C3. First, the entry of mainstream providers
meant that the workload grew several orders of magni-
tude from Phase I to 100s of thousands to millions users.
Second, the transition to CDN-based delivery for both
live and VoD meant that the C3 logic had to evolve.
Specifically, the emergence of HTTP- and chunk-based
video streaming protocols (e.g., [13, 8]) meant that a
video client could seamlessly choose a suitable bitrate
and CDN (server) at the beginning as well as in the mid-
dle of a video session with little overhead. Thus, C3 was
now targeted toward the goal of better CDN and bitrate
selection instead of the earlier goal of computing optimal
overlay trees for live streaming.

However, our control platform was not yet mature
enough to provide sub-second responsiveness at such
scale. Our response in this phase was a pragmatic so-
lution that had to sacrifice both the global view and
real-time requirement to ensure the required scalabil-
ity. Specifically, our solution relied on a combination

of exploiting application-level resilience and clever en-
gineering. We made a decision to coarsen the control
functionality of C3. Instead of the client software, we
designed a player plugin that clients would download
from C3 when the video session started. This gave us
coarse control wherein we could modify the player logic
at the beginning of the session (e.g., choosing a CDN
intelligently). For subsequent adaptation (e.g., dynamic
bitrate adaptation), however, we had to rely on the lo-
cal decision making and capabilities. To deal with the
moderate amount of client heterogeneity, we developed
custom cross-compiler techniques that allowed us to in-
tegrate our development across platforms. While this
cross-compiler served us well as an interim solution,
the approach soon started showing cracks as more di-
verse client platforms given the idiosyncrasies of differ-
ent technologies.

Phase III: The current phase of C3’s operation, starting
in 2011, can be truly described as the coming of age of
Internet video. With the ad- and subscription-driven rev-
enue models, and the availability of rich content, many
more providers and users now rely on Internet video.
In fact, some industry analysts report that Internet video
consumption might even exceed traditional TV.

Consequently, C3 had to evolve to once again han-
dle 2-3 orders of magnitude increase in the client
population—tens of millions clients, with 10s-100s of
thousands new client arrivals per minute at peak hours.
In addition, C3 now faced a more serious challenge due
to client heterogeneity as we now observed very diverse
client-side platforms of streaming protocols (proprietary
protocols and HTTP chunking, etc), application frame-
works (e.g., OSMF, Ooyala, Akamai) and devices (e.g.,
set-top boxes, connected TVs, tablets).

There was an independent technology shift that was
synergistically aligned with these trends—the emergence
of big data platforms to enable real-time processing of
very large volumes of data. We embraced this technol-
ogy and exploited it to enable novel solutions to handle
the client-side heterogeneity. Specifically, it enabled us
to make the client implementation very minimal; e.g.,
moving the data summarization logic originally located
in the client in Phase II to the controller. This allowed us
greater flexibility in adapting to new client platforms and
also simplified the development cycle.
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However, big-data platforms by themselves do not ad-
dress the scalability challenge of providing sub-second
responsiveness to client-side events for millions of
clients. This required us to significantly rearchitect the
control plane and motivated the split control plane archi-
tecture that we describe in the next section. Specifically,
we split the controller to a geo-distributed decision layer
with sub-second responsiveness exploiting the reach of
cloud providers, and a consolidated modeling layer that
provides minute-level freshness w.r.t. global visibility.

2.2 Major trends
The above evolution highlights two key trends that rein-
force the case (in terms of both drivers and enablers) for
centralizing network control:
• Drivers: First, we see ever increasing demands of

user experience and growing complexity of the video
delivery system. This naturally motivates us to move
more control logic to the controller in order to use the
global visibility and satisfy global policies. Second,
the proliferation of diverse client platforms makes it
difficult from an engineering standpoint to integrate
and test the client-side logic.

• Enablers: With the recent advances in big data tech-
nology, we can build a backend system with unprece-
dented capacity to support scalable data processing in
real-time with low cost. Furthermore, it is now possi-
ble to deploy the centralized control plane on-demand
using cloud services with global presence. The emer-
gence of big data platforms and cloud services can en-
able even greater centralized control.
In the rest of this paper, we focus on the design and

implementation of the split control plane architecture and
the sensing/actuation layer during this most recent phase
of C3’s operation.

3 C3 Split Control Plane
The goal of the C3 controller is to optimize the video
quality and enforce global policies given by content
providers. Note that C3 does not control the CDN
servers or distribution logic. Rather it acts an additional
management layer to enable content providers to achieve
their quality and policy objectives on top of their existing
delivery ecosystem.

There are three (arguably conflicting) goals that the
C3 controller needs to meet. First, given the variability in
video quality across time and space (e.g., ISP-CDN com-
binations) the C3 controller needs an up-to-date global
view of network conditions to be effective in choosing
a suitable CDN and bitrate for clients. Second, it needs
to be responsive at sub-second timescales to handle new
client arrivals (e.g., to minimize video startup delay) and
quality-related events during video playback (e.g., drop
in bandwidth or CDN congestion). Finally, and most im-

portantly, it must be scalable to handle 10s-100s millions
of concurrent clients.

Unfortunately, simultaneously achieving all three re-
quirements of freshness, responsiveness and global view
is hard. To see why, let us consider two strawman solu-
tions. The first option is a single controller handling all
clients. However, even state-of-the-art big data process-
ing platforms cannot provide sub-second responsiveness
with new samples arriving at the rate of 50-100 GB per
minute. Even if such a system exists, there is an inherent
delay to collect enough data for making decisions with
high confidence; e.g., it may take minutes to infer with
high confidence that a particular CDN is overloaded. A
second option is to deploy replicated servers with each
replica responsible for a subset of clients. Though this
parallelism ensures scalability and responsiveness, the
quality of the decisions will degrade as each replica will
make decisions only on the partial view from its clients
rather than on the global view.

Next, we present the split control plane architecture of
C3 and discuss how it is crucial to simultaneously meet
three key requirements—freshness, responsiveness, and
global views.

3.1 Logical view
The key insight behind the split control plane is a
domain-specific observation that we can slightly re-
lax the freshness requirement to simultaneously achieve
scalability, responsiveness, and a global view. Specifi-
cally, we observe that some global characteristics (e.g.,
relative rankings of CDN based on quality) are relatively
stable on the order of minutes [29].

Figure 3 shows one representative result showing the
persistence of the best CDN for clients in a given AS,
which we define as the number of contiguous minute-
level epochs in which this CDN has the lowest buffering
ratioa cross all available CDNs. Figure 3 shows the dis-
tribution of this persistence metric across three content
providers (A,B,C) that use multiple CDNs.2 We see that
the 80%ile of the persistence is 3 minutes across all three
content providers.

However, such persistence does not hold for states of
individual clients. For instance, when the current CDN
is not available, CDN must be switched immediately to
prevent the buffer from draining out (e.g.,buffer length
for live videos is no more than several seconds). In
this case decisions must rely on the freshest information
(e.g., buffer length) to prevent quality from suffering.

The above observations on global state persistence
coupled with local per-client variability make a case for
a split control plane scheme that consists of two loosely

2To avoid any potential bias due to C3’s control decisions, this re-
sult explicitly focuses on content providers who have not opted-in for
C3’s optimized control but use only the quality monitoring services.
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Figure 3: Distribution of the persistence of the best
CDN for different content providers.

coupled stages:
• A coarse-grained global model layer that operates at

the timescale of few tens of seconds (or minutes) and
uses a global view of client quality measurements to
build a data-driven prediction global model of video
quality (see below).

• A fine-grained per-client decision layer that oper-
ates at the millisecond timescale and makes actual de-
cisions upon a client request. This is based on the
latest (but possibly stale) pre-computed global model
and up-to-date per-client state.
Figure 4(a) shows how the split control plane is

mapped into the two logical layers of the C3 con-
troller. Specifically, the modeling layer implements the
coarse-grained control loop (i.e., blue arrows) in a coarse
timescale and trains a global model based on the mea-
surements of each client session it receives from the de-
cision layer. The decision layer implements the fine-
grained control loop (i.e., red arrows) for each client,
and makes CDN and bitrate decisions based on the global
model trained by the modeling layer and latest heartbeats
received from the sensing/actuation layer (see §4).

We make one important observation to distinguish the
functionality of the decision layer that presents a signif-
icant departure from traditional replicated web services.
Unlike traditional web services where the serving layer
is a “dumb” distributed caching layer, the decision layer
makes real-time control decisions by combining freshest
quality measurements of the client under control and the
global model.

This above split control plane design has two key char-
acteristics that are critical for a scale-out realization of
the decision layer without synchronization bottlenecks.
First, note that there is a loose coupling between the
fine-grained per-client and coarse-grained global control
loops. Thus, we do not need the decision layer to be
perfectly synchronized with the modeling layer. Sec-
ond, the decision layer is operating on a per-client basis,
which eliminates the need for coordination across deci-
sion layer instances. Taken together, this means that we
can effectively partition the workload across clients by
having a replicated decision layer where instances are
deployed close to the clients and independently execute
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Figure 4: Overview of the C3 controller. The SDM
and Heartbeats are discussed in the next section.

the logic for the subset of clients assigned to it.

3.2 End-to-end workflow
Having discussed the core ideas in the previous section,
next we discuss the concrete physical realization of the
C3 controller (shown in Figure 4(b)) and describe the
end-to-end workflow.

3.2.1 Modeling layer workflow

The modeling layer is a compute cluster running a big
data processing stack. The modeling layer periodically
uses the information (its specific format will be intro-
duced later in §4.2.1 ) collected from all clients to learn a
global model that encodes actionable information useful
for decision making.

Our focus in this paper is primarily on the control ar-
chitecture and the design of the specific algorithms in
the modeling layer is outside the scope of the paper. For
completeness, we provide a high-level sketch of the algo-
rithm. The model is similar to the nearest neighbor like
prediction model suggested in prior work [39]. In partic-
ular, we leverage the insight that similar video sessions
should have similar quality. Therefore, quality measure-
ments of sessions sharing certain spatial (e.g., CDN, ISP,
content provider) and temporal (e.g., time of day) fea-
tures are grouped together, and intuitively, the quality of
a new session can be predicted based on the quality of
the most similar sessions.

To enforce global policies (e.g., traffic caps for cer-
tain CDNs), the modeling layer also includes the relevant
global states as part of the global model (e.g., amount of
traffic currently assigned to each CDN), so that the deci-
sion logic can take into account the global information it
needs. There is a large space of potential decision log-
ics that can take the global model, individual client state,
and global policies to make optimal per-client decisions.
The design of policies and algorithms to meet policy ob-
jectives is outside the scope of this paper.

The remaining question is disseminating the global
model to the decision instances. Instead of a pull model
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like traditional web caching, the modeling layer pushes
the global model to each frontend data center where deci-
sion instances run. The reasons for a push rather than pull
approach is to ensure that each decision instance has an
up-to-date model as soon as the modeling layer recom-
putes the global model. The overhead of the push step
is quite low since the size of the global model is 100s
of MBs, which can be disseminated to all data centers
in several seconds without any additional optimizations
and can easily fit in the memory of a modern server. (In
contrast, web caches cannot know the set of requests and
have to use a pull model because they cannot store the
entire content catalog.)

3.2.2 Decision layer workflow

In order to minimize the response latency between clients
and their corresponding decision instances, the decision
instances are hosted in geographically distributed fron-
tend datacenters as close to the clients as possible. When
C3 clients arrive, they are assigned to specific deci-
sion instances via standard load balancing mechanisms,
which ensure that subsequent requests (both control re-
quests and heartbeats) of the same client are consistently
mapped to the same instances. These mechanisms op-
erate across data centers and across decision instances,
and handle geographic locality, load balancing, and fault
tolerance. We use industry-standard mechanisms such
as DNS-based consistent mapping of clients to instances
based on latency measurements. These mechanisms use
standard failure detection mechanisms to detect if a spe-
cific instance has failed and reassigns clients as needed.
(As shown in §4.3, the measurement collection from
clients can be easily re-synced when the decision in-
stances are reassigned.)

The clients send periodic heartbeats (described in
§4.2.1) to decision instances. Based on the heartbeats of
a client, a decision instance maintains a state-machine,
which provides an accurate and up-to-date view of the
current video quality experienced by the client. Upon
receiving a control request from a client , the decision
instance runs a proprietary decision algorithm to choose
a suitable CDN and bitrate.

This decision logic combines both the up-to-date per-
client information and the (slightly stale) global model
the decision logic, and tries to optimize video quality
while operating within the bounds of global polices (e.g.,
load per CDN or cost). In a simple example, consider
two CDNs; CDN1 provides poor quality to viewers and
CDN2 provides good quality in a certain city. The deci-
sion logic is able to detect that CDN1 has worse quality
than CDN2 based on the quality feedback from clients
using both CDNs from that particular city, and it will
then instruct new clients to CDN2.

3.3 Summary of key design decisions
In summary, we make the following key decisions.
1. To balance global visibility and data freshness, we

use a split control plane mechanism with a coarse
timescale modeling layer loosely coupled with a fine
timescale decision layer.

2. The modeling layer trains on a minute-level timescale
and pushes the global model to decision layer.

3. The decision layer is horizontally scalable and can op-
erate on a millisecond-level timescale. It combines the
up-to-date per-client information, the global model,
and other policies to makes optimal CDN/bitrate deci-
sions for clients.

4 Sensing/Actuation Layer
This section presents the design of the C3 client side
modules, which provide three functions. First, it reports
video quality from the players to the C3 controller. Sec-
ond, it receives and implements control decisions from
the controller. Third, it has built-in fault tolerance when
it loses connectivity to the C3 controller. There are two
practical challenges in implementing these functions: (1)
diversity of client-side platforms and (2) slow software
update cycles of client-side platforms. We first elaborate
the challenges and then describe how C3 addresses them.

4.1 Challenges
To understand the causes of the practical challenges, we
need some background on the structure of the client-side
platform. Each client-side platform consists of four key
components: client operating system, application frame-
work, streamer, and player application. The application
framework runs on top of the operating system and pro-
vides the libraries to support the development of video
player applications. Many application frameworks can
run atop the same operating system and device hardware.
The streamer is responsible for downloading and render-
ing the video. Finally, the player application is the soft-
ware developed by a content publisher based on specific
application framework, to implement the user interface,
access to content library, and player navigation.
Diversity: We observe client diversity along sev-
eral dimensions; e.g., programming language (e.g., C,
Javascript, Lua), system support for code execution (e.g.,
support for multi-threading), application framework, and
streamer. The diversity of application frameworks and
streamers is especially critical as it defines the interfaces
used to monitor and control the video quality, and speci-
fies the programming environment. Table 1 shows three
examples of operating systems and devices and a subset
of application frameworks. In total, we encounter 95 dis-
tinct application framework and streamer combinations.
Each such combination requires special attention to mon-
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OS Devices Application Frameworks
Android
OS

Android
phones/tablets

MediaPlayer, Irdeto, NexStreaming,
Video View, VisualOn, PrimeTime,
Akamai

PlayStation
OS

PS3, PS4, PS
Vita

Trilithium, LibJScript, WebMAF,
Touchfactor

Mac OS &
Windows
with Flash

PCs OSMF, Kaltura, Ooyala, Prime-
Time, Brightcove, FlowPlayer, The-
Platform, JWPlayer

iOS iPhone, iPad,
iPod Touch

AVFoundation, Ooyala, Brightcove,
PrimeTime, MediaPlayer, Irdeto

Table 1: Examples of OS and devices with the corre-
sponding application frameworks.

itoring and control interfaces. Such diversity further rein-
forces the need to minimize the client-side functionality.
Long software update cycles: The second major chal-
lenge is long software update cycles for client-side plat-
forms. There are a host of contributing factors here; e.g.,
device firmware update cycle (3-12 months), publisher
app updates (1-6 months) and app store ratifications (1-4
weeks), and user delays in applying updates (weeks to
months). Unlike in Phase II where Flash/RTMP plat-
forms support a player module to be downloaded dy-
namically, the integration code in most Phase-III plat-
forms is embedded in the player binary and cannot be
changed arbitrarily. This long update cycle fundamen-
tally constrains the pace of evolution of the C3 platform
with respect to any functions that depend on sensing/ac-
tuation layer. Although the decision algorithms are not
constrained by the update cycle as it is already on the
controller, it does impact the information available to the
control logic. For instance, if some quality metric is cur-
rently not collected or cannot be extrapolated from the
collected information, the control logic will not be able
to use it until the next release, which as we have see can
take months or even a year (e.g., set-top boxes).

4.2 Thin Client-Side Design
Next, we discuss how we address the challenge of client
diversity and long update cycles by making the sens-
ing/actuation layer functionality as minimal as possible.
We do so via two key design decisions. First, we intro-
duce a general and abstract representation of video player
actions. This allows us to handle client diversity. Second,
we make an explicit decision to export raw events rather
than summary statistics and push this computation to the
backend. This delayed binding enables us to tackle the
uncertain software upgrade cycles in the wild.

4.2.1 Abstracting player state and control

To minimize the amount of engineering effort required to
support the client-side heterogeneity, we identify a logi-
cal narrow waist that we call the ConvivaStreamingProxy
(CSP) (Figure 5). CSP abstracts away the idiosyncrasies
of different players, and implements high-level moni-
toring APIs for collecting player performance informa-

Sensing/ 
Actuation 
 
 
 
 

 
 

Diverse platforms 

C3 Controller 

Adaptors 

Shim API layer – CSP 
(Monitoring APIs, Control APIs) 

Session Data Model (SDM) 
(Events, states, measurements) 

Figure 5: Overview of the sensing/actuation layer.

tion, and control APIs for switching bitrate and CDN.
For each unique pair of streamer and application frame-
work that we want to integrate, we implement an adaptor
using the CSP API. The adaptor translates between the
framework/streamer-specific APIs and the CSP APIs.

While the adaptor is specific to each framework and
streamer, the common logic above the CSP is reusable
across different platforms. To reduce the engineering ef-
forts and support diverse programming languages used
by the application, we developed a custom language
translator that can take the source code from one lan-
guage (in this case C#) and generate the equivalent
source code for other languages. The design of this trans-
lator is outside the scope of this paper.

The CSP uses a unified monitoring interface, called
Session Data Model (SDM) between clients and the C3
controller (Figure 5). SDM is a conceptual model for
Internet video sessions and is agnostic to device, OS, ap-
plication framework, or streamer features. Consequently
new platforms can be integrated with little change on the
controller. The SDM defines events, states and measure-
ments as following:
• Events encode one-time actions and may change a

state variable. Examples are bitrate switch start/end,
application error.

• States encode persistent state variables, such as player
state (buffering, playing, etc), bitrate and CDN.

• Measurements are continuous variables that show the
health of the player, such as frame rate, available
bandwidth, and buffer length.
CSP also provides the control APIs between clients

and the controller. The clients send poll requests to get
control decisions of bitrate and CDN at well-defined in-
tervals (e.g., either at periodic intervals or at video chunk
boundaries).

4.2.2 Exposing raw data

While the SDM abstraction minimizes the effort in inte-
grating new platforms, it does not address the other prac-
tical challenges arising from long software update cy-
cles. Specifically, this means that some logic (e.g., qual-
ity metric computation) becomes inflexibly hardcoded in
client side. In order to reduce the need to make changes
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to clients, we build on top of the SDM abstraction and
instrument the client to report the raw events and player
states. For example, we could calculate the average bi-
trate of a session on the client and send this to the con-
troller. In contrast, our approach reports all bitrate switch
events to the backend and allow it calculate the average
bitrate (or any other bitrate-related metric). This delayed
binding in postponing summarization of quality metrics
to the controller further embodies the high-level decision
to make the client-side as minimal as possible.

The frequency at which the clients report the controller
naturally induces a tradeoff between overhead and infor-
mation freshness. On one hand, the clients should report
quality frequently so that the controller can detect client-
side events (e.g., session exit, buffer draining out) in time
and make decisions accordingly. On the other hand, up-
dating too frequently may overload the controller and/or
consume too much client-side resources. To address this
problem, we take the following practical approach. The
sensing/actuation layer periodically batches the collected
information into heartbeats before sending them to the
controller. In practice, we choose a sweet spot between
5 seconds and 20 seconds; intervals ≤ 5 seconds intro-
duce undesirable interactions especially on mobile de-
vices (e.g., draining battery by increasing CPU and ra-
dio use) and intervals ≥ 20 seconds significantly reduce
freshness of data used in decision making. Fortunately,
most playback buffers are on the order of 30 seconds,
so the controller is always able to react before the buffer
drains out. Additionally, the controller can dynamically
tune the reporting frequency; e.g., decreasing the fre-
quency during flash crowds to reduce the overhead and
increasing the frequency for a client with a low buffer.

4.3 Fault tolerance
The main failure mode is when the client can no longer
contact one of the C3 servers implementing the decision
layer functions; e.g., the server failed or the network link
is unreliable. There are two potential concerns we need
to address: (1) loss in quality (because the client can-
not receive control decisions) and (2) information loss
(because the client cannot send quality measurements).
Fortunately, we can leverage application-level resilience
in conjunction with the SDM to address both issues.

First, we ensure that client-perceived quality will de-
grade gracefully when the C3 controller is unreachable.
Because there is no tight coupling between the client and
the decision layer, we can handle decision layer failures
by simply resending requests and reports, and allow the
load balancer to reassign the client to a new server. If the
client is unable to contact the controller, it will fall back
to the native bitrate adaptation algorithms [30, 9], which
most platforms support today. The native algorithms are
able to select bitrate with local logic (e.g., using through-

put or buffer occupancy), so the player can still provide
descent quality of experience.

Second, to mitigate the impact of information loss, we
use built-in resilience provided by the SDM semantics
because it explicitly includes current player states. To see
why, consider an alternative solution that only reports the
events without reporting current player states. The prob-
lem is that even a single lost event can mislead the con-
troller; e.g., if we miss an event where the player transi-
tioned from playing to buffering state, the controller will
incorrectly assume that it is currently in playing state.
However, we can mitigate the impact of lost heartbeats
by including a snapshot of current states in each heart-
beat. When a heartbeat is lost or a C3 server is down
(when all history events are lost), even though the con-
troller cannot recover lost events, the new C3 server can
infer the current state using the next heartbeat.

4.4 Summary of key design decisions
In summary, the C3 client-side component has the fol-
lowing key aspects:
1. A common data/control abstraction via the SDM in-

terface to tackle client-side diversity.
2. Exposing raw data to address slow client release cycle.
3. Providing a configurable reporting frequency to re-

duce the overhead.
4. Enabling graceful degradation by falling back to the

native adaptation algorithm to handle transient fail-
ures and using stateful SDM features to re-establish
context when raw events are lost.

5 Evaluation
In this section, we evaluate the performance of C3 and
the benefits it offers. We divide our evaluation into the
following parts;

• We evaluate the C3 controller in terms of (a) scalabil-
ity and responsiveness of the decision layer (§5.1) and
(b) the ability of the modeling layer to handle various
workloads within the deadlines (§5.2).

• We show the sensing/actuation layer is lightweight in
terms of bandwidth consumed and can gracefully de-
grade user experience under failures (§5.3).

• We analyze the quality improvement that C3 offers in
the wild and discuss anecdotal experiences in handling
high impact events (e.g., FIFA World Cup) (§5.4).

5.1 Decision layer
Scalability: By design, the decision layer is horizontally
scalable (§3), with no synchronization needed between
its instances to handle client requests.

Here, we focus on evaluating the requests per second
(RPS) that a single decision instance can process within a
given response time threshold. The instance under test is
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Figure 6: Scalability of single decision instance.

based on an Intel Xeon L5520 2.27Gz with 4 GB RAM,
and only one core is used. Note that the requests include
heartbeats and control requests, both of which are pro-
cessed via the same procedure.

Figure 6 shows the RPS and CPU utilization when re-
ceiving different number of requests. It shows a linear
growth in RPS and CPU utilization before the instance is
saturated at the point of 2500 requests.
Load balancing: Next, we use real world measurements
to show that the requests assigned by the load balancer to
each decision instance is evenly distributed, even under
high load. Figure 7 shows the distribution of RPS and
CPU utilization of decision instances in different deci-
sion data centers, under a high load during the one of
the most popular games in World Cup 2014. The means
and standard deviations are based on all instances in each
data center. It shows that the load balancer can assign
the requests almost evenly across all decision instances
within each data center with little variance and no request
being dropped. The differences across the data centers
is because the wide-area load balancing used geographi-
cal proximity and the workload was unevenly distributed
around the world. Finally, the low CPU utilization sug-
gests this load is well below the instance capacity.
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Figure 7: Number of requests and CPU utilization
(mean and standard error) of decision instances un-
der a high load.
End-to-end response time: The key metric of interest
for the decision layer is the end-to-end response time –
the time between client sends a request and it receives
the response (typically a control decision). It includes
internal processing latency as well as network latency.

We measured the response time of requests in the real
production system. Figure 8 presents the response time
of requests observed from 10 countries representing dif-
ferent continents. It does show variance among different
countries, but overall, we observe the 50%ile (or 80%ile)
is always below 400ms (or 800ms)
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Figure 8: Response time is consistently low across
countries from different continent.

5.2 Modeling layer
The modeling layer has to process various processing
jobs with different characteristics. Figure 9 shows the
processing latency of three most typical types of jobs
and compares them with their deadlines, i.e., maximum
expected processing time. The global model (“Global-
Training”) needs to be refreshed every minute and needs
to run complex machine learning algorithms over the re-
cent (few minutes) of global measurements. Customer
interactive queries (“InteractiveQuery”) run on-demand,
and have to be completed in sub-second response time
to prevent the customers from waiting too long. Finally,
live update of quality metrics (“LiveUpdate”) is the met-
ric computation and aggregation process and has to be
sub-second. As shown in Figure 9, the processing la-
tency can easily satisfy the deadlines of different jobs.
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Figure 9: Processing latency (mean and standard de-
viation) of different types of jobs in modeling layer
compared to their deadlines.
5.3 Sensing/actuation layer
Next, we show that sensing/actuation layer has relatively
light overhead compared to player execution and it pro-
vides local failover under decision layer failures.
Overhead of sensing/actuation layer: We evaluate
the sensing/actuation layer overhead in terms of the ad-
ditional bandwidth used by comparing a C3-enabled
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(b) Buffering ratio (BufRatio).
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Figure 11: Quality improvement of using C3.
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Figure 10: Local application-level resilience when C3
controller is unavailable.

player and a base video player. The base player we use is
a fully functional player with OSMF as its streamer, and
we let both the base player and C3-enabled version play
a video encoded in 1.5Mbps bitrate on a laptop running
Windows OS. We find that the additional bandwidth used
by C3 is are typically very low and ≤ 1% of the band-
width used to download the video (not shown).
Local failover under decision layer failures: Next, we
stress test the client under the scenario when it loses com-
munication with the C3 controller. By design (§4.3), the
player should fall back to the player’s native adaptive bi-
trate logic and play smoothly; i.e., as long as the avail-
able bandwidth can sustain the lowest bitrate, the player
should play smoothly, though with a low quality. We
set up a real player to play a video encoded in multiple
bitrates (from 880 to 2750 kbps), and the content is avail-
able from two CDNs. Figure 10 shows the time-series of
bitrate downloaded by the player over two runs. In the
first run, the C3 controller is not available and we throt-
tle the bandwidth to the default CDN, so that the player
backoffs to the native control logic and sticks to the low
bitrate but not crash. In the second run, the C3 controller
is available, and we again throttle the bandwidth to the
same CDN. This time, because the C3 controller identi-
fies the performance difference of two CDNs, it instructs
the player to start with the unthrottled CDN, and thus it
is able to switch to higher bitrate after a few chunks.3

5.4 C3 real-world deployment
Finally, we present the quality improvement C3 offers
in the wild and our experiences in managing some high-
impact events.

3The bitrates of the initial chunks are intentionally chosen to be low
to minimize join time and avoid early buffering.

5.4.1 Quality improvement

We begin with the real-world quality improvements
brought by centralizing decision logic detailed in §3.2.

Benefits of using C3: To estimate the quality improve-
ment, we did a randomized trial where each session was
randomly assigned to use either C3 or the native con-
trol logic. Figure 11 shows the improvement during May
2014, in terms of two quality metrics and across five con-
tent providers by comparing the median quality of ses-
sions using C3 vs. native clients.

First, Figure 11(a) shows that C3 can significantly re-
duce the video start failure rate (percent of video ses-
sions that failed to start) of a content provider. The
reason is that using the global view allows us to pre-
dict CDN performance and choose an initial CDN that
is not overloaded, unlike the native logic, which is typ-
ically statically configured (or chosen at random). Sec-
ond, Figure 11(b) compares the buffering ratio of a con-
tent provider, and it shows a consistent reduction by 50%
in buffering ratio by C3. The reason is that we can adapt
the midstream selection of bitrate and CDN by leverag-
ing the quality information of other sessions to achieve
higher bitrate and a lower buffering ratio. Finally, Fig-
ure 11(c) shows that the quality improvement is consis-
tent across five different content providers that use C3.

Impact of data staleness: Next, we present a trace-
driven what-if analysis to quantify how much the de-
crease in freshness can impact the optimality of such
quality improvement. Recall that allowing the global
view to be stale on the order of few minutes was a key en-
abler for the scale-out design in §3. To avoid any biases
introduced by our own control logic, we use the trace of
sessions of Feb 10 from a content provider whose de-
cisions are not controlled by C3 (as in §3.1). We sim-
ulate the effect of selecting the best observed CDN t
minutes ago for each AS, and vary the degree of stale-
ness by modifying this observation window t. Ideally,
the decisions are made using the most recent view, i.e.,
t = 1. We evaluate multiple levels of staleness with
t = {2,10,20,40,80,160} minutes. For each t, we com-
pare FreshestDecision (i.e., times of picking the actual
best CDN based on the freshest data) and StaleDecision
(i.e., times of picking the actual best CDN based on the
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Figure 12: Impact of using stale data as input.

t-minute stale data), and compute the GapToOptimal =
1 − StaleDecision

FreshestDecision . The impact of staleness is smaller
when GapToOptimal is closer to zero.

Figure 12 shows the GapToOptimal of buffering ra-
tio and average bitrate under different staleness t. First
of all, it shows that using 2-minute stale data has
very little impact, increasing buffering ratio by less
than 7% and average bitrate by less than 2.5%. This
suggests that minute-level stale data is still useful to
make near-optimal decisions. Second, in both metrics,
GapToOptimal increases slowly when t increases from
2 to 20 minutes, and begins to increase much faster from
t = 40. This suggests that near-optimal decisions can be
made with slightly stale global model.

5.4.2 Case studies with high-impact events

In this section, we focuses on case studies on high-impact
events (e.g., popular sports events) to showcase that the
design of C3 is flexible and scales out horizontally.
Scale-out capability: The first case study highlights the
flexibility of the scale-out design that enabled us to in-
voke public resources on demand. During World Cup
2014, we provisioned additional decision instances ca-
pability, including instances from a major public cloud
service provider, in order to handle the scale of clients,
which was expected to be 6M concurrent viewers. As a
result, we were able to successfully handle the peak of
3.2M concurrent viewers during the US-Germany game.
The reason for this scale-out capability is that the client-
facing decision layer is decoupled from the modeling
layer, which is the only centralized function (§4.2).
Dynamic reconfiguration: The second case is an ex-
ample of flexibility that enables C3 to drop certain func-
tionality under unexpected flash crowd. During a very
popular soccer game of one European soccer league we
saw about 2M concurrent viewers. Specifically, we saw
a large flash crowd when the content provider switched
all of its viewers to another channel, causing a high join
rate which exceeded the capacity of our hardware load
balancer for doing SSL offload. Since we could not
add capacity to the hardware load balancer, we needed
to devise quick workarounds to reduce this load. Our
solution was to reduce the heartbeat frequency and dis-
able HTTPS for that particular content provider. This
effectively reduced the overhead of per-session operation
(e.g., SSL handshakes) and ensured the availability of C3

controller. This type of fast reaction to unexpected flash
crowds was possible because we had a thin client and
had moved most of the functions to the C3 controller—
it would have been virtually impossible to reconfigure
client behaviors with hardcoded client-side player logics.

6 Related Work
C3 is related to a rich body of work in network con-
trol, application-layer systems, and big data platforms.
While C3 borrows and extends ideas from these rele-
vant communities, the core contribution of our work is
in synthesizing these ideas to demonstrate the feasibility
of an Internet-scale control plane architecture for Inter-
net video. We briefly describe key similarities and dif-
ferences between C3 and related work.
Network control plane: As discussed earlier in §2,
the origins of C3 were inspired by the precursors to
SDN (e.g., [45, 18, 43, 33, 19]) and in many ways C3’s
evolution has paralleled the corresponding rise of SDN.
As such, there are natural analogies between C3 and
SDN, in terms of the sets of challenges that both have
to address: interface between control and data plane
(e.g., [41, 17], distributed and global state management
(e.g., [33, 15, 36]), consistency semantics (e.g., [40, 44]),
centralized optimization algorithms (e.g., [26, 28]). The
key differences are that C3 focuses on a specific video
application ecosystem, which entails different domain-
specific challenges (e.g., larger scale of clients and more
data plane heterogeneity) and domain-specific opportu-
nities (e.g., weaker consistency).
Video quality optimization: Previous work confirms
that video quality impacts user engagement [23, 14]. It
also identifies that many of the quality issues today are a
result of sub-optimal client-side control logic (e.g., [27,
30]), and spatial and temporal diversity of performance
across different CDNs and content providers [39, 38, 29],
which suggests a centralized controller or a federated
architecture [16] that provides global state and enables
better informed decision making. However, these prior
studies made a case for centralized control but fell short
of actually demonstrating the viability of that control
plane or the real benefits in the wild. In contrast, C3
is a concrete production design and implementation that
achieves the benefits identified by these efforts. In doing
so, it addresses many challenges (e.g., scalability, fault
tolerance) that these prior works did not try to address.
Application resilience: The idea of exploiting domain-
and workload-specific insights for improving system
scalability and resilience is far from new and has been
repeatedly identified; e.g., both in Internet services [24,
31, 5] and distributed file systems [25, 20]. For instance
GFS exploits a unique workload pattern [25] while Span-
ner exploits tolerance for weaker consistency [20]. Our
specific contribution is in reinforcing this insight in the
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context of an Internet-scale control plane architecture.

Real-time data processing systems: In some sense, C3
can also be viewed as an instance of a scale out ana-
lytics and control system in the spirit of other big-data
solutions (e.g., [21, 6, 22, 12, 11, 34, 10, 1]). Indeed,
the C3 implementation builds on (and has actively con-
tributed to) a subset of these existing technologies. While
the C3 implementation relies on tools such as Spark [11]
and Kafka [34], the core ideas are quite general and can
be ported to other platforms. At a conceptual level, C3
also shares some similarity with the broad purview of
the recent Lambda Architecture [7], with a combination
of batch, serving, and speed layers. More recent work on
Velox [21] also recognized the separation of global mod-
eling and per-client prediction as a powerful system de-
sign choice for other data analytics applications. While
C3 follows a similar high-level multi-layer architecture,
the key is the specific division of functions between layer
for video quality optimization. For instance, unlike the
front-end layer in most scale-out systems, C3’s front-
end decision layer is an active layer that runs decision-
making functions as well. Moreover, C3 justifies the sep-
aration of modeling and decision making by the domain-
specific observation that slightly stale global models can
still achieve near-optimal decisions.

7 Lessons
We conclude with key lessons we have learned from
building and operating C3. Even though C3’s design
was driven by video-centric challenges and opportuni-
ties, these lessons have broader implications to concur-
rent and future efforts for centralized network control.

Feasibility of Internet-scale control: The one obvious
lesson from our journey is that it is indeed possible to im-
plement an Internet-scale control platform that achieves
policy goals with global visibility. While there are par-
allel SDN success stories demonstrating the viability of
centralized control, these have been in different (and ar-
guably more scoped) domains; e.g., low-latency datacen-
ters [32, 42], wide-area networks with a few PoPs [28] or
coarse-grained inter-domain route control [18]. With C3,
we provide another proof point in what we believe to be
a much more global deployment, with larger scale and
more heterogeneous clients, more stringent policy, and
greater expectations in quality of experience.

Decisions that worked: Among the many decision
choices that have made C3 a proof point of Internet-scale
control, we highlight three that were particularly useful:

• Exploiting application-level resilience: A key en-
abler for our scale-out control architecture is that we
were able to appreciate and exploit domain-specific
properties that allows us to weaken some requirements
(e.g., consistency and model freshness). While this

idea may not be new and has been re-observed in
many contexts, we believe that it is especially use-
ful for network control applications. For instance,
there has been considerable research effort develop-
ing consistent update schemes for SDN [40]. Rather
than building a general-purpose solution, it might be
possible to leverage application-specific resilience and
engineer simpler schemes with weaker consistency
properties.

• Minimal client functionality: We cannot stress
enough the advantages that we have derived from min-
imizing the client functionality. This has (i) dramat-
ically simplified our product development, integra-
tion cycles to support the increasingly heterogeneous
client-side platforms, and (ii) made the C3 controller
flexible to enforce global policy and evolve. The mini-
mal client design is also made possible by the increas-
ing compute capabilities of the backend.

• Exposing lower-level APIs: While minimal client
functionality is useful, it has also been proved surpris-
ingly useful to expose as many lower-level APIs from
clients as possible, since they maximize control logic
extensibility with a (relatively) slowly evolving data
plane. We see immediate implications of this in SDN.
While SDN started off with a minimal API (e.g., early
OpenFlow versions), it soon devolved into the same
complexity pitfalls that it sought to avoid (e.g., Open-
Flow 1.3 spec is 106 pages long [17]). We believe it
might be worthwhile for the SDN community to re-
visit minimality in light of the benefits we have de-
rived and we already see early efforts to this end [17].

New research opportunities: C3’s design and deploy-
ment opens up new possibilities for video quality opti-
mization. The current C3 design is only a step in our
journey and we acknowledge that there are several direc-
tions for future work that we do not cover in this paper.
For example, one interesting question is analyzing the
interaction of C3 with CDN control loops. In terms of
quality improvement, we need a better understanding of
clients that show little improvement and techniques to
leverage network and CDN information for better qual-
ity diagnosis. Similarly, there are interesting modeling
and algorithmic questions in the design of the prediction
modeling and decision algorithms that have significant
room for improvement.
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Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter

Glenn Judd
Morgan Stanley

Abstract
Over the last several years, datacenter computing has
become a pervasive part of the computing landscape.
In spite of the success of the datacenter computing
paradigm, there are significant challenges remaining to
be solved—particularly in the area of networking. The
success of TCP/IP in the Internet makes TCP/IP a natu-
ral candidate for datacenter network communication. A
growing body of research and operational experience,
however, has found that TCP often performs poorly in
datacenter settings. TCP’s poor performance has led
some groups to abandon TCP entirely in the datacen-
ter. This is not desirable, however, as it requires recon-
struction of a new transport protocol as well as rewriting
applications to use the new protocol. Over the last few
years, promising research has focused on adapting TCP
to operate in the datacenter environment.

We have been running large datacenter computations
for several years, and have experienced the promises and
the pitfalls that datacenter computation presents. In this
paper, we discuss our experiences with network commu-
nication performance within our datacenter, and discuss
how we have leveraged and extended recent research to
significantly improve network performance within our
datacenter.

1 Introduction
In recent years, datacenter computing has become a per-
vasive part of the computing landscape. The most visible
examples of datacenter computing are the warehouse-
scale computers [4] used to run search engines, social
networks, and other publicly visible “cloud” applica-
tions. Less visible, but no less critical, are datacenter
computing platforms used internally by numerous orga-
nizations.

In spite of the success of the datacenter computing
paradigm, there are significant challenges remaining to
be solved—particularly in the area of networking. The
pervasiveness of TCP/IP in the Internet makes TCP/IP a
natural candidate for datacenter network communication.
TCP/IP, however, was not designed for the datacenter
environment, and many TCP design assumptions—e.g.
a high degree of flow multiplexing, multi-millisecond
RTT—do not hold in a datacenter. A growing body of
research and operational experience, has found that TCP
can perform poorly in datacenter settings.

TCP’s poor performance has led some groups to aban-
don TCP entirely [15]. This is not desirable, however,
as it requires reconstruction of a new transport protocol
as well as rewriting applications to use the new protocol.
Recent research has focused on adapting TCP to operate
in the datacenter environment. DCTCP stands out as a
particularly promising approach as it utilizes technology
available today to dramatically improve datacenter TCP
performance.

In this paper, we discuss our experiences with net-
work communication performance within our datacenter
and discuss how we have leveraged and extended recent
research to significantly improve network performance
within our datacenter, without requiring changes to our
applications.

The experimental results that we present are often in
the form of controlled tests that isolate behavior that we
encountered either in actual production TCP and DCTCP
usage, or in our efforts to introduce DCTCP into produc-
tion.

In addition, this paper makes the following specific
contributions.

• To the best of our knowledge, this paper presents
the first published discussion of DCTCP production
deployment.

• We identify shortcomings that make DCTCP as pre-
sented and implemented in [1] unusable in our en-
vironment, and we present solutions to those short-
comings that we have verified through implementa-
tion.

• We demonstrate that commonly used receive buffer
tuning algorithms perform poorly in current data-
centers.

• We empirically compare DCTCP performance
to TCP convergence, and we show that—
surprisingly—DCTCP convergence can be superi-
or to TCP convergence. We show that this is due
to DCTCP’s superior coexistence with common re-
ceive buffer tuning algorithms. With correct buffer
tuning, TCP convergence, stability, and short-term
fairness all exceed that of DCTCP.

• We also discuss results from dramatically reducing
RTOmin at scale to mitigate incast.
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Our discussion will proceed as follows. Section 2 will
briefly describe our datacenter environment. Section 3
will discuss the three significant problems that we have
encountered with TCP in our datacenter. Section 4 will
discuss problems that delayed acknowledgements intro-
duce into datacenter networks, and will analyze solu-
tions. Section 5 will discuss reducing RTOmin to mitigate
incast. Section 6 will discuss addressing the root cause of
incast-induced packet loss using DCTCP. Section 7 will
discuss obstacles that prevent DCTCP from being used in
our environment, and solutions for those problems. Sec-
tion 8 will then compare DCTCP performance to that of
TCP. Section 9 will investigate the performance of auto-
matic TCP buffer tuning in our environment. Section 10
will briefly discuss related work, before we conclude in
Section 11.

2 Setting

The majority of recent work on TCP in the datacenter
has either implicitly or explicitly been undertaken in the
context of an Internet services setting. Of course, data-
center computation applies to a much broader spectrum
of applications, and even within a single datacenter of a
single organization, a wide variety of application types
may be found.

Figure 1: Typical Application Structure

2.1 Overview

The context of this work is a datacenter used large-
ly for two broad types of applications: Monte Carlo
simulation and data analysis. A typical application is
structured as shown in Figure 1, which shows a com-
mon communication-intensive application structure in

our datacenter. This application is constructed as a se-
ries of transformations (depicted as rectangles) on data
(depicted as ovals and rounded rectangles.) Each trans-
formation may read several data elements, and may store
several data elements.

Most data access is to one of two highly-parallel dis-
tributed data storage systems: a key-value store and a
distributed file system. The key-value store tends to gen-
erate much higher degrees of incast (discussed at length
further in this paper) due to support for bulk reading and
writing of values. The distributed file system results in
more limited incast as the number of blocks simultane-
ously read by any particular operation is limited by the
file system’s read-ahead limit. Further details of these
storage systems are outside the scope of this paper, but
both are colocated with our computation servers and—
thus—are highly parallel.

Monte Carlo simulations tend to be computationally
intensive, but even they tend to contain periods of inten-
sive communication. Data analysis applications tend to
be storage and communication intensive.

As our datacenter is shared among many applications
and distinct user groups, it is very important that applica-
tions in our datacenter are as loosely coupled as possible.

Unless otherwise specified, the applications discussed
and results presented in this paper were obtained on a 10
Gbps network with a 9K MTU. Also unless otherwise
specified, controlled experiments were conducted using
iperf as traffic generator sending at the maximum rate al-
lowed. TCP congestion control is CUBIC [6] unless oth-
erwise stated (as CUBIC is the Linux default congestion
control.) We conducted several of the controlled experi-
ments using the Linux Reno implementation, but did not
observe any significant differences. As such we have left
comparisons with Reno (and other TCP variants) as out
of scope for this work. Applications in this datacenter do
not access the public Internet.

2.2 Traffic Characteristics

To illustrate the type of traffic that our applications gen-
erate, we recorded network traffic for a two-minute inter-
val of a representative application (a Monte Carlo simu-
lation) on a single server in this application. Due to the
uniform nature of both our applications and our storage
systems, the traffic seen by other servers is very similar.
(We have verified this with additional samples on other
servers.) Figures 2, 3, and 4 summarize flow character-
istics of the recorded traffic.

TCP connections in our environment tend to be long-
lived. For the purposes of this analysis, we define a flow
as packets demarcated by TCP PUSH flags within a sin-
gle TCP connection.

2
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Figure 2: CDF of flow sizes
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Figure 3: CDF of flow bytes

Figure 2 depicts the cumulative distribution of flow
sizes sampled, and illustrates that the vast majority of
flows in this application are very small. These small
flows largely consist of either data retrieval requests, or
simple operation results. (As stated earlier, an individual
connection will contain many flows. These flows often
occur in quick succession within the connection.)

Figure 3 illustrates the cumulative distribution of flow
bytes. (For each flow size, the corresponding point de-
picts the fraction of total bytes in flows less than or equal
to that flow size.) As shown in Figure 3, the majority of
bytes are in larger flows—in spite of the large number of
small flows. This is due to the fact that while the sim-
ple requests and operation results dominate in terms of
flow numbers, most bytes on the network are generated
by actual value storage or retrieval.

In addition, we also categorized the sampled traffic as
shown in Figure 4. This figure shows the fraction of total
traffic (measured in bytes) that falls into the given traf-
fic categories. This figure clearly shows that key-value
store traffic dominates, followed by distributed file sys-
tem traffic. Other traffic types are not a significant frac-
tion of the total traffic.

Other

Distributed File System

Key-value Store

Figure 4: Flow Type Categorization

In summary, key-value store traffic dominates the traf-
fic in the measured application. Most flows generated by
this application are very small—too small for tradition-
al congestion control to prevent problems such as incast.
The majority of traffic, however, is in contained in larger
flows. Thus, congestion control plays an important role
in preventing larger flows from experiencing congestion,
and in preserving buffer space for small flows.

3 TCP in the Datacenter

Communication intensive datacenter applications
present datacenter networks with several performance
problems [5]. This is largely due to the fact that TCP—
the foundation of many datacenter applications—was
not originally designed with the characteristics of
modern datacenters in mind. In this section we discuss
three significant problems with TCP that we have
encountered: delayed ACK induced stalls, incast, and
problems with receive buffer tuning.

3.1 Stalls Due to Delayed ACKs

Delayed ACKS in TCP allow TCP to substantially re-
duce the number of packets sent. Delayed ACKs work by
delaying the sending of an ACK for multiple segments.
The delayed ACK effectively merges ACKs by cumula-
tively acknowledging multiple received segments.

Delayed ACKs have an associated timeout to prevent
the sender from stalling forever due to a lack of ACKs
from the receiver. The default timeout is tens to hundreds
of milliseconds. In a datacenter with sub-millisecond
RTT, the default delayed ACK timeout is far too large,
and we have observed application-level timeouts that
were caused by delayed ACKs. Section 4 will discuss
resolving this issue.

3
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3.2 Incast
The most vexing problem that TCP encounters in our dat-
acenter network is “TCP incast” [12]. TCP incast occurs
whenever a single receiver receives data from multiple
senders in a short amount of time. This is a frequent com-
munication pattern in datacenter applications. As depict-
ed in Figure 5, when this situation occurs, the switch to
which the receiver is attached is often overloaded: the
senders send more data than the receiver can receive; the
switch cannot store all of the data; and so the switch dis-
cards data that it does not have room for [13]. Unlike
delayed ACK-induced timeouts, incast is much more dif-
ficult to remedy, and we will spend much of this paper
discussing this problem.

Sender

Sender

Sender

Sender

Switch Receivern * L L

L = Link bandwidth

n senders

Discards

Figure 5: Incast

Previous work discussing incast and other datacenter
TCP problems has focused on Internet service applica-
tions and shown that TCP performs poorly in datacenters
that are servicing these applications. While the nature
and structure of our datacenter applications are very dif-
ferent, we still experience similar problems with TCP in
our datacenter.

Consider our typical application structure discussed
previously and depicted in Figure 1. Each transformation
may read several data elements from our distributed stor-
age systems, and may store several data elements into our
distributed storage systems. As a result, reads from our
distributed storage systems often result in a high degree
of TCP incast. Writes to the distributed storage systems
also contribute to incast as many writers may be writing
to the same storage node.

At a high level, we find that incast produces the fol-
lowing problems at the application layer:

• Communication timeouts and retransmissions

• Lost throughput

• Increased latency

• Latency variance (jitter)

These problems can afflict even “innocent” applica-
tions and servers uninvolved in the communication. At
the business level, further problems result:

• Application failures

• Idle servers waiting for communication, and in-
creased costs associated with procuring and oper-
ating additional servers.

• Application failures even for “innocent bystanders”

• Development effort to work around communication
problems

• Effort lost troubleshooting network problems in in-
nocent applications

• Effort lost coordinating among different develop-
ment groups to avoid communication problems.

3.3 Receive Buffer Tuning
In addition, a very significant problem that we have en-
countered with TCP in the datacenter is receive buffer
tuning [16]. The receive buffer size has a dramatic im-
pact on TCP performance and server RAM utilization.
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To illustrate this, consider the results of a simple two-
flow throughput experiment. Both flows were sent from
distinct servers to a common receiver. The first flow ran
for 20 seconds. The second flow started 5 seconds later,
and ran for a total of 10 seconds. The results are shown
in Figure 6.

TCP convergence, fairness, and stability in this test are
all extremely poor. TCP should be able to converge with-
in a few RTT, not several seconds. (While [11] discusses
some detailed problems with TCP-CUBIC convergence,
the behavior shown in Figure 6 is far worse than is ex-
pected.)

Figure 7 repeats this test for DCTCP. Surprisingly,
while [2] finds that DCTCP converges more slowly than
TCP, Figure 7 shows DCTCP dramatically outperform-
ing TCP with respect to stability, convergence, and short-
term fairness.

The source of this unexpected behavior is receive
buffer tuning. This will be addressed in detail in Sec-
tion 9.

3.4 Summary
The problems discussed above are significant, and histor-
ically we worked around them at the application layer. In
the following sections, we discuss how we have large-
ly eliminated these problems, dramatically increased
our network performance, and removed the need for
application-level workarounds.

4 Delayed ACKs
As discussed earlier, delayed acknowledgements can
cause significant problems. Delayed ACK timeouts
are—by default—far too large for a datacenter setting.
Fortunately, there are two simple alternatives to remedy
this problem: 1) eliminate delayed acknowledgements,
or 2) reduce the delayed acknowledgement timeout. We
have investigated both approaches.

If ACKs could be generated without cost, the ideal
ACK delay would be zero, and an ACK would be gener-
ated for every single packet. Unfortunately, while elim-
inating delayed ACKs eliminates the possibility of any
sender stall, it does so at the cost of generating a signif-
icant number of packets. We do not find this increased
load to be a problem in our network, but we do find it to
be problematic on our end servers.

Figure 8 illustrates this behavior. In this test, one or
two senders send to a single receiver. Delayed ACKs are
delayed a maximum of 0 (i.e. no delayed ACKs), 1, or 40
milliseconds. The total CPU % utilized by IRQ daemons
on the receiver for the given test is plotted for each test
(100% is the equivalent of 1 CPU completely busy). This
test exhibits essentially no difference for delays of 1 and
40 milliseconds. Turning delayed acknowledgements en-
tirely off, however, produces a sharp increase in CPU uti-

lization for both one and two flows. (Repeating this test
yields similar results with insignificant variation.)
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Figure 8: Delayed ACK CPU Utilization

For this reason, in our network we now lower the de-
layed ACK timeout as much as possible without turning
delayed ACKS off. Those constraints yield a delayed
ACK setting of 1 ms. We will still incur an occasional
stall, but the stall is not long enough to cause significant
issues at our application layer. (Some applications, how-
ever, may benefit from turning off delayed ACKs entire-
ly.)

5 Reducing RTOmin

During the most communication-intensive phases of our
application, we found that our applications were expe-
riencing large numbers of incast-induced TCP timeouts.
At the application layer, this resulted in a long tail on our
task completion times. The effects of incast are clear-
ly seen in Figure 9 which shows a TCP sequence graph
from a single flow of a production application during a
heavy all-to-all incast. The duplicate sequence numbers
visible are packet losses and retransmissions that were
successfully handled by TCP. The 200 ms pauses in the
flow, however, are due to whole-window loss induced
TCP timeouts incuring the RTOmin penalty.

Previous work [13] has proposed a simple technique
to mitigate the effects of incast-induced TCP timeouts:
reduce RTOmin. We employed this technique in our dat-
acenter, and the benefits can be seen in Figure 10 which
shows TCP sequence plot of a flow experiencing incast.
As with Figure 9, loss is visible, as is a timeout, but time-
outs are reduced to 5 ms which is the minimum effective
RTOmin that our servers support.

As shown in Figures 9 and 10, reducing RTOmin sig-
nificantly improved the performance of TCP in our dat-
acenter by mitigating the effect of TCP timeouts. It did

5
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not, however, prevent timeouts. In fact, the rate of packet
loss in our network increased significantly after we ap-
plied the RTOmin change. This is expected as lowering
the RTOmin does not prevent packet loss and timeouts, it
just mitigates the effects. Moreover, lower timeout val-
ues will increase the number of contending flows which
will tend to increase the overall number of lost packets.

In short, we found that reducing RTOmin greatly re-
duced the impact of incast on our applications. Network
and server stability were not impacted by this change
even when running on a cluster of over 2,000 servers. In-
nocent applications (applications not involved in the in-
cast) were, however, still impacted. Moreover, network
performance was still far from ideal. We were still incur-
ring (much smaller) timeouts and the usual TCP latency.
In the next section, we discuss addressing the root cause
of incast.

6 DCTCP
Subsequent work on datacenter TCP has proposed sever-
al techniques to actually reduce packet losses due to in-
cast, rather than just mitigate the effects of lost packets.
Of these techniques, one of the most promising for de-
ployment in our datacenter is DCTCP. DCTCP possess-
es several features that make it a particularly promising
approach for us: it relies on capabilities that are avail-
able in current hardware and software, an implementa-
tion is available [8], and it does not contain features that
we cannot use. (In particular, we decided against lever-
aging work that relies on flow priority or deadlines as our
connections are long-lived and utilized for many differ-
ent types of communication. As a result, communicat-
ing priority or deadline information to the network layer
would be difficult or impossible for our applications.)

Our primary objectives for moving to DCTCP were to:
eliminate TCP timeouts (or nearly eliminate them), re-
duce latency, and reduce the network-induced coupling
of applications. In particular, we wanted to protect “in-
nocent bystanders” from aggressive applications.

In the following sections, we first discuss obstacles to
reaping these benefits, and how we extended DCTCP to
overcome these obstacles, followed by some discussion
of our extended DCTCP’s performance.

7 DCTCP Deployment Challenges
7.1 Coexistence with TCP
In motivating the design of DCTCP, [1] states “[a data-
center] network is largely homogeneous and under a sin-
gle administrative control. Thus backward compatibility,
incremental deployment and fairness to legacy protocols
are not major concerns.” For actual usage in our data-
center, however, these are all major concerns. We do not
have the luxury of a “big bang” deployment for several
reasons.

• There are multiple applications running in our data-
center with distinct ownership. It is critical that one
application moving to DCTCP does not negatively
impact any application using conventional TCP. Re-
call that one of our major arguments for deploying
DCTCP is to reduce the coupling of applications.

• Many critical services cannot be moved to DCTCP.
Even for applications with owners willing to make
the move to DCTCP, there are services used by
those applications that we simply cannot move to
DCTCP. For instance, many of our applications
leverage file servers that do not support DCTCP.

Unfortunately, DCTCP and TCP do not naturally co-
exist well. To demonstrate this, we conducted a simple
test where one TCP flow and one DCTCP flow both send
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at maximum rate from distinct servers to a single receiv-
er. (Again, these experiments are conducted on a 10
Gbps network using iperf as sender and receiver.) The
TCP flow lasts for a total of 20 seconds. The DCTCP
flow lasts for 10 seconds and starts 5 seconds after the
TCP flow starts.

The results are shown in Figure 11. As soon as the
DCTCP flow starts, the TCP flow almost completely
stops while the DCTCP flow completely saturates the
link. This is an extremely negative result, and essential-
ly the complete opposite of what we require. (Note that
it is possible to delay the onset of this behavior through
configuration settings, but this will not solve the funda-
mental problem.)
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Figure 11: DCTCP Coexistence with TCP
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Figure 12: Switch RED ECN Implementation

The reason that DCTCP traffic dominates convention-
al TCP traffic is due to RED/ECN AQM behavior which
is as follows for a switch configured for DCTCP. As de-
picted in Figure 12, when the switch queue length is be-
low the marking threshold (there is only one threshold
for DCTCP), any packet that arrives is simply queued
irrespective of ECT status. When the queue length is
over the marking threshold, however, all ECT packets
are marked with CE, but non-ECT packets are dropped.
In DCTCP, the marking threshold is set very low value
to reduce queueing delay, thus a relatively small amount
of congestion will exceed the marking threshold. During
such periods of congestion, conventional TCP will suffer

packet losses and quickly scale back cwnd. DCTCP, on
the other hand, will use the fraction of marked packets to
scale back cwnd. Only when all packets are marked will
cwnd be scaled back as far as conventional TCP. Thus
rate reduction in DCTCP will be much lower than that
of conventional TCP, and DCTCP traffic will dominate
conventional TCP traffic traversing the same link.

As both TCP and DCTCP must service the same
servers in our network, we resort to utilizing IP DSCP
bits to segregate DCTCP traffic from conventional TCP
traffic. AQM is applied to DCTCP traffic, while TCP
traffic is managed via drop-tail queueing.

7.2 Non-compliant switches
While we are fortunate enough to have support for ECN
marking on our top-of-rack switches, this is the on-
ly location in our network that supports ECN marking.
Higher-level switches are purely drop-tail. DCTCP must
gracefully support transit over non-ECN switches with-
out impacting either the behavior of DCTCP traffic or
conventional traffic. Our tests show that DCTCP suc-
cessfully resorts to loss-based congestion control when
transiting a congested drop-tail link.

7.3 Non-technical challenges
Even without any technical challenges, altering the net-
work in a major enterprise is a difficult undertaking. Net-
work administrators are, necessarily, risk-averse. A reli-
able network is a business-critical requirement. Thus,
network innovations are often viewed as presenting sig-
nificantly more risk than reward.

We were able to present a compelling case for DCTCP
implementation due to the following:

• Reduction in coupling. Application coupling was a
known phenomenon in our datacenter. Convention-
al TCP’s strong coupling of unrelated applications
causes problems as discussed previously. DCTCP’s
promise to greatly reduce the coupling between ap-
plications meant that our network administrators
would directly benefit from reduced troubleshoot-
ing requests from applications experiencing myste-
rious network performance issues caused by unre-
lated applications.

• Timing. We timed our DCTCP roll-out to coincide
with the deployment of new network switches in our
environment. We worked with our network admin-
istrators to ensure that the switch features necessary
to support DCTCP were available from day one.

• Primum non nocere. Our support for conventional
TCP and non-ECN compliant switches enabled us
to guarantee that we would not harm existing appli-
cations.

7
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7.4 Connection Establishment

Segregating DCTCP from conventional TCP removed
one potential showstopper from our DCTCP deployment
effort. Nevertheless, we encountered one other major
problem in DCTCP that had the potential to prevent
DCTCP adoption in our network: we found that under
load, DCTCP would fail to establish network connec-
tions due to a lack of ECT in SYN and SYN-ACK pack-
ets.

[1] does not discuss setting ECT on SYN and SYN-
ACK packets. The Stanford implementation [8] does
not set ECT on either SYN or SYN-ACK packets. This
is in line with RFC 3168 [14] which states “A host
MUST NOT set ECT on SYN or SYN-ACK packets.” RFC
5562 [10] (derived from ECN+ [9]) proposes setting
ECT on SYN-ACK packets, but maintains the restriction
of no ECT on SYN packets.

RFC 3168 and RFC 5562 prohibit ECT in SYN pack-
ets due to security concerns regarding malicious SYN
packets with ECT set. These RFCs, however, are intend-
ed for general Internet use, and do not directly apply to
DCTCP. In our internal network, we do not tolerate the
compromised servers necessary for an attacker to send
such packets. Moreover, the Stanford implementation’s
adoption of these RFCs likely owes more to its leverag-
ing of the existing ECN support in Linux than anything
else.

We find that setting ECT on SYN and SYN-ACK is
critical for the practical deployment of DCTCP. With-
out this feature, SYN and SYN-ACK packets will be
dropped whenever there is even minor congestion. As
discussed in Section 7.1, and depicted in Figure 12,
whenever the queue length is greater than the mark-
ing threshold, non-ECT packets are dropped. Thus, if
SYN and SYN-ACK packets are non-ECT they will be
dropped with high probability. We modified DCTCP to
apply ECT to both SYN and SYN-ACK packets. We re-
fer to this implementation as “DCTCP+” to distinguish
it from the original DCTCP implementation. (Following
the naming convention of ECN+ which extended ECN
with ECT on SYN-ACK only.)

To measure the effect of this issue, we conducted an
experiment where we disabled ECT for SYN packets
and attempted to establish a DCTCP connection (with
no SYN or SYN-ACK ECT) in the presence of a number
of competing DCTCP+ flows which were already estab-
lished and sending data at maximum rate. As shown in
Figure 13, as the number of competing flows increases,
it quickly becomes hard, then impossible, to establish a
connection when SYN packets are non-ECT. Thus, we
utilize DCTCP+ in our deployment, which marks both
SYN and SYN-ACK packets as ECT.
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Figure 13: Connection Probability without SYN ECT

Note that given our support for conventional TCP, we
could use DSCP to cause SYN and SYN-ACK packets
only to be treated as conventional TCP. We do not take
this approach as it would split packets from a single flow
across two separate paths in our network which is highly
undesirable.

8 DCTCP+ Performance
We now discuss several elements of DCTCP+ perfor-
mance illustrating where DCTCP+ does well, and where
there is room for improvement.

8.1 Incast Throughput and Fairness with
Buffer Tuning Active

We first measured performance in an incast scenario sim-
ilar to that in Figure 5. In this case, a single receiver re-
ceived traffic from 19 senders for a total of 10 seconds
(as discussed previously all experiments in this section
are conducted on a 10 Gbps network). Importantly, auto-
matic receive buffer tuning is on for this test; we will later
show that this has a dramatic effect on TCP performance
but very little for DCTCP+. Figures 14 and 15 show
summarized throughput statistics for all 19 flows for each
experiment. DCTCP+ fairly distributes the link band-
width among flows resulting in a very narrow through-
put distribution while fully utilizing the link. TCP is also
able to fully utilize the link, but does so very inefficiently
as flows stall due to a combination of packet loss and in-
correctly sized receive buffers. The link is able to remain
utilized, however, as other flows step in and utilize the
missing bandwidth. Nevertheless, the median through-
put is lower, and there is a large variation among flow
throughput. In short, under DCTCP+, flow performance
is fast and reliable while under TCP, packet loss and the
poor performance of buffer auto tuning causes extremely
variable throughput.

8



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 153

0

100

200

300

400

500

600

700

800

1 2 3 4 5

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Test

Mean

Median

Max

Min

Figure 14: DCTCP single-receiver incast
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Figure 15: TCP single-receiver incast (buffer tuning ac-
tive)

TCP DCTCP+
Mean 4.01 0.0422
Median 4.06 0.0395
Maximum 4.20 0.0850
Minimum 3.32 0.0280
σ 0.167 0.0106

Table 1: Per-packet latency in ms

Moreover, as shown in Table 1, per-packet laten-
cy under TCP is two orders of magnitude greater than
per-packet latency under DCTCP+. DCTCP+’s reliably
low latency enables higher-layer applications to reliably
communicate in a very short time span. Under TCP (par-
ticularly before we lowered RTOmin), our applications
needed added logic to deal with the unpredictable laten-
cy and throughput that incast induced. DCTCP+’s con-
sistently superb performance make it a superior transport
protocol to TCP within our datacenter.

8.2 Scale
The scalability afforded by datacenter computing lies at
the heart of applications ranging from web search en-
gines, to the Monte Carlo simulations and data analyt-
ics running in our datacenter. Realizing the benefits of
scale, however, is challenging for many components of
networked systems. For DCTCP+ to be an effective dat-
acenter transport mechanism, it must scale with the ap-
plications that it supports.

In this section, we examine the scalability of DCTCP+
experimentally and analytically.

Incast traffic patterns are particularly difficult to scale.
We examined DCTCP+ support at scale for incast by
sending large numbers of long-lived flows (20 seconds)
from many senders to a single receiver. Each flow was
generated by a distinct server using iperf. Ideally, we
should see that—as with TCP—the link would be fully
utilized and each flow would receive a fair share of the
link, but—unlike TCP—latency would remain low.

The results of this test are shown in Tables 2 and 3.
Table 2 shows that throughput and long-term fairness are
excellent through 500 servers. Table 3, however, exhibits
some problems. The first problem to notice is that laten-
cy is relatively high even for 100 servers. At 300 servers,
the high latency shows that the receive queue is entire-
ly full, and at 400 servers significant amounts of traffic
are lost and numerous timeouts are occurring. By 500
servers, 8.7% of packets sent are retransmissions, and
timeouts are very significant; as a result, short term flow
fairness will be poor. In a nutshell, it seems that at this
scale, DCTCP+ is performing no better than TCP.

Senders Total Mean Max Min σ
100 9,901 99.0 99.3 88.6 1.06
200 9,900 49.7 49.9 46.1 0.35
300 9,901 33.2 34 31.2 0.36
400 9,894 24.9 28.5 20.2 1.01
500 9,895 20.0 23.9 13.8 1.42

Table 2: Scale Test: Throughput (Mbps)

Retransmissions
Senders RTT (ms) Total % RTO
100 1.60 0 0 0
200 3.11 0 0 0
300 4.38 3 0 0
400 4.42 702 4.6 274
500 4.44 1110 8.7 655
Table 3: Scale Test: Latency and Retransmissions

Why is latency so high? Shouldn’t the switch be mark-
ing packets causing DCTCP+ to back off before latency
gets so high? Packet traces from a sender involved in this
test show that for all cases, the switch is marking 100%
of packets in steady state, yet DCTCP+ is still sending
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packets. In other words, even when the switch is telling
DCTCP+ to fall back aggressively, DCTCP+ refuses to
fall back enough to prevent congestion.

The source of this behavior is in the cwnd update pro-
cedure of DCTCP+. According to [1], DCTCP+ updates
cwnd as:

cwnd ← cwnd × (1−α/2)

Actual TCP implementations, however, are more intri-
cate, and the Linux implementation in [8] updates cwnd
as follows:

cwnd_new = max(tp->snd_cwnd

- ((tp->snd_cwnd

* tp->dctcp_alpha)>>11),

2U);

In other words, irrespective of measured congestion,
DCTCP+ will always be willing to send two segments.
This effectively puts a lower limit on DCTCP+ transmis-
sion rate per sender of:

TransmissionRate ≥ SegmentSize×2
RT T

The resulting load for our scale test is shown in Ta-
ble 4.

Senders Load (Gbps)
100 3.27
200 6.55
300 9.82
400 13.09
500 16.36

Table 4: DCTCP+ Load vs. Scale

By 300 servers, load is nearly at the capacity of the
link, and at higher scales, the load exceeds the link ca-
pacity. The result is the significant packet drops, re-
transmissions, and timeouts shown above. In effect,
once the load due to the DCTCP+ minimum transmis-
sion rate exceeds the link capacity, DCTCP+ congestion
control is no longer in effect, and TCP congestion con-
trol takes over. Hence, at scales higher than 300 in this
test, DCTCP+ congestion control is no longer in effect.

DCTCP+ scale can be extended by reducing the min-
imum transmission rate per server. This can be done by
applying the cwnd cap logic found elsewhere in the Lin-
ux TCP implementation.

cwnd_new = max(tp->snd_cwnd

- ((tp->snd_cwnd

* tp->dctcp_alpha)>>11),

1U);

cwnd_new = min(cwnd_new,

tcp_packets_in_flight(tp) + 1U);

With this addition, under a congested network, only
one packet will be allowed per RTT and the scaling will

double – just over 600 servers can send at full rate to a
single receiver without the minimum DCTCP+ transmis-
sion rate exceeding the link capacity.

While this change may result in additional delayed
acknowledgements, our initial evaluation indicates that
lowering the delayed acknowledgement timeout as dis-
cussed in Section 4 mitigates this concern. We leave a
full evaluation for future work.

8.3 Operational Experience
We have been running DCTCP+ at a scale of approx-
imately 600 servers for nearly one and a half years as
of this writing. While quantifying the isolated bene-
fits of DCTCP+ is ongoing work, qualitatively, we have
found DCTCP+ to be a stable transport protocol and
with the RTOmin reduction, delayed ACK reduction,
and DCTCP+ all in place, we no longer observe any
application-layer issues that are caused by TCP. This is a
significant improvement.

9 Receive Buffer Tuning
Figures 6 and 7 previously showed an unexpected result:
TCP converging more slowly than DCTCP, and gener-
ally performing very poorly. Careful analysis of Fig-
ures 17a&b in [1] shows that the creators of DCTCP
observed similar behavior experimentally (though this
particular behavior was not discussed in [1]): DCTCP
outperforms TCP in their experiment with respect to sta-
bility, convergence, and short-term fairness. We repeat
this convergence experiment in our network under sev-
eral scenarios—first on a 1 Gbps network, then on a 10
Gbps network. The 1 Gbps result for TCP is shown in
Figure 16. This closely matches the results from [1].
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Figure 16: 1G, TCP, Buffer Tuning On
Figure 17 shows that moving to a 10 Gbps network

exacerbates the problems with convergence, fairness and
stability. We find that, as with the 1 Gbps result presented
in [1], at 10 Gbps DCTCP+ convergence is superior to
TCP convergence as shown in Figure 18.
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Figure 17: TCP, Buffer Tuning On
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Figure 18: DCTCP+, Buffer Tuning On

These results seemingly defy [2] which showed
DCTCP converging more slowly than TCP. The cause
of this problem has a simple explanation: receive buffer
tuning. Historically, network developers were tasked
with setting TCP buffer sizes manually. Getting the
buffer sizes right is important for both network and end-
system performance: undersized buffers hurt network
throughput; overly generous buffer sizes consume RAM,
impact system performance, and limit application scale.
It is possible to manually set buffer sizes to attempt to
strike a balance, but this is very undesirable as it binds
the performance of an application to the behavior of a
particular network. Moreover, it fails to allow dynam-
ic memory management to take into account a server’s
memory state.

To overcome these limitations, several approaches
have been developed to dynamically set TCP buffer
sizes. Unfortunately, in a datacenter setting, these al-
gorithms can perform poorly. In principle, the receive
buffer of an application should be set to the bandwidth
delay product (BDP) of a link. The trouble is that inside

of a datacenter, propagation delay is extremely small—
approximately four orders of magnitude less than the
queueing delay of a congested link! As a result, the
bandwidth delay product of a link varies significantly,
and—worse—is a function of the receive buffer size.
The strong feedback present in receive buffer tuning a
TCP link makes tuning a difficult problem. The tuning
algorithm takes many seconds to adapt from the low-
latency congestion-free regime to the high latency con-
gested regime. As a result, TCP performance in our data-
center is very poor when automatic receive buffer tuning
is enabled. This also explains why DCTCP+ is able to
outperform TCP: DCTCP+ keeps latency far lower than
TCP. As a result, the tuning algorithm experiences far
less feedback and has a much easier time finding the cor-
rect buffer size.
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Figure 19: TCP, Buffer Tuning Off
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Figure 20: DCTCP+, Buffer Tuning Off
Turning off receive buffer tuning, and manually set-

ting the receive buffer size to be greater than the maxi-
mum delay bandwidth product possible, results in much
better behavior for TCP, as shown in Figure 19. With
this change, TCP stability, convergence, and fairness all
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exceed that of DCTCP+. DCTCP+ performance, on the
other hand, is not changed significantly by manually set-
ting the buffer size, as shown in Figure 20.

In summary, receive buffer tuning can have a dramat-
ic impact on TCP performance. The anomalous results
shown in Figures 17a&b of [1], and discussed in this
paper, are explained by poor tuning of the TCP receive
buffer. With proper receive buffer sizing, TCP stability,
convergence, and fairness outperform DCTCP+. Achiev-
ing proper receive buffer sizing, however, is much more
difficult under TCP than DCTCP+ due to the massive dy-
namic range of latencies that even two competing flows
can generate.

10 Related Work
TCP incast was first discussed by Nagle et al. [12]. Phan-
ishayee et al. [13] explored solutions such as reduc-
ing RTOmin. Vasudevan et al. [17] proposed reducing
RTOmin further using fine-grained timers. Instead of this,
we simply reduced RTOmin as far as our kernel was ca-
pable of.

Yu et al. [20] analyze application performance in the
datacenter network of an Internet service provider; they
identify several performance problems caused by appli-
cations, the end-server network stacks, and the network
itself. We independently have encountered similar prob-
lems in a completely different context, and we believe
that the problems encountered in [20] are general prob-
lems likely to be found widely in datacenter communi-
cation. To fix the problems with delayed acknowledge-
ments, [20] suggests either reducing the delayed ack
timeouts or disabling delayed acks. Our work goes fur-
ther by analyzing the tradeoff between these two options.

Wu et al. [19] also observe that switches running
RED/ECN drop non-ECT packets, but do not discuss the
impact of this behavior on DCTCP.

Semke et al. [16] developed a method of automatically
tuning TCP buffers that is the basis of the current Linux
autotuning algorithm.

There has been a good deal of work—such as
[7] [18] [21]—on achieving superior congestion control
than that attainable by DCTCP by incorporating knowl-
edge of flow priorities and deadlines into congestion con-
trol. Unfortunately, these techniques are not readily ap-
plicable in our environment.

pFrabric [3] takes a clean-slate approach to datacenter
communication. This is promising work, but outside of
the scope of our work as we were restricted to techniques
that we could run in production today.

11 Conclusion
TCP has been tremendously successful in the Internet,
and is a ubiquitous protocol that is critical to count-
less applications. TCP support in datacenters promises

to allow these applications to run alongside new appli-
cations. Unfortunately, however, experience has shown
that TCP’s design assumptions break down inside mod-
ern datacenters, and performance is often inadequate.

In this paper, we have shown that leveraging recent
work overcomes the major deficiencies of TCP inside of
the datacenter. We have shown that DCTCP coexistence
with TCP is critical in our environment, and demonstrat-
ed how this can be accomplished. Moreover, we have
shown how a small extension to DCTCP—employing
ECT in SYN and SYN-ACK packets—removes a poten-
tially fatal problem with DCTCP.

Nevertheless, this work has also highlighted areas for
future work. Despite the dramatic impact on perfor-
mance that it can have in current implementations, re-
ceive buffer auto tuning can perform very poorly. In
addition, we have shown how DCTCP scale can be im-
proved; ideally DCTCP would scale even further before
filling queues and reverting to TCP.

In closing, deploying recently developed improve-
ments to TCP (along with our extensions) has dramati-
cally improved TCP performance in our datacenter, with-
out requiring any modifications to our applications or
distributed storage systems.
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Abstract – Spectrum sensing has been an active re-
search area for the past two decades. Nonetheless, cur-
rent spectrum sensing systems provide only coarse oc-
cupancy data. They lack information about the detailed
signal patterns in each band and can easily miss fleeting
signals like radar.

This paper presents SpecInsight, a system for acquir-
ing a detailed view of 4 GHz of spectrum in realtime.
SpecInsight’s design addresses the intrinsic conflict be-
tween the need to quickly scan a wide spectrum and
the desire to obtain very detailed information about each
band. Its key enabler is a learned database of signal pat-
terns and a new scheduling algorithm that leverages these
patterns to identify when to sample each band to maxi-
mize the probability of sensing active signals.

SpecInsight is implemented using off-the-shelf USRP
radios with only tens of MHz of instantaneous band-
width, but it is able to sense 4 GHz of spectrum, and
capture very low duty-cycle signals in the radar band.
Using SpecInsight, we perform a large-scale study of the
spectrum in 7 locations in the US that span major cities
and suburban areas, and build a first-of-its-kind database
of spectrum usage patterns.

1 INTRODUCTION

There has been a significant interest over the past
two decades in sensing the wireless spectrum and under-
standing how it is used [32, 34, 16]. Spectrum sensing
has been a recurring topic not only for the research com-
munity [6, 26], but also for the government [29, 9], the
military [1], and industry [20, 21]. Despite all of these ef-
forts, our understanding of the wireless spectrum is still
quite limited. State-of-the-art sensing equipment provide
only coarse information of spectrum occupancy. Con-
sider for example the Microsoft Spectrum Observatory
(MSO), a state-of-the-art large-scale system for track-
ing spectrum usage [21]. Fig. 1(a) shows a typical MSO
spectrum report. The figure reveals important informa-
tion about spectrum occupancy, over a span of multi-
ple GHz. Yet, the figure also misses informative details
about how the spectrum is used. If one focuses the sens-
ing resources on a single band and continuously listens
to that band, one would discover that the above report
has missed the fleeting (low duty-cycle) signal in the

radar band around 3.5 to 3.6 GHz, which is shown in
Fig. 1(c). In fact, not only did it miss the presence of the
signal but it also missed how the signal uses the spectrum
– i.e., its periodicity in time and its span in frequency.
There are many signals that are missed in the MSO re-
port. Fig. 1(b) shows another example. The band is used
by the Air Force Satellite Control Network. The signal in
the figure is difficult to catch since it hops in a 45 MHz
band, occupying only 1 kHz at a time, i.e., its occupancy
is 2×10−5.

Learning the details of how the spectrum is used –
e.g., the time-frequency utilization patterns in Fig. 1(b)
and Fig. 1(c) – is fundamental to the design of dynamic
spectrum access (DSA) systems as it can significantly in-
crease the opportunity for spectrum sharing by leverag-
ing signal periodicity. A band that has a periodic occu-
pancy like the one in Fig. 1(c) can be easily time mul-
tiplexed with secondary users. The information can also
reveal breaches of spectrum regulations by detecting ab-
normal utilization patterns, which would be invisible in
coarse occupancy reports. The utilization patterns could
also provide insight into the diverse technologies occu-
pying the spectrum. The research community may know
the technologies in the ISM and Cellular bands. Yet, the
vast majority of the spectrum is occupied by undocu-
mented technologies (e.g., radios in government bands),
which are little known to the research community.

However, obtaining detailed spectrum utilization pat-
terns is challenging, particularly for low occupancy sig-
nals like those in Fig. 1. Sensing hardware has limited
bandwidth and cannot acquire multiple GHz in realtime.
Therefore, spectrum sensing platforms like those used
by Microsoft resort to sequential scanning of the spec-
trum; they hop from one band to the next, sensing only
tens of MHz at any moment [21]. As a result, they obtain
only high level occupancy statistics; but they can neither
detect the low-occupancy signals nor identify their uti-
lization patterns. Scaling the sensing system to a GHz-
wide bandwidth, while obtaining fine-grained informa-
tion about each band, is a significant challenge that re-
mains unaddressed by past work.

This paper introduces SpecInsight, a multi-GHz spec-
trum sensing system that reveals the detailed patterns of
spectrum utilization in real-time. Underlying our design
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Figure 1: Occupancy vs. Realtime Spectrum Patterns: The top graph shows an occupancy report obtained by the Microsoft Spectrum Observatory
(MSO). Today’s sensing reports can easily miss low occupancy signals. For example, the report in (a) has missed the Air Force Signal in (b) and
the radar signal in (c). Graphs(b&c) are examples of SpecInsight’s output, which captures the spectrum time-frequency patterns. The patterns are
visualized as intensity maps, where the vertical and horizontal axes represent frequency and time respectively.

is a basic insight that any sensing system using a com-
modity radio is limited to tens of MHz at a time, and
hence will have to sample the multi-GHz spectrum. The
question, however, is: Which bands should we sample at
what times in order to minimize the probability of miss-
ing active signals?

We address this question by observing that many spec-
trum bands are used according to some time-frequency
patterns (e.g., always-on in time and frequency, always-
on but hopping periodically in frequency, periodic in
time but fixed in frequency, etc.). By learning these pat-
terns, SpecInsight can schedule its scans of the various
spectrum bands so as to maximize the probability that it
will detect the presence, absence, and variation of spec-
trum utilization patterns, in every band.

SpecInsight implements this design principle in two
phases. First, SpecInsight has an innovative algorithm
for learning spectrum utilization patterns. In contrast to
past work on detecting WiFi or other technologies in the
ISM band, our algorithm has to search for previously un-
known patterns without making assumptions about the
technologies occupying a particular band. The output of
the algorithm is used to populate a database of spectrum
patterns and their locations. Second, SpecInsight has a
smart scheduling algorithm that leverages the spectrum
patterns in the database to sense multiple GHz using
only tens of MHz of bandwidth, and still output the de-
tailed spectrum utilization patterns as they occur in real-
time. The algorithm is formalized as a multi-armed ban-
dit game [11] in order to balance the tradeoffs between
exploitation of known patterns and exploration of new
and changing spectrum dynamics.

Implementation & Results: We have implemented
SpecInsight using two USRP radios [8], equipped with
the SBX and WBX daughterboards.1 Our prototype
senses over 4 GHz of spectrum, from 50 MHz to
4.4 GHz. We have compared SpecInsight with a setup
that uses exactly the same hardware but sequentially
scans the spectrum (similar to the Microsoft Spectrum
Observatory). Our results show that the probability of
missing active signals is 10× lower with SpecInsight
when compared to sequential scanning.

We have used the prototype to sense the spectrum in
seven locations, including three major US cities and four
suburban areas. We report the results of analyzing one
week of data from each location and comparing their
spectrum patterns. Our main findings are:

• Large swaths of the spectrum may appear completely
empty when they actually have active signals. In par-
ticular, about 39% of the bandwidth below 4.4 GHz is
used by signals whose occupancy is less than 0.0001,
and hence are typically invisible to sequential scan-
ning.

• One may think that the common way the spectrum is
used is highly dynamic – i.e., a source may transmit
at any time. We found that about 65% of the spec-
trum utilization patterns are either always on, or trans-
mit periodically. Further, among the dynamic patterns,
only 5% are highly dynamic2. Thus, knowing the spec-

1The use of two radios is not fundamental to our design but rather
imposed by the range of frequencies of the USRP daughterboards.

2Defined as having a standard deviation of when the signal will next
appear that exceeds 200ms.
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trum patterns is highly useful for smart scheduling of
sensing activities.

Contributions

• SpecInsight is, to our knowledge, the first spectrum
sensing system capable of detecting and tracking fleet-
ing signals (whose occupancy is ~10−5) in multi-GHz
spectrum, while using only tens of MHz of instanta-
neous bandwidth. Past systems have not been able to
combine specificity with scalability: they either pro-
vide detailed spectrum occupancy in a single band,
e.g., ISM [25, 14], or they obtain coarse occupancy
data but miss low-occupancy signals like those in Fig-
ures 1b and 1c [21].

• SpecInsight introduces an innovative algorithm for
learning spectrum usage patterns, and a smart schedul-
ing algorithm for tracking the presence, absence, and
variations of these patterns in realtime over a wide
bandwidth of 4 GHz.

• The paper presents a large scale study of spectrum us-
age patterns in 7 US locations that span urban and sub-
urban areas, illustrating which signal patterns appear
in which parts of the spectrum.

2 RELATED WORK

Past work on spectrum sensing may be divided into
narrow-band and wide-band techniques. Narrow-band
techniques assume the radio bandwidth is at least as wide
as the sensed band. They focus on ways to accurately
detect a signal. They may use energy level [31], cyclo-
stationarity [14], signal waveform [34], wavelet trans-
form [27], or response to interference [23]. Wide-band
sensing techniques try to cover a wide spectrum signifi-
cantly larger than the radio’s own bandwidth. The tradi-
tional approach scans the spectrum sequentially and re-
ports average occupancy [21, 34]. Some recent proposals
exploit the sparsity of spectrum utilization to sense the
spectrum without sampling it at the Nyquist rate, lever-
aging techniques like compressive sensing [24, 4] or the
sparse FFT [12, 10, 13]. For example, BigBand [13] is
able to recover the full signals in the spectrum, but under
a sparsity assumption that only a small fraction of the
spectrum is occupied, so it cannot be used in crowded
spectrums, e.g., under 1.5GHz. Another scheme, Quick-
Sense [33], employs a hierarchical search algorithm and
analog filters to sense the white spaces, which spans only
hundreds of MHz where the wireless technologies are
mostly documented.

SpecInsight is a wide-band spectrum sensing technol-
ogy. SpecInsight, however, differs from the above work
in that it does not need sparsity assumptions or custom
analog filters. Additionally, SpecInsight covers a wider

band than this prior work and provides details of the us-
age patterns in each band (frequency hopping, periodic,
continuous in time but not in frequency, etc. ).

SpecInsight also builds on past work that proposed the
use of sensing history for dynamic spectrum access [34].
Specifically, a series of theory papers [17, 36] models the
behavior of primary users as a Markov process [36] and
predicts future opportunities for dynamic spectrum ac-
cess. SpecInsight differs from these past proposals both
in objective and technique. Specifically, while they fo-
cus on finding some portion of the spectrum that is idle,
SpecInsight focuses on exhaustively characterizing all
active signals in the entire spectrum. As a result, the al-
gorithms SpecInsight uses for characterizing historical
patterns and scheduling sensing operations differ from
the models in past work. Also, SpecInsight is focused on
practical system design and empirical data and is sup-
ported by a spectrum study that spans multiple locations
in the US.

Another line of work focuses on collaborative sens-
ing, where different nodes share spectrum data in order
to cover a large geographical area. For example, Spec-
Net [16] uses spectrum analyzers in different locations to
sense the spectrum and share their results; V-Scope [35]
mounts spectrum sensors on public vehicles and lever-
ages mobility to enable large-area sensing of the white
spaces. SpecInsight complements these systems by en-
abling multi-GHz spectrum sensing on relatively low-
cost and easily accessible USRP radios.

Our work is also related to past literature on signal
feature extraction. Many of these systems are focused on
the ISM band with the objective of identifying WiFi in-
terferers [19, 25, 14]. SpecInsight builds on the idea of
signal feature extraction. However, it differs both in the
features it extracts and the algorithm it uses to extract
them. These differences stem from SpecInsight’s use of
features to identify spectrum utilization patterns that can
be leveraged for smart scheduling of sensing operations,
rather than to identify particular technologies. Addition-
ally, SpecInsight spans a 40× wider band than the ISM
band, and hence has to deal with a greater diversity of
wireless techniques, of which the majority are undocu-
mented.

Finally, our work supplements past work on large-
scale spectrum measurements [6, 18, 26, 15]. First, our
findings about spectrum occupancy and usage confirm
many past spectrum observations; Second, by enabling
wide-band spectrum sensing on low-cost devices, we be-
lieve SpecInsight opens up the possibility of even larger
scale spectrum measurements.

3 SPECINSIGHT’S DESIGN

The goal in designing SpecInsight is to build a tool for
sensing spectrum usage, extracting occupancy patterns,

3
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Figure 2: Flowchart of SpecInsight’s Architecture: SpecInsight has
two phases: the learning phase and the sensing phase. In the learning
phase, SpecInsight extracts and learns the patterns in the spectrum and
initializes the pattern database; in the sensing phase, SpecInsight uses
the learned patterns to schedule when to sense each band. The pattern
database stores and maintains the learned patterns, which are represen-
tative frequency-time blocks of the underlying signal.

and detecting their repeated occurrences. Its key feature
is the ability to provide realtime occupancy information
of 4 GHz of spectrum using inexpensive commodity ra-
dios whose realtime bandwidth is limited to tens of MHz
(e.g., USRPs). Anyone can download the SpecInsight
software, deploy it on a USRP radio, and start sensing
GHz of spectrum in their location.It not only senses a
large bandwidth, but also provides finer details at each
frequency, so that domain experts in each band can look
into the spectrum patterns captured by SpecInsight for
further analysis. We envision that such a system will help
make wide-band spectrum sensing ubiquitous.

SpecInsight operates in two phases: a learning phase
and a sensing phase. During the learning phase, SpecIn-
sight sequentially scans the entire spectrum. It uses the
collected data to extract and learn the different usage pat-
terns which it then stores in a pattern database as shown
in Fig. 2. Once the database has been populated with the
usage patterns of each frequency band, SpecInsight goes
into the sensing phase. It uses a smart scheduling algo-
rithm to pick the best frequency band to sense based on
the learned patterns. SpecInsight then collects signals in
the chosen band and uses a pattern recognition algorithm
to decide if the signals belong to a known usage pattern.
If not, SpecInsight continues sensing that frequency band
for an extended period to learn new usage patterns and
update the pattern database.

What are the patterns? Spectrum patterns are a key
concept in SpecInsight’s design. A pattern is a represen-
tative time-frequency block which characterizes the un-
derlying signal in both time and frequency dimensions.
In the example of Fig. 2, pattern 1 spans the whole fre-
quency bandwidth but is narrow in time, while pattern 2
reveals a utilization that is continuous in time but occu-
pies a narrow bandwidth in frequency. The question now
is, how do we determine the frequency and time widths
of these blocks? On the frequency axis, SpecInsight sets
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Figure 3: SpecInsight’s Learning Phase: To extract pattern informa-
tion in any given FCC band, SpecInsight employs two steps in the
learning phase: 1) extract the patterns; 2) detect the distribution of oc-
currences of the patterns. The patterns extracted by SpecInsight, as
well as the distributions of their occurrences are stored in the pattern
database.

the frequency range of a given pattern equal to one block
in the FCC spectrum allocation table [2]. On the time
axis, SpecInsight is presented with a trade-off: a short
duration allows us to better detect fleeting signals while
a long duration allows us to capture longer signals that
repeat at a much larger time granularity. To be able to
capture both types of signals, SpecInsight uses both short
and long time durations. Specifically, in our implemen-
tation, we use durations of 5 ms and 50 µs.

For each time-frequency block as defined above,
SpecInsight normalizes its power so that the maximum
power is equal to 1. This is necessary since two wireless
users with the same usage pattern can have significantly
different power levels due to different signal attenuations
from these users to SpecInsight’s sensing antenna. Thus,
if we do not normalize, two time-frequency blocks with
the same usage pattern can be misidentified as two differ-
ent patterns. Normalizing also allows us to match time-
frequency blocks measured at different spatial locations
which allows us to discover similar usage patterns across
different urban and suburban areas.

Next, we describe how SpecInsight learns these pat-
terns and uses them to schedule its sensing of each band.

4 THE LEARNING PHASE

In the learning phase, SpecInsight extracts and learns
information of the spectrum patterns. This process is
summarized by Fig. 3. Since SpecInsight divides the fre-
quency spectrum into FCC bands according to the FCC
allocation table, we focus only on a single FCC band in
the following discussions. First, SpecInsight extracts pat-
terns that exist in this band. Because some FCC bands
(e.g., the ISM band) are shared by different types of sig-
nals, there might be more than one signal pattern in the
band. In this case, SpecInsight extracts and records all of
the patterns it can capture. Second, as shown in Fig. 3,
SpecInsight keeps track of when each pattern repeats it-
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Figure 4: How SpecInsight Extracts Patterns in One FCC Band

self and draws the distribution of the time intervals be-
tween different occurrences of the same pattern. This dis-
tribution characterizes the timing properties of the un-
derlying signal, e.g., a fixed-cycle signal would have a
concentrated distribution while a dynamic signal would
have a scattered distribution. SpecInsight stores the list
of existing patterns and its corresponding distribution of
occurrences in the spectrum pattern database. In the fol-
lowing two subsections §4.1 and §4.2, we describe these
two steps in detail.

4.1 Extracting the Patterns

Fig. 4 outlines how SpecInsight extracts the patterns
and identifies patterns from noises in a given FCC band.
Since patterns are in the form of time-frequency blocks
of signals, SpecInsight needs to first transform the I/Q
time samples output 3 by the sensing hardware into two-
dimensional time-frequency samples. SpecInsight does
this by taking the FFTs over a sequence of successive
time windows to obtain time-frequency blocks.4 How-
ever, not all time-frequency blocks extracted by SpecIn-
sight represent actual signals. Some of them might just be
noise. So, how can SpecInsight tell signal patterns apart
from noise? The intuition is that wireless signals intrin-
sically have certain regularities in the way that they use
the spectrum, which are reflected by the time-frequency
blocks SpecInsight extracts. On the other hand, noise is
random. So if we run a clustering algorithm on the time-
frequency blocks collected by SpecInsight, signal pat-
terns will be clustered and noise will be filtered out. 5

There may be multiple spectrum patterns in the same
FCC band. In such scenarios, the clustering algorithm
can also distinguish between the different patterns, i.e.,
blocks belonging to each utilization pattern are clustered
together and separated from others. This is essential for
SpecInsight’s sensing phase, because the smart schedul-
ing algorithm has different scheduling strategies for sig-
nals with different patterns (e.g., fixed-cycle or dynamic

3I/Q samples are the real and imaginary parts of the time samples.
4SpecInsight also squares the magnitude since blocks are repre-

sented in terms of their powers.
5Some signals like the direct spread-spectrum signals which are be-

low the noise floor will not be captured by SpecInsight. However, with-
out prior knowledge of the spreading codes, any energy-based detection
will likely miss these signals.
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Figure 5: Examples where Euclidean distance fails

in time). Often each pattern ties to a specific technol-
ogy, e.g., WiFi and Bluetooth are clustered to two differ-
ent patterns; however, the goal of distinguishing different
patterns is not to precisely identify wireless technologies,
but to separate different patterns of spectrum utilization
to sense the spectrum more efficiently.

4.1.1 Clustering Metric

Our clustering algorithm needs a distance metric in or-
der to group time-frequency blocks into different clusters
of usage patterns, where a small distance between two
blocks means they are likely to be in the same cluster. A
straightforward solution would be to use the Euclidean
distance between two blocks. However, Euclidean dis-
tance does not work for some signals (e.g., the ones
showed in Fig. 5 (a) and (b)), because it does not take into
account possible shifts in the signals. For fleeting signals,
the time pulse can appear at any time shift within each
time-frequency block; for the frequency hopping signals,
the center frequency in each time-frequency block can be
different.

To solve this issue, we compute the shifted correlation
between two time-frequency blocks. We shift the time-
frequency blocks in both time and frequency and pick the
minimum Euclidean distance across all shifts as our clus-
tering metric. Formally, given two time-frequency blocks
B1(f , t) and B2(f , t), our clustering metric is:

D(B1,B2) = min
∆f ,∆t

∑
f ,t
|B1(f , t)−B2(f −∆f , t−∆t)|2 (1)

where ∆f and ∆t represent any possible shift in fre-
quency and time respectively. Using the above metric,
we are now able to correctly cluster together the two
time-frequency blocks in Fig. 5(a) and Fig. 5(b). Unfor-
tunately, while the shifted distance metric solves the is-
sue in Fig. 5, it creates a new problem that it can render
two different usage patterns indistinguishable. For exam-
ple, consider the two usage patterns in Fig. 6. Fig. 6(a)
shows four time-frequency blocks of a frequency band
with a static signal that has the same center frequency all
the time and Fig. 6(b) shows four time-frequency blocks
of a frequency band with a dynamic signal that hops from
one center frequency to another. For any pair of time-
frequency blocks in Fig. 6(a) and (b), the above distance
metric will be small since the shifted correlation will
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align the center frequencies in the blocks with the hop-
ping signal (demonstrated in Fig. 6(c)). Hence, all these
time-frequency blocks will be clustered together as the
same pattern, while they are actually different signals.

To solve this problem, we constrain the time and
frequency shift of the time-frequency block to a small
range. Instead of computing the Euclidean distance in
Eq. 1 for all values of ∆t and ∆f , we compute it only
for a small range of ∆t and ∆f . To see how this approach
can solve this problem, consider again the four blocks
(B1,B2,B3, and B4) which contain a frequency hopping
signal shown in Fig. 6(b). By constraining the shift, the
distance metric between blocks B1 and B2 now becomes
large because the center frequencies in B1 and B2 are far
apart and cannot be aligned with a small shift as can be
seen from Fig. 6. However, the distance metric between
blocks B1 and B3 remains small since the center frequen-
cies are near and can be aligned with a small shift. Thus,
for a frequency hopping pattern, some pairs of blocks
will have a small distance metric and some pairs will
have a large distance metric. This will allow us to dis-
tinguish this usage pattern from the static usage pattern
shown in Fig. 6(a) where all pairs of blocks have the
same small distance metric.

The main question, however, becomes: If two time-
frequency blocks like B1 and B2 in Fig. 6(b) have a large
distance metric, how can we still cluster them together?
Although B1 and B2 have a large distance metric, they
are linked together via a chain of blocks that have small
distance metrics. In other words, B1 has a small distance
metric with B3 which in turn has a small distance metric
with B4 which has a small metric with B2. Thus, although
some of these blocks have large distance metric, they are
still linked together via a chain structure which allows us

to cluster them correctly as we will discuss in §4.1.2.

4.1.2 Clustering Algorithm

Machine learning provides us with a rich body of clus-
tering algorithms. However, many of the well-known
clustering algorithms such as the k-means do not work
for this application. These algorithms are going to clus-
ter together time-frequency blocks that have a small dis-
tance metric. As a result, they are not capable of cap-
turing the chain structure cluster described above, where
two blocks can have a large distance metric and yet be-
long to the same cluster. Thus, we need a clustering algo-
rithm that is capable of clustering these chain structures.

To this end, we use the OPTICS algorithm [5]. This al-
gorithm achieves exactly the above goal. At a high level,
OPTICS is built on the concept of “reachability”. Two
time-frequency blocks are directly linked together if they
have a small distance metric. Two other blocks B1 and B2
belong to the same cluster if there is a path of blocks that
links B1 to B2. For example, in Fig. 6(b), the path was
B1,B3,B4,B2. Thus, a cluster can be interpreted as a set
of time-frequency blocks such that any pair of blocks can
reach each other. Another advantage of the OPTICS al-
gorithm over the k-means is that it does not require the
number of clusters as an input. For the exact details of
the OPTICS algorithm, we refer the reader to [5].

SpecInsight uses the OPTICS algorithm in two places:

• During the learning phase: SpecInsight runs the full
OPTICS algorithm to cluster the collected usage pat-
terns and establish a pool of patterns. The number and
types of classes is data dependent. In §8, we describe
the classes of usage patterns which are revealed by our
experiments.

• During the sensing phase: SpecInsight uses OPTICS
to cluster the newly sensed usage pattern and deter-
mine whether they belong to an already learned cluster
of usage patterns or they form a new cluster of patterns
that needs to be added to the pattern database.

4.2 Detecting the Distribution of Occurrences

Once SpecInsight extracts and identifies a specific pat-
tern, it tracks the different times when the pattern recurs
and builds an occurrence distribution (step 2 in Fig. 3).
SpecInsight defines the pattern interval τ as the time be-
tween two consecutive occurrences of the pattern, and
the distribution of occurrences is defined as the statisti-
cal distribution of the pattern interval τ . It can be char-
acterized by its mean µ and standard deviation σ , which
SpecInsight computes over multiple measurements.

These statistics µ and σ are necessary to sense the
spectrum efficiently. The mean µ determines the period
of the pattern, and the standard deviation σ measures
how dynamic the signal is. Thus, µ can be used to decide
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(b) Fixed Cycle Signals (951.9 MHz - 952.1 MHz)
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(c) A Dynamic Signal (940 MHz - 940.5 MHz)

Figure 7: Examples of Usage Patterns Over Time: Three types of
signals are shown according to their timing characteristics: always-on
signals, fixed-cycle signals and dynamic signals.

how often and at what time we expect to see the signal
and σ tells us how precise our prediction is and can be
used to decide the duration over which we should sense
the band.

These distributions of pattern occurrences, as well
as the pool of patterns that SpecInsight extracts and
identifies, are stored in SpecInsight’s spectrum pattern
database (Recall Fig. 3 for an outline of what is in the
database). In the following section, we will expand on
how SpecInsight’s sensing phase can utilize this database
to sense the spectrum efficiently.

5 THE SENSING PHASE

After the pattern database is initialized in the learning
phase, SpecInsight goes into the sensing phase and uses
a smart scheduling algorithm to decide which frequency
band to sense at each given time. Before we delve into the
details, we will start with an example that gives some in-
tuition behind SpecInsight’s smart scheduling algorithm.

5.1 Intuition

SpecInsight’s scheduling strategy builds on the follow-
ing key intuitions. First, if a signal appears regularly ev-
ery period, it will be much easier to catch this signal
at its next predicted period even if it is a short fleeting
signal. Second, we should spend more time sensing fre-
quency bands with dynamic usage patterns and minimize
the time we spend sensing bands with usage patterns that
are static or have little uncertainty.

To better understand why this makes sense, let us con-
sider three simple examples of usage patterns that have
different time properties (i.e., their distributions of oc-
currences are very different): 1) always-on signals (µ ≈
0,σ ≈ 0) as in Fig. 7(a), 2) fixed cycle signals (σ ≈ 0)

as in Fig. 7(b), and 3) dynamic signals (σ is large) as in
Fig. 7(c). Intuitively, for always-on signals, we can scan
the frequency band less often in order to check from time
to time that the signal is still there. For fixed-cycle sig-
nals, we can predict exactly when the signal is going to
appear and sense the band precisely at that time. We also
might want to check at times when we predict the band
to be idle in case our prediction is wrong and there is an-
other user using the band with a different usage pattern.
For dynamic signals, the best strategy would be to sense
the band at random times but for longer durations. We
can afford to sense these bands for longer time given the
time we saved on bands with always-on and fixed-cycle
signals.

This gives the intuition. In the following section we
will formalize this intuition into the smart scheduling al-
gorithm that SpecInsight employs in its sensing phase.

5.2 The Smart Scheduling Algorithm

The smart scheduling algorithm needs to answer two
main questions:

• Which frequency band f to sense next?
• How long to stay in a frequency band f ?

Which frequency band f to sense next? Answering this
question requires balancing a trade-off between exploita-
tion and exploration. On one hand, we can exploit the in-
formation we learned from the sensing history to sched-
ule brief checks on the next occurrence of a signal in
some frequency band. On the other hand, due to the dy-
namics of the spectrum, the history information we have
might not be accurate. So we need to keep exploring the
spectrum in order to discover new usage patterns.

To address this trade-off, we formulate the problem as
a multi-armed bandit game [11]. The multi-armed ban-
dit game is a well studied problem in decision theory. In
this game, the gambler needs to iteratively choose from
K bandit machines, each of which will give her random
rewards according to an unknown distribution. Her goal
is to maximize the rewards in a given number of rounds.
The gambler could learn the distribution by repeatedly
pulling the levers. She then needs to decide whether to
exploit the information she learned and choose the lever
that maximizes her expected payoff or to just explore
more in order to better learn the distribution.

There is a large literature of solutions to the multi-
armed bandit game [30, 11]. In our implementation, we
adopt a simple but very effective solution called the ε-
greedy strategy which provides a very good approxima-
tion to the optimal decision [30]. In this solution, gam-
bler simply chooses the lever that maximizes her ex-
pected payoff for (1− ε) of the time and for the remain-
ing ε of the time she picks a lever at random. The choice
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Figure 8: The Reward Function: The reward function Rf (t) shows
how near we are to the next signal appearance. It is zero at the begin-
ning of a predicted period and one at the end, while linearly increasing
as we get nearer to time we predict the signal will appear.

of ε defines the degree to which we rely on the learned
information and ε is traditionally set to 0.1 [30].

Thus, 10% of the time, SpecInsight is going to pick
a random frequency band to sense and 90% of the time,
it will pick the band that gives it the maximal reward.
But what is the reward function that SpecInsight needs to
maximize? SpecInsight avoids missing a signal by going
to its frequency band just before it expects the signal to
appear. As a result, SpecInsight uses an indication of how
near we are to the next expected appearance of a signal
in the frequency band as its reward function. Formally,
we calculate the reward function for a frequency band f
at time t as:

Rf (t) = 1− T +µ�(t−T)/µ�− t
µ

(2)

where T is the last time the signal was observed and µ is
the mean value of the pattern interval time as described
in §4.2. The reward function is normalized to 1 in order
to compare bands with different mean pattern interval µ .

To better understand this reward function, consider the
example shown in Fig. 8. Given the last appearance of a
signal at time T and the expected cycle µ , we predict
the signal will appear again at times T + µ ,T + 2µ ,T +
3µ , · · · . Thus at time t, we predict that the signal will
appear next at time T + µ�(t − T)/µ� and we are T +
µ�(t−T)/µ�− t away from it. Since the farthest we can
be away from the next appearance is µ , we normalize by
µ and subtract it from 1 so that the nearer we are, the
larger the reward function is.

How long to stay in a frequency band f ? Once SpecIn-
sight decides which frequency band to sense, it needs to
decide how long to stay in that band. We refer to this
as the dwell time td. The dwell time is determined by
the number of measurements (time-frequency blocks) we
need to collect in each band. It is directly related to the
dynamics of the pattern, for the following reason: The
more dynamic the usage pattern is, the more uncertain
we are of our predictions, so that the offset between the
predicted occurrence of the signal and the actual occur-
rence is bigger. To compensate for that, we need to have

Algorithm 1: Smart Scheduling Algorithm

Procedure SMARTSCHEDULING({f}, {µ}, {σ}, {T})
t ← Current Time
if RAND([0,1])< ε then � The ε-greedy strategy

f ∗ ← RAND({f}) � Pick random frequency
else

for f in {f} do
µ ,T ←{µ}f ,{T}f
if µ �= 0,∞ then

Rf (t)← 1− T+µ�(t−T)/µ�−t
µ

else
Rf (t)← RAND([0,1])

f ∗ ← argmaxf Rf (t)
td ← min{6{σ}f ∗ , small constant}
return {f ∗, td}

longer measurement time in order to capture the signal.
As a result, the number of measurements needs to be pro-
portional to the uncertainty in our predictions of when
the signals are going to appear.

The dynamics of the pattern, i.e., the level of uncer-
tainty, is captured by the standard deviation σ of the pat-
tern interval τ which SpecInsight extracts in the learn-
ing phase. The bigger σ is, the more dynamic the us-
age pattern is. SpecInsight uses the 3-Sigma Rule [28] to
determine the dwell time td. The rule states that a ±3σ
interval centered at the mean of the distribution covers
most of the cases. For example, in a Gaussian distribu-
tion, it covers 99.7% of the probabilities. More generally,
for any distribution it covers at least 90%. Based on this
rule, SpecInsight sets the dwell time to be td = 6σ .

A few points are worth noting:

• The reward function in Eq. 2 is not well defined for
frequency bands with always-on usage patterns where
µ = 0 and for frequency bands with no signals where
µ = ∞ (always idle). For these frequency bands, we
pick the reward function randomly between 0 and 1.

• Frequency bands with fixed-cycle signals, always-on
signals, or no signals have σ ≈ 0. For these bands, we
set a minimum dwell time td such that the collected
data contains at least a few time-frequency blocks.

• Some frequency bands might contain multiple pat-
terns, where each pattern has its own µ and σ . SpecIn-
sight randomly picks one of the usage patterns’ µ and
σ to calculate the reward function and the dwell time.

• In the case of fixed-cycle signals, SpecInsight is able
to track the signals while sequential scanning only de-
tects the signal with some probability. Our ability to
track the signals is important in the case of fleeting pe-
riodic signals like the one in Fig. 1(c), which are very
easy to miss using sequential scanning.

• Finally, SpecInsight is a best-effort system and might
miss sensing deadlines if pattern dynamism in the en-
tire spectrum is very high. In the worst case, if all
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of the bands in the spectrum were equally highly dy-
namic, it would degrade to randomly sampling the
bands but would still be no worse than sequential scan-
ning. Fortunately, as we will show in section §8, only
very few (< 5%) of the patterns are highly dynamic in
today’s spectrum and SpecInsight works well.

Finally, a pseudocode of SpecInsight’s smart schedul-
ing algorithm is shown in Alg. 1.

6 IMPLEMENTATION

We implement SpecInsight on USRP software ra-
dios [8]. Since each USRP daughterboard works in a par-
ticular frequency range, we use two USRPs that simul-
taneously run SpecInsight: the first USRP is equipped
with an SBX daughterboard, and works in the frequency
range from 400 MHz to 4.4 GHz, and the second USRP
is equipped with a WBX daughter-board and works in the
frequency from 50 MHz to 2.2 GHz. We connect the two
USRPs to the same antenna using a power splitter. We
use an ultra-wideband omni-directional outdoor antenna
that works from 25 MHz to 6 GHz [22].

In order to maximize the USRP capabilities, we tune
the bandwidth and sampling rate to their maximum
(40 MHz and 50 Ms/s). We set the two USRPs to
sense non-overlapping frequency ranges, i.e, 50 MHz to
2.2 GHz and 2.2 GHz to 4.4 GHz. Each of them runs an
independent version of SpecInsight’s sensing algorithm,
and their spectrum pattern databases are combined to-
gether. Thus, SpecInsight senses a total spectrum band-
width of 4.35 GHz, from 50 MHz to 4.4 GHz. SpecIn-
sight divides this spectrum into 171 bands based on the
FCC spectrum allocation table [2]. For each band, it
learns its spectrum patterns and schedules when to sense
the band according to the algorithms in §4 and §5.

Implementing SpecInsight in realtime is challenging.
SpecInsight needs to process a data stream over a Gbit/s.
In order to support such high data rates, we implement all
major computations using Intel’s streaming SIMD exten-
sion (SSE2) instruction set, which provides instruction-
level parallelization. We also use the FFTW library [3]
for fast FFT implementation. Consequently, we are able
to run SpecInsight in realtime on a machine with an 8-
core Intel-i7 processor and 8 GB of RAM.

7 USRP CALIBRATION

SpecInsight is not hardware specific, and can be used
with various radios. The radio hardware, however, may
have its own spurs, i.e., fake signals generated by hard-
ware noise, which might be recognized by SpecInsight
as patterns. Thus, when running SpecInsight on a partic-
ular hardware platform, the radio should be calibrated to
identify hardware-specific spurs and eliminate them.

We calibrate the USRPs used in our prototype. All of
our calibration experiments are conducted in a Faraday
shield room which blocks all signals from the outside.

Calibration in the absence of signals: We put our sens-
ing setup in the shield room, and collect measurements in
the absence of any transmission. Since all active signals
from the outside are blocked by the room, every received
signal that is above the noise floor is a spur from the hard-
ware. We noted two types of USRP spurs: 1) the USRP
always shows power at the baseband DC frequency, 2)
the time samples received during the first 10ms after
power-on are corrupted. We add filters to SpecInsight to
remove these spurs before running the algorithms. After
adding these filters, SpecInsight does not detect any pat-
tern in the samples collected by the USRPs in the shield
room. This complies with the fact that there are no ac-
tive signals in the environment, and random noise is dis-
carded by the pattern clustering algorithm.

Calibration in the presence of transmission: USRPs
do not adapt the receiver’s gain with the signal power.
As a result, signals whose power is higher than the
ADC’s maximum quantization level are clipped at the re-
ceiver. Clipping distorts the received signal and changes
its frequency representation (creating harmonics). To en-
sure that the received signal’s frequency representation
matches that of the signal over the air, the receiver should
be operating in its linear range without clipping.

The common approach to avoid clipping is to add au-
tomatic gain control (AGC) to the receive chain [7]. US-
RPs however do not implement AGC. To address this is-
sue, SpecInsight detects the occurrences of clipping by
counting the number of time samples that are equal to the
maximum quantization value. Once clipping is detected,
SpecInsight drops the samples and sends out alerts. Dur-
ing our experiments, which encompass 7 locations and a
total of 49 days, we noted only 7 occurrences of clipping,
which were removed from the data. Please note that the
clipping problem is specific to our sensing hardware but
not fundamental to the algorithm; to avoid it, one could
use a more expensive hardware that implements AGC.

We run experiments in the shield room with a trans-
mitter to check SpecInsight’s ability to detect a pattern
correctly and eliminate clipping events. We let the trans-
mitter transmit continuously, but vary its transmission
power. We confirm that SpecInsight detects the signal in
the correct frequency band as long as there is no clipping,
and generates an alert whenever the signal clips.

8 EMPIRICAL RESULTS

8.1 SpecInsight’s Accuracy

We compare SpecInsight with a setup that uses ex-
actly the same USRP hardware but sequentially scans the
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Figure 9: Comparison of SpecInsight with Sequential Scanning: (a)
shows that overall SpecInsight reduces errors by 10× in comparison to
sequential scanning; (b) shows that SpecInsight uses its time wisely
spending less time on always-on and fixed-cycle bands and more time
on dynamic bands.

spectrum, as typical in today’s systems [21]. For sequen-
tial scanning, the dwell time of each band is set to 50ms,
which matches the average dwell time of SpecInsight.

To compare the accuracy of the two systems, we need
the ground truth. However, existing sensing hardware
does not have 4 GHz of instantaneous bandwidth thus
cannot provide the ground truth for such a wideband.
To address this issue, we use 10 USRPs to continuously
monitor a subset of the bands within the 4 GHz spectrum,
and obtain their ground truth. This provides us with the
ground truth needed to calculate the accuracy of SpecIn-
sight and sequential scanning for this particular sub-set
of bands. We then repeat the experiment for different
subsets of bands.

We categorize the bands based on their usage patterns
to: always-on (on for > 95% of the time), fixed-cycle
(σ < 5ms), and dynamic (σ > 100ms). In our experi-
ments, we consider equal number of bands (20) of each
type; for each band we run the experiment for 1 hour.
For both SpecInsight and sequential scanning, we com-
pute the following two metrics for each type of bands:

• Percentage Occupancy Error: This is the percent-
age difference between the ground truth occupancy of
a band and the occupancy reported by SpecInsight and
sequential scanning. We define occupancy as the per-
centage of time the band is occupied.

• Percentage of Sensing Time: This is the percentage
of the total amount of time that the sensing algorithm
spends in each type of band.

Results: The results using the above two metrics are
shown in Fig. 9. For always-on bands, SpecInsight
spends 50× less time in these bands and still achieves the
same accuracy as sequential scanning. For fixed-cycle
bands, SpecInsight spends 10× less time in these bands

Boston,MA

NewYorkCity,
NY

Amherst,MA

UpperArlington,
OH

Redmond,WA

SanFrancisco,
CA

Maui,HI

Figure 10: SpecInsight’s Measurement Locations.

and yet has 50× higher accuracy. For bands with more
dynamics, SpecInsight can afford to spend 2.5× more
time in these bands which translates into 4× higher ac-
curacy. Finally, overall, SpecInsight has 10× higher ac-
curacy than sequential scanning for the same time bud-
get. This is due to its smart scheduling algorithm, which
spends as little time as needed on always-on and fixed-
cycle signals, and saves its time for dynamic signals.

8.2 Real-World Spectrum Analytics

We deployed SpecInsight in seven locations in the
US, including three major cities and four suburban areas,
which cover the East Cost, West Cost and Pacific islands
(Fig. 10). In each location, we analyzed one week of data
collected by SpecInsight. We report the results below.

8.2.1 The Spectrum Pattern Chart

In this section, we want to analyze how the spectrum
usage patterns are distributed across frequencies. Over
one week and seven locations, SpecInsight detected a
total of 312 different patterns corresponding to differ-
ent technologies. To be able to visualize these patterns,
we group them into classes according to their time and
frequency properties. In the time dimension, we divide
the patterns into always-on, fixed-cycle and dynamic. In
the frequency dimension, we divided the patterns into
frequency-hopping, fixed frequency, and wideband 6.
This gives us a total of 3×3=9 classes 7, where Fig. 11 (b)
shows one usage pattern example for each class. Based
on these usage patterns, we constructed the first-of-its-
kind spectrum pattern chart shown in Fig. 11 (a). In a
similar fashion to the FCC’s spectrum allocation chart,
the spectrum pattern chart shows the types of spec-
trum usage patterns seen in different frequency bands.
Please note that we group the patterns into these rough
classes just for the purpose of visualization; SpecIn-
sight’s database contains the exact and detailed patterns
in each FCC band, in the form of time-frequency blocks.

Results: Fig. 11(a) shows the spectrum pattern chart
(top) and the average spectrum occupancy chart (bottom)

6We label signals with bandwidth larger than 50MHz as wideband.
7Note in all of the experiments we did not see wideband signals that

are always on, or frequency hopping signals that repeat in a fixed cycle.
Hence, we ended up with a total of 7 classes.
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Time \ Freq Frequency Hopping Fixed Frequency WideBand

Always-On

Legend

1760-1761 MHz × 0.5s

Legend

681-687 MHz × 1 Day

Not detected

Fixed-Cycle Not detected

Legend

72.45-72.55 MHz × 1 Day

Legend

3300-3500 MHz × 1 Day

Dynamic

Legend

1235.3-1235.4 MHz × 0.5s

Legend

940-940.5 MHz × 1 Day

Legend

3300-3500 MHz × 1 Day

(b) Legend for rectangle fillings: We divide the patterns according to their time and frequency properties, which are the rows and columns of this
chart and each intersection defines a class of patterns. So there are a total of 3×3 = 9 types. We give examples for 7 types of signals, while the other
two (wideband always-on and frequency-hopping fixed-cycle signals) were not detected in any of the 7 locations.

Figure 11: The Spectrum Pattern Chart

over one week and seven locations. The bottom graph is
computed by averaging occupancy across locations and
the top graph is a superposition of the patterns across all
locations. The figure shows that although there are many
bands in the occupancy chart that are empty or nearly
empty, the pattern chart reveals that these bands are ac-
tually being used. For example, the occupancy in the fre-
quency ranges 1.2 GHz–1.85 GHz and 2.9 GHz–4.4 GHz
is less than 0.0001 (almost zero). However, SpecInsight
detected in these bands some frequency hopping signals
and some wide-band fleeting periodic signals. In fact, the
figure shows that although large swaths of the spectrum

may appear completely empty, they actually have active
signals. In particular, about 39% of the bandwidth below
4.4 GHz is used by signals whose occupancy is less than
0.0001. Moreover, the usage patterns in these band are
mostly of two types: 62.6% are frequency hopping sig-
nals and 33.5% are wideband fleeting signals.

To better understand how much bandwidth each type
of pattern spans and how much it contributes to the
spectrum occupancy, consider Fig. 12. The figure shows
the distribution of bandwidths and occupancies of the
patterns in government-owned bands, non-government
bands and shared bands (where both government and
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Figure 13: Statistics of Patterns According to the Timing Charac-
teristics: The figure shows that more than half of the patterns (65%)
have some timing regularities, either always-on or periodic.

non-government usage coexist). The results reveal that
usage patterns like frequency hopping and wideband sig-
nals occupy 53.3% of the bandwidth but only contribute
6.8% to the total spectrum occupancy. This is more ap-
parent in government-owned bands since these technolo-
gies are typically used in security applications. Particu-
larly, the government owns 56% of the spectrum but only
contributes 27.8% to the total occupancy.

8.2.2 Timing Analytics

In our timing analysis, we aim to answer the follow-
ing questions: How many of the spectrum patterns are
dynamic? How many are highly predictable (periodic or
always-on) signals? We use the standard deviation σ of
the pattern intervals (described in §4.2) to distinguish dy-
namic patterns from periodic and always-on signals. Of-
ten higher σ reveals a more dynamic usage pattern. How-
ever, this is not always true. Some periodic patterns have
a very large period (hours-days), and hence can have a
large standard deviation σ . Fig. 14 shows a usage pat-
tern in the government-owned 152 MHz band that re-
peats every day. In particular, it has a signal that is always
present, but at night, it is turned off in every other chan-
nel. To accommodate such periodic patterns with large σ ,
we distinguish between fast periodic and slow periodic.

Results: Fig. 13 shows the percentage of patterns that are
always-on, fast-periodic, slow-periodic and dynamic, out
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Figure 14: Example of a Slow Periodic Signal: Every other channel
of the signal is turned off at night for a fixed duration.
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val (σ ). Only less than 5% of the signals have very large σ .

of the 312 detected patterns. It reveals that only 35% of
the detected usage patterns are actually dynamic.

To gain more insight into how dynamic the frequency
bands are, we compute the CDF of the standard deviation
σ of signal intervals. Fig. 15 shows this CDF and reveals
that less than 5% of the patterns are highly dynamic, i.e.,
having a very large σ (σ > 200ms). These results show
that knowing the spectrum patterns is highly useful for
smart scheduling of sensing activities, and hence the ben-
efits of SpecInsight.

9 CONCLUSION

This paper presents SpecInsight, a system that can ac-
quire the detailed utilization patterns over 4 GHz of spec-
trum in real time. We implement SpecInsight using off-
the-shelf USRP radios and perform a large-scale study
of spectrum analytics in 7 US locations including ur-
ban and suburban areas. Consequently, we build the first-
of-its-kind spectrum pattern database characterizing how
the spectrum is utilized. We believe that SpecInsight en-
ables multiple applications such as dynamic spectrum ac-
cess, finding breaches of spectrum regulations, and un-
derstanding undocumented spectrum utilizations.
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Abstract
Multi-processor DSPs have become the platform of

choice for wireless infrastructure. This trend presents
an opportunity to enable faster and wider scale deploy-
ment of signal processing applications at scale. However,
achieving the hardware-like performance required by
signal processing applications requires interacting with
bare metal features on the DSP. This makes it challeng-
ing to build modular applications.

We present Atomix, a modular software framework
for building applications on wireless infrastructure. We
demonstrate that it is feasible to build modular DSP soft-
ware by building the application entirely out of fixed-
timing computations that we call atoms. We show that
applications built in Atomix achieve hardware-like per-
formance by building an 802.11a receiver that operates
at high bandwidth and low latency. We also demonstrate
that the modular structure of software built with Atomix
makes it easy for programmers to deploy new signal pro-
cessing applications. We demonstrate this by tailoring
the 802.11a receiver to long-distance environments and
adding RF localization to it.

1 Introduction

Programmable Digital Signal Processors (DSPs) are in-
creasingly replacing ASICs as the platform of choice
for performing the heavyweight signal processing in our
wireless infrastructure. The primary driver for the shift
toward this programmable infrastructure is the increased
rate of wireless standard updates: the 3GPP releases a
new LTE standard roughly once every 18 months [3].
DSPs enable such quick upgrade cycles since their soft-
ware can be updated with the push of a button.DSPs
in the infrastructure strike balance between high perfor-
mance, low power, (only 5-8 Watts to run a 20MHz LTE
basestation), and programmability. They do so by com-
bining multiple processing cores for programmability

with hardware accelerators for performance and power
efficiency.

The trend toward building programmable DSPs into
wireless infrastructure presents a valuable opportunity:
programmers can build new signal processing applica-
tions and quickly deploy them on wireless infrastructure
at scale. Such applications encompass both communica-
tion and non-communication signal processing. Commu-
nication applications include standard wireless protocols
(e.g., LTE and WiFi), as well as customized protocols for
particular environments (e.g., long distance rural broad-
band [14, 6]). Non-communication applications include
using radio waves for localization [28, 8].

There are three basic primitives that programmers
need from the software framework of DSPs to build and
deploy signal processing applications: tapping into a sig-
nal processing chain, tweaking a signal processing block,
and inserting or deleting a signal processing block. How-
ever, the DSP software framework must present a modu-
lar interface to the programmer that supports these prim-
itives. Such modularity is essential to add new applica-
tions without needing to modify or understand the full
software base which could uptake excessive effort. For
example, tweaking a specific block to improve its func-
tion or efficiency should not affect other blocks, nor
should it require the programmer to tweak or understand
other parts of the software.

Designing a modular software framework for DSPs
is challenging because of the demanding requirements
of the communication applications that it must support.
Communication applications are both high through-
put and latency sensitive. This combination requires
hardware-like performance from the DSP software; it
must be highly efficient and have predictable execution
timing. For example, to process a typical 20MHz WiFi
channel, the DSP must process a sample of the signal
every 25ns (assuming Nyquist sampling). Assuming the
DSP is running at a 1GHz (this is a typical DSP clock
rate), there are only 25 cycles available on average per
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DSP core to process each sample. Additionally, the pro-
cessing has to finish within a short time because of ARQ.
For instance, WiFi needs to decode and send an ACK
within 16μs of receiving the last sample of a packet.

Building modular DSP software that has hardware-
like efficiency and predictability is challenging. The pri-
mary reason is, programmers must use several bare metal
features to achieve hardware-like performance. DSPs
such as the TI 6670 [23] are highly parallel processors
with multiple cores and hardware accelerators. There
is no rich operating system support to manage those re-
sources with adequate performance. As a result, the pro-
grammer must manually parallelize software. DSPs typ-
ically lack cache-coherent shared memory. This forces
the programmer to explicitly move data across cores
and hardware accelerators. Further, DSPs tend to have
shallow memory hierarchies with software-addressable
SRAM that the programmer has to explicitly manage.

In this paper, we present Atomix, a modular software
framework for developing high bandwidth and low la-
tency apps for DSPs. The key idea behind Atomix is
the atom abstraction, which is defined as a unit of exe-
cution that takes a fixed, known amount of time to run
every time it is invoked. In Atomix, programmers can
express every module in a signal processing application
as an atom. Atoms can be an algorithmic blocks such as
FFT, or compositions of blocks such as OFDM, or dif-
ferent packet processing modes in protocols such as LTE
or WiFi, or even low-level plumbing primitives such as
data transfer across cores.

We evaluate the Atomix framework by using it to build
a standard 802.11a WiFi receiver called Atomix11a.
WiFi is an ideal app to evaluate the performance capa-
bility of Atomix because it uses the same bandwidth as
LTE with similar processing complexity and spectral effi-
ciency of an OFDMA protocol. Additionally, WiFi’s de-
code latency constraints of tens of microseconds are two
orders of magnitude tighter than LTE’s1. For a 10MHz
WiFi channel, Atomix11a achieves a frame decode la-
tency of 36.4μs with a variance of 1.5μs.

We also evaluate the modularity of apps developed in
Atomix by developing two apps on top of Atomix11a:
(1) we customize Atomix11a to support long-distance
links and (2) we add RF localization to Atomix11a.

2 Background and Design Goals

2.1 App Taxonomy
A typical wireless stack is naturally specified in terms
of signal processing blocks, a data flowgraph that com-
poses those blocks, and a state machine that selects ap-

1LTE’s 3ms HARQ process turnaround requirement allows for ap-
proximately 1ms of decode latency.
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Figure 1: Modules of an 802.11a receiver: blocks, data-
flowgraphs, and a state machine.

propriate flowgraphs to process incoming samples. For
example, an 802.11a baseband receiver (fig. 1) has
blocks for OFDM demodulation, channel equalization,
constellation-to-bit slicing, and Viterbi decoding. Differ-
ent blocks are composed into separate data flowgraphs
for decoding a 54Mbps sample stream, a 6Mbps sample
stream, or the PHY layer header, or for transmitting an
ACK. Finally, the flowgraphs are assembled into a re-
ceiver state machine that transitions from the header de-
code state to one of the data decode states, optionally
followed by the ACK transmit state.

We classify apps according to the kind of modifica-
tions needed to the base wireless stack. (For a wireless
stack app that is bootstrapping the base-station, the base
stack is null.) To illustrate the classification, we use a
simple OFDM receive chain (fig. 2) as the underlying
stack that is modified. We classify applications based on
modifications that fall into three main categories:

Tap. These modifications tap the signal at various points
in the processing chain to implement their functionality.
Fig. 2 shows an example of tapping the CSI output and
sending it back for offline processing. Such tapping
capability is needed for applications like indoor local-
ization [28, 8]. Localization works by converting few
samples from the right point in the signal processing
chain into location estimates.

Tweak. These modifications tweak parameters of
individual signal processing blocks that are already part
of the wireless stack to implement tailored functionality.
Fig. 2 shows an example of tweaking the channel equal-
ization block. The ability to tweak parameters or modify
the functionality of a block can enable applications
like better receiver designs (e.g. [13, 25]) for existing
transmission formats or adapting the signal chain to a
different deployment setting such as long distance rural
WiFi links as we show in sec. 5.

Insert (and Delete). These modifications insert new
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Figure 2: Three basic kinds of modifications

blocks into the signal processing chain, either in the crit-
ical path or as additional branches. By inserting new
blocks, we can add new functionality to existing signal
processing chains. For example, we can add a BER-
estimation block for fine-grained channel quality indica-
tion to significantly improve rate-adaptation performance
[26].

A new wireless stack app that bootstraps a basestation
also requires insertion of new blocks.

2.2 Requirements and Design Goals
Our goal is to design a software framework for wireless
infrastructure in which new signal processing applica-
tions can be easily created and deployed. This requires
three properties from the framework:

1. Modularity — For a programmer to easily add new
apps, the framework must provide a modular inter-
face supporting tap, tweak, and insert primitives.
In using those primitives, the programmer must be
able to make local code changes without needing to
understand or refactor unrelated parts of the existing
implementation.

2. Predictable latency — When a new app is deployed,
the underlying communication stack should exhibit
hardware-like predictable latency. The programmer
should be able to precisely estimate and control the
latency down to the order of a microsecond. This
will let the programmer ensure that the timing re-
quirements specified by the communication proto-
col are still met (e.g., 16μs sample processing la-
tency for 20MHz WiFi).

3. High computational throughput — As new apps
are deployed, the underlying communication stack
should remain computationally efficient. The pro-
grammer should have the tools needed to utilize the
full computational power of the hardware platform
to meet sample-rate processing requirements (e.g.,
40Msps for a 20MHz WiFi channel). Modularity
and predictable latency should not come at the ex-
pense of computational efficiency.

While is easy to meet any of these requirements in iso-
lation, combining them generally leads to tradeoffs.

(a) An atom is a unit of ex-
ecution with fixed timing

(b) Atom compositions have
fixed timing

Figure 3: The atom abstraction

In a modular system designed for predictability, mod-
ules could always be provisioned for worst-case execu-
tion times. However, that would an inefficient choice
if modules had large gaps between worst and average-
case execution times. Another system that dynamically
schedules modules with the objective of keeping proces-
sors busy would achieve high average processing effi-
ciency. However, it could cause high variability in ex-
ecution latencies of modules [15]. By programming an
application using low-level instructions, a programmer
could tightly control processing latencies; by optimizing
it as a monolithic piece of software, she could extract the
best possible performance from the hardware. However,
the resulting implementation would lack modularity.

These tradeoffs make the design of Atomix challeng-
ing. However, as we discuss in the next section, our in-
sights about the application structure of wireless data-
planes allows us to design for all of these goals simulta-
neously.

3 Design

3.1 The atom abstraction
The design of Atomix is based on the key abstraction of
an atom:

Atom: A unit of execution with fixed timing.

In Atomix, every operation from signal processing to
system handling can be implemented as an atom. Fur-
ther, those atoms can be composed to form more com-
plex atoms. When atoms are composed, their execution
times add up, so that if A and B are atoms, t(A ◦B) =
t(A)+ t(B) (fig. 3).

The Atomix framework provides the substrate to im-
plement signal processing blocks as atoms (sec. 3.2).
It also enables programmers to compose those simple
atoms into more complex flowgraph atoms (sec. 3.3) and
state atoms (sec. 3.4) to tie together an entire signal pro-
cessing application. Finally, it provides the capability
to map atoms onto multiple cores to create fine-grained
pipelines exploiting parallelism (sec. 3.5).

The Atomix framework provides atoms for common
platform handling operations such as transferring data
between cores and interacting with accelerators. The
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programmer only needs to implement atoms in C lan-
guage for custom signal processing blocks. Then, she
can tie them together into flowgraphs and a state machine
using the language provided by Atomix. The framework
provides a high-level declarative API to compose atoms
and to map them to multiple cores. Atomix provides a
compiler to translate the declarative code into C code.
Translated application code and custom signal process-
ing atoms are compiled with the target DSP’s native C
compiler. Atomix also provides an optimized runtime
system (sec. 3.6) to execute compiled atoms efficiently
with predictability. The full Atomix application develop-
ment workflow is described in sec. 3.7.

Block, flowgraph, and state abstractions have one-to-
one correspondence with the structure of baseband appli-
cations (i.e., the basestation stack and other signal pro-
cessing applications). Consequently, baseband applica-
tion software in Atomix has the modularity inherent in
the application structure. Since the implementations are
entirely made up of atoms, they have predictable timing
at every granularity of the modular structure.

To create efficient parallel implementations that can
process high sample bandwidths at low latency, the
programmer simply ties together appropriate system-
handling atoms with signal processing atoms. Then
they use the high-level API to map flowgraphs and state
machines onto multiple cores. Modularity and pre-
dictable timing of atoms simplifies the process of design-
ing pipelines, since the programmer can design a sched-
ule for different bandwidth or latency objectives by sim-
ply adding up timings of blocks under various layouts.

In the modular structure of Atomix, signal processing
blocks are encapsulated into separate atoms. As a result,
atom interfaces provide fine-grained signal tap points;
blocks can be tweaked individually by tweaking the cor-
responding atoms; blocks can be inserted and deleted at
fine granularity. Since atoms are tied together using a
high-level API, inserting and deleting new atoms is easy.

The timings of atoms add up when they are composed.
This simple additive relation allows the programmer to
easily infer the effect of a modification on the end-to-
end timing of the implementation. On tweaking an atom,
she only needs to re-time the tweaked atom and substi-
tute its new cost. On inserting an atom, she simply adds
the execution time of the inserted atom to obtain the new
end-to-end timing. After predicting the effect of modi-
fication on timing, the programmer can easily adjust the
multicore layout in the high-level API, if needed to meet
processing bandwidth or latency requirements.

We note that the atom abstraction — a unit of exe-
cution with fixed timing — is an idealized design goal.
A software system will inherently have some variability
in execution times. For example, the micro-architecture
of a processor could affect timing due to bus contention

Figure 4: Signal processing blocks to atoms

or hardware instruction manipulation. Atomix strives to
achieve sufficiently low variability in execution times of
atoms for the purpose of building wireless signal pro-
cessing applications.

3.2 Blocks decompose into atoms
The basic unit of a signal processing application is a sig-
nal processing block. A block takes in an input signal
and transforms it to another output signal. For exam-
ple, a constellation bit-slicer block takes in constellation
symbols like BPSK or QPSK symbols and produces data
bits from them. The execution time of a block depends
on the operation it performs, the length of data on which
it operates, the processor type (i.e., DSP or accelerator)
on which it operates, and the memory location of data
buffers it operates on. For a block to be abstracted as an
atom, it must execute in known, fixed amount of time.
An Atomix signal processing block implements a fixed
algorithmic function, operates on fixed data lengths, is
associated with a specific processor type, and uses only
the memory buffers passed to it during invocation.

Consider the example of a bit-slicing operation, as
shown in fig. 4. A slicer block will be decomposed in
Atomix as separate BPSK, QPSK, QAM blocks. Each
of these blocks will be implemented to accept input and
output buffers of fixed lengths, leading to BPSK48 for
a BPSK block that takes in 48 complex symbols. The
blocks must also be implemented for specific execution
core types. If the BPSK48 block could run on both a DSP
core and an ARM core, BPSK48DSP and BPSK48ARM
would be separate blocks. They may share code in-
ternally through common subroutines. By following
those decomposition rules, a programmer can implement
blocks so that they always executes the same set of in-
structions on the same kind of processor.

Atomix blocks only make use of memory buffers
passed in through function calls, making their memory
accesses explicit. Further, the signature of the block im-
plementation is annotated to indicate input and output
ports. The Atomix compiler uses I/O port annotations
to manage data flow between atoms, as discussed later
in sec. 3.3. The Atomix framework provides high-level
APIs to control memory placement so that a block al-
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Atom Operation
F RG buffer * readGet(fifo)
F WG buffer * writeGet(fifo)
F RD void readDone(fifo, buffer)
F WD void writeDone(fifo, buffer)

Table 1: Atomix FIFO atoms (denoted collectively by F).

(a) Composing a flowgraph from atoms.
#atom:<atomname>:<atomtype>
atom :eq :EQ
atom :bpsk48 :BPSK48
#fifo:<fifoname>:nbufs=<nbufs>:mem=<memoryid>
fifo :fEqDDSyms :nbufs=2 :mem=L2
fifo :fDDBits :nbufs=4 :mem=L2
#flowgraph:<fgname>:<atomname>;+
flowgraph:FG BPSK:{csi; ofdm; eq; bpsk48;}
#wire:<atomname>:<fifoname>+
wire :eq :fCSI,fFdDDSyms,fEqDDSyms
wire :bpsk48 :fEqDDSyms,fDDBits

(b) Code to compose the flowgraph

Figure 5: Composing a flowgraph from atoms

ways operates on the same memory types (L2 or DDR
etc.). Further, in Atomix, blocks run to completion unin-
terrupted.

By following simple decomposition rules, Atomix en-
ables the programmer to implement signal processing
blocks as atoms. The blocks will run fixed sets of in-
structions executing uninterrupted on fixed resources us-
ing fixed memories. As a result, they will have fixed ex-
ecution times.

3.3 Flowgraphs are expressed as atoms
The Atomix framework lets the user program applica-
tion flowgraphs as atoms. For example, the 6Mbps data
decoding flowgraph, shown previously in fig. 1, can be
expressed as an atom. Flowgraphs are created by tying
together signal processing blocks to FIFO queues. FI-
FOs provide intermediate storage and pass data between
signal processing atoms. The framework provides oper-
ations to access FIFOs as atoms. This makes an Atomix
flowgraph a composition of signal processing atoms and
FIFO access atoms. Since a flowgraph is a composition
of atoms, it is also an atom in itself.

To program a flowgraph in Atomix, the user declares
atoms, FIFOs, wirings between atoms and FIFOs, and
the execution sequence of atoms in the flowgraph. Con-
sider the simple signal processing flowgraph shown pre-
viously in fig. 2. It shows a channel state information

(a) State control flow. Blue: Data flow, Red: Control flow.

(b) State machine example. Blue: Data flow, Red: Control flow.
atom :dispatcher :Dispatcher
atom :dxHDR :HDRParser
atom :jumpToCRC :Jump
fifo :fDispatcher :nbufs=2 :mem=L2
flowgraph:FG HDR AXN:{ ... }
flowgraph:FG BPSK AXN:{ ... eq; bpsk48; ... }
flowgraph:FG QPSK AXN:{ ... eq; qpsk48; ... }
flowgraph:FG HDR RULE:{ dxHDR; }
flowgraph:FG DD RULE:{ jumpToCRC; }
wire :dispatcher :fDispatcher
wire :dxHDR :fDispatcher
#state:<statename>:<FG action>:<FG rule>
state :ST HDR :FG HDR AXN:FG HDR RULE
state :ST BPSK :FG BPSK AXN:FG DD RULE
state :ST QPSK :FG QPSK AXN:FG DD RULE

(c) Code to compose a state machine

Figure 6: Composing a state machine

block (CSI) and an OFDM demodulator block (OFDM)
both feeding data to a channel equalizer block (EQ) that
feeds data to a slicer block (SLICER). A specific realiza-
tion of this flowgraph with the BPSK48 block is shown
in fig. 5a.

In the implementation, block-level atoms and FIFOs
are declared with the atom and fifo API, as shown in
5b. In declaring FIFOs, the programmer is able to control
the memory region in which the FIFO will be allocated,
thus also controlling the execution time of the atoms that
will operate on those FIFOs.

The programmer creates a named flowgraph construct
that specifies the sequence in which atoms of the flow-
graph will be executed (e.g., FG BPSK in fig. 5b). FI-
FOs are wired to atoms using the wire API to specify
the flow of data between atoms. FIFOs are wired to re-
spective input and output ports of the atoms. Based on
the wiring information, the Atomix compiler inserts ap-
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propriate FIFO atoms (denoted by F, described in table
1) for each wired atom. FIFO atoms draw and return
buffers from FIFO queues. These FIFO access atoms
have known, fixed execution times.

Atomix implements a simple control flow model
where a flowgraph is executed by executing each of its
atoms in sequence without interruption. This straight-
through execution model implies that the timing of a
flowgraph is simply the sum of timings of its constituent
atoms, namely, the signal processing atoms created by
the user and the FIFO atoms inserted by the framework.

3.4 States are expressed as atoms

At the top level, Atomix applications are state machines.
With blocks and flowgraphs implemented as atoms, the
final application component that the programmer needs
to create is the state machine. Atomix enables the user to
program states as atoms.

The main components of a state machine are a dis-
patcher atom and named state structures, as shown in fig.
6a. A state is made up of two flowgraphs, the action
flowgraph and the rule flowgraph. Control flow starts
from the dispatcher atom which invokes the next state
in the state machine’s transition sequence with an iter-
ation count n. When the framework invokes a state, it
executes the action flowgraph n times followed by the
rule flowgraph once. The action typically performs sig-
nal processing operations while the rule flowgraph uses
the output of the action flowgraph to decide the next state
to transition to.

As an example, consider the reference 802.11a re-
ceiver previously shown in fig. 1. An implementation
of a subset of that state machine in Atomix is shown in
fig. 6b. It shows a header decode state, two data decode
states and an ACK transmit state. States are declared
with the state API as shown in table 6c for reference
state machine.

A block making state transition decision writes out a
decision buffer into the dispatcher’s queue, where the de-
cision buffer indicates the next state and the correspond-
ing iteration count n. In the example in fig. 6a, the deci-
sion atom DxHDR translates the header field decoded by
the corresponding action flowgraph into a decision out-
put of (< ST BPSK | ST QPSK >, n). When control
returns to the dispatcher at the end of ST HDR, the dis-
patcher reads the next-in-queue decision buffer to con-
tinue state transitions.

The components that make up the execution sequence
of a state are the dispatcher atom and the action and rule
flowgraphs. Since a state is composed of atoms, it is also
an atom in itself.

3.5 Atoms generalize to multiple cores

DSPs are able to processing high-bandwidth com-
munication applications at low power because of the
parallelism of multiple DSP cores, and hardware ac-
celeration. Atomix enables the programmer to easily
parallelize and accelerate flowgraphs and states on
multicore DSPs.

Multicore flowgraphs. Flowgraphs are parallelized by
splitting into smaller flowgraphs, one for each core. Each
sub-flowgraph contains a subset of the blocks in the orig-
inal flowgraph. The programmer may choose any assign-
ment of blocks to the sub-flowgraphs.

Consider the example of the BPSK flowgraph shown
previously in fig. 5a. It is shown laid out as a pipeline
on three DSP cores in fig. 7a. The single flowgraph
(FG BPSK) is split into three sub-flowgraphs, one for
each core: FGBa0 processes the ofdm block on dsp0,
FGBa1 processes the csi and eq blocks on dsp1, and
FGBa2 processes the bpsk48 block (shown as b) on
dsp2. Declarations of these flowgraphs are shown in fig.
7c.

Multicore blocking FIFOs and transfer atoms. When
flowgraphs are parallelized, FIFOs are assigned to the
same cores as the blocks they are wired to. However, it
is possible that a FIFO is wired to multiple blocks that
are assigned to different cores. In our example, one such
FIFO is at the output of ofdm and the input of eq. In
such a case, the FIFO is replaced with multiple FIFOs,
one for each core to which its wired blocks are assigned.
The blocks are re-wired to the FIFOs on their own cores
to prevent expensive remote FIFO access. This is neces-
sary to preserve the timing of blocks.

When a FIFO is replaced by multiple FIFOs on dif-
ferent cores, data needs to be transferred between them
for the flowgraph to compute the correct result. Atomix
provides data transfer functionality as transfer atoms. By
inserting transfer atoms in the sub-flowgraphs, continuity
of the flowgraph is preserved. In the example of ofdm
and eq blocks, the transfer atom t is inserted in sub-
flowgraph FGBa0 on dsp0. This atom pushes data from
the output FIFO of ofdm on dsp0 to the input FIFO of
eq on dsp1. This is shown in figs. 7a and 7b. (The atom
t could have been inserted into sub-flowgraph FGBa1
instead. In that case, it would pull data from dsp0 to
dsp1, and the cost of data transfer operation would be
added to FGBa1.)

The FIFO read and write atoms are implemented as
blocking operations; a read call on a FIFO returns only
when it has a filled buffer and, similarly, a write call
returns when the FIFO has an empty buffer. By being
blocking, FIFO access atoms are able to synchronize ex-
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ecution of multiple cores on data dependencies. For ex-
ample, the eq atom on dsp1 is able to run only when the
ofdm atom on dsp0 has produced a data buffer and t has
finished transferring it to dsp1.

Simple extensions to the declarative API let the
programmer specify multicore assignment of atoms and
FIFOs, as shown fig. 7c. Transfer atoms are inserted
into flowgraphs like any other signal processing atoms.

0 4 8 12 16 

(a) Multicore pipeline example.

(b) Multicore state machine structure.
#atom :<name> :<atomtype> :core=<id>
atom :dis0 :Dispatcher :core=0
atom :dis1 :Dispatcher :core=1
atom :t :TR :core=0
atom :dx :Jump :core=0
atom :v :VCPIssue :core=2
atom :w :VCPWait :core=2
#fifo :<name> :nbufs=<nbufs>:mem=<id>
fifo :fDis0 :nbufs=4:mem=core0.L2
fifo :fDis1 :nbufs=4:mem=core1.L2

flowgraph:FGBa0:{ofdm; t;}
flowgraph:FGBr0:{dx; cp;}
flowgraph:FGBa1:{csi; eq;}
flowgraph:FGBr1:{t1;}
flowgraph:FGBa2:{u; b; w; v;}
flowgraph:FGBr2:{t2;}
#state:<stname>:core=<id>:<FGaxn>:<FGrule>
state :ST BPSK :core=0:FGBa0:FGBr0
state :ST BPSK :core=1:FGBa1:FGBr1
state :ST BPSK :core=2:FGBa2:FGBr2

(c) Code to compose a multicore pipeline. Highlighted fields
are multicore extensions to the API.

Figure 7: Parallelizing atoms on multiple cores.

Multicore states. Multicore states enable parallelized
execution of the top-level application state machine. A
multi-core state structure is made up of a pair of action
and rule flowgraphs for each core. When the multicore

system enters a state, each core executes its respective
flowgraph pair for that state. By setting the core-specific
actions of a multicore state to sub-flowgraphs of a paral-
lelized flowgraph, the programmer is able to create effi-
cient multicore processing pipelines.

A three-core version of the BPSK state ST BPSK is
shown in fig. 7b. For this state, the cores now use
sub-flowgraphs FGBa0, FGBa1, and FGBa2 as actions.
Similarly, they use FGBr0, FGBr1, and FGBr2 for
rules. The code to declare the multicore state is shown
in fig. 7c.

A multicore state machine executes like multiple par-
allel state machines executing asynchronously. Each
core has its own dispatcher atom (fig. 7b. On any core,
control flow starts at the dispatcher, passes through the
next state to execute, and returns to the dispatcher. Cores
synchronize on the state transition sequence by exchang-
ing transition decisions computed in the rule flowgraphs.

In our example, once the system enters ST BPSK,
all cores start processing their respective action flow-
graphs for the state. These sub-flowgraphs exchange data
through the transfer atoms that the programmer inserted
when parallelizing them. Collectively, they execute the
parallelized BPSK processing pipeline.

After finishing a state’s action iterations, cores inde-
pendently execute their respective rule flowgraphs for
that state. In our configuration, only dsp0 executes the
decision atom dx for the BPSK state. Its output decision
is distributed to each dispatcher through transfer atoms
t1 and t2. By executing state-transition decision atoms
on a single (though possibly different) core for each
state, the programmer synchronizes state transitions
across all cores. In this way, the entire system transitions
states in lock-step.

Accelerator atoms. The pipeline shown in fig. 7a
includes atoms for Viterbi-decoding on Viterbi Co-
Processors (VCPs). To use the VCPs, Atomix provides
VCPIssue (v) and VCPWait (w) atoms. A VCPIssue
atom can configure a VCP and start its execution. A
VCPWait atom can wait for VCP execution to terminate
and thus synchronize a DSP core with a VCP core.
A hardware accelerator takes a fixed amounts of time
to execute a given workload. Consequently, issue and
wait operations interacting with an accelerator finish
executing in predictable amounts of time, making them
atoms. This model extends to other accelerators.

Multicore execution model and timing. The multicore
execution model of Atomix is similar to the single-core
setting. Blocks access FIFOs for input and output buffers
before they execute, they run as soon as buffers are avail-
able, and they always runs to completion. Cores com-
municate by transferring data between FIFOs, and syn-
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Queue status
readIdx
writeIdx

Per-buffer status
freeOrBusy

filledOrEmpty

(a) Queue mgmt. data struc-
tures (b) Buffer state machine

Figure 8: Lock-free queue management

chronize execution by polling FIFOs with blocking calls.
When a block polls a FIFO, its wait duration is deter-
mined by execution times of upstream atoms, including
data producers and transfer atoms.

In this manner, execution control flow simply mimics
data flow in the system. This allows the timing of a mul-
ticore atom to be computed by adding up the execution
times of atoms on the critical path of execution, i.e., the
slowest path of data flow in the parallel execution.

To illustrate the timing model, we analyze the BPSK
action flowgraph pipeline. We assume that data is
arriving every 4 units of time. We also assume that
the blocks have the following execution costs per
iteration: ofdm:2.5, csi,eq:1.5, b:1.0, t,u,w,v:0.5,
and VCP-processing:6.0. The total DSP computation
load of this flowgraph is 6.0 units, which cannot be
sustained at data arrival rate by a single DSP. When
laid out on three DSP cores and two VCPs with transfer
atoms, the pipeline is able to meet the processing
throughput requirement, as shown in fig. 7a. The
pipeline’s latency is the timing of the critical path
ofdm-t-eq-u-b-w-v-VCP, which is 13.5 units.

3.6 Efficient data-flow implementation
The runtime system of Atomix executes fine-grained
pipelines with hardware-like efficiency using two main
techniques: lock-free FIFOs, and asynchronous data
transfers.

Lock-free FIFO implementation. The FIFO imple-
mentation in Atomix provides a simple API with four
functions (table 1). We design the functions to execute
extremely efficiently: the Get functions take 40 cycles
each, and the Done functions take 8 cycles each. Typ-
ically, FIFO queues in multicore environments are im-
plemented with locks to serialize access. Atomix does
use them because locks are expensive, and they can cre-
ate timing variability by serializing concurrent accesses
in arbitrary order. Atomix FIFO API implementation is

Per-buffer status
freeOrBusy

filledOrEmpty
linkNum

(a) Extended buffer state (b) Transfer scenario

Figure 9: Link number field and Transfer Completion
Code (TCC) for handling asynchronous transfers

entirely lock-free.
In order to operate correctly without locks, Atomix re-

quires every FIFO to have a single-reader and a single-
writer (SRSW) at any point in multicore execution. In
addition to common readIdx and writeIdx status for the
queue, a per-buffer 2-bit (freeOrBusy, filledOrEmpty)
status tuple is maintained (fig. 8a). As FIFO API calls
are made, the buffer transitions through those states (fig.
8b). If a call cannot succeed (e.g., RG in state 01), it
blocks until the buffer reaches the required state for the
call to proceed. Only one of the four possible API calls
can succeed and hence, modify the data structures in any
given state. By the SRSW property, only one FIFO ac-
cessor will ever be allowed to write to the FIFO data
structure, ensuring race-free operation without locks.

The SRSW constraint may seem too restrictive com-
pared to typical FIFO APIs. However, in our experience,
most FIFOs wireless applications naturally have single
readers and single writers. Multiple readers or writers
from different states could still be wired to the same
FIFO since at any given time, the system is in exactly
one state.

Handling asynchronous transfers. The FIFO functions
read/writeDone cannot be used with asynchronous
DMA transfer. In order to run them upon DMA transfer
completion, DSP cores must be interrupted, which would
cause variability in atom execution. To deal with this is-
sue, we introduce the buffer state forwarding mechanism,
where the FIFO manager is able to deduce readDones
and writeDones without those calls being made ex-
plicitly.

To implement buffer state forwarding, we extend per-
buffer status field with a linkNum field (LN). On our
prototyping platform, TI KeyStone DSPs, DMA chan-
nels have associated event registers to indicate transfer
completion. We denote this register by TCC (fig. 9).
When the DMA transfer atom TD issues a DMA request,
it sets up the LN field of source and destination buffers to
point to the TCC register of the DMA channel used for
the transfer. TD issues the request and returns. The core
that executed TD moves on to other atoms. The trans-
fer would finish later asynchronously but the buffers will

8
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continue to be marked busy. However, when the buffers
are accessed again in FIFO order, the queue manager is
able to identify from non-zero LN field that they were
marked busy for an asynchronous transfer. The queue
manager then polls the TCC flag pointed by LN. When
the TCC indicates transfer completion, the queue man-
ager forwards the state of the buffer as if the correspond-
ing readDone or writeDonewas called on the buffer.

3.7 Full app development workflow

Atomix compiler 

Figure 10: Full Atomix app development workflow

Stages in Atomix app development. To summarize the
Atomix framework design, the following is an overview
of the application development workflow (fig. 10). First,
the user implements signal processing blocks as atoms in
C language. Next, she composes blocks into flowgraphs
and states using the declarative interface of Atomix.
Then, she computes a parallelized schedule and resource
assignment that will meet the latency and throughput
requirements of the application, and incorporates it in
the declarative app code. This high-level app code is
then compiled down to low-level C code by the Atomix
compiler. Finally, the low-level application C code is
compiled with the platform’s native C compiler and
linked against Atomix runtime libraries into a binary.
The modular structure of Atomix applications and the
streamlined development flow let the user rapidly iterate
designs and optimize performance.

Algorithmic scheduling. The execution model of
Atomix makes it possible to algorithmically compute the
best parallelized schedule for an application. Blocks
can be profiled individually for execution times. Then,
finding the optimal schedule for a flowgraph can be ex-
pressed as a resource assignment problem with depen-
dency constraints. FIFO access costs, data transfer costs
and accelerator access costs can all be modeled as ad-
ditional constraints. We have been able to formulate
the flowgraph scheduling problem as an Integer Lin-
ear Program (ILP). The flowgraph scheduling problem
in Atomix is similar to the instruction-loop scheduling

problem solved by VLIW compilers [17, 18]. Incorporat-
ing algorithmic scheduling in the Atomix compiler can
simplify the application development flow even further.

4 Building an 802.11a Receiver in Atomix

We put Atomix framework’s capability of providing low
latency and high throughput to test by using it to imple-
ment a 10MHz 802.11a receiver called Atomix11a. We
implement 802.11a as a benchmark due to its particularly
demanding requirements. It uses the same bandwidth
modes as LTE (5, 10, 20 MHz), imposing similar pro-
cessing complexity. However, it places much more strin-
gent frame-decoding latency constraints than LTE - 64μs
for 5MHz and 32μs for 10MHz compared to more than
1ms for LTE. To stress the system, we implement the
highest throughput Modulation Coding Scheme (MCS)
in 802.11a, MCS 7: 64-QAM with 3/4 coding rate, which
operates at 27Mbps on a 10MHz channel.

We first evaluate Atomix11a and show that (1)
Atomix11a can decode over-the-air frames in real-time
on the TI 6670 a 4-core, 4-Viterbi accelerator 1.25GHz
DSP, (2) Atomix11a can achieve 36μs processing la-
tency with 1.5μs of variability, sufficient to meet require-
ments of a 5MHz 802.11a channel and close to meeting
10MHz requirements, and (3) most of the atoms we built
for Atomix11a have predictable timing. Next, we de-
scribe the use of Atomix to implement a modular 802.11a
receiver that has low latency and high throughput on the
low power (7 Watt) TI 6670 DSP. We could implement
the receiver in about 3000 lines of declarative application
code (excluding individual block implementations in C
language).

4.1 Evaluation of Atomix11a
We first demonstrate that Atomix11a is a robust, faithful
implementation of 802.11a signal processing. Then we
evaluate Atomix11a’s latency and timing variability, and
finally we evaluate the runtime of Atomix11a’s atoms
to show that they come close to Atomix’s fixed runtime
atom abstraction.

Atomix11a exceeds receiver sensitivity requirements.
An 802.11a compliant receiver must be able to decode
1,000 byte packets with a Packet Error Rate (PER) of
0.10 at -65dBm receive power over an AWGN channel,
as measured at the RF frontend’s antenna port [7]. In
our experiment, we feed signal over an RF co-axial
cable to emulate an AWGN channel without multipath
reflections. On the receiver, we use the high-quality
RF frontend of an R&S FSW spectrum analyzer to
digitize received signal into baseband I/Q samples, so
the experiment focuses on the robustness of Atomix11a

9
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Figure 11: Atomix11a exceeds receiver sensitivity spec-
ifications (gray box).
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Figure 12: Atomix11a processing latency is at most
36.4μs and it varies at most by 1.5μs.

baseband running on the TI 6670 DSP, not the quality
of the RF frontend. Fig. 11 shows the results of this ex-
periment. Atomix11a exceeds 802.11a’s requirement of
0.10 PER at -65dBm; it achieves a 0.046 PER at -78dBm.

Atomix11a operates robustly indoors. The second ro-
bustness test is to see if Atomix11a can decode packets
sent over-the-air in challenging indoor multipath chan-
nels causing frequency selective fading. Robust 802.11a
receivers use a computationally intensive zero-forcing
channel equalizer to equalize the sub carriers.

We setup a 6 meter link across an office and trans-
mitted 100,000 802.11a frames, each 1,000 bytes, at
MCS 7 (64-QAM, 3/4 coding rate), and over the 10MHz
channel at 2.479GHz. We used a USRP2 RF frontend
connected to the TI 6670 DSP with gigabit ethernet.
Both the transmitter and the receiver were connected
with 3 dBi omnidirectional antennas. The receiver
successfully decoded (verified CRC) for 99,999/100,000
frames. Therefore Atomix11a is capable of an extremely
low PER of 0.001% in an indoor office environment, and
is likely a faithful implementation of 802.11a.

Atomix11a has low processing latency. Next, we per-
form an end-to-end test of Atomix framework’s ability
to support a low latency, low timing variability, and high
throughput signal processing chain. We transmitted 200
frames each of different sizes (6-50 symbols, 122-1310
bytes) to the USRP2 which is connected to the TI 6670
DSP. We compute the processing latency by subtract-
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Figure 13: Atomix11a atoms have low timing variabil-
ity.

ing the frame processing time of Atomix11a from the
frame’s airtime. We measure Atomix11a’s maximum
processing latency, as well as the range over which it
varies.

Fig. 12 shows the results of this experiment. The
whiskers are the minimum and max of each of the
200 frames, and the boxes show the 25th, 50th, 75th

percentiles. For all the frame sizes tested, the minimum
and maximum processing latency is similar, indicating
that the composition of atoms adds minimal latency
between frames. The max processing latency is 36.4μs,
1.14× the requirement of 32μs for 802.11a. Although
36.4μs latency is low, the Atomix11a implementation
could be further optimized to meet protocol latency
requirements. Specifically, there is room to optimize the
implementations of individual atoms, and to algorithmi-
cally compute the parallelization schedule of atoms that
minimizes decode latency.

Most Atomix11a atoms have low timing variability.
In the final experiment, we observe the variability of the
runtime of every atom in Atomix11a. We expect some
variability due to L1 caching and micro-architectural
sources of variability like bus contention (sec. 3.2). We
instrumented each of the atoms in the Atomix11a imple-
mentation with a lightweight cycle counter that records
the cycle count of each execution of the atom. We mea-
sured the runtime of every atom that executes while re-
ceiving 12 frames of 500 bytes (20 OFDM symbols at
MCS 7). Most atoms run every OFDM symbol of the
frame.

Fig. 13 shows the min, max, and 75th percentile
runtime of all of the 150 atoms that were executed in
Atomix11a (bottom), as well as the number of times each
of those atoms were run in our experiment (top). Most
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Figure 14: Fine-grained OFDM symbol pipelining in
Atomix11a’s data decode state.

atoms have a fixed or insignificant runtime (atoms 60-
150). These atoms include both framework atoms such
as memory transfers, as well as Atomix11a computation
atoms such as the 64-QAM soft slicer and the PLCP’s
soft deinterleaver.

Atomix11a’s atoms have at most a 0.486μs range be-
tween their max and min runtime due to L1 caching and
micro-architecture. The atom with the largest runtime
range (atom 0) is the channel estimator, which is the most
computationally intensive atom in Atomix11a. Although
the difference between the max and min runtime for these
atoms can be significant, for all atoms the 75th percentile
of runtime is close to the minimum. This shows that the
atom abstraction holds well in practice. Further, execu-
tion times of different atoms have low co-variance. This
explains the low end-to-end packet decoding variability
of 1.5μs. This variability can be reduced further by dis-
abling L1 caching on the TI 6670 and managing the L1
SRAM in software with Atomix transfer atoms.

4.2 Implementation of Atomix11a
Modularity resulting from the atom abstraction enabled
us to implement Atomix11a with fine-grained pipeline
parallelism, which was crucial in achieving high through
and low latency on the TI 6670 DSP. We implemented
signal processing blocks as fine-grained atoms that op-
erate on one OFDM symbol (8μs worth of samples
at 10MHz) every iteration, as discussed earlier. The
Atomix API enabled us to compose the block-level
atoms into flowgraphs and states and schedule them for
high performance in a low power budget of 7W.

Precise timing of atoms allowed us to spread the
pipeline over all the cores and accelerators so it would
execute without stalls and achieve the required pro-
cessing throughput of 10Msps reliably. Fine-grained
atoms allowed us to pipeline data processing with data
reception to achieve low decode latency of 36μs.

Fine-grained pipeline structure. The fine-grained
pipeline structure of Atomix11a is shown in fig. 14. It
depicts a snapshot of the pipelining in payload decod-
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~
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Figure 15: Core utilization of Atomix11a while it re-
ceives a 1500 byte MCS 7 frame at 10MHz.

ing state. At any point in the steady state, six OFDM
symbols are being processed in the pipeline. With fine-
grained resource allocation API of Atomix, we could
lay out the pipeline so that each DSP core and Viterbi
co-processor (see ahead) contributed to the processing
of an OFDM symbol. This enabled the highest sam-
ple processing throughput achievable by the hardware re-
sources.

The core utilization map resulting from our fine-
grained pipeline is shown in fig. 15. It depicts the
processor’s active and idle time on all four DSP cores
while it is receiving a 1500 byte 802.11a MCS 7 frame.
The vertical grid indicates the arrival of a symbol to
Atomix11a. As the figure shows, all cores are partic-
ipating in a pipeline to process every arriving OFDM
symbol.

Parallelizing Viterbi decoding for high throughput.
Optimal Viterbi-decoding is a sequential algorithm.
However, in practice, the decoded sequence of bits
(codeword) can be partitioned into overlapping chunks
that can be decoded in parallel with negligible perfor-
mance penalty under certain overlap size constraints.
We use this scheme to use all 4 VCPs for decoding the
same WiFi frame, where each chunk is one-half OFDM
symbol with appropriate padding of surrounding bits to
satisfy overlap constraints. Such a scheme has also been
used in BigStation [30] where it is described in more
detail.

Optimizing latency with overlapping states. Atomix
allows different cores to operate simultaneously in dif-
ferent states. This feature enables the implementer to use
all cores to execute as many states at once as possible,
and thus provide lower latency than if the states ran in
serial. For example, fig. 15 shows as the LTF symbol
arrives we split its processing across two cores, and
same for the PLCP symbol2. The split point for the LTF

2Note that with a 10MHz signal, the LTF and PLCP processing ends
before the arrival of the next symbol. However, with a 20MHz signal
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state is after CFO estimation because the CFO estimates
can immediately be applied on the PLCP symbol when
it arrives. Then, when the channel estimates finish
on core 1 in LTF, the rest of the PLCP is processed.
Core 1 uses the channel estimates to complete the PLCP
processing with the symbol transferred from core 0. In
summary, Atomix enabled pipelined processing of two
symbols in two states at the same time on two cores.

Easy to program. We implemented the Atomix11a
receiver in 3000 lines of Atomix’s high-level code. The
Atomix compiler translated the high-level code into
about 30,000 lines of low-level application-specific C
code. Atomix reduces the LoC effort by an order-of-
magnitude. Further, it makes the development process
significantly easier through its abstractions compared
to directly writing low-level code. All of the blocks
in Atomix11a’s signal processing library were imple-
mented with less than 300 lines of C code each.

Low resource footprint. The Atomix atom abstrac-
tion requires each configuration of a signal processing
block to be split out as a separate block, e.g. BPSK48,
BPSK96, QPSK48. To avoid code size explosion, we
implement similar blocks as wrappers on a common pa-
rameterized kernel (e.g., BPSK<N>). Atomix API also
provides primitives to instantiate parameterized blocks
in the atom declarations.

Using those techniques, Atomix11a has code size of
468 KByte per core. This comfortably fits in the 512
KByte of L2 SRAM per core that we allocated as pro-
gram memory. The data size on any core is at most 145
KByte out of 512 KByte of L2 SRAM allocated for data
memory. Code size could be further optimized by cre-
ating per-core binaries containing only code executed on
each of the cores. Another approach is to write the blocks
in C++ using templates. It is also possible to partition the
SRAM in favor of program memory.

5 Modifiability

We demonstrate the modularity of the Atomix 802.11a
receiver by adapting it to two new applications: long-
distance links, and phase-array location signatures.

5.1 Adapting to long-distance links
Long-distance wireless links appear in settings like ru-
ral connectivity [6], point-to-point backhaul and commu-
nity networks [4]. They are challenging because the de-
lay spread of the multipath wireless channel also grows
with link distance. However, WiFi is designed for shorter
distance links. As a case-study of Atomix modifiability,

(4μs interval), the PLCP symbol will arrive during LTF processing.

Figure 16: Modifications for long-distance app

(a) Measured CIR (b) PER with long-CP

Figure 17: Performance on a two-tap multipath channel.
Long cyclic-prefix (CP) is critical for long outdoor links.

we demonstrate the process of systematically diagnosing
and adapting our base WiFi receiver to work well over an
emulated long-distance link.

We emulate a long-distance channel that has two mul-
tipath components: the line-of-sight component, and a
reflection delayed by 2us (20 samples) that is 12dB lower
in strength. On this channel, the unmodified Atomix11a
receiver resulted in 100% packet error rate (PER). To as-
certain that the signal strength is not the limiting factor,
we tap the baseband chain to read off sample energy val-
ues being computed by the energy-detection block (ED),
as shown in fig. 16. On the simulated transmission with
an average carrier-to-noise ratio (CNR) of 45dB, our tap
revealed the CNR to be 45.4dB, confirming sufficient
signal strength for successful decode.

Ruling out signal strength limitation, we suspected a
high-distortion channel. To look deeper, we inserted an
error-vector-magnitude (EVM) computation block after
slicing the constellation. On a distortion channel, we
would expect a high EVM value, or equivalently, a low
SNR indicated by the EVM. The EVM block runs in
0.64us on core 1. We set it to compute on the output of
the PLCP field. Core 1 had enough cycles (fig. 15) in the
PLCP decode state to run EVM without adding latency
to packet decode. Our EVM block indicated only 19.2dB
SNR, much lower than 45.4dB CNR. This strengthened
the suspicion of a poor channel.

To find the ground truth about the channel, we inserted
a block to compute the time-domain channel impulse re-
sponse (CIR) using the long training field (LTF) of the
preamble, same as used for frequency-domain channel
estimation. The CIR block runs in 3.4μs. We set it to
run core 3, which has enough spare cycles after packet
detection to run CIR without hurting packet decode. The

12



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 185

(a) Modifications for AoA app

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

(b) AoA spectrum

Figure 18: AoA spectrum app

CIR block showed the channel response to be as shown
in fig. 17a. It accurately recovered the emulated channel
and pointed us to the root problem: two strong compo-
nents 20 samples apart, and a delay spread too high for
the standard WiFi OFDM cyclic prefix length of 16 sam-
ples.

Armed with this knowledge, we implemented the solu-
tion of increasing the cyclic prefix (CP) length to 32 sam-
ples. To implement the longer CP communication mode,
only the SYNC block needed tweaking. It is responsible
for discarding the cyclic prefix from each OFDM sym-
bol before passing it to rest of the processing chain. We
tweaked it to discard 32 samples instead of 16. After im-
plementing the longer CP, performance of the link came
back to the expected CNR-PER quality on a benign chan-
nel. The observed performance of CP length 32 over the
2us two-tap channel is shown in fig. 17b. On the same
reception as before, the EVM block now indicated SNR
of 38.7dB, much closer to the CNR of 45.4dB, confirm-
ing that signal distortion had been effectively corrected.

By simply tapping existing signals, tweaking a block
and inserting a few blocks, we could methodically adapt
the receiver to a new application setting. The whole exer-
cise took just a few hours of programmer-time to modify
or add a total of 20 lines of declarative code (after we
implemented the individual signal processing blocks).

5.2 Adding location signatures
Location signatures of a wireless transmitter can be com-
puted using phase-array processing at a MIMO AP re-
ceiver. MUSIC [19] is a popular algorithm to compute
angle-of-arrival (AoA) spectrum which is used in many
location-based systems like [28, 29]. It is desirable to
embed AoA spectrum computation on the AP to save
bandwidth incurred in remote computation, and to make
location estimates available at the AP at sub-millisecond
latencies. For such scenarios, we demonstrate addition of
an AoA computation application to our Atomix 802.11a
receiver.

The set of blocks used to compute AoA spectrum
is shown in fig. 18a. A flowgraph is composed
with the phase-multiplier block (PH), correlation matrix
computation block (Rxx), a complex Hermitian eigen-

decomposition block (EIG), and a spectrum computation
block (SPT). We leverage the baseband receiver to detect
WiFi packets using preamble-detection. Preamble sam-
ples are tapped and copied on a FIFO for AoA computa-
tion. Once the packet decode finishes, AoA computation
is invoked. A sample of AoA spectrum computed on the
DSP processor is shown in fig. 18b.

The entire AoA computation chain takes 530us with
room for further optimization. Its components are: PH:
1.5us, Rxx: 21us, EIG: 178us and SPT: 330us. For
eigendecomposition, we use a FORTRAN-to-C trans-
lated routine from EISPACK [2]. Our simple implemen-
tation is already able to compute an AoA spectrum in
about half of a millisecond at the base-station. We are
able to reproduce the results from [28, 29], which we
omit for brevity. To add the AoA app, we needed to
add only about 30 lines of declarative code to the base
Atomix11a receiver (in addition to blocks in C).

6 Related work

Existing frameworks suited to building baseband appli-
cations using abstractions of blocks and flowgraphs have
only targeted GPPs and FPGAs. Also, operating systems
for building realtime programs on DSPs do not provide
the right abstractions for modular communication
applications. To the best of our knowledge, Atomix is
the first system to enable high-performance, modular
communication applications on multi-core DSPs.

Modular frameworks for GPPs and FPGAs. GNU
Radio [5] is a rapid prototyping toolkit for signal pro-
cessing applications. It provides interfaces to connect
blocks into flowgraphs on GPPs and DSPs [10]. How-
ever, unlike Atomix, GNU Radio’s abstractions do not
have guaranteed timing. They depend on abundant pro-
cessing resources for real-time performance.

The SORA [21] software radio and its modular soft-
ware architecture called Brick [11] provide real-time per-
formance of wireless applications on GPPs. With similar
modularity goals, SORA/Brick and Atomix share simi-
larities in the programming interfaces. However, the dif-
ferences in GPP and DSP architectures make for very
different designs of the two systems. SORA’s design in-
cludes mechanisms like binding threads to cores, mask-
ing interrupts from cores and special memory handling
for optimization cache performance on signal processing
apps. These apply well to the GPP environment with a
general-purpose operating system but do not carry over
to the DSP architecture.

Ziria [20] is a domain specific language targeted to
GPPs for implementing efficient PHY designs. It facil-
itates concise and error-free expression of PHY control
logic. It also provides support for automatic vectoriza-
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tion of individual signal processing blocks. The advan-
tages of programming signal processing apps in Ziria,
currently limited to GPPs, are complementary to those
of Atomix. They can be extended to DSPs by a compiler
that translates Ziria programs to Atomix programs, using
Atomix as a convenient abstraction layer.

The Click modular router [9] provides an abstraction
of blocks and flowgraphs for building packet-based net-
work infrastructure. The expressiveness of Click’s sim-
ple elements and FIFOs was an inspiration for Atomix.
However, Click is not suited to developing wireless ap-
plications on DSPs. For instance, Click’s elements lack
timing guarantees; the Click dynamic scheduler is a
source of timing variability.

StreamIt [24] provides a flowgraph model and in-
tuitive syntax to program stream processing applica-
tions. The StreamIt programming language explicitly
reveals parallelization opportunities to the compiler so
it can exploit task, data, and pipelining parallelism. In
that sense, StreamIt’s compiler complements Atomix.
However, StreamIt’s abstractions lack guaranteed exe-
cution times. Moreover, StreamIt encourages embed-
ding branches within blocks that can cause variability.
Atomix forbids this behavior, and requires all branches
to be expressed as their own atoms.

AirBlue [12] simplifies design of cross-layer signal
processing applications for FPGAs. Like Atomix,
AirBlue also requires FIFOs between signal processing
blocks to enable modular modifications. However, mod-
ular implementation of an application for predictable
and efficient execution poses different challenges on
multi-core DSPs and FPGAs.

Real-time operating systems for DSPs. Real-time
operating systems such as QNX Neutrino [16], Win-
dRiver VxWorks [27] are used in automotive, robotics
and avionics systems. DSPs have their own real-time op-
erating systems such as TI SYS/BIOS [22], and 3L Dia-
mond [1]. In principle, the real-time guarantees provided
by these systems (e.g., priority-scheduling, predictable
interrupt timing) can be applied to real-time wireless in-
frastructure applications too. However, these abstrac-
tions can only be indirectly mapped to the blocks and
flowgraphs that make up baseband applications. Real-
time OSes generally provide some form of FIFO-based
interprocess communication that can be used to create
flowgraphs. However, such FIFOs are not designed for
the fine-grained pipeline parallelism that Atomix’s lock
free FIFOs enable.

7 Discussion

Atomix in the development pipeline: Atomix aims to
make signal processing applications easy to deploy on

DSPs in the wireless infrastructure.However, Atomix
can also enable at-scale prototyping and testing of
wireless applications. Platforms like USRP E310 and
E110 integrate DSPs and ARM cores with commod-
ity RF frontends in embedded form-factors. These
platforms are ideal for building wide-scale research
testbeds. Atomix makes them easy to program for rapid
prototyping.

Limitations of Atomix: Atomix pushes conditionals out
of blocks to the top level construct of state machine.
This makes stepping through conditionals much slower
than having them embedded within blocks. Most base-
band apps spend majority of their time in computation-
ally heavy signal processing blocks, making the cost of
stepping through states negligible. However, for applica-
tions dominated by data-dependent workloads like iter-
ative computations like successive interference cancella-
tion or searching/sorting, Atomix can be inefficient.

8 Conclusion

Atomix is a framework for building and widely deploy-
ing modular, predictable latency, high throughput base-
band signal processing applications. The key abstraction
that enables Atomix is that of an atom — a computation
unit with fixed execution time. Atomix demonstrates that
by abstracting operations as atoms, ease of programming
and fine control for predictable timing can be provided
simultaneously without sacrificing efficiency for signal
processing applications. We show that it can be used to
deploy apps in both WiFi and LTE infrastructures.

We plan to make Atomix available to the research
community and enable the implementation and evalua-
tion of new baseband apps at scale. We also plan to fur-
ther develop Atomix to be a programmable dataplane for
a software-defined radio access network. Specifically,
we plan to investigate open APIs (analogous to Open-
Flow) that programmable basestations should expose to
enable networks to tightly manage packet processing on
a per-flow basis, and enable software defined control over
the wireless infrastructure.
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loop unrolling for modulo scheduling in clustered
VLIW architectures. In Proc. International Con-
ference on Parallel Processing (ICPP), 2000.

[19] R. O. Schmidt. Multiple emitter location and signal
parameter estimation. IEEE Transactions on Anten-
nas and Propagation, 1986.

[20] G. Stewart, M. Gowda, G. Mainland, B. Radunovic,
D. Vytiniotis, and C. L. Agulló. Ziria: A DSL
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Abstract
Could we build a motion tracing camera using wireless

communication signals as the light source? This paper
shows we can, we present the design and implementa-
tion of WiDeo, a novel system that enables accurate, high
resolution, device free human motion tracing in indoor
environments using WiFi signals and compact WiFi ra-
dios. The insight behind WiDeo is to mine the backscat-
ter reflections from the environment that WiFi transmis-
sions naturally produce to trace where reflecting objects
are located and how they are moving. We invent novel
backscatter measurement techniques that work in spite of
the low bandwidth and dynamic range of WiFi radios,
new algorithms that separate out the moving backscat-
ter from the clutter that static reflectors produce and then
trace the original motion that produced the backscatter
in spite of the fact that it could have undergone multi-
ple reflections. We prototype WiDeo using off-the-shelf
software radios and show that it accurately traces motion
even when there are multiple independent human motions
occurring concurrently (up to 5) with a median error in
the traced path of less than 7cm.

1 Introduction
Fine-grained human motion tracing, i.e. the ability to
trace the trajectory of a moving human hand or leg or
even the whole body, is a general capability that is use-
ful in a wide variety of applications. For example, it
can be used for gesture recognition and virtual touch-
screens (e.g. Kinect style natural user interfaces), activity
recognition (e.g. controlling the Nest thermostat depend-
ing on intensity of human activity), monitoring of young
infants and the elderly, or security applications such as
intruder detection. Motivated by these applications, the
computer vision community has developed a number of
depth sensing based systems (e.g Kinect) to implement
motion tracing capabilities in cameras. However these
devices are limited because they have a constrained field
of view (around 2-4m range with a 60 degree aperture),
and do not work in non line-of-sight scenarios, prevent-
ing their use in many applications such as whole home
activity recognition, security and elderly care.

To tackle these limitations, recent work namely RF-
IDraw [43] - has built a motion tracing system using wire-
less signals. The idea is that users would wear RFID














Figure 1: WiDeo in operation: The compact WiFi AP in the
study integrates WiDeo’s motion tracing functionality, and can
reconstruct the hand movement made by humans in the living
room. WiDeo traces motion even though the AP is separated by
a wall and does not have a LOS path to the humans, and doesn’t
require that the humans have any RF devices on them.

tags, and the motion tracing system would generate trans-
missions and then listen to reflections of wireless signals
from these tags. RF-IDraw then infers the underlying
hand motion from changes in reflection signal parame-
ters such as angle of arrival over time. RF-IDraw demon-
strates good accuracy and since it uses lower frequencies
than light (the 900MHz RFID band whereas visible light
is at 600THz), it works in non line-of-sight (NLOS) sce-
narios and in the dark. However, RF-IDraw has two lim-
itations that restrict its deployability. First, RF-IDraw re-
quires the user whose motion is being traced to wear a
special RFID tag on her hands. However, users are ac-
customed to motion tracing using systems such as Kinect
that do not require the user to have any special hardware
on them, and changing user habits can be hard. Second,
the tracing system requires large antenna arrays of eight
antennas with a separation of 8λ , that in their current im-
plementations translates to an antenna array distance of
nearly 2.62m. Expecting users in homes to deploy an-
tenna arrays that might span almost an entire room is a
big hurdle.

Fig. 1 depicts our goal which is to design a device free,
compact motion tracing system. By device free we mean
that the humans whose motion is being traced do not need
to have any devices on them, whether it’s RFID tags or
phones. By compact we mean that the motion tracing is
implemented on standard WiFi or LTE APs (albeit with
minor modifications in hardware and software) and the
APs have antenna arrays that they would have had as stan-
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dard APs anyways. Thus the system is as compact as an
AP that is already being deployed. Finally, we would like
the system to be non-intrusive, it should be integrated into
WiFi and LTE APs that people anyway deploy in their
homes and reuse existing packet transmissions for fine-
grained motion tracing.

The above requirements pose unique challenges. First,
since the system needs to be device-free, it can only rely
on natural reflections of the transmitted signals that hu-
man limbs naturally produce. These are relatively weak
compared to the ones from RFID tags that RF-IDraw
uses, and reflections from different objects in the envi-
ronment cannot be easily distinguished since they are all
slightly distorted copies of the same transmitted signal
(each RFID tag has its own unique IDs which allows RF-
IDraw to distinguish different moving hands because the
tags will be different). Second the fact that the system
uses a compact antenna array with at most four antennas
and regular spacing of λ/2 makes achieving high spatial
accuracy difficult. As the RF-IDraw paper notes, regu-
larly spaced, compact antenna arrays struggle to resolve
the spatial angles of incoming signal reflections.

We present WiDeo, a device-free, compact motion
tracing system with standard AP antenna arrays. WiDeo
only needs 4 antennas per AP, with a spacing of λ/2
which translates to an antenna array length of 18cm for
WiDeo-integrated WiFi APs. At a high level, WiDeo
uses the AP’s transmitted signals itself as a flash to light
up the scene, and then analyzes the natural reflections of
these transmitted WiFi communication signals from the
environment that arrive back at the AP over time to trace
any motion that’s occurring. WiDeo accomplishes mo-
tion tracing through three main components which oper-
ate in sequence:
Backscatter Sensor: The sensor analyzes the compos-
ite reflected signal received at the WiDeo AP (referred
as backscatter) to tease apart the individual reflections
coming from each significant reflector in the environ-
ment, and calculates each reflection’s amplitude, time of
flight (ToF) and angle of arrival (AoA). Our key contri-
bution here is a novel algorithm that accurately estimates
these backscatter components in spite of the constraints
that the humans are device-free, and the limited spatial
resolution of the compact antenna arrays. Our key in-
sight is to exploit the natural sparsity that exists in in-
door environments; as several empirical studies on indoor
MIMO [16, 19] have shown, the number of significant re-
flectors in an environment is fairly small. WiDeo exploits
this insight to accurately measure the backscatter param-
eters using sparsity aware optimization algorithm.

Second, WiDeo must tolerate limited dynamic range,
which causes strong reflections to swamp weak ones,
and limited sampling bandwidth, which hides reflections
spaced closely in time. Typical WiFi sampling of 80Msps

implies a resolution of 12.5ns, or about 6 feet. Our novel
algorithms separate weak and closely-spaced reflections
despite the limitations of commodity radios.
Declutterer: Reflectors abound in indoor environments,
and most of them will be static. The declutterer ana-
lyzes the raw set of reflection parameters estimated by
the backscatter sensor, and clusters them into groups that
correspond to reflections from static and moving reflec-
tors. Further it also eliminates the static reflectors since
they are not useful for motion tracing and enables WiDeo
to specifically focus on reflections arising from moving
objects.
Motion Tracing: This component of WiDeo analyzes the
reflections arising from moving objects to predict the un-
derlying motion that could have produced those sequence
of reflections and their parameters. We design a novel
statistical and sequential estimation framework that pre-
dicts the motion that might have taken place, then esti-
mates the changes in reflection parameters the predicted
motion would have produced, and compares it with the
actual estimated reflection parameters from the backscat-
ter sensor to continuously refine WiDeo’s estimate of the
motion that occurred.

We design and implement a prototype of WiDeo us-
ing WARP radios and simulation environment. The ra-
dios are running a standard WiFi OFDM PHY using up
to 40MHz, and use 4 antennas with a spacing of 6cm
for an overall length of 18cm. We conduct experiments
in indoor environments to demonstrate the accuracy of
WiDeo’s motion tracing. We show that WiDeo can ac-
curately trace multiple sets of fine-grained motion with
a median tracing error of less than 7cm, which is com-
parable to RF-IDraw’s performance of tracing error of
5.5cm. Further, the motion tracing has very high reso-
lution, WiDeo achieves the same accuracy even when the
multiple humans performing the motion are as close as
2 feet away from each other, which to the best of our
knowledge, no prior RF based motion tracing system has
demonstrated.

2 Related Work
Fine-grained motion tracing: Vision based systems
such as [51, 4] make use of depth sensors (e.g. Kinect)
and infrared cameras (e.g. Wii) to trace the fine-grained
motion of a user and enable applications such as gesture
recognition, virtual touch screens etc. WiDeo, on the
other hand, unlike solutions based on depth imaging or
infrared, does not require line of sight to work.

RF based systems like [43] and sensor based systems
like [23, 26] perform accurate motion tracing but require
instrumentation of users. However, WiDeo achieves ac-
curate fine-grained motion tracing in a device-free man-
ner.
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RF based coarse motion tracking and gesture recog-
nition: Recent work such as WiTrack and others [34, 7,
6, 5] has shown the ability to coarsely track full body mo-
tion (not fine-grained motion of human limbs) using ra-
dio waves. Other approaches like [35, 24, 33, 30, 49, 45]
track human motion by using ultra-wide band (UWB)
signals. All of these approaches are also device-free, but
unlike these systems, WiDeo is the first device-free fine-
grained motion tracing system that can accurately recon-
struct the detailed trajectory of a user’s free-form writ-
ing or gesturing in the air, where the motion may only
span a few tens of centimeters. Such free-form tracing
capability is not supported by prior work in RF based
gesture recognition or motion tracking. For example,
[34] presents a state-of-the-art WiFi based interface, yet
it only supports the detection and classification of a pre-
defined set of nine gestures. Moreover, many of these
systems [6, 5, 35, 24, 33, 30, 49, 45] require GHz of
bandwidth unlike WiDeo which works with regular WiFi
bandwidths.

There have been approaches like [48, 50, 27, 36]
which use existing WiFi infrastructure, with no hardware
modifications to achieve device-free human localization
and coarse motion tracking, they use coarse informa-
tion about the environment in terms of Received Signal
Strength Indicators reported by WiFi NICs and require
extensive war-driving. In contrast, WiDeo requires minor
changes to existing WiFi/LTE APs, re-uses the spectrum
allocated for communication by performing fine-grained
motion tracing using reflections of communication sig-
nals that would have been sent for data communication
anyway.
Motion clustering techniques: WiDeo also builds on
theoretical work on motion segmentation, clustering and
classification [41]. These works are targeted at vision
applications that use visible light, and deal with taking
a collection of pixels that represent the motion and un-
derstanding the underlying motion that occurred. WiDeo
on the other hand has to deal with RF signal reflections
which pose unique challenges such as multiple reflec-
tions, noisier measurements and compact, limited sensors
(antenna arrays).
Indoor Localization: A large body of work, ranging
from classic RSSI based techniques [15, 9, 47, 37] to
recent antenna array based techniques [46, 25, 20] ex-
ploit already available WiFi infrastructure to provide in-
door localization services for radios. They achieve im-
pressive localization accuracy of a few decimeters. An-
other line of approaches uses single moving antenna to
simulate an antenna array [29]. However WiDeo differs
from all of them in two fundamental respects. First, it
precisely traces fine-grained motion, rather than a static
location. Second, its device-free, the traced object does
not need to have any RF transmitters on them.

3 Design

WiDeo’s goal is to achieve accurate device-free motion
tracing of moving objects. To realize this, WiDeo, like
standard ToF camera, incorporates four main compo-
nents:
Flash: This is the light source used to light up the scene;
in WiDeo, this is simply the transmission that the AP in
which WiDeo is housed is sending for standard commu-
nication. In other words, wireless transmissions used for
communicating packets act as the flash for the WiDeo.
Backscatter Sensor: This component looks at the
backscatter arising from the environment when the AP’s
transmission gets reflected and arrives back at the AP.
The sensor teases out the individual signals emanating
from each reflector in the environment as well as esti-
mates each reflection’s intensity, angle of arrival and rel-
ative time of arrival. The corresponding component in a
standard camera are the image sensors which capture the
light (aka the backscatter) from objects in the scene and
form a picture of the scene.
Declutterer: The captured backscatter contains a lot of
reflections from static objects which act as clutter to the
reflections originating from the moving object WiDeo
wishes to trace. The declutterer component figures out
which of the reflections are from objects WiDeo doesn’t
care about and eliminates them so that motion tracing can
focus only on reflections from moving objects.
Motion Tracer: This component looks at the reflections
coming from moving objects over time to predict the ac-
tual physical motion that could have produced that se-
quence of reflections.
We omit the description of the flash component since that
is a standard AP transmitter. We describe each of the
other three components in detail next. For now assume
that the AP’s receiver can listen to all the reflections from
the environment even though it is transmitting at the same
time; we describe how we leverage recent work on full
duplex to tackle that challenge in § 3.2.2.

3.1 Backscatter Sensor

The sensor’s main challenge is to estimate the parame-
ters of each reflection that makes up the received signal.
The reflected signals from these reflectors arrive at the
AP with different times of flight (ToF), amplitudes and
angles of arrival (AoA), but the receiver only obtains the
sum of the signals. Let’s assume L reflectors are present
and that each reflector k applies an unique unknown dis-
tortion function fk(x(t)) to the transmitted signal x(t). So
the overall backscatter signal y(t) that is arriving back at
the AP can be simply written as:

y(t) = ∑L
k=1 fk(x(t)) (1)
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The backscatter sensor’s goal is to estimate these func-
tions fk and then calculate the ToF, amplitude and AoA
of the signals reflected from each of these reflectors. As
written, the above equation 1 appears intractable, all we
know is the transmitted signal x(t) and the overall re-
ceived signal y(t). How might we tease out the individ-
ual reflections? WiDeo makes two novel observations to
solve the above under-constrained problem:
Reflector Sparsity: First, WiDeo posits based on recent
empirical evidence [16, 19] that the number of significant
reflectors in an indoor environment are limited. While
there may be many objects, the ones that actually pro-
duce sufficiently strong reflections to be visible in the 40
dB of effective dynamic range, which is typical in WiFi
radios, are not so numerous. This phenomenon has been
extensively proven in empirical wireless communication
studies that study the performance of MIMO which crit-
ically depends on the number of independent reflectors
in an environment [16, 19]. In WiDeo’s case, this means
that the number of reflectors that could have contributed
significantly to the overall signal is limited.
Narrowband Transformations: The second key obser-
vation is that WiDeo uses narrowband communication
signals and radios as the flash/light source. By narrow-
band we mean that the signals generated or received by
the WiDeo device (the AP) are filtered to only let the sig-
nal within the bandwidth, which conforms to FCC regu-
lation, used for communication to come through. For ex-
ample, if we are using the WiFi channel of width 40MHz
at center frequency 2.42GHz, then a passband filter of
width 40MHz centered at 2.42GHz is applied at the trans-
mitter and the receiver. Filtering by a passband filter can
be modeled as convolution with a sinc pulse of the same
bandwidth in the time domain [1]. So the reflected signal
(after including the attenuation and delay) is now con-
volved with a sinc pulse. So the signal that arrives back
from a single reflector is actually given by:

fk(x(t)) =
(
αkx(t − τk)

)
⊗ sinc(Bt) (2)

where B is the communication bandwidth of the signal,
αk is the complex amplitude and τk is the overall delay
of the reflection or the Time of Flight (ToF) for the kth

reflector, and ⊗ represents the convolution operator [39].
Eq. 2 can equivalently be written as:

fk(x(t)) =
(
αksinc(B× (t − τk))

)
⊗ x(t) (3)

If there are L reflectors, then all L reflections will undergo
different attenuations and ToFs, add up over the air and
then get convolved with a sinc pulse. Therefore the over-
all signal is given by:

y(t) =
(

∑L
k=1 αksinc(B× (t − τk))

)
⊗ x(t). (4)

The sensors now first calculate the overall transforma-
tion h(t) that has happened to the transmitted signal x(t),

i.e. y(t) = h(t)⊗ x(t) where h(t) is essentially the sum
of the transformations applied by all the reflectors. This
is classic channel estimation that’s used in standard com-
munications (after all every receiver estimates the chan-
nel that has transformed the transmitted signal to be able
to decode). We refer the reader to the following litera-
ture [8] for a review of the different techniques that can
be used.

However, WiDeo’s problem is quite harder than stan-
dard channel estimation which only cares about the over-
all transformation. Although, WiDeo knows the overall
channel h(t), it needs to figure out the amplitudes and
time shifts of the sinc pulses that are summed up to pro-
duce the overall channel h(t). The equation that WiDeo
has to solve is therefore given by:

h(t) = ∑L
k=1 αksinc(B× (t − τk)) (5)

We can rewrite the equivalent equation in the digital do-
main (after all WiDeo will be working in the baseband
domain after ADC sampling) as:

h[n] = ∑L
k=1 αksinc(B× (nTs − τk)), (6)

where Ts is the sampling time of ADC. WiDeo’s goal is
to solve the above equation to determine αk and τk for all
reflections.

To tackle this, we now exploit the sparsity observation
that the number of significant reflectors in an environment
is limited to a handful (typically on the order of 10-15).
Specifically, we attempt to find the smallest number (less
than 20 in our implementation) of scaled and shifted sinc
pulses that could have summed up to produce the overall
channel response. Mathematically, we are attempting to
solve the following problem:

min ∑n(h[n]−∑k αksinc(B× (nTs − τk)))
2 +λr|α|0

s. t. τk ≥ 0, |αk| ≤ 1,k = 1 : L,n =−N : N.
(7)

Note that the above problem is similar to classic prob-
lems in compressive sensing [17, 42, 14]. Like in com-
pressive sensing problem, we are trying to find the min-
imum number of non-zero components (each component
corresponds to a reflector) and the corresponding scaling
and shifting factors that best explain the observed chan-
nel h[n]. The sparsity of the number of reflectors is
coerced by the term λr|α|0, where λr is a positive reg-
ularization term and |.|0 is the number of non-zero terms
in the amplitude vector. However there is one major dif-
ference, WiDeo’s problem is trying to find the best spars-
est combination of parameterized continuous basis func-
tions (the sinc pulses parameterized by continuous shift
factors), whereas classic compressive sensing is finding
the sparsest combination of discrete finite sized vectors
that produces some overall vector. We omit the mathe-
matical details here for brevity, but refer the reader to a
large body of literature on solving these sparse estimation
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problems [18, 40, 31]. WiDeo’s contribution is to show
that the backscatter sensing problem can be formulated
using sparsity and compressive sensing intuition.

3.1.1 What if the reflectors are closely spaced?

The above description didn’t make any mention of how
closely spaced the reflectors are. For example, if the two
reflectors are a foot apart, their reflections will arrive at
the AP within two nanosecond of each other (wireless
signals travel a foot per nanosecond and reflection for
objects a foot apart takes 2 nanoseconds). But sampling
rates of wireless communication radios are at best around
100Msps (Mega samples per second), which means that
two samples are spaced 10ns apart. How could then
WiDeo estimate the parameters of the two reflectors that
are closely spaced to an order of magnitude closer in time
than the sampling period? Even if two reflections are
closely spaced in time because their reflectors are almost
at the same distance from the AP, they are likely to be
at different spatial angles (otherwise they would be the
same reflector!). So the spatial dimension provides us the
ability to separate reflections in space when they are close
in time. The heuristic works in the other direction too, if
two reflectors are at the same AoA (because they are on
the same radial line), they are likely at different delays
and can be separated out.

How do we use this insight to separate out reflections?
The intuition is that if the WiDeo AP has an antenna ar-
ray (typical APs have 4 antennas), then the specific AoA
of each reflection imposes a constraint on how the phase
of that reflection changes across space. Specifically if
the antennas are laid out equidistant at distance d in a
straight line, the so called uniform linear array (ULA),
and if the AoA is θ , then the relative phase between
the signal at any two consecutive antennas is given by
(φ(θ) = 2πd sin(θ)c/λ ), where c is the speed of light in
air and λ is the wavelength of the RF carrier. Assuming
that there are four antennas in the WiDeo’s AP we call the
following vector [0,φ(θ),2φ(θ),3φ(θ)] of phase differ-
ences of all the antennas with respect to the first antenna
as the relative phase constraint vector.

In general when more than two backscatter signals are
present, each of these backscatter signals arrives at all
four antennas, but based on the AoA of these signals
the relative phase constraint vectors of these signals will
be different. WiDeo uses this insight in the following
way. In addition to finding the best sparse signals as de-
scribed by 7, WiDeo imposes an additional constraint that
these estimated sparse solutions should strictly follow the
phase vector constraint imposed by the ULA structure
leading to the following problem for Ψ antennas:

min ∑
m

∑
n
(hm[n]−∑

k
αke−i(m−1)φ(θk)sinc(B× (nTs − τk)))

2

+λr|α|0
s. t. τk ≥ 0, |αk| ≤ 1,k = 1 : L,n =−N : N,m = 1 : Ψ.

The e−i(m−1)φ(θk) term in the optimization objective func-
tion is encoding the phase constraint that arises from a
specific AoA. In essence, while many signals can fit the
time domain constraint given by 7, only few of them can
satisfy the relative phase constraint vector thereby further
limiting our solution space and hence increasing the ac-
curacy of our estimates despite the closeness of these sig-
nals in time. The matching relative phase constraint vec-
tor of ULA has one-to-one relationship with AoA, thus
using this process we can simultaneously estimate the
AoA of the backscatter signals in addition to their am-
plitude and ToF.

To summarize using the above technique, the sensor
outputs a set of reflections with their associated three tu-
ple of parameters: amplitude, ToF and AoA. The next
step is eliminating the numerous reflections from static
objects that act as clutter to motion tracing problem which
we describe below.

3.2 Declutterer
Reflectors abound in the environment and their reflec-
tions end up cluttering the backscatter, making it hard for
WiDeo to focus on the reflections arriving from the mov-
ing object that’s being traced. Tracing accuracy can be
greatly improved if this clutter can be eliminated. There
are two kinds of clutter in decreasing order of harmful-
ness. The first are reflections from objects nearby whose
relative strength w.r.t. to the moving object reflection is
greater than the dynamic range of the WiDeo receiver. In
this case, the reflection from the moving object is com-
pletely lost in the quantization noise and motion cannot
be traced. The second is clutter whose strength is within
the dynamic range relative to the moving object’s reflec-
tion. Here information is not lost, but it becomes harder
for the tracing algorithm to recover the original motion.
WiDeo’s declutterer handles both kinds of clutter and
eliminates them. We start by describing how to handle
the second kind of clutter by guessing which reflections
are from moving objects, and then describe how to elimi-
nate the rest of the clutter including the nearby reflectors.

3.2.1 Eliminate Reflections of Static Objects

WiDeo uses a heuristic to loosely identify reflections that
are likely to have come from moving objects. The ba-
sic idea is to look across sequences of backscatter sensor
measurements as shown in Fig. 2, and then make an as-
sociation of which reflections haven’t changed in value
and which have. The idea is that the reflections that have
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continuously changed their parameters (their amplitude,
AoA and ToF) will include reflections from moving ob-
jects. Everything else is classified as static clutter that has
to be eliminated.

(a)	  Backsca)er	  components	   (b)	  Sta3c	  Backsca)er	   (c)	  Moving	  Backsca)er	  
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es →

Delay → Delay → Delay →

Figure 2: The figure represents backscatter components ob-
tained from a simulated hand movement in a typical indoor sce-
nario using ray tracing software [2]. The backscatter compo-
nents collected in each time interval are presented as an im-
age snapshot. The horizontal and vertical axes correspond to
ToF and AoA respectively. Each colored pixel corresponds to
a backscatter component. Different snapshots stacked one over
the other correspond to set of backscatter components obtained
in consecutive time intervals. The majority of backscatter com-
ponents are contributed by static environment, which are shown
in the same color to provide contrast with moving backscatter.

The key question then is to look at snapshots of
backscatter over time, associate the backscatter param-
eters that we believe are coming from the same reflec-
tor and then apply the above heuristic . Each snapshot
is made up of as many backscatter points as number of
reflections, and each point is associated with a three tu-
ple of amplitude, ToF and AoA. WiDeo keeps track of
a moving window of such backscatter snapshots (in our
current implementation the last 10 snapshots are main-
tained). The first step is to associate points which are gen-
erated from the same reflector between every two succes-
sive snapshots, even if the reflector moved between those
two snapshots. To do so, we invent a novel point associa-
tion algorithm across snapshots based on minimizing the
amount of change between consecutive snapshots.
Identification of Static Reflections: The algorithm starts
by calculating the pairwise distance between every pair
of backscatter points in successive snapshots. Distance
is defined as the absolute difference in the three parame-
ters (amplitude, ToF and AoA) squared and summed after
appropriate normalization. Note that this metric is calcu-
lated for all pairs of points, so there would be n2 distances
where n is the number of backscatter points in a snap-
shot. The goal is to figure out the specific pairings where
points in each pair of snapshots are generated by the same
backscatter reflector.

Our key insight is that for static objects, the points cor-
responding to backscatter reflections from that static ob-
ject in successive snapshots should be at zero distance
with respect to each other because by definition they did

not move and the associated parameters did not change.
Further even for the points that correspond to moving re-
flectors, given how slow human motion is relative to the
length of a backscatter snapshot (a millisecond), the dis-
tance between points in successive snapshots that corre-
spond to the moving object is small. So if we can pair the
points up such that the overall sum of the distance metrics
for these paired points is the minimum among all possi-
ble pairings, then very likely we will have associated the
right sets of points together.

How do we determine the right point association be-
tween successive snapshots? This is a combinatorial as-
signment problem where we first pass distances between
all pairs of points as the input and then pick the set of
pairs that minimize the overall sum of distance metric
among them. A naive algorithm would be to enumer-
ate all possible assignment of point pairs, which would
require evaluation of n! assignments for snapshots with n
points. To reduce the complexity, we turn to a classic al-
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Figure 3: This figure illustrates application of Hungarian al-
gorithm for a subset of backscatter components obtained in
the experiment narrated in Fig. 2. The left side represents the
backscatter components in two successive snapshots. The color
of each pixel is a representation of the value of α(power in
dBm), θ (in degrees), or τ(in ns) according to the appropriate
row. We design a distance metric between each component in
the first (top) snapshot and each component in second (bottom).
The distance thus obtained are represented as edges with ap-
propriate weights (not shown in the figure for clarity). We want
to find the matching with minimum weight in the above bipar-
tite graph. Applying Hungarian algorithm results in the least
weight matching presented on the right, thus providing a way to
associate backscatter components in the two snapshots.

gorithm in combinatorial optimization known as the Hun-
garian algorithm [28] which runs in polynomial time.
We omit a full description of the algorithm for brevity
however, the algorithm is best visualized in terms of a
bipartite graph G = (F1,F2,E), where points from the
first snapshot are vertices in the set (F1) and points from
the second snapshot are in the set (F2) and the edge set
(E) consists of all possible edges between vertices in the
two sets. The weight of each edge is the distance metric
between the backscatter parameters corresponding to the
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points the edge connects. The goal of our algorithm is to
find a matching with minimum cost, as shown in Fig. 3.
Eliminating Static Clutter: The next step is to eliminate
the clutter caused by static backscatter reflectors. This
step immediately follows from the above computation;
we identify the pairs of points whose distance metric is
close to zero, and stays so for at least a fixed number of
snapshots (typically around 10 snapshots corresponding
to those reflectors being static for 10ms). When we find
such points, we declare them to be part of the static clut-
ter. These points are then eliminated from the snapshots
and the only points left are those that the algorithm be-
lieves to be coming from moving reflectors.

The static clutter elimination step also naturally pro-
vides the detection of a new motion that is starting. For
example, let’s say we start with a completely static envi-
ronment; in the steady state the declutterer block won’t
report any parameters because eventually all of the com-
ponents will be declared static and eliminated as clutter.
When a new motion starts and generates new backscat-
ter components, the sensor will report these parameters to
the declutterer which will classify them as moving points.
Such points are grouped together and passed to the mo-
tion tracing block, described in section 3.3, as a new mov-
ing object that needs to be traced.

3.2.2 Eliminating Clutter from Nearby Reflectors

In many scenarios, we may have a nearby reflector that
is producing strong reflections. If these reflections are
stronger than the reflections from the moving object that
WiDeo wishes to trace by more than the dynamic range
of the radio, all information about the moving object will
be lost in the quantization error of the ADC at the re-
ceiver. Further remember that WiDeo aims to listen to
reflections from the environment while the WiDeo AP is
transmitting signals for communication. The transmit-
ted signal also directly leaks through to the receiver and
causes interference.

WiDeo’s observation is that such clutter is essentially
a form of self-interference, and recent work on full du-
plex radios can be used to eliminate such clutter [12].
Full duplex radios have to solve a similar problem, they
have to cancel their own transmitted signal’s leakage and
reflections that arrive back at the receiver. This self-
interference also incorporates reflections from the envi-
ronment, and recent work has developed sophisticated in-
terference cancellation techniques that can eliminate the
self-interference to the noise floor [12]. WiDeo leverages
this work. We provide a brief description below, but re-
fer the readers to [10] for a detailed description. WiDeo’s
contribution is showing how full duplex can be used to
build imaging applications rather than the communica-
tion applications that full duplex research has focused on.

Conceptually, full duplex radios consist of a pro-
grammable canceler component that consists of both ana-
log and digital cancelers. The canceler’s main compo-
nent is a programmable filter which attempts to model
the distortions that the transmitted signal goes through
before arriving back at the same radio’s receiver as self-
interference. The canceler takes the transmitted signal as
input, passes it through the programmable filter, and then
subtracts the filtered signal from the received signal to
completely eliminate self-interference.

Note that in traditional full duplex radios, the goal is to
completely eliminate the self-interference. WiDeo how-
ever is different, in fact some of the self-interference may
be coming from moving objects that we do not want to
cancel since we want to infer the motion from them. So
WiDeo implements a novel modification to traditional
full duplex self-interference cancellation. It uses the
backscatter sensor measurements to program the filter to
only model the static and strong reflectors that act as clut-
ter, but intentionally leaves the components that would
also have modeled the moving reflectors out. WiDeo
figures out which backscatter components correspond to
moving reflectors using the static clutter detection algo-
rithm described in the previous section. Thus cancellation
is selectively applied only to the static and strong clutter
components. Specifically the programmable canceler fil-
ter is tuned to implement the following response:

hcm = ∑L′
k=1 αke−i(m−1)φ(θk)sinc(B× (t − τk)) (8)

where αk,τk,θk is the amplitude, ToF and AoA parame-
ters for all L′ unwanted reflectors, and hcm is the response
of cancellation filter attached to the mth antenna.

This completes the design of the declutterer compo-
nent. At this point we have a set of snapshots with points
that correspond to moving objects. Further points in suc-
cessive snapshots are associated with each other if they
belong to the same moving reflector. However note that
this does not mean we have traced the original moving
object itself, all we have isolated is the multiple backscat-
ter reflections from it. The next step is to trace the original
object and its motion which produced the snapshots with
the moving points.

3.3 Tracing the Actual Motion
Each WiDeo AP sends the isolated backscatter measure-
ments arising from moving objects it computes from the
previous step to the central server. Whenever a new mo-
tion starts, its quite likely that many of the WiDeo APs
will detect the backscatter measurements from this new
motion. The server collects backscatter snapshots over
a period of 10ms from all participating radios, and as-
sumes that any moving backscatter detected by any of the
radios are coming from the same object. The heuristic
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implicitly makes the assumption that two new and inde-
pendent human motions won’t start within an interval of
10ms. Given the timescales at which human motion hap-
pens, 10ms is a negligible amount of time and we believe
that such asynchrony is very likely in practice. Note that
this does not mean that two independent motions cannot
be occurring simultaneously, we are only making the as-
sumption that they don’t start within 10ms of each other.

3.3.1 Localizing the origin of the motion

The first step the server implements is actually to localize
the origin of the motion that just started. The server has
measurements from multiple radios across multiple snap-
shots, and very likely the new motion will be detected
at many of these radios. So, how might we estimate the
location of the new motion? The idea is that the measure-
ments collected at the WiDeo APs imposes constraints on
where the moving reflector is located. We demonstrate
the idea using the AoA measurement. Let’s say the lo-
cations of the M WiDeo APs involved in motion tracing
are given by (xi,yi), i = 1, . . . ,M. Similar to many other
state-of-the-art localization systems [46, 38] using WiFi,
the locations of the APs (or the anchors) are assumed to
be known in advance. Let the AoA measurements of the
reflector at the APs be denoted by θi, i = 1, . . . ,M and the
current estimate of the object’s location is (x,y). So the
most likely location of the object is one that minimizes
the following metric:

min ∑M
i=1(θ̄i +bθi −θi)

2

s. t. θ̄i = AoAULA((x,y),(xi,yi))
(9)

The above equation is stating the fact that the predicted
angle of arrival at each of the WiDeo APs given the esti-
mated location of the reflector and the location of the APs
must closely match the actual AoA measured by each of
the APs. The function AoAULA((x,y),(xi,yi)) computes
the AoA seen by the tracing radio located at (xi,yi) from
a reflector located at (x,y). However there is a new fac-
tor bθi that represents the bias to model multipath reflec-
tions. This is because the moving backscatter not only
corresponds to the direct backscatter from the object but
also the backscatter from the reflections of the backscat-
ter. For example, if a backscatter reflection from a mov-
ing object is further reflected by a wall before arriving at
the AP, the ToF parameter will have a constant bias that
reflects the extra time it takes to traverse the extra dis-
tance corresponding to going to the wall and reflecting
off it. Similar bias exists for both the amplitude and AoA
measurements. Further the bias values are unknown and
hence are a variable in the optimization. The value of
(x,y) that minimizes the above metric is likely the best
estimate of the location of the reflector.

We can also use other parameters like ToF and power

to estimate the location of the target. In our actual im-
plementation, we solve a more sophisticated optimiza-
tion problem than the simple optimization problem in 9.
Specifically, WiDeo uses AoA, ToF, and backscatter sig-
nal strength measurements over multiple frames for the
particular backscatter, say J frames, and declares the ori-
gin of the motion as the location that minimizes the fol-
lowing objective function described by Eq. 10

∑J
j=1 ∑M

i=1[(ᾱi −αi j)
2 +(τ̄i +bτi − τi j)

2 +(θ̄i +bθi −θi j)
2],

(10)
where αi j, τi j, and θi j are the power, ToF, and AoA re-
spectively of the backscatter observed by the ith AP in
the jth frame and the variables ᾱi, τ̄i, and θ̄i are the val-
ues of respective backscatter parameters that would have
been observed at the APs if the object was actually lo-
cated at that particular location. We follow a simple path
loss model [21] to describe the relation between the lo-
cation of the object and the backscatter signal strength
ᾱi. The variables bτi and bθi represent the bias in ToF
and AoA respectively due to reflections of the backscat-
ter from the object. This problem of minimizing Eq. 10
is non-convex, therefore we apply a widely used heuristic
known as sequential convex optimization to solve it [13].

We note that Eq. 9 as such is an ill-posed problem
without a unique solution because each AP introduces its
own bias terms for backscatter parameters. However, in
Eq. 10, by collecting measurements over enough num-
ber of backscatter frames, the number of measurements
become greater than the number of variables and the op-
timization problem becomes well-posed. Further the pa-
rameters of simple path loss model used to model ᾱi are
also estimated as part of the minimizing Eq. 10 and need
not be known ahead of time.

3.3.2 Tracing Motion

Once the newly detected moving object is localized, the
next step is to trace the object’s motion as it moves and
produces new measurements via our backscatter sensor.
Remember that the new measurements are naturally as-
sociated with the measurements from the previous snap-
shots via the declutterer described in § 3.2. So the al-
gorithm has already clustered backscatter measurements
coming from the same moving reflector together, and we
can operate the motion tracing algorithm on each cluster
of measurements separately. Hence we describe the trac-
ing algorithm as if there is a single motion occurring and
a single set of backscatter measurements being produced
from it across successive snapshots.

Our approach to this problem is to build a dynamical
model about the motion that is occurring and progres-
sively refine its parameters. There are several parame-
ters to the motion model: current position of the object,
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velocity, direction of motion, acceleration, and bias in
each backscatter parameter due to the indirect reflections.
Both the bias and initial position variables are initialized
using the output of the localization algorithm in the pre-
vious step. Velocity, acceleration and direction of motion
are initially set to zero and then updated over time as new
measurements come along. Note that we also allow the
bias parameter to change over time, after all as the object
moves, the bias for each parameter changes.

The key insight is as follows: at every point in the
traced motion, given the estimate of the motion model
at that instant, WiDeo can predict what the backscatter
sensor measurements for that moving reflector should be
(given the estimate for the locations of the reflector and
the WiDeo AP and the biases in the parameters we can
calculate the expected amplitude, ToF and AoA of the re-
flections). WiDeo also of course has access to the actual
backscatter sensor measurements at that instant for the
same moving reflector, so we can calculate the error be-
tween the predicted and the actual backscatter measure-
ment. The goal of the motion tracing component is to
minimize the sum of these backscatter prediction errors
over the entire motion trajectory in a sequential fashion.
The algorithm proceeds in three steps at each time instant:
Model based prediction: In this step, WiDeo calculates
the new position of the reflector given the previous posi-
tion and motion model parameters namely, velocity and
acceleration. It then uses this extrapolated position along
with the estimates of the bias for the backscatter param-
eters to calculate what the new values of the amplitude,
ToF and AoA of the reflection should be.
Backscatter prediction error computation: Compute
the difference between the above predicted and measured
backscatter parameters.
Model update from error: Update motion model pa-
rameters such that the overall backscatter prediction er-
ror is minimized across the entire trajectory. The update
step uses a classic technique in dynamic estimation: the
Kalman filter [44]. Kalman filter theory shows that as-
suming the measurement noise and motion modeling er-
ror is Gaussian, the update is dependent on two factors.
First factor is the size of the prediction error itself, i.e. if
the error is large then a larger update to the model is re-
quired and vice-versa. The second factor is a gain term
that modulates this error term. The gain factor is cho-
sen such that the accumulated error between all the ob-
servations of the measured backscatter parameters so far
and the best prediction that the motion model can make is
minimized. In essence the gain signifies the effect of ac-
cumulated errors in the motion model, for example if the
measurements are noisy the gain should be chosen small
to account for the unreliable nature of the measurement
and vice-versa. We omit the proof and refer the read-
ers to [44] for a more detailed mathematical treatment
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Figure 4: Accuracy of WiDeo’s algorithms in estimating the
delays and AoAs of backscatter. WiDeo achieves an accuracy
of 300ps and 1.2 degrees (with error bar representing standard
deviation) at 40MHz bandwidth used in WiFi signals.

of the Kalman filter and how to compute the gain factor
given the motion model and history of backscatter mea-
surements and prediction errors.

The convergence of the motion tracer takes a few snap-
shots, after this point it constantly updates its motion
model parameters. Reconstructing the motion is now akin
to starting with the initial point and performing a direc-
tional piece-wise integration using the speed and direc-
tion of motion parameter at each time step. An instance
of the above algorithm is executed for each detected mo-
tion.

4 Evaluation

We implement a prototype of WiDeo using the WARP
software radios using WiFi compatible OFDM PHY with
a bandwidth of 20MHz at 2.4GHz. The radio is set up to
use 4 antennas and all RX chains are phase synchronized
like in a MIMO radio. The spacing of the antennas is
λ/2 and the overall width of ULA is 18cm. The declut-
terer is designed using analog cancellation circuit boards
based on the design described in [11]. From the time
it receives information about the clutters to be canceled,
the declutter takes few microseconds to remove their ef-
fect and improve the dynamic range. The optimization
algorithms that measure the backscatter parameters and
the rest of the tracing algorithms are implemented in a
host PC in C using the cvxgen toolbox [32] and Matlab.
Although the current implementation of WiDeo is not re-
altime we believe it is possible with a few architectural
changes and speed optimizations in the future.

4.1 Back-scatter sensor benchmarks
We start with micro-benchmarks of the backscatter sensor
that underpins motion tracing. The goal here is to demon-
strate that WiDeo’s backscatter measurement algorithms
provide high accuracy and fine resolution.
Accuracy: We first measure WiDeo’s accuracy in mea-
suring backscatter parameters. Given the complex geom-
etry of indoor environments, a natural question is how do
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we know ground truth for all the multipaths to evaluate
the accuracy of WiDeo? We perform controlled experi-
ments by connecting the RX chains with wires from the
transmitted chain. The lengths of the wires are varied
to provide different delays, attenuators on each wire pro-
vide tunable amplitude, and phase shifters are introduced
to simulate AoA. This wired experiment can create 10
different backscatter components. To mimic realistic in-
door reflections, we vary the lengths and attenuations by
sampling it from an indoor power delay profile [19], and
AoA is picked uniformly at random. We vary the receiver
bandwidth from 20MHz to 160MHz.

Since WARP radios can only support up to 40MHz
bandwidth, we use signal analyzers for the higher band-
width experiments. Higher receiver bandwidth is ex-
pected to help improve accuracy because we are getting
finer-grained observations in time due to higher sampling
rates. However, the default configuration for WiDeo un-
less stated otherwise is WARP radios with 20MHz band-
width.

Fig. 4 plots the overall estimation accuracy for delay
and AoA of the backscatter components as a function of
bandwidth, we omit amplitude results for brevity (their
accuracy was within 1dB). As we can see WiDeo pro-
vides extremely high accuracy, measuring delay to within
0.3ns accuracy for a bandwidth of 40MHz, the most com-
monly used WiFi bandwidth. Further AoA accuracy is
1.2 degrees at 40MHz bandwidth. Accuracy improves
slightly for delay estimation with bandwidth, which is
expected since we now get more closely spaced samples
that helps discern delay better. AoA accuracy is not af-
fected much by bandwidth since that is primarily deter-
mined by the number of antennas.
Resolution: Next we conduct an experiment to measure
WiDeo’s resolution, i.e. how close two backscatter re-
flectors can be before WiDeo’s algorithms fail to disam-
biguate their respective parameters? First, we create two
backscatter components whose delays are far from each
other by using wires of different lengths. We then slowly
decrease the relative delay and measure at what relative
delay the accuracy is a factor of two worse than in Fig. 4.
Next we repeat the same experiment, but instead of de-
lay, we make the AoA of two backscatter components
very close to each other and check at what relative AoA
the accuracy is a factor of two worse than in Fig. 4. The
results are presented in Fig. 5.

WiDeo can resolve delay to 2ns, distinguishing two
gesturing humans separated by only one foot. WiDeo can
resolve angle to 5 degrees, distinguishing humans 1 foot
apart at 12 feet away.
Range and Dynamic Range: A third benchmark is how
weak a backscatter signal can be before it cannot be es-
timated by WiDeo. Clearly if a backscatter is weaker
than the noise floor of the receiver radio (-90dBm), then
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Figure 5: WiDeo can accurately measure parameters even
when the backscatter are spaced only 2ns apart in time or 5
degrees apart in spatial orientation.

WiDeo cannot detect it. But how much above the noise
floor does the backscatter have to be for accurate mea-
surement? We repeat the accuracy experiment shown in
Fig. 4 by picking the parameters for 9 components from
the power delay distribution while progressively decreas-
ing the strength of the 10th backscatter component.

Fig. 6 (on left) plots estimation accuracy of differ-
ent backscatter parameters as a function of the received
strength at the radio. When the backscatter component
is weaker than -70dBm (i.e less than 20dB above the
noise floor of the receiver), WiDeo’s accuracy degrades
to around 6ns for the delay. In practice this means that
the motion that is being traced needs to happen within 16
feet radius of the radios for high backscatter sensor accu-
racy. Note that the range of motion tracing can be more
than 16 feet as motion tracing may not need parameters
to be highly accurate.

Another related benchmark is the resilience of WiDeo
in scenarios where there is backscatter from a nearby re-
flector and the motion we actually want to trace is far-
ther away and producing weak backscatter. To test this
we conduct a controlled experiment where there are two
backscatter reflectors, one nearby whose strength is kept
constant at 10dBm while the other one is made weaker
and weaker. We plot the accuracy of backscatter mea-
surement for the weaker component as a function of the
difference in strength w.r.t. the strong backscatter com-
ponent in Fig 6(on right). WiDeo accurately measures
components as weak as 80dB below the strong reflector,
well beyond the radio’s 40dB dynamic range. This works
because the declutterer estimates the strong component,
then cancels it completely all the way down to the noise
floor.

Note that both the maximum range and the dynamic
range of WiDeo is limited by the noise floor of the ra-
dio being used and the transmitted power by the sensor,
and not due to the limitations of WiDeo’s algorithm. This
is because WiDeo’s cancellation can cancel specified re-
flections all the way to the noise floor. If the cancellation
were imperfect and doesn’t reach the noise floor; for ex-
ample, a 20dB residue will limit WiDeo to sensing signals
above -50dBm rather than the -70dBm shown in Fig 6,
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Figure 6: (on left)WiDeo can accurately estimate backscatter
parameters for reflections that are as weak as −70dBm. (on
right) It can also accurately estimate parameters for very weak
backscatter components even when there is a strong backscatter
component present which is 80dB stronger.

which would reduce the range as well to 2 feet.

4.2 Motion tracing benchmarks

We now evaluate WiDeo’s ability to accurately trace mo-
tion in indoor environments. We calculate two metrics
Location accuracy: This is the accuracy of the localiza-
tion of a motion that is detected by WiDeo. We use Eu-
clidean distance between the centroid of the ground truth
motion and the estimated motion as the metric.
Motion tracing accuracy: This is the accuracy of the
traced motion. The metric we used is the root mean
square error of the traced motion which we calculate by
computing the distance of each point in the traced motion
with the ground truth motion trace at that point. The dis-
tances are squared and added up and normalized by the
number of points before taking the square root. Hence,
the metric represents the motion tracing error in meters.
Similar to [43], we remove any offset between the ground
truth motion and traced motion.

The locations tested for motion tracing accuracy spans
all scenarios: non line-of-sight (NLOS) to any of the
tracing radios, LOS to a subset of the tracing radios
and through walls in an indoor environment spanning
600sq.ft. By default, unless stated otherwise, the number
of tracing radios is fixed to three and they are deployed at
three fixed but arbitrarily picked locations in the testbed.
The motions we trace are actually humans sketching var-
ious shapes with their hands. By default, unless stated
otherwise, we have two humans performing motion con-
currently in our experiments.

We could not find any recent system that implements
fine-grained motion tracing within the design require-
ments of WiDeo: namely being device-free, compact and
one that uses existing communication signals and spec-
trum. RF-IDraw [43] as discussed before is not device-
free, nor compact. Other recent work such as WiTrack [6]
is device free but implements coarse tracking of the en-

tire human body moving, but cannot track fine-grained
motion of human limbs. Hence we refer the reader to
§ 1,§ 2 for a qualitative comparison to these related sys-
tems.

Our experimental results show the following

• WiDeo accurately traces motion, it achieves a me-
dian localization accuracy of 0.8m and motion trac-
ing accuracy of 7cm.

• WiDeo can accurately trace multiple independent
motions, tracing as many as five independent and
concurrent motions with an error less than 12cm.

• WiDeo’s resolution is 0.5m, i.e. if the two indepen-
dent motions are occurring within half a meter or
higher of each other, WiDeo can trace them accu-
rately.

• Accuracy improves modestly with the number of ra-
dios involved in the tracing. When we increase the
number of radios to five, localization accuracy im-
proves to 0.7m, whereas motion tracing accuracy
improves to 6cm.

4.2.1 Motion tracing experiments

We use a SPEAG hand [3] to perform motion tracing ex-
periments. This model hand is designed to have same di-
mensions and absorption/reflection characteristics as that
of a typical human hand in 2.4GHz frequency range.

This hand is placed over a chart with figures of differ-
ent shapes like the one shown in Fig. 7. Several markers
are drawn on the shape and the backscatter is captured by
WiDeo’s APs when the SPEAG hand is placed on each of
these markers. The markers are spaced apart by approx-
imately 5cm so as to emulate a scenario where WiDeo
collects measurements every 10ms when a human hand is
moving at a speed of 5m/s [22]. The ground truth location
for each marker on the chart is obtained by using laser
range measurements and architectural drawings. In Fig.
7, the shape in the blue shown in the right is found using
such laser measurements. By placing the model hand in
all the locations of the chart sequentially, we emulate the
scenario where a human hand traces the particular trajec-
tory whose ground truth is accurately determined.

We conducted experiments in scenarios with one, two,
and all three APs in LOS. WiDeo’s accuracy is tabulated
in Fig. 8. WiDeo achieves an accuracy of 5.1cm when
the APs are in LOS, and is still quite accurate at 12.8cm
when two of the APs are in NLOS.

4.2.2 Understanding WiDeo’s motion tracing

Because of the time consuming nature of the data col-
lection procedure for the above testbed experiments, we
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0.22 m 

0.33 m 

Figure 7: (Left) A chart with figure of 8 with multiple mark-
ings where SPEAG hand (in inset) was placed and the data was
captured by WiDeo’s AP. (Right) Ground truth data obtained
using laser range finder (in blue) along with the motion trace
reconstructed by WiDeo (in red) using 3 APs.

Mo0on$ Localiza0on$Accuracy$(m)$ Mo0on$Tracing$Accuracy$(cm)$

Testbed) Wireless)InSite) Testbed) Wireless)InSite)

All)AP)LOS) .54) .54) 5.1) 5.3)

1AP)NLOS)) 1.1) 1.1) 8.5) 8.4)

2AP)NLOS) 1.61) 1.63) 12.8) 12.5)

Figure 8: Median accuracy for different motion shapes ob-
tained using SPEAG hand and Wireless InSite tool.

can only perform a limited number of experiments us-
ing it. To extensively test the motion tracing accuracy
of WiDeo under more diverse conditions, we simulated
the entire system in an electromagnetic emulation envi-
ronment called Wireless InSite [2]. Wireless InSite is a
ray tracing based tool to accurately model RF propaga-
tion in any indoor environment with walls and other ob-
jects. This tool enables us to emulate complex indoor en-
vironments in which WiDeo will be used, as well as know
the ground truth for every experiments. To demonstrate
Wireless InSite produces similar results, we modeled the
testbed described above and then collected data for the
same scenarios in Wireless InSite. We emulated the dy-
namic range and progressive interference cancellation on
the data obtained from Wireless InSite simulation. Fig.
8 compares the accuracy of motion tracing achieved with
Wireless InSite data with that obtained with the physi-
cal experiments. We see that the two results match very
closely which is due to Wireless InSite’s ability to accu-
rately model indoor RF environments. Hence, in the rest
of the sections, we use Wireless InSite to analyze perfor-
mance of WiDeo in more detail.

4.2.3 WiDeo’s motion tracing performance

We now evaluate the WiDeo’s motion tracing accuracy by
conducting extensive experiments using Wireless InSite.
Specifically, we vary the placement of the two moving
humans arbitrarily in the testbed across 100 different lo-
cations. We calculate the median localization error and
the root mean square error of the traced motion. We plot
the CDFs in Fig. 9.

WiDeo achieves a median localization error of 0.8m
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Figure 9: WiDeo’s motion tracing is extremely accurate; it
traces fine-grained motion with a median localization error of
0.8m and motion tracing error of 7cm.
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Figure 10: WiDeo provides high resolution motion tracing, it
can accurately trace two independent motions occurring even
if they are only spaced 0.5m apart (with error bar representing
standard deviation).

and a median tracing error of 7cm. The tail errors are of-
ten cases where the human motion is happening in a dead
zone where the backscatter to any of the tracing radios
is weaker than -80dBm. In these cases the backscatter
measurement itself has worse accuracy which translates
to poor accuracy for motion tracing. However WiDeo
still achieves a motion tracing accuracy better than 15cm
in 90% of the scenarios.

4.2.4 Resolution

Many applications that might build upon WiDeo’s motion
tracing capability care about resolution, i.e. how close
can two independent human motions be occurring and
WiDeo can still trace them accurately (e.g multi-player
video games). To conduct this experiment we progres-
sively move the two moving humans closer to each other
and plot the worse of the two motion tracing accuracies
as reported by WiDeo in Fig. 10.

WiDeo achieves a motion tracing resolution of 0.5 me-
ters while still achieving an extremely good tracing accu-
racy of 12cm. So two humans could be standing a little
bit more than a foot away from each other (e.g. in a video
game), moving their hands closest to each other simulta-
neously, and still be able to accurately trace their motion.

We also observed that localization error is unaffected;
the error is the same as in Fig. 9 . This is expected since
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the localization technique works by combining measure-
ments from multiple tracing radios when a new moving
backscatter component is detected. Since we assume that
two human motions do not start exactly at the same time
and are usually spaced at least 10ms apart, WiDeo’s lo-
calization algorithms have a sufficiently long window of
time (10ms) in which they can perform localization on a
single new object without the presence of a nearby mov-
ing object. The same argument applies when the second
new motion is detected, by then the first motion is local-
ized and can be accounted for and localization can focus
only on the new backscatter components that arise from
new moving object.

4.2.5 Impact of number of tracing radios

In this experiment, we see impact on accuracy as we vary
the number of radios performing tracing in WiDeo. We
conduct the same experiment as in § 4.2.3, but vary the
number of tracing radios from one to five. We plot five
different CDFs of localization and motion tracing error in
Fig. 11 .

As we can see, WiDeo’s localization error is poor (4m)
with a single tracing radio. This is expected, since WiDeo
relies on triangulation to localize well. However motion
tracing error is less affected, WiDeo still traces with less
than 12cm error. Consequently while we cannot localize
with a single radio, we can still trace. The reason is that
with a single tracing radio, we cannot get an accurate esti-
mate of the depth (location), but the relative motion from
that initial location can still be accurately traced since it
only depends on relative shifts in backscatter measure-
ments, which are quite accurate.

Increasing the number of tracing radios helps with lo-
calization error, it goes down to 0.7m with five tracing
radios. Motion tracing, which is already quite accurate
even with a single radio, improves slightly to 7cm. This
is expected since triangulation improves with more radios
and hence localization improves. However backscatter
measurement doesn’t depend on having multiple obser-
vations, it’s done independently by each radio. Hence
tracing accuracy only improves by a small amount.

4.2.6 Distinct motions that WiDeo can trace

In this experiment, we check how many independent con-
current human motions can WiDeo trace. We vary the
number of human motions occurring concurrently from
one to six and plot the median tracing accuracy in Fig. 12.

WiDeo can trace up to five concurrent motions with an
accuracy of 12cm. To the best of our knowledge, no prior
WiFi based system has demonstrated being able to trace
five moving humans concurrently. Beyond that accuracy
worsens. The reason is that there aren’t enough radios to
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Figure 11: WiDeo’s localization accuracy improves with the
number of tracing radios to 0.7m because of better triangula-
tion. However tracing accuracy is unaffected because WiDeo’s
algorithm’s can trace accurately even with information from a
single tracing radio.
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Figure 12: WiDeo can accurately trace as many as five inde-
pendent motions that are occurring simultaneously (with error
bar representing standard deviation).

provide sufficient number of backscatter measurements to
disentangle these motions. Being able to trace five con-
current motions is sufficient for a home environment, but
not for work environments where a far greater amount of
motion is expected.

5 Conclusion
This paper demonstrated the surprising capability to build
motion tracing camera using WiFi signals as the light
source. The fundamental contributions are algorithms
that can measure WiFi backscatter and mine them to trace
motion. We plan to prototype many interesting appli-
cations that builds on top of WiDeo, including gesture
recognition, indoor navigation, elderly care and security
applications.
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Abstract

When a wireless node has multiple RF chains, there are
several techniques that are possible; MIMO, full-duplex
and interference alignment. This paper aims to unify
these techniques into a single wireless node. It proposes
to make a wireless node fully flexible such that it can
choose any number of its RF chains for transmission and
the remaining for simultaneous reception. Thus, MIMO
and full duplex are subset configurations in our design.
Surprisingly, this flexibility performs better than MIMO
or full duplex or interference alignment or multi-user
MIMO.

This paper presents the design and implementation
of FlexRadio, the first system enabling flexible RF re-
source allocation. We implement FlexRadio on the NI
PXIe 1082 platform using XCVR2450 radio front-ends.
FlexRadio node networks achieves a median gain of
47% and 38% over same networks with full duplex and
MIMO nodes respectively.

1 Introduction

When a wireless node has multiple radio frequency (RF)
chains, the state-of-the-art technology has been to use
either all of them for transmission or reception, as in
multiple-input multiple-output (MIMO). Recently, many
research groups have shown that a node can transmit and
receive simultaneously and thus, be full-duplex. Under
full-duplex operation, a node activates equal number of
RF chains for transmission as it does for simultaneous
reception. Thus, when a node has N RF chains, un-
der full duplex, N/2 RF chains are active transmitting
RF chains while the remaining N/2 RF chains are re-
ceiving RF chains. Under MIMO, all N RF chains are
either active transmitting RF chains or active receiving
RF chains. There is much work in the wireless commu-
nity studying which of these techniques are better and
when [2, 3, 7]. Fundamentally, the capacity achieved by

MIMO and full-duplex between a pair of nodes, is the
same. The main difference is that MIMO supports N si-
multaneous transmissions in one direction, while full du-
plex supports N/2 in both the directions. Still, the total
number of transmissions is only N in both the cases1.

From the above discussion, it is clear that there is no
significant difference in the capacity between MIMO and
full duplex. However, this paper shows that when we
unify MIMO and full duplex, and make the design fully
flexible then, surprisingly, the capacity can be improved
by 2x when compared to MIMO or full duplex. By flexi-
ble, we mean that, out of N active RF chains, our system
allows M of them to be transmit RF chains and (N-M) of
them to be receive RF chains, where 0 ≤ M ≤ N. We call
our system, FlexRadio.

Although choosing between MIMO and full duplex
configurations gives no improvement in throughput be-
tween a pair of nodes, it does improve the overall net-
work throughput. This improvement comes from the dif-
ference in the interference footprint between MIMO and
full duplex, in a network [18,19]. During a MIMO trans-
mission, a secondary transmission around the receiver
and a secondary reception around the transmitter is pro-
hibited. However, a secondary reception around the re-
ceiver and a secondary transmission around the transmit-
ter is allowed as long as they do not affect the ongoing
transmission. Similarly, during a full duplex transmis-
sion, transmission around both the nodes is prohibited,
while another reception is possible. FlexRadio’s flexi-
bility allows a network to exploit this difference to in-
crease the number of parallel transmissions in a network.
Section 3 shows that when every node can choose be-
tween full duplex or MIMO operation, the total network
throughput increases by 50% compared to the case when
all the nodes are either MIMO or full duplex.

1Note that in both the cases, a node has 2N (N transmit and N re-
ceive) RF chains but, only N of them are active. For rest of the paper, by
an N RF-chain node, we imply a node with N active RF chains (either
transmit or receive or both) unless explicitly stated otherwise

1
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The gain in FlexRadio is not simply from choosing
between MIMO and full-duplex configurations. But, it
is from choosing from all available configurations within
FlexRadio. Section 3 shows one example where a con-
figuration that is not MIMO or full duplex improves the
throughput by 2x, even between a pair of nodes.

Thus, the unified architecture with its adaptability
makes it more powerful than the traditional (inflexible)
configurations. This is a fundamental improvement in
throughput for a multi-RF chain wireless node. Section 3
motivates the need for a flexible architecture and gives
some guidelines on choosing the optimal configuration.
The optimal configuration depends on the topology, flow
demands, wireless channel and the number of RF chains
available at other neighbouring nodes.

This paper makes the following contributions;

1. It proposes flexibility as a new radio capability. In
Section 3 we motivate this need based on different
network properties. Further, we show that FlexRadio
can outperform MIMO, full-duplex and interference
alignment techniques.

2. It presents the first fully flexible FlexRadio proto-
type. This prototype has multiple novel mechanisms
to reduce implementation complexity. First, an an-
tenna placement design that reduces the number of RF
cancellation elements needed (Section 4). Second, a
novel non-linearity mitigation strategy to reduce com-
plexity of digital cancellation. A naive non-linear
elimination technique would require O(M2) modules,
where M is the number of transmitting RF chains. We
eliminate the non-linear components at the transmit-
ter by using a preconditioning module at each trans-
mitter itself. We reduce the number of non-linearity
mitigating modules to O(M) (Section 4).

The flexibility proposed in this paper is a new fea-
ture for a wireless node. This has not been studied in
information theory or network theory or wireless sys-
tems. This new capability has deep implications to wire-
less networking: A wireless routing protocol can take
into account the number of RF chains available at every
node and choose the number of RF chains for transmis-
sion (and reception) at different nodes so as to maximize
end-to-end throughput.

2 A Primer on MIMO and Full Duplex

This section gives a brief overview of capacity, the max-
imum achievable throughput. The overview helps mo-
tivate flexibility as shown in the following section. Ca-
pacity is a function of the quality of wireless link. This
quality is measured as the ratio between the received sig-
nal strength and the local noise at a receiver (SNR).

Since the generic capacity equations are not easy to in-
terpret, often, approximations are used in literature [17].
For the generic case, when node 1 (transmitter) has ntx
RF chains and node 2 (receiver) has nrx RF chains, at
high SNR, with a well-conditioned channel matrix, the
capacity for fading channel is approximated by:

CHigh SNR ≈ min(ntx,nrx)∗ log2(1+SNR) (1)

Here, the capacity is equivalent to having min(ntx,nrx)
parallel streams. Thus, at high SNR, the capacity scales
linearly with min(ntx,nrx) [17].

At low SNR, with a well-conditioned channel matrix,
the capacity for the fast fading channel is approximated
by:

CLow SNR ≈ nrx ∗ log2(1+SNR)≈ nrx ∗SNR (2)

Here, the capacity is only a function of the number of
receive RF chains. It linearly increases with the num-
ber of receive RF chains [17]. These approximations are
valid for MIMO and full-duplex2.
Takeaways: When the SNR is high, equalizing the num-
ber of transmitting RF chains at the sender and the num-
ber of receiving RF chains at the receiver node gives the
maximum throughput. When the SNR is low, on the
other hand, maximizing the number of receive RF chains
at the receiver maximizes the throughput. Note that the
low SNR approximation is for very low SNRs (≈ -15dB)
at which WiFi node do not operate. However, the intu-
ition applies to SNRs that are reasonably low for WiFi,
as shown in Section 5.4.3.

3 The Need for Flexibility

In this section we highlight the benefit of FlexRadio
nodes in a wireless network.

3.1 Topology Needs Flexibility

Consider the topology shown in Figure 1(a). It has four
nodes with two RF chains each. Nodes N1 and N4 can-
not see each other and all other nodes can see each other.
This is a common network topology. For example, con-
sider N1 and N4 as APs in an enterprise wireless net-
work that cannot listen to each other. Consider N2 and
N3 as clients that can listen to both these APs and to each
other. In this topology, if the nodes support fixed MIMO,
MU-MIMO or full-duplex functionality, only two packet
transmissions can be enabled simultaneously. For exam-
ple, under MU-MIMO, N1 can simultaneously send one

2When multiple RF chains are involved, by full-duplex, we refer
to the case that half of the chains are operating as transmitters and the
others are receivers.

2
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packet to N2 and another to N3. During this slot, N4 can-
not transmit to N2 or N3 to avoid causing interference at
these nodes. Similarly, if all the nodes are full-duplex
nodes, N1 can send a packet to N2, while N2 sends to
N4. At this time N3 cannot transmit as it causes inter-
ference at N4. Thus, the maximum number of packets
transmitted simultaneously is only two. Thus, enabling
a third transmission stream in addition to the two trans-
mission streams causes destructive interference at one of
the participating nodes. However, in the above topology,
if each node supports flexible functionality, it presents
them with the required spatial dimensions (antennas) to
explore interference alignment solutions [1, 10] to allow
a third simultaneous transmission. It must be noted that
interference alignment does not require additional capa-
bility for MU-MIMO capable wireless nodes.

N2

N3

N1 N4

(a) Topology

N2

N3

N1 N4

P2

Interference 
Alignment

Zero-Forcing

       
P2

P2

       
P3

       P3
       P3

       P4

P4

P4

(b) FlexRadio

Figure 1: Topology Needs Flexibility: An example of
FlexRadio outperforming MU-MIMO, MIMO and full-
duplex, without any flow restrictions. FlexRadio can en-
able 3 packets to be simultaneously transmitted, while
MU-MIMO, MIMO or full-duplex can only enable 2.

In more explicit terms, N1 can send one packet (P2)
to N2 and one more (P3) to N3 (as shown in Figure 1(b).
Simultaneously, N2 can send a packet (P4) to N4. Since
N1 has two antennas, it can null (zero-force) P3 at N2,
while aligning P2 with P4 at N3. Since P3 is nulled at N2
and P2 is not, N2 can decode P2. Since N3 is using both
the antennas for receiving, it can decode two packets.
But, it receives 3 packets. However, since P2 and P4 are
aligned, N3 can decode P3 without any interference. At

the same time, N4 receives P4 from N2 without any in-
terference. Thus, there are 3 successful packet transmis-
sions. This was possible because of flexibility enabled by
FlexRadio and interference alignment techniques. Even
when MIMO, MU-MIMO and full-duplex work with in-
terference alignment, they cannot transmit more than 2
packets, while FlexRadio achieves 1.5X throughput gain.

To understand how FlexRadio was invoked, note that
N1 was using its two RF chains to transmit, N2 was us-
ing one to transmit and the other to receive, N3 was using
both to receive, and N4 was using one to receive. This
example shows that FlexRadio can fundamentally im-
prove capacity of interference limited wireless networks
with multi-RF chain nodes.

3.2 Flow Demand Needs Flexibility

Performance gains of FlexRadio can be seen in other net-
works as well. Consider a simple network of 3 nodes; say
node 1 has 4 RF chains, node 2 has 6 RF chains and node
3 has 2 RF chains.This is a heterogeneous network with
different nodes having different number of RF chains.
Assume that each hop has the same, but high SNR. The
MIMO scenario is shown in Figure 2(a). In this case,
MIMO can support 1

2 ∗ 4+ 1
2 ∗ 2 parallel streams. Here,

the first term corresponds to the performance of the link
between node 1 and 2, and the second term corresponds
to the link between node 2 and 3. Since only one of the
two can be active at any time, their overall performance
are scaled by half. From network point of view, three
streams are enabled simultaneously.

Note that if full-duplex is used, every node would have
to split its RF chains equally to transmit and receive. This
is shown in Figure 2(b). For full-duplex also, the number
of streams that can be enabled simultaneously is 1

2 ∗4+
1
2 ∗2. The capacity is same as that of MIMO even though
the flows are in both directions.

In FlexRadio, however, node 1 can transmit on all 4
of its RF chains and node 2 can receive on 4 RF chains.
Simultaneously, node 2 can forward packets using the re-
maining 2 RF chains to node 3, while node 3 uses all of
its RF chains for receiving. This is shown in Figure 2(c).
Here, node 2 is able to transmit (forward) while receiving
because FlexRadio supports full-duplex operation. Now,
the number of stream supported in this setup is 4 + 2.
As before, the first term is for the link between node 1
and 2, and the second is between node 2 and 3. There is
no scaling for these quantities because these flows hap-
pen simultaneously. Therefore, the combined system can
support 6 streams. This is twice as much as a traditional
MIMO or full-duplex system.

However, when the PHY is MU-MIMO capable (such
as APs for 802.11n), the same capacity as FlexRadio can

3
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Figure 2: A Heterogeneous Network with different nodes having different number of RF chains.

be achieved where Node 2 uses 4 RF chains to trans-
mit to Node 1 and the remaining to transmit to Node 3
simultaneously. However, when there is a desired flow
demand, say Node 1 to Node 2 to Node 3, FlexRadio can
improve the throughput of a MU-MIMO system. For this
flow demand, the MU-MIMO operation does not provide
over MIMO operation.

3.3 Channel Needs Flexibility

Consider nodes 1 and 2 each with M RF chains. Assume,
both of them want to transmit to each other. Also, assume
a very low SNR channel.

When MIMO alone is used, Node 1 uses all M RF chains
to transmit, while Node 2 uses all M RF chains to re-
ceive. In the low SNR region (for poor channel condi-
tions), the capacity is simply proportional to the number
of receivers used, as shown in Equation 2. Thus, the ca-
pacity is CMIMO ≈ M ∗SNR.

When fullduplex is used, node 1 uses M
2 RF chains to

transmit and M
2 RF chains to receive, same as Node 2. In

this case, we compute the capacity for both transmission
directions. The total capacity in the low SNR regime is
CFD ≈ M

2 ∗ SNR+ M
2 ∗ SNR. This capacity is same for

both MIMO and full-duplex.

When the flexibility is provided, nodes 1 and 2 can
choose the number of RF chains they wish to transmit
and receive over. Note that, at low SNR, the nodes should
maximize the number of receive RF chains. Therefore,
when nodes 1 and 2 use only one RF chain to transmit
and the remaining (M-1) RF chains to receive, the sum
capacity, in the low SNR region, is CFlexRadio ≈ (M −
1)∗SNR+(M−1)∗SNR. This is almost double the sum
capacity compared to MIMO and full-duplex.

In all these examples, we assumed a central node is
made aware of the RF resources of all nodes in the net-
work and their respective traffic demands. We discuss
the MAC implications briefly in Sec. 7. In summary,
flexibility enables FlexRadio nodes to achieve significant
performance gains based on topology, flow and channel
constraints.

4 Design Overview

Based on FlexRadio’s configuration, the self-interference
constituents change. A FlexRadio self-interference can-
cellation circuitry should hence support all these config-
urations. The challenge in designing FlexRadio’s self-
inteference cancellation circuitry is the following. It
should include cancellation circuitry that accounts for ev-
ery TX RF chain, a potential source of self-interference,
at every RX RF chain. This leads to M ∗ (M−1) cancel-
lation circutry elements for an M RF chain system. This
can make implementing FlexRadio node highly expen-
sive. This section presents a design that significantly re-
duces the number of cancellation elements. For example,
for a four RF-chain FlexRadio, our design only requires
2 elements, while the naive approach needs 12.

A self-interference channel between two antennas
consists of two components at RF frequencies: line-
of-sight and non-line-of-sight component. The line-of-
sight component of the interference is simply a function
of the distance between the two antennas.3This compo-
nent can be estimated and accounted for using free-space
path loss equations. The non-line-of-sight component
is a function of the environment. The transmitted sig-
nal can reflect off objects in the environment and con-
tribute to the self-interference at the receiver. We ac-
count for the self-interference in two stages. In the first
stage, majority of the line-of-sight self-interference com-
ponent is accounted for by RF cancellation (Sec. 4.1).
The residual self-interference including the entire non-
line-of-sight component is accounted for by digital can-
cellation (Sec. 4.2).

Finally, a recent work showed that self-interference
has non-linear components due to the power ampli-
fier [4] that needs to be accounted for. Extending their
non-linear mitigation strategy to an M RF chain system
naively requires O(M2) non-linear mitigation modules.
This section presents a technique that reduces this num-
ber to O(M).

3Assuming omni-directional antennas and no obstruction between
the two antennas.
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Figure 3: Antenna placement for a four RF-chain
FlexRadio system; Three antennas are placed on the ver-
tices of an equilateral triangle with N4’s antenna placed
on the centroid

4.1 RF Cancellation
RF cancellation circuitry accounts for the line-of-sight
component of self-interference. This component of self-
interference signal typically experiences delay and atten-
uation that is only a function of the distance between the
TX and RX antenna. Every such link between a trans-
mit and receive RF chain in a FlexRadio node needs a
self-interference cancellation block that matches the de-
lay and attenuation experienced by the self-interference
over air. We refer to this block as the delay and at-
tenuation block. To design an efficient self-cancellation
circuitry, we propose an antenna placement scheme that
leverages its geometrical symmetry to alleviate the com-
plexity of the RF cancellation circuitry. Symmetric an-
tenna placement makes it possible to combine multiple
self-interference signals that have the same delay and at-
tenuation. By doing so, the combined self-interference
needs only one delay and attenuation block. It must
be noted that while the line-of-sight component has the
same delay and attenuation as long as the distance be-
tween the transmit and receive antenna is the same. the
multipath (non-line-of-sight) component can be differ-
ent. However, our experiments (in Sec. 5) show that
these multipath components are not as large as the line-
of-sight component and therefore, can be cancelled in the
digital domain (explained in the next subsection).

4.1.1 Antenna Placement Scheme (APS)

Figure 3 illustrates the antenna placement scheme for a
four RF-chain FlexRadio node. Three antennas, N1, N2
and N3, are on the vertices of an equilateral triangle with
the fourth antenna, N4, at the centroid. In addition to
placing the antennas as illustrated, we define an order
in assigning which RF-chain to transmit (receive) for a
given configuration of FlexRadio. The order of trans-
mission for a four RF-chain FlexRadio node in descend-
ing order is: N1, N2, N3 and N4. For example, N1 is as-
signed as the only transmitter when FlexRadio is config-
ured in (1/3) mode4. The advantage of biasing the order

4We define a configuration, nt /nr , of FlexRadio as a mode of opera-
tion in which it commits nt of its RF-chains to transmit and the remain-

N N N N

RX1 RX2TX2 TX3RX3TX4RX4

1 2 3 4

TX1

N1

N2 N3
N4

Figure 4: Simplified block diagram of the RF cancella-
tion circuit for a four RF-chain FlexRadio. N1,N2,N3 and
N4 are the 4 antennas with associated TX/RX chains. The
figure highlights the active paths in the self interference
cancellation circuitry for a 3/1 configuration. The cancel-
lation signals from TX1, TX2 and TX3 are combined, in-
verted (π phase shifter not shown in figure for simplicity)
and fed through the delay and attenuation block associ-
ated to receiver RX4. The delay and attenuation block
matches the identical attenuation and delay of the self in-
terference signals. The dashed lines directed from the
TX antennas to the RX antennas illustrate the link in air
traversed by the self interference signals. The top view of
the antenna placement scheme is shown next to the block
diagram.

of transmission (reception), together with the symmetry
of the proposed antenna placement scheme is the follow-
ing: The attenuation and delay of the transmitted sig-
nal at a given receiver is independent of the transmitter
chain. In other words, the delay and attenuation block
in the cancellation path of a given receiver is decoupled
from the configuration of the FlexRadio node. For ex-
ample, the attenuation and delay of the self interference
signal at N4 is the same whether originating from N1, N2
or N3. This is true because of biasing the transmission or-
der as this eliminates the possibility of a self-interference
signal at N2 or N3 to originate from N4.

4.1.2 Cancellation Design

Figure 4 illustrates a simplified block diagram of the
self-interference RF cancellation circuitry for a four RF-
chain FlexRadio node. It illustrates the RF signal paths
connecting the antennas with the respective RF chain.
Specifically, it highlights the active RF paths when the

ing nr RF-chains to receive simultaneously.

5
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node is configured in 3/1 mode. The inactive RF paths
are greyed. The notation for the antennas in Figure 4 is
consistent with that in Figure 3. The TX/RX RF chains
are labelled as T Xi/RXi respectively, where i is the index
of the associated antenna.

As illustrated in Figure 4, in the 3/1 mode, the
switches on antennas N1, N2 and N3 are toggled towards
the transmit RF chains TX1, TX2 and TX3 respectively,
while switch on antenna N4 is toggled towards the re-
ceive RF chain, RX4. This is in accordance with the
transmission order given in Sec. 4.1.1. We explain the
cancellation circuitry design by first looking at the active
RF paths from the transmit RF chains and then the active
RF paths to the receive RF chains. Specifically we will
consider 3/1 scenario illustrated in Figure 4, to underline
how our symmetric antenna placement design enables us
to reduce complexity of the design.
The TX Chains. As indicated in Figure 4, the power
from each of the Tx chains, T X1 , T X2 and T X3, is split
into two paths - transmit path and cancellation path.

The transmit path from each TX chain feeds the power
to its corresponding antenna. As indicated in Figure 4,
the path from T X4 to the switch is not split. In other
words, there is not cancellation path from TX4. This is
because of the biasing order in Sec 4.1.1. When N4 is the
transmitter, FlexRadio is configured as 4/0 and thus the
FlexRadio node has no active receive RF chains and thus
no self-interference.

The cancellation paths from the TX chains feeds part
of the power to the receive RF paths to enable self-
interference cancellation. Self-interference cancellation
at a given receiver is achieved by subtracting the self-
interference signal it receives (on its antenna) with an
exact copy of it. The cancellation path is responsible for
generating an exact copy of the self-interference signal
to each receive RF path. We call this the cancellation
signal. The cancellation path draws part of the transmit
power to generate a copy of the transmitted signal. This
cancellation signal is then subjected to delay and atten-
uation to match that experienced by the self-interference
over the air.
Exploting Symmetric Antenna Placement and Biased
Transmission Order: Symmetric antenna placement
coupled with transmission biasing order decouples the
self-interference channel at a given receiver from the po-
tential source of self-interference. For example, the de-
lay and attenuation of the self-interference channel at re-
ceiver N4 is the same irrespective of whether the source
of self-interference is N1, N2 or N3. This allows us to
combine the cancellation signals and subject the com-
bination of these cancellation signals to a delay and at-
tenuation block that matches that experienced at that re-
ceiver5. Thus, as indicated in Figure 4, the cancellation

5Before passing the combined signal through the delay and atten-

signals from TX1, TX2 and TX3 are combined and are
collectively subjected to match the delay and attenuation
experienced at receiver N4.

The receiver’s perspective. As indicated in Figure 4
each RF path between the RF switch and the receivers
RX2, RX3 and RX4 has a combiner. The combiner
adds the received signal from the antenna with the in-
verted copy of the generated cancellation signal to im-
plement self-interference cancellation in the RF domain.
Consider RX4. RX4 is subject to self interference from
N1, N2 and N3. One input to the combiner in the RF
path from N4 to RX4 is the signal received by the an-
tenna, N4, itself. This signal is a combination of self-
interference and the desired signal intended for the re-
ceiver RX4. The other input is the internally generated
inverted copy of the combined self-interference signal as
discussed previously. Thus, ideally at the combiner out-
put, while the desired signal passes through unchanged,
the self-interference signal received at the antenna is can-
celled by its internally generated inverted copy.6 As an
aside, RX1 does not need a combiner in its path since
when N1 is the receiver, so are all the other RF-chains of
the FlexRadio node.

Delay and Attenuation Block: Beneath the abstrac-
tion. Each delay and attenuation block consists of a
variable attenuator and a variable delay block that are
controlled by from the baseband. By controlling the at-
tenuator and the phase shifter, the cancellation signal can
be conditioned to be an inverted replica of the signal re-
ceived at the corresponding receiver.

Finally, the switch, illustrated in Figure 4 is used to
connect either TX or RX path to the antenna depend-
ing on the configuration of the RF-chain. Figure 4 illus-
trates the active signal paths when FlexRadio is config-
ured as 3/1. For example, when changing from mode 3/1
to mode 2/2, the RF switch associated with N3 switches
to the receive RF path. Simultaneously, TX3 is deacti-
vated while RX3 is activated. Deactivating TX3 renders
its corresponding transmit and cancellation paths in the
cancellation circuitry inactive. At the same time, the RF
path from N3 to RX3 is active with its associated com-
biner and delay and attenuation block.
Is the symmetry assumption realizable? The require-
ment of high self-interference cancellation required (≈
110dB) implies that the symmetrical placement is strictly
observed. For this, we need to ensure that the omni-
directional antennas are parallel to each other and are
exactly placed as indicated in Fig. 3. We implement the
cancellation circuitry on a PCB and couple the antennas

uation block, we invert the signal to enable subtraction at the receiver
using just a combiner

6This is called RF cancellation since the self-interference cancella-
tion is performed completely in the RF domain.
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to the PCB using SMA cables. Existing PCB manufac-
turing tolerances enable us to place objects on the PCB
within an accuracy of 2 mils (1 mil = 1

1000 inch). While
the antennas are not perfectly omni-directional, we ob-
serve that inaccuracy in this modeling is accounted in
digital cancellation where the self-interference channel
is explicitly measured.

4.2 Digital Cancellation

Digital cancellation is used to capture the multipath com-
ponents of the self-interference. The self-interference
from equidistant transmit antennas to a receive antenna
likely experience different multipath profiles. Our digital
cancellation design is similar, in principle, to previously
proposed techniques [6, 16]. This cancellation module
estimates the coefficients of the multipath components
using a finite impulse response (FIR) filter. Unlike the
RF cancellation technique, an M RF chain FlexRadio
system needs M ∗ (M−1) FIR-based digital cancellation
modules. However, joint channel estimation techniques
have been proposed to reduce the complexity of the dig-
ital cancellation implementation [3]. These techniques
can be applied here as well to reduce resource utilization
of digital cancellation implementation.

A recent work [4] showed that FIR-based digital can-
cellation alone does not suffice to achieve the 110dB
total cancellation needed for a WiFi full duplex sys-
tem. This work identified non-linear components of self-
interference that cannot be estimated using FIR filters.
It proposed modeling the non-linear component using a
polynomial function at each receiving RF chain to miti-
gate its effect. Thus, in an M RF-chain FlexRadio node,
each receiver models the non-linearities of M-1 transmit-
ters. Since every antenna can be configured as a receiver,
we would require O(M2) such modules.

Can we reduce the number of non-linear mitigation
modules from O(M2)? We present a technique to re-
duce this number from O(M2) to O(M). The key insight
here is that the non-linear components arise from the
transmit RF chain’s power amplifier [4]. Therefore, in-
stead of estimating and correcting for this non-linearity at
the receiver RF chain, we estimate it at the transmitter RF
chain and correct for it even before transmission. This
pre-conditioning needs to be done only at the transmit
RF chains. This reduces the complexity from O(M2) to
O(M). While joint channel estimation techniques have
been proposed to further reduce the complexity of digital
cancellation implementation [3], decoupling the digital
cancellation and non-linear mitigation from FlexRadio’s
configuration assists in supporting the flexibility desired.

Figure 5: The effect of non-linearity on the transmitted
PSD. In addition to the fundamental tones, the side tones
prop up due to non-linearity of the transmitter.

4.2.1 Dealing with non-linearities

The distortion caused by transmitter non-linearity on the
transmitted signal is illustrated in Fig. 5 when the trans-
mitter sends two single tone frequencies. Similarly, for a
wideband OFDM type symbol, the non-linearity results
in increased power in the side-bands (adjacent band).

The observed non-linearity can be understood by look-
ing at the received signal (without pre-conditioning):

Y (x) = ∑
i

αixi (3)

where x is the voltage of the analog signal input to the
power amplifier. This simple model models the power
amplifier non-linearity using a polynomial. Estimating
the non-linearity is equivalent to finding the coefficients
of the polynomial. Contrary to the technique proposed in
[4], we tackle this phenomenon by pre-conditioning the
input signal of the power amplifier at transmitter itself.

Thus, instead of transmitting the signal x, we transmit
the following,

f (x) = α1(x− ∑
i=3,5,7,9,11

(αi/α1)xi) (4)

Thus, when the input signal is preconditioned, the out-
put of the power amplifier is approximately linear. In
effect, the signal preconditioning block lowers the input
signal power to the power amplifier thus preventing its
high gain from saturating the output, thus reducing non-
linearities.
Will the non-linearity introduced in Eq. 4, violate
linearity assumptions of communication systems de-
sign? It must be noted that here, we introduce precondi-
tioning at the signal level in an effort to balance the non-
linearity of the power amplifier and make the resulting
output signal linear. This is equivalent to preconditioning

7
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Figure 6: The PSD of the transmitter sidebands reduces
after enabling the preconfiguration module.

the signal at the receiver side after the signal experiences
non-linearity of the power amplifier. The precondition-
ing in effect, reduces the power of the non-linear compo-
nents in the channel and makes the linear approximation
of communication systems more valid.

We model the non-linearity of the transmitter in the
training phase. We send a training series of analog in-
puts of known power to the power amplifier and derive
the coefficients of the polynomial by measuring the out-
put power. Once we model the non-linearity, we pre-
condition the signal using equation 4. We transmit a
wideband OFDM signal by sweeping the transmit power
from close to its maximum power to its maximum power.
When transmitting this OFDM signal, we measure the
power of the sidebands, when the preconfiguration mod-
ule is disabled and again when the preconfiguration mod-
ule is enabled. We use an external power amplifier to
boost the power up to 20 dBm.

Figure 6 plots the findings from our experiment. We
vary the transmit power from 18dBm to 20 dBm. This
power range captures the strongest non-linear behaviour
of the power amplifier. The preconditioning module de-
creases the PSD of the sidebands by 17dB at transmit
power of 18dBm and by 14 dB at the highest transmit
power. The decrease in reduction of the PSD of the side-
bands at higher power suggests that the fundamental tone
is more saturated, i.e. the power amplifier exhibits a
stronger non-linear characteristic. However, across the
entire power range of the transmitter, enabling the pre-
configuration module limits the PSD of the sidebands to
at most 61 dB above the noise floor at the receiver.

5 Implementation and Evaluation

The antenna placement design assumed that its symmet-
ric design implied equal attenuation and delay for line-
of-sight self-interference from equidistant transmit RF
chains. This lead to the reduction in the number of
programmable attenuators needed for RF cancellation.
When this assumption does not hold, cancellation per-
formance degrades potentially below the 110dB cancel-

lation needed for WiFi. This section evaluates the design
principles presented in the previous sections. We achieve
the desired 110dB cancellation with our design.

5.1 FlexRadio Implementation

Antenna 
Placement 

Design

Baseband Transceiver

XCVR 2450 
RF Daughterboads

FlexRadio RF 
Cancellation 

Circuitry (under)

NI PXIe-1082 
Chassis

Figure 7: Four RF-chain FlexRadio system

Figure 7 shows our four RF-chain FlexRadio system
implementation. It can be viewed as a cascade of three
high-level modules connected to each other using SMA
cables: The Antenna Placement site, RF cancellation cir-
cuitry, RF/baseband chains.

The antennas are held in position by sliding them
through slotted wooden blocks. They are connected to
the cancellation circuitry using SMA cables. The dis-
tance between the antennas on the vertices and the cen-
troid antenna is set to 5.5”.

The RF chains are implemented using the XCVR 2450
(RF front end), the NI-5781 (data converter module with
a 14 bit ADC and 16bit DAC) and the NI PXIe-7965R
(a Xilinx Virtex-5 based FPGA) for baseband process-
ing including digital cancellation implementation. The
FPGAs are housed in a chassis that contains communi-
cation and clock backplanes to facilitate synchronization
and communication among the FPGAs.

Figure 8 shows the designed FlexRadio RF cancella-
tion circuitry. The TX and RX ports labelled in Figure
8 are consistent with the labelling used in Figure 4. The
cancellation circuit employs the PE43704, a 0-31.75dB
attenuator that can be programmed in 0.25dB steps.
The attenuators are controlled with on-board switches.
We match the delay between the cancellation and self-
interference paths with a symmetrical copper trace de-
sign on the PCB board. We built the circuit on Rogers
4350 PCB material. The board dimensions are 9”x8”.
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Figure 8: FlexRadio RF cancellation circuitry. Each RF
chain contains three ports: Antenna, TX and RX port
(indicated in Figure 4)The block labelled ADCB is the
delay and attenuation block described in Section 4

5.2 Self-Interference Cancellation Evalua-
tion

FlexRadio’s self-interference cancellation has three dis-
tinct modules: RF, digital cancellation module and the
transmitter preconditioning module. These modules, in
unison, enable FlexRadio to nullify its self-interference
in each of its operating configurations.

The RF cancellation cancels the line-of-sight compo-
nent of the self-interference. Digital cancellation mod-
ule estimates the channel and nulls the multipath compo-
nent of self-interference. However, the digital cancella-
tion module cannot predict the non-linearity of the trans-
mitter. As indicated in Sec. 4.2.1, the preconditioning
module limits the power in the sidebands to 61 dB over
the noise floor. Thus, FlexRadio needs to provide RF
cancellation of at least 61 dB to eliminate the non-linear
components introduced by the transmitter.
Is the symmetric design effective? We evaluate the self-
interference cancellation of FlexRadio over all of its op-
erating modes. We place our four RF-chain FlexRadio
prototype inside our lab - a typical indoor environment
with metallic cubicles and furniture. We transmit 20
MHz OFDM signal at the transmitters in each of these
modes. Figure 10 illustrates the PSD at the centroid at
different stages of self-interference cancellation for dif-
ferent configurations of FlexRadio. The RF cancellation
at the centroid is constant across different modes of op-
eration and is 68 dB. As illustrated in Figure 10, this is
sufficient to reduce the power in the side bands (and thus
significant portion of the non-linear component) to the
noise floor. The RF cancellation is a function of only the
antenna placement (since we do not place any objects be-
tween the antennas) and we observe it to be at least 68 dB
at all RF chains in our prototype.
Evaluating Digital Cancellation Effectiveness: Digital
cancellation effectiveness relies on the accuracy of the
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Figure 9: Digital Cancellation as a function of time taken
to estimate the self-interference channel.

self-interference channel estimation. Intuitively, measur-
ing the channel response over a longer duration helps in
estimating the channel better. Fig. 9 illustrates the digi-
tal cancellation performance as a function of the channel
estimation time. As seen in Fig. 9, for a channel estima-
tion time of 7.4µ seconds, 42 dB of digital cancellation
is achieved. Our digital cancellation module cancels the
residue signal from RF cancellation down to the noise
floor for all operating modes of FlexRadio.

Figure 10 explicitly illustrates the spectrum at the cen-
troid antenna after RF cancellation. When FlexRadio is
operating in mode, 1/3, the effect of multipath is more
pronounced after RF cancellation indicated by the trough
in the residual spectrum after RF cancellation. However,
the depth of this trough decreases as the number of trans-
mitters increases i.e the effect of multipath is lesser. In
the mode 3/1, the spectrum after the RF cancellation is
almost flat. This is because when the number of trans-
mitters increases, the multipath component decreases as
the number of line-of-sight components increase.

The RF cancellation at the centroid includes 26 dB at-
tenuation of the self-interference signal over air. Due to
space constraints, the power spectral density at each of
the other vertices is not included. The RF cancellation
at the vertices is 70 dB, due to the the increase in atten-
uation of the self-interference over the air (FlexRadio’s
priority ensures that a receiver at the vertex experienc-
ing self-interference only from transmitters positioned at
other vertices of the equilateral triangle).

5.3 Configuration Switching Time
When switching from one FlexRadio configuration to an-
other, the switching time can include the time needed for
carrying out some, if not all, of the following events:
Switching of the RF switches to change receive chains
to transmit chains or vice versa; Channel estimation be-
tween all the transmit and receive links in the baseband
- this event loads the coefficients of the FIR filters used
to model the self-interference channels required for dig-
ital cancellation; Switching the baseband state to make

9
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Figure 10: PSD at the centroid for different operating modes of FlexRadio. Preconditioning reduces non-linear
components, RF cancellation achieves 68dB cancellation, FIR-based digital cancellation brings the remaining self-
interference to the noise floor achieving a fully working FlexRadio.

the additional transmit (receive) FIFO available (For in-
stance, when switching from mode 2/2 to 3/1 an addi-
tional transmit FIFO is required). Explicitly, to switch
between transmission modes 4/0 and 0/4, FlexRadio only
needs to switch the RF switches at each RF chain from
the transmit RF chain to the receive RF chain. However,
when FlexRadio switches from mode 0/4 to mode 3/1,
all the events listed above have to be accomplished to
transition between the two modes.

The switching and settling times of the programmable
attenuator used in FlexRadio are 1.1µs and 2µs respec-
tively. The symmetric antenna placement of FlexRadio
decouples the delay and attenuation block at each re-
ceiver chain from the configuration of FlexRadio. Thus,
switching between different configurations of FlexRadio
does not require reprogramming the attenuator. None
the less, the preconfiguration module and the attenua-
tors used in RF cancellation are tuned periodically to ac-
count for changes in circuit behavior due to change in
temperatures, humidity etc. However, these tuning re-
quirements are independent from switching FlexRadio
configurations and are infrequent.

In our implementation, the maximum switching time
occurs when FlexRadio switches from transmission
mode 0/4 to 3/1, as the digital cancellation module needs
to estimate three channels - between three transmitters

to the receiver - in a sequential manner. As indicated in
Figure 9, channel estimation time of 7.4µs yields 42dB
of digital cancellation in our implementation. Thus the
total time to estimate all the channels when FlexRadio
switches to 3/1 transmission mode is ≈ 22.5µs. The
switching time for off-the-shelf RF switches is of the or-
der of tens of nanoseconds. Further, the time to make
the required FIFOs available (either a transmit FIFO or
a receive data) is of the order of hundreds of nanosec-
onds. Thus, the maximum time to switch between differ-
ent transmission modes of FlexRadio is within 25 µs.
Is the switching time overhead significant? FlexRa-
dioconfiguration changes are motivated by changing
topology or flow constraints. Many factors can affect
flow constraints. Typical channel coherence time is
an ultra-agressive rate estimate of changing topology
constraints. However. coherence times even for mo-
bile channels can be hundreds of milliseconds. Thus,
under most circumstances, switching between different
FlexRadio configurations presents negligible overhead.

5.4 FlexRadio in a network: Experiment
setup and evaluation

Having evaluated the effectiveness of FlexRadio’s self-
interference cancellation strategies and its configurabil-
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ity, in this section, we evaluate the performance of
FlexRadio nodes in a network. We perform a set of ex-
periments using different network topologies, flow con-
straints and channel conditions. We compare the perfor-
mance of FlexRadio nodes in these networks with the
performance of wireless nodes having a fixed function-
ality (MIMO, full duplex and Multi-User MIMO (MU-
MIMO)) in these networks. For fixed full-duplex radios
mentioned in this section, half of their RF chains are used
for transmission while the rest are assigned for signal re-
ception. So we refer to these as half-half full-duplex.

All modes of radio operation, i.e. FlexRadio oper-
ation or fixed function, use standard modulation and
coding schemes of WiFi’s 802.11g transmissions; 1/2
BPSK, QPSK, QAM16 and QAM64, 2/3 BPSK, QPSK,
QAM16 and 3/4 QAM64. All the experiments are con-
ducted in the 2.4GHz ISM band over a bandwidth of
20MHz. Theoretically, FlexRadio nodes should be able
to operate on different frequencies as it is based on the
symmetry components placement. However, due to the
manufacturing limitation of the frequency selective RF
components on our PCB board (programmable attenua-
tor, balun and switches), we operate in the 2.4GHz band
for which these components have been designed.

5.4.1 FlexRadio in Interference-limited Networks

We evaluate the performance benefits of FlexRadio
nodes in interference limited networks as discussed in
Section. 3. For this experiment, we place four wire-
less radio nodes according to the topology as shown in
the Figure 1(a). Each radio is implemented on the NI
software radio defined platform described in the previ-
ous section. For this topology, we compare the perfor-
mance of FlexRadio nodes with MIMO and half-half
full duplex nodes. In both MIMO and full-duplex net-
works, enabling any two transmission streams simultane-
ously causes interference at the remaining passive nodes
thus preventing another transmission stream. FlexRadio
nodes can be configured to make the necessary spatial
dimensions (antennas) available to align interference to
enable a third stream.

When evaluating FlexRadio nodes in this topology, all
nodes compute their channels to neighboring nodes (For
instance, node N1, in Figure 1(a), computes the channel
between itself and nodes N2 and N3 and so on.). This
is required to implement interference alignment. In our
implementation, the nodes share the computed channel
information over Ethernet. Further, we use the commu-
nication backplane of our NI platform to synchronize the
distributed nodes in time. There are other techniques
in literature to achieve the same requirement [15, 20].
We transmit 200 packets over each enabled transmission
stream. We measure the throughput over all active links

at their highest possible data rates. We repeat this exper-
iment for 50 different locations of nodes N2 and N3.

0

0.2

0.4

0.6

0.8

1

0 50 100 150

CD
F 

Throughput (Mbps) 

Half-half Full-duplex MIMO FlexRadio

Figure 11: Throughput comparison between MIMO,
fixed full-duplex and FlexRadio for the topology shown
in Figure 1(a)

Figure 11 plots the CDF of the throughput measured
at these locations. FlexRadio outperforms full-duplex
and MIMO performance by 47% and 38% respectively.
This is slightly below the 50% gain anticipated in Sec-
tion 3. The slight drop in gain can be attributed to the
additional channel measurement required between nodes
N2 and N3. None the less, the gain is significant over
existing MIMO and full-duplex technologies without re-
quiring significant hardware overhead (over full-duplex
nodes) or configuration switching overhead.

5.4.2 Adjusting Configuration Based on Flow De-
mand

We evaluate the benefits of flexibility in networks with
flow constraints. We perform this experiment in a three-
node network. The radio in the middle has four RF
chains. The other two radios with two RF chains cannot
hear each other (similar to the topology in Figure 2(a)).
We repeat the experiment at 50 different locations to cap-
ture different channel conditions. The flow constraint is
defined similar to that in Figure 2(a). We measure the
throughput for each experiment in a method similar to
that described in the previous subsection. We compare
the throughput of the network between fixed full-duplex,
MIMO, MU-MIMO and FlexRadio nodes. Figure 12(a)
plots the CDF of the throughput. We can see that, as ex-
pected in section 3, when the middle node operates un-
der 2Tx/2Rx FlexRadio configuration and the other two
nodes operate as MIMO receiver (0/2) and MIMO trans-
mitter (2/0) separately the optimal network throughput is
achieved. This configuration achieves twice the through-
put of the other configurations. Note that, for this flow
constraint, MU-MIMO does not outperform MIMO.

We repeat the experiment for each of these 50 loca-
tions. However, this time we have the middle four RF
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Figure 12: In the flow demand (a), the four RF chain
radio wants to receive some packets from one 2-RF chain
radio and transmit to another one. In (b), all the two 2-RF
chain radios want to transmit to the middle one.

chain node receive from the other two nodes all the time.
We plot the CDF of the throughput distribution for this
flow constraint in Figure 12(b). In this scenario, MU-
MIMO presents the throughput optimal solution, which
is the configuration that FlexRadio adopts. Through this
experiment, we verify that FlexRadio enables each node
in a network to adapt to a configuration that achieves op-
timal network performance.

5.4.3 Varying Channel Conditions

Finally, we seek to evaluate FlexRadio nodes in different
channel conditions. Theoretically, it has been deduced
that when the SNR of the channel is low, maximizing
the number of RF chains/antennas at the receiver maxi-
mizes the throughput [17]. However, in the theoretic per-
spective, this phenomena is observed at really low SNR
(around -20dB), where WiFi transmission does not occur.

None the less, we perform an experiment where two
radios with four RF chains wish to transmit to each
other. Under a reasonable WiFi channel, the SNR varies
around 5dB. At this SNR, all the radios choose the low-
est data rate (5.5Mbps) corresponding to 1/2 BPSK. For
this experiment, we run MIMO in two configurations:
One Stream MIMO and Two Stream MIMO. Under One
Stream MIMO, all of the transmitting RF chains send
the same data. This is usually the optimal strategy under
very low SNR conditions. The Two Stream MIMO is the
typical MIMO configuration where two RF chains send
different data streams, the normal MIMO operation.

We measure the throughput for this scenario for half-
half full-duplex, the two MIMO configurations and
FlexRadio (1/3) configuration.

The experiment is repeated 50 times and the CDF
of the throughput is plotted in Figure 13. Surprisingly,
FlexRadio outperforms other configurations ≈ 85% of
the times even when the channel SNR varies around 5dB.
On some instances one stream MIMO performs better.
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Figure 13: Throughput comparison between MIMO,
half-half full-duplex and FlexRadio (1/3) configuration.
One stream MIMO refers to the all TX chain in the
MIMO transmitter transmit the same data while in the
second setting, they are divided into two groups so that
two streams are transmitted along the transmission.

Note that, under one stream MIMO, one node transmits
the same data on all four RF chains and the other node re-
ceives on all of its four RF chains. While for 1/3 FlexRa-
dio, only 3 RF chains are used for receiving by both the
nodes. At very low SNR, the received SNR scales lin-
early with the number of receiver RF chains. This gives
one stream MIMO a slight edge since it has one receive
RF chain more than 1/3 FlexRadio. On average, FlexRa-
dio provides a median gain of 1.51x over MIMO and
2.85x over full-duplex.

6 Related Work

Single RF-chain cancellation techniques. Prior RF
cancellation techniques in existing full-duplex imple-
mentations [2, 3, 5–7, 9, 11–14] can be broadly classi-
fied into: Passive (self interference suppression) and Ac-
tive (Antenna cancellation, Analog cancellation). Pas-
sive suppression techniques provide electromagnetic iso-
lation between the Tx and Rx antennas to minimize self
interference, for instance, by using directional antennas,
[9]. Active cancellation methods create a null at the re-
ceive antenna by sending an inverted copy of the trans-
mitted signal, either over air (Antenna cancellation [6])
or through transmission line (Analog cancellation [12]).
Antenna cancellation techniques typically require addi-
tional antennas (either for Tx, or Rx or both). FlexRa-
dio’s symmetrical RF cancellation design draws from
these designs to reduce implementation complexity.

Multi-RF chain full-duplex systems. Recently, many
researchers have demonstrated FD capability on multi-
RF chains systems [2,3,8]. MIDU [2] employs two-level
antenna cancellation. The authors propose a symmetric
arrangement of Tx and Rx antennas such that the trans-
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mitted signals from a pair of TX antennas are offset by
π at a given Rx as well as the received signals at a pair
of Rx antennas from a given Tx antenna are offset by π .
MIDU needs 2× the number of antennas needed for a
MIMO-FD node with the same number of RF chains.

Single-Antenna full-duplex systems. All the above
implementations use at least one antenna for each ac-
tive RF chain. In the case of antenna cancellation, or
MIDU, multiple antennas are used per active RF chain.
However, recent work [4] implements a full-duplex node
(with one active TX RF chain and one active RX RF
chain) using only a single antenna. This technique uses
a circulator to provide isolation between the Tx and Rx
paths. They achieve further cancellation using analog
cancellation techniques implemented with passive delay
lines and variable attenuators on the cancellation signal.
The work in [3] extends this full-duplex design to MIMO
radios. In [3], the authors implement a six RF-chain full-
duplex node (3 transmit RF-chains and 3 receive RF-
chains) using only 3 antennas. Since an equivalent 3
antenna MIMO node can activate at most 3 transmit or
3 receive RF chains, a 3 antenna MIMO node is essen-
tially a 3 RF-chain MIMO node. While the full-duplex
design in [3] almost doubles the capacity between two
nodes over that of MIMO nodes with the same number
of antennas, this comes at the cost of having more ac-
tive RF-chains. On the other hand, FlexRadio exploits
flexibility to realize a fundamental performance increase
while not using any additional active RF chains.

7 Discussion and Conclusion

MAC layer Implications. The examples in Sec. 3 as-
sumed the presence of a central node with knowledge of
RF resource capabilities of the all the nodes in the net-
work. Nodes can piggyback information of their RF re-
source capabilities (in terms of number of antennas, RF
chains etc.) with packets exchanging channel state in-
formation. For example, in enterprise wireless networks
APs can collect information from their respective clients
and forward this information to a designated server over
the backbone. The server can then determine optimum
configuration for all the nodes in the network. Designing
algorithms to exploit FlexRadio capability to maximize
network performance is an open problem.

Extending beyond four RF chains. The four RF-
chain FlexRadio prototype is applicable to many existing
MIMO systems (the standard LTE system, for instance).
However FlexRadio’s design principles can extend to
nodes with more than four RF chains. The extended de-
sign can leverage the geometrical symmetry of the sym-
metric antenna placement design to minimize cost, area
and power consumption of the FlexRadio node.

The complexity reduction of the RF cancellation is
based on the following observation: If multiple transmit-
ter antennas are equidistant to a given receiver antenna,
the cancellation signal of these TX chains can be com-
bined before passing through a single delay and attenua-
tion block to cancel out their self interference at the given
receiver. If multiple sets of transmitters are equidistant,
at different distances, to a given receiver, then the re-
ceiver needs an independent delay and attenuation block
for each such set of transmitters. In general terms, for
an N RF-chain FlexRadio system with a biased transmis-
sion order defined as: N1,N2, · · · ,Nk are the K transmit-
ters in K/N-K mode, the number of delay and attenuation
blocks is bounded by:

∑n−1
i=1 (distinct distances from set {Ni+1,Ni+2, · · ·Nn}

to Ni).
This governs the minimum complexity RF cancella-

tion circuitry for our design. We present an antenna
placement scheme for FlexRadio system with larger
number of RF-chains by simply extending the antenna
placement scheme of the four RF-chain FlexRadio node
along all sides. For a FlexRadio system with more than
four RF chains, additional antennas can be added to the
four antenna arrangement using the following priority:

• On the centroids of the triangle formed by the excenter
and the vertices of the four antenna arrangement on the
side closest to the excenter.

• On the excenters along the three sides of the four an-
tenna arrangement.

• The above steps extend the four antenna arrangement
by making copies of its geometry along all its sides.
The process can be repeated on the newly created copy
until all the antennas corresponding to its respective
RF-chains of the node are placed.

Conclusion. FlexRadio is a fundamentally new capabil-
ity for a wireless node. By choosing the number of RF
chains to transmit and receive, network-wide throughput
gains are possible. These opportunities can be poten-
tially recognized either centrally or in a distributed fash-
ion. Further, the symmetric antenna placement design
of FlexRadio ensures that realization of FlexRadio does
not present a significant hardware overhead compared to
a full-duplex design with same number of RF chains.
Thus, we believe the performance gains of FlexRadio
nodes are promising.
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Abstract

WiFi is emerging as the preferred connectivity solution

for mobile clients because of its low power consump-

tion and high capacity. Dense urban WiFi deployments

cover entire central areas, but the one thing missing is a

seamless mobile experience. Mobility in WiFi has tra-

ditionally pursued fast handover, but we argue that this

is the wrong goal to begin with. Instead, we propose

that mobile clients should connect to all the access points

they see, and split traffic over them with the newly de-

ployed MPTCP protocol. We let a mobile connect to

multiple APs on the same channel, or on different chan-

nels, and show via detailed experiments and simulation

that this solution greatly enhances capacity and reliabil-

ity of TCP connections straight away for certain flavors

of WiFi a/b/g. We also find there are situations where

connecting to multiple APs severely decreases through-

put, and propose a series of client-side changes that make

this solution robust across a wide range of scenarios.

1 Introduction

Mobile traffic has been growing tremendously to the

point where it places great stress on cellular network ca-

pacity, and offloading traffic to the ubiquitous WiFi de-

ployments has long been touted as the solution. In dense

urban areas, offloading between WiFi and cellular may

not be needed at all: WiFi is always available because

of uncoordinated deployments by many parties, and is

preferable because it offers higher bandwidth and smaller

energy consumption.

To improve the mobility experience, many solutions

have been proposed that coordinate Access Points [1, 2];

however, real deployments are fragmented between mul-

tiple operators, which together cover entire central ar-

eas. This is the case, for instance, in pedestrian areas

of the Bucharest city center with three different hotspot

providers active. In this paper we address the problem

of roaming through mixed, uncoordinated deployments

of APs, without changes to the deployed infrastructure.

We assume clients have access to multiple operators (per-

haps due to roaming arrangements between operators),

or to home-users’ APs(also uncoordinated) as proposed

by Fon[3]. Recent surveys [4, 5] show that in cities one

can find tens of networks on most popular channels.

Traditional WiFi mobility techniques, as with all other

L2 mobility mechanisms are based on the concept of fast

handover: when a mobile client exits the coverage area

of one Access Point (AP), it should very quickly find

another AP to connect to, and quickly associate to it.

There is a great wealth of research into optimizing fast

handover including scanning in advance, re-using IP ad-

dresses to avoid DHCP, synchronizing APs via a back-

plane protocol, even the using additional cards[6] to re-

duce the association delay - see § 2 for more details. We

think this is the wrong approach, for many reasons:

1. To start the handover mechanism, a client has to lose

connectivity to the AP, or break-before-make

2. There is no standard way to decide which of the

many APs to associate with for best performance

3. Once a decision is made, there is no way to dynam-

ically adjust to changes in signal strength or load

We conjecture that the emerging standard of Multi-

path TCP (MPTCP) enables radical changes in how we

use WiFi: use of multiple APs becomes natural, whether

on the same channel or different ones, and the perennial

handoff problem at layer 2 gets handled at layer 4 al-

lowing for a clean, technology independent, end-to-end

solution for mobility. In this paper we test the follow-

ing hypothesis: all WiFi clients should continuously con-

nect to several access points in their vicinity for better

throughput and connectivity.

We carefully analyze the performance experienced by

a mobile client locked into using a single WiFi channel

and associating automatically to all the APs it sees, with-

out using any explicit layer 2 handover. We run a mix of

testbed experiments to test a few key usecases and sim-

ulations to analyze the generality of our testbed findings

across a wide range of parameters and scenarios. We find

that, surprisingly, the performance of this simple solution

is very good out of the box for a wide range of scenar-

ios and for many WiFi flavors (802.11a, b, g): a WiFi

client connecting to all visible APs will get close to the

maximum achievable throughput. We discuss in detail

the reasons for this performance, namely the WiFi MAC

behavior and its positive interaction with MPTCP. In par-

ticular, the hidden terminal problem gets a constructive

solution with MPTCP, as subflows of a connection take

turns on the medium instead of competing destructively.

We also find that performance is not always good for

certain combination of standards (e.g. 802.11n and g),

and for some rate control algorithms: in such cases the

1
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client downloads too much data from APs far away, re-

ducing total throughput. To address these issues, we de-

sign, implement and test: (a) a novel client side estima-

tion technique that allows the client to accurately esti-

mate the efficiency of the downlink from an AP, and b)

a principled client-side algorithm that uses ECN mark-

ing to help the MPTCP congestion controller to find the

most efficient APs. Finally, we implemented an adaptive

channel switch procedure that allows harvesting capacity

from APs on different channels.

We ran several mobility experiments in our building,

comparing our proposal to using regular TCP connected

to the individual APs. The results show a truly mobile

experience: our client’s throughput closely tracks that

of a TCP client connected to the best AP at any given

location. We also show that striping traffic across APs

naturally and fairly harvests bandwidth in contention sit-

uations with hidden and exposed terminals.

2 Background and Related Work

Fast Handover. The 802.11 standards were originally

designed for uncoordinated deployments, and are not

particularly amenable for high speed handovers. The

handover is performed in three phases: scanning, authen-

tication, and association. The first phase has been empir-

ically shown [7] to be 95% of the handover time, and has

been the target for most optimizations in the literature.

One approach to reduce the scanning delay is to probe

for nearby APs before the mobile loses its current link.

SyncScan [8] goes off channel periodically to perform

the scan, so that the mobile has permanent knowledge

about all APs on all channels. DeuceScan [9] is a prescan

approach that uses a spatiotemporal graph to find the next

AP. Mishra et al. [10] uses neighbor graphs to temporar-

ily capture the topology around the mobile and speed up

the context transfer between APs using IAPP. When ad-

ditional hardware is available, [6] delegates the task of

continuous probing to a second card.

For enterprise networks there are several opportuni-

ties to optimize the handover process. One is the use

of a wireless controller that has a global view of all the

APs and the associated mobiles in the entire network.

This architecture is supported by all major vendors, be-

cause it offers many other advantages in addition to con-

trolled association and guided handover. Another avenue

for better handover is to eliminate it altogether, with the

adoption of a single channel architecture [11] where mul-

tiple coordinated APs “pose” as a single AP by sharing

the MAC, an architecture currently in use by Meru, Ex-

tricom and Ubiquiti. In these architectures, the wireless

controller routes the traffic to and from the appropriate

AP, so that a mobile never enters the handover process.

802.11r [12] optimizes the last two components of

the handover ensuring that the authentication processes

and encryption keys are established before a roam takes

place. Authentication occurs only once, when a client

enters the mobility domain. Subsequent roams within

a mobility domain use cryptographic material derived

from the initial authentication, decreasing roam times

and reducing load on back-end authentication servers.

802.11k [13] provides for roaming assistance from the

AP: when it perceives the mobile moving away, it sends

a notification and possibly a site report with other AP op-

tions to maintain connectivity. Finally, a survey of han-

dover schemes [14] mentions several other efforts in this

direction and classifies them based on the incurred over-

head, necessity of changes (mobile, AP, or both), com-

patibility with standards, and complexity.

All these layer 2 solutions do improve handover per-

formance, but their availability depends on widespread

support in APs and clients. Performing a handover is a

decision that locks the client into one AP for a certain pe-

riod of time, which leads to poor performance when truly

mobile: there is no good way of predicting the through-

put the client will obtain from one AP in the very near

future. By using a transport layer mobility solution (see

also [15, 16]), we sidestep the need to upgrade all AP

and client hardware for mobility and, more importantly,

allow a client to utilize multiple APs at the same time.

Channel Switch [17, 18, 19, 20] has been used to al-

low round robin access to APs on different frequencies.

The client maintains association to each AP, and uses an

IP address in that subnet. All these schemes rely on a

client’s powersave mode to have an AP buffer packets

while the client is exchanging data with other APs on

other channels. We also used this method in our imple-

mentation (see section 7). Spider [21] also investigates

multiple associations on the same and on different chan-

nels, and concludes that for high speed, sticking to one

channel yields better results.

AP selection is the problem of choosing the right AP

based on signal strength, available wireless bandwidth,

end-to-end bandwidth, RTT[22], current load. [23] es-

timates the wireless bandwidth that the client would re-

ceive by using timing of beacon frames. [24] shows that

WLAN multi-homing is desirable from several angles:

pricing, efficiency, fairness. [25] also uses a game theo-

retical approach to explore AP association strategies de-

pending on delay probing. [26] proposes collaborative

sharing of a fraction of an APs bandwidth, which en-

ables better centralized load balancing. Divert [1] is a

heuristic that selects the best AP for downlink and up-

link, exploiting physical path diversity. Similarly, MRD

[27] also exploits path diversity, but only for uplinks.

MPTCP is a recently standardized extension of TCP

[28] that has been implemented by Apple in the IOS 7

mobile operating system; more mobile phone manufac-
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Figure 1: Instead of fast handovers, we propose that wireless

clients associate to all the APs in range and use MPTCP to

spread traffic across them.

turers are expected to follow suit.

The idea of associating to multiple APs for better ro-

bustness and throughput is not new [21, 29, 18]. What is

missing is the ability of unmodified applications to ben-

efit from multiple APs, as TCP uses a single interface by

default. Multipath TCP enables unmodified apps to use

these interfaces.

Our contribution in this paper is to study and optimize

the interaction between the WiFi MAC and Multipath

TCP. In contrast to previous works that focus mostly on

channel switching, we examine carefully the case where

the client is associated to multiple APs residing on the

same channel. Our solution departs from the “one AP at

a time” philosophy in existing works, allowing multiple

APs to compete for the medium at packet level. Compe-

tition provides a number of features including elegantly

solving hidden terminal issues, fast reaction to changes

in channel conditions and throughput improvements even

in certain static cases.

3 Towards an optimal solution for WiFi

Mobility

Consider a wireless client that can associate to three dis-

tinct APs, as shown in Figure 1. Which one should the

client pick and associate to? Prior work has shown that

using signal strength is not a good indicator of future

performance, so the client may actively probe or pas-

sively measure [23] all three APs briefly before deciding

on picking one of them. However, this initially optimal

choice may quickly become suboptimal because of mul-

tiple reasons outside the client’s control: 1. the client

may move; 2. other clients may use the medium, affect-

ing this client’s throughput and his choice; 3. the wireless

channel to the chosen AP may have temporary short-term

fluctuations, affecting its capacity (see evaluation in sec-

tion 6 for an example).

The combination of these factors is impossible to pre-

dict in practice, and the best AP for any given client

changes not only in mobility scenarios, but even when

the client is stationary. All existing solutions that connect

to a single AP are forced to be conservative, because fluc-

tuations (flopping between APs) can affect performance;

thus they all tend to stick to their choice for some time.

We observe that the emergence of MPTCP enables a

radically different approach to WiFi mobility: instead of

using only one AP at a time and doing handovers, mo-

bile clients should connect to all APs at any given

time. The solution is conceptually very simple, and is

shown in Figure 1: we have the client associate to mul-

tiple APs, obtaining one IP address from each, and then

rely on MPTCP to spread data across all the APs, with

one subflow per AP. As the mobile moves, new subflows

are added for new APs, while old ones expire as the mo-

bile loses association to remote APs.

How should traffic be distributed over the different

APs? As the client has a single wireless interface, it can

only receive packets from one AP at a time, even if it is

associated to multiple APs. Should the client spend an

equal amount of time receiving data via each AP? This

policy is optimal only when all APs offer equal through-

put. In practice, one AP will offer the best performance,

thus it is preferable for the client to transfer most data via

this access point. However, all other feasible APs should

be used to send probe traffic to ensure that the client can

detect when conditions change and adapt quickly. While

simple in principle, the key to this solution is understand-

ing the interactions between MPTCP and the WiFi MAC.

There are two high-level cases that need to be covered:

APs on the same wireless channel. There are three

non-overlapping channels in 2.4GHz and more in 5GHz,

but newer standards including 802.11n and 802.11ac al-

low bonding 2-8 of these 20Mhz channels to increase

client capacity; the result is a smaller number of usable

non-overlapping bonded channels (maximum three with

802.11ac, depending on the country).

If we disregard WiFi interference between APs, the

theoretically optimal mobility solution is to always con-

nect to every visible AP, and let MPTCP handle load bal-

ancing at the transport layer: if an AP has poor signal

strength, its loss rate will be higher (because of lower

bandwidth and similar RTTs) and the MPTCP conges-

tion controller will simply migrate most of the traffic to

the APs with better connectivity to the client. This way,

handover delays are eliminated and the mobile enjoys

continuous connectivity. But interference can be a major

issue, and will be explored in depth in the next section.

APs on different wireless channels. In this case the

mobile client must dynamically switch channels while

associated to multiple APs, giving each AP the impres-

sion it is sleeping when in fact it is going on a different

channel. Channel switching has already been proposed

as a technique to aggregate AP backhaul capacity by a

number of works including FatVAP [18] and Juggler[20].

We discuss the interactions between MPTCP and chan-

nel switching in section 7.
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Figure 2: Hidden terminal (HT) experiments: using Multipath TCP results in very good throughput because one

subflow monopolizes the air, while the other is starved.

4 Single-channel mobility

We implemented a prototype client that is locked on a

single channel and continuously listens for beacons of

known APs; when a new AP is found, the client creates a

new virtual wireless interface1 and associates to the AP,

opening a new MPTCP subflow via the new AP. We ran

this code on our 802.11a/b/g/n testbed without external

interference, as well as in simulation to understand the

interactions that can arise due to interference between

different APs, and the extent to which this solution ap-

proximates the optimal one.

4.1 Hidden terminal experiments

The first case we test is a pathological one: consider two

APs that are outside CS range and the MPTCP client con-

nects to both. Lack of CS means the CSMA mechanism

does not function and the frames coming from the two

APs will collide at the client. In fact, each AP is a hid-

den terminal for the other.

To run this experiment, we reduced the power of our

two APs until they went out of CS, with the client still

able to achieve full throughput to at least one AP at all

test locations. Then, we place the client close to one AP

and move it towards the other AP in discrete steps and

measure the throughput for UDP and TCP via either AP

(the status quo) as well as MPTCP. As shown in figure

2a, the graph exhibits three distinct areas. In the two ar-

eas close to either AP, neither UDP nor TCP throughput

is affected: here the capture effect[30] of WiFi predomi-

nates, as packets from the closest AP are much stronger,

and the effect of a collision is very small—the client will

just decode the stronger packet as if no collision took

place, and the subflow via the furthest AP will reduce its

rate to almost zero because of repeated packet losses.

1Virtual interfaces are a standard Linux kernel feature: each

interface has individual network settings (IP, netmask), MAC set-

tings(association, retries), but share the PHY settings(channel, CS).

The area in the middle is more interesting. As we

expected, the combined UDP throughput of two simul-

taneous iperf sessions is greatly diminished by the hid-

den terminal situation. However, by running two simul-

taneous MPTCP subflows, the combined throughput is

surprisingly good. Repeated runs showed this result is

robust, and we also confirmed this via ns2 simulation

(Figure 2b). MPTCP connection statistics show that the

high-level reason for the high throughput is that traffic

is flowing entirely over one of the two subflows, while

the other one is starved, experiencing repeated timeouts.

This would suggest that the starved subflow is experienc-

ing much higher loss rates, which would explain why it

never gets off the ground properly.

To understand the reason of this behavior, we used

simulation to measure the loss probability of the two

subflows when contending for the medium. When sub-

flow 1 is sending at full rate, subflow 2 sends a single

packet which collides with a packet of subflow 1. The

WiFi MACs will then backoff repeatedly until the max

retransmission count has been reached, or until one or

both packets are delivered. We run the simulation for a

long time to experience many such episodes, and show

the percentage of episodes each subflow experiences a

loss in Fig.2c as a function of the retry count. When

few retransmissions are allowed, both subflows lose a

packet each when a collision happens, but the effect of

the loss is dramatic for the second subflow pushing it to

another timeout. As we allow more retransmissions, the

loss probability is reduced dramatically: the second sub-

flow loses around 40% of its packets if 6 or more retrans-

missions are allowed. The reason for the flattening of the

line at 40% is the fact that the first sender always has

packets to send, and when subflow 1 wins the contention

for the first packet, its second packet will start fresh and

again collide with the retransmissions from the second

subflow, further reducing its delivery ratio. This also ex-

plains why subflow 1 experiences no losses after six re-

transmissions: either it wins the contention immediately,

or it succeeds just after the second subflow delivers its
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Figure 3: Carrier sense experiments: the client using MPTCP gets the throughput of the best TCP connection when

close to either AP, and better throughput when in-between.

packet. In effect, we are witnessing a capture effect at

the MPTCP level triggered by the interaction with the

WiFi MAC. This behavior is ideal for the MPTCP client.

4.2 Carrier-sense experiments

The most common case is when a client connects to two

APs on the same channel that are within carrier sense

range of each other, so that the WiFi MAC will prevent

both APs sending simultaneously. The mobile associates

to both APs and again we move the client from one AP

to the other in discrete steps. The performance of our

MPTCP client in this case strongly depends on the rate

control algorithm employed by the AP, and we explore a

number of these to understand their effects.

First, we have our Linux APs use 802.11a and run the

default Minstrel rate selection algorithm. The results are

given in Fig. 3a, and they show that the throughput of the

MPTCP client connected to both APs is as high as the

maximum offered by any of the two APs. The reasons

for this behavior are not obvious.

CASE I: In-between APs the client obtains slightly

more throughput (10%) by using both APs than if we

were using either AP in isolation. The fundamental rea-

son lies at the physical layer: due to fading effects, in-

dividual channel quality varies quickly over time, de-

spite both channels having a roughly equal longer-term

capacity. The wide variability and burstiness of losses

and successes in frame delivery is well documented in

literature [31, 1]. To test this hypothesis, we simultane-

ously sent a low rate broadcast stream from each AP and

measured their delivery ratios at the client. As broadcast

packets are never retried, their delivery ratio captures the

channel quality accurately; the low packet rate is used

to ensure the two APs don’t fight each other over the

airtime, while still allowing us to probe both channels

concurrently. The instantaneous packet delivery ratios

computed with a moving window are shown in Fig. 3b,

confirming that the two channels are largely independent.

The 802.11 MAC naturally exploits physical channel

diversity: the sender that sees a better channel will de-

crease its contention window, and will be advantaged

even more over the sender with a weaker channel. This

behavior is experimentally verified by previous work

[32] with several clients and bidirectional traffic to/from

the APs. For our client downloading from two APs,

when one has a slightly worse channel, it will lose a

frame and double its contention window before retrying,

leaving the other AP to better utilize the channel.

To validate our hypothesis, we analyzed inter-arrival

times between packets for the client using either AP or

both at the same time, and plotted the CDF in Figure 3c.

The data shows that most packets arrive 1ms apart, and

that AP1 prefers a higher PHY rate (24Mbps) while AP2

prefers a lower PHY rate (18Mbps) when used alone. Us-

ing both APs leads to inter-arrival times in between the

two individual curves for most packets. The crucial dif-

ference is in the tail of the distribution, where using both

APs results in fewer retries per packet. When one AP

experiences repeated timeouts, the other AP will send a

packet, thus reducing the tail.

The optimal AP changes at timescales of seconds, and

a realistic way of harvesting this capacity is by connect-

ing to multiple APs. Further experiments with 802.11n

and simulations have shown this behavior is robust: even

when the APs offer similar long-term throughput, a client

connected to multiple APs will manage to harvest 10-

20% more throughput, consistent with results in [1].

CASE II: One AP dominates. Consider now the cases

when the client is closer to one AP; in such cases the

most efficient use of airtime is to use only the AP that’s

closest to the client. In this case, the throughput of a

client connected to all APs strongly depends on the rate

selection algorithms used.

In the experiment in Fig.3a minstrel favors higher

rates even at low signal strengths (with lower frame

delivery rate), leading to more retries per packet for

the far away AP. Each retry imposes a longer back-

off time on the transmitter, allowing the AP with bet-

ter signal strength to win the contention more often and

5
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thus to send more packets; this explains the near-optimal

throughput enjoyed by the MPTCP client near either AP.

This behavior is strictly enforced by the L2 conditions,

and we verified that the choice of TCP congestion con-

trol has no effect on the distribution of packets over the

two paths; the same results were obtained with UDP.

We also verified in the simulator that when two

senders use the same rate, the MAC preference for the

better sender holds regardless of the maximum number

of retransmissions allowed (0 - 10). What happens when

the AP farthest from the client sends using lower rates,

thus reducing its frame loss rate? Simulations showed

that the effect on total throughput can be drastic: the

client connecting to both APs can receive less then half

of the throughput it would get via the best AP. This is be-

cause lower rates give the farthest AP and the closest one

similar loss rates and thus chances of winning the con-

tention for the medium. However, packets sent at lower

bitrate occupy more airtime, thus decreasing the through-

put experienced by the client [33].

Is this case likely to appear in practice? We ran the

same experiment on APs and clients running 802.11n

in the 5GHz frequency band. When the client is close

to one of the APs, the results differed from 802.11a/g:

the throughput obtained with MPTCP was only approxi-

mately half the throughput obtainable via the closest AP.

Monitoring the PHY bitrates used by the transmitters

shows that minstrel ht (the rate control algorithm Linux

uses for 802.11n) differs from minstrel significantly: in-

stead of using aggressive bitrates and many retransmis-

sions, minstrel ht chooses the rates to ensure maximum

delivery probability of packets. The block ACK feature

of 802.11n is likely the main factor in this decision, as the

loss notification now arrives at the sender after a whole

block of frames has been transmitted (as much as 20):

the sender can’t afford to aggressively use high bitrates

because feedback is scarce.

This issue is not limited to 802.11n: any rate control

algorithm that offers packet-level fairness between mul-

tiple senders in CS range greatly harms the combined

throughput achievable by MPTCP with multiple APs.

In summary, a client that associates to multiple APs

and spreads traffic over them with MPTCP will receive

close-to-optimal performance in a hidden-terminal situ-

ation, but in CS performance is strongly dependent on

the rate adaptation algorithms employed by the APs, and

these are outside the client’s control.

5 Making MPTCP and the WiFi MAC play

nicely together

There are two reasons for the suboptimal interaction be-

tween the 802.11 MAC and MPTCP: for one, the loss

rate perceived by MPTCP on each subflow does not re-

flect the efficiency of the AP routing that subflow. In

cases where packet-level fairness exists between APs,

MPTCP sees the same loss rate on all subflows, and is

unable to properly balance the load. Secondly, when

subflows have shared bottlenecks, MPTCP assumes that

sending traffic via the subflows will not affect the bot-

tleneck capacity. This is not the case in single-channel

WiFi setups, where sending traffic via a faraway AP will

decrease the total throughput.

To fix these problems, it is simplest to stop using APs

that decrease total throughput, but this comes at the ex-

pense of poorer performance when mobile. A more

sensible option is on-off: receive data from a single AP

at any point in time while all the others are shut-off, and

periodically cycle through all available APs. on-off has

already been proposed in the context of channel switch-

ing [18, 20, 34] and we use it in Section 7 to cope with

APs on different channels. In our context, on-off can be

implemented either by using the MP BACKUP mecha-

nism in MPTCP [28] which allows prioritizing subflows,

or by relying on WiFi power save mode. It seems natural

to extend the on-off solution for single channel APs as in

[34], since there is no real cost of “switching” between

APs on the same channel, beyond a couple of control

messages: there is no wasted airtime. However, there are

also a few fundamental drawbacks:

• Switching between APs increases packet delay and

jitter, which affects interactive traffic. For instance,

with a 200ms duty cycle, many packets experience

RTTs that are 200ms longer that the path RTT.

• Gains from channel independence are lost.

• When multiple clients make independent decisions

to switch between APs, they may end-up switching

at the same time to the same AP, wasting capacity

available elsewhere. Simulation results in §7 that

show around 35% of the available capacity can be

wasted in such cases.

Clients can monitor local PHY/MAC conditions accu-

rately, but have a limited view of end-to-end downlink

capacity available via an AP, because end-to-end loss

rate and RTT are only available at the TCP sender. The

sender, on the other hand, uses inaccurate metrics that

are influenced by the WiFi behavior. For these reasons,

our solution allows different APs to simultaneously send

to the same client, while allowing the MPTCP conges-

tion controller to direct traffic to the most efficient APs.

In particular, our MPTCP client uses local WiFi informa-

tion to find out which APs are preferable, and relays this

information to the sender as additional loss notification.

One non work-conserving way to relay this information

is to have the client drop a percentage of packets. Instead,

we use explicit congestion notification(ECN) to tell the

server to avoid, if possible, the bad APs.
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Our solution has two distinct parts discussed next: a

novel client-side passive measurement technique that al-

lows the client to accurately estimate the efficiency of

each AP, and an algorithm that decides the amount of

ECN marks that a client can set on a subflow to enable

efficient airtime usage.

5.1 Measuring AP Efficiency

When deciding which AP it should prefer, the client

needs to estimate the time Ti it takes on average for

AP i to successfully send a packet, assuming the AP is

alone in accessing the wireless medium. This metric pur-

posely ignores the effect other WiFi clients may have on

the transmission time by contending for the medium, or

other clients that are serviced by the same AP. By com-

paring the resulting packet times, the client can decide

which AP is preferable to use, and can signal the sender

to steer traffic away from the other APs via ECN.

In contrast to previous work, we only care about the

hypothetical wireless bandwidth from each AP to the

client, as some of the interference from other APs is cre-

ated by the client itself, so actual wireless bandwidth is

not a good estimator.

We model the packet delivery time T (if the client were

alone), when using the bitrate MCS at the AP and a PHY

loss rate p with R retransmissions per packet, ignoring

packets undelivered after R retries:

T =
R

∑
i=0

[(
MSS

MCS
+K) ·(i+1)+C ·

i

∑
j=0

·2 j] · pi ·(1− p) (1)

In the model above, the first term measures the packet

transmission time including the airtime used and K ac-

counts for different WiFi constants such as SIFS, DIFS

and the time needed to send the ACK at the lowest MCS

(1Mbps). The term C · ... measures the time spent due to

the contention interval, and models its increase on suc-

cessive frame losses. Finally, the whole term is moder-

ated by the probability that i retransmissions are needed

to successfully send the packet.

The client knows the MCS used by the AP, however

estimating the PHY loss rate is more difficult because it

can only observe successful transmissions; for each suc-

cessful transmission there may be an unknown number

of retransmissions, which conceal the physical loss rate.

Thus the obvious formula delivery prob = Nreceived

Ntotal
can-

not be used at the client, as Ntotal is unknown.

We avoid this problem by leveraging the “retry” bit

present in the MAC header of every frame, signaling

whether the frame is a retransmission. The client counts

N0, the number of frames received with the retry bit set

to 0. All the other frames reaching the client will have

Figure 4: Scenario 1 (left): a client using AP1 and AP2 prefers

AP2 because of its more efficient use of airtime. Scenario 2

(right): moving all traffic to AP2 with its better radio conditions

is not the optimal strategy end-to-end

the retry bit set to 1, and are counted as N1. We recast

the previous formula to measure the delivery probability

only for frames that are delivered on the first attempt:

delivery prob =
N0

N0 +N1 +Nlost

(2)

The term Nlost captures packets that were not delivered

by the AP despite successive attempts as shown by the

sequence number present in the MAC header.

Implementation. To accurately estimate the delivery

probability for all APs on a channel, the client main-

tains a FIFO queue of packets seen in a chosen interval,

recording for each packet the time of arrival, its sequence

number and its retry bit (10B in total). When new pack-

ets are received, or when timers expire, the packets out-

side the interval are purged, and N0, N1 and Nlost of the

corresponding AP are modified accordingly. Our imple-

mentation uses an interval of 500ms, which results in an

overhead per channel of around 10KB for 802.11a/g, and

100-200KB for 802.11n with four spatial streams.

5.2 Helping senders make the right choice

Consider the two scenarios depicted in Figure 4, where

AP2’s packet time is shorter than AP1’s, and the two sub-

flows going via AP1 and AP2 do not interfere at the last

hop. MPTCP congestion control [35] requires that it

does no worse than TCP on the best available path, and

it efficiently uses network resources. MPTCP achieves

the first goal by continuously estimating the through-

put TCP would get on its paths using a simple model

of TCP throughput, B =
√

2
p
· MSS

RTT
. With this estimate,

MPTCP adjusts its overall aggressiveness (total conges-

tion window increase per RTT over all its subflows) so

that it achieves at least the throughput of the best TCP.

To achieve the second goal, MPTCP gives more of the

increase to subflows with smaller loss rates.

In scenario 1, the throughput via AP2 is higher than

AP1, resulting in a lower loss rate on the corresponding

subflow and making the MPTCP sender send most of its

traffic via AP2. In scenario 2, other bottlenecks reduce

7
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the throughput available via AP2, and the load balanc-

ing of traffic over paths will depend on the amount of

loss experienced on AP2. Either way, MPTCP will use

its estimate of throughput available over AP1 to ensure it

achieves at least as much in aggregate.

Our target is to help MPTCP achieve the same goals

when the two subflows via AP1 and AP2 interfere. For

this to happen, we use ECN to signal the sender that AP1

is worse and should be avoided when possible. Just mak-

ing traffic move away from AP1 is simple: the client will

simply mark a large fraction of packets (e.g. 10%) re-

ceived via AP1 with the Congestion Experienced code-

point, which will duly push the sender to balance most

of its traffic via AP2. However, this approach will back-

fire in scenario 2, where MPTCP will stick to AP2 and

receive worse throughput.

To achieve the proper behavior in all these scenarios,

the rate of ECN marks sent over AP1 must be chosen

carefully such that it does not affect MPTCP’s estimation

of TCP throughput via AP1. Our goal is to ensure that the

MPTCP connection gets at least as much throughput

as it would get via AP1 if the latter is completely idle.

In particular, say the rate of ECN marks the client adds

is δ . As the TCP congestion window depends on loss

rate, the congestion window will decrease when we in-

crease the loss rate. For the bandwidth to remain con-

stant, we would like RTTδ , the RTT after marking, to

also decrease. In other words we would like for the fol-

lowing equation to hold:

B =

√
2

p
·

MSS

RTT
=

√
2

p+ δ
·

MSS

RTTδ
(3)

We assume the subflow via AP1 is the unique sub-

flow at that AP; congestion control at the sender will

keep AP1’s buffer half-full on average. Thus, the aver-

age RTT observed by the client can be decomposed as

RTT = RTT0 +
BUF

2
· T1, where RT T0 is the path RTT,

and the second term accounts for buffering. Note that

we use T1, the average packet delivery time for AP1 es-

timated by our metric. If our client reduced its RTT to

RTT0 by decreasing its congestion window, it would still

be able to fill the pipe, and more importantly it would

allow the sender to correctly estimate the bandwidth via

AP1. Using these observations and simplifying the terms,

we rewrite the equation above as:

B =

√
1

p
·

1

RT T
=

√
1

p+ δ
·

1

RT T −T1 ·
BUF

2

(4)

Finally, knowing T1 gives us an estimate of the max-

imum bandwidth B = 1
T1

. We now have two equations

with three unknowns: p, δ and BUF . Fortunately, we

don’t need to know the exact value of BUF; using a

smaller value will only lead to a smaller value for δ ,

reducing our ability to steer traffic away from AP1. To

get an estimate of BUF , we note that nearly all wireless

APs are buffered to offer 802.11a/g capacity (25Mbps)

to single clients downloading from servers spread across

the globe (i.e. an RTT of at least 100ms). This implies

the smallest buffers should be around 2.5Mbit, which is

about 200 packets of 1500 bytes. We use 200 as our es-

timate for BUF, and can now solve the two equations for

δ . The closed form we arrive at is:

δ =
1

2
· (

50 ·T2
1

RTT · (RTT −50 ·T1)
)2 (5)

δ depends on the interface (T1) and the RTT of the sub-

flow that will be marked, both of which are available at

the client. Note that δ provides a maximum safe marking

rate, and the actual marking rate used may be lower. For

instance, marking rates in excess of 5% brings the TCP

congestion window down to around 6 packets and makes

TCP prone to timeouts.

In our implementation, the client computes the estima-

tion of δ for every AP it is connected to. The client moni-

tors the values of Ti for all of its interfaces, and sets ECN

marks for subflows routed via interfaces with a packet

time at least 20% larger than the best packet time across

all interfaces. The 20% threshold is chosen to avoid pe-

nalizing good APs for short fluctuations in performance

ECN marking happens before the packets get delivered

to IP processing code at the client.

6 Evaluation

We have implemented our solution in the Linux 3.5.0

kernel, patched with MPTCP v0.89. Most of the changes

are in the 802.11 part of the Linux kernel, and are inde-

pendent of the actual NIC used. The patch has 1.3KLOC,

and it includes code to compute the packet time for

each wireless interface, the ECN marking algorithm, and

channel switching support.

In this section we analyze each of our contributions

in detail both experimentally and, where appropriate, in

simulation. We first measure our client-side link esti-

mation technique in a controlled environment. Next, we

analyze the marking algorithm using 802.11n in the lab,

and extensively in simulation to find it provides close to

optimal throughput (90%) over a wide range of param-

eters. Next, we analyze fairness to existing clients and

performance for short downloads. Finally, we run pre-

liminary mobility tests “in-the-wild” using APs we do

not control, finding that our solution does provide near-

optimal throughput in real deployments.
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Figure 5: Client-side estimation of PHY delivery probability

in 802.11a, fixed rate (54Mbps)

6.1 Client-side link quality estimation

To test the accuracy of our client-side estimation of PHY

delivery probability, we setup one of our APs in 802.11a,

place a sniffer within 1m of the AP, and place the client

around 10m away from the AP. The AP’s rate control

algorithm is disabled, and we set the MCS to 54Mbps.

Both the client and the sniffer measure the average

delivery ratio over a half-second window. The size of

the window is a parameter of our algorithm: larger val-

ues take longer to adapt to changing channel condi-

tions, while smaller values may result in very noisy es-

timations. Half a second provides a good tradeoff be-

tween noise and speed of adaptation. MPTCP congestion

control (we use the OLIA algorithm [36]) reacts fairly

quickly to moderate differences in loss rates (20% higher

loss rate on one path). Experiments show that it takes be-

tween 1s and 2s for traffic to shift to the better path once

an abrupt change has occurred, when the RTT is 50ms.

The client downloads a large file and we plot its esti-

mation of the delivery probability (relation (2)) against

the ground truth, as observed at the packet sniffer near

the sender. Two minutes into the experiment we increase

the transmit power of the AP to the max, thus improving

the delivery probability. The results are given in Fig-

ure 5 and show that the client’s estimation closely tracks

the actual delivery ratio, and the mean error across the

whole test is around 3%. We ran many experiments with

802.11g/n and observed similar behavior: client side es-

timation closely tracks the ground truth, and the mean

error rate was under 5% in all our experiments.

Our metric is based on the assumption that the deliv-

ery ratio is independent of the state of the packet (the

number of retries). This assumption is reasonable when

packet losses occur due to channel conditions, but breaks

down in hidden terminal situations, where a collision on

the first packet will most likely trigger collisions on sub-

sequent packets. In such cases, our metric’s focus only

on the initial transmissions will lead to errors, as follows:

• When competing traffic is sparse, our metric

will overestimate the PHY delivery probability by

around 10% in our tests.
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between AP1 and AP2 in 802.11n. MPTCP with ECN marking

provides 85% of the optimal throughput.

• In heavy contention, one AP may be starved com-

pletely, and our client’s estimate will be unreliable.

This drawback does not affect our overall solution: we

need client-side estimation only when the two APs are

in carrier sense. When in hidden terminal, our experi-

ments show that the interaction between the MAC and

Multipath TCP leads to a proper throughput allocation,

and no further intervention via ECN is needed.

When a rate control algorithm picks a different rate

to resend the same packet, that packet will not have its

“retry” bit set despite being retransmitted. To understand

whether this affects our results, we ran experiments as

above but with rate control enabled; however the were no

discernible differences in the efficacy of our algorithm.

6.2 ECN Marking

We reran all the 802.11a/g experiments presented so far

with our client-side load balancing algorithm on. We

found that the marking did not influence the actual re-

sults: in particular, we verified that marking was not trig-

gered in the channel diversity setup we discussed before.

For a static 802.11n client, we applied the ECN mark-

ing as indicated by relation (5). The results shown in

Fig. 7 reveal that our metric and ECN algorithms work

well together, pushing traffic away from the inefficient

AP. Using the same setup, we then moved the client at

walking speed between the APs, as the whole distance

was covered in around 10s. The results (not shown) are

much noisier, but show that the ECN mechanism still

works fairly well overall; a similar result with a mix of

11n and 11g is later discussed in Figure 8. All further ex-

periments presented in this paper are run with the ECN

algorithm enabled, unless otherwise specified.

6.2.1 Simulation analysis

To understand how our proposed marking algorithm

works in a wide range of scenarios, we also implemented

it htsim, a scalable simulator that supports MPTCP and

that has been used in previous works [37, 38]. htsim

9
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Figure 6: ECN simulation in htsim.

does not model 802.11; instead, we implemented a new

type of queue that models the high level behavior of

shared access in 802.11 DCF, namely: different senders’

(AP) packets take different time for transmission on the

medium, and when multiple senders have packets ready,

packets are chosen according to a weighted fair-queueing

algorithm, with predefined weights for the different APs.

Using this simple model, we can explore specified out-

comes in the MAC contention algorithm, for example

when AP1 wins contention four times more often than

AP2, that are difficult to obtain in 802.11 setups simply

by choosing different rate selection algorithm. Our sim-

ulated topology is shown in Fig. 4a, where the client is

using both AP1 and AP2. In all our tests, AP2 offers a per-

fect 802.11a/g connection (max 22Mbps), meaning that

T2, the packet time for AP2 is set to 0.5ms.

We ran simulations testing all the combinations of pa-

rameters important in practice:: RTT (10, 25, 50 and

100ms), T2 (from 1ms to 6ms), and the weights for dif-

ferent APs (1, 2, 4, 8 or 16). We ran a total of 120 simula-

tions, and we present the throughput obtained as percent-

age of the optimal, sorting all values ascendingly. Figure

6a shows that the ECN marking algorithm is very robust:

its average performance is 85% of the optimal (median

is 87%), and its worst case is 65%. In contrast, MPTCP

alone fares poorly: 34% throughput on average (28% in

the median). Finally, the throughput of MPTCP in Sce-

nario 2 is also robustly close to the optimal: average at

84% and median at 88%.

There are parameter combinations where the ECN al-

gorithm is not as effective: when RTTs are small, δ is

fairly high so ECN does manage to reduce the conges-

tion window over AP1. However, even a very small win-

dow of packets sent via AP1 is enough to eat up a lot of

airtime that would be better used by AP2, and this effect

is more pronounced when AP1 wins the contention more

often, because it has fewer retries.

In all experiments, we cap the marking rate to a maxi-

mum of 5% to avoid hurting throughput in Scenario 2.

This is a direct tradeoff: the higher the allowed rate,

the better MPTCP behaves in scenario 1, but the worse

it behaves in scenario 2. The reason for this behavior

is that the traditional formula used by MPTCP to esti-

mate throughput over its subflows is overly optimistic

for higher loss rates, where retransmit timeouts begin to

dominate throughput.

To analyze scenario 2, we use a setup where T1 = 3ms

(approx. 4Mbps), RT T = 25ms and vary the number of

TCP flows contending for the uplink of AP2, whose speed

is set to 25Mbps. Figure 6b shows that MPTCP alone

fails to deliver when the AP2 uplink is idle, but obtains

the maximum possible throughput when AP2’s uplink is

busy (same as TCP over AP2). MPTCP with ECN mark-

ing gets the best of both worlds: it closely tracks the per-

formance of a single TCP flow via AP2 when there is little

contention for AP2’s uplink, and it stabilizes to just under

4Mbps when AP2 uplink is congested.

Increasing the number of APs. We’ve looked at con-

necting to two APs until now. What happens when there

are more APs the client can connect to? We ran an ex-

periment where the best AP offers maximum rate, and we

are adding a varying number of other APs. In our first ex-

periment, we consider a worst case where all the added

APs are poor: their packet times is set to 6ms (2Mbps); in

our second experiment we distribute the packet times of

the APs uniformly between 0.5ms and 6ms, mimicking

a more realistic situation, and plot both results in Figure

6c. The results show a linear drop in the throughput ob-

tained as the number of APs increases when ECN is used,

however the slope is steeper when all APs have poor per-

formance. This graph shows that connecting to more

than 3-4 APs, is a bad idea: the client should choose the

few best APs and connect to those alone.

6.3 A mobility experiment

We now discuss a mobility experiment run in a build-

ing with mixed WiFi coverage: the user starts from a lab

on the second floor of the building, goes down a flight

of stairs and then walks over to the cafeteria. En route,

the mobile is locked on channel 6 and can associate to

five different APs, each covering different parts of the

route. We repeat the experiment several times, each tak-

ing of around one minute, during which the client is ei-
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ther: a) using one AP at a time, with standard TCP; b)

using MPTCP and associating to all APs it sees all the

time; or c) performing handover between the different

APs by using MPTCP. Our client monitors the beacons

received over a 2s period, and switches to a new AP when

it receives ∆ more beacons than the current AP. It is well

known that TCP performance suffers in cases of frequent

mobility [39]. The same effect happens during MPTCP

handovers, when a new subflow is created and has to do

slowstart after switching to a new AP. In-between APs

the client may flip-flop between APs based on its ob-

served beacon count, reducing overall performance. To

avoid this effect, we experimentally chose ∆ = 10.

In another experiment, the client slowly moves

through the building at 1km/h, and the results are shown

in Fig.8. At the beginning of the walk, the client has

access to two Linux APs running minstrel, and these

are also accessible briefly on the stairs, in the middle

of the trace. The departments’ deployment of uncoor-

dinated APs (Fortinet FAP 220B) are available both in

the lab at very low strength, on the stairs, and closer to

the cafeteria. Our mobile client connects to at most three

APs simultaneously. Throughout the walk, the through-

put of our MPTCP mobile client closely tracks that of

TCP running on the best AP in any given point; the han-

dover solution suffers because it uses a break−be f ore−

make strategy and throughput drops to nearly zero for 5-

10s. We also noticed that in the beginning of the trace

our ECN-based load balancing algorithm penalizes the

subflow over the department AP—if we disable it, the

throughput of MPTCP in that area drops dramatically.

6.4 Static clients

Our experiments so far show that connecting to multiple

APs pays off when mobile. Is it worth doing the same

when the client is static? We had our client connect to

two APs (channel 11) visible in our lab and that we do

not control, and the performance from both APs is simi-

lar. Our client repeatedly downloads the same 10MB file

from one of our servers using either TCP over AP1, TCP

over AP2 or MPTCP+ECN over both APs. We ran this

experiment during 5 office hours, and present a CDF of

the throughputs obtained in Figure 9. The figure shows

there is a long tail in the throughput obtain via either

AP because of external factors we do not control: other

WiFi users, varying channel conditions, etc. The me-

dian download time for AP1 is 5s, 5.6s via AP2 and 6s

with MPTCP (20% worse). However, MPTCP reduces

the tail, cutting the 99% download time in half.

Power consumption While connected to different APs,

the solution adds the following per AP costs: associa-

tion and authentication handshakes, DHCP, and the null

frames required whenever the mobile goes in and out of

power save. These are negligible, as the bulk of the cost

is due to the radio processing and the TCP/IP stack [40].

The energy cost of our solution is therefore dependent on

the actual throughput achieved, which is near-optimal.

6.5 Fairness

We have focused our analysis so far on the performance

experienced by a client connecting to multiple APs, and

showed that there are significant benefits to be had from

this approach. We haven’t analyzed the impact this so-

lution has on other clients: is it fair to them? Does our

solution decrease the aggregate throughput of the sys-

tem? In answering these questions, our goals are neither

absolute fairness (WiFi is a completely distributed pro-

tocol and also inherently unfair), nor maximizing aggre-

gate throughput (which may mean some distant clients

are starved). Rather, we want our solution’s impact on

other clients to be no worse than that of a TCP connec-

tion using the best available AP.

The theory of MPTCP congestion control reassures

us that two or more subflows sharing the same wireless

medium will not get more throughput than a single TCP

connection would. Also, if an AP has more customers,

Multipath TCP will tend to steer traffic away from that

AP because it sees a higher packet loss rate.

We used the setup shown in Figure 10 to test the be-

havior of our proposal. There are two APs each with a

TCP client in their close vicinity, using 802.11a, and an

MPTCP client C using both APs.

The first test we run has both APs using maximum

power: when alone, all clients will achieve the maxi-
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C conn. to AP1-C1 AP2-C2 C

AP1 (TCP) 5 10 5

AP2 (TCP) 10 5 5

AP1&AP2 7 7 7

Table 1: APs&clients in close range:

MPTCP provides perfect fairness

(802.11a, throughput in Mbps).

C conn. to AP1-C1 AP2-C2 C

AP1(TCP) 3.5 13 3.5

AP2(TCP) 10 5 5

AP1&AP2 10 5 5

Table 2: Client close to AP2: MPTCP

client behaves as TCP connected to AP2

C conn. to AP1-C1 AP2-C2 C

AP1(TCP) 3.5 13.5 3

AP2(TCP) 14 3 3

AP1&AP2 8.5 6.5 5

Table 3: Client in-between APs: MPTCP

client improves overall fairness

mum rate in 802.11a, around 22Mbps. The results of the

experiment are shown in table 1: when the client con-

nects to both APs, the system achieves perfect fairness.

In comparison, connecting to either AP alone will lead

to an unfair bandwidth allocation. In this setup, MPTCP

congestion control matters. If we use regular TCP con-

gestion control on each subflow, the resulting setup is

unfair: the MPTCP client receives 10Mbps while the two

TCP clients each get 5Mbps.

We next study another instance of the setup in Fig. 10

where the APs, still in CS, are farther away, and while

the TCP clients remain close to their respective APs, they

get a lesser channel to the opposite AP. First, we place C

close to AP2. When C connects to AP1, which is farther,

it harms the throughput of C1, and the overall fairness is

greatly reduced. When C connects to both APs, its traffic

flows via the better path through AP2, offering optimal

throughput without harming fairness (Table 2). When

the client is between the two APs, traffic is split on both

paths and the overall fairness is improved, while also in-

creasing the throughput obtained by our client (Table 3).

In summary, by connecting to both APs at the same

time and splitting the downlink traffic between them,

MPTCP achieves better fairness in most cases, and never

hurts traffic more than a TCP connection would when

using the best AP.

7 Channel-switching

To connect to APs on different WiFi channels, clients can

use channel switching, a technique supported by all NICs

for probing. This technique, was proposed and shown to

work in previous work [18, 19, 20, 21]; We implement a

similar procedure, but with adaptation based on the ac-

tual bandwidth obtained on each channel.

Say the client spends a slot ci on channel i, such that

the sum of all slots equals the global duty cycle C =∑i ci.

While on channel i, the client measured the bandwidth it

receives on that channel, bi, by counting the number of

bytes received in a slot and dividing it by ci. We consider

the following family of algorithms for channel switching:

ci =
bα

i

∑ j bα
j

·C (6)

The equation prescribes how to compute ci for the next

interval based on the throughput observed in the current

interval, where the interval is a multiple of C. α dictates

how aggressively we prefer the good channels over the

bad ones: higher values lead to more time spent on the

best channels. Choosing α strikes a tradeoff between

throughput obtained and accurate probing that enables

quick adaptation in channel conditions.

The discussion so far has assumed MPTCP is able to

allow all APs on different channels to send at flat rate

during their slot; in other words Multipath TCP manages

to keep all the paths busy. Also note that there are no di-

rect interactions between the MACs of the different APs

during this time: enabling MPTCP to work over chan-

nel switching is a much easier task. All we need is to

make sure the MPTCP subflows do not suffer frequent

timeouts, which can occur due to:

• Wildly varying round-trip times leading to inaccu-

rate values of the smoothed RTT estimator.

• Bursts of losses suffered when congestion windows

are small and fast retransmit is not triggered.

The first problem is quite likely to appear during chan-

nel switching, as the senders will see bimodal RTT val-

ues: path RTT for packets sent during the channel’s slot,

and C for packets sent while outside the slot. To avoid

this problem, we impose that C is smaller than the small-

est possible RTO at clients, which must be higher than

the delayed ACK threshold (200ms). Hence, our first re-

striction is that C ≤ 200ms.

To avoid the second problem, we lower bound the time

spent on any channel to a minimum value that allows the

AP to send at least one packet per slot; this implies that

the smallest slot has to be at least 10ms.

We have implemented channel switching support in

the Linux kernel, together with the family of algorithms

discussed above. With this implementation, we ran a se-

ries of experiments to understand the basic performance

of channel switching in our context. We have the client

associate to two APs in (channels 40 and 44, 802.11a)

and modify the transmit power of the APs while we ob-

serve the adaptation algorithms at work. The results are

shown in the table below. The experiments with both

APs set at max power show that the channel switch-

ing overheads (of around 5ms in our measurements) re-

duce the total available throughput by around 10% when

switching between two channels with a duty cycle of

200ms. If we decrease the power of AP2, α = 2 does

12
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a good job of increasing the slot of AP1, and obtaining

87% of the optimal throughput. In contrast, the algorithm

α = 0 assigns equal slot to both APs and throughput is

the average of both APs’ throughput:

Power for TCP TCP MPTCP + switch

AP1&AP2 AP1 AP2 α = 2 α = 0

Max & Max 20 20 18 18

Max & Low 20 14 17.5 16

Max & Low 20 5 17.5 12

The experiments show that MPTCP and channel

switching play nicely together. We note that the ex-

periments work similarly regardless the WiFi standard

used. Our driver independent channel switching proce-

dure, through its adaptive slot, makes it possible for an

MPTCP based mobile to access capacity on independent

channels in a fluid manner.

7.1 Channel switching with many users

The one key difference between the single channel and

multi channel scenarios is the behavior when multiple

users are connected to the same APs. When on the same

channel, users tend to stick to the AP closest to them as

our experiments showed in Section 4. When switch-

ing, the clients are not coordinated and will affect each

other’s throughput, depending on how their slots over-

lap. Intuitively, when multiple clients make independent

switching decisions we expect the overall channel uti-

lization to be suboptimal. We resort to simulation to un-

derstand these effects. We model a number of mobile

clients connected to three APs on three distinct channels,

and all clients can download from every AP at 22Mbps

(i.e. the 802.11g perfect channels). The optimum is for

the clients’ speeds to sum up to 66Mbps. With chan-

nel switching, however, clients’ slots will overlap and

some channels will be idle while others may have two

clients using them simultaneously. Our simulator uses a

simplified model that assumes no channel switch over-

heads, and that bandwidth is shared equally amongst all

clients using a channel. When computing slot times, we

also add a number of ms chosen uniformly at random be-

tween 1-10ms, to model for random delays experienced

by channel switching code due to interactions with the

AP [18]. In the table below we plot the average through-

put obtained as a percentage of the optimum.

Users 1 2 3 4 5 7 10

α = 2 100 80 64 70 76 81 87

The results show worst results when three users con-

tend for three channels and a third of the capacity is lost;

if fewer or a lot more users share the channels, the effects

are less pronounced. Note that these results also hold for

the single channel setting, when the AP backhaul is the

bottleneck (i.e. DSL scenarios).

8 Conclusion & Future work

We are witnessing a paradigm shift for wireless mobility:

instead of using a single AP at any one time and racing to

quickly change to the next when signal fades, the emerg-

ing MPTCP standard allows clients to use multiple APs

in range and achieve a truly mobile experience, indepen-

dent of L2 handover. Our main contribution in this paper

is understanding the interaction between the WiFi MAC

and MPTCP, and optimizing it for mobility.

Our experiments have shown that, in many cases, the

load balancing job is done by the WiFi MAC (our carrier-

sense experiments with 802.11a/g) or by interactions of

the MAC and MPTCP congestion control (hidden termi-

nal). However, there are situations when connecting to

multiple APs can hurt throughput. We have offered a so-

lution to these cases that utilizes a novel client-side mea-

surement method together with an algorithm that uses

ECN marking to enable the sender congestion controller

to balance of traffic to the most efficient AP.

We have implemented and tested our solution both

in simulation and in the Linux kernel. Nomadic and

mobile experiments show our solution gets near-optimal

throughput and is robust to changes in AP quality be they

from client mobility or other factors.

In future work we plan to incorporate heuristics that

allow WiFi clients to quickly associate to APs in vehic-

ular mobility scenarios, as proposed by [41, 21]; a wider

range of mobility experiments is also needed to ensure

we have covered all the relevant situations. Additionally,

we need to deploy our solution on mobile devices and

quantify the energy consumption of our proposal, partic-

ularly in the channel switching scenario.

Our end-goal is to build a usable mobility solution

which will combine channel switching as well as asso-

ciating to multiple APs on the same channel. Under-

standing how our single channel solutions interact with

switching is area worth of exploration.
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Abstract– RFID cards are widely used in sensitive

applications such as access control and payment sys-

tems. Past work shows that an eavesdropper snooping

on the communication between a card and its legitimate

reader can break their cryptographic protocol and obtain

their secret keys. One solution to this problem is to in-

stall stronger encryption on the cards. However, RFIDs’

size, power, and cost limitations do not allow for strong

encryption protocols. Further, changing the encryption

on the cards requires revoking billions of cards in con-

sumers’ hands, which is impracticable.

This paper presents RF-Cloak, a solution that protects

RFIDs from the above attacks, without any changes to to-

day’s cards. RF-Cloak achieves this performance using a

novel transmission system that randomizes both the mod-

ulation and the wireless channels. It is the first system

that defends RFIDs against MIMO eavesdroppers, even

when the RFID reader has no MIMO capability. A pro-

totype of our design built using software radios demon-

strates its ability to protect commercial RFIDs from both

single-antenna and MIMO eavesdroppers.

1. INTRODUCTION

Ultra-low power RFIDs are widely used in a variety

of sensitive applications such as access control, payment

systems, and asset tracking [21, 51, 71]. Some of the

most well-known examples include the U.S. Passport

Card, Zipcar key, MasterCard PayPass, RFID-equipped

pharmaceuticals, and MBTA subway cards [38, 44, 45,

55, 72]. As a result of their ultra-low cost, ultra-low

power requirements, these systems typically adopt weak

encryption protocols [34, 59] or lack encryption alto-

gether [63], leaving them widely exposed to security

threats [38, 49].

Past attacks on commercial RFID systems have em-

ployed passive eavesdropping [10, 22, 58, 67]. In these

attacks, an adversary snooping on the wireless medium

intercepts the conversation between a legitimate RFID

reader and an RFID card to obtain the sensitive data

transmitted by the card. For example, the secret key

in over one billion MIFARE Classic cards, widely used

in access control and ticketing systems, can be obtained

in real-time from an overheard conversation [22]. Sim-

ilarly, the cipher used in RFID-based anti-theft devices

for modern cars has been broken in under 6 minutes us-

ing eavesdropped information [67].

In theory, eavesdropping attacks can be addressed with

more sophisticated encryption protocols than those typi-

cally used in RFIDs. Such an approach, however, would

translate into more expensive, power-consuming cards,

which goes against the main goal of the RFID industry,

namely to dramatically reduce the size and cost of RFIDs

so as to allow ubiquitous use [21]. Further, replacing the

encryption requires revoking billions of RFIDs in con-

sumers’ hands, an impractical and costly endeavor.

In this paper, we introduce RF-Cloak, a system that

defends RFIDs against eavesdroppers, without requiring

any modifications to the RFID cards. RF-Cloak exploits

that RFID cards do not generate their own transmission

signal; they communicate by reflecting the signal trans-

mitted by the RFID reader. In today’s RFID systems, the

reader transmits a constant waveform c(t), and a nearby

cardmultiplies (i.e., modulates) this waveform by its data

x through reflection, producing x · c(t). In RF-Cloak, we
replace the reader’s constant waveform, c(t), by a ran-

dom signal, r(t), which also makes the card’s reflected

message, x · r(t), appear random. Since the eavesdropper

does not know the random waveform, he cannot extract

the card’s data from what he hears. In contrast, the reader

is the one who generates the random waveform, and thus

is able to decode by removing its effect. We refer to this

technique as random modulation. We formally analyze it

and characterize its security guarantees.

Random modulation is effective at defending against a

single-antenna eavesdropper. However, random modula-

tion alone cannot defend against a more powerful MIMO

eavesdropper. This vulnerability is due to the fact that

a MIMO system with n receivers can separate n sig-

nals [36, 65], which allows a MIMO eavesdropper to

separate the card’s signal from that of the reader. This

is a fundamental problem with defending against MIMO

eavesdroppers. The solution to this problem is to use a

MIMO system on the reader that has at least as many

transmitters as there are receivers on the MIMO eaves-

dropper [36]. Such a solution, however, creates a MIMO

battle between the reader and the eavesdropper, where

the reader has to keep increasing its MIMO transmitters

to match the eavesdropper’s MIMO capability.

In RF-Cloak, we present a novel solution that enables

a reader with no MIMO capability to securely communi-
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cate with insecure cards, even in the presence of MIMO

eavesdroppers. Specifically, a MIMO system relies on

the channels being relatively static within a packet to be

able to decode. Our key idea is to randomize the wireless

channels from the reader to the MIMO eavesdropper to

prevent it from correctly decoding. We analyze the im-

pact of channel randomization and prove that it enables

a reader with no MIMO capability to overcome a MIMO

eavesdropper, even if it has a very large MIMO system.

To implement channel randomization in practice, we

leverage recent results in wireless communication which

show that, due to multipath, even small motion of the

antenna can create large variations in the wireless chan-

nel [2, 50]. Thus, our system uses a rotating frame with

multiple antennas, and randomly switches between the

antennas using rapid switches.1 We empirically show

that this creates fast varying channels with a random dis-

tribution. We note that our design uses a single transmit

chain on the reader –i.e., no MIMO. However, it provides

the channel diversity of a MIMO transmitter with a huge

number of antennas, which renders a MIMO eavesdrop-

per unable to decode.

We study RF-Cloak’s security guarantees both analyt-

ically and empirically. In particular, we implement the

RF-Cloak reader on USRP software radios and evalu-

ate it with commercial RFIDs in both the HF and UHF

bands. Our evaluation reveals the following:

• Random modulation is effective at protecting RFIDs

from single-antenna eavesdroppers. When the eaves-

dropper uses the optimal decoder which is the max-

imum likelihood decoder, he experiences a mean bit

error rate of 49.8% for HF RFIDs and 50.3% for UHF

RFIDs (and a standard deviation of 0.8% for HF and

2.3% for UHF), which is similar to the bit error rate

of a random guess. On the other hand, the trusted RF-

Cloak reader continues to be able to decode the RFID

message.

• Combining random modulation with channel random-

ization, an RF-Cloak reader with no MIMO capability

causes the mean bit error rate of a MIMO eavesdrop-

per to be 50%, even if the eavesdropper has a MIMO

system with 3, 4 or 5 receivers. The standard devi-

ation ranges between 1.2% and 2.9%, depending on

the number of receivers at the eavesdropper. Hence,

RF-Cloak provides an effective mechanism to defend

against a MIMO eavesdropper.

Contributions: This paper presents the first system that

protects unmodified RFID cards from eavesdropping at-

tacks, even if the eavesdropper has a large MIMO system

and the reader has no MIMO capability. The paper intro-

duces novel algorithms that randomize both the modula-

1Cheap switches [20] can switch every few microseconds,
which is faster than individual bits in an RFID transmission.

tion and the wireless channels to the eavesdropper. It an-

alytically proves its security guarantees and empirically

demonstrates the benefits of its design. We believe that

RF-Cloak addresses a real world problem that threatens

the security of commercial RFIDs such as those used in

car anti-theft solutions [67], and MBTA subway payment

control [22].

2. THREAT MODEL

We address passive eavesdropping attacks on commer-

cial RFID cards in the HF and UHF bands, including

cards with and without cryptographic protection.2 In this

attack, an adversary listening on the wireless medium

intercepts the conversation between a legitimate reader

and an RFID card and seeks to obtain confidential in-

formation contained in the card. In the simplest case,

the adversary can learn the ID of the card, which threat-

ens the privacy of the party carrying the card and enables

cloning attacks. The adversary may also obtain sensitive

data transmitted by the card, such as biometric informa-

tion and passwords. Further, the adversary can reverse

engineer the encryption and extract the secret key based

on the eavesdropped information [10, 22].

The adversary may use standard or custom-built hard-

ware with high receiver sensitivity including multi-

antenna MIMO devices. Also, he may be in any location

with respect to the card and the reader.

We secure the communication from the RFID card to

the reader. We assume the commands transmitted from

the reader to the card do not contain sensitive informa-

tion. This assumption is justified since for HF cards

(e.g., MIFARE), listening to the reader’s messages alone

does not allow the eavesdropper to extract the secret key

and decode the card’s encrypted data [10, 22]. For UHF

cards, this assumption is satisfied as long as the reader

acknowledges cards using only their temporary IDs, an

option readily available for today’s RFID readers [19].

We also assume that the reflected signal from the RFID

card is significantly weaker than the direct signal from

the reader. This assumption is valid for both HF and

UHF systems [7, 18, 53]. In practice, the reflection is

20 to 30 dB weaker than the direct high power RF signal

generated by the reader, because the card’s circuit reflects

only a small portion of the power it receives [37, 56].

Finally, this paper focuses on passive attacks as op-

posed to active attacks, in which an adversary repeat-

edly queries an RFID card to infer the secret key or ob-

tain confidential information. Active RFID attacks are

harder to mount than passive attacks. First, they have

a shorter range because the attacker needs to power the

RFID card [28, 29, 38, 49]. For example, for HF RFIDs,

2Eavesdropping attacks have been successfully mounted on a
variety of RFIDs that employ cryptographic protection [10, 22].
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an active adversary needs to be within a few centime-

ters from the card whereas a passive eavesdropper can

be more than 4 meters away [28]. Second, there are few

practical and commercial solutions for protecting RFIDs

from active attacks, including shielding sleeves which

are used in US Passport Cards [38], RFID blocking wal-

lets [52, 64], RFID reader detectors [43].

3. RFID COMMUNICATION PRIMER

RFIDs mainly operate in two frequency bands: the

High Frequency band (HF 13.56 MHz), where the com-

munication range is about 10 cm [7], and the Ultra High

Frequency band (UHF 902 MHz–928 MHz), where the

communication range can reach a few meters [11]. RF-

Cloak protects both types of RFIDs from eavesdropping

attacks.

RFID cards do not generate their own transmission

signals. Instead, they are powered and activated by the

waveform coming from the RFID reader, through induc-

tive coupling in the HF band [7] or RF backscatter com-

munication in the UHF band [11]. In both UHF and HF

systems, the reader continuously transmits a high power

RF signal c(t), and a nearby RFID card conveys its mes-

sage by switching on and off its reflection of the reader’s

signal through a mechanism called load modulation. In

particular, when the card switches on its load to reflect

the reader’s signal, its signal on the air appears as x1 ·c(t),
where x1 represents the fraction of the reader’s signal re-

flected by the card. When the card switches off its re-

flection via open circuit, its signal on the air appears as

x0 · c(t), where x0 is almost 0 and x0 ≪ x1 ≪ 1.

In current RFID systems, during the card’s reply, the

reader’s baseband signal is a constant waveform c(t) =
A, where A is a constant complex value. A nearby wire-

less receiver receives a weighted sum of the reader’s sig-

nal and the reflected signal from the card:

y(t) = hreader→receiver ·c(t)+hcard→receiver ·x(t) ·c(t) (1)

x(t) is the card’s data message, hreader→receiver is the

wireless channel from the reader to the receiver, and

hcard→receiver represents the channel of the card’s reflected

signal at the receiver i.e., it is a combination of the chan-

nel from the reader to the card with the channel from the

card to the receiver. Note that the receiver in the above

equation can be the reader itself or an eavesdropper.

4. RF-CLOAK: RANDOMIZED MODULATION

We first describe RF-Cloak’s random modulation

scheme, which protects RFIDs from single-antenna

eavesdroppers.

In RFID systems, the reader transmits a query com-

mand and a nearby RFID card replies to it with its data.

During the card’s reply, the reader needs to continue

transmitting a high power RF signal on which the card

modulates its data, as detailed in §3. RF-Cloak random-

izes this modulation of the card’s data. To do so, instead

of transmitting a constant signal as in today’s RFID sys-

tems, an RF-Cloak reader transmits a random signal r(t)
during the card’s reply.

Here we focus on two design goals. First, we en-

sure that an adversary cannot predict or learn the ran-

dom modulation r(t) to decode the card’s data. Second,

the RF-Cloak reader needs to decode with an accuracy

comparable to the case where a reader uses a constant

waveform to read the card.

4.1 Ensuring the Eavesdropper Cannot Decode

Recall from §3 that the eavesdropper’s receives:

y(t) = hreader→eve · r(t) + hcard→eve · x(t) · r(t), (2)

where r(t) is the reader’s random signal, x(t) is the card’s
signal, and hreader→eve and hcard→eve are the direct and

reflected channels from the reader and the card respec-

tively. To ensure the eavesdropper cannot decode, r(t)
should hide any pattern in x(t) useful for decoding and

make the signal on the air, y(t), look like white noise.

Thus, the random values in r(t) should vary as fast as

x(t) –i.e., the bandwidth of r(t) needs to be as large as

the bandwidth of the card’s data x(t).
To better understand the above point, consider the

MBTA Charlie subway card as an example. Fig. 1(a)

shows a few bits of the card’s reply while communicating

with a conventional reader, as perceived by an eavesdrop-

per. The card uses Manchester encoding, where a ‘0’ bit

is expressed as a constant value followed by switching

repeatedly between two states, whereas a ‘1’ bit is ex-

pressed as switching state followed by a constant value.

The reader’s random signal r(t) when multiplied by x(t)
should destroy these internal patterns of the card’s reflec-

tion. Hence, r(t) has to change faster than any transition

in the card’s signal. Since the card’s data has a bandwidth

slightly less than 2 MHz, r(t) should span a bandwidth

of 2 MHz.

In our design, the RF-Cloak reader generates a se-

quence of 2 million random complex samples per sec-

ond drawn from a complex Gaussian distribution with a

variance equal to the average transmission power of the

reader. Given this random modulation, Fig. 1(b) shows

the time signal received by the eavesdropper for the same

bits as in Fig. 1(a). Both the ‘0’ bits and the ‘1’ bits are

now dispersed by the rapidly changing r(t) and hence

have the appearance of random white noise on the air.

The eavesdropper can no longer distinguish them to de-

code. Additionally, Fig. 1(c) shows the frequency profile

of the eavesdropper’s received signal, which exhibits a

flat profile characterizing white noise spanning 2 MHz.

We analytically show that even if the eavesdropper

uses the optimal decoder (i.e., the maximum likelihood

3
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(c) Frequency profile of randomly modulated signal

Figure 1—The signal at the eavesdropper during theMBTA
subway card’s reply: (a) shows the eavesdropper’s received
time signal when the card communicates ‘1001’ to a conven-
tional RFID reader. Two patterns are used to disambiguate ‘0’
and ‘1’. (b) shows the received signal when the random mod-
ulation r(t) varies faster than the rate of the card. (c) plots
the frequency profile of the randomly modulated card’s signal,
which is flat like white noise.

decoder), his bit error rate will be close to 50% which

is no better than randomly trying to guess the bits of the

RFID’s data. Specifically, in Appendix A, we derive the

eavesdropper’s optimal decoder and prove the following

lemma about RF-Cloak’s random modulation.

LEMMA 4.1. There exists a constant C < 1 such that

given a random signal r(t) whose samples are drawn

from a complex Gaussian distribution with zero mean,

and whose bandwidth is as large as x(t), a single an-

tenna eavesdropper using the optimal decoder achieves

a bit error rate (BER) in decoding x(t) of:

BER =
1

2
−ǫ where ǫ < C·

√
Power of RFID’s signal

Power of Reader’s signal

Since the power reflected by the RFID is much weaker

than the reader’s direct signal power, ǫ ≈ 0 and the BER

≈ 1/2. For typical scenarios, the card’s reflected signal

is 20 to 30 dB weaker than the reader’s RF signal [7, 18,

53]. Hence, the eavesdropper’s BER assuming no chan-

nel noise is around 40%–47%. Further, our empirical

results in §6.1 show that the eavesdropper’s mean BER

is 49.8%. This higher BER is because in practice the

wireless channel noise exacerbates the BER.

4.2 How Does the RF-Cloak Reader Decode?

The goal of the RF-Cloak reader’s decoder is to re-

trieve the card’s data x(t) from the received signal y(t).
The reader received signal is:

y(t) = hreader→self · r(t) + hcard→reader · x(t) · r(t), (3)

where hreader→self is the channel of the reader’s self in-

terference, and hcard→reader is the channel of the card’s

reflection at the reader.

To decode, the RF-Cloak reader needs to eliminate the

effect of the random signal r(t) in Eq. 3 to obtain x(t).
The first term in the above equation, hreader→self · r(t),
is the reader’s self-interference over the wire. Canceling

self-interference is a standard procedure in RFID read-

ers [15, 57] since the reader has to receive the tag’s sig-

nal while transmitting its own signal (without which the

RFID tag cannot transmit). The reader cancels its self-

interference using a device called circulator [33], which

eliminates most of the signal in the analog domain. It

then processes the signal in the digital domain to elimi-

nate any residual self-interference. This is done by sub-

tracting hreader→self · r(t) from the received signal y(t).
The reader knows r(t) since it generated the random sig-

nal. As for the channel, hreader→self , it is estimated using

standard channel estimation methods [30].

Removing the self-interference term from Eq. 3 yields:

ŷ(t) = hcard→reader · x(t) · r(t) (4)

Next, the reader divides ŷ(t) by hcard→reader · r(t), which
produces x(t).3 The reader can do so because it knows

r(t) and can compute the channel hcard→reader using the

known preamble in the card message. Once the reader

has x(t), it decodes the data bits as in standard RFID de-

coding.

5. RF-CLOAK: RANDOMIZED CHANNEL

In this section, we focus on defending against MIMO

(multi-input multi-output) eavesdroppers. The challenge

in securing RFIDs against MIMO adversaries stems from

the fact that a MIMO system with n receivers can sep-

arate (and independently decode) n signals transmitted

concurrently on the wireless medium [23, 36]. Thus, a

2-receiver MIMO eavesdropper can separate the reader’s

random modulation from the card’s signal, and decode

the latter. Below we explain this challenge in detail and

design a solution that overcomes MIMO eavesdroppers.

5.1 Challenge: The MIMO Game

MIMO transforms the RFID eavesdropping problem

into a game between the eavesdropper and the reader:

3Dividing a noisy received signal by r(t) can potentially in-
crease the noise variance, due to the random structure of r(t).
One way to refine the decoding at low SNRs is to use a matched
filter and correlate with r(t) [24].
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if the eavesdropper has a larger MIMO system than the

reader, it can separate the reader’s random signal from

the RFID’s signal and decode the latter. Thus, with

random modulation alone, to win this game, the reader

needs to keep adding MIMO transmitters to match or ex-

ceed the number of receivers on the MIMO eavesdrop-

per. For example, in §4, we demonstrated that a single-

transmitter reader transmitting a random signal, r(t), can
defend against a single-receiver eavesdropper. Let us ex-

amine, what happens if the reader continues to use one

transmitter but the eavesdropper upgrades to a 2-receiver

MIMO system.

A 2-receiver MIMO eavesdropper receives two sig-

nals, y1(t) and y2(t):

y1(t) = (hreader→eve1 + hcard→eve1 · x(t)) · r(t)

y2(t) = (hreader→eve2 + hcard→eve2 · x(t)) · r(t),
(5)

where hreader→eve1 and hreader→eve2 are the channels from

the reader to the eavesdropper’s first and second receivers

respectively, and hcard→eve1 and hcard→eve2 are the chan-

nels of the card’s reflected signal at the eavesdropper’s

receivers.

The MIMO eavesdropper can first eliminate the ran-

dom multiplier r(t) by dividing the two signals he re-

ceives:

y1(t)

y2(t)
=

hreader→eve1 + hcard→eve1 · x(t)

hreader→eve2 + hcard→eve2 · x(t)
. (6)

Next, the eavesdropper tries to decode x(t) from Eq. 6,

which has no random multiplier. Recall that the card’s

message x(t) has only two states: x(t) = x0 when the

card’s load is off (i.e., open circuit), and x(t) = x1 when

the card’s load is on (i.e., reflecting the reader’s signal).

Distinguishing these two states enables the eavesdropper

to track the state transition and decode the card’s trans-

mitted data x(t). Note that the ratio of the received sig-

nals in Eq. 6 takes only two values corresponding to the

x(t) = x0 state and the x(t) = x1 state. We denote these

two values of the ratio y1/y2 as α0 and α1. Thus, after

computing the ratio y1/y2, the only ambiguity the eaves-

dropper has is in mapping the two observed values α0

and α1 to states x0 and x1. To resolve this ambiguity, the

attacker checks which of the twomappings allows the de-

coded message to satisfy the checksum [19]. Thus, a 2-

receiver MIMO eavesdropper can win the MIMO game

over a single-transmitter reader, even if the latter uses

random modulation.4

We can gain a deeper insight into this MIMO game by

looking at the received signal in a 2-dimensional space

created by the two receivers on the eavesdropper, where

one dimension is y1(t), the signal received on his first

4Note that the eavesdropper is able to decode without having
to estimate any of the wireless channels in Eq. 5.
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Figure 2—2-Dimensional space of a 2-receiver MIMO
eavesdropper in RF-Cloak’s random modulation scheme:
The figure shows a scatter plot of the samples received by
a 2-receiver eavesdropper. Despite random modulation, a 2-
receiver eavesdropper facing a single-transmitter reader sees
two lines corresponding to two states of the RFID card, x0 and
x1 which allows it to decode.

receiver and the other dimension is y2(t), the signal re-

ceived on his second receiver. At any point in time t, the

received signals (y1(t), y2(t)) can be represented as one

point in this 2-dimensional space. When x(t) = x0, we

know from above that y1 = α0y2, which defines a line in

this 2-dimensional space. Similarly, when x(t) = x1,

the received signals lie on a different line defined by

y1 = α1y2.

We confirm this point empirically by letting a 2-

receiver MIMO adversary (implemented using USRP

software radios) eavesdrop on a conversation between a

commercial UHF RFID and a USRP-based reader that

employs random modulation. Fig. 2 shows a scatter plot

of what the eavesdropper receives on its two antennas.

Here, we plot the magnitude of the received samples, i.e.,

each point in the figure represents (|y1(t)|,|y2(t)|) for a
specific t. We then use our ground truth knowledge of the

actual bits transmitted by the RFID card to label samples

corresponding to x0 in blue and x1 in red. Despite the

fact that the received signal at each receiver is random,

together y1(t) and y2(t) span only lines instead of the en-
tire 2-dimensional space at the eavesdropper. Since the

card’s data has only two states, we see two lines in the

figure and hence the eavesdropper can decode by check-

ing which line the received samples belong to.

The above can be generalized to larger-scale MIMO

systems on the reader and eavesdropper. If the eaves-

dropper has n receive chains, he receives signals in an

n-dimensional space. If the reader has k transmit chains

(k < n) and transmits k signals from them, these signals

will only span a k-dimensional subspace (lines, planes,

etc.) in the eavesdropper’s n-dimensional space. Since

the card has only two states x0, x1, the eavesdropper

will observe two unique subspaces and hence he can de-

code. Thus, it comes down to a MIMO game between the

reader and the eavesdropper. No matter how many trans-

mit chains the reader uses, the eavesdropper can win the

game by using more receive chains.

5
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5.2 Change the Game: Channel Randomization

To overcome the MIMO game, let us go back to Fig. 2

and try to understand why we have separate slopes for

the two states of the RFID signal. Recall that the slopes

of the two lines in Fig. 2, α0 and α1, depend only on the

channels from the reader to the eavesdropper receivers,

as clear from Eq. 6. If the channels stay constant, the two

lines y2 = α0y1 and y2 = α1y1 in Fig. 2 do not change

over time. However, if the channels from the reader to

the eavesdropper’s MIMO antennas are random, then the

ratio y1/y2 will be random and the slope will be ran-

dom for every transition in the state of the RFID’s sig-

nal. This prevents the eavesdropper from separating the

points corresponding to the x0 state of the RFID from the

points corresponding to the x1 state of the RFID. Thus,

we can overcome a MIMO eavesdropper by randomizing

the wireless channels to the eavesdropper.

We analytically show that if the channels from the

reader to the eavesdropper are random, a MIMO eaves-

dropper that uses the optimal decoder (maximum like-

lihood decoder) will see a bit error rate close to 50%,

which is no better than a random guess. Specifically, in

Appendix B we prove the following lemma:

LEMMA 5.1. There exists a constant C < 1 such that,

given the wireless channels from the reader to the eaves-

dropper’s antennas are random complex Gaussians with

zero mean and the channels change as fast as the band-

width of x(t), a MIMO eavesdropper with n receivers us-

ing the optimal decoder achieves a bit error rate (BER):

BER =
1

2
−ǫ where ǫ < C

√
n·

Power of RFID’s signal

Power of Reader’s signal

Recall that the power reflected by the RFID is much

weaker than the reader’s direct signal power. For a typi-

cal power ratio of −30 dB to −20 dB [56], assuming no

channel noise, even a 20 antenna MIMO eavesdropper

will have BER around 48% to 49.8%.

To build a system that randomizes the channels, RF-

Cloak uses a combination of antenna motion and ran-

dom rapid antenna switching. Specifically, past work

shows that due to multipath effects, even small motion

of the antenna can create large variations in the wire-

less channels [2, 41, 50, 54]. Hence, by leveraging

antenna motion, we are able to span a large range of

random channel instantiations. We further increase the

randomization by combining antenna motion with rapid

and random switching of antennas. Specifically, we

use a rotating frame that holds multiple antennas, and

we randomly switch between the antennas using rapid

switches [20] that can switch every few microseconds.

Random switching breaks the periodicity of rotation as

well as any correlation in the channel instantiations over

time. Note that while our reader uses switched antennas,

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

C
D

F

Real and Imaginary Values of the Channel

Real(Channel)
Imaginary(Channel)
Random Gaussian

Figure 3—Distribution of the channel seen at MIMO eaves-
dropper receiver: This figure shows the CDF of the distribu-
tion of the real and imaginary part of RF-Cloak reader’s ran-
dom channel to one receiver of the MIMO eavesdropper. The
real and imaginary parts match a random Gaussian distribution
with zero mean and standard deviation σ = 0.1414 This shows
that the channel is random and spans a large range of values.
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Figure 4—Channel randomization at MIMO eavesdropper
receiver: This figure shows RF-Cloak reader’s random channel
to one receiver of the MIMO eavesdropper. Due to the rapid
and random switching of the antennas together with the an-
tenna motion, each eavesdropper receiver sees a large number
of randomly and rapidly changing channels (both magnitude
and phase), which undermines the eavesdropper’s MIMO de-
coding capability.

it is not a MIMO system because it has only one trans-

mit/receive chain, to which all antennas are connected

via a switch.

Fig. 3 shows the channel resulting from this system at

one of the eavesdropper’s MIMO receivers. The figure

plots the distributions of the real and imaginary parts of

the channel instantiations observed over a period of 4 ms.

The figure shows that the distributions matches a random

Gaussian distribution with zero mean. This demonstrates

that our implementation of channel randomization has

produced random Gaussian channel instantiations, even

when the channel is observed over a short interval of

4 ms. Fig. 4 shows the magnitude and phase of the chan-

nel as functions of time over the same 4 ms, showing that

they are randomly switched at high speed.

To gain a deeper insight into how randomizing the

channel prevents the eavesdropper from decoding, we

again go back to Fig. 2. We repeat the same exper-

6
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Figure 5—2-Dimensional space of the 2-receiver MIMO
eavesdropper when the reader randomizes the channels:
The eavesdropper’s received samples (|Y1|, |Y2|) almost span
the entire space. No subspace is unique to the card’s x0 state
(red) as opposed to the x1 state (blue), which prevents the eaves-
dropper from decoding.

iment with the 2-receiver MIMO eavesdropper. How-

ever, this time we replace the reader’s static antenna with

the aforementioned channel randomization setup. Fig. 5

shows the scatter plot of the two signals received by the

2-receiver MIMO eavesdropper. In contrast to Fig. 2,

now the received signal samples span the entire space,

instead of being confined to two lines. Hence, the eaves-

dropper in this case cannot tell apart the blue points and

the red points and cannot decode the RFID’s message.

5.3 How Does the RF-Cloak Reader Decode?

The RF-Cloak reader needs to be able to retrieve

the card’s data despite the channel randomization. The

reader receives the signal:

y(t) = hreader→self · r(t)+ hcard→reader(t) · x(t) · r(t), (7)

where hreader→self is the reader’s self-interference channel

and hcard→reader(t) is the channel of the card’s reflected

signal at the reader. The reader can cancel its self inter-

ference hreader→self · r(t) as described in §4.2. Note that

hreader→self is not random since it is the channel from the

antenna to itself over the wire and hence it is not affected

by motion. Once the reader eliminates its self interfer-

ence and the random modulation r(t), what remains is:

ŷ(t) = hcard→reader(t) · x(t) (8)

Since hcard→reader(t) is random and cannot be estimated,

the reader needs to decode based on the power. Re-

call that, when the card switches off its reflection via an

open circuit, its state x0 ≈ 0. And hence, by detecting

the power when the card’s signal is in the x1 state, the

reader can distinguish the two states and decode. In Ap-

pendix C, we derive the optimal decoder and BER and

in §6.2 we empirically show that RF-Cloak can decode

the RFID’s data.

6. IMPLEMENTATION & EVALUATION

We built a prototype of RF-Cloak using USRP soft-

ware radios [32] and used it to secure the communica-

tion of off-the-shelf RFID cards. We adopt a UHF reader

code base developed in [11] and extend it to also work

with HF RFIDs.

To randomize the modulation, we customize the reader

software to transmit a random signal generated as de-

scribed in §4 instead of a constant waveform, during the

card’s reply. For channel randomization, we connect the

reader’s single transmit chain to 8 antennas using a pro-

grammable switch and randomly switch between them

at the same rate as the card switches between its on

and off states. The switch is built using three off-the-

shelf multiplexers [20] controlled by a programmable

micro-controller [6]. Furthermore, the transmit anten-

nas are mounted on a circular frame which is rotated by

a 1725 RPM fan motor.

A. UHF Devices

Reader: The UHF RF-Cloak reader is built using USRP

N210 with RFX900 daughterboards and VERT900 om-

nidirectional antennas.

RFID Card: We use the Alien Squiggle General Pur-

pose RFID Tags [4] as an example of UHF passive

RFIDs.

Eavesdropper: The eavesdropper is implemented using

the same hardware (USRP and antenna) as the RF-Cloak

reader. The only difference is that, in the MIMO exper-

iments, the eavesdropper uses multiple (up to 5) USRPs

and receive antennas distributed across space.

B. HF Devices

Reader: The HF RF-Cloak reader is implemented using

USRP1 software radio with LFTX and LFRX daughter-

boards operating in the 0-30 MHz frequency range and

the DLP-RFID-ANT antennas [17].

RFID Card: We use the MBTA Charlie card [46] as an

example of the widely used MIFARE Classic cards.

Eavesdropper: The eavesdropper is implemented using

the same hardware (USRP and antenna) as the RF-Cloak

reader.

C. Security Metric

We use the bit error rate (BER) experienced by the

eavesdropper as a metric for the system’s security. Ide-

ally, a fully secure system should maintain a 50% BER

at the eavesdropper, which is equivalent to the result of a

random guess. For both HF and UHF RFIDs, we run ex-

periments at a variety of reader, card, and eavesdropper

locations and average across 1000 runs to compute the

mean BER for each placement .

7
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Figure 6—Effectiveness of random modulation against
single-antenna eavesdroppers: CDF of the eavesdropper’s
BER. (a) For HF cards, the eavesdropper’s BER closely
matches a random guess. (b) For UHF cards, the eavesdrop-
per’s average BER is 50.3% with a standard deviation of 2.3%.

6.1 Evaluation of Randomized Modulation

First, we investigate whether RF-Cloak’s random

modulation can protect HF and UHF RFIDs from a

single-receiver eavesdropper.

Experiment: The RF-Cloak reader queries the Charlie

card or the commercial UHF tag for 1000 times in each

run. To match the operating range in current RFID sys-

tems, the distance between the RF-Cloak reader and the

RFID card is varied between 2–10 cm in the HF case,

and 1–5 meters in the UHF case. During the RFID’s re-

ply, the reader continuously transmits a random signal

generated using the design in §4. In the case of the Char-

lie card (HF), the eavesdropper is placed 5–10 cm away

from the card; in the UHF case, it is placed 0.2–5 me-

ters away from the UHF RFID tag. The eavesdropper

has a single receive chain and a single antenna. It tries to

decode the tag’s message using the maximum-likelihood

decoder described in Appendix A.

Result 1 (BER at the Eavesdropper): Fig. 6(a) plots

the CDF of the eavesdropper’s bit error rates when the

Charlie card is communicating with an RF-Cloak reader.

The CDF is taken over all locations of the reader, Charlie

card, and eavesdropper. For comparison, the red dashed

curve is the CDF of the eavesdropper’s BER when it ran-

domly guesses the bits without trying to make use of

the eavesdropped information. The figure shows that,

when the RF-Cloak reader randomizes the modulation,

the eavesdropper’s BER is 49.8% on average, with a

standard deviation of less than 0.8%, closely matching

the result of a random guess.
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Figure 7—RF-Cloak reader’s decoding with random mod-
ulation: (a) For the HF cards, the average BER of the reader
is less than 0.01% with a maximum of 0.03%. (b) For UHF
cards, the average BER of the reader is less than 0.01% with a
maximum of 0.06%. Hence, the decoding performance of the
RF-Cloak reader is on par with that of existing readers.

Similarly, Fig. 6(b) plots the CDF of the UHF eaves-

dropper’s BER. Due to the significantly larger range in

UHF systems, the BER has a slightly higher standard de-

viation than HF systems. The UHF eavesdropper’s BER

is 50.3% on average with a standard deviation of 2.3%.

Thus, RF-Cloak’s randommodulation renders the decod-

ing at the eavesdropper no better than a random guess.

Result 2 (Decoding Performance of RF-Cloak

Reader): Next, we verify that replacing the constant

waveform with RF-Cloak’s randomized modulation does

not affect the decoding at the reader. We use the signals

from the same experiment above but now focus on the

reader’s decoding BER.

Fig. 7(a) and Fig. 7(b) show the CDFs of the bit er-

ror rates at the RF-Cloak reader for the HF and UHF

experiments respectively. For reference, the figure also

shows the bit error rates of existing RFID readers that

use a constant waveform instead of the random modula-

tion, for the same placements of reader and card. The HF

RF-Cloak reader has an average decoding BER of less

than 0.01% and a maximum BER of 0.03%, whereas the

UHF RF-Cloak reader has an average bit error rate of

less than 0.01% and a maximum of 0.06%. These bit er-

ror rates are typical for RFID systems and on par with

current RFID reader’s performance.

6.2 Evaluating RF-Cloak with MIMO Eavesdrop-

pers

Next, we study RF-Cloak’s capability of protecting

8
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Figure 8—Effectiveness of channel randomization in de-
fending against MIMO eavesdroppers: CDF of the MIMO
eavesdropper’s BER when the RF-Cloak reader randomizes its
channels to the eavesdropper via antenna switching and mo-
tion. The BER is on average 50% and is very close to a random
guess even if the eavesdropper uses 3, 4, or 5 receivers.

RFIDs from a MIMO eavesdropper employing multiple

receive chains and antennas. Note that MIMO does not

benefit eavesdroppers in HF RFID systems for the fol-

lowing reason. The ability of a MIMO eavesdropper to

separate the reader’s random signal from the RFID’s sig-

nal hinges on the channels he perceives from the reader

and the RFID being sufficiently different. However, in

HF (13.56 MHz) RFID systems, the operating distance

between the card and the reader is within 10 cm, signif-

icantly smaller than the wavelength (22 meters). In this

case, it is well-known that MIMO techniques cannot sep-

arate their signals [65]. Hence, here we focus on UHF

RFIDs in our evaluation with MIMO eavesdroppers.

Experiment (MIMO&Channel Randomization): We

repeat the same experiment performed in the previous

section, after replacing the single-antenna eavesdropper

by a MIMO eavesdropper and introducing channel ran-

domization at the RF-Cloak reader, using one transmit

chain with random antenna switching and rotation as de-

scribed in §6. We vary the number of receive chains and

antennas employed by the MIMO eavesdropper between

3, 4, and 5. The eavesdropper decodes as described in

Appendix B.

Result 1 (MIMO Eavesdropper v.s. Channel Ran-

domization): Fig. 8 plots CDFs of the BER experienced

by 3- 4- and 5-antenna MIMO eavesdroppers when the

RF-Cloak reader uses channel randomization. For ref-

erence, the BER result of a random guess is also plot-

ted. The figure shows that the eavesdropper experiences

a BER close to 50%, with a standard deviation ranging

between 1.2% and 2.9%, depending on the number of re-

ceivers at the eavesdropper. Hence, the eavesdropper’s

decoding in face of RF-Cloak’s channel randomization

scheme is equivalent to a random guess. This is because

the samples corresponding to x0 and x1 states are now

indistinguishable in the multi-dimensional space.

Result 2 (Decoding Performance of the RF-Cloak

Reader with Channel Randomization): Finally, we

verify that the antenna switching/motion and the result-
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Figure 9—Decoding performance of RF-Cloak reader with
channel randomization: The average BER at the RF-Cloak
reader with antenna switching and rotation is 0.2%, which is
fairly close to the performance of current RFID readers.

ing channel randomization do not prevent the trusted RF-

Cloak reader from decoding. Fig. 9 shows the BER from

the same experiment as above but as perceived by an RF-

Cloak reader that decodes the signal using our design

in §5.2. As we can see, the RF-Cloak reader has an aver-

age decoding bit error rate of 0.2%. Note that the RFID

packet length is typically short, since most of the com-

munication involves transmitting 16-bit temporary IDs

plus 5-bit checksum. In this case, a 0.2% bit error rate

translates into a packet loss rate of around 4%, which is

quite common and acceptable in RFID systems. If cer-

tain applications require an even lower BER, the reader

can request the tags to transmit their data using longer

codes, an option readily available in today’s commercial

RFIDs [19].

In conclusion, RF-Cloak’s channel randomization via

rapid antenna switching and motion provides an effective

mechanism to protect RFIDs from MIMO eavesdrop-

ping, without requiring MIMO capability at the reader.

7. RELATED WORK

Past work on defending RFIDs against eavesdropping

has mainly focused on improving the cryptographic pro-

tocols [1, 9, 13]. These schemes, however, are difficult

to build in practice due to the severe energy, size and cost

constraints on RFID cards. Thus, commercial RFIDs

continue to use weak encryption schemes proven to be

vulnerable [38, 51, 63].

RF-Cloak belongs to the class of physical layer secu-

rity mechanisms that aim to defend against eavesdrop-

pers without modifying the RFIDs. The closest to our

work is the Noisy Reader proposal [60], in which the

reader varies its own signal in an attempt to hide an HF

RFID’s data. It generates one random number per card

bit and uses it as the magnitude of the reader’s signal.

It also tries to imitate the card’s internal bit pattern by

making the reader periodically switch its signal phase by

180◦ at the same frequency the card switches between

two states. The Noisy Reader scheme was studied an-

alytically, yet we are unaware of any prior implementa-

tion or empirical evaluation. We implemented the Noisy

Reader using the same USRP setup as RF-Cloak. Fig. 10

9
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Figure 10—Noisy Reader trace: The eavesdropper’s received
signal of the Charlie card communicating with the Noisy
Reader still exhibits two clear patterns corresponding to the ‘0’
bits and ‘1’ bits. Despite the random magnitude in each bit and
the phase shifting, the eavesdropper can still decode by com-
paring the first half and the second half of each bit. The ‘0’ bits
have the same shape, while the ‘1’ bits have a different one.

shows the received signal at a single-antenna eavesdrop-

per, when the Noisy Reader is protecting the Charlie

card. Although each bit is scaled differently, we can still

see that all the ‘0’ bits have the same shape, while the ‘1’

bits have a different shape. This is due to the multiplica-

tive nature of the card’s signal and theManchester encod-

ing shown in Fig. 1(a) which is used by more than 80%

of the HF cards today (ISO 14443 Type A [51]). Our

experiments show that a single-antenna eavesdropper is

able to fully decode the Charlie card’s data in 99.7% of

the traces despite the Noisy Reader.

Another prior work in this category, BUPLE [14], tries

to hide the RFID’s message using frequency hopping at

the reader. However, given the frequency band that com-

mercial backscatter RFIDs operate in (i.e., 902 MHz –

928MHz), any typical receiver (e.g., USRP) with a band-

width larger than 26 MHz can easily identify the center

frequency at any point in time and decode the RFID’s

signal. Other physical layer solutions to eavesdropping

attacks, such as the Noisy Tag [12], require modifying

the cards to use wireless signals to exchange a key with

the reader.

Past theoretical work from the information theory

community has also explored the use of antenna switch-

ing for secure physical layer communication [3, 16, 31,

42, 66]. These papers use large switched antenna arrays

to maintain a decodable signal towards the direction of

the intended receiver (i.e., a constant main beam of the

antenna array), but scramble the signal at undesired di-

rections (i.e., sidelobes of the array pattern) to prevent

the eavesdropper from decoding. Such techniques do

not work in the context of passive RFID communication,

where the RFID reflects the reader’s signal to all direc-

tions regardless of the reader signal’s directionality.

RF-Cloak also builds on jamming-based systems [25,

60, 62]. However, these solutions use standard jamming

and cannot be applied directly to RFIDs. Standard jam-

ming deals with wireless devices that transmit their own

signal, in which case the random jamming signal adds

up to the protected data. RFIDs, on the other hand, re-

flect the reader’s signal without transmitting a signal of

their own. Hence, the random signal multiples with the

protected data. Because of this multiplicative model, di-

rectly applying jamming to RFIDs yields insecure sys-

tems like in the case of the Noisy Reader [60] described

above in details.

Our work is also related to Near Field Communication

(NFC) security on mobile phones [27, 48, 70]. These

systems, however, operate in very close proximity and

are not applicable to UHF RFIDs that operate at a dis-

tance of few meters away from the reader. RF-Cloak

provides a solution that is applicable to both UHF RFIDs

as well as near field HF RFIDs.

Finally, antenna motion has been recently exploited

in wireless communication for interference manage-

ment [2] as well as RF localization [39, 40, 47, 61, 68,

69] and WiFi Imaging [26]. Differing from these, RF-

Cloak leverages antenna motion to randomize the wire-

less channels and enable a security construct for defend-

ing against MIMO eavesdropping.

8. CONCLUSION

Recent eavesdropping attacks have compromised the

security of billions of deployed RFIDs worldwide.

This paper asks whether one can secure these simple

RFIDs from eavesdropping attacks, without modifying

the cards. By only implementing changes on the RFID

reader, RF-Cloak introduces random modulation and

random channels to overcome powerful MIMO eaves-

droppers. We demonstrated that randomizing the modu-

lation via reflection, and randomizing the wireless chan-

nels by using antenna motion and rapid switching can ef-

fectively protect today’s widely used commercial RFIDs

from eavesdroppers. Further, we believe the channel ran-

domization technique can be combined with many exist-

ing security primitives, which opens doors to a variety

of new designs in wireless security beyond the scope of

RFID communication.
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APPENDIX

A. PROOF OF LEMMA 4.1

The eavesdropper receives the signal y(t) in Eq. 2.

Since hreader→eve is constant, we can normalize y(t) by

it to get:5

y′(t) = r(t) ·

[
1+

hcard→eve

hreader→eve

· x(t)

]
(9)

5In this derivation, we ignore wireless channel noise, since it
will only increases the BER of the eavesdropper.
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The RFID card’s signal x(t) has two states: x0 when the

card has an open circuit and x1 when the card turns on its

load to reflect the reader’s signal. To convey a ‘0’ or ‘1’

bit, the card transmits different patterns of x0’s and x1’s

of length k. Thus, for each card bit b, the eavesdropper

receives k samples in y′(t) denoted as {Y1,Y2, · · · ,Yk}:

Yi =

�
Ri · (1+ p0i ) if b = 0

Ri · (1+ p1i ) if b = 1
(10)

where {p01, ..., p
0
k} is the pattern when the card transmits a

‘0’ bit and {p11, ..., p
1
k} is the pattern when the card trans-

mits a ‘1’ bit.6 Ri is a sample in the reader’s random

signal r(t) which is drawn from a complex normal dis-

tribution with zero mean and standard deviation σ. Note
that, since the bandwidth of r(t) is the same as x(t), there
is a single Ri for each state of the RFID’s signal. We will

assume the eavesdropper knows the bit boundaries i.e. he

knows which Yi samples correspond to the same bit.

The eavesdropper’s optimal decoder is a maximum

likelihood decoder as derived in [8, 35]. The optimal

decoder is the one that achieves the minimum bit error

rate. Hence, an eavesdropper using any other strategy

cannot extract more information than an eavesdropper

using the optimal decoder. Given the k received sam-

ples {Y1,Y2, · · · ,Yk} at the eavesdropper, the decoder is

defined by the following hypothesis test:

Pr(b = 1|{Y1, · · · ,Yk})
1

�
0

Pr(b = 0|{Y1, · · · ,Yk})

Because the card’s bits have equal probability of being

‘0’ or ‘1’ [19, 51], we can rewrite the hypothesis test as:

Pr({Y1, · · · ,Yk}|b = 1)
1

�
0

Pr({Y1, · · · ,Yk}|b = 0)

Given b = 0 or b = 1, the k samples in {Y1, · · · ,Yk}

become independent Gaussians with zero mean and stan-

dard deviation σ0
i = σ|1+p0i | or σ

1
i = σ|1+p1i | . Hence,

we can write:

Pr(Y|b = 0) =
1

(2π)k/2
�

σ0
i

· exp

�
−

k�
i

�
|Yi|

σ0
i

�2
�

A similar equation can be derived for b = 1. Since the

two patterns have the same number of x0 samples, we

have
�

σ0
i =

�
σ1
i . The maximum-likelihood decoder

can then be simplified to:

k�
i

�
|Yi|

σ1
i

�2 1

⋚
0

k�
i

�
|Yi|

σ0
i

�2

Given the patterns p0 and p1 for UHF RFIDs [60], we

can further simplify the UHF decoder to:

6p0i = hcard→eve

hreader→eve
x0 or

hcard→eve

hreader→eve
x1 depending on the pattern

used by the RFID card. For HF cards the patterns are p0 =
[0101010100000000] and p1 = [0000000010101010]. For

UHF cards with miller 8 encoding the patterns are p0 =
[0101010101010101] and p1 = [0101010110101010].

|Y
10
|2+|Y

12
|2+|Y

14
|2+|Y

16
|2

1

⋚
0

|Y
9
|2+|Y

11
|2+|Y

13
|2+|Y

15
|2

Similarly, given the patterns for HF RFIDs [60], we can

simplify the HF decoder to:

|Y
2
|2+|Y

4
|2+|Y

6
|2+|Y

8
|2

1

⋚
0

|Y
9
|2+|Y

11
|2+|Y

13
|2+|Y

15
|2

Given the above optimal decoders, we derive the bit error

rate (BER) at the eavesdropper for the case of UHF RFID

cards. The derivation is the same for the HF RFID cards.

Define the random variables U, V , and Z such that

U = |Y
10
|2 + |Y

12
|2 + |Y

14
|2 + |Y

16
|2, V = |Y

9
|2 + |Y

11
|2 +

|Y
13
|2 + |Y

15
|2, and Z = U− V . Then, the bit error rate at

the eavesdropper is defined as:

BER =
1

2
Pr(Z < 0|b = 0) +

1

2
Pr(Z > 0|b = 1) (11)

Given b = 0, {Y2,Y4,Y6,Y8} are independent complex

gaussain random variables with zero mean and standard

deviation σU = σ(1 + x1) while {Y9,Y11,Y13,Y15} are

the same but with standard deviation σV = σ(1 + x0).
Thus, U and V have a Gamma distribution with degree

4 and rate of 2σ2
u and 2σ2

v [5]. We can now derive the

distribution of Z for z ≤ 0 as:

Pr
Z
(z|b = 0) =

� ∞

0

Pr
U
(u) · Pr

V
(u− z)du

=
256 · σ8

Uσ
8
V

β4

�
20

β3
−

10z

β2
+

2z2

β
−

z3

6

�
e2σ

2
V z

where β = 2σ2
U + 2σ2

V . In a similar manner, we can

derive the distribution of Z given b = 1 for z ≥ 0. We

can now integrate to calculate the probabilities in Eq. 11

and the BER as

BER = 1−
µ4

(1+ µ)4

�
20

(1+ µ)3
+

10

(1+ µ)2
+

4

1+ µ
+ 1

�

where µ = (1+x1)
2/(1+x0)

2. Since x0 ≈ 0 and x1 ≪ 1,

we get that 1/(1 + µ) ≈ 1/(2(1 + x1)). Using this, we

can rewrite the above BER equation as:

BER =
1

2
− ǫ where ǫ <

29

32
x1

Recall that, x1 is the fraction of the reader’s signal re-

flected by the RFID. Hence, x1 =
�

Power of RFID’s signal

Power of Reader’s signal

B. PROOF OF LEMMA 5.1

An Eavesdropper with n antennas receives n signals

y1(t), · · · , yn(t) on each of its n antennas:



y1(t)
...

yn(t)


 =






hr1(t)
...

hrn(t)


+ x(t) ·



hc1(t)
...

hcn(t)





 · r(t)
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where hri(t) is the random channel from RF-Cloak’s an-

tenna to the eavesdropper’s i-th antenna, hci(t) is the ran-
dom channel from RFID card to the Eavesdropper’s i-th

antenna, r(t) is the random modulation signal, and x(t)
is the RFID card’s reply which takes two states x0 and

x1. To simplify the analysis, we will ignore the random

modulation r(t) in favor of the eavesdropper.
As described earlier, for each bit b, the RFID transmits

a pattern {pb1, · · · , p
b
k} where pbj = x0 or x1. Thus, the

eavesdropper receives k samples per bit on each of its n

antennas:

Y11 · · · Y1k
...

. . .
...

Yn1 · · · Ynk


 =



Hr11 · · · Hr1k

...
. . .

...

Hr1n · · · Hrnk




+



Hc11 · · · Hc1k

...
. . .

...

Hc1n · · · Hcnk






pb1 · · · 0
...

. . .
...

0 · · · pbk




The random channels Hri and Hci are independent and

follow a complex normal distribution with zero mean and

standard deviation σ. Similar, to the random modulation,

the optimal decoder is a maximum likelihood decoder

based on the following hypothesis test:

Pr(b = 1|{Y11, · · · ,Ynk})
1

�
0

Pr(b = 0|{Y11, · · · ,Ynk})

Since the tags bits have equal probability of being ‘0’ or

‘1’, we can rewrite the above hypothesis test as:

Pr({Y11, · · · ,Ynk}|b = 1)
1

�
0

Pr({Y11, · · · ,Ynk}|b = 0)

Given b = 0 or b = 1, the Yij samples become inde-

pendent complex Gaussains with zero mean and standard

deviation σb
ij = σ

�
1+ |pbj |

2. Their joint probability is:

Pr(Y|b) =
1

(2π)nk/2
�

σb
ij

· exp


−

n�
i

k�
j

�
|Yij|

σb
ij

�2



The hypothesis test can now be simplified to:

n�
i

k�
j

�
|Yij|

σ1
ij

�2
1

⋚
0

n�
i

k�
j

�
|Yij|

σ0
ij

�2

Substituting the patterns for UHF RFID cards, we get

�
j∈{10,12,14,16}

n�
i

|Yij|
2

1

⋚
0

�
j∈{9,11,13,15}

n�
i

|Yij|
2

Given the above optimal decoder, we can derive the BER

of the eavesdropper. Define Z as the difference between

the left and right hand sides of the the above hypothesis

test. Then, Z is the difference between two random vari-

ables of a Gamma distribution with degree 4n and rates

2σ2(1+ x21) and 2σ
2(1+ x20). Similar to Appendix A, we

derive the distribution of Z use it to calculate the BER as:

BER =
1

2
Pr(Z < 0|b = 0) +

1

2
Pr(Z > 0|b = 1)

= 1−
µ4n

(1+ µ)4n

4n−1�
i=0

�
i+ 4n− 1

4n− 1

�
1

(1+ µ)i

where µ = (1 + x21)/(1 + x20). Since x0 ≈ 0 and

x1 ≪ 1, 1/(1 + µ)2 ≈ 1/(4(1 + x21)). Using the fact

that
�n

i=0

�
n+i

n

�
1
2i

= 2n and Stirling’s bounds, we can

simplify the BER to:

BER =
1

2
− ǫ where ǫ <

e

2π
x21
√
n

Recall that, x1 is the fraction of the reader’s signal re-

flected by the RFID. Hence, x21 =
Power of RFID’s signal

Power of Reader’s signal

C. RF-CLOAK’S OPTIMAL DECODER AND

BER

After canceling the self interference and removing the

random modulation, RF-Cloak’s received signal is:

�y(t) = hc(t) · x(t)

where hc(t) is the random channel from card to RF-

Cloak’s receiver. For each bit b, RF-Cloak receives k

samples {Y1, · · · Yk} where Yi = Hcip
b
i . The random

channels Hci are independent and follow a complex nor-

mal distribution with zero mean and standard deviation

σ. Hence, Yi has a normal distribution with zero mean

and standard deviation σb
i = σ|pbi |. As before the de-

coder will be the maximum likelihood decoder and the

hypothesis test can be written as:

k�
i

�
|Yi|

σ1
i

�2 1

⋚
0

k�
i

�
|Yi|

σ0
i

�2

which for for UHF cards is:

|Y
10
|2+|Y

12
|2+|Y

14
|2+|Y

16
|2

1

⋚
0

|Y
9
|2+|Y

11
|2+|Y

13
|2+|Y

15
|2

And similar to before the BER will be:

BER = 1−
µ4

(1+ µ)4

�
20

(1+ µ)3
+

10

(1+ µ)2
+

4

1+ µ
+ 1

�

where µ = x21/x
2
0. Although, this BER equation is similar

to that of the adversary, it only depends on the ratio of x1
to x0. Since, when the card does not reflect the reader’s

signal its state x0 ≈ 0, the BER≈ 0. In fact, even when

x0 ≤ x1/4, the BER is less than 0.04% which is typical

for RFID communication.
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Abstract

Many object localization applications need the relative
locations of a set of objects as oppose to their absolute lo-
cations. Although many schemes for object localization
using Radio Frequency Identification (RFID) tags have
been proposed, they mostly focus on absolute object lo-
calization and are not suitable for relative object localiza-
tion because of large error margins and the special hard-
ware that they require. In this paper, we propose an ap-
proach called Spatial-Temporal Phase Profiling (STPP)
to RFID based relative object localization. The basic idea
of STPP is that by moving a reader over a set of tags dur-
ing which the reader continuously interrogating the tags,
for each tag, the reader obtains a sequence of RF phase
values, which we call a phase profile, from the tag’s re-
sponses over time. By analyzing the spatial-temporal dy-
namics in the phase profiles, STPP can calculate the spa-
tial ordering among the tags. In comparison with prior
absolute object localization schemes, STPP requires nei-
ther dedicated infrastructure nor special hardware. We
implemented STPP and evaluated its performance in two
real-world applications: locating misplaced books in a li-
brary and determining baggage order in an airport. The
experimental results show that STPP achieves about 84%
ordering accuracy for misplaced books and 95% ordering
accuracy for baggage handling.

1 Introduction

1.1 Motivation

Many object localization applications need the relative
locations of a set of objects as oppose to their absolute
locations. The relative location of an object in a set of
objects refers to the order of the object with respect to
other objects along each dimension. The absolute loca-
tion of an object refers to its coordinate value in each
dimension. For example, in a library, to find misplaced

books, we need to obtain the current order of the books
on shelves rather than their absolute coordinate values.

1.2 Limitations of Prior Art
Although many schemes for object localization using
Radio Frequency Identification (RFID) tags have been
proposed [11, 13, 17–20, 23], they mostly focus on ab-
solute object localization. They are not suitable for rel-
ative object localization because of two reasons. First,
as the error margin achieved by most absolute object
localization schemes (e.g., [11, 13, 18, 23]) is still big,
sorting objects based on their absolute coordinate values
may not result in the correct ordering of all objects be-
cause the distance between two objects may be less than
the error margin. For example, the state-of-the-art abso-
lute object localization scheme PinIt achieves an accu-
racy of 16cm at the 90th percentile [18]; however, such
an error margin of 16cm could allow a book to be incor-
rectly ordered several books away from its correct order
on a bookshelf. Second, the absolute object localization
schemes that can achieve small error margins require ei-
ther dedicated hardware (such as USRP) [17] or multi-
ple pre-deployed antennas as reference points [19, 20],
which make them relatively harder and more expensive
to deploy in practice. For example, the state-of-the-art
scheme Togoram [20] can achieve millimeter localiza-
tion accuracy; however, it relies on the collaboration of
multiple reader antennas and requires sophisticated cali-
bration process before putting into use.

1.3 Proposed Approach
In this paper, we propose an approach called Spatial-
Temporal Phase Profiling (STPP) to RFID based relative
object localization. STPP uses commercial off-the-shelf
(COTS) RFID readers and passive tags and requires no
pre-deployed infrastructure. The basic idea of STPP is
that by carefully moving an RFID reader over a set of
tags during which the reader continuously interrogating

1
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the tags, for each tag, the reader obtains a sequence of
RF phase values, which we call a phase profile, from the
tag’s responses over time. As a reader moves closer to
(or further away from) a tag, the phase value that the
reader obtains from interrogating the tag changes. Thus,
the phase profile of each tag corresponds to the spatial
changes of the reader with respect to the tag. By analyz-
ing the temporal dynamics in the phase profiles of a set of
tags, the reader can obtain the spatial ordering among the
tags. Specifically, STPP is based on the observation that
as we move the reader along a dimension in one direc-
tion, for any tag, its distance to the reader first decreases
and then increases, and becomes the minimum when the
reader is perpendicular above the tag along that dimen-
sion; in other words, the distance values are symmetric
around the minimum distance. Thus, in this reader mov-
ing process, if the reader continuously interrogate the tag,
the phase values that reader can measure from the tag
responses are also symmetric around the perpendicular
point. Based on the symmetry in this observation, by
moving the reader along a dimension in one direction,
we can determine the order that the tags become perpen-
dicular with the reader along that dimension, which is the
order of the tags. Furthermore, by moving the reader two
times, each time along a different dimension in the two
dimensional space, the reader can obtain the order of the
tags along each dimension. Note that an equivalent way
of moving the reader while keeping the tags stationary
is to move the tags altogether (with the relative positions
among tags preserved) while keeps the reader stationary.
For example, for airport baggage handling systems, we
can keep the reader stationary while the baggages move
on a conveyor belt. Therefore, our relative localization
scheme can handle applications in both tag moving and
antenna moving cases.

For simplicity, this paper focuses on relative object lo-
calization in a two dimensional space (i.e., locating the
relative order of tags on a plane). The straightforward
solution to achieve this is to move the reader two times,
each time along a different dimension in the two dimen-
sional space. In this paper, we propose to achieve two di-
mensional object localization by moving the reader only
once along any dimension. This is based on our obser-
vation that given a sequence of objects aligned along
a dimension, as we move the reader along that dimen-
sion in one direction, the larger the distance between the
reader moving trajectory and that dimension, which are
in parallel, the smaller the phase changes as the reader
moves. Thus, given a set of objects placed within x1 and
x2 (where x1 ≤ x2 along the X dimension) and within y1
and y2 (where y1 ≤ y2 along the Y dimension) as shown
in Figure 1, if we move the reader along the X dimension
from x1 to x2 perpendicularly above the line from (x1,y2)
to (x2,y2), objects with smaller values on the Y dimen-

sion will have smaller phase changing rate; similarly, if
we move the reader along the X dimension from x1 to x2
perpendicularly above the line from (x1,y1) to (x2,y1),
objects with larger values on the Y dimension will have
smaller phase changing rate. Based on this observation,
by moving the reader along the X dimension from x1 to
x2 perpendicularly above the line from (x1,y2) to (x2,y2)
(or the line from (x1,y1) to (x2,y1)), we can determine
the order of the objects along the Y dimension for any
point on the X dimension, in addition to obtaining the or-
der of the objects along the X dimension; in other words,
we can determine the relative location of all objects in
the two dimensional region.
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Figure 1: Illustration of STPP approach

Our STPP approach achieves relative object localiza-
tion without calculating the absolute coordinate values
of tags. It has two key features in comparison with
prior absolute object localization schemes. First, STPP
requires no dedicated infrastructure. In contrast, prior
RFID based object localization schemes (e.g., [11, 18])
often require dedicated infrastructure such as carefully
deployed anchor tags or antennas as reference points.
Second, STPP uses COTS RFID readers and tags, and
requires no special hardware. In contrast, prior RFID
based object localization schemes (e.g., [17]) often re-
quire special hardware such as USRP.

1.4 Technical Challenges and Solutions

There are three key technical challenges in building a
relative object localization system using our STPP ap-
proach. The first challenge is to achieve high accuracy.
In STPP, phase profiles often come with noises and miss-
ing data points due to multi-path self-interference [22],
which makes finding the perpendicular point for each
tag challenging. To address this challenge, in this paper,
we first acquire the symmetric part of each phase pro-
file, which we call a V-zone. Within the V-zone of each
phase profile, we further perform quadratic fitting on the
incomplete phase values to complete the profile.

The second challenge is to achieve high robustness.
As the mobile reader is often moved manually, the phase
profile will be stretched when the movement slows down
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or compressed when the movement speeds up. To ad-
dress this challenge, we use the Dynamic Time Warping
(DTW) technique to find the V-zone within each phase
profile. DTW compresses or stretches the profiles with
the goal of minimizing the distance between these pro-
files. It naturally compensates for the warps of phase
profiles and is robust to varying reader moving speed.

The third challenge is to achieve low latency. The
time warping distance is calculated using dynamic pro-
gramming algorithm in O(MN) time complexity, where
M and N are the lengths of a phase profile and its ref-
erence phase profile, respectively. This process can take
time, especially for long phase profiles. Furthermore, as
there are typically a large number of tags for localization,
e.g., in a library there are millions of books, detecting the
V zone for each tag’s profile would incur large computa-
tional overhead. To address this challenge, we perform
DTW on the coarser grained representation of phase pro-
files. Specifically, given a phase profile with length M,
we first split it into M

w segmentations where each segment
is of length w. In each segmentation, we record its maxi-
mum and minimum phase values, as well as the start and
end points of this segment on the phase profile. After the
segmentation, this coarser grained phase profile is used
for V zone detection. Using segmentation, we thus can
reduce the time complexity of DTW from O(MN) down
to O(M

w
N
w ) = O(MN

w2 ).

1.5 Key Contributions

This paper represents the first study of relative object lo-
calization. Specifically, we make three key contributions
in this paper. First, we propose the concept of spatial-
temporal phase profiling, which can be used for RFID
based relative object localization. Second, we propose
algorithms to capture the spatial-temporary dynamics of
RF phase profiles and algorithms to determine the tag or-
der along each dimension. Third, we implemented STPP
and evaluated its performance in two real-world appli-
cations: locating misplaced books in a library and deter-
mining the baggage order in an airport. The experimental
results show that we achieve about 84% ordering accu-
racy for misplaced books and 95% ordering accuracy for
baggage handling.

The rest of this paper proceeds as follows. In Sec-
tion 2, we discuss the difficulties on relative localiza-
tion and the concept of spatial-temporal phase profiling
(STPP). In Section 3, we present the design details of our
STPP based relative localization system. In Section 4,
we present the evaluation results of our system. In Sec-
tion 5, we present our findings in deploying our system
in two real-world applications. In Section 6, we present
the limitation and future works. In Section 7, we review
related work. We conclude this paper in Section 9.

2 Spatial-Temporal Phase Profiling
In this section, we first discuss the difficulties that we ex-
perienced in our initial attempts to directly use the infor-
mation that can be measured by commercial readers to-
wards relative localization. Then, we introduce the con-
cept of phase profiling and show how it can capture the
spatial-temperal phase dynamics that helps us to achieve
relative localization.

2.1 Initial Attempts
As an RFID reader sweeps over a set of tags and keeps
querying them, the reader can obtain the following infor-
mation that can be impacted by the changes in the spatial
relationship between the tags and the readers: tag iden-
tification order, the Received Signal Strength Indication
(RSSI), and the received signal phase value. We next ex-
plain the reasons that we did not use these three types of
information for relative localization.

Tag Identification Order: The Class1 Generation2
(C1G2) RFID standard [4] specifies two tag identifica-
tion protocols: frame slotted ALOHA [3] and tree walk-
ing [10]. Unfortunately, in both protocols, the order that
the tags are identified does not correspond to the or-
der that the reader moves across them. In frame slotted
ALOHA, the identification order depends on the random
numbers that tags choose by themseleves. In tree walk-
ing, the order depends on the IDs stored in the tags.
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Figure 2: RSSI values measured over time for two tags

RSSI: RSSI measures the power of received radio sig-
nal, which is inverse proportional to the distance between
the tag and the reader (more precisely, the reader an-
tenna) [6]. As a reader moves across a set of tags, for
each tag, the RSSI values measured by the reader should
increase and then decrease because the distance between
the tag to the reader first decreases and then increases;
thus, by ordering the tags according to the time that their
peak RSSI values appear, the reader obtains the order
of the tags along the moving direction. Unfortunately,
this works only in theory because of the multiple paths
that the signal traverses. To evaluate the multi-path im-
pact, we conducted an experiment by attaching tags to
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the books on a shelf and moving the reader from left
to right as shown in Figure 2(a). Figure 2(b) shows the
RSSI values that the reader measures over time for two
tags labeled 01 and 02, where tag 01 is placed 13cm to
the left of tag 02. The left and right vertical lines corre-
sponds to the time that the reader passes through tag 01
and 02, respectively. From this figure, we first observe
that for both tags, their RSSI values fluctuate and their
peak RSSI values appear before the reader moves across
them. Second, the order of the two tags based on the
time that their peak RSSI values appear is inconsistent
with the actual tag order.

RF Phase Values: Phase is a basic attribute of a signal
along with amplitude and frequency. The phase value of
an RF signal describes the degree that the received sig-
nal is offset from sent signal, ranging from 0 to 360 de-
grees. Let l be the distance between the reader antenna
and the tag, the signal traverses a round-trip (2l) in each
backscatter communication. Apart from the RF phase
rotation over the distance, both the antenna and the tag
will introduce additional phase distortion. Specifically,
let θT x, θTAG, and θRx be the phase rotation introduced
by the reader’s transmission circuit, the tag’s reflection
characteristic, and the reader’s receiver circuits, respec-
tively. The phase measurement θ output by the reader
thus can be expressed as:

{
θ = (2π 2l

λ +μ) mod 2π
μ = θT x +θRx +θTAG

(1)

where λ is the wavelength, μ is system noise. Most com-
mercial RFID readers (such as ImpinJ R420 [1]) are able
to report θ as the difference of the transmitted and the
received signal. Given the ultra-high working frequency
of the commercial passive RFID system, it is possible to
achieve mm-level ranging accuracy in theory [20]. How-
ever, as the phase is a periodic function that repeats every
λ in the distance of signal propagation, we cannot use
phase value to pinpoint relative tag locations.

2.2 Phase Profile
The basic idea of our approach is that by carefully mov-
ing an RFID reader over a set of tags during which the
reader continuously interrogating the tags, for each tag,
the reader obtains a sequence of RF phase values, which
we call a phase profile, from the tag’s responses over
time. Considering Figure 1 where the set of tags are
placed within x1 and x2 along the X dimension and within
y1 and y2 along the Y dimension, suppose we move the
reader along the X dimension from x1 to x2 perpendicu-
larly above the line from (x1,y2) to (x2,y2). Taking tag
01 as an example, its distance to the reader first decreases
until the reader is perpendicular above tag 01, and then
increases. According to Equation 1, the phase of the re-
ceived signal will also decrease first and then increase.
Since the range of any phase value is [0,2π), when this

phase value decreases to 0, it immediately jumps to 2π .
This process repeats until the reader reaches the per-
pendicular point right above tag 01, where the received
phase stops decreasing and starts to increase from a cer-
tain value within [0,2π); when the phase value increases
to 2π , it will immediately drop to 0 and then increases
again. Such periodic change of phase values is reflected
visually as follows: (1) The phase profile of each tag has
a “V-zone” where its bottom occurs at the time when
the reader is perpendicular above the tag. (2) Multiple
curves are symmetrically distributed on both sides of the
V-zone where each curve except the V-zone spans the
whole range of [0,2π). A curve is called one period of
the phase profile.

Given a layout of tags and the reader, their relative po-
sitions and the reader moving speed, assuming the speed
is steady, we can calculate the phase profile of each tag,
which we call the reference phase profile. Consider tags
01 and 02 and the reader in Figure 1, and suppose the
reader moves at a constant speed of 0.1m/s along the line
from x1 to x2 perpendicularly above the line from (x1,y2)
to (x2,y2). Suppose the distance between x1 and x2, the
height of the reader, and the distance from tag 02 to the
line from (x1,y2) to (x2,y2) are 3m, 1m and 0.5m, respec-
tively. Figure 3(a) shows the reference phase profiles of
tags 01 and 02 when their distance is 5cm. This figure
shows that the phase profiles of tag 01 and tag 02 have
similar V-zone patterns.
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Figure 3: Reference phase profile along X-axis

Given the phase profiles of multiple tags, the order
that the reader passes through the tags along the X-axis
is consistent with the order that the V-zones reach their
bottom. By ordering the V-zones according to the time
that they reach their bottoms, we can order the tags along
the X-axis. Figure 3(a) shows that the V-zone of tag 01
reaches its bottom earlier than that of tag 02, which is
consistent with the order that the reader passes through
the tags. Furthermore, the longer the distance between
two adjacent tags, the longer the time duration between
the bottoms of two V-zones is. For example, Figure
3(b) shows the reference phase profiles of tags 01 and
02 when their distance is 10cm. As we increase the dis-
tance between the two tags from 5cm to 10cm, the time
duration between the two V-zones also increases.

Given the phase profiles of multiple tags, the larger
the bottom phase value of a V-zone is, the longer the
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distance between the tag that corresponds to the V-zone
and the reader. By ordering the V-zones according to
the phase value of their bottoms, we can order the tags
along the Y-axis. Figure 4(a) shows that the V-zone bot-
tom phase value of tag 04 is smaller than that of tag 01,
which means that tag 04 is farther away than tag 01 with
respect to the reader. Furthermore, the larger the two
bottom phase values of two V-zones differ, the larger the
distance between the two corresponding tags along the
Y-axis. Figure 4(a) and (b) shows the phase profiles of
tag 01 and 04, whose distances along the Y-axis are 5cm
and 10cm, respectively. We observe that by increasing
the tag distances from 5cm to 10cm, the distances be-
tween the bottom phase values of the two corresponding
V-zones increases.

0 2000 4000 6000 8000 10000

0

1

2

3

4

5

6

7

P
ha

se
(0

~2
P

I)

Time (ms)

Tag 01
Tag 04

(a) Y dimension spacing = 5cm

0 2000 4000 6000 8000 10000

0

1

2

3

4

5

6

7

P
ha

se
(0

~2
P

I)

Time (ms)

Tag 01
Tag 04

(b) Y dimension spacing = 10cm

Figure 4: Reference phase profile along Y-axis

To validate the above observations from reference
phase profiles, we reproduce the layout of tags in Fig-
ure 1 on a white board. We attach an RFID reader on
a shopping cart and wheel the cart along the X-axis in
the positive direction. The speed of the cart is also set
to be 0.1m/s. Figure 5 and Figure 6 shows the two mea-
sured phase profiles. From these figures, we can derive
the same observations as above. Besides, we also found
that due to channel instability, the phase profiles outside
the V-zone are fragmentary. It is thus error-prone to con-
nect the whole profile into a big V-zone for tag ordering.
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Figure 5: Measured phase profile along X-axis
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Figure 6: Measured phase profile along Y-axis

3 System Design
In this section, we present the details of our STPP ap-
proach to obtain the order of the tags along the X- and Y-
axis, respectively. Without loss of generality, we assume
that the reader moves along the X-axis from left to right.

3.1 Tag Ordering along X-axis
The profile segment within the V-zone differs from the
other parts of the phase profile from two aspects. First,
it changes continuously without jumping from 0 to 2π .
Second, it is self-symmetric around the time point that
the reader is perpendicular with the tag, which we call
the perpendicular point. A straightforward solution to
detect the V-zone is to use a sliding window to find the
profile segment that satisfies these two properties. How-
ever, in reality, due to multi-path self-interference, the
phase profile often has missing values within the V-zone
as shown in Figure 6(a). Thus, this solution is unreliable
for V-zone detection.

3.1.1 Detecting V-zone with Time Warping
Our basic approach is to match the measured phase pro-
file against a pre-calculated reference phase profile, and
try to find where the V-zone appears in the measured
phase profile. As the reader is often hand held and moved
manually, the phase profile become stretched when the
movement slows down and compressed when the move-
ment speeds up during the movement. Thus, subse-
quence matching algorithms (such as the KMP algorithm
[7]) will not work for our V-zone detection. To find the
place where the V-zone appears, we need to stretch or
compress the calculated profile to match the correspond-
ing V-zone on the given phase profile.

To address this issue, we use the Dynamic Time Warp-
ing (DTW) technique to match the V-zone in the calcu-
lated phase profile against the measured phase profile.
DTW is a transformation that automatically compresses
or stretches a sequence with the goal of minimizing the
distance between these sequences. It naturally compen-
sates for the shifts among different phase profiles caused
by the varying reader moving speed. The input to the
DTW algorithm consists of a reference phase profile P
of length N and a measured phase profile Q of length M.
DTW first constructs a distance matrix DM×N where each
element Di, j is defined as the Euclidean distance between
pi and q j:

Di, j = �pi −q j�
where pi and q j are the ith and jth elements of the phase
profiles P and Q, respectively. The output of the DTW
algorithm is a warping path L = {l1, l2, ..., lk} such that
the total cost CL of the warping path L is minimized:

argmin
L

CL =
k

∑
i=1

Dx(li),y(li)
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where li = (x,y) ∈ [1 : M]× [1 : N] for l ∈ [1 : k].
To generate the optimal warping path, DTW con-

structs the cost matrix Ci, j using dynamic programming.
The optimal substructure is defined as:

Ci, j = Di, j +min {Ci, j−1,Ci−1, j,Ci−1, j−1}

Figure 7(b) shows the matching result using DTW. It
shows that the V-zone of the measured profile matches
well with that of the reference profile. On the reference
profile, as the start and the end point of the V-zone is
known a priori, it is easy to locate the corresponding V-
zone on the measured profile.
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Figure 7: V-zone detection using DTW

3.1.2 Optimizing V-zone Detection Efficiency
The core of DTW is dynamic programming whose com-
plexity is O(NM). This process may take some time
because the phase profiles may be long (e.g., typically
around 400 samples) and the number of tags may be
large. To improve efficiency, we apply DTW on the
coarser grained representations of phase profiles. Given
a phase profile P, we split it into d segments: SP =
{sP,1,sP,2, ...,sP,d}. For each segment sP,i, we further
record its segment range sR

P,i and time interval sT
P,i. For-

mally, the segment range sR
P,i is defined as:

sR
P,i = {sL

P,i,s
U
P,i}

sL
P,i = min {pa, ..., pb}, sU

P,i = max {pa, ..., pb}

where sL
P,i and sU

P,i are the minimum and maximum phase
values within ith segment. a and b are the begin and the
end index of the phase profile within this segment. Note
that if within a segment the phase value jumps from 0 to
2π , we split the segment into two segments at that point
so that no segment contains such phase value jumping.
Figure 8 shows an example segmentation. In this figure,
we represent the original profile with 25 segments, with
each consists of its segment range and time interval.

Given two phase profiles P and Q, we first acquire
their segmented presentation SP and SQ, with each con-
tained J and K segments, respectively. Similar to DTW,
we construct a distance matrix DJ×K , where each ele-
ment Di, j is defined as the distance between the segmen-
tation sP,i and sQ, j. It is intuitively the distance of their
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Figure 8: Phase profile segmentation;

two closest points:

Di, j =

⎧
⎪⎨
⎪⎩

�sL
P,i − sU

Q, j�, i f (sL
P, j > sU

Q, j)

�sL
Q, j − sU

P,i�, i f (sL
Q,i > sU

P,i)

0, otherwise

After compute each element in the matrix DJ×K , we
align SP and SQ using dynamic programming. The opti-
mal substructure defined as follows:

Ci, j = min {sT
P,i,s

T
Q, j} ·Di, j +min {Ci, j−1,Ci−1, j,Ci−1, j−1}

Using segmentation, we reduce the time complexity of
DTW from O(MN) down to O(M

w
N
w ) = O(MN

w2 ) where w
is the length of each segment. We need to choose the
value for w carefully to tradeoff between efficiency and
accuracy. The larger the w is, the more efficient DTW
is, but the less accurate our V-zone detection is due to
the unclear outline of the segmented phase profile. In
Section 4, we investigate how to select a proper w value.

After we detect the V-zone for a tag in its phase profile,
we search for the time point with the smallest phase value
within the V-zone. However, due to the multi-path self-
interference, the measured phase profile often contains
noise and missing values, which may cause the nadir of
the V-zone profile to wrap around. In this work, we use
the quadratic fitting technique to minimize such influ-
ences. Once the fitting function is determined, by refer-
ring the time point when the fitting function achieves the
minimum value, we sort this tag together with those tags
whose V-zones have already been determined. Figure 9
shows a concrete example. In this example, three tags are
attached on a white board, then the antenna moves along
the X-axis from the right to the left at a speed of approx-
imate 0.1m/s. The distance between tag 03 and tag 01,
tag 01 and tag 02 are 15cm and 2cm, respectively. After
performing the quadratic fitting on these phase profiles,
we see a clear lag between the phase profiles of these
three tags. Based on the time point when the fitting func-
tion achieves the minimum value, we further determine
the order of these three tags as 01, 02, and 03, which is
coherent with the actual order.
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3.2 Tag Ordering along Y-axis
The movement model of the reader when it passes by
two tags at a constant speed v is shown in Figure 10. In-
tuitively, the radial velocity vR of the tag is inverse pro-
portional to its distance with respect to the antenna. That
is, the larger the distance between the tag and the mov-
ing trajectory of the reader, the lower the radial veloc-
ity of this tag. The lower radial velocity further leads
to a smaller phase changing rate, therefore a shallower
V-zone profile. Based on the above observation, we pro-
pose another segmentation based method to determine
the tag order along the Y-axis.

3.2.1 Tag Ordering via V-zone Profile Comparison
The basic idea to determine tag ordering along the Y-axis
is to comparing their phase changing rates. One straight-
forward method is to first derive the span and offset of
the quadratic model, and then uses these two parameters
to calculate the phase changing rate. However, in reality,
if the tags are placed close to each other (such as 5cm),
the V-zone profiles of these tags would be similar and
would lead to similar curve fitting results. In STPP, we
compare the phase changing rate by jointly considering
multiple local phase profile segments within the V-zone
profile. Notice that the V-zone profile may vary in length
due to the random access property of ALOHA proto-
col [3]. Thus, we first split each profile into equal num-
ber of segments to facilitate the comparison. Within each
segment of the V-zone profile, we calculate the mean
value of phase values. Therefore, given a phase profile
P, we can get its coarse representation by using the set
of mean values, i.e., we represent the V-zone profile P
by S(P) = {sP,1,sP,2, ...,sP,k}, where k is the number of
segments and sP,k is the mean value of kth segment. Av-
eraging over all phase values within each segment will
eliminate the impact of noise introduced in phase value
measurements. Since each segment corresponds to one
specific time window, the average phase value also re-
flects the accumulated phase changing rate within each
segment. By calculating the average phase values, we
can improve the robustness of our scheme. Figure 11
shows an example coarse representation of the V-zone

profile. In this figure, the phase value within each seg-
ment is represented by its mean value.

To determine the order of two tags along the Y-axis,
we compare the coarse representation of their V-zone
profiles, say S(P) and S(Q), using the following metric:

O(P,Q) =
k

∑
i=1

� sP,i − sQ,i

sP,i
�

Generally, if the phase changing rate of P is smaller
than that of Q, for each segment i, sP,i will be larger than
sQ,i. Therefore, O(P,Q) will be close to k. On the con-
trary, if the phase changing rate of P is larger than that of
Q, sP,i will be no larger than sQ,i. Here O(P,Q) will be
close to 0 accordingly. Therefore, we can determine the
tag order along the Y-axis based on the value of O(P,Q).

3.2.2 Optimizing the Ordering Efficiency
The core of determining the tag order along the Y-axis
is to compare the V-zone profiles by using the metric
O(P,Q). This process may take some time because we
need to compare each pair of phase profiles. For exam-
ple, it takes M(M−1)

2 comparison to determine the order
of M tags along the Y-axis. To speed up this process, we
further introduce a new metric G(P,Q) to measure the
gap between two phase profiles P and Q. It is defined as
follows:

G(P,Q) =
k

∑
i=1

�sP,i − sQ,i�

where �sP,i − sQ,i� is the Euclidean distance between the
mean phase value sP,i and sQ,i. In an intuitive level,
G(P,Q) is proportional to the physical spacing of these
two tags. i.e., the larger the physical spacing between
these two tags, the larger the G(P,Q) will be. For M
tags, we then randomly choose one tag as the pivot. Let
P be the V-zone profile of this pivot, then we calculate
O(P,Q) and G(P,Q) between P and each profile Q of
the remaining tags. By doing so, we can not only deter-
mine the relative order between the pivot tag and other
tags, but also acquire the relative distance of these tags.
Therefore, we can order these M tags with only M − 1
comparison, which is significantly smaller than M(M−1)

2 .
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Figure 13: Tag moving case
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Figure 14: Antenna moving case

Tag population size within a reading zone
n=5 n=10 n=15 n=20 n=25 n=30

Tag moving case along X-axis 0.963 0.954 0.952 0.937 0.906 0.884
along Y-axis 0.917 0.903 0.878 0.874 0.863 0.856

Antenna moving case along X-axis 0.873 0.865 0.861 0.852 0.841 0.813
along Y-axis 0.809 0.806 0.798 0.779 0.765 0.754

Table 1: Tag population vs. ordering accuracy

4 System Evaluation

4.1 Implementation
Hardware: Our system consists of a COTS UHF RFID
reader, a directional antenna, and a set of passive tags.
To account for device diversity, we have tested our sys-
tem using different hardware, including an ImpinJ R420
reader, an ImpinJ Threshold RFID Antenna IPJ-A0311,
an Alien ALR-8696-C antenna, and four types of pas-
sive tags: Alien ALR-9610, ALN-9662, ALN-9634, and
ALN-9720. For diversity, we choose four types of tags
of different size and shape.

Software: We implemented our algorithms in Java,
which were executed on a Lenovo PC equipped with an
Intel(R) Celeron G530 CPU and 4G RAM. The PC is
connected to the RFID reader via Ethernet. The reader is
programmed to continuously query the RFID tags on the
6th channel in the 920 ∼ 926 MHz ISM band and returns
the signal phase for each tag reply.

4.2 Deployment
One deployment issue is to determine the number of pe-
riods that the reference phase profile should contain. In
theory, the reference phase profile should contain the
same number of periods as the measured profile. In or-
der to obtain a proper reference phase profile, we put the
reader 30cm (a common distance between a librarian and
a bookshelf) away from the tags. We collected phase
profiles by holding the reader and passing 200 tags for
15 times. Of the 3,000 phase profiles that we collected,
more than 97% of them contain 4 partial or complete pe-
riods. Thus, we generate a 4-period reference phase pro-
file as the default setting in our experiment.

Another deployment issue is to determine the height
that the antenna should be moving across the tags. As

STPP uses the phase changing rate of each tag to deter-
mine its relative order along the Y-axis, we need to place
the antenna at a height such that the tags with different
Y coordinates differ in phase changing rate. This can be
ensured if all the tags are either above or below the an-
tenna along the Y-axis since their antenna to tag distances
would differ from each other. For example, in library, we
can put the antenna at the bottom of the lowest shelf so
that each tag has a different distance to the reader, which
is moving along the X-axis. In our experiments, we sim-
ply place the antenna at a height below all tags.

4.3 Micro-Benchmarks
Experimental setup: We have two experimental cases:
the antenna moving case and the tags moving case. In
the antenna moving case, we partition 150 tags into 3
groups and attach them on a white board as shown in Fig-
ure 15(a). The antenna is fixed on a wheeled chair which
is pushed manually at a rough speed of 0.3m/s. This ex-
perimental setup simulates the misplaced book locating
application in libraries where a librarian moves a reader
across a bookshelf.

In the tag moving case, we use a conveyor belt and
a tape to compose a mobile RFID system as shown in
Figure 15(b). The antenna is placed 1m away from the
tape and 1m above the top of the winder. We attach a set
of tags on the tape, which move at a constant speed of
0.3m/s. This case simulates the baggage handling appli-
cation in airports where baggage or cargos attached with
RFID tags are delivered on a conveyor belt.

Evaluation Metrics: We mainly use the metric of or-
dering accuracy defined in Equation 2. A tag is ordered
incorrectly in a sequence of tags if and only if the de-
tected order of the tag is not equal to the actual order of
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Figure 15: Experimental setup

that tag. For example, suppose there are five tags and the
correct order of these five tags is 1-2-3-4-5. If the output
of our scheme is 1-2-4-3-5, then we immediately know
that the tag 4 and tag 3 are ordered incorrectly, and thus
the accuracy is 3/5=60%.

Ordering Accuracy =
# o f tags ordered correctly

# o f tags in total
(2)

Determining a proper window size w: In general, a
larger window size contributes to higher efficiency but
lower accuracy. As shown in Figure 12, the ordering
accuracy of STPP remains high for small window sizes
(e.g., nearly 98% when w = 3), decreases slightly with
window sizes increased from 3 to 5, and drops sharply
for window sizes larger than 5. Therefore we set w to
be 5 in our experiments to tradeoff between latency and
accuracy.

Tag-to-tag distance vs. Ordering accuracy: As
shown in Figure 13, when each tag pair is placed very
close (e.g., 2cm apart), STPP achieves an ordering accu-
racy of only 42% along the X-axis and 23% along the Y-
axis in the tag moving case. The ordering accuracy then
increases dramatically as we slightly increase the tag-to-
tag distance: 92% and 88% along the X-axis and the Y-
axis respectively for tag-to-tag distance of 10cm. The
similar trend is observed for the antenna moving case as
shown in Figure 14 where the ordering accuracy remains
high for tag-to-tag distances larger than 8cm.

Tag population vs. Ordering accuracy: Commer-
cial RFID reader have limited reading rate. If the reading
zone of the antenna contains a large number of tags, we
will have under-sampling of phase readings which po-
tentially degrades the ordering accuracy. We change the
tag populations from 5 to 30 within the reading zone of
the antenna and examine the performance of STPP. The
distance between two adjacent tags is randomly chosen
in the range of [2cm,10cm]. We present the experimen-
tal results in Table 1 to compare the data values. As
shown in this table, when the tag population is small
within the reading zone of the antenna, e.g., n = 5, STPP
achieves satisfactory performance, with ordering accu-
racies of above 90% and 80% for the tag moving and
antenna moving cases, respectively. As we steadily in-
crease the tag population within the reading zone, the

ordering accuracy degrades gradually in both two cases.
When the tag population reaches 30, the ordering accu-
racy remains at an acceptable level, with average accura-
cies of above 0.85 and 0.75 for tag and antenna moving
cases, respectively. This result indicates that the perfor-
mance of STPP will degrade a little bit when the tag pop-
ulation increases.

4.4 Macro-Benchmarks
We evaluated STPP in comparison with the following
four schemes that are implementable on COTS RFID
readers:

1. G-RSSI: This is a straightforward scheme that uses
RSSI value changes to infer tag orders along the X-
axis.

2. OTrack [16]: This scheme combines RSSI dynam-
ics and tag successful reading rates to determine tag
orders along the X-axis.

3. Landmarc [13]: This scheme uses multiple refer-
ence tags to calculate the absolute location of a tag
in 2 dimensional region.

4. BackPos [11]: This scheme uses RF phase values
and the hyperbolic positioning technique to calcu-
late the absolute location of a tag in 2 dimensional
region.

Our experimental results show that STPP significantly
outperforms the other four schemes for the accuracy of
relative localization. We compare the ordering accuracy
of these schemes under various layout settings as shown
in Figure 16. In each setting, we repeat the experiment
100 times and use their average ordering accuracy val-
ues. The distance between adjacent tags ranges from
1cm to 10cm. As shown in Figure 17, G-RSSI and Land-
marc achieve similar low ordering accuracy values of be-
low 25% along both axes. Using both RSSI dynamics
and tag successful reading rates, OTrack outperforms G-
RSSI and Landmarc, yet can only reach an ordering ac-
curacy of below 50%, which is too low for real-world
applications. With more precise signal measurement,
BackPos can locate each tag and further distinguish their
relative order with an average ordering accuracy of 80%.
In contrast, STPP achieves an average ordering accuracy
of more than 88%.

Our experimental results show that STPP scales bet-
ter than the other four schemes as adjacent tag distance
decreases. To perform this evaluation, we choose a pop-
ulation of 20 tags and vary the adjacent tag distance from
100cm to 10cm. Figure 18 shows the box plot of the ac-
curacy values of different schemes as we vary the dis-
tance. The whisker indicates values outside the upper
and lower quartiles. From this figure, we can observe
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Figure 16: Tag layout settings
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that the median accuracy of STPP is significantly higher
than that of other four schemes. Besides, the likely range
of variation (IQR) of STPP is the smallest as the adjacent
tag distance decreases.

Our experimental results show that STPP scales bet-
ter than the other four schemes as tag population size
increases. To perform this evaluation, we choose 10cm
to be the adjacent tag distance and vary the tag popula-
tion from 5 to 30. As G-RSSI, Landmarc, and BackPos
are insensitive to tag population sizes, we thus compare
STPP with OTrack. Figure 19 shows the box plot of the
accuracy values of different schemes as we vary the tag
population size. From this figure, we observe that likely
range of variation (IQR) of STPP is significantly smaller
than that of OTrack.

5 Case Studies
We deployed our STPP based relative RFID tag localiza-
tion system in two real-world applications: a misplaced
book locating system in a library and a baggage handling
system in an airport. In this section, we present our ex-
perimental results with these two case studies. Note that
our relative localization scheme is not limited to these
two applications. Other applications (such as locating
suspicious baggage and warehouse stocktaking) can also
benefit from our localization scheme.

5.1 Misplaced Book Locating in Library
A major task for librarians is to locate misplaced books
and relocate them to the right place. Note that library
books are typically strictly ordered based on their IDs so
that borrowers can find a specific book easily. To help
locate misplaced books, we deploy our STPP system in a
school library. For one bookshelf in the library, we attach

90 RFID tags to 90 books, one tag per book. These books
are placed on three levels. The thickness of each book
spans from 3cm to 8cm. We attach an RFID antenna on
a cart and manually push it across the bookshelf from left
to right, as shown in Figure 20. Here we simply put the
antenna at the height

RFID tagAntenna

Reader

S1

S2

S3

S2 < S1 < S3

Figure 20: Locaking misplaced books

This case study also shows that STTP can achieve high
relative localization accuracy. We sweep these 90 books
over 50 times. The result shows that our relative local-
ization scheme achieves an accuracy of 0.84 on average.
This implies that in most cases, STPP can precisely pin-
point the relative location of the misplaced book. For the
remaining cases, although STPP cannot correctly find the
relative location of tags, it still helps the librarian to nar-
row down the searching space. Figure 21 shows the order
of the books that we obtained in one experiment, whee
each dot represents a book and each cross represents a
book that we ordered incorrectly. Note that the gap be-
tween two dots reflects the distance between two tags.
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From this figure, we observe that all incorrectly ordered
books are those thin ones as their tags are much closer.
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Figure 21: Layout of detected books by STPP

We also conducted experiments to evaluate the abil-
ity of STPP in detecting misplaced books. We randomly
picked one book, two books, and three books from a
bookshelf and inserted them into a differently chosen lo-
cation on this bookshelf. This location is randomly cho-
sen from the range of 2 books away from the original
place to 10 books away. Each case was repeated 100
times. The detection success rate is shown in Table 2.

Detection success rate
1 book 98%
2 books 97%
3 books 98%

Table 2: Result of misplaced book detection by STPP

5.2 Baggage Handling in Airport
To avoid mis-delivered baggages, baggage handling sys-
tems in airports need to find the order of the baggages on
the conveyor belt [2]. Although the size of one baggage
item is usually large, the distance between adjacent tags
(attached to different baggages) can be rather close due
to the arbitrary orientation of baggage on the convey belt.
It is thus critical to pinpoint the relative order of baggage
with high resolution. We deployed our STPP system
at Terminal One, Sanya Phoenix airport, Sanya, Hainan
Province, China. Three RFID reader antennas are de-
ployed at three places on the tunnel as shown in the left
figure in Figure 22(b). Based on the tag ordering infor-
mation, the visualization module displays each baggage
and tracks its movement on the baggage conveyor belt,
as shown in the right figure in Figure 22(b). As reference
tags and antennas, which are the essential part of the lo-
calization scheme Landmarc and BackPos, cannot be de-
ployed on the commercial baggage handling system, we
thus compare STPP with OTrack and G-RSSI in this case
study. Our experiments were carried out during three
periods: 7:00AM∼9:00AM, 13:00PM∼15:00PM, and

(a) RFID tag for baggage check-in

Antenna

Project to

(b) Baggage handling in Terminal One, Sanya Phoenix airport

Figure 22: Baggage handling in the airport

19:00PM∼21:00PM, during which over 1,000 pieces of
baggage from 9 flights are handled.

This case study shows that STTP can achieve high rel-
ative localization accuracy. Table 3 shows the accuracy
results of STPP in comparison with G-RSSI and OTrack
during the three time periods. During the peak hours
of 7:00AM∼9:00AM and 19:00PM∼ 21:00PM, during
which the distance between each baggage is typically
smaller than 20cm, our STPP achieves accuracy values
of 97% and 96%, respectively; whereas OTrack achieves
an accuracy of 88% for both time periods and G-RSSI
achieves accuracy values of 59% and 51%, respectively.
During the off peak hours of 13:00PM∼15:00PM, our
STPP, OTrack, and G-RSSI achieve accuracy values of
97%, 95%, and 72%, respectively.

7:00∼9:00 13:00∼15:00 19:00∼21:00
STPP 388/400=97% 224/230=97% 422/440=96%

OTrack 352/400=88% 218/230=95% 388/440=88%
G-RSSI 234/400=59% 166/230=72% 226/440=51%

Table 3: Accuracy of STPP, OTrack, and G-RSSI

We further examine the ordering latency of OTrack
and STPP. In this trial of experiments, we use OTrack
and STPP to detect the order of 100 baggages on a mov-
ing conveyor. The CDF of the ordering latency incurred
by each scheme is shown in Figure 23. As the result in-
dicates, the average latency of STPP is 1.473s, which is
slightly hight than that of OTrack.
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Figure 23: Ordering latency of STPP and OTrack
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6 Limitation and Future Works
Improving accuracy: Our accuracy still has room to
improve. One possible direction is to sweep tags mul-
tiple times and average their results. In future, we plan
to leverage the advanced signal processing techniques to
minimize the phase noises and exploit the geometry rela-
tionship among tags to improve the localization accuracy.
Enhancing robustness: Currently we require the reader
to move along a straight line that crosses the targeting
items. However, the line may not be strictly straight in
practice. In future, we plan to model the impact of irreg-
ular reader motions on the phase profile, and enhance the
robustness of our relative localization scheme by filtering
out phase values introduce by irregular reader motions.
Extending to 3-Dimensional space: Currently we focus
on the relative tag localization in a 2D space. A straight-
forward approach to handle the 3D space is to move the
reader three times, each time along a different dimension
in the 3D space. Thus, the reader can obtain the order
of the tags along each dimension. In future, we plan to
study ways to extend our spatial-temporal phase profiling
approach for 3D relative tag localization.

7 Related Work

RSSI based approach: Early RF-based localization
schemes primarily rely on RSSI information to acquire
the absolute location of an object [13, 16, 21, 23]. They
typically pre-deploy tags densely on a monitoring region
as anchors, and then use the RSSI values of these an-
chor tags as references to locate a specific tag [13, 23].
Succeeding works explore the anchor-free approach by
either modeling the signal propagation process in com-
plex environment [21] or taking a combination of var-
ious signal features (e.g. the RSSI and the tag’s read-
ing rate [16]). The major limitation of RSSI-based ap-
proaches is that they are highly sensitive to multi-path
propagation, and thus difficult to achieve high-precision
localization. Furthermore, RSSI is also impacted by an-
tenna gain [8], which adds uncertainty to localization ac-
curacy.

Phase based approach: There is a growing interest
in using phase values to estimate the absolute location
of an object. Pioneer work uses hyperbolic localization
techniques [11, 19] or Angle of Arrival (AoA) informa-
tion [5,9,14] to locate tags by measuring the phase differ-
ence between the received signals at different antennas.
To reduce the hardware deployment cost, state-of-the-art
systems use synthetic aperture radar (SAR) to simulate
multiple antennas to extract RF information [15,18]. For
instance, by leveraging antenna motion, PinIt achieves a
location accuracy on the order of centimeters [18]. An-
other line of work employs multiple antennas to con-
struct a hologram for tag localization [12, 20].

Our work is inspired by the above works in phase-
based tag localization, but we focus on leveraging reader
mobility to generate phase profiles for tag localization.
In this setting, PinIt [18] is perhaps most related to ours.
It locates RFID tags by analyzing their multi-path pro-
files collected by a moving antenna. However, the in-
tuition behind PinIt is that nearby RFID tags experience
a similar multi-path environment and thus exhibit simi-
lar multi-path profiles. In contrast, the intuition behind
our scheme is that by analyzing the spatial-temporal dy-
namics in the phase profiles of a set of tags, we can cal-
culate the spatial ordering among tags. Moreover, PinIt
relies on dedicated hardware (i.e., USRP) to capture the
multi-path profile of each tag and requires densely de-
ployed reference tags. In contrast, our scheme works on
COTS devices and does not rely on any reference tags.
Although both PinIt and our scheme leverage DTW met-
ric and optimize its execution for tag localization, the tar-
gets of the DTW optimization in these two schemes are
different. PinIt leverages derivative DTW (DDTW) tech-
nique to handle the power scaling problem, whereas our
scheme optimizes the computational efficiency by apply-
ing the DTW on the coarse-grained representation of the
phase profile.

8 Conclusions
In this paper, we propose the phase profiling approach
to relative localization of RFID tags by exploiting the
spatial-temporal dynamics in tag phase profiles. We
show that relative localization can be achieved without
the absolute location of tags. Our approach requires nei-
ther dedicated infrastructure nor special hardware. We
implemented our approach and conducted experiments
in two realistic case studies: locating misplaced books
in a library and determining baggage ordering in an air-
port. The result shows that our approach can achieve
high accuracy in realistic settings. This paper represents
an early comprehensive study of relative localization of
RFID tags. Our system can be used in a wide range of ap-
plications such as inventory control, asset management,
and customer behavior tracking.
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Abstract

This paper investigates the possibility of communicat-
ing through vibrations. By modulating the vibration mo-
tors available in all mobile phones, and decoding them
through accelerometers, we aim to communicate small
packets of information. Of course, this will not match the
bit rates available through RF modalities, such as NFC
or Bluetooth, which utilize a much larger bandwidth.
However, where security is vital, vibratory communica-
tion may offer advantages. We develop Ripple, a system
that achieves up to 200 bits/s of secure transmission us-
ing off-the-shelf vibration motor chips, and 80 bits/s on
Android smartphones. This is an outcome of designing
and integrating a range of techniques, including multi-
carrier modulation, orthogonal vibration division, vibra-
tion braking, side-channel jamming, etc. Not all these
techniques are novel; some are borrowed and suitably
modified for our purposes, while others are unique to this
relatively new platform of vibratory communication.

1 Introduction
Data communication has been studied over a wide range
of modalities, including radio frequency (RF), acoustic,
visible light, etc. This paper envisions vibration as a new
mode of communication. We explore the possibility of
using vibration motors, present in all cell phones today,
as a transmitter, while accelerometers, also popular in
mobile devices, as a receiver. By carefully regulating the
vibrations at the transmitter, and sensing them through
accelerometers, two mobile devices should be able to
communicate via physical touch.

We are not the first to recognize this opportunity. Acous-
tic communication operates on the same fundamental
principles and has been studied for decades (over air
[24, 20] and under water [12]). In recent years, authors
in [32] identified the possibility of using vibra-motors
and accelerometers in mobile phones, as an opportunity
to exchange information. The benefits were identified
as security and zero-configuration, meaning that the two
devices need not discover each other’s addresses to com-
municate. The act of physical contact would serve as the
implicit address. However, authors identified the draw-
backs of such a system to be low bit rates (∼ 5 bits/s),
based on the “morse-code” style of ON/OFF communi-

cation with vibrations. Still, researchers conceived cre-
ative applications, including secure smartphone pairing
and keyless access control [47].

This paper is aimed at improving the data rates of vi-
bratory communication, as well as its security features.
We design Ripple, a system that breaks away from the
intuitive morse-code style ON/OFF pulses and engages
techniques such as orthogonal multi-carrier modulation,
gray coding, adaptive calibration, vibration braking,
side-channel suppression, etc. While some techniques
are borrowed from RF/acoustic communication, unique
challenges (and opportunities) emerge from the vibra-
motor/accelerometer platform, as well as from solid-
materials on which they rest. For instance, the motor
and the materials exhibit resonant frequencies that need
to be adaptively suppressed; accelerometers sense vibra-
tion along 3 orthogonal axes, offering the opportunity
to use them as parallel channels, with some degree of
leakage. In addition to such techniques, we also design
a receiver cradle – a wooden cantilever structure – that
amplifies/dampens the vibrations in a desired way. A vi-
bration based product in the future, say a point-of-sale
equipment for credit card transactions, may potentially
benefit from such a design.

From a security perspective, Ripple recognizes the threat
of acoustic leakage due to vibration, i.e., an eavesdrop-
per could listen to the sound of vibration and decode the
transmitted bits. To thwart such side channel attacks, we
design the transmitter to also listen to the sounds and
adaptively play a synchronized acoustic signal (through
its speaker) to cancel the sound. The transmitter also su-
perimposes a jamming sequence, ultimately offering in-
herent protection from acoustic eavesdroppers. We ob-
serve that application layer securities may not apply in
all such scenarios – public/symmetric key based encryp-
tion infrastructure may not scale to billions of phones and
other use-cases such as internet of things (IoT). Blocking
access to the signal, at the physical layer itself, is desir-
able in these spontaneous, peer-to-peer, and perhaps dis-
connected situations [41].

Its natural to wonder what kind of applications will use
vibratory communication, especially in light of NFC. We
do not have a killer app to propose, and even believe that
most applications would prefer NFC, mainly due to its
higher data rates (NFC uses 1.8MHz bandwidth achiev-
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ing more than 100 Kbits/s, in contrast to 800Hz with to-
day’s vibra-motors). However, our hope is that bringing
the vibratory bit rates to a respectable level – say credit
card transactions in a second – may trigger new ideas and
use-cases. In particular, strict security-sensitive applica-
tions may be the candidates. Despite the very short com-
munication range in NFC, recent results [40, 28] confirm
that security threats are real. Authors decode NFC trans-
missions from 1m away [14, 21, 22] and conjecture that
high-gain beamforming antennas can further increase the
separation. With the natural security benefits of touch-
based communication (over RF), and supplemented with
acoustic cancellation and jamming, we attempt to set a
higher security bar for Ripple.

Moreover, the ubiquity of vibration motors in every cell
phone, even in developing regions, presents an immedi-
ate market for vibratory communication. Peer to peer
money exchange with recorded logs is a global prob-
lem, recently recognized by the Gates Foundation; hid-
den camera attacks on ATM kiosks have been rampant in
many parts of India and south Asia [25]. Paying local cab
drivers with phone-vibrations, or using phones as ATM
cards can perhaps be of interest in developing countries.
Clandestine operations may benefit where information
need to be exchanged without leaving any trace in the
wireless channel or in the Internet. Finally, if link capac-
ity proves to be the only bottleneck, perhaps improved
vibration motors can be included to mitigate it in the
next phone models. While it’s difficult to anticipate the
needs of the future, we focus our attention on enabling
and pushing forward this new modality of vibratory com-
munication. To this end, our main contributions may be
summarized as:

• Harnessing the vibration motor hardware and its func-
tionalities, from a communication perspective.

• Developing an orthogonal multi-carrier communication
stack using vibra-motor and accelerometer chips, and re-
peating the same for Samsung smartphones. Design de-
cisions for the latter are different due to software/API
limitations on smartphones, where vibra-motors were
mainly integrated for simple alerts/notifications.

• Identifying acoustic side channel attacks and using signal
cancellation and jamming to offer physical layer protec-
tion to eavesdropping.

2 Vibration Motors and Accelerometers
We begin with a high level overview of vibration motors
and accelerometers (substantial details in [33, 34, 13]).

2.1 Vibration Motor
A vibration motor (also called “vibra-motor”) is an
electro-mechanical device that moves a metallic mass
around a neutral position to generate vibrations. The mo-
tion is typically periodic and causes the center of mass
(CoM) of the system to shift rhythmically. There are
mainly two types of vibra-motors depending on their
working principle:

(1) Eccentric Rotating Mass (ERM): This type of vi-
bration generators uses a DC motor to rotate an eccentric
mass around an axis as depicted in Figure 1(a). As the
mass is not symmetric with respect to its axis of rota-
tion, it causes the device to vibrate during the motion.
Both the amplitude and frequency of vibration depend
on the rotational speed of the motor, which can in turn be
controlled through an input DC voltage. With increasing
input voltages, both amplitude and frequency increase al-
most linearly and can be measured by an accelerometer.

(2) Linear Resonant Actuators (LRA) generate vibra-
tion by linear movement of a magnetic mass, as opposed
to rotation in ERM (Figure 1)(b). With LRA, the mass is
attached to a permanent magnet which is suspended near
a coil, called “voice coil”. Upon applying AC current to
the motor, the coil also behaves like a magnet (due to the
generated electromagnetic field) and causes the mass to
be attracted or repelled, depending on the direction of the
current. This generates vibration at the same frequency
as the input AC signal, while the amplitude of vibration
is determined by the signal’s peak-to-peak voltage. Thus
LRAs allow for regulating both the magnitude and fre-
quency of vibration separately. Fortunately, most mobile
phones today use LRA based vibra-motors.
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Figure 1: Basics of ERM and LRA vibra-motors.

Regulating Vibration
Ideally, a controller should be able to regulate the vibra-
motor at fine granularities using any analog waveform.
Unfortunately, micro-controllers produce digital voltage
values limited to a few discrete levels. A popular tech-
nique to approximate analog signals with binary voltage
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levels is called Pulse Width Modulation (PWM) [8]. This
technique is useful to drive analog devices with digital
data without a digital to analog converter (DAC).

PWM based Motor Control: The core idea in PWM
is to approximate any given voltage V by rapidly gen-
erating square pulses and configuring the pulse’s duty
cycle appropriately. For example, to create a 1V signal
with binary voltage levels of 5V and 0V , the duty cy-
cle needs to be 20%. Now, if the period of the square
pulse is made very small (i.e., high frequency), the effec-
tive output voltage will appear as 1V . Towards this goal,
the PWM frequency is typically set much higher than the
response time of the target device so that the device ex-
periences a continuous average voltage. Importantly, it
is also possible to generate varying voltages with PWM,
say a sine wave, by gradually changing the duty cycles
in a sinusoidal fashion.

2.2 Accelerometer
The accelerometer is a micro electro-mechanical
(MEMS) device that measures acceleration caused by
motion. While the inner workings of accelerometers can
vary [7], the core working principle pertains to a movable
seismic mass that responds to the vibration of the object
it is attached to. Capacitive accelerometers, shown in
Figure 2, are perhaps most popular in smartphones to-
day. When vibrated, the seismic mass moves between
fixed electrodes, causing differences in the capacitance
c1 and c2, ultimately producing a voltage proportional to
the experienced vibration.
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Figure 2: The internal architecture of MEMS accelerom-
eter chip used in smartphones [19].

Sensing Acceleration
Modern accelerometers sense the movement of the seis-
mic mass along 3 orthogonal axes, and report them as
an < X ,Y,Z > tuple. The gravitational acceleration ap-
pears as a constant offset along the axis pointed to-

wards the floor. The newest accelerometer chips sup-
port a wide range of adjustable sampling rates, typically
from 100 mHz to 3.2KHz. For this paper, we choose
the ADXL345 [18] capacitive MEMS accelerometer, not
only because it is used in most smartphones, but also be-
cause of programmability and frequency range.

3 Vibratory Transmission and Reception
Software/API limitations in smartphones prevent fully
exploiting the vibra-motors and accelerometers. We de-
sign a custom hardware prototype using the same chips
that smartphones use, and characterize/evaluate the sys-
tem. We develop the constrained smartphone version in
the next section.

3.1 Custom Hardware Setup
We control the vibra-motor and accelerometer through
Arduino boards [1], an open source hardware develop-
ment platform equipped with a ATmega328 8-bit RISC
micro-controller [2]. Our first step is to precisely con-
trol the vibration frequency (and amplitude) through a
time-varying sequence of voltage levels fed to the vibra-
motor. Unfortunately, the micro-controller’s output cur-
rent fluctuates, leading to errors in the transmitted vi-
bratory signals. Therefore, we power the vibra-motor
with a stand-alone 6V DC power supply and use the
Arduino micro-controller signal to operate a switch that
regulates the voltage to the motor. We develop a simple
circuit shown in Figure 3 – a NPN Darlington transistor
(TIP122) serves as the switch and the controller signal
goes to its base.
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Figure 3: Transmitter hardware: the micro-controller
controls a switch that regulates the 6V DC input.

Let’s assume that we intend to regulate the vibra-motor
in a sinusoidal fashion. We pre-load digital samples of
the sine waveform into memory, and PWM uses them to
determine the width of the square waves. When the sine
wave frequency needs to be increased, the same digital
samples need to be drawn at a faster rate and at precise
timings. The switch uses the PWM output to regulate
the 6V DC signal. We mitigate a number of engineer-
ing problems to run the set up correctly, including har-
monic distortions due to the square pulses, spikes due
to back EMF, etc. We move the PWM frequency to a
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high 32KHz and use an RC filter (part B Figure 3) to
remove the distortions; we use a 1N4001 fly-back diode
to smooth out the spikes. We omit further details in the
interest of space.

The accelerometer receiver is also controlled through Ar-
duino via the I2C protocol [44] at 115200 baud rate.
We set the accelerometer’s sampling rate to 1600Hz and
10 bit output resolution. While higher sampling rates
are possible, we refrain from doing so since the micro-
controller records the accelerometer data at a slower rate.
In particular, the chip produces a sample per 0.625ms,
but the micro-controller takes around 8− 12ms to peri-
odically read and write in memory. We handle this with
a FIFO mode of the accelerometer, such that the queued-
up data is read in a burst. We also mount an on-board SD
card to store data via the SPI protocol.

Figure 4 shows the accelerometer output when the vibra-
motor is driven by the sinusoid input and made to touch
the accelerometer. The final system functions correctly,
and the platform is now ready for design and experimen-
tation.
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Figure 4: Accelerometer output (a) time and (b) fre-
quency, when vibra-motor fed with a 250Hz sine wave.

3.2 Transmitter and Receiver Design
Ripple’s design firmed up after multiple rounds of it-
erations. In the final version, the transmitter performs
amplitude modulation on 10 different carrier signals uni-
formly spaced from 300 to 800Hz – each carrier is mod-
ulated with a bandwidth of 40Hz. Further, the vibrations
are also parallelized on orthogonal motion dimensions
(X and Z) with appropriate signal cancellation. The de-
sign details are presented next.

Selecting the Carrier Signal
To reason about how data bits should be transmitted, we
first carry out an analysis of the available spectrum. This
available spectrum is actually bottlenecked by the maxi-
mum sampling rate of the accelerometer receiver – since
this rate is 1600Hz, the highest frequency the transmit-
ter can use is naturally 800Hz. Now, to test the sys-
tem’s frequency response in the [0,800] band, we per-
form a “sine sweep” test. The transmitter, with the help
of a waveform generator, produces continuously increas-
ing frequencies from 1Hz to 800Hz with constant am-
plitude (the frequency increments are at 1Hz). Figure 5

shows the corresponding vibration magnitudes recorded
by the accelerometer. Evidently, the response is weak up
to 60Hz (called the “inert band”), followed by improve-
ments till around 200Hz, followed by a large spike at
around 231Hz. This spike is near the resonant frequency
of the vibra-motor (confirmed in the data sheet).
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Figure 5: The vibra-motor’s frequency response with the
resonant frequency at around 231Hz.

Intuitively, frequencies near the resonant band can serve
as good carriers for amplitude modulated data because
of a larger vibration range. However, when we plot the
frequency versus time spectrogram of the sine sweep test
(Figure 6), we find that the vigorous vibration around
the resonant frequency spills energy in almost the entire
spectrum. Therefore, transmitting on the resonant band
can be effective for a single carrier system, but the inter-
ference ruins the opportunity to transmit data in parallel
carriers. In light of this, we define a “resonant band”
of 100Hz around the peak, and move the carrier signals
outside this band. We select 10 orthogonal carriers sep-
arated by 40Hz from the non-resonant frequencies be-
tween 300Hz and 800Hz. The 40Hz separation ensures
the non-overlapping sidebands for the carriers, allowing
reliable symbol recovery with software demodulation.

Figure 6: When excited with the resonant frequency, the
vibra-motor spills energy across a wide frequency range.

Synchronization
Micro-controllers inject timing errors at various stages –
variable delay in fetching digital samples from memory,
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during time-stamping the received samples, and due to
oscillator/crystal frequency shifts with temperature. The
timing errors manifest as fluctuations in vibration fre-
quency, causing error in demodulation. To synchronize
time between the transmitter and receiver, we introduce
a pilot frequency at 70Hz and transmit it in parallel to
data bits. We choose 70Hz to be above the inert band
and lower than the resonant band. During reception, the
receiver detects the pilot frequency, measures the offset
in sampling rate, and interpolates the received signal by
adjusting for this offset. Of course, this operation also
corrects all other frequencies in the spectrum needed for
demodulation.

(De)Modulating the Carrier Signal
The carrier frequencies are modulated with Amplitude
Shift Keying (ASK) in light of its bandwidth efficiency
and simplicity over Frequency Shift Keying (FSK). We
modulate each of the 10 carriers with binary data at a
symbol rate of 20Hz. To prevent inter-carrier interfer-
ence, we shape the pulses with a raised cosine filter for
each carrier individually; the modulated carriers are then
combined and fed to the vibration motor transmitter. The
receiver senses the energy in the pilot carrier, calibrates
and synchronizes appropriately to identify the beginning
of transmission. We again filter the received spectrum
with (the same) raised cosine filter to isolate each carrier,
and proceed to demodulate individual carriers separately.
Figures 7(a) and (b) show a part of the spectrum before
and after filtering, for an example carrier frequency at
405Hz. The demodulation is performed with envelope
detection and precise sampling at bit intervals. We will
evaluate this custom-designed system in Section 6 and
show ∼200 bits/second data rates through vibration.
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Figure 7: The spectrum (a) before and (b) after filtering
for a single carrier frequency at 405Hz.

3.3 Orthogonal Vibration Dimensions
The above schemes, although adapted for vibra-motors,
are grounded in the fundamentals of radio design. In
an attempt to augment the bit rate, we observed that a
unique property of accelerometers is its ability to detect
vibration on 3 orthogonal dimensions (X, Y, and Z). Al-
though vibra-motors only produce signals on a single di-
mension, perhaps multiple vibra-motors could be used
in parallel. Unfortunately, due to some rigidity in our

custom set up, accelerometer’s motion along the X axis
is minimal, precluding it for communication. Therefore,
we orient two vibra-motors in the Y and Z dimensions
and execute the exact multi-carrier amplitude modulated
transmissions discussed above.

Measurements show that vibration from one dimension
spills into the other. However, rather interestingly, this
spilled interference exhibits a 180◦ phase lag with re-
spect to the original signal, as well as an attenuation in
the amplitude. Figure 8 shows an example in which the
Z axis signal (solid black) has a spill on the Y axis, with
a reversed phase and halved amplitude. The vice versa
also occurs. Now, to remove Z’s spilled interference and
decode the Y signal, we scale the Y signal so that the in-
terference matches Z’s actual amplitude, and then add it
to the Z signal. The Z signal is removed quite precisely,
leaving an amplified version of Y, which is then decoded
through the envelope detector. The reverse is performed
with Z’s signal, resulting in a 2x improvement in data
rate, evaluated later.
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Figure 8: Orthogonal vibrations in X and Z axes.

4 Smartphone Prototype
This section shifts focus to vibratory communication on
Android smartphones. Android is of interest since it of-
fers APIs to a kernel level PWM driver for controlling
the ON/OFF timings. We develop a user space module
that leverages third-party kernel space APIs [5] to con-
trol the vibration amplitudes as well. However, this still
does not match the custom set-up in the previous sec-
tion. The PWM driver in Samsung smartphones is set
to operate on the resonant band of the LRA vibra-motor,
and the vibration frequency cannot be changed. This is
understandable from the manufacturer’s viewpoint, since
vibra-motors are embedded to serve as a 1 bit alert to
the user. However, for data communication, the non-
linear response at the resonant frequencies presents dif-
ficulties. Nonetheless, Ripple has to operate under these
constraints and hence is limited to a single carrier fre-
quency, modulated via amplitude modulation.



270 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

4.1 Smartphone Tx and Custom Rx
One advantage of the resonant frequency is that it offers a
larger amplitude range, permitting n-ary symbols as op-
posed to binary (i.e., the amplitude range divided into n
levels). To further amplify this range, we also design a
custom smartphone cradle – a cantilever based wooden
bridge-like framework – that in contact with the phone
amplifies specific vibration frequencies. While we will
evaluate performance without this cradle, we were curi-
ous if (deliberately designed) auxiliary objects bring ben-
efits to vibratory communication. Figure 9 shows the de-
sign – when the transmitter phone is placed on a specific
location on this bridge, and the accelerometer connected
to the other end, we indeed observe improved SNR. The
key idea here is to make the “channel” resonate along
with the smartphone to improve transmission capacity.
We elaborate on the cantilever based design next, fol-
lowed by the communication techniques.

Cantilever based Receiver Setup
Observe that every object has a natural frequency [46] in
which it vibrates. If an object is struck by a rod, say, it
will vibrate at its natural frequency no matter how hard
it is struck. The magnitude of the strike will increase
the amplitude of vibration, but not its frequency. How-
ever, if a periodic force is applied at the same natural
frequency of the object, the object exhibits amplified vi-
bration – resonance. In our set-up, we use a 1 foot long
wooden beam supported at one end, called a cantilever
(Figure 9). The smartphone transmitter placed near the
supported end, impinges a periodic force on the beam,
calculated precisely based on the beam’s resonant fre-
quency (inversely proportional to

√
(weight)). We adjust

the weight of the structure so that its natural frequency
matches that of the phone’s vibra-motor (which lies be-
tween 190Hz to 250Hz). This creates the desired reso-
nance.

Figure 9: Cantilever based receiver platform for vibra-
tion amplification.

The accelerometer is attached at the unsupported end of
the beam. Figure 10 plots the measured amplitude varia-
tion (over 3 axes of the accelerometer) as the smartphone
is placed on different positions on the beam. We choose
the position located 6 inches from the supported end, as
it induces maximal amplification on all 3 axes of the ac-
celerometer.
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Figure 10: Vibration highest at a specific phone location.

Symbol Duration and the Ringing Effect
Ripple communicates through amplitude modulation –
pulses of n-ary amplitudes (symbols) are modulated on
the carrier frequency for a symbol duration. Ideally, the
effect of a vibration should be completely limited within
this symbol duration to avoid interference with the subse-
quent symbol (called inter-symbol interference). In prac-
tice, however, the vibration remains in the medium even
after the driver stops the vibrator, known as the ringing
effect. This is an outcome of inertia – the vibra-motor
mass continues oscillating or rotating for some period af-
ter the driving voltage is turned off. Until this extended
vibration dampens down substantially, the next symbol
may get incorrectly demodulated (due to this height-
ened noise floor). Moreover, the free oscillation of the
medium also contributes to ringing. Figure 11(a) shows a
vibratory pulse of the smartphone, where the vibra-motor
is activated from 20 to 50 ms. Importantly, the motor
consumes 30 ms to overcome static inertia of the mov-
able mass and reach its maximum vibration level. Once
the voltage is turned off (at 50ms) the vibration damp-
ens slowly and consumes another 70 ms to become neg-
ligible. This dictates the symbol duration to be around
30+70 = 100 ms to avoid inter-symbol interference.
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Figure 11: (a) Ringing effect in the channel. (b) Reduced
ringing using a braking voltage.

Vibration Dampening
To push for greater capacity, we attempt to reduce the
symbol duration by dampening the ringing vibration.
The core observation is that the ringing duration is a
function of the amplitude of the signal – a higher ampli-
tude signal rings for a longer duration. If, however, the
amplitude can be deliberately curbed, ringing will still
occur but will decay faster. Based on this intuition, we
apply a small braking-voltage to the vibra-motor right
after the signal has been sampled by the demodulator
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(30ms). This voltage is deliberately small so that it
does not manifest into large vibrations, and is applied
for 10ms. Once braking is turned off, we allow another
10ms for the tail of the ringing to die down, and then
transmit the next symbol. Thus the symbol duration is
50ms now (half of the original) and there is still some vi-
bration when we trigger the next symbol. While this adds
slightly to the noise floor of the system, the benefits of a
shorter symbol duration out-weighs the losses. More-
over, an advantage arises in energy consumption – trig-
gering the vibra-motor from a cold start requires higher
power. As we see later, activating it during the vibration
tail saves energy.

(De)Modulation
The (de)modulation technique is mostly similar to a sin-
gle carrier of the custom hardware prototype. The only
difference is that it uses multiple levels of vibration am-
plitudes (up to 16), unlike the binary levels earlier. Fig-
ure 12 shows how we can vary the voltage levels (as a
percentage of maximum input voltage) to achieve differ-
ent vibration amplitudes. If adequately stable, the ampli-
tude at each voltage level can serve as separate symbols.
Given the linear amplitude slope from voltage levels 15
to 90%, we divide this range into n-ary equi-spaced am-
plitude levels, each corresponding to a symbol. How-
ever, due to various placements and/or orientations of
the phone, this slope can vary to some degree. While
this does not affect up to 8-ary communication, 16 sym-
bols are susceptible to this because of inadequate gaps
between adjacent amplitude levels. To cope, we use
a preamble of two symbols. At the beginning of each
packet the transmitter sends two symbols with the high-
est and lowest amplitudes (15 and 90). The receiver com-
putes the slope from these two symbols, and calibrates all
the other intermediate amplitude levels from them. The
receiver then decodes the bits with a maximum likeli-
hood based symbol detector.
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Figure 12: The change of vibration amplitude with the
percentage of maximum input voltage.

5 Security
Vibrations produce sound and can leak information about
the transmitted bits to an acoustic eavesdropper [29, 3,
9]. This section is aimed at designing techniques that

thwart such side channel attacks. We design this as a
real-time operation on the smartphone.

5.1 Acoustic Side Channel
The source of noise that actually leaks information is the
rattling of the loosely-attached parts of the motor – the
unbalanced mass and metals supporting it. Our exper-
iments show that this sound of vibration (SoV) exhibits
correlations of ∼0.7 with the modulated frequency of the
data transmission. Although SoV decays quickly with
distance, microphone arrays and other techniques can be
employed to still extract information. Ripple attempts to
prevent such attacks.

5.2 Canceling Sounds of Vibration (SoV)
One way to defend against eavesdropping is to jam the
acoustic channel with a pseudorandom noise sequence,
thus decreasing the SNR of the SoV. Since this jamming
signal will not interfere with physical vibrations, it does
not affect throughput. Upon implementation, we real-
ized that the jamming signal was audible, and annoying
to the ears. The more effective approach is perhaps to
cancel/suppress the SoV from the source, and then jam
faintly, to camouflage the residue.

Ideally, Ripple should produce an “anti-noise” signal that
cancels out the SoV to ultimately create silence. The
transmitter (and not the receiver) should generate this
anti-noise since it knows the exact bit sequence that is
the source of the SoV. Of course, acoustic noise cancel-
lation is a well studied area – several headphones today
use a microphone to capture ambient sounds and blends
a negative version of it through the headphone speakers.
The challenge of course is in detecting the ambient sound
in real time and producing the precise negative (phase
shifted) signals. However, unlike Ripple, headphones
need to cancel the ambient noise only at the human ear,
and not at all other locations around the human.

With Ripple, the problem is easier in the sense that the
transmitter exactly knows the bit sequence that is causing
the SoV. This can help in modeling the sound waveform
ahead in time, and can potentially be synchronized. The
issue, however, is that the SoV varies based on the mate-
rial medium on which the phone is placed; also the SoV
needs to be cancelled at all locations in the surround-
ing area. Further, the phase of the SoV remains unpre-
dictable as it depends on the starting position of the mass
in the vibra-motor and the delay to attain the full swing.
Finally, Android offers little support for real-time audio
processing [10], posing a challenge to develop SoV can-
cellation on off-the-shelf phones.

5.3 Ripple Cancel and Jam
The overall technique is composed of 3 sub-tasks: anti-
noise modeling, phase alignment, and jamming.
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(1) Anti-noise modeling
The core challenge is to model the analog SoV waveform
corresponding to the data bits that will be transmitted
through vibration. Since the motor’s vibration amplitude
and frequency are known (i.e., the carrier frequency),
the first approximation of this model is simple to create.
However, as mentioned earlier, the difficulty arises in not
knowing how the unknown material (on which the phone
is placed) will impact the SoV. Apart from the fundamen-
tal vibration frequency, the precise SoV signal depends
also on the strength and count of the overtones produced
by the material. To estimate this, the Ripple transmitter
first transmits a short “preamble”, listens to its FFT, and
picks the top-K strongest overtones. These overtones are
combined in the revised signal model. Finally, the ac-
tual data bits are modeled in the time domain, reversed
in sign, and added to create the final “anti-noise” signal.
This is ready to be played on the speaker, except that the
phase of anti-noise needs to precisely match the SoV.

(2) Phase Alignment with Frequency Switch
Unfortunately, Android introduces a variable latency of
up to 10ms to dispatch the audio data to the hardware.
This is excessive since a 2.5ms lag can cause construc-
tive interference between the anti-noise and the SoV. For-
tunately, two observations help in this setting: (1) the au-
dio continues playing at the specified sample rate without
any significant fluctuation, and (2) the sample rate of the
active audio stream can be changed in real-time. Thus,
we can now control the frequency of the online audio by
changing the playback sample rate.

We leverage this frequency control to match the phase of
anti-noise with the SoV. The key idea is to start the anti-
noise as close as possible to the SoV, but increase the
sampling frequency such that the fundamental frequency
of the anti-noise increase by δ f . When this anti-noise
combines in the air with the SoV, it creates the amplitude
of the sound to vary because of the small difference in the
fundamental frequencies. Obviously, the maximum sup-
pression of the SoV occurs when the amplitude of this
combined signal is at its minimum. The phase differ-
ence between the SoV and anti-noise is almost matched
at this point. At exactly this “phase-lock” time, Ripple
switches the fundamental frequency of the anti-noise to
its original value (i.e., lower by δ f ). It recognizes this
time instant by tracking the envelope of the combined
signal and switching frequencies at the minimum point
on the envelope. Figure 13 illustrates the various steps
leading up to the frequency switch, and the sharp drop in
signal amplitude. The suppressed signal remains at that
level thereafter.

(3) Jamming
The cancellation is not perfect because the timing of
the operations are not instantaneous; microphone and
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Figure 13: The anti-noise partially cancels the SoV, how-
ever, some mismatches result in some residual signal.
speaker noise also pollute the anti-noise waveforms,
leaving a small residue. To prevent attacks on this
residue, Ripple superimposes a jamming signal – the
goal is to camouflage the sound residue. Conceptually
it is simple, since a pseudorandom noise sequence can
be added to the anti-noise waveform once it has phase-
locked with the vibration sound. Unfortunately, Android
does not allow loading a second signal on top of a signal
that is already playing. Note that if we load the jamming
signal upfront (along with the modeled anti-noise signal),
the precise phase estimation will fail. We develop an en-
gineering work-around. When modeling the anti-noise
waveform, we also add the jamming noise sequence, but
pre-pad the latter with a few zeros. Thus, when the SoV
and anti-noise combine, the zeros still offer opportunities
for detecting the time when the signals precisely can-
cel. We phase-lock at these times and the outcome is
the residual signal from imperfect cancellation, plus the
jamming sequence. We will show in the evaluation how
the SoV’s SNR degrades due to such cancellation and
jamming, offering good protection to eavesdropping. Of
course, the tradeoff is that we need a longer preamble
now for this phase alignment process. However, this is
only an issue arising from current Android APIs.

6 System Evaluation
We evaluate Ripple in three phases – the custom hard-
ware, the smartphone prototype, and security.

6.1 Custom Hardware

Bit Error Rate (BER)
Recall that the custom hardware is composed of vibra-
motors and accelerometer chips controlled by Arduino
boards. We bring the two devices in contact and initi-
ate packet transmission of various lengths (consuming
between 1 to 10 seconds). Each packet contains pseudo-
random binary bits at 20Hz symbol rate on 10 parallel
carriers. The bits are demodulated at the receiver and
compared against the ground truth. We repeat the exper-
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Figure 14: (a) BER as a function of the input signal peak-to-peak voltage (Vpp). Overall data rate ∼200 b/s. (b)
Per-carrier BER across 10 frequencies. (c) BER as a function of no. of carriers used (each carrier bit rate = 20 bits/s).

iment for increasing signal energy (i.e., by varying the
peak to peak signal voltage, Vpp, from 1V to 5V). Figure
14(a) plots the BER as a function of peak-to-peak input
voltage (Vpp) to the vibra-motor and demonstrates how
it diminishes with higher SNR. At the highest SNR, and
aggregated over all carrier frequencies, Ripple achieves
the 80th percentile BER of 0.017 translating to an aver-
age bit rate of 196.6 bits/s.

Behavior of Carriers
In evaluating BERs across different carrier frequencies,
we observe that not all carriers behave similarly. Figure
14(b) shows that carrier frequencies near the center of
the spectrum perform consistently better than those near
the edges. One of the reasons is aliasing noise. Ideally,
the accelerometer should low-pass-filter the signal before
sampling, to remove signal components higher than the
Nyquist frequency. However, inexpensive accelerome-
ters do not employ anti-aliasing filters, causing such un-
desirable effects. Carriers near the resonant band also
experience higher noise due to the spilled-over energy.

Increasing the number of carriers will enable greater par-
allelism (bit rate), at the expense of higher BER per car-
rier. To characterize this tradeoff, we transmit data on in-
creasing number of carriers, starting from the middle of
our spectrum and activating carriers on both sides, one
at a time. Figure 14(c) shows BER variations with in-
creasing number of carriers, for varying signal energy
(peak-to-peak voltage, Vpp). As each carrier operates at
fixed 20Hz symbol rate, this also shows the bit rate vs
BER characteristics of our system. Figure 15 zooms on
the best four carriers.

Temporal Stability
Given that vibra-motors and accelerometers are essen-
tially mechanical systems, we intend to evaluate their
properties when they are made to operate continuously
for long durations. Given the low bit rates, this might be
the case when relatively longer packets need to be trans-
mitted. Towards this, we continuously transmit data for
50 sessions of 300 seconds each. Figure 16 plots the
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Figure 15: BER vs. number of carriers (4 carriers shown)
per-carrier BER (computed in the granularity of 10 sec-
ond periods) of a randomly selected session – the Y axis
shows each of the carriers and the X axis is time. The
BERs vary between 0.02 near the center to 0.2 near the
edge. Overall results, omitted for the interest of space,
show no visible degradation in BER even after running
for 300 seconds.
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Exploiting Vibration Dimensions
Recall that Ripple used 2 vibra-motors in parallel to ex-
ploit the orthogonality of vibrations along the Y and Z
axes of the accelerometer. Figure 17(a) and (b) show the
distribution of BER achieved across carrier frequencies
on the Y and Z axes, respectively. We also attempt to
push the limits by modulating greater than 20 bits/s, how-
ever, the BER begins to degrade. In light of this, Ripple
achieves median capacity of around 400 bits/s (i.e., 20
bits/s per carrier x 10 carriers x 2 dimensions). While the



274 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

tail of the BER distribution still needs improvement, we
believe coding can be employed to mitigate some of it.
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Figure 17: BER per carrier for parallel transmissions on
orthogonal dimensions: (a) Y axis and (b) Z axis.

6.2 Smartphone Prototype

Calibration
Vibrations will vary across transactions due to phone ori-
entation, humans holding it, different vibration medium,
etc. As discussed earlier, the demodulator calibrates for
these factors, but pays a penalty whenever the calibration
is imperfect. We evaluate accuracy of calibration using
the error between the estimated amplitude for a symbol,
and the mean amplitude computed across all received
symbols. Figure 18 plots the normalized error for var-
ious n-ary modulations – the normalization denominator
is used as the difference between adjacent amplitudes.
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Figure 18: CDF of estimated symbol level error as a frac-
tion of the mean inter-symbol difference.

BER with Smartphones
Figure 19(a) plots the confusion matrix of transmitted
and received (or demodulated) symbols, for 16-ary mod-
ulation. While some errors occur, we observe that they
are often the symbol adjacent to the one transmitted. In
light of this, Ripple uses Gray codes to minimize such
well-behaved errors. With these codes and calibration,
Figure 19(b) shows the estimated BER for different bit
rates, for each of the 4 modulation schemes. As compar-
ison points, the “Basic” symbol detector uses predefined
thresholds for each symbol and maps the received sam-
ple to the nearest amplitude. The “Ideal” scheme identi-
fies the bits using the knowledge of all received symbols.
Ripple’s performs well even at higher bit rates, which is
not the case with Basic.

Figure 19(c) shows the BER per symbol for 16-ary mod-
ulation, showing that symbols corresponding to the high
vibration amplitudes experience higher errors. The rea-
son is that the consistency of the vibration motor de-
grades at high amplitudes – we have verified this care-
fully by observing the distribution of received vibration
amplitudes for large data traces.

Impact of Phone Orientation
The LRA vibra-motor inside Galaxy S4 generates lin-
ear vibration along one dimension – the teardown of the
phone [11] shows the motor’s axis aligned with the Z axis
of the phone. Thus, an accelerometer should mostly wit-
ness vibration along the Z axis. The other two axes do
not exhibit sufficient vibration at higher bit rates. This is
verified in Table 1 where the first 4 data points are from
when the phone is laid flat on top of the cantilever. How-
ever, once the phones are made to stand vertically or on
the sides, its X and Y axes align with the accelerome-
ters Z axis, causing an increase in errors. This suggests
that the best contact points for the phones are their XY
planes, mainly due to the orientation the vibration motor.

Table 1: BER with 16-ary for various orientations.
Orientation Hor. A Hor. B Hor. C Hor. D Ver. A Ver. B
Mean BER 0.025 0.029 0.002 0.029 0.197 0.178

Phone Held in Hand (No Cantilever)
We experiment a scenario in which the accelerometer
based receiver is on the table, and the hand-held phone
is made to touch the top of the receiver. The alignment
is crudely along the Z axis. This setup adversely affects
the system by (1) eliminating the amplitude gain due to
the cantilever, and (2) the dampens vibration due to the
hand’s absorption. Figure 20 shows the results – unsur-
prisingly, the total vibration range is now smaller, push-
ing adjacent symbol levels to be closer to each other, re-
sulting in higher BER.
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Figure 20: The BER with a hand-held phone.

6.3 Security
Acoustic Signal Leakage
To characterize the maximum acoustic leakage from vi-
brations, we run the vibra-motor at its highest intensity
and record the SoV at various distances, using smart-
phone microphones sampled at 16KHz. This leakage is
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compared to the Basic, Ideal. (c) Per symbol BER with 16-ary communication.

naturally far higher than a typical vibratory transmission
(composed of various intensity levels), so mitigating the
most severe leakage is stronger security. We also realize
that the material on which the smartphone is placed mat-
ters, therefore, repeated the same experiment by placing
the phone on (a) glass plate, (b) metal plate (aluminum),
(c) on the top of another smartphone, and (d) our cus-
tom wooden cantilever setup. Figure 21 shows the con-
tour plots for each scenario. Evidently, glass causes the
strongest side channel leak, and wood is minimum. Fol-
lowing experiments are hence performed on glass.
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Figure 21: Acoustic side channel leakage on: (a) glass,
(b) metal, (c) on another phone, and (d) wood.

Results indicate that the SoV is well below the socially
acceptable noise level. At a distance of 2 f t, SoV is less
than 25dB, comparable to a soft whisper as per human
perception of loudness [6]. We further quantify this by
comparing SoV against the ambient noises recorded in 5
common locations – departmental store, inside a moving
car, coffee shop, class room, and computer laboratory.
Table 2 shows that the ratio remains close to 2.

Table 2: Ratio of power of SoV signals to ambient noise
at public places.

Location Dep. Store Car Coffee Shop Class Lab
Power ratio 1.57 1.81 2.01 2.10 2.31

Acoustic Leakage Cancellation
Recall that the Ripple receiver records the sound and pro-
duces a synchronized phase-shifted signal to cancel the
sound, and superimposes a jamming sequence to further
camouflage the leakage. Figure 22 shows the impact of
cancellation using a ratio of the power of the residual sig-
nal to the original signal, measured at different distances.
Evidently, the cancellation is better with increasing dis-
tance. This is because the generated “anti-noise” approx-
imates the first few strong harmonics of the sound. How-
ever, the SoV also contains some other low-energy com-
ponents that fade with distance making the anti-noise sig-
nal more similar to the vibration’s sounds. Hence the
cancellation is better at a distance, until around 4ft, after
which residual signal drops below the noise floor and our
calculated power becomes constant. The original signal
also decreases but is still above the noise floor past 4ft,
hence, the ratio increases.
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Figure 22: Ratio of residual to original signal power (in
dB) at increasing distances from the source.

Acoustic Jamming
Ripple applies jamming to further camouflage any acous-
tic residue after the cancellation. To evaluate the lower
bound of jamming efficiency, we make the experiment
more favorable to the attacker. We transmit only two
amplitude levels (binary data bits) at 10 bits per second.
We place the phone on glass, the scenario that creates
loudest sound. The eavesdropper microphone is placed
as close as possible to the transmitter, without touching
it. To quantify the efficacy of the jamming, we correlate
the actual transmitted signal with the received jammed
signal and plot the correlation coefficient in the Table 3.
A high correlation coefficient indicates high probability
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of correctly decoding the message by the adversary, and
the vice versa. The table shows the correlation values
for various ratios of the jamming to signal power. Ev-
ident from the table, the correlation coefficient sharply
decreases when Ripple increases the jamming power.

Table 3: The mean and std. dev. of the correlation coef-
ficient for increasing jamming to signal power ratio.

Power ratio 0 0.4 0.8 1.2 1.6 2
Corr. mean 0.68 0.55 0.35 0.19 0.18 0.09

Corr. std. dev. 0.027 0.015 0.017 0.008 0.003 0.003

7 Limitations and Future Work
Needless to say, this paper is an early step – some aspects
need deeper treatment, as discussed below.

Bounds and Optimality. We have not derived an up-
per bound on the capacity of vibratory communication,
nor do we believe that our design decisions are optimal.
We have taken an engineering approach and developed
an end-to-end solution using techniques borrowed from
RF/acoustic communication. Further work is needed to
“tighten” the design towards optimality, including gains
from coding and cancellation (on X, Y, Z dimensions).

Energy. Given that vibra-motors can be energy con-
suming, its important to characterize the energy ver-
sus throughput tradeoffs. For smartphone applications,
vibrations are likely to be used occasionally for short
exchanges, so perhaps energy is not a major hurdle.
Nonetheless, when the phone battery is low, the ability
to adapt can be a valuable feature.

Other Side-channels. An attacker could exploit the vi-
sual channel with a high-speed camera [17] to decode
the vibratory bits. Even physical eavesdropping may
be a threat, where the attacker sneakily attaches an ac-
celerometer to the surface on which the Ripple devices
are located. A probable solution to such attacks can be
“vibratory jamming”. Essentially, the receiver’s vibra-
motor could generate a pseudo-random jamming vibra-
tion while receiving the data from the transmitter. Of
course, the transmitter is unaware of this and performs
normal transmission. The net vibration video-recorded
by the attacker’s camera is actually the sum of two vi-
brations, hiding the actual transmitted bits. However,
since the receiver knows the pseudo-random jamming se-
quence it has deliberately injected, it can cancel it out.
Of course, this pseudo-random vibration should have
enough power to create desirable entropy at the trans-
mitter, else the eavesdropper can focus only on the trans-
mitter’s vibration. We leave the viability of these attacks
and mitigations to future work.

8 Related Work
Vibration generation and sensing: Applications in
haptic HCI for assisted learning, touch-augmented en-
vironments, and haptic learning have used vibrations for
communication to humans [39, 23, 31, 42, 16]. How-
ever, the push for high communication data rates be-
tween vibrators and accelerometers is relatively unex-
plored. Off late, personal/environment sensing on mo-
bile devices has gained research attention. Applications
like (sp)iPhone [36] and TapPrints[38] demonstrate the
ability to infer keystrokes through background motion
sensing. While many more efforts are around activity
recognition from vibration signatures, this paper aims to
modulate vibration for communication.

Vibratory communication: The papers [45] and [32]
are probably closest to Ripple. They both encode
vibrations through ON-OFF keying, with ON/OFF
durations in the range of a second (i.e., around 1 bits/s).
This is adequate for applications like secure pairing
between two smart phones, or sending a tiny URL
over tens of seconds. However, unlike Ripple, they do
not focus on the wide range of PHY and cross-layer
radio design issues and possible security leaks. Dhwani
[41] is an elegant work on acoustic NFC and addresses
conceptually similar problems, however, their acoustic
platform are appreciably different from Ripple.

Technologies like Bump [4, 37, 43, 15, 30, 27, 35] use
accelerometer/vibrator-motor response to facilitate se-
cure pairing between devices. However, these techniques
are primarily designed to exchange small signatures, as
opposed to the arbitrary data transmission in Ripple. As
indicated by researchers [45, 26], the lack of the dynamic
secret message in Bump-like techniques makes them less
secure in the wild. These modes also require Internet
connectivity and trusted third party servers to function,
none of which is needed in Ripple.

9 Conclusion
This paper is an attempt to explore a new modality of
communication – vibration. Through multi-carrier mod-
ulation, orthogonal vibration division, and leakage can-
cellation, our system, Ripple, is able to achieve 200 bits/s
alongside a strong level of security against side channel
attacks. While there is room for improvement, we be-
lieve this paper could serve as a stepping stone for excit-
ing vibration-based technologies and applications.
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Multi-Person Localization via RF Body Reflections
Fadel Adib Zachary Kabelac Dina Katabi
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Abstract– We have recently witnessed the emergence
of RF-based indoor localization systems that can track
user motion without requiring the user to hold or wear any
device. These systems can localize a user and track his
gestures by relying solely on the reflections of wireless
signals off his body, and work even if the user is behind a
wall or obstruction. However, in order for these systems
to become practical, they need to address two main chal-
lenges: 1) They need to be able to operate in the presence
of more than one user in the environment, and 2) they
must be able to localize a user without requiring him to
move or change his position.

This paper presents WiTrack2.0, a multi-person local-
ization system that operates in multipath-rich indoor en-
vironments and pinpoints users’ locations based purely
on the reflections of wireless signals off their bodies.
WiTrack2.0 can even localize static users, and does so by
sensing the minute movements due to their breathing. We
built a prototype of WiTrack2.0 and evaluated it in a stan-
dard office building. Our results show that it can localize
up to five people simultaneously with a median accuracy
of 11.7 cm in each of the x/y dimensions. Furthermore,
WiTrack2.0 provides coarse tracking of body parts, iden-
tifying the direction of a pointing hand with a median er-
ror of 12.5◦, for multiple users in the environment.

1 INTRODUCTION

Over the past decade, the networking community has
made major advances in RF-based indoor localization [5,
34, 21, 26, 38, 17, 21, 11, 22], which led to systems that
can localize a wireless device with centimeter-scale accu-
racy. Recently however the research community has real-
ized that it is possible to localize a user, without requiring
him to wear or carry a wireless device [25, 3]. Such a leap
from device-based to device-free indoor localization can
enable ubiquitous tracking of people and their gestures.
For example, it can enable a smart home to continuously
localize its occupants and adjust the heating in each room
according to the number of people in it. It would also en-
able a smart home to track our hand gestures so that we
may control appliances by pointing at them, or turn the
TV with a wave of our arm. Device-free tracking can also
be leveraged in many applications where it is either in-
convenient or infeasible for the user to hold/wear a device
such as in gaming and virtual reality, elderly monitoring,
intrusion detection, and search and rescue missions [3].

Past work has taken initial steps towards this vision [3,
18, 7]. However, these proposals have fundamental limi-

tations that render them impractical for natural home en-
vironments. Specifically, they either require covering the
entire space with a dense, surveyed grid of sensors [18, 7]
or they fail in the presence of multiple users in the envi-
ronment [3]. Additionally, these past proposals are also
limited in their ability to detect the presence of users.
In particular, they either require the user to continuously
move to detect his presence [3], or they need to perform
extensive prior calibration or training [18, 7].

In this paper, we introduce WiTrack2.0, a device
free localization system that transcends these limitations.
Specifically, WiTrack2.0 accurately localizes multiple
users in the environment. It does so by disentangling the
reflections of wireless signals that bounce off their bod-
ies. Furthermore, it neither requires prior calibration nor
that the users move in order to localize them.

To achieve its goal, WiTrack2.0 has to deal with multi-
ple challenges. As with traditional device-based localiza-
tion, the most difficult challenge in indoor environments
is the multipath effect [34, 17]. Specifically, wireless sig-
nals reflect off all objects in the environment making it
hard to associate the incoming signal with a particular lo-
cation. To overcome this challenge, past work [3] focuses
on motion to capture signal reflections that change with
time. It then assumes that only one person is present in
the environment, and hence all motion can be attributed
to him. However, if multiple people move in the environ-
ment or if the person is static, then this assumption no
longer works.

To address this challenge, we observe that the indoor
multipath varies significantly when it is measured from
different vantage points. Hence, one can address this
problem by positioning multiple transmit and receive an-
tennas in the environment, and measuring the time of
flight from each of these transmit-receive antenna pairs.
However, the signals emitted from the different trans-
mitters will reflect off the bodies of the all the users in
the environment, and these reflections interfere with each
other leading to wireless collisions. In §5, we show how
WiTrack2.0 disentangles these interfering reflected sig-
nals to localize multiple users in the presence of heavy
indoor multipath.

A second challenge that WiTrack2.0 has to address
is related to the near-far problem. Specifically, reflec-
tions off the nearest person can have much more power
than distant reflections, obfuscating the signal from dis-
tant people, and preventing their detection or tracking.
To address this issue, we introduce Successive Silhou-
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ette Cancellation (SSC) an approach to address the near-
far problem, which is inspired by successive interference
cancellation. This technique starts by localizing the clos-
est person, then eliminates his impact on the received sig-
nal, before proceeding to localize further users (who have
weaker reflections). It repeats this process iteratively un-
til it has localized all the users in a scene. Note, however,
that each user is not a point reflector; hence, his wireless
reflection has a complex structure that must be taken into
account, as we describe in §6.

A third challenge that our system addresses is related to
localizing static users. Specifically, past work that tracks
human motion needs to eliminate reflections off static ob-
jects by subtracting consecutive measurements. However,
this subtraction also results in eliminating the reflections
off static users. To enable us to localize static users, we
exploit the fact these users still move slightly due to their
breathing. However, the breathing motion is fairly slow in
comparison to body motion. Specifically, the chest moves
by a sub-centimeter distance over a period of few sec-
onds; in contrast, a human would pace indoors at 1 m/s.
Hence, WiTrack2.0 processes the reflected signals at mul-
tiple time scales that enable it to accurately localize both
types of movements as we describe in §7,

We have built a prototype of WiTrack2.0, using USRP
software radios and an analog FMCW radio. We run ex-
periments both in line-of-sight (LOS) scenarios and non-
line-of-sight (NLOS) scenarios, where the device is in a
different room and is tracking people’s motion through
the wall. Empirical results from over 300 experiments
with 11 human subjects show the following:

• Motion Tracking: WiTrack2.0 accurately tracks the mo-
tion of up to four users simultaneously, without requiring
the users to hold or wear any wireless device. In an area
that spans 5 m × 7 m, its median error across all users is
12.1cm in the x/y dimensions.

• Localizing Static People: By leveraging their breathing
motion, WiTrack2.0 accurately localizes up to five static
people in the environment. Its median error is 11.2 cm in
the x/y dimensions across all the users in the scene.

• Tracking Hand Movements: WiTrack2.0’s localization
capability extends beyond tracking a user’s body to
tracking body parts. We leverage this capability to recog-
nize concurrent gestures performed in 3D space by mul-
tiple users. In particular, we consider a gesture in which
three users point in different directions at the same time.
Our WiTrack2.0 prototype detects the pointing direc-
tions of all three users with a median accuracy of 10.3◦.

Contributions: This paper demonstrates the first device-
free RF-localization system that can accurately localize
multiple people to centimeter-scale in indoor multipath-
rich environments. This is enabled by a novel transmis-
sion protocol and signal processing algorithms which al-
low isolating and localizing different users in the environ-

ment. The paper also presents an evaluation of the sys-
tem, showing that it can localize moving and static users
in line-of-sight and through-wall settings with a median
accuracy of 7-18 cm across all of these scenarios.

2 RELATED WORK
Indoor Localization. WiTrack2.0 builds on a rich net-
working literature on indoor localization [5, 34, 21, 26,
38, 17, 21, 11, 22] which has focused on localizing wire-
less devices. In comparison to all of these works, how-
ever, WiTrack2.0 focuses on localizing users by relying
purely on the reflections of RF signals off their bodies.

WiTrack2.0 is also related to proposals for device-free
localization, which deploy a sensor network and mea-
sure the signal strength between different nodes to local-
ize users [36, 40]. However, in comparison to these past
proposals, WiTrack2.0 neither requires deploying a net-
work of dozens to hundreds of sensors [36, 18] nor does
it require extensive calibration [25, 24, 40]. Furthermore,
because it relies on time-of-flight measurements, it can
achieve a localization accuracy that is 10× higher than
state-of-the-art RSSI-based systems [25, 24, 18, 7, 19].

WiTrack2.0’s design builds on our prior work,
WiTrack [3], which also used time of flight (TOF) mea-
surements to achieve high localization accuracy, and
which did not require prior environmental calibration. In
comparison to WiTrack, which could localize only a sin-
gle person and only if that person is moving, WiTrack2.0
can localize up to five users simultaneously, even if they
are perfectly static (by relying on their breathing motion).

WiTrack2.0 is also related to non-localization systems
that employ RF reflections off the human body [4, 20, 33,
35]. These systems can detect the presence of people or
identify a handful of gestures or activities. However, un-
like WiTrack2.0, they have no mechanism for obtaining
the location of a person.
Radar Systems. WiTrack2.0 builds on past radar litera-
ture. In particular, it uses the FMCW (Frequency Mod-
ulated Carrier Waves) technique to obtain accurate time-
of-flight measurements [15, 23, 31, 9]. However, its usage
of FMCW has a key property that differentiates it from
all prior designs: it transmits from multiple antennas con-
currently while still allowing its receivers to isolate the
reflections from each of the Tx antennas.

More importantly, none of the past work on radar ad-
dresses the issue of indoor multipath. Specifically, past
work on see-through-wall radar has been tailored for us-
age in strictly military settings. Hence, it mostly oper-
ates in an open field with an erected wall [23, 10], or it
focuses on detecting metallic objects which have signifi-
cantly higher reflection coefficients than furniture, walls,
or the human body [13, 28, 27]. Work tested on human
subjects in indoor environments has focused on detecting
the presence of humans rather than on accurately localiz-
ing them [16, 39]; in fact, these techniques acknowledge
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Figure 1—Measuring Distances using FMCW. (a) shows the transmitted FMCW signal and its reflection. The TOF between the transmitted and
received signals maps to a frequency shift Δf between them. (b) shows the TOF profile obtained after performing an FFT on the baseband FMCW
signal. The profile plots the amount of reflected power at each TOF. (c) shows that a moving person’s reflections pop up after background subtraction.
(d) shows how a TOF measurement maps to a round-trip distance, which may correspond to any location on an ellipse whose foci are Tx and Rx.

that multipath leads to the well-known “ghosting effect”,
but ignore these effects since they do not prevent detect-
ing the presence of a human. In comparison to the above
work, WiTrack2.0 focuses on accurate localization of hu-
mans in daily indoor settings, and hence introduces two
new techniques that enable it to address the heavy multi-
path in standard indoor environments: multi-shift FMCW,
and successive silhouette cancellation.
Iterative Cancellation Frameworks. The framework of
iteratively identifying and canceling out the strongest
components of a signal is widely used in many do-
mains. Naturally, however, the details of how the highest
power component is identified and is eliminated varies
from one application to another. In the communications
community, we refer to such techniques as successive
interference cancellation, and they have been used in
a large number of applications such as ZigZag [12],
VBLAST [37], and full duplex [6]. In the radio astronomy
community, these techniques are referred to as CLEAN
algorithms and, similarly, have a large number of instan-
tiations [14, 29, 30]. Our work on successive silhouette
cancellation also falls under this framework and is in-
spired by these algorithms. However, in comparison to
all the past work, it focuses on identifying the reflections
of the humans in the environment and canceling them
by taking into account the different vantage points from
which the time-of-flight is measured as well as the fact
that the human body is not a point reflector.

3 PRIMER
This section provides necessary background regarding

single-person motion tracking via RF body reflections.
The process of localizing a user based on radio reflec-

tions off her body has three steps: 1) obtaining time-of-
flight (TOF) measurements to various reflectors in the en-
vironment; 2) eliminating TOF measurements due to re-
flections of static objects like walls and furniture; and 3)
mapping the user’s TOFs to a location.
Step 1: Obtaining TOF measurements to various re-
flectors in the environment. A typical way for mea-
suring the time-of-flight (TOF) is to use a Frequency-
Modulated Carrier Waves (FMCW) radio. An FMCW
transmitter sends a narrowband signal (e.g., a few KHz)
but makes the carrier frequency sweep linearly in time,

as illustrated by the solid green line in Fig. 1(a). The re-
flected signal is a delayed version of the transmitted sig-
nal, which arrives after bouncing off a reflector, as shown
by the dotted green line in Fig. 1(a). Because time and
frequency are linearly related in FMCW, the delay be-
tween the two signals maps to a frequency shift Δf be-
tween them. Hence, the time-of-flight can be measured as
the difference in frequency Δf divided by the slope of the
sweep in Fig. 1(a):

TOF = Δf/slope (1)

This description generalizes to an environment with
multiple reflectors. Because wireless reflections add up
linearly over the medium, the received signal is a linear
combination of multiple reflections, each of them shifted
by some Δf that corresponds to its TOF. Hence, one can
extract all these TOFs by taking an FFT of the received
signal. The output of the FFT gives us the TOF profile
which we define as the reflected power we obtain at each
possible TOF between the transmit antenna and receive
antenna, as shown in Fig. 1(b).1

Step 2: Eliminating TOFs of static reflectors. To lo-
calize a human, we need to identify his/her reflections
from those of other objects in the environment (e.g., walls
and furniture). This may be done by leveraging the fact
that the reflections of static objects remain constant over
time. Hence, one can eliminate the power from static
reflectors by performing background subtraction – i.e.,
by subtracting the output of the TOF profile in a given
sweep from the TOF profile of the signal in the previous
sweep. Fig. 1(b) and 1(c) show how background subtrac-
tion eliminates the power in static TOFs from the TOF
profile, and allows one to notice the weak power result-
ing from a moving person.
Step 3: Mapping TOFs to distances. Recall that the
TOF corresponds to the time it takes the signal to travel
from the transmitter to a reflector and back to the receiver.
Hence, we can compute the corresponding round-trip dis-
tance by multiplying this TOF by the speed of light C:

round trip distance = C × TOF = C × Δf
slope

(2)

1The FFT is performed on the baseband FMCW signal – i.e., on the
signal we obtain after mixing the received signal with the transmitted
FMCW.
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(a) Antenna (b) Antenna Setup

Figure 2—WiTrack2.0’s Antennas and Setup. (a) shows one of
WiTrack2.0’s directional antenna (3cm × 3.4cm) placed next to a quar-
ter; (b) shows the antenna setup in our experiments, where antennas are
mounted on a 2m× 1m platform and arranged in a single vertical plane.

Knowing the round trip distance localizes the person to an
ellipse whose foci are the transmit and receive antennas.
4 WITRACK2.0 OVERVIEW

WiTrack2.0 is a wireless system that can achieve
highly accurate localization of multiple users in
multipath-rich indoor environments, by relying purely on
the reflections of wireless signals off the users’ bodies.
For static users, it localizes them based on their breath-
ing, and can also localize the hand motions of multiple
people, enabling a multi-user gesture-based interface.

WiTrack2.0 is a multi-antenna system consisting of
five transmit antennas and five receive antennas, as shown
in Fig. 2. The antennas are directional, stacked in a single
plane, and mounted on a foldable platform as shown in
Fig. 2(b). This arrangement is chosen because it enables
see-through-wall applications, whereby all the antennas
need to be lined up in a plane facing the wall of interest.

WiTrack2.0 operates by transmitting RF signals and
capturing their reflections after they bounce off different
users in the environment. Algorithmically, WiTrack2.0
has two main components: 1) Multi-shift FMCW, a tech-
nique that enables it to deal with multipath effects, and (2)
Successive Silhouette Cancellation (SSC), an algorithm
that allows WiTrack2.0 to overcome the near-far problem.
The following sections describe these components.
5 MULTI-SHIFT FMCW

Multipath is the first challenge in accurate indoor local-
ization. Specifically, not all reflections that survive back-
ground subtraction correspond to a moving person. This
is because the signal reflected off the human body may
also reflect off other objects in the environment before ar-
riving at the receive antenna. As this person moves, this
multipath reflection also moves with him and survives the
background subtraction step. In single-user localization,
one may eliminate this type of multipath by leveraging
that these secondary reflections travel along a longer path
before they arrive at the receive antenna. Specifically, by
electing the smallest TOF after background subtraction,
one may identify the round-trip distance to the user.

However, the above invariant does not hold in multi-
person localization since different users are at different
distances with respect to the antennas, and the multipath

of a nearby user may arrive earlier than that of a more
distant user, or even interfere with it. In this section, we
explore this challenge in more details, and show how
we can overcome it by obtaining time-of-flight measure-
ments from different vantage points in the environment.

5.1 Addressing Multi-path in Multi-User Localiza-
tion

To explore the above challenge in practice, we run an
experiment with two users in a 5 × 7 m furnished room
(with tables, chairs, etc.) in a standard office building. We
study what happens as we successively overlay ellipses
from different transmit-receive pairs. Recall from §3 that
each transmit-receive antenna pair provides us with a
TOF profile – i.e., it tells us how much reflected power
we obtain at each possible TOF between the transmit an-
tenna and receive antenna (see Fig. 1(c)) – and that each
such TOF corresponds to an ellipse in 2D (as in Fig. 1(d)).

Now let us map all TOFs in a TOF profile to the corre-
sponding round trip distances using Eq. 2, and hence the
resulting ellipses. This process produces a heatmap like
the one in Fig. 3(a), where the x and y axes correspond
to the plane of motion. For each ellipse in the heatmap,
the color in the image reflects the amount of received
power at the corresponding TOF. Hence, the ellipse in red
corresponds to a strong reflector in the environment. The
orange, yellow, and green ellipses correspond to weaker
reflections respectively; these reflections could either be
due to another person, multi-path reflections of the first
person, or noise. The blue regions in the background cor-
respond to the absence of reflections from those areas.

Note that the heatmap shows a pattern of half-ellipses;
the foci of these ellipses are the transmit and receive an-
tennas, both of which are placed along the y = 0 axis.
The reason we only show the upper half of the ellipses is
that we are using directional antennas and we focus them
towards the positive y direction. Hence, we know that we
do not receive reflections from behind the antennas.

Fig. 3(a) shows the ellipses corresponding to the TOF
profiles from one Tx-Rx pair. Now, let us see what hap-
pens when we superimpose the heatmaps obtained from
two Tx-Rx pairs. Fig. 3(b) shows the heatmap we obtain
when we overlay the ellipses of the first transmit-receive
pair with those from a second pair. We can now see two
patterns of ellipses in the figure, the first pattern resulting
from the TOFs of the first pair, and the second pattern due
to the TOFs of the second pair. These ellipses intersect
in multiple locations, resulting in red or orange regions,
which suggest a higher probability for a reflector to be in
those regions. Recall that there are two people in this ex-
periment. However, Fig. 3(b) is not enough to identify the
locations of these two people.

Figs. 3(c) and 3(d) show the result of overlaying el-
lipses from three and four Tx-Rx pairs respectively. The
figures show how the noise and multi-path from different
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(a) One Tx-Rx pair
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(b) Two Tx-Rx pairs
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(c) Three Tx-Rx pairs
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(d) Four Tx-Rx pairs
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(e) Five Tx-Rx pairs

Figure 3—Increasing the Number of Tx-Rx pairs enables Localizing Multiple Users. The figure shows the heatmaps obtained from combining
TOF profiles of multiple Tx-Rx antenna pairs in the presence of two users. The x/y axes of each heatmap correspond to the real world x/y dimensions.

antennas averages out to result in a dark blue background.
This is because different Tx-Rx pairs have different per-
spectives of the indoor environment; hence, they do not
observe the same noise or multi-path reflections. As a re-
sult, the more we overlay heatmaps from different Tx-Rx
pairs, the dimmer the multipath effect, and the clearer the
candidate locations for the two people in the environment.

Next, we overlay the ellipses from five transmit-receive
pairs and show the resulting heatmap in Fig. 3(e). We can
now clearly see two bright spots in the heatmap: one is red
and the other is orange, whereas the rest of the heatmap
is mostly a navy blue background indicating the absence
of reflectors. Hence, in this experiment, we are able to lo-
calize the two users using TOF measurements from five
Tx-Rx pairs. Combining these measurements together al-
lowed us to eliminate the multipath effects and localize
the two people passively using their reflections.
Summary: As the number of users increases, we need
TOF measurements from a larger number of Tx-Rx pairs
to localize them, and extract their reflections from mul-
tipath. For the case of two users, we have seen a sce-
nario whereby the TOFs of five Tx-Rx pairs were suffi-
cient to accurately localize both of them. In general, the
exact number would depend on multipath and noise in the
environment as well as on the number of users we wish to
localize. These observations motivate a mechanism that
can provide us with a large number of Tx-Rx pairs while
scaling with the number of users in the environment.

5.2 The Design of Multi-shift FMCW

In the previous section, we showed that we can local-
ize two people by overlaying many heatmaps obtained
from mapping the TOF profiles of multiple Tx-Rx pairs to
the corresponding ellipses. But how do we obtain TOFs
from many Tx-Rx pairs? One option is to use one FMCW
transmitter and a large number of receivers. In this case,
to obtain N Tx-Rx pairs, we would need one transmitter
and N receivers. The problem with this approach is that
it needs a large number of receivers, and hence does not
scale well as we add more users to the environment.

A more appealing option is to use multiple FMCW
transmit and receive antennas. Since the signal transmit-
ted from each transmit antenna is received by all receive
antennas, this allows us to obtain N Tx-Rx pairs using
only

√
N transmit antennas and

√
N receive antennas.

Figure 4—Multi-shift FMCW. WiTrack2.0 transmits FMCW sig-
nals from different transmit antennas after inserting virtual delays be-
tween them. Each delay must be larger than the highest time-of-flight
(TOFlimit) due to objects in the environment.

However, the problem with this approach is that the
signals from the different FMCW transmitters will inter-
fere with each other over the wireless medium, and this
interference will lead to localization errors. To see why
this is true, consider a simple example where we want to
localize a user, and we have two transmit antennas, Tx1
and Tx2, and one receive antenna Rx. The receive antenna
will receive two reflections – one due to the signal trans-
mitted from Tx1, and another due to Tx2’s signal. Hence,
its TOF profile will contain two spikes referring to two
time-of-flight measurements TOF1 and TOF2.

With two TOFs, we should be able to localize a sin-
gle user based on the intersection of the resulting el-
lipses. However, the receiver has no idea which TOF cor-
responds to the reflection of the FMWC signal generated
from Tx1 and which corresponds to the reflection of the
FMCW signal generated by Tx2. Not knowing the correct
Tx means that we do not know the foci of the two ellipses
and hence cannot localize. For example, if we incorrectly
associate TOF1 with Tx2 and TOF2 with Tx1, we will
generate a wrong set of ellipses, and localize the person
to an incorrect location. Further, this problem becomes
more complicated as we add more transmit antennas to
the system. Therefore, to localize the user, WiTrack2.0
needs a mechanism to associate these TOF measurements
with their corresponding transmit antennas.

We address this challenge by leveraging the structure
of the FMCW signal. Recall that FMCW consists of a
continuous linear frequency sweep as shown by the green
line in Fig. 4. When the FMCW signal hits a body, it re-
flects back with a delay that corresponds to the body’s
TOF. Now, let us say TOFlimit is the maximum TOF
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Figure 5—Multi-shift FMCW Architecture. The generated FMCW
signal is fed to multiple transmit antennas via different delay lines. At
the receive side, the TOF measurements from the different antennas are
combined to obtain the 2D heatmaps.

that we expect in the typical indoor environment where
WiTrack2.0 operates. We can delay the FMCW signal
from the second transmitter by τ > TOFlimit so that all
TOFs from the second transmitter are shifted by τ with
respect to those from the first transmitter, as shown by
the red line in Fig. 4. Thus, we can prevent the various
FMCW signals from interfering by ensuring that each
transmitted FMCW signal is time shifted with respect to
the others, and those shifts are significantly larger than
the time-of-flight to objects in the environment. We refer
to this design as Multi-shift FMCW.

As a result, the receiver would still compute two TOF
measurements: the first measurement (from Tx1) would
be TOF1, and the second measurement (from Tx2) would
be TOF′

2 = TOF2 + τ . Knowing that the TOF measure-
ments from Tx2 will always be larger than τ , WiTrack2.0
determines that TOF1 is due to the signal transmitted by
Tx1, and TOF′

2 is due to the signal transmitted by Tx2.
This idea can be extended to more than two Tx anten-

nas, as shown in Fig. 5. Specifically, we can transmit the
FMCW signal directly over the air from Tx1, then shift
it by τ and transmit it from Tx2, then shift it by 2τ and
transmit it from Tx3, and so on. At the receive side, all
TOFs between 0 and τ are mapped to Tx1, whereas dis-
tances between τ and 2τ are mapped to Tx2, and so on.
Summary: Multi-shift FMCW has two components: the
first component allows us to obtain TOF measurements
from a large number of Tx-Rx pairs; the second compo-
nent operates on the TOFs obtained from these different
Tx-Rx pairs by superimposing them into a 2D heatmap,
which allows us to localize multiple users in the scene.

6 SUCCESSIVE SILHOUETTE CANCELLATION
With multi-shift FMCW, we obtain TOF profiles from

a large number of Tx-Rx pairs, map them to 2D heatmaps,
overlay the heatmaps, and start identifying users’ loca-
tions. However, in practice this is not sufficient because
different users will exhibit the near-far problem. Specifi-
cally, reflections of a nearby user are much stronger than
reflections of a faraway user or one behind an obstruction.

Figure 7—Finding TOFmin and TOFmax. TOFmin is determined by the
round-trip distance from the Tx-Rx pair to the closest point on the per-
son’s body. Since the antennas are elevated, TOFmax is typically due to
the round-trip distance to the person’s feet.

Fig. 6(a) illustrates this challenge. It shows the 2D
heatmap obtained in the presence of four persons in the
environment. The heatmap allows us to localize only two
of these persons: one is clearly visible at (0.5, 2), and an-
other is fairly visible at (−0.5, 1.3). The other two people,
who are farther away from WiTrack2.0, are completely
overwhelmed by the power of the first two persons.

To deal with this near-far problem, rather than localiz-
ing all users in one shot, WiTrack2.0 performs Successive
Silhouette Cancellation (SSC) which consists of 4 steps:
1. SSC Detection: finds the location of the strongest user

by overlaying the heatmaps of all Tx-Rx pairs.
2. SSC Re-mapping: maps a person’s location to the set of

TOFs that would have generated that location at each
transmit-receive pair.

3. SSC Cancellation: cancels the impact of the person on
the TOF profiles of all Tx-Rx pairs.

4. Iteration: re-computes the heatmaps using the TOF
profiles after cancellation, overlays them, and proceeds
to find the next strongest reflector.

We now describe each of these steps in detail by walking
through the example with four persons shown in Fig. 6.
SSC Detection. In the first step, SSC finds the location of
the highest power reflector in the 2D heatmap of Fig. 6(a).
In this example, the highest power is at (0.5, 2), indicating
that there is a person in that location.
SSC Re-mapping. Given the (x, y) coordinates of the per-
son, we map his location back to the corresponding TOF
at each transmit-receive pair. Keep in mind that each per-
son is not a point reflector; hence, we need to estimate
the spread of reflections off his entire body on the TOF
profile of each transmit-receive pair.

To see how we can do this, let us look at the illustra-
tion in Fig. 7 to understand the effect of a person’s body
on one transmit-receive pair. The signal transmitted from
the transmit antenna will reflect off different points on
the person’s body before arriving at the receive antenna.
Thus, the person’s reflections will appear between some
TOFmin and TOFmax in the TOF profile at the Rx antenna.

Note that TOFmin and TOFmax are bounded by the clos-
est and furthest points respectively on a person’s body
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(d) Detect Fourth Person
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(e) Focus on First Person
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(f) Focus on Second Person

-4 -3 -2 -1  0  1  2  3  4
Distance (meters)

 0

 1

 2

 3

 4

 5

 6

 7

 8

D
is

ta
n
c
e
 (

m
e
te

rs
)

(g) Focus on Third Person
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(h) Focus on Fourth Person

Figure 6—Successive Silhouette Cancellation. (a) shows the 2D heatmap obtained by combining all the TOFs in the presence of four users. (b)-(d)
show the heatmaps obtained after canceling out the first, second, and third user respectively. (e)-(h) show the result of the SSC focusing step on each
of the users, and how it enables us to accurately localize each person while eliminating interference from all other users.

from the transmit-receive antenna pair. Let us first focus
on how we can obtain TOFmin. By definition, the closest
point on the person’s body is the one that corresponds to
the shortest round-trip distance to the Tx-Rx pair, where
the round-trip distance is the summation of the forward
path from Tx to that point and the path from that point
back to Rx. Formally, for a Tx antenna at (xt, 0, zt), an Rx
antenna at (xr, 0, zr),2 we can compute dmin as:

min
z

√
(xt − x)2 + y2 + (zt − z)2 +

√
(xr − x)2 + y2 + (zr − z)2

(3)
where (x, y, z) is any reflection point on the user’s body.

One can show that this expression is minimized when:

z − zt

z − zr
= −

√
(xt − x)2 + y2

(xr − x)2 + y2
(4)

Hence, using the detected (x, y) position, we can solve
for z then substitute in Eq. 3 to obtain dmin.

Similarly, TOFmax is bounded by the round-trip dis-
tance to point on the person’s body that is furthest from
the Tx-Rx pair. Again, the x and y coordinates of the fur-
thest point are determined by the person’s location from
the SSC Detection step. However, we still need to figure
out the z coordinate of this point. Since the transmitter
and receiver are both raised above the ground (at around
1.2 meters above the ground), the furthest point from the
Tx-Rx pair is typically at the person’s feet. Therefore, we
know that the coordinates of this point are (x, y, 0), and
hence we can compute dmax as:

dmax =

√
(xt − x)2 + (y)2 + z2

t +
√

(xr − x)2 + (y)2 + z2
r .

Finally, we can map dmin and dmax to TOFmin and
TOFmax by dividing them by the speed of light C.

2Recall that all the antennas are in the vertical plane y = 0, which is
parallel to a person’s standing height.

SSC Cancellation. The next step is to use TOFmin and
TOFmax to cancel the person’s reflections from the TOF
profiles of each transmit-receive pair. To do that, we take
a conservative approach and remove the power in all
TOFs between TOFmin and TOFmax within that profile. Of
course, this means that we might also be partially can-
celing out the reflections of another person who happens
to have a similar time of flight to this Tx-Rx pair. How-
ever, we rely on the fact that multi-shift FMCW provides
a large number of TOF profiles from many Tx-Rx pairs.
Hence, even if we cancel out the power in the TOF of a
person with respect to a particular Tx-Rx pair, each per-
son will continue to have a sufficient number of TOF mea-
surements from the rest of the antennas.

We repeat the process of computing TOFmin and
TOFmax with respect of each Tx-Rx pair and cancelling
the power in that range, until we have eliminated any
power from the recently localized person.
Iteration. We proceed to localize the next person. This
is done by regenerating the heatmaps from the updated
TOF profiles and overlaying them. Fig. 6(b) shows the
obtained image after performing this procedure for the
first person. Now, a person at (−0.5, 1.3) becomes the
strongest reflector in the scene.

We repeat the same procedure for this user, canceling
out his interference, then reconstructing a 2D heatmap in
Fig. 6(c) using the remaining TOF measurements. Now,
the person with the strongest reflection is at (0.8, 2.7).
Note that this heatmap is noisier than Figs. 6(a) and 6(b)
because now we are dealing with a more distant person.

WiTrack2.0 repeats the same cancellation procedure
for the third person and constructs the 2D heatmap in
Fig. 6(d). The figure shows a strong reflection at (1, 4).
Recall that our antennas are placed along the y = 0 axis,
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Figure 9—Disentangling Crossing Paths. When two people cross
paths, they typically keep going along the same direction they were go-
ing before their paths crossed.

which means that this is indeed the furthest person in the
scene. Also note that the heatmap is now even noisier.
This is expected because the furthest person’s reflections
are much weaker. WiTrack2.0 repeats interference can-
cellation for the fourth person, and determines that the
SNR of the maximum reflector in the resulting heatmap
does not pass a threshold test. Hence, it determines that
there are only four people in the scene.

We note that each of these heatmaps are scaled so that
the highest power is always in red and the lowest power is
in navy blue; this change in scale emphasizes the location
of the strongest reflectors and allows us to better visual-
ize their locations. To gain more insight into the power
values and to better understand how SSC improves our
detection of further away users, Fig. 8 plots the Signal to
Interference and Noise Ratio (SINR) of the fourth person
during each iteration of SSC. The fourth user’s SINR ini-
tially starts at -21dB and is not visible in Fig. 6(a). Once
the first and second users are removed by SSC, the SINR
increases to -7dB and we can start detecting the user’s
presence in the back of Fig. 6(c). Performing another it-
eration raises the fourth person’s SINR above the noise
floor to 7dB. It also brings it above our threshold of 6dB
– i.e., twice the noise floor – making him detectable.

We perform four additional steps to improve SSC:
• Refocusing Step: After obtaining the initial estimates of

the locations of all four persons, WiTrack2.0 performs
a focusing step for each user to refine his location esti-
mate. This is done by reconstructing an interference-free
2D heatmap only using the range in the TOF profiles
that corresponds to TOFs between TOFmin and TOFmax

for that Tx-Rx pair. Figs. 6(e)- 6(h) show the images ob-
tained from this focusing step. In these images, the lo-
cation of each person is much clearer,3 which enables
higher-accuracy localization.

• Leveraging Motion Continuity: After obtaining the esti-
mates from SSC, WiTrack2.0 applies a Kalman filter and
performs outlier rejection to reject impractical jumps in
location estimates that would otherwise correspond to
abnormal human motion over a very short period of time.

• Disentangling Crossing Paths: To disentangle multiple
people who cross paths, we look at their direction of
motion before they crossed paths and project how they
would proceed with the same speed and direction as
they are crossing paths. This helps us with associating
each person with his own trajectory after crossing. Fig. 9
shows an example with two people crossing paths and
how we were able to track their trajectories despite that.
Of course, this approach does not generalize to every sin-
gle case, which may lead to some association errors after
the crossings but not to localization errors.

• Extending SSC to 3D Gesture Recognition: Similar to
past work [3], WiTrack2.0 can differentiate a hand mo-
tion from a whole-body motion (like walking) by lever-
aging the fact that a person’s hand has a much smaller
reflective surface than his entire body. Unlike past work,
however, WiTrack2.0 can track gestures even when they
are simultaneously performed by multiple users. Specif-
ically, by exploiting SSC focusing, it zooms onto each
user individually to track his gestures. In our evalua-
tion, we focus on testing a pointing gesture, where dif-
ferent users point in different directions at the same time.
By tracking the trajectory of each moving hand, we can
determine its pointing direction. Note that we perform
these pointing gestures in 3D and track hand motion by
using the TOFs from the different Tx-Rx pairs to con-
struct a 3D point cloud rather than a 2D heatmap.4 The
results in §10.3 show that we can accurately track hand
gestures performed by multiple users in 3D space.

7 LOCALIZATION BASED ON BREATHING

We extend WiTrack2.0’s SSC algorithm to localize
static people based on their breathing. Recall from §3 that
in order to track a user based on her radio reflections, we
need to eliminate reflections off all static objects in the
environment (like walls and furniture). This is typically
achieved by performing a background subtraction step,
i.e., by taking TOF profiles from adjacent time windows
and subtracting them out from each other.5

3This is because all other users’ reflections are eliminated, while,
without refocusing, only users detected in prior iterations are eliminated.

4Recall from §3 that a given TOF maps to an ellipse in 2D and an
ellipsoid in 3D. The intersection of ellipsoids in 3D allow us to track
these pointing gestures.

5Recall that we obtain one TOF profile by taking an FFT over the re-
ceived FMCW signal in baseband. Since the FMCW signal is repeatedly
swept, we can compute a new TOF profile from each sweep.
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(a) Short subtraction window
localizes a walking person.
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(b) Short subtraction window
misses a static person.
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(c) Long subtraction window
smears a walking person.
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(d) Long subtraction window
localizes a static person.

Figure 10—Need For Multiple Subtraction Windows. The 2D heatmaps show that a short subtraction window accurately localizes a pacing person
in (a) but not a static person in (b). A long subtraction window smears the walking person’s location in (c) but localizes a breathing person in (d).

Whereas this approach enables us to track moving peo-
ple, it prevents us from detecting a static person – e.g.,
someone who is standing or sitting still. Specifically, be-
cause a static person remains in the same location, his
TOF does not change, and hence his reflections would
appear as static and will be eliminated in the process of
background subtraction. To see this in practice, we run
two experiments where we perform background subtrac-
tion by subtracting two TOF profiles that are 12.5 mil-
liseconds apart from each other. The first experiment
is performed with a walking person and the resulting
heatmap is shown in Fig. 10(a), whereas the second ex-
periment is performed in the presence of a person who
is sitting at (0, 5) and the resulting heatmap is shown in
Fig. 10(b). These experiments show how the heatmap of a
moving person after background subtraction would allow
us to localize him accurately, whereas the heatmap of the
static person after background subtraction is very noisy
and does not allow us to localize the person.

To localize static people, one needs to realize that even
a static person moves slightly due to breathing. Specif-
ically, during the process of breathing, the human chest
moves by a sub-centimeter distance over a period of few
seconds. The key challenge is that this change does not
translate into a discernible change in the TOF of the per-
son. However, over an interval of time of a few seconds
(i.e., as the person inhales and exhales), it would result in
discernible changes in the reflected signal. Therefore, by
subtracting frames in time that are few seconds apart, we
should be able to localize the breathing motion.

In fact, Fig. 10(d) shows that we can accurately localize
a person who is sitting still by using a subtraction window
of 2.5 seconds. Note, however, that this long subtraction
window will introduce errors in localizing a pacing per-
son. In particular, since typical indoor walking speed is
around 1 m/s [8], subtracting two frames that are 2.5 sec-
onds apart would result in smearing the person’s location
and may also result in mistaking him for two people as
shown in Fig. 10(c).

Thus, to accurately localize both static and mov-
ing people, WiTrack2.0 performs background subtraction
with different subtraction windows. To localize moving
users, it uses a subtraction window of 12.5 ms. On the

other hand, normal adults inhale and exhale over a period
of 3–6 seconds [32] causing their TOF profiles to change
over such intervals of time. Hence, we consider the first
TOF profile during each 10-second interval, and subtract
it from all subsequent TOF profiles during that interval.
As a result, breathing users’ reflections pop up at differ-
ent instances, allowing us to detect and localize them.

8 IMPLEMENTATION

We built WiTrack2.0 using a single FMCW radio
whose signal is fed into multiple antennas. The FMCW
radio generates a low-power (sub-milliWatt) signal that
sweeps 5.46-7.25 GHz every 2.5 milliseconds. The range
and power are chosen in compliance with FCC regula-
tions for consumer electronics [2].

The schematic in Fig. 5 shows how we use this radio
to implement Multi-shift FMCW. Specifically, the gen-
erated sweep is delayed before being fed to directional
antennas for transmission.6 At the receive side, the signal
from each receive antenna is mixed with the FMCW sig-
nal and the resulting signal is fed to the USRP. The USRP
samples the signals at 2 MHz and transfers the digitized
samples to the UHD driver. These samples are processed
in software to localize users and recognize their gestures.7

The analog FMCW radio and all the USRPs are driven
by the same external clock. This ensures that there is no
frequency offset between their oscillators, and hence en-
ables subtracting frames that are relatively far apart in
time to enable localizing people based on breathing.

9 EVALUATION

Human Subjects. We evaluate the performance of
WiTrack2.0 by conducting experiments in our lab with

6The most straightforward option to delay the signal is to insert a
wire. However, wires attenuate the signal and introduce distortion over
the wide bandwidth of operation of our system, reducing its SNR. In-
stead, we exploit the fact that, in FMCW, time and frequency are lin-
early related; hence, a shift τ in time can be achieved through a shift
Δf = slope× τ in the frequency domain. Hence, we achieve this delay
by mixing FMCW with signals whose carrier frequency is Δf . This ap-
proach also provides us with the flexibility of tuning multi-shift FMCW
for different TOFlimit’s by simply changing these carrier frequencies.

7Complexity-wise, WiTrack2.0’s algorithms are linear in the number
of users, the number of Tx antennas, and the number of Rx antennas.
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eleven human subjects: four females and seven males.
The subjects differ in height from 165–185 cm as well
as in weight and build and span 20 to 50 years of age.
In each experiment, each subject is allowed to move as
they wish throughout the room. These experiments were
approved by MIT IRB protocol #1403006251.
Ground Truth. We use the VICON motion capture sys-
tem to provide us with ground truth positioning informa-
tion [1]. It consists of an array of infrared cameras that
are fitted to the ceiling of a 5 m × 7 m room, and requires
instrumenting any tracked object with infrared-reflective
markers. When an instrumented object moves, the system
tracks the infrared markers on that object and fits them
into a 3D model to identify the object’s location.

We evaluate WiTrack2.0’s accuracy by comparing it to
the locations provided by the VICON system. To track
a user using the VICON, we ask him/her to wear a hard
hat that is instrumented with five infrared markers. In ad-
dition, for the gestures experiments, we ask each user to
wear a glove that is instrumented with six markers.
Experimental Setup. We evaluate WiTrack2.0 in a stan-
dard office environment that has standard furniture: ta-
bles, chairs, boards, computers, etc. We experiment with
two setups: line-of-sight and through-the-wall. In the
through-wall experiments, WiTrack2.0 is placed outside
the VICON room with all transmit and receive anten-
nas facing one of the walls of the room. Recall that
WiTrack2.0’s antennas are directional and hence this set-
ting means that the radio beam is directed toward the
room. The VICON room has no windows; it has 6-inch
hollow walls supported by steel frames, which is a stan-
dard setup for office buildings. In the line-of-sight exper-
iments, we move WiTrack2.0 inside the room. In all of
these experiments, the subjects’ locations are tracked by
both the VICON system and WiTrack2.0.
Detection. Recall that WiTrack2.0 adopts iterative can-
cellation to detect different users in the scene. This lim-
its the number of users it can detect because of residual
interference from previous iterations. Therefore, we run
experiments to identify the maximum number of people
that WiTrack2.0 can reliably detect under various condi-
tions. Detection accuracy is measured as the percentage
of time that WiTrack2.0 correctly outputs the number of
users present in the environment. The number of users in
each experiment is known and acts as the ground truth.
We run ten experiments for each of our testing scenarios,
and plot the accuracies for each them in Fig. 11.

We make two observations from this figure. First, the
accuracy of detection is higher in line-of-sight than in
through-wall settings. This is expected because the wall
causes significant attenuation and hence reduces the SNR
of the reflected signals. Second, the detection accuracy
for breathing-based localization is higher than that of the
tracking experiments. While this might seem surprising,
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Figure 11—WiTrack2.0 ’s Detection Accuracy. The figure shows the
percentage of time that WiTrack2.0 accurately determines the number
of people in each of our evaluation scenarios.

it is actually due to the fact that the breathing experiments
operate over longer subtraction windows. Specifically, the
system outputs the number of people detected and their
locations by analyzing the trace over windows of 10 sec-
onds. In contrast, the tracking experiments require out-
putting a location of each person once every 12.5 ms,8

and hence they might not be able to detect each person
within such a small time window.

For our evaluation of localization accuracy, we run ex-
periments with the maximum number of people that are
reliably detectable, where “reliably detectable” is defined
as detected an accuracy of 95% or higher. For reference,
we summarize these numbers in the table below.

Line-of-Sight Through-Wall
Motion Tracking 4 3
Breathing-based
Localization

5 4

Table 1—Maximum Number of People Detected Reliably.

10 PERFORMANCE RESULTS
10.1 Accuracy of Multi-Person Motion Tracking

We first evaluate WiTrack2.0’s accuracy in multi-
person motion tracking. We run 100 experiments in to-
tal, half of them in line-of-sight and the second half in
through-wall settings. In each experiment, we ask one,
two, three, or four human subjects to wear the hard
hats that are instrumented with VICON markers and
move inside the VICON-instrumented room. Each sub-
ject’s location is tracked by both the VICON system and
WiTrack2.0, and each experiment lasts for one minute.
Since each FMCW sweep lasts for 2.5ms and we average
5 sweeps to obtain each TOF measurement, we collect
around 5,000 location readings per user per experiment.

Figs. 12 and 13 plot the CDFs of the location error
along the x and y coordinates for each of the localized
persons in both line-of-sight and through-wall scenarios.
The subjects are ordered from the first to the last as de-
tected by SSC. The figures reveal the following findings:

8Since the user is moving, combining measurements over a longer
interval smears his signal.
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Figure 12—Performance of WiTrack2.0’s LOS Tracking. (a) and (b)
show the CDFs of the location error in x and y for each of the tracked
users in LOS. Subjects are ordered from first to last detected by SSC.

• WiTrack2.0 can accurately track the motion of four
users when it is in the same room as the subjects. Its
median location error for these experiments is 8.5 cm
in x and 6.4 cm in y for the first user detected, and de-
creases to 15.9 cm in x and 7.2 cm in y for the last
detected user.

• In through-wall scenarios, WiTrack2.0 can accurately
localize up to three users. Its median location error
for these experiments is 8.4 cm and 7.1 cm in x/y for
the first detected user, and decreases to 16.1 cm and
10.5 cm in x/y for the last detected user. As expected,
the accuracy when the device is placed in the same
room as the users is better than when it is placed behind
the wall due to the extra attenuation (reduced SNR)
caused by the wall.

• The accuracy in the y dimension is better than the ac-
curacy in the x dimension. This discrepancy is due to
the asymmetric nature of WiTrack2.0’s setup, where
all of its antennas are arranged along the y = 0 axis.

• The localization accuracy decreases according to the
order the SSC algorithm localizes the users. This is due
to multiple reasons: First, a user detected in later iter-
ations is typically further from the device, and hence
has lower SNR, which leads to lower accuracy. Sec-
ond, SSC may not perfectly remove the reflections of
other users in the scene, which leads to residual inter-
ference and hence lower accuracy.

10.2 Accuracy of Breathing-based Localization

We evaluate WiTrack2.0’s accuracy in localizing static
people based on their breathing. We run 100 experiments
in total with up to five people in the room. Half of these
experiments are done in line-of-sight and the other half
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Figure 13—Performance of WiTrack2.0’s Through-Wall Tracking.
(a) and (b) show the CDFs of the location error in x and y for each of the
tracked users. Subjects are ordered from first to last detected by SSC.
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Figure 14—Accuracy for Localizing Breathing People in Line-of-
Sight.. The figure shows show the median and 90th percentile errors in
x/y location. Subjects are ordered from first to last detected by SSC.

are through-wall. Experiments last for 3-4 minutes. Sub-
jects wear hard hats and sit on chairs in the VICON room.

Figs. 14 and 15 plot WiTrack2.0’s localization error in
line-of-sight and through-wall settings as a function of the
order with which the subject is detected by the SSC algo-
rithm. The figures show the median and 90th percentile of
the estimation error for the x and y coordinates of each of
the subjects. The figures show the following results:

• WiTrack2.0’s breathing-based localization accuracy
goes from a median of 7.24 and 6.3 cm in x/y for the
nearest user to 18.31 and 10.85 cm in x/y for the furthest
user, in both line-of-sight and through-wall settings.

• Localization based on breathing is more accurate than
during motion. This is because when people are static,
they remain in the same position, providing us with a
larger number of measurements for the same location.

10.3 Accuracy of 3D Pointing Gesture Detection

We evaluate WiTrack2.0’s accuracy in tracking 3D
pointing gestures. We run 100 experiments in total with
one to three subjects. In each of these experiments, we
ask each subject to wear a glove that is instrumented with
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Figure 15—Accuracy for Localizing Breathing People in Through-
Wall Experiments.. The figure shows show the median and 90th per-
centile errors in x/y location. Subjects are ordered from first to last de-
tected by SSC.
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Figure 16—3D Gesture Accuracy. The figure shows the CDFs of the
orientation accuracy for the pointing gestures of each participant. Sub-
jects are ordered from first to last detected by the SSC algorithm.

infrared-reflective markers, stand in a different location
in the VICON room, and point his/her hand in a random
3D direction of their choice – as if they were playing a
shooting game or pointing at some household appliance
to control it. In most of these experiments, all subjects
were performing the pointing gestures simultaneously.

Throughout these experiments, we track the 3D lo-
cation of the hand using the VICON system and
WiTrack2.0. We then regress on the 3D trajectory to de-
termine the direction in which each user pointed (similar
to [3]). Fig. 16(a) and 16(b) plot the CDFs of the orienta-
tion error between the angles as measured by WiTrack2.0
and the VICON for the 1st, 2nd and 3rd participant (in the
order of detection by SSC). Note that we decompose the
3D pointing gesture along two directions: azimuthal (in
the x − y plane), which we denote as φ, and elevation (in
the r−z plane), which we denote as θ. The accuracy along
both of these angles is important since appliances which
the user may want to control in a home environment (e.g.,
lamps, screens, shades) span the 3D space.

The figure shows that the median orientation error in

φ goes from 8.2 degrees to 12.4 degrees from the first to
the third person, and from 12 degrees to 16 degrees in θ.
Note that WiTrack2.0’s accuracy in φ is slightly higher
than its accuracy in θ. This is due to WiTrack2.0’s setup,
where the antennas are more spread out along the x than
along the z, naturally leading to lower robustness to errors
along the z axis, and hence lower accuracy in θ. These ex-
periments demonstrate that WiTrack2.0 can achieve high
accuracy in 3D tracking of a pointing gesture.

11 DISCUSSION & LIMITATIONS

WiTrack2.0 marks an important step toward enabling
accurate indoor localization that does not require users to
hold or wear any wireless device. WiTrack2.0, however,
has some limitations that are left for future work.

1. Number of Users: WiTrack2.0 can accurately track up to
4 moving users and 5 static users. These numbers may
be sufficient for in-home tracking. However, it is always
desirable to scale the system to track more users.

2. Coverage Area: WiTrack2.0’s range is limited to 10m
due to its low power. To cover larger areas and track
more users, one may deploy multiple devices and hand
off the trajectory tracking from one to the next, as the
person moves around. Managing such a network of de-
vices, coordinating their hand-off, and arbitrating their
medium access are interesting problems to explore.

3. Lack of Identification: The system can track multiple
users simultaneously, but it cannot identify them. Addi-
tionally, it can track limb motion (e.g., a hand) but can-
not differentiate between different body parts (a hand vs.
a leg). We believe that future work can investigate this
issue by identifying fingerprints of various reflectors.

4. Limited Gesture Interface: WiTrack2.0 focuses on
tracking pointing gestures; however, the user cannot
move other body parts while performing the pointing
gesture. Extending the system to enable rich gesture-
based interfaces is an interesting avenue for future work.
Overall, we believe WiTrack2.0 pushes the limits of in-

door localization and enriches the role it can play in our
daily lives. By enabling smart environments to accurately
follow our trajectories, it paves way for these environ-
ments to learn our habits, react to our needs, and enable
us to control the Internet of Things that revolves around
our networked homes and connected environments.
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Abstract
There has been much research devoted to improving the
performance of data analytics frameworks, but compara-
tively little effort has been spent systematically identify-
ing the performance bottlenecks of these systems. In this
paper, we develop blocked time analysis, a methodology
for quantifying performance bottlenecks in distributed
computation frameworks, and use it to analyze the Spark
framework’s performance on two SQL benchmarks and
a production workload. Contrary to our expectations, we
find that (i) CPU (and not I/O) is often the bottleneck, (ii)
improving network performance can improve job comple-
tion time by a median of at most 2%, and (iii) the causes
of most stragglers can be identified.

1 Introduction
Large-scale data analytics frameworks such as
Hadoop [13] and Spark [51] are now in widespread
use. As a result, both academia and industry have
dedicated significant effort towards improving the
performance of these frameworks.

Much of this performance work has been motivated by
three widely-accepted mantras about the performance of
data analytics:

1. The network is a bottleneck. This has moti-
vated work on a range of network optimizations,
including load balancing across multiple paths,
leveraging application semantics to prioritize traffic,
aggregating data to reduce traffic, isolation, and
more [6, 14, 17–21, 27, 28, 41, 42, 48, 53].

2. The disk is a bottleneck. This has led to work on
using the disk more efficiently [43] and caching data
in memory [9, 30, 47, 51].

3. Straggler tasks significantly prolong job comple-
tion times and have largely unknown underlying
causes. This has driven work on mitigation using
task speculation [8, 10, 11, 52] or running shorter
tasks to improve load balancing [39]. Researchers
have been able to identify and target a small number
of underlying causes such as data skew [11, 26, 29]
and popularity skew [7].

Most of this work focuses on a particular aspect of the
system in isolation, leaving us without a comprehensive
understanding of which factors are most important to the
end-to-end performance of data analytics workloads.

This paper makes two contributions towards a more
comprehensive understanding of performance. First, we
develop a methodology for analyzing end-to-end per-
formance of data analytics frameworks; and second, we
use our methodology to study performance of two SQL
benchmarks and one production workload. Our results
run counter to all three of the aforementioned mantras.

The first contribution of this paper is blocked time
analysis, a methodology for quantifying performance
bottlenecks. Identifying bottlenecks is challenging for
data analytics frameworks because of pervasive paral-
lelism: jobs are composed of many parallel tasks, and
each task uses pipelining to parallelize the use of network,
disk, and CPU. One task may be bottlenecked on different
resources at different points in execution, and at any
given time, tasks for the same job may be bottlenecked on
different resources. Blocked time analysis uses extensive
white-box logging to measure how long each task spends
blocked on a given resource. Taken alone, these per-task
measurements allow us to understand straggler causes
by correlating slow tasks with long blocked times. Taken
together, the per-task measurements for a particular job
allow us to simulate how long the job would have taken to
complete if the disk or network were infinitely fast, which
provides an upper bound on the benefit of optimizing
network or disk performance.

The second contribution of this paper is using blocked
time analysis to understand Spark’s performance on two
industry benchmarks and one production workload. In
studying the applicability of the three aforementioned
claims to these workloads, we find:

1. Network optimizations can only reduce job
completion time by a median of at most 2%. The
network is not a bottleneck because much less data is
sent over the network than is transferred to and from
disk. As a result, network I/O is mostly irrelevant to
overall performance, even on 1Gbps networks.

2. Optimizing or eliminating disk accesses can only
reduce job completion time by a median of at
most 19%. CPU utilization is typically much higher
than disk utilization; as a result, engineers should be
careful about trading off I/O time for CPU time by,
for example, using more sophisticated serialization
and compression techniques.

3. Optimizing stragglers can only reduce job com-
pletion time by a median of at most 10%, and in
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Workload name Total queries Cluster size Data size
Big Data Benchmark [46],
Scale Factor 5 (BDBench)

50 (10 unique queries, each run 5
times)

40 cores (5 machines) 60GB

TPC-DS [45], Scale Factor 100 140 (7 users, 20 unique queries) 160 cores (20 machines) 17GB
TPC-DS [45], Scale Factor 5000 260 (13 users, 20 unique queries) 160 cores (20 machines) 850GB
Production 30 (30 unique queries) 72 cores (9 machines) tens of GB

Table 1: Summary of workloads run. We study one larger workload in §6.

75% of queries, we can identify the cause of more
than 60% of stragglers. Blocked-time analysis
illustrates that the two leading causes of Spark strag-
glers are Java’s garbage collection and time to trans-
fer data to and from disk. We found that targeting
the underlying cause of stragglers could reduce non-
straggler runtimes as well, and describe one example
where understanding stragglers in early experiments
allowed us to identify a bad configuration that, once
fixed, reduced job completion time by a factor of two.

These results question the prevailing wisdom about the
performance of data analytics frameworks. By necessity,
our study does not look at a vast range of workloads nor
a wide range of cluster sizes, because the ability to add
finer-grained instrumentation to Spark was critical to our
analysis. As a result, we cannot claim that our results
are broadly representative. However, the fact that the
prevailing wisdom about performance is so incorrect on
the workloads we do consider suggests that there is much
more work to be done before our community can claim to
understand the performance of data analytics frameworks.

To facilitate performing blocked time analysis on a
broader set of workloads, we have added almost all1 of our
instrumentation to Spark and made our analysis tools pub-
licly available. We have also published the detailed bench-
mark traces that we collected so that other researchers
may reproduce our analysis or perform their own [37].

The remainder of this paper begins by describing
blocked time analysis and the associated instrumentation
(§2). Next, we explore the importance of disk I/O (§3),
the importance of network I/O (§4), and the importance
and causes of stragglers (§5); in each of these sections,
we discuss the relevant related work and contrast it with
our results. We explore the impact of cluster and data size
on our results in §6. We end by arguing that future system
designs should consider performance measurement as a
first-class concern (§7).

2 Methodology
This section describes the workloads we ran, the blocked
time analysis we used to understand performance, and
our experimental setup.

1Some of our logging needed to be added outside of Spark, as we
elaborate on in §2.3.1, because it could not be implemented in Spark
with sufficiently low overhead.

2.1 Workloads

Our analysis centers around fine-grained instrumentation
of two benchmarks and one production workload running
on Spark, summarized in Table 1.

The big data benchmark (BDBench) [46] was de-
veloped to evaluate the differences between analytics
frameworks and was derived from a benchmark devel-
oped by Pavlo et al. [40]. The input dataset consists of
HTML documents from the Common Crawl document
corpus [2] combined with SQL summary tables generated
using Intel’s Hadoop benchmark tool [50]. The bench-
mark consists of four queries including two exploratory
SQL queries, one join query, and one page-rank-like
query. The first three queries have three variants that each
use the same input data size but have different result sizes
to reflect a spectrum between business-intelligence-like
queries (with result sizes that could fit in memory on a
business intelligence tool) and ETL-like queries with
large result sets that require many machines to store. We
run the queries in series and run five iterations of each
query. We use the same configuration that was used in
published results [46]: we use a scale factor of five (which
was designed to be run on a cluster with five worker
machines), and we run two versions of the benchmark.
The first version operates on data stored in-memory
using SparkSQL’s columnar cache (cached data is not
replicated) and the second version operates on data stored
on-disk using Hadoop Distributed File System (HDFS),
which triply replicates data for fault-tolerance.

Our second benchmark is a variant of the Transaction
Processing Performance Council’s decision-support
benchmark (TPC-DS) [45]. The TPC-DS benchmark was
designed to model multiple users running a variety of
decision-support queries including reporting, interactive
OLAP, and data mining queries. All of the users run in
parallel; each user runs the queries in series in a random
order. The benchmark models data from a retail product
supplier about product purchases. We use a subset of 20
queries that was selected in an existing industry bench-
mark that compares four analytics frameworks [25].
Similar to with the big data benchmark, we run two
variants. The first variant stores data on-disk using
Parquet [1], a compressed columnar storage format that
is the recommended storage format for high performance
with Spark SQL, and uses a scale factor of 5000. The
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Figure 1: Each Spark task pipelines use of network, CPU, and disk, as shown in (a). To understand the importance of disk and
network, we measure times when a task’s compute thread blocks on the network or disk, as shown in (b). To determine the best-case
task runtime resulting from network (or disk) optimizations, we subtract time blocked on network (or disk), as shown in (c).

second, in-memory variant uses a smaller scale factor
of 100; this small scale factor is necessary because
SparkSQL’s cache is not well optimized for the type of
data used in the TPC-DS benchmark, so while the data
only takes up 17GB in the compressed on-disk format, it
occupies 200GB in memory. We run both variants of the
benchmark on a cluster of 20 machines.

The final Spark workload described by the results in this
paper is a production workload from Databricks that uses
their cloud product [3] to submit ad-hoc Spark queries.
Input data for the queries includes a large fact table with
over 50 columns. The workload includes a small number
of ETL queries that read input data from an external file
system into the memory of the cluster; subsequent queries
operate on in-memory data and are business-intelligence-
style queries that aggregate and summarize data. Data
shown in future graphs breaks the workload into the in-
memory and on-disk components. For confidentiality rea-
sons, further details of the workload cannot be disclosed.

2.2 Framework architecture

All three workloads are SQL workloads that use Spark-
SQL [4] to compile SQL queries into Spark jobs. Spark
jobs are broken down into stages composed of many paral-
lel tasks. The tasks in a stage each perform the same com-
putation using different subsets of the stage’s input data.
Early stages read input data from a distributed file system
(e.g., HDFS) or Spark’s cache, whereas later stages
typically read input data using a network shuffle, where
each task reads a subset of the output data from all of the
previous stage’s tasks. In the remainder of this paper, we
use “map task” to refer to tasks that read blocks of input
data stored in a distributed file system, and “reduce task”
to refer to tasks that read data shuffled from the previous
stage of tasks. Each Spark job is made up of a directed
acyclic graph of one or more stages. As a result, a single
Spark job may contain multiple stages of reduce tasks;
for example, to compute the result of a SQL query that
includes multiple joins (in contrast, with MapReduce, all
jobs include exactly one map and optionally one reduce).

2.3 Blocked time analysis

The goal of this paper is to understand performance of
workloads running on Spark; this is a challenging goal for
two reasons. First, understanding the performance of a
single task is challenging because tasks use pipelining, as
shown in Figure 1(a). As a result, tasks often use multiple
resources simultaneously, and different resources may be
the bottleneck at different times in task execution. Sec-
ond, understanding performance is challenging because
jobs are composed of many tasks that run in parallel, and
each task in a job may have a unique performance profile.

To make sense of performance, we focus on blocked
time analysis, which allows us to quantify how much
more quickly a job would complete if tasks never blocked
on the disk or the network (§3.3 explains why we cannot
use blocked time analysis to understand CPU use). The
resulting job completion time represents a best-case
scenario of the possible job completion time after imple-
menting a disk or network optimization. Blocked time
analysis lacks the sophistication and generality of general
purpose distributed systems performance analysis tools
(e.g., [5, 15]), and unlike black-box approaches, requires
adding instrumentation within the application. We
use blocked-time analysis because unlike existing ap-
proaches, it provides a single, easy to understand number
to characterize the importance of disk and network use.

2.3.1 Instrumentation

To understand the performance of a particular task, we fo-
cus on blocked time: time the task spends blocked on the
network or the disk (shown in Figure 1(b)). We focus on
blocked time from the perspective of the compute thread
because it provides a single vantage point from which to
measure. The task’s computation runs as a single thread,
whereas network requests are issued by multiple threads
that operate in the background, and disk I/O is pipelined
by the OS, outside of the Spark process. We focus on
blocked time, rather than measuring all time when the
task is using the network or the disk, because network or
disk performance improvements cannot speed up parts of
the task that execute in parallel with network or disk use.
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Figure 2: To compute a job’s completion time (JCT) without time blocked on network, we subtract the time blocked on the network
from each task, and then simulate how the tasks would have been scheduled, given the number of slots used by the original runtime
and the new task runtimes. We perform the same computation for disk.

Obtaining the measurements shown in Figure 1(b)
required significant improvements to the instrumentation
in Spark and in HDFS.While some of the instrumentation
required was already available in Spark, our detailed
performance analysis revealed that existing logging was
often incorrect or incomplete [33–36, 38, 44]. Where
necessary, we fixed existing logging and pushed the
changes upstream to Spark.

We found that cross validation was crucial to validating
that our measurements were correct. In addition to
instrumentation for blocked time, we also added instru-
mentation about the CPU, network, and disk utilization
on the machine while the task was running (per-task
utilization cannot be measured in Spark, because all
tasks run in a single process). Utilization measurements
allowed us to cross validate blocked times; for example,
by ensuring that when tasks spent little time blocked on
I/O, CPU utilization was correspondingly high.

As part of adding instrumentation, we measured
Spark’s performance before and after the instrumentation
was added to ensure the instrumentation did not add to
job completion time. To ensure logging did not affect
performance, we sometimes had to add logging outside
of Spark. For example, to measure time spent reading
input data, we needed to add logging in the HDFS client
when the client reads large “packets” of data from disk, to
ensure that timing calls were amortized over a relatively
time-consuming read from disk.2 Adding the logging in
Spark, where records are read one at a time from the HDFS
client interface, would have degraded performance.

2.3.2 Simulation

Spark instrumentation allowed us to determine how long
each task was blocked on network (or disk) use; sub-
tracting these blocked times tells us the shortest possible
task runtime that would result from optimizing network
(or disk) performance, as shown in Figure 1(c).3 Next,
we used a simulation to determine how the shorter task

2This logging is available in a modified version of Hadoop at
https://github.com/kayousterhout/hadoop-common/tree/

2.0.2-instrumented
3The task runtime resulting from subtracting all time blocked on

the network may be lower than the runtime that would result even if
the network were infinitely fast, because eliminating network blocked
time might result in more time blocked on disk. As we emphasize
throughout the paper, our results represent a bound on the largest
possible improvement from optimizing network or disk performance.

completion times would affect job completion time. The
simulation replays the execution of the scheduling of the
job’s tasks, based on the number of slots used by the origi-
nal job and the new task runtimes. Figure 2 shows a simple
example. The example on the far right illustrates why
we need to replay execution rather than simply use the
original task completion times minus blocked time: that
approach underestimates improvements because it does
not account for multiple waves of tasks (task 2 should start
when the previous task finishes, not at its original start
time) and does not account for the fact that tasks might
have been scheduled on different machines given differ-
ent runtimes of earlier tasks (task 2 should start on the slot
freed by task 1 completing). We replay the job based only
on the number of slots used by the original job, and do not
take into account locality constraints that might have af-
fected the scheduling of the original job. This simplifying
assumption does not significantly impact the accuracy
of our simulation: at the median, the time predicted by
our simulation is within 4% of the runtime of the original
job. The ninety-fifth percentile error is at most 7% for
the benchmark workloads and 27% for the production
workload.4 In order to minimize the effect of this error
on our results, we always compare the simulated time
without network (or disk) to the simulated original time.
For example, in the example shown in Figure 2, we would
report the improvement as tn/ts, rather than as tn/to. This
focuses our results on the impact of a particular resource
rather than on error introduced by our simulation.

2.4 Cluster setup

For the benchmark workloads, we ran experiments using a
cluster of Amazon EC2 m2.4xlarge instances, which each
have 68.4GB of memory, two disks, and eight cores. Our
experiments use Apache Spark version 1.2.1 and Hadoop
version 2.0.2. Spark runs queries in long-running pro-
cesses, meaning that production users of Spark will run
queries in a JVM that has been running for a long period
of time. To emulate that environment, before running each
benchmark, we ran a single full trial of all of the bench-
mark queries to warm up the JVM. For the big data bench-
mark, where only one query runs at a time, we cleared the

4 The production workload has higher error because we don’t model
pauses between stages that occur when SparkSQL is updating the query
plan. If we modeled these pauses, the impact of disk and network I/O
would be lower.
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OS buffer cache on all machines before launching each
query, to ensure that input data is read from disk. While
our analysis focuses on one cluster size and data size
for each benchmark, we illustrate that scaling to larger
clusters does not significantly impact our results in §6.

The production workload ran on a 9-machine cluster
with 250GB of memory; further details about the clus-
ter configuration are proprietary. The cluster size and
hardware is representative of Databricks’ users.

2.5 Production traces

Where possible, we sanity-checked our results with
coarse-grained analysis of traces from Facebook, Google,
and Microsoft. The Facebook trace includes 54K jobs
run during a contiguous period in 2010 on a cluster of
thousands of machines (we use a 1-day sample from this
trace). The Google data includes all MapReduce jobs run
at Google during three different one month periods in
2004, 2006, and 2007, and the Microsoft data includes
data from an analytics cluster with thousands of servers on
a total of eighteen different days in 2009 and 2010. While
our analysis would ideally have used only data from
production analytics workloads, all data made available
to us includes insufficient instrumentation to compute
blocked time. For example, the default logs written by
Hadoop (available for the Facebook cluster) include only
the total time for each map task, but do not break map task
time into how much time was spent reading input data
and how much time was spent writing output data. This
has forced researchers to rely on estimation techniques
that can be inaccurate, as we show in §4.4. Therefore, our
analysis begins with a detailed instrumentation of Spark,
but in most cases, we demonstrate that our high-level
takeaways are compatible with production data.

3 How important is disk I/O?
Previous work has suggested that reading input data from
disk can be a bottleneck in analytics frameworks; for
example, Spark describes speedups of 40× for generating
a data analytics report as a result of storing input and
output data in memory using Spark, compared to storing
data on-disk and using Hadoop for computation [51].
PACMan reported reducing average job completion times
by 53% as a result of caching data in-memory [9]. The
assumption that many data analytics workloads are I/O
bound has driven numerous research proposals (e.g.,
Themis [43], Tachyon [30]) and the implementation of
in-memory caching in industry [47]. Based on this work,
our expectation was that time blocked on disk would
represent the majority of job completion time.

3.1 How much time is spent blocked on disk I/O?

Using blocked time analysis, we compute the improve-
ment in job completion time if tasks did not spend any
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Figure 3: Improvement in job completion time (JCT) as a result
of eliminating all time spent blocked on disk I/O. Boxes depict
25th, 50th, and 75th percentiles; whiskers depict 5th and 95th
percentiles.

time blocked on disk I/O.5 This involved measuring
time blocked on disk I/O at four different points in task
execution:

1. Reading input data stored on-disk (this only applies
for the on-disk workloads; in-memory workloads
read input from memory).

2. Writing shuffle data to disk. Spark writes all shuffle
data to disk, even when input data is read from
memory.

3. Reading shuffle data from a remote disk. This time
includes both disk time (to read data from disk) and
network time (to send the data over the network).
Network and disk use is tightly coupled and thus
challenging to measure separately; we measure the
total time as an upper bound on the improvement
from optimizing disk performance.

4. Writing output data to local disk and two remote
disks (this only applies for the on-disk workloads).
Again, the time to write data to remote disks includes
network time as well; we measure both the network
and disk time, making our results an upper bound on
the improvement from optimizing disk.

Using blocked time analysis, we find that the median
improvement from eliminating all time blocked on disk is
at most 19% across all workloads, as shown in Figure 3.
The y-axis in Figure 3 describes the relative reduction in
job completion time; a reduction of 0.1 means that the job
could complete 10% faster as a result of eliminating time
blocked on the disk. The figure illustrates the distribution
over jobs, including all trials of each job in each workload.
Boxes depict 25th, 50th, and 75th percentiles; whiskers

5 This measurement includes only time blocked on disk requests,
and does not include CPU time spent deserializing byte buffers into
Java objects. This time is sometimes considered disk I/O because it is
a necessary side effect of storing data outside of the JVM; we consider
only disk hardware performance here, and discuss serialization time
separately in §3.5.
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(e) Production, in-memory
Figure 4: Comparison of original runtimes of Spark jobs to
runtimes when all time blocked on the disk has been eliminated.

depict 5th and 95th percentiles. The variance stems from
the fact that different jobs are affected differently by
disk. The on-disk queries in the production workload are
not shown in Figure 3 because, as described in §2.3.1,
instrumenting time to read input data required adding
instrumentation to HDFS, which was not possible to
do for the production cluster. We show the same results
in Figure 4, which instead plots the absolute runtime
originally and the absolute runtime once time blocked
on disk has been eliminated. The scatter plots illustrate
that long jobs are not disproportionately affected by time
reading data from disk.

For in-memory workloads, the median improvement
from eliminating all time blocked on disk is 2-5%; the
fact that this improvement is non-zero is because even
in-memory workloads store shuffle data on disk.

A median improvement in job completion time of 19%
is a respectable improvement in runtime, but is lower than
we expected for workloads that read input data and store

��
����
����
����
����
��

�������
������

�������
��������

������
������

������
��������

��
����
���
��

������� ���� ���

Figure 5: Average network, disk, and CPU utilization while
tasks were running. CPU utilization is the total fraction of
non-idle CPU milliseconds while the task was running, divided
by the eight total cores on the machine. Network utilization is
the bandwidth usage divided by the machine’s 1Gbps available
bandwidth. All utilizations are obtained by reading the counters
in the /proc file system at the beginning and end of each task.
The distribution is across all tasks in each workload, weighted
by task duration.

output data on-disk. The following two subsections make
more sense of this number, first by considering the effect
of our hardware setup, and then by examining alternate
metrics to put this number in the context of how tasks
spend their time.

3.2 How does hardware configuration affect these
results?

Hardware configuration impacts blocked time: tasks run
on machines with fewer disks relative to the number of
CPU cores would have spent more time blocked on disk,
and vice versa. In its hardware recommendations for
users purchasing Hadoop clusters, one vendor recom-
mends machines with at least a 1:3 ratio of disks to CPU
cores [31]. In 2010, Facebook’s Hadoop cluster included
machines with between a 3:4 and 3:1 ratio of disks to
CPU cores [16]. Thus, our machines, with a 1:4 ratio of
disks to CPU cores, have relatively under-provisioned I/O
capacity. As a result, I/O may appear more important in
our measurements than it would in the wild, so our results
on time blocked on disk represent even more of an upper
bound on the importance of I/O.

The second aspect of our setup that affects results is
the number of concurrent tasks run per machine; we run
one task per core, consistent with the Spark default.

3.3 How does disk utilization compare to CPU
utilization?

Our result that eliminating time blocked on disk I/O
can only improve job completion time by a median of
at most 19% suggests that jobs may be CPU bound.
Unfortunately, we cannot use blocked time analysis to
understand the importance of compute time, because we
cannot measure when task I/O is blocked waiting for
computation. The operating system often performs disk
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Figure 6: Average megabytes transferred to or from disk per
non-idle CPU second for all jobs we ran. The median job
transfers less than 10 megabytes to/from disk per CPU second;
given that effective disk throughput was approximately 90
megabytes per second per disk while running our benchmarks,
this demand can easily be met by the two disks on each machine.

I/O in the background, while the task is also using the
CPU. Measuring when a task is using only a CPU versus
when background I/O is occurring is thus difficult, and is
further complicated by the fact that all Spark tasks on a
single machine run in the same process.

Because we can’t use blocked time analysis to under-
stand the importance of CPU use, we instead examine
CPU and disk utilization. Figure 5 plots the distribution
across all tasks in the big data benchmark and TPC-DS
benchmark of the CPU utilization compared to disk
utilization. For this workload, the plot illustrates that on
average, queries are more CPU bound than I/O bound.
Hence, tasks are likely blocked waiting on computation
to complete more often than they are blocked waiting for
disk I/O. On clusters with more typical ratios of disk to
CPU use, the disk utilization will be even lower relative
to CPU utilization.

3.4 Sanity-checking our results against production
traces

The fact that the disk is not the bottleneck in our work-
loads left us wondering whether our workloads were
unusually CPU bound, which would mean that our
results were not broadly representative. Unfortunately,
production data analytics traces available to us do not
include blocked time or disk utilization information.
However, we were able to use aggregate statistics about
the CPU and disk use of jobs to compare the I/O demands
of our workloads to the I/O demands of larger production
workloads. In particular, we measured the I/O demands of
our workloads by measuring the ratio of data transferred
to disk to non-idle CPU seconds:

MB / CPU second=
Total MB transferred to/from disk

Total non-idle CPU seconds

This metric is imperfect because it looks at the CPU
and disk requirements of the job as a whole, and does
not account for variation in resource usage during a job.

Nonetheless, it allows us to understand how the aggregate
disk demands of our workloads compare to large-scale
production workloads.

Using this metric, we found that the I/O demands of the
three workloads we ran do not differ significantly from
I/O demands of production workloads. Figure 6 illustrates
that for the benchmarks and production workload we
instrumented, the median MB / CPU second is less than
10. Figure 6 also illustrates results for the trace from
Facebook’s Hadoop cluster. The MB / CPU second metric
is useful in comparing to Hadoop performance because
it relies on the volume of data transferred to disk and the
CPU milliseconds to characterize the job’s demand on
I/O, so abstracts away many inefficiencies in Hadoop’s
implementation (for example, it abstracts away the fact
that a CPU-bound query may take much longer than
the CPU milliseconds used due to inefficient resource
use). The number of megabytes transferred to disk per
CPU second is lower for the Facebook workload than for
our workloads: the median is just 3MB/s, compared to
a median of 9MB/s for the big data benchmark on-disk
workload and 8MB/s for the TPC-DS workload.

We also examined aggregate statistics published about
Microsoft’s Cosmos cluster and Google’s MapReduce
cluster, shown in Tables 2 and 3. Unlike the Facebook
trace, those statistics do not include a measurement of the
CPU time spent by jobs, and instead quote the total time
that tasks were running, aggregated across all jobs [23]. In
computing the average rate at which tasks transfer data to
and from disk, we assume that the input data is read once
from disk, intermediate data is written once (by map tasks
that generate the data) and read once (by reduce tasks that
consume the data), and output data is written to disk three
times (assuming the industry standard triply-replicated
output data). As shown in Tables 2 and 3, based on this
estimate, Google jobs transfer an average of 0.787 to 1.47
MB/s to disk, and Microsoft jobs transfer an average of
6.61 to 10.58 MB/s to disk. These aggregate numbers
reflect an estimate of average I/O use so do not reflect
tail behavior, do not include additional I/O that may have
occurred (e.g., to spill intermediate data), and are not
directly comparable to our results because unlike the CPU
milliseconds, the total task time includes time when the
task was blocked on network or disk I/O.6 The takeaway
from these results should not be the precise value of these
aggregate metrics, but rather that sanity checking our re-
sults against production traces does not lead us to believe
that production workloads have dramatically different

6 For the Google traces, the aggregate numbers are skewed by the
fact that, at the time, a few MapReduce jobs that consumed significant
resources were also very CPU intensive (in particular, the final phase of
the indexing pipeline involved significant computation). These jobs also
performed some additional disk I/O from within the user-defined map
and reduce functions [23]. We lack sufficient information to quantify
these factors, so they are not included in our estimate of MB/s.
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Aug. ’04 Mar. ’06 Sep. ’07
Map input data (TB) [24] 3,288 52,254 403,152
Map output data (TB) [24] 758 6,743 34,774
Reduce output data (TB) [24] 193 2,970 14,018
Task years used [24] 217 2,002 11,081
Total data transferred to/from disk (TB) 5383 74,650 514,754
Avg. MB transferred to/from disk per task second (MB/s) .787 1.18 1.47
Avg. Mb sent over the network per task second (Mbps) 1.34 1.61 1.44

Table 2: Disk use for all MapReduce jobs run at Google.

May Jun Jul Aug Sep Oct Nov Dec Jan
Input Data (PB) [11] 12.6 22.7 14.3 18.7 22.8 25.3 25.0 18.6 21.5
Intermediate Data (PB) [11] 0.66 1.22 0.67 0.76 0.73 0.86 0.68 0.72 1.99
Compute (years) [11] 49.1 88.0 51.6 60.6 73.0 84.1 88.4 96.2 79.5
Avg. MB read/written per task second 8.99 9.06 9.61 10.58 10.54 10.19 9.46 6.61 10.16
Avg. Mb shuffled per task second 3.41 3.52 3.29 3.18 2.54 2.59 1.95 1.90 6.35

Table 3: Disk use for a cluster with tens of thousands of machines, running Cosmos. Compute (years) describes the sum of runtimes
across all tasks [12]. The data includes jobs from two days of each month; see [11] for details.

I/O requirements than the workloads we measure.

3.5 Why isn’t disk I/O more important?

We were surprised at the results in §3.3 given the oft-
quoted mantra that I/O is often the bottleneck, and also
the fact that fundamentally, the computation done in data
analytics job is often very simple. For example, queries
1a, 1b, and 1c in the big data benchmark select a filtered
subset of a table. Given the simplicity of that computation,
we would not have expected the query to be CPU bound.
One reason for this result is that today’s frameworks often
store compressed data (in increasingly sophisticated
formats, e.g. Parquet [1]), trading CPU time for I/O time.
We found that if we instead ran queries on uncompressed
data, most queries became I/O bound. A second reason
that CPU time is large is an artifact of the decision to write
Spark in Scala, which is based on Java: after being read
from disk, data must be deserialized from a byte buffer to
a Java object. Figure 7 illustrates the distribution of the
total non-idle CPU time used by queries in the big data
benchmark under 3 different scenarios: when input data,
shuffle data, and output data are compressed and serial-
ized; when input data, shuffle data, and output data are not
deserialized but are decompressed; and when input and
output data are stored as deserialized, in-memory objects
(shuffle data must still be serialized in order to be sent over
the network). The CDF illustrates that for some queries,
as much as half of the CPU time is spent deserializing and
decompressing data. This result is consistent with Figure
9 from the Spark paper, which illustrated that caching
deserialized data significantly reduced job completion
time relative to caching data that was still serialized.

Spark’s relatively high CPU time may also stem from
the fact that Spark was written Scala, as opposed to a
lower-level language such at C++. For one query that we
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Figure 7: Comparison of total non-idle CPU milliseconds
consumed by the big data benchmark workload, with and
without compression and serialization.

re-wrote in C++, we found that the CPU time reduced by
a factor of more than 2×. Existing work has illustrated
that writing analytics in C++ instead can significantly
improve performance [22], and the fact that Google’s
MapReduce is written in C++ is an oft-quoted reason for
its superior performance.

3.6 Are these results inconsistent with past work?

Prior work has shown significant improvements as a result
of storing input data for analytics workloads in memory.
For example, Spark [51] was demonstrated to be 20×
to 40× faster than Hadoop [51]. A close reading of that
paper illustrates that much of that improvement came not
from eliminating disk I/O, but from other improvements
over Hadoop, including eliminating serialization time.

The PACMan work described improvements in average
job completion time of more than a factor of two as a result
of caching input data [9], which, similar to Spark, seems
to potentially contradict our results. The 2× improve-
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Figure 8: Improvement in job completion time as a result of
eliminating all time blocked on network.

ments were shown for two workloads. The first workload
was based on the Facebook trace, but because the Face-
book trace does not include enough information to replay
the exact computation used by the jobs, the authors used
a mix of compute-free (jobs that do not perform any com-
putation), sort, and word count jobs [12]. This synthetic
workload was generated based on the assumption that
analytics workloads are I/O bound, which was the pre-
vailing mentality at the time. Our measurements suggest
that jobs are not typically I/O bound, so this workload
may not have been representative. The second workload
was based on a Bing workload (rewritten to use Hive),
where the 2× improvement represented the difference in
reading data from a serialized, on-disk format compared
to reading de-serialized, in-memory data. As discussed
in §3.5, serialization times can be significant, so the
2× improvement likely came as much from eliminating
serialization as it did from eliminating disk I/O.

3.7 Summary

We found that job runtime cannot improve by more
than 19% as a result of optimizing disk I/O. To shed
more light on this measurement,we compared resource
utilization while tasks were running, and found that CPU
utilization is typically close to 100% whereas median disk
utilization is at most 25%. One reason for the relatively
high use of CPU by the analytics workloads we studied is
deserialization and compression; the shift towards more
sophisticated serialization and compression formats has
decreased the I/O and increased the CPU requirements of
analytics frameworks. Because of high CPU times, opti-
mizing hardware performance by using more disks, using
flash storage, or storing serialized in-memory data will
yield only modest improvements to job completion time;
caching deserialized data has the potential for much larger
improvements due to eliminating deserialization time.

Serialization and compression formats will inevitably
evolve in the future, rendering the numbers presented in
this paper obsolete. The takeaway from our measurements
should be that CPU usage is currently much higher than
disk use, and that detailed performance instrumentation

like our blocked time analysis is critical to navigating the
tradeoff between CPU and I/O time going forward.

4 How important is the network?
Researchers have used the argument that data-intensive
application performance is closely tied to datacenter net-
work performance to justify a wide variety of network op-
timizations [6,14,17–21,27,28,41,42,48,53]. We there-
fore expected to find that optimizing the network could
yield significant improvements to job completion time.

4.1 How much time is spent blocked on network I/O?

To understand the importance of the network, we first use
blocked time analysis to understand the largest possible
improvement from optimizing the network. As shown in
Figure 8, none of the workloads we studied could improve
by a median of more than 2% as a result of optimizing
network performance. We did not use especially high
bandwidth machines in getting this result: the m2.4xlarge
instances we used have a 1Gbps network link.

Our blocked time instrumentation for the network
included time to read shuffle data over the network, and
for on-disk workloads, the time to write output data to one
local machine and two remote machines. Both of these
times include disk use as well as network use, because
disk and network are interlaced in a manner that makes
them difficult to measure separately. As a result, 2%
represents an upper bound on the possible improvement
from network optimizations.

To shed more light on the network demands of the
workloads we ran, Figure 5 plots the network utilization
along with CPU and disk utilization. Consistent with the
fact that blocked times are very low, median network
utilization is lower than median disk utilization and
much lower than median CPU utilization for all of the
workloads we studied.

4.2 Sanity-checking our results against production
traces

We were surprised at the low impact of the network on
job completion time, given the large body of work tar-
geted at improving network performance for analytics
workloads. Similar to what we did in §3.3 to understand
disk performance, we computed the network data sent per
non-idle CPU second, to facilitate comparison to large-
scale production workloads, as shown in Figure 9. Sim-
ilar to what we found for disk I/O, the Facebook work-
load transfers less data over the network per CPU sec-
ond than the workloads we ran. Thus, we expect that run-
ning our blocked time analysis on the Facebook work-
load would yield smaller potential improvements from
network optimizations than for the workloads we ran. Ta-
bles 2 and 3 illustrate this metric for the Google and Mi-
crosoft traces, using the machine seconds or task seconds

9
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Figure 9: Megabits sent over the network per non-idle CPU
second.
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Figure 10: Ratio of shuffle bytes to input bytes and output bytes
to input bytes. The median ratio of shuffled data to input data is
less than 0.35 for all workloads, and the median ratio of output
data to input data is less than 0.2 for all workloads.

in place of CPU milliseconds as with the disk results.7 For
Google, the average megabits sent over the network per
machine second ranges from 1.34 to 1.61; Microsoft net-
work use is higher (1.90-6.35 megabits are shuffled per
task second) but still far below the network use seen in our
workload.Thus, this sanity check does not lead us to be-
lieve that production workloads have dramatically differ-
ent network requirements than the workloads we measure.

4.3 Why isn’t the network more important?

One reason that network performance is relatively unim-
portant is that the amount of data sent over the network is
often much less than the data transferred to disk, because
analytics queries often shuffle and output much less data
than they read. Figure 10 plots the ratio of shuffle data to
input data and the ratio of output data to input data across
our benchmarks, the Facebook trace (the production
workload did not have sufficient instrumentation to
capture these metrics), and for the Microsoft and Google
aggregate data (averaged over all of the samples). Across
all workloads, the amount of data shuffled is less than
the amount of input data, by as much as a factor of 5-10,
which is intuitive considering that data analysis often

7The Microsoft data does not include output size, so network data
only includes shuffle data.
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Figure 11: Cumulative distribution across tasks (weighted by
task duration) of the fraction of task time spent writing output
data, measured using our fine grained instrumentation and
estimated using the technique employed by prior work [17].
The previously used metric far overestimates time spent writing
output data.

centers around aggregating data to derive a business con-
clusion. In evaluating the efficacy of optimizing shuffle
performance, many papers have used workloads with
ratios of shuffled data to input data of 1 or more, which
these results demonstrate is not widely representative.

4.4 Are these results inconsistent with past work?

Past work has reported high effects of the network on
job completion time because the effect of the network
has been estimated based on Hadoop traces rather than
precisely measured. Many existing traces do not include
sufficient metrics to understand the impact of the network.
For example, Sinbad [17] asserted that writing output
data can take a significant amount of time for analytics
jobs, but used a heuristic to understand time to write
output data: it defined the write phase of a task as the time
from when the shuffle completes until the completion
time of the task. This metric is an estimate, which was
necessary because Hadoop does not log time blocked on
output writes separately from time spent in computation.
We instrumented Hadoop to log time spent writing output
data and ran the big data benchmark (using Hive to con-
vert SQL queries to Map Reduce jobs) and compared the
result from the detailed instrumentation to the estimation
previously used. Unfortunately, as shown in Figure 11, the
previously used metric significantly overestimates time
spent writing output data, meaning that the importance of
the network was significantly overestimated.

A second problem with past estimations of the im-
portance of the network is that they have conflated
inefficiencies in Hadoop with network performance
problems. One commonly cited work quotes the percent
of job time spent in shuffle, measured using a Facebook
Hadoop workload [19]. We repeated this measurement
using the Facebook trace, shown in Table 4. Previous
measurements looked at the fraction of jobs that spent a
certain percent of time in shuffle (i.e., the first two lines of
Table 4); by this metric, 16% of jobs spent more than 75%
of time shuffling data. We dug into this data and found that
a typical job that spends more than 75% of time in its shuf-
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Shuffle Dur. <25% 25-49% 50-74% >=75%
% of Jobs 46% 20% 18% 16%
% of time 91% 7% 2% 1%
% of bytes 83% 16% 1% 0.3%

Table 4: The percent of jobs, task time, and bytes in jobs that
spent different fractions of time in shuffle for the Facebook
workload.

fle phase takes tens of seconds to shuffle kilobytes of data,
suggesting that framework overhead and not network
performance is the bottleneck. We also found that only
1% of all jobs spend less than 4 seconds shuffling data,
which suggests that the Hadoop shuffle includes fixed
overheads to, for example, communicate with the master
to determine where shuffle data is located. For such tasks,
shuffle is likely bottlenecked on inefficiencies and fixed
overheads in Hadoop, rather than by network bottlenecks.

Table 4 includes data not reported in prior work: for
each bucket, we compute not only the percent of jobs that
fall into that bucket, but also the percent of total time and
percent of total bytes represented by jobs in that category.
While 16% of jobs spend more than 75% of the time in
shuffle, these jobs represent only 1% of the total bytes
sent across the network, and 0.3% of the total time taken
by all jobs. This further suggests that the jobs reported as
spending a large fraction of time in shuffle are small jobs
for which the shuffle time is dominated by framework
overhead rather than by network performance.

4.5 Summary

We found that, for the three workloads we studied,
network optimizations can only improve job completion
time by a median of at most 2%. One reason network
performance has little effect on job completion time is
that the data transferred over the network is a subset of
data transferred to disk, so jobs bottleneck on the disk
before bottlenecking on the network. We found this to
be true in a cluster with 1Gbps network links; in clusters
with 10Gbps or 100Gbps networks, network performance
will be even less important.

Past work has found much larger improvements from
optimizing network performance for two reasons. First,
some past work has focused only on workloads where
shuffle data is equal to the amount of input data, which we
demonstrated is not representative of typical workloads.
Second, some past work relied on estimation to under-
stand trace data, which led to misleading conclusions
about the importance of the network.

5 The Role of Stragglers
A straggler is a task that takes much longer to complete
than other tasks in the stage. Because the stage cannot
complete until all of its tasks have completed, straggler
tasks can significantly delay the completion time of
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Figure 12: Potential improvement in job completion time as a
result of eliminating all stragglers. Results are shown for the
on-disk and in-memory versions of each benchmark workload.

the stage and, subsequently, the completion time of the
higher-level query. Past work has demonstrated that
stragglers can be a significant bottleneck; for example,
stragglers were reported to delay average job completion
time by 47% in Hadoop clusters and by 29% in Dryad
clusters [8]. Existing work has characterized some strag-
glers as being caused by data skew, where a task reads
more input data than other tasks in a job, but otherwise
does not characterize what causes some tasks to take
longer than others [11, 26, 29]. This inability to explain
the cause of stragglers has typically led to mitigation
strategies that replicate tasks, rather than strategies that
attempt to understand and eliminate the root cause of long
task runtimes [8, 10, 39, 52].

5.1 How much do stragglers affect job completion
time?

To understand the impact of stragglers, we adopt the ap-
proach from [8] and focus on a task’s inverse progress rate:
the time taken for a task divided by amount of input data
read. Consistent with that work, we define the potential
improvement from eliminating stragglers as the reduction
in job completion time as a result of replacing the progress
rate of every task that is slower than the median progress
rate with the median progress rate. We use the methodol-
ogy described in §2.3.2 to compute the new job comple-
tion time given the new task completion times. Figure 12
illustrates the improvement in job completion time as a
result of eliminating stragglers in this fashion; the median
improvement from eliminating stragglers is 5-10% for the
big data benchmark and TPC-DS workloads, and lower
for the production workloads, which had fewer stragglers.

5.2 Are these results inconsistent with prior work?

Some prior work has reported the effect of stragglers to
be similar to what we found in our study. For example,
based on a Facebook trace, Mantri described a median
improvement of 15% as a result of eliminating all
stragglers. Mantri had a larger overall improvements
when deployed in production that stemmed not only from
eliminating stragglers, but also from eliminating costly
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Figure 13: Our improved instrumentation allowed us to explain the causes behind most of the stragglers in the workloads we
instrumented. This plot shows the distribution across all queries of the fraction of the query’s stragglers that can be attributed to a
particular cause.

recomputations [11].
Other work has reported larger potential improvements

from eliminating stragglers: Dolly, for example, uses the
same metric we used to understand the impact of strag-
glers, and found that eliminating stragglers could reduce
job completion time by 47% for a Facebook trace and
29% for a Bing trace [8]. This difference may be due to the
larger cluster size or greater heterogeneity in the studied
traces. However, the difference can also be partially at-
tributed to framework differences. For example, Spark has
much lower task launch overhead than Hadoop, so Spark
often breaks jobs into many more tasks, which can reduce
the impact of stragglers [39]. Stragglers would have had a
much larger impact for the workloads we ran if all of the
tasks in each job had run as a single wave; in this case, the
median improvement from eliminating stragglers would
have been 23-41%. We also found that stragglers have
become less important as Spark has matured. When run-
ning the same benchmark queries with an older version of
Spark, many stragglers were caused by poor disk perfor-
mance when writing shuffle data. Once this problem was
fixed, the importance of stragglers decreased. These im-
provements to Spark may make stragglers less of an issue
than previously observed, even on large-scale clusters.

5.3 Why do stragglers occur?

Prior work investigating straggler causes has largely
relied on traces with coarse grained instrumentation; as
a result, this work has been able to attribute stragglers to
data skew and high resource utilization [11, 49], but oth-
erwise has been unable to explain why stragglers occur.
Our instrumentation allows us to describe the cause of
more than 60% of stragglers in 75% of the queries we ran.

In examining the cause of stragglers, we follow
previous work and define a straggler as a task with inverse
progress rate greater than 1.5× the median inverse
progress rate for the stage. Unlike the previous subsec-
tion, we do not look at all tasks that take longer than the
median progress rate, in order to focus on situations where
there was a significant anomaly in a task’s execution.

Many stragglers can be explained by the fact that the
straggler task spends an unusually long amount of time
in a particular part of task execution. We characterize

a straggler as caused by X if it would not have been
considered a straggler had X taken zero time for all
of the tasks in the stage. We use this methodology
to attribute stragglers to scheduler delay (time taken
by the scheduler to ship the task to a worker and to
process the task completion message), HDFS disk read
time, shuffle write time, shuffle read time, and Java’s
garbage collection (which can be measured using Java’s
GarbageCollectorMXBean interface).

We attribute stragglers to two additional causes that
require different methodologies. First, we attribute strag-
glers to output skew by computing the progress rate based
on the amount of output data processed by the task instead
of the amount of input data, and consider a straggler
caused by output skew if the task is a straggler based on
input progress rate but not based on output progress rate.
Second, we find that some stragglers can be explained by
the fact that they were among the first tasks in a stage to
run on a particular machine. This effect may be caused by
Java’s just-in-time compilation: Java runtimes (e.g., the
HotSpot JVM [32]) optimize code that has been executed
more than a threshold number of times. We consider strag-
glers to be caused by the fact that they were a “first task”
if they began executing before any other tasks in the stage
completed on the same machine, and if they are no longer
considered stragglers if compared to other “first tasks.”

For each of these causes, Figure 13 plots the fraction
of stragglers in each query explained by that cause. The
distribution arises from differences in straggler causes
across queries; for example, for the on-disk big data
benchmark, in some jobs, all stragglers are explained by
the time to read data from HDFS, whereas in other jobs,
most stragglers can be attributed to garbage collection.

The graph does not point to any one dominant of
stragglers, but rather illustrates that straggler causes
vary across workloads and even within queries for a
particular workload. However, common patterns are that
garbage collection can cause most of the stragglers for
some queries, and many stragglers can be attributed to
long times spent reading to or writing from disk (this is
not inconsistent with our earlier results showing a 19%
median improvement from eliminating disk: the fact
that some straggler tasks are caused by long times spent
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Figure 14: Improvement in job completion time as a result of
eliminating disk I/O, eliminating network I/O, and eliminating
stragglers, each shown for two different trials of the on-disk
TPC-DS workload using different scale factors and cluster sizes.

blocked on disk does not necessarily imply that overall,
eliminating time blocked on disk would yield a large
improvement in job completion time). Another takeaway
is that many stragglers are caused by inherent factors like
output size and running before code has been jitted, so
cannot be alleviated by straggler mitigation techniques.

5.4 Improving performance by understanding
stragglers

Understanding the root cause behind stragglers pro-
vides ways to improve performance by mitigating the
underlying cause. In our early experiments, investigating
straggler causes led us to find that the default file system
on the EC2 instances we used, ext3, performs poorly
for workloads with large numbers of parallel reads and
writes, leading to stragglers. By changing the filesystem
to ext4, we fixed stragglers and reduced median task
time, reducing query runtime for queries in the big data
benchmark by 17−58%. Many of the other stragglers we
observed could potentially be reduced by targeting the
underlying cause, for example by allocating fewer objects
(to target GC stragglers) or consolidating map output
data into fewer files (to target shuffle write stragglers).
Understanding these causes allows for going beyond
duplicating tasks to mitigate stragglers.

6 How Does Scale Affect Results?
The results in this paper have focused on one cluster size
for each of the benchmarks run. To understand how our
results might change in a much larger cluster, we ran the
TPC-DS on-disk workload on a cluster with three times
as many machines and using three times more input data.
Figure 14 compares our key results on the larger cluster to
the results from the 20-machine cluster described in the
remainder of this paper, and illustrates that the potential
improvements from eliminating disk I/O, eliminating
network I/O, and eliminating stragglers on the larger
cluster is comparable to the corresponding improvements
on the smaller cluster.

7 Conclusion
This paper undertook a detailed performance study of
three workloads, and found that for those workloads,
jobs are often bottlenecked on CPU and not I/O, network
performance has little impact on job completion time,
and many straggler causes can be identified and fixed.
These findings should not be taken as the last word on
performance of analytics frameworks: our study focuses
on a small set of workloads, and represents only one
snapshot in time. As data-analytics frameworks evolve,
we expect bottlenecks to evolve as well. As a result,
the takeaway from this work should be the importance
of instrumenting systems for blocked time analysis, so
that researchers and practitioners alike can understand
how best to focus performance improvements. Looking
forward, we argue that systems should be built with
performance understandability as a first-class concern.
Obscuring performance factors sometimes seems like a
necessary cost of implementing new and more complex
optimizations, but inevitably makes understanding how to
optimize performance in the future much more difficult.
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Abstract
We present CellIQ, a real-time cellular network analyt-
ics system that supports rich and sophisticated analysis
tasks. CellIQ is motivated by the lack of support for real-
time analytics or advanced tasks such as spatio-temporal
traffic hotspots and handoff sequences with performance
problems in state-of-the-art systems, and the interest in
such tasks by network operators. CellIQ represents cel-
lular network data as a stream of domain specific graphs,
each from a batch of data. Leveraging domain specific
characteristics—the spatial and temporal locality of cel-
lular network data—CellIQ presents a number of opti-
mizations including geo-partitioning of input data, radius-
based message broadcast, and incremental graph updates
to support efficient analysis. Using data from a live cellu-
lar network and representative analytic tasks, we demon-
strate that CellIQ enables fast and efficient cellular net-
work analytics—compared to an implementation without
cellular specific operators, CellIQ is 2× to 5× faster.

1 Introduction
Cellular networks have become an integral part of our dig-
ital life in an increasingly mobile connected world driven
by the wide adoption of smartphones and tablets. These
networks must be designed, operated and maintained effi-
ciently in order to ensure satisfactory end-user experience.
To achieve this goal, cellular network operators collect
unprecedented volume of information about the network
and user traffic. Analysis of this data can provide crucial
insights in a number of tasks ranging from network plan-
ning (e.g., deployment of new base stations) to network
operation (e.g., improving utilization of limited radio re-
sources by interference coordination). The analysis is not
limited to network operations—for instance, it can also
help cities plan smarter road networks, businesses reach
more potential customers, and health officials track dis-
eases [29]. Thus, timely and efficient analysis of cellular
network data can be beneficial in a variety of scenarios.

Current state-of-the-art cellular analytics systems con-
tinuously collect per connection information such as ra-
dio resource usage, associated base stations and hand-
offs at network elements such as the Mobility Manage-
ment Entity (MME) and probes deployed in strategic lo-
cations. The collected information is then backhauled
to centralized servers in batches and ingested into the
analysis engine [3, 5, 15, 35]. Such analytics systems

are either based on streaming database technology [15]
or Hadoop batch processing [5, 35]. Thousands of pre-
defined reports are generated from the data periodically
and made available in a dashboard for the experts to
view. While these reports provide useful information, we
have learned from network operators that they can benefit
from timely and more sophisticated analyses. For exam-
ple, advanced analytics such as detecting and monitoring
spatio-temporal hotspots and tracking popular handoff se-
quences with abnormal failure rate would enable quick
resolution of performance problems.

In this paper, we propose CellIQ, a system for cellular
network analytics that builds on top of existing big data
cluster computing frameworks. By leveraging domain
specific knowledge, CellIQ enables fast and efficient cel-
lular network analysis at scale. The key insight in CellIQ
is the observation that cellular network data is naturally
represented as a time-evolving graph. In this graph, nodes
are network entities such as base stations and User Equip-
ments (UE). Edges represent adjacency of base stations
or connections between base stations and UEs.

Stream processing and graph processing has been top-
ics of tremendous interest recently, and hence a large
number of proposals exist in both areas. Existing stream-
ing systems such as TimeStream [31] and Spark Stream-
ing [37] do not support streaming graph processing. On
the other hand, existing graph parallel systems such
as GraphLab [25], PowerGraph [19], GraphX [18] and
GraphLINQ [28] are not optimized for operations span-
ning multiple graphs such as persistent connected com-
ponents over sliding windows. There are a couple of no-
ticeable exceptions: Kineograph [11] and Chronos [21]
focus on constructing incremental snapshots of evolving
graphs and optimizing data layout and job scheduling.
Differential Dataflow [27] supports incremental computa-
tion of algorithms on evolving graphs in the Naiad [30]
framework. These systems do not present specific opti-
mizations for cellular network analytics.

In contrast, CellIQ is optimized for cellular network
analytics. It leverages domain specific characteristics of
cellular networks—its spatial and temporal locality—to
achieve efficient analysis. CellIQ encodes network spe-
cific properties in a time-evolving graph. Connection
records per time window are edge properties between
UEs and base stations. Aggregate statistics per time win-
dow such as radio resource allocation, modulation and
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Figure 1: LTE network architecture (description in Table 1).

traffic volume are node properties. It then optimizes the
data layout with the use of space-filling curve based geo-
partitioning and edge indexing mechanisms. Window
operations are efficiently implemented using differential
and incremental graph update techniques. To avoid hop-
by-hop message propagation, CellIQ enables nodes to
broadcast messages to all nodes within a radius. For spa-
tial operations, we further support efficient aggregations.

Using real cellular network data and representative an-
alytics tasks such as spatial and temporal traffic hotspots
and popular handoffs, we demonstrate that CellIQ en-
ables real time cellular network analytics. The perfor-
mance gain can be significant when compared with solu-
tions without cellular specific optimizations.

This paper makes the following contributions:
• We have designed and developed CellIQ, which to

the best of our knowledge is the first real-time cel-
lular network analytics system that is capable of
running sophisticated tasks including detection and
tracking of spatial and temporal traffic hotspots, and
popular handoff sequences with abnormal failures.
• We systematically take advantage of the domain spe-

cific characteristics of cellular networks, its spatial
and temporal locality, to optimize the performance
of CellIQ. We succinctly represent a batch of cellu-
lar network data as a spatial graph, and continuously
arriving data as a stream of spatial graphs. We care-
fully place data using a geo-partitioning technique
that avoids expensive data movements. We propose
differential and incremental graph updates for effi-
cient window operations and radius based message
broadcast for quicker spatial analysis.
• We evaluate our system using real cellular network

data consisting of several thousand base stations and
millions of users. Our results show that CellIQ out-
performs implementations without cellular specific
optimizations vastly.

2 Background on LTE Networks

In this section, we briefly review the LTE network archi-
tecture and its data collection mechanism to familiarize
the reader with the basic entities in the network and the
characteristics of the data available for analysis. We also
discuss how existing state-of-the-art analytic systems uti-
lize such collected data.

2.1 LTE Network Architecture
LTE networks enable User Equipments (UEs) such as
smartphones to access the Internet. The LTE network
architecture is shown in Figure 1, which consists of sev-
eral network entities (a description is given in Table 1).
When a UE is in idle mode, it does not have an active
connection to the network. To communicate with the
Internet, a UE requests the network to establish a com-
munication channel between itself and the Packet Data
Network Gateway (P-GW). This involves message ex-
changes between the UE and the Mobility Management
Entity (MME). The MME may contact the Home Sub-
scriber Server (HSS) to obtain UE capability and creden-
tials. To enable the communication between the UE and
MME, a radio connection called radio bearer between the
UE and the base station is established. GPRS Tunneling
Protocol (GTP) tunnels are established between the base
station and the Serving Gateway (S-GW), and between
the S-GW and the P-GW through message exchanges in-
volving these entities and the MME. The radio bearer
and the two GTP tunnels make up the the communication
channel between the UE and the P-GW called Evolved
Packet System (EPS) bearer (or simply bearer in short).

When an active UE moves across a base station bound-
ary, its connections will be handed off to the new base
station. There are several different types of handoffs:
handoffs that require the bearer to be handled by a new
S-GW, a new MME, handoffs that require the change of
radio frequency or radio technology (e.g. from LTE to
3G). Some of these procedures are very involved. For an
active UE, the network knows its current associated base
station. For an idle UE, the network knows its current
tracking area. A tracking area is a set of base stations that
are geographically nearby.

S-GWs are mainly used as mobility anchors to provide
seamless mobility. P-GW centralizes most network func-
tions like content filter, firewalls, lawful intercepts, etc.
P-GWs sit at the boundary of the cellular networks and
the Internet. A typical LTE network can cover a very
large geographic area (even as large as a country) and can
have a pool of MMEs, S-GWs and P-GWs for reliability
and load balancing purposes.

2.2 Data Collection and Analysis
Cellular network operators collect a wide variety of data
from their network, a few of which are discussed below:
Bearer and Signaling Records: A UE communicates
with the network by establishing one or more bearers.
Each bearer may have a different QoS profile or connect
to a different IP network. Multiple TCP connections can
be carried in one bearer. LTE networks keep track of
a rich set of bearer statistics such as (1) traffic volume,
frame loss rate in the data link layer, (2) physical radio re-
sources allocated, radio channel quality, modulation and
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LTE Architecture Entities
Name Description

UE User Equipment: Any device that accesses the network
such as smartphones and tablets.

eNodeB Enhanced Node B: The base station through which UEs
access the network.

MME Mobility Management Entity: Provides roaming and
handoff support, UE authentication and paging.

HSS Home Subscriber Server: Is a central database that con-
tains user and subscription-related information.

S-GW Serving Gateway: Acts as a mobility anchor.
P-GW Packet Data Network Gateway: Allocates IP address

and centralizes most network functions such as content
filter, policy enforcement, lawful intercepts and charg-
ing support.

Table 1: Key entities in the LTE network architecture.

coding rate in the physical layer, (3) bearer setup delay,
failure reason, (4) associated base station, S-GW, P-GW,
MME, and (5) bearer start and end time. LTE networks
also collect data on many signaling procedures such as
handoff, paging (waking up a UE to receive incoming
traffic), attach request. The collection of these data occur
at MMEs and base stations, which organize them into
records. Each record can have several hundred fields.
As indicated earlier, LTE networks may have a pool of
MMEs, S-GWs and P-GWs. Since a base station can
communicate with multiple MMEs, bearer level records
need to be merged across MMEs.
TCP Flow Records: Probes can be strategically de-
ployed in the network, e.g., between S-GWs and P-
GWs. The purpose of these probes is to collect TCP
flow records. The collected flows can then be associated
with their corresponding bearer records.
Network Element Records: Network elements such
as base stations and MMEs have operational statistics
such as aggregate downlink frame transmitted per time
window and number of bearers failed per time window.
These records are also collected and are normally used
for network monitoring purposes.

While collecting data packets continuously is infeasi-
ble due to its prohibitive space and resource overhead1,
most of the data mentioned above can be collected with-
out noticeable overhead in operational LTE networks.

Existing state-of-the-art cellular analytics systems are
deployed in operator owned data centers. The records that
are collected at the network entities are accumulated over
short time intervals (e.g., per minute) to be sent to the data
center. Although the data is available at minute granular-
ity, existing analysis frameworks do not utilize them as
soon as they arrive. Instead, the data is accumulated and
used to generate several thousands of pre-defined reports
(most of which are aggregate statistics) periodically (typ-
ically once a day). The generated reports are displayed in
a dashboard where domain experts can peruse them.

1 An operator may choose to enable packet collection for a short
duration for troubleshooting purposes, but such cases are typically rare.

3 Motivation and Overview
Current cellular network analytics systems provide in-
valuable insights to the network operator. The reports
they generate are immensely useful for the operator to un-
derstand the behavior of their network. However, in the
present form, the analysis supported by these systems are
rudimentary at best. Most, if not all, of the generated re-
ports are simple aggregate statistics such as downlink or
uplink volume per network entity. We have learned from
network operators that cellular networks could benefit
tremendously from sophisticated analytics. For instance,
operators are interested in learning if some regions of the
network are hotspots, and if they are, whether they persist.
Since such hotspots may indicate insufficient network re-
sources, they are useful for dynamic load balancing or
network planning. Similarly, it is important to detect and
mitigate abnormal failures to provide satisfactory end-
user experience. Thus, there is a need for cellular analytic
systems to be both timely and sophisticated.

We now outline the challenges in developing such a
system and make a case for using cellular specific opti-
mizations to achieve the desired goals. Then we present
our solution briefly.

3.1 Requirements and Challenges
An operational LTE network serving a large region can
have thousands of base stations and millions of users.
To keep up with the demand, operators are continuously
adding capacity by deploying new base stations. The
number of other network elements, such as MMEs, S-
GWs, and P-GWs are also on the rise. A typical LTE
network can generate several terabytes of monitoring
data per minute. The volume of monitoring data has
been growing as both mobile data-plane traffic and sig-
naling traffic (known as the signaling storm problem due
to chatty applications) continue to grow exponentially.
Due to the interplay between the network elements, LTE
network data has to be analyzed as a whole.

Cellular network operators need to perform a myr-
iad of analytics tasks in real time. For example, Mo-
tive [4] provides over 7000 offline network analytics re-
ports. Performing these and more advanced analyses real-
time means that each computationally intensive task must
be executed efficiently to avoid impacting the overall sys-
tem. To illustrate the challenges involved in performing
these analysis, we present three broad tasks that are of
interest to network operators:

Continuous monitoring of connections and entities:
Operators must continuously monitor millions of UEs,
their connections and network elements. Fine-grained lo-
cation and time-dependent thresholds are needed to pre-
vent unacceptable error alarms.

Real time detection of spatial and temporal pat-
terns: Cellular networks exhibit rich dynamics in both
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temporal and spatial domains. User perceived perfor-
mance tends to vary over time and location due to changes
in the subscribers’ activity. Hence, operators need to de-
tect and track spatial and temporal patterns. Examples
of such patterns include (1) persistent spatial hotspots in
terms of abnormally high signaling traffic, or high frame
loss rate, and (2) impending flash crowd events that draws
a large number of users to the same location.

Real time troubleshooting to identify root causes:
Operators need to perform sophisticated on demand ana-
lytics tasks to understand the root cause of performance
and security problems. Similar to wired networks, cel-
lular network operators need to detect, locate and trou-
bleshoot performance and security problems, e.g., via
expert rule-based inference [24], machine-learning tech-
niques [1, 13], or inference of dependency among net-
work elements, entities and events [7, 22]. Performing
these tasks in real-time can be very challenging.

3.2 Need for Cellular Specific Optimiza-
tions

Having discussed the various requirements and chal-
lenges, we now turn our attention towards how a data
processing system may accommodate such analysis tasks.
To do so, we contacted network administrators and dis-
cussed a few representative analysis tasks of interest.
We then implemented these tasks in an existing graph-
parallel analysis framework. During this exercise, we re-
alized that most, if not all, of the analysis tasks can be ex-
pressed by three operations: (i) sliding window operation,
(ii) time window operation2, and (iii) spatial operation.
This section is a reflection of our experience, describing
how these operations can be used, as available in existing
frameworks, to implement a typical analysis task. In each
of the example tasks, we detail why a straight-forward im-
plementation may not be sufficient, alluding to the need
for domain specific optimizations.

3.2.1 Sliding Window Operations

Persistent hotspot tracking per sliding window We de-
fine a traffic hotspot to be a group of close by base sta-
tions, each of whose traffic volume is above a threshold
for the time window (referred to as snapshot). We can
construct a graph with nodes representing base stations.
Two nodes are connected by an edge if and only if the traf-
fic volumes of both nodes exceed the threshold. Detecting
hotspots is then equivalent to computing connected com-
ponents on this graph. Although the computation can be
expressed in a distributed dataflow framework [30, 36]
using join and group-by operators, this can be very

2It may appear that (i) and (ii) are similar, but it is important to
note the difference. Sliding window operations requires more state
management, since records in one window may be reused in the next.
In other words, the expiry of records in a sliding window are variable,
while that in a time window are same.

inefficient as shown in prior work in graph parallel sys-
tems [18, 25, 26]. The reason is that join operators are not
optimized for graph processing and can be very expensive.
Network operators need to compute traffic hotspots per
time window. In addition, they also need to detect persis-
tent hotspots (a hotspot is persistent for a sliding window
if it is a hotspot in all the component intervals). This task
thus requires computation across many windows.

As a concrete example, Figure 2a shows the hotspot
graph for three time windows. Suppose we want to com-
pute the persistent hotspots for a sliding window of 3. A
straightforward approach is to merge the graphs and per-
form connected component computation on the resulting
graph using a graph parallel processing engine such as
GraphLab, GraphX, or GraphLINQ [18, 25, 28]. How-
ever, we found that this strategy to be very inefficient
when the sliding window is large.

A better approach is to maintain a cumulative graph
which counts the number of edges. We then subtract
the edge counts from the time window that needs to be
forgotten, thus applying differential updates to the under-
lying graph. For the example presented earlier, the edge
count for BS1—BS2 is 3, while that for BS2—BS3 and
BS1—BS3 is 1. Suppose the graph at time window 0
is empty. We can perform the computation on this cu-
mulative graph. Two nodes are in the same connected
component iff their edge count is 3. Hence, the persistent
hotspot is BS1—BS2. We demonstrate that this technique
speeds up sliding window operations by up to 3× (§ 6).

3.2.2 Time Window Operations

Popular handoff sequence tracking per time window
Handoffs can cause connection failures or performance
degradation. Operators are interested in monitoring pop-
ular handoff sequences in time windows and across slid-
ing windows. A handoff sequence is a valid base station
traversal sequence by a set of UEs. If we keep track of
both the sequence and the set of associated UEs, then
handoff sequence tracking can be implemented as an iter-
ative graph algorithm. Consider the example in Figure 2b,
where UE1 is handed off from base station BS1 to BS2
and then from BS2 to BS3 over a time window W . If
we are interested in computing the popular handoff se-
quences in this window W , then BS1 sends the ID of UE1
and the sequence it observes, BS1→BS2, to BS2. In the
next iteration, BS2 appends the sequence with its observa-
tion, and forwards the new sequence, BS1→BS2→BS3,
to BS3. A shortcoming of this approach is that the state
management and iterations required to converge becomes
a bottleneck for large windows. Thus, the analysis slows
down significantly.

A simple optimization to this strategy is to divide W
into smaller windows w. However, we cannot compute
sequences in each of these windows independently and
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Figure 2: Representative analysis tasks of interest to cellular network operators.

then combine them3. Instead, we bootstrap every window
w with the previous window’s handoff sequence and in-
crementally update the graph. Applying this technique
results in speeding up analysis tasks that depend on time
window operations by 2× to 5× (§ 6).

3.2.3 Spatial Operations

Top traffic gradients tracking Users may converge to
a particular location. Operators need to predict these
movements and re-optimize their network (e.g., self-
optimization techniques such as antenna tilt adjustment
and interference coordination) to handle such situations.
A traffic gradient of a base station is defined as the
weighted average of traffic moving towards it. A coarse
grained approximation is to consider all handoffs around
a distance of a certain radius R. For each handoff, we
project the speed towards the base station and weigh by
the product of the bearer throughput divided by the dis-
tance between the source base station and the base station
under consideration. For example, in Figure 2c, suppose
there is a handoff of UE1 from BS1 to BS2. The handoff
information will propagate to all base stations in a radius
R. BS4 (not a direct neighbor of either BS1 or BS2)
will add the traffic gradient of this handoff to its current
gradient. Currently most graph processing systems only
propagate message on a hop-by-hop basis, thus this anal-
ysis would be inefficient if implemented directly. A bet-
ter approach is to broadcast the message to a multi-hop
neighborhood in one iteration. We found this optimiza-
tion to speed up this analysis by up to 4× (§ 6).

3.3 Solution Overview
The examples we discussed previously show that cellular
network analytics systems require a computation model
that can process property graph streams efficiently. To
achieve this goal, we presented a case for leveraging cel-
lular specific optimizations exploiting spatial and tempo-
ral locality. Ideally we would like a single processing
engine that can support a combination of incremental
data-parallel processing, stream processing and graph-
parallel processing. Since the Berkeley Data Analytics
Stack (BDAS) [34] supports all of these computation

3Doing so without extensive state management would entail incor-
rect results, because computing sequences independently would miss
some subsequences that happen across windows.

models, we chose to build CellIQ on BDAS. However,
we note that the techniques we present are not restricted
to a particular framework; for instance, CellIQ’s spatial
optimization techniques can be incorporated into a differ-
ent framework such as Naiad [30].

The key abstraction of the BDAS stack is called
Resilient Distributed Datasets (RDDs) [36] which can
recover data without replication by tracking the lin-
eage graph of operations that were used to build it.
GraphX [18], BDAS’s graph-parallel engine, builds on
top of the RDD abstraction. It represents graph structured
data (called property graph) as a pair of vertex and edge
property collections (implemented as RDDs). GraphX
embeds graph computation within the Spark distributed
dataflow frameworks and distill graph computation to
a specific join-map-group-by dataflow pattern. It intro-
duces a range of optimizations both in how graphs are
encoded as collections and as well as the execution of the
common dataflow operators.

CellIQ is implemented as a layer on top of GraphX
and incorporates several domain specific optimizations:

• Data placement We implement geo-partitioning
of the input data. Vertex properties, edge prop-
erties and graphs from different snapshots are co-
partitioned. This minimizes data movement.
• Radius based message broadcast For messages

that need to reach a radius of nodes, we enable the
exchanges to complete in one iteration.
• Spatial aggregation We implement spatial aggre-

gation for tasks that depend on aggregate statistics
such as intra-tracking and inter-tracking area hand-
off monitoring.
• Differential graph updates Tasks that require slid-

ing window operations are implemented using dif-
ferential updates to the underlying graph over the
time windows under consideration.
• Incremental graph updates Time window opera-

tions are optimized using incremental updates.

We wrap these optimizations with a cellular specific
programming abstraction, G-Stream. The G-Stream API
exposes a domain-specific combination of streaming and
graph processing. In the rest of the paper, we describe the
CellIQ system (§ 4) and the optimizations (§ 5) in detail.
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Figure 3: LTE network monitoring data as property graphs

4 CellIQ System
In this section, we describe how CellIQ represents cel-
lular network data, and optimizes the placement for effi-
cient analysis. We then discuss the computational model.

4.1 Graph Representation
Cellular monitoring data as property graphs Our data
model for a window of cellular monitoring data is a graph
G(V,E), where the vertex is either a user equipment or a
base station. For the purpose of the analytics we are inter-
ested in, we discard other entities, although it is easy to
incorporate them if required. An edge is formed between
a user and the base station to which she is connected,
Thus, each base station vertex consists of many edges.
Similarly, an edge is formed between two base stations
when a user traverses between them (i.e., she is handed-
off from the first base station to the second). To access
the cellular network, a UE performs various procedures
during which it exchanges control messages with the net-
work. These procedures are carried out using complex
protocols modeled as state machines. Any action the user
wishes to take in the network, such as browsing the web,
watching a video or making a voice call, triggers a myriad
of control plane messages. We incorporate these control
plane monitoring records as edge properties. Handoffs
records are edge properties of the previous base stations.
We do not replicate the record for the new base stations.
Essentially, all control plane interaction between a user
and a base station is stored on the edge between them.
Similarly, the edge between two base stations may store
records relevant to user traversals between them. Figure 3
depicts such a simple graph.

This representation enables us to do computations on
the control plane data efficiently. For instance, the path of
a user can be found using a simple graph traversal. Simi-
larly, aggregate base station information can be obtained
without any costly map and shuffle operations.

4.2 Graph Partitioning
A straight-forward approach to distributing the graph in a
cluster is to partition the vertices and edges among the ma-
chines using a hash-partitioner. Although such a scheme
ensures uniform distribution of vertices and edges, it also
places neighboring vertices in different machines, thus
resulting in poor performance. PowerGraph [19] intro-

duces the vertex-cut technique based on the observation
that natural graphs exhibit power law degree distribution,
and proposes a greedy edge placement algorithm that min-
imizes vertex replication. Cellular network graphs do not
typically exhibit power law degree distribution and hence
the algorithm is not directly applicable. An alternative
approach is to use balanced edge-cuts (e.g., as proposed
by METIS [23]) for partitioning. However, this results in
two disadvantages. First, they result in edge replication
which are costly in our graph representation with many
thousands of records stored in edges per time window.
Second, since edge properties change over time, an edge-
cut that is optimal in one snapshot may not remain so in
the next, requiring expensive data movements. To strike
a balance between these advantages and shortcomings,
CellIQ uses the vertex-cut strategy to avoid replicating
edges, and a geo-partitioning technique to place edges to
preserve spatial locality.

Geo-partitioning of data For efficient analysis of cel-
lular network data, CellIQ requires nodes that are phys-
ically close by to be present in the same partition. To
achieve this, CellIQ uses a geo-partitioner to distribute
the graph across the cluster. The partitioner first maps the
vertices to real world geo-coordinates. Each user inherits
the location of the base station they are connected to. A
standard way to organize multidimensional co-ordinates
is to use a tree based datastructure (e.g., Quad-trees [17]
or R-trees [20]), but they require complex look ups in a
distributed setting. In order to leverage the key based look
up schemes typical in cluster computing frameworks,
CellIQ’s geo-partitioner uses a space-filling curve based
approach. The key idea behind space filling curves is
to map 2-dimensional locations to 1-dimensional keys
that preserve spatial proximity [33]. Thus, keys that are
contiguous represent contiguous locations in space. We
convert the geo-location of each of the nodes in the graph
to its corresponding 1 dimensional space-filling curve key.
The key space is then range-partitioned to the machines
in the cluster. Edges are co-partitioned with vertices by
assigning them the key associated with the source vertex.

Edge indexing Many base station properties such as
traffic volume, aggregate frame losses are computed from
edge properties between base stations and UEs. To en-
able fast computation, we index edge properties by base
station ID. This ensures the edge properties of a given
base station will most likely end up in one partition.

4.3 Computation Model: Discretized
Graph Streams (G-Streams)

Because cellular network data arrives continuously, we
need to perform the analysis tasks in a streaming fashion.
We treat a streaming computation as a series of determin-
istic batch graph computations on small time intervals
(snapshots). The data received in each interval is stored in
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the cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic graph parallel operations, such as subgraph,
connected component, etc to produce new datasets repre-
senting either program outputs or intermediate state.

We define discretized graph streams (G-Streams) as
a sequence of immutable, partitioned datasets (property
graphs as a pair of vertex and edge property collections)
that can be acted on by deterministic transformations.
User defined cellular network analytics programs manip-
ulate G-Stream objects. In contrast, D-Streams are de-
fined on a sequence of RDDs instead of property graphs.
We will show that our computations cannot be easily ex-
pressed using the D-Stream API.

5 CellIQ API and Optimizations
In this section, we present the APIs and various optimiza-
tion techniques in CellIQ.

5.1 GeoGraph API
The GeoGraph represents the domain specific property
graph presented in the previous section, and incorporates
the spatial optimizations in CellIQ. The methods exposed
by the API is shown in Listing 1.

class GeoGraph[V, E] extends Graph[V, E]{
...

//For efficient message exchanges
def sendMsg (radius: Double, V, V) : M

//For spatial aggregation tasks
def spatialAG(reduceV: (V, V) => V,

reduceE: (E, E) => E) : GeoGraph[V, E]) = {
val superV: Collection[(ccId, V)] =

this.vertices.groupBy(ccId, reduceV)
val superE: Collection[(ccId, ccId, E)] =

this.triplets.map {
e => (e.src.cc, e.dst.cc, e.attr)}

.groupBy((e.src.cc, e.dst.cc), reduceE)

//Return the final graph
Graph(superV, superE)

}
}

Listing 1: Spatial graph API for cellular monitoring data.

5.1.1 Message Broadcast Within a Radius

Similar to the traffic gradient tracking example presented
earlier, many analysis tasks may require messages from
a node in the graph to be propagated to every other node
within a geographic distance that far exceeds a single
hop4. GraphX implements this operation using triplets
(a triplet contains an edge and its property, and the two

4In metropolitans, base stations may be placed as close as a few
hundred meters from each other, while the analysis may look at areas
spanning several miles.

component vertex properties), which requires join oper-
ations. Since the operation has to be repeated for every
iteration (hop), it becomes expensive. The sendMsg API
is designed to enable efficient message broadcast to mul-
tiple nodes rather than just the immediate hop neighbor.
It uses a routing table similar to the one maintained by
GraphX. These routing tables are maintained in the ver-
tex partitions and identifies the edge partitions that have
edges associated with each vertex in the vertex partition.

In CellIQ, the edges are defined by a distance thresh-
old. We decompose the entire space of interest into sub-
spaces using the threshold by overlaying a grid. For each
node, we can compute the subset of subspaces that may
contain nodes within a radius R. We maintain a sub-
space to edge partition mapping that enables easy lookup.
This approach is much more efficient than the hop-by-hop
propagation, as it minimizes the overheads of joins to a
constant instead of being proportional to the hop count.

5.1.2 Spatial Aggregation

Many classes of analysis require operations on spatially
aggregated graphs. For instance, operators are interested
in tracking intra-tracking area and inter-tracking area
handoffs. A tracking area consists of a set of base stations.
Inter-tracking area handoffs are more involved which con-
sume high signaling resources and are thus more prone
to failures. To assist this kind of tasks, CellIQ exposes
the spatialAG function. The function assumes that each
graph vertex contains a field cc that can be used for ver-
tex and edge grouping. The function takes two reduce
functions: one for aggregating vertex properties and the
other for aggregating edge properties.

As an example, to compute inter-tracking area and
intra-tracking area handoffs, we could use the tracking
area ID (TAI) field as the cc field. Our vertex reduce
function would sum up each component vertex’s property
fields such as traffic volume. If we are only interested in
handoffs, then this function may return null. For the edge
reduce function, we return the total handoffs. Note that
we allow self-edges. A self-edge property is the sum of
intra-tracking area handoffs.

5.2 GStream API
The GStream API in CellIQ is as described in List-

ing 2. The input to CellIQ is a stream of GeoGraphs.
Similar to DStreams [37], we implement operations on
this streaming domain specific graph by batching their
execution in small time steps. In our system, input graph
streams are read from the network. Two types of opera-
tions apply to these graph streams: (1) Transformations
create a new G-Stream from one or more parent streams.
These can either be stateless, applying separately on the
property graph in each time interval or stateful, produc-
ing states across time intervals. (2) Output operations,
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class GStream[V, E] extends Serializable {
...

def vertexStream(): DStream[(Id, V)] =
this.map(g => g.vertices)

def edgeStream(): DStream[(Id, Id, E)] =
this.map(g => g.edges)

def graphReduce(reduceFunc(Graph[V, E],
Graph[V, E], fv: (V, V) => V), fe: (E, E) => E)
): Graph[V, E] =
this.reduce((a, b) => reduceFunc(a, b, fv, fe))

// Return a new Gstream by reducing the input graph
// over a sliding window
def graphReduceByWindow(

reduceFunc(Graph[V, E], Graph[V, E],
fv: (V, V) => V),
fe: (E, E) => E): Graph[V, E],

windowDuration: Duration,
slideDuration: Duration
): GStream[V, E] = {
this.window(windowDuration,
slideDuration).map(x => x.graphReduce(reduceFunc))

}
}

Listing 2: GStream API

similar to Spark, write data to external systems.
Even though we can not directly extend D-Stream API,

we provide two functions that maximally reuse D-Stream
functions. The two functions convert a G-Stream into
an independent vertex property D-Stream and edge prop-
erty D-Stream. These can use all the original D-Stream
functions, specifically the functions on collections of key
value pairs. The key for the vertex D-Stream is the vertex
ID and value is the vertex property. Similarly, the key for
the edge D-Stream is the edge ID and value is the edge
property. Since the individual component RDDs (vertex
or edge RDDs) of the D-Stream are geo-partitioned, they
automatically take advantage of our spatial optimizations.

G-Streams support the same stateless transformations
available in GraphX including subgraph, connected com-
ponents and join of vertex and edge RDDs. In addition,
G-Streams also provide several stateful transformations
for computations across multiple time intervals.

Windowing: Similar to D-Stream windowing operator,
the window operation groups all the graphs from a sliding
window of past time intervals into one. For example,
calling gs.window(“5s”) yields a G-Stream containing
graphs in intervals [0,5), [1,6), [2,7), etc.

graphReduce: Reduces a G-Stream into a GeoGraph.
Sliding window: The graphReduceByWindow opera-

tion computes one graph per sliding window.

5.2.1 Extending GraphX Operators to Support
graphReduce

We represent each time window of data as a property
graph. To perform window computations, we need to re-
duce a sequence of graphs into one graph. GraphX does
not support certain graph transformations such as inter-

section and union. We extend the GraphX API to support
these transformations. Both intersection and union
operators take two graphs, a vertex function and an edge
function. The vertex function decides what to do with the
vertex properties of each common vertex. Similarly, the
edge function decides how to combine the edge properties
of each common edge. An intersection operator per-
forms a GraphX innerJoin operation on either two ver-
tex or two edge RDDs, and keeps only common vertices
and edges in both graphs. A union operator performs a
GraphX outerJoin operation and keeps all vertices and
edges from both graphs.

def persistConnectedComponents(gs: GStream) = {
val gs1 = gs.graphReduceByWindow(

(a, b) => a.intersection(b,
(id, V1, V2) => id,
(id1, id2, E1, E2) => (id1, id2),

"1s", "5s")
val hotspots = gs1.map(_.connectedComponents())

}

Listing 3: Connected components in sliding windows.

Listing 3 illustrates the use of the graphReduce
operator by computing the connected components in
each sliding window, where we reduce each sliding
window into a graph using the intersection opera-
tor as the reduce function. We then output the con-
nected component in each sliding window of 5s using the
connectedComponents operator of GraphX. Similarly,
to compute popular handoff sequences for each sliding
window, we collect all handoff sequences for each sliding
window using the reduceByWindow operator. We then
sort the sequences by the number of UEs traversing them.

5.2.2 Differential Updates for Sliding Window Oper-
ations

For sliding window computation, if we have to perform
pair-wise graph reduce operation, it can be very expen-
sive. To enable differential computation, we provide dif-
ferential aggregation of property graphs. The differential
version of graphReduceByWindow takes an graph aggre-
gation function and a function for “subtracting” a graph.
The incremental computation can be implemented in this
framework by using a null subtraction function and then
resetting the graph at every window.

In the example shown in listing 4, the graph aggrega-
tion function just sums up the vertex count and edge count
of two graphs. The subtraction function just subtracts ver-
tex count and edge count of one graph from the other. For
each sliding window of K snapshots, instead of comput-
ing K −1 graph intersections, we only perform one graph
union and one graph subtraction. We union the cumu-
lative graph with the graph of the current snapshot, and
subtract the graph at t−K time interval where t is the cur-
rent interval number. To compute the persistent hotspots



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 317

def persistConnectedComponents(gs: GStream) = {
val gs1 = gs.graphReduceByWindow(

(a, b) => a.union(b,
(id, V1, V2) => (id, V1.cnt+V2.cnt),
(id1, id2, E1, E2)

=> (id1, id2, E1.cnt+E2.cnt),
(a, b) => a.intersection(b,
(id, V1, V2) => (id, V1.cnt-V2.cnt),
(id1, id2, E1, E2)

=> (id1, id2, E1.cnt-E2.cnt),
"1s", "5s")

val hotspots = gs1.map(x =>
x.subgraph(vPred = (id, c) => c>=K,

ePred = (id1, id2, cV1,
cV2, cE) => cE>=K)

.connectedComponents())
}

Listing 4: Incrementally computing connected components in
each sliding window

for a sliding window, we filter vertices and edges whose
count are smaller than K using the subgraph operator of
GraphX, and then run connectedComponents.

Similarly, for handoff sequence, we accumulate the
list of UEs traversed a handoff sequence (list combine).
For subtraction, we just remove the tail elements of the
sequence from t −K time interval.

5.3 Co-partitioning Component Graphs
As shown in Chronos [21], in general, it is very hard
to accommodate graph structure locality (neighborhood)
per snapshot and temporal locality (co-locate vertices or
edges in different time windows) across snapshots. Ap-
plications or systems have to make a tradeoff between re-
taining structure locality and temporal locality for evolv-
ing graphs. In cellular network data, edges in one snap-
shot have spatial locality and edges across snapshot re-
tain most of the spatial locality as users do not move
long distance over short time windows. As a result, we
co-partition all graph snapshots in the active set (old snap-
shots are cleaned up). This co-partition retains both struc-
tural and temporal locality, and significantly reduces data
movement for computations on G-Streams.

5.4 Indices and Routing Tables
GraphX maintains indices on the partitions that vertices
or edges reside. It also keeps a routing table so that a ver-
tex can find out which edge partitions contain its neigh-
bors. We share the same index and routing data struc-
tures for all component graphs in a G-Stream since we
co-partition the component graphs.

6 Evaluation
We evaluated CellIQ’s performance using the three rep-
resentative analysis tasks we presented in § 3. Our results
are summarized below:
• Geo-partitioning has a significant impact in

CellIQ’s performance. The improvement due to this
partitioning strategy ranges from 2× in small analy-
sis windows to several orders of magnitude in larger
windows. In addition, geo-partitioning enables anal-
ysis to complete when other partitioning strategies
fail due to the data movement overhead.
• CellIQ’s incremental graph update strategy results

in the reduction of analysis time by 2× to 5×.
• The differential graph update technique significantly

benefits sliding window computations, by improv-
ing performance by up to 4×. Moreover, the tech-
nique enables CellIQ to perform well for various
window sizes, when strawman techniques incur in-
creasing performance penalty when the analysis win-
dow becomes larger.
• Radius based broadcast improves the analysis time

by up to 4× compared to the standard hop-by-hop
propagation approach.

We discuss these results in detail in the rest of this sec-
tion after describing our evaluation set up and the datasets
used in our experiments.
Evaluation Setup: Our evaluation environment consists
of 10 machines forming a cluster. Each machine consists
of 4 CPUs, 32GB of memory and a 200GB magnetic hard
disk. In addition to HDFS, a network storage of 1TB is
accessible from all the machines. CellIQ system was
built on GraphX version 1.0.
Dataset: We obtained LTE control plane data from a ma-
jor cellular network operator. The data is from a live net-
work which serves around 1 million subscribers in a large
metropolitan area. A single file is generated every minute,
and contains around 750,000 records. We receive 10 such
files every minute from 10 collection points, bringing the
total number of records per minute to approximately 7.5
million. Thus, in the following experiments, we process
450 million records for window sizes of 1 hour and 4.5
billion records5 for a day window. We store a week worth
of data in HDFS, which accounts to approximately 2 ter-
abytes of compressed data.

6.1 Tracking Popular Handoff Sequences
With the increase in base station deployment in an effort
to combat the increasing demands in data traffic, hand-
offs become inevitable when users are mobile even to a
small extent. While most handoffs are benign, analyzing
handoff patterns often helps operators uncover end-user
performance issues. For instance, ping-pong handoffs
may indicate an incorrect base station configuration, and
unexpected handoff sequences seen by many users may
indicate interference issues. The results from this ap-
plication can be combined with other metrics, such as
downlink throughput, to uncover problematic sequences.

5The operator collects data only during the 10 most active hours.
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(a) Partitioning and incremental updates.
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(b) Differential updates.
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(c) Radius based message broadcast.

Figure 4: Partitioning and incremental update has a significant impact on the analysis time (a missing value in 4a indicates either an
invalid analysis such as 10 minute incremental window on 1 minute analysis, or a timeout due to memory issues). Sliding window
computations benefit from differential updates. Radius-based broadcast can further improve the performance on large datasets.

We implemented this in CellIQ using a program that
closely matches Pregel. The program takes in a window
W , and outputs the top N sequences in the window. The
program bootstraps by assigning each edge information
on the users that traversed them along with their count.
The vertices (base stations) book-keep the handoff se-
quences, initially an empty set. At every iteration, the
vertices send messages to their neighbors. The message
consists of the users who traversed from the source vertex
to the destination vertex. Clearly, the bootstrap message
sends all users who were present at the source vertex at
window start. Subsequent messages consist of users who
reached the source vertex from other vertices. Thus, after
k th iteration, each vertex learns about a handoff sequence
of length k +1. The algorithm converges when there are
no more messages to send.

Benefits of geo-partitioning: To understand the ben-
efits of data placement, we ran this program on datasets
of varying sizes, namely 1 minute, 10 minutes, 1 hour
and 1 day, with two partitioning schemes. The default
data placement distributes the edges across machines
so as to balance the load6. In contrast, CellIQ’s geo-
partitioner uses the location of the source vertex as the
key. The results of the comparison of performance of the
two schemes are depicted in figure 4a. The gains of data
placement are clear from the results, which indicate im-
provements ranging from 2× (smaller datasets) to several
orders of magnitude (larger sets) for the geo-partitioned
case7. As expected, we see the benefits increase with the
size of the dataset. The primary reason for this behavior
is the locality achieved by the partitioner. When nodes
that are geographically close by are placed in the same
partition, the number of messages that a node needs to
send to other partitions are reduce drastically. The reduc-
tion closely matches the performance difference.

Benefits of incremental graph updates: Next, to

6We also used the 2D partitioner in GraphX, but results were similar.
7In large datasets, the default partitioner failed to run due to the

number of messages generated.

evaluate the performance of the incremental graph up-
date technique, we reran the analysis program with a few
small changes. Instead of running the program on the en-
tire window W , we break up W into smaller windows w.
Rather than naively running the program every w and then
combining the results, CellIQ uses the graphReduce op-
erations (§ 5) that maintain the result from every window
w. The next window is bootstrapped from this result.
The analysis time for running this program on the same
dataset is shown in figure 4a.

We were surprised to see the benefits of this strategy,
the reduction in analysis time showed a factor of 2× to
5×. Upon closer evaluation, these benefits come from two
sources. First, the incremental update limits the amount
of graph unions performed to one. Second, when the anal-
ysis graph is kept smaller, the number of messages to be
sent in each iteration is reduced. An interesting observa-
tion is that the performance of the incremental strategy is
better with 10 minute window compared to 1 minute win-
dow. Increasing the window size to 15 results in a lower
performance compared to 10 minutes. We tried experi-
menting with different window sizes, and found that very
small windows tend to have poor performance. Due to
the lack of space, we do not present the results. Finding
the optimal window size that minimizes the analysis time
is beyond the scope of this work, and may be obtained
using techniques similar to those detailed in [16].

Benefits of differential graph updates: Finally, to
evaluate the efficacy of differential updates on sliding
windows, we conducted the following experiment. We
streamed one day’s data to CellIQ. The handoff analysis
is done on this data in batches of 1 minute and slide dura-
tions of 1 minute. We varied the window of analysis from
2 minutes to 10 minutes. Thus, a window of 2 minutes
indicate that every minute (slide duration), the system
computes handoff sequences for the last 2 minute data.
The strawman approach keeps a ring buffer where it saves
the graph every batch. Then, at the slide window, it com-
bines all the graphs and computes handoff sequences. In
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Figure 5: CellIQ’s differential update strategy is able to scale
simple and complex graph algorithms well.

contrast, CellIQ uses graphReduceByWindow that main-
tains a cumulative graph of the number of users travers-
ing edges. Thus, at every slide window, it only needs
to subtract the first graph in the window to obtain the
graph on which the analysis needs to be performed. Both
approaches use geo-partitioning. The results from this
experiment are shown in figure 4b. The strawman ap-
proach is able to compute handoffs relatively easily when
the window sizes are small. However, when the analy-
sis window is increased, it needs to join many graphs to
obtain the result. In comparison, CellIQ is able to scale
well due to the fixed number of operations it performs to
compute the results. The performance improvement of
CellIQ ranged from 2× to 3× in this experiment.

6.2 Monitoring Persistent Hotspots
Arguably, the popular handoff tracking task uses a rea-
sonably complex algorithm that depends on iterative mes-
saging. How does CellIQ’s differential update strategy
perform on standard graph algorithms that are not mes-
sage heavy? To answer this question, we implemented
an analysis task that continuously monitors hotspots in a
given region. As mentioned earlier, hotspot computation
can be represented as finding connected components in
a graph. Similar to the task before, we use a strawman
that builds a graph for every batch and saves it in buffer.
At each slide interval, it analyzes all the saved graphs
and runs connected components on the union. In contrast,
CellIQ leverages its graphReduceByWindow operation
and then applies connected components on the result.

We again used one day worth of data for this experi-
ment. The hotspot analysis is done on this streaming data
in batches of 1 minute and slide durations of 1 minute.
We varied the window from 2 minutes to 10 minutes.
The average values are presented in figure 5. We find
results similar to the popular handoff monitoring task, ex-
cept that the analysis runs faster because of the lower
messaging overhead. Thus, CellIQ’s differential update
technique benefits all sliding window operations.

6.3 Computing Traffic Gradients
Finally, we evaluate the radius based message broadcast
in CellIQ. To do so, we use a task that computes the gradi-

ents of base stations in a given interval. As we discussed
in § 3, such analysis can be very useful for network opera-
tors in the context of optimizing their network. Consider,
for instance, a large crowd moving towards an area (e.g.,
popular events). In these cases, it is desirable to provi-
sion additional capacity in the area of gathering. Today,
operators need to pre-provision capacity using advance
knowledge of the events.

In our program, vertices (base stations) need to send
the gradient of their users to their neighbors. The prop-
agation of a message stops when it reaches a neighbor
at radius r . While this looks similar to our earlier ex-
ample of handoff analysis, there is one key difference:
the message sent in every iteration is the same. Hence,
CellIQ utilizes radius based message broadcast to avoid
the penalty associated with multiple iterations. Compar-
ison of this approach against the standard hop-by-hop
iterative approach is depicted in figure 4c. The approach
performs very well when the input dataset is large, pro-
viding gains of up to 4×. Although the number of mes-
sages remain same in both approaches, the need to do
hop-by-hop propagation impacts the analysis time. Due
to low number of messages, smaller datasets can leverage
transport layer optimizations that reduce the relative gain.
Such optimizations are limited in larger datasets.

7 Discussion
CellIQ leverages domain knowledge to do efficient anal-
ysis. A domain focused approach is likely to raise several
concerns. We discuss some concerns about CellIQ, fo-
cusing on the versatility and generality of its techniques.

How versatile is CellIQ’s API?

The representative analyses we present in this paper are
the result of our discussions with cellular network opera-
tors. Even though our discussion ended with a long list
of analysis requirements, we realized that most of them
distilled down to one or a combination of the techniques
we propose in this work. Thus, we believe that CellIQ is
able to accommodate a large set of analysis requirements,
and is not restricted to the examples presented here. It
is possible that new requirements would need to be ac-
commodated in the future. Since all of our techniques are
built on two fundamental datastructures—GeoGraph and
GStream—operators can develop new analysis tasks us-
ing these as the building blocks without significant effort.

How general are CellIQ’s techniques?

Though CellIQ’s primary motivation is to provide timely
and efficient cellular network analytics, we believe that
the techniques presented in this paper are widely applica-
ble beyond the cellular networks domain. An area of
emerging interest is smart-cities, where transportation
system optimization is a key challenge. Our graph par-
titioning (§ 4) and spatial optimization techniques (§ 5)
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can easily be extended to do traffic analysis on a large
scale. Similarly, another domain that has received sig-
nificant attention recently is the Internet-of-Things (IoT),
which also exhibit spatio-temporal characteristics. While
our techniques may not carry over to the IoT domain di-
rectly8, we believe that they could be extended to fit the
requirements. We envision generalizing the techniques
we presented to arbitrary graphs as part of future work.

Can CellIQ be used for real-time feedbacks?

The analysis we discuss in the paper are focused on
providing reports—insights and issues in the network—
useful for the network operator. A better scenario is to
automatically utilize the insights without human interven-
tion. Can CellIQ support such tasks?

Timely processing of data is of prime importance to
providing real-time feedbacks. That is, once the data
arrives, it is desirable to process it as fast as possible.
We designed CellIQ with fast and efficient analysis as
key requirements. Such quick analysis enables CellIQ to
be useful for providing real-time feedbacks that can be
incorporated into the network. Analyzing the efficacy of
feedbacks is not within the scope of our work because
of the lack of support for configuration change and/or
feedback integration in current generation LTE networks.
However, with the increasing interest in Self-Organizing
Networks (SON), we see this as a venue for future work.

8 Related Work
Cellular network analytics systems Several deployed
cellular network analytics system [3, 15] are based on
streaming databases. Like other streaming databases such
as Aurora, Borealis, STREAM, and Telegraph [6, 8, 10,
12], it is very hard and inefficient to perform iterative
graph parallel computations. CellIQ is designed to sup-
port real time domain specific streaming graph computa-
tions. In addition, these streaming databases use replica-
tion or upstream backup for recovery. These mechanisms
require complex protocols. In contrast, CellIQ inherits
the efficient parallel recovery mechanism from Spark.

Recently cellular network analytics systems have
adopted the Hadoop based framework [5, 35]. However,
they do not support efficient streaming graph computa-
tions. Since CellIQ’s G-Stream abstraction unifies batch
processing, graph processing and stream processing, it
can support a range of processing models. For example,
it can combine batch and stream processing by incorpo-
rating historical data in the analysis.

Temporal graph analytics systems Most large-scale
graph processing systems have focused on static graphs.
Some of these systems [19, 25, 32] can operate on multi-
ple graphs independently. They do not expose an API or

8CellIQ assumes that the data is human generated in some of its
optimizations which may not be always valid in the IoT domain.

optimize for operations spanning multiple graphs. There
are a couple of notable exceptions [9, 11, 21]. comb-
BLAS [9] represent graphs and data as matrices and sup-
port generalized binary operators. Kineograph constructs
incremental snapshots of the graph. Chronos optimizes
the in-memory layout of temporal graphs and the schedul-
ing of iterative computation on those graphs. Unlike
CellIQ, they do not present a general API that supports in-
cremental sliding window computation and graph reduce
operations. More importantly, they are not optimized
for cellular network analytics. Cellular network graphs
present both spatial (i.e. graph structural) and temporal
locality. CellIQ is designed specifically to leverage these
characteristics to support efficient analysis.

Large-scale streaming Several recent systems [2, 14,
30, 31] support streaming computation with high-level
APIs similar to D-Streams. However, they do not support
streaming graph processing. One notable exception is the
recent announcement of Naiad [30]’s GraphLINQ [28].
GraphLINQ intends to provide rich graph functionality
within a general-purpose dataflow framework. Similar to
CellIQ, it can operate on streams of vertices and edges.
However, it is not optimized for cellular network ana-
lytics. As we have shown, optimizations that leverage
the characteristics of cellular network can significantly
improve performance. The techniques we presented can
be incorporated in other frameworks. For instance, our
spatial optimizations can benefit GraphLINQ.

9 Conclusion and Future Work
Current cellular networks lack a flexible analytics engine.
Existing cellular data analytic systems are either elemen-
tary or lack support for real-time analytics. In this paper,
we present CellIQ, an efficient cellular analytic system
that can support rich analysis tasks. It represents cellu-
lar network data as a stream of property graphs. Lever-
aging domain specific knowledge, CellIQ incorporates a
number of optimizations such as geo-partitioning of input
data and co-partitioning of vertices and edges to reduce
data movements, radius-based message broadcast for ef-
ficient spatial operations, incremental graph updates to
avoid the cost of frequent joins in time window opera-
tions and differential graph updates for efficient sliding
window operations. Our evaluations show that these tech-
niques enable CellIQ to perform 2× to 5× faster com-
pared to implementations that do not consider domain
specific optimizations.

We see several arenas for future work. We are work-
ing on using CellIQ to perform root cause analysis on
operational LTE networks. We would also like to explore
the possibility of applying CellIQ’s techniques on do-
mains other than cellular networks. In this respect, we
are working on streaming graph analysis techniques that
are applicable to any arbitrary graphs.
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Abstract
Global-scale organizations produce large volumes of
data across geographically distributed data centers.
Querying and analyzing such data as a whole introduces
new research issues at the intersection of networks and
databases. Today systems that compute SQL analytics
over geographically distributed data operate by pulling
all data to a central location. This is problematic at
large data scales due to expensive transoceanic links,
and may be rendered impossible by emerging regulatory
constraints. The new problem of Wide-Area Big Data
(WABD) consists in orchestrating query execution across
data centers to minimize bandwidth while respecting
regulatory constaints. WABD combines classical query
planning with novel network-centric mechanisms de-
signed for a wide-area setting such as pseudo-distributed
execution, joint query optimization, and deltas on cached
subquery results. Our prototype, Geode, builds upon
Hive and uses 250× less bandwidth than centralized an-
alytics in a Microsoft production workload and up to
360× less on popular analytics benchmarks including
TPC-CH and Berkeley Big Data. Geode supports all
SQL operators, including Joins, across global data.

1 Introduction

Organizations operating at global scale need to analyze
vast amounts of data. The data is stored in multiple data
centers around the world because of stringent latency
requirements for user-facing applications. The volume
of data collected while logging user interactions, mon-
itoring compute infrastructures, and tracking business-
critical functions is approaching petabytes a day. These
new global databases across data centers — as opposed
to traditional parallel databases [4] within a data center
— introduce a new set of research issues at the intersec-
tion of databases and networks, combining the traditional
problems of databases (e.g., query planning, replication)
with the challenges of wide area networks (e.g., band-

width limits, multiple sovereign domains [17]). Recent
work in global databases illustrates this research trend,
from Spanner [12] (global consistency) to Mesa [22]
(replication for fault tolerance) to JetStream [34] (ana-
lytics for data structured as OLAP cubes).

In these applications, besides the many reads and
writes generated by user transactions or logging, data is
frequently accessed to extract insight, using ad-hoc and
recurrent analytical queries. Facebook [40, 44], Twit-
ter [29], Yahoo! [14] and LinkedIn [3] report operat-
ing pipelines that process tens or hundreds of TBs of
data each day. Microsoft operates several large-scale ap-
plications at similar scales, including infrastructures for
collecting telemetry information for user-facing applica-
tions, and a debugging application that queries error re-
ports from millions of Windows devices [19]. Many of
these queries require Joins and cannot be supported using
the OLAP cube abstraction of [34].

To the best of our knowledge, companies today per-
form analytics across data centers by transferring the data
to a central data center where it is processed with stan-
dard single-cluster technologies such as relational data
warehouses or Hadoop-based stacks. However, for large
modern applications, the centralized approach transfers
significant data volumes. For example, an analytics ser-
vice backing a well known Microsoft application ingests
over 100 TB/day from multiple data centers into a cen-
tralized analytics stack. The total Internet bandwidth
crossing international borders in 2013 was 100 Tbps
(Figure 1). Even if all this capacity were dedicated to
analytics applications and utilized with 100% efficiency,
it could support only a few thousand such applications.

Moreover, while application demands are growing
from 100s of terabytes towards petabytes per day, net-
work capacity growth has been decelerating. The 32%
capacity growth rate in 2013-2014 was the lowest in the
past decade (Figure 1). A key reason is the expense of
adding network capacity: for instance, a new submarine
cable connecting South America and Europe is expected

1
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Figure 1: Sum of capacities of Internet links crossing
international borders [24]

to cost $185 million. This scarcity of wide-area net-
work bandwidth can drive applications to discard valu-
able data; the problem will only worsen as applications
scale up and out. Our analysis of bandwidth trends is
consistent with [34, 28, 21].

A second emerging difficulty is that privacy concerns
(for example in the EU [16]) may result in more regula-
tory constraints on data movement. However, while local
governments may start to impose constraints on raw data
storage [35], we speculate that derived information, such
as aggregates, models, and reports (which are critical
for business intelligence but have less dramatic privacy
implications) may still be allowed to cross geographical
boundaries.

Thus our central thesis is: rising global data and scarce
trans-oceanic bandwidth, coupled with regulatory con-
cerns, will cause an inflection point in which centraliz-
ing analytics (the norm today) will become inefficient
and/or infeasible. We consider the problem of provid-
ing wide area analytics while minimizing bandwidth over
geo-distributed data structured as SQL tables, a domi-
nant paradigm. We support the entire array of SQL op-
erators on global data including Joins, providing exact
answers. We refer to such analytics as Wide-Area Big
Data or WABD.

Our paper proposes a solution to the WABD prob-
lem. We support SQL analytics on geo-distributed data,
providing automated handling of fault-tolerance require-
ments and using replicated data to improve performance
whenever possible. We assume that resources within a
single data center (such as CPU and storage) are rela-
tively cheap compared to cross-data center bandwidth.
We target the batch analytics paradigm dominant in large
organizations today [44, 29, 3], where the cost of sup-
porting analytics execution is the primary metric of inter-
est. Our optimizations are all targeted at reducing band-
width cost; we currently make no attempt at minimizing
analytics execution latency.

Our techniques revisit the classical database prob-
lem of query planning while adding a networking twist.
In particular, while classical query planning optimizes
query processing (“What’s the best join order?”) to min-
imize computation, in WABD we optimize the execution

strategy to minimize bandwidth and respect sovereignity.
For example, one of our techniques is based on caching
previous answers to subqueries at data centers and only
sending the difference, reminiscent of differential file
transfer mechanisms [42, 41]. Similarly, our query op-
timization approach relies on the fact that analytical
queries are repeated: thus simple measurement tech-
niques common in networking can be used to measure
data transfer costs across data centers. This contrasts
with classical database techniques using histograms (de-
signed to handle arbitrary queries) that are well known
to be inaccurate in the face of Joins and User Defined
Functions [30].

We make four main contributions:
1. Optimizer: We jointly optimize query execution

plans and data replication to minimize bandwidth cost.
Our solution combines a classical centralized SQL query
planner (a customized version of Apache Calcite) with
an integer program for handling geo-distribution.

2. Pseudo-distributed measurement: We develop a
technique that modifies query execution to collect ac-
curate data transfer measurements, potentially increas-
ing the amount of (cheap) computation within individual
data centers, but never worsening (expensive) cross-data
center bandwidth.

3. Subquery Deltas: We take advantage of the cheap
storage and computation within individual data centers to
aggressively cache all intermediate results, using them to
eliminate data transfer redundancy using deltas.

4. Demonstrated Gains: Our prototype, Geode, is
built on top of the popular Hive [39] analytics frame-
work. Geode achieves a 250× reduction in data trans-
fer over the centralized approach in a standard Microsoft
production workload, and up to a 360× improvement in
a range of scenarios across several standard benchmarks,
including TPC-CH [9] and Berkeley Big Data [6].

2 Approach Overview

We start by discussing an example inspired by the Berke-
ley Big-Data Benchmark [6] and use it to motivate our
architecture.

Running example

We have a database storing batch-computed page meta-
data and a log of user visits to web pages, including in-
formation about the revenue generated by each visit:

ClickLog(sourceIP,destURL,visitDate,adRevenue,...)

PageInfo(pageURL,pageSize,pageRank,...)

Pages are replicated at multiple edge data centers, and
users are served the closest available copy of a page. Vis-
its are logged to the data center the user is served from,
so that the ClickLog table is naturally partitioned across
edge data centers. The PageInfo table is stored centrally

2
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in a master data center where it is updated periodically
by an internal batch job.

Now consider an analytical query reporting statistics
for users (identified by their IP address) generating at
least $100 in ad revenue.

Q: SELECT sourceIP, sum(adRevenue), avg(pageRank)

FROM ClickLog cl JOIN PageInfo pi

ON cl.destURL = pi.pageURL

WHERE pi.pageCategory = ’Entertainment’

GROUP BY sourceIP

HAVING sum(adRevenue) >= 100

Supporting this query via the centralized approach re-
quires retrieving all updates made to the ClickLog table
to a central data center where the analytical query is com-
puted. This means that the daily network bandwidth re-
quirement is proportional to the total size of the updates
to the database. Assuming 1B users, 6 pages visited per
user, 200 bytes per ClickLog row, this is roughly (1B * 6
* 200) bytes = 1.2 TB per day.

By contrast, Geode provides an equivalent location-
independent [33] query interface over distributed data.
The analyst submits the query Q unmodified to Geode,
which then automatically partitions the query and or-
chestrates distributed execution. Geode constructs the
distributed plan in two stages:
1. Choose join order and strategies. Geode first cre-
ates a physical execution plan for the logical query Q,
explicitly specifying the order in which tables are joined
and the choice of distributed join algorithm for process-
ing each join (broadcast join, semijoin etc. — see §5). In
this simple query, there is only one choice: the choice of
algorithm for processing the join between the ClickLog
and PageInfo tables.

To make these choices we use Calcite++, a customized
version we built of the Apache Calcite centralized SQL
query planner. Calcite has built-in rules that use sim-
ple table statistics to optimize join ordering for a given
query; Calcite++ extends Calcite to also make it identify
the choice of distributed join algorithm for each join. We
describe Calcite++’s design in detail in §4.1.

When Calcite++ is run on Q, it outputs an annotation
JOINHINT(strategy = right_broadcast), indicat-
ing that the join should be executed by broadcasting the
(much smaller) PageInfo table to each data center hold-
ing a partition of the (larger) ClickLog table, then com-
puting a local join at each of these data centers.

Assuming an organization that operates across three
edge data centers, the physical plan Qopt translates di-
rectly into the DAG in Figure 2. Each circle is a task: a
SQL query operating on some set of inputs. Edges show
data dependencies. Tasks can read base data partitions
(e.g. q1) and/or outputs from other tasks (e.g. q5) as in-
put. All the inputs a task needs must either already be
present or be copied over to any data center where it is

q1

q2

q3

q4

q5
SELECT pageURL, ...
FROM PageInfo
WHERE
      pageCategory
   = 'Entertainment'

SELECT sourceIP, ...
FROM ClickLog cl
  JOIN PageInfo pi ON ...

CLUSPI

SELECT sourceIP, ...
FROM ClickLog cl
  JOIN PageInfo pi ON ...
HAVING
        sum(adRevenue)
     > 100

PageInfo ClickLog

USA

CLUK

UK

CLJP

Japan

Master to analyst

Figure 2: DAG corresponding to Qopt

scheduled. While we do not consider them in this sim-
ple example, regulatory restrictions may prohibit some
partitions from being copied to certain data centers, thus
constraining task scheduling.
2. Schedule tasks. Geode now needs to assign tasks to
data centers, taking into account task input dependencies
and base data regulatory constraints.

Geode can maintain multiple copies of base data parti-
tions, for performance and/or for fault tolerance, and po-
tentially schedule multiple copies of tasks operating on
different partition copies. For instance, it could maintain
a synchronized copy of the PageInfo table at every data
center and create multiple copies of task q1 at each data
center. The choice of replication strategy is controlled by
a workload optimizer, at a much longer time scale than
one individual query’s execution (typically replication
policy changes occur on a weekly basis or even slower).
The optimizer chooses the replication policy taking vari-
ous factors into account (§4).

At runtime, Geode schedules tasks for individual
queries on data centers by solving an integer linear pro-
gram (ILP) with variables xtd = 1 iff a copy of task t
is scheduled on data center d. The constraints on the
ILP specify the input dependencies for each task and the
availability and regulatory constraints on copies of parti-
tions at each data center. The ILP tries to minimize the
total cost of the data transfers between tasks in the DAG
if measurements of inter-task transfer volumes are avail-
able (see §4). The ILP described here is a simpler version
of the more nuanced multi-query optimizer in §4.3.

Assume an initial setup where data are not replicated.
Then the natural strategy is to schedule q1 on the master
data center holding the PageInfo table, push q2, q3, q4
down to the edge data centers holding the ClickLog par-
tition they operate on, and co-locate q5 with one of q2,
q3 or q4. If query Q is submitted once a day, 1B users
visit 100M distinct pages each day, 100K users have an
ad revenue larger than $100, each tuple output by q1 is 20
bytes long and by q2, q3, q4 is 12 bytes long, distributed
execution will transfer 3 ∗ 100M ∗ 20 + (2/3) ∗ 1B ∗ 12
+ 100K ∗12 = 14 GB of data each day, compared to 1.2
TB per day for the centralized approach.
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Figure 3: Geode architecture

While these numbers suggest a clear win for the dis-
tributed approach, if Q is submitted once every 10 min-
utes centralization is more efficient. The workload opti-
mizer evaluates this tradeoff across the entire analytical
workload and continuously adapts, reverting to central-
ized execution if needed. Analytical queries can be much
more complex than Q; for example, the CH benchmark
(§6) contains a query with 8 joins (involving 9 different
tables) for which the degrees of freedom (join order, join
strategy, replication) are much higher.

Architecture

Our example motivates the architecture in Figure 3.
Geode processes analytics over data split across multi-

ple data centers, constantly updated by interactions with
a set of end-users. End-user interactions are handled ex-
ternally to our system, and we do not model them explic-
itly. We assume that at each data center all data has been
extracted out into a standard single-data-center analytics
stack, such as Hive or a relational database. Our current
implementation is Hive-based.

The core of our system is a central command layer.
The command layer receives SQL analytical queries,
partitions them to create a distributed query execution
plan, executes this plan (which involves running queries
against individual data centers and coordinating data
transfers between them), and collates the final output. At
each data center the command layer interacts with a thin
proxy deployed over the local analytics stack. The proxy
layer facilitates data transfers between data centers and
manages a local cache of intermediate query results used
for the data transfer optimization in §3.

A workload optimizer periodically obtains measure-
ments from the command layer to estimate if changing
the query plan or the data replication strategy would im-
prove overall performance. These measurements are col-
lected using our pseudo-distributed execution technique
(§4.2), which may entail rewriting the analytical queries.
The optimizer never initiates changes directly, but in-
stead makes suggestions to an administrator.

We next discuss: an optimization we implement to re-
duce data transfers (§3); the workload optimizer includ-

q0

subquery q

q0

DCB asks DCA for result of
running subquery q;
DCA computes and sends q0

After transfer, both keep
cached copy

DCA DCB
0

DCB again asks DCA for result
of running subquery q;
DCA computes new results q1,
but only sends diff

1

(         )q0q1

time

q0 q0DCA DCB

q0

subquery q
DCA DCBq0q1

Figure 4: Subquery delta mechanism

ing pseudo-distributed execution (§4); and the design and
implementation of our Geode prototype (§5).

3 Subquery deltas: Reducing data transfer

We first turn our attention to optimizing the mechanics
of data movement. The unique setting we consider, in
which each node is a full data center with virtually lim-
itless CPU and storage, but connectivity among nodes
is costly/limited, lends itself to a novel optimization for
eliminating redundancy.

Consider a query computing a running average over
the revenue produced by the most revenue generating IPs
over the past 24 hours. If the query is run once an hour,
more than 95% of the data transfer will be wasted be-
cause every hour unoptimized Geode would recompute
the query from scratch, transferring all the historical data
even though only the last hour of data has changed.

We leverage storage and computation in each data cen-
ter to aggressively cache intermediate results. Figure 4
details the mechanism. After data center DCB retrieves
results for a query from data center DCA, both the source
and the destination store the results in a local cache
tagged with the query’s signature. The next time DCB
needs to retrieve results for the same query from DCA,
DCA recomputes the query again, but instead of sending
the results afresh it computes a diff (delta) between the
new and old results and sends the diff over instead.

Note that DCA still needs to recompute the results for
Q the second time around. Caching does not reduce
intra-data-center computation. Its purpose is solely to
reduce data transfer between data centers.

We cache results for individual sub-queries run against
each data center, not just for the final overall results re-
turned to the analyst. This means that caching helps
not only when the analyst submits the same query re-
peatedly, but also when two different queries use results
from the same common sub-query. E.g. in the TPC-CH
benchmark that we test in §6, 6 out of the 22 analytical
queries that come with the benchmark perform the same
join operation, and optimizing this one join alone allows
caching to reduce data transfer by about 3.5×.
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Figure 5: Optimizer architecture

4 Workload Optimizer

Geode targets analytics with a small, slowly evolving
core of recurring queries. This matches our experience
with production workloads at Microsoft, and is consis-
tent with reports from other organizations [44, 3, 29].
The workload optimizer tailors policy to maximize the
performance of this core workload, jointly optimizing:

1. Query plan: the execution plan for each query, de-
ciding e.g. join order and the execution mechanism
(broadcast join, semijoin etc.).

2. Site selection: which data center is used to execute
each sub-task for each query.

3. Data replication: where each piece of the database
is replicated for performance/fault-tolerance.

The problem we face is akin to distributed database
query planning. In that context, it is common [27] to
employ a two-step solution: (1) find the best centralized
plan (using standard database query planning), and (2)
decompose the centralized plan into a distributed one, by
means of heuristics (often employing dynamic program-
ming). Our approach is similar in spirit, but is faced with
substantially different constraints and opportunities aris-
ing from the WABD setting:

1. Data Birth: We can replicate data partitions to other
data centers, but have no control over where data is
generated originally – base data are naturally “born”
in specific data centers dictated by external consid-
erations, such as the latency observed by end-users.

2. Sovereignty: We must deal with the possibility of
sovereignty constraints, which can limit where data
can be replicated (e.g. German data may not be al-
lowed to leave German data centers).

3. Fixed Queries: We can optimize the system for a
small, approximately static core workload, which
means we do not have to use general-purpose ap-
proximate statistics (e.g., histograms) that yield
crude execution cost estimates for one-time queries.
We can instead collect narrow, precise measures for
a fixed core of queries.

These features drive us to the architecture in Fig-
ure 5. Briefly, we start by identifying the optimal cen-
tralized plan for each query in the core workload using
the Calcite++ query planner (§4.1). We then collect
precise measures of the data transfers during each step
of distributed execution for these plans using pseudo-
distributed measurement (§4.2). We finally combine all
these measurements with user-specified data sovereignty
and fault tolerance requirements to jointly solve the site
selection and data replication problems (§4.3).

4.1 Centralized query planning: Calcite++
Apache Calcite is a centralized SQL query planner cur-
rently being used or evaluated by several projects, in-
cluding Hive [39]. Calcite takes as input a SQL query
parse tree along with basic statistics on each table, and
produces a modified, optimized parse tree. Calcite++ ex-
tends Calcite to add awareness of geo-distributed execu-
tion.

Calcite optimizes queries using simple statistics such
as the number of rows in each table, the average row size
in each table, and an approximate count of the number
of distinct values in each column of each table. All these
statistics can be computed very efficiently in a distributed
manner. Calcite uses these statistics along with some
uniformity assumptions to optimize join order. In Cal-
cite++ we leave the join order optimization unchanged
but introduce new rules to compare the cost of various
(distributed) join algorithms, passing in as additional in-
put the number of partitions of each table. The output
of the optimization is an optimized join order annotated
with the lowest cost execution strategy for each join —
e.g., in our running example (§2) Calcite++ chooses a
broadcast join, broadcasting PageInfo to all ClickLog lo-
cations where local partial joins are then computed.

While both Calcite and (therefore) Calcite++ currently
use only simple, rough statistics to generate estimates,
in all the queries we tested in our experimental evalua-
tion (§6.1), we found that at large multi-terabyte scales
the costs of the distributed join strategies under consid-
eration were orders of magnitude apart, so that impre-
cision in the generated cost estimates was inconsequen-
tial. (The centralized plan generated by Calcite++ always
matched the one we arrived at by manual optimization.)
Moreover, Calcite is currently under active development
— for instance, the next phase of work on Calcite will
add histograms on each column.

4.2 Pseudo-distributed execution
The crude table statistics Calcite++ employs suffice
to compare high-level implementation choices, but for
making site selection and data replication decisions we
require much better accuracy in estimating the data trans-
fer cost of each step in the distributed execution plan.
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Figure 6: Pseudo-distributed execution of query Q (§2) in
a centralized deployment. Cf. Figure 2

Traditional database cardinality estimation techniques
can be very inaccurate at generating absolute cost esti-
mates, especially in the face of joins and user-defined
functions [30]. The sheer volume of data, heterogene-
ity network topologies and bandwidth costs, and cross-
query optimizations such as the sub-query delta mech-
anism we propose, further complicate statistics estima-
tion.

Instead, we measure data transfers when executing
the plan in the currently deployed configuration (which
could be a centralized deployment or an already running
Geode deployment), modifying query execution when
necessary to make it possible to collect the estimates we
need. As an example consider query Q (Figure 2) from
§2, currently running in a centralized configuration (i.e.
the entire database is replicated centrally). To estimate
the cost of running in a distributed fashion Geode sim-
ulates a virtual topology in which each base data par-
tition is in a separate data center. This is accomplished
by rewriting queries to push down WHERE country = X

clauses constraining each of q2, q3, q4 to operate on the
right subset of the data1. Figure 6 depicts this process.
The artificial decomposition allows us to inspect inter-
mediate data sizes and identify the data transfer volume
along each edge of the DAG in Figure 2.

This technique, which we call pseudo-distributed ex-
ecution, is both fully general, capable of rewriting arbi-
trary SQL queries to simulate any given data partition-
ing configuration, and highly precise, since it directly
executes rewritten queries and measures output and in-
put sizes instead of attempting any estimation. We em-
ploy the technique whenever we need to evaluate an al-
ternative deployment scenario, such as when considering
moving from an initial centralized deployment to a dis-
tributed Geode deployment; or when considering adding
or decommissioning data centers in a distributed deploy-
ment in response to changes in the load pattern.

The latency overhead added by pseudo-distribution is
minimal and easily mitigated, as we discuss in §6.2.

1Every partitioned table in Geode has a user-specified/system-
generated field identifying the partition each row belongs to (§5).

Trading precision for overhead: While Geode’s imple-
mentation of pseudo-distributed execution measures the
costs of most SQL queries accurately, including those
with joins and nested queries, we deliberately introduce a
limited degree of imprecision when evaluating aggregate
functions to reduce measurement overhead.

Specifically, we ignore the possibility of partial aggre-
gation within data centers. As an example, suppose 10
data partitions are all replicated to one data center, and
consider a SUM query operating on all this data. Retriev-
ing one total SUM over all 10 partitions is sufficient, but
Geode always simulates a fully distributed topology with
each partition in a separate data center, thus retrieving
separate SUMs from each partition and overestimating the
data transfer cost. To measure the true cost of function
evaluation with partial aggregation we would need an ex-
ponential number of pseudo-distributed executions, one
for each possible way of assigning or replicating parti-
tions across data centers; one execution suffices for the
upper bound we use instead.

We found this was not an issue in any of the work-
loads (production or benchmark) we tested. The majority
of the data transfers during query execution arise when
joining tables, and data transfer during the final aggrega-
tion phase after the joins have been processed is compar-
atively much smaller in volume. In all six of our work-
loads, the data transfer for tasks involved in computing
combinable aggregates was < 4% of the total distributed
execution cost.

4.3 Site Selection and Data Replication
After identifying the logical plan (DAG of tasks) for
each query (§4.1) and measuring the data transfer along
each edge (§4.2), we are left with two sets of decisions
to make: site selection, specifying which data centers
tasks should be run on and which copies of the data they
should access; and data replication, specifying which
data centers each base data partition should be replicated
to (for performance and/or fault tolerance). This should
be done while respecting disaster recovery requirements
and sovereignty constraints.

We formulate an integer linear program (Figure 7a)
that jointly solves both problems to minimize total band-
width cost. The ILP is built from two sets of binary
variables, xpd indicating whether partition p is replicated
to data center d; and ygde identifying the (source, desti-
nation) data center pairs (d,e) to which each edge g in
the considered DAGs is assigned2. Constraints specify
sovereignty and fault-tolerance requirements.

While the ILP provides very high quality solutions, its
complexity limits the scale at which it can be applied—as

2We schedule edges instead of nodes because (1) replication turns
out to be easier to handle in an edge-based formulation, and (2) the
node-based formulation would have a quadratic (not linear) objective.
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Inputs:
D = number of data centers
P = number of data partitions
G = 〈V,E〉 = union of DAGs for all core workload queries
bg = number of bytes of data transferred along each edge
g ∈ E (from pseudo-distrib. exec.)
update ratep = rate at which partition p is updated by
OLTP workload (bytes per OLAP run)
link costde = cost ($/byte) of link connecting DCs d and e
fp = minimum number of copies of partition p that the
system has to make for fault-tolerance
R ⊆ P×D = {(p,d) | partition p cannot be copied to data
center d due to regulatory constraints}
Variables:
All variables are binary integers (= 0 or 1)
xpd = 1 iff partition p is replicated to DC d
ygde = 1 iff edge g in the DAGs is assigned source data
center d and destination data center e
ztd = 1 iff a copy of task t in the DAGs is assigned to data
center d
Solution:

replCost =
P

∑
p=1

D

∑
d=1

update ratep ∗ xpd ∗ link costhomeDC(p),d

execCost = ∑
g∈E

D

∑
d=1

D

∑
e=1

ygde ∗bg ∗ link costde

minimize
X ,Y

replCost+ execCost

subject to
∀(p,d) ∈ R : xpd = 0

∀p : ∑
d

xpd ≥ fp

∀d∀e∀g | src(g) is a partition : ygde ≤ xsrc(g),d

∀d∀e∀g | src(g) is a task : ygde ≤ zsrc(g),d

∀n∀e∀g | dst(g) = n : zne = ∑
d

ygde

∀n∀p∀d | n reads from partition p∧ (p,d) ∈ R : znd = 0

∀n : ∑
d

znd ≥ 1

(a) Integer Linear Program jointly solving both problems

for all DAG G ∈ workload do
for all task t ∈ toposort(G) do

for all data center d ∈ legal choices(t) do
cost(d) = total cost of copying all of t’s inputs to d

if lowest cost is zero then
assign copies of t to every data center with cost = 0

else
assign t to one data center with lowest cost

for all (p,d) �∈ R do
check if replicating p to d would further reduce costs

translate decisions so far into values for x, y, z variables in ILP above
solve simplified ILP with pinned values

(b) Greedy heuristic
Figure 7: Site selection + Data replication: Two solvers

we show in §6.3. For example, if we bound our optimiza-
tion time to 1h (recall that this is an offline, workload-
wide process), the ILP can only support up to 10 data

centers for workloads of the size we test in our experi-
ments. This is barely sufficient for today’s applications.
But the rapid growth in infrastructure [21] and applica-
tion scales that is the norm today may soon outstrip the
capabilities of the ILP. As future-proofing, we propose
an alternative greedy heuristic (Figure 7b) that has much
better scalability properties.

The heuristic approach first uses a natural greedy task
placement to solve the site selection problem in isolation:
identify the set of data centers to which each task can be
assigned based on sovereignity constraints over its input
data, and greedily pick the data center to which copy-
ing all the input data needed by the task would have the
lowest cost. We are still left with the NP-hard problem
of finding the best replication strategy subject to fault-
tolerance and sovereignty requirements. This is tackled
by a (much simpler) ILP in isolation from site selection.

The greedy heuristic scales much better than the ILP,
identifying solutions in less than a minute even at the
100 data center scale. However, in some cases this can
come at the cost of identifying significantly sub-optimal
solutions. We evaluate the tradeoff between processing
time and solution quality in §6.3.
Limitation: At this point the formulation does not at-
tempt to account for gains due to cross-query caching
(the benefit due to the mechanism in §3 when different
queries share common sub-operations). The precise ef-
fect of cross-query caching is hard to quantify, since it
can fluctuate significantly with variations in the order and
relative frequency with which analytical queries are run.
Similar to the discussion of partially aggregatable func-
tions in the previous subsection, we would need an ex-
ponential number of pseudo-distributed measurements to
estimate the benefit from caching in every possible com-
bination of execution plans for different queries.

However, we do account for intra-query caching —
the benefit from caching within individual queries (when
the same query is run repeatedly). We always collect
pseudo-distributed measurements with a warm cache and
report stable long-term measurements. This means all
data transfer estimates used by the ILP already account
for the long-term effect of intra-query caching.

5 Geode: Command-layer interface

Geode presents a logically centralized view over data
partitioned and/or replicated across Hive instances in
multiple data centers. Users submit queries in the SQL-
like Hive Query Language (HQL) to the command layer,
which parses and partitions queries to create a distributed
execution plan as in §2. We discuss the basic interface
Geode presents to analysts in this section.
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Describing schema and placement
Geode manages a database consisting of one or more ta-
bles. Each table is either partitioned across several data
centers, or replicated at one or more data centers. Par-
titioned tables must have a specified partition column
which identifies which partition any row belongs to. The
partition column is used to, among other things, support
pseudo-distributed execution and to automatically detect
and optimize joins on co-partitioned tables. Partitioned
tables can either be value-partitioned, meaning each dis-
tinct value of the partition column denotes a separate par-
tition, or range-partitioned on an integer column, mean-
ing each partition corresponds to a specified range of val-
ues of the partition column.

Analysts inform Geode about table schema and place-
ment by submitting CREATE TABLE statements anno-
tated with placement type and information — we omit
the details of the syntax.

Supported queries
We support most standard analytics features in Hive 0.11
(the latest stable version when we started this project):
nested queries, inner-, outer- and semi-joins, and user-
defined aggregate functions; although we do not support
some of Hive’s more unusual feature-set, such as com-
pound data structures and sampling queries [39]. Our
architecture is not tied to Hive and can be easily adapted
to work with other SQL backends instead.
Joins. By default, Geode passes user-submitted queries
through Calcite++ (§4.1) first to optimize join order
and execution strategy. However, users can enforce a
manual override by explicitly annotating joins with a
JOINHINT(strategy = ) instruction.

Geode currently supports three classes of distributed
join execution strategies: (1) co-located joins, which can
be computed without any cross-data center data move-
ment either because both tables are co-partitioned or be-
cause one table is replicated at all of the other table’s data
centers; (2) left or right broadcast joins, in which one ta-
ble is broadcast to each of the other table’s data centers,
where separate local joins are then computed; and (3) left
or right semi-joins, in which the set of distinct join keys
from one table are broadcast and used to identify and re-
trieve matches from the other table. We are currently ex-
ploring adding other strategies, such as hash-joins with a
special partitioning-aware hash function [38].
Nested queries. Nested queries are processed recur-
sively3. The system pushes down nested queries com-
pletely when they can be handled entirely locally, with-
out inter-data-center communication; in this case the re-
sults of the nested query are stored partitioned across

3This simple strategy is sufficient because Hive does not support
correlated subqueries.

data centers. For all other queries, the final output is
merged and stored locally as a temporary table at the
master data center (hosting the Geode command layer).
The results of nested queries are transferred lazily to
other data centers, as and when needed to execute outer
queries.
User-defined functions. We support Hive’s pluggable
interface for both simple user-defined functions (UDFs),
which operate on a single row at a time, and for user-
defined aggregate functions (UDAFs). Existing user
code can run unmodified.

For UDAFs, note that the need is to allow users
to write functions that process data distributed over
multiple machines. Hive’s solution is to provide a
MapReduce-like interface in which users define (1) a
combine function that locally aggregates all data at each
machine, and (2) a reduce function that merges all the
combined output to compute the final answer. By default
we use this interface in an expanded hierarchy to com-
pute UDAFs by applying combine a second time in be-
tween steps (1) and (2) above, using it on the combined
output from each machine to aggregate all data within
one data center before passing it on to reduce. Users can
set a flag to disable this expansion, in which case we fall
back to copying all the input to one data center and run-
ning the code as a traditional Hive UDAF.

Extensibility

Geode is designed to support arbitrary application do-
mains; as such the core of the system does not include
optimizations for specific kinds of queries. However, the
system is an extensible substrate on top of which users
can easily implement narrow optimizations targeted at
their needs. To demonstrate the flexibility of our system
we implemented two function-specific optimizations: an
exact algorithm for top-k queries [7], originally proposed
in a CDN analytics setting and recently used by Jet-
Stream [34]; and an approximate percentile algorithm
from the sensor networks literature [36]. We evaluate
the benefit from these optimizations in §6.4.

6 Experimental Evaluation

We now investigate the following questions experimen-
tally: How much of a bandwidth savings does our system
actually yield on real workloads at multi-terabyte scales
(§6.1)? What is the runtime overhead of collecting the
(pseudo-distributed) measurements needed by our opti-
mizer (§6.2)? What is the tradeoff between solution qual-
ity and processing time in the optimizer (§6.3)? Can
implementing narrow application-specific optimizations
yield significant further bandwidth cost reduction (§6.4)?
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Figure 8: End-to-end evaluation of all six workloads

6.1 Large-scale evaluation

We ran experiments measuring Geode performance on a
range of workloads, on two Geode deployments: a dis-
tributed deployment across three data centers in the US,
Europe and Asia, and a large centralized cluster on which
we simulated a multi-data center setup. Specifically, we
ran experiments on both deployments up to the 25 GB
scale (and validated that the results were identical), but
used the centralized cluster exclusively for all experi-
ments on a Microsoft production workload and all exper-
iments larger than 25 GB on other workloads. This was
because running experiments at the multi-terabyte scale
we evaluate would have otherwise cost tens of thousands
of dollars in bandwidth in a fully distributed deployment.

We tested six workloads.
Microsoft production workload: This use case consists
of a monitoring infrastructure collecting tens of TBs of
service health/telemetry data daily at geographically dis-
tributed data centers. The data are continuously repli-
cated to a central location and analyzed using Hive. The
bulk of the load comes from a few tens of canned queries
run every day producing aggregate reports on service uti-
lization and infrastructure health.
TPC-CH: The TPC-CH benchmark [9] by Cole et al.
models the database for a large-scale product retailer
such as Amazon, and is a joint OLTP + OLAP bench-
mark constructed by combining the well-known TPC-C
OLTP benchmark and the TPC-H OLAP benchmark.
BigBench: BigBench [18] is a recently proposed bench-
mark for big-data systems modeling a large scale prod-
uct retailer that sells items online and in-store, collecting
various information from customers (including reviews
and click logs) in the process. Analytics consists of a
core of Hive queries along with some non-relational ma-

chine learning operations that further process the rela-
tional output. We do not implement the non-relational
component explicitly, but model it as a black box analyst
interacting with Geode — Geode’s task is to compute the
results the non-relational black box needs as input.

Big-data: The big-data benchmark [6], developed by the
AMPLab at UC Berkeley, models a database generated
from HTTP server logs. The analytical queries in this
benchmark are parametric: each has a single parameter
that can be adjusted to tune the volume of data transfer
that would be required to process it. In our experiments
we set the normalized value (∈ [0,1]) of each parameter
to 0.5, to make each query require median data transfer.

YCSB-aggr, YCSB-getall: We defined these two very
simple benchmarks to demonstrate the best- and worst-
case scenarios for our system, respectively. Both bench-
marks operate using the YCSB [11] database and OLTP
workload, configured with database schema:

table(key, field1, fleld2)

The OLTP workload is constituted by transactions that
add a single row with field1 a randomly chosen digit
in the range [0,9] and field2 a random 64-bit integer.
The difference between the two benchmarks is solely in
their analytical workload.

YCSB-aggr’s analytical workload consists of the
single query SELECT field1, AVG(field2) FROM

Table GROUP BY field1. Since there are only 10 dis-
tinct values of field1, Geode achieves significant ag-
gregation, requiring only 10 rows (partial sum and count
for each distinct field1) from each data center.

YCSB-getall’s analytical workload is a sin-
gle query asking for every row in the table
(SELECT * FROM Table). Here no WABD solu-
tion can do better than centralized analytics.

9



332 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

We evaluate all six workloads by measuring the data
transfer needed for both centralized and distributed exe-
cution for varying volumes of changes to the base data in
between runs of the analytical workload. Our workload
optimizer consistently picks among the best of the cen-
tralized and distributed solutions at each point, so that
Geode’s performance would be represented by the min
of all the graphs in each plot. We omit the min line to
avoid crowding the figures.

Figure 8 shows results for all six workloads. (We are
required to obfuscate the scale of the axes of Figure 8a
due to the proprietary nature of the underlying data.) We
note a few key observations.

In general, the centralized approach performs rela-
tively better when update rates are low, actually outper-
forming distributed execution at very low rates in 2 of the
6 workloads. This is because low volumes mean frequent
analytics running on mostly unchanged data. Distributed
execution performs better at higher update rates.

Caching significantly improves performance at low
update rates in TPC-CH, BigBench and Berkeley big-
data: for instance, performance with caching always out-
performs centralized execution in the TPC-CH bench-
mark, while performance without caching is worse for
volumes < 6 GB per OLAP run. However, at high
update rates, caching is ineffective since redundancy in
the query answers is minimal. Caching does not help
in the YCSB workloads because small changes to the
base data end up changing analytics results completely in
both benchmarks, and in the Microsoft production work-
load because every query tagged all output rows with a
query execution timestamp, which interacts poorly with
the row-based approach we use to compute deltas (more
sophisticated diffs can overcome this limitation).

At the largest scales we tested, distributed execution
outperformed the centralized approach by 150 − 360×
in four of our six workloads (YCSB-aggr, Microsoft
prod., TPC-CH, and BigBench). The improvement was
only 3× in the Big-Data with normal distributed execu-
tion, but when we implemented the special optimization
for top-k queries [7] we discussed in §5, the improve-
ment went up to 27× — we discuss details in §6.4. Fi-
nally, YCSB-getall was deliberately designed so that dis-
tributed execution could not outperform the centralized
approach, and we find that this is indeed the case.

6.2 Optimizer: Runtime overhead
The pseudo-distributed execution method we use to col-
lect data transfer measurements can slow down query ex-
ecution (although it never worsens bandwidth cost, as we
discussed in §4.2). We measured the added overhead for
all the queries we tested in §6.1.

In all our workloads, we found that the latency over-
head compared to normal distributed Geode was con-

tained in the <20% range. Given the scale-out nature of
the Hive backend, this is easily compensated for by in-
creasing parallelism. Note also that this overhead is only
occasionally felt, since in our architecture the optimizer
operates on a much slower timescale than normal query
execution. E.g. if queries are run once a day and the op-
timizer runs once a month, pseudo-distributed execution
only affects 1/30 = 3.3% of the query runs.

Further, this overhead could be reduced in many cases
by using separate lightweight statistics-gathering queries
to estimate transfers, instead of full-fledged pseudo-
distributed runs. For instance, for the query in Figure 2,
we could instead run a SELECT sum( len(pageURL)

+ len (pageRank)) FROM PageInfo WHERE ...

query to estimate the size of the join, and then determine
the size of the final output by executing the query using
a normal (as opposed to a pseudo-distributed) join.

6.3 Optimizer Performance, Running time
The optimizer consists of two components, the Calcite++
centralized SQL query planner, and a site selection + data
replication solver. Calcite++ is responsible for a very
small proportion of the optimizer’s running time, com-
pleting in < 10 s for all the queries in §6.1. The majority
of the time spent by the optimizer is in the site selec-
tion and data replication phase, for which we defined two
solutions: a slower but optimal integer linear program,
and a faster but potentially suboptimal greedy heuristic
(§4.3). We now investigate the relative performance of
these two approaches.

We first compare the optimality gap between the two
solutions by evaluating their performance on: (i) the real
workloads from §6.1, and (ii) simulations on randomly
generated SQL workloads.

In all the workloads we tested in §6.1, the optimal-
ity gap is small. The greedy strategy performs remark-
ably well, identifying the same solution as the ILP in
over 98% of the queries we tested. It does fail in some
instances, however. For example, the BigBench [18]
benchmark has a query which joins a sales log table with
itself to identify pairs of items that are frequently ordered
together. The heuristic greedily pushes the join down to
each data center, resulting in a large list of item pairs
stored partitioned across several data centers. But it is
then forced to retrieve the entire list to a single data cen-
ter in order to compute the final aggregate. By contrast,
the ILP correctly detects that copying the entire order log
to a single data center first would be much cheaper.

In order to compare the strategies’ performance in a
more general setting, we simulated their performance
on randomly generated SQL queries. We generated
10,000 random chain-join queries of the form SELECT *

FROM T1 JOIN T2 ... JOIN Tk USING(col), where
each table has schema Ti(col INT), k chosen randomly

10
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Figure 9: ILP and greedy heuristic comparison

between 2 and 10. In each query we chose table sizes
and join selectivities according to a statistical model by
Swami and Gupta [37], which tries to cover a large range
of realistic query patterns, generating e.g. both queries
which heavily aggregate the input they consume in each
step, as well as queries which “expand” their inputs.

Figure 9a shows the results we obtained. The greedy
heuristic and the ILP identified the same strategy in
around 16% of the queries. In the remaining 84% the
ILP performs better: 8× better in the median, and more
than 8 orders of magnitude better in the tail. The worst
performance generally arises when the heuristic com-
pounds multiple errors of the kind described in the ex-
ample above. The results show that the gap between the
true optimum and the greedy strategy can be substantial.

However, this optimality gap turns out to be difficult
to bridge at large scales. Figure 9b shows the running
times of both approaches for workloads of the same size
as the largest in §6.1. The ILP’s running time grows very
quickly, taking more than an hour with just 10 data cen-
ters. By contrast, the greedy heuristic takes less than a
minute even at the 100 data centers scale, although as
we have seen this can come at the expense of a loss in
solution quality.

We are actively evaluating a hybrid strategy that first
uses the greedy heuristic to generate an initial solution,
and then uses the ILP for a best-effort search for better
alternatives starting from the initial greedy solution, un-
til a specified running time bound. We defer reporting
results until a thorough evaluation.

We note again that many of the results reported in this
section were based on simulating synthetic workloads,
albeit ones that were designed to be realistic [37]. The
question of how well both approaches will perform on
practical workloads (beyond those in §6.1, where we saw
that the greedy heuristic was competitive) remains open,

and can only be answered in the future, as analytical
workloads rise in sophistication to take advantage of the
cost reduction achieved by geo-distributed execution.

6.4 Function-specific optimizations
We close by showing how performance could be im-
proved even further by leveraging optimizations targeted
at specific classes of queries from past work. We evalu-
ate the two optimizations we discussed in §5: for top-k
queries [7] and for approximate percentile queries [36].

Both algorithms proved quite effective on applicable
queries. The top-k algorithm directly benefited the most
data-intensive query in the Berkeley big-data benchmark
(Figure 8d), achieving a further 9× reduction in data
transfer over normal distributed execution. And in a
sales-value percentile query we defined on the TPC-CH
benchmark database, the approximate percentile algo-
rithm achieved170× less data transfer than exact com-
putation with < 5% error, and 30× less with < 1% error.

There is a vast range of optimizations from several re-
lated fields one can leverage in the WABD setting —
Geode serves as a convenient framework on which these
optimizations can be layered.

7 Limitations and Open Problems

Several considerations arise when designing a global an-
alytics framework. We chose to focus solely on mini-
mizing bandwidth costs, while handling fault-tolerance
requirements and respecting sovereignty constraints. We
did not attempt to address:
Latency. Our focus was entirely on reducing data trans-
fer volume and large scale, and we made no attempt
to optimize analytics query latency. It is likely that in
many cases the problems of minimizing bandwidth us-
age and minimizing latency coincide, but effort charac-
terizing the differences is necessary.
Consistency. We support a relaxed eventual consistency
consistency model. This suffices for many use cases
which only care about aggregates and trends, but the
problem of building a WABD solution for applications
requiring stronger consistency guarantees remains open.
Privacy. Geode addresses regulatory restrictions by lim-
iting where base data can be copied. However, we al-
low arbitrary queries on top of base data, and make no
attempt to proscribe data movement by queries. While
this suffices for scenarios where all queries are care-
fully vetted before they are allowed to execute, an au-
tomated solution, which would necessitate a differen-
tial privacy [15] or privacy-preserving computation [26]
mechanism, would be interesting to pursue.
Other bandwidth cost models. We assumed each net-
work link has a constant $/byte cost. Supporting other
cost models, such as ones based on 95th %ile bandwidth
usage, would require modifying the workload optimizer.

11
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Other data models. We have concentrated on WABD
for a relational model, but similar issues of bandwidth
minimization and latency/regulatory constraints arise in
other data models as well, such as Map-Reduce or even
computational models that go beyond querying such as
machine learning. The fundamental issues, limited band-
width and the choice between various levels of dis-
tributed and centralized computing, remain the same. We
discuss these challenges further in [43].

8 Related Work

Unlike parallel databases running in a single LAN [13,
20], where latencies are assumed to be uniform and low,
we have non-uniform latency and wide-area bandwidth
costs. Work on distributed databases and view mainte-
nance, starting as early as [8, 5] and surveyed in [27, 33],
handles efficient execution of arbitrary queries assum-
ing a fixed data partitioning and placement. By contrast,
we are able to assume a slowly evolving workload that
the system can be optimized for (§4), and automatically
replicate data for performance and fault-tolerance while
handling regulatory constraints. The focus on analytics
instead of transactions, the much larger scale of WABD,
and the focus on bandwidth as a measure further differ-
entiates WABD from distributed databases [33].

Spanner [12] focuses on consistency and low-latency
transaction support, and is not designed to optimize an-
alytics costs. A complete solution would complement
Spanner-like consistent transactions with cost-efficient
analytics as in Geode. The Mesa [22] data warehouse
geo-replicates data for fault tolerance, as we do, but con-
tinues to process analytical queries within a single data
center. Stream-processing databases [23, 34] process
long-standing continuous queries, transforming a dis-
persed collection of input streams into an output stream.
The significant focus in this area has been on relatively
simple data models with data always produced at the
edge, with (typically degraded) summaries transmitted
to the center, in contrast with the relational model we
consider.

Jetstream [34] is an example of stream processing for
data structured as OLAP cubes that focuses, as we do, on
bandwidth as a metric; however, its data model is not as
rich as a relational model. Joins, for example, are not al-
lowed. Further, the sytem relies enitirely on aggregation
and approximation to reduce bandwidth, techniques that
are not sufficient for the analytical queries we focus on.

Sensor networks [31] share our assumption of limited
network bandwidth, but not our large scale or the breadth
of our computational model. However, some sensor net-
work techniques can be of interest in WABD: for in-
stance, the approximate percentile algorithm we tested
in §6.4 was originally proposed for a sensor network.

Hive [39], Pig [32], Spark [45] and similar systems can
provide analytics on continuously updated data, but to
the best of our knowledge have not been tested in multi-
data center deployments (and are certainly not optimized
for this scenario). PNUTS/Sherpa[10] does support ge-
ograhically distributed partitions but lays out data to opti-
mize latency (by moving a “master” copy close to where
it is commonly used) and not to minimize analytics cost.

Volley [2] addresses placement issues for data while
accounting for wide-area bandwidth and user latencies,
but without our additional constraint of handling rich
analytics. RACS [1] distributes a key-vaue store, not
a database, across data centers and focuses on fault-
tolerance, not bandwidth. Distributed file systems share
our assumption of limited bandwidth, and the caching
mechanism we use can be viewed as operating on cached
files of answers to earlier analytical queries. However,
distributed file systems do not share our relational data
model or the query planning problem we face.

PigOut [25], developed concurrently with our work,
supports Pig [32] queries on data partitioned across data
centers, but targets a simpler two-step computational
model than ours and focuses on optimizing individual
queries in isolation.

In a recent paper [43] we discussed the vision of geo-
distributed analytics for a more general computational
model with DAGs of tasks. This was a vision paper
that focused on non-SQL models and did not include the
detailed description or evaluation of our techniques we
present here.

9 Conclusion

Current data volumes and heuristics such as data reduc-
tion allow centralizing analytics to barely suffice in the
short term, but the approach will soon be rendered un-
tenable by rapid growth in data volumes relative to net-
work capacity and rising regulatory interest in proscrib-
ing data movement. In this paper we proposed an alter-
native: Wide-Area Big Data. Our Hive-based prototype,
Geode, achieves up to a 360× bandwidth reduction at
multi-TB scales compared to centralization on both pro-
duction workloads and standard benchmarks. Our ap-
proach revisits the classical database problem of query
planning from a networking perspective, both in terms
of constraints such as bandwidth limits and autonomous
policies, as well as solutions such as sub-query deltas and
pseudo-distributed execution.
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Abstract
Succinct is a data store that enables efficient queries di-

rectly on a compressed representation of the input data.

Succinct uses a compression technique that allows ran-

dom access into the input, thus enabling efficient stor-

age and retrieval of data. In addition, Succinct natively

supports a wide range of queries including count and

search of arbitrary strings, range and wildcard queries.

What differentiates Succinct from previous techniques

is that Succinct supports these queries without storing

indexes — all the required information is embedded

within the compressed representation.

Evaluation on real-world datasets show that Succinct

requires an order of magnitude lower memory than sys-

tems with similar functionality. Succinct thus pushes

more data in memory, and provides low query latency

for a larger range of input sizes than existing systems.

1 Introduction

High-performance data stores, e.g. document stores [1,

6], key-value stores [5,9,23,24,26,38,39,43] and multi-

attribute NoSQL stores [3, 19, 21, 25, 35, 48], are the

bedrock of modern cloud services. While existing data

stores provide efficient abstractions for storing and re-

trieving data using primary keys, interactive queries on

values (or, secondary attributes) remains a challenge.

To support queries on secondary attributes, existing

data stores can use two main techniques. At one ex-

treme, systems such as column oriented stores, simply

scan the data [10, 36]. However, data scans incur high

latency for large data sizes, and have limited through-

put since queries typically touch all machines1. At the

other extreme, one can construct indexes on queried

attributes [3, 6, 35]. When stored in-memory, these in-

dexes are not only fast, but can achieve high throughput

since it is possible to execute each query on a single ma-

chine. The main disadvantage of indexes is their high

memory footprint. Evaluation of popular open-source

data stores [6,35] using real-world datasets (§6) shows

1Most data stores shard data by rows, and one needs to scan all

rows. Even if data is sharded by columns, one needs to touch multiple

machines to construct the row(s) in the query result.

that indexes can be as much as 8× larger than the in-

put data size. Traditional compression techniques can

reduce the memory footprint but suffer from degraded

throughput since data needs to be decompressed even

for simple queries. Thus, existing data stores either re-

sort to using complex memory management techniques

for identifying and caching “hot” data [5, 6, 26, 35] or

simply executing queries off-disk or off-SSD [25]. In

either case, latency and throughput advantages of in-

dexes drop compared to in-memory query execution.

We present Succinct, a distributed data store that

operates at a new point in the design space: memory

efficiency close to data scans and latency close to in-

dexes. Succinct queries on secondary attributes, how-

ever, touch all machines; thus, Succinct may achieve

lower throughput than indexes when the latter fits in

memory. However, due to its low memory footprint,

Succinct is able to store more data in memory, avoid-

ing latency and throughput degradation due to off-disk

or off-SSD query execution for a much larger range of

input sizes than systems that use indexes.

Succinct achieves the above using two key ideas.

First, Succinct stores an entropy-compressed representa-

tion of the input data that allows random access, en-

abling efficient storage and retrieval of data. Succinct’s

data representation natively supports count, search,

range and wildcard queries without storing indexes —

all the required information is embedded within this

compressed representation. Second, Succinct executes

queries directly on the compressed representation, avoid-

ing data scans and decompression. What makes Suc-

cinct a unique system is that it not only stores a com-

pressed representation of the input data, but also pro-

vides functionality similar to systems that use indexes

along with input data.

Specifically, Succinct makes three contributions:

• Enables efficient queries directly on a compressed

representation of the input data. Succinct achieves

this using (1) a new data structure, in addition to

adapting data structures from theory literature [32,

44–46], to compress the input data; and (2) a new

query algorithm that executes random access, count,
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search, range and wildcard queries directly on the

compressed representation (§3). In addition, Suc-

cinct provides applications the flexibility to tradeoff

memory for faster queries and vice versa (§4).

• Efficiently supports data appends by chaining multi-

ple stores, each making a different tradeoff between

write, query and memory efficiency (§4): (1) a small

log-structured store optimized for fine-grained ap-

pends; (2) an intermediate store optimized for query

efficiency while supporting bulk appends; and (3) an

immutable store that stores most of the data, and op-

timizes memory using Succinct’s data representation.

• Exposes a minimal, yet powerful, API that operates

on flat unstructured files (§2). Using this simple API,

we have implemented many powerful abstractions

for semi-structured data on top of Succinct including

document store (e.g., MongoDB [6]), key-value store

(e.g., Dynamo [23]), and multi-attribute NoSQL store

(e.g., Cassandra [35]), enabling efficient queries on

both primary and secondary attributes.

We evaluate Succinct against MongoDB [6], Cassan-

dra [35], HyperDex [25] and DB-X, an industrial colum-

nar store that supports queries via data scans. Evalua-

tion results show that Succinct requires 10−11× lower

memory than data stores that use indexes, while provid-

ing similar or stronger functionality. In comparison to

traditional compression techniques, Succinct’s data rep-

resentation achieves lower decompression throughput

but supports point queries directly on the compressed

representation. By pushing more data in memory and

by executing queries directly on the compressed repre-

sentation, Succinct achieves dramatically lower latency

and higher throughput (sometimes an order of magni-

tude or more) compared to above systems even for mod-

erate size datasets.

2 Succinct Interface

Succinct exposes a simple interface for storing, retriev-

ing and querying flat (unstructured) files; see Figure 1.

We show in §2.1 that this simple interface already al-

lows us to model many powerful abstractions including

MongoDB [6], Cassandra [35] and BigTable [19], en-

abling efficient queries on semi-structured data.

The application submits and compresses a flat file

using compress; once compressed, it can invoke a set

of powerful primitives directly on the compressed file.

In particular, the application can append new data us-

ing append, can perform random access using extract

that returns an uncompressed buffer starting at an ar-

bitrary offset in original file, and count number of oc-

currences of any arbitrary string using count.

f = compress(file)

append(f, buffer)

buffer = extract(f, offset, len)

cnt = count(f, str)

[offset1, . . .] = search(f, str)

[offset1, . . .] = rangesearch(f, str1, str2)

[[offset1, len1], . . .]

= wildcardsearch(f, prefix, suffix, dist)

Figure 1: Interface exposed by Succinct (see §2).

Arguably, the most powerful operation provided by

Succinct is searchwhich takes as an argument an arbi-

trary string (i.e., not necessarily word-based) and re-

turns offsets of all occurrences in the uncompressed

file. For example, if file contains abbcdeabczabgz,

invoking search(f, “ab”) will return offsets [0, 6,

10]. While search returns an array of offsets, we pro-

vide a convenient iterator interface in our implementa-

tion. What makes Succinct unique is that search not

only runs on the compressed representation but is also

efficient, that is, does not require scanning the file.

Succinct provides two other search functions, again

on arbitrary input strings. First, rangesearch returns

the offsets of all strings between str1 and str2

in lexicographical order. Second, wildcardsearch(f,

prefix, suffix, dist) returns an array of tuples.

A tuple contains the offset and the length of a string

with the given prefix and suffix, and whose dis-

tance between the prefix and suffix does not exceed

dist, measured in number of input characters. Sup-

pose again that file f contains abbcdeabczabgz, then

wildcardsearch(f, “ab”, “z”, 2) will return tu-

ples [6, 9] for abcz, and [10, 13] for abgz. Note

that we do not return the tuple corresponding to

abbcdeabcz as the distance between the prefix and suf-

fix of this string is greater than 2.

2.1 Extensions for semi-structured data

Consider a logical collection of records of the form

(key, avpList), where key is a unique iden-

tifier, and avpList is a list of attribute value

pairs, i.e., avpList = ((attrName1, value1),...

(attrNameN, valueN)). To enable queries using Suc-

cinct API, we encode avpListwithin Succinct data rep-

resentation; see Figure 2. Specifically, we transform the

semi-structured data into a flat file with each attribute

value separated by a delimiter unique to that attribute.

In addition, Succinct internally stores a mapping from

each attribute to the corresponding delimiter, and a

mapping from key to offset into the flat file where

corresponding avpList is encoded.
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key2

key3

V11 V12 V13
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V31 V32 V33

V11⋆V12•V13†>

V21⋆V22•V23†>

V31⋆V32•V33†>

Attr Delimiter

A1

A2

A3

⋆

•

†

+ + key→ offset

pointers
+ end-of-record

delimiter (>)

Figure 2: Succinct supports queries on semi-structured data by transforming the input data into flat files (see §2.1).

Succinct executes get queries using extract API

along with the key→offset pointers, and put queries

using the append API. The delete queries are executed

lazily, similar to [8,10], using one explicit bit per record

which is set upon record deletion; subsequent queries

ignore records with set bit. Applications can also query

individual attributes; for instance, search for string val

along attribute A2 is executed as search(val•) using

the Succinct API, and returns every key whose associ-

ated attribute A2 value matches val.

Flexible schema, record sizes and data types. Suc-

cinct, by mapping semi-structured data into a flat file

and by using delimiters, does not impose any restriction

on avpList. Indeed, Succinct supports single-attribute

records (e.g., Dynamo [23]), multiple-attribute records

(e.g., BigTable [19]), and even a collection of records

with varying number of attributes. Moreover, using

its key→ offset pointers, Succinct supports the real-

istic case of records varying from a few bytes to a

few kilobytes [17]. Succinct currently supports prim-

itive data types (strings, integers, floats), and

can be extended to support a variety of data structures

and data types including composite types (arrays,

lists, sets). See [16] for a detailed discussion.

3 Querying on Compressed Data

We describe the core techniques used in Succinct. We

briefly recall techniques from theory literature that Suc-

cinct uses, followed by Succinct’s entropy-compressed

representation (§3.1) and a new algorithm that oper-

ates directly on the compressed representation (§3.2).

Existing techniques. Classical search techniques are

usually based on tries or suffix trees [13, 47]. While

fast, even their optimized representations can require

10–20× more memory than the input size [33, 34].

Burrows-Wheeler Transform (BWT) [18] and Suffix ar-

rays [12,40] are two memory efficient alternatives, but

still require 5× more memory than the input size [33].

FM-indexes [27–30] and Compressed Suffix Arrays [31,

32,44–46] use compressed representation of BWT and

suffix arrays, respectively, to further reduce the space

requirement. Succinct adapts compressed suffix arrays

due to their simplicity and relatively better performance
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Figure 3: An example for input file banana$. AoS stores

suffixes in the input in lexicographically sorted order. (a)

AoS2Input maps each suffix in AoS to its location in the in-

put (solid arrows). (b) Illustration of search using AoS and

AoS2Input (dashed arrows). Suffixes being sorted, AoS allows

binary search to find the smallest AoS index whose suffix starts

with searched string (in this case “an”); the largest such index

is found using another binary search. The result on the origi-

nal input is showed on the right to aid illustration.

for large datasets. We describe the basic idea behind

Compressed Suffix Arrays.

Let Array of Suffixes (AoS) be an array containing all

suffixes in the input file in lexicographically sorted or-

der. AoS along with two other arrays, AoS2Input and

Input2AoS2, is sufficient to implement the search and

the random access functionality without storing the in-

put file. This is illustrated in Figure 3 and Figure 4.

Note that for a file with n characters, AoS has size

O(n2) bits, while AoS2Input and Input2AoS have size

n⌈logn⌉ bits since the latter two store integers in range

0 to n−1. The space for AoS, AoS2Input and Input2AoS

is reduced by storing only a subset of values; the re-

maining values are computed on the fly using a set of

pointers, stored in NextCharIdx array, as illustrated in

Figure 5, Figure 6 and Figure 7, respectively.

2AoS2Input and Input2AoS, in this paper, are used as convenient

names for Suffix array and Inverse Suffix Array, respectively.
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Figure 4: (a) The Input2AoS provides the inverse mapping of

AoS2Input, from each index in the input to the index of the

corresponding suffix in AoS (solid arrows). (b) Illustration of

extract using AoS and Input2AoS (dashed arrows). The result

on the original input is showed on the right to aid illustration.

The NextCharIdx array is compressed using a two-

dimensional representation; see Figure 8. Specifically,

the NextCharIdx values in each column of the two-

dimensional representation constitute an increasing se-

quence of integers3. Each column can hence be indepen-

dently compressed using delta encoding [2,7,11].

3.1 Succinct data representation

Succinct uses the above data representation with three

main differences. We give a high-level description of

these differences; see [16] for a detailed discussion.

First, Succinct uses a more space-efficient representa-

tion of AoS2Input and Input2AoS by using a sampling

by “value” strategy. In particular, for sampling rate α,

rather than storing values at “indexes” {0,α,2α, . . . } as

in Figure 6 and Figure 7, Succinct stores all AoS2Input

values that are a multiple of α. This allows storing

each sampled value val as val/α, leading to a more

space-efficient representation. Using α= 2 for example

of Figure 6, for instance, the sampled AoS2Input val-

ues are {6,0,4,2}, which can be stored as {3,0,2,1}.

Sampled Input2AoS then becomes {1,3,2,0}with i-th

value being the index into sampled AoS2Input where i

is stored. Succinct stores a small amount of additional

information to locate sampled AoS2Input indexes.

3Proof: Consider two suffixes cX<cY in a column (indexed by char-

acter “c”). By definition, NextCharIdx values corresponding to cX

and cY store AoS indexes corresponding to suffixes X and Y. Since

cX<cY implies X<Y and since AoS stores suffixes in sorted order,

NextCharIdx[cX]<NextCharIdx[cY]; hence the proof.
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Figure 5: Reducing the space usage of AoS: NextCharIdx

stores pointers from each suffix S to the suffix S′ after re-

moving the first character from S. (a) for each suffix in

AoS, only the first character is stored. NextCharIdx point-

ers allow one to reconstruct suffix at any AoS index. For

instance, starting from AoS[4] and following pointers, we

get the original AoS entry “banana$”. (b) Since suffixes are

sorted, only the first AoS index at which each character oc-

curs (e.g., {($,0),(a,1),(b,4),(n,5)}) need be stored; a

binary search can be used to locate character at any index.

Second, Succinct achieves a more space-efficient rep-

resentation for NextCharIdx using the fact that val-

ues in each row of the two-dimensional representation

constitute a contiguous sequence of integers4. Succinct

uses its own Skewed Wavelet Tree data structure, based

on Wavelet Trees [32, 44], to compress each row in-

dependently. Skewed Wavelet Trees allow looking up

NextCharIdx value at any index without any decom-

pression. The data structure and lookup algorithm are

described in detail in [16]. These ideas allow Succinct

to achieve 1.25–3× more space-efficient representation

compared to existing techniques [7,11,31].

Finally, for semi-structured data, Succinct supports

dictionary encoding along each attribute to further re-

duce the memory footprint. This is essentially orthog-

onal to Succinct’s own compression; in particular, Suc-

cinct dictionary encodes the data along each attribute

before constructing its own data structures.

3.2 Queries on compressed data

Succinct executes queries directly on the compressed

representation from §3.1. We describe the query al-

gorithm assuming access to uncompressed data struc-

tures; as discussed earlier, any value not stored in the

compressed representation can be computed on the fly.

Succinct executes an extract query as illustrated

in Figure 7 on Input2AoS representation from §3.1. A

strawman algorithm for search would be to perform

two binary searches as in Figure 3. However, this algo-

rithm suffers from two inefficiencies. First, it executes

binary searches on the entire AoS2Input array; and sec-

4Intuitively, any row indexed by rowID contains NextCharIdx val-

ues that are pointers into suffixes starting with the string rowID; since

suffixes are sorted, these must be contiguous set of integers.
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Figure 6: Reducing the space usage of AoS2Input.

(left) Since AoS2Input stores locations of suffixes in AoS,

NextCharIdx maps AoS2Input values to next larger value.

That is, NextCharIdx[idx] stores the AoS2Input index that

stores AoS2Input[idx]+15; (right) only a few sampled values

need be stored; unsampled values can be computed on the

fly. For instance, starting AoS2Input[5] and following point-

ers twice, we get the next larger sampled value 6. Since each

pointer increases value by 1, the desired value is 6−2= 4.
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Figure 7: Reducing the space usage of Input2AoS. (a) only

a few sampled values need be stored; (b) extract func-

tionality of Figure 4 is achieved using sampled values and

NextCharIdx. For instance, to execute extract(3, 3), we

find the next smaller sampled index (Input2AoS[2]) and cor-

responding suffix (AoS[2]=“nana$”). We then remove the

first character since the difference between the desired index

and the closest sampled index was 1; hence the result “ana$”.

ond, each step of the binary search requires computing

the suffix at corresponding AoS index for comparison

purposes. Succinct uses a query algorithm that over-

comes these inefficiencies by aggressively exploiting the

two-dimensional NextCharIdx representation.

Recall that the cell (colID, rowID) in two-

dimensional NextCharIdx representation corresponds

to suffixes that have colID as the first character and

rowID as the following t characters. Succinct uses this

to perform binary search in cells rather than the en-

tire AoS2Input array. For instance, consider the query

search(“anan”); all occurrences of string “nan” are

contained in the cell 〈n,an〉. To find all occurrences

of string anan, our algorithm performs a binary search

only in the cell 〈a,na〉 in the next step. Intuitively, af-

5Proof: Let S be a suffix and S′ be the suffix after removing first

character from S. If S starts at location loc, then S′ starts at loc+1.

NextCharIdx stores pointers from S to S′. Since AoS2Input stores lo-

cations of suffixes in input, NextCharIdx maps value loc in AoS2Input

to AoS2Input index that stores the next larger value (loc+1).

$
a$

ana$
anana$

banana$
na$

nana$

AoS

4
0
5
6
3
1
2

NextCharIdx

$ a b n

$b
a$
an
ba
na

0
1

3 2
4

5, 6

Two-dim. NextCharIdx

Figure 8: Two-dimensional NextCharIdx representation.

Columns are indexed by all unique characters and rows are

indexed by all unique t−length strings in input file, both in

sorted order. A value belongs to a cell (colID, rowID) if cor-

responding suffix has colID as first character and rowID as

following t characters. For instance, NextCharIdx[3]=5 and

NextCharIdx[4]=6 are contained in cell (a, na), since both

start with “a” and have “na” as following two characters.

ter this step, the algorithm has the indexes for which

suffixes start with “a” and are followed by “nan”,

the desired string. For a string of length m, the above

algorithm performs 2(m− t −1) binary searches, two

per NextCharIdx cell [16], which is far more efficient

than executing two binary searches along the entire

AoS2Input array for practical values of m. In addition,

the algorithm does not require computing any of the

AoS suffixes during the binary searches. For a 16GB file,

Succinct’s query algorithm achieves a 2.3× speed-up on

an average and 19× speed-up in the best case compared

to the strawman algorithm.

Range and Wildcard Queries. Succinct implements

rangesearch and wildcardsearch using the search

algorithm. To implement rangesearch(f, str1,

str2), we find the smallest AoS index whose suffix

starts with string str1 and and the largest AoS index

whose suffix starts with string str2. Since suffixes are

sorted, the returned range of indices necessarily contain

all strings that are lexicographically contained between

str1 and str2. To implement wildcardsearch(f,

prefix, suffix, dist), we first find the offsets of

all prefix and suffix occurrences, and return all possible

combinations such that the difference between the

suffix and prefix offsets is positive and no larger than

dist (after accounting for the prefix length).

4 Succinct Multi-store Design

Succinct incorporates its core techniques into a write-

friendly multi-store design that chains multiple indi-

vidual stores each making a different tradeoff between

write, query and memory efficiency. This section de-

scribes the design and implementation of the individual

stores and their synthesis to build Succinct.
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. . . . . . . . .

appendsequence# → InputFile

. . . . . . . . .

SuccinctStore SuffixStore LogStore

Figure 9: Succinct uses a write-optimized LogStore that

supports fine-grained appends, a query-optimized SuffixStore

that supports bulk appends, and a memory-optimized Suc-

cinctStore. New data is appended to the end of LogStore. The

entire data in LogStore and SuffixStore constitutes a single

partition of SuccinctStore. The properties of each of the stores

are summarized in Table 1.

Table 1: Properties of individual stores. Data size estimated

for 1TB original uncompressed data on a 10 machine 64GB

RAM cluster. Memory estimated based on evaluation (§6).

Succinct Suffix Log

Store Store Store

Stores Comp. Data + Data +

Data (§3.1) AoS2Input Inv. Index

Appends - Bulk Fine

Queries §3.2 Index Scans+

Inv. Index

#Machines n−2 1 1

%Data(est.) > 99.98% < 0.016% < 0.001%

Memory ≈ 0.4× ≈ 5× ≈ 9×

Succinct design overview. Succinct chains three indi-

vidual stores as shown in Figure 9; Table 1 summa-

rizes the properties of the individual stores. New data

is appended into a write-optimized LogStore, that exe-

cutes queries via in-memory data scans; the queries are

further sped up using an inverted index that supports

fast fine-grained updates. An intermediate store, Suf-

fixStore, supports bulk appends and aggregates larger

amounts of data before compression is initiated. Scans

at this scale are simply inefficient. SuffixStore thus sup-

ports fast queries using uncompressed data structures

from §3; techniques in place ensure that these data

structures do not need to be updated upon bulk ap-

pends. SuffixStore raw data is periodically transformed

into an immutable entropy-compressed store Succinct-

Store that supports queries directly on the compressed

representation. The average memory footprint of Suc-

cinct remains low since most of data is contained in the

memory-optimized SuccinctStore.

4.1 LogStore

LogStore is a write-optimized store that executes data

append via main memory writes, and other queries via

data scans. Memory efficiency is not a goal for LogStore

since it contains a small fraction of entire dataset.

One choice for LogStore design is to let cores con-

currently execute read and write requests on a single

shared partition and exploit parallelism by assigning

each query to one of the cores. However, concurrent

writes scale poorly and require complex techniques for

data structure integrity [39,41,42]. Succinct uses an al-

ternative design, partitioning LogStore data into multi-

ple partitions, each containing a small amount of data.

However, straightforward partitioning may lead to in-

correct results if the query searches for a string that

spans two partitionsLogStore thus uses overlapping par-

titions, each annotated with the starting and the ending

offset corresponding to the data “owned” by the par-

tition. The overlap size can be configured to expected

string search length (default is 1MB). New data is al-

ways appended to the most recent partition.

LogStore executes an extract request by reading the

data starting at the offset specified in the request. While

this is fast, executing search via data scans can still

be slow, requiring tens of milliseconds even for 250MB

partition sizes. Succinct avoids scanning the entire par-

tition using an “inverted index” per partition that sup-

ports fast updates. This index maps short length (de-

fault is three character) strings to their locations in the

partition; queries then need to scan characters starting

only at these locations. The index is memory inefficient,

requiring roughly 8× the size of LogStore data, but has

little affect on Succinct’s average memory since Log-

Store itself contains a small fraction of the entire data.

The speed-up is significant allowing Succinct to scan, in

practice, up to 1GB of data within a millisecond. The in-

dex supports fast updates since, upon each write, only

locations of short strings in the new data need to be ap-

pended to corresponding entries in the index.

4.2 SuffixStore

SuffixStore is an intermediate store between LogStore

and entropy-compressed SuccinctStore that serves two

goals. First, to achieve good compression, SuffixStore

accumulates and queries much more data than LogStore

before initiating compression. Second, to ensure that

LogStore size remains small, SuffixStore supports bulk

data appends without updating any existing data.

Unfortunately, LogStore approach of fast data scans

with support of inverted index does not scale to data

sizes in SuffixStore due to high memory footprint and

6
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data scan latency. SuffixStore thus stores uncompressed

AoS2Input array (§3) and executes search queries via

binary search (Figure 3). SuffixStore avoids storing AoS

by storing the original data that allows random access

for comparison during binary search, as well as, for ex-

tract queries; these queries are fast since AoS2Input is

uncompressed. SuffixStore achieves the second goal us-

ing excessive partitioning, with overlapping partitions

similar to LogStore. Bulk appends from LogStore are

executed at partition granularity, with the entire Log-

Store data constituting a single partition of SuffixStore.

AoS2Input is constructed per partition to ensure that

bulk appends do not require updating any existing data.

4.3 SuccinctStore

SuccinctStore is an immutable store that contains most

of the data, and is thus designed for memory efficiency.

SuccinctStore uses the entropy-compressed representa-

tion from §3.1 and executes queries directly on the com-

pressed representation as described in §3.2. Succinct-

Store’s design had to resolve two additional challenges.

First, Succinct’s memory footprint and query la-

tency depends on multiple tunable parameters (e.g.,

AoS2Input and Input2AoS sampling rate and string

lengths for indexing NextCharIdx rows). While default

parameters in SuccinctStore are chosen to operate on a

sweet spot between memory and latency, Succinct will

lose its advantages if input data is too large to fit in

memory even after compression using default parame-

ters. Second, LogStore being extremely small and Suf-

fixStore being latency-optimized makes SuccinctStore

a latency bottleneck. Hence, Succinct performance may

deteriorate for workloads that are skewed towards par-

ticular SuccinctStore partitions.

Succinct resolves both these challenges by enabling

applications to tradeoff memory for query latency.

Specifically, Succinct enables applications to select

AoS2Input and Input2AoS sampling rate; by storing

fewer sampled values, lower memory footprint can be

achieved at the cost of higher latency (and vice versa).

This resolves the first challenge above by reducing

the memory footprint of Succinct to avoid answering

queries off-disk6. This also helps resolving the second

challenge by increasing the memory footprint of over-

loaded partitions, thus disproportionately speeding up

these partitions for skewed workloads.

We discuss data transformation from LogStore to Suf-

fixStore and from SuffixStore to SuccinctStore in §5.
6Empirically, Succinct can achieve a memory footprint comparable

to GZip. When even the GZip-compressed data does not fit in memory,

the only option for any system is to answer queries off disk.

5 Succinct Implementation

We have implemented three Succinct prototypes along

with extensions for semi-structured data (§2.1) — in

Java running atop Tachyon [37], in Scala running atop

Spark [51], and in C++. We discuss implementation de-

tails of the C++ prototype that uses roughly 5,200 lines

of code. The high-level architecture of our Succinct pro-

totype is shown in Figure 10. The system consists of

a central coordinator and a set of storage servers, one

server each for LogStore and SuffixStore, and the re-

maining servers for SuccinctStore. All servers share a

similar architecture modulo the differences in the stor-

age format and query execution, as described in §3.

The coordinator performs two tasks. The first task is

membership management, which includes maintaining a

list of active servers in the system by having each server

send periodic heartbeats. The second task is data man-

agement, which includes maintaining an up-to-date col-

lection of pointers to quickly locate the desired data dur-

ing query execution. Specifically, the coordinator main-

tains two set of pointers: one that maps file offsets to

partitions that contain the data corresponding to the

offsets, and the other one that maps partitions to ma-

chines that store those partitions. As discussed in §2.1,

an additional set of key→ offset pointers are also main-

tained for supporting queries on semi-structured data.

Clients connect to one of the servers via a light-weight

Query Handler (QH) interface; the same interface is also

used by the server to connect to the coordinator and to

other servers in the system. Upon receiving a query from

a client, the QH parses the query and identifies whether

the query needs to be forwarded to a single server (for

extract and append queries) or to all the other servers

(for count and search queries).

In the case of an extract or append query, QH needs

to identify the server to which the query needs to be for-

warded. One way to do this is to forward the query to

the coordinator, which can then lookup its sets of point-

ers and forward the query to the appropriate server.

However, this leads to the coordinator becoming a bot-

tleneck. To avoid this, the pointers are cached at each

server. Since the number of pointers scales only in the

number of partitions and servers, this has minimal im-

pact on Succinct’s memory footprint. The coordinator

ensures that pointer updates are immediately pushed to

each of the servers. Using these pointers, an extract

query is redirected to the QH of the appropriate ma-

chine, which then locates the appropriate partition and

extracts the desired data.

In the case of a search query, the QH that receives

the query from the client forwards the query to all the

7
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Figure 10: Succinct system architecture. Server and coordinator functionalities are described in §5. Each server uses a

light-weight Query Handler interface to (1) interact with coordinator; (2) redirect queries to appropriate partitions and/or

servers; and (3) local and global result aggregation. P→M, O→P and K→O are the same pointers as stored at the coordinator.

other QHs in the system. In turn, each QH runs multi-

ple tasks to search all local partitions in parallel, then

aggregates the results, and sends these results back to

the initiator, that is, to the QH that initiated the query

(see Figure 10). Finally, the initiator returns the aggre-

gated result to the client. While redirecting queries us-

ing QHs reduces the coordinator load, QHs connecting

to all other QHs may raise some scalability concerns.

However, as discussed earlier, due to its efficient use

of memory, Succinct requires many fewer servers than

other in-memory data stores, which helps scalability.

Data transformation between stores. LogStore ag-

gregates data across multiple partitions before trans-

forming it into a single SuffixStore partition. LogStore

is neither memory nor latency constrained; we ex-

pect each LogStore partition to be smaller than 250MB

even for clusters of machines with 128GB RAM. Thus,

AoS2Input for LogStore data can be constructed at Log-

Store server itself, using an efficient linear-time, linear-

memory algorithm [50]. Transforming SuffixStore data

into a SuccinctStore partition requires a merge sort of

AoS2Input for each of the SuffixStore partitions, scan-

ning the merged array once to construct Input2AoS and

NextCharIdx, sampling AoS2Input and Input2AoS, and

finally compressing each row of NextCharIdx. Succinct

could use a single over-provisioned server for SuffixS-

tore to perform this transformation at the SuffixStore

server itself but currently does this in the background.

Failure tolerance and recovery. The current Succinct

prototype requires manually handling: (1) coordinator

failure; (2) data failure and recovery; and (3) adding

new servers to an existing cluster. Succinct could use

traditional solutions for maintaining multiple coordi-

nator replicas with a consistent view. Data failure and

recovery can be achieved using standard replication-

based techniques. Finally, since each SuccinctStore con-

tains multiple partitions, adding a new server simply

requires moving some partitions from existing servers

to the new server and updating pointers at servers. We

leave incorporation of these techniques and evaluation

of associated overheads to future work.

6 Evaluation

We now perform an end-to-end evaluation of Succinct’s

memory footprint (§6.1), throughput (§6.2) and la-

tency (§6.3).

Compared systems. We evaluate Succinct using the

NoSQL interface extension (§2.1), since it requires

strictly more space and operations than the unstruc-

tured file interface. We compare Succinct against sev-

eral open-source and industrial systems that support

search queries: MongoDB [6] and Cassandra [35] using

secondary indexes; HyperDex [25] using hyperspace

hashing; and an industrial columnar-store DB-X, using

in-memory data scans7.

We configured each of the system for no-failure sce-

nario. For HyperDex, we use the dimensionality as

recommended in [25]. For MongoDB and Cassandra,

we used the most memory-efficient indexes. These in-

dexes do not support substring searches and wildcard

7For HyperDex, we encountered a previously known bug [4] that

crashes the system during query execution when inter-machine la-

tencies are highly variable. For DB-X, distributed experiments require

access to the industrial version. To that end, we only perform micro-

benchmarks for HyperDex and DB-X for Workloads A and C.

8
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Figure 11: Input data size that each system fits in-memory

on a distributed cluster with 150GB main memory (thick hori-

zontal line). Succinct pushes 10-11× larger amount of data in

memory compared to popular open-source data stores, while

providing similar or stronger functionality.

searches. HyperDex and DB-X do not support wildcard

searches. Thus, the evaluated systems provide slightly

weaker functionality than Succinct. Finally, for Suc-

cinct, we disabled dictionary encoding to evaluate the

performance of Succinct techniques in isolation.

Datasets, Workloads and Cluster. We use two multi-

attribute record datasets, one smallVal and one

largeVal from Conviva customers as shown in Table 2.

The workloads used in our evaluation are also summa-

rized in Table 2. Our workloads closely follow YCSB

workloads; in particular, we used YCSB to generate

query keys and corresponding query frequencies, which

were then mapped to the queries in our datasets (for

each of read, write, and search queries). All our exper-

iments were performed on Amazon EC2 m1.xlarge ma-

chines with 15GB RAM and 4 cores, except for DB-X

where we used pre-installed r2.2xlarge instances. Each

of the system was warmed up for 5 minutes to maximize

the amount of data cached in available memory.

6.1 Memory Footprint

Figure 11 shows the amount of input data (without in-

dexes) that each system fits across a distributed clus-

ter with 150GB main memory. Succinct supports in-

memory queries on data sizes larger than the system

RAM; note that Succinct results do not use dictionary

encoding and also include pointers required for NoSQL

interface extensions (§2.1, §5). MongoDB and Cassan-

dra fit roughly 10–11× less data than Succinct due to

storing secondary indexes along with the input data.

HyperDex not only stores large metadata but also avoids

touching multiple machines by storing a copy of the en-

tire record with each subspace, thus fitting up to 126×
less data than Succinct.

6.2 Throughput

We now evaluate system throughput using a dis-

tributed 10 machine Amazon EC2 cluster. Figure 12

shows throughput results for smallVal and LargeVal

datasets across the four workloads from Table 2.

Workload A. When MongoDB and Cassandra can fit

datasets in memory (17GB for smallVal and 23GB for

LargeVal across a 150GB RAM cluster), Succinct’s rel-

ative performance depends on record size. For small

record sizes, Succinct achieves higher throughput than

MongoDB and Cassandra. For MongoDB, the routing

server becomes a throughput bottleneck; for Cassandra,

the throughput is lower because more queries are exe-

cuted off-disk. However, when record sizes are large,

Succinct achieves slightly lower throughput than Mon-

goDB due to increase in Succinct’s extract latency.

When MongoDB and Cassandra data does not fit in

memory, Succinct achieves better throughput since it

performs in-memory operations while MongoDB and

Cassandra have to execute some queries off-disk. More-

over, we observe that Succinct achieves consistent per-

formance across data sizes varying from tens of GB to

hundreds of GB.

Workload B. MongoDB and Succinct observe reduced

throughput when a small fraction of queries are append

queries. MongoDB throughput reduces since indexes

need to be updated upon each write; for Succinct, Log-

Store writes become a throughput bottleneck. Cassan-

dra being write-optimized observes minimal reduction

in throughput. We observe again that, as we increase

the data sizes from 17GB to 192GB (for SmallVal)

and from 23GB to 242GB (for LargeVal), Succinct’s

throughput remains essentially unchanged.

Workload C. For search workloads, we expect Mon-

goDB and Cassandra to achieve high throughput due to

storing indexes. However, Cassandra requires scanning

indexes for search queries leading to low throughput.

The case of MongoDB is more interesting. For datasets

with fewer number of attributes (SmallVal dataset),

MongoDB achieves high throughput due to caching be-

ing more effective; for LargeVal dataset, MongoDB

search throughput reduces significantly even when the

entire index fits in memory. When MongoDB indexes do

not fit in memory, Succinct achieves 13–134× higher

throughput since queries are executed in-memory.

As earlier, even with 10× increase in data size (for

both smallVal and LargeVal), Succinct throughput

reduces minimally. As a result, Succinct’s performance

for large datasets is comparable to the performance of

MongoDB and Cassandra for much smaller datasets.
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Table 2: (left) Datasets used in our evaluation; (right) Workloads used in our evaluation. All workloads use a query popularity

that follows a Zipf distribution with skewness 0.99, similar to YCSB [20].

Size (Bytes) #Attr- #Records

Key Value ibutes (Millions)

smallVal 8 ≈ 140 15 123–1393

LargeVal 8 ≈ 1300 98 19–200

Workload Remarks

A 100% Reads YCSB workload C

B 95% Reads, 5% appends YCSB workload D

C 100% Search -

D 95% Search, 5% appends YCSB workload E
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Figure 12: Succinct throughput against MongoDB and Cassandra for varying datasets, data sizes and workloads. MongoDB

and Cassandra fit 17GB of SmallVal dataset and 23GB of LargeVal dataset in memory; Succinct fits 192GB and 242GB,

respectively. DNF denote the experiment did not finish after 100 hours of data loading, mostly due to index construction time.

Note that top four figures have different y-scales.
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Figure 13: Succinct’s latency for get (left), put (center) and search (right) against MongoDB and Cassandra for smallVal

dataset when data and index fits in memory (best case for MongoDB and Cassandra). Discussion in §6.3.
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Figure 14: Succinct’s latency for get (left) and search (right) against HyperDex and DB-X for smallVal 10GB dataset on

a single machine. HyperDex uses subspace hashing and DB-X uses in-memory data scans for search. Discussion in §6.3.

Workload D. The search throughput for MongoDB and

Cassandra becomes even worse as we introduce 5% ap-

pends, precisely due to the fact that indexes need to be

updated upon each append. Unlike Workload B, Suc-

cinct search throughput does not reduce with appends,

since writes are no more a bottleneck. As earlier, Suc-

cinct’s throughput scales well with data size.

Note that the above discussion holds even when Mon-

goDB and Cassandra use SSDs to store the data that

does not fit in memory. When such is the case, through-

put reduction is lower compared to the case when data

is stored on disk; nevertheless, the trends remain un-

changed. Specifically, Succinct is able to achieve better

or comparable performance than SSD based systems for

a much larger range of input values.

6.3 Latency

We now compare Succinct’s latency against two sets of

systems: (1) systems that use indexes to support queries

(MongoDB and Cassandra) on a distributed 10 node

Amazon EC2 cluster; and (2) systems that perform data

scans along with metadata to support queries (Hyper-

Dex and DB-X) using a single-machine system. To main-

tain consistency across all latency experiments, we only

evaluate cases where all systems (except for HyperDex)

fit the entire data in memory.

Succinct against Indexes. Figure 13 shows that Suc-

cinct achieves comparable or better latency than Mon-

goDB and Cassandra even when all data fits in mem-

ory. Indeed, Succinct’s latency will get worse if record

sizes are larger. For writes, we note that both MongoDB

and Cassandra need to update indexes upon each write,

leading to higher latency. For search, MongoDB achieves

good latency since MongoDB performs a binary search

over an in-memory index, which is similar in complexity

to Succinct’s search algorithm. Cassandra requires high

latencies for search queries due to much less efficient

utilization of available memory.

Succinct against data scans. Succinct’s latency against

systems that do not store indexes is compared in Fig-

ure 14. HyperDex achieves comparable latency for get

queries; search latencies are higher since due to its

high memory footprint, HyperDex is forced to answer

most queries off-disk. DB-X being a columnar store is

not optimized for get queries, thus leading to high la-

tencies. For search queries, DB-X despite optimized in-

memory data scans is around 10× slower at high per-

centiles because data scans are inherently slow.

6.4 Throughput versus Latency

Figure 15 shows the throughput versus latency re-

sults for Succinct, for both get and search queries
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Figure 15: Throughput versus latency for Succinct, for get

(left) and for search (right).

for a fully loaded 10 machine cluster with smallVal

192GB dataset. The plot shows that Succinct latency

and throughput results above are for the case of a fully

loaded system.

6.5 Sequential Throughput

Our evaluation results for workload A and B used

records of sizes at most 1300bytes per query. We now

discuss Succinct’s performance in terms of through-

put for long sequential reads. We ran a simple micro-

benchmark to evaluate the performance of Succinct

over a single extract request for varying sizes of reads.

Succinct achieves a constant throughput of 13Mbps us-

ing a single core single thread implementation, irre-

spective of the read size; the throughput increases lin-

early with number of threads and/or cores. This is es-

sentially a tradeoff that Succinct makes for achieving

high throughput for short reads and for search queries

using a small memory footprint. For applications that

require large number of sequential reads, Succinct can

overcome this limitation by keeping the original uncom-

pressed data to support sequential reads, of course at

the cost of halving the amount of data that Succinct

pushes into main memory. The results from Figure 11

show that Succinct will still push 5-5.5×more data than

popular open-source systems with similar functionality.

7 Related Work

Succinct’s goals are related to three key research areas:

Queries using secondary indexes. To support

point queries, many existing data stores store in-

dexes/metadata [3,6,25,35] in addition to the original

data. While indexes achieve low latency and high

throughput when they fit in memory, their performance

deteriorates significantly when queries are executed

off-disk. Succinct requires more than 10× lower mem-

ory than systems that store indexes, thus achieving

higher throughput and lower latency for a much larger

range of input sizes than systems that store indexes.

Queries using data scans. Point queries can also be

supported using data scans. These are memory efficient

but suffer from low latency and throughput for large

data sizes. Most related to Succinct is this space are

columnar stores [10,15,22,36,49]. The most advanced

of these [10] execute queries either by scanning data

or by decompressing the data on the fly (if data com-

pressed [14]). As shown in §6, Succinct achieves bet-

ter latency and throughput by avoiding expensive data

scans and decompression.

Theory techniques. Compressed indexes has been an

active area of research in theoretical computer science

since late 90s [27–30,32,44–46]. Succinct adapts data

structures from above works, but improves both the

memory and the latency by using new techniques (§3).

Succinct further resolves several challenges to realize

these techniques into a practical data store: (1) effi-

ciently handling updates using a multi-store design; (2)

achieving better scalability by carefully exploiting par-

allelism within and across machines; and (3) enabling

queries on semi-structured data by encoding the struc-

ture within a flat file.

8 Conclusion

In this paper, we have presented Succinct, a distributed

data store that supports a wide range of queries while

operating at a new point in the design space between

data scans (memory-efficient, but high latency and

low throughput) and indexes (memory-inefficient, low

latency, high throughput). Succinct achieves memory

footprint close to that of data scans by storing the in-

put data in an entropy-compressed representation that

supports random access, as well as a wide range of

analytical queries. When indexes fit in memory, Suc-

cinct achieves comparable latency, but lower through-

put. However, due to its low memory footprint, Suc-

cinct is able to store more data in memory, avoiding

latency and throughput reduction due to off-disk or off-

SSD query execution for a much larger range of input

sizes than systems that use indexes.
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Abstract
Wormhole is a publish-subscribe (pub-sub) system de-

veloped for use within Facebook’s geographically repli-
cated datacenters. It is used to reliably replicate changes
among several Facebook services including TAO, Graph
Search and Memcache. This paper describes the de-
sign and implementation of Wormhole as well as the
operational challenges of scaling the system to support
the multiple data storage systems deployed at Facebook.
Our production deployment of Wormhole transfers over
35 GBytes/sec in steady state (50 millions messages/sec
or 5 trillion messages/day) across all deployments with
bursts up to 200 GBytes/sec during failure recovery. We
demonstrate that Wormhole publishes updates with low
latency to subscribers that can fail or consume updates at
varying rates, without compromising efficiency.

1 Introduction

Facebook is a social networking service that connects
people across the globe and enables them to share in-
formation with each other. When a user posts content to
Facebook, it is written to a database. There are a number
of applications that are interested in learning of a write
immediately after the write is committed. For instance,
News Feed is interested in the write so it can serve new
stories to the user’s friends. Similarly, users receiving a
notification might wish to immediately view the content.
A number of internal services, such as our asynchronous
cache invalidation pipeline, index server pipelines, etc.
are also interested in the write.

Directing each application to poll the database for
newly written data is untenable as applications have to
decide between either long poll intervals which lead to
stale data or frequent polling which interferes with the
production workload of the storage system.

Publish-subscribe (pub-sub) systems that identify up-
dates and transmit notifications to interested applications

News Feed

Cache

Index
Wormhole

Geo-replication

Database
w/ Log

Database
w/ Log

...

News Feed

Cache

Index
Wormhole

...

Figure 1: Wormhole reads updates from the data stor-
age system transaction logs and transmits them to inter-
ested applications that include News Feed, index servers,
Graph Search and many others.

offer a more scalable solution. Pub-sub systems are well
studied (see Section 6) with many commercial and open
source solutions. However, most existing pub-sub sys-
tems require a custom data store that is interposed on
writes to generate the notifications for interested appli-
cations. This is impractical for Facebook which stores
user data on a fleet of sharded storage systems including
MySQL databases [18], HDFS [27] and RocksDB [30]
across multiple datacenters. Interposing on writes to
these storage systems would require modifications across
the software stack, which is error-prone and might de-
grade latency and availability. Writing the updates to a
custom data store would also introduce an additional in-
termediary storage system that might fail.

To address our requirements, we built and deployed
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Wormhole, a pub-sub system that identifies new writes
and publishes updates to all interested applications (see
Figure 1). Wormhole publishers directly read the trans-
action logs maintained by the data storage systems to
learn of new writes committed by producers. Upon iden-
tifying a new write, Wormhole encapsulates the data and
any corresponding metadata in a custom Wormhole up-
date that is delivered to subscribers. Wormhole updates
always encode data as a set of key-value pairs irrespec-
tive of the underlying storage system, so interested appli-
cations do not have to worry about where the underlying
data lives.

Data storage systems are typically geo-replicated with
a single master, multiple slaves topology. Wormhole
delivers updates to geo-replicated subscribers by piggy-
backing on publishers running on slave replicas that are
close to subscribers. On a write, data is written to the
transaction log of the master replica and then replicated
asynchronously to the slaves. Wormhole publishers run-
ning on the slave can simply read new updates off the
local transaction log and provide updates to local sub-
scribers.

Wormhole can survive both publisher and subscriber
failures, without losing updates. On the publisher
side, Wormhole provides multiple-copy reliable deliv-
ery where it allows applications to configure a primary
source and many secondary sources they can receive up-
dates from. If the primary publisher (which generally
is the publisher in the local region) fails, Wormhole can
seamlessly start sending updates from one of the sec-
ondary publishers. On the subscriber side, an application
that has registered for updates can also fail. Wormhole
publishers periodically store for each registered applica-
tion the position in the transaction logs of the most re-
cent update it has received and acknowledged. On an
application failure, Wormhole finds where to start send-
ing updates from based on its bookkeeping, maps that to
the correct update in the datastore’s transaction log and
resumes delivering updates.

Wormhole has been in production at Facebook for over
three years, delivering over 35 GBytes/sec continuously
(over 50 million messages/sec) across all deployments.

Our contributions are as follows:

• We describe the first large scale pub-sub system that
delivers trillions of updates per day to subscribers.

• We present a pub-sub system that can run atop ex-
isting datastores and provide updates to subscribers.

• We implement multiple-copy reliable delivery in
Wormhole that allows it to send updates to appli-
cations even in the presence of publisher and sub-
scriber failures.

• We allow the datastores to trade-off latency of deliv-
ering updates with I/O bandwidth by selecting how

much of the disk bandwidth is available for use by
Wormhole.

2 Problem

Facebook stores a large amount of user generated data,
such as status updates, comments, likes, shares, etc. This
data is written to a number of different storage systems
depending on several factors such as whether the work-
load is write optimized or read optimized, what is the
capacity versus cost trade-off etc. Moreover, to scale
with Facebook’s vast user base, these storage systems are
sharded and geo-replicated in various data centers.

There are numerous systems that need the newly up-
dated data to function correctly. For instance, Facebook
aggressively employs caching systems such as Mem-
cache [19] and TAO [7] so the underlying storage sys-
tems are not inundated with read queries. Similarly,
Graph Search [12] maintains a index over all user gen-
erated data so it can quickly retrieve queried data. On
a write, cached and indexed copies of the data need to
either be invalidated or updated.

Directing applications to poll the database for newly
written data is unscalable. Additionally, writes might be
written to any of the different storage systems and ap-
plications might be interested in all new updates. Thus,
there are a number of challenges that an update dissemi-
nation system deployed at Facebook needs to handle:

1. Different consumption speeds: Applications con-
sume updates at different speeds. A slow applica-
tion that synchronously processes updates should
not hold up data delivery to a fast one.

2. At least once delivery: All updates are delivered at
least once. This ensures that applications can trust
that they have received all updates that they are in-
terested in.

3. In-order delivery of new updates: When an up-
date is received, the application should be confident
that all updates prior to the received one have also
been received earlier.

4. Fault tolerance: The system must be resilient to
frequent hardware and software failure both on the
datastore as well as the application end.

Challenges 1 and 4 imposed by heterogeneous nature
of Facebook’s infrastructure, while the others are design
choices made based on the nature of applications sup-
ported.

3 Wormhole Architecture

In this section, we describe the high level design of
Wormhole. Figure 2 shows its main components. In the
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Figure 2: Components of Wormhole. Producers produce
data and write to datastores. Publishers read the trans-
action logs of datastores, construct updates from them,
and send them to subscribers of various applications,
which in turn do application specific work, e.g., invali-
date caches or update indices.

following subsections, we detail specific design choices,
their implications, and their role in satisfying the require-
ments from Section 2.

Data Model and System Architecture. A dataset is a
collection of related data, for example, user generated
data in Facebook. It is partitioned into a number of
shards for better scaling, and each update to the dataset
is assigned a unique shard. A datastore stores data for a
collection of shards of the dataset. Each datastore runs a
publisher, which reads updates from the datastore trans-
action log, filters the updates, and sends them to a set of
subscribers. Publishers are typically co-located on the
database machines so they have fast local access to the
transaction log.

In Wormhole publisher, we have support for reading
from MySQL, HDFS, and RocksDB, and it is easy to
add support for new log types. The producers of updates
write a set of key-value pairs in the log entries in a se-
rialized format that is different for each log type. The
publisher takes care of translating the underlying log en-
tries into objects with a standard key-value format, which
we refer to as a Wormhole update. One of the keys in the
Wormhole updates (called #.S) corresponds to the shard
of the update: it is written by the producer based on what
shard the update belongs to.

Wormhole’s subscribing applications are also sharded.
An application links itself with the subscriber library

and arranges for multiple instances of itself to be run,
called the subscribers. The publishers finds all inter-
ested applications and corresponding subscribers via a
ZooKeeper-based configuration system. It then divides
all the shards to be sent to the application among all of
the application’s subscribers, eventually calling onShard-
Notice() for notifying subscribers about shards they will
be responsible for (see Table 1). It is possible (and likely)
that shards belonging to the same publisher might be
processed by different subscribers, and shards belong-
ing to different publishers might be processed by same
subscriber.

All updates of a single shard are always sent to one
subscriber, i.e., they are not split among multiple sub-
scribers. Wormhole arranges for in-order delivery of the
updates belonging to any fixed shard: if a subscriber re-
ceives an update (say u1) for a shard (say s1), then all up-
dates for shard s1 contained in the transaction logs prior
to u1 must have already been received by the subscriber.
Subscribers receive the stream of updates for every shard,
which we call a flow. Publishers periodically track data-
markers per flow after the subscribers acknowledge that
they have processed the updates up to new datamarker. A
datamarker for a flow is essentially a pointer in the data-
store log that indicates the position of the last received
and acknowledged update of the flow by the subscriber.
Subscribers are assumed to be stateless. In particular,
they don’t need to keep track of the state of the flow.

Updates Delivery. To get started, a publisher finds ap-
plications that want to subscribe to it using configura-
tion files. It constructs flows for these applications cor-
responding to shards it has in its datastore, constructing
one flow for each (application, shard) pair. The configu-
ration can be changed dynamically, for example adding a
new application or deleting an old application. This may
result in addition or deletion of flows. When a new ap-
plication is added, it is typically specified which point
in the past it wants to start getting updates from. In
such case, publishers ensures that it sends updates start-
ing from asked for position.

In steady state, all flows get updates from the same po-
sition in the datastore, i.e., the position corresponding to
the current time. Hence, Wormhole uses one reader to
get the updates, and sends them to all interested flows.
In case of error conditions, the publisher needs to restart
sending updates from a stored datamarker. For this, the
publisher may need to read older updates from the data-
store’s log. If many flows are recovering simultaneously,
a naive implementation of the publisher would read from
many positions in the log simultaneously, causing high
I/O load. Wormhole clusters flows and creates a reader
for each cluster instead, which results in significant I/O
savings. Each such reader combined with associated
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flows is called a caravan (see Section 3.1). The single-
ton steady state caravan (or the farthest caravan in case
of multiple caravans) is called the lead caravan.

Wormhole needs to load balance flows among the sub-
scribers of an application. We use two modes of load bal-
ancing. In the first mode, the publishers use a weighted
random selection to choose which subscriber to associate
a flow with, so that lightly loaded subscribers are more
likely to get more flows. In the second mode, the sub-
scribers use ZooKeeper [13], a distributed synchroniza-
tion service, to balance load among themselves: If some
subscribers get heavily loaded, they redirect some flows
to lightly loaded subscribers. Subscribers can also imple-
ment a custom load-balancing strategy using these prim-
itives.

After a flow is associated with a caravan and a sub-
scriber, updates are sent over a TCP connection. Pub-
lishers save on connection overhead by multiplexing all
flows associated with the same subscriber. The data-
markers are moved forward for flows periodically after
corresponding subscribers confirm receipt of new up-
dates.

Wormhole provides libraries to make it easy to build
new applications. The subscriber library takes care of
communication with the publisher, responding to data-
markers, and other protocol details. The subscribers of
the application implement an API that is specified in Ta-
ble 1.

Before moving on to an in-depth description of
Wormhole components, we make a few observations.
(1) Wormhole is highly configurable, and therefore can
be used for diverse applications such as cache invalida-
tions, index updates, replication, data loading to Hive
etc. It has pluggable datastore support, allows configu-
rations to be changed on the fly, and has a configurable
flow-clustering algorithm (see Section 3.1). (2) Worm-
hole supports applications that are written in various lan-
guages. Currently applications written in C++ and Java
are supported. (3) Wormhole is highly reliable and can
handle failures of various components: publishers, data-
stores, subscribers, and even partial network failures.

3.1 Caravan Allocation

As described earlier, Wormhole publisher has the single-
ton lead caravan in steady state which reads updates from
the datastore and sends them to appropriate subscribers.
When some subscribers become slow in processing up-
dates, Wormhole creates additional caravans to follow
the lead caravan. These additional caravans send past
updates to slow subscribers. In addition, flows are dy-
namically assigned to a varying number of caravans as
their datamarkers change in order to optimize for latency
and I/O-load. The trade-off between I/O-load and latency

can be intuitively seen as follows: If we allow a large
number of caravans, we incur higher I/O-load, but we
can do a better job of clustering flows whose datamark-
ers are close, which prevents other flows from having to
wait. If we allow very few caravans, flows with very
different datamarkers get assigned to the same caravan,
making flows which are farther ahead wait for flows that
are very far behind. The allocation of flows to caravans
is called caravan allocation. Note that the datamarkers
of all flows assigned to a caravan must be at least as large
as the position of the caravan in the transaction log.

Caravans are periodically split and merged based on
the datamarkers of the flows. A caravan is split if the
flows on it can be tightly clustered into more than one
cluster. Two caravans are merged if they are “close”
to each other and reading updates that are nearby in the
datastore transaction log. Usually, the non-lead caravans
are expected to eventually catch up with the lead caravan
and are thus forced to read updates at a rate that is faster
than the rate of the lead caravan (typically 1.25 to 2 times
faster). In order to prevent overloading the datastore,
Wormhole has configuration parameters for the maxi-
mum number of caravans, the maximum rate at which
a caravan is allowed to read updates, and a maximum
cumulative rate at which the collection of caravans is al-
lowed to read updates.

We also dynamically move flows between existing car-
avans. If a caravan has a flow which is not able to keep up
with the speed of the caravan (because the corresponding
subscriber is overloaded, for instance) or whose data-
marker is far ahead (and can better served by another
caravan), we can move the flow. These actions are taken
periodically.

3.2 Filtering Mechanism

Wormhole implements publisher-side filtering: the ap-
plication informs publishers of what filters it needs; the
publisher only delivers updates that pass the supplied fil-
ters. While evaluation of filters places some additional
processing overhead on a publisher, it helps conserve
both memory and network bandwidth. The efficiency re-
sulting from publisher-side filtering is more pronounced
when there are many applications that need only a subset
of data.

Filtering is based on the Wormhole update format,
which is a set of key-value pairs. Filters are specified as
follows: the top-level filter is an “OR” which is a disjunc-
tion of finitely many mid-level “AND,” each of which in
turn is a conjunction of finitely many “basic filters.” A
basic filter on an update is one of four kinds: (1) Does
a key exist, (2) Is the value of a key equal to a specified
value, (3) Is the value of a key contained in a specified
set (a numeric interval or a regular expression or a list of
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Callback for application When is the callback invoked by subscriber library
onShardNotice(shard) when updates for a new shard are discovered by the publisher, it notifies the

subscriber of existence of a new shard
onUpdate(wormholeUpdate) when a new update is received from the publisher
onToken(datamarker) when publisher requests acknowledgement that the subscriber has received

data up to the new datamarker
onDataLoss(fromMarker, toMarker) when the publisher realizes that some data for the flow was not sent

Table 1: API that Wormhole subscribers implement to get updates from publishers. The callbacks specified are run
when an event of a specific type happens. onShardNotice() is called when a subscriber is notified of a new flow
corresponding to a new shard. Once the flow is established, onUpdate() is called for each received update. When
the publisher sends a new datamarker asking for acknowledgement of received data, onToken() is called. When the
subscriber has processed all updates up to the supplied datamarker, it is passed back to the publisher as an acknowl-
edgement. In the rare event that truncation of logs by the underlying datastore results in data loss for an application
because the application was further behind than the truncated log position, onDataLoss() callback is called to notify
the subscriber of data loss event.

elements), or (4) negation of any of the previous three.
This generic filtering system is flexible enough for

Facebook’s various applications. For example, for the
cache invalidation applications we use the filter [topic =
aq] OR [mcd key exists] (mcd specifies keys to invali-
date in Memcache). For index update services, we use
more complex filters such as [tableName in (t1, t2)] OR
[(associationType = a1) AND (shard in 1-5000)].

3.3 Reliable Delivery
Reliability is an important requirement for Wormhole.
For example, one missed update could lead to perma-
nent corruption in a cache or index of a dataset. Worm-
hole supports two types of datasets: single-copy datasets
and multiple-copy datasets. The latter indicates a geo-
replicated dataset. Accordingly, Wormhole supports both
single-copy reliable delivery (SCRD) and multiple-copy
reliable delivery (MCRD). For SCRD, Wormhole guar-
antees that when an application is subscribed to the sin-
gle copy of a dataset, its subscribers receive at least once
all updates contained in that single copy of the dataset.
The updates for any shard are delivered to the application
in order that they were stored in the transaction logs: de-
livery of an update means all prior updates for that shard
have already been delivered. For MCRD, applications
are allowed to subscribe to multiple copies of a dataset
at once, and when they do so, Wormhole guarantees that
its subscribers receive at least once all updates contained
in any subscribed copy of the dataset. The updates for
any shard are, again, delivered in order. There is no or-
dering guarantee between updates that belong to differ-
ent shards. Ordering guarantee for updates within shards
suffices for most purposes, since updates corresponding
to one entity (e.g., a Facebook page, or a Facebook user)
reside on the same shard.

Note that these guarantees do not hold if an update
is not available in the datastore log at the time applica-
tion is ready to receive updates (because datastore might
have truncated its logs). Typically datastore logs retain
updates for 1–2 days, and an application that falls behind
by more than that may thus miss updates (and notified by
onDataLoss() callback, see Table 1). In our experience,
when applications do fall behind because of machines or
network failures, monitoring alarms become active and
remediation is done quickly. Hence, it is rare for the ap-
plications to fall behind by more than a few hours.

In rest of this section, we first show how Wormhole
uses datamarkers to provide SCRD, and then how it is
extended to MCRD.

3.3.1 Single-Copy Reliable Delivery (SCRD)

Wormhole leverages the reliability of TCP: while a
subscriber is responsive, TCP ensures reliable delivery.
Wormhole does not use application layer acknowledge-
ments for individual updates—we found it resulted in
heavy bandwidth usage and lowered throughput. In-
stead, for every flow, a publisher periodically sends a
datamarker (current position in the datastore log) inter-
spersed with updates. The subscriber acknowledges a
datamarker once it has processed all updates before the
datamarker. The acknowledged datamarkers are stored
on the publisher side in persistent storage. Since the pub-
lisher can send updates to a flow only if both the datastore
and the datamarker are available, it makes sense to store
them together.

These stored datamarkers help the publisher achieve
SCRD. When a subscriber becomes available after sub-
scriber or network failure, a publisher uses previously
acknowledged datamarkers as starting points for sending
updates, hence not missing any update.
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The decision of sending datamarkers only periodically
results in higher throughput in the normal case. But in
the case of a recovery, when publisher starts sending up-
dates from previously acknowledged datamarker, some
updates may be received more than once. This is not a
problem in most cases. Multiple deliveries of cache in-
validation updates do not violate correctness, and other
applications can easily built logic to remove duplicates.
Wormhole also provides an interface to allow subscribers
to send datamarkers to publishers in order to reduce the
probability of duplicate delivery.

The average size of datamarkers is less than 100 bytes
and they are sent only once every 30 seconds. Hence
network overhead from datamarkers is small: 0.0006%–
0.0013% of the traffic. This overhead can be reduced by
increasing the period between datamarkers, but doing so
results in a higher overhead when recovering. With 30
seconds period, 0.2 seconds of updates are resent for ev-
ery 10 minutes of updates on average because of failures
and recoveries, resulting in 0.03% network overhead.

We also support a mode where applications can choose
to get only real time data (hence not requiring caravans
for old updates), or data that is at most a certain time old.
While it does not guarantee reliable delivery, this mode is
frequently used for developing and testing applications.

3.3.2 Muliple-Copy Reliable Delivery (MCRD)

Most datasets at Facebook are replicated, allowing for
higher availability of updates. In MCRD, when a pub-
lisher doing single-source reliable delivery to an appli-
cation fails permanently, e.g., because of hardware fail-
ure, we would like a publisher running on replicated
datastore to take over and do single-source reliable de-
livery to the application starting from where the failed
datastore stopped sending updates. In essence, MCRD
is “SCRD with publisher failover.” There are, however,
several challenges in extending the SCRD guarantee to
MCRD:
(1) The datamarkers for flows are stored in persistent

storage by the publisher, which is typically co-
located with the datastore host. When the host fails,
we lose the datamarker even though the updates
might be available elsewhere.

(2) The datamarker for a flow is a pointer into the logs
of the datastore. It is usually a filename of the log
and byte offset within that file. Unfortunately, data-
markers represented this way are specific to the par-
ticular replica and it is not straightforward to find
the corresponding position in a different replica. For
example, in MySQL, binary log names and offsets
are completely different for different replicas.

(3) For simplicity, publishers are independent entities
in MCRD case, and they do not communicate to

each other. For ease of operations, we would still
like a solution that minimized the communication
between publishers.

We address these challenges in the following ways.
First, MCRD publishers store datamarkers in ZooKeeper,
a highly available distributed service.

To overcome the problem of replica-specific data-
markers, we introduce logical positions—a datastore ag-
nostic way to identify updates such that copies of the
same update in different replicas have the same logical
position. A logical position uniquely identifies an up-
date in a dataset using a (monotonically non-decreasing)
sequence number and an index. The updates are as-
signed logical positions by the publisher. When the se-
quence number of consecutive updates are equal, which
can happen if the datastore does not natively support se-
quence numbers and we use timestamps of updates as
sequence numbers, they are assigned monotonically in-
creasing indices starting at 1 so they have unique logical
positions. Since caravans still need datastore positions
to start reading logs, a data structure called logical posi-
tions mapper, or simply mapper, maps logical positions
from datamarkers to datastore-specific positions.

Figure 3: Architecture for the failover of publishers in
MCRD. Multiple publishers (in this case P1 and P2)
have the same data to publish to application (A1), but
only one of them (P1) owns and publishes. Each pub-
lisher has an ephemeral node corresponding to it, which
non-owner publisher watches in case the owner fails (P2
watching P1). The owner publisher updates datamarkers
in ZooKeeper. If P1 fails, P2 will notice the disappear-
ance of P1’s ephemeral node and will start owning the
flows for the application.

6



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 357

Finally, to reduce the communication among publish-
ers, we note that MCRD publishers need to be aware
only of their peers serving the same updates. There-
fore, a publisher needs to only communicate to as many
publishers as there are replicas. At any time, one peer
owns a flow and other peers watch the owner for any
changes. The owner publisher is responsible for sending
updates and recording logical datamarkers in ZooKeeper.
All other peers keep track of the owner (or ZooKeeper’s
ephemeral nodes [13] corresponding to the owner) and
take over the ownership if the owner fails. This architec-
ture is illustrated in Figure 3.

4 Workload and Evaluation

Wormhole has been in production at Facebook for
over three years. Over this period, Wormhole has
grown tremendously from its initial deployment where
it published database updates for cache invalidation sys-
tem. Today, Wormhole is used by tens of datasets
stored on MySQL, HDFS and RocksDB. Across these
deployments, Wormhole publishers transport over 35
GBytes/sec of updates at steady state across 5 trillion
messages per day. Note that this update rate isn’t the
peak for the system—in practice, we have found that
Wormhole has transported over 200 GBytes/sec of up-
dates when some applications fail and need to replay past
updates. We have found that designing Wormhole to run
alongside sharded datastores has allowed us to scale the
system horizontally by bringing up new publishers on the
datastore machines.

To keep Wormhole from hurting datastore perfor-
mance, a typical constraint in production is to not start
too many readers to read updates from datastores. As a
result, the historic average of number of caravans used
by Wormhole publishers in production is just over 1
(≈ 1.063).

Our evaluation of Wormhole focuses on our produc-
tion deployment and a few synthetic benchmarks that il-
lustrate Wormhole’s characteristics. We focus on the fol-
lowing metrics.

Scalability and Throughput: What is Wormhole’s
publisher and subscriber throughput? How well
does it scale with the number of applications
subscribing to updates?

Efficiency: Do caravans reduce load on datastores?
How well does Wormhole trade-off I/O efficiency
with latency in delivering updates?

Latency: What is the typical latency for delivering up-
dates?

Fault Tolerance: How well does Wormhole handle the
failure of publishers, subscribers and even a whole
datacenter?

4.1 Scalability
4.1.1 Scaling with the number of applications

This experiment evaluates how a single publisher scales
with an increasing number of applications.

Methodology. We start one publisher configured to use
4GB of memory and 32 CPUs clocked at 2.6 GHz. The
datastore is filled with 5 GBytes of past updates from
production traffic with updates having a mean size of 1
KBytes. We run 20 experiments, parameterized by num-
ber of applications n = 1,2, . . . ,20. For each n, we con-
figure n applications to receive updates from the pub-
lisher. Each of the n applications have one subscriber,
which simply receives all 5 GBytes of updates and in-
crements a counter indicating the number of updates re-
ceived. The publisher is configured to use only one re-
play caravan. (The lead caravan is at the end of the logs
and not relevant for this experiment.) We measure how
long it takes the publisher to send all updates to all n ap-
plications (i.e., time to replay), and the rate of sending
updates (i.e., throughput).

Results. Figure 4(a) plots the time taken to deliver all
updates to all applications. We see the time taken to de-
liver all queued updates grows linearly with the number
of applications. This linear growth stems from the pub-
lisher having to schedule each update for delivery to a
subscriber of each application.

Figure 4(b) plots the average throughput of the pub-
lisher over the time of delivery of all updates. We
find that the throughput increases with increasing num-
ber of applications before it levels off at just over 350
MBytes/sec. This bottleneck is caused by a lack of paral-
lelism in our publisher, which has not been optimized be-
cause Wormhole publishers are typically co-located with
production databases and are not allowed to use many
cores.

Note that the goal of this experiment is to stress test the
publisher by configuring each application to subscribe to
all updates. This is in contrast to our production setup
where each application typically gets a filtered subset of
updates. In our production set up, it is common for pub-
lishers to deliver updates to many tens of applications in
steady state.

4.1.2 Subscriber throughput

We now turn our attention to the throughput of the sub-
scriber. In this experiment, we stress test a single sub-
scriber by increasing the number of updates the sub-
scriber is configured to get. This is done by increasing
the number of publishers whose updates the subscriber
is configured to get.
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Figure 4: Wormhole publisher delivering updates to
varying number of applications from 1 to 20. Panel (a)
shows time taken to deliver all updates using a single re-
play caravan. Panel (b) shows the average throughput of
the publisher during delivery of all updates.

Methodology. We start one application using one sub-
scriber configured with 4 GBytes of memory and 4 Intel
2.80 GHz CPUs. We configure this subscriber to get a
fraction of updates from a production dataset that aver-
ages 500 bytes per update. We periodically increase the
fraction of updates the subscriber is configured to get by
increasing the number of shards from the dataset that the
application is interested in. This is done approximately
every 15 minutes. We measure the running average of
throughput and latency of the subscriber during the ex-
periment.

The measured data is plotted in Figure 5. Both (a) and
(b) show the number of shards whose updates the sub-
scriber is getting over the 150-minute experiment. Note
that the step increments in this graph at minutes ≈ 80,95,
and 110 is by manually changing the configuration of the
application to be subscribed to more shards from pub-
lishers. Figure 5(a) shows the average throughput of
the subscriber for each one minute interval. Figure 5(b)
shows the average latency of updates delivery for each
one minute interval. Note that this latency is end-to-
end—the difference between the time at which update
was delivered to the subscriber and time at which it was
written to the datastore where publisher is reading. Also
note that during the time of low latency, the sum total
of send-throughputs of all publishers to the subscriber is
equal to the receive-throughput of the subscriber.

Note that the throughput jumps when number of
shards jump, which is expected because more publish-

Figure 5: Running average of throughput and latency of
subscriber that gets increasingly larger amount of up-
dates from publishers. Increasing amount of updates is
shown in (a) and (b) by step increase in number of shards
whose updates the subscriber gets. This increase is done
manually at minutes ≈ 80,95, and 110. Panel (a) shows
the throughput in updates/sec, which jumps with jump in
number of shards. Panel (b) shows the average latency
of delivery of updates, which remains constant up to the
throughput limit of the subscriber. Panel (c) combines
(a) and (b) by plotting throughput versus latency of each
one minute interval shown in (a) and (b). It shows that
the latency of updates delivery remains low up to a limit,
and increases in an unbounded manner after that.

ers start sending updates to the subscriber. Despite this
increased throughput, the average latency of updates re-
mains constant at 150ms. But the final jump in through-
put around minute 110 is not sustained—the throughput
hovers around 600,000 updates/sec. Also, the latency
starts increasing without limits at minute 110, since the
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subscriber is not able to handle all the updates. This
leads to publisher having to allocate a different caravan
for sending updates again. This time is counted against
latency of updates, which results in higher latency for
updates that are resent. This lack of ability of subscriber
to process more than 600k updates/sec is easily seen in
Figure 5(c), which is a convenient combination of the
previous two: For each one minute interval, it plots the
average throughput versus average latency during that
one minute interval. After the throughput hits 600k up-
dates/sec, the latency keeps increasing without any fur-
ther increase in the throughput.

Results. Wormhole subscriber can sustain a high
throughput of over 600,000 updates/second, without im-
posing a latency penalty. If we try to push more updates
than that, the subscriber starts dropping updates, which
results in publishers having to resend them and causing
large latency.

4.1.3 Publisher throughput in production

A previous experiment showed the throughput of the
publisher for replaying updates for data that was not serv-
ing production traffic (Figure 4). We now evaluate the
typical speed of recovery for application in Facebook’s
production environment and show that Wormhole is ca-
pable to serving high throughput in bursts when applica-
tions fall behind.

We consider a production deployment of Wormhole
with publishers delivering updates to a cache invalidation
application. For this application, any delay in delivering
updates results in stale cache data.

Methodology. We evaluate 50 publishers over a 24-
hour period and report what is the average throughput
of the publishers, and what is the maximum throughput
of the publishers observed during the experiment. To
count towards the maximum, the throughput had to be
sustained for at least one minute. We plot the average
throughput versus maximum throughput in Figure 6.

Results. The main take-away from this experiment is
that in Facebook’s production environment, Wormhole
publishers are capable of sustaining throughput that is
more than 10 times their average throughput. This result
is important since it is common for applications to fall
behind. When requested, the publisher must be able to
help the application recover quickly by sustaining high
throughput for short bursts of time.

Note that in the above production environment, the
highest throughout a caravan can achieve was artificially
capped in the configuration of these publishers so that
Wormhole does not adversely affect the performance of

Figure 6: Sustained maximum throughput of publisher
versus average throughput over a period of 24 hours for
a set of 50 publishers. The throughputs are normalized
by making minimum average throughput equal to 1 unit.

the underlying datastore. In the absence of such con-
straints, Wormhole is capable of higher throughput but
may result in worse datastore performance for other
clients.

4.2 Efficiency
In this section, we evaluate the efficiency achieved by
Wormhole by using caravans.

4.2.1 Trading off latency for I/O during recovery

After a failure, multiple applications might fall behind
and request updates from different points in time in the
past. Wormhole has a choice of creating many caravans
starting at different positions in the datastore logs, or
using fewer caravans and clustering flows from applica-
tions. On one extreme, if multiple caravans are spawned,
applications can receive updates immediately, resulting
in low latency of update delivery but high read amplifi-
cation (i.e., updates being read multiple times by differ-
ent caravans). On the other extreme, if we are allowed to
start only one caravan, applications that are further along
have to wait for lagging applications to recover before
getting updates. This results in higher latency for ap-
plications that are up to date. We simulate this scenario
in evaluating Wormhole’s trade-off between I/O and la-
tency.

Methodology. We start a single publisher on a data-
store that has 20 GBytes of updates. To simulate multiple
applications that fall behind by different amounts in pro-
duction, we subscribe this publisher to 10 applications
whose datamarkers are equally distributed across the 20
GBytes of updates. Therefore, each application wants
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to get a progressively smaller tail-end of the updates in
the datastore: first application wants to get the whole 20
GBytes, the second application wants to get the last 18
GBytes, and so on, and tenth application wants to get the
last 2 GBytes of updates.

Updates from the publisher to all applications can be
sent using different number of caravans (which results in
different read amplification factors). We run the experi-
ment in 7 iterations, with different maximum number of
caravan Wormhole publisher is allowed to use: 10, 7, 5,
4, 3, 2, and 1. For each iteration, we measure how much
data is read collectively by all caravans and divide it by
total amount of data in the datastore to get the read am-
plification factor of the iteration. This is plotted on the
x-axis in Figure 7.

We measure the latency as follows. The latency of
one update is measured as the difference between time
of receipt of update by application and time of commit
of the update in the datastore. The latency of one appli-
cation is the average latency over all updates it received.
The latency plotted on y-axis is the average latency of all
10 applications. Since we are replaying past data span-
ning several minutes, the latency as measured above is
expected to be in minutes.

Each data point in Figure 7 corresponds to one itera-
tion of the experiment, indicating the read amplification
factor and the average latency of all applications. The la-
bel for the data point corresponds to the maximum num-
ber of caravans allowed in that iteration.

Figure 7: Read amplification factor versus average la-
tency of delivering updates to 10 applications (see text
for more explanation). Different data points are for vary-
ing number of maximum allowed caravans. The latency
is averaged over 10 applications whose datamarkers are
scattered evenly across the 20 GBytes of single datastore
updates.

Results. The main result of this experiment is to
demonstrate that Wormhole can trade off the load on
datastore for latency of serving updates. Figure 7 shows
that by increasing read amplification on the datastore,

Wormhole is able to reduce the average latency of up-
dates by up to 40%.

Note that each addition caravan does not reduce the
latency of updates. This is an artifact of how we assign
flows to caravans. We believe this can be improved with
a different caravan allocation algorithm. This is an active
direction for future research, see Section 7.

4.2.2 Updates delivered versus updates read

Methodology. We evaluate how many bytes of updates
Wormhole publishers read for each byte of updates sent
to all applications. A lower number for this metric indi-
cates Wormhole publisher puts little load on datastores
in order to send updates to many applications.

We use measurements from a production deployment
that is used to replicate (cache) data across datacenters.
There are multiple publishers in the datacenter we are
considering, and 6 applications subscribed to the dataset
corresponding to these publishers (the number of pub-
lishers and subscribers is not relevant to this discus-
sion). The publisher and subscribers are in geographi-
cally distributed locations (publisher on the east coast,
subscribers on east and west coasts of the US, and Eu-
rope). Over a period of 48 hours, we observe the number
of bytes collectively sent by these publishers to 6 appli-
cations, number of bytes read from datastores by the pub-
lishers, and how many caravans were used to read those
bytes. These metrics are collected every 1 minute, and
the collected value is average of the values since previ-
ous collection. The results appear in Figure 8.

Figure 8: The amount of data read from datastores and
sent to applications by Wormhole, and the number of car-
avans used to do so. The number of caravans, which is
averaged over one minute intervals and over all involved
publishers, can be fractional.
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Results. We see that for a vast majority of time, the ra-
tio of bytes read over bytes sent remains as low at 1/6.
This shows the efficiency of Wormhole in reading up-
dates few times, before sending them to many applica-
tions.

There are small spikes in bytes read graph, which cor-
responds to times when some subscribers of some appli-
cations have errors, and hence fall behind. During these
spikes, the number of caravans go up accordingly.

Note the large spike in the middle, where the bytes
read becomes close to bytes sent (the ratio very close to
1). This happens because many subscribers of one appli-
cation (out of 6) fall behind because of a systemic error,
and all publishers have to read past updates to send past
data to the application. Note that even though the num-
ber of caravans becomes (only) 3 (for 6 applications), the
ratio of bytes read to bytes sent comes close to 1 (instead
of 0.5 or 3/6). The reason is that the two extra non-lead
caravans read updates at a higher rate than the lead cara-
van.

This experiment suggests Wormhole is efficient, even
in a large deployment, in reading updates few times and
sending them to many applications, and in its ability to
recover from applications failures.

4.3 Low Latency
Methodology. We examine the latency experienced by
updates in Wormhole. We use the data from one of Face-
book’s production deployments: we pick one (random)
publisher that is sending updates to a cache invalidation
application, and observe it over a period of few hours
to get a sample of 50,000 updates. The cache consis-
tency application itself runs on hundreds of machines,
but the updates from one publisher are distributed to a
small number of them (1–3). The average size of updates
is 500 bytes. The publisher and subscribers reside in the
same datacenter for this setup: the latency between pub-
lisher and subscribers (measured via ping time) is low
(under 1 ms).

The latency of updates is measured as follows: the
publisher writes the (millisecond) timestamp for each
update indicating when update was written to the data-
store (which could be much earlier than when it was read
by the publisher). When the subscriber receives it, it
computes the difference of clock time and the timestamp
written in the update. The clock skew between the pub-
lisher and the subscriber was measured to be less than
1ms. Note that this latency does not measure the time
taken by the cache consistency application to invalidate
the cache.

Results. The cumulative distribution function of laten-
cies of 50,000 updates appear in Figure 9. Over 99.5%

Figure 9: Latency of updates over a period of time, sent
from one publisher to local (datacenter) application.

of the updates are delivered in under 100ms. Note that
there is a long tail of updates that can take as long as 5
seconds. This can happens when an update is sent by a
non-lead caravan. In such case, it includes the time that
the corresponding flow spends waiting to be assigned to
a caravan.

4.4 Reliability and Fault Tolerance
In this section, we evaluate the efficacy of Wormhole in
providing multiple-copy (and single-copy) reliable deliv-
ery (MCRD and SCRD) by doing a failover for all pub-
lishers within a datacenter, by causing single publisher
failure, and by causing subscriber failures.

4.4.1 MCRD at large scale

To demonstrate MCRD at large scale, we picked one ap-
plication that was receiving 300 MBytes/sec of updates
from production. We simulated the failure of a datacen-
ter by changing the configuration of the application to
get updates from secondary datacenter, instead of the pri-
mary datacenter. The ping time between secondary data-
center and application subscribers was 15ms.

Averaged over multiple failovers, it took Wormhole
approximately 5 minutes to transfer all traffic from pri-
mary to secondary datacenter. A majority of this time is
spend during timeouts (for example, it takes one minute
before a machine is considered not reachable).

Note that in the case of actual failure of datacenter, the
application would not be receiving any data during this
time, and receive a burst afterwards when the updates are
being sent from the secondary datacenter (qualitatively
similar to the bursts in Figure 10(b)).

4.4.2 Reliability under single publisher failure

In this section, we evaluate how Wormhole handles the
failures of publishers for SCRD and MCRD.
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Methodology. We select two datastores that are replica
of a datastore in production. We start one publisher each
on them, which serve as peer publisher for MCRD. Call
them primary and secondary. We then start two applica-
tions: the first one requires multiple-copy reliable deliv-
ery of updates, from either primary or secondary, with
the preference of primary first. The second application
requires single-copy reliable delivery of updates, from
the primary publisher only.

Figure 10: Effect of publisher failure on delivery of up-
dates. Panel (a) shows an MCRD application that is con-
figured to receive updates from either the primary pub-
lisher or the secondary publisher. Panel (b) shows an
SCRD application that is configured to receive updates
only from the primary. The primary publisher is failed
close to second 300, and restored at second 1300. In
(a), the application starts getting updates from secondary,
while in (b), the application has to wait until primary is
restored, resulting in higher backlog.

After both applications are receiving data from the pri-
mary, we simulate the failure of primary by killing the
publisher process on primary (seen by disappearance of
red line in Figure 10(a) and (b). We restart the primary
publisher 15 minutes after its failure. Note that the sec-
ondary publisher runs without any failures.

Figure 10(a) plots the number of updates delivered to
the MCRD application from primary and secondary pub-
lisher. Figure 10(b) plots the number of updates deliv-
ered to the SCRD application from the primary publisher.

Results. This experiment demonstrates the reliable de-
livery guarantee of Wormhole, showing that both appli-
cations survive the failure of primary publisher, albeit in
different ways.

The MCRD application starts receiving updates from
the secondary publisher within 60 seconds of primary
failing. This time comes from the timeout we use to in-
dicate that a publisher is not available any more. When
the primary publisher is restored, the MCRD application
seamlessly switches to it.

Note the large spike in the updates received for SCRD
application. When the only publisher that could deliver
updates to it is restored, it sends the backlogs of updates
at a higher throughput, and then restores the application
to normal state.

4.4.3 Subscriber failures and load balancing

We evaluate Wormhole’s capability to balance load
among the subscribers of the same application. As de-
scribed earlier, we use two methods to distribute flows
among subscribers: (1) the publisher uses a probabil-
ity density function to assign flows to subscribers that
have relatively fewer flows, and (2) subscribers use a
ZooKeeper based load balancing method to provide hint
to publisher in choosing subscribers for flows. In the lat-
ter method, ZooKeeper based service assigns shards to
subscribers, and rebalances periodically when it discov-
ers that the assignment is not balanced. The period is
configurable, but typically once per minute.

Methodology. In this experiment, we consider a large
number of publishers spanning many shards, say n, de-
livering updates to a production application that also has
a large number of subscribers, say m. We first use one al-
gorithm to balance load among subscribers and then use
the second algorithm.

Figure 11: The histograms for distribution of flows
among subscribers. The y-axis shows the fraction of sub-
scribers that have number of flows that fall in the hori-
zontal x-axis bin. The two histograms show the spread
for probability based distribution and ZooKeeper based
distribution.

To measure the efficacy of the load balancing algo-
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rithm, we find out how many shards each subscriber is
subscribed to. (The sum of these numbers is always n,
since there are n shards in total.) We normalize this num-
ber and put subscribers in 50 bins according to normal-
ized number of shards assigned to them. This is the x-
axis in Figure 11. We draw the histogram in Figure 11
where y-axis shows the fraction of subscribers that have
the number of shard subscribed to them on the x-axis.
A large spread (as in blue histogram) shows that some
subscribers have very few shards while others have very
many.

Results. As seen in Figure 11, for the ZooKeeper based
allocation policy, the spread of number of shards is
tightly concentrated. Most subscribers have between 122
and 126 (normalized) shards. On the other hand, a ran-
dom distribution assigns as few as 88 and as many as 135
shards to subscribers.

5 Operational Challenges

In this section, we discuss the challenges we have faced
in running Wormhole at the scale of Facebook’s infras-
tructure, how we addressed them, and how the system
has evolved in a way to make it easy to catch and fix
problems.

First, the impact of malfunctioning of Wormhole af-
fects some Facebook users much more than others. For
example, suppose Wormhole publishers are malfunction-
ing on 1% of datastore machines so that 1% of the cache
is stale. This would cause 100% of cached data for 1%
of the users to be stale—not 1% of the cached data for
100% of the users. This makes the reliability of Worm-
hole publishers all the more important.

Wormhole must run on all production-ready datastore
machines, a large set that keeps changing as machines
are brought in to and taken out of production. In our
experience with a central deployment system we used
early on, it is challenging to keep Wormhole publisher
running on exactly this set of machines and no other; a
central deployment to a large set of machines is likely to
result in some mistakes. We decided to switch to a dis-
tributed deployment system based on runsv [20] while
trying to minimize dependencies outside of the local ma-
chine. We run a lightweight Wormhole monitor on each
datastore machine. The monitor periodically checks the
configuration system (which indicates the machines that
are in production) and based on that determines whether
to run a publisher or not, and if so, with what configu-
ration. This decentralized system has been significantly
more reliable and easier to use.

In order to make debugging the publisher and fixing
problems easier, we can change configurations on-the-

fly. For example, the maximum rate at which a cara-
van can send updates can be changed without restart-
ing the publisher. The publisher also implements a thrift
interface [4]—we use it to access state (e.g., what are
the datamarkers of all flows on it) and gather monitoring
statistics that the publisher collects and aggregates every
30 seconds (e.g., the rate of updates sent to all applica-
tions). The publisher collects over 100 such monitoring
statistics that we use to determine the health of the group
of publishers. This interface can also be used to give
commands to the publisher to override some decisions
manually (e.g., reassign all flows to caravans in order to
improve I/O utilization), although this is rarely required.

Wormhole’s resource utilization depends not only on
its own health, but the health of all the subscribing appli-
cations. The difference between best-case resource uti-
lization (one caravan in case all applications are current)
and worst-case resource utilization (maximum number
of caravans) can be large. We have to plan resources for
such worst-case operability, e.g., having a resource limit
that is higher than normal operating range for Wormhole.

6 Related Work

The pub-sub systems have been an active area of research
for many decades. Many pub-sub systems, message
buses (topic-based pub-sub systems), and P2P notifica-
tion systems have been developed [5,6,9,11,16,17,24,25,
28,31] that shares similar goals to Wormhole. Most solu-
tions, though, use brokers—intermediate datastores that
store and forward updates. These brokers offload the re-
sponsibility of forwarding events to subscribers from the
datastores. They can provide reliability by buffering up-
dates for slow subscribers, while providing low latency
to fast subscribers. However, these solutions are unde-
sirable for us as they require additional infrastructure for
brokers: we do not need brokers to buffer updates as our
datastores already provide reliable logs in form of trans-
action logs. Also, brokers can add significant latency to
message delivery, particularly if used hierarchically for
large scale systems.

Below we consider some of the best known publicly
available products.

SIENA [8] is a wide-area content-based pub-sub ser-
vice. Much of the focus in SIENA is on its specialized
content-based routers, while Wormhole uses stock net-
work routers while filtering happens directly at the pub-
lishers. SIENA does not support replicated data sources,
and has not been demonstrated at a scale or load near
Facebook’s.

Thialfi [1] is Google’s cloud notification service that
addresses a similar problem to Wormhole, namely the
invalidation of cached objects. Thialfi is geographically
distributed and highly reliable, even in the face of long

13
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disconnections. However, its clients are applications
running in browsers on end-users’ mobile phones, lap-
tops, and desktops, not applications within Google itself,
such as caching and indexing services. The workloads
on Thialfi are, accordingly, very different from Worm-
hole. In particular, Thialfi is not concerned about I/O
efficiency on data sources. Thialfi also sends only ver-
sion number for the data to subscribers, and coalesces
many updates into most recent one. Wormhole, on the
other hand, sends all updates, and each update contains
more information needed by the application, not just the
version number. This is for two reasons: (1) By sending
data, we can do cache refills, instead of just cache inval-
idations, and (2) Wormhole is used for wider purposes,
such as RocksDB replication, that need each update be-
ing delivered (based on statement replication).

Kafka [15] is LinkedIn’s message bus, now open
source and maintained by Apache. It has a topic-based
pub-sub API. Like Wormhole, it uses ZooKeeper to keep
track of how many events particularly subscribers have
consumed. As in Wormhole, data sources are sharded.
At LinkedIn, it is used to distribute various real-time
logging information to various subscribers. Kafka can
lose messages in case one of its message brokers suffers
a failure. Recent benchmarks puts the speed at which
Kafka can transport messages at about 250 MBytes/sec,
orders of magnitude below Wormhole’s production load,
but Kafka’s throughput can be improved by sharding dif-
ferently.

Hedwig [3] is a topic-based Apache pub-sub system
with an emphasis on handling many topics and providing
strong reliability, not on many publishers or subscribers
or on high message load. Many pub-sub systems focus
on expressive filters and implement sophisticated ways
to filter updates [10, 21, 26].

Messages buses like IronMQ [14] and Amazon
SQS [2] are hosted, and cannot be installed in local in-
frastructure. Beanstalkd [22] and RabbitMQ [23] are
popular efficient open-source message buses. Beanstalk
supports reliability but is specialized to be used as a
collection of task queues. Like Wormhole, RabbitMQ
can scale to multiple datacenters and is particularly ef-
ficient for small messages. Neither supports replicated
data sources, or have been been demonstrated to support
the scale of Facebook’s workloads.

TIBCO Rendezvous [29] is perhaps the most used and
advanced commercial message bus. While it has impres-
sive features and performance, it does not support repli-
cated datastores out-of-the-box. Rendezvous also needs
additional storage for messages, which grows with the
reliability interval, during which message can be retrans-
mitted. The Rendezvous daemon does not guarantee de-
livery to components that fail and does not recover for
periods exceeding the reliability interval, which is a dif-

ferent order of magnitude (typically 60 seconds) than the
failure durations of Wormhole components (sometimes
many hours).

7 Future Work

As Wormhole continues to support the growing amount
of traffic flowing through it, there is need for different
features to support the load and diversity of use-cases.
Because of the growth in number of applications, we are
working to provide differentiated guarantees to applica-
tions based on how important fresh data and latency is
to them. For example, if an application can afford to get
data that is stale up to a few minutes, updates for that
application can be batched and compressed to save net-
work bandwidth. We are also working on making it easy
to swap in and out various caravan allocation policies in
the Wormhole publisher, and measure their efficacy for
different workloads.

8 Conclusion

This paper describes Wormhole, a pub-sub system de-
veloped at Facebook. Wormhole leverages the transac-
tion log of the storage system to provide a reliable, in-
order update stream to interested applications. We have
demonstrated that Wormhole scales to support multiple
data storage systems and can guarantee delivery in the
presence of both publisher and subscriber failure. Our
production deployment of Wormhole transfers over 35
GBytes/sec in steady state (over 5 trillion messages per
day) from geo-replicated datastores to multiple applica-
tions with low latency.
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Abstract
Mobile devices are increasingly the dominant Internet
access technology. Nevertheless, high costs, data caps,
and throttling are a source of widespread frustration, and
a significant barrier to adoption in emerging markets.
This paper presents Flywheel, an HTTP proxy service
that extends the life of mobile data plans by compress-
ing responses in-flight between origin servers and client
browsers. Flywheel is integrated with the Chrome web
browser and reduces the size of proxied web pages by
50% for a median user. We report measurement results
from millions of users as well as experience gained dur-
ing three years of operating and evolving the production
service at Google.

1 Introduction
This paper describes our experience building and running
a mobile web proxy for millions of users supporting bil-
lions of requests per day. In the process of developing
and deploying this system, we gained a deep understand-
ing of modern mobile web traffic, the challenges of de-
livering good performance, and a range of policy issues
that informed our design.

We focus on mobile devices because they are fast be-
coming the dominant mode of Internet access. Trends are
clear: in many markets around the world, mobile traffic
volume already exceeds desktop [23], and double-digit
growth rates are typical [32].

Despite these trends, web content is still predomi-
nantly designed for desktop browsers, and as such is in-
efficient for mobile users. This situation is made worse
by the high cost of mobile data. In developed markets,
data usage caps are a persistent nuisance, requiring users
to track and manage consumption to avoid throttling or
overage fees. In emerging markets, data access is of-
ten priced per-byte at prohibitive cost, consuming up to
25% of a user’s total income [18]. In the face of these
costs, supporting the continued growth of the mobile In-
ternet and mobile web browsing in particular is our pri-
mary motivation.

∗Authors are listed in alphabetical order.

Although the number of sites that are tuned for mo-
bile devices is growing, there is still a huge opportunity
to save users money by compressing web content via a
proxy. This paper describes Flywheel, a proxy service
integrated into Chrome for Android and iOS that com-
presses proxied web content by 58% on average (50%
median across users). While proxy optimization is an
old idea [15, 22, 29, 39, 41] and the optimizations we ap-
ply are known, we have gained insights by studying a
modern workload for a service deployed at scale. We
describe Flywheel from an operational and design per-
spective, backed by usage data gained from several years
of deployment and millions of active users.

Flywheel’s data reduction benefits rely on coopera-
tion between the browser and server infrastructure at
Google. For example, Chrome has built-in support for
the SPDY [11] protocol and the WebP [12] image com-
pression format. Both improve efficiency, yet are rarely
used by website operators because they require cumber-
some, browser-specific configuration. Rather than wait-
ing for all sites to adopt best practices, Flywheel applies
optimizations automatically and universally, transcoding
content on-the-fly at Google servers as it is served.

This paper makes two key contributions. First, our ex-
perience with Flywheel has given us a deep understand-
ing of the performance issues with proxying the mod-
ern mobile web. Although proxy optimization delivers
clear-cut benefits for data reduction, its impact on la-
tency is mixed. Measurements of Flywheel’s overall per-
formance demonstrate the expected result: compression
improves latency. In practice however we find that Fly-
wheel’s impact on latency varies significantly depending
on the user population and metric of interest. For exam-
ple, we find that Flywheel decreases load time of large
pages but increases load time for small pages.

Our second contribution is a detailed account of the
many design tradeoffs and measurement findings that we
encountered in the process of developing and deploy-
ing Flywheel. While the idea of an optimizing proxy
is conceptually simple, our design has evolved contin-
uously in response to deployment experience. For ex-
ample, we find that middleboxes within mobile carri-
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ers are widespread, and often modify HTTP headers in
ways that break naı̈ve proxied connections. While use of
HTTPS and SPDY would prevent tampering, always en-
crypting traffic to the proxy is at odds with features such
as parental controls enforced by mobile carriers. Perhaps
unsurprisingly, addressing these tussles consumes signif-
icant engineering effort. We report on the incidence and
variety of these tussles, and map them to a clearer picture
of mobile web operation with the hope that future sys-
tem designs will be informed by the practical concerns
we have encountered. As far as we know, we are the first
to publish a discussion of these tradeoffs.

2 Background
We built Flywheel in response to the practical stumbling
blocks of today’s mobile web. Ideally, Flywheel would
be unnecessary. Mobile data would be cheap, and con-
tent providers would be quick to adopt new technologies.
Neither is true today.
Mobile Internet usage is large and growing rapidly.
The massive growth of mobile Internet traffic has cre-
ated a tremendous opportunity for automatic optimiza-
tion. In Asia and Africa, 38% of web page views are
performed on mobile devices as of May 2014, a year-
over-year increase exceeding 10% [36]. In North Amer-
ica, mobile page loads are 19% of total traffic volume
with 8% growth yearly. In February 2014, research firm
comScore reported that time spent using the Internet on
mobile devices exceeded desktop PCs for the first time
in the United States [23]. These trends match our expe-
rience at Google. Mobile is increasingly dominant.
Growth in emerging markets is hampered by cost.
Emerging markets are growing faster than developed
markets. Year-over-year growth in mobile subscriptions
is 26% in developing countries compared to 11.5% in
developed countries. In Africa, growth exceeds 40% an-
nually [32]. Despite surging popularity, the high cost of
mobile access encumbers usage. One survey of 17 coun-
tries in sub-Saharan Africa reports that mobile phone
spending was 10-26% of individual income in the lower-
75% income bracket [18].
Site operators are slow to adopt new technologies.
Adapting websites for mobile involves manual and of-
ten complex optimizations, and most sites are poorly
equipped to make even simple changes. For example,
measurements of Flywheel’s workload show that 42% of
HTML bytes on the web that would benefit from com-
pression are uncompressed, despite GZip being univer-
sally supported in modern web browsers [13]. This is in
part because GZip is not enabled by default on most web
servers, yet only a single-line change to the server con-
figuration is needed. While hosting-providers and CDNs
deal with such configuration issues on the behalf of con-
tent providers, the pervasive lack of GZip usage indicates

Google Datacenter HTTP Site

Figure 1: Flywheel sits between devices and origins, au-
tomatically optimizing HTTP page loads.

that most content providers still do not employ these ser-
vices.

More recent optimizations such as WebP [12] and
SPDY [11] have been available for years yet have very
low adoption rates. We find that 0.8% of images on the
web are encoded in the WebP format, and only 0.9% of
sites support SPDY [49].

Users should not have to wait for sites to catch up to
best practices. Modern browsers such as Chrome are up-
dated as often as every six weeks, providing a constant
stream of new opportunities for optimization that are dif-
ficult for web developers to track. Moreover, as mobile
devices proliferate, the complexity of optimizing sites
to conform to the latest platforms (e.g. high-resolution
tablets requiring higher image quality) is a daunting task
for all but the most committed site owners.

In sum, it is not surprising that most site owners do
not take advantage of all browser- and device-specific
optimizations. Just as we do not expect programmers to
manually unroll loops, we should not expect site owners
to remember to apply an ever-expanding set of optimiza-
tions to their sites. We need an optimizing compiler for
the web—a service that automatically applies optimiza-
tions appropriate for a given platform.

3 Design & Implementation
This section describes Flywheel’s design and implemen-
tation. The high-level design (depicted in Figure 1) is
conceptually simple: Flywheel is an optimizing proxy
service. Chrome sends HTTP requests to Flywheel
servers running in Google datacenters. These proxy
servers fetch, optimize, and serve origin responses. An
example optimization is transcoding a large, lossless
PNG image into a small, lossy WebP. The remainder of
this section describes our goals, the flow of requests and
responses, and the optimizations applied in transit. We
conclude the section with a discussion of fault tolerance.

3.1 Goals & Constraints
Flywheel’s primary goal is to reduce mobile data usage
for web traffic. To achieve this goal we must address the
practical requirements of integrating with the Chrome
browser, used by hundreds of millions of people.
Opt-in. Recognizing that many users are sensitive to the
privacy issues of proxying web content through Google’s
servers, we choose to keep the Flywheel proxy off by de-
fault. Users must explicitly enable the service.
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Proxy HTTP URLs only. Flywheel applies only to
HTTP URLs. HTTPS URLs and page loads from incog-
nito tabs1 do not use the proxy. While it is technically
feasible to proxy through Flywheel in these cases, we
are deliberately conservative when given an explicit sig-
nal that a request is privacy sensitive.
Maintain transparency for users, network operators,
and site owners. Flywheel does not depend on mo-
bile carriers to change their networks or site operators to
change their content. Once enabled, Flywheel is trans-
parent to users: websites should look and behave exactly
as they would without the proxy in use. This require-
ment means we must be fairly conservative in terms of
the types of optimizations we perform—for example, we
cannot modify the DOM of a given page without risking
adverse interactions with JavaScript on that page. Fur-
ther, unavailability of Flywheel service should not pre-
vent users from loading pages.
Comply with standards. All of the optimizations per-
formed by Flywheel must be compliant with modern web
standards, including the practical reality of middleboxes
that may cache or transform the optimized content. Fur-
ther, we use standard protocols (SPDY and HTTP) for
transferring content in order to ensure that Flywheel can
be widely deployed without compatibility issues.

While improving web page load times through Fly-
wheel is desirable, it is not always possible, as we de-
scribe later. There is a latency cost to proxying web
content through third-party proxies, and although com-
pressing responses tends to reduce load times, this ben-
efit does not always outweigh the increased latency of
fetching content through Flywheel servers.

3.2 Client Support: Chrome
Flywheel compression is a feature of the Chrome
browser on Android and iOS. Users enable Flywheel in
Chrome’s settings, which shows a graph of compression
over time once enabled.
SPDY (HTTP/2). By default, client connections to Fly-
wheel use the SPDY2 [11] transport protocol, which mul-
tiplexes the transfer of HTTP content over a single TLS
connection. SPDY is intended to improve performance
as well as security by avoiding the overhead of multi-
ple TCP connections and prioritizing data transfer. For
example, HTML and JavaScript are often on the critical
path for rendering a page and hence have higher transfer
priorities.

For users of Flywheel, SPDY support is universal.
Each client application maintains a single SPDY connec-
tion to the Flywheel proxy over which multiple HTTP re-

1Incognito mode is a Chrome feature that discards cookies, history,
and other persistent state for sites visited while it is enabled.

2As the HTTP/2 protocol based on SPDY moves to the final stages
of standardization, we are migrating from SPDY to HTTP/2.

quests are multiplexed. Flywheel in turn translates these
to ordinary HTTP transactions with origin servers.
Proxy bypass. A practical reality is that Flywheel can-
not proxy all pages on the web. Some sites are simply
inaccessible to the Flywheel proxy, such as those behind
a corporate intranet or private network. Other sites ac-
tively block traffic from Flywheel, for example, due to
automated DoS prevention that interprets the volume of
traffic from Flywheel IP addresses as an attack.

To avoid unavailability, Flywheel is automatically dis-
abled in these circumstances using a mechanism we call
proxy bypass. Proxy bypass is implemented using a spe-
cial HTTP control header that informs the browser to dis-
able the proxy and reload the affected content directly
from the origin site. Proxy bypasses are configurable,
giving us the ability to disable Flywheel for a set time
(e.g., to cover an entire page load) or for just a single
URL. This signal also provides us with a convenient load
shedding mechanism: we can remotely disable Flywheel
for specific clients as needed. We describe the uses of
proxy bypass in greater detail in §3.3.5.
HTTP fallback. SPDY is desirable for Flywheel proxy
connections due to its performance advantages (§4) and
insulation from middlebox interference. However, be-
cause SPDY traffic is encrypted, its use can interfere
with adult content filtering deployed by mobile carriers,
schools, etc. Many mobile carriers also perform selec-
tive modification of HTTP request headers from clients
in their network, for example to support automatic login
to a billing portal site. Although web content filtering
can be used as a means of censorship, our goal is not to
circumvent such filtering with Flywheel; we wish to be
“filter neutral.”

We therefore provide a mechanism whereby the con-
nection to the Flywheel proxy can fall back to unen-
crypted HTTP. This is typically triggered using the proxy
bypass mechanism described earlier, although the effect
is to switch the proxy connection from SPDY to HTTP,
rather than disabling Flywheel entirely.

We also provide a mechanism whereby network oper-
ators can disable the use of SPDY Flywheel connections
for specific clients in their network [3]. While establish-
ing a SPDY connection, the client makes an unencrypted
HTTP request to a well-known URL hosted by Google.
If the response contains anything other than an expected
string, the client assumes that the URL was blocked by
an intermediary and disables use of SPDY for the Fly-
wheel connection. This mechanism is straightforward
for carriers to use and allows them to achieve their goals.
More complicated approaches that we considered would
have required significant integration work between carri-
ers and Google.

In some cases, SPDY must be disabled to avoid trig-
gering bugs in sites. One example we encountered is a
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Figure 2: The Flywheel server architecture within a datacenter. Lines indicate bidirectional communication via RPC
or HTTP. Each logical component is comprised of replicated, load-balanced tasks for scalability and fault tolerance.
The majority of Flywheel code is written in Go, a fact we mention only to dispel any remaining notion that Go is not
a robust, production-ready language and runtime environment.

site that uses JavaScript to inspect the response headers
of an AJAX request. To improve compression, SPDY
sends all headers as lowercase strings, as permitted by
the HTTP standard. However, the site’s JavaScript code
uses a case-sensitive comparison of header names in its
logic, leading to an unexpected execution path that ulti-
mately breaks page rendering if SPDY is enabled.
Safe Browsing. Safe Browsing is a feature of Chrome
that displays a warning message if a user is about to
visit a known phishing or malware site [2]. Because of
the overhead of synchronizing Safe Browsing data struc-
tures, this feature was disabled for mobile clients and, as
of February 2015, is only now being gradually enabled.
The main obstacle to its deployment is the tradeoff be-
tween bandwidth consumption, power usage, coverage,
and timeliness of updates. Ideally, all clients would learn
of new bad URLs instantly, but synchronization overhead
can be significant, requiring care in managing the trade-
offs. At the Flywheel server, however, many of these
tradeoffs do not apply. Flywheel checks all incoming re-
quests against malware and phishing lists, providing an
additional layer of protection that is always up-to-date.
For requests that match bad URLs, the server signals the
client to display a warning.3

3.3 Server
The Flywheel server runs in multiple Google datacenters
spread across the world. Client connections are directed
to a nearby datacenter using DNS-based load balancing;
e.g., a client resolving the Flywheel server hostname in
Europe is likely to be directed to a datacenter in Europe.

The remainder of this section describes the data reduc-
tion and performance optimizations applied at the Fly-
wheel server. Figure 2 provides an overview of our tech-
niques and architecture.

3Of course, client checks are still beneficial since Flywheel is not
enabled for all users and does not proxy HTTPS and incognito requests.

3.3.1 Multiplexed Fetching

The proxy coordinates all aspects of handling a request.
The first step is to match incoming requests against URL
patterns that should induce a Safe Browsing warning or
a proxy bypass. For requests that match, a control re-
sponse is immediately sent to the client. Otherwise, the
request is forwarded via RPC to a separate fetch service
that retrieves the resource from the origin.

The fetch service is distinct from the proxy for two
reasons. First, a distinct fetch service simplifies man-
agement. Many teams at Google need to fetch external
websites, and a shared service avoids duplicating subtle
logic like rate-limiting and handling untrusted external
input. The second benefit to a separate fetch service is
improved performance. As shown in Figure 2, the fetch
service uses two-level request routing. Request RPCs are
load balanced among a pool of fetch routers, which send
requests for the same destination to the same fetching
bot. Bots are responsible for the actual HTTP transac-
tion with the remote site. Request affinity facilitates TCP
connection reuse—requests from multiple users destined
for the same origin can be multiplexed over a pool of hot
connections rather than having to perform a TCP hand-
shake for each request. Similarly, the fetch service main-
tains a shared DNS cache, reducing the chance that DNS
resolution will delay a request.

3.3.2 Data Reduction

After receiving the HTTP response headers from the
fetch service, the proxy makes a decision about how to
compress the response based on its content type.4 These
optimizations are straightforward and we describe them
briefly. A theme of our experience is that data reduction
is the easy part. The bulk of our exposition and engineer-
ing effort is dedicated to robustness and performance.

4The proxy respects Cache-Control: No-Transform headers used by
origins to inhibit optimization.
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Some optimizations are performed by the proxy itself;
others are performed by separate pools of processes coor-
dinated via RPC (see Figure 2). Separating optimization
from the serving path allows us to load balance and scale
services with different workloads independently. For ex-
ample, an image conversion consumes orders of magni-
tude more resources than a cache hit, so it makes sense
to consolidate image transcoding in a separate service.

Distinct optimization services also improve isolation.
For example, because of the subtle bugs often encoun-
tered when decoding arbitrary images from the web, we
wrap image conversions in a syscall sandbox to guard
against vulnerabilities in image decoding libraries. If any
optimization fails or a bug causes a crash, the proxy re-
covers by serving the unmodified response.
Image transcoding. Flywheel transcodes image re-
sponses to the WebP format, which provides roughly
30% better compression than JPEG for equivalent visual
quality [12]. To further save bytes, we also adjust the
WebP quality level according to the device screen size
and resolution; e.g. tablets use a higher quality setting
than phones. Animated GIF images are transcoded to
the animated WebP format. Very rarely, the transcoded
WebP image is larger than the original, in which case we
serve the original image instead.
Minification. For JavaScript and CSS markup, Flywheel
minifies responses by removing unnecessary whitespace
and comments. For example, the JavaScript fragment

// Issue a warning if the browser
// doesn’t support geolocation.
if (!navigator.geolocation) {
window.alert(
"Geolocation is not supported.");

}

is rewritten (without line breaks) as:

if(!navigator.geolocation){window.alert
("Geolocation is not supported.");}

GZip. Flywheel compresses all text responses using
GZip [26]. This includes CSS, HTML, JavaScript, plain
text replies, and HTML. Unlike image optimization,
which requires buffering and transcoding the complete
response, GZipped responses are streamed to clients.
Streaming improves latency, as the browser can begin is-
suing subresource requests before the HTML download
completes.
Lightweight error pages. Many requests from clients
result in a 404 error response from the origin, for exam-
ple, due to a broken link. However, in many cases the
404 error page is not shown to the user. For example,
Chrome automatically requests a small preview image
called a favicon when navigating to a new site, which
often results in a 404. Analyzing Flywheel’s workload

shows that 88% of page loads result in a 404 error being
returned for the favicon request. These error pages can be
quite large, averaging 3.2KB—a fair number of “invisi-
ble” bytes for each page load lacking a favicon. Flywheel
returns a small (68 byte) response body for favicon and
apple-touch-icon requests that return a 404 error since the
error page is not typically seen by the user.

3.3.3 Preconnect and Prefetch

Preconnect and prefetch are performance optimizations
that reduce round trips between the client and origin
server. The key observation is that while streaming a
response back to the client, the proxy can often predict
additional requests that the client will soon make. For
example, image, JavaScript and CSS links embedded in
HTML will likely be requested after the HTML is deliv-
ered. Flywheel parses HTML and CSS responses as they
are served in order to discover subresource requests.

Another source of likely subresource requests comes
from the URL info service (see Figure 2), which is a
database populated by an analysis pipeline that period-
ically inspects Flywheel traffic logs to determine sub-
resource associations, e.g. requests for a.com/js are
followed by requests for b.com/. This offline analysis
complements online parsing of HTML and CSS since it
allows Flywheel to learn associations for resources re-
quested by JavaScript executed at the client. We eschew
server-side execution of JavaScript because of the com-
paratively high resource requirements and operational
complexity of sandboxing untrusted JavaScript.

Given subresource associations, Flywheel either
prefetches the entire object or opens a TCP preconnect to
the origin. Which of these is used is determined by a pol-
icy intended to balance performance against server over-
head. Server overhead comes from wasted preconnects
or prefetches that are not used by a subsequent client re-
quest. These can arise in case of a client cache hit, a
CSS resource for a non-matching media query, or an ori-
gin response that is uncacheable. Avoiding these cases
would require Flywheel to maintain complete informa-
tion about the state of the client’s cache and cookies. Be-
cause of privacy concerns, however, Flywheel does not
track or maintain state for individual users, so we have
no basis for storing cache entries and cookies.

Flywheel balances the latency benefits of prefetch
and preconnect against overhead by issuing a bounded
number of prefetches per request for only the CSS,
JavaScript, and image references in HTML and only im-
age references in CSS. Preconnects are similarly limited.
We track cache utilization and fraction of warm TCP
connections to tune these thresholds, a topic we revisit
in §4.
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3.3.4 HTTP Caching

Flywheel acts as a customized HTTP proxy cache.
Customized entry lookup. Flywheel may store mul-
tiple optimized responses for a single URL, for exam-
ple a transcoded WebP image with two different quality
levels—one for phones and another for tablets. Similarly,
only some versions of Chrome support WebP animation,
so we also need to distinguish cache entries on the ba-
sis of supported features. Dispatching logic is shared
by both the cache and optimization path in the proxy,
so that a cache hit for a particular request corresponds to
the appropriate optimized result. The client information
is included in each request, e.g., the User-Agent header
identifies the Chrome version and device type.
Private external responses. When serving responses
over HTTP rather than SPDY, Flywheel must prevent
downstream caches from storing optimized results since
those caches will not share our custom logic.5 Down-
stream proxy caching can break pages, e.g., by serving a
transcoded WebP image to a client that does not support
the format. To prevent this, we mark all responses trans-
formed by Flywheel as Cache-Control: private, which in-
dicates that the response should not be cached by any
downstream proxy but may be cached by the client.

3.3.5 Anomaly Detection

Flywheel employs several mechanisms for improving ro-
bustness and availability.
Proxy bypass. Transient unavailability (e.g. network
connection errors, software bugs, high server load) may
occur along the path between the client, proxy, and ori-
gin. In these cases, Flywheel uses the proxy bypass
mechanism described earlier to hide such failures from
users. Recall that proxy bypass disables the proxy for a
short time and causes the affected resources to be loaded
directly from the origin site. Proxy bypass is triggered
either when an explicit control message is received from
the proxy, or when the client detects abnormal condi-
tions. These include:

• HTTP request loop: A loop suggests a misconfigured
origin or proxy bug. If the loop continues without
Flywheel enabled, client-side detection is triggered.

• Unreachable origin: DNS or TCP failures at the
proxy suggest network-level unavailability, an at-
tempt to access an intranet site, or Google IP ranges
being blocked by the origin.

• Server overload: The proxy sheds load if needed by
issuing bypasses that disable Flywheel at a particular
client for several minutes (§4.4).

• Blacklisted site or resource: Sites that are known

5Responses delivered via SPDY cannot be cached by intermediate
proxy caches because of TLS encryption.

to have correctness problems when fetched via Fly-
wheel are always bypassed, e.g. carrier portals that
depend on IP addresses to identify subscribers.

• Missing control header: Middleboxes may strip
HTTP control headers used by Flywheel if SPDY
is disabled. If the proxy observes that such headers
are missing from the client request, it sends a bypass
to avoid corner cases wherein non-compliant HTTP
caches may break page loads.

• Unproxyable request: We bypass requests for loop-
back, .local, or non-fully qualified domains.

Fetch failures. Some fetch errors can be recovered at the
server without bypassing, e.g. DNS resolution or TCP
connection failures. Simply retrying a fetch often works,
recovering what would otherwise have been a bypass.

While retrying a failed fetch often succeeds, it can in-
crease tail latency in the case that an origin is persis-
tently flaky or truly unavailable. To detect these cases,
we use an anomaly detection pipeline to automatically
detect flaky URLs; i.e., those that have high fetch fail-
ure rates. There are thousands of such URLs, making
manual blacklisting impractical.

The analysis pipeline runs periodically, inspects traffic
logs, and determines URLs that have high fetch failure
rates. These URLs are stored in the URL info service,
which Flywheel consults upon receiving each request.
Flaky URLs are bypassed immediately without waiting
for multiple failed retries. To avoid blacklisting a URL
forever, Flywheel allows a small fraction of matching re-
quests to proceed to the origin to test if the URL has be-
come available. The analysis pipeline removes an entry
from the blacklist provided the failure rate for the URL
has dropped sufficiently.
Tamper detection. As described in Section 3.2, Chrome
will occasionally fall back to using an HTTP connection
to the Flywheel proxy. The need for unencrypted trans-
port is not uncommon; 12% of page loads through Fly-
wheel use HTTP.

Unencrypted transport means that both the Flywheel
client and server need to be robust to modifications by
third-party middleboxes. For example, we have found
that middleboxes may strip our control headers on either
the request or response path. Or, they may ignore direc-
tives in the Cache-Control header and serve cached Fly-
wheel responses to other users. They may also optimize
and cache responses independently of Flywheel. Our ex-
perience echoes other studies: transparent middleboxes
are common [45, 56, 57].

To provide robustness to middleboxes, Flywheel is
defensive at both the client and server, bypassing the
proxy upon observing behavior indicating middlebox
tampering. Examples include TLS certification vali-
dation failures (typical of captive portals) or missing
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Flywheel headers (typical of transparent caches). In
practice, checking for these cases has been sufficient
to avoid bugs. An overly conservative policy, how-
ever, risks eroding data savings, since we need not dis-
able Flywheel in all circumstances. For example, while
non-standard middlebox caching risks breaking pages
(e.g. serving Flywheel responses to non-Flywheel users),
HTTP-compliant caching is mostly benign (e.g. at worst
serving images optimized for tablets to non-tablets).
Similarly, Flywheel should be disabled in the presence
of a captive portal, but only until the user completes the
sign-in process. We continue to refine our bypass poli-
cies, and this refinement will continue as the behavior of
middleboxes evolves.

4 Evaluation
Our evaluation of Flywheel is grounded in measurements
and analysis of our production workload comprising mil-
lions of users and billions of queries per day. We focus
on data reduction, performance, and fault tolerance.

Data in this section is drawn from two sources:
(1) Flywheel server traffic logs, which provide fine-
grained records of each request, and (2) Chrome user
metrics reports, which are aggregated distributions of
metrics from Chrome users who opt to anonymously
share such data with Google.6

4.1 Workload
Since Flywheel is an optional feature of Chrome, only
a fraction of users have it enabled. Adoption tends to
be higher (14-19%, versus 9% worldwide) in emerging
countries such as Brazil where mobile data is costly. Al-
though we do not know whether Flywheel has changed
user behavior as we hoped in emerging countries, higher
adoption rates indicate a perceived benefit.
Access network. Segmented by access network, we find
that 78% of page loads are transferred via WiFi, 11% via
3G, 9% via 4G/LTE, and 1% via 2G. Unsurprisingly, the
majority of browsing using Flywheel is via WiFi, since
the proxy is enabled regardless of the network type the
device is using. While the browser could disable Fly-
wheel on WiFi networks, this would eliminate other ben-
efits of Flywheel such as safe browsing. WiFi is preva-
lent in terms of traffic volume for several reasons: first,
it tends to be faster, so users on WiFi generate more page
views in less time. A second reason is that tablets are
more likely to use WiFi than cellular data.
Traffic mix. Recall that Flywheel does not receive all
traffic from the client; HTTPS and incognito page loads
are not proxied. For the 28 day period from August 11
through September 8, 2014, we see that 37% of the total

6Chrome users can see a complete list by navigating to
about:histograms.
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Figure 3: The cumulative distribution of web page size
(summation of object sizes) in bytes.

bytes downloaded by users (after optimization) with Fly-
wheel enabled are received from the proxy. In compar-
ison, 50% of total received bytes are over HTTPS,7 and
the remainder are incognito requests, bypassed URLs
and protocols other than HTTP/HTTPS (e.g. FTP). A no-
table consequence of this traffic mix is that because our
servers only observe a fraction of web traffic, the data
reduction observed at Flywheel servers translates into a
smaller overall reduction observed at clients.
Page footprints. Figure 3 shows the distribution of web

page sizes observed in our workload, calculated as the
sum of the origin response body bytes for all resources
on the page. This distribution is dominated by a small
number of larger sites. The median value of 63 KB is
dwarfed by the 95th percentile exceeding 1 MB. The ten-
dency for total data volume to be dominated by a small
number of page loads but the typical page load time to be
dominated by a large number of very small pages has im-
plications for the latency impact of proxy optimization, a
topic we discuss in §4.3.
Video. Flywheel does not currently compress video con-
tent, for two reasons. First, most mobile video content
is downloaded by native apps rather than the browser.
Second, video content embedded in web pages is loaded
not by Chrome but by a separate Android process in
most cases; hence, video does not pass through the
Chrome network stack and cannot be proxied by Fly-
wheel. However, preliminary work on video transcoding
using the WebM format suggests that we can expect to
achieve 40% data reduction without changing the frame
rate or resolution.

4.2 Data reduction
Overall. Excluding request and response headers, Fly-
wheel reduces the size of proxied content by 58% on av-
erage. Reduction is computed as the difference between

7Just 33% of total bytes were received over HTTPS 9 months
prior—aggregated between March 11th and April 8th—representing a
noteworthy 17 percentage point increase in HTTPS adoption over 9
months.
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Type % of Bytes Savings Share of Benefit
Images 74.12% 66.40% 85%
HTML 9.64% 38.43% 6%

JavaScript 9.10% 41.09% 6%
CSS 1.81% 52.10% 2%

Plain text 0.64% 20.49% .2%
Fonts 0.37% 9.33% .1%
Other 4.32% 7.76% 1%

Table 1: Resource types and data reduction.
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Figure 4: Distribution of overall data reduction across
users. The overall reduction is lower than that through
Flywheel because we do not proxy HTTPS or incognito
traffic.

total incoming and total outgoing bytes at the proxy (ex-
cluding bytes served out of cache) divided by total in-
coming bytes. Table 1 segments traffic and data reduc-
tion by content type for a day-long period in August
2014. The ‘Other’ category includes all other content
types, missing content types, and non-200 responses.
Note that ‘Other’ does not include large file transfers:
because these are typically binary files that compress
poorly, Flywheel sends a proxy bypass upon receiving
a request for a large response.

The majority of data reduction benefit comes from
transcoding images to WebP, which reduces the size
of images by 66% on average. Much of the remain-
ing data reduction benefits come from GZipping un-
compressed responses, with larger benefits for CSS and
JavaScript due to syntactic minification.
Overall reduction. The data reduction at the server is
an upper bound for reduction observed by clients. Re-
call that HTTPS and incognito page loads, as well as by-
passed traffic, are not compressed by Flywheel. Figure 4
quantifies the difference. Across users, the median data
reduction for all traffic is 27%, compared to 50% for traf-
fic proxied through Flywheel.
WebP quality. Because images dominate our workload,
the aggressiveness of our WebP encoding has a signif-
icant influence on our overall data reduction. Our goal
is to achieve as much reduction as possible without af-
fecting the perceived quality of the image. To tune the

quality, we used the structural similarity index metric
(SSIM) [53] to compare the visual similarity of 1500
original vs. compressed images (drawn from a set of 100
popular curated URLs) for different WebP encoder qual-
ity values. We picked initial quality values by choosing
the knee of the SSIM vs. quality curve.

Of course, the ideal visual quality metric is actual
user perception, and there is no substitute for experience.
Our experimentation with internal Google users before
launch lead us to transcode images at quality 50 for
phones and 70 for tablets, which roughly corresponds to
an SSIM threshold of ∼0.85 and ∼0.9, respectively. Prior
to tuning, we had received several complaints from inter-
nal testers regarding visual artifacts; we have no known
reports of users complaining about the current settings.
Lightweight error responses. Flywheel sends a small
(68 byte) response body for 404 errors returned for favi-
con and apple-touch-icon requests. Despite the fact that
404 responses for these images constitute only 0.07% of
requests, the full error pages would account for 2% of
the total data consumed by Flywheel users. The average
404 page for an apple-touch-icon is 3.3KB, and two such
requests are made for every page load. Our lightweight
404 responses eliminate nearly all of this overhead.
Redundancy elimination. Our workload provides a
scaffold for evaluating potential data reduction optimiza-
tions. Sometimes, this yields a negative result. We con-
clude our evaluation of data reduction with two such ex-
amples.

Many websites do a poor job of setting caching pa-
rameters, e.g. using time-based expiration rather than
content-based ETags. Others mark resources that do not
change for months as uncacheable. The result is that
clients unnecessarily download resources that would oth-
erwise be in their cache.

Flywheel could improve data reduction by fixing these
configuration errors. For example, we could add a
content-based ETag to all responses lacking one, and ver-
ify that the origin content is unchanged upon each reval-
idation request sent by the client.

We evaluate the potential benefits of redundancy elim-
ination using trace replay: we measure the possible in-
crease in data reduction from eliminating all redundant
transfers across all client sessions, where a session is de-
fined as the duration between browser restart events.8 We
define a redundant transfer as two response bodies with
exactly matching contents (we discuss partial matches
next).

The result of redundancy elimination is a modest im-
provement in data reduction. Overall, 11.5% of the bytes
served are redundant after data reduction. Restricting

8This typically extends beyond a single foreground session, since
Android does not prune tasks except under memory pressure.
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consideration to only JavaScript, CSS, and images re-
duces the benefit to 7.8%. Given this data, we concluded
that this opportunity was not worth prioritizing. The
assumption of complete redundancy elimination is opti-
mistic, and impact of data reduction by the server would
be reduced by the limited fraction of traffic handled by
Flywheel at the client. We may return to this technique,
but not before pursuing simpler and more fruitful opti-
mizations such as video compression.
Delta Encoding. Most compression techniques focus on
reducing data usage for a single response object. If an
object is requested multiple times however, the origin
may have only made small modifications to the object
between the first and subsequent request.

Chrome supports a delta encoding technique known as
Shared Dictionary Compression over HTTP (SDCH) de-
signed to leverage such cross-payload redundancy [17]
by only sending the deltas between modified objects
rather than the whole object. We modified Flywheel to
support server-side SDCH functionality (e.g. dictionary
construction) on behalf of origin servers. We then du-
plicated a fraction of user traffic, applied SDCH to the
duplicated traffic, and measured what the data reduction
would have been if we had served the SDCH responses
to users. We found that SDCH only improved data re-
duction for HTML and plain text objects from ∼35% to
∼41%, equivalent to less than 1% improvement in overall
data savings. We therefore opted to not deploy SDCH.

4.3 Performance
We next examine Flywheel’s impact on latency. Com-
pared to data reduction, evaluating performance is sig-
nificantly more complex. The results are mixed: Fly-
wheel improves some performance metrics and degrades
others. These results reflect a tradeoff between compres-
sion, performance, and operating environment. Table 2
summarizes the performance data underlying these re-
sults, which we describe in detail below.
Methodology. Our evaluation answers two main ques-
tions: (1) Does Flywheel improve latency compared to
loading pages directly? And, (2) how effective are the
server-side mechanisms used to improve latency?

We use Chrome user metrics reports (described ear-
lier) to gather client-reported data on page load time
(PLT), time to first paint, time to first byte (TTFB), and
so on. These anonymous reports are aggregated and can
be sliced by a variety of properties, e.g. the client version,
device type, country, and network connection. We use
server-side logs to measure the effectiveness of perfor-
mance optimizations such as multiplexed fetching, pre-
connect, and prefetch. Clients are unaware as to whether
or not these optimizations are applied, so their use is not
reflected in user reports. Instead, we evaluate these using
server traffic logs.

For both client-side and server-side measurements, all
comparisons are made relative to a holdback experiment,
a random sampling of 1% of users for which the proxy
is silently disabled, despite the feature being turned on
by the user. A holdback group is essential for eliminat-
ing sampling bias. For example, comparing the latency
observed by users with Flywheel on and off suggests a
significant increase in page load time due to Flywheel.
However, the holdback experiment shows that the typ-
ical page load time of a user who enables Flywheel is
higher than the overall population of Chrome users. In
retrospect, this is unsurprising—users are more likely to
enable Flywheel if they are bandwidth-limited, and Fly-
wheel adoption rates are highest in countries with com-
paratively high page load times.
Flywheel reduces page load time when pages are
large. For most users and most page loads, Flywheel
increases page load time. This is reflected in Table 2; cf.
rows for ‘Holdback’ and ‘Flywheel’. For the majority of
page loads, the increase is modest: the median value in-
creases by 6%. The benefits of compression appear in the
tail of the distribution, with the PLT reduction at the 95th
percentile being 5%. We attribute this to our production
workload: data reduction improves latency when pages
are large, and as shown in Figure 3, the distribution of
page load sizes is heavily skewed.

Flywheel’s performance benefit arises from a combi-
nation of individual mechanisms. For example, we find
that SPDY provides a median 4% reduction in page load
time relative to proxying via HTTPS. Data reduction im-
proves latency, but only for the minority of large pages;
e.g. disabling all data reduction optimizations increases
median page load time through the proxy by just 2%, but
the 95th percentile PLT increases by 7%. On the whole,
the contribution of individual mechanisms varies signifi-
cantly based on characteristics of clients and sites.
Flywheel increases time to first paint. Page load time
is an upper bound on latency. But, long before a page is
loaded fully, it may display useful content and become
interactive. Moreover, displaying a partially rendered
page increases perceived responsiveness even if the over-
all load time is unchanged. To capture a lower bound on
page load performance, we consider time to first paint;
i.e., the time after loading begins when the browser has
enough information to begin painting pixels.

As shown in Table 2, Flywheel increases median time
to first paint by 10%. This increase is modest, and drops
off in the tail of the distribution. A probable cause of
this increase is a corresponding inflation of time to first
byte; i.e., the delay between sending the first request in
a page load and receiving the first byte of the response.
Flywheel increases median TTFB by 40%. Unlike time
to first paint, we observe inflated TTFB at all quantiles
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Flywheel configuration Median 70th 80th 90th 95th 99th
Page load time quantiles (milliseconds)

Holdback 2075 3682 5377 9222 14606 39380
Flywheel 2207 6.4% 3776 2.6% 5374 -0.1% 8951 -2.9% 13889 -4.9% 36130 -8.3%
Holdback (Beta) 2123 3650 5151 8550 13192 32650
Images only (Beta) 2047 -3.6% 3447 -5.6% 4944 -4.0% 8214 -3.9% 12476 -5.4% 31650 -3.1%

Japan, page load time quantiles (milliseconds)
Holdback 1355 2289 3133 4939 7211 14926
Flywheel 1674 23.5% 2715 18.6% 3647 16.4% 5502 11.4% 7797 8.1% 15927 6.7%

Time to first byte quantiles per pageload (milliseconds)
Holdback 185 360 547 999 1688 5064
Flywheel 259 40.0% 485 34.7% 687 25.6% 1164 16.5% 1903 12.7% 5808 14.7%

Time to first paint quantiles per pageload (milliseconds)
Holdback 803 1429 2084 3493 5650 19233
Flywheel 888 10.6% 1547 8.3% 2194 5.3% 3581 2.5% 5723 1.3% 20374 5.9%

Table 2: Page load time for various Flywheel configurations. Flywheel improves page load time only when pages
are large and users are close to a Google data center. All percentages are given relative to the baseline holdback
measurement. ‘Holdback’ refers to a random sampling of 1% of users with Flywheel enabled for whom we disable
Flywheel for the browsing session. ‘Images only’ refers to an experimental configuration wherein only images are
proxied through Flywheel. This experiment applies only to Android Chrome Beta users.

Flywheel’s latency improvement is not universal. We
attribute TTFB inflation primarily to the geographic dis-
tribution of Flywheel users. Many users are further from
a Google data center than typical web servers, resulting
in longer round trips. The extent of TTFB inflation and
its relationship to overall latency depends on many fac-
tors: latency to Google, from Google to the site, from the
user to the site, and the overall benefits of data reduction.
Our overall performance data shows that more often than
not, the balance of these tradeoffs increases latency.

Usage in Japan provides a concrete example. Fly-
wheel increases median page load time by 23.5% rel-
ative to holdback users in Japan, with smaller but still
significant increases in the tail. How does this relate
to the tradeoffs described above? First, page loads in
Japan tend to be fast—34% lower than the overall hold-
back median. The TTFB inflation is similarly high, but
the faster page load time means that the overhead of in-
direction through Google is proportionally larger. Typ-
ical network capacity is also higher in Japan, reducing
the benefits of data reduction as round trips represent a
larger fraction of overall page load time. While Japan is
an extreme case, the overall theme remains: Flywheel’s
performance benefits are not universal and depend on the
interaction of many factors.

At the server, we can further refine the breakdown of
TTFB inflation. For Flywheel page loads in the United
States over WiFi, for example, median TTFB inflation is
90 milliseconds, of which 60 ms is RTT to Google, 20 ms
is RTT from Google to the origin site, and 10 ms is in-
ternal routing within Google’s network and processing
overhead. The precise breakdown of overheads varies
by client population, but the dominant factor is typically
overhead to reach the nearest Google data center.
Proxying only images improves latency for small

pages at the expense of large pages. Given widespread
TTFB inflation, the tradeoff between latency and com-
pression is straightforward: Flywheel improves perfor-
mance when the latency benefit of data reduction out-
weighs the latency cost of indirect fetching through
Google. Trading off data reduction for performance thus
requires some notion of selective proxying; i.e., sending
only some resource loads through Flywheel.

Recall that the majority of Flywheel’s data reduction
comes from transcoding images to WebP. 74% of bytes
passing through Flywheel are images, and 85% of our
overall data reduction benefit over a typical day comes
from image transcoding (Table 1). This data suggests
that proxying requests for images only is likely to elim-
inate most of Flywheel’s latency overhead while retain-
ing most of its data reduction benefit. Implementing this
on the client is straightforward: based on surrounding
markup, Chrome typically has an expectation of content
type; e.g., requests originating from an <img> HTML
tag are likely to return an image.

The ‘Images only’ rows in Table 2 show the results of
applying this policy as an experiment for Chrome beta
users. The results match our intuition. Median page load
time is reduced relative to proxying all content. Data
reduction is diminished only slightly. On the flip side,
the reductions in page load time for the majority of small
page loads come at the expense of larger pages. The 99th
percentile reduction in PLT from proxying only images
is 3% compared with 8% when proxying all content.
Preconnect and prefetch provide modest benefits. We
find that although preconnect and prefetch have non-
negligible effects on first order metrics (connection reuse
and cache hit ratio), they only provide modest 1-2% re-
ductions in median page load time overall. Like other
performance metrics, the benefits vary depending on how
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the data is sliced. The benefits tend to be greater for
users with relatively high TTFB inflation. For example,
prefetch and preconnect each provide a 2% reduction in
PLT for page loads from Japan.

The benefits of preconnect and prefetch are limited
by the natural tendency for connection reuse and object
caching in our workload. Even without TCP preconnect,
for example, 73% of requests from Flywheel are issued
over an existing TCP connection. Enabling preconnect
increases this fraction to 80%. Similarly, subresource
prefetching increases Flywheel’s HTTP cache hit rate by
10 percentage points, from 22% to 32%.

Because of their overhead and limited benefits, we
have not deployed preconnect or prefetch beyond small
experiments because of concerns about the overhead they
would impose on origin sites. For example, redundant
prefetches increase the number of fetches to origins by
18%. Redundant fetches are caused by two main fac-
tors: (1) the prefetched response is already cached at the
client, so it will not be requested; or (2) the prefetched
response is not cacheable, so we cannot safely use it
to satisfy a subsequent client request. We continue to
refine our logic for issuing speculative connections and
prefetches in an attempt to reduce overhead.

4.4 Fault Tolerance
Our goal is for all Flywheel failures to be transparent to
users. If the client cannot contact the Flywheel proxy, or
if the proxy cannot fetch and optimize a given URL, our
proxy bypass mechanism recovers by transparently re-
questing resources from the origin server directly (§3.2).
Below, we report on the prevalence of bypassed requests,
their causes, and mechanisms for improving the preci-
sion of proxy bypass.
Bypass causes. A request may be bypassed before it is
sent to Flywheel, by Flywheel before it is sent to the ori-
gin, or by Flywheel after observing the origin response.
We consider each of these cases in turn.

Client-side bypasses are rare, but typically occur due
to failure to connect to the proxy. Server-side, 0.89% of
requests received by Flywheel result in a bypass being
sent to the client. The largest fraction of bypasses (38%)
are caused by origin response codes, e.g. 429 indicat-
ing a rejected request. Another large fraction are due to
fetch errors (28%), e.g. when Flywheel cannot establish
a connection to the origin. This could be because the site
is down, blocking traffic from the proxy, or because the
site is on an intranet or local network not reachable by
the proxy. We bypass audio and video files (19% of by-
passes) as Flywheel does not currently transcode these
response types, as well as large file downloads (0.3%)
where we are not able to achieve sufficient data reduc-
tion to merit the processing overhead. Requests automat-
ically flagged as problematic by our anomaly detection
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Figure 5: A month-long trace of load shedding events.
Transient unavailability is common and is typically re-
solved without manual intervention.

pipeline constitute 8% of bypasses. We also issue by-
passes for blacklisted URLs (5%) for sites with compati-
bility issues, carrier dependencies, or legal constraints.
The remaining 0.25% of bypasses are caused by load
shedding; i.e., if an individual Flywheel server becomes
unusually slow and accumulates too many in-flight re-
quests, it sends a bypass response.

Load shedding acts as a form of back pressure that pro-
vides recovery for many causes of unavailability: con-
gestion, origin slowness, attack traffic, configuration er-
rors, and so on. These events occur frequently, and a
stop-gap is essential for smooth operation. A simple
load shedding policy of bounding in-flight requests has
worked well for us so far. Figure 5 shows a trace of
load shedding events collected over one month. Events
are typically bursty and short-lived. Crucially, automatic
load shedding means that most transient production is-
sues do not require manual intervention for recovery.
Mitigating fetch errors. More than half of bypassed re-
quests are due to fetch errors. Two mechanisms reduce
the impact of these errors. First, Flywheel retries failed
fetches. Nearly a third of failed fetches succeed after a
single retry, and roughly half succeed within 5 retries.

Retrying fetches can impose significant delay if the
site is still unreachable after multiple tries. The median
latency for fetch errors is ∼1 second, with the 90th per-
centile exceeding 200 seconds. Most fetches that fail af-
ter 5 retries are due to DNS lookup or fetch timeouts.

To deal with this, the second mitigation mechanism
involves analyzing the server traffic logs periodically to
identify URLs that exhibit a high failure rate. If the ma-
jority of fetches to a given URL fail, we flag that URL
as flaky and push a blacklisting rule into the URL info
service to send bypasses for requests to that URL.

Results show that this technique eliminates ∼1/3 of all
fetch errors. The pipeline achieves a low false positive
rate; for 90% of the URLs classified as flaky, at least
70% of the fetches would have failed if they had not
been bypassed preemptively. Moreover, a third of by-
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passed requests would have resulted in a timeout exceed-
ing one second if not bypassed preemptively. Because
flaky URLs constitute a small fraction of overall traffic,
correcting these errors has limited impact on aggregate
page load time. However, exceptionally slow page loads
tend to be particularly unpleasant for users, leading us to
focus on reducing their impact.
Tamper detection. Our tamper detection mechanisms
track cases of middleboxes modifying our HTTP traffic.
While we do observe cases of benign tampering, we find
that obstructive tampering is rare. For example, over the
period of a week, 45 mobile carriers modified our content
length header at least once, and 115 carriers appended an
extra Via header (indicating the presence of an additional
proxy). However, these cases do not significantly hin-
der user experience; we have only dealt with obstructive
tampering on a handful of occasions.

5 Related Work
Optimizing proxy services have received significant at-
tention in the literature, and this work informs our de-
sign. This paper differs in two main ways. First, our en-
vironment is unique; we focus on the co-design of a mod-
ern mobile browser, operating system, and proxy infras-
tructure. The second difference is scale; we report op-
erational and performance results from millions of users
spread across the globe. As far as we know we are the
first to report on the incidence and variety of issues en-
countered by a proxy of this kind.
Web proxies. In the late 90’s researchers investigated
proxies for improving HTTP performance [22, 39, 41]
and accommodating mobile devices [19, 29–31, 40]. We
revisit these ideas in the context of modern optimiza-
tions, client platforms, and workloads.
User studies. Others studied the effects of data pric-
ing [21, 46], performance [43], and page layout [58] on
user behavior. This work reinforces our motivation.
Performance optimizations. At the proxy, we em-
ploy known proxy optimizations such as prefetch [16,
35, 41]. By virtue of building on Google infrastruc-
ture, we also benefit from transport-level performance
optimizations [28, 44]. We do not apply more aggres-
sive optimizations such as ‘whole-page’ content rewrit-
ing [20, 34, 38] or client offload [48, 52], since in our ex-
perience even simple changes like CSS import flatten-
ing [5] can break some web pages, and our goal is full
compatibility with existing pages.

Other work has focused on evaluating existing perfor-
mance optimizations [16, 24, 27, 47, 50, 51]. Our mea-
surements are derived from a large scale production en-
vironment with real user traffic.
Data reduction optimizations. Data reduction tech-
niques beyond those we employ include WiFi of-

fload [14] and differential caching [17,33,37,42,54,59].
Since differential caching only applies to text resources
its effect on overall data reduction are limited compared
to optimization of images and video, as we quantified in
our evaluation of SDCH [17].
Alternate designs. VPN-based compression [4, 6, 7] of-
fers an alternative to HTTP interposition. The main ad-
vantage of VPN-interposition is ubiquity: all traffic can
be optimized without modifying applications. But, in-
terposition at the level of raw packets does not lend it-
self to transport optimizations like SPDY or application-
specific mechanisms like proxy bypass, which depends
on the client reissuing requests. Flywheel instead inte-
grates with Chrome, which allows us to retain the proto-
col information required for flexible failure recovery.

Transparent web proxies, which are deployed by many
carriers today [25,55–57], present another design option.
The main benefit of in-network optimization is that it re-
quires no client modifications whatsoever. But, as with
VPNs, interposing at the network level limits options for
optimization and failure recovery, and transparent prox-
ies are applicable only within a particular network.

The proxy service with the closest design to ours is
Opera Turbo [9]. Although Opera has not published the
details of their optimizations or operation, we performed
a point comparison of Flywheel and Turbo’s data reduc-
tion gains, and found that Flywheel provides comparable
data reduction.

Other mobile browsers [1, 8, 10] feature more aggres-
sive optimization based on server-side transcoding of en-
tire pages; e.g. Opera Mini rewrites pages into a pro-
prietary format optimized for mobile called OBML [8],
and offloads some JavaScript execution to servers rather
than clients. While whole-page transcoding can signif-
icantly improve data reduction, pages that rely heavily
on JavaScript or modern web platform features are often
broken by the translation; e.g. touch events are unsup-
ported by Opera Mini [8]. Maintaining an alternative ex-
ecution environment to support whole-page transcoding
is not feasible for Flywheel given our design goal of re-
maining fully compatible with the modern mobile web.

6 Summary
We have presented Flywheel, a data reduction proxy ser-
vice that provides an average 58% byte size reduction of
HTTP content for millions of users worldwide. Flywheel
has been in production use for several years, providing
experience regarding the complexity and tradeoffs of op-
erating a data reduction proxy at Internet scale. We find
that data reduction is the easy part. The practical realities
of operating with geodiverse users, transient failures, and
unpredictable middleboxes consume most of our effort,
and we report these tradeoffs in the hope of informing
future designs.
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Abstract

Performance of online applications directly impacts user
satisfaction. A major component of the user-perceived
performance of the application is the time spent in tran-
sit between the user’s device and the application exist-
ing in data centers. Content Delivery Networks (CDNs)
are typically used to improve user-perceived application
performance through a combination of caching and in-
telligent routing via proxies. In this paper, we describe
FastRoute, a highly scalable and operational anycast-
based system that has significantly improved the perfor-
mance of numerous popular online services. While any-
cast is a common technique in modern CDNs for pro-
viding high-performance proximity routing, it sacrifices
control over the load arriving at any individual proxy. We
demonstrate that by collocating DNS and proxy services
in each FastRoute node location, we can create a high-
performance, completely distributed system for routing
users to a nearby proxy while still enabling the graceful
avoidance of overload an any individual proxy.

1 Introduction

The latency between user requests and computer reac-
tions directly relates to user engagement and loyalty
[11, 31]. With the expansion of applications connecting
to cloud servers, the network latency between users and
cloud servers becomes a major component of the overall
application performance.

As network delays are largely proportional to the rout-
ing distance between clients and servers, application op-
erators often employ services of Content Distribution
Networks (CDNs). A CDN deploys proxy servers in
geographically dispersed locations and then tunnels user
requests through them. By utilizing these proxies, the
CDN provides (among other things) performance im-
provements via techniques such as caching and split-TCP
connections [27, 19].

While the overarching goal of latency reduction is uni-
versal, the logic to determine the proxy an individual user
is routed to can be CDN-specific, based on what they of-
fer to their customers, what the requirements of the appli-
cation are, and what capacity limits the CDN has. Con-
centrating solely on the “optimal” proxy selection for ev-
ery user based on latency can introduce additional com-
plexity in the routing logic. In contrast, our design goals
were two-fold, a) deliver a low-latency routing scheme
that performed better than our existing CDN, and b) build
an easy-to-operate, scalable and simple system

The operational aspect of the design goal results in an
architecture that is willing to sacrifice some user perfor-
mance in scenarios that occur rarely in order to maintain
a simple design pattern. A major early design choice was
to utilize anycast routing (see Section 2.2) as it enabled
each FastRoute node (see Section 3.1) to operate inde-
pendently of other FastRoute nodes (i.e. no real-time
communication between nodes). Anycast routing has
also successfully been used to deliver content by other
CDNs including Edgecast and Cloudflare [28].

Although anycast routing has its advantages, there is
the potential for an individual FastRoute node to become
overloaded with user traffic (as the CDN does not con-
trol which proxy receives traffic, leaving it at the mercy
of the intermixed routing policies of Internet Service
Providers). To account for this, the FastRoute archi-
tecture utilizes multiple “layers” of FastRoute nodes —
each with its own anycast IP (see Section 3.2.2). When
a FastRoute node in a layer is overloaded, traffic is redi-
rected to node(s) in the next layer. This layer-based ap-
proach is an example of choosing simplicity over user
performance (for the expected, but rare overloaded node
scenario1). I.e. instead of attempting to direct users from
an overloaded node to a nearby node regardless of layer,
we route users to the closest node in the next layer.

An artifact of using anycast routing is that the DNS

1If an overloaded node is not rare it indicates a build-out capacity
issue.
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must choose which anycast IP address to return to a client
without knowing which proxy (of the ones announcing
that address) the client’s traffic will reach. Consequently,
some intelligence is needed to determine which DNS re-
sponses must be redirected to the next layer. In Sec-
tion 3.2.1 we show that by collocating DNS servers with
proxy servers in the same node locations, a large percent-
age of user and DNS traffic land at the same a FastRoute
node. Although the likelihood of a DNS query and its as-
sociated subsequent HTTP requests landing on the same
node is not 100% (73% in our network), for the purposes
of offloading traffic this has proven sufficient in produc-
tion for over 2 years. Consequently, a FastRoute node
only needs to know about its own load — preserving the
independence of nodes that anycast provides.

Although load management is a critical component of
the overall system, it is expected to operate rarely. In
most situations, users will be routed to the first layer and
their performance is based on the intermixed decisions of
all ISPs in the Internet. Although technically possible to
dynamically influence routing decisions in real-time (e.g.
[8]), the system needed to do this would require signifi-
cant development effort and most critically — introduce
additional complexity. Consequently, in Section 4 we
introduce several monitoring tools we use for analysing
user performance offline that influence our peering poli-
cies and who we choose to peer with.

FastRoute has been in operation for several years im-
proving the performance of a number of popular Inter-
net applications. The initial move to FastRoute from a
third-party CDN demonstrated noticeable performance
improvements. Further, the simple load management
implementation has handled all such overload scenarios
since its inception, and its fully distributed nature has en-
abled us to quickly add new proxy locations – further
improving our user performance.

Our contributions in this paper are the following novel
and interesting aspects of FastRoute:

Architecture:

• A scalable architecture that is robust, simple to de-
ploy and operate, and just complex enough to han-
dle challenges such as overloaded proxies due to
anycast routing

• A simple, yet unique DNS-based load manage-
ment technique that leverages the self-correlation
between proxy traffic and DNS traffic in a collo-
cated DNS and proxy system

• Use of multiple anycast rings of FastRoute nodes
for load absorption to prevent ping-ponging of load
between overloaded proxies

Longitudinal Experimental Results from Production
System:

• Data showing that FastRoute works effectively,
even in the face of traffic that would overload a sim-
pler system.

• Data showing that the DNS-to-Proxy correlation is
relatively stable and high across time.

• Data showing performance (latency) improvements
at the 75th and 95th percentiles with our initial lim-
ited set of FastRoute nodes, for customers of 10
ISPs in the USA.

• Data showing Anycast stability is sufficient to run a
production system

2 Background

Content Distribution Networks direct users to their
nearby proxies to improve their performance. In this sec-
tion we will first examine two fundamental technologies
that are core to many of the techniques used to route traf-
fic to the optimal proxy. We will then examine several
known techniques that CDNs utilize to help select and
route users to a nearby proxy.

2.1 DNS
The Domain Name System (DNS) [23] translates human
friendly names (such as ) into IP ad-
dresses (such as 1.2.3.4). DNS utilizes a hierarchical
system where end-users consult recursive DNS resolvers
that identify and query an authoritative DNS resolver to
discover the translated IP address. The recursive DNS re-
solver caches the translation for the duration of the time-
to-live (TTL) associated with the response. Other clients
that utilize the same recursive DNS resolver will receive
the same response for the duration of the TTL.

2.2 Anycast Routing
Anycast is a routing technique historically popular with
DNS systems due to its inherent ability to spread DDOS
traffic among multiple sites as well as provide low la-
tency lookups. It utilizes the fact that routers running
the de-facto standard inter-domain routing protocol in the
Internet (BGP [30]), select the shortest (based on pol-
icy and the BGP decision process) of multiple routes to
reach a destination IP prefix. Consequently, if multiple
destinations claim to be a single destination, routers in-
dependently examine the characteristics of the multiple
available routes and select the shortest one (according to
the BGP path selection process). The effect of this is that
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individual users are routed to the closest location claim-
ing to be the IP prefix (see [28] for a good explanation of
Anycast routing). Note that latency is not a consideration
in the BGP path selection process. However, by “tuning”
anycast routing announcements and negotiating policies
of peering ISPs (as in Section 4), BGP routing decisions
can align with latency based routing.

2.3 Proxy Selection Techniques

FastRoute uses Anycast TCP to route a user to a proxy.
In this section, we describe the general approach a CDN
would use with Anycast TCP as well as examine several
other alternatives (a summary is included in [9]).

2.3.1 Anycast TCP

Anycast TCP is used by many modern CDNs includ-
ing Edgecast and CloudFlare[28]. This approach has all
proxies responding on the same IP address and Internet
routing protocols determine the closest proxy[8]. If a lo-
cation cannot serve traffic, it withdraws its route and the
Internet’s routing protocols route users to the next closest
location.

A difficulty with this approach is that control over
where user traffic lands is relinquished to Internet rout-
ing protocols. Consequently, avoiding the overload of
an individual proxy by controlling routes becomes chal-
lenging to accomplish in an automated fashion, as this
either requires a traffic engineering technique such as
[17, 29, 8] or a DNS based approach as presented in this
paper.

A second concern with this approach is that a route
change in the middle of a TCP session can result in
the user communicating with an alternative proxy mid-
session. Attempts can be made to direct rogue TCP flows
and route them to the correct proxy[8]; however, much
like [22], we analysed the availability of end-users (see
Section 5.3), finding the availability of an anycast desti-
nation for a small file download was equivalent to unicast
indicating this issue did not warrent implementing such
a solution at the time of creation.

2.3.2 Anycast DNS

Utilizing an anycast based DNS has become the standard
mechanism used by major providers to offer a high level
of performance and denial-of-service protection. How-
ever, one mechanism a CDN can use to select which
proxy to route traffic to takes advantage of information
obtained from where the DNS lookup occurs [15]. By
co-locating the DNS servers with each proxy, a request
landing on a proxy simply returns the unicast IP of the
collocated proxy. This is a simple solution that utilizes

the Internet’s routing protocols to find the shortest route
to proxy location. However, with this approach, the
‘closest’ proxy selected is based on ‘closeness’ to the re-
cursive DNS of the user instead of the ‘closeness’ to the
user themselves. In practice we found the closest proxy
for the DNS and user (self-correlation) for our network
was the same for 73% of requests based on the analy-
sis described in Section 3.2.1. Although we do not use
this unicast based approach (due to it sacrificing the per-
formance benefits of Anycast TCP), our architecture can
easily be modified to return unicast IPs instead of anycast
IPs (making the self correlation 100%).

2.3.3 Internet Map

An Internet map based approach relies on projecting the
entire IP address space onto the set of available prox-
ies (e.g. [13]). By collecting performance data either
passively [20, 25], actively through probing mechanisms
[12, 24], or statically mapping using geo-to-IP mappings
[4], a map can be created that maps IP address space to
proxy locations. The map is updated over time as net-
work conditions change or proxies come up/down.

We did not pursue this approach (in contrast to the
Anycast TCP approach) as it required global knowledge
to analyse user latency data as well as real-time load and
health metrics of nodes to decide where to route traf-
fic. Further, the lack of granularity of DNS based re-
sponses [26] (which is the predominant method to route
users based on an Internet map), the lack of motivation
for ISPs (who still perform a majority of the DNS resolu-
tions for users — 90% in the USA from our calculations)
to implement more granular DNS requests [14, 18, 26]
and the additional complexity introduced when support-
ing IPv62 when supporting IPv6 made this approach less
appealing.

2.3.4 Other techniques

Several other techniques including manifest modification
for video providers [7] (not applicable to other content
types) or HTTP redirection are possible. The content
we are delivering was predominantly dynamic content
making the cost of a HTTP redirection high compared
to transfer time making this approach infeasible.

3 FastRoute Architecture

In this section we describe a) the components within
an individual FastRoute node b) why we can make local

2DNS requests are not guaranteed to be made over the same proto-
col for the answer they are requesting. I.e. an IPv4 (A record) resolu-
tion can be made over IPv6 and vice-versa. Consequently, supporting
IPv6 introduces a 4x complexity over Ipv4 only by adding an additional
3 maps.
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Figure 1: The FastRoute node architecture consists of 4
major components: Load Balancer (to balance traffic to
a single Virtual IP (VIP) to multiple instances), DNS (to
answer user DNS queries), Proxy (to serve application
traffic) and Load Manager (to determine the offload per-
centage).

decisions on redirecting load away from a node and c)
how the local algorithm makes its decisions.

3.1 FastRoute Node

In this section we describe the services within an indi-
vidual FastRoute node and the communication between
them. As explained in Section 3.2, no communication
is needed outside an individual node to route users to a
proxy.

In Figure 1 we show the four major stand-alone ser-
vices that exist within a FastRoute node:- Load Balancer,
Proxy, DNS and Load Manager. Each service may be
on independent or co-existing on the same physical ma-
chines.

The Load Balancer is responsible for spreading user
traffic between N instances of the Proxy and DNS traf-
fic between M instances of the DNS service. When the
number of healthy proxy or DNS services drops below

a threshold, the anycast BGP prefixes of the DNS and
proxy are withdrawn. Equivalently, when the number of
healthy proxy and DNS services is higher than a thresh-
old the BGP prefixes are announced. Announcing and
withdrawing routes is the mechanism by which a Fast-
Route node either chooses to receive traffic or not.

The Proxy service is responsible for handling user traf-
fic (e.g. terminating user TCP sessions, caching, fetching
content from origin servers, blocking DDOS traffic etc).
For each type of traffic it is handling, a counter defining
the load is published locally.

The DNS service responds to each DNS query with
one of two possible responses: either the anycast IP of
its own FastRoute node or a CNAME (redirection) to the
next layer (details included in Section 3.2). The proba-
bility of returning the CNAME is determined by reading
at regular intervals a configuration published by the load
management service.

The load management service is responsible for ag-
gregating the counters collected across all proxy nodes
and publishing the probability of returning the redirec-
tion CNAME for each DNS name. It operates in a mas-
ter/slave configuration so all DNS services within the
node receive the same offload probability. Details of the
algorithm the load management service uses are included
in Section 3.2.

3.2 Distributed Load Management

When no individual proxy is receiving more traffic than
it is configured to handle, the operation of the system fol-
lows the pure anycast mechanism with all DNS requests
being responded with the same IP address and the Inter-
net’s routing protocols determine the closest proxy for
each user.

However, as described in Section 2.3.1, Internet rout-
ing protocols have no knowledge of the load on any indi-
vidual proxy. Consequently, an individual proxy can be
overloaded when using anycast if proxy locations aren’t
significantly over provisioned relative to the expected
traffic load. The ability to over-provision such proxy
locations is often limited as power and space comes at
a premium. Further, the ability to add new capacity to
overloaded locations has significant lead-time (can be
weeks to months), hence we must have the ability to dy-
namically shift load in real-time - even if we expect this
situation to be rare.

We considered two main techniques for Load Manage-
ment - (1) altering BGP routes, and (2) modifying DNS
responses. When an individual proxy is overloaded, uti-
lizing BGP techniques such as AS Path pre-pending or
withdrawing routes to one or more peers is one way to re-
duce the traffic on the proxy. However, such techniques
are difficult to perfect as they can suffer from cascading
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failures (as an action from one proxy can cause a traffic
swarm to a nearby proxy causing it to take action, and
so on). A centralized system could be used to manage
such actions; however, a significant amount of complex-
ity would need to be introduced into predicting where
traffic would route to, given a particular action. Fur-
ther, taking BGP-level actions when utilizing an anycast
based system results in route-churn and subsequently, an
increased rate of TCP session breakages.

Conversely, modifying DNS responses enables the
BGP topology to remain unchanged. This has two main
attractive features. First, the BGP topology improve-
ments and monitoring described in Section 4.1 remain
independent to load management. Second, modifying
DNS responses will only affect the routing of new users
(as users already connected to a proxy will continue their
session). Hence, DNS is a less abrupt change to users and
a more gradual shift of overall traffic patterns than mod-
ifying BGP. However, there are two primary difficulties
when using DNS for load management: first, the DNS
server must infer that its response will result in additional
traffic landing on an overloaded proxy (or not); second,
given that a DNS server knows which DNS responses to
modify to prevent load from landing on an overloaded
proxy, what answer does it then respond with to redirect
users causing the excessive load?

To solve the first difficulty, we used an artifact used
by many traditional CDNs — the LDNS and the users of
that LDNS are often in a similar network location. Con-
sequently, we collocated our authoritative DNS servers
and proxy servers in a FastRoute Node. Our hypothe-
sis was that there would be a high correlation between
the location of the proxy receiving the user traffic and
the authoritative DNS server receiving the DNS request.
Given a high correlation, by altering only the decision of
the collocated DNS server, we can divert traffic and avoid
overloading the proxy. This has a very appealing charac-
teristic that the only communication needed is between
the collocated proxy and DNS in a given FastRoute node.
We discuss more on this communication in Section 3.3.2.

The second difficulty we encounter is where to direct
traffic that would normally be directed to an overloaded
proxy. One option is to return the unicast IP address of
the next closest non-overloaded proxy, however, this in
essence means creating a parallel system like the Inter-
net map as described in Section 2.3.3 for the (expected)
rare situation of an overloaded proxy. In contrast, we
translate the problem from one of “where to send the
traffic”, to one of “where not to send the traffic”. As
we only have collocated proxy-DNS pair communica-
tion, the only load a DNS server is aware of is its own.
Consequently, each DNS simply knows to direct traffic to
“not-me”. By configuring multiple anycast IP addresses
on different sets of proxies, the DNS server can direct

Figure 2: CDF of self-correlation values observed each
day for all FastRoute nodes over a week. Each data-
point is a self-correlation for an individual node for a
single day. 90% of datapoints have a self-correlation
greater than 50% with no datapoint less than 27% justi-
fying FastRoute’s decisoin to use onl local decisions for
load management.

traffic to one of the anycast IPs that it is not responsible
for. However, when using such an approach, it is possi-
ble that multiple proxies experience high load and direct
traffic to each other — causing more load on proxies that
are already overloaded. The underlying problem is there
is a possibility for ping-ponging of traffic among over-
loaded proxies, if we are not careful. We address this
concern in Section 3.2.2, by setting up loop-free traffic
diversion paths.

3.2.1 Local Controllability of Load

If DNS queries and subsequent user traffic to proxies
lands on the same FastRoute Node, we call such user
traffic as controllable. We measure correlation between
two FastRoute nodes i and j as the likelihood of the DNS
query landing on FastRoute node i (DNS response is the
anycast IP of the proxy) and the subsequent user traf-
fic landing on the proxy in node j. The self-correlation
of any node i is a measure of the controllable load on
that node. Every node could have a mix of controllable
and uncontrollable load. From the data gathered using
the approach shown in [16], we can construct a correla-
tion matrix for all the nodes in the system. The diagonal
of the correlation matrix gives the self-correlation values
for the various nodes.

For our solution to be able to handle a given load,
we rely on the self-correlation being high enough to of-
fload sufficient traffic to avoid congestion. In Figure 2
we show the CDF of self-correlation values observed
each day for every FastRoute node using over 10 million
DNS-to-HTTP request mappings collected over a week
in February 2015 from a representative sample of users
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of a major application utilizing FastRoute. Each node
contributed around 7 data points (one self-correlation
value per day) towards computing the CDF. Any Fast-
Route node receiving less than 100 samples on an indi-
vidual day was excluded from the results.

We see that more than 90% of (Node,day) pairs have
a self-correlation greater than 50%. No node on any day
had a self-correlation below 27%. Further, when exam-
ining the individual node self-correlation values, they re-
main relatively constant over the entire week.

For the nodes with self-correlation below 50% we
found that the cross-correlation with either one or several
other neighboring nodes was relatively high. For exam-
ple, one node in Europe with a self-correlation of approx-
imately 28% had four other nodes in nearby cities with
cross-correlation values of 2̃0%, 18%, 17% and 10%. A
distinct North American node also with a self-correlation
of approximately 28% had a single other node with a
cross-correlation value of 50%. We see this pattern (of
a small subset of nodes that have high cross-correlation
values) consistently throughout other nodes with rela-
tively low self-correlation.

FastRoute does not currently attempt to do anything
special for nodes with low self-correlation. This is based
on our design principle of simplicity — do not build un-
necessary complexity unless absolutely needed (and so
far it has not). The two FastRoute nodes discussed above
serve less than 2% of total global traffic and are suffi-
ciently over-provisioned to handle the load they receive.
However, if any node (low self-correlation or not) is un-
able to offload sufficient traffic, we have the ability to
alert an operator to manually divert traffic from other
nodes (based on the historic non-diagonal terms of the
correlation matrix).

In the future, if operators are being involved suffi-
ciently often enough to justify the additional complexity,
we can implement one or more of the following features:-

• Lowly correlated nodes can “commit suicide” (i.e.,
withdraw DNS and Proxy anycast BGP routes)
when an offered load is unable to be sufficiently
diverted, resulting in traffic (expected) to land on
nearby nodes with higher self-correlation values
and can divert traffic if necessary. This keeps our
current desirable system property of no real-time
communication between nodes.

• Lowly correlated nodes can inform the small set of
nearby nodes that have a high cross-correlation to
start offloading traffic (e.g. in the examples pre-
sented earlier, this would increase the ability to of-
fload traffic to 93% for the European node and 78%
for the North American node). This breaks our cur-
rent system property of no real-time communication

between nodes, but does limit it to a small subset of
nodes.

• Nodes with low self-correlation can be configured
in “anycast-DNS” mode (i.e. DNS served over any-
cast, but proxy over unicast addresses; see Section
2.3.2). Such nodes could always be configured in
this mode, or nodes could automatically transition
to this mode when they cannot divert sufficient traf-
fic.

• The proxy can take steps to divert traffic including
reducing its workload (e.g. dropping lower priority
traffic) or diverting traffic via HTTP 302 redirects.

As more FastRoute nodes are added, we will continue
to monitor the correlation matrix to ensure it is sufficient
to handle our traffic patterns.

3.2.2 Loop-free Diversion of Load

So far we have discussed the control over load landing on
a proxy with purely local actions (The DNS altering its
decision to divert traffic away from the collocated proxy).
We now discuss how we determine what the altered re-
sponse should be.

Our approach is one that utilizes anycast layers where
each layer has a different anycast IP address for the
DNS and proxy services. Each DNS knows only the do-
main name of its parent layer. Under load, it will start
CNAME’ing requests to its parent layer domain name3.
By utilizing a CNAME, we force the recursive resolver
to fetch the DNS name resolution from a FastRoute node
within the parent layer. This mechanism ensures that a
parent layer node has control over traffic landing in the
parent layer with the parent layer following the same pro-
cess if it becomes overloaded.

We see an example setup of anycast layers in Figure
3. Here we see FastRoute nodes 1 and 2 in the outermost
layer becoming overloaded. This results in both nodes
diverting traffic to the middle layer resulting in additional
traffic landing on nodes 3 and 4. Node 4 determines
that it is now being overloaded as a result and diverts
load to the innermost layer with node 5 receiving the
additional traffic. From a user perspective, although their
DNS requests may be bounced off several nodes, their
proxy traffic will not experience the redirects.

Higher level layers are not required to be as close to
users as lower level layers, consequently, they can be
in physical locations where space is relatively cheap and
easy to add capacity (e.g. within large data centers with
elastic capacity [21, 1]). Hence, bursts of traffic can be

3A CNAME is an alias within the DNS protocol that causes the
recursive resolver to undertake a new lookup
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Figure 3: An example configuration with three Anycast
layers. Solid arrows denote user connections, while dot-
ted arrows denote the effect of diverting traffic by nodes
that would otherwise be in overload.

handled by over-provisioning. By diverting lower prior-
ity traffic from higher layers first (as in Section 3.3.1) we
can avoid the perceived user performance impact.

Although we have shown a single directed path be-
tween the lowest layer and highest layer, more advanced
configurations are possible. Several extensions include
an individual proxy may have two parent layers and
offload proportionally between the layers (we did op-
erate in this mode initially when the highest layer did
not have sufficient spare capacity), different applications
may have a different relationship between layers or indi-
vidual proxies may exist in multiple layers (i.e. a layer
may consist of locations that are subset of a lower layer).
The only requirements are that the relationship between
layers be loop-free and the highest layer be able to handle
the load with no ability to divert traffic.

3.3 Local Offload Algorithm

In this section, we will discuss our approach to use DNS
to manage load on a collocated proxy. We will begin
by defining the notion of load first: user traffic hitting
a proxy will consume various system resources such as
CPU, memory, network bandwidth, etc., in the proxy.
We refer to the strain placed on these resources as load.
The nature of “load” could vary based on the traffic
hitting each end point in the proxy (e.g. short HTTP
request-response type queries are generally bottlenecked
by CPU; file streaming applications are generally bot-
tlenecked by network bandwidth, etc.). We can control
“load” on a particular resource by controlling the user

traffic hitting the end point(s) associated with the “load”.
For every such identified loaded resource associated with
the end point (one resource per end point), we define
an overload threshold, that defines the operating bound-
ary of the proxy, and we consider the proxy overloaded
if the load on any resource exceeds the threshold. The
goal of FastRoute’s load management scheme is to op-
erate the system such that the load on any resource in
a given proxy stays under the overload threshold. Also,
as each FastRoute load manager instance expects a frac-
tion of traffic that is not controllable locally, multiple in-
stances of the load management service can operate on
different endpoints hosted on the same physical machine
— even if they utilize each other’s bottlenecked resource
(e.g. a filestreaming application may be bottlenecked by
network bandwidth, but still consumes CPU). This be-
havior simply alters the fraction of uncontrollable load
each load manager instance sees.

3.3.1 When to Divert Load?

In our design it is up to an individual node to discover
when it is overloaded and divert some traffic. The load
management algorithm that controls offload should be
able to quickly recognize an overload situation and divert
(just enough) load to another layer, so as to bring load
under the overload threshold; equally important for the
algorithm is to recognize that the overload situation has
passed, and reduce or stop the offloading, as appropriate.
Also, it is important to note that any delay in offloading
during overload will cause measurable user impact (may
cause service unavailability), while any delay in bringing
back the traffic once overload has passed, has a relatively
smaller penalty and user impact (e.g. higher latency due
to being served from a farther layer). The two types of
load to expect are:-

• Slowly increasing/decreasing load. This load is
caused by the natural user patterns throughout the
day. Generally, over a day a diurnal pattern is seen
based on users’ activities in the timezone of the
proxy’s catchment zone. Figure 4 shows diurnal
traffic pattern observed over a period of 3 days in
a proxy in production.

• Step changes in load. This is caused by a nearby
proxy going down and all traffic from that proxy
hitting the next closest proxy. We show an example
of one such occurrence from our production system
in Figure 5.

Consequently, our algorithm that determines which
DNS answer to return must handle the above two scenar-
ios. Challenges in this algorithm surround the limitations
of the control mechanism. These include:-
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Figure 4: Traffic pattern over a period of 3 days for a single node. The Y-axis represents traffic volume. We have
removed the values for confidentiality purposes

Figure 5: At around 17:00, a neighboring proxy (top) fails and as a result the closest proxy (bottom) is hit with all the
load. The Y-axis represents traffic volume. We have removed the values for confidentiality purposes

• The TTL on a DNS response causes a delayed re-
sponse to changes. Though it was shown in [16] that
load management using DNS is feasible, the delay
due to TTL is unavoidable.

• Local DNS servers have differing numbers of users
behind them.

• A user’s DNS lookup may not land on the same
proxy as their TCP traffic (see Section 3.2.1 for
analysis). Consequently, some load on a proxy
(from its perspective) is uncontrollable.

Given the limitations of the control mechanism we
have, we would like our control algorithm to be able to

• Quickly reduce load when a step change forces traf-
fic above a desired utilization.

• Prioritize low value traffic to be offloaded

• Alert if the "uncontrollable" load becomes too large
to maintain load under the desired utilization.

Many algorithms can support these characteristics. We
present a simplified version of our algorithm in produc-
tion. Let S be the current load on a given resource at
node i, T be the overload threshold that is set as the oper-
ating boundary for this resource, under which we expect
the proxy to operate at all times, and x be the fraction of
traffic being offloaded to the next higher layer (offload
probability). In order for the load management control
loop to function effectively, the load sampling interval

is set to higher than twice the TTL of the DNS responses
(note that the TTL on the responses reflected the desire of
responsiveness; i.e. longer TTL implied that a sustained
overload condition and slower reaction to overload was
acceptable).

• if S > T, the node i is overloaded. Offload probabil-
ity x is increased super-linearly (maximum value =
1)

• if S < T, the node i is NOT overloaded. Offload
probability x is decreased linearly (minimum value
= 0)

As an extension, we implemented priority-based of-
floading of different end points that have the same load
characteristics (no results shown in this paper). Among
end points that contend for the same resource, we defined
load management policies such that offload happens in
some desired priority order. For example, say the proxy
is the end point for both and

, and traffic to either of these end
points will use up CPU. Suppose,

is more “important” than ,
and say the overload threshold is set to 70%. When over-
load occurs (i.e. CPU use exceeds 70%), the system will
begin offloading customers of in
an effort to control the load on the system. If the over-
load persists, then customers of
are fully offloaded before offloading any customers of

. If overload persists even af-
ter offloading 100% of customers of both endpoints,

8



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 389

then manual intervention is sought by engaging person-
nel from the FastRoute operations team to artificially
increase the measured load on highly cross-correlated
neighboring nodes causing an increased diversion of traf-
fic away from the overloaded node.

3.3.2 Scalability and Independent Operation

Given that (a) our operating assumption is that each node
has sufficient self-correlation, and (b) the DNS and proxy
are collocated in the FastRoute node, it thus follows that
the load management system situated at any given node
only needs to monitor the various aspects of load on the
local node. Once it has collected the load data, the load
management system computes the offload fraction for a
given end point, and it only needs to communicate the re-
sults to the local DNS. Thus, all communication needed
to make load management work effectively is contained
fully within the same FastRoute node, without the need
for any external input or sharing of global state, which
makes the operation of FastRoute nodes completely in-
dependent of one another, and allows for simplified and
easy-to-scale deployment.

4 Improving Anycast Routes over Time

We chose an anycast TCP based approach for FastRoute
due to its simplicity and low dependence on DNS for op-
timal proxy selection. Consequently, we rely heavily on
BGP (the de-facto standard inter-domain routing proto-
col used in the Internet) to best direct users to the closest
proxy. The underlying assumption when using anycast is
that the shortest route chosen by BGP is also the lowest
latency route. However, due to the way the BGP route se-
lection process operates, this may not always be the case.
Although possible to implement a real-time system that
adapts to the current network topology to modify route
announcments of “flip-back” to unicast, this would in-
troduce additional complexity — something we wished
to avoid.

Consequently, we opt for a primarily offline approach
to monitoring the behavior of anycast. We utilize the
user performance telementry to analyse daily user per-
formance (see Section 4.1) to prioritize network peering
improvements and identify performance changes for a set
of users (see Section 4.2). Availability is most critical,
hence we monitor availability in real-time via active In-
ternet based probes such as [3, 2, 5] and internal probes
(from within the node itself).

4.1 Identifying Performance Problems
One of the most valuable visualization techniques we
developed as part of FastRoute was to overlay perfor-

Figure 6: User performance grouped by ISP, geographic
location and proxy location displayed on a Bing map.
The size of the bubble represents the relative number of
users. The color of the bubble represents the relative
performance.

mance data collected from users of our production ap-
plication(s) on top of a Bing map. Multiple views of user
performance data were then plotted on top of this map
providing unprecedented insight into how our users were
experiencing our service. The most basic view we cre-
ated using this technique is shown in Figure 6. Here we
see users in Washington state. Navigation timing data
[6] for these users are aggregated based on the user’s
geographic location, the ISP they are connected to and
the proxy that they connect to. We display this data by
sizing the bubble based on the relative number of users
in the aggregate group and coloring the bubble based on
the relative performance the users receive (red (worst),
orange, yellow, light green, dark green (best)). From the
example in Figure 6 we can quickly determine that we
have a significant user base in the Seattle region (as ex-
pected due to the large population in this area)4. We can
also see that one particular ISP is experiencing lower lev-
els of performance than others in the same region. Upon
further investigation (with data contained in the flyout
box that appears when hovering over this bubble), we
found this ISP was a cellular provider - expected to have
slower performance than a cable or DSL network.

This display quickly identified large user populations
that were receiving a lower level of performance than
others. By filtering by individual proxies, it became
immediately obvious when users were routed to a sub-
optimal location (e.g. if European users were being
routed to the North America). We found the perfor-
mance of major ISPs to be relatively constant day-over-
day. Consequently, by identifying the ISPs whose users

4Note that we have introduced random jitter around the actual geo-
location of the user population to avoid bubbles being drawn directly
on top of each other
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Figure 7: Latency vs Time for several ISPs. A peering
link change on Day 5 resulted in a substantial increase
in latency. Part-way through Day 6 the link was restored
resulting in the expected performance returning.

were being sub-optimally routed (and prioritizing them
based on user populations), our ISP peering team could
prioritize their efforts to best satisfy our users (improving
the performance of users accessing all applications of the
Microsoft network - not just those running through Fast-
Route).

4.2 Identifying Changes in Performance

The above ‘map’ based view of performance is highly
beneficial for analyzing a snapshot of performance.
However, it is not as beneficial when trying to identify
performance changes. Our goal is also to continually
improve the performance for all our users. By consid-
ering the current performance of users as a benchmark,
we can identify performance degradations, correlate the
changes with known network changes and revert them if
necessary. For example, in Figure 7 we see several ISPs’
latency dramatically increase in the middle of the time
series. This was as a result of an alteration in our peer-
ing relationship with another ISP resulting in congestion.
By identifying an anomaly in the expected performance
of users from this ISP, we were able to quickly rectify the
issue, ensuring the effect on our users was minimized.

Conversely, the addition of new peering relationships
and their impact on user performance was directly at-
tributable providing business justification for the (pos-
sible) additional cost.

In a similar way, we can identify black-holing (or hi-
jacking) of traffic (e.g. [10]). By monitoring the current
user traffic volumes, we can identify anomalies in the ex-
pected volumes of traffic from particular ISPs.

4.3 Active Monitoring
Passive analysis of users reaching our service provide
the best aggregate view of the performance our users are
receiving. However, active probing mechanisms from
third-party sources ( e.g., [3, 2, 5]) provides additional
sources of data. We found that utilizing systems that ex-
isted outside of our own infrastructure avoided circular
dependencies and enables us to have information that
is normally unavailable using passive monitoring (e.g.
traceroutes).

5 FastRoute in Production

FastRoute was designed to replace a third-party CDN
that was currently in operation for our Internet applica-
tions. However, in order to do so, we had to prove that
FastRoute was not only functional, but there was a per-
formance improvement and no drop in availability when
compared to the third-party CDN. We describe in Sec-
tion 5.1 how we compared the two systems, presenting
data from our initial comparison.

A critical component of FastRoute is its ability to han-
dle an overloaded proxy. This is expected to be a rare
scenario given appropriate capacity planning, but pre-
vents availability drops under load. In Section 5.2 we
examine how load manager has operated in production.

A concern when using anycast is the availabilty of any-
cast in comparison to unicast given route flaps. In Sec-
tion 5.3 we see no difference in the availability of a third-
party unicast based CDN and our anycast solution.

5.1 Onboarding to FastRoute
We took a two step process for ensuring we reliably on-
boarded our first application onto FastRoute: first, com-
pare availability and performance of non-production traf-
fic served through FastRoute vs our existing third-party
CDN, before gradually increasing the fraction of produc-
tion traffic that was directed to FastRoute instead of the
third-party CDN — ensuring real-user performance and
availability was not degraded throughout the transition.

5.1.1 Non-Production Traffic Comparison

One method of comparison for two CDNs is through
the use of active monitoring probes from agents spread
throughout the Internet [2, 3, 5]. However, active probes
come from a very limited set of locations and do not re-
flect the network location of our users. Consequently,
we utilized our existing user base as our probing set.
We achieved this by placing a small image on both the
third party CDN as well as FastRoute. We then directed
a small random sampling (∼ 5%) of users to download
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the image from both the CDN and from FastRoute (after
their page had loaded) and report the time taken (utilizing
the javascript as described in [16]).

This demonstrated that FastRoute frequently delivered
the image faster than our third-party CDN. This was suf-
ficient justification to initiate the delivery of the actual
application through FastRoute.

5.1.2 Production Traffic Comparison

The above non-production traffic experiment indicated
that performance improvements were possible using
FastRoute, however, there are many differences between
a small image download and our production application.
Consequently, we were cautious when moving to Fast-
Route. Our first production traffic moved onto FastRoute
was a small percentage of a single US-based ISP. We
configured our DNS servers to direct a random small
fraction of users from the ISP’s known LDNS IPs to Fast-
Route (leaving the remainder on the third-party CDN).

By analysing the performance data for the random
sampling of users and comparing with the third-party
CDN, we were able to ascertain the performance dif-
ference between the two CDNs5. This also enabled us
to gather confidence that we were functionally equiva-
lent to the third-party CDN. We repeated this “flighting”
of different sets of users at different times and for dif-
ferent durations. We see in Figure 8 that for 10 major
ISPs contributing more than 60% of traffic within the
United States, all experienced a performance improve-
ment with FastRoute. This initial comparison was under-
taken with our initial deployment of only 10 FastRoute
nodes throughout the United States6. This data was suffi-
cient to justify increasing the percentage of users directed
to FastRoute until 100% of users now pass through Fast-
Route. Since the time of analysis, we have increased the
number of FastRoute nodes, added new applications and
and improved our network connectivity to ISPs to further
improve user performance.

5.2 Load Management in Production
We designed FastRoute’s load manager with a sin-
gle configurable parameter for each application — the
threshold that a metric must be kept under (see Section
3). This metric is collected periodically and Load Man-
ager reacts based on the current and previous values of
the metric. We see in Figure 9 the traffic patterns of one
application running on FastRoute. This application has a
particularly spiky metric that had a threshold set to 70%.

5Note that the performance improvement shown is for the entire
FastRoute system (user to proxy to data center) not just for proxy se-
lection.

6Nodes throughout the world were present, but for this analysis we
focus on the United States.

Figure 9: One application running on FastRoute had
a very spiky traffic pattern within its diurnal. Load
manager reacted automatically to divert the appropriate
amount of traffic when load crossed the threshold, bring-
ing it back when it had subsided sufficiently.

If the metric went above a hard limit of 100%, it would
result in the loss of user traffic. We can see that the spiky
nature of the burst in traffic resulted in the load manager
offloading traffic quickly to bring the load back under the
threshold. Some oscillation occurs around the threshold
due to the delayed effects of DNS TTLs, but we control
the traffic around the threshold

FastRoute’s load management has been in operation
for over 2 years. During this time we have seen a number
of scenarios resulting in overloaded proxies (usually of
the order of few incidents per week) including nearby
proxies going down, naturally spiky user traffic patterns
and code bugs in the proxy or DNS. FastRoute’s load
management scheme has provided the required safety net
to handle all scenarios during this time without requiring
manual intervention to modify routing policies or alter
DNS configurations.

5.3 Anycast Availability

A concern when utilizing an anycast based solution is
that the availability of the endpoint will be lower due to
route fluctuations. In Figure 10 we show results from a
synthetic test where approximately 20,000 Bing toolbar
clients downloaded a small image from an anycast IP an-
nounced from all 12 nodes (full set of nodes at time of
experiment) throughout the Internet and the same image
from a 3rd party (unicast) CDN over a period of a week.
Although one datapoint showed the anycast availability
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Figure 8: Performance improvements in 10 major US ISPs (contributing above 60% of all user traffic in the US)
when using FastRoute compared to a third-party CDN. This data was collected when only 10 FastRoute nodes were
in operation and no nodes were overloaded.

Figure 10: Anycast availability over a week compared to
third-party CDN. Note the y-axis starts at 99.4%. The
availabilty over the entire week was 99.96% vs 99.95%
respectively.

dropped to 99.65% availabilty, we saw overall availabil-
ities of 99.96% and 99.95% for anycast and third-party
CDN availabilities respectively. These results, the suc-
cess of other anycast TCP based CDNs (e.g. Cloudflare,
Edgecast), the work presented in [22] and the lack of
issues found in over 2 years serving production traffic
(even as the set of nodes grows) indicate that anycast in
the Internet is stable enough to run a production network
on.

6 Future Work

Within this paper we have described the architecture of
FastRoute, concentrating on proxy selection mechanism.
Future work includes:

• Examining the selection of data center for user traf-
fic landing on a proxy as well as techniques used to
prioritize and multiplex user traffic to achieve opti-
mal performance.

• Analyzing the impact to the self-correlation of DNS
and proxy traffic when supporting IPv6.

• Analyzing the impact that local decisions made
when diverting load, have on the global traffic pat-
terns. In particular, we would like to understand the
degree of sub-optimality introduced due to making
local decisions, compared to making globally opti-
mal decisions centrally.

• Studying the distributed load management algo-
rithm from a control-theoretic perspective, and un-
derstand limits on correlation and user-traffic for
stable system operation.

7 Conclusion

We have presented FastRoute, an anycast routing archi-
tecture for CDNs that is operational and provides high
performance for users. FastRoute’s architecture is ro-
bust, simple to deploy and operate, scalable, and just
complex enough to handle overload conditions due to
anycast routing. We highlighted performance gains ob-
tained from our production system when routing users
through FastRoute instead of a major third-party CDN.

We described a novel load management technique in
FastRoute, which used the anycast DNS and multiple
anycast proxy rings for load absorption. Excess traf-
fic from one layer was directed to another higher layer
using the collocated DNS. We provided data from our
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production system which showed that the correlation be-
tween DNS and corresponding user queries landing on
the same node in our network to be sufficiently high,
and relatively stable over time, both of which are cru-
cial for effective load management. FastRoute load man-
agement has protected our production system numerous
times from having an overload-induced outage, in addi-
tion to saving precious operator hours that would’ve oth-
erwise been needed in a manual system. We provided
one such example from our production system where
proxy overload was dealt with quickly and effectively by
FastRoute’s load management.

Overall, FastRoute was designed with high perfor-
mance, reliability and ease of operations in mind. By
not over-complicating the design to handle rare scenarios
— and trading off performance for simplicity to handle
such rare scenarios — we were able to quickly adapt to
new requirements with minimal development effort. We
believe this is the biggest learning from the design, de-
velopment, deployment and operation of FastRoute.
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Abstract
TCP and its variants have suffered from surprisingly poor
performance for decades. We argue the TCP family has
little hope of achieving consistent high performance due
to a fundamental architectural deficiency: hardwiring
packet-level events to control responses. We propose
Performance-oriented Congestion Control (PCC), a new
congestion control architecture in which each sender
continuously observes the connection between its ac-
tions and empirically experienced performance, enabling
it to consistently adopt actions that result in high perfor-
mance. We prove that PCC converges to a stable and
fair equilibrium. Across many real-world and challeng-
ing environments, PCC shows consistent and often 10×
performance improvement, with better fairness and sta-
bility than TCP. PCC requires no router hardware support
or new packet format.

1 Introduction

In the roughly 25 years since its deployment, TCP’s
congestion control architecture has been notorious for
degraded performance. TCP performs poorly on lossy
links, penalizes high-RTT flows, underutilizes high
bandwidth-delay product (BDP) connections, cannot
handle rapidly changing networks, can collapse under
data center incast [24] and incurs very high latency with
bufferbloat [28] in the network.

As severe performance problems have accumulated
over time, protocol “patches” have addressed prob-
lems in specific network conditions such as high BDP
links [31,52], satellite links [23,42], data center [18,55],
wireless and lossy links [38,39], and more. However, the
fact that there are so many TCP variants suggests that
each is only a point solution: they yield better perfor-
mance under specific network conditions, but break in
others. Worse, we found through real-world experiments
that in many cases these TCP variants’ performance is
still far away from optimal even in the network condi-
tions for which they are specially engineered. Indeed,
TCP’s low performance has impacted industry to the ex-
tent that there is a lucrative market for special-purpose
high performance data transfer services [1, 2, 11, 13].

Thus, the core problem remains largely unsolved:
achieving consistently high performance over complex
real-world network conditions. We argue this is indeed

a very difficult task within TCP’s rate control architec-
ture, which we refer to as hardwired mapping: certain
predefined packet-level events are hardwired to certain
predefined control responses. TCP reacts to events that
can be as simple as “one packet loss” (TCP New Reno)
or can involve multiple signals like “one packet loss and
RTT increased by x%” (TCP Illinois). Similarly, the con-
trol response might be “halve the rate” (New Reno) or a
more complex action like “reduce the window size w to
f (∆RT T )w” (Illinois). The defining feature is that the
control action is a direct function of packet-level events.

A hardwired mapping has to make assumptions about
the network. Take a textbook event-control pair: a packet
loss halves the congestion window. TCP assumes that
the loss indicates congestion in the network. When
the assumption is violated, halving the window size can
severely degrade performance (e.g. if loss is random, rate
should stay the same or increase). It is fundamentally
hard to formulate an “always optimal” hardwired map-
ping in a complex real-world network because the actual
optimal response to an event like a loss (i.e. decrease
rate or increase? by how much?) is sensitive to network
conditions. And modern networks have an immense di-
versity of conditions: random loss and zero loss, shallow
queues and bufferbloat, RTTs of competing flows vary-
ing by more than 1000×, dynamics due to mobile wire-
less or path changes, links from Kbps to Gbps, AQMs,
software routers, rate shaping at gateways, virtualization
layers and middleboxes like firewalls, packet inspectors
and load balancers. These factors add complexity far be-
yond what can be summarized by the relatively simplistic
assumptions embedded in a hardwired mapping. Most
unfortunately, when its assumptions are violated, TCP
still rigidly carries out the harmful control action.

We propose a new congestion control architecture:
Performance-oriented Congestion Control (PCC). PCC’s
goal is to understand what rate control actions improve
performance based on live experimental evidence, avoid-
ing TCP’s assumptions about the network. PCC sends at
a rate r for a short period of time, and observes the re-
sults (e.g. SACKs indicating delivery, loss, and latency
of each packet). It aggregates these packet-level events
into a utility function that describes an objective like
“high throughput and low loss rate”. The result is a sin-
gle numerical performance utility u. At this point, PCC
has run a single “micro-experiment” that showed send-
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ing at rate r produced utility u. To make a rate control
decision, PCC runs multiple such micro-experiments: it
tries sending at two different rates, and moves in the di-
rection that empirically results in greater performance
utility. This is effectively A/B testing for rate control
and is the core of PCC’s decisions. PCC runs these
micro-experiments continuously (on every byte of data,
not on occasional probes), driven by an online learn-
ing algorithm that tracks the empirically-optimal send-
ing rate. Thus, rather than making assumptions about
the potentially-complex network, PCC adopts the actions
that empirically achieve consistent high performance.

PCC’s rate control is selfish in nature, but surpris-
ingly, using a widely applicable utility function, com-
peting PCC senders provably converge to a fair equi-
librium (with a single bottleneck link). Indeed, experi-
ments show PCC achieves similar convergence time to
TCP with significantly smaller rate variance. Moreover,
the ability to express different objectives via choice of
the utility function (e.g. throughput or latency) provides
a flexibility beyond TCP’s architecture.

With handling real-world complexity as a key goal,
we experimentally evaluated a PCC implementation in
large-scale and real-world networks. Without tweak-
ing its control algorithm, PCC achieves consistent high
performance and significantly beats specially engineered
TCPs in various network environments: (a.) in the wild
on the global commercial Internet (often more than 10×10×10×
the throughput of TCP CUBIC); (b.) inter-data center
networks (5.23×5.23×5.23× vs. TCP Illinois); (c.) emulated satel-
lite Internet links (17×17×17× vs TCP Hybla); (d.) unreliable
lossy links (10−37×10−37×10−37× vs Illinois); (e.) unequal RTT of
competing senders (an architectural cure to RTT un-
fairness); (f.) shallow buffered bottleneck links (up to
45×45×45× higher performance, or 13×13×13× less buffer to reach
90% throughput); (g.) rapidly changing networks (14×14×14×
vs CUBIC, 5.6×5.6×5.6× vs Illinois). PCC performs similar to
ICTCP [55] in (h.) the incast scenario in data centers.
Though it is a substantial shift in architecture, PCC can
be deployed by only replacing the sender-side rate con-
trol of TCP. It can also deliver real data today with a user-
space implementation at speedier.net/pcc.

2 PCC Architecture
2.1 The Key Idea
Suppose flow f is sending a stream of data at some rate
and a packet is lost. How should f react? Should it slow
the sending rate, or increase, and by how much? Or leave
the rate unchanged? This is a difficult question to answer
because real networks are complex: a single loss might
be the result of many possible underlying network sce-
narios. To pick a few:
• f may be responsible for most of congestion. Then,

it should decrease its rate.
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Figure 1: The decision-making structure of TCP and PCC.

• f might traverse a shallow buffer on a high-BDP
link, with the loss due to bad luck in statistical mul-
tiplexing rather than high link utilization. Then,
backing off a little is sufficient.

• There may be a higher-rate competing flow. Then,
f should maintain its rate and let the other back off.

• There may be random non-congestion loss some-
where along the path. Then, f should maintain or
increase its rate.

Classically, TCP assumes a packet loss indicates non-
negligible congestion, and that halving its rate will im-
prove network conditions. However, this assumption
is false and will degrade performance in three of the
four scenarios above. Fundamentally, picking an opti-
mal predefined and hardwired control response is hard
because for the same packet-level events, a control re-
sponse optimal under one network scenario can deci-
mate performance in even a slightly different scenario.
The approach taken by a large number of TCP vari-
ants is to use more sophisticated packet-level events and
control actions. But this does not solve the fundamen-
tal problem, because the approach still hardwires pre-
determined events to predetermined control responses,
thus inevitably embedding unreliable assumptions about
the network. When the unreliable assumptions are vi-
olated by the complexity of the network, performance
degrades severely. For example, TCP Illinois [38] uses
both loss and delay to form an event-control mapping,
but its throughput collapses with even a small amount of
random loss, or when network conditions are dynamic
(§4). More examples are in §5.

Most unfortunately, if some control actions are indeed
harming performance, TCP can still blindly “jump off
the cliff”, because it does not notice the control action’s
actual effect on performance.

But that observation points toward a solution. Can
we design a control algorithm that directly understands
whether or not its actions actually improve performance?

Conceptually, no matter how complex the network is,
if a sender can directly measure that rate r1 results in
better performance than rate r2, it has some evidence
that r1 is better than sending at r2 — at least for this
one sender. This example illustrates the key design ra-
tionale behind Performance-oriented Congestion Con-
trol (PCC): PCC makes control decisions based on em-
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pirical evidence pairing actions with directly observed
performance results.

PCC’s control action is its choice of sending rate. PCC
divides time into continuous time periods, called moni-
tor intervals (MIs), whose length is normally one to two
RTTs. In each MI, PCC tests an action: it picks a send-
ing rate, say r, and sends data at rate r through the in-
terval. After about an RTT, the sender will see selective
ACKs (SACK) from the receiver, just like TCP. How-
ever, it does not trigger any predefined control response.
Instead, PCC aggregates these SACKs into meaning-
ful performance metrics including throughput, loss rate
and latency. These performance metrics are combined
to a numerical utility value, say u, via a utility func-
tion. The utility function can be customized for different
data transmission objectives, but for now the reader can
assume the objective of “high throughput and low loss
rate”, such as u = T −L (where T = throughput and L =
loss rate) which will capture the main insights of PCC.
The end result is that PCC knows when it sent at rate r,
it got utility of u.

The preceding describes a single “micro-experiment”
through which PCC associates a specific action with
an observed resulting utility. PCC runs these micro-
experiments continuously, comparing the utility of dif-
ferent sending rates so it can track the optimal action over
time. More specifically, PCC runs an online learning al-
gorithm similar to gradient ascent. When starting at rate
r, it tests rate (1+ε)r and rate (1−ε)r, and moves in the
direction (higher or lower rate) that empirically yields
higher utility. It continues in this direction as long as
utility continues increasing. If utility falls, it returns to
a decision-making state where it again tests both higher
and lower rates to find which produces higher utility.

Note that PCC does not send occasional probes or use
throwaway data for measurements. It observes the results
of its actual control decisions on the application’s real
data and does not pause sending to wait for results.
We now return to the example of the beginning of this
section. Suppose PCC is testing rate 100 Mbps in a par-
ticular interval, and will test 105 Mbps in the following
interval. If it encounters a packet loss in the first inter-
val, will PCC increase or decrease? In fact, there is no
specific event in a single interval that will always cause
PCC to increase or decrease its rate. Instead, PCC will
calculate the utility value for each of these two intervals,
and move in the direction of higher utility. For example:
• If the network is congested as a result of this flow,

then it is likely that sending at 100 Mbps will have
similar throughput and lower loss rate, resulting in
higher utility. PCC will decrease its rate.

• If the network is experiencing random loss, PCC is
likely to find that the period with rate 105 Mbps has
similar loss rate and slightly higher throughput, re-

sulting in higher utility. PCC will therefore increase
its rate despite the packet loss.

Throughout this process, PCC makes no assumptions
about the underlying network conditions, instead observ-
ing which actions empirically produce higher utility and
therefore achieving consistent high performance.
Decisions with noisy measurements. PCC’s experi-
ments on the live network will tend to move its rate in
the direction that improves utility. But it may also make
some incorrect decisions. In the example above, if the
loss is random non-congestion loss, it may randomly oc-
cur that loss is substantially higher when PCC tests rate
105 Mbps, causing it to pick the lower rate. Alternately,
if the loss is primarily due to congestion from this sender,
unpredictable external events (perhaps another sender ar-
riving with a large initial rate while PCC is testing rate
100 Mbps) might cause a particular 105 Mbps microex-
periment to have higher throughput and lower loss rate.
More generally, the network might be changing over time
for reasons unrelated to the sender’s action. This adds
noise to the decision process: PCC will on average move
in the right direction, but may make some unlucky errors.

We improve PCC’s decisions with multiple random-
ized controlled trials (RCTs). Rather than running two
tests (one each at 100 and 105 Mbps), we conduct four
in randomized order—e.g. perhaps (100,105,105,100).
PCC only picks a particular rate as the winner if util-
ity is higher in both trials with that rate. This pro-
duces increased confidence in a causal connection be-
tween PCC’s action and the observed utility. If results
are inconclusive, so each rate “wins” in one test, then
PCC maintains its current rate, and we may have reached
a local optimum (details follow later).

As we will see, without RCTs, PCC already offers a
dramatic improvement in performance and stability com-
pared with TCP, but RCTs further reduce rate variance by
up to 35%. Although it might seem that RCTs will dou-
ble convergence time, this is not the case because they
help PCC make better decisions; overall, RCTs improve
the stability/convergence-speed tradeoff space.
Many issues remain. We next delve into fairness, con-
vergence, and choice of utility function; deployment; and
flesh out the mechanism sketched above.

2.2 Fairness and Convergence
Each PCC sender optimizes its utility function value
based only on locally observed performance metrics.
However, this local selfishness does not imply loss of
global stability, convergence and fairness. We next show
that when selfish senders use a particular “safe” utility
function and a simple control algorithm, they provably
converge to fair rate equilibrium.

We assume n PCC senders 1, . . . ,n send traffic across
a bottleneck link of capacity C > 0. Each sender i
chooses its sending rate xi to optimize its utility function
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ui. We choose a utility function expressing the common
application-level goal of “high throughput and low loss”:

ui(xi) = Ti ·Sigmoidα(Li −0.05)− xi ·Li

where xi is sender i’s sending rate, Li is the observed
data loss rate, Ti = xi(1 − Li) is sender i’s throughput,
and Sigmoidα(y) = 1

1+eαy for some α > 0 to be chosen
later.

The above utility function is derived from a simpler
starting point: ui(xi) = Ti − xi · Li, i.e., i’s throughput
minus the production of its loss rate and sending rate.
However, this utility function will make loss rate at equi-
librium point approach 50% when the number of com-
peting senders increases. Therefore, we include the sig-
moid function as a “cut-off”. When α is “big enough”,
Sigmoidα(Li − 0.05) will rapidly get closer to 0 as soon
as Li exceeds 0.05, leading to a negative utility for the
sender. Thus, we are setting a barrier that caps the over-
all loss rate at about 5% in the worst case.
Theorem 1 When α ≥ max{2.2(n− 1),100}, there ex-
ists a unique stable state of sending rates x∗1, . . . ,x

∗
n and,

moreover, this state is fair, i.e., x∗1 = x∗2 = . . .= x∗n.
To prove Theorem 1, we first prove that Σ jx j will al-

ways be restricted to the region of (C, 20C
19 ). Under this

condition, our setting can be formulated as a concave
game [46]. This enables us to use properties of such
games to conclude that a unique rate equilibrium exists
and is fair, i.e. x∗1 = x∗2 = . . .= x∗n. (Full proof: [6])

Next, we show that a simple control algorithm can
converge to that equilibrium. At each time step t, each
sender j updates its sending rate according to xt+1

j =

xt
j(1 + ε) if j’s utility would improve if it unilaterally

made this change, and xt+1
j = xt

j(1− ε) otherwise. Here
ε > 0 is a small number (ε = 0.01, in the experiment). In
this model, senders concurrently update their rates, but
each sender decides based on a utility comparison as if
it were the only one changing. This model does not ex-
plicitly consider measurement delay, but we believe it is
a reasonable simplification (and experimental evidence
bears out the conclusions). We also conjecture the model
can be relaxed to allow for asynchrony. We discuss in §3
our implementation with practical optimizations of the
control algorithm.
Theorem 2 If all senders follow the above control al-
gorithm, for every sender j, x j converges to the domain
(x̂(1− ε)2, x̂(1+ ε)2), where x̂ denotes the sending rate
in the unique stable state.

It might seem surprising that PCC uses multiplicative
rate increase and decrease, yet achieves convergence and
fairness. If TCP used MIMD, in an idealized network
senders would often get the same back-off signal at the
same time, and so would take the same multiplicative
decisions in lockstep, with the ratio of their rates never
changing. In PCC, senders make different decisions.

Consider a 100 Mbps link with sender A at rate 90 Mbps
and B at 10 Mbps. When A experiments with slightly
higher and lower rates (1±ε)90 Mbps, it will find that it
should decrease its rate to get higher utility because when
it sends at higher than equilibrium rate, the loss rate dom-
inates the utility function. However, when B experiments
with (1 ± ε)10 Mbps it finds that loss rate increase is
negligible compared with its improved throughput. This
occurs precisely because B is responsible for little of the
congestion. In fact, this reasoning (and the formal proof
of the game dynamics) is independent of the step size that
the flows use in their experiments: PCC senders move
towards the convergence point, even if they use a hetero-
geneous mix of AIMD, AIAD, MIMD, MIAD or other
step functions. Convergence behavior does depend on
the choice of utility function, however.

2.3 Utility Function: Source of Flexibility
PCC carries a level of flexibility beyond TCP’s ar-
chitecture: the same learning control algorithm can
cater to different applications’ heterogeneous objectives
(e.g. latency vs. throughput) by using different util-
ity functions. For example, under TCP’s architecture,
latency based protocols [38, 52] usually contain differ-
ent hardwired mapping algorithms than loss-based pro-
tocols [31]. Therefore, without changing the control al-
gorithm, as Sivaraman et al. [47] recently observed, TCP
has to rely on different in-network active queue manage-
ment (AQM) mechanisms to cater to different applica-
tions’ objectives because even with fair queueing, TCP
is blind to applications’ objectives. However, by liter-
ally changing one line of code that describes the util-
ity function, PCC can flip from “loss-based” (§2.2) to
“latency-based” (§4.4) and thus caters to different appli-
cations’ objectives without the complexity and cost of
programmable AQMs [47]. That said, alternate utility
functions are a largely unexplored area of PCC; in this
work, we evaluate alternate utility functions only in the
context of fair queueing (§4.4).

2.4 Deployment
Despite being a significant architectural shift, PCC needs
only isolated changes. No router support: unlike ECN,
XCP [35], and RCP [25], there are no new packet fields
to be standardized and processed by routers. No new
protocol: The packet format and semantics can sim-
ply remain as in TCP (SACK, hand-shaking and etc.).
No receiver change: TCP SACK is enough feedback.
What PCC does change is the control algorithm within
the sender.

The remaining concern is how PCC safely replaces
and interacts with TCP. We observe that there are many
scenarios where critical applications suffer severely from
TCP’s poor performance and PCC can be safely de-
ployed by fully replacing or being isolated from TCP.
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First, when a network resource is owned by a single
entity or can be reserved for it, the owner can replace
TCP entirely with PCC. For example, some Content De-
livery Network (CDN) providers use dedicated network
infrastructure to move large amounts of data across con-
tinents [9, 10], and scientific institutes can reserve band-
width for exchanging huge scientific data globally [26].
Second, PCC can be used in challenging network condi-
tions where per-user or per-tenant resource isolation
is enforced by the network. Satellite Internet providers
are known to use per-user bandwidth isolation to allocate
the valuable bandwidth resource [15]. For data centers
with per-tenant resource isolation [30, 43, 44], an indi-
vidual tenant can use PCC safely within its virtual net-
work to address problems such as incast and improve
data transfer performance between data centers.

The above applications, where PCC can fully replace
or be isolated from TCP, are a significant opportunity for
PCC. But in fact, PCC does not depend on any kind of
resource isolation to work. In the public Internet, the
key issue is TCP friendliness. Using PCC with the util-
ity function described in §2.2 is not TCP friendly. How-
ever, we also study the following utility function which
incorporates latency: ui(x) = (Ti · Sigmoidα(Li − 0.05) ·
Sigmoidβ (

RT Tn−1
RT Tn

−1)−xi ·Li)/RT Tn where RT Tn−1 and
RT Tn are the average RTT of the previous and current
MI, respectively. In §4.3.1 we show that with this utility
function, PCC successfully achieves TCP friendliness in
various network conditions. Indeed, it is even possible
for PCC to be TCP friendly while achieving much higher
performance in challenging scenarios (by taking advan-
tage of the capacity TCP’s poor control algorithm leaves
unused). Overall, this is a promising direction but we
only take the first steps in this paper.

It is still possible that individual users will, due to
its significantly improved performance, decide to deploy
PCC in the public Internet with the default utility func-
tion. It turns out that the default utility function’s un-
friendliness to TCP is comparable to the common prac-
tice of opening parallel TCP connections used by web
browsers today [3], so it is unlikely to make the ecosys-
tem dramatically worse for TCP; see §4.3.2.

3 Prototype Design
We implemented a prototype of PCC in user space by
adapting the UDP-based TCP skeleton in the UDT [16]
package. Fig. 2 depicts our prototype’s components.

3.1 Performance Monitoring
As described in §2.1 and shown in Fig. 3, the time-
line is sliced into chunks of duration of Tm called the
Monitor Interval (MI). When the Sending Module sends
packets (new or retransmission) at a certain sending rate
instructed by the Performance-oriented Control Module,
the Monitor Module will remember what packets are sent
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Figure 2: PCC prototype design
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Figure 3: Performance monitoring process

out during each MI. As the SACK comes back from re-
ceiver, the Monitor will know what happened (received?
lost? RTT?) to each packet sent out during an MI. Taking
the example of Fig. 3, the Monitor knows what packets
were sent during MI1, spanning T0 to T0 +Tm. At time
T1, approximately one RTT after T0 +Tm, it has received
the SACKs for all packets sent out in MI1. The Moni-
tor aggregates these individual SACKs into meaningful
performance metrics including throughput, loss rate and
average RTT. The performance metrics are then com-
bined by a utility function; unless otherwise stated, we
use the utility function of §2.2. The result of this is that
we associate a control action of each MI (sending rate)
with its performance result (utility). This pair forms a
“micro-experiment” and is used by the performance ori-
ented control module.

To ensure there are enough packets in one monitor in-
terval, we set Tm to the maximum of (a) the time to send
10 data packets and (b) a uniform-random time in the
range [1.7,2.2] RTT. Again, we want to highlight that
PCC does not pause sending packets to wait for perfor-
mance results, and it does not decide on a rate and send
for a long time; packet transfer and measurement-control
cycles occur continuously.

Note that the measurement results of one MI can arrive
after the next MI has begun, and the control module can
decide to change sending rate after processing this result.
As an optimization, PCC will immediately change the
rate and “re-align” the current MI’s starting time with
the time of rate change without waiting for the next MI.

3.2 Control Algorithm
We designed a practical control algorithm with the gist
of the simple control algorithm described in §2.2.

Starting State: PCC starts at rate 2 ·MSS/RT T (i.e.,
3KB/RT T ) and doubles its rate at each consecutive mon-
itor interval (MI), like TCP. Unlike TCP, PCC does not
exit this starting phase because of a packet loss. Instead,
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it monitors the utility result of each rate doubling action.
Only when the utility decreases, PCC exits the starting
state, returns to the previous rate which had higher util-
ity (i.e., half of the rate), and enters the Decision Mak-
ing State. PCC could use other more aggressive startup
strategies, but such improvements could be applied to
TCP as well.

Decision Making State: Assume PCC is currently at
rate r. To decide which direction and amount to change
its rate, PCC conducts multiple randomized controlled
trials (RCTs). PCC takes four consecutive MIs and di-
vides them into two pairs (2 MIs each). For each pair,
PCC attempts a slightly higher rate r(1+ ε) and slightly
lower rate r(1 − ε), each for one MI, in random or-
der. After the four consecutive trials, PCC changes the
rate back to r and keeps aggregating SACKs until the
Monitor generates the utility value for these four trials.
For each pair i ∈ 1,2, PCC gets two utility measure-
ments U+

i ,U−
i corresponding to r(1 + ε),r(1 − ε) re-

spectively. If the higher rate consistently has higher util-
ity (U+

i >U−
i ∀i ∈ {1,2}), then PCC adjusts its sending

rate to rnew = r(1+ ε); and if the lower rate consistently
has higher utility then PCC picks rnew = r(1− ε). How-
ever, if the results are inconclusive, e.g. U+

1 > U−
1 but

U+
2 < U−

2 , PCC stays at its current rate r and re-enters
the Decision Making State with larger experiment granu-
larity, ε = ε+εmin. The granularity starts from εmin when
it enters the Decision Making State for the first time and
will increase up to εmax if the process continues to be in-
conclusive. This increase of granularity helps PCC avoid
getting stuck due to noise. Unless otherwise stated, we
use εmin = 0.01 and εmax = 0.05.

Rate Adjusting State: Assume the new rate after De-
cision Making is r0 and dir = ±1 is the chosen mov-
ing direction. In each MI, PCC adjusts its rate in that
direction faster and faster, setting the new rate rn as:
rn = rn−1 · (1 + n · εmin · dir). However, if utility falls,
i.e. U(rn) < U(rn−1), PCC reverts its rate to rn−1 and
moves back to the Decision Making State.

4 Evaluation

We demonstrate PCC’s architectural advantages over the
TCP family through diversified, large-scale and real-
world experiments: §4.1: PCC achieves its design
goal of consistent high performance. §4.2: PCC
can actually achieve much better fairness and conver-
gence/stability tradeoff than TCP. §4.3: PCC is prac-
tically deployable in terms of flow completion time
for short flows and TCP friendliness. §4.4: PCC has
a huge potential to flexibly optimize for applications’
heterogenous objectives with fair queuing in the net-
work rather than more complicated AQMs [47].

Transmission Pair RTT PCC SABUL CUBIC Illinois

GPO → NYSERNet 12 818 563 129 326
GPO → Missouri 47 624 531 80.7 90.1

GPO → Illinois 35 766 664 84.5 102
NYSERNet → Missouri 47 816 662 108 109

Wisconsin → Illinois 9 801 700 547 562
GPO → Wisc. 38 783 487 79.3 120

NYSERNet → Wisc. 38 791 673 134 134
Missouri → Wisc. 21 807 698 259 262

NYSERNet → Illinois 36 808 674 141 141

Table 1: PCC significantly outperforms TCP in inter-data
center environments. RTT is in msec; throughput in Mbps.

4.1 Consistent High Performance
We evaluate PCC’s performance under 8 real-world chal-
lenging network scenarios with with no algorithm tweak-
ing for different scenarios. Unless otherwise stated, all
experiments using the same default utility function of
§2.2. In the first 7 scenarios, PCC significantly outper-
forms specially engineered TCP variants.

4.1.1 Inter-Data Center Environment
Here we evaluate PCC’s performance in scenarios like
inter-data center data transfer [5] and dedicated CDN
backbones [9] where network resources can be isolated
or reserved for a single entity.

The GENI testbed [7], which has reservable bare-
metal servers across the U.S. and reservable band-
width [8] over the Internet2 backbone, provides us a rep-
resentative evaluation environment. We choose 9 pairs
of GENI sites and reserved 800Mbps end-to-end dedi-
cated bandwidth between each pair. We compare PCC,
SABUL [29], TCP CUBIC [31] and TCP Illinois [38]
over 100-second runs.

As shown in Table 1, PCC significantly outperforms
TCP Illinois, by 5.2× on average and up to 7.5×. It
is surprising that even in this very clean network, spe-
cially optimized TCPs still perform far from optimal. We
believe some part of the gain is because the bandwidth-
reserving rate limiter has a small buffer and TCP will
overflow it, unnecessarily decreasing rate and also intro-
ducing latency jitter that confuses TCP Illinois. (TCP
pacing will not resolve this problem; §4.1.5.) On the
other hand, PCC continuously tracks the optimal send-
ing rate by continuously measuring performance.

4.1.2 Satellite Links
Satellite Internet is widely used for critical missions such
as emergency and military communication and Inter-
net access for rural areas. Because TCP suffers from
severely degraded performance on satellite links that
have excessive latency (600ms to 1500ms RTT [14]) and
relatively high random loss rate [42], special modifica-
tions of TCP (Hybla [23], Illinois) were proposed and
special infrastructure has even been built [32, 50].

We test PCC against TCP Hybla (widely used in real-
world satellite communication), Illinois and CUBIC un-
der emulated satellite links on Emulab parameterized
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Figure 4: PCC outperforms special
TCP modifications on emulated satel-
lite links
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Figure 5: PCC is highly resilient to
random loss compared to specially-
engineered TCPs
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Figure 6: PCC achieves better RTT
fairness than specially engineered
TCPs

with the real-world measurements of the WINDs satel-
lite Internet system [42]. The satellite link has 800ms
RTT, 42Mbps capacity and 0.74% random loss. As
shown in Fig. 4, we vary the bottleneck buffer from
1.5KB to 1MB and compare PCC’s average through-
put against different TCP variants with 100 second trials.
PCC achieves 90% of optimal throughput even with only
a 7.5KB buffer (5 packets) at the bottleneck. However,
even with 1MB buffer, the widely used TCP Hybla can
only achieve 2.03Mbps which is 17× worse than PCC.
TCP Illinois, which is designed for high random loss tol-
erance, performs 54× worse than PCC with 1MB buffer.

4.1.3 Unreliable Lossy Links
To further quantify the effect of random loss, we set up a
link on Emulab with 100Mbps bandwidth, 30ms RTT
and varying loss rate. As shown in Fig. 5, PCC can
reach > 95% of achievable throughput capacity until loss
rate reaches 1% and shows relatively graceful perfor-
mance degradation from 95% to 74% of capacity as loss
rate increases to 2%. However, TCP’s performance col-
lapses very quickly: CUBIC’s performance collapses to
10× smaller than PCC with only 0.1% loss rate and 37×
smaller than PCC with 2% random loss. TCP Illinois
shows better resilience than CUBIC but throughput still
degrades severely to less than 10% of PCC’s throughput
with only 0.7% loss rate and 16× smaller with 2% ran-
dom loss. Again, PCC can endure random loss because
it looks at real utility: unless link capacity is reached,
a higher rate will always result in similar loss rate and
higher throughput, which translates to higher utility.

PCC’s performance does decrease to 3% of the opti-
mal achievable throughput when loss rate increases to
6% because we are using the “safe” utility function of
§2.2 that caps the loss rate to 5%1.

4.1.4 Mitigating RTT Unfairness
For unmodified TCP, short-RTT flows dominate long-
RTT flows on throughput. Subsequent modifications of

1Throughput does not decrease to 0% because the sigmoid function
is not a clean cut-off.

TCP such as CUBIC or Hybla try to mitigate this prob-
lem by making the expansion of the congestion window
independent of RTT. However, the modifications cause
new problems like parameter tuning (Hybla) and severely
affect stability on high RTT links (CUBIC) [31]. Be-
cause PCC’s convergence is based on real performance
not the control cycle length, it acts as an architectural
cure for the RTT unfairness problem. To demonstrate
that, on Emulab we set one short-RTT (10ms) and
one long-RTT (varying from 20ms to 100ms) network
path sharing the same bottleneck link of 100Mbit/s
bandwidth and buffer equal to the BDP of the short-RTT
flow. We run the long-RTT flow first for 5s, letting it
grab the bandwidth, and then let the short-RTT flow join
to compete with the long-RTT flow for 500s and calcu-
late the ratio of the two flows’ throughput. As shown in
Fig. 6, PCC achieves much better RTT fairness than New
Reno and even CUBIC cannot perform as well as PCC.

4.1.5 Small Buffers on the Bottleneck Link
TCP cannot distinguish between loss due to congestion
and loss simply due to buffer overflow. In face of high
BDP links, a shallow-buffered router will keep chop-
ping TCP’s window in half and the recovery process
is very slow. On the other hand, the practice of over-
buffering networks, in the fear that an under-buffered
router will drop packets or leave the network severely
under-utilized, results in bufferbloat [28], increasing la-
tency. This conflict makes choosing the right buffer size
for routers a challenging multi-dimensional optimization
problem [27,45,51] for network operators to balance be-
tween throughput, latency, cost of buffer memory, degree
of multiplexing, etc.

Choosing the right buffer size would be much less dif-
ficult if the transport protocol could efficiently utilize a
network with very shallow buffers. Therefore, we test
how PCC performs with a tiny buffer and compare with
TCP CUBIC, which is known to mitigate this problem.
Moreover, to address the concern that the performance
gain of PCC is merely due to PCC’s use of packet pac-
ing, we also test an implementation of TCP New Reno
with pacing rate of (congestionwindow)/(RT T ). We set
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Figure 7: PCC efficiently utilizes
shallow-buffered networks
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Figure 8: Across the public Internet,
PCC has ≥ 10× the performance of
TCP CUBIC on 41% of tested pairs
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Figure 9: PCC’s performance gain is
not merely due to TCP unfriendliness
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Figure 10: PCC can always track optimal sending rate even
with drastically changing network conditions

up on Emulab a network path with 30ms RTT, 100Mbps
bottleneck bandwidth and vary the network buffer
size from 1.5KB (one packet) to 375KB (1×BDP) and
compare the protocols’ average throughput over 100s.

As shown in 7, PCC only requires 6 · MSS (9 KB)
buffer to reach 90% capacity. With the same buffer,
CUBIC can only reach 2% capacity and even TCP with
packet pacing can only reach 30%. CUBIC requires 13×
more buffer than PCC to reach 90% throughput and takes
36× more buffer to close the 10% gap. Even with pacing,
TCP still requires 25× more buffer than PCC to reach
90% throughput. It is also interesting to notice that with
just a single-packet buffer, PCC’s throughput can reach
25% of capacity, 35× higher throughput than TCP CU-
BIC. The reason is that PCC constantly monitors the real
achieved performance and steadily tracks its rate at the
bottleneck rate without swinging up and down like TCP.
That means with PCC, network operators can use shal-
low buffered routers to get low latency without harm-
ing throughput.
4.1.6 Rapidly Changing Networks
The above scenarios are static environments. Next, we
study a network that changes rapidly during the test. We
set up on Emulab a network path where available band-
width, loss rate and RTT are all changing every 5
seconds. Each parameter is chosen independently from
a uniform random distribution with bandwidth ranging
from 10Mbps to 100Mbps, latency from 10ms to 100ms
and loss rate from 0% to 1%.

Figure 10 shows available bandwidth (optimal send-

ing rate), and the sending rate of PCC, CUBIC and Illi-
nois. Note that we show the PCC control algorithm’s
chosen sending rate (not its throughput) to get insight
into how PCC handles network dynamics. Even with
all network parameters rapidly changing, PCC tracks the
available bandwidth very well, unlike the TCPs. Over
the course of the experiment (500s), PCC’s throughput
averages 44.9Mbps, achieving 83% of the optimal, while
TCP CUBIC and TCP Illinois are 14× and 5.6× worse
than PCC respectively.

4.1.7 Big Data Transfer in the Wild
Due to its complexity, the commercial Internet is an at-
tractive place to test whether PCC can achieve consis-
tently high performance. We deploy PCC’s receiver on
85 globally distributed PlanetLab [17] nodes and senders
on 6 locations: five GENI [7] sites and our local server,
and ran experiments over a 2-week period in December
2013. These 510 sending-receiving pairs render a very
diverse testing environment with BDP from 14.3 KB to
18 MB.

We first test PCC against TCP CUBIC, the Linux ker-
nel default since 2.6.19; and also SABUL [16], a spe-
cial modification of TCP for high BDP links. For each
sender-receiver pair, we run TCP iperf between them for
100 seconds, wait for 500 seconds and then run PCC for
100 seconds to compare their average throughput. PCC
improves throughput by 5.52× at the median (Fig. 8).
On 41% of sender-receiver pairs, PCC’s improvement is
more than 10×. This is a conservative result because 4
GENI sites have 100Mbps bandwidth limits on their In-
ternet uplinks.

We also tested two other non-TCP transport proto-
cols on smaller scale experiments: the public releases
of PCP [12,20] (43 sending receiving pairs) and SABUL
(85 sending receiving pairs). PCP uses packet-trains [33]
to probe available bandwidth. However, as discussed
more in §5, this bandwidth probing is different from
PCC’s control based on empirically observed action-
utility pairs, and contains unreliable assumptions that can
yield very inaccurate sample results. SABUL, widely
used for scientific data transfer, packs a full set of boost-
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ing techniques: packet pacing, latency monitoring, ran-
dom loss tolerance, etc. However, SABUL still mechan-
ically hardwires control action to packet-level events.
Fig. 8 shows PCC outperforms PCP2 by 4.58× at the
median and 15.03× at the 90th percentile, and outper-
forms SABUL by 1.41× at the median and 3.39× at the
90th percentile. SABUL shows an unstable control loop:
it aggressively overshoots the network and then deeply
falls back. On the other hand, PCC stably tracks the op-
timal rate. As a result, SABUL suffers from 11% loss on
average compared with PCC’s 3% loss.

Is PCC’s performance gain merely due to TCP un-
friendliness of the default utility function? In fact,
PCC’s high performance gain should not be surprising
given our results in previous experiments, none of which
involved PCC and TCP sharing bandwidth. Neverthe-
less, we ran another experiment, this time with PCC us-
ing the more TCP-friendly utility function described in
§2.4 with β = 10 (its TCP friendliness is evaluated in
§ 4.3.1), from a server at UIUC3 to 134 PlanetLab nodes
in February 2015. Fig. 9 compares the results with the
default utility function (PCC d) and the friendlier util-
ity function (PCC f). PCC f still shows a median of
4.38× gain over TCP while PCC d shows 5.19×. For
50 pairs, PCC d yields smaller than 3% higher through-
put than PCC f and for the remaining 84 pairs, the me-
dian inflation is only 14%. The use of the PCC f utility
function does not fully rule out the possibility of TCP
unfriendliness, because our evaluation of its TCP friend-
liness (§4.3.1) does not cover all possible network sce-
narios involved in this experiment. However, it is highly
suggestive that the performance gain is not merely due to
TCP unfriendliness.

Instead, the results indicate that PCC’s advantage
comes from its ability to deal with complex network con-
ditions. In particular, geolocation revealed that the large-
gain results often involved cross-continent links. On
cross-continent links (68 pairs), PCC f yielded a median
gain of 25× compared with 2.33× on intra-continent
links (69 pairs). We believe TCP’s problem with cross-
continent links is not an end-host parameter tuning prob-
lem (e.g. sending/receiving buffer size), because there
are paths with similar RTT where TCP can still achieve
high throughput with identical OS and configuration.

4.1.8 Incast
Moving from wide-area networks to the data center,
we now investigate TCP incast [24], which occurs in
high bandwidth and low latency networks when mul-

2initial − rate = 1Mbps, poll − interval = 100µs. PCP in many
cases abnormally slows down (e.g. 1 packet per 100ms). We have not
determined whether this is an implementation bug in PCP or a more
fundamental deficiency. To be conservative, we excluded all such re-
sults from the comparison.

3The OS was Fedora 21 with kernel version 3.17.4-301.
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Figure 11: PCC largely mitigates TCP incast in a data center
environment
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(a) PCC maintains a stable rate with competing senders
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(b) TCP CUBIC shows high rate variance and unfairness at short time scales

Figure 12: PCC’s dynamics are much more stable than TCP
CUBIC with senders competing on a FIFO queue
tiple senders send data to one receiver concurrently,
causing throughput collapse. To solve the TCP incast
problem, many protocols have been proposed, includ-
ing ICTCP [55] and DCTCP [18]. Here, we demonstrate
PCC can achieve high performance under incast without
special-purpose algorithms. We deployed PCC on Emu-
lab [53] with 33 senders and 1 receiver.

Fig. 11 shows the goodput of PCC and TCP across
various flow sizes and numbers of senders. Each point
is the average of 15 trials. When incast congestion be-
gins to happen with roughly ≥ 10 senders, PCC achieves
roughly 60-80% of the maximum possible goodput, or
7-8× that of TCP. Note that ICTCP [55] also achieved
roughly 60-80% goodput in a similar environment. Also,
DCTCP’s goodput degraded with increasing number of
senders [18], while PCC’s is very stable.

4.2 Dynamic Behavior of Competing Flows
We proved in §2.2 that with our “safe” utility function,
competing PCC flows converge to a fair equilibrium from
any initial state. In this section, we experimentally show
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Figure 16: PCC has better reactiveness-stability tradeoff
than TCP, particularly with its RCT mechanism
that PCC is much more stable, more fair and achieves
a better tradeoff between stability and reactiveness
than TCP. PCC’s stability can immediately translate to
benefits for applications such as video streaming where
stable rate in presence of congestion is desired [34].

4.2.1 PCC is More Fair and Stable Than TCP
To compare PCC and TCP’s convergence process in ac-
tion, we set up a dumbbell topology on Emulab with
four senders and four receivers sharing a bottleneck
link with 30ms RTT, 100Mbps bandwidth. Bottleneck
router buffer size is set to the BDP to allow CUBIC to
reach full throughput.

The data transmission of the four pairs initiates se-
quentially with a 500s interval and each pair transmits
continuously for 2000s. Fig. 12 shows the rate conver-
gence process for PCC and CUBIC respectively with 1s
granularity. It is visually obvious that PCC flows con-
verge much more stably than TCP, which has surpris-
ingly high rate variance. Quantitatively, we compare
PCC’s and TCP’s fairness ratio (Jain’s index) at differ-
ent time scales (Fig. 13). Selfishly competing PCC flows
achieve better fairness than TCP at all time scales.

4.2.2 PCC has better Stability-Reactiveness trade-
off than TCP

Intuitively, PCC’s control cycle is “longer” than TCP due
to performance monitoring. Is PCC’s significantly bet-
ter stability and fairness achieved by severely sacrificing
convergence time?

We set up two sending-receiving pairs sharing a bot-
tleneck link of 100Mbps and 30ms RTT. We conduct the
experiment by letting the first flow, flow A, come in the
network for 20s and then let the second flow, flow B,
begin. We define the convergence time in a “forward-
looking” way: we say flow B’s convergence time is the
smallest t for which throughput in each second from t
to t + 5s is within ±25% of the ideal equal rate. We
measure stability by measuring the standard deviation of
throughput of flow B for 60s after convergence time. All
results are averaged over 15 trials. PCC can achieve var-

ious points in the stability-reactiveness trade-off space
by adjusting its parameters: higher step size εmin and
lower monitor interval Tm result in faster convergence
but higher throughput variance. In Fig. 16, we plot a
trade-off curve for PCC by choosing a range of different
settings of these parameters.4 There is a clear conver-
gence speed and stability trade-off: higher εmin and lower
Tm result in faster convergence and higher variance and
vice versa. We also show six TCP variants as individual
points in the trade-off space. The TCPs either have very
long convergence time or high variance. On the other
hand, PCC achieves a much better trade-off. For exam-
ple, PCC with Tm = 1.0 ·RT T and εmin = 0.02 achieves
the same convergence time and 4.2× smaller rate vari-
ance than CUBIC.

Fig. 16 also shows the benefit of the RCT mecha-
nism described in §3.2. While the improvement might
look small, it actually helps most in the “sweet spot”
where convergence time and rate variance are both small,
and where improvements are most difficult and most
valuable. Intuitively, with a long monitor interval, PCC
gains enough information to make a low-noise decision
even in a single interval. But when it tries to make
reasonably quick decisions, multiple RCTs help sepa-
rate signal from noise. Though RCT doubles the time
to make a decision in PCC’s Decision State, the conver-
gence time of PCC using RCT only shows slight increase
because it makes better decisions. With Tm = 1.0 ·RT T
and εmin = 0.01, RCT trades 3% increase in convergence
time for 35% reduction in rate variance.

4.3 PCC is Deployable
4.3.1 A Promising Solution to TCP Friendliness

30ms 60ms 90ms

β = 10
10Mbit/s 0.94 0.75 0.67
50Mbit/s 0.74 0.73 0.81
90Mbit/s 0.89 0.91 1.01

β = 100
10Mbit/s 0.71 0.58 0.63
50Mbit/s 0.56 0.58 0.54
90Mbit/s 0.63 0.62 0.88

Table 2: PCC can be TCP friendly

To illustrate that PCC does not have to be TCP un-
friendly, we evaluate the utility function proposed in
§ 2.4. We initiate two competing flows on Emulab: a
reference flow running TCP CUBIC, and a competing
flow running either TCP CUBIC or PCC, under vari-
ous bandwidth and latency combinations with bottleneck
buffer always equal to the BDP. We compute the ratio
of average (over five runs) of throughput of reference
flow when it competes with CUBIC, divided by the same
value when it competes with PCC. If the ratio is smaller
than 1, PCC is more friendly than CUBIC. As shown in

4We first fix εmin at 0.01 and vary the length of Tm from 4.8×RTT
down to 1×RTT. Then we fix Tm at 1×RTT and vary εmin from 0.01
to 0.05. This is not a full exploration of the parameter space, so other
settings might actually achieve better trade-off points.
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Figure 13: PCC achieves better fair-
ness and convergence than TCP CU-
BIC
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Figure 14: The default PCC utility
function’s TCP unfriendliness is simi-
lar to common selfish practice
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Figure 15: PCC can achieve flow
completion time for short flows simi-
lar to TCP

Table 2, PCC is already TCP friendly and with β = 100,
PCC’s performance is dominated by TCP. We consider
this only a first step towards a TCP friendliness evalu-
ation because these results also indicate PCC’s friendli-
ness can depend on the network environment. However,
this initial result shows promise in finding a utility func-
tion that is sufficiently TCP friendly while also offering
higher performance (note that this same utility function
achieved higher performance than TCP in § 4.1.7).
4.3.2 TCP Friendliness of Default Utility Function
Applications today often adopt “selfish” practices to im-
prove performance [3]; for example, Chrome opens be-
tween 6 (default) and 10 (maximum) parallel connec-
tions and Internet Explorer 11 opens between 13 and
17. We compare the unfriendliness of PCC’s default util-
ity function with these selfish practices by running two
competing streams: one with a single PCC flow and the
other with parallel TCP connections like the aforemen-
tioned web browsers. Fig. 14 shows the ratio of PCC’s
throughput to the total of the parallel TCP connections,
over 100 seconds averaging over 5 runs under different
bandwidth and RTT combinations. As shown in Fig. 14,
PCC is similarly aggressive to 13 parallel TCP connec-
tions (IE11 default) and more friendly than 17 (IE11
maximum). Therefore, even using PCC’s default utility
function in the wild may not make the ecosystem dra-
matically worse for TCP. Moreover, simply using paral-
lel connections cannot achieve consistently high perfor-
mance and stability like PCC and initiating parallel con-
nections involves added overhead in many applications.
4.3.3 Flow Completion Time for Short Flows
Will the “learning” nature of PCC harm flow completion
time (FCT)? In this section, we resolve this concern by
showing that with a startup phase similar to TCP (§3),
PCC achieves similar FCT for short flows.

We set up a link on Emulab with 15 Mbps band-
width and 60ms RTT. The sender sends short flows of
100KB each to receiver. The interval between two short
flows is exponentially distributed with mean interval cho-
sen to control the utilization of the link. As shown in
Fig. 15, with network load ranging from 5% to 75%,

PCC achieves similar FCT at the median and 95th per-
centile. The 95th percentile FCT with 75% utilization is
20% longer than TCP. However, we believe this is a solv-
able engineering issue. The purpose of this experiment
is to show PCC does not fundamentally harm short flow
performance. There is clearly room for improvement in
the startup algorithm of all these protocols, but optimiza-
tion for fast startup is intentionally outside the scope of
this paper because it is a largely separate problem.

4.4 Flexiblity of PCC: An Example
In this section, we show a unique feature of PCC: ex-
pressing different data transfer objectives by using dif-
ferent utility functions. Because TCP is blind to the ap-
plication’s objective, a deep buffer (bufferbloat) is good
for throughput-hungry applications but will build up long
latency that kills performance of interactive applications.
AQMs like CoDel [41] limits the queue to maintain low
latency but degrades throughput. To cater to different
applications’ objective with TCP running on end hosts,
it has been argued that programmable AQMs are needed
in the network [47]. However, PCC can accomplish this
with simple per-flow fair queuing (FQ). We only eval-
uate this feature in a per-flow fair queueing (FQ) envi-
ronment; with a FIFO queue, the utility function may
(or may not) affect dynamics and we leave that to fu-
ture work. Borrowing the evaluation scenario from [47],
an interactive flow is defined as a long-running flow that
has the objective of maximizing its throughput-delay ra-
tio, called the power. To make our point, we show that
PCC + Bufferbloat + FQ has the same power for interac-
tive flows as PCC + CoDel + FQ, and both have higher
power than TCP + CoDel + FQ.

We set up a transmission pair on Emulab with 40Mbps
bandwidth and 20ms RTT link running a CoDel imple-
mentation [4] with AQM parameters set to their default
values. With TCP CUBIC and two simultaneous interac-
tive flows, TCP + CoDel + FQ achieves 493.8Mbit/s2,
which is 10.5× more power than TCP + Bufferbloat +
FQ (46.8Mbit/s2).

For PCC, we use the following utility function mod-
ified from the default to express the objective of inter-
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active flows: ui(xi) = (Ti · Sigmoid(Li − 0.05) · RT Tn−1
RT Tn

−
xiLi)/RT Tn where RT Tn−1 and RT Tn are the average
RTT of the previous and current MIs, respectively. This
utility function expresses the objective of low latency
and avoiding latency increase. With this utility function,
we put PCC into the same test setting of TCP. Surpris-
ingly, PCC + Bufferbloat + FQ and PCC + CoDel + FQ
achieve essentially the same power for interactive flows
(772.8Mbit/s2 and 766.3Mbit/s2 respectively). This is
because PCC was able to keep buffers very small: we ob-
served no packet drop during the experiments even with
PCC + CoDel + FQ so PCC’s self-inflicted latency never
exceeded the latency threshold of CoDel. That is to say,
CoDel becomes useless when PCC is used in end-hosts.
Moreover, PCC + Bufferbloat + FQ achieves 55% higher
power than TCP + CoDel + FQ, indicating that even with
AQM, TCP is still suboptimal at realizing the applica-
tions’ transmission objective.

5 Related work
It has long been clear that TCP lacks enough informa-
tion, or the right information, to make optimal rate con-
trol decisions. XCP [35] and RCP [22] solved this by
using explicit feedback from the network to directly set
the sender’s rate. But this requires new protocols, router
hardware, and packet header formats, so deployment is
rare.

Numerous designs modify TCP, e.g. [23,31,38,52,55],
but fail to acheive consistent high performance, because
they still inherit TCP’s hardwired mapping architecture.
As we evaluated in § 4, they partially mitigate TCP’s
problems in the specially assumed network scenarios
but still suffer from performance degradation when their
assumptions are violated. As another example, FAST
TCP [52] uses prolonged latency as a congestion sig-
nal for high BDP connections. However, it models the
network queue in an ideal way and its performance de-
grades under RTT variance [21], incorrect estimation of
baseline RTT [49] and when competing with loss-based
TCP protocols.

The method of Remy and TAO [48, 54] pushes TCP’s
architecture to the extreme: it searches through a large
number of hardwired mappings under a network model
with assumed parameters, e.g. number of senders, link
speed, etc., and finds the best protocol under that sim-
ulated scenario. However, like all TCP variants, when
the real network deviates from Remy’s input assumption,
performance degrades [48]. Moreover, random loss and
many more real network “parameters” are not considered
in Remy’s network model and the effects are unclear.

Works such as PCP [20] and Packet Pair Flow Con-
trol [37] utilize techniques like packet-trains [33] to
probe available bandwidth in the network. However,
bandwidth probing protocols do not observe real perfor-

mance like PCC does and make unreliable assumptions
about the network. For example, real networks can easily
violate the assumptions about packet inter-arrival latency
embedded in BP (e.g. latency jitter due to middleboxes,
software routers or virtualization layers), rendering in-
correct estimates that harm performance.

Several past works also explicitly quantify utility.
Analysis of congestion control as a global optimiza-
tion [36, 40] implemented by a distributed protocol is
not under the same framework as our analysis, which de-
fines a utility function and finds the global Nash equi-
librium. Other work explicitly defines a utility func-
tion for a congestion control protocol, either local [19]
or global [48, 54]. However, the resulting control algo-
rithms are still TCP-like hardwired mappings, whereas
each PCC sender optimizes utility using a learning algo-
rithm that obtains direct experimental evidence of how
sending rate affects utility. Take Remy and TAO again
as an example: there is a global optimization goal, used
to guide the choice of protocol; but at the end of day the
senders use hardwired control to attempt to optimize for
that goal, which can fail when those assumptions are vi-
olated and moreover, one has to change the hardwired
mapping if the goal changes.

6 Conclusion
This paper made the case that Performance-oriented
Congestion Control, in which senders control their rate
based on direct experimental evidence of the connection
between their actions and performance, offers a promis-
ing new architecture to achieve consistent high perfor-
mance. Within this architecture, many questions re-
main. One major area is in the choice of utility func-
tion: Is there a utility function that provably converges
to a Nash equilibrium while being TCP friendly? Does
a utility function which incorporates latency—clearly
a generally-desirable objective—provably converge and
experimentally perform as well as the default utility
function used in most of our evaluation? More practi-
cally, our (userspace, UDP-based) prototype software en-
counters problems with accurate packet pacing and han-
dling many flows as it scales.
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Abstract
Numerous recent research efforts have explored the use
of Graphics Processing Units (GPUs) as accelerators for
software-based routing and packet handling applications,
typically demonstrating throughput several times higher
than using legacy code on the CPU alone.

In this paper, we explore a new hypothesis about such
designs: For many such applications, the benefits arise
less from the GPU hardware itself as from the expression
of the problem in a language such as CUDA or OpenCL
that facilitates memory latency hiding and vectorization
through massive concurrency. We demonstrate that in sev-
eral cases, after applying a similar style of optimization to
algorithm implementations, a CPU-only implementation
is, in fact, more resource efficient than the version running
on the GPU. To “raise the bar” for future uses of GPUs
in packet processing applications, we present and eval-
uate a preliminary language/compiler-based framework
called G-Opt that can accelerate CPU-based packet han-
dling programs by automatically hiding memory access
latency.

1 Introduction
The question of matching hardware architectures to net-
working requirements involves numerous trade-offs be-
tween flexibility, the use of off-the-shelf components, and
speed and efficiency. ASIC implementations are fast, but
relatively inflexible once designed, and must be produced
in large quantities to offset the high development costs.
Software routers are as flexible as code, but have compar-
atively poor performance, in packets-per-second (pps), as
well as in cost (pps/$) and energy efficiency (pps/watt).
Both ends of the spectrum are successful: Software-based
firewalls are a popular use of the flexibility and affordabil-
ity of systems up to a few gigabits per second; commodity
Ethernet switches based on high-volume ASICs achieve
seemingly unbeatable energy and cost efficiency.

In the last decade, several potential middle grounds
emerged, from network forwarding engines such as the
Intel IXP, to FPGA designs [12], and, as we focus on in
this paper, to the use of commodity GPUs. Understanding
the advantages of these architectures, and how to best
exploit them, is important both in research (software-

based implementations are far easier to experiment with)
and in practice (software-based approaches are used for
low-speed applications and in cases such as forwarding
within virtual switches [13]).

Our goal in this paper is to advance understanding of
the advantages of GPU-assisted packet processors com-
pared to CPU-only designs. In particular, noting that
several recent efforts have claimed that GPU-based de-
signs can be faster even for simple applications such as
IPv4 forwarding [23, 43, 31, 50, 35, 30], we attempt to
identify the reasons for that speedup. At the outset of this
work, we hypothesized that much of the advantage came
from the way the GPUs were programmed, and that less
of it came from the fundamental hardware advantages
of GPUs (computational efficiency from having many
processing units and huge memory bandwidth).

In this paper, we show that this hypothesis appears
correct. Although GPU-based approaches are faster than
a straightforward implementation of various forwarding
algorithms, it is possible to transform the CPU implemen-
tations into a form that is more resource efficient than
GPUs.

For many packet processing applications, the key ad-
vantage of a GPU is not its computational power, but that
it can transparently hide the 60-200ns of latency required
to retrieve data from main memory. GPUs do this by
exploiting massive parallelism and using fast hardware
thread switching to switch between sets of packets when
one set is waiting for memory. We demonstrate that in-
sights from code optimization techniques such as group
prefetching and software pipelining [17, 51] apply to typ-
ical CPU packet handling code to boost its performance.
In many cases, the CPU version is more resource efficient
than the GPU, and delivers lower latency because it does
not incur the additional overhead of transferring data to
and from the GPU.

Finally, to make these optimizations more widely us-
able, both in support of practical implementations of soft-
ware packet processing applications, and to give future
research a stronger CPU baseline for comparison, we
present a method to automatically transform data struc-
ture lookup code to overlap its memory accesses and com-
putation. This automatically transformed code is up to
1.5-6.6x faster than the baseline code for several common
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Figure 1: Simplified architecture of an NVIDIA GTX 650. The
global memory is not shown.

lookup patterns, and its performance is within 10% of
our hand-optimized version. By applying these optimiza-
tions, we hope to “raise the bar” for future architectural
comparisons against the baseline CPU-based design.

2 Strengths and weaknesses of
GPUs for packet processing

In this section, we first provide relevant background on
GPU architecture and programming, and discuss the rea-
sons why previous research efforts have used GPUs as
accelerators for packet processing applications. Then,
we show how the fundamental differences between the
requirements of packet processing applications and con-
ventional graphics applications make GPUs less attractive
for packet processing than people often assume. Through-
out this paper, we use NVIDIA and CUDA’s terminology
for GPU architecture and programming model, but we
believe that our discussion and conclusions apply equally
to other discrete GPUs (e.g., GPUs using OpenCL).

2.1 GPU strengths: vectorization and
memory latency hiding

A modern CUDA-enabled GPU (Figure 1) consists of a
large number of processing cores grouped into Streaming
Multiprocessors (SMs). It also contains registers, a small
amount of memory in a cache hierarchy, and a large global
memory. The code that runs on a GPU is called a kernel,
and is executed in groups of 32 threads called warps.
The threads in a warp follow a SIMT (Single Instruction,
Multiple Thread) model of computation: they share an
instruction pointer and execute the same instructions. If
the threads “diverge” (i.e., take different execution paths),
the GPU selectively disables the threads as necessary to
allow them to execute correctly.

Vectorization: The large number of processing cores
on a GPU make it attractive as a vector processor for pack-
ets. Although network packets do have some inter-packet
ordering requirements, most core networking functions
such as lookups, hash computation, or encryption can be
executed in parallel for multiple packets at a time. This

parallelism is easily accessible to the programmer through
well-established GPU-programming frameworks such as
CUDA and OpenCL. The programmer writes code for a
single thread; the framework automatically runs this code
with multiple threads on multiple processors.

Comparison with CPUs: The AVX2 vector instruction
set in the current generation of Intel processors has 256-
bit registers that can process 8 32-bit integers in parallel.
However, the programming language support for CPU-
based vectorization is still maturing [8].

Memory latency hiding: Packet processing applica-
tions often involve lookups into large data structures kept
in DRAM. Absent latency-hiding, access to these struc-
tures will stall execution while it completes (300-400
cycles for NVIDIA’s GPUs). Modern GPUs hide latency
using hardware. The warp scheduler in an SM holds up
to 64 warps to run on its cores. When threads in a warp
access global memory, the scheduler switches to a differ-
ent warp. Each SM has thousands of registers to store
the warp-execution context so that this switching does not
require explicitly saving and restoring registers.

Comparison with CPUs: Three architectural features
in modern CPUs enable memory latency hiding. First,
CPUs have a small number of hardware threads (typically
two) that can run on a single core, enabling ongoing com-
putation when one thread is stalled on memory. Unfortu-
nately, while each core can maintain up to ten outstanding
cache misses [51], hyperthreading can only provide two
“for free”. Second, CPUs provide both hardware and
software-managed prefetching to fetch data from DRAM
into caches before it is needed. And third, after issuing a
DRAM access, CPUs can continue executing independent
instructions using out-of-order execution. These features,
however, are less able to hide latency in unmodified code
than the hardware-supported context switches on GPUs,
and leave ample room for improvement using latency-
hiding code optimizations (Section 3).

2.2 GPU weaknesses: setup overhead and
random memory accesses

Although GPUs have attractive features for accelerating
packet processing, two requirements of packet processing
applications make GPUs a less attractive choice:

Many networking applications require low latency.
For example, it is undesirable for a software router in
a datacenter to add more than a few microseconds of la-
tency [20]. In the measurement setup we use in this paper,
the RTT through an unloaded CPU-based forwarder is
16µs. Recent work in high-performance packet process-
ing reports numbers from 12 to 40µs [32, 51].

Unfortunately, merely communicating from the CPU
to the GPU and back may add more latency than the
total RTT of these existing systems. For example, it
takes ∼ 15µs to transfer one byte to and from a GPU,
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and ∼ 5µs to launch the kernel [33]. Moreover, GPU-
accelerated systems must assemble large batches of pack-
ets to process on the GPU in order to take advantage of
their massive parallelism and amortize setup and transfer
costs. This batching further increases latency.

Networking applications often require random mem-
ory accesses into data structures, but the memory subsys-
tem in GPUs is optimized for contiguous access. Under
random accesses, GPUs lose a significant fraction of their
memory bandwidth advantage over CPUs.

We now discuss these two factors in more detail. Then,
keeping these two fundamental factors in mind, we per-
form simple experiments through which we seek to an-
swer the following question: When is it beneficial to
offload random memory accesses or computation to a
GPU?

2.3 Experimental Setup
We perform our measurements on three CPUs and three
GPUs, representing the low, mid, and high end of the
recent CPU and GPU markets. Table 1 shows their rel-
evant hardware specifications and cost. All prices are
from http://www.newegg.com as of 9/2014. The K20
connects to an AMD Opteron 6272 socket via PCIe 2.0
x16, the GTX 980 to a Xeon E5-2680 via PCIe 2.0 x16,
and the GTX 650 to an i7-4770 via PCIe 3.0 x16.

2.4 Latency of CPU-GPU communication
We first measure the minimum time required to involve a
GPU in a computation—the minimum extra latency that
a GPU in a software router will add to every packet. In
this experiment, the host transfers an input array with N
32-bit integers to the GPU, the GPU performs negligible
computations on the array, and generates an output array
with the same size. To provide a fair basis for comparison
with CPUs, we explored the space of possible methods
for this CPU-GPU data exchange in search of the best,
and present results from two methods here:

Asynchronous CUDA functions: This method per-
forms memory copies and kernel launch using asyn-
chronous functions (e.g., cudaMemcpyAsync) provided
by the CUDA API. Unlike synchronous CUDA functions,
these functions can reduce the total processing time by
overlapping data-copying with kernel execution. Figure 2
shows the timing breakdown for the different functions.
We define the time taken for an asynchronous CUDA
function call as the time it takes to return control to the
calling CPU thread. The extra time taken to complete all
the pending asynchronous functions is shown separately.

Polling on mapped memory: To avoid the overhead
of CUDA functions, we tried using CUDA’s mapped mem-
ory feature that allows the GPU to access the host’s mem-
ory over PCIe. We perform CPU-GPU communication
using mapped memory as follows. The CPU creates the
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input array and a flag in the host memory and raises the
flag when the input is ready. CUDA threads continuously
poll the flag and read the input array when they notice
a raised flag. After processing, they update the output
array and start polling for the flag to be raised again. This
method does not use any CUDA functions in the critical
path, but all accesses to mapped memory (reading the flag,
reading the input array, and writing to the output array)
that come from CUDA threads lead to PCIe transactions.

Figure 3 shows the time taken for this process with
different values of N . The solid lines show the results
with polling on mapped memory, and the dotted lines
use the asynchronous CUDA functions. For small values
of N , avoiding the CUDA driver overhead significantly
reduces total time. However, polling generates a linearly
increasing number of PCIe transactions as N increases,
and becomes slower than CUDA functions for N ∼ 1000.
As GPU-offloading generally requires larger batch sizes to
be efficient, we only use asynchronous CUDA functions
in the rest of this work.

2.5 GPU random memory access speed
Although GPUs have much higher sequential memory
bandwidth than CPUs (Table 1), they lose a significant
fraction of their advantage when memory accesses are
random, as in data structure lookups in many packet pro-
cessing applications. We quantify this loss by measuring
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Name # of cores Memory b/w Arch., Lithography Released Cost Random Access Rate
Xeon E5-2680 8 51.2 GB/s SandyBridge, 32nm 2012 $1,748 595 M/s
Xeon E5-2650 v2 8 59.7 GB/s IvyBridge, 22nm 2013 $1,169 464 M/s
i7-4770 4 25.6 GB/s Haswell, 22nm 2013 $309 262 M/s

Tesla K20 2,496 208 GB/s Kepler, 28nm 2012 $2,848 792 M/s
GTX 980 2048 224 GB/s Maxwell, 28nm 2014 $560 1260 M/s
GTX 650 Ti 768 86.4 GB/s Kepler, 28nm 2012 $130 597 M/s

Table 1: CPU and GPU specifications, and measured random access rate

the random access rate of CPUs and GPU as follows. We
create a 1 GB array L containing a random permutation
of {0, . . . ,228 − 1}, and an array H of B random offsets
into L, and pre-copy them to the GPU’s memory. In the
experiment, each element of H is used to follow a chain
of random locations in L by executing H[i] = L[H[i]]
D times. For maximum memory parallelism, each GPU
thread handles one chain, whereas each CPU core handles
all the chains simultaneously. Then, the random access
rate is B∗D

t , where t is the time taken to complete the
above process.

Table 1 shows the rate achieved for different CPUs and
GPUs with D = 10, and the value of B that gave the
maximum rate (B = 16 for CPUs, B = 219 for GPUs).1
Although the advertised memory bandwidth of a GTX
980 (224 GB/s) is 4.37x of a Xeon E5-2680, our measured
random access rate is only 2.12x. This reduction in GPU
bandwidth is explained by the inability of its memory
controller to coalesce memory accesses done by different
threads in a warp. The coalescing optimization is only
done when the warp’s threads access contiguous memory,
which rarely happens in our experiment.

2.6 When should we offload to a GPU?
Given that involving GPUs takes several microseconds,
and their random memory access rate is not much higher
than that of CPUs, it is intriguing to find out in which sce-
narios GPU-offloading is really beneficial. Here, we focus
on two widely-explored tasks from prior work: random
memory accesses and expensive computations. In the rest
of this paper, all experiments are done on the E5-2680
machine with the GTX 980 GPU.

2.6.1 Offloading random memory accesses

Lookups in pointer-based data structures such as
IPv4/IPv6 tries and state machines follow a chain of
mostly random pointers in memory. To understand the
benefit of offloading these memory accesses to GPUs, we
perform the experiment in Section 2.5, but include the
time taken to transfer H to and from the GPU. H represents
a batch of header addresses used for lookups in packet
processing. We set B (the size of the batch) to 8192—
slightly higher than the number of packets arriving in
100µs on our 40 Gbps network. We use different values

1The K20’s rate increases to 1390 M/s if L is smaller than 256 MB.

of D, representing the variation in the number of pointer-
dereferencing operations for different data structures.

Figure 4a plots the number of headers processed per
second for the GPU and different numbers of CPU cores.
As D increases, the overhead of the CUDA function calls
gets amortized and the GPU outperforms an increasing
number of CPU cores. However for D ≤ 4, the CPU
outperforms the GPU, indicating that offloading ≤ 4 de-
pendent memory accesses (e.g., IPv4 lookups in Packet-
Shader [23] and GALE [50]) should be slower than using
the CPU only.

2.6.2 Offloading expensive computation

Although GPUs can provide substantially more comput-
ing power than CPUs, the gap decreases significantly
when we take the communication overhead into account.
To compare the computational power of GPUs and CPUs
for varying amounts of offloaded computation, we per-
form a sequence of D dependent CityHash32 [4] opera-
tions on a each element of H (B is set to 8192).

Figure 4b shows that the CPU outperforms the GPU
if D ≤ 3. Computing 3 CityHashes takes ∼ 40ns on
one CPU core. This time frame allows for a reasonable
amount of computation before it makes sense to switch to
GPU offloading. For example, a CPU core can compute
the cryptographically stronger Siphash [16] of a 16-byte
string in ∼ 36ns.

3 Automatic DRAM latency hiding
for CPUs

The section above showed that CPUs support respectable
random memory access rates. However, achieving these
rates is challenging: CPUs do not have hardware sup-
port for fast thread switching that enables latency hiding
on GPUs. Furthermore, programs written for GPUs in
CUDA or OpenCL start from the perspective of process-
ing many (mostly)-independent packets, which facilitates
latency hiding.

The simple experiment in the previous section saturated
the CPU’s random memory access capability because of
its simplicity. Our code was structured such that each
core issued B independent memory accesses—one for
each chain—in a tight loop. The CPU has a limited win-
dow for reordering and issuing out-of-order instructions.
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Figure 4: Comparison of CPU and GPU performance for com-
monly offloaded tasks. Note the log scale on Y axis.

When memory accesses are independent and close in
the instruction stream, the CPU can hide the latency by
issuing subsequent accesses before the first completes.
However, as described below, re-structuring and optimiz-
ing real-world applications in this manner is tedious or
inefficient.

A typical unoptimized packet-processing program oper-
ates by getting a batch of packets from the NIC driver, and
then processing the packets one by one. Memory accesses
within a packet are logically dependent on each other, and
the memory accesses across multiple packets are spaced
far apart in the instruction stream. This reduces or elim-
inates the memory latency-hiding effect of out-of-order
execution. Our goal, then, is to (automatically) restructure
this CPU code in a way that hides memory latency.

In this section, we first discuss existing techniques for
optimizing CPU programs to hide their memory access
latency. As these techniques are not suited to automati-
cally hiding DRAM latency, we present a new technique
called G-Opt that achieves this goal for programs with
parallel data structure lookups. Although the problem of
automatic parallelization and latency hiding in general
is hard, certain common patterns in packet processing
applications can be handled automatically. G-Opt hides
the DRAM latency for parallel lookups that observe the
same constraints as their CUDA implementations: inde-
pendence across lookups and read-only data structures.

1 find(entry_t *h_table, key_t *K,value_t *V) {
2 int i;
3 for(i = 0; i < B; i ++) {
4 int entry_idx = hash(K[i]);
5 // g_expensive (&h_table[entry_idx]);
6 value_t *v_ptr = h_table[entry_idx].v_ptr;
7 if(v_ptr != NULL) {
8 // g_expensive (v_ptr);
9 V[i] = *v_ptr;

10 } else {
11 V[i] = NOT_FOUND;
12 }
13 }
14 }

Figure 5: Naive batched hash table lookup.

3.1 Existing techniques for hiding memory
access latency

3.1.1 Group prefetching

Group prefetching hides latency by processing a batch
of lookups at once and by using memory prefetches in-
stead of memory accesses. In a prefetch, the CPU issues
a request to load a given memory location into cache, but
does not wait for the request to complete. By intelligently
scheduling independent instructions after a prefetch, use-
ful work can be done while the prefetch completes. This
“hiding” of prefetch latency behind independent instruc-
tions can increase performance significantly.

A data structure lookup often consists of a series of de-
pendent memory accesses. Figure 5 shows a simple imple-
mentation of a batched hash table lookup function. Each
invocation of the function processes a batch of B lookups.
Each hash table entry contains an integer key and a pointer
to a value. For simplicity, we assume for now that there
are no hash collisions. There are three steps for each
lookup in the batch: hash computation (line 4), accessing
the hash table entry to get the value pointer (line 6), and
finally accessing the value (line 9). Within a lookup, each
step depends on the previous one: there are no indepen-
dent instructions that can be overlapped with prefetches.
However, independent instructions do exist if we consider
the different lookups in the batch [17, 51].

Figure 6 is a variant of Figure 5 with the group prefetch-
ing optimization. It splits up the lookup code into three
stages, delimited by the expensive memory accesses in
the original code. We define an expensive memory access
as a memory load operation that is likely to miss all levels
of cache and hit DRAM. The optimized code does not
directly access the hash table entry after computing the
hash for a lookup key; it issues a prefetch for the entry and
proceeds to compute the hash for the remaining lookups.
By doing this, it does not stall on a memory lookup for
the hash table entry and instead overlaps the prefetch with
independent instructions (hash computation and prefetch
instructions) from other lookups.
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1 find(entry_t *h_table, key_t *K,value_t *V) {
2 int entry_idx[B], i;
3 value_t *v_ptr[B];
4 // Stage 1: Hash-Computation
5 for(i = 0; i < B; i ++) {
6 entry_idx[i] = hash(K[i]);
7 prefetch(&h_table[entry_idx[i]]);
8 }
9

10 // Stage 2: Access hash table entry
11 for(i = 0; i < B; i ++) {
12 v_ptr[i] = h_table[entry_idx[i]].v_ptr;
13 prefetch(v_ptr[i]);
14 }
15
16 // Stage 3: Access value
17 for(i = 0; i < B; i ++) {
18 if(v_ptr[i] != NULL) {
19 V[i] = *v_ptr[i];
20 } else {
21 V[i] = NOT_FOUND;
22 }
23 }
24 }

Figure 6: Batched lookup with group prefetching.

Unfortunately, group prefetching does not apply triv-
ially to general lookup code because of control divergence.
It requires dividing the code linearly into stages, which is
difficult for code with complicated control flow. Even if
such a linear layout were possible, control divergence will
require a possibly large number of masks to record the
execution paths taken by different lookups. Divergence
also means that fewer lookups from a batch will enter
later stages, reducing the number of instructions available
to overlap with prefetches.

3.1.2 Fast context switching

In Grappa [36], fast context switching among lightweight
threads is used to hide the latency of remote memory ac-
cesses over InfiniBand. After issuing a remote memory
operation, the current thread yields control in an attempt
to overlap the remote operation’s execution with work
from other threads. The minimum reported context switch
time, 38 nanoseconds, is sufficiently small compared to
remote memory accesses that take a few microseconds to
complete. Importantly, this solution (like the hardware
context switches on GPUs) is able to handle the control
divergence of general packet processing. Unfortunately,
the local DRAM accesses required in most packet pro-
cessing applications take 60-100 nanoseconds, making
the overhead of even highly optimized generic context
switching unacceptable.

3.2 G-Opt
We now describe our method, called G-Opt, for automati-
cally hiding DRAM latency for data structure lookup algo-
rithms. Our technique borrows from both group prefetch-
ing and fast context switching. Individually, each of these

techniques falls short of our goal: Group prefetching can
hide DRAM latency but there is no general technique to
automate it, and fast context switching is easy to automate
but has large overhead.

G-Opt is a source-to-source transformation that oper-
ates on a batched lookup function, F, written in C. It
imposes the same constraints on the programmer that lan-
guages such as CUDA [3], OpenCL, and Intel’s ISPC [8]
do: the programmer must write batch code that expresses
parallelism by granting the language explicit permission
to run the code on multiple independent inputs. G-Opt
additionally requires the programmer to annotate the ex-
pensive memory accesses that occur within F. To an-
notate the batch lookup code in Figure 5, the lines with
g_expensive hints should be uncommented, indicating
that the following lines (line 6 and line 9) contain an ex-
pensive memory access. g_expensive is a macro that
evaluates to an empty string: it does not affect the orig-
inal code, but G-Opt uses it as a directive during code
generation. The input function, F processes the batch of
lookups one-by-one as in Figure 5. Applying G-Opt to
F yields a new function G that has the same result as F,
but includes extra logic that tries to hide the latency of
DRAM accesses. Before describing the transformation in
more detail, we outline how the function G performs the
lookups.
G begins by executing code for the first lookup. In-

stead of performing an expensive memory access for this
lookup, G issues a prefetch for the access and switches
to executing code for the second lookup. This continues
until the second lookup encounters an expensive memory
access, at which point G switches to the third lookup, or
back to the first lookup if there are only two lookups in
the batch. Upon returning to the first lookup, the new
code then accesses the memory that it had previously
prefetched. In the optimal case, this memory access does
not need to wait on DRAM because the data is already
available in the processor’s L1 cache.

We now describe the transformation in more detail by
discussing its action on the batched hash table lookup
code in Figure 5. The code produced by G-Opt is shown
in Figure 7. The key characteristics of the transformed
code are:

1. Cheap per-lookup state-maintenance: There are
two pieces of state for a lookup in G. First, the
function-specific state for a lookup is maintained in
local arrays derived from the local variables in F:
the local variable named x in F is stored in x[I] for
the Ith lookup in G. Second, there are two G-Opt-
specific control variables for lookup I: g_labels[I]
stores its goto target, and g_mask’s Ith bit records
if it has finished execution.
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2. Lookup-switching using gotos: Instead of stalling
on a memory access for lookup I, G issues a prefetch
for the memory address, saves the goto target at the
next line of code into g_labels[I], and jumps to
the goto target for the next lookup. We call this
procedure a “Prefetch, Save, and Switch”, or PSS. It
acts as a fast switching mechanism between different
lookups, and is carried out using the G_PSS macro
that takes two arguments: the address to prefetch
and the label to save as the goto target. G-Opt in-
serts a G_PSS macro and a goto target before every
expensive memory access; this is achieved by using
the annotations in F.

3. Extra initialization and termination code: G-Opt
automatically sets the initial goto target label for all
lookups to g_label_0. Because different lookups
can take significantly different code paths in complex
applications, they can reach the label g_end in any
order. G uses a bitmask to record which lookups have
finished executing, and the function returns only
after all lookups in the batch have reached g_end.

We implemented G-Opt using the ANTLR parser gen-
erator [2] framework. G-Opt performs 8 passes over the
input function’s Abstract Syntax Tree. It converts lo-
cal variables into local arrays. It recognizes the annota-
tions in the input function and emits labels and G_PSS
macros. Finally, it deletes the top-level loop (written as a
foreach loop to distinguish it from other loops) and adds
the initialization and termination code based on the con-
trol variables. Our current implementation does not allow
pre-processor macros in the input code, and enforces a
slightly restricted subset of the ISO C grammar to avoid
ambiguous cases that would normally be resolved subse-
quent to parsing (e.g., the original grammar can interpret
foo(x); as a variable declaration of type foo).

3.3 Evaluation of G-Opt
In this section, we evaluate G-Opt on a collection of syn-
thetic microbenchmarks that perform random memory
accesses; Section 4 discusses the usefulness of G-Opt
for a full-fledged software router. We present a list of
our microbenchmarks along with their possible uses in
real-world applications below. For each microbenchmark,
we also list the source of expensive memory accesses and
computation. The speedup provided by G-Opt depends
on a balance between these two factors: G-Opt is not
useful for compute-intensive programs with no expen-
sive memory accesses, and loses some of its benefit for
memory-intensive programs with little computation.

Cuckoo hashing: Cuckoo hashing [37] is an efficient
method for storing in-memory lookup tables [19, 51].
Our 2-8 cuckoo hash table (using the terminology from
MemC3 [19]) maps integer keys to integer values. Com-

1 // Prefetch, Save label, and Switch lookup
2 #define G_PSS(addr, label) do {
3 prefetch(addr); \
4 g_labels[I] = &&label; \
5 I = (I + 1) % B; \
6 goto *g_labels[I]; \
7 } while(0);
8
9 find(entry_t *h_table, key_t *K,value_t *V) {

10 // Local variables from the function
11 int entry_idx[B];
12 value_t *v_ptr[B];
13
14 // G-Opt control variables
15 int I = 0, g_mask = 0;
16 void *g_labels[B] = {g_label_0};
17
18 g_label_0:
19 entry_idx[I] = hash(K[I]);
20 G_PSS(&h_table[entry_idx[I], g_label_1);
21 g_label_1:
22 v_ptr[I] = h_table[entry_idx[I]].v_ptr;
23 if(v_ptr[I] != NULL) {
24 G_PSS(v_ptr[I], g_label_2);
25 g_label_2:
26 V[I] = *v_ptr[I];
27 } else {
28 V[I] = NOT_FOUND;
29 }
30
31 g_end:
32 g_labels[I] = &&g_end;
33 g_mask = SET_BIT(g_mask, I);
34 if(g_mask == (1 << B) - 1) {
35 return;
36 }
37 I = (I + 1) % B;
38 goto *g_labels[I];
39 }

Figure 7: Batched hash table lookup after G-Opt transforming.

putation: hashing a lookup key. Memory: reading the
corresponding entries from the hash table.

Pointer chasing: Several algorithms that operate on
pointer-based data structures, such as trees, tries, and
linked lists, are based on following pointers in memory
and involve little computation. We simulate a pointer-
based data structure with minimal computation by using
the experiment in Section 2.5. We set D to 100, emulating
the long chains of dependent memory accesses performed
for traversing data structures such as state machines and
trees. Computation: negligible. Memory: reading an
integer at a random offset in L.

IPv6 lookup: To demonstrate the applicability of G-
Opt to real-world code, we used it to accelerate Intel
DPDK’s batched IPv6 lookup function. Applying G-Opt
to the lookup code required only minor syntactic changes
and one line of annotation, whereas hand-optimization
required significant changes to the code’s logic. We pop-
ulated DPDK’s Longest Prefix Match (LPM) structure
with 200,000 random IPv6 prefixes (as done in Packet-
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Shader [23]) with lengths between 48 and 64 bits,2 and
used random samples from these prefixes to simulate a
worst case lookup workload. Computation: a few arith-
metic and bitwise operations. Memory: 4 to 6 accesses to
the LPM data structure.

Our microbenchmarks use 2 MB hugepages to reduce
TLB misses [32]. We use gcc version 4.6.3 with -O3. The
experiments in this section were performed on a Xeon
E5-2680 CPU with 32 GB of RAM and 20 MB of L3
cache. We also tested G-Opt on the CPUs in Table 1 with
similar results.

3.3.1 Speedup over baseline code

Figure 8 shows the benefit of G-Opt for our microbench-
marks. G-Opt speeds up cuckoo hashing by 2.6x, pointer
chasing (with D = 100) by 6.6x, and IPv6 lookups by 2x.
The figure also shows the speedup obtained by manually
re-arranging the baseline code to perform group prefetch-
ing. There is modest room for further optimization of the
generated code in the future, but G-Opt performs surpris-
ingly well compared to hand-optimized code: the manu-
ally optimized code is up to 5% faster than G-Opt. For
every expensive memory access, G-Opt issues a prefetch,
saves a label, and executes a goto, but the hand-optimized
code avoids the last two steps.

3.3.2 Instruction overhead of G-Opt

G-Opt’s output, G, has more code than the original in-
put function F. The new function needs instructions to
switch between different lookups, plus the initialization
and termination code. G-Opt also replaces local variable
accesses with array accesses. This can lead to additional
load and store instructions because array locations are not
register allocated.

Although G-Opt’s code executes more instructions than
the baseline code, it uses fewer cycles by reducing the
number of cycles that are spent stalled on DRAM ac-
cesses. We quantify this effect in Figure 9 by measuring
the total number of instructions and the instructions-per-
cycle (IPC) for the baseline and with G-Opt. We use the
PAPI tool [9] to access hardware counters for total retired

2 This prefix length distribution is close to worst case; only 1.5%
and 0.1% of real-world IPv6 prefixes are longer than 48 and 64 bits,
respectively [14].
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instructions and total cycles. G-Opt offsets the increase
in instruction count by an even larger increase in the IPC,
leading to an overall decrease in execution time.

4 Evaluation
We evaluate four packet processing applications on CPUs
and GPUs, each representing a different balance of com-
putation, memory accesses, and overall processing re-
quired. We describe each application and list its computa-
tional and memory access requirements below. Although
the CPU cycles used for packet header manipulation and
transmission are an important source of computation, they
are common to all evaluated applications and we therefore
omit them from the per-application bullets. As described
in Section 4.2, G-Opt also overlaps these computations
with memory accesses.

Echo: To understand the limits of our hardware, we use
a toy application called Echo. An Echo router forwards a
packet to a uniformly random port P based on a random
integer X in the packet’s payload (P = X mod 4). In the
GPU-offloaded version, we use the GPU to compute P
from X . As this application does not involve expensive
memory accesses, we do not use G-Opt on it.

IPv4 forwarding: We use Intel DPDK’s implemen-
tation of the DIR-24-8-BASIC algorithm [22] for IPv4
lookups. It creates a 32 MB table for prefixes with length
up to 24 bits and allocates 128 MB for longer prefixes. We
populate the forwarding table with 527,961 prefixes from
a BGP table snapshot [14], and use randomly generated
IPv4 addresses in the workload. Computation: negligible.
Memory: ∼ 1 memory access on average (only 1% of our
prefixes are longer than 24 bits).

IPv6 forwarding: As described in Section 3.3.
Layer-2 switch: We use the CuckooSwitch design [51].

It uses a cuckoo hash table to map MAC addresses to
output ports. Computation: 1.5 hash-computations (on
average) for determining the candidate buckets for a des-
tination MAC address; comparing the destination MAC
address with the addresses in the buckets’ slots. Memory:
1.5 memory accesses (on average) for reading the buckets.

Named Data Networking: We use the hash-based al-
gorithm for name lookup from Wang et al. [46], but use
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cuckoo hashing instead of their more complex perfect
hashing scheme. We populate our name lookup table
with prefixes from a URL dataset containing 10 million
URLs [45, 46]. We make two simplifications for our
GPU-accelerated NDN forwarding. First, because our
hash function (CityHash64) is slow on the GPU, we use
a null kernel that does not perform NDN lookups and
returns a response immediately. Second, we use fixed-
size 32-byte URLs (the average URL size used in Zhang
et al. [49]) in the packet headers for both CPU and GPU,
generated by randomly extending or truncating the URLs
from the dataset.3

4.1 Experimental Setup
We conduct full-system experiments on a Xeon E5-2680
CPU (8 cores @2.70 GHz)-based server.4 The CPU
socket has 32 GB of quad-channel DDR3-1600 DRAM in
its NUMA domain, 2 dual-port Intel X520 10 GbE NICs
connected via PCIe 2.0 x8, and a GTX 980 connected via
PCIe 2.0 x16. To generate the workload for the server, we
use two client machines equipped with Intel L5640 CPUs
(6 cores @2.27 GHz) and one Intel X520 NIC. The two
10 GbE ports on these machines are connected directly to
two ports on the server. The machines run Ubuntu with
Linux kernel 3.11.2 with Intel DPDK 1.5 and CUDA 6.0.

4.2 System design
Network I/O: We use Intel’s DPDK [5] to access the
NICs from userspace. We create as many RX and TX
queues on the NIC ports as the number of active CPU
cores, and ensure exclusive access to queues. Although
the 40 Gbps of network bandwidth on the server machine
corresponds to a maximum packet rate of 59.52 (14.88 *
4) million packets per second (Mpps) for minimum sized
Ethernet frames, only 47.2 Mpps is achievable; the PCIe
2.0 x8 interface to the dual-port NIC is the bottleneck
for minimum sized packets [51]. As the maximum gains
from GPU acceleration come for small packets [23], we
use the smallest possible packet size in all experiments.

GPU acceleration: We use PacketShader’s approach
to GPU-based packet processing as follows. We run a
dedicated master thread that communicates with the GPU,
and several worker threads that receive and transmit pack-
ets from the network. Using a single thread to communi-
cate with the GPU is necessary because the overhead of
CUDA functions increases drastically when called from
multiple threads or processes. The worker threads extract
the essential information from the packets and pass it
on to the master thread using exclusive worker-master

3Our CPU version does not need to make these assumptions, and
performs similarly with variable length URLs.

4The server is dual socket, but we restricted experiments to a single
CPU to avoid noise from cross-socket QPI traffic. Previous work on
software packet processing suggests that performance will scale and our
results will apply to two socket systems [32, 51, 23].
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Figure 10: Full system throughput with increasing total CPU
cores, N . For the GPU, N includes the master core (throughput
is zero when N = 1 as there are no worker cores). The x-axis
label is the same for all graphs.

queues. The workers also perform standard packet pro-
cessing tasks like sanity checks and setting header fields.
This division of labor between workers and master re-
duces the amount of data that the master needs to transmit
to the GPU. For example, in IPv4 forwarding, the master
receives only one 4-byte IPv4 address per received packet.
In our implementation, each worker can have up to 4096
outstanding packets to the master.
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PacketShader’s master thread issues a separate CUDA
memcpy for the data generated by each worker to transfer
it to the GPU directly via DMA without first copying
to the master’s cache. Because of the large overhead of
CUDA function calls (Figure 2), we chose not to use this
approach.

Using G-Opt for packet processing programs: In-
tel DPDK provides functions to receive and transmit
batches of packets. Using batching reduces function call
and PCIe transaction overheads [23, 51] and is required
for achieving the peak throughput. Our baseline code
works as follows. First, it calls the batched receive func-
tion to get a batch of up to 16 packets from a NIC queue.
It then passes this batch to the packet processing function
F, which processes the packets one by one.

We then apply G-Opt on F to generate the optimized
function G. Unlike the simpler benchmarks in Section 3.3,
F is a full-fledged packet handler: it includes code for
header manipulation and packet transmission in addition
to the core data structure lookup. This gives G freedom
to overlap the prefetches from the lookups with this addi-
tional code, but also gives it permission to transmit pack-
ets in a different order than they were received. However,
G preserves the per-flow ordering if forwarding decisions
are made based on packet headers only, as in all the appli-
cations above.5 If so, all packets from the same flow are
“switched out” by G at the same program points, ensuring
that they reach the transmission code in order.

4.3 Workload generation
The performance of the above-mentioned packet process-
ing applications depends significantly on two workload
characteristics. The following discussion focuses on IPv4
forwarding, but similar factors exist for the other appli-
cations. First, the distribution of prefixes in the server’s
forwarding table, and the IP addresses in the workload
packets generated by the clients, affects the cache hit rate
in the server. Second, in real-world traffic, packets with
the same IP address (e.g., from the same TCP connection)
arrive in bursts, increasing the cache hit rate.

Although these considerations are important, recall that
our primary focus is understanding the relative advantages
of GPU acceleration as presented in previous work. We
therefore tried to mimic PacketShader’s experiments that
measure the near worst-case performance of both CPUs
and GPUs. Thus, for IPv4 forwarding, we used a real-
world forwarding table and generated the IPv4 addresses
in the packets with a uniform random distribution. For
IPv6 forwarding, we populated the forwarding table with
prefixes with randomly generated content, and chose the
workload’s addresses from these prefixes using uniformly

5For applications that also examine the packet content, the transmis-
sion code can be moved outside F for a small performance penalty.

random sampling.6 We speculate that prior work may
have favored these conditions because worst-case perfor-
mance is an important factor in router design for quality
of service and denial-of-service resilience. Based on re-
sults from previous studies [31, 48], we also expect that
more cache-friendly (non-random) workloads are likely
to improve CPU performance more than that of GPUs.

4.4 Throughput comparison
Figure 10 shows the throughput of CPU-only and
GPU-accelerated software routers with different num-
bers of CPU cores. For Echo (Figure 10a), the CPU
achieves ∼ 17.5 Mpps of single-core throughput and needs
3 cores to saturate the 2 dual-port 10 GbE NICs. The GPU-
offloaded implementation needs at least 4 worker cores,
for a total of 5 CPU cores including the master thread.
This happens because the overhead of communicating
each request with the master reduces the single-worker
throughput to 14.6 Mpps.

Figure 10b shows the graphs for IPv4 lookup. Without
G-Opt, using a GPU provides some benefit: With a budget
of 4 CPU cores, the GPU-accelerated version outperforms
the baseline by 12.5%. After optimizing with G-Opt, the
CPU version is strictly better than the GPU-accelerated
version. G-Opt achieves the platform’s peak throughput
with 4 CPU cores, whereas the GPU-accelerated version
requires 5 CPU cores and a GPU.

With G-Opt, a single core can process 16 million IPv4
packets per second, which is 59% higher than the base-
line’s single-core performance and is only 8.9% less than
the 17.5 Mpps for Echos. When using the DIR-24-8-
BASIC algorithm for IPv4 lookups, the CPU needs to
perform only ∼ 1 expensive memory access in addition
to the work done in Echo. With G-Opt, the latency of
this memory access for a packet is hidden behind inde-
pendent packet-handling instructions from other packets.
As GPUs also hide memory access latency, the GPU-
accelerated version of IPv4 forwarding performs similarly
to its Echo counterpart.

For IPv6 forwarding (Figure 10c), G-Opt increases
single-core throughput by 3.8x from 2.2 Mpps to 8.4
Mpps. Interestingly, this increase is larger than G-Opt’s
2x gain in local IPv6 lookup performance (Figure 8). This
counter-intuitive observation is explained by the reduc-
tion in effectiveness of the reorder buffer for the baseline
code: Due to additional packet handling instructions, the
independent memory accesses for different packets in a
batch are spaced farther apart in the forwarding code than
in the local benchmarking code. These instructions con-
sume slots in the processor’s reorder buffer, reducing its
ability to detect the inter-packet independence.

6This workload is the worst case for DPDK’s trie-based IPv6 lookup.
PacketShader’s IPv6 lookup algorithm uses hashing and shows worst-
case behavior for IPv6 addresses with random content.
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With G-Opt, our CPU-only implementation achieves
39 Mpps with 5 cores, and the platform’s peak IPv6
throughput (42 Mpps) with 6 cores. Because IPv6 lookups
require relatively heavyweight processing, our GPU-
based implementation indeed provides higher per-worker
throughput—it delivers line rate with only 4 worker cores,
but it requires another core for the master in addition
to the GPU. Therefore, using a GPU plus 5 CPU cores
can provide a 7.7% throughput increase over using just 5
CPUs, but is equivalent to using 6 CPUs.

For the L2 switch (Figure 10d), G-Opt increases the
throughput of the baseline by 86%, delivering 9.8 Mpps
of single-core throughput. This is significantly smaller
than the 17.5 Mpps for Echos because of the expensive
hash computation required by cuckoo hashing. Our CPU-
only implementation saturates the NICs with 6 cores, and
achieves 96% of the peak throughput with 5 cores. In
comparison, our GPU-accelerated L2 switch requires 5
CPU cores and a GPU for peak throughput.

For Named Data Networking, G-Opt increases single-
core throughput from 4.8 Mpps to 7.3 Mpps, a 1.5x in-
crease. With a budget of 4 CPU cores, the (simplified)
GPU version’s performance is 24% higher than G-Opt,
but is almost identical if G-Opt is given one additional
CPU core.
Conclusion: For all our applications, the throughput gain
from adding a GPU is never larger than from adding just
one CPU core. The cost of a Xeon E5-2680 v3 [6] core
(more powerful than the cores used in this paper) is $150.
In comparison, the cheapest GPU used in this paper costs
$130 and consumes 110W of extra power. CPUs are
therefore a more attractive and resource efficient choice
than GPUs for these applications.

4.5 Latency comparison
The GPU-accelerated versions of the above applications
not only require more resources than their G-Opt coun-
terparts, but also add significant latency. Each round of
communication with the GPU on our server takes ∼ 20µs
(Figure 2). As the packets that arrive during a round must
wait for the next round to begin, the average latency added
is 20 ∗ 1.5 = 30µs.

Our latency experiments measure the round-trip latency
at clients. Ideally, we would have liked to measure the
latency added by the server without including the latency
added by the client’s NIC and network stack. This re-
quires the use of hardware-based traffic generators [42]
to which we did not have access.7

In our experiments, clients add a timestamp to pack-
ets during transmission and use it to measure the RTT
after reception. We control the load offered by clients by

7Experiments with a Spirent SPT-N11U [42] traffic generator as the
client have measured a minimum RTT of 7-8µs on an E5-2697 v2 server;
the minimum RTT measured by our clients is 16µs.

tuning the amount of time they sleep between packet trans-
missions. The large sleep time required for generating
a low load, and buffered transmission at the server [32]
cause our measured latency to be higher than our system’s
minimum RTT of 16µs.

For brevity, we present our latency-vs-throughput
graphs only for Echo, and IPv4 and IPv6 forwarding.
The CPU-only versions use G-Opt. All measurements
used the minimum number of CPU cores required for
saturating the network bandwidth.

Figure 11a shows that the RTT of CPU-only Echo is
29µs at peak throughput and 19.5µs at low load. The
minimum RTT with GPU acceleration is 52µs, which is
close to 30µs larger than the CPU-only version’s mini-
mum RTT. We observe similar numbers for IPv4 and
IPv6 forwarding (Figures 11b and 11c), but the GPU ver-
sion’s latency increases at high load because of the larger
batch sizes required for efficient memory latency hiding.

5 Discussion
Other similar optimizations for CPU programs Un-
til now, we have discussed the benefit of an automatic
DRAM latency-hiding optimization, G-Opt. We now
discuss how intrusion detection systems (IDSes), an ap-
plication whose working set fits in cache [41], can benefit
from similar, latency-hiding optimizations.

We study the packet filtering stage of Snort [39], a
popular IDS. In this stage, each packet’s payload is used
to traverse one of several Aho-Corasick [15] DFAs. The
DFA represents the set of malicious patterns against which
this packet should be matched; Snort chooses which DFA
to use based on the packet header. For our experiments,
we recorded the patterns inserted by Snort v2.9.7 into its
DFAs and used them to populate our simplified pattern
matching engine. Our experiment uses 23,331 patterns
inserted into 450 DFAs, leading to 301,857 DFA states.
The workload is a tcpdump file from the DARPA Intrusion
Detection Data Sets [11].

Our baseline implementation of packet filtering passes
batches of B (∼ 8) packets to a function that returns B
lists of matched patterns. This function processes packets
one-by-one. We made two optimizations to this func-
tion. First, we perform a loop interchange: Instead of
completing one traversal before beginning another, we
interweave them to give the CPU more independent in-
structions to reorder, reducing stalls from long-latency
loads from cache. Second, we collect a larger batch of
packets (8192 in our implementation), and sort it—first
by the packet’s DFA number and then by length. Sort-
ing by DFA number reduces cache misses during batch
traversal. Sorting by length increases the effectiveness
of loop interchange—similar to minimizing control flow
divergence for GPU-based traversals [41].
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Figure 11: Full system latency with minimum CPU cores required to saturate network bandwidth.
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Figure 12 shows that, for a local experiment with-
out network I/O, these optimizations increase single-core
matching throughput by 2.4x or more. We believe that
our optimizations also apply to the CPU-only versions
of pattern matching in GPU-accelerated IDSes including
Kargus [24] and Snap [43]. As we have only implemented
the packet filtering stage (Snort uses a second, similar
stage to discard false positives), we do not claim that
CPUs can outperform GPUs for a full IDS. However, they
can reduce the GPU advantage, or make CPU-only ver-
sions more cost effective. For example, in an experiment
with innocent traffic, Kargus’s throughput (with network
I/O) improved between 1.4x and 2.4x with GPU offload-
ing. Our pattern matching improvements offer similar
gains which should persist in this experiment: innocent
traffic rarely triggers the second stage, and network I/O
requires less than 10% of the CPU cycles spent in pattern
matching.

Additional applications We have shown that CPU
implementations can be competitive with (or outper-
form) GPUs for a wide range of applications, including
lightweight (IPv4 forwarding, Layer-2 switching), mid-
weight (IPv6 and NDN forwarding), and heavyweight
(intrusion detection) applications. Previous work explores
the applicability of GPU acceleration to a number of dif-
ferent applications; one particularly important class, how-
ever, is cryptographic applications.

Cryptographic applications, on the one hand, involve
large amounts of computation, making them seem attrac-
tive for vector processing [25, 23]. On the other hand,
encryption and hashing requires copying the full packet
data to the GPU (not just headers, for example). Since the
publication of PacketShader, the first work in this area, In-

tel has implemented hardware AES encryption support for
their CPUs. We therefore suspect that the 3.5x speedup
observed in PacketShader for IPSec encryption would be
unlikely to hold on today’s CPUs. And, indeed, 6WIND’s
AES-NI-based IPSec implementation delivers 6 Gbps per
core [1], 8x higher than PacketShader’s CPU-only IPSec,
though on different hardware.

One cryptographic workload where GPUs still have an
advantage is processing expensive, but infrequent, RSA
operations as done in SSLShader, assuming that connec-
tions arrive closely enough together for their RSA setup
to be batched.8 Being compute intensive, these crypto-
graphic applications raise a second question for future
work: Can automatic vectorization approaches (e.g., In-
tel’s ISPC [8]) be used to increase the efficiency of CPU-
based cryptographic applications?

Revising TCO estimates In light of the speedups we
have shown possible for some CPU-based packet pro-
cessing applications, it bears revisiting total-cost-of-
ownership calculations for such machines. The TCO of
a machine includes not just the cost of the CPUs, but the
motherboard and chipset as well as the total system power
draw, and the physical space occupied by the machine.

Although our measurements did not include power,
several conclusions are obvious: Because the GPU-
accelerated versions required almost as many CPU cores
as the CPU-only versions, they are likely to use at least
modestly more power than the CPU versions. The GTX
980 in our experiments can draw up to 165W compared to
130W for the E5-2680’s 8 cores, though we lack precise
power draw measurements.

Adding GPUs requires additional PCIe slots and lanes
from the CPU, in addition to the cost of the GPUs.
This burden is likely small for applications that require
transferring only the packet header to the GPU, such as
forwarding—but those applications are also a poor match
for the GPU. It can, however, be significant for high-
bandwidth offload applications, such as encryption and
deep packet inspection.

8And perhaps HMAC-SHA1, but Intel’s next generation “Skylake”
CPUs will have hardware support for SHA-1 and SHA-256.
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Future GPU trends may improve the picture. Several
capabilities are on the horizon: CPU-integrated GPU func-
tions may substantially reduce the cost of data and con-
trol transfers to the GPU. Newer NVidia GPUs support
“GPUDirect” [7], which allows both the CPU and certain
NICs to DMA directly packets to the GPU. GPUDirect
could thus allow complete CPU-bypass from NIC to GPU,
or reduce CUDA’s overhead by letting the CPU write di-
rectly to GPU memory [29]. This technology currently
has several restrictions—the software is nascent, and only
expensive Tesla GPUs (over $1,700 each) and RDMA-
capable NICs are supported. A more fundamental and
long-term limitation of removing CPU involvement from
packet processing is that it requires entire packets, not
just headers, to be transferred to the GPU. The CPU’s
PCIe lanes would then have to be divided almost equally
between NICs and GPUs, possibly halving the network
bandwidth that the system can handle.

Alternative architectures such as Tilera’s manycore de-
signs, which place over 100 cores on a single chip with
high I/O and memory bandwidth, or Intel’s Xeon Phi, are
interesting and under-explored possibilities. Although our
results say nothing about the relative efficiency of these
architectures, we hope that our techniques will enable
better comparisons between them and traditional CPUs.

Handling updates Currently, G-Opt works only for
data structures that are not updated concurrently. This
constraint also applies to GPU-accelerated routers where
the CPU constructs the data structure and ships it to the
GPU. It is possible to hide DRAM latency for updates
using manual group prefetching [32]; if updates are rel-
atively infrequent, they also can be handled outside the
batch lookup code. Incorporating updates into G-Opt is
part of future work.

6 Related Work
GPU-based packet processing Several systems have
used GPUs for IPv4 lookups absent network I/O [50, 31,
30, 35], demonstrating substantial speedups. Our end-
to-end measurements that include network I/O, however,
show that there is very little room for improving IPv4
lookup performance—when IPv4 forwarding is optimized
with G-Opt, the single-core throughput drops by less than
9% relative to Echo. Packet classification requires match-
ing packet headers against a corpus of rules; the large
amount of per-packet processing makes it promising for
GPU acceleration [23, 27, 44]. GSwitch [44] is a recent
GPU-accelerated packet classification system. We believe
that the Bloom filter and hash table lookups in GSwitch’s
CPU version can benefit from G-Opt’s latency hiding,
reducing the GPU’s advantage.

CPU-based packet processing RouteBricks [18] fo-
cused on mechanisms to allocate packets to cores; its tech-

niques are now standard for making effective use of a mul-
ticore CPU for network packet handling. User-level net-
working frameworks like Intel’s DPDK [5], netmap [38],
and PF_RING [10] provide a modern and efficient soft-
ware basis for packet forwarding, which our work and
others takes advantage of. Many of the insights in this
paper were motivated by our prior work on hiding lookup
latency in CuckooSwitch [51], an L2 switch that achieves
80 Gbps while storing a billion MAC addresses.

Hiding DRAM latency for CPU programs is impor-
tant in many contexts: Group prefetching and software
pipelining has been used to mask DRAM latency for
database hash-joins [17], a software-based L2 switch [51],
in-memory trees [40, 28], and in-memory key-value
stores [32, 34, 26]. These systems required manual code
rewrites. To our knowledge, G-Opt is the first method to
automatically hide DRAM latency for the independent
lookups in these applications.

7 Conclusion
Our work challenges the conclusions of prior studies
about the relative performance advantages of GPUs in
packet processing. GPUs achieve their parallelism and
performance benefits by constraining the code that pro-
grammers can write, but this very coding paradigm also
allows for latency-hiding CPU implementations. Our G-
Opt tool provides a semi-automated way to produce such
implementations. CPU-only implementations of IPv4,
IPv6, NDN, and Layer-2 forwarding can thereby be more
resource efficient and add lower latency than GPU im-
plementations. We hope that enabling researchers and
developers to more easily optimize their CPU-based de-
signs will help improve future evaluation of both hardware
and software-based approaches for packet processing. Al-
though we have examined a wide range of applications,
this work is not the end of the line. Numerous other appli-
cations have been proposed for GPU-based acceleration,
and we believe that these techniques may be applicable
to other domains that involve read-mostly, parallelizable
processing of small requests.
Code release The code for G-Opt and the experi-
ments in this paper is available at https://github.com/
efficient/gopt.
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ModNet: A modular approach to network stack extension
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Abstract

The existing interfaces between the network stack and
the operating system are less than ideal for certain im-
portant classes of network traffic, such as video and mo-
bile communication. While TCP has become the de facto
transport protocol for much of this traffic, the opacity
of some of the current network abstractions prevents de-
manding applications from controlling TCP to the fullest
extent possible. At the same time, non-TCP protocols
face an uphill battle as the network management and con-
trol infrastructure around TCP grows and improves.

In this paper, we introduce ModNet, a lightweight ker-
nel mechanism that allows demanding applications better
customization of the TCP stack, while preserving exist-
ing network interfaces for unmodified applications. We
demonstrate ModNet’s utility by implementing a range
of network server enhancements for demanding environ-
ments, including adaptive bitrate video, mobile content
adaptation, dynamic data and image compression, and
flash crowd resource management. These enhancements
operate as untrusted user-level modules, enabling easy
deployment, but can still operate at scale, often providing
gigabits per second of throughput with low performance
overheads.

1 Introduction
With the growing popularity of HTTP, TCP has emerged
as the de facto transport protocol for many real-time net-
work applications (e.g. streaming video servers [7, 22]).
However, since the traditional TCP stacks lack any inter-
faces for explicit control over the buffered content and
explicit feedback about the progress of transmission, it
becomes difficult to adapt quickly to changing network
conditions in order to provide the desired responsiveness.
As a result, web server responses are largely oblivious to
network conditions, even though in the current world of
mobile clients the variability of bandwidth and sudden
variations in network conditions is the norm.

The lack of appropriate interfaces for exposing lower
level network behavior means that applications have to
rely on implicit feedback from the transmission of re-
sponses. This implicit feedback based mechanism, how-
ever, does not allow the adaptation to be performed at
finer granularity. Moreover, the lack of any control
over buffered data means that there can be considerable

changes in network conditions between when the adap-
tation was performed and when the content was trans-
mitted over the wire. Similarly, the lack of any generic
interface for easily deployable, user-level customization
of TCP stack behavior requires any such changes to be
implemented inside the kernel, and thus, hinders their
wider adoption.

One way to address these issues is to devise custom
protocols, but slow adoption and difficulties with upgrad-
ing middleboxes have limited its appeal. Similarly, im-
plementing user-level protocol stacks over raw sockets
faces the compatibility restriction that some systems re-
quire superuser permission for raw socket support. The
long-term issues related to developing a modified net-
work stack or a new protocol involve the extra over-
head of maintaining the stack and taking advantage of
improvements in the native OS stacks. For example,
UDP-based applications will often have to re-implement
many common TCP behaviors to be network-friendly,
and will have to develop mechanisms to interact nicely
with NATs, firewalls, etc.

In this paper, we propose ModNet, a system which
provides new, richer interfaces to the traditional TCP
stack. The key idea behind ModNet is to loosen the
boundary between network applications and the operat-
ing system and, as a result, widen the scope for enhance-
ment of widely used network applications, such as web
servers, proxy servers and multimedia streaming servers.

ModNet provides new interfaces to allow fine-grained
feedback about network conditions and allows network
applications greater control over buffered content. Mod-
Net also provides an interception mechanism through
network modules that allows easy customization of
socket layer behavior. Network modules also allow
application-independent deployment of new server be-
haviors, which would otherwise be hard-coded into spe-
cific implementations. At the same time, legacy appli-
cations remain unchanged, and the TCP stack’s behav-
ior is unchanged for these applications. We demonstrate
ModNet through several modules that improve mobile
content adaptation, video rebuffering and flash crowd be-
havior.

2 ModNet Design
The main idea behind ModNet is to give applications
more insight into the operation of the network stack, and
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the ability to delegate management of data transfer, so
that they can proactively adapt to changing network con-
ditions. We want to loosen the boundary between ap-
plications and the network stack, so that applications or
their delegates can see what is happening to the data that
they want delivered, and to act on that process as the con-
ditions of delivery change. At the same time, we want to
ensure that all of the mechanisms we provide are safe,
are deployable, and are maintainable.

We focus our efforts on three key areas:

• Delegation – allow sockets to be intercepted by one
or more modules that can manipulate socket con-
tents, parameters, and timings. These modules may
be invoked directly by the application, or they may
be automatically attached to application sockets by
a user with the appropriate permissions. They can
be composed, so that each module performs a spe-
cific task, but that a collection of modules can per-
form more complicated actions. In this manner,
content between the application and the network
can be manipulated, and the modules can be reused
across applications where appropriate.

• Inspection – allow an easy way for interested ap-
plication or modules to observe lower-level network
behavior for its connections, and use this informa-
tion to adapt its behavior. Normally, when an appli-
cation sends data over TCP, the data is buffered and
the application has no way to track its progress. We
want applications to see what is happening to the
data inside the network stack, so that they can react
appropriately for any future data they generate.

• Revocation – where possible, allow applications or
modules to “undo” their past behavior by modify-
ing the contents that they have handed to the net-
work stack, as long as such modifications do not
cause any consistency problems. In practice, this
means that any unsent data in a socket buffer can be
modified if needed, allowing applications the flexi-
bility of large socket buffers but the responsiveness
of smaller ones.

In keeping with the idea that ModNet should enhance
the network stack rather than disrupting it, we focus on
implementing these behaviors with as few changes to
the network stack as possible. Naturally, existing appli-
cations can continue to operate as usual with no mod-
ifications, but the delegation mechanism can even al-
low modules to operate on the network activity of oth-
erwise unmodified network applications. We are inter-
ested in efficiency to the extent that it does not affect
programmability, so that easier-to-use options are prefer-
able to the highest possible performance. We note that

CPU throughput (especially through multiple cores) has
comfortably outpaced wide area network bandwidth, so
maximum efficiency is not the primary driver for most
networking applications. However, we take steps to en-
sure that ModNet is as efficient as possible within our
constraints.

2.1 Delegation
In ModNet, the preferred mechanism for delegation is
the use of modules, which are standalone processes that
logically divert the flow of a socket between the operat-
ing system and the process that created it. These modules
can be chained together, and to the application, the pres-
ence or absence of modules should be as transparent as
possible.

In modern event-driven servers (e.g., Nginx) writ-
ing complex extension modules is not easy, mainly be-
cause any blocking call inside the module can block the
server’s event loop and thereby severely hurt the per-
formance and scalability of the server. This possibility
would get worse as modules are chained together. Mod-
Net’s delegation mechanism provides a generic exten-
sion mechanism which does not impose any such restric-
tions, and at the same time can be reused across applica-
tions without any extra effort. In addition, since the Mod-
Net modules are standalone processes, they can have sep-
arate privilege levels, scheduling priorities and resource
limits, which might be required for implementing critical
system services.

One other alternative mechanism for implementing
complex web server extensions is to use loopback proxy
servers. However, proxies are not performance opti-
mized for this usage, and are often tailored to specific
application-level protocols. A performance comparison
between the Nginx loopback proxy and ModNet’s dele-
gation mechanism is presented in §5.2.

We propose an interposition scheme that interposes on
the sockets. This approach allows modules to examine,
process, and modify the data being passed in both di-
rections on sockets. To distinguish this approach from
the existing interposition mechanisms, we term this tech-
nique socket stealing. This term also better describes the
mechanism involved, which looks like stealing the end-
points of an existing socket and replacing them with the
endpoints of the interposed module.

A schematic of the interposition mechanism for a
chain of two modules (i.e., a composition of mod-
ules) is shown in Fig. 1. The application’s socket
Sockreal is stolen and replaced by an intermediate socket
Socki app, which is connected to another intermediate
socket Sockm le f t1. Since we have two modules in this
case, a pair of connected intermediate sockets, namely
Sockm right1 and Sockm le f t2, is created to join the two
modules. To ease integration in the kernel, the sockets
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Figure 1: The architecture of ModNet’s interposition
mechanism for a chain of two modules. The Sockreal
is the application socket that is stolen. The black lines
show the flow of data between various components.

Sockm le f t1 and Sockm right1 are mapped to the file de-
scriptor table of the first module. Similarly, Sockm le f t2
and Sockm right2 (i.e, Sockreal) are mapped to the file de-
scriptor table of the second module. In general, we refer
to the two sockets mapped to a module’s file descriptor
table as Sockm le f t and Sockm right . The modules read
the data from Sockm le f t , optionally transform it, and
write the final data to Sockm right , and do the same for
the reverse direction. This stealing is akin to dynami-
cally adding bidirectional pipes within an existing net-
work connection, and this simple interface can be used
to implement a large class of network functions.

2.2 Inspection
ModNet allows inspection of progress in two ways, by
examining content through the interposition mechanism,
and by examining the status of connections. The inter-
position is an active inspection mechanism for modules
that was described in §2.1, we describe the latter now.

Adaptive network applications (e.g., adaptive video
streaming servers) adapt their responses according to the
network bandwidth. An interface to examine TCP state
is desirable for estimating bandwidth when the clients do
not explicitly provide feedback about the network condi-
tions [17]. We propose a generic, performance efficient
interface for exposing the relevant per-socket informa-
tion to the applications.

ModNet allows modules and applications a fast, pas-
sive means of examining connection progress and sta-
tus. The current interfaces for reading connection state
for a socket (e.g., TCP state variables) are either not
easy to use or are inefficient in terms of performance.
For instance, in Linux one could use the tcpprobe mod-
ule to read the socket state, but the interface is cumber-
some, and expensive, going through the /proc pseudo-
filesystem. The other alternative, the TCP INFO socket
option invokes a full system call, with no easy means of
determining when an activity of interest occurs. For in-
stance, when trying to use this status on each packet re-
ception (e.g., in packet-pair [19] bandwidth estimation),
the overhead of this polling can be significant.

The connection status tracking in ModNet extends the
mmap (memory map) system call to socket file descrip-
tors to implement shared readable control. The applica-
tion or module receives a mapped memory region and
typecasts it to the shared socket state structure. Among
other fields, the shared socket state for a TCP socket con-
tains the TCP state variables, the timestamps, sequence
numbers and acknowledgment sequences for the two
most recently received packets. We provide the measures
for two packets because they might be needed for band-
width estimation mechanisms such as packet-pair [19].
We use atomic reads and writes to each field in order to
avoid any data races.

2.3 Revocation
The final mechanism in ModNet is for revocation, and
allows the application or module to remove unsent con-
tent from socket buffers. With the growing popularity of
HTTP, TCP has become the de facto transport protocol
for many real time applications. However, the lack of in-
terface for manipulation of socket buffer content in the
current socket API makes it difficult to adapt effectively.

To better understand the need for revocation, consider
the case of an HTTP-based streaming video server that
handles adaptive bitrate video. It receives requests from
clients for fragments of a video, using the client’s es-
timate of what bitrate it can handle. In normal opera-
tion, the server would prefer to have very large socket
buffers, so that each write or sendfile system call
it performs can write the associated content to the socket
buffer without blocking. If it does have to block, it
would prefer to block as few times as possible, for bet-
ter performance. Normal socket buffer sizes might be
in the range of 16KB∼128KB or as large as 1MB for
high performance servers. Moreover, socket buffers are
also a form of feedback control, and the application/mod-
ule may wish to monitor data transfer performance and
take action when the bandwidth drops. In this case, large
socket buffers lead to long delays in the control loop of
the application, increasing latency, and perhaps to long
rebuffering times when bandwidth drops. Small socket
buffers, however, not only increase the number of sys-
tem calls per piece of content, but also run the risk of
not meeting client bandwidth, if they are smaller than
the bandwidth-delay product or if the associated appli-
cation blocks or encounters scheduling delays when the
socket empties. Ideally, we want large socket buffers
when things are going well, and short socket buffers
when things are going poorly.

To achieve this effect, ModNet introduces a new sys-
tem call, modnet yank, which allows applications and
modules to pull, or optionally, read a desired amount
of data from the socket buffer. We describe the API
details in §3.2. In the case of UDP, packets are syn-
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chronously transferred to the device queue, unless the ap-
plication explicitly asks the OS to buffer them (e.g., using
UDP CORK option on Linux). Thus, modnet yank is
mostly applicable to TCP sockets. To ensure network
consistency, it does not remove any data that has already
been sent even if it has not been acknowledged.

3 ModNet API
ModNet has a simple and intuitive programming in-
terface that provides better control and insight to net-
work applications. The implementation of modules us-
ing ModNet API will be discussed in §4.2. Table 1 pro-
vides a concise overview of the ModNet API.

3.1 Delegation API
Since modules in ModNet can be standalone enti-
ties, some rendezvous mechanism is needed to have
applications apply modules, and to this end, mod-
ules register themselves with the OS by name via
the modnet register system call. To steal file
descriptors from a process, the module issues a
modnet getsockets system call and receives two
file descriptors for each stolen socket, which correspond
to the sockets Sockm le f t and Sockm right (see Fig. 1). If
the module knows how many sockets the application will
generate, it can call modnet getsockets repeatedly,
or it can register for a new EPOLL STEAL event that
ModNet delivers via the epoll event notification mech-
anism. Since the EPOLL STEAL event is not tied to a
file, the file descriptor argument is a negative integer de-
noting the CPU mask. The CPU mask is used to specify
the core affinity for socket stealing, which is discussed
in §4.1.

Modules can be applied individually, or in a chained
fashion via the modnet apply system call, which
takes the module names and process ID. The process ID
allows the application to specify that the module can be
applied to itself, or to a target process, assuming they
have the same owner. This mechanism can be general-
ized – for example, we have written a program that takes
an application name and module name, and applies the
module to any matching processes, or launches a new in-
stance via fork/exec.

The modnet yield system call allows a module to
insert new modules into the chain adjacent to itself, and
optionally remove itself from the chain. The system
call takes two file descriptors corresponding to Sockm le f t
and Sockm right sockets, and yields them to the speci-
fied chain of modules. The “operation” argument can
be APPLY LEFT, APPLY RIGHT or REPLACE to in-
struct applying to the left of the module, right of the mod-
ule or replacing the module in the chain, respectively.
Naturally, the Sockm right (or Sockm le f t ) file descriptor is
not required for APPLY LEFT (or APPLY RIGHT) op-

erations. A usage example is the following: an HTTP
filtering module that intercepts the web server connec-
tions, and based on the request invokes some other mod-
ules (e.g., Gzip compression, SSD swap, etc.) and re-
moves itself. modnet yield can also be used by ap-
plications (using the APPLY RIGHT operation) to spec-
ify a chain of modules per-socket instead of using the
modnet apply, which specifies a fixed list of modules
for all sockets. One can argue that the modnet yield
system call is an exhaustive interface for chain manip-
ulation since each module is expected to be indepen-
dent, and no module should modify remote portions of
the chain.

3.2 Revocation API
The modnet yank system call is used for yanking un-
sent content from socket buffers and modules. It can
also be used for reading the existing data from socket
buffers by specifying the “operation” argument as PEEK
instead of YANK. Peeking can be useful in case the ap-
plication wants to make the revocation decision based
on the data. For instance, an HTTP streaming server
might want to find a legal video frame boundary before
yanking. While the application is making the decision
about what to yank, it might want to prevent transmis-
sion of any new data, e.g., the streaming video server
might want to prevent sending the data at the boundary of
video frame. Thus, modnet yank supports locking and
the corresponding unlocking of transmission as a side
effect. In order to allow this control of the application
over data transmission, modnet yank takes a “lock”
argument that can be YANK LOCK, YANK UNLOCK
or YANK NONE.

In the case of chained modules, a call to
modnet yank might require the succeeding mod-
ules in the chain to reconstruct and return the original
data. We added the EPOLL YANK REQ event for
instructing the modules to reconstruct data. Specif-
ically, a modnet yank call on a Socki app socket
or an intermediate Sockm right socket leads to an
EPOLL YANK REQ event on the succeeding module’s
Sockm le f t socket. If the succeeding module has not reg-
istered an EPOLL YANK REQ event on the Sockm le f t
socket, the call returns an appropriate error (e.g.,
EOPNOTSUPP). On receiving the EPOLL YANK REQ
event, the succeeding module should send back the
original data via modnet yankwrite, reconstructing
it if needed. It should also perform the yank operation
recursively on any successive modules. The recon-
structed data is held in what we call the yank buffer of
the socket. The data might be partially written if the
yank buffer is full.

While the modules reconstruct the original data, the
modnet yank call might block or return immediately
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System call Description
modnet register(char *mod name ) registers the calling process using the specified module name, or fails if an

existing registration has the same name. The unregister happens on the exit.
modnet apply( pid t target, char
*mod names[], int num mods )

applies the named modules to the calling process or another process by pid, in
the given order. Fails if either of the names do not have a corresponding active
module.

modnet getsockets( int left fds[], int
right fds[], long cpu mask )

gets pairs of sockets from module’s steal queue and writes the two file descrip-
tors corresponding to Sockm le f t and Sockm right , in the array arguments, and
optionally provides CPU affinity, discussed in §4.1

modnet yield( int left fd, int right fd,
char *mod names[], int operation)

yields the pair of sockets with file descriptors le f t f d and right f d to the spec-
ified chain of modules. Fails if the file descriptor arguments are illegal or any
of the module names do not have a corresponding active module. See §3.1 for
details.

modnet yank( int fd, void *buf, int len,
int operation, int lock, int flags)

removes or copies up to the requested amount of unsent data from the socket
buffer. See §3.2 for details.

modnet yankwrite( int fd, void *buf,
int len)

writes the supplied amount of data to the yank buffer of preceding socket in the
chain. This system call is used by a module for returning the reconstructed data
in case the preceding module/application in the chain calls a yank. See §3.2 for
details.

Table 1: An overview of the ModNet API.

with an appropriate error (e.g., EAGAIN) depending on
whether the YANK DONTWAIT is set in the “flag” ar-
gument or not. The EPOLL YANK event can be used for
monitoring the readiness of yank. Note that the readiness
of yank refers to the case when there is sufficient data in
the yank buffer to satisfy the request.

3.3 Inspection API

The inspection API does not introduce any new system
calls. The shared memory mechanism can be exposed
by extending the mmap system call as described in §2.2.
Since currently mmap is not supported for TCP sockets,
this extension does not affect existing systems.

In the case of chained modules the mmap for all the
intermediate sockets returns the pointer to the shared
socket state of the real socket. This allows seamless com-
position of modules. For instance, an image compression
module would read the same network state variables re-
gardless of whether a succeeding module has been ap-
plied to it.

4 Implementation

We have implemented ModNet on Linux, modifying 364
lines of existing kernel source code and adding 2758 new
lines of code to implement the new system calls and
behavior. Much of the modification affects the epoll
mechanism to support the EPOLL STEAL event, which
is tied to the current process rather than a file, and the
EPOLL YANK and EPOLL YANK REQ events, which
take an additional length parameter. Below, we describe
the implementation of the major components of ModNet.

4.1 Socket Stealing

If a module has been applied to a process, ModNet in-
tercepts the creation of any new network sockets by the
process. Two intermediate sockets are created, which
correspond to Socki app and Sockm le f t . The Socki app is
mapped to the file descriptor table of the application and
the corresponding file descriptor is returned to the appli-
cation. The original socket, Sockreal , and the intermedi-
ate socket, Sockm le f t , are added to a queue, which we
call the module’s steal queue. In case of chained mod-
ules (as in Fig. 1), a pair of connected intermediate sock-
ets is also created for every two adjoining modules in
the chain. A module reaps the entries of its steal queue
using the modnet getsockets call. The intermedi-
ate sockets are implemented by extending UNIX domain
sockets.

To reduce the interposition overheads, we support
batching and processor affinity for socket stealing. To
amortize the costs of the modnet getsockets sys-
tem call, it returns the file descriptors for multiple stolen
sockets in one call. Knowing that modules will often
copy data, we want to allow the source and sink of the
data to use the same processor cache. Borrowing the idea
from Affinity Accept [24], we provide support for per-
forming all the processing for a stolen socket on the same
core. For each module, a steal queue is maintained per
core. Any stolen sockets are enqueued to the steal queue
of the local core. The modnet getsockets call takes
a bitmask as an argument called cpu mask, and returns
sockets only from the steal queues of the specified cores.
While implementing the modules, we pin a thread on
each core and each thread calls modnet getsockets
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epfd = epoll_create(...)
ev.events = EPOLL_STEAL
epoll_ctl(epfd, EPOLL_CTL_ADD, -mask, &ev)

while (true):
ev = epoll_wait()
if (ev.events & EPOLL_STEAL):
modnet_getsockets(fd_left, fd_right, mask)
foreach (pair of fd_left,fd_right):
other[fd_left] = fd_right
other[fd_right] = fd_left
ev.events = EPOLLIN | EPOLLRDHUP
ev.data.fd = fd_left
epoll_add(epfd,EPOLL_CTL_ADD,fd_left,&ev)
/* similarly add events for fd_right */
.....

elif (ev.events & EPOLLIN):
/* read from ev.data.fd, and write
to other[ev.data.fd] (omits the code
for handling the case where the
write buffer is full) */
.....

elif (ev.events & EPOLLRDHUP):
/* signal shutdown to other end, to abide

by protocols that are sensitive to
end of streams (e.g. HTTP) */

shutdown(other[ev.data.fd], SHUT_WR)

Figure 2: A simplified psuedo-code for the event-based
bi-directional forwarder module.

with a mask that is “on” only for its local core.
To make the socket stealing mechanism as transpar-

ent to the original application as possible, we must
ensure that operations intended for the original socket
are actually received by the original socket. For ex-
ample, if the application issues a getpeername sys-
tem call, it would (in the absence of modules) expect
to get information about the other TCP endpoint. To
ensure this, all the socket system calls for the inter-
mediate sockets, other than recv, send, shutdown,
event notifications (epoll), and some socket options
in getsockopt/setsockopt are directly translated
to the corresponding Sockreal socket. By translating a
system call, we mean the effects and the return value
of the system call on the intermediate socket will be
identical to that of the same system call on the Sockreal
socket. The general file operations, like close, dup,
fcntl, etc. have their usual semantics for both the inter-
mediate sockets and the original socket. Since the stolen
Sockreal socket is the application’s original socket, all the
socket system calls have regular semantics for it.

4.2 Implementing Modules
Module implementations are very similar to proxies, but
are simpler because they do not have to implement the
whole protocol. Figure 2 shows simplified psuedo-code
for a bi-directional forwarder module.

We have developed some sample modules for Mod-
Net using the Libevent library [5] to provide scalabil-
ity. A complete bi-directional forwarder module serves
as the template for other modules, and is capable of han-
dling roughly 80K connections per second (setup and
teardown) with a moderately powerful 4 core server. This
template is 440 lines of C code, excluding the Libevent
library. Most of the code for forwarder module can di-
rectly be reused while implementing other modules. For
example, the implementation of the adaptive gzip com-
pression module §5.3 reuses this code with only 22 lines
of changes.

5 Applications and Evaluation
We begin by characterizing the performance of Mod-
Net’s delegation framework through web server mi-
crobenchmarks in §5.2. The subsequent sections present
evaluations using ModNet to solve some important prob-
lems for network servers for emerging classes of Internet
traffic. We evaluate an adaptive gzip compression mod-
ule for data (§5.3) and an adaptive JPEG compression
module for images (§5.4), which handle the variable net-
work conditions for mobile clients. We also evaluate a
socket buffer swap module (§5.5), which augments the
total socket buffer space by offloading part of it to SSD,
and optimizes resource consumption in case of a wide
spectrum of client bandwidths. §5.6 contains the evalua-
tion of a deduplication module that handles flash crowds
better by reducing duplicate buffering of content across
sockets. §5.7 evaluates the use of yanking socket buffers
to improve the ability of an HLS (HTTP Live Streaming
[22]) server to respond to network conditions.

5.1 Experimental Setup
All the machines used in the experiments are 3.5 GHz, 4-
core Intel(R) Xeon(R) E3-1270 v3 processors with 8GB
of DRAM. Hyperthreading is enabled for all of the ex-
periments. The server runs our modified Linux 3.13.5
kernel, while clients run standard Linux kernels.

Each machine has two NICs: a 10Gb NIC and a 1Gb
NIC. Each machine has a 256 GB SSD drive as sec-
ondary storage, attached via a SATA-III (6Gbps) port.
The SSD can sustain up to 100K IOPS and 90K IOPS,
for reads and writes respectively, each of size 4KB.

We use the Linux in-kernel traffic shaper (TC) [6] for
regulating link bandwidths in our experiments. To emu-
late the bandwidth characteristics of a real network, we
use bandwidth traces of a 3G mobile network [25] in
some experiments. The summary of six different traces
that we use in our experiments is provided in table 2.

5.2 Overheads of Delegation
In this section, we characterize the performance over-
heads of ModNet’s delegation framework by studying
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Figure 3: Nginx performance in Kreq/sec for native,
loopback proxy, and a dummy Modnet module. The re-
sults are shown for both 1Gbps and 10Gbps NICs.

the overheads of applying a dummy module to a web
server. The dummy module simply forwards data in both
directions. In our micro-benchmark, a large number of
clients request the same static file repeatedly, for various
file sizes. The workload is CPU bound for small files and
network bound for larger files.

Figure 3 shows the number of connections handled per
second for a single instance of the native Nginx Web
server (Native) and for the case where the dummy mod-
ule is applied to it (Dummy). For comparison, we also in-
clude measurements for a loopback Nginx proxy (Loop-
back) applied to the Nginx instance. Experiments were
performed separately for the 1Gbps and 10Gbps NICs,
and the corresponding results are marked with suffixes
“-1G” and “-10G”, respectively, in the figures. The poor
performance of the loopback proxy can be attributed to
the use of IP sockets for intermediate connection be-
tween the proxy and the server, and, in general, not being
as well optimized as the module implementation for this
specific usage.

To generate the workload, we used two client ma-
chines running a total of 400 concurrent clients. Non-
persistent connections were used in order to fully expose
the per-connection overhead of the module. For small
files the workload is CPU bound and ModNet poses an
overhead in the range of 15-25%, which is much lower
than the 50% overhead of loopback proxy. As the file
size increases, the workload becomes network bound and
ModNet’s overhead approaches 0, after which the mod-
ule provides a throughput close to the network bandwidth
(i.e., ∼10Gbps or 1Gbps). Inserting modules can also
affect the latency of the system. In our experiments,
we measured that the coefficient of variation of latencies
across short connections was ∼0.1 for the Native Nginx
and ∼0.14 for Nginx with dummy module applied to it.

In the interest of space we only discuss the conclusions

Figure 4: Performance comparison of adaptive gzip
module with various configurations of mod deflate
(Apache’s gzip compression implementation).

from our experiment of the effect of chaining dummy
modules on throughput. The throughput dropped by
∼13% per additional module for a 100 byte file, and we
observed 52% and 75% throughput drop for chains with
5 and 10 dummy modules, respectively. However, with
the growing number of processor cores, WAN bandwidth
is expected to be the bottleneck for common file sizes.
Moreover, even with small files we were able to handle
as much as 23K connections per second for a chain of 10
modules.

5.3 Adaptive Gzip Compression
Many web servers and proxies implement run-time con-
tent compression, so clients can still save bandwidth even
when the original content was not compressed. In these
cases, run-time compression can introduce extra CPU
overhead, which is reasonable for slower clients, but may
be a problem with fast clients or when the server CPU
becomes overloaded. We use ModNet’s inspection fa-
cilities to obtain fine-grained information about network
conditions and adapt accordingly. Specifically, the adap-
tive gzip module periodically reads the socket state and
drops the compression level for that transfer if its TCP
congestion window is bigger than the socket buffer data,
and raises the compression level otherwise. For eval-
uating the adaptive gzip module, we perform a similar
experiment as in the last section §5.2. The number of
clients was fixed to 40 for this experiment, because the
compression process starts fully utilizing the CPU at that
point. We used the monthly usage report of a personal
Amazon EC2 account. These reports are good examples
of large, dynamically generated and highly compressible
content. The document size for uncompressed monthly
report was 3MB and the compression ratio was in the
range of 34-51.

Fig. 4 depicts the average download times for the fol-
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Trace Name Duration (s) Mean BW (bits/s) BW CV
Trace img1 457 2.67 M 0.54
Trace img2 390 1.95 M 0.58
Trace img3 1036 1.51 M 0.60
Trace vid1 308 730 K 0.93
Trace vid2 619 735 K 0.85
Trace vid3 430 605 K 0.95

Table 2: Total trace duration (in seconds), Mean band-
width of the trace (BW) and the coefficient of variation
(CV) of the bandwidths for various 3G bandwidth traces
used in the experiments.

lowing configurations: Apache without gzip compres-
sion (Native), Apache’s gzip compression active with the
compression level settings, default, i.e., 6 (Mod deflate),
1 (Mod deflate CL=1) and 9 (Mod deflate CL=9),
Apache with gzip compression disabled and our adap-
tive gzip module applied to it (Gzip Module). Note that
the Y-axis is in log scale to accommodate large range of
values.

To demonstrate the benefit of the adaptive behavior,
we perform experiments with two classes of clients: (1)
high bandwidth clients, where each client has a band-
width of 240Mbps, and (2) low bandwidth clients, where
each client has a bandwidth of 2Mbps, which is around
the median of the mobile bandwidth samples we used.
As shown in the figure, for high bandwidth clients, the
bottleneck is compression speed, and thus, compression
level 1 is almost 4X faster than compression level 9, 2X
faster than the default case and 1.5X faster than no com-
pression. However, for low bandwidth clients, network
bandwidth is the bottleneck, so the compression level
9 is almost 1.5X faster than compression level 1, 1.2X
faster than the default compression level and 51X faster
than no compression. The adaptive gzip module gives
the optimal performance for both cases. Although this
experiment is designed to to illustrate the benefits of the
inspection mechanism, it is worth noticing that even with
the high bandwidth of 240Mbps (i.e., 40 clients on a
10Gbps uplink) ModNet’s modularization overhead does
not have any visible effect on performance relative to that
of the compression process, while we get extra flexibility
by using a separate network module.

5.4 Adaptive Image Compression
Given the enormous variability in bandwidth of clients in
the current internet, and the fact that more than 60% [2]
of the transferred bytes for an average webpage are im-
ages, serving images at a fixed resolution may be sub-
optimal. Even serving image resolution based on device
type may be problematic, since smartphones with wi-fi
access may be faster than desktops using dial-up.

An adaptive approach could select from multiple stat-

Website Number of images Total Size
BBC 24 940KB
IMDB 44 314KB
Pinterest 57 1082KB
Yahoo 20 282KB

Table 3: Characteristics of the Image datasets used.

ically compressed variants of the same image or could
dynamically re-compress the images. We used dynamic
re-compression of images because it allows us to change
the compression level on the fly based on a passive band-
width estimate that is acquired as the connection pro-
gresses. Moreover, dynamic re-compression is suitable
for transformational proxies, which have been argued to
be better for incremental deployment and amortization
of operating costs [14] (Google has already deployed
a compression proxy that dynamically re-encodes im-
ages [2] and other content for the chrome browser).

We employed ModNet’s inspection mechanism in or-
der to obtain a fine-grained estimate of the client’s band-
width. We use a passive bandwidth estimation mecha-
nism since it allows us to work with unmodified clients.
Our estimation mechanism is based on the packet-pair
[19] estimation, where we consider the pair of last two
acknowledged packets if they were sent close enough and
have similar sizes. Our bandwidth estimation mechanism
works well for HTTP transfers. We use ModNet’s del-
egation framework for implementing the adaptive JPEG
module. This recompression can be performed at a server
or at a performance-enhancing middlebox [33].

We use the JPEG image format for this module, since
it is widely used and supported across browsers. Chang-
ing the image compression dynamically for JPEG images
is, however, not straightforward, because as per the JPEG
specification [4], there is a single quantization matrix for
each color component, and it precedes the whole scan
data. We devise a new scheme where we zero out the
higher coefficients to get a better run length encoding
(RLE), and thus a better compression ratio.

Fig. 5 and Fig. 6 show the total download time and
average image quality for the four image datasets, for
the native Nginx web server (Native) and with our adap-
tive JPEG module applied to it (JPEG Module). We used
the SSIM index [32] for estimating the image quality.
The bandwidth is being shaped according to the 3G net-
work traces (see Table 2 for details). These results sug-
gest that the adaptive JPEG module keeps the download
times reasonable, regardless of how poor the client’s net-
work bandwidth is. It is worth mentioning here that the
trade-off between the reduction in size vs. degradation
in image quality is a policy question, and the results are
shown for one specific policy that we used. For this ex-
periment, we used only one active client. We now study
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Figure 5: The load times for Nginx and Nginx with the
adaptive JPEG module.

Figure 6: The average quality estimates (SSIM indices)
for Nginx with the adaptive JPEG module.

Figure 7: The throughput of Nginx with and without the
adaptive JPEG module for the BBC image dataset. Note
that the Y axis is in log scale.

Figure 8: Performance comparison of dynamic content
serviced by Apache with and without the socket buffer
swap module.

the effect of concurrent connections.

For a large number of concurrent clients, the compu-
tational cost of re-encoding images becomes a matter of
concern. However, since we only change the coefficients,
we only have to handle the RLE step, and not the more
expensive DCT (discrete cosine transform) processing.
We estimated that doing an inverse DCT and a DCT for
each image would require almost 3 times more computa-
tion.

To provide consistent throughput, the module only
compresses a fraction of images if the CPU becomes the
bottleneck. The throughput results for the adaptive JPEG
module are shown in Fig. 7. The JPEG Module (com-
pressed) and JPEG Module (uncompressed) correspond
to the fraction of connections being serviced as com-
pressed and uncompressed images, respectively, with the
adaptive JPEG module applied to Nginx. Each connec-
tion involves a request for all the images in the BBC im-
age dataset. The “Trace img2” (ref. table 2 for details)
bandwidth trace is used for this experiment. The adap-
tive JPEG compression module provides up to 3 times
more request throughput when the server is not heavily
loaded.

5.5 Swappable Socket Buffers
To demonstrate the flexibility of the ModNet approach,
we demonstrate its behavior in managing network socket
buffer space, irrespective of usage. A large socket buffer
can increase performance by reducing the chances of
an application getting blocked on socket writes. As an
example, consider an Apache server handling PHP re-
quests, which use a separate process per connection.
These systems typically cap the number of processes to
avoid overloading the server, but if too many slow clients
access the server, the PHP processes may be blocked on
writing to the clients, even if the responses have been
generated. Increasing the socket buffer size can reduce
this chance and free the application resources early, at
the expense of increasing kernel memory consumption.

One solution to this problem is to swap socket buffers
that are being drained too slowly, which reduces kernel
memory usage while still allowing large socket buffers to
free application resources. With the advent of flash stor-
age devices, which support fast random reads, the sec-
ondary storage is a natural candidate for swapping this
overflow content.

We used ModNet’s delegation framework to imple-



434 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

ment a socket buffer swap module that optimizes socket
buffering by yanking data from slowly-draining socket
buffers and swapping it to the SSD once the socket buffer
and the designated per-connection memory are full. Al-
though swapping of excess content to secondary storage
increases the throughput when the bottleneck is network,
it can degrade the throughput if disk becomes the bot-
tleneck. In order to address this issue, we implement an
adaptation mechanism to prevent swapping of new con-
tent once the disk load is high. The swap module decides
whether or not to swap content by comparing the network
bandwidth and the expected disk throughput, which is es-
timated based on the number of outstanding operations.

It is worth emphasizing here that ModNet’s delegation
framework makes it very easy to deploy such system-
wide policies, and allows prioritizing the scheduling of
such performance critical processes. Additionally, since
the modules are standalone processes it also makes the
process secure by running the module with appropriate
privileges to the swap area. Moreover, the inspection
mechanism allows us to examine network conditions and
decide when to swap. Revocation is used for swapping
existing data in case of sudden changes in conditions.

For this experiment, we use a mix of low and high
bandwidth clients. The per client bandwidth for low
bandwidth clients varies from ∼175Kbps (making the
lower end of aggregate bandwidth 0.2Gbps) to ∼4Mbps
(making the higher end of aggregate bandwidth around
4.8Gbps). The high bandwidth clients will collectively
receive the residual bandwidth of the server’s 10 Gbps
link. We use 1200 low bandwidth clients and an equal
number of high bandwidth clients, which repeatedly re-
quest a dynamically generated file of size 800KB.

For generating dynamic content, we use a PHP script
that generates 800KB of data and use Apache to serve it.
Fig. 8 shows the throughput of native Apache (Native)
and Apache with the socket buffer swap module applied
to it (Socket Buffer Swap Module). We set the maximum
limit on Apache’s worker processes to 512, because in-
creasing the limit beyond that reduces its performance.

We see more than 9X improvement in throughput
when there are a number of clients with considerably
lower bandwidth. As the bandwidths of these low band-
width clients increase, their request rate also increases,
because each request takes less time to finish. Therefore,
the throughput starts dropping after a point because of
the increased disk load. Note that it still performs bet-
ter than blocking on the network, until the point where
disk throughput becomes the bottleneck. Once the disk
throughput becomes the bottleneck, the adaptation mech-
anism will try to prevent the further offloading of content
to SSD; we see a slightly lower performance after this
point because the adaptation mechanism is not perfect.

5.6 Deduplicating Socket Buffers
While caching mechanisms and CDNs can be used to
handle flash crowds for static content, scalable server in-
stances are required in the case of dynamic content. With
the growing complexity of web pages [11], the memory
pressure of socket buffers can become a limiting factor
for web server scalability. The socket buffer swap mod-
ule (§5.5) can be used to reduce the memory pressure at
the expense of higher disk I/O. In this section we describe
the deduplication module, which reduces the memory
pressure at the expense of higher CPU utilization.

The deduplication module exploits the fact that re-
sponses generated by web servers often contain large
amounts of template material, such as in the case of dy-
namic content [15]. Web servers can avoid the duplicate
buffering for static files by using the sendfile system
call (or its equivalents). However, there is no easy mech-
anism to avoid this extra memory pressure for web prox-
ies or web servers generating dynamic content. We im-
plemented a deduplication module using ModNet’s del-
egation framework that reduces duplicate buffering for
servers. As argued in §5.5, ModNet modules greatly ease
the deployment of such “OS-like” services.

We use Rabin fingerprinting to detect duplicate
chunks, as in [9, 29], and share a single copy of the
duplicated content by using Linux’s vmsplice system
call. Fig. 9 shows the memory usage versus the number
of concurrent connections for Nginx (Native) and Nginx
with the deduplication (Deduplication) module applied
to it. All the connections request a dynamically gener-
ated file with the same template. We used the Yahoo
homepage as the template and inserted scripts for por-
tions we deemed would vary across downloads by differ-
ent users. The size of the page was 346KB on an average,
and the dynamic portion was less than 300 bytes. As can
be seen in the graph, the memory consumption drops by
up to 7X for this experiment.

Note that varying the number of connections does not
affect the throughput for this experiment because we
are network bound throughout the range of this exper-
iment. The average application throughput was close
to 930Mbps for with and without deduplication on the
1Gbps link. The average CPU utilizations were 31% and
63% for Native and Deduplication, respectively. How-
ever, for the 10Gbps link, the deduplication was CPU
bound and was only able to deliver ∼3.2Gbps of through-
put.

The relative CPU overhead of deduplication increases
as the content generation processing decreases. There-
fore, we emulated zero generation time using static con-
tent in order to expose the maximum overhead; the aver-
age CPU utilizations for Native and Deduplication were
17% and 52% in this case. Thus, the maximum process-
ing overhead of deduplication is around 200%. However,
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Figure 9: Kernel memory usage for Native Nginx and
Nginx with the deduplication module.

the fact that the deduplication module was able to satu-
rate the 1Gbps link with a moderately powerful 4-core
server makes this a highly practical solution.

5.7 Video Streaming with Revocation
While the swapping and deduplication modules yank and
later re-insert content into the socket buffer, another use
of ModNet’s revocation mechanism is to change unsent
content in the socket buffer. We target adaptive bitrate
video, where the client requests video fragments encoded
at multiple bitrates. If the client chooses the wrong
bitrate or if the network connection abruptly changes,
the viewer can experience rebuffering. As discussed
in §5.4, ModNet’s shared state mechanism can be used
for packet-pair based passive bandwidth estimation.

We implement yank support in Mistserver [8], an open
source HLS [22] server, so that the server can partici-
pate in the adaptive bitrate system. We implement two
approaches – in the first, the server monitors bandwidth
and truncates any in-progress transfer, leaving any con-
tent already in the socket buffer to be sent. In the other,
not only does any remaining content get stopped, but
any unsent data is also yanked from the socket buffer.
Although truncation is not officially supported by the
HLS [22] protocol, we have tried our implementation
with two popular players, VLC and Quicktime, and both
of them were able to play the video without any visible
problems. In order to support persistent connections, we
use the chunked encoding to produce HTTP responses of
variable size. We use “Big Buck Bunny” [1] as the video
clip for streaming. The duration of segments and en-
coding levels were chosen in accordance with HLS best
practices [3].

We serve the highest bitrate video stream that can be
sustained by the current estimated bandwidth. If the
bandwidth drops below the bitrate of the current encod-
ing, we truncate the video segment. While truncating,
we can use the yank system call to remove the pending
socket buffer data at any legal boundary. The server pre-
fixes any pending video fragment from the last segment

in each response. The entire segment in a response is en-
coded at a bitrate that can be sustained by the bandwidth
that was recorded at the end of transmission of the last
segment.

Fig. 10 shows a plot of segment bitrates vs. time for
the requested segments for a synthetic bandwidth varia-
tion dataset, using VLC as the client. Researchers have
conducted similar studies in the past [10] for other adap-
tive HTTP-based video streaming protocols. Results are
shown for the following three variants: (1) adaptive,
which is the default HLS behavior, (2) truncate, which
uses server-side adaptation and truncation of segments,
and (3) yank, which uses server-side adaptation and em-
ploys yank to perform better truncation. The plot clearly
demonstrates that the standard adaptive protocol reacts
very slowly to steep bandwidth changes, a server-side
truncation mechanism allows a relatively faster reaction,
and using yank allows us to react almost instantaneously.

Fig. 11 shows the re-buffering durations, where the
player has no video segments to play, and the startup
times before the video playback begins, for the differ-
ent bandwidth traces of a real 3G network [25] (see ta-
ble 2 for details). Our version of VLC starts the playback
as soon as it has downloaded one full segment; earlier
versions used to start playback after downloading two
full segments. Note that we have only shown the results
for a small set of representative traces that exhibit some
amount of re-buffering.

From this test, we see that simply using server-side
adaptation to truncate ongoing segments and change
bitrate can yield some improvement over client-side
adaptation. However, being able to use ModNet’s
modnet yank can reduce the rebuffering and startup
time by as much as a factor of 2-5 for these traces. At the
same time, the normal operation of the server is not im-
pacted, since it can continue to use large socket buffers
when the client’s bandwidth estimation is correct.

6 Related Work
ModNet can be viewed as a combination of an interpo-
sition system and a proxy, although it has more network
interaction than either of those systems. In this section,
we discuss related systems that have not already been
mentioned in the paper.

Various kinds of proxies can provide some of the same
kinds of behaviors we have shown in this paper. Fox
et. al. [13] propose the use of transformational proxies
to perform compression of content according to network
bandwidth, screen size and other client’s characteristics,
but heavily rely on client-side support for bandwidth es-
timation. Sucu et. al. [30] propose a mechanism for
adaptively compressing the network content using band-
width estimation mechanisms from grid computing re-
search. ModNet’s interfaces make our Gzip module im-
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Figure 10: The bitrate of video segments for a synthetic
bandwidth trace for all three variants: adaptive, truncate
and yank.

Figure 11: Rebuffering durations and startup times for
different video traces using different adaptation strate-
gies. Yanking content dramatically reduces rebuffering
times in all environments tested.

plementation more straightforward. Krishnamurthy et.
al. [17] propose characterization of clients based on
network connectivity for adapting web server responses,
which is a server-side response to similar work that was
done amongst clients by Seshan et. al. [28]. We be-
lieve that ModNet’s interface for exposing connection
status information makes this process more direct, and
can augment client-side estimation as shown in our adap-
tive video experiment.

Other proxy work has implemented portions of the
work in ModNet. Rosu et. al. [26] propose a shared
memory abstraction for exposing some socket state in-
formation to applications. However, their main intention
behind doing so is to implement a fast select/poll mech-
anism at user level. Connection conditioning [23] also
uses a chained series of services. However, their mech-
anism is specific to web servers, and only handles the
request path, not responses. Furthermore, their imple-
mentation, which is purely in user space, is considerably
different than ours, and demands application changes.
Other loopback proxy approaches have much higher per-
formance overheads, as we show in the microbenchmark
experiments.

Packet interception mechanisms, such as packet filter-
ing [20, 21] or virtual network devices such as TUN/-
TAP in Linux, might allow a user space daemon to inter-
cept the packets and modify them (e.g. the Linux libnet-
filter queue [34] mechanism). Since the daemon inter-
cepts individual packets, it is not suitable for connection-
oriented processing. Specifically, doing things like
multiplexing connections through read/write events or
mmap-ing sockets to read the connection state will not
be possible. Even if some connection tracking mecha-
nism was to be used in conjunction, these would demand
extra programmer effort.

Much work in general has taken place on user-level
network stacks, with the goal of avoiding the long delay
in kernel adoption. Some implementations [12, 31] allow

some application-level flexibility, although the develop-
ment and maintenance efforts may make them unattrac-
tive for many domains. The most successful user-level
stack is arguably Click [16], which has shown that flex-
ibility can be more desirable than raw speed, and which
has shaped some of our design choices. Not all user level
approaches have implemented the full stack. Tesla [27]
is a framework for transparently implementing session-
layer services, such as compression, encryption, etc. Al-
though Tesla is more specialized for session-layer ser-
vices, ModNet’s module framework is more generic.

In comparison to user-level stacks, some work has
been done on entirely new protocols to avoid these prob-
lems, such as DCCP [18]. This protocol implementation
provides a shared packet ring abstraction to allow manip-
ulation of buffered data, which they call late-data choice.
The problem with this approach, however, has been slow
deployment at end hosts, limiting application adoption.

7 Conclusions
We present the design and implementation of ModNet,
which increases the flexibility of network stack by intro-
ducing a framework for delegating network stack man-
agement, inspecting connection progress, and revoking
unsent content. We demonstrate a range of modules that
allow dynamic control of data generation, socket buffer
management, and server behavior, at time scales and
granularities not easily achieved with existing interfaces.
We believe that the small amount of kernel change intro-
duced by ModNet is palatable, and the additional mech-
anism is small, general-purpose, and can be easily main-
tained, raising the chances that ModNet or something
like it will have greater deployability than custom proto-
cols or other approaches with higher barriers to adoption.
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Abstract— Despite web access on mobile devices becom-
ing commonplace, users continue to experience poor web
performance on these devices. Traditional approaches
for improving web performance (e.g., compression, SPDY,
faster browsers) face an uphill battle due to the fundamen-
tally conflicting trends in user expectations of lower load
times and richer web content. Embracing the reality that
page load times will continue to be higher than user toler-
ance limits for the foreseeable future, we ask: How can we
deliver the best possible user experience?

To this end, we present KLOTSKI, a system that prioritizes
the content most relevant to a user’s preferences. In design-
ing KLOTSKI, we address several challenges in: (1) account-
ing for inter-resource dependencies on a page; (2) enabling
fast selection and load time estimation for the subset of re-
sources to be prioritized; and (3) developing a practical im-
plementation that requires no changes to websites. Across a
range of user preference criteria, KLOTSKI can significantly
improve the user experience relative to native websites.

1 Introduction
Web access on mobile platforms already constitutes a
significant (more than 35%) share of web traffic [28] and
is even projected to surpass traditional modes of desktop-
and laptop-based access [19, 23]. In parallel, user ex-
pectations of web performance on mobile devices are in-
creasing. Industry analysts report that 71% of users ex-
pect websites to load as quickly as on their desktops, and
33% of annoyed users are likely to visit competing sites,
resulting in lost revenues [30, 10].

To cater to this need for a faster mobile web, there
are a range of proposed solutions such as customiz-
ing content for mobile devices [18, 7], specialized
browsers [21], in-cloud acceleration solutions for ex-
ecuting scripts [2], new protocols [25], and compres-
sion/caching solutions [2, 8]. Despite these efforts, user
experience on mobile devices is still woefully short of
user expectations. Industry reports show that the median
web page takes almost 11 seconds to load over mobile
networks even on state-of-art devices [1]; this is the case
even for top mobile-optimized retail websites [15]. In
fact, several recent studies show that the benefits from the
aforementioned optimizations are marginal [37, 59, 3],
and they may even hurt performance [56].

Our thesis is that the increasing complexity of web
page content [12, 5, 33] and decreasing user tolerance
will outpace the benefits from such incremental perfor-
mance enhancements, at least for the foreseeable future.
For instance, though RTTs on mobile networks halved

between 2004 and 2009 [54], the average number of
resources on a web page tripled during the same pe-
riod [5]. Therefore, rather than blindly try to improve
performance like prior approaches, we argue that we
need to improve the user experience even if load times
will be high.

Our high-level idea is to dynamically reprioritize web
content so that the resources on a page that are critical
to the user experience get delivered sooner. For instance,
user studies show a typical tolerance limit of 3–5 sec-
onds [39, 32, 48]. Thus, our goal is to deliver as many
high utility resources as possible within this time. Our
user studies, however, suggest that the content consid-
ered high utility significantly varies across users. There-
fore, point solutions that optimize for a single notion of
user utility, e.g., by statically rewriting web pages or by
dynamically prioritizing above-the-fold objects [14, 35]
will not suffice. Instead, we want to develop a general
solution that can handle arbitrary user preferences.

However, there are three key challenges in making this
approach practical:
• Inferring resource dependencies: Scheduling the re-

sources on a web page requires a detailed understand-
ing of the loading dependencies between them. This is
especially challenging for dynamically generated web
content, which is increasingly common.

• Fast scheduling logic: We need a fast (tens of ms)
scheduling algorithm that can generate near-optimal
schedules for arbitrary user utility functions. The chal-
lenge is that this scheduling problem is NP-hard and is
inefficient to solve using off-the-shelf solvers.

• Estimating load times: Predicting the load time for a
given web page is hard due to the complex manner in
which browsers parallelize the loading of resources on
a web page. Our problem is much worse—we need to
estimate the load times for arbitrary loading schedules
for subsets of web resources. Furthermore, we need
to be able to do so across heterogeneous device and
network conditions.
In this paper, we present the design and implemen-

tation of KLOTSKI, a practical dynamic reprioritization
layer that delivers better user experience. Conceptually,
KLOTSKI consists of two parts: a back-end measurement
engine and a front-end proxy. The back-end uses offline
measurements to capture key invariant characteristics of
a web page, while the front-end uses these characteris-
tics along with user preferences and client conditions to

1
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prioritize high-utility content. In tackling the above chal-
lenges, KLOTSKI’s design makes three contributions:
• Though the specific URLs on a page vary across loads,

we develop techniques to merge multiple loads of a
page to extract the page’s invariant dependency struc-
ture and capture how resource URLs vary across loads.

• We design a fast and near-optimal greedy algorithm to
identify the set of resources to prioritize.

• We create an efficient load time estimator, based on the
insight that the key bottleneck is the link between the
client and the KLOTSKI front-end. Thus, we can effec-
tively simulate this interaction to estimate load times.
We implement KLOTSKI as an integrated proxy-

browser architecture [21, 2] that improves user experi-
ence on legacy devices and web pages by using standard
web protocols to implement our reprioritization scheme.
Using a range of measurements, system benchmarks, and
across a variety of user utility functions, we demonstrate
that: (1) on the median web page, KLOTSKI increases
the fraction of high utility resources delivered within 2
seconds from 25% to roughly 60%; (2) our dependency
representations are robust to flux in page content and typ-
ically only need to be updated once every 4 hours; and (3)
our load time estimates achieve near-ideal accuracy.

Looking beyond our specific design and implemen-
tation, we believe that the principles and techniques in
KLOTSKI can be more broadly adopted and are well
aligned with emerging web standards [6, 13, 25]. More-
over, while our focus here is on mobile web access, we
show that KLOTSKI can also improve traditional desktop
browsing as well.

2 Motivation
We begin by confirming that: 1) web performance on
mobile devices is still below expectations, and 2) these
performance issues exist even with popular optimiza-
tions. We also argue that these issues stem from the
growing complexity of web content and that this growth
is outpacing improvements in network performance.

Web performance on mobile devices: The grow-
ing adoption of the mobile web has been accompanied
by a corresponding decrease in user tolerance—users to-
day expect performance comparable to their desktops on
their phones [30]. To understand the state of mobile
web performance, we compared the page load times1 of
the landing pages of the top 200 websites (as ranked by
Alexa) under three scenarios: 1) on a HTC Sensation
smartphone using a 4G connection, 2) on the same phone
using WiFi, and 3) on a desktop connected to the same
WiFi network. For each web page, we run these three
scenarios simultaneously to avoid biases due to content

1We measure page load time by the time between when a page load
was initiated and when the browser’s onLoad event was fired.

(a) (b)

Figure 1: Load time comparison for top 200 websites.

Figure 2: Comparison of page load times with various well-
known performance optimization techniques.

variability across loads. For each page, we report the
median load time across 5 loads.

Figure 1(a) shows the CDF of load times for the three
scenarios, and Figure 1(b) shows the normalized load
times on the smartphone w.r.t. the desktop case. We see
that the mobile load times are significantly worse, e.g.,
the median webpage is 5× worse on 4G and 3× worse
even on WiFi. The tail performance is particularly bad,
with the 80th percentile ≥ 10s on both 4G and WiFi.

Limitations of performance optimizations: We
study three prominent classes of web optimizations used
today: split-browsers such as Opera Mini [21], Google
SPDY [25], and recommended compression strategies.
For the latter two cases, we relay page loads through a
SPDY-enabled NodeJS proxy and through Google’s data
compression proxy (DCP) [8], respectively. We use the
HTC Sensation smartphone with a 4G connection for
these measurements.

Initially, we loaded the top 200 websites using these
performance optimizations. However, we saw no im-
provement in load times (not shown). To see if these
optimizations can potentially help other websites, we
pick the landing pages of 100 websites chosen at random
from the top 2000 websites and compare the load times
with and without these optimizations in Figure 2. While
the optimizations help improve load times on some web
pages, we see that they increase load times on other web
pages, thus resulting in little change in the overall distri-
bution; load times remain considerably higher than the 5-
second tolerance threshold typically observed in usabil-
ity studies [30]. These observations are consistent with
other recent studies [59, 37, 56].

Complexity vs. Performance: A key reason why
these protocol-, network-, and browser-level optimiza-
tions are largely ineffective is because web pages have

2
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Figure 3: Page load time when using Google’s compression
proxy vs. the number of resources loaded on the page.

become highly complex [12, 5, 33]. For instance, the
number of resources included on a web page is a key fac-
tor that impacts load times [58, 33]. Indeed, even in our
measurements, Figure 3 shows that the load time for ev-
ery web page using Google’s compression proxy shows
a strong correlation with the number of resources on the
page; i.e., even with the optimizations, the number of re-
sources continues to be a dominant factor.

Furthermore, past trends indicate that increase in page
complexity tends to match or even outpace improve-
ments in network performance. For example, prior stud-
ies show that the average number of resources on a web
page tripled from 2004 to 2009 [5], while RTTs on mo-
bile networks only halved over the same period [54].

Takeaways: In summary, we see that web page loads
take a significant amount of time on mobile devices, and
that common optimizations offer limited improvements
for complex pages. Given that page complexity is likely
to grow at the same or faster rate than improvements
in network performance, we need to rethink current ap-
proaches to improve the mobile web experience.

3 System overview
Embracing the reality that load times will be high despite
performance optimizations, we argue that rather than
purely focusing on improving performance, we should
be asking a different question:
How can we deliver good user experience under the as-
sumption that page load times will be high?

In this section, we start with the intuition underlying
our approach and discuss practical challenges associated
with realizing this goal. Then, we present an overview of
the KLOTSKI system to address these challenges.

3.1 Approach and Challenges

Our high-level approach is to ensure that resources that
the user considers important are delivered sooner. Note
that we do not block or filter any content, so as to not risk
rendering websites unusable. Based on studies showing
that users have a natural frustration or tolerance limit of
a few seconds [39, 32, 48], our goal is to deliver as many
high utility URLs on the page as possible within a (cus-
tomizable) tolerance threshold of M seconds.

To see how this idea works, consider a hypothetical
“oracle” proxy server whose input is the set of all URLs
O = {oi} on a web page. Each oi has an associated

load time ti and a user-perceived utility Util i . The oracle
picks a subset of URLs O � ⊆ O that can be loaded within
the time limit M such that this subset maximizes the total
utility

∑
oi∈O′ Util i . The proxy will then prioritize the

delivery of these selected URLs.
Using this abstract problem formulation, we highlight

several challenges:
• Page dependencies and content churn: First, this sub-

set selection view ignores inter-resource dependen-
cies, e.g., when a page downloads an image as a result
of executing a script on the client, the script is a nat-
ural parent of the image. To prioritize a high-utility
URL oi , we must also prioritize all of oi ’s ances-
tors. Second, because dynamically generated content
is common on today’s web pages, we may not even
know the set O of URLs before loading the page.

• Computation time: Selecting the subset O � that max-
imizes utility is NP-hard even ignoring dependen-
cies, and adding dependencies makes the optimization
more complex. Since the number of URLs fetched on
a typical web page is large (≈ 100 URLs [4]), it is in-
feasible to exhaustively evaluate all possible subsets.
Note that running this step offline does not help as it
cannot accommodate diversity across user preferences
and operating conditions (e.g., 3G vs. LTE).

• Estimating load times: Any algorithm for selecting
URLs to prioritize will need to estimate the load time
for any subset of URLs, to check that it is ≤ M .
This estimation has to be reasonably accurate; under-
estimation will result in some of the selected high util-
ity URLs failing to load within the user’s tolerance
threshold, whereas over-estimating and choosing ad-
ditional high utility URLs to load if all the selected
URLs load well within the time limit M may lead
to suboptimal solutions. Unfortunately, predicting the
load time for a given subset of URLs is non-trivial.
In addition to the dependencies described above, it is
hard to model how browsers parallelize requests, parse
HTML/CSS files, and execute scripts.

• Deployment considerations: Requiring custom fea-
tures from clients or explicit support from providers
reduces the likelihood of deployment and/or restricts
the benefits to a small subset of users and providers.
Thus, we have a practical constraint—the prioritiza-
tion strategy should be realizable even with commod-
ity clients and legacy websites.

3.2 KLOTSKI Architecture

To tackle the above challenges, we develop the KLOTSKI
system shown in Figure 4. We envision KLOTSKI as a
cloud-based service for mobile web acceleration. There
are many players in the mobile ecosystem who have
natural incentives to deploy such a service, including
browser vendors (e.g., Opera Mini), device vendors (e.g.,
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Figure 4: Overview of KLOTSKI’s architecture.

Kindle Fire’s Silk), cellular providers (offering KLOTSKI
as a value-added service), and third-party content deliv-
ery platforms (e.g., Akamai). While KLOTSKI requires
no changes to client devices or legacy webservers and
makes minimal assumptions about their software capa-
bilities, it can also incorporate other optimizations (e.g.,
caching, compression) that they offer.

We assume there is some process for KLOTSKI users
to specify their preferences; we discuss some potential
approaches in Section 9. Our focus in this paper is on
building the platform for content reprioritization, and we
defer the task of learning user preferences to future work.

The KLOTSKI back-end is responsible for captur-
ing page dependencies and dynamics via offline mea-
surements using measurement agents.2 For every page
fetched, the agents record and report key properties such
as the dependencies between resources fetched, the size
(in bytes) of every resource, the page load waterfall, and
every resource’s position on the rendered display. The
back-end aggregates different measurements of the same
page (across devices and over time) to generate a com-
pact fingerprint fw per web page w . At a high-level, fw
is a DAG, where each node i is associated with a URL
pattern pi . (The role of this URL pattern will become
clearer below.) In this paper, we focus specifically on the
fingerprint generation algorithm (§4) and do not address
issues such as coordinating measurements across agents.

The KLOTSKI front-end is an enhanced web proxy
that prioritizes URLs that the user considers important. It
uses legacy HTTP to communicate with webservers, and
communicates with clients using SPDY, which is now
supported by popular web browsers [26]. When a re-
quest for a page w from user u arrives (i.e., the GET for
index.html), the front-end uses fw , the user’s prefer-
ences, and a load time estimator (§6) to compute the set
of resources that should be prioritized (§5).

The front-end can preemptively push static resources
that need to be prioritized. For other selected resources
that are dynamic, however, it cannot know the URLs in
the current load until the page load actually executes.
Thus, when a new GET request from the client arrives,

2The measurement agents can be KLOTSKI’s clients that occasion-
ally run unoptimized loads, or the KLOTSKI provider can use dedicated
measurement clients (e.g., [16]).

Figure 5: Fraction of replaced URLs, comparing loads an
hour apart, a day apart, and a week apart.

the front-end matches the URL requested against the
URL patterns for the selected resources. If a match is
found, the front-end prioritizes the delivery of the con-
tent for these URLs over other active requests.

4 Page fingerprint generation
Next, we describe how the KLOTSKI back-end generates
web page fingerprints. It takes as input multiple loads of
a given webpage w as input, and generates the fingerprint
fw that captures parent-children dependencies across re-
sources on w as well as high-level URL patterns describ-
ing each resource on the page.

4.1 High-level approach

Prior works such as WebProphet [42] and WProf [58] in-
fer dependencies across URLs for a single load of a web
page. Unfortunately, this single-load dependency graph
cannot be used as our fw because the URLs on a page
change frequently. Figure 5 shows a measurement of the
URL churn for 500 web pages. We see that at least 20%
of URLs are replaced for ≥ 30% of web pages over the
course of an hour and for ≥ 60% of web pages over a
week. Due to this flux in content, the dependencies in-
ferred from a prior load of w may cause us to incorrectly
prioritize URLs that are no longer on the page or fail to
prioritize the new parent of a high utility URL.

Now, even though the set of URLs changes across
page loads, there appears to be an intrinsic dependency
structure for every web page that remains relatively
static. Suppose we construct an abstract DAG from ev-
ery load of a web page, with an edge from every URL
o to its parent p. Then, for 90% of the same 500 pages
considered above, changes in this DAG, captured by tree
edit distance, are less than 20% even after a week (not
shown). That is, most pages appear to have a stable set
of inter-resource dependencies, with only the URL cor-
responding to every resource changing across loads.

Based on this insight, we generate the fingerprint
fw as follows. We take multiple measurements of w
over a recent interval of Δ hours. From this set of
measurements, Loadsw ,Δ, we identify a reference load
RefLoadw . While there are many possible choices, we
find using the load with the median page load time within
Loadsw ,Δ works well. Given that the dependency struc-
ture is quite stable, we use the dependency DAG for
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O1 O2

Figure 6: Given O1 and O2

fetched in two loads of the same
web page, we map URLs in
(O1−O2) to ones in (O2−O1).

a.com/index.htm

cdn1.b.com/img.jpg

c.com/ad.php?arg1

a.com/style.css

d.com/script.js

d.com/n#92@H/a.js

a.com/index.htm

c.com/ad.php?arg2

a.com/style.css

d.com/script.js

d.com/%tB#3v/a.js

cdn2.b.com/img.jpg

a.com/index.htm

c.com/ad.php?*

a.com/style.css

d.com/script.js

d.com/*/a.js

*.b.com/img.jpg

(a) (b) (c)
Figure 7: Illustrative example showing dependency structures (a) and (b) being merged
into aggregated dependency structure (c).

RefLoadw ; in Section 7, we describe how we obtain this
dependency DAG in our implementation of KLOTSKI.

However, one challenge remains. To ensure that this
DAG is reusable across loads, we need to annotate every
node in the DAG with a URL pattern that captures the
variations of the URLs for this node across loads. We
do this as follows. We initialize the page’s dependency
structure D as the DAG between URLs fetched during
the reference load RefLoadw . We then iteratively update
D by reconciling the differences between D and other
loads in Loadsw ,Δ. First, for every o ∈ RefO (the set of
URLs in RefLoadw ) that is absent in some other (non-
reference) load O , we identify the URL o′ ∈ O that re-
placed o. Then, for every such matched URL, we update
the URL pattern at the node in D with a regular expres-
sion that matches both the previous URL annotation and
the URL for o′.

Thus, we have two natural subtasks: (1) Given two
different loads Load1 and Load2, we need to map URLs
that have replaced each other; and (2) We need to cap-
ture the variations in a resource’s URL across loads to
generate robust URL patterns. We describe these next.

4.2 Identifying replacements in URLs

Let O1 and O2 be the sets of URLs fetched in two dif-
ferent loads within Loadsw ,Δ. While some URLs are
present in both loads, some appear only in one. Our goal
here is to establish a bijection between URLs fetched
only in the first load (O1−O2) and those fetched only in
the second load (O2 −O1), as shown in Figure 6.

<span class="yt-thumb-default">
<span class="yt-thumb-clip">
<img aria-hidden="true" alt="" width="175"
src="//i1.ytimg.com/vi_webp/k2waw0wZ7VA/mqdefault.webp">
<span class="vertical-align">
</span></span></span></span>

(a) Load 1

<span class="yt-thumb-default">
<span class="yt-thumb-clip">
<img aria-hidden="true" alt="" width="175"
src=" //i1.ytimg.com/vi/GSjA3voJydk/mqdefault.jpg">
<span class="vertical-align">
</span></span></span></span>

(b) Load 2

Figure 8: Example snippets from two loads of youtube.
com that illustrate the utility of local similarity based match-
ing. URLs that replace each other are shown in bold.

To this end, we rely on three key building blocks:
• Identical parent, lone replaced child: We identify

the parent(s) for each URL in O1 and O2. Then, we
consider every URL p that appears in both loads and
has children in both loads. Now, if p has only one un-
matched child o in O1 and only one unmatched child
o′ in O2, i.e., p’s remaining children appear in both
loads3, then we consider o′ to have replaced o.

• Similar surrounding text: In practice, a single parent
resource p may have several children replaced across
loads; e.g., a script may fetch different URLs across
executions, or the URLs referenced in a page’s HTML
may be rewritten across loads. In such cases, we need
to identify the mapping between an URL p’s children
in (O1 −O2) and its children in (O2 −O1).
Here, we observe that the relative position of these
children in their parent’s source code is likely to be
similar. Figure 8 shows an example snippet from the
main HTML on youtube.com, which fetches dif-
ferent images across loads. As we can see, even as
the HTML gets rewritten to fetch a different image,
the text within the code surrounding the reference to
either image is almost identical.
We use this observation to identify URL replacements
as follows. For every URL, KLOTSKI’s measurement
agents log the location within its parent’s source code
where it is referenced. Then, for every pair (o, o′) that
have the same parent p, we compute a local text simi-
larity score between the portions of p that reference o
in the first load and o′ in the second load. We compute
this similarity score as the fraction of common con-
tent 4 across (1) 500 characters of text on either side of
the URL’s reference, and (2) the lines above and below
the URL’s reference. We iterate over (o, o′) pairs in
decreasing order of this score, and declare o′

i as having
replaced oi if either URL has not already been paired
up and if the score is greater than a threshold.

• Similar position on display: Local similarity may fail
to identify all URL replacements as not all URLs are
directly referenced in the page’s source code (e.g., al-
gorithmically generated URLs). Hence, we also iden-

3Or equivalently, all the other children have already been matched.
4We apply Ratcliff and Metzener’s pattern matching algorithm [52],

which returns a value in [0, 1] for the similarity between two strings.

5



444 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

tify URL replacements based on the similarity in their
position on the display when the page is rendered.
Again, KLOTSKI’s measurement agents log the coor-
dinates of the top-left and bottom-right corner of the
visible content of every URL (details in §7). We then
declare o� in one load as having replaced o in another
load if the sum of the absolute differences between the
coordinates of their corners is less than 5 pixels.
Putting things together: We combine the above

building blocks as follows. First, we map URLs that
have an identical parent and are the only child of their
parent that changes across loads. We apply this tech-
nique first since it rarely yields false positives. Then, we
identify mappings based on the local similarity scores,
following which we leverage similarity in screen posi-
tions. After these steps match many URLs in O1 and O2,
there may now be new URLs that share a parent and are
the only unmatched child of their parent. Thus, we ap-
ply the first step again to further match URLs. At this
point, there remain no more URL pairs that are the sole
replaced children of their common parent and all URLs
that can be matched based on similarity in surrounding
text or screen position have already been matched.

4.3 Generating URL patterns

Now that we are able to identify how URLs fetched on a
web page are replaced across loads, we next discuss how
KLOTSKI generates the URL patterns.

While one could use complex algorithms to merge
URLs into regular expressions (e.g., [61]), our empirical
analysis of thousands of websites shows that over 90% of
URL replacements fall in one of three categories:
• URL argument changes: When URL o in one load

is replaced by o� in another, they often differ only in
the associated arguments, i.e., the part of the URL fol-
lowing the ‘?’ delimiter. This is common in adver-
tisements, as the argument is dynamically rewritten to
select the ad shown. For example, c.com/ad.php?
arg1 in Figure 7(a) is replaced by c.com/ad.php?
arg2 in Figure 7(b). In such cases, we merge URLs
into a regular expression that preserves the common
prefix and indicates that any argument is acceptable;
c.com/ad.php?* in our example.

• Single token in the URL changes: Second, when
URLs o and o� are split into tokens using ‘/’ as the de-
limiter, they often differ only in one token. This hap-
pens when an image on a page is replaced by another
image with the same path name, or when an URL in-
cludes a hash value that is randomly generated on ev-
ery load, e.g., in Figures 7(a) and 7(b), d.com/%tB#
3v/a.js replaces d.com/n#92@H/a.js. Here,
the merged URL pattern we create is the URL for o,
but the token that differs from o�’s URL is replaced
with a wildcard; d.com/*/a.js in our example.

Figure 9: Choosing a dependency-compliant subset of re-
sources that maximizes utility within load time budget. Each
node represents a resource; shaded nodes have high utility.

• Resources fetched from CDNs: Last, we account for
content served via CDNs. For such URLs, the host-
name portion of the URL changes across loads only in
the first token, when the hostname is split into tokens
based on ‘.’. The regular expression that we use re-
places only the portion of the hostname that changes
with a wildcard, e.g., in Figure 7, the regular expres-
sion *.b.com/img.jpg captures cdn1.b.com/
img.jpg replacing cdn2.b.com/img.jpg.

One concern is that these merging techniques may be-
come too generic (i.e., too many wildcards), producing
many false matches at the front-end. We show in §8 that,
with a suitable choice of Δ to refresh the DAG, this is
unlikely to occur.

5 Optimizing page loads

When a client loads a web page w via the KLOTSKI
front-end, the front-end does two things. First, it selects
the subset of resources on the page that it should priori-
tize. Thereafter, as the client executes the page load, the
front-end alters the sequence in which the page’s content
is delivered to the client, in order to prioritize the deliv-
ery of the selected subset of resources. Next, we discuss
how the KLOTSKI front-end performs these tasks.

5.1 Selecting resources to prioritize

Recall from §3.2 that the KLOTSKI front-end begins se-
lecting the subset of resources to prioritize on a page w
once it receives the request for w ’s main HTML.

The front-end’s resource selection for w uses the pre-
viously computed fingerprint fw that characterizes the de-
pendencies and features of resources on w . Using fw
in combination with the user’s preferences, the front-end
computes per-resource utilities and constructs an anno-
tated DAG where every node corresponds to a resource
on w and is annotated with that resource’s utility.

As shown in Figure 9, our goal is to select a suitable
DAG-cut in this structure, i.e., a cut that also satisfies
the dependency constraints. Formally, given a page’s de-
pendency structure D and a time budget M for user per-
ceived load time, we want to select the optimal cut C ∗

that can be loaded within time M and maximizes the ex-
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pected utility. Now, selecting the optimal cut is NP-hard
and it is inefficient to solve using off-the-shelf solvers.5

It is clear that we need a fast algorithm for resource
subset selection because it is on the critical path for load-
ing web pages—if the selection itself takes too long,
it defeats our goal of optimizing the user experience.
Hence, we heuristically adapt the greedy heuristic for the
weighted knapsack problem as follows.

We associate every resource oi in the page, whose util-
ity is Util i , with an initial cost Ci equal to the sum of its
size and its ancestors’ sizes in D . Then, in every round
of the greedy algorithm, we iterate through all the unse-
lected resources in the descending order of Utili

Ci
. When

considering a particular resource, we estimate the time
(using the technique in §6) that will be required to load
the selected DAG-cut if this resource and all of its an-
cestors were added to the cut. If this time estimate is
within the budget M , then we add this resource and all
of its ancestors to the selected DAG-cut; else, we move
to the next resource. Every time we add a resource and
its ancestors to the DAG cut, we update the cost Ci as-
sociated with every unselected resource oi as the sum of
its size and the sizes of all of its ancestors that are not
yet in the DAG cut. We repeat these steps until no more
resources can be accommodated within the budget M (or
all resources have been selected).

5.2 Prioritizing selected resources

Having selected the resources to prioritize, there are two
practical issues that remain. First, the front-end does
not have the actual content for these resources; fw only
captures dependencies, sizes, and position on the screen.
Second, the URLs for many of the resources will only be
determined after the client parses HTML/CSS files and
executes scripts; the KLOTSKI front-end does not parse
or execute the content that it serves.

Given these constraints, the front-end prioritizes trans-
mission of the selected resources to the client in two
ways. First, for every static resource (i.e., a resource
whose node in the page’s fw is represented with a URL
pattern without wildcards), the front-end pre-emptively
requests the resource from the corresponding web server
and pushes the resource’s content to the client without
waiting for the client to request it. However, the front-
end cannot do this for any resource whose URL pattern
is not static, as the front-end does not know which of the
various URLs that match the URL pattern will be fetched
in this particular load. Hence, the front-end matches ev-
ery URL requested by the client against the URL patterns
corresponding to the selected resources, and it prioritizes
the delivery to the client of URLs that find a match over

5We can formally prove via a reduction from the weighted knapsack
problem, but do not present it for brevity.

those that do not. We describe how we implement these
optimizations via SPDY features in §7.

6 Load time estimation
As discussed in the previous section, our greedy algo-
rithm needs a load time estimator to check if a candidate
subset of resources can be delivered within the load time
limit M . In this section, we begin by discussing why
some natural strawman solutions fail to provide accurate
load time estimation, and then present our approach.

Strawman solutions: One might consider modeling
the load time for a subset of resources as some func-
tion of key features such as the number of resources,
the total number of bytes fetched, or the number of
servers/domains contacted. Unfortunately, due to the
inter-resource dependencies and the complex (hidden)
ways in which browsers issue requests (e.g., interleav-
ing HTML/CSS parsing and script execution vs. actual
downloads), these seemingly natural features are poorly
correlated with the effective load time. Alternatively, to
incorporate the dependencies, we could try to extend the
resource loading waterfall (i.e., the sequence in which
URLs are fetched and the associated timings) from the
reference load RefLoadw . However, this approach also
has two key shortcomings: (1) since we are explicitly
changing the sequence of requests, the original waterfall
is no longer accurate, and (2) it is fragile due to the diver-
sity in load times across clients and network conditions.

Our approach: To account for the dependencies and
accurately estimate the load time for a given subset of re-
sources, we need to estimate four key timing variables for
each URL oi : (a) ClientStart i , when the client requests
oi ; (b) ProxyStart i , when the front-end starts delivering
oi to the client; (c) ClientReady i , when the client can
begin to render or use oi ; and (d) ProxyFini , when the
front-end finishes delivering oi .6 Together, this gives us
all the information we need to model the complete page
download process for a given subset of resources.

Intuitively, if the link between the client and the front-
end is the only bottleneck and the bandwidth is shared
equally across current downloads [46], then we can use a
lightweight fluid-model simulation of the client-frontend
interaction. Given this assumption, we use a simple ana-
lytical model to estimate the values of the four variables
as described below. We explain this with the example
in Figure 10, where we have 5 URLs with the DAG D
shown and everything except o5 is selected to be prior-
itized. For clarity of presentation, we describe the case
when each o has only one parent.

1. ClientStart i : This depends on the finish time of
oi ’s parent as well as delays for the client to pro-
cess the parent; e.g., in Figure 10, o3 is requested

6All times are specified in terms of the client clock.
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Client GET
Requests

O1

O1

O2

O2

O2

O3

O3, O5

O5 O4

O2

Time t1 t2 t3 t4 t5 t6 t7

O4

Figure 10: Illustrative execution of load time estimator.
Shaded resources are high utility resources selected for pri-
oritization. Times shown are for events fired in the simulator.

some time after the completion of o1. Specifically,
ClientStart i = ClientReadypi

+ Gapi , where pi is
the parent. Gapi is the processing delay between the
parent and the child; we capture these parent-child
gaps from KLOTSKI’s measurements, store these in
fw , and replay the gaps with a simple linear extrap-
olation to account for CPU differences between the
measurement agent and the current client.

2. ClientReady i : In the simplest case, we can sim-
ply set ClientReady i = ProxyFini ; i.e., when the
front-end has finished sending the object. How-
ever, there is a subtle issue if the front-end had de-
cided to push URL oi . In particular, the client
may not have processed oi ’s parent when the front-
end completes delivering oi . This means that the
client will start consuming an URL only when it is
ready to issue the request for that URL. Thus, we
modify the above expression to ClientReady i =
max(ProxyFini ,ClientStart i). In our example, o2
finishes downloading at ProxyFini = t4, but the
client finishes processing the parent to issue the re-
quest for o2 at ClientStart i = t7.

3. ProxyStart i : The time at which the front-end can
start delivering oi depends on two scenarios. If oi
was chosen to be pushed (see §5.2) , then it can start
immediately. Otherwise, the front-end needs to wait
until the request arrives (e.g., for dynamically gener-
ated URLs). If Latency is the latency between the
client and the front-end, we have:

ProxyStart i =

{
0, if oi is pushed
ClientStart i + Latency , otherwise

In our example, the front-end has to wait until the
dynamically generated URL o4 has been requested
before starting to deliver it.

4. ProxyFini : Finally, to compute the time for the front-
end to finish delivering an URL, we model the front-
end as a priority but work-conserving scheduler with
fair sharing. That is, if there are no high-priority
URLs to be scheduled, then the front-end will chose
some available low priority URL; e.g., in [t4, t5], there
were no high priority URLs to schedule as o4 has not
yet been requested, so the front-end tries to deliver the
low priority URL o5, but after o4 is ready, it preempts

o5. Moreover, the bandwidth between the client and
the front-end is equally shared across concurrently de-
livered URLs, e.g., in intervals [t1, t2] and [t3, t4].
Together, this simple case-by-case analysis provides

the necessary information to model the complete page
download process for a given subset of resources. As
we will see later, our assumptions on the bottleneck link
and fair sharing holds reasonably well in practice and this
model provides accurate load time estimations.

7 Implementation
Measurement agent: We implement Android-based
measurement agents that load web pages in the Chrome
browser. We use Chrome’s Remote Debugging Proto-
col to extract the inter-URL dependencies in any partic-
ular page load. For every URL fetched, this gives us the
mime-type, size, parent, and the position within that par-
ent’s source code where this URL is referenced. In ad-
dition, when the onLoad event in the browser fires, we
inject a Javascript into the web page. This script traverses
the DOM tree constructed by the browser while loading
the page and dumps several pieces of information con-
tained within the node for every resource, e.g., whether
it is visible, and if so, its coordinates on screen.

Front-end: We implement the KLOTSKI front-end
by modifying the NodeJS proxy with the SPDY mod-
ule enabled [27]. Our front-end uses SPDY to commu-
nicate with clients and HTTP(S) to communicate with
webservers. For any resource delivered by the proxy to
a client, it maps the resource to one of SPDY’s 7 priority
levels as follows: a web page’s main HTML is mapped
to priority 0, pushed resources have priority 1, resources
that are dynamically prioritized (by matching their URLs
against regular expressions in the web page’s fingerprint)
are assigned priority 2, and all other resources are spread
across lower priority levels in keeping with the order in
which the NodeJS proxy assigns priorities by default.

In addition, we require one modification to typical
client-side browser configurations in order for them to
be compatible with the KLOTSKI front-end. By default,
browsers accept resources delivered using SPDY PUSH
only if the domain in the resource’s URL is the same
as the one from which the page is being loaded [25].
We select the configuration option in Chrome for An-
droid which makes it accept pushed resources from any
domain. However, since Chrome accepts a HTTPS re-
source via SPDY PUSH only if it is pushed by the do-
main hosting it, we consider all such resources only for
dynamic prioritization.

8 Evaluation
Our evaluation of KLOTSKI comprises two parts. First,
we showcase the improvements in user experience en-
abled by KLOTSKI across a range of scenarios. Then,
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(a)

(b)
Figure 11: Comparison of fraction of high utility resources
loaded within load time budget: (a) Box and whisker plots
showing spread across websites, and (b) CDF across websites
of difference between KLOTSKI and the original website.

we evaluate each of KLOTSKI’s components in isolation.
We begin with a description of our evaluation setup.

8.1 Evaluation setup

All experiments were conducted using a HTC Sensation
smartphone, running Android 4.0.3, as the client. This
client connected to a WiFi hotspot exported by a Mac
Mini, which in turn obtained its Internet connectivity via
a T-Mobile 4G dongle. We use this setup, rather than
the phone directly accessing a 4G network, so as to log a
pcap of the network transfers during page loads.

For most of our experiments, we use the landing pages
of 50 websites chosen at random from Alexa’s top 200
websites. We load the full version of these web pages us-
ing Google Chrome version 34.0.1847.116 for Android.
We host the KLOTSKI front-end in a small instance VM
in Amazon EC2’s US West region.

8.2 Improvement in user experience

We evaluate the improvement in user experience enabled
by KLOTSKI, compared to page loads that go through
an unmodified proxy, in a variety of client/network set-
tings and across a range of user preferences; note that we
see little difference in load times when our client directly
downloads page content from webservers and when it
does so via a vanilla web proxy. In all cases, though re-
sources not visible to the user (e.g., CSS and Javascripts)
have a utility score of 0, KLOTSKI may choose to prior-
itize such resources if doing so is necessary in order to
prioritize a high utility resource, due to dependencies.

Prioritizing above-the-fold content: First, we con-
sider all resources on a page that appear “above-the-fold”
(i.e., resources that are visible without the user having to

(a) Original page load (b) Page load with KLOTSKI

Figure 12: Screenshots comparing loads of an example site
(http://huffpost.com), 3 seconds into the page load,
without and with KLOTSKI.
scroll) as high utility. We assign a utility score of 1 for
every high utility object and a score of 0 for all others.

We then load every web page on our smartphone client
first without any optimization, and then via the KLOTSKI
front-end. In either case, we log the sequence in which
resources were received at the client and later identify the
high utility resources delivered within the load time bud-
get. We ran this experiment varying the load time bud-
get value between 1 and 4 seconds; prior studies suggest
most users have a tolerance of at most 5 seconds [30].

For each load time budget value, Figure 11(a) shows
the utility delivered to the client within the budget, using
either of the page load strategies. For each (time budget,
strategy) pair, we present a box and whiskers plot that
shows the 10th, 25th, 50th, 75th, and 90th percentiles
across websites. We see that KLOTSKI consistently de-
livers a significantly better user experience. When user
tolerance is 2 seconds, the fraction of high utility re-
sources loaded within this limit on the median web page
increases from 25% with the original website to roughly
60% with KLOTSKI. Similarly, we see KLOTSKI increas-
ing the utility delivered on the median web page from
50% to almost 80% when the time budget is 3 seconds.

In addition, in Figure 11(b), we plot the distribution
across websites of the difference between KLOTSKI and
the original website in terms of the fraction of high util-
ity resources loaded within the budget. KLOTSKI consis-
tently fares better or no worse than the original website.
For time budgets of 1–4 seconds, KLOTSKI manages to
deliver an additional 20% of the high utility resources on
roughly 20–40% of the websites.

Figure 12 illustrates these benefits offered by KLOT-
SKI by comparing the screenshots 3 seconds into the
page load when loading an example website.
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(a) (b) (c)
Figure 13: Comparison of utility delivered when (a) varying the function used to compute the utility values for high utility
objects, (b) loading full versions of web pages (by faking a desktop’s User-Agent), and (c) loading web pages on a desktop.

We also compared the utility improvements offered by
KLOTSKI to that obtained when loading web pages via a
caching proxy. We consider the best case scenario where
the proxy has cached all cacheable resources on every
web page. However, we found that the user experience
with a caching proxy is almost identical to that obtained
with a proxy that simply relays communication between
clients and webservers without any caching. Caching at
the proxy does not offer any benefits because the 4G net-
work between the client and the proxy is the bottleneck
here. Hence, KLOTSKI’s proactive delivery of static high
utility content to the client is critical to enabling the im-
provements in user experience that it offers.

Impact of utility function: While we assigned a util-
ity score of 1 to all high utility resources in the above ex-
periment, one can also consider assigning different pos-
itive scores to different high utility resources. For ex-
ample, among all above-the-fold resources, the user may
derive larger utility from larger objects.

To evaluate the impact on KLOTSKI’s benefits when
varying the utility score across different high utility re-
sources, we rerun the previous experiment with two util-
ity functions. For any above-the-fold resource that is B
bytes large and occupies an area A on the display, we as-
sign a utility score of log10(A) in one case and log10(B)
in the other case. For a time budget of 2 seconds, Fig-
ure 13(a) compares the improvement in user experience
offered by KLOTSKI in these two cases as well as with
the binary utility function that we used above. While the
precise improvements vary across the utility functions,
KLOTSKI improves the utility delivered on the median
web page by over 60% in all three cases.

Utility for full versions of web pages and on desk-
tops: Though our primary motivation in developing
KLOTSKI is to improve user experience on the mobile
web, its approach of reprioritizing important content
can also be beneficial in other scenarios. For example,
though many websites offer mobile-optimized versions,
nearly a third of users prefer the full site experience [20]
and 80% of mobile-generated revenue is generated when
users view the full site [24]. However, page load times
for these full versions are even worse than the poor per-
formance on the average mobile-optimized web page.

Similarly, though page load times are typically within 5
seconds on desktops (Figure 1(a)), recent surveys [11]
show that 47% of users expect a page to load within 2
seconds and that 67% of users expect page loads on desk-
tops to be faster than on mobile devices.

We evaluate KLOTSKI’s ability to improve the web ex-
perience in these two scenarios by first loading full ver-
sions of web pages on a smartphone, and thereafter, by
loading web pages on a desktop with a wired connection.
We vary user tolerance from 2 to 5 seconds in the former
case, and from 0.7 to 1.3 seconds in the latter. In both
cases, we assign a utility score of 1 for all the above-
the-fold resources and a score of 0 for other resources.
Figure 13(b) and 13(c) show that KLOTSKI’s reprioriti-
zation of important content helps significantly improve
the user experience even in these cases.

Personalized preferences: So far, we considered
all above-the-fold content important. We next evaluate
KLOTSKI when accounting for user-specific preferences.

To capture user-specific utility preferences, we sur-
veyed 120 users on Mechanical Turk. On our survey
site (http://object-study.appspot.com), we
show every visitor snapshots of 30 web pages—the land-
ing pages of 30 websites chosen at random. For each
page, we pick one resource on the page at random and
ask the user to rate their perceived utility of each resource
on a range varying from “Strong No” to “Strong Yes”
(i.e., on a Likert scale from -2 to 2). We only consider
data from respondents who 1) chose the correct rating for
4 objects known definitively to be very important or in-
significant, and 2) gave consistent responses when they
were asked again for their opinion on 5 (chosen at ran-
dom) of the 30 objects that they had rated.

We observe significant variances in user preferences.
For example, Figure 14 shows the distribution of utilities
for four types of resources—has a link, in the top third of
a page, larger than 100x100 pixels, or is above-the-fold.
In each case, we see that the fraction of resources con-
sidered important (“Yes” or “Strong Yes”) greatly varies
across users. This validates the importance of KLOT-
SKI’s approach of being able to account for arbitrary util-
ity preferences, instead of existing approaches [14, 22]
that can only optimize above-the-fold content.
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(a)

(b)
Figure 14: (a) Variance across users of utility perceived in a
few types of objects. (b) For 20 users, spread across websites
of the difference between KLOTSKI and the original website in
the fraction of high utility resources loaded within 2 seconds.
ATF considers all above-the-fold content important.

For a given user, we use her survey responses to esti-
mate the utilities that she would perceive from the con-
tent on other web pages as follows. We partition all
URLs into 9 categories, which are such that any given
user’s ratings are consistently positive or consistently
negative across all the URLs that they rated in that cate-
gory. For every (user, category) pair, we assign a utility
score of 1/0 to all URLs in that category if a majority
of the user’s ratings for URLs in the category were posi-
tive/negative.

We consider the data gathered from 20 random users
and evaluate KLOTSKI taking their preferences into ac-
count. For each of the 20 users, Figure 14 shows the
distribution across websites of the difference between
KLOTSKI and the native unmodified page load in terms
of the fraction of high utility resources delivered within
2 seconds. For almost all users, we see that KLOTSKI
increases the fraction of high utility resources loaded
within 2 seconds by at least 20% on over 25% of web-
sites. Moreover, most users see an increase as high as
50% on some websites. On the flip side, only few users
see a worse experience on any website.

8.3 Evaluation of KLOTSKI’s components

The improvement in user experience with KLOTSKI is
made possible due to its combined use of several compo-
nents. We evaluate each of these in isolation next.

8.3.1 Fingerprint generation

Matching replaced resources: First, we evaluate the
accuracy with which the KLOTSKI back-end can map
URL replacements across page loads. The primary chal-
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Figure 15: False positive/negative matches as a function of
back-end’s aggregation window for merging dependencies.

lenge in doing so is that we do not have ground truth data
(i.e., pairs of URLs which indeed replaced each other
across page loads). It is very hard to identify matches
manually, and no prior techniques exist for this task.

Hence, we instead use the following evaluation strat-
egy. We gathered a dataset wherein we fetched 500 web
pages once every hour for a week. For every web page,
we compare every pair of loads. As mentioned earlier,
we find that our first technique for mapping replaced re-
sources – identical parent, lone replaced child – is almost
always accurate. Therefore, we consider all replace-
ments identified using this technique as the ground truth,
and use this data to evaluate our other two techniques
for mapping replaced resources: similar surrounding text
and similar position on display. When we apply these
two techniques one followed by the other, we find that
the matches obtained with a threshold of 100% for the
local text similarity and 5 pixels for the display position
similarity yield a 96% true positive rate and a 3% false
positive rate. While local text similarity and display po-
sition similarity result in reasonably high false negative
rates when applied in isolation, they enable accurate de-
tection of URL replacements when used in combination.

Aggregation of dependency structures: Recall that
KLOTSKI’s back-end generates a fingerprint per web
page by aggregating its measurements of that page over
an aggregation window Δ, i.e., it aggregates measure-
ments from Δ hours ago until now. Here, we ask: what
should be the value of Δ? The smaller the value of Δ,
the URL patterns stored in a page’s dependency struc-
ture would not have converged sufficiently to capture
the page’s dynamics. The larger Δ, these URL patterns
may become too generic, resulting in many false positive
matches when the KLOTSKI front-end uses these patterns
for dynamic prioritization of URLs.

We examine this trade-off with the same dataset as
above where we loaded 500 pages once an hour for a
week. After every hour, we applied the KLOTSKI back-
end to generate a dependency structure for every page by
aggregating measurements of that page over the past Δ
hours. We then compute the number of false positive and
false negative matches when using the patterns in the ag-
gregated dependency structure to match URLs fetched in
the next load of that page. Varying Δ from 1 to 24 hours,

11



450 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Figure 16: Comparison of no. of resources selected to load
and no. of resources loaded in practice within the budget.

Time budget (sec) 1 2 3 4 5
Median runtime (ms) 1 3 4 6 7

Table 1: Runtime of resource selection algorithm for the me-
dian web page as a function of time budget.

Figure 15 plots the false positive rate and false negative
rate on the median web page. We see that an aggregation
window of 4 hours presents the best trade-off.

8.3.2 Resource selection

Having already demonstrated the utility improvements
offered by KLOTSKI, we now evaluate the correctness
and efficiency of its selection of resources to prioritize.

First, we evaluate KLOTSKI’s ability to accurately ac-
count for flux in page content when selecting resources.
For every web page, we evaluate whether the number of
resources selected by KLOTSKI’s front-end for prioritiza-
tion for a load time budget of 2 seconds match the num-
ber of high utility URLs received by the client within 2
seconds. These two values can differ due to errors in
KLOTSKI’s load time estimates and due to inaccuracies
in KLOTSKI’s dependency structure. Figure 16 plots the
distribution across web pages of the absolute value of the
relative difference between these two values. We see that
our error is less than 20% on roughly 80% of websites
(i.e., the number of resources delivered within the budget
is within 20% of the number selected by the front-end),
thus validating the correctness of KLOTSKI’s fingerprints
and the accuracy of its load time estimator.

Second, we examine the overhead of KLOTSKI’s
greedy resource selection algorithm. Recall that the exe-
cution of this algorithm is on the critical path of loading
a web page, since the front-end begins executing the al-
gorithm only when it receives the request for the page’s
main HTML. Table 1 shows that, across a range of bud-
get values, the runtime of the front-end’s resource selec-
tion is within 10 ms for the median web page. Given that
the load time of the main HTML is itself greater than
500 ms on over 90% of web pages, combined with the
fact that the average size of KLOTSKI’s fingerprint for
a web page is 1.6 KB (more than an order of magnitude
lesser than the average size of the main HTML [12]), this
shows that the front-end can fetch the fingerprint and fin-
ish executing the resource selection algorithm before it
completes delivering the main HTML to the client.

(a) (b)
Figure 17: (a) Absolute and (b) relative errors in KLOTSKI’s
load time estimates. Comparison with intrinsic variability.

8.3.3 Load time estimation

Finally, we evaluate the accuracy of KLOTSKI’s load
time estimator. We apply KLOTSKI to estimate the load
time when web pages are loaded via the front-end, albeit
without the front-end prioritizing any content. We com-
pute the absolute and relative error in KLOTSKI’s load
time estimates compared to measured load times. Since
a source of error here is the intrinsic variability in load
times, we get a distribution of load time variability as
follows. We load every web page 10 times and parti-
tion these loads into two sets of 5 loads each. For each
page, we then compute the difference between the me-
dian measured load times in the two partitions. Figure 17
shows that the errors in KLOTSKI’s load time estimates
closely match the distribution of this intrinsic variability.

9 Discussion
Optimizing other metrics: Though KLOTSKI maxi-
mizes the utility delivered within a time budget, our de-
sign can easily accommodate other optimization criteria.
For example, to help users cope with data caps, KLOT-
SKI’s greedy algorithm can be modified to select a subset
of resources that maximizes utility subject to a limit on
the total number of bytes across the selected resources;
all unselected resources can be blocked by the front-end.
Similarly, given appropriate models of energy consump-
tion, the front-end can deliver a subset of resources that
keep energy consumed on the client within a limit.

Utility function: To obtain a user’s preferences, we
can have the user take a one-time survey (similar to our
user study in Section 8.2) when she first begins using
KLOTSKI. Alternatively, since going over several objects
and rating them upfront can be onerous, KLOTSKI can
initially start with a default utility function for every user,
and on any web page that the user visits, we can provide
the user the option of marking objects as low utility (say,
whenever the page takes too long to load); e.g., the Ad-
block Plus browser extension similarly lets users mark
ads that the user wants it to block in the future.

Measurement scheduling and personalized web-
sites: Since websites differ in the rate of flux in their
content, KLOTSKI’s back-end can adaptively vary mea-
surements of different web pages. For example, the back-
end can more frequently load pages from news websites

12
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as compared to websites used for reference, since content
in the former category changes more often than in the lat-
ter category. In addition, for any web page that person-
alizes content, the back-end can load the web page using
different user accounts to capture which parts of the page
stay the same across users and which parts change.

10 Related work
Our contribution here is in recognizing the need for,
and presenting a practical solution for, improving mobile
web experience by dynamically prioritizing content im-
portant to the user, rather than trying to reduce page load
times. Here, we survey prior work related to KLOTSKI.
Measuring and modeling web performance: Prior ef-
forts have analyzed the complexity of web pages [12, 17,
33] and how it impacts page load times [33, 60, 34] and
energy consumption [58, 31, 55]. Our work is motivated
by such measurements.
Characterizing webpage content: Song et al. [57]
develop techniques to partition webpages into logical
blocks to identify blocks that users consider important.
Other related efforts compare different pages in the same
website [62, 43] or use the DOM tree [40]. Unlike
these previous efforts, KLOTSKI associates utilities with
individual resources rather than blocks. The closest
works on dependency inference are WebProphet [42] and
WProf [58]. KLOTSKI infers a more high-level structure
robust to the flux in content across loads.
Better browsers and protocols: There are several pro-
posals for new web protocols (e.g., SPDY [25]), guide-
lines for optimizing pages (e.g., [9]), and optimized
browsers (e.g., [45, 44, 21]) and hardware [47, 63]. Many
studies have shown that these do not suffice, e.g., two re-
cent studies [59, 37] show that SPDY-like optimizations
do not improve performance significantly and interact
poorly with cellular networks. KLOTSKI pursues a com-
plementary approach to prioritize important resources.
Cloud-based mobile acceleration: KLOTSKI’s archi-
tecture is conceptually similar to recent cloud-based mo-
bile web acceleration services (e.g., [2, 21]). A recent
study suggests that these can hurt performance [56]. The
key difference is that our objective is to maximize user-
perceived utility rather than optimize page load times.
Web prefetching: A widely studied approach for im-
proving web performance on mobile devices has been
to prefetch content [50, 41, 38]. However, despite the
large body of work on accurately predicting what content
should be prefetched [51, 49, 36], prefetching is rarely
used in practice on mobile devices due to the overheads

on energy and data usage imposed by prefetching content
that is never used [53]. KLOTSKI’s approach of pushing
high utility resources on a web page to a client only once
the client initiates the load of that page improves user
experience without delivering unnecessary content.
Prioritizing important content: Concurrent to our
work, some startups (e.g., InstartLogic and StrangeLoop
Networks) try to deliver higher priority resources earlier.
Based on public information [29, 20], these appear to op-
timize certain types of content such as images and Flash,
and do not incorporate user preferences like KLOTSKI.
We are not aware of published work that highlights how
they address the challenges w.r.t. dependencies, opti-
mization, and load time estimation that we tackle. More-
over, their approach requires website providers to use
their CDN services, whereas KLOTSKI does not explic-
itly require any changes to web providers.

Older efforts that dynamically re-order the delivery of
web content are limited to prioritizing above-the-fold re-
sources [14, 35]. Based on the observation from our
study that users significantly differ in the content that
they consider important on the same page, we instead
design and implement KLOTSKI to account for arbitrary
utility functions.

11 Conclusions
Our work tackles a set of contradictory trends in the mo-
bile web ecosystem today – users desire rich content but
have decreasing tolerance, even as current performance
optimizations yield low returns due to increasing web-
site complexity. In light of these trends, KLOTSKI takes
the stance that rather than blindly try to improve per-
formance, we should try to dynamically reprioritize the
delivery of a web page to deliver higher utility content
within user tolerance limits.

We addressed several challenges to realize this ap-
proach in practice: dependencies across content on a
page, complexity of the optimization, difficulty in esti-
mating load times, and delivering benefits with minimal
changes to clients and webservers. Our evaluation shows
that KLOTSKI’s algorithms tackle these challenges effec-
tively and that it yields up to a 60% increase in user-
perceived utility. While our focus was on the imminent
challenge of improving mobile web user experiences, the
ideas in KLOTSKI are more broadly applicable to other
scenarios (e.g., desktop) and requirements (e.g., energy).
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Abstract
Many existing data center network (DCN) flow schedul-
ing schemes minimize flow completion times (FCT)
based on prior knowledge of flows and custom switch
functions, making them superior in performance but hard
to use in practice. By contrast, we seek to minimize FCT
with no prior knowledge and existing commodity switch
hardware.

To this end, we present PIAS1, a DCN flow schedul-
ing mechanism that aims to minimize FCT by mimick-
ing Shortest Job First (SJF) on the premise that flow
size is not known a priori. At its heart, PIAS lever-
ages multiple priority queues available in existing com-
modity switches to implement a Multiple Level Feed-
back Queue (MLFQ), in which a PIAS flow is gradual-
ly demoted from higher-priority queues to lower-priority
queues based on the number of bytes it has sent. As a
result, short flows are likely to be finished in the first few
high-priority queues and thus be prioritized over long
flows in general, which enables PIAS to emulate SJF
without knowing flow sizes beforehand.

We have implemented a PIAS prototype and eval-
uated PIAS through both testbed experiments and ns-
2 simulations. We show that PIAS is readily deploy-
able with commodity switches and backward compat-
ible with legacy TCP/IP stacks. Our evaluation re-
sults show that PIAS significantly outperforms existing
information-agnostic schemes. For example, it reduces
FCT by up to 50% and 40% over DCTCP [11] and
L2DCT [27] respectively; and it only has a 4.9% perfor-
mance gap to an ideal information-aware scheme, pFab-
ric [13], for short flows under a production DCN work-
load.

1 Introduction

There has been a virtually unanimous consensus in the
community that one of the most important goals for data
center network (DCN) transport designs is to minimize
the flow completion times (FCT) [11–13, 22, 26, 27].

1PIAS, Practical Information-Agnostic flow Scheduling, was first
introduced in an earlier workshop paper [14] which sketched a prelim-
inary design and the initial results.

This is because many of today’s cloud applications, such
as web search, social networking, and retail recommen-
dation, have very demanding latency requirements, and
even a small delay can directly affect application perfor-
mance and degrade user experience [11, 27].

To minimize FCT, most recent proposals [13, 22, 26,
34] assume prior knowledge of accurate per-flow in-
formation, e.g., flow sizes or deadlines, to achieve su-
perior performance. For example, PDQ, pFabric and
PASE [13, 22, 26] all assume flow size is known a priori,
and attempt to approximate Shortest Job First (SJF, pre-
emptive), which is the optimal scheduling discipline for
minimizing the average FCT over a single link. In this
paper, we question the validity of this assumption, and
point out that, for many applications, such information
is difficult to obtain, and may even be unavailable (§2).
Existing transport layer solutions with this assumption is
therefore very hard to implement in practice.

We take one step back and ask: without prior knowl-
edge of flow size information, what is the best scheme
that minimizes FCT with existing commodity switches?

Motivated by the above question, we list our key de-
sign goals as follows:
• Information-agnostic: Our design must not assume a

priori knowledge of flow size information being avail-
able from the applications.

• FCT minimization: The solution must be able to en-
force an optimal information-agnostic flow schedul-
ing. It should minimize average and tail FCTs for
latency-sensitive short flows, while not adversely af-
fecting the FCTs of long flows.

• Readily-deployable: The solution must work with
existing commodity switches in DCNs and be back-
ward compatible with legacy TCP/IP stacks.
When exploring possible solution spaces, we note

that some existing approaches such as DCTCP, HULL,
L2DCT, etc [11, 12, 27] reduce FCT without relying on
flow size information. They generally improve FCT by
maintaining low queue occupation through mechanisms
like adaptive congestion control, ECN, pacing, etc. How-
ever, they do not provide a full answer to our question,
because they mainly perform end-host based rate control
which is ineffective for flow scheduling [13, 26].
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In this paper, we answer the questions with PIAS, a
practical information-agnostic flow scheduling that min-
imizes the FCT in DCNs. In contrast to previous FC-
T minimization schemes [13, 22, 26] that emulate SJF
by using prior knowledge of flow sizes, PIAS manages
to mimic SJF with no prior information. At its heart,
PIAS leverages multiple priority queues available in ex-
isting commodity switches to implement a Multiple Lev-
el Feedback Queue (MLFQ), in which a PIAS flow is
gradually demoted from higher-priority queues to lower-
priority queues based on the bytes it has sent during its
lifetime. In this way, PIAS ensures in general that short
flows are prioritized over long flows, effectively emulat-
ing SJF without knowing flow sizes beforehand.

However, we face several concrete challenges to make
PIAS truly effective. First, how to determine the de-
moted threshold for each queue of MLFQ? Second, as
flow size distribution varies across time and space, how
to keep PIAS’s performance in such a dynamic environ-
ment? Third, how to ensure PIAS’s compatibility with
legacy TCP/IP stacks in production DCNs?

For the first challenge, we address it by deriving a
set of optimal demotion thresholds for MLFQ through
solving a FCT minimization problem. We further show
that the derived threshold setting is robust to a reasonable
range of traffic distributions. This encourages us to dis-
tribute the thresholds to the end hosts for packet tagging
while only performing strict priority queueing, a built-in
function, in the PIAS switches.

For the second challenge, as one set of demotion
thresholds works the best for a certain range of traffic dis-
tributions, PIAS adjusts thresholds to keep up with traffic
dynamics. However, the key problem is that a mismatch
between thresholds and underlying traffic is inevitable.
Once that happens, short flows may be adversely affected
by large ones in a queue, impacting on their latency. In-
spired by ideas from ECN-based rate control [11], PIAS
employs ECN to mitigate our mismatch problem. Our
reasoning is that, by maintaining low queue occupation,
short flows always see small queues and thus will not be
seriously delayed even if they are mistakenly placed in a
queue with a long flow due to mismatched thresholds.

For the third challenge, we employ DCTCP-like trans-
port at the PIAS end hosts and find that PIAS interacts
favorably with DCTCP or other legacy TCP protocols
with ECN enabled. A potential problem is that many
concurrent short flows may starve a coexisting long flow,
triggering TCP timeouts and degrading application per-
formance. We measure the extent of starvation on our
testbed with a realistic workload and analyze possible so-
lutions. We ensure that all mechanisms in PIAS can be
implemented by a shim layer over NIC without touching
the TCP stack.

We have implemented a PIAS prototype (§4). On the

end host, we implement PIAS as a kernel module in Lin-
ux, which resides between the Network Interface Card
(NIC) driver and the TCP/IP stack as a shim layer. It does
not touch any TCP/IP implementation that natively sup-
ports various OS versions. In virtualized environments,
PIAS can also support virtual machines well by resid-
ing in hypervisor (or Dom 0). On the switch, PIAS only
needs to enable priority queues and ECN which are both
built-in functions readily supported by existing commod-
ity switch hardware.

We evaluate PIAS on a small-scale testbed with 16
Dell servers and a commodity Pronto-3295 Gigabit Eth-
ernet switch (Broadcom BCM#56538). In our experi-
ments, we find that PIAS reduces the average FCT for
short flows by ⇠37-47% and ⇠30-45% compared to D-
CTCP under two realistic DCN traffic patterns. It also
improves the query performance by ⇠28-30% in a Mem-
cached [7] application (§5.1). We further dig into dif-
ferent design components of PIAS such as queues, opti-
mal demotion threshold setting, ECN, and demonstrate
the effectiveness of each of their contributions to PIAS’s
performance (§5.2).

To complement our small-scale testbed experiments,
we further conduct large-scale simulations in a simulat-
ed 10/40G network using ns-2 [10]. In our simulations,
we show that PIAS outperforms all existing information-
agnostic solutions under realistic DCN workloads, re-
ducing the average FCT for short flows by up to 50%
and 40% compared to DCTCP and L2DCT respective-
ly. In addition, our results show that PIAS, as a readily-
deployable information-agonistic scheme, also delivers
a comparable performance to a clean-slate information-
aware design, pFabric [13], in certain scenarios. For ex-
ample, there is only a 4.9% gap to pFabric for short flows
in a data mining workload [21] (§5.3).

To make our work easy to reproduce, we made our im-
plementation and evaluation scripts available online at:
http://sing.cse.ust.hk/projects/PIAS.

2 Motivation

To motivate our design, we introduce a few cases in
which the accurate flow size information is hard to ob-
tain, or simply not available.

HTTP chunked transfer: Chunked transfer has been
supported since HTTP 1.1 [20], where dynamically gen-
erated content is transferred during the generation pro-
cess. This mode is widely used by datacenter applica-
tions. For example, applications can use chunked trans-
fer to dump database content into OpenStack Object S-
torage [9]. In chunked transfer, a flow generally consists
of multiple chunks, and the total flow size is not available
at the start of the transmission.
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Database query response: Query response in database
systems, such as Microsoft SQL Server [8], is another
example. Typically, SQL servers send partial query re-
sults as they are created, instead of buffering the result
until the end of the query execution process [8]. The
flow size again is not available at the start of a flow.

Stream processing: Stream processing systems are cur-
rently gaining popularity. In Apache Storm [2], after the
master node distributes tasks to worker nodes, workers
will analyze the tasks and pre-establish persistent con-
nections with related worker nodes. During the data pro-
cessing, data tuples completed in one node are continu-
ously delivered to the next node in the stream processing
chain. The amount of data to be processed is unknown
until the stream finishes.

Practical limitations: We note that there are certain cas-
es where the flow size information can be obtained or
inferred. For example, in Hadoop [5] the mapper will
first write the intermediate data to disk before the corre-
sponding reducer starts to fetch the data, thus the flow
size can be obtained in advance [28]. Even so, practi-
cal implementation issues are still prohibitive. First, we
need to patch all modules in every application that gen-
erate network traffic, which is a burden for applications
programmers and/or network operators. Second, current
operating systems lack appropriate interface for deliver-
ing the flow size information to the transport layer. Thus,
kernel modifications are also required.

3 The PIAS Design

3.1 Design Rationale
Compared to previous solutions [13, 22, 26] that emu-
late SJF based on prior knowledge of flow sizes, PIAS
distinguishes itself by emulating SJF with no prior in-
formation. At its core, PIAS exploits multiple priority
queues available in commodity switches and implements
a MLFQ, in which a PIAS flow is demoted from higher-
priority queues to lower-priority queues dynamically ac-
cording to its bytes sent. Through this way, PIAS enables
short flows to finish in the first few priority queues, and
thus in general prioritizes them over long flows, effec-
tively mimicking SJF without knowing the flow sizes.

We note that scheduling with no prior knowledge is
known as non-clairvoyant scheduling [25]. Least At-
tained Service (LAS) is one of the best known algo-
rithms that minimize the average FCT in this case [30].
LAS tries to approximate SJF by guessing the remain-
ing service time of a job based on the service it has
attained so far. LAS is especially effective in DC-
N environments where traffic usually exhibits long-tail
distribution—most flows are short and a small percent
are very large [11, 21].

Figure 1: PIAS overview

PIAS is partially inspired by LAS. However, we find
that directly enabling LAS on switches requires us to
compare the amount of bytes transferred for each flow,
which is not supported in existing commodity switches.
Furthermore, although DCN traffic distribution is gener-
ally long-tailed, it varies across both time and space, and
on some switch ports the distribution may temporarily
not be so. Blindly using LAS will exacerbate the prob-
lem when multiple long flows coexist on a port, as pure
LAS favors short flows but performs badly when a long
flow meets a longer flow, causing the longer one to s-
tarve.

To this end, PIAS leverages multiple priority queues
available in existing commodity switches (typically 4–8
queues per port [13]) to implement a MLFQ (see Fig-
ure 1). Packets in different queues of MLFQ are sched-
uled with strict priority, while packets in the same queue
are scheduled based on FIFO. In a flow’s lifetime, it is de-
moted dynamically from ith queue down to the (i+1)th
queue after transmitting more bytes than queue i’s demo-
tion threshold, until it enters the last queue. To further
prevent switches from maintaining the per-flow state,
PIAS distributes packet priority tagging (indicating a
flow’s sent size) to end hosts, allowing the PIAS switches
to perform strict priority queueing only, which is already
a built-in function in today’s commodity switches.

By implementing MLFQ, PIAS gains two benefits.
First, it prioritizes short flows over large ones because
short flows are more likely to finish in the first few high-
er priority queues while large flows are eventually de-
moted to lower priority queues. This effectively enables
PIAS to approximate SJF scheduling that optimizes av-
erage FCT while being readily implementable with exist-
ing switch hardware. Second, it allows large flows that
are demoted to the same low priority queues to share the
link fairly. This helps to minimize the response time of
long flows, mitigating the starvation problem.

However, there are several concrete challenges to con-
sider in order to make PIAS truly effective. First, how
to determine the demotion threshold for each queue of
MLFQ to minimize the FCT? Second, as DCN traffic
varies across both time and space, how to make PIAS
perform efficiently and stably in such a dynamic environ-
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ment? Third, how to ensure PIAS’s compatibility with
legacy TCP/IP stacks in production DCNs? Next, we ex-
plain the details of the mechanism we design to address
all these challenges.

3.2 Detailed Mechanisms
At a high level, PIAS’s main mechanisms include dis-
tributed packet tagging, switch design, and rate control.

3.2.1 Packet Tagging at End-hosts

PIAS performs distributed packet tagging at end hosts as
shown in Figure 1. There are K priorities P

i

, 1  i  K

and (K − 1) demotion thresholds ↵

j

, 1  j  K − 1.
We assume P1 > P2... > P

K

and ↵1  ↵2...  ↵

K−1.
At the end host, when a new flow is initialized, its

packets will be tagged with the highest priority P1, giv-
ing it the highest priority in the network. As more bytes
are sent, the packets of this flow will be tagged with de-
creasing priorities P

j

(2  j  K) and enjoy decreasing
priorities in the network2. The threshold to demote pri-
ority from P

j−1 to P

j

is ↵
j−1.

One challenge is to determine the demotion threshold
for each priority to minimize the average FCT. By solv-
ing a FCT minimization problem, we derive a set of ana-
lytical solutions for optimal demotion thresholds (details
in §3.3). Note that in PIAS we calculate the threshold-
s based on traffic information from the entire DCN and
distribute the same threshold setting to all the end hosts.
Our experiments and analysis show that such threshold
setting is effective and also robust to a certain range of
traffic variations (§5). This is a key reason we can de-
couple packet tagging from switches to end hosts while
still maintaining good performance, which relieves the
PIAS switches of having to keep the per-flow state.

As traffic changes over time, PIAS need to adjust the
demotion thresholds accordingly. To keep track of traf-
fic variations, each end host can periodically report its
local traffic information to a central entity for statistics
and many existing techniques exist for this purpose [37].
However, historical traffic may not reflect the future per-
fectly. Mismatches between threshold setting and under-
lying traffic are inevitable, which can hurt latency sensi-
tive short flows. Therefore, mitigating the impact of the
mismatch is a must for PIAS to operate in the highly dy-
namic DCNs. Our solution, as shown subsequently, is to
employ ECN.

2In certain cases, applications may build persistent TCP connection-
s to keep delivering request-response short messages for a long time.
These persistent connections will eventually be assigned to the lowest
priority due to the large cumulative size of bytes sent. To address this,
we can periodically reset flow states based on more behaviors of traffic.
For example, when a flow idles or keeps a very low average throughput
for some time, we may reset the bytes sent from this flow to 0.
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Figure 2: Illustration example: (a) threshold right; (b)
threshold too small, packets of short flow get delayed by
long flow after prematurely demoted to the low priority
queue; (c) threshold too large, packets of large flow stay
too long in the high priority queue, affecting short flow.
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Figure 3: Completion time of 20KB short flows

3.2.2 Switch Design
The PIAS switches enable the following two basic mech-
anisms, which are built-in functions for existing com-
modity switches [26].
• Priority scheduling: Packets are dequeued based on

their priorities strictly when a fabric port is idle.
• ECN marking: The arriving packet is marked with

Congestion Experienced (CE) if the instant buffer oc-
cupation is larger than the marking threshold.
With priority scheduling at the switches and packet

tagging at the end hosts, PIAS performs MLFQ-based
flow scheduling on the network fabric with stateless
switches. Packets with different priority tags are clas-
sified into different priority queues. When the link is i-
dle, the head packet from the highest non-empty priority
queue is transmitted.

One may wonder why weighted fair queueing (WFQ)
is not used to avoid starvation for long-lived flows.
However, we choose priority scheduling for two rea-
sons. First, priority queueing can provide better in-
network prioritization and potentially achieve lower FCT
than WFQ. Second, WFQ may cause packet out-of-order
problem, thus degrading TCP performance.

Our intention to employ ECN is to mitigate the effec-
t of the mismatch between the demotion thresholds and
the traffic distribution. We use a simple example to illus-
trate the problem and the effectiveness of our solution.
We connect 4 servers to a Gigabit switch as in Figure 2.
One server is receiver (R) and the other three are senders
(S1, S2 and S3). In our experiment, the receiver R con-
tinuously fetches 10MB data from S1 and S2, and 20KB
data from S3. We configure the strict priority queueing
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with 2 queues on the switch egress port to R. Since there
are two priorities, we only have one demotion threshold
from the high priority queue to the low priority queue.
For this case, the optimal demotion threshold should be
20KB (achieving SJF in effect).

We intentionally apply three different thresholds 10K-
B, 20KB and 1MB, and measure the FCT of the 20KB
short flows. Figure 3 shows the results of PIAS and PIAS
without ECN. When the threshold is 20KB, both PIAS
and PIAS without ECN achieve an ideal FCT. Howev-
er, with a larger threshold (1MB) or a smaller thresh-
old (10KB), PIAS shows obvious advantages over PIAS
without ECN at both the average and 99th percentile.
This is because, if the threshold is too small, packets of
short flows prematurely enter the low priority queue and
experience queueing delay behind long flows (see sce-
nario (b)); if the threshold is too large, packets of long
flows over-stay in the high priority queue, also affecting
the latency of short flows (see scenario (c)).

By employing ECN, we can keep low buffer occu-
pation and minimize the impact of long flows on short
flows, which makes PIAS more robust to the mismatch
between the demotion thresholds and traffic distribution.

3.2.3 Rate Control

PIAS employs DCTCP [11] as end host transport, and
other legacy TCP protocols with ECN enabled can also
be integrated into PIAS. We require PIAS to interact s-
moothly with the legacy TCP stack. One key issue is
to handle flow starvation: when packets of a large flow
get starved in a low priority queue for long time, this
may trigger TCP timeouts and retransmissions. The fre-
quent flow starvation may disturb the transport layer and
degrade application performance. For example, a TCP
connection which is starved for long time may be termi-
nated unexpectedly.

To address the problem, we first note that PIAS can
well mitigate the starvation between long flows, because
two long flows in the same low priority queue will fairly
share the link in a FIFO manner. In this way, PIAS min-
imizes the response time of each long flow, effectively
eliminating TCP timeouts.

However, it is still possible that many concurrent short
flows will starve a long flow, triggering its TCP timeout-
s. To quantify the effect, we run the web search bench-
mark traffic [11] (Figure 5) at 0.8 load in our 1G testbed,
which has 16 servers connected to a Gigabit switch. We
set RTOmin to 10ms and allocate 8 priority queues for
PIAS. This experiment consists of 5,000 flows (around
5.7 million MTU-sized packets). We enable both ECN
and dynamic buffer management in our switch. Hence,
TCP timeouts are mainly caused by starvation rather than
packet drops. We measure the number of TCP timeout-

s to quantify the extent of the starvation. We find that
there are only 200 timeout events and 31 two consecutive
timeout events in total. No TCP connection is terminat-
ed unexpectedly. The results indicate that, even at a high
load, flow starvation is not common and will not degrade
application performance adversely. We believe one pos-
sible reason is that the per-port ECN we used (see §4.1.2)
may mitigate starvation by pushing back high priority
flows when many packets from low priority long flows
get starved. Another possible solution for handling flow
starvation is treating a long-term starved flow as a new
flow. For example, if a flow experiences two consecutive
timeouts, we set its bytes sent back to zero. This ensures
that a long flow can always make progress after timeout-
s. Note that the implementation of the above mechanism
can be integrated to our packet tagging module without
any changes to the networking stack.

Note that PIAS is free of packet reordering. This is be-
cause, during its lifetime, a PIAS flow is always demoted
from a higher priority queue to a lower priority queue. In
this way, an earlier packet is guaranteed to dequeue be-
fore a latter packet at each hop.

3.2.4 Discussion

Local decision: The key idea of PIAS is to emulate
SJF which is optimal to minimize average FCT over a
single link. However, there does not exist an optimal
scheduling policy to schedule flows over an entire DCN
with multiple links [13]. In this sense, similar to pFab-
ric [13], PIAS also makes switch local decisions. This
approach in theory may lead to some performance loss
over the fabric [26]. For example, when a flow traverses
multiple hops and gets dropped at the last hop, it causes
bandwidth to be wasted on the upstream links that could
otherwise have been used to schedule other flows. We
note that some existing solutions [22, 26] leverage arbi-
tration, where a common network entity allocates rates
to each flow based on global network visibility, to ad-
dress this problem. However, it is hard to implement
because it requires non-trivial switch changes [22] or a
complex control plane [26], which is against our design
goal. Fortunately, local-decision based solutions main-
tain very good performance for most scenarios [13] and
only experience performance loss at extremely high load-
s, e.g., over 90% [26]. However, most DCNs operate
at moderate loads, e.g., 30% [16]. Our ns-2 simulation
(§5.3) with production DCN traffic further confirms that
PIAS works well in practice.

Demotion threshold updating: By employing ECN,
PIAS can effectively handle the mismatch between the
demotion thresholds and traffic distribution (see §5.2).
This suggests that we do not need to frequently change
our demotion thresholds which may be an overhead. In
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this paper, we simply assume the demotion thresholds
are updated periodically according to the network scale
(which decides the time for information collection and
distribution) and leave dynamic threshold updates as fu-
ture work.

3.3 Optimizing Demotion Thresholds

In this section, we describe our formulation to derive
the optimal demotion thresholds for minimizing the aver-
age FCT. We identify this problem as a Sum-of-Linear-
Ratios problem and provide a method to derive the opti-
mal thresholds analytically for any given load and flow
size distribution. We find that the demotion thresholds
depend on both load and flow size distribution. As flow
size distribution and load change across both time and
space, ideally, one should use different thresholds for d-
ifferent links at different times. However, in practice, it
is quite challenging to obtain such fine-grained link lev-
el traffic information across the entire DCN. Hence, we
use the overall flow size distribution and load measured
in the entire DCN as an estimate to derive a common set
of demotion thresholds for all end hosts. We note that
this approach may not be theoretically optimal and there
is room for improvement. However, it is more practical
and provides considerable gains, as shown in the evalua-
tion (§5).

Problem formulation: We assume there are K priori-
ty queues P

i

(1iK) where P1 has the highest priority.
We denote the threshold for demoting the priority from
j−1 to j as ↵

j−1(2jK). We define ↵

K

=1, so that
the largest flows are all in this queue, and ↵0=0. The
flows, indexed from i=1 to N , have sizes x

i

. Denote the
cumulative density function of flow size distribution as
F (x), thus F (x) is the probability that a flow size is no
larger than x. Note that we do not assume the any specif-
ic properties of F (x), and it is used for convenience for
the following derivation.

Let ✓

j

=F (↵
j

)−F (↵
j−1), the percentage of flows

with sizes in [↵
j−1,↵j

). For a flow with size in
[↵

j−1,↵j

), it experiences the delays in different priori-
ties up to the j-th priority. Denote T

j

as the average time
spent in the j-th queue. For a flow with size x, let x+

be the residual size of this flow tagged with its lowest
priority. Thus, x+=x−↵

max

(x), where ↵

max

(x) is the
largest demotion threshold less than x, and let j

max

(x)
be the index of this threshold.

So the average FCT for this flow is: T (x)=P
j

max

(x)
l=1 T

l

+ x

+

1−⇢

j

max

(x)
.

The second term is bounded by T

j

max

(x), thus an up-
per bound is therefore: T (x)

P
min(j

max

(x)+1,K)
l=1 T

l

.
We have the following optimization problem, where

we choose an optimal set of thresholds {↵
j

} to minimize

the objective: the average FCT of flows on this bottle-
neck link:

min
{↵

j

}
T =

KX

l=1

(✓
l

lX

m=1

T

m

)=

KX

l=1

(T
l

KX

m=l

✓

m

)

subject to ↵0=0,↵
K

=1

↵

j−1<↵

j

,j=1,...,K

(1)

Analysis: For convenience, we use ✓s to equivalent-
ly replace ↵s. With a traffic load of ⇢, the av-
erage time in the lth queue, T

l

, can be expressed
as: T

l

= ✓

l

⇢

1−⇢F (↵
l1)

(assuming M/M/1 queues3). S-

ince
P

l

m=1✓m=
P

K

m=l

F (↵
m

)−F (↵
m−1), we can re-

express the objective as: T =
P

K

l=1Tl

(1−F (↵
l−1)).P

K

l=1✓m=1.
Since

P
K

l=1✓m=1, we can finally transform the prob-
lem as:

max
{✓

l

}
T

00=

K−1X

l=1

✓

l

1−⇢(
P

l−1
m=1✓m)

+
1−

P
K−1
m=1✓m

1−⇢

P
K−1
m=1✓m

(2)

which is a Sum-of-Linear-Ratios (SoLR) problem [32],
a well-known class of fractional programming problem-
s. The only constraint is that ✓

l

≥0,8l. This formulation
is interesting because the upperbound of average FCT is
independent of the flow distribution F (x), and only con-
cerns the ✓s, which represent the percentages of traffic
in different queues. Thus F (x) is needed only when we
calculate the thresholds, so we can first obtain the opti-
mal set of ✓s for all links, and then derive the priority
thresholds based on F (x).

Solution method: Generally, the SoLR problem is NP-
hard [17], and the difficulty in solving this class of prob-
lems lies in the lack of useful properties to exploit. For
our problem, however, we find a set of properties that can
lead to a closed-form analytical solution to Problem 2.
We describe the derivation procedure as follows:

Consider the terms in the objective. Since the traffic
load ⇢1, we have ⇢(

P
l−1
m=1✓m)

P
l−1
m=1✓m. Also, ✓

l

+P
l−1
m=1✓m=

P
l

m=1✓m1. Thus we have:

✓

l



KX

m=l

✓

m

=1−

l−1X

m=1

✓

m

1−⇢(

l−1X

m=1

✓

m

) (3)

The property to exploit is as follows: each term in the
summation, ✓

l

/(1−⇢

P
l−1
m=1✓m), is no larger than 1, and

to maximize the summation, we should make the numer-
ator and denominator as close as possible, so that the ra-
tio is close to 1.

Consider the first two portions, ✓1 and ✓2. By making
the numerator and denominator equal, we have:

✓2=1−⇢✓1 (4)
We can obtain the expression of the third portion and

3 We use M/M/1 queues to simplify the analysis and obtain a closed-
form solution. Similar derivation can also be conducted using M/G/1
queues [13], but the solution is very complicated.
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all the portions after it iteratively:
✓3=1−⇢(✓2+✓1)=1−⇢(1−(1−⇢)✓1) (5)

In this way, by the formula ✓

l

=1−⇢(
P

l−1
m=1✓m), each

portion ✓

l

can be represented by an expression of ✓1 iter-
atively. In addition, by the constraint

P
K

l=1✓l=1, we can
obtain the analytical expressions of all ✓s, which repre-
sents the percentages of the traffic in different priority
queues on the link. Given traffic load ✓s and flow size
distribution F (·), we can express the thresholds in the u-
nit of bytes, and this representation is implemented at the
end host.

4 Implementation and Testbed Setup

4.1 PIAS Implementation
We have implemented a prototype of PIAS. We now de-
scribe each component of our prototype in detail.

4.1.1 Packet Tagging
The packet tagging module is responsible for maintain-
ing per-flow state and marking packets with priority at
the end hosts. We implement it as a kernel module in
Linux. The packet tagging module resides between the
TCP/IP stack and Linux TC, which consists of three com-
ponents: a NETFILTER [6] hook, a hash based flow table,
and a packet modifier.

The operations are as follows: 1) the NETFILTER hook
intercepts all outgoing packets using the LOCAL OUT
hook and directs them to the flow table. 2) Each flow
in the flow table is identified by the 5-tuple: src/dst IPs,
src/dst ports and protocol. When a packet comes in, we
identify the flow it belongs to (or create a new entry) and
increment the amount of bytes sent. 3) Based on the flow
information, the packet modifier sets the packet’s prior-
ity by modifying the DSCP field in the IP header to the
corresponding value.

Offloading techniques like large segmentation offload-
ing (LSO) may degrade the accuracy of packet tagging.
With LSO, the packet tagging module may not be able to
set the right DSCP value for each individual MTU-sized
packet within a large segment. To quantify this, we sam-
ple more than 230,000 TCP segments with payload data
in our 1G testbed and find that the average segment size
is only 7,220 Bytes. This has little impact on packet tag-
ging. We attribute this to the small window size in DCN
environment which has small bandwidth-delay product
and large number of concurrent connections. We expect
that the final implementation solution for packet tagging
should be in NIC hardware to permanently avoid this in-
terference.

To quantify system overhead introduced by the PIAS
packet tagging module, we installed it on a Dell Pow-
erEdge R320 server with an Intel 82599EB 10GbE NIC

and measured CPU usage. LSO is enabled in this ex-
periment. We started 8 TCP long flows and achieved
⇠9.4Gbps goodput. The extra CPU usage introduced by
PIAS is < 1% compared with the case where the PIAS
packet tagging module is not enabled.

4.1.2 Switch Configuration
We enforce strict priority queues at the switches and clas-
sify packets based on the DSCP field. Similar to previ-
ous work [11, 35], we use ECN marking based on the
instant queue lengths with a single marking threshold.
In addition to the switch queueing delay in the network,
sender NIC also introduces latency because it is actually
the first contention point of the fabric [13, 24]. Hard-
ware and software queues at the end hosts can introduce
large queueing delay, which might severely degrade the
application performance [23, 36]. To solve this prob-
lem, our software solution hooks into the TX datapath
at POST ROUTING and rate-limits outgoing traffic at the
line rate. Then, we perform ECN marking and priority
queueing at the end host as well as the switches.
Per-queue vs per-port ECN marking: We observe
that some of today’s commodity switching chips offer
multiple ways to configure ECN marking when config-
ured to use multiple queues per port. For example, our
Broadcom BCM#56538-based switch allows us to en-
able either per-queue ECN marking or per-port ECN
marking. In per-queue ECN marking, each queue has
its own marking threshold and performs ECN marking
independently to other queues. In per-port ECN mark-
ing, each port is assigned a single marking threshold and
marks packets when the sum of all queue sizes belonging
to the port exceeds the marking threshold.

Per-queue ECN is widely used in many DCN trans-
port protocols [11, 26, 33], however, we find it has lim-
itations when supporting multiple queues. Each queue
requires a moderate ECN marking threshold h to fully
utilize the link independently (e.g., h=20 packets for 1G
and 65 packets for 10G in DCTCP [11]). Thus, support-
ing multiple queues may require the shared memory be
at least multiple times (e.g., 8) the marking threshold,
which is not affordable for most shallow buffered com-
modity switches. For example, our Pronto-3295 switch
has 4MB (⇡2667 packets) memory shared by 384 queues
(48x 1G ports with 8 queues per port). If we set h=20
packets as suggested above, we need over 11MB memo-
ry in the worst case, otherwise when the traffic is bursty,
the shallow buffer may overflow before ECN takes effect.

Per-port ECN, to the best of our knowledge, has rarely
been exploited in recent DCN transport designs. Al-
though per-port ECN marking cannot provide ideal iso-
lation among queues as per-queue ECN marking (Fig-
ure 12) , it can provide much better burst tolerance and
support a larger number of queues in shallow buffered

7
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Figure 4: Testbed Topology

switches. Moreover, per-port ECN marking can poten-
tially mitigate the starvation problem. It can push back
high priority flows when many packets of low priority
flows get queued in the switch. Therefore, we use per-
port ECN marking.

4.1.3 Rate Control
We use the open source DCTCP patch [4] for Linux
2.6.38.3. We further observe an undesirable interaction
between the open-source DCTCP implementation and
our switch. The DCTCP implementation does not set the
ECN-capable (ECT) codepoint on TCP SYN packets and
retransmitted packets, following the ECN standard [31].
However, our switch drops any non-ECT packets from
ECN-enabled queues, when the instant queue length is
larger than the ECN marking threshold. This problem
severely degrades the TCP performance [35]. To address
this problem, we set ECT on every TCP packet at the
packet modifier.

4.2 Testbed Setup
We built a small testbed that consists of 16 servers con-
nected to a Pronto 3295 48-port Gigabit Ethernet switch
with 4MB shared memory, as shown in Figure 4. Our
switch supports ECN and strict priority queuing with at
most 8 class of service queues [1]. Each server is a Del-
l PowerEdge R320 with a 4-core Intel E5-1410 2.8GHz
CPU, 8G memory, a 500GB hard disk, and a Broadcom
BCM5719 NetXtreme Gigabit Ethernet NIC. Each serv-
er runs Debian 6.0-64bit with Linux 2.6.38.3 kernel. By
default, advanced NIC offload mechanisms are enabled
to reduce the CPU overhead. The base round-trip time
(RTT) of our testbed is around 100us.

In addition, we have also built a smaller 10G testbed
for measuring the end host queueing delay in the high
speed network. We connect three servers to the same
switch (Pronto 3295 has four 10GbE ports). Each server
is equipped with an Intel 82599EB 10GbE NIC.

5 Evaluation

We evaluate PIAS using a combination of testbed exper-
iments and large-scale ns-2 simulations. Our evaluation
centers around four key questions:

Web Search
Data Mining
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Figure 5: Traffic distributions used for evaluation.

• How does PIAS perform in practice? Using realistic
workloads in our testbed experiments, we show that
PIAS reduces the average FCT of short flows by ⇠37-
47% with the web search workload [11] and ⇠30-
45% with the data mining workload [21] compared
to DCTCP. In an application benchmark with Mem-
cached [7], we show that PIAS achieves ⇠28-30%
lower average query completion time than DCTCP.

• How effective are individual design components of
PIAS, and how sensitive is PIAS to parameter set-
tings? We show that PIAS achieves reasonable per-
formance even with two queues. We also demonstrate
that ECN is effective in mitigating the harmful effect
of a mismatch between the demotion thresholds and
traffic, but PIAS performs the best with the optimal
threshold setting.

• Does PIAS work well even in large datacenter-
s? Using large-scale ns-2 simulations, we show that
PIAS scales to multi-hop topologies and perform-
s best among all information-agnostic schemes (D-
CTCP [11], L2DCT [27], and LAS [30]). PIAS shows
a 4.9% performance (measured in average FCT) gap
from pFabric [13], an idealized information-aware
scheme, for short flows in the data mining workload.

• How robust is the PIAS threshold setting? With
the same set of thresholds, we experiment with both
extremely-biased and realistic traffic patterns to show
the robustness of the PIAS threshold setting. We
also demonstrate the optimality region and close-to-
optimality region is large for PIAS analytically. (For
space limitations, please see the details in our techni-
cal report [15]).

5.1 Testbed Experiments

Setting: PIAS uses 8 priority queues by default and en-
able per-port ECN marking as discussed in Section 4.
We set the ECN marking threshold to be 30KB as D-
CTCP [11] recommends. Our MLFQ demotion thresh-
olds are derived as described in Section 3.

We use two realistic workloads, a web search work-
load [11] and a data mining workload [21] from produc-
tion datacenters. Their overall flow size distributions are
shown in Figure 5. We also evaluate PIAS using an ap-
plication benchmark with Memcached [7].
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Figure 6: Web search workload: FCT across different flow sizes. TCP’s performance is outside the plotted range of (b)
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Figure 7: Data mining workload: FCT across different flow sizes. TCP’s performance is outside the plotted range of (b)

Results with realistic workloads: For this experiment,
we developed a client/server model to generate dynamic
traffic according to realistic workloads and measure the
FCT on application layer. The client application, run-
ning on 1 machine, periodically generates requests to the
other machines to fetch data. The server applications,
running on 15 other machines, respond with requested
data. The requests are generated based on a Poisson pro-
cess. We evaluate the performance of PIAS, DCTCP and
TCP, while varying the network loads from 0.5 to 0.8.
Given the average traffic load in DCNs is moderate (for
exmaple, 30% [16]), a long-term load of over 80% is less
likely in practice.

Figure 6 and Figure 7 show the average FCT across
small (0,100KB] (a, b), medium (100KB,10MB] (c), and
large (10MB,1) (d) flows, respectively; for the web
search and data mining workloads, respectively.

We make the following three observations: First, for
both workloads, PIAS achieves the best performance in
both the average and 99th percentile FCTs of small flows.
Compared to DCTCP, PIAS reduces the average FCT of
small flows by ⇠37-47% for the web search workload
and ⇠30-45% for the data mining workload. The im-
provement of PIAS over DCTCP in the 99th percentile
FCT of short flows is even larger: ⇠40-51% for the web
search workload and ⇠33-48% for the data mining work-
load. Second, PIAS also provides the best performance
in medium flows. It achieves up to 22% lower average
FCT of medium flows than DCTCP in the web search
workload. Third, PIAS does not severely penalize the
large flows. For example, from Figure 6 (d) and Fig-
ure 7 (d), we can see that for the data mining workload
PIAS is comparable or slightly better than TCP and D-
CTCP, while for the web search workload it is worse than

DCTCP by over 10%. This is expected because PIAS
prioritizes short flows over long flows and ⇠60% of all
bytes in the web search workload are from flows smaller
than 10MB. Note that this performance gap would not
affect the overall average FCT since datacenter work-
loads are dominated by small and medium flows (e.g.,
only ⇠3% flows are larger than 10MB in the web search
workload). In fact, PIAS achieves ⇠9% and ⇠17% low-
er overall average FCT than DCTCP and TCP at 0.8 load
in the web search workload.

Results with the Memcached application: To assess
how PIAS improves the performance of latency-sensitive
applications, we build a Memcached [7] cluster with 16
machines. One machine is used as a client and the other
15 are used as servers to emulate a partition/aggregate
soft-real-time service [11, 34]. We pre-populate serv-
er instances with 4B-key, 1KB-value pairs. The clien-
t sends a GET query to all 15 servers and each server
responds with a 1KB value. A query is completed only
when the client receives all the responses from the server-
s. We measure the query completion time as the applica-
tion performance metric. Since a 1KB response can be
transmitted within one RTT, the query completion time is
mainly determined by the tail queueing delay. The base
query completion time is around 650us in our testbed.
We also generate background traffic, a mix of mice flows
and elephant flows following the distribution of the we-
b search workload [11]. We use queries per second, or
qps, to denote the application load. We vary the load of
the background traffic from 0.5 to 0.8 and compare the
performance of PIAS with that of DCTCP.

Figure 8 and Figure 9 show the results of the query
completion time at 20 and 40 qps loads respectively. S-
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Figure 8: Query completion time at 20 qps
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Figure 9: Query completion time at 40 qps

ince we enable both dynamic buffer management and
ECN on the switch, none of queries suffers from TCP
timeout. With the increase in background traffic load, the
average query completion time of DCTCP also increases
(1016–1189us at 40qps and 1014–1198us at 20qps). By
contrast, PIAS maintains a relatively stable performance.
At 0.8 load, PIAS can achieve ⇠28-30% lower average
query completion times than those of DCTCP. Moreover,
PIAS also reduces the 99th percentile query completion
time by ⇠20-27%. In summary, PIAS can effectively im-
prove the performance of the Memcached application by
reducing the queueing delay of short flows.

End host queueing delay: The above experiments
mainly focus on network switching nodes. PIAS extends
its switch design to the end hosts as the sender’s NIC is
actually the first contention point of the fabric [13, 24].

To quantify this, we conduct an experiment in our
10G setting with three servers (one sender and two re-
ceivers). We start several (1 to 8) long-lived TCP flows
from the sender to a receiver. Then we measure RTT
from the sender to the other receiver by sending ICMP
ping packets. Without PIAS, ping packets could ex-
perience up to 6748us queueing delay with 8 background
flows. Then we deploy a 2-queue PIAS end host schedul-
ing module (as described in §4.1.2) with a threshold of
100KB. Each ICMP packet is identified as a new flow
by PIAS. We measure the RTTs with PIAS and compare
them with the results without PIAS in Figure 10. In gen-
eral, PIAS can significantly reduce the average RTT to
⇠200us and ensure that the 99th percentile RTT is small-
er than 450us. Note that the PIAS scheduling module
does not affect network utilization and large flows still
maintain more than 9Gbps goodput during the experi-
ment. Since we enable LSO to reduce CPU overhead,
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Figure 10: RTT with background flows
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Figure 11: Web search workload with different queues

it is difficult for us to achieve fine-grained transmission
control and some delay may still exist in NIC’s transmis-
sion queues. We believe there is still room to improve by
offloading the scheduling to NIC hardware [29].

5.2 PIAS Deep Dive
In this section, we conduct a series of targeted experi-
ments to answer the following three questions:
• How sensitive is PIAS to the number of queues

available? Network operators may reserve some
queues for other usage while some commodity switch-
es [3] only support 2 priority queues. We find that,
even with only 2 queues, PIAS still effectively re-
duces the FCT of short flows. However, in general,
more queues can further improve PIAS’s overall per-
formance.

• How effective is ECN in mitigating the mismatch?
ECN is integrated into PIAS to mitigate the mismatch
between the demotion thresholds and traffic distribu-
tion. In an extreme mismatch scenario, we find that
without ECN, PIAS’s performance suffers with medi-
um flows and is worse than DCTCP. However, with
ECN, PIAS effectively mitigates this problem, and is
better than, or at least comparable to DCTCP.

• What is the effect of the optimal demotion thresh-
olds? Compared to PIAS with thresholds derived
from simple heuristics, PIAS with the optimal de-
motion thresholds achieves up to ⇠10% improvement
in medium flows, which improves the overall perfor-
mance.

Impact of number of queues: In general, the more
queues we use, the better we can segregate differen-
t flows, thus improving overall performance. For this
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Figure 12: Web search workload with mismatch thresholds
derived from data mining workload
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Figure 13: Web search workload with different thresholds

experiment, we generate traffic using the web search
workload and do the evaluation with 2, 4 and 8 priority
queues. The results are shown in Figure 11. We observe
that three schemes achieve the similar average FCT of
short flows. Even at 0.8 load, the FCT of 2 queues is
within ⇠2.5% of that of 8 queues. As expected, the aver-
age FCT of medium flows improves with the increasing
number of queues. For example, PIAS with 4 queues
and 8 queues provide similar performance, but improve
the FCT by 14.3% compared to 2 queues. The takeaway
is that PIAS can effectively reduce FCT of short flows
even with 2 queues and more queues can further improve
PIAS’s overall performance.

Effect of ECN under thresholds–traffic mismatch:
We evaluate the performance of the web search work-
load while using the optimal demotion thresholds de-
rived from the data mining workload. We compare PIAS,
PIAS without ECN, and DCTCP. Figure 12 shows the
results of the average FCT of short and medium flows.
Both PIAS and PIAS without ECN greatly outperforms
DCTCP in short flows. PIAS without ECN is even slight-
ly better than PIAS. That is because, when using per-port
ECN, packets in a high priority queue may get marked
due to buffer occupation in a low priority queue. How-
ever, PIAS without ECN shows the worst performance
in medium flows while being obviously worse than D-
CTCP. This is because, due to the mismatch between de-
moting thresholds and traffic distribution, medium flows
and large flows coexist in the lower priority queues.
Without ECN, packets from medium flows would ex-
perience queueing delay behind large flows. With EC-
N, PIAS effectively mitigates this side-effect by keeping
low buffer occupation as explained in §3.2.2.
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Figure 14: Overall average flow completion time

Impact of demotion thresholds: To explore the effec-
tiveness of our optimal demotion threshold setting, we
compare the optimized PIAS with the PIAS using thresh-
olds derived from the equal split heuristic as [13]. More
specifically, given a flow size distribution and N queues,
we set the first threshold to the size of 100/N th per-
centile flow, the second threshold to the size of 200/N th
percentile flow, and so on. We run the web search work-
load at 0.8 load and summarize results in the Figure 13.
We test PIAS with 2 and 4 queues. We observe that
there is an obvious improvement in the average FCT of
medium flows with the optimized thresholds. Specifi-
cally, PIAS (4-queue) with the optimized thresholds can
achieve ⇠10% lower FCT for medium flows than that of
equal split, and a 9% improvement for the 2-queue PIAS.
This partially validates the effectiveness of our optimal
threshold setting. We further conduct deep analysis on
this in [15].

5.3 Large-scale NS-2 Simulations
We use ns-2 [10] simulations to answer three questions.

• How does PIAS perform compared to information-
agnostic schemes? PIAS outperforms DCTCP [11]
and L2DCT [27] in general, and significantly im-
proves their average FCTs for short flows by 50% and
40% respectively. Furthermore, PIAS is close to LAS
for short flows and greatly outperforms LAS for long
flows, reducing its average FCT by 50% in the web
search workload.

• How does PIAS perform compared to information-
aware schemes? As a practical information-agonistic
scheme, PIAS can also deliver comparable perfor-
mance to a clean-slate information-aware design, p-
Fabric [13], in certain scenarios. For example, it only
has a 4.9% gap to pFabric for short flows in the data
mining workload.

• How does PIAS perform in the oversubscribed net-
work? In a 3:1 oversubscribed topology with ECMP
load balancing, PIAS still delivers very good perfor-
mance. Compared to DCTCP, the average FCT for
the short flows with PIAS is ⇠26% lower in the web
search workload.
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Figure 15: Web search workload: Normalized FCT
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Figure 16: Data mining workload: Normalized FCT

Setting: We use a leaf-spine topology with 9 leaf (ToR)
switches to 4 spine (Core) switches. Each leaf switch has
16 10Gbps downlinks (144 hosts) and 4 40Gbps uplinks
to the spine, forming a non-oversubscribed network. The
base end-to-end round-trip time across the spine (4 hops)
is 85.2µs. We use packet spraying [19] for load balanc-
ing and disable dupACKs to avoid packet reordering. A-
gain, we use the web search and data mining workloads
as above.

5.3.1 Comparison with Information-agnostic
Schemes

We mainly compare PIAS with three other information-
agnostic schemes: DCTCP, L2DCT [27] and LAS [30].

Overall performance: Figure 14 shows the average
FCT of information-agnostic schemes under differen-
t workloads and load levels. From the figure, we see that
PIAS performs well overall. First, PIAS has an obvious
advantage over DCTCP and L2DCT in all cases. Sec-
ond, PIAS is close to LAS in the data mining workload,
and significantly outperforms LAS by 28% (at 0.8 load)
in the web search workload. This is because PIAS effec-
tively mitigates the starvation between long flows unlike
LAS. In the data mining workload, there are not so many
large flows on the same link concurrently. As a result,
LAS does not suffer from starvation as significantly.

Breakdown by flow size: We now breakdown the av-
erage FCT across different flow sizes, (0, 100KB] and
(10MB, 1) (Figure 15 and 16). We normalize each
flow’s actual FCT to the best possible value it can achieve
in the idle fabric.

For short flows in (0,100KB], we find that PIAS signif-
icantly outperforms both DCTCP and L2DCT, improv-
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Figure 17: Average normalized FCT for (0,100KB]

ing the average FCT by up to 50% and 40% respective-
ly. This is because DCTCP and L2DCT use reactive
rate control at the end hosts, which is not as effective
as PIAS for in-network flow scheduling. We further ob-
serve that PIAS achieves similar performance as LAS for
short flows. PIAS only performs slightly worse than LAS
in the web search workload when there is a packet drop
or an explicit congestion notification.

For long flows in (10MB,1), we find that PIAS is
slightly worse than LAS in data mining workload, but
performs significantly better in the web search workload
(50% reduction in FCT at 0.8 load). This is because,
in the web search workload, it is common that multiple
large flows are present in the same link. In such sce-
narios, LAS always stops older flows to send new flows.
Since large flows usually take a very long time to com-
plete, it causes a serious starvation problem. However,
with PIAS, large flows receive their fair sharing in the
lowest priority queue, which mitigates this problem. Fur-
thermore, PIAS performs similarly to DCTCP under the
web search workload and achieves 17% lower FCT in the
data mining workload.

5.3.2 Comparison with Ideal Information-aware
Schemes

We compare PIAS to an ideal information-aware ap-
proach for DCN transport, pFabric [13], on small flows
of the two workloads. We note that the most recent work
PASE [26] can achieve better performance than pFab-
ric in particular scenarios (e.g., very high load and sin-
gle rack). However in our topology setting with realistic
workloads, pFabric is better than PASE and PDQ [22],
and achieves near-optimal performance. Thus, we direct-
ly compare PIAS with pFabric. The result is shown in
Figure 17. In general, PIAS delivers comparable aver-
age FCT for short flows as pFabric, particularly within
4.9% in the data mining workload. We find that the gap
between PIAS and pFabric is smaller in the data min-
ing workload than that in the web search workload. This
is mainly due to the fact that the data mining workload
is more skewed than the web search workload. Around
82% flows in the data mining are smaller than 100KB,
while only 54% of flows in the web search are small-
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Figure 18: Web search workload on a 3:1 oversubscribed
topology with ECMP load balancing.

er than 100KB. For the web search workload, it is more
likely that large flows coexist with short flows in the high
priority queues temporarily, increasing the queueing de-
lay for short flows. pFabric, by assuming prior knowl-
edge of flow sizes, is immune to such problem.

5.3.3 Performance in oversubscribed network
Finally, we evaluate PIAS on a 3:1 oversubscribed net-
work with ECMP load balancing. In this topology, there
are 3 leaf switches and 4 spine switches. Each leaf switch
is connected to 48 hosts with 10Gbps links and 4 spine
switches with 40Gbps links. Given that the source and
destination of each flow is generated randomly, one-third
of traffic is intra-ToR and the rest is inter-ToR traffic.
Hence, the load at the fabric’s core is twice the load at the
edge. We repeat the web search workload and compare
PIAS with DCTCP. Figure 18 gives the results. Note that
the load in the figure is at the fabric’s core. Compared to
DCTCP, PIAS achieves up to ⇠26% and ⇠11% lower
average FCT for short flows and all the flows respective-
ly.

6 Related Work

We classify previous work on minimizing FCT in DC-
Ns into two categories: information-agnostic solution-
s (e.g., [11, 12, 27]) and information-aware solutions
(e.g., [13, 22, 26]).

Information-agnostic solutions [11, 12, 27] generally
improve the FCT for short flows by keeping low queue
occupancy. For example, DCTCP [11] tries to keep the
fabric queues small by employing an ECN-based adap-
tive congestion control algorithm to throttle long ele-
phant flows. L2DCT [27] adds bytes sent information to
DCTCP [11]. HULL [12] further improves the latency
of DCTCP by trading network bandwidth. In summa-
ry, these solutions mainly perform end-host based rate
control which is ineffective for flow scheduling. By con-
trast, PIAS leverages in-network priority queues to em-
ulate SJF for flow scheduling, which is more efficient in
terms of FCT minimization.

Information-aware solutions [13, 22, 26] attempt to
approximate ideal Shortest Remaining Processing Time
(SRPT) scheduling. For example, PDQ [22] employs
switch arbitration and uses explicit rate control for flow
scheduling. pFabric [13] decouples flow scheduling from
rate control and achieves near-optimal FCT with decen-
tralized in-network prioritization. PASE [26] synthesizes
the strengths of previous solutions to provide good per-
formance. In general, these solutions can potentially pro-
vide ideal performance, but they require non-trivial mod-
ifications on switch hardware or a complex control plane
for arbitration. By contrast, PIAS does not touch the
switch hardware or require any arbitration in the control
plan, while still minimizing FCT.

There are also some other efforts [18, 33, 34] targeting
at meeting flow deadlines. D3 [34] assigns rates to flows
according to their sizes and deadlines explicitly, where-
as D2TCP [33] and MCP [18] add deadline-awareness
to ECN-based congestion window adjustment implicitly.
They all require prior knowledge of flow information and
do not directly minimize FCT, unlike PIAS.

7 Conclusion

Through PIAS, we leverage existing commodity switch-
es in DCNs to minimize the average FCT for flows, e-
specially the smaller ones, without assuming any pri-
or knowledge of flow sizes. We have implemented a
PIAS prototype using all commodity hardware and eval-
uated PIAS through a series of small-scale testbed ex-
periments as well as large-scale packet-level ns-2 simu-
lations. Both our implementation and evaluation results
show that PIAS is a viable solution that achieves all our
design goals.
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Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively,
before the configuration is applied, and answer “what if”
questions. Like prior techniques that analyze data-plane
snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this combination
by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operators can query
these relations to understand identified errors and their
provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduction

Configuring networks is arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are low-
level. Consequently, configuration errors that compro-
mise availability, security, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis-
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior approaches Researchers have developed two
main approaches to detect network configuration errors.
The first approach directly analyzes network configura-
tion files [2, 5, 7, 24, 25, 28, 34]. Such a static analysis
can flag errors proactively, before a new configuration is
applied to the network, and it can naturally answer “what
if” questions with respect to different environments (i.e.,
failures and route announcement from neighbors).

However, configurations of real networks are complex,
with many interacting aspects (e.g., BGP, OSPF, ACLs,
VLANs, static routing, route redistribution); existing
configuration analysis tools handle this complexity by
developing customized models for specific aspects of the
configuration or specific correctness properties. For in-
stance, rcc [7] produces a normalized representation of
configuration that lets it check a range of properties that
correspond to common errors (e.g., “route validity” of
BGP, whether OSPF adjacencies are configured on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-
ture to represent each ACL and analyzes these graphs.
This selective focus makes configuration analysis practi-
cal, but it also limits the scope of what can be checked.
Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to assess
how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a second approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.e., forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysis,
any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration aspects.
Further, because the data plane has well-understood se-
mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-
straint solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operators
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding behavior
is complex. The responsible snippet is not necessarily

1



470 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Figure 1: Our approach versus prior approaches.

the most recent configuration change either; the impact
of an erroneous change may only manifest long after it is
introduced. For instance, the impact of erroneously con-
figured backup paths will manifest only after a failure.

Our approach We develop a new, general approach to
statically analyze network configurations that combines
the strengths of the approaches above. Instead of us-
ing a customized representation, our analysis derives the
actual data plane that would emerge given a configura-
tion and environment. Figure 1 illustrates our approach.
With it, as with prior static approaches, operators can
detect errors proactively and conduct “what if” analy-
sis across different environments. Further, as with data-
plane analysis approaches, they can easily express and
check a wide range of correctness properties and directly
understand the impact of errors on forwarding.

Realizing our approach The principal challenge that
we face is the need to derive a faithful data plane for a
given configuration and environment. Our analysis must
balance two competing concerns. It must be detailed
and low-level in order to produce an accurate data plane,
which requires us to tractably reason about all aspects of
configuration and their interactions, as well as a plethora
of configuration parameters and directives. At the same
time, the analysis must provide a high-level view that
allows operators to understand the identified errors and
map them back to responsible configuration snippets.

We address this challenge in our tool, called Batfish, by
implementing our analysis fully declaratively. We trans-
late the network configuration and environment into a
variant of Datalog and also use this language to express
the behaviors of the various protocols being configured.
Executing the resulting Datalog program produces logi-
cal relations that represent the data plane as well as re-
lations for various key concepts in the computation, e.g.,
the best route to a destination as determined by a partic-
ular protocol. We use an automatic constraint solver to
check properties of the resulting data plane and produce
concrete packets that violate these properties. Finally,
those packets are fed back into our declarative model,

inducing more relational facts (e.g., the path taken, the
ACL rules encountered along the way). These relations
and the ones described above provide a simple ontology
for understanding errors and their provenance.

Operators can query Batfish for any correctness property
that can be expressed as a first-order-logic formula over
the data-plane relations. However, Batfish can find errors
even without operator input; by default the tool checks
three novel properties related to the consistency of for-
warding. Our multipath consistency property requires
that, in the presence of multipath routing, packets of a
flow are either dropped along all paths they traverse or
reach the destination along all paths. Our failure con-
sistency and destination consistency properties uncover
errors that respectively limit fault tolerance and make the
network vulnerable to illegitimate route announcements.

We used Batfish to find violations of these three prop-
erties in the configurations of two large university cam-
pus networks. We find many violations of each type, the
majority of which the operators confirmed to be config-
uration errors. Because of helpful provenance informa-
tion provided by Batfish, several of the errors were fixed
within a day of us reporting them.

Summary We develop a new approach and a practical
tool to analyze network configurations. At its heart is a
high-fidelity declarative model of low-level network con-
figurations. We believe that this model is useful beyond
detecting configuration errors. For instance, researchers
have proposed high-level, declarative languages to pro-
gram networks [9, 18, 19, 26], but a major hurdle in
adopting them is migrating a network while faithfully
preserving its forwarding policies. Our model can pro-
vide a migration path. Our tool is publicly available [1]
for others to use and explore various use cases.

2 Background and Motivation

This section provides background on routing in today’s
networks and motivates our approach.

2.1 Background

A network forwards packets through a sequence of
routers and switches. The data plane state of each de-
vice determines how packets with a given header are han-
dled (e.g., dropped, forwarded to a specific neighbor, or
load balanced across multiple neighbors). This state is
generated by the control plane. In today’s networks, the
control plane is specified through device configuration,
which uses vendor-specific languages and includes as-
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pects such as ACLs that specify packet filtering policies,
static routes for IP address prefixes that are directly con-
nected, and directives for one or more routing protocols.
Configurations of all devices, combined with the current
topology and dynamic information exchanged between
neighboring devices, determine the current data plane.

A network managed by some administrative entity is
known as an autonomous system (AS). Within an AS,
information on network topology and connected desti-
nations is exchanged using interior gateway protocols
such as OSPF [23], a protocol that computes least-cost
paths. BGP [29], a protocol that accommodates policy
constraints, is used across ASes. Routers announce des-
tination IP address prefixes to which they are willing to
carry traffic from a neighboring AS. Local policy de-
termines if a received announcement is acceptable (e.g.,
whether the announcer can be trusted to have a path to
the destination prefix) and which one among the multi-
ple announcements for the same prefix should be selected
(e.g., based on commercial relationships).

As an aside, in the SDN paradigm, which has gained sig-
nificant attention of late, the control plane is specified us-
ing a control program instead of configuration. We focus
on the configuration-based paradigm because it currently
dominates and continues to be a cause of subtle errors.
Even if SDNs become dominant, many networks will
likely continue to be configuration-based, in the same
way that legacy software is prevalent despite the advent
of higher-level programming technologies.

2.2 Motivation

Given the complexity of network configurations, errors
are common [21, 31, 36], and operators need good tools
to flag potential errors. Consider network N pictured at
the top of Figure 2, with two neighboring ASes. P is a
large provider AS, and C is a customer AS that owns two
destination prefixes. Router n2 is directly connected to
an internal private network with prefix 10.0.0.0/24. The
operators intend that this network be available to C, but
not to P or other parts of N not servicing C.

The bottom of Figure 2 shows configuration snippets that
implement this specification, loosely based on Cisco’s
IOS language. The first two lines of n1’s configuration
specify that it runs OSPF on interfaces that connect it
to n2 and n3, each with routing cost metric of 1. The
next two specify that it runs BGP with c2 and will ac-
cept only announcements for prefixes that match the pre-
fix list PL C. Router n2 is similarly configured except
that it also redistributes (i.e., advertises) connected net-

//----------Configuration of n1----------
1 ospf interface int1_2 metric 1
2 ospf interface int1_3 metric 1

3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24

4 bgp neighbor c2 AS C apply PL_C

//----------Configuration of n2----------
1 ospf interface int2_1 metric 1
2 ospf interface int2_3 metric 1
3 ospf-passive interface int2_5 ip 10.0.0.0/24
4 ospf redistribute connected metric 10

5 prefix-list PL_C 2.2.2.0/24

6 bgp neighbor c1 AS C apply PL_C

//----------Configuration of n3----------
1 ospf interface int3_1 metric 1
2 ospf interface int3_2 metric 1
3 ospf interface int3_4 metric 1

4 ospf redistribute static metric 10

5 bgp neighbor p1 AS P Accept ALL

6 static route 10.0.0.0/24 drop, log

Figure 2: Example network configuration snippets.

works through OSPF. Router n3 is configured to accept
all prefix announcements from p1 and to redistribute into
OSPF all statically configured networks. To isolate pre-
fix 10.0.0.0/24 from nodes not on the path to C, the oper-
ator installs a static discard route with logging at n3 (line
6). This route is redistributed (line 4) so n4 need not be
directly aware of this route. This setup prevents P and n4
(and hosts behind them) from accessing 10.0.0.0/24 and
enables the operators to discover any attempts.

The example above is based on actual configurations of
a large university network that we have analyzed using
Batfish, and, despite its simplicity, it has at least two er-
rors. The first error is that 3.3.3.0/24 is missing from the
definition of PL C in n2, and thus n2 will drop announce-
ments and not provide connectivity for this prefix. This
error may go unnoticed when the configuration is applied
since connectivity to 3.3.3.0/24 is available through n1.
But when n1, c2 or link c2-n1 fails, all connectivity to
3.3.3.0/24 will be lost. The end result of this error is lack
of fault tolerance and poor load balancing (since link c2-
n1 carries all traffic for 3.3.3.0/24).

The second error is more subtle. Because n2 and n3 re-
distribute connected and static networks, respectively, n1
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 3: The four stages of Batfish workflow.

will learn paths to 10.0.0.0/24 from both these neighbors,
and the paths will have the same routing cost. Under
these conditions, the default is multipath routing; that is,
n1 will send packets to 10.0.0.0/24 through both neigh-
bors. However, only packets sent through n2 will reach
the destination since n3 will drop such packets. Thus,
traffic sources will experience intermittent connectivity.1

No existing technique can find both of these errors proac-
tively, before the buggy configuration is applied. Data
plane analysis can detect reachability issues but it will
not find the first error until a failure occurs that breaks
reachability to 3.3.3.0/24. Prior static analysis tech-
niques, which target specific misconfiguration patterns
in particular protocols, will not detect the second er-
ror, as that requires a precise model of the semantics
of OSPF, connected routes, static routes, and their in-
teraction through redistribution. Batfish finds both errors
proactively as violations of failure consistency and mul-
tipath consistency properties (discussed below), respec-
tively. It can do this because it (a) statically analyzes
configurations, and (b) derives a faithful model of the
data plane from configurations.

3 An Overview of Batfish

We now overview our approach to static analysis of net-
work configurations, as implemented in Batfish. Figure 3

1Such intermittent connectivity can go unnoticed. To prevent re-
ordering, multipath routing typically maps packets with the same 5-
tuple (source and destination addresses and ports, and the protocol
identifier) to the same path. If a connection gets unlucky and is ini-
tially mapped to the dropping path, subsequent retries (with a different
source port) will likely map it to the valid path, after which all packets
will be delivered.

//Part 1a: Facts on OSPF interface costs
OspfCost(n1, int1_2, 1)
...(remaining OSPF interfaces)
//Part 1b: Facts on OSPF adjacencies
OspfNeighbors(n1, int1_2, n2, int2_1).
OspfNeighbors(n1, int1_3, n3, int3_1).
OspfNeighbors(n2, int2_3, n3, int3_2).
...(symmetric facts)

//Part 2: Rules that capture basic OSPF logic
BestOspfRoute(node, network, nextHop, nhIp, cost) <-

OspfRoute(node, network, nextHop, nhIp, cost),
MinOspfRouteCost[node, network] = cost.

MinOspfRouteCost[node, network] = minCost <-
minCost = agg<<cost = min(cost)>>:

OspfRoute(node, network, _, _, cost).

OspfRoute(node, network, nextHop, nextHopIp, cost) <-
OspfNeighbors(node, nodeInt, nextHop, nextHopInt),
InterfaceIp(nextHop, nextHopInt, nextHopIp),
ConnectedRoute(nextHop, network, nextHopConnInt),
OspfCost(node, nodeInt, nodeIntCost),
OspfCost(nextHop, nextHopConnInt, nextHopIntCost),
cost = nodeIntCost + nextHopIntCost.

OspfRoute(node, network, nextHop, nextHopIp, cost) <-
OspfNeighbors(node, nodeIntCost, nextHop, nhInt),
InterfaceIp(nextHop, nhInt, nextHopIp),
OspfNeighbors(nextHop, _, hop2, _),
BestOspfRoute(nextHop, network, hop2, _, subCost),
node != secondHop,
cost = subCost + nodeIntCost.

Figure 4: A subset of the control plane model for the
OSPF portion of the configuration in Figure 2.

shows the four stages of its workflow.

3.1 From Configuration to Data Plane

The first two stages of Batfish transform the given net-
work configuration into a concrete data plane. Stage
1 generates a logical model of the control plane. This
model compactly represents the network configuration
and topology and the computation that the network
routers carry out collectively to produce the data plane.

Our control plane model is defined in a variant of Datalog
called LogiQL, which is the language of the LogicBlox
database engine [10, 17]. Beyond basic Datalog, LogiQL
supports integers, arithmetic operations, and aggregation
(e.g., minimum).

A key challenge addressed in our work is faithfully en-
coding the semantics of a range of low-level configu-
ration directives in a high-level, declarative language.
As we detail below, the declarative nature of our con-
trol plane and the resulting data plane models provides a
simple ontology of relations that operators can query to
understand the provenance of errors. While imperative
code could have provided this capability, our declarative
implementation gives us this information for free.

As an example, Figure 4 shows a portion of the control
plane model for the configuration in Figure 2. Part 1 of
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the model has logical facts that encode the configuration
and topology information. In the figure, we show the
OSPF-related information, namely the link costs and ad-
jacencies. Part 2 has a generic set of rules that capture the
semantics of the control plane for an arbitrary network.
In the figure, we show some of the rules for OSPF rout-
ing. The first rule defines the best OSPF route to be the
route with the minimum cost. The second rule defines
the minimum cost by simply aggregating over all OSPF
routes to find the minimal element. The last two rules
effectively implement a shortest-path computation.

The second stage of Batfish takes an environment as an
additional input, which facilitates performing “what if”
analysis. The environment consists of the up/down sta-
tus of each link in the network as well as a set of route
announcements from each of the network’s neighboring
ASes. It is represented as a set of logical facts.

We derive the data plane by executing the LogiQL pro-
gram that represents the control plane model and the en-
vironment. This execution is essentially a fixed point
computation, i.e., all rules are fired iteratively to derive
new facts, until no new facts are generated. The result-
ing data plane model includes the forwarding behavior of
individual routers as logical facts that indicate whether
a packet with certain headers should be dropped (e.g.,
Drop(node, flow)) or forwarded to a neighbor (e.g.,
Forward(node, flow, neighbor)). The data plane
model also includes facts for all of the intermediate pred-
icates used in the rules; this enables users to easily inves-
tigate the provenance of various aspects of the data plane.
For instance, a particular Forward predicate may have
been derived from a BestOspfRoute fact in the control
plane model, meaning that the chosen route came from
OSPF, and that fact in turn was derived from a particular
set of OSPF link costs in the configuration.

Unlike prior static analysis techniques, the first two
stages of Batfish analyze all aspects of network config-
uration that are relevant to the data plane, irrespective of
the correctness properties of interest. The resulting data
plane thus faithfully captures the forwarding behavior in-
duced by the given configuration, topology, and environ-
ment (but see §3.3 for limitations).

3.2 From Data Plane to Configuration Errors

The last two stages of Batfish identify and localize con-
figuration errors. In the third stage, we analyze one or
more data planes to check desired correctness proper-
ties. The tool can check any property expressible as
a first-order-logic formula over the relations that repre-

sent one or more data planes of interest. This is accom-
plished by translating the data-plane relations and the
correctness property to the language of the Z3 constraint
solver [20, 35], which then either verifies the property or
provides one or more counterexamples, which consist of
a concrete packet header and originating router.

In addition to user-specified properties, Batfish checks
for traditional reachability properties such as the absence
of black holes and loops, as well as three new proper-
ties that go beyond reachability to ensure correctness of
paths through the network and their relation to one an-
other (§4). Because the first two stages of Batfish are
property-independent, we can generate the data planes
of interest once and then check any number of properties
over these data planes without having to re-create them.

The final stage helps operators understand property vio-
lations, in order to properly repair the network configu-
ration. It works by logically simulating the behavior of
counterexample packets through the network on top of
our logical data plane model. As before, various logi-
cal facts will be produced during this simulation. Some
of these facts directly provide provenance information to
the user, such as the particular line of an ACL that caused
the packet to be dropped. The user can also investigate
additional provenance relationships by querying the full
logical database, which contains facts about the control
plane, the data plane, and their relationship, to under-
stand why particular facts were generated.

To understand the process of uncovering the root cause of
an error found by Batfish, consider the second error de-
scribed for the example network in §2.2. Batfish detects
this error as a multipath inconsistency. See §4 for the
formal definition, but informally, it means that packets
of a flow can be dropped along some paths but carried
to destination along some others. This inconsistency is
represented it by the following logical fact:
FlowMultipathInconsistent(Flow<src=n1, dstIp=10.0.0.0>)

The operator can then query the FlowTrace relation of
Batfish, which produces a traceroute-like representation
of the paths taken by the counterexample flow:
FlowTrace(Flow<src=n1, dstIp=10.0.0.0>,

[n1:int1_2 -> n2:int2_1]:accepted])
FlowTrace(Flow<src=n1, dstIp=10.0.0.0>,

[n1:int1_3 -> n3:int3_1]:nullRouted)

To understand why the flow was accepted by n2
but dropped by n3, the operator can then query the
FlowMatchRoute relation to see which routes the
flow matched at each router in the above paths:
FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n1,

Route<prefix=10.0.0.0/24, nextHop=n2, 10, ospfE2>)
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FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n1,
Route<prefix=10.0.0.0/24, nextHop=n3, 10, ospfE2>)

FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n2,
Route<prefix=10.0.0.0/24, int=int2_5, connected>)

FlowMatchRoute(Flow<src=n1, dstIp=10.0.0.0>, n3,
Route<prefix=10.0.0.0/24, DROP, static>)

Here we see that n1 has two external type-2 (redis-
tributed, fixed-cost) OSPF routes to 10.0.0.0/24 with
equal cost of 10. The first points to n2 where the net-
work is directly-connected, and the second points to n3
which has a static discard route for the destination. To
prevent the discard route at n3 from being active on n1,
the operator may increase the exported cost of this route
on n3 in line 4 of Figure 2.

3.3 Discussion

Since Batfish strives to model all aspects of configura-
tion that impact forwarding, when checking for correct-
ness our approach incurs no false positives and no false
negatives; each identified error is a real violation of the
checked property, and all violations are identified. How-
ever, this guarantee has three caveats from a pragmatic
perspective. First, like other configuration analysis tools,
we assume that routers behave as expected based on their
configurations. We cannot catch errors due to bugs in
router hardware or software (e.g., BGP implementation).

Second, Batfish analyzes a network under a given set of
environments, which are a subset of all possible environ-
ments. Therefore, Batfish can miss errors that occur only
in environments that the operator has not supplied. Fur-
ther, operators may supply an infeasible environment to
Batfish. For instance, the routing announcements from
C1 and P1 in Figure 2 may be correlated in some com-
plex way because those ASes are connected through a
path that is not visible to our analysis. In this case, errors
identified by Batfish may be spurious since a particular
analyzed data plane might never occur in reality.

Finally, Batfish may encounter configuration features
that are currently not implemented (e.g., the internal
‘color’ metrics of Juniper) but may influence local route
selection. If that happens, the tool warns users that the
guarantee may not hold. There is a qualitative differ-
ence, however, between the incompleteness of Batfish
and of prior configuration analysis tools. Because Bat-
fish uses the data plane as an intermediate representa-
tion, currently-unimplemented features can be mapped
to this representation simply by adding logical rules to
our control-plane model for how they impact forwarding.
Because prior tools use custom intermediate representa-
tions or custom checkers, it may be difficult or impos-
sible to use them to model and reason about some new

features. Currently, Batfish models a rich enough subset
of the configuration space (§6) to precisely analyze two
large university networks.

4 Consistency Properties

Batfish can take as input any specification of intended
network behavior and automatically check whether the
network indeed behaves as expected. For instance, the
operator might specify that the network should not carry
packets from one particular neighboring AS to another.
However, to simplify the task of finding potential errors,
we also propose three safety properties that were moti-
vated by discussions with network operators and require
little or no input from users. These properties flag dif-
ferent forms of inconsistencies in the network behavior.
Prior work on verification in several domains has shown
that inconsistent behavior often points to bugs [6, 7].

Our properties are expressed using two auxiliary pred-
icates which we define first. Let E be the environ-
ment used to generate the data plane model in Stage 2
of our pipeline. We define predicates acceptedE (H,S,D)
and droppedE (H,S,D), which hold if there is some path
through the network for which header H is eventually
accepted and dropped, respectively, at node D when in-
jected into the network at node S. “Accepted” implies
that the packet either reaches its destination or is for-
warded outside the modeled network. We simulate pack-
ets as being sent along all equal-cost paths, so accepted
and dropped are not mutually exclusive. It is straight-
forward to define these predicates in terms of the logical
relations that comprise the data plane. Below we some-
times omit the last argument to the accepted predicate
when it is irrelevant, as shorthand for the formula ∃D :
acceptedE(H,S,D); a similar shorthand is used for the
dropped predicate.

4.1 Multipath Consistency

Multipath consistency is a property that is relevant to
networks that use multipath routing and it captures the
following expected behavior: all packets with the same
header should be treated identically in terms of being ac-
cepted or dropped, regardless of the path taken through
the network. Formally, we say that the network with en-
vironment E exhibits multipath consistency if the follow-
ing condition is true:

∀H,S : acceptedE(H,S)⇒¬droppedE(H,S)

In other words, every packet is either accepted on all
paths or dropped on all paths. A counterexample to this
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formula consists of a concrete packet header and source
node such that it is possible for the header to be both
accepted and dropped depending on the path taken.

4.2 Failure Consistency

Networks are typically designed to be tolerant to some
number of faults. For example, a particular node or link
may have been intended to be used as a backup for an-
other node or link. However, it can be difficult for oper-
ators to reason about whether the network configuration
is indeed as fault tolerant as intended.

We define a general notion for verifying fault tolerance
of a network configuration. Let E ′ be the network envi-
ronment identical to E but with a subset of links or nodes
considered failed. This subset is drawn from the class
of failures to which the network is designed to be fault
tolerant (e.g., all single-link failures). We say that the
network exhibits failure consistency between E and E ′ if
the following condition is true:

∀H,S : acceptedE(H,S)⇒ acceptedE ′(H,S)

A counterexample to this formula is a concrete packet
header and source node such that the packet is accepted
under environment E but dropped under E ′. Of course,
packets destined for any interface that is failed in E ′

should not be considered counterexamples to failure con-
sistency. Thus, the full property definition, which we
omit for simplicity, includes an extra condition that re-
quires H to be destined for an active interface in E ′.

4.3 Destination Consistency

Customer ASes of a given network are often expected to
have disjoint IP address spaces, sometimes assigned by
the network itself. In such cases, the intended network
configuration is to allow a customer AS to only send
route announcements for its own address space, ensuring
that it only receives packets destined to itself. Our des-
tination consistency property captures this expectation.
Let E be the network environment with only customer
ASes (i.e., provider and peer AS nodes are considered
failed) and E ′ be an identical environment but with all
links to a customer AS C considered failed. Then we say
that the network exhibits destination consistency for C if
the following condition is true:

∀H,S : ∀D ∈C :
acceptedE(H,S,D)⇒¬acceptedE ′(H,S)

In other words, any packet that is accepted by some node
D in the AS C should not be accepted once C is removed.

Protocol 1

InstalledRoute

... Protocol k

BestPerProtocolRoute

MinAdminRoute

MinCostRoute

Figure 5: Information flow for computation of the RIB.

A counterexample to this formula consists of a concrete
packet header, source node, and destination node D in
AS C such that the packet is accepted at D under envi-
ronment E and is accepted somewhere in E ′.

5 The Four Stages of Batfish

In this section we present details on each of the four
stages in the Batfish pipeline (Figure 3).

5.1 Modeling the Control Plane

Batfish’s first stage takes configuration files and network
topology as input, and it outputs a control plane model
that captures the distributed computation performed by
the network. The input information is first parsed into
an intermediate data structure, which is then translated
into a set of logical facts, each associated with a par-
ticular relation. For example, SetIpInt(Foo, f0/1,

1.2.3.4, 24) says interface f0/1 of node Foo has IP
address 1.2.3.4 with a 24-bit subnet mask.

These base facts are combined with a set of logical rules
that specify how to infer new facts. These rules capture
route computation for various protocols. In more detail,
each node may be configured to run one or more routing
protocols (e.g., OSPF, BGP, etc.). At each node, each
protocol iteratively computes its best route to each des-
tination in the network using information learned from
neighbors. The available routes to destinations are stored
in a routing information base (RIB). While RIB formats
vary, a typical RIB entry minimally contains a destina-
tion network, the IP address of the next hop for that net-
work, and the protocol that produced the entry. When
multipath routing is being used, multiple best routes may
be selected for a destination.
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Our routing rules capture the process by which RIB en-
tries are generated at each node. Figure 5 shows how we
model this process. The model consists of four main re-
lations, each representing a set of routes, and the edges
denote the dependencies among these sets.

BestPerProtocolRoute is the set of routes that are
optimal according to the rules of one of the routing pro-
tocols. Protocol-specific rules are defined in terms of a
set of relations that represent facts from the configura-
tion and topology information. For example, the OSPF
rules shown earlier depend on configured link costs. As
Figure 5 shows, our model is modular with respect to
such protocols, and adding a new protocol simply re-
quires rules for producing its optimal routes.

MinAdminRoute is the subset of
BestPerProtocolRoute with only routes that have
minimal administrative distance, a protocol-level config-
uration parameter. That is, MinAdminRoute contains a
route R to destination D from BestPerProtocolRoute

if the protocol that produced R has an administrative
distance no higher than that of any other protocol that
produced a route to D.

MinCostRoute is the subset of MinAdminRoute with
only those routes that have minimal protocol-specific
cost. That is, MinCostRoute contains a route R to des-
tination D from MinAdminRoute if R has a protocol-
specific cost no higher than that of any other route to D
in MinAdminRoute.

InstalledRoute is the set of routes that are selected as
best for the node. This set is identical to MinCostRoute
but is given a new name for clarity.

In general, the set of candidate routes produced by a rout-
ing protocol may depend on the current state of the RIB,
as well as the internal state of that protocol and the lat-
est messages it has received. We have an edge from
InstalledRoute to each protocol to illustrate the de-
pendence on previous state, and also to model any redis-
tribution of installed routes from one protocol to another.
Thus, these edges signify that producing the RIB requires
computing the fixed point of the function that generates
the next intermediate state of the RIB.

Figure 6 shows key LogiQL rules for the relations in Fig-
ure 5. The agg keyword refers to an aggregation; in this
case we are finding the tuples of a relation whose aggre-
gated variable is minimal among all the tuples. In addi-
tion to such generic rules, we implement LogiQL rules
for several routing protocols, and as noted above, a new
protocol can be added completely modularly.

InstalledRoute(node, network, nextHop,
nextHopIp, admin, cost, protocol) <-
MinCostRoute(node, network, nextHop,
nextHopIp, admin, cost, protocol)

MinCostRoute(node, network, nextHop,
nextHopIp, admin, minCost, protocol) <-
minCost = MinCost[node, network],
MinAdminRoute(node, network, nextHop,
nextHopIp, admin, minCost, protocol)

MinCost[node, network] = minCost <-
agg<<minCost = min(cost)>>
MinAdminRoute(node, network, _, _, _, cost, _)

MinAdminRoute(node, network, nextHop,
nextHopIp, minAdmin, cost, protocol) <-
minAdmin = MinAdmin[node, network],
BestPerProtocolRoute(node, network,
nextHop, nextHopIp, minAdmin, cost,
protocol)

MinAdmin[node, network] = minAdmin <-
agg<<minAdmin = min(admin)>>
BestPerProtocolRoute(node, network,
_, _, admin, _, _).

Figure 6: LogiQL code for route-selection.

5.2 Building the Data Plane

The data plane of the network is the forwarding infor-
mation base (FIB) for each node. The FIB determines
an appropriate action to take when a packet reaches a
particular interface. For the purposes of this paper, that
action is either to forward the packet out of one or more
interfaces, to accept the packet, or to drop the packet.
The second stage of Batfish generates one data plane per
user-specified environment.

In Batfish, the FIB for a node consists of the node’s RIB,
the configured ACLs for the node’s interfaces, and rules
for using these items to forward traffic. The data-plane
generator starts by simply executing the LogiQL pro-
gram that is the output of Stage 1, which is the control-
plane model, to produce the RIB for each node. Before
doing so, LogiQL facts to represent the provided envi-
ronment are added to the model. Specifically, the facts
indicate which interfaces in the network are up, allowing
us to model network failures, and which routes are being
advertised by neighboring networks.

A LogiQL program consisting of a set of base facts and
rules is executed as follows. When a rule body (to the
right of <- in Figure 6) is satisfiable by existing facts, a
new fact is derived and added to the relation in the rule
head (to the left of <-). This process repeats until quies-
cence. At this point, the facts in the InstalledRoute

relation represent the RIB for each node. We then repre-
sent the FIB as a new set of logical rules that make for-
warding decisions, given the RIB information as well as
the per-interface ACLs, which were converted to logical
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facts in Stage 1.

The rules for the FIB are as follows. When a packet ar-
rives on an interface, the rules first check whether the
interface has an incoming ACL. If so, and if the packet’s
header is not allowed by that ACL, the packet is dropped.
Otherwise, if the destination IP address of the header is
assigned to any interface of the node, then the packet is
accepted. Otherwise, the rules check the RIB for entries
with networks that are longest-prefix matches for the des-
tination IP address of the header. For each such route, the
interface corresponding to that route’s next hop is deter-
mined as follows: if the route is directly connected on an
interface, that interface is selected. Otherwise, the rules
use the next hop of the route that is a longest prefix match
for the address of the original next hop, recursively, until
a directly connected route is found. Finally, the packet
is forwarded out that interface if the interface’s outgoing
ACL permits it, and dropped otherwise.

5.3 Property Checking

After Stage 2, users have access to the full power of
LogiQL to ask queries about both the control and data
planes. Moreover, these queries can directly employ the
relations in our high-level conceptual model. For ex-
ample, users can query the BestOspfRoute relation to
find the best OSPF route(s) to a particular destination on
a particular node. Further, by employing multiple rela-
tions in a query users can easily obtain even richer infor-
mation, such as the set of all BGP advertisements for a
particular prefix that were rejected by an incoming route-
map on at least two nodes. In this way, users can inter-
actively investigate various aspects of the network’s for-
warding behavior as well as their provenance.

In addition to user-directed exploration, Batfish supports
systematic checking of correctness properties, to find er-
rors and to prove their absence. By default it checks
the properties in §4, but operators can supply additional
properties, expressed as first-order formulas over the re-
lations in our data plane model. Depending on the prop-
erty, Batfish requires one or more data plane models that
differ in their environment (e.g., link failures).

Batfish uses Network Optimized Datalog (NoD) [20], a
recent extension of the Z3 constraint solver, to identify
violations of correctness properties. The properties we
check are decidable and can be expressed precisely in
NoD and Z3, so Batfish is guaranteed to find a counterex-
ample if one exists, modulo resource limitations. In the
rest of the paper, we use NoD to refer to the NoD exten-
sion to Z3 and use Z3 to refer to the vanilla Z3 solver

(which we also use). To check a property P, we ask NoD
if its negation ¬P is satisfiable in the context of the given
data plane models. If not, the property holds. If so, NoD
provides the complete boolean formula expressing how
to satisfy the negation of the property. This formula is
a set of constraints on a packet header and the interface
at which the packet is injected into the network. We then
query Z3 to solve these constraints, thereby producing a
concrete counterexample that violates P.

5.4 Provenance Tracking

The final stage of Batfish helps users to localize the root
cause of identified property violations. First, each coun-
terexample from the previous stage is converted into a
concrete test flow in terms of our LogiQL representation
of the data plane. Then, this test flow is “injected” into
our logical model, causing LogicBlox to populate rele-
vant relations with facts that indicate the path and behav-
ior of the flow through the network. Many of the pro-
duced facts include explicit provenance information, and
as demonstrated in §3.2, users can iteratively query the
populated relations to map errors back to their sources in
the configuration files.

6 Implementation

We implemented Batfish using Java and the Antlr [27]
parser generator. Its source comprises 21,504 lines of
Java code, 13,214 lines of Antlr code across 2,410 gram-
mar rules, and 5,696 lines of LogiQL code across 386 re-
lations. The bulk of the Java and Antlr code corresponds
to Stage 1 of Batfish, which converts configurations to
LogiQL facts.

To manage the complexity supporting diverse configura-
tion languages and diverse directives within a language
(with overlapping functionality), we devised a vendor-
and language-agnostic representation for control plane
information. We first translate the original configuration
files to our representation, and the rest of the analysis
uses this representation exclusively. Therefore, support
for new languages or directives can be added by imple-
menting appropriate translation routines, without having
to change the core analysis functionality.23

We currently support configuration languages of Cisco

2This analysis structure is akin to LLVM [16], which facilitates
analysis of code written in multiple programming languages by first
converting the code to a common representation.

3We hope that in the future router vendors would supply the trans-
lation routines as they best understand the semantics of their languages
and directives.
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IOS, Cisco NXOS, Juniper JunOS, Arista, and Quanta.
Our models of the control and data plane are rich enough
to capture the behavior of many real, large networks. We
faithfully model static routes, connected networks, in-
terior gateway protocols (e.g., OSPF, including areas),
BGP, redistribution of routes between routing protocols,
firewall rules, ACLs, multipath routing, VLANs, for-
warding based on longest-prefix matching, and policy
routing. We currently do not model MPLS [30] or packet
modification (e.g., NATs).

A semantic mismatch in encoding configuration direc-
tives in LogiQL is for regular expression matching. Such
matching may be used for BGP communities and AS-
paths but is not supported by LogiQL. We implement
community-matching by precomputing the result of the
match for all communities mentioned in configuration
files and the environment. This strategy does not work
for AS-path matching because AS-paths are lists (where
order matters; communities are sets) and all possible AS-
paths are not known statically.

Based on the observation that regular expressions in con-
figuration files tend to be simple, we implement match-
ing only for regular expressions that match sub-paths of
size two or less. For example, if the regular expression is
.*[5-10][10-15].*, we use LogiQL predicates that
are true when the AS-path, encoded as a LogiQL list,
has an item between 5 and 10 followed by one between
10 and 15. This limited support sufficed for the networks
we analyzed, but it can be extended to longer subpaths.

7 Evaluation

“P.S. WRT the prefix that was dual assigned from yesterday,
one of my NOC [network operations center] guys stopped by
today to ask what voodoo I was using to find such things :)”

– email from the head of the Net1 NOC

To evaluate Batfish, we used it on the configuration of
two large university networks with disparate designs. We
call them Net1 and Net2 in this paper as the operators re-
quested anonymity. We aim to ascertain whether Bat-
fish can scale to handle such real-world networks and
whether it can find configuration errors in them.

7.1 Analyzed Networks

We analyzed recent network configurations from Net1
and Net2. They were working, stable configurations for
which the operators were unaware of any bugs.

Net1 The routing design of Net1 uses BGP internally,

modeling academic departments and a few other orga-
nizational entities (e.g., libraries, dorms) as ASes. The
campus core network consists of 21 routers in 3 tiers:
3 border routers, 5 core routers, and 13 distribution
routers. All routers run OSPF for internal connectiv-
ity. The border routers have eBGP peering sessions with
two provider ASes and iBGP peering sessions with the
core routers. The distribution routers have eBGP peering
sessions with 52 internal ASes which are treated as cus-
tomers of the core network. By design, each department
AS is expected to have redundant peering connections
with the Net1 core network, and each department should
have its own distinct address space. Distribution routers
also have iBGP peering sessions with the core routers.

As mentioned earlier, the environment for analysis of a
network includes the route announcements from neigh-
boring ASes. We used a single set of route announce-
ments for all of the experiments on Net1. These route
announcements were defined by creating stub configu-
ration files for a new set of routers that represent Net1’s
BGP peers; this has the effect of populating the appropri-
ate relations of our control plane model in Stage 1. The
provider AS routers were simply configured to advertise
a default route (i.e., the AS is willing to carry any traf-
fic). The department AS routers were configured to ad-
vertise every network that their Net1 peer would accept
but drop all traffic that was not destined to their own del-
egated address space. This approach ensures that we do
not assume department ASes are “well behaved” when
checking for vulnerabilities in Net1. Including these new
routers, the topology we analyzed has 75 nodes.

Net2 The routing design of Net2 is qualitatively dif-
ferent. It employs VLANs to model the network as a
large layer-2 domain. The network consists of 17 routers,
of which three are core routers on the main campus and
the rest interconnect the main campus with satellite cam-
puses. All routers run OSPF for internal connectivity.

Since Net2 does not use BGP internally, we did not
model the network’s neighbors explicitly, as was done
for Net1. Rather, the environment we used contained no
route announcements from neighbors, and the analyzed
topology included just the original 17 nodes.

7.2 Experiments

We checked for each consistency property in §4.

Multipath Consistency This property was encoded as
a logical formula described in §4. We posed one NoD
query pair per source node in the network, which asks for
the existence of a header exhibiting a multipath inconsis-
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tency when injected at the given node. Whenever such a
header was identified, it was fed into Stage 4 of Batfish,
which produced provenance information that pointed to
the source of the inconsistency in the original configu-
rations. We then patched the configurations and iterated
until all queries were unsatisfiable.

Failure Consistency For this experiment, we gener-
ated the data plane corresponding to no failures as well
as one data plane for each possible failure of a single
(non-generated) interface (199 for Net1, 279 for Net2).
We used NoD to separately obtain constraints on pack-
ets that are accepted in the no-failure scenario and con-
straints on packets that are not accepted in each failure
scenario, again with separate queries per each possible
source node. Finally we asked Z3 to find a concrete
header satisfying the constraints of both the no-failure
scenario and the failure scenarios, for each possible fail-
ure scenario and each source node in the network.

Destination Consistency For Net1 we generated 53
separate data planes: one corresponding to the un-
changed configurations and one corresponding to the re-
moval of each of Net1’s 52 customer ASes. We excluded
the provider ASes from this analysis altogether, since in
general a provider may appear to provide an alternate
path to any prefix that is part of a separate AS. We then
used NoD and Z3 in the same way as described above for
failure consistency, to identify headers that are accepted
in the original data plane and also accepted after the des-
tination’s associated peer is removed from the network.

Destination consistency is not applicable to Net2, since
it has no customer ASes.

7.3 Results

Batfish found a variety of bugs in both networks. Many
of the concrete counterexamples it reported had different
headers but were due to the same underlying configu-
ration issue or an analogous issue on a different router.
This makes counting the number of distinct issues some-
what difficult, so we provide two different metrics. First,
we count one bug for each inconsistency related to an
explicitly declared space of packet headers or source IPs
in the network configuration. Second, we group bugs of
a similar nature into bug classes. For instance, if a pre-
fix list is incorrectly defined in two routers, we may find
two unique bugs but we consider them to be in the same
class. In general, the relationship between bugs and bug
classes is complex: a change to a network configuration
may remove one, two, or more bugs from the same class.

Table 1 summarizes our results for both the number of

Total Undesired Fixed
violations behaviors violations

N
et

1 Multipath 32 (4) 32 (4) 21 (3)
Failure 16 (7) 3 (2) 0 (0)

Destination 55 (6) 55 (6) 1 (1)

N
et

2 Multipath 11 (3) 11 (3) 11 (3)
Failure 77(26) 18(7) 0(0)

Table 1: Number of bugs (bug classes) for each property.

bugs and bug classes (in parenthesis). We reported each
property violation with its provenance information to the
operators. The “Total violations” column gives the num-
ber of bugs and bug classes we reported. The “Undesired
behaviors” column contains the subset of total violations
that the operators confirmed caused undesired behaviors
in the network. The only difference in these columns
occurs for failure consistency. As explained below, this
difference is not due to false positives in the analysis but
reflects an intentional lack of fault tolerance in portions
of the network or lack of fidelity in modeling network
topology. “Fixed violations” is the subset of undesired
violations that were fixed after we reported them. Not
all behaviors that were confirmed as undesired by opera-
tors could be immediately fixed because the change was
complex or the operators feared collateral damage.

Finally, a fix to a configuration may eliminate violations
of multiple consistency properties. For instance, we see
cases in which a fix that the operator applied for multi-
path consistency also removed some violations of failure
consistency. In Table 1, we count such violations only
once (for the property listed highest).

7.3.1 Understanding the discovered bugs

We now provide insight into issues that were uncovered
by Batfish.

Multipath Consistency For Net1, a serious issue we
found was a typo in the name of a prefix list on a Cisco
router used to filter advertisements from one of the de-
partments. The semantics for an undefined prefix list are
to accept all advertisements. We found that this bug al-
lowed the department to partially divert all traffic des-
tined to other Net1 departments, as well as all traffic
destined to arbitrary Internet addresses from any depart-
ment. This bug was confirmed and fixed by the operators.

We show a sample of the provenance information for this
bug below for a single hijacked prefix:
FlowAccepted(Flow<srcNode=nS, dstIp=10.0.0.1>, nV)
FlowDeniedIn(Flow<srcNode=nS, dstIp=10.0.0.1>, nA,

Ethernet0, filter, 4)
FlowMatchRoute(Flow<srcNode=nS, dstIp=10.0.0.1>, nS,

11
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Route<prefix=10.0.0.0/24, nextHop=nA, ibgp>)
FlowMatchRoute(Flow<srcNode=nS, dstIp=10.0.0.1>, nS,

Route<prefix=10.0.0.0/24, nextHop=nV, ibgp>)

Here, nA is an adversarial department that can send ar-
bitrary advertisements, and nV is a victim department
whose network has been hijacked. This indicates that
some source node nS has iBGP routes to the victim’s
prefix through either the victim or the adversary. This
would not be possible if advertisements from the adver-
sary were filtered properly.

We also discovered three bug classes in which ACLs in-
tended for the same department on different routers did
not match. Two of these bug classes were fixed. The third
bug class was confirmed as a problem, but the operators
did not immediately fix it. The network operator stated
that the ACLs in those cases matched the prefixes the
peer wanted to announce at each connection point. He
further commented, however, that should the peer change
where these prefixes are announced without notice, traf-
fic could get dropped. Therefore, he decided to change
the policy in the future to accept all peer-delegated pre-
fixes at each connection point, leaving it to the peer to
decide what gets announced where.

For Net2, all of the multipath consistency bugs were
due to inconsistent handling of routes redistributed into
OSPF. In some cases, a connected route and a null static
route (one configured to drop traffic for a prefix) for
the same prefix would be redistributed by two differ-
ent routers, and both of these routers would be installed
as next hops for this prefix by a third adjacent router
(§2.2). In the other cases, two routers would redis-
tribute connected routes to a link they shared, but the
path through one router would allow some traffic while
the path through the other might deny it due to the ACLs
applied on that path.

Failure Consistency For Net1, all of the failure consis-
tency violations that Batfish found occurred when the in-
terface that connected a department peer was failed. This
situation indicates that the peer’s only connection to the
core network was through the interface disabled for the
experimental run, which implies an absence of fault tol-
erance. The network operator reported that several such
cases were known and due to economic reasons. The
peer could not afford to maintain multiple links, or lay-
ing another line would be prohibitively expensive. We
did not count these cases as “Undesired behaviors.”

For Net2 Batfish found 26 bug classes for failure consis-
tency, as shown in Table 1. But 19 were not deemed as
undesired behaviors by the network operator. 5 were due
to a bad assumption in how we currently model VLANs.

We assume one-to-one mapping between logical VLAN
interfaces and physical interfaces, but in reality the rela-
tionship was one-to-many for some VLANs, which led
Batfish to underestimate fault tolerance. 14 bug classes
represented intentional absence of fault tolerance. In 6 of
them, providing backup paths was deemed prohibitively
expensive. Interestingly, in 8 cases, backup paths existed
but certain types of traffic were not allowed to use it.

Batfish found 7 bug classes that represented unexpected
lack of fault tolerance. In 5 cases, it was due to VLAN
implementation using a single physical interface. In the
rest, only a single link served certain paths, which sur-
prised the operators. These inconsistencies could not be
fixed immediately because the solution needed new hard-
ware and links in addition to configuration changes.

Destination Consistency For Net1, we found one bug
(class) which the operators fixed: advertisements for a
particular prefix were erroneously permitted from both
the dorms and an academic department. This situation
allowed the dorms to hijack the department’s traffic.

The other discovered cases of destination consistency
were confirmed by the operator as undesirable but were
also known. These were cases in which advertisements
for a prefix were permitted from several peers, but these
peers actually fell under one administrative unit; they
were separated into multiple ASes because of legacy
considerations, and/or an unwillingness on the part of the
peer operators to disturb a working system. The operator
noted that ideally they would all fall under a single AS
and wants to start consolidating them. Thus, the discov-
ered violations represent fragility in the face of changes
on the other end, but should not disrupt traffic as is.

7.4 Performance benchmarks

The time to analyze a network using Batfish depends on
the size and complexity of the network and the correct-
ness properties checked, as well as the performance of
third-party tools such as NoD and LogicBlox. But we
provide some insight by reporting on what we observed
for our networks. We focus on the second and third
stages of Batfish, as the other two stages take relatively
little time (under a minute).

First consider multipath consistency. On an Intel E5-
2698B VM, data plane generation (Stage 2) takes 238
(37) minutes for Net1 (Net2). Checking multipath con-
sistency (Stage 3) requires making 75 (17) NoD and Z3
query pairs, each component of which takes under 90
seconds on a single core. Each query is completely inde-
pendent of the others, so Batfish performs them in paral-
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lel. A significant portion of the time to compute the data
plane for Net1 is due to the large number of routes ad-
vertised by the generated department configurations; we
believe this computation can be optimized significantly.

Failure consistency is the most onerous of our properties
to check, since it requires one data plane per failure case
of interest. There are 199 (279) such failure cases for
Net1 (Net2); each can be checked independently. With
an optimal number of processing nodes, i.e. 1 per data-
plane, the computation time will not be appreciably more
than that for multipath consistency.

Operators that have access to only modest hardware re-
sources can use Batfish as follows. Before applying a
configuration change, they can check for only multipath
consistency and other properties that do not require ad-
ditional data planes. This provides important correctness
guarantees for the common case of no failures. Then, af-
ter applying the configuration change, the operators can
continue to check for other properties in the background.

8 Related Work

Our work builds on several threads of prior work. One
such thread is the static analysis of network configura-
tions, which, as detailed in §1, has focused on specific as-
pects of the configuration or specific properties, enabling
customized solutions [2, 7, 11, 24, 25, 34]. For instance,
rcc [7] and IP Assure [24] perform a range of checks
that pertain to particular protocols or configuration as-
pects (e.g., the two ends of an OSPF link are in the same
area, link MTUs match, the two ends of an encrypted tun-
nel use the same type of encryption-decryption). While
violations identified by such static analysis tools likely
represent poor practices, the tools cannot, unlike Batfish,
indicate whether or how violations impact the network’s
forwarding. On the other hand, for a violation that occurs
only in specific environments (e.g., when certain kinds of
external routes are injected in the network), Batfish can
detect it only when given a concrete instance of one of
these environments, but a specialized tool for checking
particular properties may be able to uncover such a vio-
lation even without these concrete inputs by leveraging
specific characteristics of those properties.

Closer to our work are approaches that directly model
network behavior from its configuration. For example,
Feamster et al. [8] develop a tool to compute the outcome
of BGP route selection for an AS. Xie et al. [33] outline
how to infer reachability sets, which are sets of packets
that can be properly carried between a given source and
destination node in the network. Benson et al. [4] extend

this notion of reachability to assess the complexity of a
network. Batfish is similar in spirit but broader in scope,
handling all aspects of configuration that affect forward-
ing and producing a complete data plane.

The C-BGP [28] and Cariden [5] tools also generate
a data plane from network configuration, but they use
an imperative, simulation-based approach, and focus on
specific configuration aspects (BGP and traffic engineer-
ing, respectively). We employ a declarative approach,
which provides a way to tractably reason about all as-
pects of the configuration. More importantly, Batfish pro-
vides provenance information and the ability to query in-
termediate control plane relations.

Anteater [22] and Hassel [14] analyze data plane snap-
shots, obtained by pulling router FIBs and parsing por-
tions of configuration that map directly to forwarding
state (e.g., ACLs). More recent data plane analysis tools
focus on SDNs and faster computations [13, 15, 20, 37].
By starting from the network configuration, Batfish can
find forwarding problems proactively and enable “what
if” analysis across different environments. However,
data-plane snapshot analysis is not rendered expendable
by our approach. Such analysis can find forwarding
problems due to router software bugs, while we assume
that the router faithfully implements the configurations.
Thus, both types of analyses are valuable in the network
verification toolkit.

Batfish employs NoD [20] to perform data-plane analysis
in Stage 3 of its pipeline. We picked NoD because it had
better performance and usability than prior tools. NoD
has been used by its creators for “differential reachabil-
ity” queries, one of which is analogous to our notion of
multipath consistency. Their queries and our properties
were developed independently.

9 Conclusions

We develop a new approach to analyze network config-
uration files that can flag a broad range of forwarding
problems proactively, without requiring the configura-
tion to be applied to the network. For two large university
networks, our instantiation of the approach in the Bat-
fish tool found many misconfigurations that were quickly
fixed by the operators. Our approach is fully declara-
tive and derives, from low-level network configurations,
logical models of the network’s control and data planes.
We believe that these models are useful beyond finding
configuration errors, for instance, to migrate a network
toward high-level programming frameworks while faith-
fully preserving its existing policies.
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Abstract— We propose PIC, a tool that helps devel-

opers search for non-interoperabilities in protocol imple-

mentations. We formulate this problem using intersec-

tion of the sets of messages that one protocol partici-

pant can send but another will reject as non-compliant.

PIC leverages symbolic execution to characterize these

sets and uses two novel techniques to scale to real-world

implementations. First, it uses joint symbolic execution,

in which receiver-side program analysis is constrained

based on sender-side constraints, dramatically reducing

the number of execution paths to consider. Second, it in-

corporates a search strategy that steers symbolic execu-

tion toward likely non-interoperabilities. We show that

PIC is able to find multiple previously unknown non-

interoperabilities in large and mature implementations of

the SIP and SPDY (v2 through v3.1) protocols, some of

which have since been fixed by the respective developers.

1 Introduction

Nodes in distributed systems communicate using proto-

cols such as TCP, HTTP, SPDY, and SIP. For robust oper-

ation, it is critical that the implementations of these pro-

tocols interoperate effectively, i.e., they should be able to

correctly parse and interpret messages sent by each other.

Protocol interoperability is difficult to engineer and

ensure because the protocols are complex, and often con-

tain many mandatory and optional features. Moreover,

protocol standards documents can be imprecise or am-

biguous, leading different developers to make different

implementation choices about protocol interactions and

semantics of message header formats and values. Thus,

in practice, it is neither possible nor sufficient to simply

“certify” that an implementation adheres to a standard.

Instead, pairs of implementations must be pitted against

one another to test for interoperability.

Today, protocol developers spend significant manual

effort [17, 18, 30, 31, 36] in testing interoperability. They

identify test inputs that can test specific features of the

protocol (e.g., options negotiation). But, because the

space of test inputs is large, such manual testing is often

incomplete. As a result, interoperability issues continue

to frustrate developers, as well as users, even years after

protocols have been fully deployed [35, 39].

Our goal is to automate the search for test inputs that

trigger non-interoperabilities between two implementa-

tions. In this paper, we formulate the problem of non-in-

teroperability of protocol implementations and develop

a tool called PIC (Protocol Interoperability Checker)1 to

identify non-interoperabilities. To our knowledge, PIC is

the first tool that addresses this problem.

We say a message m exhibits a non-interoperability

when certain inputs cause message m to be sent by one

protocol participant but rejected as non-compliant by the

receiver. Message m need not be the first message in a

protocol interaction; PIC can be used to analyze the i-th

message (e.g., a data transfer message sent after the con-

nection establishment handshake). Conceptually, PIC

characterizes the set of messages that a sender-side im-

plementation can generate, and the associated inputs that

generate those messages. Similarly, it characterizes the

set of messages a receiver-side implementation considers

non-compliant. Messages in the intersection exhibit non-

interoperabilities. Thus, unlike manual testing where de-

velopers specify test inputs that may trigger non-interop-

erabilities, PIC uses symbolic execution [22] to automat-

ically derive test inputs by analyzing protocol code.

A key challenge with this approach is that symbolic

execution of protocol code, which tends to be low-level,

is invariably incomplete and imprecise, and is hard to

scale to real-world implementations. As originally de-

signed, symbolic execution explores as many paths as

possible, while we are interested only in exploring paths

that produce elements of the sets described above. While

we cannot overcome symbolic execution’s inherent in-

completeness, we address the scaling challenge using

two novel techniques.

First, we introduce joint symbolic execution, in which

the receiver-side symbolic execution is directed based

on the sender-side analysis results, dramatically reduc-

ing the number of execution paths to consider. Specif-

ically, the only receiver-side paths considered are those

that are compatible with messages that can be sent from

the sender. As we discuss later, in the absence of joint

symbolic execution, an independent analysis may not

even be feasible for some protocol implementations. We

believe that joint symbolic execution is of general inter-

est for scalable protocol analysis beyond the use case of

searching for non-interoperabilities.

1PIC is available at https://github.com/USC-NSL/SPA

1
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Second, PIC employs new search techniques that di-

rect the analysis toward execution paths more likely to

add new messages to the sets being characterized, and

therefore to identify interoperability errors. Our exper-

iments show that PIC’s search strategies help find 25×

more instances of non-interoperabilities than existing

strategies within a given time.

We apply PIC to four mature implementations of

two qualitatively different protocols: SIP [40] and

SPDY [1]. For each protocol, we find thousands of non-

interoperable messages spread across different features

of the protocol. To understand the causes that lead to

these, we group messages that arise from the same un-

derlying problem (e.g., a failure to correctly validate API

inputs). For SIP we find 9 distinct causes, and for SPDY

we find 13 distinct causes, which fall into several high-

level classes: liberal senders, conservative receivers, am-

biguous specifications, specifications with optional fea-

tures and so forth. We reported these to the developers,

and several have been fixed.

2 Problem and Background

Protocol implementations cannot easily be validated for

compliance against protocol specifications. Such spec-

ifications are typically expressed in a natural language

and have inherent ambiguities, so ensuring compliance

would first require formalizing the specifications in some

way, a process which itself can be error prone and open to

multiple interpretations. The ambiguity of protocol stan-

dards is well-documented, for instance, for BGP [26].

Therefore, instead of compliance to a specification, we

focus on checking interoperability of implementations.

Specifically, two implementations are considered non-

interoperable when there exists at least one protocol mes-

sage on which they disagree. The disagreement could be

about whether the message is protocol compliant (e.g.,,

the values of header fields are formatted correctly, or take

the range of values expected by the receiver) or about

what the message means. The work in this paper focuses

on the former notion of disagreement. The latter notion

of semantic interoperability poses additional challenges

in extracting meaning and intention from protocol mes-

sages, which we leave to future work.

Protocol interactions. To more precisely define our no-

tion of interoperability, consider client-server or peer-

to-peer communication between two implementations.

Such communication is usually triggered by a call to a

protocol API function that implements a specific func-

tionality. This API function initiates a protocol inter-

action: a sequence of message exchanges that perform

the desired functionality. For example, a protocol inter-

action to initiate a call in SIP begins with a client re-

quest message, followed by a server response message.

TCP involves several types of protocol interactions: sep-

arate API functions initiate connection setup, data trans-

fer, and teardown. In general, a protocol interaction can

involve a sequence of messages m1, . . . ,mn, some going

from client to server (or one peer to another), and some

the other way. Each message exchange may update the

sender or receiver state, which consists of the values as-

signed to variables in the protocol implementation.

Now, consider a message mi in a protocol interaction.

The sender prepares mi based on the contents of mi−1 and

on its current state; the first message m1 is prepared af-

ter processing the arguments passed to the API function

that initiated the current interaction. At the receiver, mi

is first validated for protocol-compliance. If mi does not

pass these checks, it may be discarded (or an error mes-

sage sent in response). If it does, subsequent steps of the

interaction are invoked.

On the sender side, let Si denote the set of all pos-

sible i-th messages that can be generated (i.e., consid-

ered protocol-compliant) given the sender’s state after

the first i− 1 messages in the protocol interaction. On

the receiver side, let Ri denote the set of all possible i-

th messages that the receiver would consider protocol-

compliant given its state after the first i−1 messages.

Defining non-interoperability. Let Si−Ri denote the set

of messages that are in Si but not in Ri. Then, the sender

and receiver are said to exhibit a non-interoperability if

Si −Ri �= ∅, that is, there are messages that the sender

can send but the receiver will not deem compliant.

If a sender and receiver are non-interoperable, then

we know that the two entities implement the specifica-

tion inconsistently. However, we cannot directly deter-

mine which entity deviates from the protocol specifica-

tion: non-interoperability can occur either because the

sender is too liberal in interpreting the specification, the

receiver is too conservative, or both.

An example. Figures 1 and 2 list the code for NetCalc, a

simple networked calculator protocol that we use to illus-

trate our approach later. (Functions with pic * names

are explained in §3.) At the client, the Compute() API

function initiates an interaction with the server, sending

a message containing an operator and two operands. At

the server, the handleMessage() function processes

the received message. This example has two non-inter-

operabilities: the client incorrectly expects the server to

implement multiplication, and the client does not test for

division-by-zero while the server does. So, the set Si−Ri

consists of all messages sent by the client with the mul-

tiply operator or messages with zero divisor.

Interoperability testing today. The current practice for

testing interoperability of protocol implementations is

largely manual and ad hoc. Developers of different im-

plementations participate in physical or virtual interoper-

ability events. They test how well two implementations
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1 Compute(char operator[8], int32 operand1, int32 operand2) {

2 // buffer, buffer size, name

3 pic_api_input(operator, 8, "operator");

4 pic_api_input(operand1, 4, "operand1");

5 pic_api_input(operand2, 4, "operand2");

6

7 byte[] message = new byte[9];

8 if (operator == "plus")

9 message[0] = 0;

10 else if (operator == "minus")

11 message[0] = 1;

12 else if (operator == "divide")

13 message[0] = 2;

14 else if (operator == "multiply")

15 message[0] = 3;

16 else

17 throw exception;

18 message[1..4] = operand1;

19 message[5..8] = operand2;

20

21 // buffer, length, buffer size, name

22 pic_msg_output(message, 9, 9, "message");

23 sendMessage(message);

24 }

25

26 testHarness() {

27 pic_api_entry();

28 char o[8];

29 Compute( o, 0, 0 ); // Dummy arguments

30 }

Figure 1: NetCalc client. The pseudo-code parses API inputs

and populates a message before sending it. PIC annotations

declare API inputs (l. 3-5), and message outputs (l. 22). A sim-

ple test harness initiates a protocol interaction (l. 26-30).

1 handleMessage(byte[] query) {

2 // buffer, buffer size, name

3 pic_msg_input(query, 9, "message");

4

5 int32 operand1 = query[1..4];

6 int32 operand2 = query[5..8];

7 switch (query[0]) {

8 case 0:

9 print(operand1 + operand2);

10 break;

11 case 1:

12 print(operand1 - operand2);

13 break;

14 case 2:

15 if (operand2 == 0)

16 throw exception;

17 print(operand1 / operand2);

18 break;

19 default:

20 throw exception;

21 }

22 pic_valid_path();

23 }

24

25 void testHarness() {

26 pic_msg_handler_entry();

27 handleMessage(new byte[9]);

28 }

Figure 2: NetCalc server. The pseudo-code parses and vali-

dates the incoming message and acts on it. PIC annotations

are used to declare the message input (l. 3) and the point in the

code where the message has been considered valid (l. 22). In-

valid messages generate an exception and are detected by not

reaching the validity assertion. A simple test harness allocates

a message and launches the message handler (l. 25-28).

interoperate in order to uncover undesirable interactions

resulting from code bugs or ambiguities in the standard.

During testing, developers specify and execute a series

of interoperability tests on each pair of participating im-

plementations. This is done by configuring those imple-

mentations to communicate with each other in a specific

manner, by selecting a network topology for the test, and

(optionally) by injecting failures or packet losses. Fi-

nally, the participants document testing results in event

reports [17, 18, 30, 31, 36].

There are two conceptually different components to

specifying an interoperability test: which protocol inter-

action (e.g., connection setup and termination, options

negotiation, data transfer, and control commands) to test,

and what specific test inputs to use. Specifying the pro-

tocol interaction is conceptually straightforward, since

there is usually a small number of such features. How-

ever, specifying good test inputs (e.g., the call parame-

ters in a SIP connection setup) is difficult. The space of

potential protocol inputs can be very large (e.g., all possi-

ble URLs). To detect a non-interoperability, the specified

test inputs must generate a message in Si−Ri. Today the

developer gets essentially no help in this task, resorting

to a random search, perhaps guided by intuition, expe-

rience, and an understanding of potential ambiguities in

the specification. Once a non-interoperability is found,

developers converge on a mutually consistent reading of

the specification in order to fix it.

Further, given the size of the search space, develop-

ers are able to consider only a very small fraction of

the possible inputs; as one of the interoperability reports

acknowledges, “the test parameters were limited” [18].

As a result, many corner cases go undiscovered during

testing and are discovered after implementations are de-

ployed in production [35, 39].

This paper explores methods to derive test inputs that

generate messages in Si−Ri using program analysis, and

instantiates these methods in a tool called PIC. Program

analysis simultaneously removes a large burden on de-

velopers and improves the effectiveness of interoperabil-

ity testing via targeted search and increased coverage.

3 PIC Design and Implementation

In this section, we first describe PIC’s high-level ap-

proach and then detail its design.

3.1 PIC Approach

Our goal is to develop methods that, with low developer

effort, can uncover non-interoperabilities in real-world

protocol implementations. We seek methods that are in-

dependent of a specific protocol implementation or type

and can therefore be applied to a wide range of protocols.

Symbolic execution. We use symbolic execution [22],

a program analysis technique that simulates the execu-

tion of code using a symbolic value σx to represent the

value of each variable x. As the symbolic executor runs,

it updates the symbolic store that maintains information

about program variables. For example, after the assign-

ment y = 2*x the symbolic executor does not know

the exact value of y but has learned that σy = 2σx. At

branches, symbolic execution uses a constraint solver to

determine the value of the guard expression, given the

information in the symbolic store. The symbolic execu-

tor then only explores branches when the corresponding

boolean guard is satisfiable. For example, it will explore

both then and else branches of an if-then-else statement

if the condition can be either true or false given the sym-

bolic state of the system. In this way, a tree of possible

3
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program execution paths is produced. Each path is sum-

marized by a path constraint that is the conjunction of

branch choices made to go down that path.

Key insight. In a protocol implementation, the set Si of

messages that can be sent and the set Ri of messages that

would be accepted as the i-th message in a protocol inter-

action can be succinctly represented by the symbolic val-

ues of the message header fields generated by the sender

and accepted by the receiver, when they are both sym-

bolically executed. Thus, Si−Ri can be computed by de-

termining if there exist concrete values for the message

header fields that would match the symbolic constraints

on the sender, but not on the receiver (and vice versa).

In theory, we can use an existing symbolic execution

tool to compute the sets Si and Ri, in order to then pro-

duce the set Si−Ri of non-interoperabilities. In practice,

however, we face two difficulties. First, symbolic execu-

tion is invariably incomplete, since real code can have a

large (often unbounded) number of possible executions

due to loops, recursion, etc. Thus, what we are bound to

get are subsets S′i ⊂ Si and R′
i ⊂ Ri. Using the difference

of these subsets S′i−R′
i to determine whether Si−Ri �=∅

will lead to many false positives, since many relevant el-

ements of Ri may be missing from R′
i.

To address this limitation, we recast our analysis to ask

a question that can be answered precisely even with in-

complete sets. Instead of trying to compute Ri, we com-

pute ¬Ri, the set of messages that the receiver rejects.

Given the limitations of symbolic execution, we will ac-

tually obtain some set R̂i such that R̂i ⊂¬Ri. This results

in computing S′i ∩ R̂i ⊂ Si −Ri, by which non-interoper-

abilities are found when S′i ∩ R̂i �= ∅, i.e., there are mes-

sages that are generated by the sender but rejected by the

receiver. This formulation of interoperability is mathe-

matically identical to the original one when the sets are

complete but trades false positives for false negatives in

the presence of partial information. This is more useful,

since any message that belongs to both S′i and R̂i is in fact

non-interoperable but does, however, limit PIC’s ability

to certify interoperability as S′i ∩ R̂i =∅� Si −Ri =∅.

The second difficulty is that, as originally designed,

symbolic execution attempts to cover as many paths as

possible, without regard to where they lead. Given the

already difficult task of scaling symbolic execution to

protocol code, as well as the inherent incompleteness de-

scribed above, such a blind search is less likely to pro-

duce useful results than one directed toward likely non-

interoperabilities. Later in this section, we describe our

techniques to address this difficulty.

3.2 PIC Architecture

The PIC workflow has four stages, shown in Figure 3. Its

input is the intermediate code representation generated


























Figure 3: PIC Analysis Work-Flow

 





 

 



 



     


     


   


    


Table 1: PIC Annotations

from annotated source (i.e., LLVM [2] bitcode).

Analysis annotations. As with today’s interoperability

tests, a developer using PIC has to specify (a) the proto-

col interaction to test for interoperability, (b) what consti-

tutes a non-interoperability, and (c) the API input param-

eters. These are specified using code annotations (Ta-

ble 1). In a crucial departure from today’s practice, the

developer does not need to specify concrete values for

the test inputs: rather, PIC derives test inputs that trigger

non-interoperabilities as described below.

The pic api entry() and pic msg handler -

entry() annotations identify test harnesses at the

client (lines 26-30, Figure 1) and server (lines 25-28,

Figure 2), respectively. The pic api input() anno-

tation (lines 3-5, Figure 1), specifies which inputs are of

interest; other inputs are bound to a single concrete value

during analysis (limiting its scope to trade completeness

for complexity). In Figure 1, these annotations cover all

arguments to the client API, but in practice, some of them

can be omitted, focusing the analysis only on the speci-

fied inputs. Finally, two annotations convey the seman-

tics of non-interoperability. pic msg output() on

the client indicates the codepoint at which a message is

transmitted (line 22 in Figure 1). pic valid path()

on the server indicates the codepoint at which a message

is considered protocol-compliant (line 22, Figure 2).

Symbolic execution of sender and receiver. The anno-

tated sources are compiled into LLVM bitcode and fed to

PIC. The first stage of PIC uses the sender-side annota-

tions to analyze the sender code and generates paths, de-

fined by a path constraint and the symbolic value of the

resulting message. The second stage uses these paths, in

a technique we call joint symbolic execution, to perform

a similar analysis of the receiver, using receiver-side an-

notations. This results in a set of path constraints that

represent non-interoperabilities, which are subsequently

passed to a constraint solver. The solver determines a

satisfying model: an assignment of concrete values to

symbols that satisfies the formula. As such, the output is

a set of concrete instances of non-interoperabilities.
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The first two stages use the KLEE [9] symbolic ex-

ecution engine, modified to use a novel guided search

strategy (described below). Being based on KLEE and

LLVM, PIC can analyze any language that can be trans-

lated to LLVM, which currently includes many popular

languages such as C, C++, Objective-C, and C#.

Validation using concrete execution. The third stage

removes false positives from the output of the second

stage. False positives can arise because the first two

phases may produce path constraints that do not in fact

represent feasible paths to the target program points.

This happens due to the conservative nature of symbolic

execution in the face of code that is either not available

(e.g., system calls and external libraries) or that cannot be

analyzed precisely (e.g., complex heap manipulations).

Therefore, we concretely execute the protocol code,

to rule out infeasible paths. The annotations used to de-

clare API inputs are now used to inject concrete input

values directly into the running program. At the receiver,

whether a validity annotation is reached is now used to

confirm or refute the non-interoperability. While a test

harness is used to exercise the protocol API during the

symbolic execution stage, in the validation stage the ap-

plication may be used in a setting closer to an actual de-

ployment, including the use of more elaborate network

topologies, if needed. The validation stage scales well in

our experience: as we show later, it is feasible to validate

every produced concrete non-interoperability in our eval-

uation (some generate 70,000+ non-interoperabilities). n

Clustering. To help developers interpret the results, the

final stage clusters the potentially many non-interoper-

ability instances produced post-validation. PIC provides

an extensible technique for this purpose.

3.3 Joint Symbolic Execution

Independent symbolic execution, in which S′i and R̂i are

independently computed, can miss many interoperabil-

ity bugs, for two reasons. First, the receiver-side analy-

sis will waste a lot of time analyzing messages that the

sender would never send, for example because it per-

forms its own validation. Second, without any coordi-

nation, the sender and receiver are likely to explore dif-

ferent subsets of the space of possible messages, and by

definition interoperability bugs will only surface in the

intersection of these subsets.

PIC’s joint symbolic execution modifies the receiver-

side symbolic execution as follows. Initially, symbolic

execution proceeds normally, up until the point where a

message is received. The symbolic execution state is then

forked multiple ways, one for each sender path. The path

constraint on each of these forked states is then manipu-

lated, AND-ing the path constraints from the respective

sender path as well as connecting constraints that bind

the sent message to the received message. Binding is

done by declaring a byte-for-byte equality of the received

message buffer to the symbolic value established for the

message buffer on the sender. Symbolic exploration then

proceeds as usual. By construction then, the output of

the receiver-side analysis is a set of path constraints that

characterize non-interoperabilities (i.e., S′i ∩ R̂i).

Joint symbolic execution has the effect of driving

receiver-side symbolic execution only along paths con-

sistent with messages the sender can send. This tech-

nique solves the two problems of independent symbolic

execution described above. Any non-compliant message

that the sender would never send is not explored by the

receiver. More importantly, any symbolic message from

the sender that represents an interoperability bug will

definitely be explored by the receiver, without needing

to be independently discovered. For example, in Net-

Calc, if the symbolic executor has only enough resources

to produce a path for one of the two non-interoperabili-

ties on each side, independent symbolic execution could

produce different ones on each side, with the result that

neither interoperability is detected (since the intersection

would be empty). For these reasons, as we show in §4,

joint symbolic execution is significantly more effective

than independent symbolic execution.

3.4 Guiding Symbolic Execution, To and Fro

The original goal of symbolic execution is to explore

as many code paths as possible for the purpose of pro-

gram testing. Real-world protocol implementations have

a huge number of paths, and a direct application of sym-

bolic execution can be extremely inefficient.

In our setting, we require a form of guided symbolic

execution that preferentially explores paths that satisfy

certain properties of interest. Specifically, interoperabil-

ity testing requires two different kinds of guidance. On

the sender side, we need to explore paths that reach one

of the few program points where a message is sent, which

we call convergent exploration. This goal is similar to the

notion of directed symbolic execution described by Ma et

al. [28]. On the receiver, we need to explore paths that

avoid a few points where the message is considered valid,

which we call dispersive exploration. To our knowledge,

there is no prior work on achieving this goal.2

Convergent and dispersive exploration. To achieve

both convergent and dispersive exploration in a common

framework, we reduce the problem of directed symbolic

execution to a specialized instance of graph search. In-

deed, choosing which paths to further explore is analo-

gous to picking which node to visit next in a graph traver-

2One could avoid dispersive exploration by annotating invalidity as-

sertions at the receiver and then doing convergent exploration. But that

greatly increases the annotation burden, thereby increasing the possi-

bility of erroneous annotations. One of the SPDY implementations we

explore requires 2 validity assertions but 28 invalidity assertions.
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Figure 4: Dispersive symbolic execution preprocessing. The

black dispersive target on the left is converted to two convergent

ones on the right using a reverse control-flow analysis (gray).

sal. Convergent exploration is a matter of using search

strategies for efficiently reaching a target set of program

points. This translates into computing a distance function

that determines an ordering of paths to explore. Different

distance functions embody distinct search strategies.

Dispersive exploration, on the other hand, is not so

straightforward. A potential approach is to negate the

distance function, but that merely guides exploration

away from undesirable points. Absent further guid-

ance, this could easily get stuck in endless loops go-

ing nowhere. Instead, we conduct an initial pass on the

CFG (control flow graph) to map dispersive targets to be

avoided into convergent targets to be reached (Figure 4),

in effect deriving invalidity assertions from the user spec-

ified validity ones. This preprocessing stage starts with a

reverse control-flow analysis, finding all points that can

reach the dispersive target. Any remaining points cannot

reach the dispersive target and are subsequently desig-

nated as targets for a convergent exploration.

Fast search. By default, symbolic execution engines use

depth-first-search (DFS), which is memory-efficient, but

is unaware of the targets. DFS makes early branching de-

cisions, leading to a point deep in the control-flow graph.

Once there, it exhaustively explores nearby branches, be-

fore backtracking. DFS can waste a lot of time in this

localized exploration, or if it finds a non-interoperabil-

ity, it will find many instances or small variants of the

same underlying non-interoperability before discovering

a qualitatively different non-interoperability (§4.5).

Ma et al. [28] propose three new strategies: call-chain

backward symbolic execution (CCBSE), shortest-dist-

ance symbolic execution (SDSE), and mixed-chain ba-

ckward symbolic execution (Mix-CBSE), a hybrid of the

first two. CCBSE works backward from the target point,

performing (forward) symbolic execution from the near-

est enclosing function, and repeats this process back-

wards until reaching the entry point. This goal-directed

approach does not work well when there are a large num-

ber of possible targets, as is the case with dispersive

exploration, since it requires managing and prioritizing

among the several independent analyses for each target.

SDSE, which is similar to the technique in ESD [44],

is analogous to greedy best-first search (GreedyBestFS),

based on a control-flow distance metric. Unlike CCBSE,

it can naturally accommodate multiple targets. But we

found that, because of its greediness, it sometimes suffers

from stubbornly sticking to potentially bad early branch-

ing decisions. This can lead to local minima. An exam-

ple is the case where one branch of a conditional has a

shorter control-flow distance to the target than the other,

but may require significantly more symbolic execution

(e.g., unraveling loops).

In PIC, we therefore use a strategy based on the A*

heuristic search algorithm [41]. A* is a variant of best-

first-search that also considers the cost of the path tra-

versed so far. This approach allows the search to quickly

exit local minima since local exploration increases the

path cost, making other paths more attractive. Further,

since the control-flow distance metric can be just as eas-

ily calculated for many points as for a few, this heuristic

permits both convergent and dispersive exploration.

Basic distance heuristic. A good distance heuristic is

key to the efficient use of A*. A* does not allow overesti-

mating and significantly under-estimating approximates

a breadth-first search, potentially leading to state explo-

sion. The basic distance heuristic that we use is based on

a work-list based inter-procedural analysis on the CFG

(done before symbolic execution) [12, 37, 38]. In the

CFG, nodes represent program points and directed edges

connect each node to its possible control-flow succes-

sors. Some edges connect two program points in the

same function, while others represent function calls and

returns. We assign a distance to each node, intuitively

representing distance to a target node. For simplicity in

the discussion we assume a single target.

Consider a node n, that is an ancestor of the target

node. If the path from n to the target does not traverse

a function return, then the distance of n is defined to be

one more than the minimum distance of any of n’s direct

successors in the CFG. We call this an absolute distance.

However, the distance metric is less clear for program

points within functions that are called and returned from

on the path toward the target, since different call sites to

these functions can have very different distances to the

target. One could naively work with the minimal distance

from any call site to statically compute an absolute dis-

tance but, without the context of a call stack, this could

significantly underestimate distances during earlier calls.

Therefore, for such functions our algorithm computes a

relative distance for each program point, which is simply

the distance to a return point in the function, and we later

compute a final distance metric for these nodes on the fly

during symbolic execution. Specifically, to compute the

distance metric for a node reached during symbolic exe-

cution, we traverse the current call stack backward, sum-

ming all of the relative distances encountered and stop-

ping when reaching the first absolute distance, which is

included in the final sum (Figure 5).

Return normalization. The basic distance metric above

works well under most circumstances, but we encoun-

tered a problem that occurs frequently in input-parsing
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Figure 5: Calculating inter-procedural distances: absolute

distances from each program point to the black target are cal-

culated on the direct call path (solid circles) and relative dis-

tances (dashed circles) are computed to exit points in called

functions. The final distance from the gray node is calculated

as as the sum of relative distances along the stack up to and

including the first absolute one: 1+1+5 = 7.

1 int entry( char *input ) {

2 if (checkInput(input) == SUCCESS)

3 target();

4 return SUCCESS;

5 } else {

6 return FAIL;

7 }

8 }

9

10 int checkInput( char *input ) {

11 int i = 0; // Distance: 6

12 while (input[i] == ’ ’) // Distance: 5

13 i++; // Distance: 6

14 if (input[i] != ’g’) // Distance: 4

15 return FAIL; // Distance: 3

16 if (input[i+1] != ’o’) // Distance: 3

17 return FAIL; // Distance: 2

18 if (input[i+2] != ’o’) // Distance: 2

19 return FAIL; // Distance: 1

20 if (input[i+3] != ’d’) // Distance: 1

21 return FAIL; // Distance: 0

22

23 return SUCCESS; // Distance: 0

24 }

Figure 6: Example showing the importance of equally priori-

tizing all exits.

code, where the particular return point from a function

affects the ability of the path to eventually reach the tar-

get. Figure 6 shows an example. The entry func-

tion reaches the target and calls function checkInput

along the way. A naive approach would guide execution

within checkInput to the nearest return instruction.

However, it’s clear from the code that only the instruc-

tion that returns SUCCESS can actually lead to the tar-

get point; the other return points signal an error that gets

propagated back up the call stack until the message is

rejected as invalid.

Augmenting the CFG analysis with the necessary

value sensitivity to address this problem would require a

much more sophisticated and computationally intensive

algorithm (akin to symbolic execution itself!). Instead,

we modify our metric for return points to prioritize them

equally. This will not prevent exploration from taking the

wrong ones at some point, but it will mitigate the patho-

logical case in Figure 6 by exploring each return point

before unraveling the loop on line 12 one more iteration,

instead of unraveling all iterations with the first return

before trying the next one. This adaptation is achieved

by taking into account each exit point’s depth, i.e., its

minimum control-flow distance from the entry point, in

relation to the function’s maximum depth. Using this

notion, instead of initializing each exit point’s distance

to 0, each one is assigned a custom distance metric cal-

culated as maxDepth−depth(node), effectively making

 



 





 



 



 



 



Figure 7: Normalizing the costs to exit nodes: the initial cost

of exit nodes (black) is adjusted when computing relative dis-

tances to avoid favoring any particular one. This is equivalent

to adding virtual NOPs (dashed) to early returns so that all

return statements appear as if they were at the same depth.

them all look equidistant (Figure 7). The resulting rela-

tive distances are annotated in Figure 6.

3.5 State Initialization

PIC provides support for finding non-interoperabilities

on a message that occurs somewhere “in the middle” of

a protocol. For instance, a developer may want to de-

tect non-interoperabilities for a data transfer, which oc-

curs only after proper connection establishment. For this,

PIC provides a lightweight form of message record and

replay. During test runs of a protocol, PIC automatically

logs the concrete values of messages as well as client

and server API inputs at each protocol interaction. Sup-

pose there are m messages in a protocol interaction, and

a developer wishes to analyze the k-th message (k ≤ m).

The developer invokes PIC with the log and k as inputs,

and PIC begins symbolic execution by feeding in the first

k−1 messages as concrete values. This sets up the initial

state for symbolically executing the k-th message, which

proceeds exactly as described above.

This approach enables PIC to symbolically explore the

space of k-th messages, predicated on the sets of k − 1

concrete recorded messages. In future work, we intend

to explore scalable iterative joint symbolic execution, ex-

ploring all possible combinations of k messages.

3.6 Clustering Non-interoperabilities

During exploration, it is not uncommon for PIC to find

many non-interoperable messages or API inputs that

stem from the same underlying issue (e.g., improper vali-

dation of an API input). It can be difficult for a developer

to manually sift through each of these. We implemented

an optional analysis step that allows developers to clas-

sify the resulting instances into separate clusters.

The developer uses this capability as follows. She first

picks one instance and defines a clustering function for

it. The function indicates whether a given instance be-

longs to the cluster. It can use as input any attribute of

the instance, such as the protocol API that was called,

conditions on the API input, or even a regular expres-

sion on the message content. Then, she runs the clus-

tering function(s) defined thus far, at the end of which

there are several unclassified test cases. She picks one

of these, and repeats the steps above until no unclassified

test cases remain. In one of our evaluations, PIC pro-

duced over 17,000 non-interoperability instances, which

7
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were eventually clustered into 6 or 7 groups. The devel-

oper effort is proportional to the number of clusters, not

the number of instances and, from our experience, is not

significant. The most elaborate such function we devel-

oped copied a state-machine from the original code and

detected a particular transition. With such an iterative

process, clustering becomes intertwined with debugging

and can be seen as a means of filtering instances of non-

interoperabilities that have already been classified. We

have left automating this process to future work.

3.7 Stage Pipelining and Parallelism

Despite our optimizations, analyzing real protocol im-

plementations can take a significant amount of time. Our

implementation uses pipelining between the sender-side

and receiver-side analyses and between the receiver-side

and the validation stages. It also uses parallelism within

the receiver-side analysis stage and the validation stage.

We omit the details of these optimizations for brevity.

4 Evaluation

To evaluate PIC, we selected two different protocols

to uncover non-interoperabilities: the Session Initiation

Protocol (SIP), a signaling protocol for Internet tele-

phony systems; and SPDY, a widely-deployed protocol

for accelerating Web transfers. SIP was chosen due to its

prior history of interoperability problems [35, 39], and

SPDY was chosen because it is a recently developed, but

rapidly evolving, protocol that is already implemented in

the latest versions of browsers and servers and deployed

on many major content providers. There is one addi-

tional important difference between the two protocols:

whereas SIP headers are human readable text-based mes-

sages, SPDY is a binary protocol where messages have

a more rigid structure. That PIC is able to analyze both

classes of protocols demonstrates its generality.

We analyzed two SIP implementations (eXoSIP and

PJSIP), and two versions each of two SPDY implementa-

tions (spdylay and nginx), using the following procedure.

We first defined use cases, defining the client-server roles

and assumptions regarding network state (e.g., a SPDY

client fetching content from a server on localhost). We

then created simple test harnesses that essentially exer-

cised a concrete example of a protocol interaction match-

ing the selected use case (e.g., invoking the SPDY re-

quest API with a partially symbolic URL in the form

of “http://127.0.0.1/*”). Using a debugger, we then fol-

lowed the code as it processed API and message inputs

in order to determine where the message was sent and re-

ceived and where the message passes validation and be-

gins to be handled. These steps helped determine where

to annotate the code. When analyzing later messages in

an interaction, we used the annotations to record and re-

play inputs and messages from a test run, before initi-

ating symbolic execution. After this, the analysis pro-

   

   

   

   

   

   

   

Table 2: Source lines of code for library, annotations and test

harnesses.

ceeded as described in §3.1.

Table 2 shows that PIC scales to implementations that

involve tens of thousands of SLoC. Moreover, we see

that the effort of adding the annotations is small, espe-

cially compared to the size of the original code base. For

example, for nginx, since we analyzed only one message,

only 4 annotations were needed. For PJSIP and nginx, a

separate test harness was not needed as we could sim-

ply re-use its command-line application. As an aside,

although PIC was designed for protocol developers, we

(the authors) did not develop any of the analyzed code;

that we were able to find significant non-interoperabili-

ties in these large implementations is an example of how

automating the search for test inputs can reduce reliance

on developer insight and intuition.

4.1 SPDY results

We evaluate two implementations of SPDY. The first is a

modular SPDY stack called spdylay [42], for which we

analyze versions v0.3.7 and v1.3.1. spdylay offers both

client and server functionality. The second implemen-

tation is spdylay, a popular open-source Web server, for

which we analyze versions v1.5.5 and v1.7.4. The former

version supports only SPDY v2, but the latter includes

support for v3 and v3.1.

Our analyses explore all 4 client-server combinations

across these versions. Certain components of SPDY

(data encryption and compression) are challenging for

symbolic execution, since analyzing them can be anal-

ogous to reversing one-way functions. State-of-the-

art techniques usually treat these as uninterpreted func-

tions and then use developer-supplied invariants (e.g.,

Decrypt(Encrypt(data,key),key) = data) to simplify

the resulting expressions (e.g., cancel out the encryption

once the client has decrypted the cypher-text with the

same key). Since KLEE doesn’t support this kind of eval-

uation, we abstracted these into identity functions dur-

ing analysis (but not during validation). This of course

limits PIC’s ability to detect non-interoperabilities that

originate in these functions, but was necessary to enable

analysis of the remaining protocol code.

Our experiments focused on the Stream Creation

(SYN STREAM) message and the Stream Response

(SYN REPLY) message (the second message in the pro-

tocol interaction). The non-interoperabilities discovered

for the latter message are a subset of those for the former,

so we focus on describing results for the former.

The results are summarized in Table 3. To obtain

8
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Table 3: Interoperability issues in SPDY.

these results, we constrained the PIC analysis to ex-

plore a subset of the protocol inputs for SPDY, namely

the client version or cliVersion, the server ver-

sion srvVersion, header names and values hName

and hValue, and the HTTP path, method, and

version. PIC found several tens of thousands of in-

stances of non-interoperabilities, which we classify into

12 clusters; for brevity, we omit exact counts per clus-

ter. A cross indicates that the cluster manifested in the

corresponding client-server combination.

To gain insight into the underlying issues that cause

non-interoperabilities, based on our reading of the spec-

ification, we classified the non-interoperability clusters

into 5 qualitatively different sub-categories, discussed

below. Because PIC has a general definition of non-in-

teroperability (§2), it can discover non-interoperabilities

that stem from many different underlying issues.

Liberal sender. A long-standing guideline for pro-

tocol developers has always been: be conservative in

what you send, and liberal in what you receive. Non-

interoperabilities can arise when senders are more lib-

eral than receivers. For example, the spdylay client per-

mits control characters in header names, but the spdylay

server does not (A in Table 3). We reported this error

to the spdylay developer, who fixed it in the newer ver-

sion of spdylay. However, in fixing this error, spdylay

added newer code to validate control characters in head-

ers and values, but the developer appears to have forgot-

ten to validate values for control characters on the client

side, introducing a new non-interoperability where there

was none previously (B). When we contacted the devel-

oper about this new bug, he was hesitant to fix it because

he thought clients using the spdylay library may already

be leveraging the library’s lax checking of control char-

acters; in effect, the developer seems inclined to preserve

“bug compatibility.” This fear of breaking compatibility

once non-interoperability has been released into the wild

motivates systematic checking prior to the release.

Similarly, the spdylay client is liberal in permitting

empty header values, while the server rejects requests

with empty headers (C). In analyzing the test cases for

this non-interoperability, and discussing them with the

spdylay developer, we discovered an implementation er-

ror, which we describe below. Finally, the spdylay client

does not escape non-ASCII characters correctly in the

path, which the nginx server appropriately rejects (D).

Implementation error. This non-interoperability (J) be-

tween spdylay client and server in the older version is

more subtle and is unlikely to have been found by man-

ually designed test inputs. The spdylay client allows

empty values in name-value pairs, and the server usu-

ally checks for these and correctly skips them except in

one corner case. The assumption that the beginning of

a header value cannot happen at the last position of the

decompressed packet payload masks the check, in what

looks like an “off-by-one” error. The spdylay developer

fixed it in the newer version of spdylay.

Conservative receiver. Non-interoperability can also

arise when receivers are more conservative than what the

specification requires, either because the specification is

ambiguous, or for security reasons. One such non-in-

teroperability is between spdylay and nginx. Although

the nginx web server supports HTTP v0.9, it disallows

tunneling HTTP 0.9 over SPDY (E). This non-interoper-

ability is subtle because it occurs within a tunneled pro-

tocol, and demonstrates the power of the kind of system-

atic analysis that PIC performs. The SPDY specification

does not require servers to prevent HTTP 0.9 tunneling

within SPDY: the nginx developers appear to have made

an undocumented assumption that clients are unlikely to

9
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be using SPDY to tunnel HTTP 0.9. While this may be

true, it is another instance of the benefit of systematic

analysis to uncover such undocumented assumptions.

A second non-interoperability in this category occurs

because nginx prevents paths that traverse up the direc-

tory hierarchy using “/..” (G): this is a security fea-

ture designed to prevent attackers from breaking out of

the web root and accessing files from elsewhere in the

filesystem hierarchy. The nginx code for determining

this involves a fairly sophisticated state machine and PIC

was able to symbolically traverse the state machine to

uncover the non-interoperability.

A third non-interoperability in this category occurs

with SPDY v3 on nginx. This version of SPDY merges

normal HTTP headers with new ones added for tunnel-

ing, requiring tunneling headers to be prefixed with ‘:’

(H). The specification is silent on whether other head-

ers may be colon-prefixed, and nginx conservatively only

permits a specific set of headers to be colon-prefixed.

Finally, nginx conservatively rejects header values

containing carriage returns and linefeeds; the SPDY

specification is silent on this point (F).

Optional features. Non-interoperabilities can also oc-

cur because specifications permit optional features. One

example in this category is that a spdylay client can gen-

erate a SPDY request with an HTTP TRACE method

(a valid HTTP method defined in the spec), which ng-

inx does not support in either of its versions because of

a cross-site scripting vulnerability (L). A second non-

interoperability in this category is that spdylay permits

generation of URL paths with a NUL character (escaped

using ’%’, K). The specification for URI generation per-

mits receivers to be conservative and reject paths with

NUL characters in them; however, URIs with arbitrary

binary characters (including the NUL character) are used

in RESTful APIs, so some Web servers permit them.

Unsupported versions. The first non-interoperability in

this category occurs between a spdylay client and server.

Spdylay permits server applications to specify a version

number, and incoming messages from clients are pro-

cessed in that context, even if a client specified a different

version number (M). While this is a relatively obvious

error, with a simple fix—ensure that incoming messages

are processed using the embedded version number—it

was still surprising to see this error in a stack against

which a client, a server, and a proxy have been devel-

oped. In discussions with the developer, it became clear

there is an undocumented assumption that spdylay will

be used with SSL, which negotiates the protocol version

out-of-band. PIC, being a systematic tool, can unearth

such undocumented assumptions.

A second non-interoperability, between the older

spdylay and the older nginx, occurs because the older

nginx does not support SPDY v3 (N). While this doesn’t

match a colloquial notion of interoperability, it matches

our definition: spdylay generates a v3 request, but nginx

rejects that message. As expected, this disappears in the

newer nginx which supports SPDY v3.

Discussion. Several of the spdylay non-interoperabili-

ties have been fixed. We have communicated the nginx

non-interoperabilities to the developers and are awaiting

their feedback. To quantify the complexity of these non-

interoperabilities, we counted the number of path con-

straints minus the connecting constraints (§3.3) in the re-

sults reported by PIC: all of these non-interoperabilities

contained between 60 and 80 path constraints. Roughly

speaking, a blind search for these non-interoperabilities

would have required searching a space of at least 260

message-header combinations. Developer intuition can

likely reduce this search space, but that alone is not suf-

ficient. That is why we find many non-interoperabilities

in our analysis, even when the client and server code was

developed by the same developer (spdylay).

4.2 Session Initiation Protocol (SIP) results

SIP includes several messages for features such as es-

tablishing, answering, forwarding, and terminating calls;

sending instant messages; and subscribing to events (e.g.,

user presence). For our analysis we chose two mature

and well-known SIP stacks: eXoSIP, an extension of the

GNU oSIP library, as sender and receiver, and PJSIP, as

a receiver. Our experiments with SIP implementations

bring out two capabilities of PIC not highlighted above:

PIC can be used to analyze later messages in a protocol

interaction, and to iteratively uncover non-interoperabil-

ities that reveal themselves only after existing non-inter-

operabilities are fixed.

Table 4 shows the 9 clusters of non-interoperabilities

generated while running eXoSIP as client and PJSIP as

server. We also ran eXoSIP as client and server, which

does not exhibit any of these non-interoperabilities.

The discovered non-interoperabilities span different

message types: call establishment (INVITE), feature

discovery (OPTIONS) and event subscription (SUB-

SCRIBE). For each of these messages, we analyzed in-

teroperability for three headers: from, to, and event.

Most of the SIP non-interoperabilities fall into a lib-

eral sender category. The eXoSIP sender permits control

characters in the from (P, S), to (Q, T) and event

fields (W), which the PJSIP server rejects. The eX-

oSIP sender also permitsto header inputs where the URI

schema is confused with other parts of the URI (such as

the display name); PJSIP rejects these malformed URIs

(Q). The eXoSIP developer acknowledged these non-in-

teroperabilities, but pointed out that eXoSIP is a library

that performs minimal input validation. However, this

appears to place an undue burden on the developer who
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Table 4: Interoperability issues in SIP with spdylay as client and spdylay as server.

uses the eXoSIP library to understand the details of the

protocol standard. Furthermore, eXoSIP validates some

inputs but not others, with no documented guidance for

developers on what input validation is left to the applica-

tion and what eXoSIP performs. In these circumstances,

PIC can be used by library or application developers to

discover the types of input validation that need to be per-

formed at the application level to avoid non-interoper-

ability issues when used with another implementation in

production. eXoSIP also exhibits another liberal sender

non-interoperability, omitting the “sip:” URI scheme (R,

U). This truncated URI is permitted by eXoSIP, so it ap-

pears to be an undocumented assumption that permits a

deviation from the standard for the case when eXoSIP

clients talk to eXoSIP servers.

Later messages in a protocol interaction. We used PIC

to analyze the OPTIONS response; this experiment exer-

cised PIC’s ability to analyze deeper messages (§3.5).

In our experiment a valid OPTIONS request was gener-

ated in PJSIP and replayed into eXoSIP prior to analysis.

When eXoSIP receives an OPTIONS request, it returns

an OPTIONS response with a set of features specified

by the application; however, as a liberal sender, eXoSIP

does not validate this application input (V).

Iterative testing for non-interoperabilities. SIP allows

applications to subscribe for specific “events” (e.g., sta-

tus changes in a buddy list). The eXoSIP stack permits

control characters in event names, which PJSIP rejects.

We then fixed this non-interoperability in eXoSIP, and

re-ran PIC. This time, PIC generated another non-inter-

operability caused by the fact that although now eXoSIP

generates syntactically correct event tokens, it does not

check if these match valid event tokens that are known to

the remote end (X). In this case, the PJSIP server returns

an error in response to the SUBSCRIBE message; cor-

rectly so, since supporting new client-defined features is

an optional feature in the protocol. Given enough time,

analyzing the unpatched eXoSIP would have found this

issue. However, applying fixes such as this one can ac-

celerate the process of finding deeper issues.

4.3 Joint vs. Independent Symbolic Execution

We compared joint and independent symbolic execution

on our protocol implementations. On the newer versions

of spdylay (as client) and nginx (as server), we find that

joint symbolic execution produces over 100,000 paths in

half a day, while independent symbolic execution pro-

duces none in the same time. This performance gap ren-

dered independent symbolic execution completely inef-

fective for these implementations. On SIP and the older

version of spdylay (client and server), independent sym-

bolic execution is able to find the non-interoperabilities,

but is slower than joint symbolic execution by orders of

magnitude. There appears to be a performance cliff for

independent symbolic execution with the newer versions

of spdylay and with nginx, which support multiple SPDY

versions and are more complex implementations. Be-

yond this cliff, independent symbolic execution cannot

be used, and joint symbolic execution is needed.

4.4 Impact of Search Strategy

Figure 8 compares three search strategies from

§3.4: depth-first-search (DFS), best-first-search

(GreedyBestFS, which is equivalent to SDSE from

[28]), and our customized A*. It also evaluates A*

without the return normalization heuristic. Without a

reference implementation to work with, we are unable to

compare with CCBSE and Mix-CCBSE. The results in

Figure 8 indicate a clear performance advantage of A*

with return normalization: within an hour, it discovers

25× more test inputs than state-of-the-art approaches.

Further, within this time, A* found 5 of the 8 clusters

of non-interoperabilities affecting the older nginx, while

both A* without return normalization and GreedyBestFS

detect only 3, and DFS none.

For this particular scenario, A* without return normal-

ization performed as well as GreedyBestFS. This sug-

gests that, for these implementations, early returns rep-

resent the most important cause of local minima. In other

11
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Figure 8: Performance analysis of four search strategies: DFS,

GreedyBestFS, and A* with and without return normalization.

The plot illustrates the number of non-interoperabilities pro-

duced over time, while analyzing spdylay with nginx. The trials

were performed on 10 servers totaling 216 CPU cores.
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Figure 9: Scaling analysis showing the number of non-interop-

erabilities found after 1 hour of analyzing spdylay with nginx,

while varying the number of cores.

settings, we believe A*’s local minima avoidance could

outperform GreedyBestFS, even without return normal-

ization.

4.5 Performance Micro-benchmark

To micro-benchmark PIC’s performance, we measure the

computation time for the main analysis stages, in isola-

tion, for the newer spdylay against the newer nginx. This

setup represents the most complex protocol combination

we have tested to date. The results show that the client-

side analysis took just over 5 hours to generate 60,000

paths, while the server took a little over half a day to

generate more than twice that number.

We also ran a scaling analysis in Figure 9. The server-

side analysis is pleasantly parallelizable as each client-

path is independent but the client-side uses one core and

bottlenecks the server at around 132 cores. Scaling out

symbolic execution has been done [8], but we leave inte-

grating such an approach for future work.

5 Related Work

Protocol analysis: Prior work has used high-level

specifications, using finite state machines, higher-order

logic [3, 4], or domain-specific languages [19] to per-

form a formal verification of protocols. While such

specifications are powerful tools to reason about proto-

col behavior, they do not ensure correctness of imple-

mentation. PIC focuses on protocol implementations

rather than manually derived formal specifications. Re-

searchers have also explored the use of explicit-state

model checkers to find bugs in protocol implementa-

tions [20, 21, 27, 32, 33, 43]. To our knowledge, model

checking has not been used to discover non-interoper-

abilities. Like model checking, PIC faces similar chal-

lenges in path explosion and uses execution steering

techniques to scale the analysis.

Symbolic execution: Godefroid et al. [15] and Cadar

and Engler [10] developed a general technique for com-

bining symbolic execution with concrete execution to

generate test inputs. Since then, researchers have built

mature tools using this approach [9, 16], have used it for

finding program errors [6, 11], and have enhanced the ba-

sic technique in various ways [14, 28, 29]. Others have

focused on making symbolic execution more efficient ei-

ther by directing the search process [13, 28, 34, 44], or by

merging states to reduce the search space [24]. We have

compared PIC’s approach to existing directed symbolic

execution techniques (§4.4). State merging, on the other

hand, is an orthogonal approach that could potentially be

useful in merging paths exchanged during joint symbolic

execution, and we have left to future work an exploration

of this technique. Further, researchers have used sym-

bolic execution to analyze protocols, but for properties

other than interoperability: to determine equivalence be-

tween two implementations playing the role of the same

network service [5, 25], to uncover manipulation attack

vectors [23], and to discover bugs in layered server im-

plementations [7]. While this body of work uses tools

similar to those used by PIC, it focuses on fundamen-

tally different problems. PIC’s focus on interoperability

between senders and receivers is unique to the best of our

knowledge and motivates new techniques.

6 Conclusion

We presented PIC, which discovers interoperability

problems in real protocol implementations. It uses pro-

gram analysis to infer the sets of messages that one im-

plementation can send but the other rejects. To scale

the analysis, it uses joint symbolic execution, in which

the receiver-side analysis is seeded by results from the

sender. This technique was crucial for PIC and may be

generally useful for analyzing interacting protocol im-

plementations. On mature implementations of two proto-

cols, PIC found thousands of instances of non-interoper-

abilities, across multiple message types and fault causes.

Many of the issues have been acknowledged as undesir-

able by developers and some have already been fixed.
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[12] FÄHNDRICH, M., REHOF, J., AND DAS, M. Scal-

able context-sensitive flow analysis using instantia-

tion constraints. In PLDI 2000.

[13] GE, X., TANEJA, K., XIE, T., AND TILLMANN,

N. DyTa: Dynamic symbolic execution guided

with static verication results. In ICSE 2011,

Demonstration.

[14] GODEFROID, P. Compositional dynamic test gen-

eration. POPL ’07.

[15] GODEFROID, P., KLARLUND, N., AND SEN, K.

DART: directed automated random testing. In

PLDI (2005).

[16] GODEFROID, P., LEVIN, M. Y., AND MOLNAR,

D. Automated whitebox fuzz testing. In NDSS

2008.

[17] GUNASINGHE, H. SCIM interop

event at IETF 83rd meeting. http://

hasini-gunasinghe.blogspot.com/2012/03/

scim-interop-event-at-ietf-83rd-meeting.html,

Mar. 2012.

[18] HALEPLIDIS, E., OGAWA, K., WANG, W., AND

SALIM, J. H. Implementation report for forward-

ing and control element separation (ForCES). RFC

6053 http://tools.ietf.org/html/rfc6053, Nov. 2010.

[19] Information processing systems – Open Systems

Interconnection – LOTOS – A formal description

technique based on the temporal ordering of obser-

vational behaviour, 1989.

[20] KILLIAN, C., ANDERSON, J. W., JHALA, R.,

AND VAHDAT, A. Life, death, and the critical

transition: finding liveness bugs in systems code.

NSDI’07.

[21] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R.,

JHALA, R., AND VAHDAT, A. M. Mace: language

support for building distributed systems. PLDI ’07.

[22] KING, J. C. Symbolic execution and program test-

ing. CACM 19, 7 (1976).

[23] KOTHARI, N., MAHAJAN, R., MILLSTEIN, T.,

GOVINDAN, R., AND MUSUVATHI, M. Finding

Protocol Manipulation Attacks. In SNAP (August

2011).

[24] KUZNETSOV, V., KINDER, J., BUCUR, S., AND

CANDEA, G. Efficient state merging in symbolic

execution. In PLDI 2012.

[25] KUZNIAR, M., PERESINI, P., CANINI, M., VEN-

ZANO, D., AND KOSTIC, D. A SOFT way

for OpenFlow switch interoperability testing. In

CoNEXT (2012).

[26] LABOVITZ, C., AHUJA, A., ABOSE, A., AND JA-

HANIAN, F. An Experimental Study of Delayed In-

ternet Routing Convergence. In SIGCOMM 2000.

13



498 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

[27] LEE, H., SEIBERT, J., KILLIAN, C., AND NITA-

ROTARU, C. Gatling: Automatic attack discovery

in large-scale distributed systems. NDSS 2012.

[28] MA, K.-K., KHOO, Y. P., FOSTER, J. S., AND

HICKS, M. Directed symbolic execution. In SAS

(September 2011), vol. 6887 of Lecture Notes in

Computer Science.

[29] MAJUMDAR, R., AND XU, R.-G. Directed test

generation using symbolic grammars. ASE ’07.

[30] MASINTER, L. WebDAV interop report. http://

www.webdav.org/users/masinter/interop/report.

html, July 1999.

[31] MOME interoperability testing event. http://www.

ist-mome.org/events/interop/, July 2005.

[32] MUSUVATHI, M., AND ENGLER, D. R. Model

checking large network protocol implementations.

NSDI’04.

[33] MUSUVATHI, M., PARK, D. Y. W., CHOU, A.,

ENGLER, D. R., AND DILL, D. L. Cmc: a

pragmatic approach to model checking real code.

SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002).

[34] PERSON, S., YANG, G., RUNGTA, N., AND

KHURSHID, S. Directed incremental symbolic ex-

ecution. In PLDI 2011.

[35] RAO, A., AND SCHULZRINNE, H. Real-world

SIP interoperability: Still an elusive quest.

http://www.sipforum.org/component/option,com -

docman/task,doc view/gid,124/, 2007.

[36] RCS VoLTE interoperability event 2012. http://

www.msforum.org/interoperability/RCSVoLTE.

shtml, Oct. 2012.

[37] REHOF, J., AND FÄHNDRICH, M. Type-base
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Abstract Network Verification is a form of model
checking in which a model of the network is checked for
properties stated using a specification language. Exist-
ing network verification tools lack a general specifica-
tion language and hardcode the network model. Hence
they cannot, for example, model policies at a high level
of abstraction. Neither can they model dynamic net-
works; even a simple packet format change requires
changes to internals. Standard verification tools (e.g.,
model checkers) have expressive specification and mod-
eling languages but do not scale to large header spaces.
We introduce Network Optimized Datalog (NoD) as a
tool for network verification in which both the specifica-
tion language and modeling languages are Datalog. NoD
can also scale to large to large header spaces because of
a new filter-project operator and a symbolic header rep-
resentation.

As a consequence, NoD allows checking for be-
liefs about network reachability policies in dynamic net-
works. A belief is a high-level invariant (e.g., “Internal
controllers cannot be accessed from the Internet”) that
a network operator thinks is true. Beliefs may not hold,
but checking them can uncover bugs or policy exceptions
with little manual effort. Refuted beliefs can be used as
a basis for revised beliefs. Further, in real networks, ma-
chines are added and links fail; on a longer term, packet
formats and even forwarding behaviors can change, en-
abled by OpenFlow and P4. NoD allows the analyst to
model such dynamic networks by adding new Datalog
rules.

For a large Singapore data center with 820K rules,
NoD checks if any guest VM can access any controller
(the equivalent of 5K specific reachability invariants) in
12 minutes. NoD checks for loops in an experimental
SWAN backbone network with new headers in a frac-
tion of a second. NoD generalizes a specialized system,
SecGuru, we currently use in production to catch hun-
dreds of configuration bugs a year. NoD has been re-
leased as part of the publicly available Z3 SMT solver.

1 Introduction
Manually discovering any significant number
of rules a system must satisfy is a dispiriting
adventure — Engler et al. [13].

Our goal is to catch as many latent bugs as possible by
static inspection of router forwarding tables and ACLs

without waiting for the bugs to trigger expensive live site
incidents. In our operational network, we see roughly
one customer visible operational outage of more than
one hour every quarter across our major properties; these
live site incidents are expensive to troubleshoot and re-
duce revenue and customer satisfaction. As businesses
deploy services, bug finding using static verification will
become increasingly essential in a competitive world.

We have already deployed an early version of our
checker in our public cloud; it has regularly found bugs
(§ 7). Operators find our checker to be indispensable es-
pecially when rapidly building out new clusters. How-
ever, we wish to go deeper, and design a more useful
verification engine that tackles two well-known [2, 15]
obstacles to network verification at scale.

O1. Lack of knowledge: As Engler and others have
pointed out [12, 14], a major impediment is determining
what specification to check. Reachability policies can be
thought of intuitively as “who reaches who”. These poli-
cies evolve organically and are in the minds of network
operators [2], some of whom leave. How can one use ex-
isting network verification techniques [1, 22–24, 26, 35]
when one does not know the pairs of stations and headers
that are allowed to communicate?

O2. Network Churn: Existing network verification
techniques assume the network is static and operate on
a static snapshot of the forwarding state. But in our ex-
perience many bugs occur in buildout when the network
is first being rolled out. Another particularly insidious
set of bugs only gets triggered when failures occur; for
example, a failure could trigger using a backup router
that is not configured with the right drop rules. Beyond
such short term dynamism, the constant need for cost
reduction and the availability of new mechanisms like
SDNs keeps resulting in new packet formats and for-
warding behaviors. For example, in recent years, we
have added VXLAN [25] and transitioned to software
load balancers in our VM Switches [30]. The high-level
point is that verification tools must be capable of mod-
eling such dynamism and provide insight into the effect
of such changes. However, all existing tools we know of
including Anteater [26], VeriFlow [24], Hassel [23] and
NetPlumber [22] assume fixed forwarding rules and fixed
packet headers, with little or no ability to model faults or
even header changes.

Our approach to tackling these obstacles is twofold,
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and is embodied in a new engine called Network Opti-
mized Datalog (NoD).

A1. General specification language to specify beliefs:
We use Datalog to specify properties. Datalog is far more
general than the regular expression language used in Net-
Plumber [22], the only existing work to provide a specifi-
cation language. For example, Datalog allows specifying
differential reachability properties across load balanced
paths. More importantly, Datalog allows specifying and
checking higher-level abstract policy specifications that
one can think of as operator beliefs [13]. Beliefs by and
large hold, but may fail because of bugs or exceptions we
wish to discover. For example, a common belief in our
network is “Management stations should not be reach-
able from customer VMs or external Internet addresses”.
This is an instance of what we call a Protection Set tem-
plate: “Stations in Set A cannot reach Stations in Set B”.

For this paper, a belief is a Boolean combination of
reachability predicates expressed using Datalog defini-
tions. Rather than the operator enumerate the crossprod-
uct of all specific reachability predicates between spe-
cific customer VM prefixes and all possible management
stations, it takes less manual effort to state such beliefs.
If the engine is armed with a mapping from the predi-
cate “customer VM”, “Internet”, etc. to a list of prefixes,
then the tool can unroll this more abstract policy speci-
fication into specific invariants between pairs of address
prefixes. Of course, checks can lead to false positives (if
there are exceptions which require refining our beliefs)
or false negatives (if our list is incomplete), but we can
start without waiting for perfect knowledge.

We have found five abstract policy templates (Table 1)
cover every policy our operators have enforced and our
security auditors check for: protection sets, reachabil-
ity sets, reachability consistency, middlebox processing,
and locality. An example of a reachability consistency
belief and bug is shown in Figure 2. We will describe
these in detail in the next section but Table 1 summarizes
examples. Most are present in earlier work except for lo-
cality and reachability consistency. Despite this, earlier
work in network verification with the exception of Net-
Plumber [22] does not allow reachability invariants to be
specified at this level of abstraction. We make no attempt
to learn these abstract policies as in [2, 13]. Instead, we
glean these templates from talking to operators, encode
them using NoD, and determine whether violations are
exceptions or bugs by further discussion with operators.

A2. General modeling language to model networks:
We provide Datalog as a tool not just to write the spec-
ification but also to write the router forwarding model.
Thus it is easy for users to add support for MPLS or any
new packet header such as VXLAN without changing
internals. Second, we can model new forwarding behav-
iors enabled by programmable router languages such as

Policy Tem-
plate

Example Datalog Fea-
ture Needed

Protection
Sets

Customer VMs cannot
access controllers

Definitions of
sets

Reachable
Sets

Customer VMs can ac-
cess VMs

Definitions,
Negation

Reachability
Consistency

ECMP/Backup routes
should have identical
reachability/same path
length

Negation,
Non-
determinism,
Bit vectors

Middlebox
processing

Forward path connec-
tions through a mid-
dlebox should reverse

Negation

Locality Packets between two
stations in the same
cluster should stay
within the cluster

Boolean
combinations
of reachability
predicates

Table 1: 5 common policy templates.

P4 [4]. Third, we can model failure at several levels. The
easiest level is not to model the routing protocol. For
example, our links and devices are divided into avail-
ability zones that share components such as wires and
power supplies that can fail together. Will an availability
zone failure disconnect the network? This can be mod-
eled by adding a predicate to each component that mod-
els its availability zone and state, and changing forward-
ing rules to drop if a component is unavailable.

At a second level, we can easily model failure response
where the backup routes are predetermined as in MPLS
fast reroute: when one tunnel in a set of equal cost tun-
nels fails, the traffic should be redistributed among the
live tunnels in proportion to their weights. The next level
of depth is to model the effect of route protocols like
OSPF and BGP as has been done by Fogel et al. [15]
for a university network using an early version of NoD.
All of these failure scenarios can be modeled as Datalog
rules, with routing protocol modeling [15] requiring that
rules be run to a fixed point indicating routing protocol
convergence. Our tool also can be used to ask analogous
“what if” questions for reliability or security of network
paths. By contrast, existing tools for network verification
like VeriFlow and NetPlumber cannot model dynamism
without changing internals. This is because the network
model is hardcoded in these tools.

In summary, we need a verification engine that can
specify beliefs and has the ability to model dynamism
such as new packet headers or failures. Existing verifica-
tion network tools scale to large networks at high speeds
but with the exception of NetPlumber [22] do not have a
specification language to specify beliefs. NetPlumber’s
regular expression language for reachability predicates,
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however, is less rich than Datalog; for example, it cannot
model reachability consistency across ECMP routes as
in Figure 2. More importantly, none of the existing tools
including NetPlumber can model changes in the network
model (such as failures) without modifying the internals.

On the other hand, the verification community has pro-
duced an arsenal of tools such as model checkers, Data-
log, and SAT Solvers that are extremely extensible ac-
companied by general specification languages such as
temporal logic. The catch is that they tend to work well
only with small state spaces. For example, several Data-
log implementations use relational backends that use ta-
bles as data structures. If the solutions are sets of head-
ers and the headers can be 100 bits long, the standard
implementations scale horribly. Even tools such as Mar-
grave [27] while offering the ability to ask “what if”
questions for firewalls do not scale to enumerating large
header spaces. Thus, our contributions are:

1. Modeling Beliefs and Dynamism (§ 3): We show
how to encode higher-level beliefs that can catch con-
crete bugs using succinct Datalog queries.

2. Network Optimized Datalog (§ 4): We modify
the Z3 Datalog implementation by adding new optimiza-
tions such as symbolic representation of packets and a
combined Filter-Project operator. While we will attempt
to convey the high-level idea, the main point is that these
optimizations are crucial to scale to large data centers
with 100,000s of rules. Our code is publicly released as
part of Z3 so that others can build network verification
tools on top of our engine.

3. Evaluation (§ 6): We show that the generality of
Network Optimized Datalog comes at reasonable speeds
using existing benchmarks, synthetic benchmarks, and
our own operational networks. We also report briefly on
the performance of other tools such as model checkers
and SAT solvers.

4. Experience (§ 7): We describe our experiences dur-
ing the last year with an existing checker called SecGuru.
We also describe our experience checking for beliefs on
a large data center. Finally, we allude to Batfish [15] that
checks for bugs in the face of failures using our tool as a
substrate.

In addition, § 2 describes our Datalog model, and § 5
describes our benchmarks.

2 Datalog Model
2.1 Why Datalog

An ideal language/tool for network verification should
possess five features:

1. All Solutions: We want to find all packet head-
ers from A that can reach B. In other words, we need
all solutions for a reachability query. Most classical
verification tools such as model checkers [21] and SAT

solvers [3] only provide single solutions; the naive ap-
proach of adding the negation of the solution and iterat-
ing is too slow.

2. Packet Rewrites: Among classical verification log-
ics, Datalog does provide a native way to model routers
as relations over input and output packets. Packet reach-
ability is modeled as a recursive relation. Rewriting few
selected bits or copying a range is also simple to model
in this framework.

3. Large Header Spaces: Both Features 1 and 2 are
challenging when the header space is very large; for ex-
ample with packet headers of 80 bytes, the header space
is of up to 2640 bits. Without a way to compress headers,
naive solutions will scale poorly.

4. General Specification Language: Encoding beliefs
minimally requires a language with Boolean operators
for combining reachability sets, and negation to express
differential queries.

5. General Modeling Language: Modeling failure
response to protocols such as BGP and OSPF requires
the ability to model recursion and running solutions to
a fixed point as has been done by [15]. The language
must also allow modeling simple failure scenarios such
as availability zone failures and packet format changes.

Recent work in network verification including Veri-
Flow [24] and NetPlumber [22] provide all solutions,
while allowing packet rewriting and scaling to large
header spaces (Features 1-3). However, none of these
domain-specific languages support Feature 5 (modeling
any changes to network forwarding requires a change to
tool internals) or Feature 4 (the specifications are typi-
cally hardcoded in the tool). While the FlowExp reach-
ability language in NetPlumber [22] allows combina-
tion of reachability sets using regular expressions, it is
fairly limited (e.g., it cannot do differential queries across
paths) and is missing other higher-level features (e.g., re-
cursion). By contrast, FlowExp queries can be encoded
using Datalog, similar to the way finite automata are en-
coded in Datalog.

Thus, existing network verification languages [22–24,
26] fail to provide Features 4 and 5 while existing ver-
ification languages fail to provide Features 1, 2, and 3.
FlowLog [28] is a language for programming controllers
and seems less suited for verifying dataplanes. Out of
the box Datalog is the only existing verification language
that provides Features 1, 4, and 5. Natively, Datalog im-
plementations struggle with Features 2 and 3. We deal
with these challenges by overhauling the underlying Dat-
alog engine (§ 4) to create a tool we call Network Opti-
mized Datalog (NoD).
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A �R1 � R2 �B
�
�
�
�
�� �

�
�
�
��

R3 � D
in dst src rewrite out
R1 10� 01� R2
R1 1�� ��� R3
R2 10� ��� B
R3 ��� 1�� D
R3 1�� ��� dst[1] := 0 R2

Figure 1: R1 has a QoS routing rule that routes packets
from a video source on the short route and other packets
to destination 1�� along a longer path that traverses R3.
R3 has an ACL that drops packets from 1 � �. R3 also
rewrites the middle bit in dst to 0. This ensures that re-
routed packets reach B regardless of the value of dst[1].

2.2 Modeling Reachability in NoD
NoD is a Datalog implementation optimized for large
header spaces. At the language level, NoD is just Dat-
alog. We model reachability in NoD as follows.

Figure 1 shows a network with three routers R1, R2,
and R3, and three end-point nodes A, B and D. The rout-
ing tables are shown below the picture. For this simple
example, assume packets have only two fields dst and
src, each a bit vector of 3 bits. When there are multiple
rules in a router, the first matching rule applies. The last
rule of Figure 1 includes a packet rewrite operation. We
use dst[1] := 0 to indicate that position dst[1] is set to 0.
(Position 0 corresponds to the right-most bit.)

The goal is to compute the set of packets that can reach
from A to B. For this example, the answer is easy to
compute by hand and is the set of 6-bit vectors

10�01� ∪ (10����\���1��)

where each packet is a 6-bit vector defined by a 3-bit
value for dst followed by a 3-bit value for src, � denotes
either 0 or 1, and \ denotes set difference.

For reachability, we only model a single (symbolic)
packet starting at the source. The current location of a
packet is modeled by a location predicate. For example,
the predicate R1(dst,src) is true when a packet with des-
tination dst and source src is at router R1.

Forwarding changes the location of a packet, and
rewriting changes packet fields. A Datalog rule consists
of two main parts separated by the :- symbol. The part to
the left of this symbol is the head, while the part to the
right is the body of the rule. A rule is read (and can be
intuitively understood) as “head holds if it is known that
body holds”. The initial state/location of a packet is a

G12 := dst = 10�∧ src = 01� (1)
G13 := ¬G12 ∧ dst = 1��
G2B := dst = 10�
G3D := src = 1��
G32 := ¬G3D ∧ dst = 1��

Id := src′ = src ∧ dst′ = dst

Set0 := src′ = src ∧ dst′ = dst[2] 0 dst[0]

B(dst,src) (2)
R1(dst,src) : − G12 ∧ Id∧R2(dst′,src′)

R1(dst,src) : − G13 ∧ Id∧R3(dst′,src′)

R2(dst,src) : − G2B ∧ Id∧B(dst′,src′)

R3(dst,src) : − G3D ∧ Id∧D(dst′,src′)

R3(dst,src) : − G32 ∧Set0∧R2(dst′,src′)

A(dst,src) : − R1(dst,src)

? A(dst,src)

fact, i.e., a rule without a body. For example, A(dst,src)
states that the packet starts at location A with destination
address dst and source address src.

We use a shorthand for predicates that represent the
matching condition in a router rule called a guard and
for packet updates. The relevant guards and updates from
Fig. 1 are in equation (1). Notice that G13 includes the
negation of G12 to model the fact that the rule forwarding
packets from R1 to R3 has lower priority than the one for-
warding packets from R1 to R2. The update from the last
rule (Set0) sets dst′ to the concatenation of dst[2] 0 dst[0].
Armed with this shorthand, the network of Fig. 1 can
now be modeled as equation (2).

To find all the packets leaving A that could reach B,
we pose the Datalog query ?A(dst,src) at the end of all
the router rules. The symbol ? specifies that this is a
query. Note how Datalog is used both as a modeling and
a specification language.

Router FIBs and ACLs can be modeled by Datalog
rules in a similar way. A router that can forward a packet
to either R1 or R2 (load balancing) will have a sepa-
rate (non-deterministic) rule for each possible next hop.
We model bounded encapsulation using additional fields
that are not used when the packet is decapsulated. Dat-
alog queries can also check for cycles and forwarding
loops. A loop detection query for an MPLS network is
described below.
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3 Beliefs and Dynamism in NoD
We now describe how to encode beliefs in NoD/Datalog,
which either cannot be expressed succinctly, or at all,
by previous work [23,24,26] without changing internals.
While FlowExp in NetPlumber [22] allows modification
of a reachability query within a single path, it cannot ex-
press queries across paths as Datalog can. We now show
how to write Datalog queries for the belief templates al-
luded to in the introduction.

3.1 Protection sets
Consider the following belief: Fabric managers are not
reachable from guest virtual machines. While this can
be encoded in existing tools such as Hassel [23] and Ver-
iFlow [24], since the guest VMs are set of size 5000, the
fabric manager is a set of around 12 addresses, and the
naive way to express this query is to explode the query
to around 60,000 separate queries. While this can be re-
duced by aggregating across routers, it is still likely to
take many queries using existing tools [23, 24]. While
this could be fixed by adding a way to define sets in say
Hassel, this requires subtle changes to the internals. Our
point is that Datalog allows this to be stated succinctly
in a single query by taking advantage of the power of
definitions.

The compact encoding in Datalog is as follows. Let
V M(dst,src) denote the fact that a packet is at one of
the guest virtual machines and destined to an address dst
that belongs to the set of fabric managers. We now query
(based on the rules of the network, encoded for example
as in equation (2)) for a violation of the belief: whether
the fabric manager can be reached (encoded by the pred-
icate FM) from a customer VM.

V M(dst,src) : − AddrOfVM(src),AddrOfFM(dst).

? FM(dst,src).

Datalog Features: definitions for sets of addresses.

3.2 Reachability sets
Consider the following belief: All Fabric managers are
reachable from jump boxes (internal management
devices).

As before, we check for the corresponding violation of
the belief (a bug). Namely, we can query for addresses
injected from jump boxes J, destined for fabric manager
FM that nevertheless do not reach FM.

J(dst,src) : − AddrOfJ(src),AddrOfFM(dst).

? J(dst,src)∧¬FM(dst,src).

Datalog Features: Definitions, negation.

Drop DNS

  M   N   D

NAT BoxManagement

Allow SQLDeny SQL

  S

  R2   R3

  R5

  R4  R1

Internet 

Figure 2: Bugs encountered in a cloud setting.

3.3 Equivalence of Load Balanced Paths
Consider the following bug:

Load Balancer ACL Bug: In Figure 2, an operator
may set up two routers R2 and R3 that are load balancing
traffic from a source S to destination D. R2 has an ACL
entry that specifies that packets to the SQL port should
be dropped but R3 does not. Assume that ECMP (equal
cost multipath routing) [33] currently uses a hash func-
tion that routes SQL traffic via R2 where it is (correctly)
dropped. However, the hash function can change to route
packets via R3 and now SQL packets will (incorrectly) be
let through.

In general, this bug violates a belief that reachabil-
ity across load balanced paths must be identical regard-
less of other variables such as hash functions. We can
check whether this belief is true by encoding a differen-
tial query encoded in Datalog. Is it possible that some
packet reaches a destination under one hash function but
not another? Such a query is impossible to answer using
current network verification tools [22–24].

Datalog has the power needed for expressing reacha-
bility over different hashing schemes. We encode a hash-
ing scheme as a bit vector h that determines what hashing
choices (e.g., should R1 forward packets to D via R2 or
R3 in Figure 2) are made at every router. We assume we
have defined a built-in predicate Select that selectively
enables a rule. We can then augment load balancing
rules by adding Select as an extra guard in addition to
the guards modeling the match predicate from the FIB.
For example, if there are rules for routing from R1 to R2
and R3, guarded by G12, G13, then the modified rules
take the form:

R2(dst,h) : − G12 ∧R1(dst,h)∧Select(h,dst).

R3(dst,h) : − G13 ∧R1(dst,h)∧Select(h,dst).

To check for inconsistent hashing, we pose a query that
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asks if there exists an intermediate node A at which pack-
ets to destination dst arrive using one hash assignment h1
but are dropped using a different hash assignment h2:

? A(dst,h1)∧¬A(dst,h2). (3)

By adding an ordering across routers, the size of h can
be encoded to grow linearly, not exponentially, with the
path length.

Datalog Features: Negation, bit vectors, non-
determinism, Boolean combinations of reachability
predicates.

3.4 Locality
Consider the following bug:

Cluster reachability: In our Hong Kong data center,
we found a locality violation. For example, it would be
odd if packets from S to M in Figure 2 flowed through
R2.

Putting aside the abstruse details of the wiring issues
during buildout that caused this bug, the bug violates a
belief that routing preserves traffic locality. For exam-
ple, traffic within one rack must not leave the top-of-rack
switch. Datalog definitions let us formulate such queries
compactly.

Consider packets that flow between S and M in Fig-
ure 2. Observe that it would be odd if these packets
flowed through R2, or R3, or R5 for that matter. The abil-
ity to define entire sub-scopes in Datalog comes in handy
in this example. For example, we can define a predicate
DSP (for Data center SPine) to summarize packets arriv-
ing at these routers:

DSP(dst) : − R2(dst).

DSP(dst) : − R3(dst).

DSP(dst) : − R5(dst).

Conversely, local addresses like S and M that can be
reached via R1 can be summarized using another pred-
icate LR1 (Local R1 addresses), that we assume is given
as an explicit set of IP address ranges.

LR1(dst) : − dst = 125.55.10.0/24.

Assume a packet originates at S and sends to such a lo-
cal address; we ask if DSP is reached indicating that the
packet has (incorrectly) reached the spine.

S(dst) : − LR1(dst).

? DSP(dst). (4)

Note the power of Datalog definitions. The query can
also be abstracted further to check whether traffic be-
tween N and D (that sit on different racks and could be

in a different cluster) have the same property in a single
query, without writing separate queries for each cluster.
For example, we could add rules, such as:

LR4(dst) : − dst = 125.75.10.0/24.
D(dst) : − LR4(dst).

N(dst) : − LR4(dst).

This query can be abstracted further by defining lo-
cality sets and querying whether any two stations in the
same locality set take a route outside their locality set.

Datalog Features: Scoping via predicates.

3.5 Dynamic Packet Headers
Going beyond encoding beliefs, we describe an example
of dynamism. Network verification tools such as Has-
sel [23] and NetPlumber [22] support IP formats but do
not yet support MPLS [31].

However, in Datalog one does not require a priori defi-
nitions of all needed protocols headers before starting an
analysis. One can easily define new headers post facto
as part of a query. More importantly, one can also de-
fine new forwarding behaviors as part of the query. This
allows modeling flexible routers whose forwarding be-
havior can be metamorphosed at run-time [4, 5]

To illustrate this power, assume that the Datalog en-
gine has no support for MPLS or the forwarding behav-
ior of label stacking. A bounded stack can be encoded
using indexed predicates. For example, if R1 is a router,
then R13 encodes a forwarding state with a stack of 3
MPLS labels and R10 encodes a forwarding state with-
out any labels. Using one predicate per control state we
can encode a forwarding rule from R5 to R2 that pushes
the label 2016 on the stack when the guard G holds as:

R21(dst,src,2016) : − G,R50(dst,src).

R22(dst,src, l1,2016) : − G,R51(dst,src, l1).

R23(dst,src, l1, l2,2016) : − G,R52(dst,src, l1, l2).

Ovfl(dst,src, l1, l2, l3) : − G,R53(dst,src, l1, l2, l3).

We assume that l1, l2, l3 are eight bit vectors that model
MPLS labels. The first three rules model both MPLS
label stacking procedure and format. Predicates, such
as R13, model the stack size. The last rule checks for a
misconfiguration that causes label stack overflow.

SWAN [19] uses an MPLS network updated dynami-
cally by an SDN controller. To check for the belief that
the SDN controller does not create any loops, we use
standard methods [37]. We use a field to encode a partial
history of a previously visited router. For every routing
rule, we create two copies. The first copy of the rule sets
the history variable h to the name of the router. The other
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copy of the rule just forwards the history variable. There
is a loop (from R5 to R5) if R5 is visited again where the
history variable holds R5. We omit details.

While router tables [19] may be in flux during updates,
a reasonable belief is even during updates “rules do not
overlap”, to avoid forwarding conflicts. Similarly, an-
other reasonable belief is that any rule that sends a pack-
ets out of the MPLS network should pop the last element
from the MPLS label stack.

3.6 Middleboxes and Backup Routers
While ensuring that traffic goes through a middlebox M
is a well-studied property [22], we found a more subtle
bug across paths:

Incorrect Middlebox traversal: Once again, refer to
Figure 2. A management box M in a newer data cen-
ter in Brazil attempted to start a TCP connection to a
local host D. Newer data centers use a private address
space and internal hosts must go through a Network Ad-
dress Translator (NAT) before going to external public
services. The box M sent the TCP connection request to
the private address of D, but D sends the packet to M via
the NAT which translates D’s source address. TCP at M
reset the connection because the SYN-ACK arrived with
an unexpected source.

This bug violates a belief that packets should go
through the same set of middleboxes in the forward and
reverse path. This is a second example of an invariant
that relates reachability across two different paths, in this
case the forward and reverse paths, as was reachability
across load balanced paths. This is easily encoded in
Datalog by adding a fictitious bit to packets that is set
when the packet passes through a middlebox. We omit
details to save space.

Consider next the following bug:
Backup Non-equivalence: Two data centers D1 and

D2 in the same region are directly connected through a
border network by a pair of backup routers at the border
of D1 and D2. The border routers are also connected to
the core network. The intent is that if a single failure oc-
curs D1 and D2 remain directly connected. However, we
found after a single failure, because of an incorrect BGP
configuration, the route from D1 to D2 went through a
longer path through the core. While this is an inefficiency
bug, if it is not fixed and then if the route to the core sub-
sequently fails, then D1 and D2 lose connectivity even
when there is a physical path.

This bug suggests the belief that all paths between a
source and destination pair passing through any one of
a set of backup routers should have the same number of
hops. We omit the encoding except to note that we en-
code path lengths in Datalog as a small set of control bits
in a packet, and query whether a destination is reached

from the same source across one of the set of backup
routers, but using two different path lengths. Once again
this query appears impossible to state with existing net-
work verification tools except NetPlumber [22]. Net-
Plumber, however, cannot handle the range of queries
NoD can, especially allowing dynamic networks.

4 Network Optimized Datalog
While Datalog can express higher-level beliefs and
model dynamism (Features 4 and 5 in Section 2.1) and
computes all solutions (Feature 1), naive Datalog imple-
mentations struggle with Features 2 and 3 (scalably ex-
pressing large header spaces and packet rewrites). While
we describe our experience with modifying µZ (the Dat-
alog framework in Z3), there are two general lessons that
may apply to other Datalog tools: the need for a new
table data structure to compactly encode large header
spaces, and a new Select-Project operator. We will try
to convey the high-level ideas for a networking reader.

4.1 Compact Data Structures

One can pose reachability queries to µZ (our Datalog
framework) to compute the set of packets that flow from
A to B. Think of the Datalog network model as express-
ing relations between input and output packets at each
router: the router relation models the forwarding behav-
ior of the router including all forwarding rules and ACLs.
The router is modeled not as a function but as a relation,
to allow multicast and load balancing, where several out-
put packets can be produced for the same input packet.
Whenever the set of input packets at a router change, the
corresponding set of output packets are recomputed us-
ing the router relation. Thus for a network, eventually
sets of packets will flow from the inputs of the network
to the endpoints of the network.

The main abstract data structure to encode a relation
in Datalog is a table. For example, a table is used to store
the set of input packets at a router, and a table is used
to store output packets. To update the relationship be-
tween input and output tables at a router, under the cov-
ers, µZ executes Datalog queries by converting them into
relational algebra, as described elsewhere [9]. Network-
ing readers can think of µZ as providing a standard suite
of database operators such as select, project and join to
manipulate tables representing sets of packet headers in
order to compute reachability sets. Figure 3 – which rep-
resents a single router that drops HTTP packets using an
ACL that drops port 80 packets – makes this clearer.

In our toy example, Figure 3, assume that the set
of packets that reach this router have source addresses
whose first bit is 1 because of some earlier ACLs. Thus
the set of packet headers that leave the router are those
that have first bit 1 and whose TCP destination port is
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Figure 3: Manipulating tables of packet headers with a
combined select-project operator.

not 80. As we have seen, the natural way for Datalog to
represent a set of packet headers is as a table. Represent-
ing all source addresses that start with a 1 would require
2127 rows if 128-bit packet headers are represented by ar-
rays. None of the existing table data structures (encapsu-
lated in what are called backends) in µZ performed well
for this reason. Hence, we implemented two new table
backends.

The first backend uses BDDs (Binary Decision Dia-
grams [7]) for Datalog tables. BDDs are a classic data
structure to compactly represent a Boolean function, and
widely used in hardware verification to represent cir-
cuits [8]. A classic program analysis paper also aug-
ments Datalog with BDDs [34] for program analysis, so
our use of BDDs for Datalog tables is natural.

The second backend is based on ternary bit vectors,
inspired by Header Space Analysis (HSA) [23, 24], but
placed in a much more general setting by adding a new
data structure to Datalog. This data structure we added
was what we call difference of cubes or DoC. DoC rep-
resents sets of packets as a difference of ternary strings.
For example, 1 � � \ 10� succinctly represents all pack-
ets that start with 1 other than packets that start with 10.
Clearly, the output of Figure 3 can be compactly repre-
sented as the set difference of all 1 � � packets and all
packets whose destination port is 80.

More precisely, for ternary bit vectors vi and v j, a dif-
ference of cubes represents a set

⋃
i

(
vi \

⋃
j

v j

)

The difference of cubes representation is particularly
efficient at representing router rules that have dependen-
cies. For example, the second rule in Figure 1 takes ef-
fect only if the first rule does not match. More precisely,
difference of cubes is particularly efficient at represent-
ing formulas of the form ϕ ∧¬ϕ1 ∧ ·· · ∧ ¬ϕn, with ϕ
and ϕi of the form

∧
i φi and φi having no Boolean op-

erators. This form is precisely what we obtain in the

transfer functions of routing rules, with ϕ being the route
matching formula, and the ¬ϕi being the negation of the
matching formula of the dependencies of the rule. Again,
in networking terminology dependencies of a forwarding
rule or ACL are all higher priority matching rules.

Code: The Datalog backends added to Z3 were imple-
mented in C++. The BDD backend takes 1,300 LoC, and
the difference of cubes backend takes almost 2,000 LoC.

4.2 Combining Select and Project

We needed to go beyond table compression in order to
speedup Datalog’s computation of reachability sets as
follows. Returning to Figure 3, µZ computes the set of
output packets by finding a relation between input pack-
ets and corresponding output packets. The relation is
computed in two steps: first, µZ joins the set of input
packets I to the set of all possible output packets A to
create a relation (I,A). Next, it selects the output packets
(rows) that meet the matching and rewrite conditions to
create a pruned relation (I,O). Finally, it projects away
input packets and produces the set of output packets O.

Thus, in Figure 3, the output of the first join is the set
of all possible input packets with source addresses that
start with 1, together with all possible output packets.
While this sounds like a very indirect and inefficient path
to the goal, this is the natural procedure in µZ. Joins
are the only way to create a new relation, and to avail
of the powerful set of operators that work on relations.
While the join with all possible output packets A appears
expensive, A is compactly represented as a single ternary
string/cube and so its cost is small.

Next, after the select, the relation is “trimmed” to be
all possible input packets with source bit equal to 1, to-
gether with all output packets with source bit equal to 1
and destination port not equal to 80. Finally, in the last
step, the project step removes all columns corresponding
to the input packets, resulting in the correct set of output
packets (Figure 3) as desired. Observe that the output of
the join is easily compressible (a single ternary string)
and the output of the final project is also compressible
(difference of two ternary strings).

The elephant in the room is the output of the select
which is extremely inefficient to represent as a BDD or
as a difference of ternary strings. But the output of the
select is merely a way station on the path to the output; so
we do not need to explicitly materialize this intermediate
result. Thus, we define a new combined select-project
operator whose inputs and outputs are both compressible.
This is the key insight, but making it work in the presence
of packet rewriting requires more intricacy.
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4.3 Handling Packet Rewriting

The example in Figure 3 does not include any packet
rewrites. In Figure 1, however, rule R3 rewrites the first
destination address bit to a 0. Intuitively, all bits except
the first are to be copied from the input packet to the out-
put. While this can be done by a brute force enumeration
of all allowed bit vectors for this 6-bit toy example, such
an approach does not scale to 128 bit headers. We need,
instead, an efficient way to represent copying constraints.

Back to the toy example, consider an input packet 1�
���� at router R3 that is forwarded to router R2. Recall
that the first 3 bits in this toy example are the destination
address, the next 3 are the source address. We first join
the table representing input packets with a full table (all
possible output packets), obtaining a table with the row
1�����������, where the first six bits correspond to
the input packet at R3, and the remaining six bits belong
to the output destined to R2.

Then we apply the guard and the rewrite formulas and
the negation of all of the rule’s dependencies using a gen-
eralized select). Since we know that the 5th rule in Fig-
ure 1 can only apply if 4th rule does not match, we know
that in addition to the first destination address bit being
1, the “negation of the dependencies” requires that bit 2
of the source address should also be 0.

One might be tempted to believe that 1�����10�0�
� compactly represents the input-output relation as “All
input packets whose second destination address bit is 1”
(the first six bits) together with “All output packets for
which bit 2 of destination address bit is 1, bit 1 of the
destination address has been set to 0, and for which bit
2 of the source address bit is 0”. But this incorrectly
represents the copying relation! For example, it allows
input packets where bit 1 of the source address of the
input packet is a 0, but bit 1 of the source address of the
output packet is a 1. Fortunately, we can rule out these
exceptions fairly compactly using set differences which
are allowed in difference of cubes notation. We obtain
the following expression:

1�����10�0�� \
(��0�����1���∪��1�����0���∪
����0�����1�∪����1�����0�∪
�����0�����1∪�����1�����0)

While this looks complicated, the key idea is effi-
ciently representing copying using a difference of ternary
strings. The unions in the difference are ruling out cases
where the “don’t care” � bits are not copied correctly.
The first term in the difference states that we cannot have
bit 0 of destination address bit be a 0 in the input packet
and bit 0 of destination address bit in the output packet
be a 1; the next term disallows the bits being 1 and 0 re-

spectively. And so on for all the bit positions in dst and
src whose bits are being copied.

After the select operation, we perform a projection to
remove the columns corresponding to the input packet
(the first 6 bits) and therefore obtain a table with only
the output packets. Again, in difference of cubes repre-
sentation, we obtain 10�0��. The final result is signifi-
cantly smaller than the intermediate result, and this effect
is much more pronounced when we use 128 bit headers!

Generalizing: To make select-project efficient, we
need to compute the projection implicitly without explic-
itly materializing intermediate results. We did this using
a standard union-find data structure to represent equiva-
lence classes (copying) between columns. When estab-
lishing the equality of two columns, if both columns (say
bit 3 of the Destination address in both input and out-
put packets) contain “don’t care” values and one of them
(bit 3 in the input packet) will be projected out, we ag-
gregate the two columns in the same equivalence class.
While this suffices for networking, we added two more
rules to generalize this construction soundly to other do-
mains besides networking. In verification terminology,
this operation corresponds to computing the strongest
post-condition of the transition relation. However, it
takes some delicacy to implement such an operator in a
general verification engine such as Z3 so it can be used
in other domains besides network verification.

Code: Besides select-project, we made several addi-
tional improvements to the Datalog solver itself, which
were released with Z3 4.3, reducing Z3’s memory usage
in our benchmarks by up to 40% .

5 Benchmarks
We use four benchmarks:

Stanford: This is a publicly available [32] snapshot
of the routing tables of the Stanford backbone, and a set
of network reachability and loop detection queries. The
core has 16 routers. The total number of rules across
all routers is 12,978, and includes extensive NAT and
VLAN support.

Generic Cloud Provider: We use a parameterizable
model of a cloud provider network with multiple data
centers, as used by say Azure or Bing. We use a fat tree
as the backbone topology within a data center and sin-
gle top-of-rack routers as the leaves. Data centers are
interconnected by an all-to-all one-hop mesh network.
Parameters include replication factor, router ports, data
centers, machines per data center, VMs per machine, and
number of services. These parameters can be set to in-
stantiate small, medium, or large clouds. This bench-
mark is publicly available [29].

Production Cloud: Our second source comes from
two newer live data centers located in Hong Kong and in
Singapore whose topology is shown in Figure 4. They
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Figure 4: Production Cloud Layout

consist of a hundred routers each ranging over border
leaves, data center and cluster spines, and finally top-
of-rack switches. In the Hong Kong data center, each
router has roughly 2000 ECMP forwarding rules adding
up to a combined 200K rules. In the Singapore data cen-
ter there are about 820K combined forwarding rules. The
text files for these rules take from 25MB to 120MB for
the respective data-centers.

This infrastructure services three clusters and thou-
sands of machines. We extracted routing tables from the
Arista and Cisco devices using a show ip route com-
mand. This produced a set of routing tables including
the ECMP routing options in Datalog format. To handle
longest prefix match semantics, the translation into Dat-
alog uses a trie to cluster ranges with common prefixes,
avoiding redundancy in the Datalog rules. The range of
private and public IP addresses assigned to each cluster
was extracted from a separate management device.

Experimental Backbone: We check an SDN back-
bone based on the SWAN design [19]. To maximize
bandwidth utilization, the SDN controller periodically
recomputes routing rules that encapsulate packets with
an MPLS labels stack encoding tunnels. Our tool takes
the output from the controller: a set of routing tables,
a network topology and configurations that map IP ad-
dresses to end-points. We check selected beliefs, such as
loop freedom and absence of stack overflow.

Experimental Toolkit: In addition to the publicly
available Hassel C code [16], for comparison we used
two classic model checking algorithms (BMC and PDR),
a Datalog framework µZ [18], and a state-of-the-art
SAT/SMT solver, all implemented in the Z3 [11] en-
gine. Our engines are publicly available [29] so other
researchers can extend our results.

6 Evaluation
We describe results for belief checking on a production
cloud IP network and an experimental MPLS backbone,

followed by differential reachability queries on a cloud
benchmark. Finally, we compare NoD’s performance
with existing tools.

6.1 Protection Sets in a Production Cloud
We checked whether two policies based on the Protec-
tion sets template (see Table 1) hold in the Singapore data
center. The two queries were to verify that neither Inter-
net addresses or customer VMs can access the protected
fabric controllers for security reasons.

Both experiments took around 12 minutes. While this
may seem slow, the sets of addresses are very large. For
the power of exploring a very general belief, the per-
formance seems acceptable and easily incorporated in a
checker that runs every hour.

Both queries failed; thus the beliefs of the network
operators were incorrect. Closer inspection showed that
these were not network bugs, but incorrect beliefs. There
are two ranges of IPs of fabric controllers that are sup-
posed to be reachable (and they are), and certain ICMP
packets are also allowed to flow to fabric controllers. Al-
though no network bugs were found, these queries al-
lowed the operator to refine his beliefs.

6.2 Reachable Sets on a Production Cloud
As in the previous experiment, we also checked whether
two policies from the reachable sets template hold in the
same Singapore data center. The first query checked if
all of “utility boxes” can reach all “fabric controllers”.
The second query is similar, but checks whether “service
boxes” can reach “fabric controllers”. The first query
took around 4 minutes to execute, while the second took
6 minutes. Both queries passed successfully, confirming
operator beliefs.

6.3 Locality on a Production Cloud
Figure 4 shows our public cloud topology which has
more levels of hierarchy than the simple example of Fig-
ure 2. These levels motivate more general queries than
the simple locality query (4) used in [§3.4].

Figure 4 also shows the boundaries of traffic local-
ity in our public cloud. Based on these boundaries, we
formulate the following queries to check for traffic lo-
cality. First, C2C requires that traffic within a cluster
not reach beyond the designated cluster spines. Next,
B2DSP, B2DSP, B2CSP, and B2CSP require that traffic
targeting public addresses in a cluster must reach only
designated data center spines, not reach other data cen-
ter spines belonging to a different DC, must reach only
designated cluster spines, and not reach cluster spines be-
longing to other clusters, respectively.

10



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 509

Query Cluster 1 Cluster 2 Cluster 3
C2C 12 (2) 13 (2) 11 (2)
B2DSP 11 (2) 11 (2) 11 (2)
B2DSP 3 (1) 4 (1) 4 (1)
B2CSP 11 (2) 11 (2) 11 (2)
B2CSP 11 (2) 12 (2) 11 (2)

Table 2: Query times are in seconds, times in parenthe-
ses are for a snapshot where only one of the available
ECMP options is part of the model (20% the size of the
full benchmarks).

Table 2 shows the time spent for these five different
kinds of queries over three clusters. They check correct-
ness of routing configurations in all network devices.

For the Hong Kong cluster we identified some vio-
lated locality queries due to bugs during buildout. An
example output for a C2C query was 100.79.126.0/23
suggesting that an address range got routed outside the
cluster it was said to be part of. On the other hand, our
tool produced public address ranges from a B2CSP query
which were supposed to reach the cluster spine but did
not: 192.114.2.62/32 ∪ . . .∪ 192.114.3.48/29 .

6.4 An Experimental MPLS backbone
We checked loop-freedom, absence of black holes, and
rule disjointness on configurations for an experimen-
tal backbone based on the SWAN design [19]. Note
the versatility of Datalog and its ability to model dy-
namic forwarding behaviors without changing tool in-
ternals. Both packet formats and forwarding behaviors
were completely different from those in the production
cloud queries. We report on a selected experiment with
a configuration comprising of 80 routers, for a total of
448 forwarding rules. Modelling label stacks required
3400 Datalog rules over a header-space of 153 bits. The
loop check takes a fraction of a second for the configu-
rations we checked. Checking for black holes takes un-
der 5 seconds, identifying 56 flows out of 448 as black
holes. The same configuration had 96 pairs of overlap-
ping rules, which were enumerated in less than 1 sec-
ond. This experience bodes well for scaling validation to
larger backbone sizes.

6.5 Differential Reachability
We investigate the performance of differential reachabil-
ity queries on our synthetic cloud benchmarks (topology
similar to Figure 2).

We performed two experiments by taking the Medium
Cloud topology as baseline, and changing the ACLs at
one of the core routers such that one of the links in a
set of load balanced paths allowed VLAN 3 and blocked
VLAN 1, while all other links blocked VLAN 1 and al-

lowed VLAN 3. We then checked the difference in reach-
ability across all load-balanced paths between the Inter-
net and a host in the data center.

This query took 1.9 s, while the equivalent reachabil-
ity query takes 1.0 s (90% run time increase). Repeating
the same query, but measuring differential reachability
between two hosts located in different data centers (re-
sulting in longer paths) took 3.1 s, while the equivalent
reachability queries takes 1.1 s (182% run time increase).

We note that the run time increase between vanilla
reachability queries and differential queries will likely
increase with the amount of differences, but in practice
the number of differences (i.e., bugs) should be small.

6.6 Comparison with existing Tools

We ran the benchmarks with multiple tools to benchmark
our speeds against existing work. Besides the differ-
ence of cubes backend described in § 4, we also used a
BDD-based Datalog backend, a bounded model checker
(BMC) [10], an SMT solver that uses an unrolled rep-
resentation of the network as in [37], and a state-of-
the-art solver based on the IC3 [6, 17] algorithm. The
benchmarks were run on a machine with an Intel Xeon
E5620 (2.4 GHz) CPU. We also used an SMT algorithm
that was modified to return all solutions efficiently. The
model checkers, however, return only one solution so the
speed comparison is not as meaningful.

Table 3 is a small sampling of extensive test results in
[29]. It shows time (in seconds) to run multiple tools on
a subset of the Stanford benchmarks, including reachable
and unreachable queries, and a loop detection query. The
tests were given a timeout of 5 minutes and a memory
limit of 8 GBs.

Note that the model checkers only compute satisfiabil-
ity answers (i.e., “is a node reachable or not?”), while
Datalog computes all reachable packets. For SMT, we
provide results for both type of queries. All the SMT
experiments were run with the minimum TTL (i.e., an
unrolling) for each test; for example, the TTL for Stan-
ford was 3 for reachability and 4 for loop detection.
Higher TTLs significantly increase running time. We do
not provide the SMT running times for the cloud bench-
marks, since our AllSAT algorithm does not support non-
determinism. We were unable to run Hassel C [16] on
the cloud benchmarks, since Hassel C has hardwired as-
sumptions, such as router port numbers following a spe-
cific naming policy.

The first takeaway is that NoD is faster at comput-
ing all solutions than model checkers or SAT solvers
are at computing a single solution. Model checking per-
formance also seems to degrade exponentially with path
length (see row 3 versus row 2 where the model checkers
run out of memory). Similarly, unrolling seems to exact
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Test Model Checkers SMT Datalog Hassel CBMC PDR Reach. All sols. BDDs DoC
Small Cloud 0.3 0.3 0.1 – 0.2 0.2 –
Medium Cloud T/O 10.0 0.2 – 1.8 1.7 –
Medium Cloud Long M/O M/O 4.8 – 7.4 7.2 –
Cloud More Services 7.2 8.5 12.5 – 5.3 4.8 –
Large Cloud T/O M/O 2.8 – 16.1 15.7 –
Large Cloud Unreach. T/O M/O 1.1 n/a 16.1 15.7 –
Stanford 56.2 13.7 11.5 1,121 6.6 5.9 0.9
Stanford Unreach. T/O 12.2 0.1 n/a 2.6 2.1 0.1
Stanford Loop 20.4 11.7 11.2 290.2 6.1 3.9 0.2

Table 3: Time (in seconds) taken by multiple tools to solve network benchmarks. Model checkers only check for
satisfiability, while Datalog produces reachability sets. T/O and M/O are used for time- and memory-out.

a price for SMT solvers. Even our efficient AllSAT gen-
eralization algorithm is around 200× slower than Dat-
alog (row 7). Datalog with difference of cubes is the
most competitive implementation we have tested. Dat-
alog with a BDD backend shows good performance as
well.

Hassel C takes under a second for Stanford, faster
than Datalog. NetPlumber [22] and VeriFlow [24] are
even faster for incremental analysis. Further, Yang and
Lam [36] use predicate abstraction to further speed up
reachability testing. However, none of these tools have
the ability to model higher-level beliefs and model dy-
namic networks as NoD can. NoD speeds are also ac-
ceptable for an offline network checker, the major need
today.

7 Experience
SecGuru: The SecGuru [20] tool has been actively
used in our production cloud. In continuous validation,
SecGuru checks policies over ACLs on every router up-
date as well as once a day, doing over 40,000 checks per
month, where each check takes 150-600 ms. It uses a
database of predefined common beliefs. For example,
there is a policy that says that SSH ports on fabric devices
should not be open to guest VMs. While these policies
rarely change, IP addresses do change frequently, which
makes SecGuru useful as a regression test. SecGuru had
a measurable impact in reducing misconfigurations dur-
ing build-out, raising an average of one alert per day,
each identifying ∼16K faulty addresses. SecGuru also
helped reduce our legacy corporate ACL from roughly
3000 rules to 1000 without any business impact.

Belief Refinement: As described in § 6.1, our opera-
tor’s belief in a protection set policy (customer VMs can-
not reach fabric controllers) was subtly incorrect. The
correct belief required new reachability exceptions. We
currently code this at the level of Datalog in lieu of a GUI
interface to the 5 policy templates from Table 1.

Batfish: Batfish [15] can find whether two stations re-

main reachable across any set of single link failures by
modeling OSI and BGP. Batfish uses NoD for reachabil-
ity analysis because it is more expressive than other tools.
Batfish also uses the Z3 constraint solver to find concrete
packet headers, confirming our intuition that supplying
NoD in a general tool setting allows unexpected uses.

8 Conclusion
Network Optimized Datalog (NoD) is more expressive
than existing tools in its ability to encode beliefs to
uncover true specifications, and to model network dy-
namism without modifying internals. NoD is much faster
than existing (but equally expressive) verification tools
such as model checkers and SMT solvers. Key to its effi-
ciency are ternary encoding of tables and a Select-Project
operator.

By contrast, current network verification tools oper-
ate at a low level of abstraction. Properties such as
cluster scoping (Figure 4) expressible in a single Dat-
alog query would require iterating across all source-
destination pairs. Further, existing work cannot easily
model new packet formats, new forwarding behaviors,
or failures [15]. We were pleased to find we could model
MPLS and label stacking succinctly. It took a few hours
to write a query to find loops in SWAN.

As in [13], our work shows how fragile the under-
standing of the true network specification is. Even when
working with an experienced network operator, we found
that simple beliefs (e.g., no Internet addresses can reach
internal controllers) had subtle exceptions. The belief
templates in Table 1 abstract a vast majority of specific
checks in our network and probably other networks. A
GUI interface for belief templates will help operators.

If network verification is to mature into a network-
ing CAD industry, its tools must evolve from ad hoc
software into principled and extensible techniques, built
upon common foundations that are constantly being im-
proved. We suggest NoD as a candidate for such a foun-
dation.
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†TU Berlin �Université catholique de Louvain ‡Telekom Innovation Labs

Abstract
Achieving predictable performance is critical for

many distributed applications, yet difficult to achieve due
to many factors that skew the tail of the latency distribu-
tion even in well-provisioned systems. In this paper, we
present the fundamental challenges involved in design-
ing a replica selection scheme that is robust in the face
of performance fluctuations across servers. We illustrate
these challenges through performance evaluations of the
Cassandra distributed database on Amazon EC2. We
then present the design and implementation of an adap-
tive replica selection mechanism, C3, that is robust to
performance variability in the environment. We demon-
strate C3’s effectiveness in reducing the latency tail and
improving throughput through extensive evaluations on
Amazon EC2 and through simulations. Our results show
that C3 significantly improves the latencies along the
mean, median, and tail (up to 3 times improvement at the
99.9th percentile) and provides higher system through-
put.

1 Introduction
The interactive nature of modern web applications ne-
cessitates low and predictable latencies because people
naturally prefer fluid response times [20], whereas de-
graded user experience directly impacts revenue [11,43].
However, it is challenging to deliver consistent low la-
tency — in particular, to keep the tail of the latency dis-
tribution low [16, 23, 48]. Since interactive web applica-
tions are typically structured as multi-tiered, large-scale
distributed systems, even serving a single end-user re-
quest (e.g., to return a web page) may involve contacting
tens or hundreds of servers [17,23]. Significant delays at
any of these servers inflate the latency observed by end
users. Furthermore, even temporary latency spikes from
individual nodes may ultimately dominate end-to-end la-
tencies [2]. Finally, the increasing adoption of commer-

cial clouds to deliver applications further exacerbates the
response time unpredictability since, in these environ-
ments, applications almost unavoidably experience per-
formance interference due to contention for shared re-
sources (like CPU, memory, and I/O) [26, 50, 52].

Several studies [16, 23, 50] indicate that latency distri-
butions in Internet-scale systems exhibit long-tail behav-
iors. That is, the 99.9th percentile latency can be more
than an order of magnitude higher than the median la-
tency. Recent efforts [2, 16, 19, 23, 36, 44, 53] have thus
proposed approaches to reduce tail latencies and lower
the impact of skewed performance. These approaches
rely on standard techniques including giving preferential
resource allocations or guarantees, reissuing requests,
trading off completeness for latency, and creating per-
formance models to predict stragglers in the system.

A recurring pattern to reducing tail latency is to ex-
ploit the redundancy built into each tier of the applica-
tion architecture. In this paper, we show that the prob-
lem of replica selection — wherein a client node has to
make a choice about selecting one out of multiple replica
servers to serve a request — is a first-order concern in
this context. Interestingly, we find that the impact of the
replica selection algorithm has often been overlooked.
We argue that layering approaches like request duplica-
tion and reissues atop a poorly performing replica selec-
tion algorithm should be cause for concern. For example,
reissuing requests but selecting poorly-performing nodes
to process them increases system utilization [48] in ex-
change for limited benefits.

As we show in Section 2, the replica selection strat-
egy has a direct effect on the tail of the latency distribu-
tion. This is particularly so in the context of data stores
that rely on replication and partitioning for scalability,
such as key-value stores. The performance of these sys-
tems is influenced by many sources of variability [16,28]
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and running such systems in cloud environments, where
utilization should be high and environmental uncertainty
is a fact of life, further aggravates performance fluctua-
tions [26].

Replica selection can compensate for these condi-
tions by preferring faster replica servers whenever pos-
sible. However, this is made challenging by the fact
that servers exhibit performance fluctuations over time.
Hence, replica selection needs to quickly adapt to chang-
ing system dynamics. On the other hand, any reactive
scheme in this context must avoid entering pathologi-
cal behaviors that lead to load imbalance among nodes
and oscillating instabilities. In addition, replica selection
should not be computationally costly, nor require signif-
icant coordination overheads.

In this paper, we present C3, an adaptive replica se-
lection mechanism that is robust in the face of fluctua-
tions in system performance. At the core of C3’s design,
two key concepts allow it to reduce tail latencies and
hence improve performance predictability. First, using
simple and inexpensive feedback from servers, clients
make use of a replica ranking function to prefer faster
servers and compensate for slower service times, all
while ensuring that the system does not enter herd be-
haviors or load-oscillations. Second, in C3, clients im-
plement a distributed rate control mechanism to ensure
that, even at high fan-ins, clients do not overwhelm in-
dividual servers. The combination of these mechanisms
enable C3 to reduce queuing delays at servers while the
system remains reactive to variations in service times.

Our study applies to any low-latency data store
wherein replica diversity is available, such as a key-value
store. We hence base our study on the widely-used [15]
Cassandra distributed database [5], which is designed to
store and serve larger-than-memory datasets. Cassandra
powers a variety of applications at large web sites such as
Netflix and eBay [6]. Compared to other related systems
(Table 1), Cassandra implements a more sophisticated
load-based replica selection mechanism as well, and is
thus a better reference point for our study. However, C3
is applicable to other systems and environments that need
to exploit replica diversity in the face of performance
variability, such as a typical multi-tiered application or
other data stores such as MongoDB or Riak.

In summary, we make the following contributions:
1. Through performance evaluations on Amazon EC2,

we expose the fundamental challenges involved in
managing tail latencies in the face of service-time
variability (§2).

2. We develop an adaptive replica selection mecha-
nism, C3, that reduces the latency tail in the pres-

Cassandra Dynamic Snitching: considers history of
read latencies and I/O load

OpenStack Swift Read from a single node and
retry in case of failures

MongoDB Optionally select nearest node by network
latency (does not include CPU or I/O load)

Riak Recommendation is to use an external
load balancer such as Nginx [38]

Table 1: Replica selection mechanisms in popular NoSQL
solutions. Only Cassandra employs a form of adaptive
replica selection (§2.3).

ence of service-time fluctuations in the system. C3
does not make use of request reissues, and only re-
lies on minimal and approximate information ex-
change between clients and servers (§3).

3. We implement C3 (§4) in the Cassandra distributed
database and evaluate it through experiments con-
ducted on Amazon EC2 (for accuracy) (§5) and sim-
ulations (for scale) (§6). We demonstrate that our
solution improves Cassandra’s latency profile along
the mean, median, and the tail (by up to a factor
of 3 at the 99.9th percentile) whilst improving read
throughput by up to 50%.

2 The Challenge of Replica Selection
In this section, we first discuss the problem of time-
varying performance variability in the context of cloud
environments. We then underline the need for load-based
replica selection schemes and the challenges associated
with designing them.

2.1 Performance fluctuations are the norm
Servers in cloud environments routinely experience per-
formance fluctuations due to a multitude of reasons. Cit-
ing experiences at Google, Dean and Barroso [16] list
many sources of latency variability that occur in prac-
tice. Their list includes, but is not limited to, contention
for shared resources within different parts of and be-
tween applications (further discussed in [26]), periodic
garbage collection, maintenance activities (such as log
compaction), and background daemons performing peri-
odic tasks [40]. Recently, an experimental study of re-
sponse times on Amazon EC2 [50] illustrated that long
tails in latency distribution can also be exacerbated by
virtualization. A study [23] of interactive services at Mi-
crosoft Bing found that over 30% of analyzed services
have 95th percentile of latency 3 times their median la-
tency. Their analysis showed that a major cause for the
high service performance variability is that latency varies
greatly across machines and time. Lastly, a common
workflow involves accessing large volumes of data from
a data store to serve as inputs for batch jobs on large-
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Figure 1: Left: how the least-outstanding requests (LOR)
strategy allocates a burst of requests across two servers
when executed individually by each client. Right: An ideal
allocation that compensates for higher services time with
lower queue lengths.

scale computing platforms such as Hadoop, and inject-
ing results back into the data store [45]. These workloads
can introduce latency spikes at the data store and further
impact on end-user delays.

As part of our study, we spoke with engineers at Spo-
tify and SoundCloud, two companies that use and oper-
ate large Cassandra clusters in production. Our discus-
sions further confirmed that all of the above mentioned
causes of performance variability are true pain points.
Even in well provisioned clusters, unpredictable events
such as garbage collection on individual hosts can lead
to latency spikes. Furthermore, Cassandra nodes period-
ically perform compaction, wherein a node merges mul-
tiple SSTables [5, 13] (the on-disk representation of the
stored data) to minimize the number of SSTable files to
be consulted per-read, as well as to reclaim space. This
leads to significantly increased I/O activity.

Given the presence of time-varying performance fluc-
tuations, many of which can potentially occur even at
sub-second timescales [16], it is important that systems
gracefully adapt to changing conditions. By exploit-
ing server redundancy in the system, we investigate how
replica selection effectively reduces the tail latency.

2.2 Load-based replica selection is hard
Accommodating time-varying performance fluctuations
across nodes in the system necessitates a replica selec-
tion strategy that takes into account the load across dif-
ferent servers in the system. A strategy commonly em-
ployed by many systems is the least-outstanding requests
strategy (LOR). For each request, the client selects the
server to which it has the least number of outstanding re-
quests. This technique is simple to implement and does
not require global system information, which may not
be available or is difficult to obtain in a scalable fash-
ion. In fact, this is commonly used in load-balancing ap-
plications such as Nginx [34] (recommended as a load-
balancer for Riak [38]) or Amazon ELB [3].

However, we observe that this technique is not ideal

for reducing the latency tail, especially since many realis-
tic workloads are skewed in practice and access patterns
change over time [9]. Consider the system in Figure 1,
with two replica servers that at a particular point in time
have service times of 4 ms and 10 ms respectively. As-
sume all three clients receive a burst of 4 requests each.
Each request needs to be forwarded to a single server.
Based on purely local information, if every client selects
a server using the LOR strategy, it will result in each
server receiving an equal share of requests. This leads
to a maximum latency of 60 ms, whereas an ideal allo-
cation in this case obtains a maximum latency of 32 ms.
We note that LOR over time will prefer faster servers, but
by virtue of purely relying on local information, it does
not account for the existence of other clients with poten-
tially bursty workloads and skewed access patterns, and
does not explicitly adapt to fast-changing service times.

Designing distributed, adaptive and stable load-
sensitive replica selection techniques is challenging. If
not carefully designed, these techniques can suffer from
“herd behavior” [32,39]. Herd behavior leads to load os-
cillations, wherein multiple clients are coaxed to direct
requests towards the least-loaded server, degrading the
server’s performance, which subsequently causes clients
to repeat the same procedure with a different server.

Indeed, looking at the landscape of popular data stores
(Table 1), we find that most systems only implement
very simple schemes that have little or no ability to re-
act quickly to service-time variations nor distribute re-
quests in a load-sensitive fashion. Among the systems
we studied, Cassandra implements a more sophisticated
strategy called Dynamic Snitching that attempts to make
replica selection decisions informed by histories of read
latencies and I/O loads. However, through performance
analysis of Cassandra, we find that this technique suffers
from several weaknesses, which we discuss next.

2.3 Dynamic Snitching’s weaknesses
Cassandra servers organize themselves into a one-hop
distributed hash table. A client can contact any server
for a read request. This server then acts as a coordinator,
and internally fetches the record from the node hosting
the data. Coordinators select the best replica for a given
request using Dynamic Snitching. With Dynamic Snitch-
ing, every Cassandra server ranks and prefers faster repli-
cas by factoring in read latencies to each of its peers, as
well as I/O load information that each server shares with
the cluster through a gossip protocol.

Given that Dynamic Snitching is load-based, we eval-
uate it to characterize how it manages tail-latencies and
if it is subject to entering load-oscillations. Indeed, our
experiments on Amazon EC2 with a 15-node Cassandra

3
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Figure 2: Example load oscillations seen by a given node in
Cassandra due to Dynamic Snitching, in measurements ob-
tained on Amazon EC2. The y-axis represents the number
of requests processed in a 100 ms window by a Cassandra
node. Even under stable conditions (bottom), the number
of requests processed in a 100 ms window by a node ranges
from 0 up to 500, which is symptomatic of herd behavior.

cluster confirm this (the details of the experimental setup
are described in § 5). In particular, we recorded heavy-
tailed latency characteristics wherein the difference be-
tween the 99.9th percentile latencies are up to 10 times
that of the median. Furthermore, we recorded the num-
ber of read requests individual Cassandra nodes serviced
in 100 ms intervals. For every run, we observed the node
that contributed most to the overall throughput. These
nodes consistently exhibited synchronized load oscilla-
tions, example sequences of which are shown in Figure 2.
Additionally, we confirmed our results with the Spotify
engineers, who have also encountered load instabilities
that arise due to garbage-collection induced performance
fluctuations in the system [29].

A key reason for Dynamic Snitching’s vulnerability
to oscillations is that each Cassandra node re-computes
scores for its peers at fixed, discrete intervals. This inter-
val based scheme poses two problems. First, the sys-
tem cannot react to time-varying performance fluctua-
tions among peers that occur at time-scales less than the
fixed-interval used for the score recomputation. Second,
by virtue of fixing a choice over a discrete time inter-
val (100 ms by default), the system risks synchroniza-
tion as seen in Figure 2. While one may argue that this
can be overcome by shortening the interval itself, the
calculation performed to compute the scores is expen-
sive, as it is also stated explicitly in the source code; a
median over a history of exponentially weighted latency
samples (that is reset only every 10 minutes) has to be
computed for each node as part of the scoring process.
Additionally, Dynamic Snitching relies on gossiping one
second averages of iowait information between nodes
to aid with the ranking procedure (the intuition being that
nodes can avoid peers who are performing compaction).
These iowait measurements influence the scores used

Server 
A

Server 
B

RS
RL

Response

Request

C3 Clients

RL

Feedback

Application

Figure 3: Overview of C3. RS: Replica Selection scheduler,
RL: Rate Limiter of server s ∈ [A,B].

for ranking peers heavily (up to two orders of magni-
tude more influence than latency measurements). Thus,
an external or internal perturbation in I/O activity can
influence a Cassandra node’s replica selection loop for
extended intervals. Together with the synchronization-
prone behavior of having a periodically updated ranking,
this can lead to poor replica selection decisions that de-
grade system performance.

3 C3 Design
C3 is an adaptive replica selection mechanism designed
with the objective of reducing tail latency. Based on the
considerations in Section 2, we design C3 while keeping
in mind these two goals:

i) Adaptive: Replica selection must cope and quickly
react to heterogeneous and time-varying service
times across servers.

ii) Well-behaved: Clients performing replica selection
must avoid herd behaviors where a large number of
clients concentrate requests towards a fast server.

At the core of C3’s design are the two following com-
ponents that allow it to satisfy the above properties:

1. Replica Ranking: Using minimal and approximate
feedback from individual servers, clients rank and
prefer servers according to a scoring function. The
scoring function factors in the existence of multi-
ple clients and the subsequent risk of herd behavior,
whilst allowing clients to prefer faster servers.

2. Distributed Rate Control and Backpressure: Ev-
ery client rate limits requests destined to each
server, adapting these rates in a fully-distributed
manner using a congestion-control inspired tech-
nique [22]. When rate limits of all candidate servers
for a request are exceeded, clients retain requests in
a backlog queue until at least one server is within its
rate limit again.

3.1 Replica ranking
With replica ranking, clients individually rank servers ac-
cording to a scoring function, with the scores serving as
a proxy for the latency to expect from the correspond-
ing server. Clients then use these scores to prefer faster
servers (lower scores) for each request. To reduce tail la-
tency, we aim to minimize the product of queue-size (qs)
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and service-time (1/µs, the inverse of the service rate)
across every server s (Figure 1).
Delayed and approximate feedback. In C3, servers re-
lay feedback about their respective qs and 1/µs on each
response to a client. The qs is recorded after the request
has been serviced and the response is about to be dis-
patched. Clients maintain Exponentially Weighted Mov-
ing Averages (EWMA) of these metrics to smoothen the
signal. We refer to these smoothed values as q̄s and µ̄s.
Accounting for uncertainty and concurrency. The de-
layed feedback from the servers lends clients only an ap-
proximate view of the load across the servers and is not
sufficient by itself. Such a view is oblivious to the exis-
tence of other clients in the system, as well as the number
of requests that are potentially in flight, and is thus prone
to herd behaviors. It is therefore imperative that clients
account for this potential concurrency in their estimation
of each server’s queue-size.

For each server s, a client maintains an instantaneous
count of its outstanding requests oss (requests for which
a response is yet to be received). Clients calculate the
queue-size estimate (q̂s) of each server as q̂s = 1+ oss ·
w+ q̄s, where w is a weight parameter. We refer to the
oss ·w term as the concurrency compensation.

The intuition behind the concurrency compensation
term is that a client will always extrapolate the queue-
size of a server by an estimated number of requests in
flight. That is, it will always account for the possibil-
ity of multiple clients concurrently submitting requests
to the same server. Furthermore, clients with a higher
value of oss will implicitly project a higher queue-size at
s and thus rank it lower than a client that has sent fewer
requests to s. Using this queue-size estimate to project
the q̂s/µ̄s ratio results in a desirable effect: a client with
a higher demand will be more likely to rank s poorly
compared to a client with a lighter demand. This hence
provides a degree of robustness to synchronization. In
our experiments, we set w to the number of clients in
the system. This serves as a good approximation in set-
tings where the number of clients is comparable to the
expected queue lengths at the servers.
Penalizing long queues. With the above estimation,
clients can compute the q̂s/µ̄s ratio of each server and
rank them accordingly. However, given the existence of
multiple clients and time-varying service times, a func-
tion linear in q̂ is not an effective scoring function for
replica ranking. To see why, consider the example in
Figure 4. The figure shows how clients would score two
servers using a linear function: here, the service time es-
timates are 4 ms and 20 ms, respectively. We observe that
under a linear scoring regime, for a queue-size estimate
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Figure 4: A comparison between linear (left) and cubic
(right) scoring functions. For differing values of 1/µ , the
difference in queue-size estimates required for the scores of
two replicas to be equal is smaller for the cubic function
(thus penalizing longer queues).

of 20 at the slower server, only a corresponding value
of 100 at the faster server would cause a client to prefer
the slower server again. If clients distribute requests by
choosing the best replica according to this scoring func-
tion, they will build up and maintain long queues at the
faster server in order to balance response times between
the two nodes.

However, if the service time of the faster server in-
creases due to an unpredictable event such as a garbage
collection pause, all requests in its queue will incur
higher waiting times. To alleviate this, C3’s scoring
function penalizes longer queue lengths using the same
intuition behind that of delay costs as in [10,46]. That is,
we use a non-decreasing convex function of the queue-
size estimate in the scoring function to penalize longer
queues. We achieve this by raising the q̂s term in the
scoring function to a higher degree, b: (q̂s)

b/µ̄s.
Returning to the above example, this means the scor-

ing function will treat the above two servers as being of
equal score if the queue-size estimate of the faster server
(1/µ = 4 ms) is b

√
20/4 times that of the slower server

(1/µ = 20 ms). For higher values of b, clients will be
less greedy about preferring a server with a lower µ−1.
We use b = 3 to have a cubic scoring function (Figure 4),
which presents a good trade-off between clients prefer-
ring faster servers and providing enough robustness to
time-varying service times.
Cubic replica selection. In summary, clients use the
following scoring function for each replica:

Ψs = Rs −1/µ̄s +(q̂s)
3/µ̄s

where q̂s = 1+ oss · n+ q̄s is the queue-size estimation
term, oss is the number of outstanding requests from the
client to s, n is the number of clients in the system, and
Rs, q̄s and µ̄s

−1 are EWMAs of the response time (as
witnessed by the client),1 queue-size and service time

1Note Rs implicitly accounts for network latency but we consider
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feedback received from server s, respectively. The score
reduces to Rs when the queue-size estimate term of the
server is 1 (which can only occur if the client has no
outstanding requests to s and the queue-size feedback is
zero). Note that the Rs − µ−1

s term’s contribution to the
score diminishes quickly when the client has a non-zero
queue-size estimate (see Figure 4).

3.2 Rate control and backpressure
Replica selection allows clients to prefer faster servers.
However, replica selection alone cannot ensure that the
combined demands of all clients on a single server re-
main within that server’s capacity. Exceeding capac-
ity increases queuing on the server-side and reduces the
system’s reactivity to time-varying performance fluctua-
tions. Thus, we introduce an element of rate-control to
the system, wherein every client rate-limits requests to
individual servers. If the rates of all candidate servers
for a request are saturated, clients retain the request in a
backlog queue until a server is within its rate limit again.
Decentralized rate control. To account for servers’
performance fluctuations, clients need to adapt their es-
timations of a server’s capacity and adjust their sending
rates accordingly. As a design choice and inspired by the
CUBIC congestion-control scheme [22], we opt to use a
decentralized algorithm for clients to estimate and adapt
rates across servers. That is, we avoid the need for clients
to inform each other about their demands for individual
servers, or for the servers to calculate allocations for po-
tentially numerous clients individually. This further in-
creases the robustness of our system; clients’ adaptation
to performance fluctuations in the system is not purely
tied to explicit feedback from the servers.

Thus, every client maintains a token-bucket based
rate-limiter for each server, which limits the number of
requests sent to a server within a specified time window
of δ ms. We refer to this limit as the sending-rate (srate).
To adapt the rate limiter according to the perceived per-
formance of the server, clients track the number of re-
sponses being received from a server in a δ ms interval,
that is, the receive-rate (rrate). The rate-adaptation algo-
rithm aims to adjust srate in order to match the rrate of
the server.
Cubic rate adaptation function. Upon receiving a re-
sponse from a server s, the client compares the current
srate and rrate for s. If the client’s sending rate is lower
than the receive rate, it increases its rate according to a
cubic function [22]:

srate ← γ ·

(
∆T − 3

√
(

β ·R0

γ
)

)3

+R0

that network congestion is not the source of performance fluctuations.
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Figure 5: Cubic function for clients to adapt their sending
rates

where ∆T is the elapsed time since the last rate-decrease
event, and R0 is the “saturation rate” — the rate at the
time of the last rate-decrease event. If the receive-rate
is lower than the sending-rate, the client decreases its
sending-rate multiplicatively by β . γ represents a scal-
ing factor and is chosen to set the desired duration of the
saddle region (see § 4 for the values used).
Benefits of the cubic function. While we have not
fully explored the vast design space for a rate adaptation
technique, we were attracted to a cubic growth function
because of its property of having a saddle region. The
functioning of the cubic rate adaption strategy caters to
the following three operational regions (Figure 5): (1)
Low-rates: when the current sending rate is significantly
lower than the saturation rate (after say, a multiplicative
decrease),the client increases the rate steeply; (2) Saddle
region: when the sending rate is close to the perceived
saturation point of the server (R0), the client stabilizes
its sending rate, and increases it conservatively, and (3)
Optimistic probing: if the client has spent enough time
in the stable region, it will again increase its rate aggres-
sively, and thus probe for more capacity. At any time, if
the algorithm perceives itself to be exceeding the server’s
capacity, it will update its view of the server’s saturation
point and multiplicatively reduce its sending rate. The
parameter γ can be adjusted for a desired length of the
saddle region. Lastly, given that multiple clients may po-
tentially be adjusting their rates simultaneously, for sta-
bility reasons, we cap the step size of a rate increase by
a parameter smax.

3.3 Putting everything together
C3 combines distributed replica selection and rate con-
trol as indicated in Algorithms 1 and 2, with the control
flow in the system depicted in Figure 3. When a request
is issued at a client, it is directed to a replica selection
scheduler. The scheduler uses the scoring function to
order the subset of servers that can handle the request,
that is, the replica group (R). It then iterates through the
list of replicas and selects the first server s that is within
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Algorithm 1 On Request Arrival (Request req, Replicas R)

1: repeat
2: R ← sort(R) � sort replicas by cubic score function
3: for Server s in R do
4: if s within srates then
5: consume token(srates)
6: oss ← oss +1 � update outstanding requests
7: send(req,s) � send to server s
8: return
9: if req not sent then

10: wait until token available � Backpressure
11: until req is sent

Algorithm 2 On Request Completion (Request req, Server s)

1: oss ← oss −1 � update outstanding requests
2: update EWMA of qs, µ−1

s feedback
3: if (srates > rrates && now()−Tinc > hysteresis period) then
4: R0 ← srates
5: srates ← srates ·β
6: Tdec ← now()
7: else if (srates < rrates) then
8: ∆T ← now()−Tdec
9: Tinc ← now()

10: R ← γ ·
(

∆T − 3
√

( β ·R0
γ )

)3
+R0

11: srates ← min(srates + smax,R)

the rate as defined by the local rate limiter for s. If all
replicas have exceeded their rate limits, the request is en-
queued into a backlog queue. The scheduler then waits
until at least one replica is within its rate before repeating
the procedure. When a response for a request arrives, the
client records the feedback metrics from the server and
adjusts its sending rate for that server according to the
cubic-rate adaptation mechanism. After a rate increase,
a hysteresis period is enforced (Algorithm 2, line 3) be-
fore another rate-decrease so as to allow clients’ receive-
rate measurements enough time to catch up since the last
increased sending rate at Tinc.

4 Implementation
We implemented C3 within Cassandra. For Cassandra’s
internal read-request routing mechanism, this means that
every Cassandra node is both a C3 client and server
(specifically, coordinators in Cassandra’s read path are
C3 clients). In vanilla Cassandra, every read request
follows a synchronous chain of steps leading up to an
eventual enqueuing of the request into a per-node TCP
connection buffer. For C3, we modified this chain of
steps to control the number of requests that would be
pushed to the TCP buffers of each node. Recall that C3’s
replica scoring and rate control operate at the granular-
ity of replica groups. Given that in Cassandra, there are
as many replica groups as nodes themselves, we need as
many backpressure queues and replica selection sched-
ulers as there are nodes. Thus, every read-request upon
arrival in the system needs to be asynchronously routed

to a scheduler corresponding to the request’s replica
group. Lastly, when a coordinator node performs a re-
mote read, the server that handles the request tracks the
service time of the operation and the number of pending
read requests in the server. This information is piggy-
backed to the coordinator and serves as the feedback for
the replica ranking.

There are challenges in making this implementation
efficient. For one, since a single remote peer can be
part of multiple replica sets, multiple admission con-
trol schedulers may potentially contend to push a re-
quest from their respective backpressure queues towards
the same endpoint. Care needs to be exercised that this
does not lead to starvation. To handle this complexity,
we relied upon the Akka framework [1] for message-
passing concurrency (Actor based programming). With
Akka, every per-replica-group scheduler is represented
as a single actor, and we configured the underlying
Java thread dispatcher to fair schedule between the ac-
tors. This design of having multiple backpressure queues
also increases robustness, as one replica group entering
backpressure will not affect other replica groups. The
message queue that backs each Akka actor implicitly
serves as the backpressure queue per-replica group. At
roughly 600 bytes of overhead per actor, our extensions
to Cassandra is thus lightweight. Our implementation
amounted to 398 lines of code.2

For the rest of our study, we set the cubic rate adapta-
tion parameters as follows: the multiplicative decrease
parameter β is set to 0.2, and we configured γ to set
the saddle region to be 100 ms long. We define the rate
for each server as a number of permissible requests per
20 ms (δ ), and use a hysteresis duration equal to twice
the rate interval. We cap the cubic-rate step size (smax) to
10. We did not conduct an exhaustive sensitivity analysis
of all system parameters, which we leave for future work.
Lastly, Cassandra uses read-repairs for anti-entropy; a
fraction of read requests will go to all replicas (10% by
default). This further allows coordinators to update their
view of their peers.

5 System Evaluation
We evaluated C3 on Amazon EC2. Our Cassandra de-
ployment comprised 15 m1.xlarge instances. We tuned
the instances and Cassandra according to the officially
recommended production settings from Datastax [12] as
well as in consultation with our contacts from the indus-
try who operate production Cassandra clusters.

On each instance, we configured a single RAID0 ar-
ray encompassing the four ephemeral disks which served

2Based on a Cassandra 2.0 development version.
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as Cassandra’s data folder (we also experimented on in-
stances with SSD storage as we report on later). As we
don’t have production workloads, we used the industry-
standard Yahoo Cloud Serving Benchmark (YCSB) [14]
to generate datasets and run our workloads while stress-
ing Cassandra up to its maximum attainable through-
put. We assign tokens to each Cassandra node such that
nodes own equal segments of the keyspace. Cassandra’s
replication factor was set to 3. We inserted 500 mil-
lion 1KB size records generated by YCSB, which served
as the dataset. The workload against the cluster was
driven from three instances of YCSB running in sepa-
rate VMs, each running 40 request generators, for a total
of 120 generators. Each generator has a TCP connec-
tion of its own to the Cassandra cluster. Generators cre-
ate requests for keys distributed according to a Zipfian
access pattern prescribed by YCSB, with Zipf parameter
ρ = 0.99, drawing from a set of 10 million keys. We used
three common workload patterns for Cassandra deploy-
ments to evaluate our scheme: read-heavy (95% reads –
5% writes), update-heavy (50% reads – 50% writes) and
read-only (100% read). These workloads generate ac-
cess patterns typical of photo tagging, session-store and
user-profile applications, respectively [14]. The read and
update heavy workloads in particular are popular across
a variety of Cassandra deployments [18, 25]. Each mea-
surement involves 10 million operations of the workload,
and is repeated five times. Bar plots represent averages
and 95th percentile confidence intervals.

In evaluating C3, we are interested in answering the
following questions across various conditions:

1. Does C3 improve the tail latency without sacrificing
the mean or median?

2. Does C3 improve the read throughput (requests/s)?
3. How well does C3 load condition the cluster and

adapt to dynamic changes in the environment?

Impact of workload on latency: Figure 6 indicates the
read latency characteristics of Cassandra across different
workloads when using C3 compared to Dynamic Snitch-
ing (DS). Regardless of the workload used, C3 improves
the latency across all the considered metrics, namely,
the mean, median, 99th and 99.9th percentile latencies.
Since the ephemeral storage in our instances are backed
by spinning-head disks, the latency increases with the
amount of random disk seeks. This explains why the
read-heavy workload results in lower latencies than the
read-only workload (since the latter causes more random
seeks). Furthermore, C3 effectively shortens the ratio
of tail-latencies to the median, leading to a more pre-
dictable latency profile. With the read-heavy workload,
the difference between the 99.9th percentile latency and
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Figure 6: Cassandra’s latency characteristics when using
Dynamic Snitching and C3. C3 significantly improves the
tail latency under different workloads without compromis-
ing the median.
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Figure 7: Throughput obtained with C3 and with Dynamic
Snitching. C3 achieves higher throughput by better utiliz-
ing the available system capacity across replica servers.

the median is 24.5 ms with C3, whereas with DS, it is
83.91 ms: more than 3x improvement. In the update-
heavy and read-only scenarios, C3 improves the same
difference by a factor of 2.6 each. Besides the different
percentiles, C3 also improves the mean latency by be-
tween 3 ms and 4 ms across all scenarios.

Impact of workload on read throughput: Figure 7 in-
dicates the measured throughputs for C3 versus DS. By
virtue of controlling waiting times across the replicas,
C3 makes better use of the available system capacity, re-
sulting in an increase in throughput across the considered
workloads. In particular, C3 improves the throughput by
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Figure 9: Example number of reads received by a single
Cassandra node, per 100ms. With C3 (top), Cassandra co-
ordinators internally adjust sending rates to match their
peers’ perceived capacity, leading to a smoother load pro-
file free of oscillations. The per-server load is lower in C3
also because the requests are spread over more servers com-
pared to DS (bottom).

between 26% and 43% across the considered workloads
(update-heavy and read-heavy workloads respectively).
We also note that the difference in throughput between
the read- and update-heavy workloads of roughly 75%
(across both strategies) is consistent with publicly avail-
able Cassandra benchmark data [18].

Impact of workload on load-conditioning: We now
verify whether C3 fulfills its design objective of avoid-
ing load pathologies. Since the key access pattern of our
workloads are Zipfian distributed, we observe the load
over time of the node that has served the highest num-
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Figure 10: Overall performance degradation when increas-
ing the number of workload generators from 120 to 210.

ber of reads across each run, that is, the most heavily
utilized node. Figure 8 represents the distribution of the
number of reads served per 100 ms by the most heavily
utilized node in the cluster across runs. Note that despite
improving the overall system throughput, the most heav-
ily utilized node in C3 serves fewer requests than with
DS. As a further confirmation of this, we present an ex-
ample load profile as produced by C3 on highly utilized
nodes (Figure 9). Unlike with DS, we do not see syn-
chronized load-spikes when using C3, evidenced by the
lack of oscillations and synchronized vertical bursts in
the time-series. Furthermore, given that C3’s rate con-
trol absorbs and distributes bursts carefully, it leads to
a smoother load-profile wherein samples of the load in
a given interval are closer to the system’s true capacity
unlike with DS.

Performance at higher system utilization: We now
compare C3 with DS to understand how the performance
of both systems degrade with an increase in overall sys-
tem utilization. We increase the number of workload
generators from 120 to 210 (an increase of 75%). Fig-
ure 10 presents the tail latencies observed for the read-
heavy workload. For a 75% increase in the demand, we
observe that C3’s latency profile, even at the 99.9th per-
centile, degrades proportionally to the increase in system
load. With DS, the median and 99.9th percentile laten-
cies degrade by roughly 82%, whereas the 95th and 99th

percentile latencies degrade by factors of up to 150%.
Furthermore, the mean latency with Dynamic Snitching
is 70% higher than with C3 under the higher load.

Adaptation to dynamic workload change: We now
evaluate a scenario wherein an update-heavy workload
enters a system where a read-heavy workload is already
active, and observe the effect on the latter’s read laten-
cies. The experiment begins with 80 generators run-
ning a read-heavy workload against the cluster. After
640 s, an additional 40 generators enter the system, is-
suing update-heavy workloads. We observe the latencies
from the perspective of the read-heavy generators around
the 640 s mark. Figure 11 indicates a time-series of the
latencies contrasting C3 versus DS. Each plot represents
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Figure 11: Dynamic workload experiment. The moving me-
dian over the latencies observed by the read-heavy gener-
ators from a run each involving C3 (left) and DS (right).
At time 640 s, 40 new generators join the system and issue
update-heavy workloads. With C3, the latencies degrade
gracefully, whereas DS fails to avoid latency spikes.
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Figure 12: Results when using SSDs instead of spinning-
head disks.

a 50-sample wide moving median3 over the recorded la-
tencies. Both DS and C3 react to the new generators
entering the system, with a degradation of the read laten-
cies observed at the 640 s mark. However, in contrast to
DS, C3’s latency profile degrades gracefully, evidenced
by the lack of synchronized spikes visible in the time-
series as is the case with DS.
Skewed record sizes: So far, we considered fixed-length
records. Since C3 relies on per-request feedback of the
service times in the system, we observe whether variable
length records may introduce any anomalies in the con-
trol loop. We use YCSB to generate a similar dataset
as before, but where field sizes are Zipfian distributed
(favoring shorter values). The maximum record length is
2KB, with each record comprising the key, and ten fields.
Again, C3 improves over DS along all the considered la-
tency metrics. In particular, with C3, the 99th percentile
latency is just under 14 ms, whereas that of DS is close
to 30 ms; more than 2x improvement.
Performance when using SSDs: As a further demon-
stration of C3’s generality, we also perform measure-
ments with m3.xlarge instances, which are backed by
two 40 GB SSD disks. We configured a RAID0 ar-
ray encompassing both disks. We reduced the dataset
size to 150 million 1KB records in order to ensure
that the dataset fits the reduced disk capacities of all

3A moving median is better suited to reveal the underlying trend of
a high-variance time-series than a moving average [7]

nodes. Given that with SSDs, the system can sustain a
higher workload, we used 210 read-heavy generators (70
threads per YCSB instance). Figure 12 illustrates the la-
tency improvements obtained when using C3 versus DS
with SSD backed instances. Even under the higher load,
both algorithms have significantly lower latencies than
when using spinning head disks. However, C3 again
improves the 99.9th percentile latency by more than 3x.
Furthermore, the difference between the 99th and 99.9th

percentile latencies in C3 is under 5 ms, whereas with
DS, it is on the order of 20 ms. Lastly, C3 also improves
the average latency by roughly 3 ms, and increases the
read throughput by 50% of that obtained by DS.

Comparison against request reissues: Cassandra has
an implementation of speculative retries [16] as a means
of reducing tail latencies. After sending a read request to
a replica, the coordinator waits for the response until a
configurable duration before reissuing the request to an-
other replica. We evaluated the performance of DS with
speculative retries, configured to fire after waiting until
the 99th percentile latency. However, we observed that
latencies actually degraded significantly after making use
of this feature, up to a factor of 5 at the 99th percentile.
We attribute this to the following cause: in the presence
of highly variable response times across the cluster (al-
ready due to DS), coordinators potentially speculate too
many requests. This increases the load on disks, further
increasing seek latencies. Due to this anomaly, we did
not perform further experiments. We however, leave a
note of caution that speculative retries are not a silver
bullet when operating a system at high utilization [48].

Sending rate adaptation and backpressure over time:
Lastly, we turn to a seven-node Cassandra cluster in our
local testbed to depict how nodes adapt their sending
rates over time. Figure 13 presents a trace of the sending
rate adaptation performed by two coordinators against a
third node (tracked node). During the run, we artificially
inflated the latencies of the tracked node thrice (using
the Linux tc utility), indicated by the drops in through-
put in the interval (45, 55) s, as well as the two shorter
drops at times 59 s and 67 s. Observe that both coordina-
tors’ estimations of their peer’s capacity agree over time.
Furthermore, the figure depicts all three rate regimes of
the cubic rate control mechanism. The points close to
1 on the y-axis are arrived at via the multiplicative de-
crease, causing the system to enter the low-rate regime.
At that point, C3 aggressively increases its rate to be
closer to the tracked saturation rate, entering the saddle
region (along the smoothened median). The stray points
above the smoothened median are points where C3 op-
timistically probes for more capacity. During this run,
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Figure 13: Sending rate adaptation performed by two co-
ordinators against a third server. The receiving server’s
latency is artificially inflated thrice. The blue dots repre-
sent the sending-rates as adjusted by the cubic rate control
algorithm, the black line indicates a moving median of the
sending rates, and the red X marks indicate moments when
affected replica group schedulers enter backpressure mode.

the backpressure mechanism fired 4 times (3 of which
are very close in time) across both depicted coordina-
tor nodes. Recall that backpressure is exerted when all
replicas of a replica group have exceeded their rate limits.
When the tracked node’s latencies are reset to normal, the
YCSB generators throttle up, sending a heavy burst in a
short time interval. This causes a momentary surge of
traffic towards the tracked node, forcing the correspond-
ing replica selection schedulers to apply backpressure.

6 Evaluation Using Simulations
We turn to simulations to further evaluate C3 under dif-
ferent scenarios. Our objective is to study the C3 scheme
independently of the intricacies of Cassandra and draw
more general results. Furthermore, we are interested in
understanding how the scheme performs under different
operational extremes. In particular, we explore how C3’s
performance varies according to (i) different frequencies
of service time fluctuations, (ii) lower utilization levels,
and (iii) under skewed client demands.
Experimental setup: We built a discrete-event simula-
tor4, wherein workload generators create requests at a set
of clients, and the clients then use a replica selection al-
gorithm to route requests to a set of servers. A request
generated at a client has a uniform probability of being
forwarded to any replica group (that is, we do not model
keys being distributed across servers according to consis-
tent hashing as in Cassandra). The workload generators

4Code at https://github.com/lalithsuresh/absim.

create requests according to a Poisson arrival process, to
mimic arrival of user requests at web servers [35]. Each
server maintains a FIFO request queue. To model con-
current processing of requests, each server can service a
tunable number of requests in parallel (4 in our settings).
The service time each request experiences is drawn from
an exponential distribution (as in [48]) with a mean ser-
vice time μ−1 = 4 ms. We incorporated time-varying
performance fluctuations into the system as follows: ev-
ery T ms (fluctuation interval), each server, indepen-
dently and with a uniform probability, sets its service rate
either to μ or to μ ·D, where D is a range parameter (thus,
a bimodal distribution for server performance [41]). We
set the D parameter to 3 (qualitatively, our results ap-
ply across multiple tested values of D, which we omit
for brevity). The request arrival rate corresponds to 70%
(high utilization scenario) and 45% (low utilization sce-
nario) of the average service rate of the system, consider-
ing the time-varying nature of the servers’ performance
(that is, as if the service rate of each server’s proces-
sor was (μ + D · μ)/2). As with our experiments us-
ing Cassandra, we use a read-repair probability of 10%
and a replication factor of 3, which further increases the
load on the system. We use 200 workload generators,
50 servers, and vary the number of clients from 150 to
300. We set the one-way network latency to 250 μs. We
repeat every experiment 5 times using different random
seeds. 600,000 requests are generated in each run.

We compare C3 against three strategies:
1. Oracle (ORA): each client chooses based on per-

fect knowledge of the instantaneous q/μ ratio of the
replicas (no required feedback from servers).

2. Least-Outstanding Requests (LOR): each client
selects a replica to which it has sent the least number
of requests so far.

3. Round-Robin (RR): as in C3, each client main-
tains a per-replica rate limiter. However, here it uses
a round-robin scheme to allocate requests to repli-
cas in place of C3’s replica ranking. This allows us
to evaluate the contribution of just rate limiting to
the effectiveness of C3.

We also ran simulations of strategies such as uniform
random, least-response time, and different variations of
weighted random strategies. These strategies did not
fare well compared to LOR, and due to space limits,
we do not present results for them. We do not model
disk activity in the simulator, and thus avoid comparing
against Dynamic Snitching (since it relies on gossiping
disk iowait measurements).
Impact of time-varying service times: Given that C3
clients rely on feedback from servers, we study the effect
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Figure 14: Impact of time-varying service times at high-
utilization and low-utilization scenarios. Bars exceeding
400 ms are not shown.
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Figure 15: Impact of demand skews: 20% and 50% of the
clients generate 80% of the requests to the servers. Bars
exceeding 400 ms are not shown.

of the service-time fluctuation frequency on C3’s control
over the tail latency. Figure 14 presents the 99th per-
centile tail-latencies when using C3 with 150 and 300
clients. When the average service times of the servers
in the system change every 10 ms, C3 performs simi-
larly to LOR and RR. This is expected, because at such
a high frequency of performance variability, clients can
make use of one round-trip’s worth of feedback for at
most another request, before that information is stale.
However, as the interval between service-time changes
increases, LOR’s performance degrades more compared
to that of C3. Furthermore, the performance of RR sug-
gests that rate-limiting alone does not improve the la-
tency tail. This is because RR does not proactively prefer
faster servers.. We also note that C3’s performance re-
mains relatively close to that of the ORA.

Performance at low utilization: While C3 is geared to-
wards high-utilization environments with a number of re-
quests in flight [35,42], we now demonstrate the efficacy
of C3 under low-utilization settings as well. We set the
arrival rate to match a 45% system utilization. While

the performances of LOR and RR degrade with higher
fluctuation intervals, C3’s performance begins to plateau
instead. This is because a client using LOR, will allo-
cate requests to slow servers as long as it has assigned
more requests to other replicas. This leads to poor alloca-
tions as initially explained in Figure 1. Thus, the longer
a server remains bad, the higher the chance that it will
receive some requests when clients use the LOR strat-
egy. On the other hand, C3 explicitly aims to equalize
the product of the queue-size and µ−1 across servers, and
thus does not use slow servers any more than required to
balance the latency distribution. We reiterate that while
the average service times of a server may change more
slowly, the response times are still subject to the dynamic
waiting times as a result of queuing at the server.
Performance under heavy demand-skews: Lastly, we
study the effect of heavy demand skews on the observed
latencies. Figure 15 presents results when 20% and 50%
of C3 clients generate 80% of the total demand towards
the servers, respectively. Again, regardless of the de-
mand skew, C3 outperforms LOR and RR.

7 Discussion
How general is C3? C3 combines two mechanisms in
order to carefully manage tail latencies in a distributed
system: (i) a load-balancing scheme that is informed by
a continuous stream of in-band feedback about a server’s
load, and (ii) distributed rate-control and backpressure.
We believe that the ideas discussed here can be applied
to any low-latency data store that can benefit from replica
diversity. Furthermore, our simulations compared C3
against different replica selection mechanisms, and al-
lowed us to decouple the workings of the algorithms
themselves from the intricacies of running them within
a complex system such as Cassandra. That said, we are
currently porting C3 onto systems such as MongoDB
and token-aware Cassandra clients such as Astyanax [8]
(which will avoid the problem of clients selecting over-
loaded coordinators).
Long-term versus short-term adaptations: A com-
mon recommended practice among operators is to over-
provision distributed systems deployed on cloud plat-
forms in order to accommodate performance variabil-
ity [37]. Unlike application servers, storage nodes that
handle larger-than-memory datasets are not easily scaled
up or down; adding a new node to the cluster and the sub-
sequent re-balancing of data are operations that happen
over timescales of hours. Such questions of provision-
ing sufficient capacity for a demand is orthogonal to our
work; our objective with C3 is to carefully utilize already
provisioned system resources in the face of performance
variability over short timescales.
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Strongly consistent reads: Our work has focused on
selecting one out of a given set of replicas, which in-
herently assumes eventual consistency. This applies to
common use-cases at large web-services today, including
Facebook’s accesses to its social graph [47], and most of
Netflix’s Cassandra usage [24]. However, it remains to
be seen how our work can be applied to strongly con-
sistent reads as well. In particular, the gains in such a
scenario depend on the synchronization overhead of the
respective read protocol, and the effect of a straggler can-
not be easily avoided.

8 Related Work
Dean and Barroso [16] described techniques employed at
Google to tolerate latency variability. They discuss short-
term adaptations in the form of request reissues, along
with additional logic to support preemption of duplicate
requests to reduce unacceptable additional load. In D-
SPTF [30], a request is forwarded to a single server. If
the server has the data in its cache, it will respond to the
query. Otherwise, the server forwards the request to all
replicas, which then make use of cross-server cancella-
tions to reduce load as in [16]. Vulimiri et al. [48] also
make use of duplicate requests. They formalize the dif-
ferent threshold points at which using redundancy aids
in minimizing the tail. In the context of Microsoft Azure
and Amazon S3, CosTLO [49] also presents the efficacy
of duplicate requests in coping with performance vari-
ability. In contrast to these works, our approach does
not rely on redundant requests and is in essence comple-
mentary to the above in that request reissues could be
introduced atop C3.

Kwiken [23] decomposes the problem of minimizing
end-to-end latency over a processing DAG into a man-
ageable optimization over individual stages, wherein the
latency reduction techniques (e.g., request reissues) are
complementary to our approach.

Pisces [42] is a multi-tenant key-value store architec-
ture that provides fairness guarantees between tenants.
It is concerned with fair-sharing the data-store and pre-
senting proportional performances to different tenants.
PARDA [21] is also focused on the problem of shar-
ing storage bandwidth according to proportional-share
fairness. Stout [31] uses congestion control to respond
to to storage-layer performance variability by adaptively
batching requests. PriorityMeister [53] focuses on pro-
viding tail latency QoS for bursty workloads in shared
networked storage by combining priorities and rate lim-
iters. As in C3, these works make use of TCP-inspired
congestion control techniques for allocating storage re-
sources across clients. While orthogonal to the problem
of replica selection, we are planning to investigate the

ideas embodied in these works within the context of C3.
Pisces recognizes the problem of weighted replica selec-
tion but employs a round robin algorithm similar to the
one used in our simulation results.

Mitzenmacher [33] showed that allowing a client to
choose between two randomly selected servers based
on queue lengths exponentially improves load-balancing
performance over a uniform random scheme. This ap-
proach is embodied within systems such as Sparrow [36].
However, in our settings, replication factors are typically
small compared to cluster size. Given a common replica-
tion factor of 3, ranking 3 servers instead of 2 only incurs
a negligible overhead. Moreover, the basic power of two
choices strategy does not include a rate limiting compo-
nent to avoid exceeding server capacities, in contrast to
C3. A thorough comparison between the two approaches
is left for future work.

Lastly, there is much work in the cluster computing
space on skew-tolerance [4, 19, 27, 44, 51]. In contrast
to our work, cluster jobs operate at timescales of at least
a few hundreds of milliseconds [36], if not minutes or
hours.

9 Conclusion

In this paper, we highlighted the challenges involved
in making a replica selection scheme explicitly cope
with performance fluctuations in the system and envi-
ronment. We presented the design and implementation
of C3. C3 uses a combination of in-band feedback from
servers to rank and prefer faster replicas along with dis-
tributed rate control and backpressure in order to re-
duce tail latencies in the presence of service-time fluc-
tuations. Through comprehensive performance evalu-
ations, we demonstrate that C3 improves Cassandra’s
mean, median and tail latencies (by up to 3 times at the
99.9th percentile), all while increasing read throughput
and avoiding load pathologies.
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ments in the Cloud: Observing, Analyzing, and Reducing Vari-
ance. VLDB Endowment, 3(1-2), Sept. 2010.

[42] D. Shue, M. J. Freedman, and A. Shaikh. Performance Isolation
and Fairness for Multi-tenant Cloud Storage. In OSDI, 2012.

[43] S. Souders. Velocity and the Bottom Line, 2009.
http://radar.oreilly.com/2009/07/
velocity-making-your-site-fast.html.

[44] C. Stewart, A. Chakrabarti, and R. Griffith. Zoolander: Effi-
ciently Meeting Very Strict, Low-Latency SLOs. In USENIX
ICAC, 2013.

[45] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and
S. Shah. Serving Large-scale Batch Computed Data with Project
Voldemort. In FAST, 2012.

[46] J. A. van Mieghem. Dynamic Scheduling with Convex Delay
Costs: The Generalized $c|mu$ Rule. The Annals of Applied
Probability, 5, 1995.

[47] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,
P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon,
S. Kulkarni, N. Lawrence, M. Marchukov, D. Petrov, and
L. Puzar. TAO: How Facebook Serves the Social Graph. In SIG-
MOD, 2012.

[48] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker. Low Latency via Redundancy. In CoNEXT, 2013.

[49] Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO: Cost-Effective
Redundancy for Lower Latency Variance on Cloud Storage Ser-
vices. In NSDI, 2015.

[50] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: Avoiding
Long Tails in the Cloud. In NSDI, 2013.

[51] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environ-
ments. In OSDI, 2008.

[52] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes. CPI2: CPU performance isolation for shared compute
clusters. In EuroSys, 2013.

[53] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger. PriorityMeister: Tail Latency QoS for Shared Networked
Storage. In SoCC, 2014.

15





USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 529

CubicRing: Enabling One-Hop Failure Detection and Recovery for
Distributed In-Memory Storage Systems

Yiming Zhang⋆, Chuanxiong Guo†, Dongsheng Li⋆, Rui Chu⋆, Haitao Wu†, Yongqiang Xiong‡

⋆National University of Defense Technology, †Microsoft, ‡MSR
{ymzhang, dsli, rchu}@nudt.edu.cn, {chguo, hwu, yqx}@microsoft.com

Abstract
In-memory storage has the benefits of low I/O latency
and high I/O throughput. Fast failure recovery is cru-
cial for large-scale in-memory storage systems, bringing
network-related challenges including false detection due
to transient network problems, traffic congestion during
the recovery, and top-of-rack switch failures. This paper
presents CubicRing, a distributed structure for cube-
based networks which exploits network proximity to
restrict failure detection and recovery within the small-
est possible one-hop range. We leverage the Cubic-
Ring structure to address the aforementioned challenges
and design a network-aware in-memory key-value store
called MemCube. In a 64-node 10GbE testbed, Mem-
Cube recovers 48 GB of data for a single server failure
in 3.1 seconds. The 14 recovery servers achieve 123.9
Gb/sec aggregate recovery throughput, which is 88.5%
of the ideal aggregate bandwidth.

1 Introduction
Disk-based storage is becoming increasingly problemat-
ic in meeting the needs of large-scale cloud applications
in terms of I/O latency, bandwidth and throughput. As
a result, in recent years we see a trend of migrating data
from disks to random access memory (RAM) in storage
systems. In-memory storage is proposed to keep data
entirely and permanently in the RAM of storage servers.
E.g., Tenant’s CMEM [2, 4] builds a storage cluster with
thousands of servers to provide public in-memory key-
value store service, which uses one synchronous backup
server for each of the RAM storage servers. Thousands
of latency-sensitive applications (e.g., online games)
have stored several tens of TB of data in CMEM. Ouster-
hout et al. propose RAMCloud [45], an in-memory key-
value store that keeps one copy of data in storage servers’
RAM and stores redundant backup copies on backup
servers’ disks. RAMCloud uses InfiniBand networks to
achieve low latency RPC.

In-memory storage has many advantages over disk-

based storage including high I/O throughput, high band-
width, and low latency. For instance, CMEM provides
1000× greater throughput than disk-based systems [4];
RAMCloud boosts the performance of online data-
intensive applications [46] which make a large number
of sequential I/O requests in limited response time (e.g.,
generating dynamic HTML pages in Facebook [49]); and
the applications need no longer maintain the consistency
between the RAM and a separate backing store.

Fast failure recovery is crucial for large-scale in-
memory storage systems to achieve high durability and
availability. Previous studies [46] show for normal cases
(3× replication, 2 failures/year/server with a Poisson dis-
tribution) in a 10,000-server in-memory storage system,
the probability of data loss in 1 year is about 10−6 if the
recovery is finished in 1 second; and it increases to 10−4

when the recovery time is 10 seconds. On the other hand,
the relatively high failure rate of commodity servers
requires a recovery time of no more than a few seconds
to achieve continuous availability [46] in large-scale
systems. According to [7], 1000+ server failures occur
in one year of Google’s 1800-server clusters. Since the
recovery of in-memory storage server failures requires to
fully utilize the resources of the cluster [45], a recovery
time of a few seconds would result in an availability of
about four nines (99.99%, 3,150 seconds downtime/year)
if only server failures are considered, while a recovery
time of several tens of seconds may degrade the avail-
ability to less than three nines, which could become the
dominant factor for the overall availability.

RAMCloud realizes fast failure recovery by randomly
scattering backup data on many backup servers’ disks
and reconstructing lost data in parallel through high-
bandwidth InfiniBand networks. However, many realis-
tic network-related challenges remain to be addressed for
large-scale in-memory storage systems: (i) it is difficult
to quickly distinguish transient network problems from
server failures across a large-scale network; (ii) the large
number (up to tens of thousands) of parallel recovery
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flows is likely to bring continuous traffic congestion
which may result in a long recovery time; and (iii) top-
of-rack (ToR) switch failures make fast failure recovery
even more challenging.

To address these challenges this paper presents Cubic-
Ring, a distributed structure for cube-networks-based in-
memory storage systems. CubicRing exploits network
proximity to restrict failure detection and recovery within
the smallest possible (i.e., one-hop) range, and cube net-
works could naturally handle switch failures with their
multiple paths. We leverage the CubicRing structure
to design a network-aware in-memory key-value store
called MemCube, where the storage system and the
network collaborate to achieve fast failure recovery. We
implement a prototype of MemCube on BCube [35], and
build a 64-node 10GbE testbed for MemCube evaluation.
MemCube recovers 48 GB of data from a failed server
in 3.1 seconds. In the recovery, the 14 recovery servers
achieve 123.9 Gb/sec aggregate recovery throughput,
which is 88.5% of the ideal aggregate bandwidth.

2 Preliminaries

Large-scale in-memory storage systems must provide a
high level of durability and availability. One possible
approach is to replicate all the data to the RAM of
backup servers [4]. However, this approach would
dramatically increase both the cost and the energy usage,
and in-memory replicas are still vulnerable under power
failures. On the other hand, although erasure coding
can reduce some of the cost, it makes recovery consid-
erably more expensive [46]. RAMCloud leverages high-
bandwidth InfiniBand networks and utilizes aggressive
data partitioning [19] for fast failure recovery [45].
It randomly scatters backup data across many backup
servers’ disks, and after a failure happens it quickly
reconstructs lost data in parallel. However, it is difficult
for RAMCloud’s approach to scale to large clusters with
thousands of servers because many network problems
remain to be addressed [3]. We characterize the common
network-related challenges for fast failure recovery in
large-scale in-memory storage systems as follows.

False failure detection. To quickly recover from a
failure, the timeout of heartbeats should be relatively
short. However, various transient network problems [31]
like incast and temporary hot spot may make heartbeats
be discarded (in Ethernet) or suspended (in InfiniBand),
making it difficult to be distinguished from real server
failures. Although false failure detection is not fatal (as
discussed in Section 5), the recovery of tens of GB of da-
ta is definitely very expensive. Since network problems
cannot be completely avoided in any large-scale systems,
our solution is to shorten the paths that heartbeats have to
traverse, reducing the chances of encountering transient

network problems. Ideally, if the servers only inspect
the status of directly-connected neighbors, then we can
minimize the possibility of false positives induced by
transient network problems.

Recovery traffic congestion. Fast failure recovery re-
quires an aggregate recovery bandwidth of at least tens of
GB/sec both for disks and for networks. This means that
hundreds or even thousands of servers will be involved
in the recovery. If the distributed recovery takes place in
a random and unarranged manner and the recovery flows
traverse long paths, it may bring hot spots in the network
and result in unexpected long recovery time. Even on full
bisection bandwidth networks like FatTree [34], severe
congestion is still inevitable due to the problem of ECMP
(equal-cost multi-path) routing [10]: large, long-lived
recovery flows may collide on their hash and end up on
the same output ports creating in-network bottlenecks.
To address this problem, our solution is to restrict the
recovery traffic within the smallest possible range. Ide-
ally, if all the recovery flows are one-hop, then we can
eliminate the possibility of in-network congestion.

ToR switch failures. A rack usually has tens of servers
connected to a ToR switch. In previous work [4, 45]
when a ToR switch fails, all its servers are considered
failed and several TB of data may need to be recovered.
The recovery storm takes much more time than a single
recovery. Since the servers connected to a failed switch
are actually “alive”, our solution is to build the in-
memory storage system on a multi-homed cubic topol-
ogy, each server being connected to multiple switches.
When one switch fails, the servers can use other paths to
remain connected and thus no urgent recovery is needed.

3 Structure

3.1 Design Choices
Large-scale in-memory storage systems aggregate the
RAM of a large number of servers (each with at least
several tens of GB of RAM) into a single storage.
This subsection discusses our choices of failure model,
hardware, data model, and structure.

Failure model. For storage systems, (i) servers and
switches may crash, which results in data loss (omis-
sion failures) [52]; and (ii) servers and switches may
experience memory/disk corruption, software bugs, etc,
modifying data and sending corrupted messages to other
servers (commission failures) [43]. Like RAMCloud,
in this paper we mainly focus on omission failures.
Commission failures can be detected and handled using
existing techniques like Merkle-tree based, end-to-end
verification and replication [43, 52], but this falls beyond
the scope of this paper and is orthogonal to our design.

Network hardware. The design of CubicRing is in-
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dependent to network hardware and can be applied to
both Ethernet and InfiniBand. For implementation, we
follow the technical trend and focus on Ethernet, because
most data centers are constructed using commodity Eth-
ernet switches and high-performance Ethernet is more
promising and cost-effective [34]. Recent advances show
that Ethernet switches with 100 Gbps bandwidth [6] and
sub-µs latency [5] are practical in the near future, and
Ethernet NICs with RDMA support have reduced much
of the latency of complex protocol stacks [27].

Data model. We focus on a simple key-value store
that supports arbitrary number of key-value pairs, which
consist of a 64-bit key, a variable-length value, and a
64-bit version number. Our prototype provides a simple
set of operations (“set key value”, “get key” and “delete
key”) for writing/updating, reading and deleting data.

Primary-recovery-backup. Storage systems have mul-
tiple copies for each piece of data. There are two
choices, namely symmetric replication [22] and primary-
backup [16], to maintain the durability and consistency.
In symmetric replication all copies have to be kept in
the RAM of servers and a quorum-like technique [25]
is used for conflict resolution. In contrast, in primary-
backup only one primary copy is needed to be stored
in RAM while redundant backup copies could be stored
on disks, and all read/write operations are through the
primary copy. Considering the relatively high cost and
energy usage per bit of RAM, we prefer primary-backup.

We refer to the servers storing the primary copies in
RAM as primary servers, and the servers storing the
backup copies on disks as backup servers. Once a
primary server fails, the backup servers will recover the
backup copies to some healthy servers that are called
recovery servers. As discussed in Section 5, the number
of recovery servers is a tradeoff between recovery time
and recovered data locality: a larger number decreases
the recovery time but results in higher fragmentation, and
vice versa. The “primary-recovery-backup” structure
(shown in Fig. 1(a)) is adopted by many storage systems
like RAMCloud and BigTable [19], where each server
symmetrically acts as all the three roles.

3.2 CubicRing
Our basic idea is to restrict failure detection and re-
covery traffic within the smallest possible (i.e., 1-hop)
range. We improve the primary-recovery-backup struc-
ture (shown in Fig. 1(a)) with a directly-connected tree
(shown in Fig. 1(b)), where a primary server has multiple
directly-connected recovery servers, each of which has
multiple directly-connected backup servers. Here two
servers are “directly-connected” if they are connected to
the same switch. Clearly, Fig. 1(b) can be viewed as a
special case of Fig. 1(a).

In Fig. 1(b), the primary server P periodically sends
heartbeats to its recovery servers, and once the recovery
servers find P failed, they will recover the lost data from
their backup servers. Since the recovery servers directly
connect to the primary server, they can eliminate much of
the possibility of false detection due to transient network
problems (as discussed in Section 4.1); and since they
also directly connect to their backup servers, the recovery
traffic is guaranteed to have no in-network congestion.

The directly-connected tree provides great benefit for
accurate failure detection and fast recovery. We sym-
metrically map the tree onto the entire network, i.e.,
each server equally plays all the three roles of prima-
ry/recovery/backup server. Our insight is that all cubic
topologies are some variations of generalized hypercube
(GHC) [15], each vertex of which can be viewed as the
root of a tree shown in Fig. 1(b).

We take BCube [35] as an example. BCube(n,0)
is simply n servers connected to an n-port switch.
BCube(n,1) is constructed from n BCube(n,0) and n n-
port switches. More generically, a BCube(n,k) (k ≥ 1)
is constructed from n BCube(n,k − 1) and nk n-port
switches, and has N = nk+1 servers akak−1 · · ·a0 where
ai ∈ [0,n − 1], i ∈ [0,k]. Fig. 2 shows a BCube(4,1)
constructed from 4 BCube(4,0). If we replace each
switch and its n links of BCube(n,k) with an n× (n−1)
full mesh that directly connects the servers, we will get a
(k+1)-dimension, n-tuple generalized hypercube.

We design the multi-layer cubic rings (CubicRing) as
shown in Fig. 3 to map the key space onto a cube-based
network (e.g., BCube), following the primary-recovery-
backup structure depicted in Fig. 1.

• The first layer is the primary ring, which is com-
posed of all the servers. The entire key space is
divided and assigned to the servers on the primary
ring. Fig. 3 shows an example of the primary ring.

• Each primary server on the primary ring, say server
P, has a second layer ring called recovery ring that
is composed of all its 1-hop neighbors (recovery
servers). When P fails its data will be recovered
to the RAM of its recovery servers. Fig. 3 shows an
example of the recovery ring (01, 02, 03, 10, 20, 30)
of a primary server 00.

• Each recovery server R corresponds to a third layer
ring called backup ring, which is composed of the
backup servers that are 1-hop to R and 2-hop to
P. The backup copies of P’s data are stored on the
disks of backup servers. Fig. 3 shows an example
of the (six) backup rings of a primary server 00.

In the symmetric CubicRing depicted in Fig. 3, all
the 16 primary servers have the same primary-recovery-
backup structure (i.e., a directly-connected tree) with
server 00. We can easily obtain the following Theorem 1,
the formal proof of which is given in Appendix A.
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Figure 1: Primary-recovery-backup.

   

   

               





Figure 2: An example of BCube(4,1).

Theorem 1 On BCube(n,k) there are nk+1, (n−1)(k+
1), and (n− 1)k servers on the primary ring, recovery
ring (of each primary server), and backup ring (of each
recovery server), respectively. A backup server resides
on two backup rings of a primary server, which has
totally (n−1)2k(k+1)

2 backup servers.

For BCube(16,2), for example, there are 4096 prima-
ry servers, each of which has 45 recovery servers (each
having a 30-server backup ring) and 675 backup servers.
Note that CubicRing does not require a primary server to
employ all its recovery/backup servers. E.g., a primary
server in BCube(16,2) may employ 30 (instead of all the
45) servers on its recovery ring to reduce fragmentation,
at the cost of lower aggregate recovery bandwidth.

The construction of CubicRing is applicable to all cu-
bic topologies such as MDCube [53], k-ary n-cube [55],
and hyperbanyan [29], because they are all variations of
the GHC [15] topology which consists of r-dimensions
with mi nodes in the ith dimension. A server in a par-
ticular axis is connected to all other servers in the same
axis, and thus CubicRing can be naturally constructed:
all the servers in a GHC form the primary ring, and for
each primary server its 1-hop neighbors form its recovery
ring and 2-hop neighbors form backup rings. Next, we
will focus on BCube [35] to design a network-aware in-
memory key-value store called MemCube; extending for
arbitrary GHC is straightforward.

3.3 Mapping Keys to Rings
MemCube uses a global coordinator for managing the
mapping between the key space and the primary ring.
The coordinator assigns the key space to the primary
servers with consideration of load balance and locality:
all the primary servers should store roughly-equal size
of primary copies of data (called primary data), and
adjacent keys are preferred to be stored in one server.
Currently MemCube simplifies the load balancing prob-


























 











 

























Figure 3: The CubicRing structure.

lem by equally dividing the key space into consecutive
sub spaces, each being assigned to one primary server.
This design is flexible in dynamically reassigning the
mapping when the load distribution changes (which has
not yet been implemented in our current prototype).

The key space held by a primary server P is further
mapped to P’s recovery servers; and for each recovery
server R, its sub space is mapped to its backup servers.
The mapping should make all the recovery servers be
assigned equal size of data, because after P fails they will
recover P’s data from their backup rings simultaneously.
In order to avoid potential performance bottleneck at
the global coordinator, the mapping from P’s key space
to P’s recovery/backup rings is maintained by P itself
instead of the coordinator, and the recovery servers have
a cache of the mapping they are involved in. After P fails
the global coordinator asks all the recovery servers of P
to reconstruct the mapping.

Dominant/non-dominant backup data. For durability,
each primary copy has f backup copies, among which
there are 1 dominant copy stored on the backup server
(according to the primary-recovery-backup mapping),
and f −1 non-dominant copies stored on f −1 secondary
backup servers (secondary servers for short) in different
failure domains [44]. A failure domain is a set of servers
that are likely to experience a correlated failure, e.g.,
servers in a rack sharing a single power source. The
mapping from a primary server P’s key space to the sec-
ondary servers is also maintained by P and cached at P’s
recovery servers. Normally only the dominant backup
copy participates in the recovery. Non-dominant copies
are used only if the primary copy and the dominant
backup copy fail concurrently. In Fig. 2, e.g., suppose
that the servers connected to the same level-0 switches
are in one rack failure domain. Given primary server P
and backup server B of a primary copy, any f −1 servers
that reside in f − 1 racks different from where P and B
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reside can serve as secondary servers. E.g., for primary
server 00 and backup server 11, the secondary servers
( f = 3) may be 21 in rack < 0,2 > and 31 in < 0,3 >.
Normal read/write operations. When a primary server
receives a read request it directly returns. When re-
ceiving a write, it stores the new data in its RAM,
and transfers it to one (2-hop-away) backup server and
f − 1 secondary backup servers. When a backup server
receives the data, it returns after storing it in its buffer to
minimize write latency. The primary server returns after
all the backup servers return. When the buffer fills, the
backup servers use logging [48] to write buffered data to
disks and free the buffer. The backup data’s log is divided
into tracts which are the unit of buffering and I/O.

4 Recovery
4.1 Failure Detection
Primary servers periodically send heartbeats to their
recovery servers. If a recovery server R does not receive
any heartbeats from its primary server P for a certain
period, R will report this suspicious server failure to
the coordinator, which would verify the problem by
contacting P through all the k+1 paths on BCube(n,k).
If P does fail, then all the tests should report the failure
and the coordinator will initiate the recovery. Otherwise
if some tests report P is still alive, then the coordinator
will notify the available paths to the recovery servers that
lose connections to P. If some (alive) servers keep being
unreachable through a switch for a period of time, then
the switch will be considered failed.

There are a high rate of transient network problems
and a large number of small packets may be lost [31],
which might result in large-scale unavailability and con-
sequently severe disruptions. MemCube uses a relatively
short timeout to achieve fast recovery. This introduces
a risk that transient network problems make heartbeats
get lost and thus may be incorrectly treated as server
failures. Our solution is to involve as few as possible
network devices/links on the paths that heartbeats tra-
verse: MemCube achieves 1-hop failure detection which
eliminates much of the possibility of network-induced
false positives. In contrast, multi-hop detection (where,
e.g., a heartbeat traverses 01 → 11 → 10 → 00 instead of
01 → 00 in Fig. 2) will considerably increase the risk.

In some uncommon cases, however, false positives are
inevitable, e.g., a server is too busy to send heartbeats.
MemCube uses atomic recovery to address this kind of
problems, which will be discussed in Section 5.

4.2 Single Server Failure Recovery
A server failure means three types of failures corre-
sponding to its three roles of primary/recovery/backup
server. We sketch the major steps of recovering these

Pseudocode 1 Single server failure recovery

1: procedure RECOVERFAILURES(FailedServer F)
2: Pause relevant services
3: Reconstruct key space mapping of F
4: Recover primary data for primary server failure∗

◃ All recoveries with ∗ are performed concurrently
5: Recover backup data for primary server failure∗

6: Resume relevant services
7: Recover from recovery server failure∗

8: Recover from backup server failure
9: end procedure

failures in Pseudocode 1 (where for brevity no failure
domain constraint is considered). During the recovery
the backup data is read from disks of backup servers,
divided into separate groups, transferred through the
network, and received and processed (e.g., inserted into
a hash table) by the new servers. Since most recovery
flows are 1-hop, the in-network transfer is no long a
bottleneck. And due to the relatively small number of
recovery servers compared to other resources (as shown
in our evaluation in Section 6), the recovery bottleneck
is the inbound network bandwidth of recovery servers.

Pause relevant services. After a server F’s failure is
confirmed by the coordinator, the key space held by F (as
a primary server) will become unavailable. During the
recovery all the relevant recovery/backup servers would
pause servicing normal requests to avoid contention.

Reconstruct mapping. The coordinator asks all F’s
recovery servers to report their local cache of (part
of) the mapping from F’s key space to F’s recov-
ery/backup rings, and reconstructs an integrated view
of the mapping previously maintained by F . Then the
coordinator uses the mapping to initiate the recovery of
primary/recovery/backup server failures for F .

Primary data recovery of primary server failure. After
being notified the failure of a primary server F (say
00 in Fig. 2), F’s backup servers (e.g., 11) will read
backup data in tracts from disks, divide the data into
separate groups for their 1-hop-away recovery servers
(01 and 10), and transfer the groups of data to the
recovery servers in parallel. To pipeline the processes
of data transfer and storage reconstruction, as soon as
the new primary server receives the first tract it begins
to incorporate the new data into its in-memory storage.
Keys are inserted to the hash table that maps from a key
to the position where the KV resides. The new primary
servers use version numbers to decide whether a key-
value should be incorporated: only the highest version
is retained and any older versions are discarded.

Backup data recovery of primary server failure. In
addition to the primary data recovery, the (dominant)
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backup data previously stored on the old backup rings
of the failed primary server F (00 in Fig. 2) needs to
be recovered to the backup rings of the new primary
servers R (i.e., F’s recovery servers), for maintaining the
CubicRing structure. To minimize the recovery time of
the future failure of R (e.g., 01), the backup data of F
(00) should be evenly reassigned from the old backup
ring (11, 21, 31) of R (01) to the new backup rings of
R. Suppose that each backup server B on the old backup
ring (11, 21, 31) stores β GB of F’s backup data that
is previously mapped onto R (01). Since each backup
server B (e.g., 11) is a new recovery server of R (01), B
(11) only needs to recover its backup data to its 1-hop-
away backup servers (B′) on B’s new backup ring (10,
12, 13), proportional to the number of recovery servers
served by B′: β/5 GB of backup data to 10, 2β/5 GB
to 12, and 2β/5 GB to 13. Other old backup servers
(21 and 31) have similar reassignment of their backup
data, making each of the five new backup rings of R (01),
namely, (10, 12, 13), (20, 22, 23), (30, 32, 33), (12, 22,
32) and (13, 23, 33), be assigned 3β/5 GB of backup
data from the old backup ring (11, 21, 31). For non-
dominant backup data, since it does not participate in
the normal recovery of primary data, MemCube does not
reassign it unless the failure domain constraint is broken,
as described in Section 4.3.
Resume services. After a new primary server P and
P’s backup servers complete the recovery of the new
primary/backup data, P will update its mapping of the
relevant data at its new recovery servers and the coor-
dinator, and then P will notify the coordinator that its
recovery is finished. P can choose (i) to wait for all
the other new primary servers to finish their recoveries
and then resume the services simultaneously (so that it
will not affect others’ recoveries), or (ii) to resume its
service without waiting for others (so that its data can
be accessed immediately). The two choices have no
obvious difference in MemCube since by design all the
recoveries are finished with similar time. Clients have
a local cache of (part of) the mapping so that normally
they can directly issue requests without querying the
coordinator. If a client cannot locate a key, it fetches
up-to-date information from the coordinator.
Recovery of recovery server failure. After a server F
(e.g., 00 in Fig. 2) fails as a recovery server, for each of
its primary servers P (e.g., 01), the (dominant) backup
data on F’s old backup ring (10, 20, 30) will be equally
reassigned to the backup rings of P’s remaining recovery
servers R (11, 21, 31, 02, 03), in order to minimize the
recovery time of P’s future failure. Suppose that each
backup server B on the old backup ring (10, 20, 30) stores
β GB of P’s (01) backup data that is previously mapped
onto F (00). Then after F (00) fails, the backup data of B
(10, 20, 30) will be reassigned to the 1-hop-away backup

Recovery type Size1 From/to2 Length # flows3

Primary data of α B→R 1-hop br
primary server
Backup data of α B→B 1-hop b2r
primary server B→R
Recovery server < α R→B 1-hop (b−1)br
Backup server f α B→R 2-hop f (b−1)br
1

Total recovered size (assume a primary server stores α primary data).
2

From the perspective of a failed primary server. R: recovery server.
B: backup server. Bottleneck is R’s inbound network bandwidth.

3
# flows after the 1st failure. b: # backup servers on the backup ring.
r: # recovery servers on the recovery ring. f : disk replication factor.

Table 1: Recovery summarization.

servers (B′) on the backup rings of R (11, 21, 31, 02, 03),
proportional to the number of recovery servers served
by B′: e.g., 10 will retain β/5 GB of backup data (for
recovery server 11), transfer 2β/5 GB to 12 (for 11 and
02), and transfer 2β/5 GB to 13 (for 11 and 03). 20 and
30 have similar reassignment, making each of the five
remaining backup rings be assigned 3β/5 GB of backup
data previously stored on 00’s backup ring (10, 20, 30).
Recovery of backup server failure. After a server F
(e.g., 00 in Fig. 2) fails as a backup server, its (dominant)
backup data for each of its primary servers P (e.g., 11)
is evenly divided and recovered from P (11) to P’s 2-
hop-away remaining backup servers (02, 03, 20, 30) on
P’s two backup rings where F (00) previously resided, to
minimize the recovery time of P’s future failure. Non-
dominant backup data of F is recovered similarly.
Summarization. We summarize different types of
recoveries in Table 1. (i) The primary/backup data
recoveries of primary server failures are crucial to avail-
ability and performed concurrently. We note that there
is contention between the two recoveries (B→R), but
since the data size transferred to R in the backup data
recovery (SB→R

Backup) is proportional to the number of new
recovery servers served by R, it can be proved that
SB→R

Backup is between 1
2b−1 and 1

b the size transferred to R
in the primary data recovery, where b is the number of
servers on the backup ring. Clearly it is negligible with
relatively large b. (ii) The recovery of recovery server
failures is not crucial but has no contention with primary
server recovery, and thus could also be performed con-
currently. (iii) The recovery of backup server failures
has contention with primary server recovery (B→R), and
thus should wait until the crucial recovery is finished.
The deferred recovery has little affect on availability,
and during this period the involved primary servers can
service requests as usual, except that there is one less
backup copy for the unrecovered backup data. The
version numbers are used when multiple backup writes
conflict (e.g., one from a new client write while another
from the recovery of backup server failures).
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4.3 Additional Failure Scenarios

Multiple failures. If multiple failures take place one
by one, i.e., one failure happens after the previous fail-
ure has been completely recovered, MemCube recovers
from each failure independently. Clearly the number
of failures that the CubicRing structure can tolerate is
bounded by the number of servers on each recovery ring:
if all recovery servers of a primary server fail then the
CubicRing structure fails. (If all backup servers of a
recovery server R fail then it can be viewed as a failure
of R.) In the worst case, e.g., the CubicRing structure on
BCube(16,2) can tolerate at least 44 failures, while the
structure on BCube(4,1) can tolerate at least 5 failures.
Note that a CubicRing failure does NOT mean any data
loss. This is because even though the data cannot
be recovered to the recovery ring after the CubicRing
structure fails, it still can be recovered to any healthy
servers in MemCube.

Concurrent failures. When multiple failures happen
concurrently, MemCube separately recovers from each
failure, unless they are 1-hop or 2-hop neighbors. (i) If
two directly-connected neighbors fail, e.g., during the
recovery of a failed server F the coordinator cannot get
responses from one of F’s recovery servers, MemCube
excludes them from each other’s recovery ring, and
recovers each failure as if it is a single failure. (ii) If a
primary server and its backup server fail, the recovery
server asks secondary servers for non-dominant copies.

Failure domain. MemCube guarantees after recovery
none of the f backup copies are in the same domain.
For instance, in the example of backup data recovery
of a primary server (00) failure in Section 4.2, some
dominant backup data may be reassigned to the same
rack where the non-dominant data resides. E.g., the
backup data previously stored on 11 is reassigned to
(01, 21, 31) for the new primary server 10. In this case
MemCube will reassign the affected non-dominant data
to a new secondary server in a different rack.

Switch failures. In traditional storage systems a ToR
switch failure results in a recovery storm, where all the
abandoned servers connected to that switch are actually
alive. In contrast, MemCube handles switch failures
simply by leveraging the multiple paths between any two
servers. Since any k switch failures in BCube(n,k) result
in only graceful degradation [35] but no data loss or
unavailability, it is not critical and the failed k switches
can be replaced in a relatively long period of time.

5 Discussion

Over-provisioning ratio. If a primary server fails, its
recovery servers must have enough RAM to accommo-
date the recovered data. So the RAM of all the servers

need to be over-provisioned beforehand. We obtain the
following Theorem 2 for the over-provisioning ratio (θ ),
the formal proof of which is given in Appendix B. In
BCube(16,2), e.g., if θ = 1.15 then at least 6 failures can
be tolerated; and if θ = 1.4375 then at least 14 failures
can be tolerated. In contrast, RAMCloud does not have
a deterministic θ due to its randomized data placement.
Note that similar to the CubicRing failure discussed
in Section 4.3, if no enough RAM available on some
specific servers MemCube can be simply “degraded” to
RAMCloud without any data loss.

Theorem 2 Consider a MemCube on BCube(n,k) and
suppose that before any failures each server installs α
GB of RAM and stores β GB of data. We define the over-
provisioning ratio as θ = α/β . If we want to keep the
CubicRing structure after the rth failure in the worst case,
we should have θ ≥ 1+ r

nk+n−k−r .

Fragmentation. After a primary server fails MemCube
recovers its data to multiple new servers, on which the
recovered fragmented data may lost locality. Although
locality has no effects on our current data model, this
issue might become important if MemCube supports
richer models in the future. Given a set of KVs (S), we
define the fragmentation ratio (µ) as the initial number
of primary servers responsible for S divided by the
current number of servers for S. Higher µ means lower
fragmentation and thus is desired for better locality. As
discussed in Section 3.2, the number of recovery servers
involved in a recovery is configurable. Larger numbers
increase the aggregate bandwidth but result in higher
fragmentation, and vice versa. We study the tradeoff
between aggregate bandwidth and µ in Section 6.4. A
simple method for defragmentation is to replace the
failed server with a new one and restore the data.
Heterogeneity and stragglers. The backup servers may
have different parameters of disk/CPU/RAM/network
resources. MemCube handles heterogeneity by assigning
backup data according to the bottleneck resource. E.g.,
if the network bandwidth of backup servers is the bot-
tleneck for recovery, MemCube will assign backup data
to them proportional to their bandwidth [45] so that they
can finish the recovery with similar time.

MemCube uses a simple method to handle stragglers.
Since the numbers of servers on the recovery/backup
rings and the bandwidth of each server are known,
MemCube can compute the expected recovered size for
each server given a time window. A recovery server (R)
periodically computes for each of its backup servers (B)
the ratio (πB

R ) of the data size recovered from B to the
expected recovered size from B within the last period. If
πB

R is lower than a pre-defined threshold, then B will be
considered as a straggler and R will use B’s secondary
server instead. The coordinator identifies stragglers from

7
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recovery servers in a similar way, and it will reassign
the straggler’s responsible data to other healthy recovery
servers. In both cases non-local recovery will occur, but
we expect little impact on the overall performance.

Consistency guarantees. A complete discussion of
consistency guarantees is beyond the scope of this work,
and here we briefly discuss the main factors affecting
consistency. False positives are inevitable in failure
detection. Therefore, MemCube adopts atomic recovery,
where once the coordinator declares a server P dead, it
will ask all P’s backup servers to (i) reject any further
backup requests from P and (ii) indicate P to stop its
service. Buffered backup writes from P before the
declaration should be finished since they have been
returned. Primary servers also periodically contact with
their backup servers so that they can stop servicing pure
read requests after being declared dead. Therefore, false
detection in MemCube is not fatal (but expensive).

MemCube uses ZooKeeper [39] enabled coordinators
to store its global mapping information between the key
space and the primary servers. There are one active
coordinator and several standby coordinators which are
competing for a single lease, ensuring at most one
coordinator to be responsible at a time. After the active
coordinator fails, some standby coordinator will acquire
the lease and become active. If a server fails concurrently
with a coordinator failure, e.g., the recovery servers R
cannot get response from the coordinator, R will ask the
ZooKeeper service to locate the new active coordinator
and then report the failure to it. Afterwards the normal
recovery procedure is performed.

Since there are k + 1 paths between any two servers
in BCube(n,k), MemCube is unlikely to have a network
partition. If this happens, an operator can stop the entire
system and wait until the network recovers. Similarly,
non-transitive failures [52] are unlikely since all paths to
a suspiciously failed server are tested.

Operational Issues. MemCube is designed on top of
BCube, which has similar cost and wiring complexity
with FatTree. For isntance, both BCube and FatTree use
128 wires for building our 64-server testbed (discussed in
Section 6). Clearly there might be a bandwidth waste in
MemCube if the network is not busy, but the advantages
of BCube include not only high bandwidth and through-
put, but also fast failure detection and recovery, graceful
degradation during switch failures, etc. Also we note that
BCube uses COTS switches/NICs, and thus the extra cost
is low and acceptable.

As described in Line 2 of Pseudocode 1 in Section 4.2,
for minimizing the recovery time MemCube stops all the
relevant services during the recovery. For BCube(16,2)
with 4096 servers, for example, given the normal fail-
ure rate (about 1 ∼ 2 failures/server/year [7]) and the

recovery time (a few seconds as shown in Section 6), the
“background” network utilization of recovery traffic is
less than 10−4.

A dangerous situation is that the entire system loses
power at once. A simple way to address this problem
is to install on each server a small backup battery. The
battery ONLY needs to extend the power long enough to
ensure that the backup server’s buffered backup data (that
is yet to be written to disks) be flushed. When power
returns the cold start is performed like many concurrent
recoveries of all servers.

6 Evaluation
We have implemented a prototype of MemCube by
adding a MemCube module to memcached-1.4.15 on
Linux, which contains: (i) a connection manager that
maintains the status of neighbors and interacts with other
servers; (ii) a storage manager that handles set/get/delete
requests in a server’s RAM and asynchronously writes
backup data to disks by appending the data to its on-
disk log that is divided into 8MB tracts; and (iii) a
recovery manager that reconstructs primary/backup data
(and the corresponding mapping) on the new prima-
ry/backup servers and inspects the recovery process.
We also implement a simple global coordinator that
maintains the configuration, the addresses of servers, and
the mapping between the key space and the servers along
with the size of data stored in each server’s RAM.

6.1 Testbed
We have built a testbed with 64 PowerLeader servers and
five Pronto 3780 48-port 10GbE switches. Each server
has 12 Intel Xeon E5-2640 2.5GHz cores and 64 GB
RAM, and installs six Hitachi 7200 RPM, 1 TB disks
and one 10GbE 2-port NIC.

We use four switches to construct a 64-node
BCube(8,1) network to run MemCube, where each
switch acts as four 8-port virtual switches and connects
to 32 servers. We also use the five switches to build a
64-node tree and a 64-node FatTree to emulate and test
RAMCloud [45] on Ethernet. For tree, we simply have
each of four switches connect to 16 servers and the fifth
switch act as the aggregate switch, getting a relatively
high over-subscription ratio of 1 : 16. For FatTree, we
use three switches in the first level and two in the second.
In the first level we use two switches to connect to 24
servers each and act as three 8-port virtual switches, and
use the third switch to connect to 16 servers and act
as two virtual switches; and each switch has the same
number of ports connected to the second level switches
as that to the servers. In the second level each switch
acts as four 8-port virtual switches. We also build a
1 : 4 oversubscribed FatTree where the first level has
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Figure 4: Single server failure recovery.

4 switches each being connected to 16 servers and the
second level has the fifth switch being connected to four
ports of each of the first-level switches. FatTree uses
ECMP routing with hash-based path selection to achieve
load balancing. Our testbed therefore supports both
MemCube on BCube and RAMCloud on tree/FatTree.

All experiments use a disk replication factor of 3, i.e.,
1 primary copy in RAM and 3 backup copies on servers’
disks. Clearly, given the disk bandwidth of 100∼200
MB/sec and the number (6) of disks per server, the net-
work bandwidth of 10 Gb/sec, and the ratio of recovery
servers to backup servers (14/49), the bottleneck is at the
inbound network bandwidth of recovery servers.

A client initially fills the 64 primary servers each with
48 GB of primary data. During the process we measure
the write throughput of one MemCube primary server.
We slightly modify the Redis benchmark [13, 26] to
adapt to MemCube, which uses a configurable number of
busy loops asynchronously writing KVs. The maximum
write throughput of a single MemCube primary server is
about 197.6K writes per second when it runs 8 single-
threaded service processes each corresponding to 200
loops. In contrast, the maximum throughput of an un-
modified Memcached server is about 225.5K writes per
second when it runs 4 single-threaded service processes
each corresponding to 250 loops.

After a failure happens, the recovery is conducted
following Pseudocode 1. Our evaluation answers the
following questions: How fast can MemCube recover a
single server failure, even with stragglers (§6.2)? How
well does MemCube perform under various patterns of
failures (§6.3)? And what is the impact of using different
number of recovery/backup servers (§6.4)?

6.2 Single Server Failure Recovery
We first evaluate the recovery of a single server failure
in MemCube. The client sends a magic RPC to a
primary server that kills its service process. The recovery
procedure is started after waiting 300 milliseconds of
heartbeat timeout. The coordinator waits until all the

(n,k) (4,3) (8,2) (8,3) (16,1) (16,2)
# servers 256 512 4096 256 4096
MemCube 1.20 1.01 0.51 1.44 0.48
RAMCloud 26.59 42.98 83.40 22.68 40.59

Table 2: Simulated recovery time (in seconds).

primary/backup data is recovered and reports the size
of the aggregate recovered (primary) data over time.
We also evaluate RAMCloud [45] both on tree and on
FatTree with ECMP [34], where each primary server
uses 14 recovery servers and 49 backup servers (which
are the same as in MemCube).

The result is depicted in Fig. 4. Each point is an
average of 5 runs except the last points because the fast
runs may have completed. MemCube recovers 48 GB of
data in 3.1 seconds. The aggregate recovery throughput
is about 123.9 Gb/sec, very close to the optimal ag-
gregate bandwidth bounded by the NIC bandwidth and
the number of recovery servers. Every recovery server
achieves the recovery throughput of about 8.85 Gb/sec.

The recovery process of RAMCloud is also depicted
in Fig. 4. On tree, RAMCloud has similar performance
with MemCube in the beginning but gets a dramatic
degradation after 2 seconds. This is because the recov-
ery servers randomly choose their new backup servers
without a global view of the network, and the tree has an
over-subscription ratio of 1 : 16 which generates severe
congestion at the root. At beginning local flows within a
switch saturate the recovery servers’ NICs, the aggregate
bandwidth of which is the same as that in MemCube.
But after the local flows complete the aggregate recovery
bandwidth will drop. Non-blocking FatTree is designed
to alleviate this problem, but since ECMP randomly
selects paths for the flows, the full bisection bandwidth
is not guaranteed but only stochastically likely across
multiple flows. Thus long-lived recovery flows are
problematic with ECMP and RAMCloud (both on tree
and on FatTree) experiences long recovery time. Note
that the results in Fig. 4 are worse than that in [45], where
RAMCloud recovers 35 GB of data in 1.6 seconds in a
60-node cluster. This is because in [45] (i) RAMCloud
uses 5 32Gbps-InfiniBand switches to build the testbed
(while we emulate 16 8-port 10GbE switches); and (ii) it
uses all the nodes as recovery servers for the failed server
(while we use only 14 recovery servers).

We also evaluate the recovery for larger scales of
MemCube (on BCube(n,k)) and RAMCloud (on non-
blocking FatTree) through simulations. Since in most
cases the bottleneck is at the bandwidth of recovery
servers, we simplify the simulations by using NS2 [8]
to simulate the process of transferring primary/backup
data for the failed server which has 48 GB of primary
data. The result is summarized in Table 2, where the first
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Figure 5: Straggler and multiple failures.

row lists different combinations of (n,k) and the numbers
of servers, and the next two rows respectively show the
corresponding recovery time (in seconds) for MemCube
and RAMCloud. Note that we only simulate the process
of primary/backup data transfer and ignore the failure
detection time (a few hundred milliseconds), the coordi-
nation time (100+ milliseconds), the time of reading the
first tract from disks (about 100 milliseconds), and the
potential bottleneck at CPU which is because a recovery
server uses k NIC ports for recovery. Therefore, although
the simulated recovery time for both BCube(8,3) and
BCube(16,2) is only about half a second, in practice it
would be difficult to recover faster than 1 second.

We emulate a straggler during the recovery by lim-
iting a backup server’s outbound bandwidth to 1/3 the
bandwidth in normal recovery ( 123.9

49×3 ≈ 0.84 Gb/sec). In
this experiment, every new primary server R computes
πB

R (defined in Section 5) for each of its backup server
B every half a second, the threshold is set to 0.7, and
the straggler occurs 1 second after the recovery begins.
The recovery procedure is depicted in Fig. 5 (denoted as
Straggler), each point of which is an average of 5 runs.
The result shows that MemCube performs well after the
straggler occurs by using other backup flows to saturate
the recovery server’s spare bandwidth. After 1.5 seconds
MemCube will detect the straggler and use its secondary
server instead, which finishes its recovery at about 3.5
seconds. The additional time compared to MemCube’s
normal recovery is because the straggler recovers less
data than others between 1 and 1.5 seconds.

6.3 Multiple Server Failures Recovery
We evaluate the recovery of multiple failures with the
one-by-one pattern, i.e., one failure happens after the
previous failure has already been completely recovered.
All subsequent failures happen on the same recovery
ring of the first failure, which generates the worst-case
scenario. The result is depicted in Fig. 5, which shows
the size of recovered data over time for the second
and third failures. Each point is an average of 5 runs.
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Figure 6: Rack failure recovery.

This figure shows that there is a graceful degradation
of recovery performance as failures happen one by one,
mainly due to the decrease of the number of recovery
servers and the increase of the primary data size.

We then emulate a rack failure by sending a magic
RPC to the 8 servers connected to an 8-port virtual
switch to kill their MemCube processes. Currently our
prototype only supports rack failure recovery of prima-
ry/backup data for primary servers failures (Lines 4 and 5
in Pseudocode 1), but extending for supporting the other
two types of recovery (Lines 7 and 8) is straightforward.
The recovery procedure is depicted in Fig. 6, where
each point is an average of 5 runs and the differences
to the mean are less than 5% (omitted here for clarity).
MemCube recovers a rack failure of 8 primary servers
in about 13.2 seconds, Compared with the single failure
recovery, the recovered data size increases by 8×, the
total number of recovery servers increases by 4×, and
the recovery time increases by about 4×, meaning the
per-server recovery throughput is only about 1/2 that in
single failure recovery. This is because both primary
data and backup data are recovered from all servers
to all servers, in contrast in single failure recovery (as
discussed in Section 4.2) only 1

2b−1 = 1/13 of the backup
data recovery contends with the primary data recovery,
where b = 7 is the number of servers on a backup ring.
Clearly, even when multiple primary-recovery-backup
structures overlap there is still no severe competition
during the recoveries of multiple concurrent failures.

MemCube handles a switch failure with graceful per-
formance degradation by leveraging the multiple paths
of BCube. To evaluate this, we first measure the
write throughput of a primary server, disable a switch
connected to that server, wait for 1 second, and then
measure the write throughput again. Running 8 single-
threaded server processes, before the switch failure the
write throughput ≈ 197.6K writes/sec. After the switch
failure the write throughput ≈ 162.2K writes/sec with a
degradation of less than 18%, which is mainly because
the redundant paths traverse more intermediate nodes.
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Figure 7: Tradeoff of different # recovery servers.

6.4 Impact of # Recovery/Backup Servers

We study the impact of different number of recovery
servers used by a primary server on the average ag-
gregate recovery bandwidth and the fragmentation ratio
(introduced in Section 5). The bandwidth is computed
as the recovered size (of primary data) divided by the
recovery time and normalized to the baseline with all
the 14 recovery servers being used. Each recovery
server adopts all its 7 backup servers. As shown in
Fig. 7, with the increase of the number of recovery
servers, MemCube gets an almost linear speedup for
the bandwidth, while the ratio decreases (meaning more
severe fragmentation) after the recovery of both 1 and 2
failures. In practice MemCube can choose the tradeoff
between fragmentation and recovery bandwidth by using
different number of recovery servers accordingly.

We study the impact of different number of backup
servers (b) used by a recovery server on the aggregate
recovery bandwidth. The primary server uses all its 14
recovery servers. Since when b is small the bandwidth
of backup servers (BWB) may become the bottleneck
instead of the bandwidth of recovery servers (BWR),
the primary data is assigned to the recovery servers R
according to R’s min(BWR,∑B∈Ring(R) BWB). As shown
in Fig. 8, when the number of backup servers is small
(b = 2,3) the bandwidth of backup servers is the bottle-
neck. This is because the data sent by backup servers
is twice as much as that received by recovery servers
due to the concurrent recovery of backup data (and note
that 1 backup server serves 2 recovery servers). When
b increases to 4, the aggregate bandwidth is almost
the same as the baseline (b = 7), because since then
the performance is again bounded by the bandwidth of
recovery servers. Although the number of backup servers
has little impact on the recovery time when b ≥ 4, we
suggest to use all the backup servers to (i) achieve high
CubicRing durability, and (ii) prevent the aggregate disk
bandwidth to become a bottleneck when the number of
disks per server is smaller than our configuration (= 6).

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2  3  4  5  6  7

A
g

g
r.

 R
ec

o
v

er
y

 B
/W

 (
N

o
rm

al
iz

ed
)

# Backup Servers per Recovery Server

Aggregate bandwidth
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7 Related Work

Efficient KV. The idea of permanently storing data in
RAM is not new. E.g., in-memory databases [30] and
transaction processing systems [40] keep entire data-
bases in the RAM of one or several servers and support
full RDBMS semantics. RAMCloud [45] is proposed
as a large-scale in-memory key-value store where the
data is kept entirely in RAM and the backup copies are
scattered across many servers’ disks. RAMCloud uti-
lizes high-bandwidth InfiniBand networks to achieve fast
failure recovery. MemCube inherits some key designs
of RAMCloud including the primary-recovery-backup
architecture and the coordinator for key space manage-
ment. MemCube improves RAMCloud by leveraging
CubicRing to address several critical network-related
issues, including false failure detection due to transient
problems, recovery traffic congestion, and ToR switch
failures. Besides, MemCube is implemented on Ethernet
which has cost and scalability benefits.

Redis [13] is a key-value store that keeps all data in
RAM. Redis has a richer data model than MemCube,
e.g., atomic increment and transactions. However, it can
prevent data loss ONLY when it is used in the flushing
mode, where every write has to be logged to disks before
it returns. MemC3 [28] improves Memcached [9] by
incorporating the CLOCK replacement algorithm [1] and
Concurrent Cuckoo hashing [47]. It serves up to 3× as
many queries per second. MemCube can easily migrate
from Memcached to MemC3 for higher throughput.

Flash memory is receiving increasing attention
for flash-based storage systems (e.g., SILT [42],
FAWN [12], FlashStore [23], SkimpyStash [24], and
HashCache [11]). One disadvantage of in-memory stor-
age systems is the high cost and energy usage per bit.
However, when considering cost per operation, RAM is
about 1000× more efficient than disk and 10× than flash
memory [46]. Andersen et al. [12] and Ousterhout et
al. [46] separately generalize Jim Gray’s rule [33] and
conclude that (i) for high access rates and small data
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sizes RAM is the cheapest; and (ii) the applicability of
in-memory storage will be continuously increasing.

Detection/recovery. Failure detection has been widely
studied in the context of monitoring remote elements by
using end-to-end timeouts [18, 14, 20, 50, 37]. E.g.,
the ϕ -accrual detector [37] provides a measurement of
detection confidence and lets applications decide corre-
sponding actions. Recently, Falcon [41] and Pigeon [36]
propose to install sensors to obtain low-level informa-
tion of hardware, OS, processes, and routers/switches,
to aid diagnosis. These works are complementary to
MemCube and can help to provide more accurate detec-
tion. E.g., MemCube could use Pigeon to check backup
servers’ SMART [51] data to pre-warn disk problems.
MemCube’s local detection eliminates the necessity of
installing code in switches (which makes Pigeon less
applicable in real deployment) for congestion detection.
Host failure recovery techniques (e.g., microreboot [21,
17]) focus on masking and containing failures, which can
be directly applied to MemCube: a MemCube recovery
will not take place until failures cannot be masked.

FDS [44] is a locality-oblivious blob store. It recovers
92 GB of data in parallel in 6.2 seconds on a 256-
server 10GbE FatTree, which is less efficient compared
with MemCube. Thus although FDS claims “locality is
unnecessary”, we show locality does matter in fast failure
recovery. Similar to FDS, D-Streams [54] use parallel
recovery for reliable distributed stream processing.

8 Conclusion
This paper’s top-level contribution is architectural: We
suggest to exploit network proximity in distributed sys-
tems to restrict failure detection and recovery within
the smallest possible range, in order to minimize the
uncertainty and contention induced by the network. We
apply this principle to fast failure recovery of an in-
memory key-value store (MemCube) by constructing the
CubicRing structure: All the servers form a primary
ring, and for each primary server its 1-hop neighbors
form a recovery ring and 2-hop neighbors form backup
rings. As failures happen, MemCube (i) leverages the
CubicRing structure to quickly recover lost data, and (ii)
maintains the structure.

We plan to improve MemCube in several aspects
including rich data model, indices, efficient log clean-
ing/optimizing, super columns [19], strong consistency
(i.e., linearizability [38, 32]) guarantees, and low-latency
serializable transactions [56]. We also plan to implement
automatic reassignment of the key space mapping when
the load distribution dynamically changes. On the other
hand, MemCube depends on cubic topologies, and how
to apply the proposed principle to tree-based networks
(e.g., FatTree) is still an open issue.
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Appendix

A. Proof of Theorem 1

BCube(n,k) is equal to an n-tuple, k + 1 dimensional
generalized hypercube and there are nk+1 servers on the
primary ring. Each primary server connects to k + 1
switches, each with n − 1 recovery servers. So there
are (n − 1)(k + 1) servers on the recovery ring. Each
recovery server connects to k switches (except the one it
uses to connect to its primary server), each with n− 1
backup servers. So there are (n − 1)k servers on the
backup ring. The backup servers is two hops away
from their primary server, and thus they have exactly
two digits different from their primary server. Thus each
backup server services 2 recovery servers irrespective of
n and k. Therefore each primary server has totally (n−
1)(k+1)× (n−1)k/2 = (n−1)2k(k+1)

2 backup servers.

B. Proof of Theorem 2

By Theorem 1, at the beginning there are (n−1)(k+1)
servers on the recovery ring. Let m = (n − 1)(k +
1). After the first server fails, MemCube must satisfy
β + β

m = β (1 + 1
m ) ≤ α; after the second server fails,

which in the worst case may be a recovery server of
the first failed server, MemCube should satisfy β +
β
m + 1

m−1 (β + β
m ) < β (1 + 1

m−1 )
2 ≈ β (1 + 2

m−1 ) ≤ α;
. . .; and by parity of reasoning, after the rth failure
(reasonably assuming m − r >> 1), MemCube should
satisfy β (1+ r

m−r+1 )≤ α . Therefore, if we want to keep
the CubicRing structure after the rth failure in the worst
case (where a subsequent failure always happens on a
server that is a recovery server in the previous failure
recovery), the over-provisioning ratio θ should satisfy
θ = α/β ≥ 1+ r

m+1−r = 1+ r
nk+n−k−r .
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[27] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND H-
ODSON, O. Farm: Fast remote memory. In 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 14) (Seattle, WA, 2014), USENIX Association, pp. 401–
414.

[28] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3:
Compact and concurrent memcache with dumber caching and
smarter hashing. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013,
Lombard, IL, USA, April 2-5, 2013 (2013), pp. 371–384.

[29] FERNER, C. S., AND LEE, K. Y. Hyperbanyan networks: A new
class of networks for distributed memory multiprocessors. IEEE
Transactions on Computers 41, 3 (1992), 254–261.

[30] GARCIA-MOLINA, H., AND SALEM, K. Main memory database
systems: An overview. IEEE Trans. Knowl. Data Eng. 4, 6
(1992), 509–516.

[31] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding
network failures in data centers: measurement, analysis, and
implications. In SIGCOMM (2011), pp. 350–361.

[32] GLENDENNING, L., BESCHASTNIKH, I., KRISHNAMURTHY,
A., AND ANDERSON, T. E. Scalable consistency in scatter. In
SOSP (2011), pp. 15–28.

[33] GRAY, J., AND PUTZOLU, G. R. The 5 minute rule for trading
memory for disk accesses and the 10 byte rule for trading memory
for cpu time. In Proceedings of the Association for Computing
Machinery Special Interest Group on Management of Data 1987
Annual Conference, San Francisco, California, May 27-29, 1987
(1987), U. Dayal and I. L. Traiger, Eds., ACM Press, pp. 395–
398.

[34] GREENBERG, A. G., HAMILTON, J. R., JAIN, N., KANDULA,
S., KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND
SENGUPTA, S. Vl2: a scalable and flexible data center network.
Commun. ACM 54, 3 (2011), 95–104.

[35] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y.,
TIAN, C., ZHANG, Y., AND LU, S. Bcube: a high performance,
server-centric network architecture for modular data centers. In
SIGCOMM (2009), pp. 63–74.

[36] GUPTA, T., LENERS, J. B., AGUILERA, M. K., AND WALFISH,
M. Improving availability in distributed systems with failure
informers. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013,
Lombard, IL, USA, April 2-5, 2013 (2013), pp. 427–441.
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Abstract—We present CosTLO, a system that reduces the
high latency variance associated with cloud storage services
by augmenting GET/PUT requests issued by end-hosts with
redundant requests, so that the earliest response can be con-
sidered. To reduce the cost overhead imposed by redun-
dancy, unlike prior efforts that have used this approach,
CosTLO combines the use of multiple forms of redundancy.
Since this results in a large number of configurations in
which CosTLO can issue redundant requests, we conduct
a comprehensive measurement study on S3 and Azure to
identify the configurations that are viable in practice. In-
formed by this study, we design CosTLO to satisfy any ap-
plication’s goals for latency variance by 1) estimating the
latency variance offered by any particular configuration, 2)
efficiently searching through the configuration space to se-
lect a cost-effective configuration among the ones that can
offer the desired latency variance, and 3) preserving data
consistency despite CosTLO’s use of redundant requests.
We show that, for the median PlanetLab node, CosTLO can
halve the latency variance associated with fetching content
from Amazon S3, with only a 25% increase in cost.

1 Introduction
Minimizing user-perceived latencies is critical for

many applications as even hundreds of milliseconds of
additional delay can significantly lower revenue [19, 10,
35]. Large-scale cloud services aid application providers
in this regard by enabling them to serve every user from
the closest among several geographically distributed data
centers. For example, our measurements from over 120
PlanetLab nodes across the globe show that, when every
node downloads 1 KB-sized objects from the closest Mi-
crosoft Azure data center, the median download latency
is less than 100ms for over 90% of the nodes.

However, on today’s cloud services, both fetching and
storing content are associated with high latency variance.
For example, for over 70% of the same 120 nodes con-
sidered above, the 99th percentile and median download
latencies from the closest Azure data center differ by
100ms or more. These high tail latencies are problem-
atic both for popular applications where even 1% of traf-
fic corresponds to a significant volume of requests [23],
and for applications where a single request issued by an
end-host requires the application to fetch several objects
(e.g., web page loads) and user-perceived latency is con-
strained by the object fetched last. For example, our mea-
surements show that latency variance in S3 more than
doubles the median page load time for 50% of PlanetLab
nodes when fetching a webpage containing 50 objects.

To enable application providers to avail of the cost
benefits enabled by cloud services, without having la-
tency variance degrade user experience, we develop
CosTLO (Cost-effective Tail Latency Optimizer). Since
we observe that the high latency variance is caused pre-
dominantly by isolated latency spikes, CosTLO uses the
well-known approach [38, 22] for reducing variance by
augmenting every GET/PUT request with a set of redun-
dant requests, so that the earliest response can be con-
sidered. We tackle three key challenges in using this
redundancy-based approach in CosTLO.

First, the end-to-end latency when any end-host up-
loads to or downloads from a cloud storage service has
several components: latency over the Internet, latency
over the cloud service’s data center network, and latency
within the storage service. To tackle the variance in all
of these components, CosTLO exploits the fact that re-
dundant requests to cloud storage services can be issued
in a variety of ways, each of which impacts a different
component of end-to-end latency. For example, while is-
suing redundant requests to the same object may elicit an
earlier response due to differences in load across servers
hosting replicas of the object, one can further reduce the
impact of server load by issuing redundant requests to a
set of objects which are all copies of the object being ac-
cessed. Alternatively, to reduce the impact of spikes in
data center network latency, redundant requests can be
issued to different front-ends of the storage service or re-
layed to the same front-end via different virtual machines
(VMs). Furthermore, when a client is accessing an object
stored in a particular data center, redundant requests can
be issued to copies of the object in other data centers in
order to tackle the variance in Internet latencies.

However, not all forms of redundancy have utility in
practice due to the complex architectures of cloud ser-
vices. Therefore, second, we empirically evaluate the
ways in which redundant requests should be issued for
CosTLO’s approach to be viable on Amazon S3 and Mi-
crosoft Azure, the two largest cloud storage services to-
day. For example, when issuing concurrent requests to
multiple data centers, we find that it is essential to lever-
age storage services offered by multiple cloud providers;
utilizing a single cloud provider’s data centers is insuffi-
cient to tame the variance in Internet latencies. Our study
also shows that, due to load balancing within the data
center networks of cloud services, concurrent requests to
the same front-end of a storage service are sufficient to
tackle spikes in data center network latencies, and more

1



544 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

complex approaches are unnecessary. To the best of our
knowledge, this is the first work that identifies the key
causes for latency variance in cloud storage services and
studies the impact of different forms of redundancy.

Third, the number of configurations in which CosTLO
can implement redundancy is unbounded—not only can
CosTLO combine the use of various forms of redun-
dancy, but it can also vary the number of redundant re-
quests, the probability with which it issues redundant
requests, etc.—and the impact on cost and latencies
varies significantly across configurations. Therefore, for
CosTLO to add redundancy in a manner that satisfies an
application’s goals for latency variance cost-effectively,
it becomes essential that CosTLO be able to 1) esti-
mate, rather than measure, the cost and latencies asso-
ciated with any particular configuration, and 2) search
for a cost-effective configuration, instead of enumerat-
ing through all possible configurations. To address these
challenges, 1) we model the load balancing and replica-
tion within cloud storage services in order to accurately
capture the dependencies between concurrent requests,
and 2) we develop an efficient algorithm to identify a
cost-effective CosTLO configuration that can keep la-
tency variance below a target. Note that no prior work
that uses redundant requests seeks to minimize cost.

We have implemented and deployed CosTLO across
all data centers in S3 and Azure. To evaluate CosTLO,
we use PlanetLab nodes at 120 sites as clients and replay
a trace of Wikipedia’s workload. Our results show that
CosTLO can reduce the spread between 99th percentile
and median GET latencies by 50% for the median Pla-
netLab node, with only a 25% increase in cost.

2 Characterizing Latency Variance
We begin with a measurement study of Amazon S3

and Microsoft Azure. We 1) quantify the latency vari-
ance when using these services, 2) analyze the impact
of latency variance on applications, and 3) identify the
dominant causes of this variance.

Overview of measurements. To analyze client-
perceived latencies when downloading from and upload-
ing to cloud storage services, we gather two types of
measurements for a week. First, we use 120 PlanetLab
nodes across the world as representative end-hosts. Once
every 3 seconds, every node uploaded a new object to
and downloaded a previously stored object from the S3
and Azure data centers to which the node has the lowest
median RTT. Second, from “small instance” VMs in ev-
ery S3 and every Azure data center, we issued one GET
and one PUT per second to the local storage service. In
all cases, every GET from a data center was for a 1 KB
object selected at random from 1M objects of that size
stored at that data center, and every PUT was for a new
1 KB object. To minimize the impact of client-side over-
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Figure 1: (a) Absolute and (b) relative inflation in 99th per-
centile latency with respect to median. Logscale x-axis in (b).

heads, we measure GET and PUT latencies on PlanetLab
nodes as well as on VMs using timings from tcpdump.

In addition, we leverage logs exported by S3 [7] and
Azure [9] to break down end-to-end latency minus DNS
resolution time into its two components: 1) latency
within the storage service (i.e., duration between when a
request was received at one of the storage service’s front-
ends and when the response left the storage service), and
2) latency over the network (i.e., for the request to travel
from the end-host/VM to a front-end of the storage ser-
vice and for the response to travel back). We extract stor-
age service latency directly from the storage service logs,
and we can infer network latency by subtracting storage
service latency from end-to-end request latency.

Quantifying latency variance. Figure 1 shows the
distribution across nodes of the spread in latencies; for
every node, we plot the absolute and relative difference
between the 99th percentile and median latencies. In
both Azure and S3, the median PlanetLab node sees an
absolute inflation greater than 200ms (70ms) in the 99th

percentile PUT (GET) latency as compared to the median
latency; the median relative inflation is greater than 2x in
both PUTs and GETs. To show that this high latency
variance is not due to high load or slow access links of
PlanetLab nodes, Figure 1 also plots for every node the
difference between 99th percentile and median latency to
the node closest to it among all PlanetLab nodes.

Impact on applications. To show that high la-
tency variance can significantly degrade application per-
formance, we conduct measurement studies in two appli-
cation scenarios. The first one is a webservice that serves
static webpages containing 50 objects. The second one is
a social network application, where an update from a user
triggers a synchronization mechanism to make all of the
user’s followers fetch that update. In both applications,
one user-level request requires the application to issue
several requests to cloud storage, and user-perceived la-
tency is constrained by the request that finishes last. We
consider a setting in which (1) users only fetch objects
from their closest data centers, (2) every user in the social
network application has 200 followers [1], and (3) users
and their followers have the same closest data centers.
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Figure 2: (a) Absolute and (b) relative inflation in median
user-level request latency with respect to ideal latency. Note
logscale on x-axis in both graphs.
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Figure 3: Breakdown of components of tail latencies.

We setup clients on PlanetLab nodes and applications on
S3, emulate interactions between users and applications
using real world traces [6, 30], and measure the page load
time/sync completion time.

Ideally, with no latency variance, in the webpage ap-
plication, page load time should be the same as the la-
tency of fetching a single object if clients fetch all objects
on the page in parallel, and in the social network appli-
cation, the sync completion time should be the same as
the latency incurred by the farthest follower to fetch a
single object. However, Figure 2 shows that, for over
80% of PlanetLab nodes, latency variance causes at least
50ms latency inflation in the median page load time and
at least 100ms latency inflation in the median sync com-
pletion time. This corresponds to a 2x relative inflation
for more than 50% of users.

Causes for tail latencies. We observe two character-
istics that dictate which solutions can potentially reduce
the tail of these latency distributions.

First, we find that neither are the top 1% of latency
samples clustered together in time nor are they correlated
with time of day. Thus, the tail of the latency distribution
is dominated by isolated spikes, rather than sustained pe-
riods of high latencies. Therefore, a solution that moni-
tors load and reacts to latency spikes will be ineffective.

Second, Figure 3(a) shows that all three components
of end-to-end latency significantly influence tail latency
values. DNS latency, network latency, and latency within
the storage service account for over half the end-to-end
latency on more than 40%, 25%, and 20% of tail latency
samples. Since network latencies as measured from Pla-

netLab nodes conflate latencies over the Internet and
within the cloud service’s data center network, we also
study the composition of tail latencies as seen in our mea-
surements from VMs to the local storage service. In this
case too, Figure 3(b) shows that both components of end-
to-end latency—latency within the storage service, and
latency over the data center network—contribute signif-
icantly to a large fraction of tail latency samples. Thus,
any solution that reduces latency variance will have to
address all of these sources of latency spikes.

3 Overview of CosTLO
Goal. We design CosTLO to meet any application’s

service-level objectives (SLOs) for the extent to which it
seeks to reduce latency variance for its users. To ensure
that CosTLO is broadly applicable across several classes
of applications, we consider the most fundamental SLO
that applications can build upon—SLOs that bound the
variance of the latencies of individual PUT/GET opera-
tions; we discuss CosTLO’s ability to handle more com-
plex application-specific SLOs in Section 6.

Though there are several ways in which such SLOs
can be specified, we do not consider SLOs that bound
the absolute value of, say, 99th percentile GET/PUT la-
tency; due to the non-uniform geographic distribution
of data centers, a single bound on tail latencies for all
end-hosts will not help reduce latency variance for end-
hosts with proximate data centers. Instead, we focus on
SLOs that limit the tail latencies for any end-host relative
to the latency distribution experienced by that end-host.
Specifically, we consider SLOs which bound the differ-
ence, for any end-host, between 99th percentile latency
and its baseline median latency (i.e., the median latency
that it experiences without CosTLO). Every application
specifies such a bound separately for GETs and PUTs.

Approach. Since tail latency samples are dominated
by isolated spikes, our high-level approach is to augment
any GET/PUT request with a set of redundant requests,
so that the first response can be considered. Though this
is a well-known approach for reducing tail latencies [38,
22, 13], CosTLO is unique in exploiting several ways of
issuing redundant requests in combination.

For example, consider downloads from the closest
S3 data center at the PlanetLab node in University of
Kansas. When this client fetches objects by issuing sin-
gle GET requests, the difference between the 99th per-
centile and median latencies is 214ms. The simplest way
to reduce variance is to have the client issue two concur-
rent GET requests to download an object (Figure 4(a)).
This decreases the gap between 99th percentile and base-
line median latency to 110ms, but doubles the cost for
GET operations and network bandwidth. Alternatively,
the client can issue a single GET request to a VM in the
cloud, which can in turn issue two concurrent requests
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for the requested object to the local storage service (Fig-
ure 4(b)). While this adds VM costs and the 99th per-
centile latency is now 135ms higher than the baseline
median latency, relaying redundant requests via VMs re-
duces bandwidth costs (since a single copy of the object
leaves the data center). A third option is to have the client
concurrently fetch copies of the object from multiple data
centers (Figure 4(c)), e.g., the two closest S3 data cen-
ters. This strategy—the best of the three options in terms
of reducing variance (inflation in 99th percentile com-
pared to baseline median drops to 34ms)—eliminates the
overhead of VM costs but increases storage costs.

Challenges. This example illustrates how various
forms of redundancy differ in the tradeoff between reduc-
ing variance and increasing cost. Choosing from these
various options, so as to satisfy an application’s SLO
cost-effectively, is challenging for several reasons.
• Large configuration space. There exist an unbounded

number of configurations in which CosTLO can issue
redundant requests. This is not only because the de-
gree of parallelism is unbounded, but also because dif-
ferent types of redundancy can be combined with each
other. For example, Figure 4(d) shows a configuration
that both 1) uses multiple relay VMs to route around
latency spikes in the data center network, and 2) issues
requests to different objects that are copies of each
other. This unbounded configuration space makes it
impossible to simply measure the latency distribution
offered by every candidate configuration of CosTLO.

• Complex service architectures. However, predicting
the impact on latencies of any particular approach for
issuing redundant requests is complicated by the fact
that we have little visibility into the architecture of any
cloud storage service. As we describe later, due to cor-
relations between concurrent requests, we cannot esti-

mate the latencies obtained with k concurrent requests
simply by considering the minimum of k independent
samples of a single request’s latency distribution.

• Multi-dimensional pricing policies. Finally, minimiz-
ing CosTLO’s cost overhead is made complex by the
fact that cloud services charge customers based on a
combination of storage, request, VM, and bandwidth
costs. Each of the potential ways in which redundant
requests can be issued impacts a subset of these pric-
ing dimensions, and the extent to which it does so de-
pends on the application’s workload.

4 Characterizing Configuration Space
CosTLO’s approach of issuing redundant requests to

reduce tail latencies can broadly be applied in two ways.
One way is to concurrently issue the same request multi-
ple times in order to implicitly exploit load balancing in
the Internet or inside cloud services. For example, issu-
ing multiple GET requests concurrently to the same ob-
ject may lower latencies either because different requests
take different paths through the Internet to the same data
center, or because different requests may be served by
different storage servers that host replicas of the same
object. An alternate way is to explicitly enforce diversity
by concurrently issuing a set of requests that differ from
each other, yet have the same effect, e.g., by storing mul-
tiple copies of an object and issuing concurrent requests
to different copies, or by issuing concurrent requests to
different front-ends of a storage service.

Here, we empirically evaluate on both S3 and Azure
the efficacy of several approaches for reducing tail la-
tencies in three components of end-to-end latency: In-
ternet latency, data center network latency, and latency
in the storage service. We ignore DNS latency since ap-
plications often do not control how clients perform DNS
lookups and concurrently querying multiple nameservers
to reduce DNS latencies has no impact on cost.

4.1 Internet latencies

To examine the utility of different approaches on re-
ducing Internet tail latencies, we issue pairs of concur-
rent GET requests from each PlanetLab node in three dif-
ferent ways and then compare the measured tail latencies
with those seen with single requests. We use the notation
“nx C[m]” to denote a setting in which every PlanetLab
node issues n concurrent requests to its mth closest data
center in cloud C, where C is either S3, Azure, or the
union of data centers in the two (“S3/Azure”).

Multiple requests to same data center. To account
for spikes in Internet latency, we first consider every end-
host concurrently issuing multiple requests to the storage
service in the data center closest to it. Load balancing in
the Internet [14] may result in concurrent requests tak-
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ing different paths to the same data center.1 However, as
shown by the “2x S3[1]” line in Figure 5, though issuing
two concurrent requests to the same data center does re-
duce the inflation in tail latencies, relative inflation seen
at the median PlanetLab node remains close to 2x; the
“1x S3[1]” line represents the baseline where end-hosts
issue single GET requests to their closest data center.

Requests to multiple data centers. Since path diver-
sity to the same data center is insufficient to tame Inter-
net latency spikes, we next consider issuing concurrent
requests to multiple data centers; in addition to a GET
request to its closest S3 data center, we have every node
issue a GET request in parallel to its second closest S3
data center. The “1x S3[1] + 1x S3[2]” line in Figure 5
shows that this strategy offers little benefit in reducing
latency variance. This is because, for most PlanetLab
nodes, the second closest data center is too far to help
tame latency spikes to the node’s closest data center.

The root cause for this is that any particular cloud ser-
vice provider provisions its data centers in a manner that
maximizes geographical coverage. Hence, any pair of
data centers in the same cloud service are distant from
each other. For example, the “S3[2]” line in Figure 6
shows that RTT to the second closest data center in S3 is
40ms greater than the RTT to the closest S3 data center
for over 80% of PlanetLab nodes.

Leveraging multiple cloud providers. Though a sin-
gle cloud provider’s data centers are distant from each
other, we observe that different cloud providers often
have nearby data centers. For example, Figure 6 shows
that, for over 80% of PlanetLab nodes, RTT to the second
closest data center across S3 and Azure is within 25ms
of the RTT to the closest S3 data center.

Therefore, leveraging the fact that storage services
offered by all cloud providers largely offer the same
PUT/GET interface, every client of an application can
download copies of an object in parallel from 1) the clos-
est data center among the ones on which the applica-
tion is deployed, and 2) the second closest data center
across all storage services that offer a PUT/GET inter-
face. Figure 5 shows that doing so reduces the infla-
tion in 99th percentile GET latency to be less than 1.5x

1Multiple requests may also help in surviving packet losses. How-
ever, loss rates in our measurements are below 0.1%, thus making them
an insignificant factor in causing latency spikes.

the baseline median at 70% of PlanetLab nodes. Note
that the application itself can be deployed across a sin-
gle cloud provider’s data centers. As we describe later
(Section 5.1), CosTLO can maintain copies of objects
without the application’s knowledge.
4.2 Data center network latencies

Next, we consider strategies for tackling latency
spikes within a cloud service’s data center network.

In this case, we first attempt to implicitly exploit path
diversity by issuing the same PUT/GET request multiple
times in parallel from a VM to the local storage service.
Load balancing within the data center network [24] may
cause concurrent requests to take different routes to the
same front-end of the storage service, thus enabling us to
avoid latency spikes that occur on any one path.

Alternatively, we can explicitly exploit path diversity
in two ways. When a VM issues a GET/PUT to the local
storage service, we can either relay each request through
a different VM (Figure 4(d)), or issue each request to
a different front-end of the storage service. While the
latter approach is applicable in S3, all requests issued by
the same tenant are submitted to the same front-end [20]
in Azure. Therefore, we only consider here the former
way of explicitly exploiting path diversity.

In one of Azure’s data centers, Figure 7 compares the
distribution of tail latencies over the network in three sce-
narios for how a VM downloads objects from the local
storage service: 1) a single request is issued, 2) concur-
rent requests are issued directly to the same front-end,
and 3) concurrent requests are relayed via different VMs.
In the latter two cases, we experiment with different lev-
els of parallelism. We see that both implicit and explicit
exploitation of path diversity significantly reduce tail la-
tencies, with higher levels of parallelism offering greater
reduction. However, using VMs as relays adds some
overhead, likely due to requests traversing longer routes.
4.3 Storage service latencies

Finally, we evaluate two approaches for reducing la-
tency spikes within the storage service, i.e., latency be-
tween when a request is received at a front-end and when
it sends back the response. When issuing n concurrent
requests to a storage service, we either issue all n re-
quests for the same object or to n different objects. The
former attempts to implicitly leverage the replication of
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Figure 8: Impact on storage service tail latency inflation when
issuing concurrent requests to (a) the same object, and (b) to
different objects. Note logscale on y-axis.

objects within the storage service, whereas the latter ex-
plicitly creates and utilizes copies of objects. In either
case, if concurrent requests are served by different stor-
age servers, latency spikes at any one server can be over-
ridden by other servers that are lightly loaded.

At one data center each in Azure and S3, Figure 8
shows that both approaches for issuing concurrent re-
quests significantly reduce tail GET and PUT latencies.
However, the takeaways differ between Azure and S3.
On S3, irrespective of whether we issue multiple requests
to the same object or to different objects, the reduction
in 99th percentile latency tails off with increasing paral-
lelism. As seen later in Section 5, this is because, in S3,
concurrent requests from a VM incur the same latency
over the network, which becomes the bottleneck in the
tail. In contrast, on Azure, 99th percentile GET laten-
cies do not reduce further when more than 2 concurrent
requests are issued to the same object, but tail GET laten-
cies continue to drop significantly with increasing paral-
lelism when concurrent requests are issued to different
objects. In the case of PUTs, the benefits of redundancy
tail off at parallelism levels greater than 2 due to Azure’s
serialization of PUTs issued by the same tenant [20].

4.4 Takeaways

In summary, our measurement study highlights the fol-
lowing viable options for CosTLO to reduce latency vari-
ance via redundancy. First, CosTLO can tackle spikes
in Internet latencies by issuing multiple requests to a
client’s closest data center. If greater reduction in Inter-
net tail latencies is desired, CosTLO must concurrently
issue requests to the two closest data centers to the client
from the union of data centers in multiple cloud services.
Second, for latency spikes in a data center’s network, it
suffices to issue multiple requests to the storage service
in that data center. While explicitly relaying requests via
VMs may help reduce bandwidth costs (as seen in our ex-
ample earlier in Section 3), they do not offer additional
benefits in reducing latencies. Finally, for latency spikes
within the storage service, CosTLO can issue multiple
requests either to the same object or to different objects
that are all copies of the object being accessed.

5 Cost-effective Support for SLOs
Next, we describe how CosTLO combines the use of

the above-mentioned viable redundancy options in order
to satisfy an application’s SLO cost-effectively.
5.1 System architecture

Application interface. As shown in Figure 9(a), ap-
plication code on end-hosts links to CosTLO’s client li-
brary and uses the GET operation2 in this library to fetch
data from cloud storage. The client library issues a set
of GET requests to download an object and returns the
object’s data to the application as soon as any one GET
completes. Unlike downloads, we let client-side applica-
tion code upload data to its own VMs, because the ap-
plication may need to update application-specific meta-
data before writing user-uploaded data to cloud storage.
The application code in these VMs links to CosTLO’s
VM library and invokes the PUT operation in this library
to write data to the local storage service. The VM li-
brary in turn issues a set of PUT requests to the local
storage service, and informs the application that the PUT
operation is complete once any one of the PUT requests
finish. CosTLO offers the same consistency semantics
as S3 [3]: read-after-write consistency for PUTs of new
objects and eventual consistency for overwrite PUTs;
we discuss how CosTLO can support strong consistency
later in Section 7.

Configuration selection. CosTLO’s central ConfSe-
lector selects the configuration in which its client library
and VM library should serve PUTs and GETs. ConfSe-
lector divides time into epochs, and at the start of every
epoch, it selects a new configuration separately for every
IP prefix, since Internet latencies to any particular data
center are similar from all end-hosts in a prefix [31]. To
exploit weekly stability in workloads [12], we set epoch
durations to one week; we do not consider exploiting di-
urnal workload patterns because we observe good cost-
efficiency even when only leveraging weekly workloads
stability. At the start of every epoch, the CosTLO library
on every end-host and instances of CosTLO’s VM library
in every data center fetch the configurations that are rel-
evant to them. Since all objects accessed by a client are
replicated as per the configuration associated with the
client’s prefix, no per-object metadata is necessary. If
a client loses its state, it simply re-fetches the configura-
tion in the current epoch for its prefix from ConfSelector.

In the rest of this section, we address three questions:
1) how does ConfSelector identify a cost-effective con-
figuration of CosTLO that can satisfy the application’s
SLO?, 2) while searching for this cost-effective configu-
ration, how does ConfSelector estimate the tail latencies

2When ambiguous, we refer to applications invoking CosTLO’s
GET/PUT operations, and CosTLO issuing GET/PUT requests to stor-
age services.

6



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 549

Application

VM Library

Storage 
Service Storage 

Service

Application VM

Data Center 1

Data Center 2

Client

PUT requests

Workload 

Cost-effective
configuration

Storage 
Service Relay 

VMs

Client Application

Client Library

GET requests

ConfSelector

Version requests
and updates

Version
Metadata

VMs

Asynchronous
replication

Client

D2D1

Obj
Obj

Obj

Obj

Obj.3

Obj.2

(a) (b)
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for any configuration, given that is impractical to mea-
sure the latencies offered by every configuration?, and 3)
how does CosTLO preserve data consistency?
5.2 Selecting cost-effective configuration

Characterization of workload and cloud ser-
vices. To estimate the cost overhead and latency vari-
ance associated with any CosTLO configuration, ConfS-
elector 1) takes as input the pricing policies at every data
center, 2) uses logs exported by cloud providers to char-
acterize the workload imposed by clients in every prefix,
and 3) employs a measurement agent at every data cen-
ter. Every agent gathers three types of measurements: 1)
pings to a representative end-host in every prefix, 2) pairs
of concurrent GETs and pairs of concurrent PUTs to the
local storage service, and 3) the rates at which VMs can
relay PUTs and GETs between end-hosts and the local
storage service without any queueing. We ignore the im-
pact of VM failures on tail latency since cloud providers
guarantee over 99.95% of uptime for VMs [2, 8].

Representation of configurations. To search
through the configuration space, ConfSelector represents
every candidate configuration for a prefix as follows.
First, a configuration’s representation includes two three-
tuples, which specify the manner in which end-hosts in
the prefix should execute GETs. One three-tuple is for
the data center from which the application serves the pre-
fix and another for the data center closest to the prefix
among all other data centers on which CosTLO is de-
ployed. Either tuple specifies 1) number of copies of the
object stored in that data center, 2) number of requests
issued to each copy, and 3) whether all of these requests
are relayed via a VM.3 Figure 9(b) depicts an example.

Second, the configuration includes one two-tuple for
the manner in which CosTLO’s VM library should serve
PUTs from the prefix. We use only one tuple in this case,
since PUTs from an end-host are served solely at the data
center closest to it, and we use a two-tuple, since the VM
library does not relay PUTs through other VMs.

3If necessary, these three-tuples can be extended to include other
dimensions, e.g., whether each request is issued to a different front-end.
The dimensions we use here are based on the techniques that we found
to be viable in reducing tail latencies on Azure and S3 (Section 4).

Third, to reduce the cost overhead associated with re-
dundant requests, the client/VM library initially issues
a single request when serving a GET/PUT. If no re-
sponse is received for a period, the client/VM library
times out and probabilistically issues redundant requests
concurrently as specified by the tuples described above.
The timeout period ensures that CosTLO’s redundancy
is focused on requests that incur a high latency, whereas
probabilistically issuing redundant requests offers finer-
grained control over latency variance. For both PUTs
and GETs, the configuration representation specifies the
values of the timeout period and probability parameters.
Considering the same example from Figure 9(b) but with
70% probability and 50ms timeout period to issue redun-
dant requests, the configuration would be [(1, 2, False),
(3, 1, True), 50ms, 70%] (the PUT tuple is ignored here).

Configuration search. Given this representation of
the configuration space, ConfSelector identifies a cost-
effective configuration of CosTLO for any particular pre-
fix as follows. It initializes the configuration for a pre-
fix to reflect the manner in which an application serves
its clients when not using CosTLO—by always issuing
only a single request to the data center closest to a client.
CosTLO imposes no cost overhead in this configuration.

Thereafter, our structured representation of the config-
uration space enables ConfSelector to step through con-
figurations in the increasing order of cost. For this, Con-
fSelector maintains a pool of candidate configurations,
from which it considers the minimum cost configuration
in every step. ConfSelector computes the cost associ-
ated with a configuration as the sum of expected costs
for storage, VMs, requests, and bandwidth based on the
workload for the prefix and the manner in which the con-
figuration mandates that GET/PUT operations be served.
If the lowest cost configuration in the current pool does
not satisfy the SLO, ConfSelector discards this configu-
ration and inserts all neighbors of this configuration into
the pool of candidates. Two configurations are neigh-
bors if they differ in the value of exactly one parameter
in the configuration representation. For example, con-
figurations [(1, 2, False), 50ms, 70%] and [(2, 2, False),
50ms, 70%] are neighbors (we only show one GET tuple
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Figure 10: Scatter plot of first vs. second request GET latency
when issuing two concurrent requests to a storage service.

here for simplicity). This process terminates once Conf-
Selector finds a configuration that satisfies the SLO.

5.3 Estimating latency distribution

To identify when it has found a configuration that will
satisfy the application’s SLO, for any particular configu-
ration for a prefix, ConfSelector must be able to estimate
the latency distribution that clients in that prefix will ex-
perience when served in that configuration. For brevity,
we present here ConfSelector’s estimation of latencies
only for GETs, which it computes in four steps. First,
for either data center used in the configuration, we es-
timate the latency distribution when a VM in that data
center concurrently issues requests to the local storage
service, where the number of requests is specified by
the data center’s tuple in the configuration representa-
tion. Second, we estimate the latency distribution for
either data center’s tuple by adding the distribution com-
puted above with the latency distribution measured to the
prefix from a VM in that data center. Simply adding
these distributions works when objects are smaller than
1 KB, and in Section 7, we discuss how to extrapo-
late this distribution for larger objects. Third, we esti-
mate the client-perceived latency distribution by inde-
pendently sampling the latency distributions associated
with either tuple in the configuration and considering the
minimum. Finally, we adjust this distribution to account
for the timeout and probability parameters.

The primary challenge here is the first step: estimat-
ing the latency distribution when a VM issues concur-
rent requests to the local storage service. This turns out

to be hard due to the dependencies between concurrent
requests. While Figure 10 shows the correlation in la-
tencies between two concurrent GET requests to an ob-
ject at one of Azure’s and one of S3’s data centers, we
also see similar correlations for PUTs and even when the
concurrent requests are for different objects. Attempt-
ing to model these correlations between concurrent re-
quests by treating the cloud service as a black box did not
work well. Therefore, we explicitly model the sources of
correlations: concurrent requests may incur the same la-
tency within the storage service if they are served by the
same storage server, or incur the same data center net-
work latency if they traverse the same network path.

Modeling replication in storage service. First, at ev-
ery data center, we use CosTLO’s measurements to infer
the number of replicas across which the storage service
spreads requests to an object. For every pair of concur-
rent requests issued during CosTLO’s measurements, we
compute the difference in service latency (i.e., latency
within the storage service) between the two requests. We
then consider the distribution of this difference across
all pairs of concurrent requests to infer the number of
replicas in use per object. For example, if the storage
service load balances GET requests to an object across
2 replicas, there should be a 50% chance that two con-
current GETs fetch from the same replica, therefore the
service latency difference is expected to be 0 half the
time. We compare this measured distribution with the
expected distribution when the storage service spreads
requests across n replicas, where we vary the value of
n. We infer the number of replicas used by the service
as the value of n for which the estimated and measured
distributions most closely match. For example, though
both Azure [5] and S3 [4] are known to store 3 replicas
of every object, Figures 11(a) and 11(b) show that the
measured service latency difference distributions closely
match GETs being served from 1 replica on Azure and
from 2 replicas on S3.

On the other hand, for concurrent GETs or PUTs is-
sued to different objects, on both Azure and S3, we see
that the latency within the storage service is uncorre-
lated across requests. This is likely because cloud stor-
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age services store every object on a randomly chosen
server (e.g., by hashing the object’s name for load bal-
ancing [23]), and hence, requests to different objects are
likely to be served by different storage servers.

Modeling load balancing in network. Next, we
identify whether concurrent requests issued to the stor-
age service incur the same latency over the data center
network, or are their network latencies independent of
each other. At any data center, we compute the distri-
bution obtained from the minimum of two independent
samples of the measured data center network latency dis-
tribution for a single request. We then compare this dis-
tribution to the measured value of the minimum data cen-
ter network latency seen across two concurrent requests.

Figure 11(c) shows that, on Azure, the distribution
obtained by independent sampling closely matches the
measured distribution, thus showing that network laten-
cies for concurrent requests are uncorrelated. Whereas,
on S3, Figure 11(d) shows that the measured distribution
for the minimum across two requests is almost identi-
cal to the data center network latency component of any
single request; this shows that concurrent requests on S3
incur the same network latency.

Estimating VM-to-service latency. Given these
models for replication and load balancing, we estimate
the end-to-end latency distribution as follows when a VM
issues k concurrent requests to the local storage service.
If concurrent requests are known to have the same la-
tency over the service’s data center network, we sam-
ple the measured data center network latency distribution
once and use this value for all requests; if not, we inde-
pendently sample once for each request. If all k requests
are to the same object, then we randomly assign every re-
quest to one of the replicas of the object, where the num-
ber of replicas is identified as described above. If the k
requests are for k different objects, then we assume that
no two requests are served from the same storage server.
In either case, for each storage server, we independently
choose a sample from the service latency distribution for
a single request and assign that to be the service latency
for all requests assigned to that server. Finally, for each
of the k requests, we sum up their assigned data center
network latency and service latency values, and estimate
the end-to-end latency at the VM as the minimum of this
sum across the k requests.

Note that our latency estimation models may poten-
tially break down at high storage service load. But, we
have not seen any evidence of this so far, since we see
the same latency distribution irrespective of whether we
issue requests once every 3 seconds or once every 200ms.
5.4 Ensuring data consistency

CosTLO can afford to inform the application that
a PUT operation is complete as soon as any of the
PUT requests that it issues to serve the operation fin-
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data center 1

data center 2

Version
Metadata

VMs

1. User PUT
request

2. Acquire L    lock & metadatao
S3. Update log,
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S

8. Update metadata & free L   lockoA

Application
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Client

7. PUT to remote
data centers

6. Acquire L    lock & metadataoA

Requests on
critical path

Requests not
on critical path

Figure 12: Illustration of CosTLO’s execution of PUTs.

ish, because the underlying cloud services guarantee that
the data written by a completed PUT request will be
durable [5, 4]. However, this design decision makes it
challenging for CosTLO to ensure that, eventually, all
GETs for an object will consistently return the same data.
First, if the application issues back-to-back or concurrent
PUT operations on the same object, redundant PUT re-
quests that are still pending from a completed PUT oper-
ation may potentially overwrite updates written by sub-
sequent PUT operations. Second, if an application VM
restarts after only a subset of the PUT requests issued to
serve a PUT operation complete, the VM library will not
realize if some of the remaining PUT requests fail, thus
causing some of the copies of the object to potentially
not reflect the latest update to the object.

Figure 12 illustrates the execution of PUTs in CosTLO
accounting for these concerns. In every data center,
CosTLO maintains a set of VMs that store in memory
(with a persistent backup) the latest version number and
the status of two locks LS

o and LA
o for every object o

stored in that data center. We use LS
o for synchronous

PUTs to local storage service and LA
o for asynchronous

PUTs to remote storage services. When serving a PUT
operation on object o, the VM library first queries the
local cluster of CosTLO’s VMs to obtain lock LS

o and
learn o’s current version. Once it acquires the lock, the
library appends to a persistent log (maintained locally on
the VM) the update that needs to be written to o and all
the PUT requests that the library needs to issue as per the
configuration for the client issuing this PUT operation.
By appending the status of every response to the log,
the library ensures that it knows which PUTs to re-issue,
even across VM restarts. Once all PUT requests com-
plete, the library releases lock LS

o , updating o’s version
in the process. At some point later, the library attempts
to acquire lock LA

o , and if o’s version has not changed
by then, it updates the remaining copies of o and sub-
sequently releases the lock. If o’s version has changed,
the library just needs to release the lock, since there ex-
ists a newer PUT operation on this key and that PUT’s
asynchronous propagation will suffice to update the re-
maining copies of o.

Note that, since the application is unaware of the repli-
cation of objects across data centers, all PUT operations
on an object will be issued by the application’s VMs in

9
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Figure 13: Verification of CosTLO’s ability to satisfy SLOs.

the same data center. Hence, the VM library needs to
acquire locks only from CosTLO’s VMs within the lo-
cal data center, thus ensuring that locking operations add
negligible latency. Also note that, when an application
issues back-to-back PUT operations, execution of the lat-
ter PUT has to wait for the lock LS

o (for the object o being
updated) to be released. This can potentially increase4

tail latencies if multiple PUT requests need to complete
before LS

o is released. Therefore, in the rare case when
an application often issues back-to-back or concurrent
PUTs for the same object, the application should choose
an SLO that offers no improvement in PUT latency vari-
ance; this will ensure that CosTLO executes any PUT
operation by issuing a single PUT request.

6 Evaluation
We evaluate CosTLO from three perspectives: 1) its

ability to satisfy latency SLOs, 2) its cost-effectiveness
in doing so, and 3) its efficiency in various respects. We
perform our evaluation from the perspective of an ap-
plication deployed across all of Amazon’s data centers.
We deploy CosTLO across Azure’s and S3’s data cen-
ters, and use PlanetLab nodes at 120 sites as clients.
6.1 Ability to satisfy SLOs

SLOs on individual operations. To verify CosTLO’s
ability to satisfy latency SLOs, we mimic a deployment
of Wikipedia using server-side logs of objects requested
from the English version of Wikipedia [6]. We randomly
select a 1% sample from the datasets for two consecutive
weeks. We provide the workload from the first week to
ConfSelector as input, and have it select cost-effective
configurations for 120 PlanetLab nodes. We then run
CosTLO with every node configured in the manner se-
lected by ConfSelector. We replay the workload from
the second week, with every GET request assigned to a
random PlanetLab node. We repeat this experiment for
four SLO values—30ms, 40ms, 50ms, and 60ms. In all
cases, since we issue GETs/PUTs to S3 and Azure, our
measurements are affected by Internet congestion and by
contention with S3’s and Azure’s customers.

Figure 13 shows the distribution of the measured dif-
ference between the 99th percentile and baseline median

4Note that we can reduce the extent of this increase in inflation by
having CosTLO maintain a lock LS

o,c for every copy c of object o, but
we do not present such a design here to keep the discussion simple.
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Figure 14: CosTLO’s ability to satisfy application-specific
SLOs for (a) webpage and (b) social network applications.

latencies at every PlanetLab node. For all SLOs, the la-
tency variance delivered by CosTLO is within the input
SLO on most nodes; without CosTLO, the difference be-
tween 99th percentile and baseline median GET laten-
cies is greater than 60ms for 75% of PlanetLab nodes
(Figure 1(a)). Latency variance with CosTLO is, in fact,
well below the SLO in many cases; due to discontinu-
ous drops in the latency distribution across neighboring
configurations, as ConfSelector steps through the config-
uration space, it often directly transitions from a config-
uration that violates the SLO to one that exceeds it.

Note that, though we only demonstrate CosTLO’s
ability to satisfy GET latency SLOs here (because the
trace from Wikipedia only contains GETs), CosTLO can
also reduce the latency variance for PUTs as described
earlier. In contrast, in-memory caching of data can only
reduce tail latencies for GETs, but not for PUTs.

Application-specific SLOs. CosTLO’s design is eas-
ily extensible to handle application-specific SLOs, rather
than the SLOs for the latencies of individual PUT/GET
operations. Here, we show the results of using CosTLO
to reduce user-perceived latencies in the two applications
from Section 2. In the webpage application, we modify
ConfSelector so that it uses the models in Section 5.3 to
estimate the distribution for the latency incurred when
the client library fetches 50 objects in parallel and waits
for at least one GET to each of these objects to com-
plete. In the social network application, since we need
to estimate latencies from multiple users, we extend the
configuration representation in ConfSelector such that it
contains the configuration tuples of all of a user’s fol-
lowers. The sync completion time is determined when
all followers have at least one GET completed. We use
this modified version of ConfSelector to select configu-
rations for all PlanetLab nodes and run CosTLO’s client
library on every node as per these configurations. Fig-
ure 14 shows that CosTLO is able to satisfy application-
specific SLOs in both applications.
6.2 Accuracy of estimating latency distributions

CosTLO is able to meet latency SLOs due to its accu-
rate estimation of the end-to-end latency distributions in
any configuration. Our simple approaches of considering
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Figure 15: Accuracy of estimating GET latency distribution
for 8 concurrent GET requests from VM to local storage ser-
vice. (a and b) Comparison of latency distributions in one S3
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latencies. Note logscale on y-axis of all three graphs.

the minimum of the latency distributions across data cen-
ters and of adding VM-to-prefix and VM-to-service la-
tency distributions work reasonably well; in either case,
CosTLO’s estimates show less than 15% error for 90%
of PlanetLab nodes. Therefore, here we focus on demon-
strating the accuracy of our estimation of the latency dis-
tribution when a VM concurrently issues a set of requests
to the local storage service. Recall that CosTLO only
gathers measurements when issuing pairs of concurrent
requests. We evaluate its ability to estimate the latency
distribution for higher levels of parallelism.

Figures 15(a) and 15(b) compare the measured and es-
timated latency distributions when issuing 8 concurrent
GETs from a VM to the local storage service; all con-
current requests are for the same object in the former
and to different objects in the latter. In both cases, our
estimated latency distribution closely matches the mea-
sured distribution, even in the tail. In contrast, if we
estimate the latency distribution for 8 concurrent GETs
by independently sampling the latency distribution for a
single request 8 times and considering the minimum, we
significantly under-estimate the tail of the distribution.
Additionally, Figure 15(c) shows that the relative error
between the measured and estimated values of the 99th

percentile GET latency is less than 5% in the median S3
region; latencies are higher for S3’s Virginia data center
because it is the most widely used data center in S3.
6.3 Cost-effectiveness

An application that uses CosTLO incurs additional
costs for storing copies of objects, for operations and
bandwidth due to redundant requests, and for VMs used
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Figure 17: (a) Utility of CosTLO’s components in reducing
cost and meeting SLO = 30ms. (b) Cost inflation when not
using timeout and probability parameters.

either as relays or to manage locks and version numbers.
We again use Wikipedia’s workload to quantify this over-
head on an application provider’s costs.

Figure 16 shows the relative cost overhead as a func-
tion of the latency SLO, with the cost split into its four
components. At the higher end of the examined range
of SLO values, CosTLO caps tail latency inflation at
70ms—which is less than the inflation observed at the
median node when not using CosTLO—with less than
8% increase in cost. As the SLO decreases, i.e., as lower
variance is desired, cost increases initially due to an in-
crease in the number of redundant requests. Thereafter,
as the SLO further decreases, CosTLO begins to use
more relay VMs so that only one copy of any requested
object leaves the data center, thus decreasing bandwidth
costs at the expense of VM costs. As the SLO decreases
further, CosTLO begins concurrently issuing requests to
multiple data centers, thus again increasing bandwidth
costs. Storage costs and cost for VMs that manage locks
and version numbers remain low for all SLO values, be-
cause 1) on both Amazon’s and Microsoft’s cloud ser-
vices, storage is significantly cheaper than GET/PUT re-
quests, VMs, and network transfers, and 2) lock status
and version numbers for all 70M objects in the English
version of Wikipedia fit into the memory of a small in-
stance VM, which costs less than $20 per month on EC2.
6.4 Utility of CosTLO’s components

CosTLO’s ability to satisfy SLOs cost-effectively cru-
cially depends on its combined use of various forms of
issuing redundancy. We illustrate this in Figure 17(a) by
comparing CosTLO with several strategies that each use
a subset of the dimensions in CosTLO’s configuration
space. For each strategy, we compute the fraction of Pla-
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netLab nodes for which it is able to satisfy an SLO of
30ms, and across the nodes on which the strategy does
meet the SLO, we compare its cost with CosTLO’s.

First, the simplest strategy S1, which only issues re-
dundant requests to a single copy of any object in the data
center closest to any client, can meet the SLO on only a
little over 10% of nodes. Adding the use of relay VMs
(S2) reduces cost inflation compared to CosTLO from
over 200% to less than 150%, but the ability to meet the
SLO remains unchanged. We can improve the ability to
satisfy the SLO by adding the option of issuing redun-
dant requests either to multiple copies of every object in
the closest data center or to multiple data centers. How-
ever, the fraction of nodes on which the SLO can be met
remains below 60% if we use one of these two options.
Only by combining the use of relay VMs, multiple copies
of objects, and multiple data centers is CosTLO able to
meet the SLO at all nodes, at significantly lower cost.

In addition, we illustrate the utility of CosTLO waiting
for a timeout period before issuing redundant requests
and issuing redundant requests probabilistically. For ev-
ery SLO in the range 30ms to 70ms, Figure 17(b) com-
pares CosTLO’s cost overhead when it uses the timeout
and probability parameters versus when it does not. The
cost overhead of not using the timeout and probability
parameters is low when the SLO is extremely low or ex-
tremely high. In the former case, most PlanetLab nodes
need to issue redundant requests at all times without any
timeout in order to meet the SLO, whereas in the latter
case, the SLO is satisfied for most PlanetLab nodes even
without redundant requests. However, for many inter-
mediate SLO values—that are neither too loose nor too
stringent—not using the timeout and probability param-
eters increases cost significantly, by as much as 48%.
6.5 Efficiency

Measurement cost. The cost associated with
CosTLO’s measurements depends on the number of la-
tency samples necessary to accurately sample latency
distributions. To quantify the stationarity in latencies, we
consider a dataset of 200K latency measurements gath-
ered over a week from VMs in every S3 and Azure data
center. We then consider subsets of these datasets, vary-
ing the number of samples considered. In all datasets,
we find that 10K samples are sufficient to obtain a rea-
sonably accurate value of the 99th percentile latency. In
the ping, GET, and PUT latency measurements, the 99th

percentile from a subset of 10K samples was off from the
99th percentile in the entire dataset by only 2.9%, 3.8%,
and 2.2% on average.

Thus, at every data center, CosTLO’s weekly mea-
surement costs include: 1) 20K GETs and PUTs (since
CosTLO gathers data with pairs of concurrent requests),
2) 10K pings to every end-host prefix, and 3) one “small
instance” VM (which is sufficient to support this scale
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Figure 18: (a) CosTLO’s utility in reducing latency variance
when offering strong consistency; 1 PUT request per copy. (b)
latency breakdown for objects of different sizes.

of measurements). Accounting for the roughly 120K IP
prefixes at the Internet’s edge [27], 8 S3 data centers, and
13 Azure data centers, these measurements translate to a
total cost of $392 per week. These minimal measurement
costs are shared across all applications that use CosTLO.

Configuration selection runtime. We run ConfSelec-
tor to select the configurations for 120 PlanetLab nodes,
and we compute the average runtime per node. We re-
peat this for SLO values ranging from 20ms to 100ms.
Extrapolating the average runtime per node, we estimate
that, for all SLO values, ConfSelector needs less than a
day to select the configuration for all 120K edge prefixes
on a server with 16 cores. Hence, ConfSelector can iden-
tify the configurations for a particular week during the
last day of the previous week. Moreover, since ConfS-
elector independently selects configurations for different
prefixes, this runtime is easily reduced by parallelizing
ConfSelector’s execution across a cluster of servers.

7 Discussion
Strong consistency. Many applications (e.g., Google

Docs) require their underlying storage to offer strong
consistency. For such applications, CosTLO uses only
strongly consistent storage services, e.g., it can use
Azure but not S3. In addition, two modifications are nec-
essary in the execution of a PUT operation on any object
o. First, to ensure linearizability of PUTs, the VM library
synchronously updates all copies of o before releasing
lock LS

o . Second, instead of the library informing the ap-
plication when any one PUT request completes, the ap-
plication registers for two callbacks—1) quorumPUTs-
Done, for when at least one PUT request each completes
on a quorum of o’s copies, and 2) allPUTsDone, when all
PUTs finish. The quorumPUTsDone callback indicates
to the application that subsequent GET operations on o
will fetch the latest version, if the client library waits for
responses from a quorum of copies when serving GETs.

After these changes, Figure 18(a) shows the PUT la-
tency variance offered by CosTLO when every object ac-
cessed by a PlanetLab node has one copy and two copies,
respectively, in the closest Azure data center and the sec-
ond closest data center across S3 and Azure; for this anal-
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ysis, we ignore that S3 does not offer strong consistency.
Despite having to wait for PUT requests on a quorum of
copies to complete, and though a quorum of every ob-
ject’s copies are stored in a different data center than the
application VMs that issue PUT operations on the object,
CosTLO more than halves the PUT latency inflation for
the median node. This again highlights the utility of re-
dundant copies and requests, and of CosTLO’s use of
multiple cloud services.

Latency estimation for larger objects. One can po-
tentially extend CosTLO’s approach for estimating la-
tency variance to larger objects as follows. We conduct
measurements on objects from 1 KB to 256 KB when is-
suing one GET request at a time to each object from a
local VM, and Figure 18(b) shows the results from one
data center. We see that network latency is proportional
to object size, and storage service latency is a step func-
tion of object size. Although different data centers may
have different step functions (we observe that some data
centers have the same storage service latency distribution
for all sizes in the 256 KB range), the smallest range that
has a fixed storage service latency distribution is until 64
KB, which is a typical block size in distributed storage
systems [21]. Therefore, to estimate latencies for objects
of different sizes, we can leverage the fact that objects
with the same number of blocks have the same storage
service latency distribution.

Scale of adoption. CosTLO’s approach of issuing
redundant requests makes it unviable if all applications
adopt it. However, we believe that increasing adoption
of CosTLO will emphasize the demand for latency SLOs
and spur cloud providers to suitably modify their ser-
vices. In the interim, CosTLO minimizes the cost over-
head incurred by application providers who seek to im-
prove predictability in user-perceived latencies without
having to wait for any changes to cloud services. More-
over, cloud service providers have little control over re-
ducing variance in the latency on the Internet path be-
tween end-hosts and their data centers.

8 Related Work
Redesigning cloud services. Several recent proposals

redesign storage systems and data centers to improve tail
latency performance [36], to offer bandwidth guarantees
to tenants [15, 33, 16, 37], or to ensure predictable com-
pletion times for TCP flows [42, 26, 40]. However, all of
these proposals require modifications to a cloud service’s
infrastructure. It is unclear when, and if, cloud services
will revamp their infrastructure to these more complex
architectures. CosTLO instead satisfies latency SLOs
for applications deployed on the cloud without having
to wait for any modifications to cloud services.

Reducing tail latencies. The approach of issuing re-
dundant requests to reduce tail latencies has been consid-

ered previously [22, 38], but the focus has primarily been
on understanding the implications of redundancy on sys-
tem load. In contrast, our work demonstrates how the
approach of using redundant requests should be applied
in the context of cloud storage services, in order to meet
latency SLOs while minimizing cost overhead.

Some application providers such as Facebook use in-
memory caching of data to reduce tail latencies [32].
However, caching cannot reduce tail latencies associated
with PUT requests. Moreover, caching at a single data
center cannot tackle latency spikes on Internet paths, and
not all application providers will be able to afford caches
at multiple data centers that can accommodate enough
data to reduce 99th percentile GET latencies.

Cloud measurement studies. Prior studies have
compared the performance offered by different cloud
providers [29], reverse-engineered cloud service inter-
nals [34], and studied application deployments on the
cloud [25]. Our measurement study of Azure and S3 is
the first to quantify the latency variance on these storage
services and to characterize the impact of different forms
of redundancy. Moreover, unlike Bodik et al. [18], who
focused on characterizing and modeling spikes in appli-
cation workloads, our measurements show that an appli-
cation using cloud storage can suffer latency spikes even
when there is no spike in that application’s workload.

Combining cloud providers. Others have combined
the use of multiple cloud providers to improve availabil-
ity [11, 28], to offer more secure storage [17], and to re-
duce cost [39, 41]. CosTLO uses cloud storage services
offered by multiple providers because 1) the combination
offers more data center pairs that are close to each other,
and 2) latency spikes on the Internet paths to data centers
in different cloud services are uncorrelated.

9 Conclusions
Our measurements of the Azure and S3 storage ser-

vices highlight the high variance in latencies offered by
these services. To enable applications to improve pre-
dictability, without having to wait for these services to
modify their infrastructure, we have designed and im-
plemented CosTLO, a framework that requires minimal
changes to applications. Based on several insights about
the causes for latency variance on cloud storage services
that we glean from our measurements, our design of
CosTLO judiciously combines several instantiations of
the approach of issuing redundant requests. Our results
show that, despite the unbounded configuration space
and opaque cloud service architectures, CosTLO cost-
effectively enables applications to meet latency SLOs.
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Abstract. Network latency is a problem for all cloud
services. It can be mitigated by moving computation out
of remote datacenters by rapidly instantiating local ser-
vices near the user. This requires an embedded cloud
platform on which to deploy multiple applications se-
curely and quickly. We present Jitsu, a new Xen tool-
stack that satisfies the demands of secure multi-tenant
isolation on resource-constrained embedded ARM de-
vices. It does this by using unikernels: lightweight,
compact, single address space, memory-safe virtual ma-
chines (VMs) written in a high-level language. Using
fast shared memory channels, Jitsu provides a directory
service that launches unikernels in response to network
traffic and masks boot latency. Our evaluation shows
Jitsu to be a power-efficient and responsive platform for
hosting cloud services in the edge network while preserv-
ing the strong isolation guarantees of a type-1 hypervisor.

1 Introduction
The benefits of cloud hosting are clear: dynamic resource
provisioning, lower capital expenditure, high availabil-
ity, centralised management. Unfortunately, all services
architected and deployed in this way inevitably suffer
the same problem: latency. Physical separation be-
tween remote datacenters where processing occurs and
users of these services, imposes unavoidable minimum
bounds on network latency. Recent developments in aug-
mented reality (e.g., Google Glass [17]) and voice con-
trol (e.g., Apple’s Siri) particularly suffer in this regard.

Concurrent with the move of services to the cloud, we
are now seeing uptake of the “Internet-of-Things” (IoT),
giving rise to our second concern: integrity. These de-
vices often rely on the network for their operation but
many of the devices we use daily suffer from an unre-
lenting stream of security exploits, including routers [8],
buildings [13] and automobiles [5]. The future success of
IoT platforms being deployed in edge networks depends
on the convenience of secure multi-tenant isolation that
the public cloud utilises.

The widely deployed Xen hypervisor [2] enforces iso-
lation between multiple tenants sharing physical ma-
chines. Xen recently added support for hardware virtual-
ized ARM guests, opening up the possibility of building
an embedded cloud: a system of distributed low-power
devices, deployed near users, able to host applications
delivering real-time services directly via local networks.
There has been a steady increase in ARM boards fea-
turing a favourable energy/price/speed trade-off for con-
structing embedded systems (e.g., the Cubieboard2 has
1GB RAM, a dual-core A20 ARM CPU and costs £ 39).

We present Jitsu, a system for securely managing
multi-tenant networked applications on embedded in-
frastructure. Jitsu re-architects the Xen toolstack to
lower the resource overheads of manipulating virtual ma-
chines (VMs), overcoming current limitations that pre-
vent Xen from becoming an effective platform for build-
ing embedded clouds. Rather than booting conventional
VMs, Jitsu services network requests with low latency
using unikernels [27] as the unit of deployment. These
are small enough to be booted in a few hundred millisec-
onds, a latency that Jitsu further masks through connec-
tion hand-off. The MirageOS unikernels [25] that we
use are also secure enough to survive inexpertly managed
network-facing deployment.

Jitsu uses the virtual hardware abstraction layer pro-
vided by the Xen type-1 hypervisor, adding a new control
toolstack that eliminates bottlenecks in VM management
(Figure 1). Although developed with unikernels in mind,
it preserves sufficient compatibility that many of its ben-
efits apply equally to generic (e.g., Linux or FreeBSD)
VMs targeting either ARM or x86.

The specific contributions of this paper are thus: a de-
scription of how to build efficient, secure unikernels on
the new open-source Xen/ARM (§2); an explanation of
the Jitsu Xen toolstack architecture (§3); a comparison of
it against other application containment techniques (§4);
and finally application deployment scenarios and discus-
sion of the broader lessons learnt (§5).
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Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.

2 Embedded Unikernels
Building software for embedded systems is typically
more complex than for standard platforms. Embedded
systems are often power-constrained, impose soft real-
time constraints, and are designed around a monolithic
firmware model that forces whole system upgrades rather
than upgrade of constituent packages. To date, general-
purpose hypervisors have not been able to meet these re-
quirements, though microkernels have made inroads [9].

Several approaches to providing application isolation
have received attention recently. As each provides dif-
ferent trade-offs between security and resource usage,
we discuss them in turn (§2.1), motivating our choice of
unikernels as our unit of deployment. We then outline the
new Xen/ARM port that uses the latest ARM v7-A vir-
tualization instructions (§2.2) and provide details of our
implementation of a single-address space ARM uniker-
nel using this new ABI (§2.3).

2.1 Application Containment
Strong isolation of multi-tenant applications is a require-
ment to support the distribution of application and sys-
tem code. This requires both isolation at runtime as well
as compact, lightweight distribution of code and associ-
ated state for booting. We next describe the spectrum of
approaches meeting these goals, depicted in Figure 2.

OS Containers (Figure 2a). FreeBSD Jails [19] and
Linux containers [38] both provide a lightweight mecha-
nism to separate applications and their associated kernel
policies. This is enforced via kernel support for isolated
namespaces for files, processes, user accounts and other
global configuration. Containers put the entire mono-
lithic kernel in the trusted computing base, while still
preventing applications from using certain functionality.
Even the popular Docker container manager does not yet
support isolation of root processes from each other.1

1https://docs.docker.com/articles/security/

Both the total number and ongoing high rate of dis-
covery of vulnerabilities indicate that stronger isolation
is highly desirable (see Table 2). An effective way to
achieve this is to build applications using a library op-
erating system (libOS) [10, 24] to run over the smaller
trusted computing base of a simple hypervisor. This has
been explored in two modern strands of work.

Picoprocesses (Figure 2b). Drawbridge [34] demon-
strated that the libOS approach can scale to running
Windows applications with relatively low overhead (just
16MB of working set memory). Each application runs
in its own picoprocess on top of a hypervisor, and this
technique has since been extended to running POSIX ap-
plications as well [15]. Embassies [22] refactors the web
client around this model such that untrusted applications
can run on the user’s computer in low-level native code
containers that communicate externally via the network.

Unikernels (Figure 2c). Even more specialised appli-
cations can be built by leveraging modern programming
languages to build unikernels [25]. Single-pass compi-
lation of application logic, configuration files and device
drivers results in output of a single-address-space VM
where the standard compiler toolchain has eliminated un-
necessary features. This approach is most beneficial for
single-purpose appliances as opposed to more complex
multi-tenant services (§5).

Unikernel frameworks are gaining traction for many
domain-specific tasks including virtualizing network
functions [29], eliminating I/O overheads [20], build-
ing distributed systems [6] and providing a minimal trust
base to secure existing systems [11, 7]. In Jitsu we use
the open-source MirageOS2 written in OCaml, a stati-
cally type-safe language that has a low resource footprint
and good native code compilers for both x86 and ARM.
A particular advantage of using MirageOS when work-
ing with Xen is that all the toolstack libraries involved
are written entirely in OCaml [36], making it easier to
safely manage the flow of data through the system and to
eliminate code that would otherwise add overhead [18].

2.2 ARM Hardware Virtualization
Xen is a widely deployed type-1 hypervisor that isolates
multiple VMs that share hardware resources. It was orig-
inally developed for x86 processors [2], on which it now
provides three execution modes for VMs: paravirtualiza-
tion (PV), where the guest operating system source is di-
rectly modified; hardware emulation (HVM), where spe-
cialised virtualization instructions and paging features
available in modern x86 CPUs obviate the need to mod-
ify guest OS source code; and a hybrid model (PVH) that
enables paravirtualized guests to use these newer hard-
ware features for performance.3

2http://www.openmirage.org
3See Belay et al [4] for an introduction to the newer VT-x features.
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Figure 2: Contrasting approaches to application containment.

The Xen 4.4 release added support for recent ARM
architectures, specifically ARM v7-A and ARM v8-A.
These include extensions that let a hypervisor manage
hardware virtualized guests without the complexity of
full paravirtualization. The Xen/ARM port is markedly
simpler than x86 as it can avoid a range of legacy re-
quirements: e.g., x86 VMs require qemu device emu-
lation, which adds considerably to the trusted comput-
ing base [7]. Simultaneously, Xen/ARM is able to share
a great deal of the mature Xen toolstack with Xen/x86,
including the mechanics for specifying security policies
and VM configurations.

Jitsu can thus target both Xen/ARM and Xen/x86, re-
sulting in a consistent interface that spans a range of de-
ployment environments, from conventional x86 server
hosting environments to the more resource-constrained
embedded environments with which we are particularly
concerned, where ARM CPUs are commonplace.

2.3 Xen/ARM Unikernels
Bringing up MirageOS unikernels on ARM required de-
tailed work mapping the libOS model onto the ARM ar-
chitecture. We now describe booting MirageOS uniker-
nels on ARM, their memory management requirements,
and device virtualization support.

Xen Boot Library. The first generation of uniker-
nels such as MirageOS [26, 25] (OCaml), HaLVM [11]
(Haskell) and the GuestVM [32] (Java) were constructed
by forking Mini-OS, a tiny Xen library kernel that ini-
tialises the CPU, displays console messages and allocates
memory pages [39]. Over the years, Mini-OS has been
directly incorporated into many other custom Xen oper-
ating systems, has had semi-POSIX compatibility bolted
on, and has become part of the trusted computing base
for some distributions [7]. This copying of code becomes
a maintenance burden when integrating new features that
get added to Mini-OS. Before porting to ARM, we there-
fore rearranged Mini-OS to be installed as a system li-

brary, suitable for static linking by any unikernel.4 Func-
tionality not required for booting was extracted into sep-
arate libraries, e.g., libm functionality is now provided
by OpenLibM (which originates from FreeBSD’s libm).

An important consequence of this is that a libc is
no longer required for the core of MirageOS: all libc
functionality is subsumed by pure OCaml libraries in-
cluding networking, storage and unicode handling, with
the exception of the rarely used floating point formatting
code used by printf, for which we extracted code from
the musl libc. Removing this functionality does not
just benefit codesize: these embedded libraries are both
security-critical (they run in the same address space as
the type-safe unikernel code) and difficult to audit (they
target a wide range of esoteric hardware platforms and
thus require careful configuration of many compile-time
options). Our refactoring thus significantly reduced the
size of a unikernel’s trusted computing base as well as
improving portability.

Fast Booting on ARM. We then ported Mini-OS to
boot against the new Xen ARM ABI. This domain build-
ing process is critical to reducing system latency, so
we describe it here briefly. Xen/ARM kernels use the
Linux zImage format to boot into a contiguous mem-
ory area. The Xen domain builder allocates a fresh vir-
tual machine descriptor, assigns RAM to it and loads
the kernel at the offset 0x8000 (32KB). Execution be-
gins with the r2 register pointing to a Flattened Device
Tree (FDT). This is a similar key/value store to the one
supplied by native ARM bootloaders and provides a uni-
fied tree for all further aspects of VM configuration. The
FDT approach is much simpler than x86 booting, where
the demands of supporting multiple modes (paravirtual,
hardware-assisted and hybrids) result in configuration in-
formation being spread across virtualized BIOS, memory
and Xen-specific interfaces.

4Our Mini-OS changes have been released back to Xen and are be-
ing integrated in the upstream distribution that will become Xen 4.6.
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Some assembler code then performs basic boot tasks:
• Configuring the MMU, which handles mapping vir-

tual to physical memory addresses.
• Turning on caching and branch prediction.
• Setting up the exception vector table, defining how

to handle interrupts and deal with various faults
such as reading from an invalid memory address.

• Setting up the stack pointer and jumping into the C
arch_init function for the remainder of execution.

The early C code sets up the virtual logging console
and interrupt controllers. After this, unikernel-specific C
code binds interrupt handlers, memory allocators, time-
keeping and grant tables [42] into the language runtime.
The final step is to jump into the OCaml code section5

and begin executing application logic. The application
links memory-safe OCaml libraries to perform the re-
maining functions of device drivers and network stacks.

Modifying Memory Management. Once the Mi-
rageOS/ARM unikernel has booted, it runs in a sin-
gle address space without context switching. However,
the memory layout under ARM is significantly differ-
ent from that for x86. Under the ARM Virtualization
Extensions, there are two stages to converting a virtual
memory address (used by application code) to a physical
address in RAM, both of which go through translation
tables. The first stage is under the control of the guest
VM, where it maps the virtual address to what the guest
believes is the physical address – the Intermediate Phys-
ical Address (IPA). The second stage, under the control
of Xen, maps the IPA to the real physical address.

MirageOS’ memory needs are very simple compared
with traditional guest OSs. Most memory is provided
directly to the managed OCaml heap which is grown on-
demand. Unikernels will typically also allocate a few
pages for interacting directly with Xen as these must be
page-aligned and static, and so cannot be allocated on the
garbage collected OCaml heap.

Although Xen does not commit to a specific fixed ad-
dress for the IPA, the C code does need to run from a
known location. To resolve this, the assembler boot code
uses the program counter to detect where it is running
and sets up a virtual-to-physical mapping that will make
it appear at the expected location by adding a fixed offset
to each virtual address. The table below shows this for
Xen 4.5 (the latest stable release). The physical address
is always at a fixed offset from the virtual address and
addresses wrap around, so virtual address 0xC0400000
maps back to physical address 0 in this example.

The stack, which grows downwards, is placed at the
start of RAM so that an overflow will trigger a page fault
that can be caught, and can also be grown in size later

5The ocamlopt compiler outputs standalone native code ARM ob-
ject files that are linked with the garbage collector runtime library.

Addresses
Virtual Physical Purpose

0x400000 0x40000000 Stack (16 KB)
0x404000 0x40004000 Translation tables (16 KB)
0x408000 0x40008000 Kernel image

in the boot process when all of the RAM is available.
The 16KB translation table is an array of 4-byte entries
each mapping 1MB of the virtual address space, so the
16KB table is able to map the entire 32-bit address space
(4GB). Each entry can either give the physical section
address directly or point to a second-level table mapping
individual 4KB pages; MirageOS implements the former
as this reduces possible delays due to TLB misses.

The kernel code is followed by the data section con-
taining constants and global variables, then the bss sec-
tion with data that is initially zero and thus need not be
stored in the kernel image, and finally the rest of the
RAM under control of the memory allocator.

Device Virtualization. On Xen/x86 it is possible to
add virtual devices by two means: pure PV devices that
operate via a split-device model [42], and emulated hard-
ware devices that use the qemu device emulator to pro-
vide the software model. Xen/ARM does not support the
more complex hardware emulation at all, instead man-
dating (as a new ABI) that VMs support the Xen PV
driver model to attach virtual devices.

MirageOS includes OCaml library implementations of
the Xen PV protocols for networking and storage. The
only modifications required from their x86 versions were
the architecture-dependent memory barrier assembly in-
structions that differ between x86 and ARM, accessed
via the OCaml foreign function interface.

The result of this work is to bring the benefits of Mira-
geOS unikernels (compact, specialised appliances with-
out excess baggage) to the resource-constrained ARM
platform, providing an alternative to running full Linux
or FreeBSD VMs. While we have described the specifics
of the MirageOS port here, other teams have already
picked up our work for their respective projects and are
adapting it for other runtimes such as Click and Haskell.

3 The Jitsu Toolstack
We turn now to the Jitsu toolstack which supports the
low-latency on-demand launching of the unikernels in re-
sponse to network traffic. Our goal is to ensure that ser-
vices listening on a network endpoint are always avail-
able to respond to traffic, but are otherwise not running
to reduce resource utilisation. Jitsu is the Xen equivalent
of the venerable inetd service on Unix, but instead of
starting a process in response to incoming traffic, it starts
a unikernel that can respond to requests on that IP ad-
dress. While there have been wide-area versions of this
approach in the past [1], we believe this is the first time it
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has been implemented with such low latency in a single
embedded host without sacrificing isolation.

We describe Jitsu in three phases, each of which pro-
gressively reduces end-to-end latency. First, the tradi-
tional Xen toolstack is highly serialised across multi-
ple blocking internal components, leading to large boot
times due to long pauses between actual boot activ-
ity. We thus reduce these boot times by reducing this
blocking behaviour and speeding up various boot com-
ponents (§3.1). Jitsu preserves the existing boot protocol
so that the many millions of existing Xen VM images
will continue to work.

Second, we describe optimisation of the inter-VM
communications protocol via conduits, a Plan9-like ex-
tension to support direct shared memory communication
between named endpoints (§3.2). Conduits eliminate the
need to use local networking to communicate between
Jitsu and unikernels, further driving down latency.

Third, we introduce the Synjitsu directory service that
masks boot latency to external clients by handling the
initial stages of TCP handshake, only to hand-off the
resulting state via a local conduit while the unikernel
service completes booting and attaches to the network
bridge (§3.3).

The net result is that a service VM can “cold boot”
and respond to a TCP client in around 300–350ms, and
an already-booted service can respond to local traffic in
around 5ms (§4). In all cases, all network traffic is han-
dled via memory-safe code in an unprivileged Xen VM.

3.1 Optimising Boot Times
Jitsu builds on the existing Xen toolstack by extending
XenStore, a storage space shared between all VMs run-
ning on a physical host [12]. XenStore is a hierarchical,
transactional key-value store where keys describe a path
down a tree, and values store configuration and live sta-
tus information for domains. Each running domain on a
Xen instance has its own subtree, and so communication
between domains can be coordinated via XenStore.

There are several stages to a VM booting that are trig-
gered by XenStore: (i) a domain builder process loads
the guest kernel image and configures it within a Xen
datastructure before launching it; (ii) the new VM boots
and attaches to its virtual devices, most notably a log-
ging console and a network device; (iii) the remote end of
the network and console device rings are attached to the
backends that bridge them; and finally, (iv) the userspace
starts and applications begin serving traffic.

Jitsu’s utility relies on the ability to launch new VMs
very quickly. Using the vanilla Xen toolstack, VM boot
times are far too high for this, typically 3–5 seconds with
high CPU usage for a Linux VM — hardly “just in time”
when trying to start a network service with imperceptible
client delay. Jitsu applies three optimisations to signifi-

Figure 3: Comparison of different transaction reconcili-
ation implementations during VM start/stop.

cantly reduce this, achieving lowest latency when boot-
ing a specialised unikernel instead of a generic VM.

(i) Domain building. Xen’s domain builder creates
the initial VM kernel image. Most of its work is to ini-
tialise and zero out physical memory pages, thus guests
with less memory are naturally built more quickly. As
unikernels require such small amounts of memory to
boot (8MB is plenty), they have an advantage over mod-
ern Linux distributions which typically require at least
64MB and are often recommended 128MB or more.

(ii) Parallel device attachment. While modern Linux
parallelises much of its boot process, individual devices
still have a serialisation overhead. The console device,
for example, attaches to a dom0 xenconsoled service
that drains the VM output and logs it. More signifi-
cantly, attaching the network driver requires the backend
domain to create a vif device in dom0, and to add it to a
network bridge so that it can receive traffic. This blocks
the VM while a slew of RPCs go back-and-forth between
it and dom0, where hotplug shell scripts are executed.

This can be further sped up by parallelising the entire
device attachment cycle with the domain builder itself.
Jitsu starts the vif creation process before the domain
builder runs, resulting in the two running in parallel. Al-
though we could eliminate this overhead entirely by pre-
creating domains and attaching them to the bridge (mak-
ing VM launch simply a matter of attaching a unikernel
to a domain before unpausing it), we prefer not to pay the
cost of increased memory usage that would result from
the pre-created domains.

(iii) Transaction Deserialisation. As the domain is
built, a series of XenStore operations coordinates the
multiple components involved in booting a VM. Build-
ing just one domain involves many transactional oper-
ations, and it becomes a latency bottleneck if they do
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not parallelise well. There are two XenStore implemen-
tations provided by upstream Xen: the default is a C
implementation with filesystem-based transactions, and
the other an alternative written in OCaml that uses in-
memory transactions with merge functions that reduce
the number of conflicts [12]. We further improved the
OCaml XenStore transaction handling in a Jitsu-specific
fork by providing a custom merge function that handles
common directory roots in parallel transactions.

Figure 3 shows the dramatic differences in VM start
time when doing VM start/stop operations in parallel,
with the OCaml implementations clearly more efficient
than the default dæmon in C. This is due to the reduced
number of conflicts which otherwise cause the toolstack
to cancel and retry a large set of domain building RPCs.

Figure 4 breaks down the impact of the domain cre-
ation optimisations. The test builds the VM image with
a console and network interface and starts it. As this
measures only VM construction time, not boot time, it
applies to both unikernels and Linux VMs. Memory
usage is a significant factor in domain creation, with a
256MB domain taking a full second to create, and a
16MB domain (suitable for a unikernel) still taking a
significant 650ms. Rewriting the networking hotplug
scripts to use the lightweight dash rather than the de-
fault bash reduces boot time to 300ms, and eliminat-
ing forking by invoking ioctl calls directly rather than
running shell scripts further reduces boot time to 200ms.
The final two optimisations to parallelise vif setup and
asynchronously attach the console give the end result of
120ms to boot on ARM.

Jitsu is fully compatible with x86 as well as ARM, and
so we ran the same tests on a 2.4GHz quad-core AMD
x86 64 server to compare boot times against ARM. The
most optimised VM creation time was just 20ms on x86
– around 6 times faster than the lower powered ARM
board. Although we are focused on embedded deploy-
ments in this paper, it is worth noting that such fast boot
times are possible in situations where power consump-
tion is less of a concern (§4).

3.2 Communication Conduits
Coordinating a set of running unikernels requires some
means to communicate between them. For conventional
VMs, all such communication passes via shared memory
rings to real hardware running in a privileged VM [42].
Device-specific RPC protocols are built over these rings
to provide traditional abstractions such as netfront

(network cards) or blkfront (mass storage).
This is a convenient abstraction when virtualizing ex-

isting OS kernels to run under Xen, as each protocol fits
into the existing device driver framework. However, the
lack of user/kernel space divide in a unikernel means that
it links in device drivers as normal libraries: there is no

Figure 4: Optimising Xen/ARM domain build times.

need to fit the protocols into any existing abstraction. It
becomes easy to construct custom RPC layers for com-
munication between unikernels, whether instantiated as
VMs on Xen or as Linux processes.

Jitsu provides an abstraction over such a shared-
memory communication protocol called Conduit, which
(i) establishes shared-memory pages for zero-copy com-
munication between peers; (ii) provides a rendezvous fa-
cility for VMs to discover named peers; and (iii) hooks
into higher level name services like DNS. Conduit is de-
signed to be compatible with the vchan library for inter-
VM communication.6

3.2.1 Establishing a fast point-to-point connection

A vchan is a point-to-point link that uses Xen grant ta-
bles to map shared memory pages between two VMs,
using Xen event channels to synchronise access to these
pages. Establishing a vchan between two VMs requires
each side to know its peer’s domain id before the shared
memory connection can be established. This allows
vchan to work early in Xen’s bootcycle before XenStore
is available (e.g., within a disaggregated system [7]). Un-
like previous inter-VM communication proposals [43],
vchan remains simple by not mandating any rendezvous
mechanism across VMs, focusing solely on providing a
fast shared memory datapath.

Modern Linux kernels provide userspace access to
grant mappings (/dev/gntmap) and event channels
(/dev/evtchn), so we implemented the vchan proto-
col in pure OCaml using these devices. This required
fixing several bugs in upstream Linux arising from the
many ways to deadlock the system when interacting be-
tween user and kernel space. The lack of such a divide
in unikernels made implementing this protocol for Mi-

6vchan was introduced by Qubes OS and later upstreamed to Xen;
http://openmirage.org/blog/introducing-vchan
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rageOS far simpler. The resulting code allows unikernel
and Linux VMs on the same host to communicate with-
out the overhead of a local network bridge.

3.2.2 Listening on named endpoints

For convenience, Conduit provides a higher-level ren-
dezvous interface above vchan by using the existing
XenStore metadata store. It extends the XenStore names-
pace in two places: the existing /local/domain tree for
per-VM metadata, and a new /conduit tree for register-
ing endpoint names and tracking established flows. Fig-
ure 5 shows a XenStore fragment with an HTTP client
VM connecting to a HTTP server. When the server VM
boots, it registers a name mapping from its domain id to
/conduit/http_server. It then watches the listen

key for any incoming connections.7 The client VM sim-
ilarly registers /conduit/http_client when it starts.

The http_client picks a unique port name and at-
tempts to “resolve” the http_server target by writ-
ing the port name to the listen queue for the server
(e.g., /conduit/http_server/listen/conn1). The
server VM receives a watch event and reads the
remote domain id and port name from its listen
queue, giving it sufficient information to establish
a vchan. The connection metadata is written into
/local/domain/<domid>/vchan, and contains the
grant table and event channel references through which
both sides obtain their shared memory pages and virtual
interrupts. The server also updates the /flows table with
extra metadata such as per-flow statistics that can be read
by management tools.

3.2.3 Access control and transactions

XenStore already has an access control model that al-
lows per-domain access control over keys and their child
nodes. This is a good fit for Conduit except during initial
setup where the client domain must write directly into
the listen directory published by the server. Although
the directory is open for writing from any other VM, new
keys must be restricted to only be readable by the direc-
tory owner and the creator of the key. This is analogous
to setting the setgid and sticky bits in POSIX filesys-
tems. With this extension added to XenStore, domains
cannot observe or interfere with the creation of conduits
that do not concern them, and only XenStore itself is re-
quired for rendezvous.

As XenStore is already a filesystem-like interface, this
protocol is similar to the Plan 9 network model [33], with
a few notable differences: (i) although connection es-
tablishment goes through XenStore, established channels
are zero-copy shared memory endpoints that no longer
require any interaction with XenStore; and (ii) XenStore

7A watch is the XenStore term for registering for notification call-
backs whenever any key or value in a watched subtree is modified.

local
domain.......................Per-host domain metadata

3
vchan

7
conn1 ......... Shared memory endpoints

ring-ref = "8"
event-channel = "4"

domid = "3"
conduit.............................Per-host VM metadata

http server = "3"..............Single named endpoint
listen.................. Incoming connection queue

conn2 = "2".............Pointer into flows list
established....................Active connections

http client = "7"
conn1 = "1"

http client = "7"
established

http server = "7"
conn1 = "1"

flows...............................Per-flow metadata
1 = "(established (metadata...))"
2 = "(connecting (metadata...))"

Figure 5: The XenStore tree layout for coordinating the
establishment of inter-VM shared memory channels.

provides a transactional interface to let batch updates
be committed atomically [12]. This eliminates poten-
tial inconsistencies arising from having state metadata
spread over several keys (such as /conduit/flows/1

and /local/domain/3/vchan in Figure 5).
The Conduit interface enables us to write uniker-

nel code without having to know in advance where the
remote peer is running. In the example above, the
http_server might be a Xen unikernel or a normal
Linux guest VM listening from a userspace Unix binary.
Unikernels also need not trust each other as they act as
a distributed system on a single host [3], communicating
via a bytestream rather than directly sharing pointers into
each other’s address spaces.8

3.3 The Jitsu Directory Service
Our goal is to ensure that unikernels are launched and
halted in real-time in response to network requests. This
role is similar to that performed by inetd on Unix, and is
fulfilled by the Jitsu Directory Service that maps external
DNS [31] requests onto unikernel instances. When the
unikernel for a service has launched, it can serve as many
requests as a single VM can handle – we typically launch
a VM per registered service, not one per TCP connection.

A Jitsu VM is launched at boot time with access to the
external network and handles name resolution, invoked
either by a local unikernel over a conduit, or through
DNS protocol handlers listening on the network bridge.
In the former case, the Jitsu resolver is discovered via a
well-known jitsud Conduit node, while in the latter it

8The J-Kernel [40] and FlowCaml [37] provide a guide as to how
pointer sharing could be safely built into future revisions of MirageOS.
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Figure 6: How Jitsu masks boot latency. � DNS re-
quest triggers unikernel launch; � response sent when
domain building completes but before networking is ac-
tive; � TCP requests are buffered into XenStore until
bridging is setup; and � the active unikernel replays the
buffered connections before � directly serving traffic.

is discovered through the usual process in DNS (e.g., re-
solving ns.domain.name). If a name resolution request
is received that maps onto a running unikernel, Jitsu just
returns an appropriate IP address or vchan endpoint.

If the name requested does not correspond to a running
unikernel, Jitsu launches the desired unikernel while si-
multaneously returning an appropriate endpoint (again,
IP address or vchan) against which the client can start
the higher level protocol interaction (e.g., a TCP three-
way handshake). However, while the VM is starting it
will not be ready to respond to network traffic as the net-
work bridging subsystem connects asynchronously. This
opens a race condition where the DNS response has been
sent to the client, but the unikernel is not yet listen-
ing for the TCP SYN packet that will follow (likely very
quickly as the client is typically local). The SYN packet is
dropped, and the client retransmits after 1s – well outside
our low-latency requirement.

3.3.1 Connection proxying via Synjitsu

We could remove this race condition by delaying the ini-
tial DNS response until the unikernel network is fully
established. Instead we take advantage of the high-level
libOS network stack available to us to provide a lower
latency solution: we explicitly handle incoming connec-
tions in a proxy unikernel, and hand off the state to the
full unikernel once it has finished plugging its network
device in. This helps Jitsu to mask any latency associ-
ated with booting the target unikernel, as well as making
it more robust in the face of TCP connections arriving
unexpectedly outside of DNS resolution (e.g., because a
client did not respect the TTL in a DNS response and
attempted to connect to the service directly).

Figure 6 shows the packet flow with the synjitsu

unikernel performing this connection proxying. When a
DNS request comes in, the unikernel boot process starts,

conduit
http server = "3"

tcpv4...................Connection state from proxy
1................Received SYN but not responded

state = "SYN"
tcb = "(src ...)(port ...)"

2...............Established and buffering packets
state = "SYN ACK"
tcb = "((port ...)(isn ...))"
packets = "((data ...)(...))"

Figure 7: The synjitsu proxy registers embryonic TCP
connections to mask unikernel startup time.

returning a DNS response as soon as the VM resource
allocation is complete (resource exhaustion can thus be
returned in the DNS response as a SERVFAIL to indicate
the client should go elsewhere). As unikernel boot (20ms
on x86, 350ms on ARM) takes longer than the RTT of a
packet on a local network (5ms), it is likely that a TCP
SYN would follow and be lost before the unikernel has
booted, triggering a slow TCP client retransmission.
synjitsu, built using the same OCaml TCP stack as

the booting unikernel, removes this race entirely by lis-
tening on the external network bridge and an internal
conduit for TCP packets destined for a unikernel that is
still booting. When it receives a SYN, it writes entries into
a special area in the conduit XenStore tree for the booting
unikernel. Figure 7 shows two examples; (i) where a SYN
has been received but not responded to, and (ii) where a
SYN_ACK has been sent by the proxy and the TCP data
stream buffered up. When the unikernel finishes boot-
ing and has an active network interface, it signals to
synjitsu that it is ready for traffic via a two-phase com-
mit in XenStore, ensuring only one of them ever handles
any given packet. The unikernel then reconstructs the
TCP state descriptors based on the recorded state, and
handles subsequent traffic on the bridge directly, with no
further interference from synjitsu.

Splitting state across a dormant kernel and a proxy
is not a new technique [1], but the high-level nature of
the OCaml TCP/IP stack makes implementation a sim-
ple matter of (de)serialising values across XenStore. As
only one of synjitsu or the unikernel ever replies to
a packet, we avoid the complexity and latency increase
from building a distributed network stack [16] within the
host. It is also relatively easy to extend to higher-level
protocols such as SSL/TLS [30], e.g., to perform the 7-
way initial key exchange in one VM before it hands off
the connection to another unikernel that has no access to
the private keys for the remainder of its lifetime.

3.3.2 Service Configuration

Consider a client wishing to access one of a set of low-
traffic websites, such as a set of personal homepages and
photographs. Hosting each of these relatively low traffic

8
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Figure 8: ICMP RTT showing the datapath latency.

sites in the cloud would be a waste of money, while a
typical small home router or similar is unlikely to have
sufficient resources to keep them all simultaneously live
yet isolated. An ARM device using the Jitsu toolstack
is registered in the public DNS as ns.family.name,
the nameserver for the family.name zone. When a DNS
request comes in for alice.family.name, Jitsu re-
turns the local external IP address configured for Alice’s
unikernel and performs connection proxying while Al-
ice’s unikernel launches. Conventional failover models
are supported – multiple ARM boards could be registered
in the DNS and return SERVFAIL responses if they do not
have resources to serve the traffic.

In our current implementation, the Jitsu services
are statically configured via OCaml code to map their
unikernel with an IP address, protocol and port. We ex-
pose publication of running services via the DNS, as ei-
ther an authoritative server or recursive resolver. More
dynamic configurations, where launched unikernels may
themselves alter the name–address–unikernel mappings
and can publish using, e.g., Dynamic DNS are possible
to build over this lower-level interface.

4 Evaluation
Our tests are conducted on two inexpensive off-the-shelf
ARM boards: a Cubieboard2 (dual-core Allwinner ARM
A20, 1GB RAM, 100Mb Ethernet) and a Cubietruck
(same CPU, 2GB RAM, 1Gb Ethernet) running Xen 4.4
and an Ubuntu 14.04 dom0.9 Our evaluation aims to an-
swer the following questions:
• Does the port to the ARM architecture have reason-

able performance, latency and energy efficiency?
• Is launching services in isolated Xen VMs a viable

alternative to other approaches, e.g., containers?
• Is there any benefit in the extra isolation afforded by

a type-1 hypervisor?
Throughput. We have previously carried out a fuller

analysis of unikernel throughput with various proto-
cols [25], so here we are simply verifying that there is
no regression on ARM. As the ARM CPUs are consid-

9SD card images are found at http://blobs.openmirage.org

Power Usage (W, 5V) Board Model
Idle Spinning and active components
1.43 2.61 Cubieboard2
2.10 2.58 Cubieboard2 +Ethernet
3.36 4.49 Cubieboard2 +SSD
4.06 4.51 Cubieboard2 +SSD+Ethernet
1.72 2.86 Cubietruck
2.58 3.76 Cubietruck +Ethernet
3.92 5.51 Cubietruck +SSD
4.91 6.26 Cubietruck +SSD+Ethernet
6.84 27.02 Intel Haswell NUC [35]

Table 1: Power usage of the ARM boards when running
Xen, with reported Intel results for comparison.

erably underpowered compared to x86 CPUs, we built
a HTTP persistent queue service in MirageOS to ensure
that network throughput remains acceptable. The work-
ing set of this service is larger than available RAM, and
so it is served from disk. After some optimisations,10

it served HTTP traffic at a rate of 57.92Mb/s, at which
point it becomes disk bound. An iperf test with check-
sum offloading enabled revealed the same performance
for Linux and MirageOS VMs.

Datapath latency. The imposition of Xen and type-
safety risks introducing additional latency in the network
datapath, and so Jitsu minimises excess bridging (§3.2)
and proxying on the data plane (§3.3.1). Figure 8 plots
ICMP latency when pinging the client’s own external
interface (i.e., the latency of the client stack), the Xen
dom0, a Linux Xen/ARM VM and a type-safe MirageOS
unikernel VM. The latency difference between a Linux
and MirageOS VM is never more than 0.4ms, although
MirageOS does have slightly more variation.

Service Startup Latency. Figure 9a shows the end-
to-end latency of HTTP requests from an external net-
work client. First we measure the time for a “cold start”
when no unikernel was running and so one had to be
started by Jitsu. Early SYN packets are lost and the client
(running Linux) retransmits them, leading to response
times of over a second. We then show the effects of run-
ning synjitsu to proxy connection setup by intercept-
ing SYN packets and handing them over to the unikernel,
and also the effect of the toolstack optimisations to im-
prove VM creation time (§3.1). Finally the latency for
an already-running service is imperceptible as expected.
We do not plot the start time of a full Ubuntu Linux VM,
since it took over 5s with the default distribution image.

We also tested Docker 1.2.0 Linux container startup
triggered from inetd to compare its latency with VMs.
A container’s start latency on a Cubieboard2 is domi-
nated by disk I/O (Figure 9b). When running directly
from a 10MB/s SD card, Docker takes at least 1.1s (na-

10For full details on the profiling, see http://bit.ly/Y3kuun
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(a) Using Jitsu from a cold start (booting a new unikernel) with-
out Synjitsu, with Synjitsu and the ordinary toolstack, and with
Synjitsu and the optimised toolstack.

(b) Using Docker: direct on Linux with RAM filesystem
(tmpfs) and SD card, and on Xen in dom0.

Figure 9: HTTP request response times for Jitsu and Docker.

tive Linux) or 1.2s (under Xen) to spawn a new container
in response to a request. To understand the effect of
slow storage on Docker’s start time, we also mounted
Docker’s volumes on an ext4 loopback volume inside
of a tmpfs.11 In this configuration, container start times
remained at 600ms or higher, considerably higher than
Jitsu unikernels. This configuration also generated buffer
IO, ext4 and VFS errors in a significant fraction of tests
resulting in early process termination.

Power Usage. A key facet of our contribution is that
by using ARM-based devices, power consumption is sig-
nificantly reduced, to the extent that they become ac-
ceptable to run 24/7 in a domestic environment. Table 1
shows the power usage of various configurations of our
evaluation boards, measured using a custom power mea-
surement unit we built that intercepts the USB power link
to the boards. We measured each board when idle (just
running Xen and a dom0), spinning in a busy loop and
with Ethernet and an external solid-state drive. The SSD
almost doubled power usage, but the small binary size of
unikernels (around 1MB) means that in many cases we
do not require a lot of space beyond that provided by the
internal MMC flash. We failed to find an equivalent Intel
board in the same price/performance/functionality range
as the Cubieboard, and so we report power usage on the
Intel Haswell NUC [35]. We also powered a Cubieboard
with a USB battery unit that ran for 9 hours while logging
the date every minute.

Security. To evaluate the end-to-end security prop-
erties of the Jitsu design vs a more conventional Linux
embedded system, we looked for critical security bugs
eliminated by use of (i) isolation via a type-1 hypervi-
sor and (ii) a memory-safe language to build minimal
VM appliances. Table 2 compares a recent representative
selection of CVE vulnerabilities against embedded net-
work devices (top), the Linux kernel (middle), and Xen

11This rather complex configuration was required as the device-
mapper in Linux 3.16 does not work directly over tmpfs mounts

on ARM (bottom). With Jitsu, the top group would be
entirely eliminated and the middle group largely elimi-
nated, while the bottom group would remain.

The commonest vulnerabilities still arise from proto-
col parsers written in unsafe languages, resulting in re-
mote code execution vulnerabilities across the spectrum
of almost every common protocol found on edge routers.
Jitsu ensures that all traffic parsed on the external net-
work be done so in memory-safe OCaml, mitigating this
class of overflows. Another recent non-buffer-overflow
vulnerability of note is ShellShock, a recent parsing error
in the bash shell (CVE-2014-6271) that permits remote
code execution by manipulating environment variables.
The unikernel design does not include a shell, and our
latency optimisations in Jitsu (§3.1) also eliminate shell
scripts from the security-critical management toolstack.

The middle stream of vulnerabilities that affect the
Linux kernel motivate the use of a type-1 hypervisor like
Xen rather than Linux containers. Only a few bugs that
affect physical device drivers can harm Xen, and even
those can be mitigated in future revisions of Jitsu via
driver domains [7]. The bottom stream of vulnerabili-
ties show the class of errors that have affected Xen/ARM
since its first release, and none of these are exploitable
remotely. Many of these are a result of the relatively im-
mature Xen/ARM port which has seen just one public re-
lease to date. The simplicity of the Xen/ARM codebase
compared to x86 may lend itself to formal specification
and verification in the future [21].

More broadly, by enabling strong isolation inside em-
bedded devices, new distributed system designs leverag-
ing multi-tenancy and low latency are possible. Systems
designed to take advantage of Jitsu’s isolation properties
protect themselves from many passive and active attacks
on wide-area network links by transmitting less data over
those links and using them only for hardened, general-
purpose software distribution.
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CVE Description App Remote Execute DoS Exposure Jitsu

E
m

be
dd

ed
sy

st
em

s

CVE-2011-3992 SSH overflow � � � � �
CVE-2012-1800 DCP overflow � � � � �
CVE-2013-0659 UDP overflow � � � � �
CVE-2013-1605 HTTP overflow � � � � �
CVE-2013-2338 SSO overflow � � � � �
CVE-2013-4977 RTSP overflow � � � � �
CVE-2013-4980 RTSP overflow � � � � �
CVE-2013-6343 HTTP overflow � � � � �
CVE-2014-0355 HTTP overflow � � � � �
CVE-2014-3936 HNAP overflow � � � � �

L
in

ux

CVE-2014-0077 KVM overflow � � �
CVE-2014-0100 IP fragmentation � �
CVE-2014-0155 KVM IOAPIC �
CVE-2014-0206 AIO kernel mem �
CVE-2014-1690 IRC netfilter � � �
CVE-2014-2309 IPv6 routing mem � �
CVE-2014-2672 Atheros WLAN DoS � � �
CVE-2014-2706 MAC 802.11 race � � �
CVE-2014-5206 MNT NS bypass �
CVE-2014-5207 MNT NS remount � �

X
en

CVE-2014-2580 Net disable mutex � �
CVE-2014-2915 Processor control � �
CVE-2014-2986 NULL deref in VGIC � �
CVE-2014-3125 Timer context switch � �
CVE-2014-3714 Kernel load overflow � � �
CVE-2014-3715 DTB append � � �
CVE-2014-3716 DTB alignment � �
CVE-2014-3717 Kernel load overflow � � �
CVE-2014-3969 Vmem privs � � � �
CVE-2014-4021 Dirty recovery � �
CVE-2014-4022 Dirty init � �
CVE-2014-5147 32-bit traps � �

Table 2: A representative selection of vulnerabilities in three key system components. App indicates an application
vulnerability. Remote indicates remote exploitation potential. Execute indicates arbitrary code execution. DoS
indicates denial of service potential. Exposure indicates data exfiltration potential. Jitsu indicates vulnerabilities that
could affect a Jitsu system (Xen on ARM with a Linux Dom0 for network drivers).

5 Discussion
Jitsu solves the problems of supporting low-latency de-
ployment of code requiring strong isolation to resource-
constrained embedded platforms. Although we focus on
use of MirageOS unikernels in that specific problem do-
main, the techniques embodied within Jitsu have a num-
ber of attendant benefits which we discuss here.

General Jitsu. Although we have focused in this pa-
per on using Jitsu with unikernels, we have not made any
changes to the Xen guest ABI. As a result Jitsu works
as described with legacy VMs (e.g., Linux, FreeBSD)
on both ARM and in traditional x86 datacenter environ-
ments. This contrasts with systems such as ClickOS [28]
which modifies the ABI to achieve very dense, highly
parallel deployments of 10,000s of VMs in an x86 64
datacenter. We anticipate that both of these approaches
will converge in upstream Xen in the future through a re-
vision of the XenStore protocol. The one thing that Jitsu
cannot provide with legacy VMs is guaranteed latency,
due to the inherent boot overheads of such VMs. Tests
on x86 (Figure 4) point to the intriguing possibility of

very fast 20–30ms response times in datacenter environ-
ments as well.

Jitsu can easily be extended to support other VM life-
cycle operations such as live relocation or VM fork-
ing [41, 23] in response to network requests. However,
Jitsu is particularly well-suited to Xen/ARM through its
use of explicit state transfer in synjitsu rather than de-
pending on these hypervisor-level features. Forking or
migrating entire VMs is more resource intensive than
protocol state transfer, and is not yet fully supported by
Xen/ARM 4.5. Simple TCP connection handover as in
synjitsu is also easily extensible, and we are currently
applying it to a full seven packet SSL/TLS handshake to
support encrypted connections [30].

Finally, as noted previously, use of the Conduit stack
for coordinating communication between VMs is not
limited to unikernels. The basic principle of providing
a name-based resolver to shared memory endpoints that
does not depend on either a network (e.g., TCP/IP) or a
process model (e.g., SysV shmem) can be used to inter-
face conventional VM software stacks with unikernels.

11
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Modularity. Jitsu both exploits and enables extensive
use of modularity, which is very useful in building re-
liable distributed systems. The first form of modularity
is found the way MirageOS is implemented – a set of
lightweight OCaml libraries fulfilling module type sig-
natures. Type-checking these signatures makes it easy
to ensure that, when picking and choosing the features
to be included in a particular unikernel, the basic sys-
tem requirements are satisfied. As a result, developing
features such as Conduit (§3.2) was far more straightfor-
ward than would have been for a traditional OS: during
development it never crashed the Mini-OS kernel, and al-
most every error was caught and turned into an explicit
condition or a high-level OCaml exception. Similarly,
the synjitsu proxy uses the same OCaml TCP/IP li-
brary as found in the unikernels, simply with very differ-
ent runtime policies.

The new Conduit capability also directly addresses
one of the key criticisms of the MirageOS approach:
lack of multilingual support through the dependence on
OCaml. With Jitsu – specifically the combination of Syn-
jitsu and Conduit’s low latency high throughput inter-
VM communication – it is entirely feasible to launch a
TCP/IP MirageOS unikernel that will proxy incoming
traffic to another unikernel (e.g., in Ruby or PHP) that
need only implement the Conduit protocol and so need
not expose, or even include, a TCP/IP implementation.

Use cases. We envisage Jitsu being useful in a wide
range of situations. For example, where legacy software
that may be difficult to upgrade (e.g., embedded device
firmware) must be run, Jitsu can be used to provide a
very narrow, application specific firewall that can filter
and groom incoming traffic from the public Internet lim-
iting the exposure of the legacy software.

Another useful scenario would be to contain applica-
tion code that would normally run as a cloud service so
that it can be run on a platform, such as the home router,
inside the home. For example, consider the latency-
sensitive applications noted earlier, Google Glass and
Apple’s Siri. By implementing the cloud services that
support these applications as unikernels, they could be
downloaded to run locally on the home router, providing
significantly lower latency for common operations while
still having the full power of the cloud at their disposal.

Yet other application scenarios include those where
the data to be processed by the cloud-hosted service
might be considered particularly personal, such as a fam-
ily’s photos. Photos might be hosted encrypted on the
home router, and then unikernel versions of services such
as Apple’s iPhoto and Google’s Picasa might be instan-
tiated on-demand on the home router and given access
to decryption keys held locally. Access to photos is then
more directly controlled within the home without giving
up all the personal data to the cloud providers [14].

Experimental artefacts. Finally, we wish to encour-
age use of Jitsu by other groups to explore the possibili-
ties inherent in the platform. To that end we have made
available all the code used in this paper:
• MirageOS and Jitsu are hosted on GitHub

(github.com/mirage) with documentation on our
self-hosted website at openmirage.org.

• The Xen/ARM and dom0 Linux distributions
can be built via scripts at github.com/mirage/
xen-arm-builder; and prebuilt SD Card images
are also available for download there.

• Enquiries can be directed to our Xen.org mailing list
linked from openmirage.org/about/.

6 Conclusions
We have presented Jitsu, a low latency toolstack for
Xen/ARM that uses memory-safe unikernels to serve ap-
plications with significantly greater levels of isolation
and security than currently achieved on modern embed-
ded devices. Jitsu includes optimisations of the toolstack
of Xen, a full-featured widely-deployed modern hyper-
visor that now supports ARM devices, maintaining full
ABI compatibility for existing deployments. Jitsu adds
the convenience of an inetd-like service that leverages
our reduced boot latencies of around 350ms on ARM
and 30ms on x86 to summon VMs in response to net-
work traffic. Our Synjitsu service masks even that latency
by minimally proxying connection setup requests to en-
able instantaneous response for clients while the uniker-
nel boots.

The full source code is available under a BSD license
at openmirage.org, along with documentation and in-
stallation instructions for use with Cubieboards. We wel-
come any patches, success stories and reports of improb-
able stunts conducted using Jitsu.
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Abstract
Many services need to survive machine failures, but de-
signing and deploying fault-tolerant services can be dif-
ficult and error-prone. In this work, we present Tardi-
grade, a system that deploys an existing, unmodified bi-
nary as a fault-tolerant service. Tardigrade replicates the
service on several machines so that it continues running
even when some of them fail. Yet, it keeps the service
states synchronized so clients see strongly consistent re-
sults. To achieve this efficiently, we use lightweight vir-
tual machine replication. A lightweight virtual machine
is a process sandboxed so that its external dependencies
are completely encapsulated, enabling it to be migrated
across machines. To let unmodified binaries run within
such a sandbox, the sandbox also contains a library OS
providing the expected API. We evaluate Tardigrade’s
performance and demonstrate its applicability to a vari-
ety of services, showing that it can convert these services
into fault-tolerant ones transparently and efficiently.

1 Introduction
Tolerating machine failure is a key requirement of

many services, but achieving this goal remains frustrat-
ingly complex. Many services that do not otherwise re-
quire a distributed system must, in some form, consis-
tently replicate the critical aspects of their system state
on different hosts. This requirement is particularly bur-
densome for simple applications that could, if not for the
risk associated with a single point of failure, be deployed
on a single machine running commodity software.

Tools exist to support developers writing fault-tolerant
services, such as replicated state machine libraries [6, 22]
and coordination services for consistent metadata stor-
age [5, 18]. However, even when this is possible, sup-
porting the semantics of these tools requires the efforts of
expert systems designers, and puts significant demands
on the service’s design.

A promising alternative is asynchronous virtual ma-
chine replication (VMR), as used in the Remus sys-
tem [11]. This approach transparently protects an arbi-
trary service by running it in a replicated VM. Externally
observable consistency is achieved by buffering network
output until a checkpoint of the system state that created
the output has been replicated. Output buffering means
that client-perceived latency will increase as the time to

capture and disseminate a checkpoint increases, motivat-
ing techniques to reduce the size of these checkpoints.

To address this, we introduce the concept of asyn-
chronous lightweight VM replication (LVMR), which
uses lightweight virtual machines (LVMs) in place of
VMs [3, 30]. A lightweight VM provides encapsulation
with a smaller memory footprint because background
operating system services are outside of the container.
This substantially reduces the time to create and repli-
cate checkpoints, leading to a reduction in both service
latency and replication bandwidth.

An LVM has a higher-level interface between guest
and host than a VM, so some techniques used in VMR
do not directly translate. We implement LVMR as an
extension that interposes on an existing, general binary
interface between an LVM guest and host. This requires
dealing with non-determinism in the interface, using ex-
isting calls to quiesce the system so a consistent snapshot
can be captured, and checkpointing through the interface.

To demonstrate the practicality of our design, we im-
plement it as a system we call Tardigrade. We show that,
through reasonable optimizations like in-memory check-
pointing, identification of hot pages, and delta encoding,
the cost of checkpointing can be made low. We find that
client-perceived latency impact for a simple application
is ∼11 ms on average, with a 99.9th quantile latency un-
der 20 ms. Furthermore, this latency does not skyrocket
when external processes like OS updates run on the host.

Tardigrade uses primary-backup replication to survive
as many faults as there are backups. These faults must be
external to the service, e.g., power loss, disconnection,
or system crash, since replication cannot mask faults that
cause the primary to corrupt replicated state. Instead of
relying on synchrony assumptions, we use a variant of
Vertical Paxos [20] for automatic failure recovery. This
permits the use of an unreliable failure detector to decide
when to fail over the active replica, and allows replicas
to communicate over a standard network.

A key design goal of Tardigrade is that it permits sim-
pler design of fault-tolerant systems. We demonstrate
this by encapsulating and evaluating three existing ser-
vices that were developed without fault tolerance as a
first concern.

In summary, the contributions of this paper are:
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• We introduce the idea of asynchronous LVM repli-
cation (LVMR) and describe a complete design of a
system supporting it.

• We illustrate the practicality of our design by imple-
menting it in the Tardigrade system, applying opti-
mizations to make it performant, and evaluating the
resulting performance.

• We demonstrate how LVMR makes it easy to de-
ploy fault-tolerant services. To show this, we repli-
cate the FDS metadata service [27], ZooKeeper, and
Apache without changing their binaries.

2 Background and Motivation
In this section, we provide background needed to un-

derstand the motivation and design of our system. First,
§2.1 evaluates the cost of replicating OS background
state in VMR. §2.2 describes the concept of a lightweight
VM (LVM), which we use in Tardigrade. Finally, §2.3
overviews the specific LVM system used by Tardigrade,
Bascule [3], which we chose because of its extensibility.

2.1 Overheads in Asynchronous Virtual
Machine Replication

Remus [11] introduced asynchronous virtual machine
replication (VMR). In VMR, the protected guest soft-
ware is encapsulated in a VM, and snapshots of its state
are frequently sent to a backup host across the network.
On the backup, the VM image is resident in memory and
begins execution immediately upon primary failure.

The amount of time the guest is suspended during the
snapshot is minimized using speculative execution [26],
in which the guest executes while the most recent snap-
shot of its state is asynchronously replicated. To prevent
externally-observable inconsistencies, Remus buffers the
output of speculative execution, i.e., network packets,
and releases it only when the state that produced it is
durably replicated. This mechanism bounds the mini-
mum latency of the system observed by clients by the
amount of time required to take and replicate a snapshot.

To understand these overheads, we test two Xen-based
hosts connected by a 1 Gb/s network. We use RemusDB,
the highest performing version of Remus available, to
protect a Windows Server 2012 guest.

First, we measure the cost of the suspend/resume op-
eration Remus uses in isolation—without replication or
network buffering—on an idle guest. We find it is 10 ms
regardless of checkpoint interval. This is due to the over-
head of suspending an unmodified guest VM, which re-
quires the guest and each virtualized device to synchro-
nize its internal state, e.g., flushing processor caches to
RAM via an ACPI interrupt. Note that Linux can be par-
avirtualized to perform this synchronization much more
quickly, in <1 ms.

Next, we measure the effect of common OS back-
ground tasks on latency. Figure 1 evaluates ping response
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Figure 1: Effect of background tasks on ping latency of
Windows Server 2012 under Remus protection

time for both an idle baseline and when a single back-
ground OS task is running. We set a 50-ms checkpoint
interval for each case. This is a conservative choice.
While a lower interval would provide improved latency,
the benefits would be seen across all configurations, and
the workload throughput would suffer because the exper-
iment would spend more time in a suspended state.

The four background tasks we evaluate are common
and important services for Windows file servers:

1. Safety Scanner protects the OS against malware.
2. Search Indexer manages an index of file contents

and properties to optimize lookups.
3. Windows Update fetches and applies critical patches

to the OS.
4. Single Instance Storage deduplication improves

storage efficiency.
The most costly background activity we measure

is deduplication, which shows maximum incremental
checkpoint sizes of 691 MB after compression. This
causes delays of more than seven seconds to commit
states, during which all communication is buffered. This
is the primary contributor to the high ping times observed
in all tests. Even Safety Scanner, which dirties memory
at the most modest rate, still produces a more than 50%
increase in median latency.

These results support the intuition that checkpointing
the state of non-critical OS background services in a VM
has a significant cost in both replication bandwidth and
service latency.

2.2 Lightweight VMs
A traditional virtual machine provides the abstraction

of a dedicated machine complete with kernel mode, mul-
tiple address spaces, and virtual hardware devices. It
is therefore able to run traditional OSes, perhaps lightly
modified for paravirtualization, and can host multiple ap-
plications. In contrast, a lightweight VM (LVM) is con-
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structed from a single isolated user-mode address space,
referred to as a picoprocess [13]. An LVM typically
runs only a single application along with a library OS
(LibOS), which provides the application with the APIs
on which it depends. Past work on Drawbridge [30]
refactored an existing monolithic OS, Windows, to cre-
ate a self-contained LibOS running in a picoprocess yet
still supporting rich desktop applications.

Despite being able to run unmodified applications, an
LVM typically has substantially lower overhead than full
VMs. This is because it elides most OS components
not needed to implement application-facing interfaces,
such as the file system, device drivers, and service pro-
cesses. For example, the Drawbridge authors reported
a disk footprint of 64MB and working set of 16MB for
their Windows 7 LibOS [30]. Compared to typical VM
footprints measured in gigabytes, this small scale makes
lightweight VMs attractive for efficient replication.

2.3 Bascule
Bascule [3] is an architecture for LibOS extensions

based on Drawbridge. It defines a narrow binary inter-
face, the Bascule ABI, consisting of 40 downcalls and 3
upcalls implementing primitive OS abstractions: virtual
memory allocation and protection, exception handling,
threads and synchronization mechanisms, and finally an
I/O stream abstraction used for files and network sock-
ets. All interaction between a LibOS and the host must
traverse the ABI. Bascule extensions, such as our check-
pointer (§3.3), are loaded in-process with the LibOS and
application, and interpose on the ABI. Since the Bascule
ABI is designed to be independent of host OS and guest
LibOS, and to enable arbitrary nesting of implementa-
tions, extensions support a variety of platforms, and may
be composed at runtime.

3 Design
This section presents the design of Tardigrade. We

start with an architectural overview, then discuss each of
the pieces of that architecture in turn. Our design as-
sumes a fail-stop model: server machines will fail only
by stopping, not by acting arbitrarily.

3.1 Overview
Figure 2 illustrates the architecture of the Tardigrade

system. On each machine, we run an instance that will at
various times act as a primary service replica, a backup
service replica, or a spare. The orchestrator coordinates
these instances to ensure they act in concert as a con-
sistent, fault-tolerant service, using a variant of Vertical
Paxos [20]. The orchestrator uses an unreliable failure
detector to get hints about which instances have failed.

Each instance makes use of two subcomponents to do
its job: a Bascule component consisting of a host and
guest, and a network filter. The Bascule component runs
the service in a lightweight VM. The network filter only

releases guest output when the checkpoint of a state fol-
lowing its generation has been durably replicated.

The Bascule guest contains, like typical Bascule
guests, an unmodified application running atop a library
OS mimicking the OS the application expects. We leave
these components unchanged, and add a checkpointer be-
low the library OS that lets the Bascule guest checkpoint
its state or restore its state from a checkpoint.

3.2 Orchestration
The orchestrator manages the instances using the Ver-

tical Paxos protocol [20] and is divided into two compo-
nents: the unreliable failure detector and the view man-
ager. Note that our terminology differs slightly from that
of Vertical Paxos: we call the master an orchestrator and
call ballots views.

A checkpoint is a snapshot of the LVM’s state. A
full checkpoint is a self-contained checkpoint, while an
incremental checkpoint reflects only changes that have
been made to the LVM during an inter-checkpoint inter-
val, also known as an epoch. An incremental checkpoint
thus describes how to go from a pre-state to a post-state.

A view is an assignment of roles to instances; instances
can take on three roles. When primary it runs the service
and responds to client requests. When backup it records
checkpoints of the primary’s state so that it can become
primary if needed. When spare it simply waits until it is
needed as a primary or backup.

The primary of the first view starts a fresh LVM and
disseminates a full checkpoint, then transitions to peri-
odically taking incremental checkpoints. Checkpointing
involves the following steps: quiescing the guest, captur-
ing the checkpoint, resuming guest execution, and send-
ing the checkpoint to backups.

A received checkpoint is applicable at a backup if the
backup can restore it. A full checkpoint is always appli-
cable, and an incremental checkpoint is applicable if the
backup can recreate the incremental checkpoint’s pre-
state. For instance, if a backup has a full checkpoint and
the three incremental ones following it, then all four of
these are applicable.

Once a checkpoint is applicable at all backups, it is
stable. That is, as long as one of the backups or the pri-
mary remains alive, the system can proceed.

When the primary learns that a checkpoint is stable, it
decides the checkpoint. That is, it considers the check-
point to describe the next official state in the sequence
of service states. Thus the service’s logical lifetime is
divided into epochs punctuated by decided checkpoints;
we call an epoch decided when its ending checkpoint is
decided. Once an epoch has been decided, it is safe to
send any network packets the primary generated during
that epoch, because it will never be necessary to roll back
to an earlier state.
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Figure 2: Overview of Tardigrade architecture for replicating lightweight virtual machines (LVMs)

When a backup learns that a checkpoint is decided,
it can apply the checkpoint to its state. For a full
checkpoint, the backup starts a new LVM and initializes
its state to match. For an incremental checkpoint, the
backup performs the operations necessary to transform
the current pre-state into the post-state. We implement a
queue of applicable checkpoints at a backup that is pro-
cessed asynchronously with sending acknowledgements
to the primary; the queue size tuning knob balances
latency of checkpoint acknowledgements in the steady
state with recovery time in the relatively rare failover
event.

Each instance periodically sends a heartbeat to the or-
chestrator. After detecting a primary or backup failure,
the orchestrator proposes a new view, which includes the
identity of the new primary and backups. The new pri-
mary is, if available, the primary from the previous view;
otherwise, it is a backup from the previous view.

If the new primary was previously a backup, it stops
accepting checkpoints from the previous view and fin-
ishes applying checkpoints it has acknowledged. The
new primary then takes a full checkpoint, disseminates
it to the new backups, then asks the orchestrator to ac-
tivate the view. The orchestrator activates the view by
deciding that it follows the previous active view; then,
the new primary considers the initial checkpoint stable
and proceeds with further checkpoints.

When a backup is elevated to primary, the initial state
the backup uses is guaranteed to match a state of the
previous view’s primary at or beyond the last state the
primary knew to be stable. However, in the case it is
beyond the last state the primary knew to be stable, the
primary will not have released the network traffic gener-
ated between its last stable checkpoint and the backup’s
initial state. Note that this same technique was used in
Remus [11]; the insight is that losing the network output
of state that was successfully replicated mimics the case
of the actual network dropping packets, and services are
typically written to be robust to unreliable networks.

When a spare gets a message with the initial full
checkpoint of a new view, it saves and acknowledges the
checkpoint. When the primary later tells the spare that
the view is activated, the spare becomes a backup.

Note that an orchestrator may propose a new view but
never activate it. If machines fail during the view change,
the orchestrator may propose a different new view to suc-
ceed the current view. It will eventually activate only
one, and the initial checkpoints of the aborted views can
be discarded.

3.3 Checkpointer
Our checkpointer is designed as a Bascule extension

and is responsible for both capturing and applying check-
points. In Bascule, a guest LibOS uses a PAL to translate
the guest’s ABI calls into underlying system calls. The
checkpointer extends the system by interposing between
the two. In other words, it provides the Bascule ABI to
the guest, and satisfies the requests the guest makes by
passing them on to the PAL. From this position, it can
track all system objects (e.g., files, threads, synchroniz-
ers) that the guest uses, and it can virtualize system ob-
jects so that they are portable across machines.

A naive checkpoint would be a list of all ABI calls
made by the guest and a snapshot of its CPU state and
memory contents. However, this is impractical for two
reasons. First, it would produce extremely large check-
points. Second, ABI calls are not deterministic, so just
replaying them will not necessarily bring about the same
state on the new machine. Instead, the checkpointer in-
spects the current state and produces a list of actions that
can reproduce that state.
3.3.1 Memory tracking

The checkpointer tracks the following information for
each memory region allocated by the LVM: location,
protection, and which pages may have been modified
during the current epoch. This metadata is stored in an
AVL tree where each node represents a memory region.

Identifying a subset of memory that has not been mod-
ified in the preceding epoch is essential for generating ef-
ficient incremental checkpoints. Ideally the checkpointer
would use hardware such as page-table dirty bits for
this, but it is not accessible through the Bascule ABI.
Instead, the checkpointer uses a standard technique for
tracking memory modifications. First, before each epoch
the checkpointer write-protects all writable pages using
the VirtualMemoryProtect ABI call. During the
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epoch, when the guest writes a protected page, the check-
pointer intercepts the triggered access violation excep-
tion. The exception handler restores the original page
protection, sets the corresponding dirty bit in the meta-
data tree, and suppresses the exception from the guest.

Many optimizations of this general design are possi-
ble; §4.1 discusses the optimizations we implemented.

One complication is that although we can suppress
access violation exceptions incurred by the guest, we
cannot suppress exceptions incurred by the host. This
can happen when the guest passes the host a pointer to
memory the checkpointer has write-protected. So, before
passing any guest pointers to the host, the checkpointer
ensures that they are not write-protected. For pointers
to small objects, like an integer, the checkpointer sim-
ply substitutes pointers to its own stack, and then copies
the values into the guest-supplied pointers when the call
returns. For pointers to large objects, like a buffer, the
checkpointer touches all the pages in advance so that any
exceptions are incurred by it rather than the host.

3.3.2 File-change tracking
For each mutable private file system (FS) of the LVM,

the checkpointer tracks which parts have potentially
changed during the last epoch. For each file, the check-
pointer tracks possible changes to its existence, its meta-
data, and its blocks. Note that it does not track the actual
contents of those changes, as they can be read directly
from the FS during checkpointing.

Operations that can potentially change a file include
open, delete, rename, map, and write. However, all write
ABI calls are asynchronous, so the checkpointer tracks
changes due to a write only when the call has completed.
Before a write completes, a checkpoint will capture the
ongoing write to replay on restore, so there is no need to
capture the actual change to the file. For similar reasons,
the checkpointer does not track changes due to mapped
files until the region is unmapped.

3.3.3 Quiescence
To take a consistent snapshot of an LVM’s state, each

of its threads must first quiesce, i.e., pause so that it stops
mutating state. Additionally, because the Bascule ABI
does not provide a way for one thread to capture an-
other’s state, each quiescing thread must also capture its
own state with standard x86 instructions and store it in a
location accessible to the checkpointer.

We use different methods to quiesce a thread, depend-
ing on which of three states it is in: the middle of a block-
ing ABI call to the host, in the middle of a non-blocking
but nevertheless uninterruptible operation, or neither. A
thread in the latter state is quiesced by raising an inter-
rupt in the thread; the checkpointer’s interrupt handler
will initiate quiescence. Handling the first two states is
more involved.

Before a thread enters a non-blocking but uninterrupt-
ible state, such as a non-blocking ABI call or a code sec-
tion that mutates checkpointer-tracked state, the thread
acquires a checkpoint guard. This is essentially a per-
thread lock that is re-entrant since a thread holding a
guard may take an exception that itself requires a guard.
We implement the checkpoint guard as a simple atomic
counter. If a quiescence interrupt occurs while a thread
holds the guard, then the interrupt is ignored and the
thread sets a flag to quiesce when the guard is released.
This will happen shortly, since by assumption the thread
is in the middle of only non-blocking operations.

The final case to consider is when the thread has en-
tered a blocking ABI call. Fortunately, there are only two
indefinitely blocking ABI calls: ObjectsWaitAny,
which waits for one of an array of handles to be signaled,
and StreamOpen, which can block when asked to open
an outgoing TCP connection.

When the guest calls ObjectsWaitAny, the check-
pointer adds an additional handle to the list of han-
dles to be waited on; this extra handle is to the
quiescence-requested event. When the checkpointer
initiates quiescence, it sets this event, thereby wak-
ing any such blocked threads. When a thread returns
from ObjectsWaitAny, it quiesces if the quiescence-
requested event is set. Since the wait call was prema-
turely terminated, the thread repeats the call upon resum-
ing; if the wait had a relative timeout, then the thread
reduces it by the amount of time already spent waiting
and/or checkpointing.

When the guest calls StreamOpen with parameters
for opening an outgoing TCP connection, the thread first
captures its state and marks itself as quiesced. The thread
then proceeds with the blocking call since it will not hold
up any checkpoints that occur during the call. Upon re-
turn, the thread waits until any concurrent checkpoint-
ing completes, then rescinds its claim to be quiesced and
proceeds with execution. Note that this approach would
work for arbitrary calls, not just StreamOpen, that do
not mutate guest state. However, it requires an expen-
sive thread capture on each call, so we do not use it for
ObjectsWaitAny where a more lightweight solution
exists.

3.3.4 Dealing with non-determinism of Bascule ABI
The Bascule ABI has several sources of non-

determinism. The checkpointer must hide them so that
restoring a checkpoint results in a replica of the check-
pointed state.

The simplest and most widespread source of non-
determinism is handle identifiers. Because the host can
assign arbitrary identifiers to handles, there is no guar-
antee it will assign the same ones during restoration of
a checkpoint as were used at the time of checkpoint.
So, the checkpointer virtualizes handles by maintaining a
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mapping between guest virtual handles and host handles
and by translating handles in ABI calls.

A subtle source of non-determinism is address space
layout randomization (ASLR) [29, 35]. Host ASLR can
rearrange the contents of a read-only binary file, so even
if a primary and backup have duplicate file contents they
may diverge. To handle this, the checkpointer interposes
on the guest ABI call that maps binary files. Before re-
turning to the guest, the checkpointer performs all neces-
sary relocation to reflect the address where the file actu-
ally got mapped. In other words, the checkpointer en-
sures the guest’s binary-mapping ABI is deterministic
even though the host-provided ABI is not.

One source of non-determinism requires a small
change to the ABI. In the original Bascule ABI, when the
guest creates an HTTP request queue, the host assigns it
a non-deterministic ID that is then used by the guest in
subsequent calls to open HTTP requests. We address this
by changing Bascule’s ABI so that the guest assigns the
ID instead. This is the only case where we modify the
ABI. Modifying existing host and LibOS implementa-
tions to support Bascule’s new ABI should be relatively
straightforward: our modifications to the Windows host
and LibOS constitute only ∼250 lines.

3.4 Networking
The IP address clients use to connect to the replicated

service is the service address. Each instance devotes a
NIC to the service that is separate from the NIC it uses to
communicate with the orchestrator and other Tardigrade
instances. We call this the service NIC. Only the primary
sends traffic on the service NIC, including ARP packets,
so the network and clients see only one machine using
the shared address at a time.

To interpose on the service NIC, we implement a
network filter that suppresses non-primary output and
buffers primary output during epochs. The buffered out-
put of the primary is released only when the following
checkpoint is stable.

Buffering interacts with the current ABI in surpris-
ing ways, as discussed in §4.3. One consequence is
that, until the ABI changes from a socket-based to a
packet-based interface, TCP connections are broken on
a failover event.

4 Implementation
Our implementation includes the following compo-

nents, with line counts measured by SLOCCount [34].
• Bascule checkpointer extension: 17,056 lines of C,

plus 1,226 lines of Python to produce automatically-
generated hook functions (not separately counted).

• Network filter, implemented as a Windows kernel-
mode driver: 1,329 lines of C.

• Orchestrator and instance: 683 and 2,718 lines of
C#, respectively, plus 1,346 lines of common code
used by both for inter-communication.

• Plugin to let instance and checkpointer extension
communicate, using Bascule host’s support for ex-
tending the stream namespace: 2,773 lines of C++.

A limitation of our current implementation is that the
orchestrator runs on a single machine, so it is a sin-
gle point of failure for the system. To improve fault-
tolerance, our plan is to divide the orchestrator into two
components: the unreliable failure detector and the view
manager. The failure detector does not require consis-
tent state, so it can be made fault-tolerant using simple
stateless mechanisms; however, the view manager will
be redesigned as a state machine and run with a repli-
cated state machine library [6, 22].

The remainder of this section overviews some lessons
learned during the implementation of Tardigrade.

4.1 Memory checkpointing optimizations
This subsection describes the optimizations we use to

improve the performance of memory checkpointing.
The first optimization reduces checkpoint size by cal-

culating updates to memory at a finer granularity than a
page using a twin-diff-delta technique [2]. In this tech-
nique, the exception handler that executes when a write-
protected page is first written in an epoch stores a copy
of the pre-write contents of the page. Then, the check-
point at the end of the epoch uses delta encoding [17] to
capture the difference in the page content more precisely.

The next optimization selectively disables write-
protection for hot pages. Our heuristic for deciding that
a page is hot is exceeding a threshold for the number of
consecutive epochs that the page has been written to, de-
faulting to three. When write-protection is disabled for
a hot page, the checkpointer simply assumes that it is al-
ways dirty. However, a side-effect of this mechanism is
that the checkpointer cannot detect when the hot page is
no longer being written by the guest, so every epoch we
flip each hot page to cold with a fixed probability. We
found performance to be fairly insensitive to this value
of in a broad range; we default to the value 1/16 which
lies within that range. An alternative would be to use
twin-diff-delta to detect when a hot page has not been
written in a given epoch; we plan to investigate this in
future work.

Another important optimization uses parallelism to re-
duce the time to snapshot memory changes. Our check-
pointer maintains several threads, roughly one per core,
and disseminates independent memory-snapshotting
tasks to them via a shared task queue. We could have par-
allelized other checkpointing operations besides memory
snapshotting, but found it generally not to pay off: other
operations are so quick or rare that queuing and schedul-
ing time overwhelms the benefits of parallelization. So,
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the only other snapshotting operation we parallelize is
capturing thread states.

Normally, an epoch ends when (1) the previous
epoch’s checkpoint has been disseminated to the backups
and acknowledged, and (2) the current epoch’s duration
is greater than some minimum, typically set to zero. Our
final optimization, checkpoint capping, can end an epoch
earlier based on the rate of memory dirtying in the guest.
Checkpoint capping mitigates the effect of rapid memory
dirtying on increased time to take a checkpoint, which
is especially problematic for guests running in platforms
with garbage collection. The goal of checkpoint capping
is to automatically end the epoch before the resulting
checkpoint can get too large. However, during the epoch
it is infeasible to efficiently and precisely predict the po-
tential checkpoint size while accounting for additional
optimizations like delta encoding. So, the heuristic we
use is to prematurely end the epoch once the number of
dirtied pages reaches a configurable threshold.

4.2 In-memory checkpoints
We found that writing checkpoints to files on a Win-

dows host dominated the cost of checkpoint capture and
dissemination, even when the files are not stored on disk.
So, instead of using files, each instance shares a mem-
ory region with the checkpointer extension. The check-
pointer captures checkpoints directly to this shared mem-
ory, and the instance copies checkpoints received over
the network directly into it as well. The section defaults
to 1 GB; if this is too small for a particular checkpoint it
uses a file instead.

4.3 Breaking connections
The Bascule ABI supports networking through a

socket interface. To open a TCP or UDP socket, the guest
opens a specially-named stream. To send or receive on
that socket, the guest writes or reads the stream handle.

This socket-based interface presents a challenge: since
TCP session state is in the host rather than in the guest, it
cannot be seen or modified by the checkpointer. There-
fore, when restoring an LVM on a new machine, the
TCP state will be different and the guest will not be able
to communicate over existing connections. To address
this problem, the checkpointer breaks all TCP connec-
tions before restoring the guest. This is implemented
by restoring TCP and HTTP streams as a handle to a
special event that is always signalled. When the re-
stored guest starts running and calls an operation on
such a handle, the operation will return immediately with
STATUS CONNECTION RESET.

Our hypothesis is that services are written to recover
from such transient disconnections, and we find that this
hypothesis holds for the services evaluated in §5. A
cleaner solution would be to modify the ABI to support

checkpointing guest networking state so that connections
can be transparently migrated across hosts.

This has taught us a lesson about the design of Bas-
cule. The socket ABI was chosen for expedience, since it
obviated the need to build a network stack in the LibOS.
The ABI designers were aware that this choice was prob-
lematic for compatibility and portability; our work on
Tardigrade demonstrates that it also interferes with mi-
gration. We believe that the path forward for the Bascule
networking interface is to use packets rather than sock-
ets as the interface between guest and host, and we are
working with the Bascule development team to realize
this goal. An additional benefit of a packet-based inter-
face is to enable packet buffering within the checkpointer
extension itself instead of requiring an external network
filter.

4.4 Network buffering
Network buffering effectively increases the round-

trip time of connections to the server, increasing the
bandwidth-delay product of each connection. For TCP
connections, this necessitates both a large window size
and a large buffer for sent but unacknowledged packets.
A Windows host detects this high delay and adjusts the
TCP window size in response, but it does not automati-
cally increase the send buffer size.

To fix this, we update the DefaultSendWindow
registry setting so the send buffer size exceeds the ex-
pected bandwidth-delay product. Note that this setting
should also be managed on any client that sends signifi-
cant traffic, because network buffering on the server de-
lays acknowledgment of client packets, causing the client
to buffer sent packets for up to two epochs.

5 Evaluation
5.1 Methodology

The machines we use in our experiments are Dell
PowerEdge R710 rack servers. Each is configured with
two quad-core 2.26 GHz Xeon E5520s, 24 GB RAM,
two Broadcom BCM5709C NetXtreme II Gigabit Eth-
ernet NICs, and a Seagate Constellation ST9500530NS
500 GB SATA disk. All the NICs are connected to a sin-
gle 48-port switch.

Except when otherwise specified, we use four ma-
chines: the primary and orchestrator. the backup, the
spare, and the client. On each machine, Tardigrade uses
one NIC and the replicated service uses the other. The
client machine runs Windows Server 2008 R2 Enterprise,
and the other machines run Windows Server 2012 R2
Datacenter. To minimize latency, we configure the sys-
tem to checkpoint as frequently as possible, i.e., to initi-
ate a checkpoint as soon as the previous one is stable.

Our evaluation covers a range of microbenchmarks
and real-world services. The microbenchmarking exper-
iments use a simple ping server that listens on a UDP
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Figure 3: CDF of latency seen by ping client, alongside
CDF of checkpoint interval

port and responds with pongs. This ping server can be
configured to dirty memory at a given rate by looping
through a 100 MiB region one byte at a time, increment-
ing each byte modulo 256. To ensure the ping service
achieves this dirtying rate, the microbenchmarks disable
the checkpoint-capping optimization described in §4.1.
Also, the memory-dirtying algorithm accounts for real
time: e.g., when it is unscheduled, it makes up for the lost
time by dirtying memory until caught up. The client of
the ping service sends 100,000 requests, one every 2 ms.

5.2 Latency impact
Our first experiment evaluates the base latency over-

head of Tardigrade by running the ping server without
memory dirtying and measuring the ping response times
seen by the client. Figure 3 shows the CDF of this la-
tency.

Running the service in Tardigrade increases the aver-
age latency from 0.5 ms to 11.6 ms, but the 99.9% quan-
tile latency is not substantially higher, only 17.5 ms. The
proximate cause of this latency is the interval between
consecutive checkpoints, whose CDF is also shown in
Figure 3. As expected, the average service latency is the
baseline service latency plus 1.5 times the average check-
point interval. After all, if the server sends a packet at
time t, Tardigrade will release that packet when the in-
cremental checkpoint covering t is stable, i.e., at the end
of the subsequent interval.

We also measured CPU utilization during this experi-
ment to evaluate CPU overhead. We found that the base-
line utilization of the unprotected service was 7.3%, that
running the service in Bascule slightly increases utiliza-
tion to 7.9%, and that running it in Tardigrade modestly
increases utilization to 13.5%. Most of the observed uti-
lization increase in Tardigrade is from the orchestrator
and primary instance processes.

5.3 Effect of dirtying rate on latency
Next, we evaluate the effect of memory-dirtying rate

on latency; we expect that higher memory-dirtying rates
will increase checkpoint size, thereby increasing the time
required to replicate each checkpoint over the network.
Figure 4 shows the latency observed by the client as the
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memory-dirtying rate increases from 0% to 50% of the
network speed, i.e., from 0 to 512 Mb/s.

When the dirtying rate is 10% of the network band-
width, i.e., 100 Mb/s, the client latency is reasonable,
even at the 99.9th quantile. However, as the rate of mem-
ory dirtying rises, the latency seen by clients rises non-
linearly. Indeed, Figure 4 only goes to 50% because a
dirtying rate of 60% gives average latency over half a
second.

This latency is not due to CPU time. The primary ma-
chine’s CPU utilization generally decreased as the dirty-
ing rate increased, presumably since more time was spent
waiting for the network and the backup.

Figure 5 shows the cause: as expected, average check-
point size increases as dirtying rate increases. We see
that the non-linearity of the increase in client latency
tracks the non-linearity of the increase in average check-
point size. This non-linear effect occurs because larger
checkpoints take longer to disseminate, leading to to
longer periods the service running asynchronously with
checkpoint dissemination, which leads to even larger
checkpoints. Note that this feedback loop stabilizes to
an equilibrium; we do not see it increase with time and
cause the distribution to diverge. We expect equilibrium
as long as the memory-dirtying rate does not exceed the
rate of checkpoint capture and dissemination.

These results suggest that asynchronous replication is
a poor fit for workloads with sustained memory-dirtying
rates that are a significant fraction of the network band-
width. Fortunately, as shown later in this section, there
are useful services with tractable memory-dirtying rates.
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5.4 Effect of additional backup
Tardigrade can use multiple backups to tolerate over-

lapping failures of more than one machine; however,
replicating to multiple backups increases the time needed
for a checkpoint to be stable. To evaluate this effect, we
measure the effect on latency of running the ping service
with two backups instead of one. Note that our current
implementation does not use IP multicast; if it did, this
effect would be significantly reduced.

Figure 6 shows ping latency as a function of both
dirtying rate and number of backups. Without dirtying,
adding a backup increases latency by only a few mil-
liseconds, which is still quite manageable. With a dirty-
ing rate equivalent to 10% of the network bandwidth,
the latency increase is higher than that incurred when
adding the same amount of memory dirtying using a sin-
gle backup. This non-linearity occurs for the same rea-
son as in §5.3; as in those experiments, this acceleration
reaches a stable equilibrium: we do not see the check-
point interval increase with time.

5.5 Impact of external processes
Next, we evaluate the latency impact from resource-

intensive processes running on the host, external to the
LVM. This experiment uses the ping server without
memory dirtying. Recall that we evaluated Remus us-
ing this experimental setup in §2, with results shown in
Figure 1.

As expected, Figure 7 shows that the impact of ex-
ternal processes on the latency of a service running in
Tardigrade is dramatically reduced compared with run-

ning in Remus. Indeed, the impact is nearly undetectable
for the 99th quantile and below, and hardly noticeable
at the 99.9th quantile. We find that external processes
cause occasional higher checkpoint periods, likely due
to scheduling contention. However, the checkpoint sizes
remain unaffected, resulting in 99.9th-quantile latencies
in Tardigrade under 25 ms despite external processes that
caused 99.9th-quantile latencies of multiple seconds in
Remus.

5.6 Failover time
To evaluate the time to recover the service when an in-

stance fails, we use a variant of the client that measures
failover times as a long period with no response, i.e., a
period with zero service bandwidth. We run the experi-
ment 100 times in each of two scenarios: primary failure
and backup failure.

The median recovery time is 500 ms in the backup-
failure scenario and 700 ms in the primary-failure sce-
nario. The difference between these two scenarios re-
flects the time for the new primary to start running; be-
cause we keep each backup’s in-memory state and ob-
jects up to date, this startup cost is only 200 ms. The
remaining time is largely due to the 100 ms failure-
detection timeout and the time to take a full checkpoint
and disseminate it to the new backup. The median size of
this full-checkpoint transfer is 26.9 MB, which the new
backup takes 225 ms to download.

Note that many services will have larger memory foot-
prints and thus commensurately longer failover times.
For instance, the remainder of this section evaluates three
real services in Tardigrade. Interruption with a failure at
a random point induced full checkpoints of 36 MB for
the metadata service, 170 MB for the coordination ser-
vice, and 636 MB for the web service. Sending the latter
over a 1 Gb/s link would take at least 5 s.

An operation that is not on the critical path for recov-
ery is the new backup initializing its LVM. This is be-
cause we let the backup acknowledge checkpoints, in-
cluding full ones, after queueing them for later applica-
tion. When we prevent this by substantially decreasing
the queue size, median response time for the backup-
failure scenario becomes 8.8 s. This high figure demon-
strates that checkpoint queueing and keeping the backup
up-to-date significantly reduce failover delay.

5.7 FDS metadata service
In this and the following two subsections, we evalu-

ate Tardigrade’s performance on real services. First, we
evaluate a custom configuration metadata service writ-
ten by colleagues for the FDS research project [27]. In
normal operation, this service experiences low traffic be-
cause it simply sends and receives periodic heartbeats
and informs clients and disk servers when failures occur.

9
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Figure 8: Distribution of checkpoint periods when run-
ning the FDS metadata service, during various phases

This experiment uses the FDS cluster’s 10 Gb/s net-
work so that the FDS cluster can run as normal but use
our fault-tolerant metadata service. However, Tardigrade
still uses a 1 Gb/s port for checkpoint dissemination so
that the results are comparable to other results presented
in this paper.

This experiment proceeds in several phases. First, the
metadata service starts up and then idles for one minute.
Then, the FDS cluster with 70 disk servers starts up, each
of which must communicate with the metadata service to
receive a role assignment. Then, ten clients begin exe-
cuting FDS’s stock write-intensive load-testing tool, and
the cluster runs normally for two minutes. Finally, we
kill one disk server process every ten seconds, provoking
the metadata service to react to the departures.

Figure 8 shows the resulting distribution of check-
point interval. Initially, the checkpoint interval averages
17.4 ms, reflecting an average checkpoint size of 0.9 MB.
As the cluster comes online and requests assignments,
the checkpoint interval increases but never goes above
64 ms. When the cluster is up and handling requests from
disk servers and clients, checkpoint interval maintains a
modest average of 35.2 ms, reflecting checkpoint sizes
averaging 1.8 MB. This low activity is not surprising,
since FDS was designed to reduce load on its metadata
service by caching the metadata at participating parties.
It is thus an ideal candidate for Tardigrade.

5.8 ZooKeeper coordination service
Our next real service is ZKLite, a custom in-memory

implementation of the ZooKeeper server API, written in
Java by one of the co-authors for a separate research
project. We initialize the server state for the benchmark
by creating a balanced binary znode tree of depth 10.
The benchmark then executes 100,000 operations, where
each operation either reads or writes the data of a ran-
dom znode. Writes are done with probability 1/3, and
write a uniformly random amount of data between 0 and
10 KB. Operations are launched in parallel, with at most
100 outstanding at once. We report results for the last
90% of operations to reflect steady-state performance.

Since this service is written in a garbage-collected lan-
guage, it experiences occasional periods of fast memory
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of number of pages dirtied per epoch before quiescence
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dirtying. So, we enable checkpoint capping as discussed
in §4.1. A key parameter here is the number of pages
dirtied in an epoch before triggering quiescence. If this
parameter is low, the service spends a lot of time qui-
esced instead of processing client requests. On the other
hand, a high parameter value results in large checkpoints
and thus increased buffering time for outbound packets.
Both manifest as high client latency. Figure 9 shows the
effect on latency of various parameter settings; infinity
means that checkpoint capping is turned off. We see
that performance is improved substantially by the use of
checkpoint capping, is best when quiescence occurs after
about 1,000 pages dirtied per epoch, and is fairly insen-
sitive to this parameter value over the range 750–1,500.

Note that other services and workloads may have dif-
ferent ideal values for this parameter. For instance, if
a service has low load, it can accommodate being fre-
quently unscheduled, and thus may perform better with
a low cap. If a service has high baseline latency, then
the effect of network buffering will be relatively incon-
sequential, and a higher cap may be best.

Having established what parameter to use for check-
point capping, we compare performance under Tardi-
grade to baseline performance. Figure 10 shows the re-
sults of benchmarks run under three setups: unreplicated;
unreplicated, but running in Bascule; and in Tardigrade.
The Bascule-only line shows that the overhead of run-
ning in Bascule contributes little to the higher latency
seen, so as expected it is asynchronous replication that
contributes most to latency.

As discussed in §5.2, outbound buffering causes de-
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Figure 11: Performance of MediaWiki in Apache with
different numbers of client threads

lay of 1.5 times checkpoint interval duration. That dura-
tion, also shown in Figure 10, accounts for most of the
increased latency; the rest is due to overhead of repli-
cation such as handling access-violation exceptions due
to memory tracking. The effect of checkpoint capping
manifests at the high end of the latency distribution; dur-
ing periods of high memory dirtying, the service is fre-
quently quiesced, delaying client requests.

The lessons we draw are as follows. Tardigrade can
replicate ZKLite under modest load, but at a noticeable
latency cost, on the order of 60 ms. The service’s use
of garbage collection leads to periods of high memory
dirtying, which temporarily cause even higher latency.
Checkpoint capping can mitigate this problem but not
eliminate it, by reducing the time spent buffering packets
at the cost of delaying execution of the service.

5.9 Web service
Our web service is the popular MediaWiki running on

Apache. Its use of dynamic PHP-generated pages instead
of static content is typical for a modern website, and
stresses Tardigrade by causing mutation of the service’s
in-memory state. We use Apache version 2.4.7, PHP
v5.5.11, and MediaWiki v1.22.5 backed by a SQLite
database. We enable the Alternative PHP Cache for in-
termediate code and MediaWiki page data.

We operate the server in three modes: normal, within
Bascule, and within Tardigrade. We benchmark the ser-
vice using multiple worker threads on the client, each of
which repeatedly fetches the 14-KiB main page over a
persistent HTTP connection, waiting for the completion
of each fetch before initiating the next. We measure the
system once it has reached steady state.

Figure 11 shows results under two load conditions: ei-
ther 10 or 50 client threads. We see that some of the
overhead of Tardigrade comes from running in an LVM
and some is due to replication. In particular, the Bas-
cule LVM adds significant latency to this workload be-
cause each request issues many small file I/Os, primarily
stat calls, each of which requires an RPC to a separate
security monitor process. This overhead is effectively
amortized through batching and pipelining at 50 client
threads, giving a significant increase in throughput with
little added latency. In contrast, the latency overhead due

to replication does increase with load: as load increases,
so does the memory-dirtying rate and thus the checkpoint
size and interval. With 10 client threads, the checkpoint
interval average is 54.4 ms, but with 50 client threads it
balloons to 475 ms. We conclude that web services may
need modest load to be amenable to LVMR.

5.10 Complexity of services
The real services we use require no modifications to

run under Tardigrade, supporting our hypothesis that
Tardigrade can make unmodified binaries into fault-
tolerant services. In the cases of the FDS metadata ser-
vice and ZKLite, this also supports our hypothesis that
Tardigrade can reduce code complexity and developer ef-
fort. According to the CodePro plugin for Eclipse, ZK-
Lite is 24,082 lines of code, less than the 30,889 lines for
the Apache ZooKeeper server. The smaller count reflects
the fact that ZKLite does not have any code for deal-
ing with failures. Further, FDS’s metadata service was
written two years ago on the assumption that someday it
could be rearchitected for fault tolerance, but in that time
no one at Microsoft has found the time to do so. Running
it within Tardigrade makes the service fault-tolerant with
no developer effort.

6 Discussion and Future Work
§6.1 distills the results of our evaluation into a cate-

gorization of services that may be good candidates for
LVMR. Then, §6.2 discusses directions for future work.

6.1 Candidate service characteristics
Providing fault tolerance at the virtualization layer

saves development effort at the expense of runtime per-
formance. Based on our evaluation, we offer some guid-
ance on the classes of applications for which the over-
head of Tardigrade may or may not be reasonable.

An important characteristic to consider is the rate and
magnitude of memory dirtying. If the memory-dirtying
rate is significant relative to the network bandwidth, then
LVMR will spend too much time taking checkpoints
and transmitting them to backups. Our evaluation sug-
gests that memory-dirtying rates above ∼40% of net-
work bandwidth will cause significant delays. Also, as
shown in §5.8, occasional bursts of memory dirtying,
e.g., due to garbage collection, manifest as occasional
periods of high latency even with checkpoint capping.

There are other reasons a service may not be a good
candidate for LVMR. If a service must remain avail-
able despite software bugs within the service itself, then
LVMR is not applicable. Also, if the service can tolerate
very high latencies, then LVMR’s main benefit relative
to VMR is moot.

One class of promising candidate services for LVMR
is metadata and coordination services. These critical ser-
vices are usually required to be both highly available and
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strongly consistent because entire distributed systems de-
pend on them. Also, because these services tend to be
centralized and therefore a potential bottleneck, system
designers often use techniques such as client caching and
coarse-grained synchronization to minimize service load.
Another favorable characteristic is that the rate of state
mutation in such services tends to be low; e.g., the ratio
of read to write operations in a typical ZooKeeper work-
load varies between 10:1 and 100:1 [18].

Another class of good candidate services is niche web
applications with a small number of users, e.g., web sites
internal to an organization such as requisitioning systems
and charity event managers.

An example of a service that is not a good candidate
for LVMR is a DBMS. We ran SQL Server inside Tardi-
grade but found its performance to be poor due to large
checkpoints. For such workloads, customization may be
necessary, as done by RemusDB [24].

6.2 Future work
Our experience building Tardigrade has highlighted

areas for improvement in the underlying LVM technol-
ogy, Bascule. For instance, we discussed the difficulties
caused by having a non-deterministic ABI in §3.3.4 and
how Bascule would be improved by offering a packet-
based network interface in §4.3. We hope that these
lessons can inform the design of lightweight process con-
tainer technologies to support migration.

There are a number of potential future directions for
Tardigrade. First, we believe we can improve perfor-
mance of guests by making slow operations appear to
complete before they actually have, as done by Specu-
lator [26]. Tardigrade already supports buffering output
until a speculative operation has completed, and could
be extended to support rollback in the case of opera-
tion failure. A second direction is exploring how to tune
the library OS to improve Tardigrade performance: es-
sentially, this would be to LVMs what paravirtualiza-
tion [33] is to VMs. Third is grouping multiple LVMs
into checkpoint domains to coordinate checkpointing
among them, thereby essentially performing distributed
snapshots [7] for LVMs. This may improve performance
as we would not have to buffer network traffic between
LVMs in the same checkpoint domain.

7 Related Work
This section first surveys related work that transpar-

ently provides fault tolerance using encapsulation, then
briefly discusses alternate approaches to designing and
implementing fault-tolerant services.
Encapsulation-based fault-tolerance

The key insights of Bressoud and Schneider [4] were
that a VM is a well-defined state machine, and that im-
plementing state machine replication [32] at the VM
level is attractive in terms of engineering and time-to-

market costs compared to implementations at the hard-
ware, operating system, or application levels. Their sys-
tem enforced deterministic execution of a primary and
backup VM in lock-step through capture and replay of
input events by the hypervisor.

VMware’s server virtualization platform vSphere [31]
provides high availability for a VM using primary-
backup replication. Supporting multiprocessors can in-
cur a high performance cost in a deterministic record-
and-replay approach; instead, the most recent release
of vSphere, 6.0, executes the same instruction sequence
simultaneously in both VMs. This approach enables
vSphere 6.0 to add support for up to 4 virtual CPUs in
a protected VM.

Napper et al. [25] and Friedman and Kama [15] im-
plemented fault-tolerant Java virtual machines using an
approach similar to that of Bressoud and Schneider. This
choice of hypervisor reduces overhead compared to vir-
tual machine monitors that execute desktop operating
systems, but also limits the class of applications.

Replication may be achieved by copying the state of
a system instead of replaying input deterministically.
State copying applies to multiprocessors and does not re-
quire control of non-determinism, but replicating state
typically requires higher bandwidth than replicating in-
puts. In contrast to the replaying VM replication systems
discussed above, Cully et al. [11] implemented state-
copying primary-backup VM replication in Remus by
building on live migration in the Xen virtual machine
monitor [10]. Remus uses techniques such as pipelin-
ing execution with replication to address the high over-
heads of checkpointing VM state. Later work [24] estab-
lished still further gains by compressing the replicated
data, and other gains specific to paravirtualized systems.
Tardigrade builds on the approach used in Remus and
further reduces overhead.

Additional optimizations to VM replication have been
proposed [23, 36, 37]. Although some optimizations are
specific to a virtualization platform, others, such as spec-
ulative state transfer, may apply to Tardigrade and are
topics for future work.

An LVM is similar in many regards to the con-
tainers actively being developed for Linux, including
Docker [12] and its associated kernel support from
LXC/LXD [21]. While there has been previous work on
process-level migration in a research context [14, 28], the
current popular interest in Linux containers makes us be-
lieve LVMR may be valuable outside the research com-
munity. Container interfaces appear to be closing the gap
between the strong but efficient runtime isolation that is
achieved by LVM and LXC/LXD and the desire to more
easily deliver and manage the lifecycles of entire applica-
tion stacks in production environments. There is already
active open-source work on providing live container mi-
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gration for Linux [8], and the work described in this pa-
per is a natural next direction. Containers are actively
used to manage large-scale distributed applications to-
day, so integrating LVMR into those environments would
ease the development complexity associated with criti-
cal, central components like those described in §6.1.
Designing services to be fault-tolerant

Virtualization-based fault tolerance is useful not only
for protecting unmodified legacy applications, but also
for reducing the cost and effort of developing new fault-
tolerant services. In this section we overview some alter-
nate, non-transparent approaches and their complexities.

One approach is to write the service as a serializable,
deterministic state machine and rely on a library such as
BFT [6] or SMART [22] for replication. However, there
are several common errors the developer can make that
will invisibly undermine the library’s consistency guar-
antees, such as failing to serialize all relevant data, or
writing non-deterministic code [1]. More recent work
on Eve [19] has shown how to lift the requirement of
determinism, but still requires annotation of which ob-
jects need serialization and, for performance, which op-
erations are likely to commute.

Another approach is to micromanage the persistence
of state to a reliable storage backend at the application
level. One class of systems exemplifying this approach is
transactional databases. Such customization is likely to
yield good performance but requires careful engineering,
including non-trivial checkpointing and recovery mech-
anisms [16]. A range of backend solutions are available,
from locally-administered disk arrays [9] and distributed
file systems to cloud-hosted services.

8 Conclusions
This paper describes asynchronous lightweight virtual

machine replication, a technique for automatically con-
verting an existing service into one that will tolerate ma-
chine failures. Using LVMs instead of VMs has the ad-
vantage that only changes to the application’s state need
to be replicated to backups before network output can be
released. This leads to reasonable client-perceived laten-
cies, even at the 99.9th quantile, and even when external
processes share the host. To demonstrate the practicality
of LVMR, we implemented it in the Tardigrade system.
Tardigrade is not suitable for services that require ex-
tremely low latency or that modify memory at high rates.
But, for many other services, the benefit of transparent
fault tolerance will be a welcome aid to developers who
lack the time, inclination, or expertise to correctly make
their services consistent and fault tolerant.
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Abstract
In distributed systems shared by multiple tenants, effec-
tive resource management is an important pre-requisite
to providing quality of service guarantees. Many systems
deployed today lack performance isolation and experi-
ence contention, slowdown, and even outages caused by
aggressive workloads or by improperly throttled main-
tenance tasks such as data replication. In this work we
present Retro, a resource management framework for
shared distributed systems. Retro monitors per-tenant
resource usage both within and across distributed sys-
tems, and exposes this information to centralized resource
management policies through a high-level API. A pol-
icy can shape the resources consumed by a tenant using
Retro’s control points, which enforce sharing and rate-
limiting decisions. We demonstrate Retro through three
policies providing bottleneck resource fairness, dominant
resource fairness, and latency guarantees to high-priority
tenants, and evaluate the system across five distributed sys-
tems: HBase, Yarn, MapReduce, HDFS, and Zookeeper.
Our evaluation shows that Retro has low overhead, and
achieves the policies’ goals, accurately detecting con-
tended resources, throttling tenants responsible for slow-
down and overload, and fairly distributing the remaining
cluster capacity.

1 Introduction
Most distributed systems today are shared by multiple
tenants, both on private and public clouds and datacenters.
These include common storage, data analytics, database,
queuing, or coordination services like Azure Storage [6],
Amazon SQS [3], HDFS [36], or Hive [41]. Multi-tenancy
has clear advantages in terms of cost and elasticity.

However, providing performance guarantees and iso-
lation in multi-tenant distributed systems is extremely
hard. Tenants not only share fine-grained resources within
a process (such as threadpools and locks) but also re-
sources across multiple processes and machines (such
as the disk and the network) along the execution path
of their requests. As a result, traditional resource man-
agement mechanisms in the operating system and in the
hypervisor are ineffective due to a mismatch in the man-
agement granularity. Moreover, tenant-generated requests
not only compete with each other but also with system-
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Figure 1: i) Latency for a client reading 8kB files from
HDFS [36] is impacted by different workloads that A) repli-
cate HDFS blocks, B) list large directories, and C) make new
directories, each overloading the disk, threadpool, and locks
respectively. ii) latency of DataNode disk operations, iii) latency
at NameNode RPC queue, iv) latency to acquire NameNode
“NameSystem” lock.

generated tasks, such as replication and garbage collec-
tion, for shared resources. In addition, the bottleneck re-
sponsible for degrading the performance of a tenant can
change in unpredictable ways depending on its input work-
load, the workload of other tenants and system tasks, the
overall state of the system (including caches), and the
(nonlinear) performance characteristics of underlying re-
sources. See Figure 1 for an example. It does not help
that the APIs to these services are often complex, with
HDFS, for example, having over 100 calls in its client
library [19], making static workload models intractable.

We address these challenges with Retro, a resource
management framework whose core principle is to sepa-
rate resource management policies from the mechanisms
required to implement them. Retro enables system de-
signers to state, verify, tune, and maintain management
policies independent of the underlying system implemen-
tation. As in software defined networking, Retro policies
execute in a logically-centralized controller with Retro
mechanisms providing a global view of resource usage
both within and across processes and machines.

The goal of Retro is to enable targeted policies that
achieve desired performance guarantee or fairness goals
by identifying and only throttling the tenants or system
activities responsible for resource bottlenecks. Retro pro-
vides three abstractions to simplify the development of
such policies. First, it groups all system activities – both
tenant-generated requests and system-generated tasks –
into individual workflows, which form the units of re-
source management. Retro attributes the usage of a re-
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source at any instant to some workflow in the system.
Second, Retro provides a resource abstraction that uni-
fies arbitrary resources, such as physical storage, network,
CPU, thread pools, and locks, enabling resource-agnostic
policies. Each resource exposes two opaque performance
metrics: slowdown, a measure of resource contention, and
a per-workflow load, which attributes the resource usage
to workflows. Finally, Retro creates control points, places
in the system that implement resource scheduling mecha-
nisms such as token buckets, fair schedulers, or priority
queues. Each control point schedules requests locally, but
is configured centrally by the policy.

Retro advocates reactive policies that dynamically re-
spond to the current resource usage of workflows in the
system, instead of relying on static models of future re-
source requirements. These policies continuously react to
changes in resource bottlenecks and input workloads by
making small adjustments directing the system towards
a desired goal. Such a “hill climbing” approach enables
policies that are robust to both changes in workload char-
acteristics and nonlinear performance characteristics of
underlying resources.

We evaluate Retro abstractions and design principles by
implementing two fairness policies – reactive version of
bottleneck resource fairness [12] and dominant resource
fairness [13] – and LATENCYSLO, that enforces end-to-
end latency targets for a subset of workflows. We use
these policies on a Retro implementation for the Hadoop
stack, comprising HDFS, Yarn, MapReduce, HBase and
ZooKeeper. All three policies are concise (about 20 lines
of code) and are agnostic of Hadoop internals. We exper-
imentally demonstrate that these policies are robust and
converge to desired performance goals for different types
of workloads and bottlenecks.

The targeted and reactive policies of Retro rely on
accurate, near real-time measurements of resource us-
age across all workflows and all resources in the system.
Through a careful design of mostly-automatic instrumen-
tation and aggregation of resource usage measurements
our implementation of Retro for the Hadoop stack incurs
latency and throughput overhead of 0.3% to 2%.

The goal of Retro is to be a general resource man-
agement framework that is applicable to arbitrary dis-
tributed systems. Our experience applying Retro to five
distributed systems – HDFS, Yarn, MapReduce, HBase,
and ZooKeeper – validates our design. Applying Retro to
a new system required modest amounts of system-specific
instrumentation – between 50 and 200 lines of code. The
rest of the Retro framework required no changes. More-
over, resource management policies that we originally
developed for HDFS were directly applicable to other
systems, validating the robustness of Retro abstractions.

In summary, our key contributions are:
• Unifying abstractions of workflows, resources, and
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Figure 2: Typical deployment of HDFS, ZooKeeper, Yarn,
MapReduce, and HBase in a cluster. Gray rectangles repre-
sent servers, white rectangles are processes, and white circles
represent control points that we added. See text for details.

control points, that enable concise policies that are
system-agnostic and resource-agnostic;

• Demonstrating the feasibility of Retro in a complex
Hadoop stack, including a low-overhead, pervasive,
per-workflow resource tracking and aggregation for
a wide variety of resources;

• Targeted and reactive policies for providing latency
SLOs, bottleneck resource fairness, and dominant
resource fairness;

• A centralized controller that allow policies to enforce
performance goals at different control points without
requiring explicit coordination.

2 Motivation and challenges
This section motivates Retro by describing the challenges
of resource management in a multi-tenant distributed sys-
tem. As this paper presents Retro in the context of the
Hadoop stack, we first provide a high-level overview of
Hadoop components. The results of this paper generalize
to other distributed systems as well.

2.1 Hadoop architecture
Figure 2 shows the relevant components of the Hadoop
stack. HDFS [36], the distributed file system, consists
of DataNodes (DN) that store replicated file blocks and
run on each worker machine, and a NameNode (NN)
that manages the filesystem metadata. Yarn [42] com-
prises a single ResourceManager (RM), which communi-
cates with NodeManager (NM) processes on each worker.
Hadoop MapReduce is an application of Yarn that runs its
processes (application master and map and reduce tasks)
inside Yarn containers managed by NMs. HBase [17]
is a data store running on top of HDFS that consists of
RegionServers (RS) on all workers and an HBase Mas-
ter, potentially co-located with the NameNode or Yarn.
Finally, ZooKeeper [21] is a system for distributed coor-
dination used by HBase.

MapReduce job input and output files are loaded from
HDFS or HBase, but during the job’s shuffle phase, inter-
mediate output is written to local disk by mappers (by-
passing HDFS) and then read and transferred by NodeM-
anagers to reducers. Reading and writing to HDFS has the

2
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NameNode on the critical path to obtain block metadata.
An HBase query executes on a particular RegionServer
and reads/writes its data from one or many DataNodes.

2.2 Resource management challenges

Any resource can become a bottleneck Figure 1
demonstrates how the latency of an HDFS client can be
adversely affected by other clients executing very differ-
ent types of requests, contending for different resources.
In production, a Hadoop job that reads many small files
can stress the storage system with disk seeks, as workload
A in the figure, and impact all other workloads using the
disks. Similarly, a workload that repeatedly resubmits a
job that fails quickly puts a large load on the NN, like
workload C, as it has to list all the files in the job input
directories. In communication with Cloudera [43], they
acknowledge several instances of aggressive tenants im-
pacting the whole cluster, saying “anything you can imag-
ine has probably been done by a user”. Interviews with
service operators at Microsoft confirm this observation.
Multiple granularities of resource sharing On the one
hand, concurrently executing workflows share software
resources, such as threadpools and locks, within a process,
while on the other hand, resources, such as the disk on
Hadoop worker nodes, are distributed across the system.
The disk resource, for example, is accessed by DN, NM,
and mapper/reducer processes running across all workers.
Systems have many entry points (e.g., HBase, HDFS, or
MapReduce API) and maintenance tasks are launched
from inside the system. Finally, enforcing resource usage
for long-running requests requires throttling inside the
system, not just at the entry points.
Maintenance and failure recovery cause congestion
Many distributed systems perform background tasks that
are not directly triggered by tenant requests but com-
pete for the same resources. E.g., HDFS performs data
replication after failures, asynchronous garbage collection
after file deletion, and block movement for balancing DN
load. In some cases, these background tasks can adversely
affect the performance of foreground tasks. Jira HDFS-
4183 [18] describes an example where a large number of
files are abandoned without closing, triggering a storm
of block recovery operations after the lease expiration
interval one hour later, which overloads the NN. Guo et
al. [16] describe a failure in Microsoft’s datacenter where
a background task spawned a large number of threads,
overloading the servers. On the other hand, some of these
tasks need to be protected from foreground tasks. Guo et
al. [16] describe a cascading failure resulting from over-
loaded servers not responding to heartbeats, triggering
further data replication and further overload.
Resource management is nonexistent or noncompre-
hensive Systems like HDFS, ZooKeeper, and HBase
do not contain any admission control policies. While

Yarn allocates compute slots using a fair scheduler, it
ignores network and disk, thus, an aggressive job can
overload these resources. Interviews with service oper-
ators at Microsoft indicate that productions system of-
ten implement resource management policies that ignore
important resources and use hardcoded thresholds. For
example, a policy might assume that an open() is 2x
more expensive than delete(), while the actual usage
varies widely based on parameters and system state, result-
ing in very inaccurate resource accounting. The policies
are often tweaked manually, typically after causing per-
formance issues or outages, or when the system or the
workloads change. Writing the policies often requires inti-
mate knowledge of the system and of the request resource
profile, which may be impossible to know a priori.

3 Design
The main goal of Retro is to enable simple, tar-
geted, system-agnostic, and resource-agnostic resource-
management polices for multi-tenant distributed systems.
Examples of such policies are: a) throttle aggressive ten-
ants who are getting an unfair share of bottlenecked re-
sources, b) shape workflows to provide end-to-end latency
or throughput guarantees, or c) adjust resource allocation
to either speed up or slow down certain maintenance or
failure recovery tasks.

Retro addresses the challenges in §2.2 by separating the
mechanisms of measurement and enforcement of resource
usage from high-level, global resource management poli-
cies. It does this by using three unifying abstractions –
workflows, resources, and control points – that enable
logically centralized policies to be succinctly expressed
and apply to a broad class of resources and systems.

3.1 Retro abstractions

Workflow Resource contention in a distributed system
can be caused by a wide range of system activities. Retro
treats each such activity as a first-class entity called a
workflow. A workflow is a set of requests that forms the
unit of resource measurement, attribution, and enforce-
ment in Retro. For instance, a workflow might represent
requests from the same user, various background activities
(such as heartbeats, garbage collection, or data load bal-
ancing operations), or failure recovery operations (such as
data replication). The aggregation of requests into a work-
flow is up to the system designer. For instance, one system
might treat all background activities as one workflow but
another might treat heartbeats as a distinct workflow from
other activities, if the system designer decides to provide
a different priority to heartbeats.

Each workflow has a unique workflow ID. To properly
attribute resource usage to individual workflows, Retro
propagates the workflow ID along the execution path of all
requests. This causal propagation [11, 37, 40, 34] allows

3
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Retro to attribute the usage of a resource to a workflow
at any point in the execution, whether within a shared
process or across the network.
Resources A comprehensive resource management pol-
icy should be able to respond to a contention in any re-
source – hardware or software – and attribute load to work-
flows using it. A key hypothesis of Retro is that resource
management policies can and should treat all resources,
from thread pools to locks to disk, uniformly under a
common abstraction. Such a uniform-treatment allows
one to state policies that respond to disk contention, say,
in the same way as lock contention. Equally importantly,
this allows gradually expanding the scope of resource-
management to new resources without policy change. For
instance, a storage service might start by throttling clients
based on their network or disk usage. However, as the
complexity of the service increases to include sophisti-
cated meta-data operations, the service can start throttling
by CPU usage or lock-contention. On the other hand, the
challenge in providing such a unifying abstraction is to
capture the behavior of varied kinds of resources with
different complex non-linear performance characteristics.

To overcome this challenge, Retro captures a resource’s
current first-order performance with two unitless metrics:
• slowdown indicates how slow the resource is cur-

rently, compared to its baseline performance with no
contention;

• load is a per-workflow metric that determines who
is responsible for the slowdown.

As a simple example, consider an abstract resource
with an (unbounded) queue. Let Qw,i be the queueing
time of the ith request from workflow w in a time inter-
val and let Sw,i be the time the resource takes to service
that request. During this interval, the load by w is ΣiSw,i
and the slowdown is Σw,i(Qw,i +Sw,i)/Σw,iSw,i. Note, the
denominator of the slowdown is the time taken to process
the requests if the queue is empty throughout the interval.

The reactive policies in Retro allow these metrics to
provide a linear approximation of the complex non-linear
behavior. The policies continuously measure the resource
metrics while making incremental resource allocation
changes. Operating in such a feedback loop enables sim-
ple abstractions while reacting to nonlinearities in the
underlying performance characteristics of the resource.

Resources in real systems are more complex than the
simple queue above. Our goal is to hide the complex-
ities of measuring the load and slowdown of different
resources in resource libraries that are implemented once
and reused across systems. See §4.2 for details.

An important implication of this abstraction is that it is
not possible to query the capacity of a resource. Instead,
a policy can treat a resource to have reached its capacity
if the slowdown exceeds some fixed constant. Directly
measuring true capacity is often not possible because of

many request types supported (e.g. open, read, sync, etc.
on a disk) and because of effects of caching or buffering,
workflow demands do not compose linearly. Also, due to
limping hardware [10], estimating the current operating
capacity is next to impossible.

Control points To separate the low-level complexities
of enforcing resource allocation throughout the distributed
system, we introduce the control point abstraction. A con-
trol point is a point in the execution of a request where
Retro can enforce the decisions of resource scheduling
policies. Each control point executes locally, such as de-
laying requests of a workflow using a token bucket, but is
configured centrally from a policy.

While a control point can be placed directly in front
of a resource (such as a thread pool queue), it can more
generally be located anywhere it is reasonable to sleep
threads or delay requests, such as in HDFS threads send-
ing and receiving data blocks. The location of control
points should be selected by the system designer while
keeping a few rules in mind. A control point should not
be inserted where delaying a request can directly impact
other workflows, such as when holding an exclusive lock.
Conversely, some asynchronous design patterns (such as
thread pools) present an opportunity to interpose control
points, as it is unlikely that a request will hold critical
resources yet potentially block for a long period of time.

Each logical control point has one or more instances.
A point with a single instance is centralized, such as a
point in front of the RPC queue in HDFS NameNode. Dis-
tributed points, such as in the DataNode or its clients, have
many, potentially thousands of instances. Each instance
measures the current, per-workflow throughput which is
aggregated inside the controller.

To achieve fine-grained control, a request has to peri-
odically pass through control points, otherwise, it could
consume unbounded amount of resources. To illustrate
this, consider a request in HBase that scans a large re-
gion, reading data from multiple store files in HDFS. If
Retro only throttles the request at the RegionServer RPC
queue, a policy has only one chance to stop the request;
once it enters HBase, it can read an unbounded amount of
data from HDFS and perform computationally expensive
filters on the data server-side. By adding a point to the
DataNode block sender, we can control the workflow at
the granularity of 64kB HDFS data packets. More gener-
ally, the longer the period of time a request can execute
without passing through a control point, the longer it will
take any policy to react. This is similar to the dependence
between the longest packet length Lmax and the fairness
guarantees provided by packet schedulers [31, 38].

3.2 Architecture
Figure 3 outlines the high-level architecture of Retro and
its three main components. First, Retro has a measure-
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Figure 3: Retro architecture. Gray boxes are system components
on the same or different machines. Workflows start at several
points and reach multiple components. Intercepted resources (�)
generate measurements that serve as inputs to policies. Policy
decisions are enforced by control points (�).

ment infrastructure that provides near-real-time resource
usage information across all system resources and com-
ponents, segmented by workload. Second, the logically
centralized controller uses the resource library to translate
raw measurements to the load and slowdown metrics, and
provides them as input to Retro policies. Third, Retro
has a distributed, coordinated enforcement mechanism
that consistently applies the decisions of the policies to
control points in the system. We discuss the design of the
controller in the following paragraphs. In §4 we describe
the measurement and enforcement mechanisms in detail,
and in §5 we present the implementation of three policies.

Logically centralized policies In current systems, re-
source management policies are hard-coded into the sys-
tem implementation making it difficult to maintain as the
system and policies evolve. A key design principle be-
hind Retro is to separate the mechanisms (§4) from the
policies (§5). Apart from making such policies easier to
maintain, such a separation allows policies to be reused
across different systems or extended with more resources.

Borrowing from the design of Software Defined Net-
works and IOFlow [39], Retro takes the separation a step
further by logically centralizing its policies. This makes
policies much easier to write and understand, as one does
not have to worry about myopic local policies making
conflicting decisions. In this light, we can view Retro as
building a “control plane” for distributed systems, and
providing a separation of concerns for policy writers and
system developers and instrumenters.

Retro exposes to policies a simple API, shown in Ta-
ble 1, that abstracts the complexity of individual resources
and allows one to specify resource-agnostic scheduling
policies, as demonstrated in §5. The first three functions
in the table correspond to the three abstractions explained
above. In addition, latency(r,w) returns the total time
workflow w spent using resource r. throughput(p,w)
measures the aggregate request rate of workflow w through
a (potentially distributed) throttling point p, such as the
entry point to the RS process. Finally, policies can affect

workflows() list of workflows
resources() list of resources
points() list of throttling points

load(r,w) load on r by workflow w
slowdown(r) slowdown of resource r
latency(r,w) total latency spent by w on r

throughput(p,w) throughput of workflow w at point p
get rate(p,w) get the throttling rate of workflow w

at point p
set rate(p,w,v) throttle workflow w at point p to v

Table 1: Retro API used by the scheduling policies. We omit
auxiliary calls to set, for example, the reporting interval and
smoothing parameters, as well as to obtain more details such as
operation counts, etc.

the system through Retro’s throttling mechanisms.

4 Implementation
4.1 Per-workflow resource measurement

End-to-end ID propagation At the beginning of a re-
quest, Retro associates threads executing the request with
the workflow by storing its ID in a thread local variable;
when execution completes, Retro removes this associa-
tion. While the developer has to manually propagate the
workflow ID across RPCs or in batch operations, we use
AspectJ to automatically propagate the workflow ID when
using Runnable, Callable, Thread, or a Queue.
Aggregation and reporting When a resource is inter-
cepted, Retro determines the workflow associated with
the current thread, and increments in-memory counters
that track the per-workflow resource use. These coun-
ters include the number of resource operations started
and ended, total latency spent executing in the resource
and any operation-specific statistics such as bytes read
or queue time. When the workflow ID is not available,
such as when parsing an RPC message from the network,
the resource use is attributed to the next ID that is set
on the current thread (e.g., after extracting the workflow
ID from the RPC message). Retro does not log or trans-
mit individual trace events like X-Trace or Dapper, but
only aggregates counters in memory. A separate thread
reads and reports the values of the counters to the central
controller at a fixed interval, currently once per second.
Reports are serialized using protocol buffers [14] and sent
using ZeroMQ [2] pub-sub. The centralized controller ag-
gregates reports by workflow ID and resource, smoothes
out the values using exponential running average, and
uses the resource library to compute resource load and
slowdown.
Batching In some circumstances, a system might batch
the requests of multiple workflows into a single request.
HDFS NameNode, HBase RegionServers, and ZooKeeper
each have a shared transaction log on the critical path of

5
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write requests. In these cases, we create a batch workflow
ID to aggregate resource consumption of the batch task
(e.g., the resources consumed when writing HBase trans-
action logs to HDFS). Constituent workflows report their
relative contributions to the batch (e.g., serialized size of
transaction) and the controller decomposes the resources
consumed by the batch to the contributing workflows.
Automatic resource instrumentation using AspectJ
Retro uses AspectJ [25] to automatically instrument all
hardware resources and resources exposed through the
Java standard library. Disk and network consumption is
captured by intercepting constructor and method calls on
file and network streams. CPU consumption is tracked dur-
ing the time a thread is associated with a workflow. Lock-
ing is instrumented for all Java monitor locks and all im-
plementers of the Lock interface, while thread pools are
instrumented using Java’s Executors framework. The
only manual instrumentation required is for application-
level resources created by the developer, such as custom
queues, thread pools, or pipeline processing stages.

AspectJ is highly optimized and weaves the instrumen-
tation with the source code when necessary without addi-
tional overheads. In order to avoid potentially expensive
runtime checks to resolve virtual function calls, Retro in-
strumentation only intercepts constructors to return proxy
objects that have instrumentation in place.

4.2 Resource library
Retro presents a unified framework that incorporates in-
dividual models for each type of resource. Management
policies only make incremental changes to request rates
allocated to individual workflows; for example, if the
CPU is overloaded, a policy might reduce total load on
the CPU by 5%. Therefore, as long as we correctly detect
contention on a resource, iteratively reducing load on that
resource will reduce the contention. Our models, thus,
capture only the first-order impact of load on resource
slowdown.
CPU We query the per-thread CPU cycle counter
when setting and unsetting the workflow ID on a
thread (using QueryThreadCycleTime in Windows and
clock_gettime in Linux) to count the total number of
CPU cycles spent by each workflow. The load of a work-
flow is thus proportional to its usage of CPU cycles. To
estimate the slowdown, we divide the actual latency spent
using CPU by the optimal latency of executing this many
cycles at the CPU frequency. Since part of the thread exe-
cution could be spent in synchronous IO operations, we
only use CPU cycles and latency spent outside of these
calls to compute CPU slowdown. If frequency scaling is
enabled, we could use other existing performance coun-
ters to detect CPU contention [1].
Disk To estimate disk slowdown, we use a subset of disk
IO operation types that we monitor, in particular, reads

and syncs. For example, given a time interval with n
syncs and b bytes written during these operations, we
use a simple disk model that assumes a single seek with
duration Ts for each sync, followed by data transfer at full
disk bandwidth B. We thus estimate the optimal latency
as l = nTs +b/B and slowdown as s = t/l, where t is the
total time spent in sync operations. To deal with disk
caching, buffering, and readahead, we only count as seeks
the operations that took longer than a certain threshold,
e.g., 5ms. We use similar logic for reads and to estimate
the load of each workflow.

Network The load of a workflow on a network link is
proportional to the number of bytes transferred by that
workflow. We ignore data sent over the loopback inter-
face by checking remote address when the connection is
set up, inside our AspectJ instrumentation. We currently
do not measure the actual network latency and thus es-
timate the network slowdown based on its utilization by
treating it as a M/M/1 queue. Thus a link with utiliza-
tion u has a slowdown 1 + u/(1 − u). It is feasible to
extend Retro by encoding a model of the network (topol-
ogy, bandwidths, and round trip times), and network flow
parameters (source, destination, number of bytes), to es-
timate the network flow latency with no congestion [30].
Comparing this no-congestion estimate with measured
latency could be used to compute network slowdown.

Thread pool The load of a workflow on a thread pool
is proportional to the total amount of time it was using
threads in this pool. Since we explicitly measure queu-
ing and service time of a thread pool operation, we can
directly compute the slowdown as total execution time
(queuing plus service) divided by service time.

Locks A write lock behaves similarly to a thread pool
with a single thread, and we explicitly measure the queu-
ing time of a lock operation and the time the thread was
holding the lock. Slowdown is thus the total latency of
lock operation (from requesting the lock until release)
divided by the time actually holding the lock.

Load of a read-write lock depends on the number
of read and write operations, for how long they hold
the lock, and the exact lock implementation. While
there has been previous work on modeling locks using
queues [24, 22, 32], none of them exactly match the Reen-
trantReadWriteLock used in HDFS. Instead, we approxi-
mate the capacity or throughput of a lock, T ( f ,w,r), in
a simple benchmark using three workflow parameters:
fraction of write locks f , and average duration of write
and read locks w and r. See Figure 4 for a subset of the
measured values; notice that the throughput is nonlinear
and non-monotonic. We use trilinear interpolation [23]
to predict throughput for values not directly measured.
Given a workflow with characteristic ( f ,w,r) and current
lock throughput t, we estimate its load on the lock as
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Figure 4: The throughput of Java ReentrantReadWriteLock (y-
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lock operation (x-axis), average duration of read and write locks
(see legend, time in milliseconds).

t/T ( f ,r,w). E.g., a workflow making 1000 lock requests
a second with its estimated max throughput of 5000 oper-
ations a second, would have a load of 0.2.
4.3 Coordinated throttling
Retro is designed to support multiple scheduling schemes,
such as various queue schedulers or priority queues. In
the current implementation of Retro, each control point
is a per-workflow distributed token bucket. Threads can
request tokens from the current workflow’s token bucket,
blocking until available. Queues can delay a request from
being dequeued until sufficient tokens are available in
the corresponding workflow’s bucket. For a particular
control point and workflow, a policy can set a rate limit
R, which is then split (behind the scenes) across all point
instances proportionally to the observed throughput. Retro
keeps track of new control point instances coming and
going – e.g., mappers starting and finishing – and properly
distributes the specified limit across them.

So long as each request executes a bounded amount of
work, even using a single control point at the entrance to
the system is enough for Retro to enforce usage of indi-
vidual workflows. However, as described in Section 3.1,
requests have to periodically pass through control points
to guarantee fast convergence of allocation policies. Even
without any control points in the system, each resource
reports how many times it has been used by a particular
workflow. For example, loading a single HDFS block of
64MB would result in approximately 1000 requests to
the disk, each reading 64kB of data. These statistics help
developers identify blocks of code where requests execute
large amount of work and where adding control points
helps break down execution and significantly improves
convergence of control policies.

In the Hadoop stack, we added several points: in the
HDFS NameNode and HBase RegionServer RPC queues,
in the HDFS DataNode block sender and receiver, in
the Yarn NodeManager, and in the MapReduce mappers
when writing to the local disk. Each of these points has a
number of instances equal to the number of processes of
the particular type.

1 // identify slowest resource
2 S = r in resources() with max slowdown(r)
3 foreach w in workflows()
4 demand[w] = load(S, w)
5 capacity += (1−α)∗demand[w]
6
7 fair = MaxMinFairness(capacity, demand)
8
9 foreach w in workflows()

10 if (slowdown(S) > T
11 && fair[w] < demand[w]) // throttle
12 factor = fair[w] / demand[w]
13 else // probe for more demand
14 factor = (1 + β)
15
16 foreach p in points()
17 set_rate(p, w, factor*get_rate(p, w))

Algorithm 1: BFAIR policy, see §5.1.

Notice that we do not need to throttle directly on re-
source R to enforce resource limits on R. Assume that a
workflow is achieving throughput of Np at point p and has
load LR on R. By setting a throttling rate of αNp for all
points, we will indirectly control the load on R to αLR.

5 Policies
This section describes three targeted reactive resource-
management policies that we used to evaluate Retro.
Specifically, these policies enforce fairness on the bottle-
neck resource (§5.1), dominant-resource fairness (§5.2),
and end-to-end latency SLOs (§5.3). All of these polices
are system-agnostic, resource-agnostic, and can be con-
cisely stated in a few lines of code. These are not the only
policies that could be implemented on top of Retro; in fact,
we believe that the Retro abstractions allow developers to
write more complex policies that consider a combination
of fairness and latency, together with other metrics, such
as throughput, workflow priorities, or deadlines.

5.1 BFAIR policy
The BFAIR policy provides bottleneck fairness [13, 12];
i.e., if a resource is overloaded, the policy reduces the
total load on this resource while ensuring max-min fair-
ness for workflows that use this resource. This policy can
be used to throttle aggressive workflows or to provide
DoS protection. It provides coarse-grained performance
isolation, since workflows are guaranteed a fair-share of
the bottlenecked resource.

The policy, described in Algorithm 1, first identifies
the slowest resource S in the system according to the
slowdown measure (line 2). Then, the policy runs the
max-min fairness algorithm with demands estimated by
the current load of workflows (line 4) and resource ca-
pacity estimated by the total demand reduced by 1−α to
relieve the bottleneck if any (line 5).

The policy considers S to be bottlenecked if its slow-
down is greater than a policy-specific threshold T. If this
is the case and the fair share fair[w] of workflow w is

7



596 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

1 // estimate resource demands
2 foreach w in workflows()
3 foreach r in resources()
4 demand[r,w] = (1+α)∗load(r,w)
5
6 // update capacity estimates
7 cap = current capacity estimates
8 foreach r in resources()
9 tot_load = Σwload(r,w)

10 if(slowdown(r) > Tr) //reduce estimate
11 cap[r] = min(cap[r], tot_load);
12 else // probe for more capacity
13 cap[r] = max((1+β)*cap[r], tot_load);
14
15 share = DRF(demand, cap)
16 foreach w in workflows()
17 if (share[w] >= 1) continue
18 foreach p in points()
19 set_rate(p, w, share[w]*get_rate(p,w))

Algorithm 2: RDRF policy, see §5.2.

smaller than its current load (line 11), the policy throttles
the rate by a factor of fair[w]/demand[w]. Here, the
policy assumes a linear relationship between throughput
at control points and the load on resources. If either the re-
source is not bottlenecked or if a workflow is not meeting
its fair share (line 13), the policy increases the throttling
rate by a factor of 1+β to probe for more demand.

Notice that this policy performs coordinated throttling
of the workflow across all the control points; by reducing
the rate proportionally on each point, we quickly reduce
the load of the workflow on all resources. Parameters
α and β control how aggressively the policy reacts to
overloaded resources and underutilized workflows respec-
tively. Notice that this policy will throttle only if there is
a bottleneck in the system; we can change the definition
of a bottleneck using the parameter T.

5.2 RDRF policy
Dominant resource fairness (DRF) [13] is a multi-
resource fairness algorithm with many desirable prop-
erties. The RDRF policy (Algorithm 2) calls the origi-
nal DRF function at line 15 which requires the current
resource demands and capacities of all resources. In a
general distributed system, we cannot directly measure
the actual resource demand of a workflow, but only its
current load on a resource. A workflow might not be able
to meet its demand due to bottlenecks in the system.

The RDRF policy overcomes this problem by being
reactive: making incremental changes and reacting to how
the system responds to these changes. At any instant, the
policy conservatively assumes that each workflow can
increase its current demand by a factor of α (line 4).
This increased allocation provides room for bottlenecked
workflows to increase the load on resources.

Similarly, the policy uses the slowdown measure to
estimate capacity. At line 10, when the current slowdown
exceeds a resource-specific threshold, the policy reduces

1 foreach w in H
2 miss(w) = latency(w) / target_lat(w)
3 h = w in H with max miss(w)
4
5 foreach l in L // compute gradients
6 g[l] = Σr (latency(h,r) * log(slowdown(r))
7 * load(r,l) / Σw load(r,w))
8
9 foreach l in L // normalize gradients

10 g[l] /= ∑kg[k]
11
12 foreach l in L
13 if(miss(h) > 1) // throttle
14 factor = 1-α*(miss(h)-1)*g[l]
15 else // relax
16 factor = (1 + β)
17
18 foreach p in points()
19 set_rate(p, l, factor*get_rate(p, l))

Algorithm 3: LATENCYSLO policy, see §5.3.

its capacity estimate to the current load. On the other hand,
if the slowdown is within the threshold (line 12) and the
current capacity estimate is lower than the current load,
the policy increases the capacity estimate by a factor of β
to probe for more capacity.

Given estimates of demand and capacity, the DRF()
function returns share[w], the fraction of w’s demand
that was allocated based on dominant-resource fairness.
If share[w]< 1, we throttle w at each point p proportion-
ally to its current throughput at p.

5.3 LATENCYSLO policy
In the LATENCYSLO policy, we have a set of high-
priority workflows H with a specified target latency SLO
(service-level objective). Let L (low-priority) be the re-
maining workflows. The goal of the policy is to achieve
the highest throughput for L, while meeting the latency
targets for H. We assume the system has enough capacity
to meet the SLOs for H in the absence of the workflows
L; in other words, it is not necessary to throttle H. To
maximize throughput, we want to throttle workflows in L
as little as possible; e.g., if a workflow in L is not using
an overloaded resource, it should not be throttled.

Consider a workflow h in H that is missing its target la-
tency. If multiple such workflows exist, the policy choses
the one with the maximum miss ratio (line 3). Let tw
be the current request rate of workflow w and consider
a possible change of this rate to tw ∗ fw. The resulting
latency lh of h is some (nonlinear) function of the relative
workflow rates fw of all workflows. The LATENCYSLO
computes an approximate gradient of lh with respect to
fw and uses the gradient to move the throttling rates in the
right direction. Based on the system response, the policy
repeats this process until all latency targets are met.

We derive an approximation of lh which results in an
intuitive throttling policy. Consider a resource r with a
current slowdown of Sr, load Dw,r for workflow w, and

8
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total load Dr = ∑w Dw,r. If Lh,r is the current latency of h
at r, the baseline latency is Lh,r/Sr when there is no load
at r, by the definition of slowdown. We model the latency
of h at r, lh,r as an exponential function of the load dr
that satisfies the current (dr = Dr) and baseline (dr = 0)
latencies, and obtain lh,r = Lh,r ∗ Sdr/Dr−1

r . Finally, we
model the latency of h, lh = ∑r lh,r as the sum of latencies
across all resources in the system.

Assuming that a fractional change in a workflow’s
request rate results in the same fractional change in
its load on the resources, we have dr = ∑w Dw,r ∗ fw.
The gradient of lh,r with respect to fw at dr = Dr is
∂ lh,r/∂ fw = Lh,r ∗ logSr ∗Dw,r/Dr. This is a very intu-
itive result: the impact of workflow w on the latency of
h is high if it has a high resource share, Dw,r/Dr, on a
resource with high slowdown, logSr, and where workflow
h spends a lot of time, Lh,r.

Algorithm 3 uses this formula for the gradient calcula-
tion (line 6). The policy throttles workflows in L based
on the normalized gradients after dampening by a factor
α to ensure that the policy only takes small steps. If all
workflows in H meet their latency guarantees, the policy
uses this opportunity to relax the throttling by a factor β .

6 Evaluation
In this section we evaluate Retro in the context of the
Hadoop stack. We have instrumented five open-source sys-
tems – HDFS, Yarn, MapReduce, HBase, and ZooKeeper –
that are widely used in production today. We use a wide va-
riety of workflows, which are based on real-world traces,
widely-used benchmarks, and other workloads known to
cause resource overload in production systems.

Our evaluation shows that Retro addresses the chal-
lenges in §2.2 when applied simultaneously to all these
stack components. In particular, we show that Retro:
• applies coordinated throttling to achieve bottleneck

and dominant resource fairness (§6.1 and §6.3);
• applies policies to application-level resources, re-

sources shared between multiple processes, and re-
sources with multiple instances across the cluster;

• guarantees end-to-end latency in the face of work-
loads contending on different resources, uniformly
for client and system maintenance workflows (§6.2);

• is scalable and has very low developer and execution
overhead (§6.4);

• throttles efficiently: it correctly detects bottlenecked
resources and applies targeted throttling to the rele-
vant workflows and control points.

We do not directly compare to other policies, since
to our knowledge, no previous systems offer this rich
source of per-workflow and per-resource data. Many of
previous policies, such as Cake [44], could be directly
implemented on top of Retro.
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Figure 5: BFAIR policy as described in the text.

6.1 BFAIR in Hadoop stack
In Figure 5, we demonstrate the BFAIR policy success-
fully throttling aggressive workflows without negatively
affecting the throughput of other workflows. The three
major workflows are: SORT, a MapReduce sort job;
RW64MB, 100 HDFS clients reading and writing 64MB
files with a 50/50 split; and SCAN, 100 HBase clients
scanning large tables. These workflows bottleneck on
the disk on the worker machines. The two minor work-
flows are: READ8KB, 32 clients reading 8kB files from
HDFS; and SCAN-CACHED, 32 clients scanning tables
in HBase that are mostly cached in the RegionServers.
We perform this experiment on a 32-node deployment
of Windows Azure virtual machines; one node runs the
Retro controller, one node runs HDFS NameNode, Yarn,
ZooKeeper, and HBase RegionServer, the other thirty are
used as Hadoop workers. Each VM is a Standard A4 in-
stance with 8 cores, 14GB RAM and a 600GB data disk,
connected by a 1Gbps network.

At the beginning of the experiment, we start READ8KB,
SCAN-CACHED, and SORT together, and delay start
of SCAN and RW64MB. Figure 5(top) shows the disk
throughput achieved by each workflow; notice how the
throughput changes as different workflows start, for ex-
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Figure 6: LATENCYSLO policy as described in text. Top-left figure shows high priority workflow latencies without LATENCYSLO.
Bottom-left figure shows resource slowdown during experiment. Top-right figure shows high priority workflow latencies with
LATENCYSLO. Bottom-right sparklines show control point utilizations for background workflows.

ample, throughput of SORT drops from 750MB/sec to
100MB/sec. Figure 5(center) shows the slowdown of a
few different resources. Disk is the only constantly over-
loaded resource, reaching slowdown of up to 60. While
slowdown of other resources also occasionally spikes, this
happens only due to workload burstiness. In Figure 5(bot-
tom), we show sparklines of the workflow utilization ra-
tios – the achieved throughput relative to the allocated
rate at a particular control point. A ratio of 1 means that
the workflow is being actively rate-limited; a ratio of 0
means that the workflow is never rate-limited. For SORT,
we show ratios at two control points: the DN BlockSender
(black, used by mapper to read data from the DN) and
mapper output (dashed red, used by mapper to write its
output to local disk). For RW64MB, we show ratios at
two control points: the DN BlockSender (black, used to
read data from HDFS DNs) and the DN BlockReceiver
(dashed red, used to write data to HDFS DNs).

In phase A we enable the BFAIR with overload thresh-
old T=25. Quickly, the disk throughput of the three major
workflows equalizes at about 300MB/sec, thus achiev-
ing fairness on the bottlenecked resource. Also, the disk
slowdown fluctuates at around 25 (navy blue line in the
slowdown graph) because the policy starts throttling the
major workflows.

The utilization ratio sparklines provide further insight.
RW64MB is the most aggressive workflow and conse-
quently it is fully throttled (ratio of 1) at all of the control
points. While not as aggressive, SCAN is also throttled
though less. Depending on the phase of the map-reduce
computation, we throttle SORT while reading input (black)
and/or when writing output (red dashed). Finally, as ex-
pected, the two minor workflows are not throttled as much,
or at all, because the fairness allocates their full demand.
Furthermore, SCAN-CACHED is completely unthrottled

as it has no disk utilization.
These results highlight how Retro enables coordinated

and targeted throttling of workloads. No other system
we are aware of would achieve these results, as Retro
coordinates the same resource through different control
points – for example, disk is controlled not only by HDFS
block transfer (used by SCAN, RW64MB, READ8KB and
the job input to SORT), but also by the SORT mapper
output that accesses disk directly, bypassing HDFS. Retro
only throttles the relevant workloads, leaving the small
read and scan workloads mostly alone.

6.2 LATENCYSLO
We demonstrate that the LATENCYSLO policy can en-
force a) end-to-end latency SLOs across multiple work-
flows and systems, and b) SLOs for both front-end clients
and background tasks. We perform these experiments on
an 8-node cluster; one node runs the Retro controller, one
node runs HDFS NameNode, Yarn, ZK, and HBase Mas-
ter, the other 6 are used as Hadoop workers and HBase
RegionServers.
Enforcing multiple guarantees In this experiment we
simultaneously enforce SLOs in HBase and HDFS for
three high priority workflows with intermittently aggres-
sive background workflows. The three high priority work-
flows are: F1 randomly reads 8kB from HDFS with 500ms
SLO, F2 randomly reads 1 row from a small table cached
by HBase with 25ms SLO, and F3 randomly reads 1 row
from a large HBase table with 250ms SLO. The back-
ground workflows are: F4 submits 400-row HBase table
scans, F5 creates directories in HDFS, and F6 submits
400-row HBase table scans of a cached HBase table.

Figure 6(top-left) demonstrates the request latencies
of the three high priority workflows, normalized to their
SLOs. During each of the three phases of the experiment,
a background workflow temporarily increases its request
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tency for heartbeats (right).

rate, affecting the latency of the high priority workflows.
In the first stage, F4 increases its load and F1 and F2 miss
their SLO. In the second stage, F5 increases its load and
F1 misses its SLO by a factor of 10. In the last stage, F6
increases its load and F2 and F3 miss their SLOs by factors
of 10 and 500 respectively. Figure 6(bottom-left), shows
the slowdown of different resources as the experiment
progresses: at first F4 table scans cause disk slowdown,
then F5 causes HDFS NameNode lock and NameNode
queue slowdown, and finally F6 causes CPU and HBase
queue slowdown as its data is cached.

We repeat the experiment using LATENCYSLO to en-
force the SLOs of F1, F2 and F3. Figure 6(top-right) shows
that the policy successfully maintains the SLOs by throt-
tling the background workflows at a number of control
points within HDFS and HBase. Figure 6(bottom-right)
shows the sparklines of the workflow utilization ratios
– the achieved throughput relative to the allocated rate
at a particular control point, similar to Figure 5. We see
that LATENCYSLO only rate-limits the background work-
flows during their specific overload phases.

These results highlight how LATENCYSLO selectively
throttles workloads based on their contribution to the SLO
violation. Retro can enforce SLOs for multiple workflows
across software and hardware resources simultaneously.
Background workflows Thanks to the workflow ab-
straction, LATENCYSLO is equally applicable to provid-
ing guarantees for high priority background tasks, such as
heartbeats, or to protecting high priority workflows from
aggressive background tasks such as data replication.

Figure 7(right) demonstrates the effect of two work-
flows T1 and T2 on the latency of datanode heartbeats, Thb.
The heartbeat latency increases from 4ms to about 450ms
when T1 and T2 start renaming files and listing directories,
respectively, causing increased load the HDFS namesys-
tem lock. Whilst Thb and T2 only require read locks, T1
requires write locks to update the filesystem, thus block-
ing heartbeats. When we start SLO enforcement at t=13,
the policy identifies T1 as the cause of slowdown, throt-
tles it at the NameNode RPC queue, and achieves the
heartbeat SLO.
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Figure 8: Resource share for experiment described in §6.3.

In Figure 7(left), LATENCYSLO rate-limits low-
priority background replication Tr, to provide guaranteed
latency to high priority workflow Thp submitting 8kB
read requests with 100ms SLO. At t=1, we manually
trigger replication of a large number of HDFS blocks;
subsequently, LATENCYSLO rate-limits Tr. High-priority
replication (single remaining replica) could use a separate
workflow ID to avoid throttling.

6.3 RDRF in HDFS
To demonstrate RDRF (Figure 8), we run an experiment
with two workflows – READ4M with 50 clients reading
4MB files, and LIST with 5 clients listing 1000 files in a
directory – accessing the HDFS cluster remotely sharing a
1Gbps network link. The dominant resource for READ4M
is disk and for LIST it is the network, since it is reading
large amounts of data from the memory of the NameNode.

We start READ4M at t=0 and add LIST at t=5, with shar-
ing weights of 1. Between time 5 and 10, RDRF throttles
READ4M to achieve equal dominant shares across both
of these workflows (60% on disk and network). After
increasing the weight of READ4M to 2 at t=10, the domi-
nant shares change to 80% and 40%, respectively.

Despite knowing neither the demands of each workflow,
nor the capacity of each resource, RDRF successfully
allocates each workflow the fair share of its dominant
resource. The experiment demonstrates how slowdown is
viable as a proxy for resource capacity, and coupled with
reactive policies, enables us to overcome some limitations
of an existing resource fairness technique.

6.4 Overhead and scalability of Retro
Retro propagates a workflow ID (3 bytes) along the exe-
cution path of a request, incurring up to 80ns of overhead
(see Table 2) to serialize and deserialize when making
network calls. The overhead to record a single resource
operation is approximately 340ns, which includes inter-
cepting the thread, recording timing, CPU cycle count
(before and after the operation), and operation latency,
and aggregating these into a per-workflow report.

To estimate the impact of Retro on throughput and
end-to-end latency, we benchmark HDFS and HDFS in-
strumented with Retro using requests derived from the
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Operation Latency
Deserialize metadata 80ns
Read active metadata 9ns
Serialize metadata 46ns
Record use one resource operation 342ns

Table 2: Costs of Retro instrumentation
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HDFS NNBench benchmark. See Figure 9 for throughput
and end-to-end latency for five requests types. Open opens
a file for reading; Read reads 8kB of data from a file; Cre-
ate creates a file for writing; Rename renames an existing
file and Delete deletes the file from the name system (and
triggers an asynchronous block delete). Of the request
types, Read is a DataNode operation and the others are
NameNode operations. In all cases, latency increases by
approximately 1-2%, and throughput drops by a similar 1-
2%. Variance in latency and throughput increases slightly
in HDFS instrumented with Retro. These overheads could
be further significantly reduced by sampling, i.e., tracing
only a subset of requests or operations.

We evaluate Retro’s ability to scale beyond the clus-
ter sizes presented thus far with an 200-VM experiment
on Windows Azure (Standard A2 instances). Figure 10
shows slowdown and aggregate disk throughput for four
workflows when BFAIR is activated (at t=1.5) and per-
workflow weights are adjusted (at t=4). Each workflow
ran a mix of 64MB HDFS reads and writes, with 800,
1200, 1600, and 2000 closed-loop clients respectively.
Before the policy is activated we observe the expected im-
balance in disk throughput caused by the differing number
of clients in each workflow. When the policy is activated
at t=1.5, the workflows quickly converge to an equal share
of disk throughput, and the slowdown decreases to the
target of 50. At t=4, two of the clients are given a weight
of 2 and the policy quickly establishes the new fair share.

We evaluate the scalability of Retro’s central controller
in terms of its ability to process resource reports. In a
benchmark where each report contains resource usage for
1000 workflows, the controller can process on the order
of 10,000 reports per second. Assuming 10 resources per
machine, the controller could thus support up to 1000
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Figure 10: Retro’s BFAIR policy on a 200-node cluster with four
workflows and overloaded disks. BFAIR is enabled at t=1.5 with
a target slowdown of 50; client weights are adjusted at t=4.
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Figure 11: Total network throughput for a several-hundred node
production Hadoop cluster and network throughput of Retro, cal-
culated from 1 month of traces. Retro’s bandwidth requirements
are on average 0.1% of the total throughput.

machines. In this setup, each machine would use about
600kB/sec of network bandwidth to send the reports. Fig-
ure 11 shows calculated network overhead that would be
imposed by Retro on a production Hadoop cluster com-
prising several hundred nodes over a period of a month.
We calculate the network traffic that would be generated
by Retro based on traces from this production cluster. The
figure shows that Retro would account for an average of
0.1% of the network traffic present. Furthermore, since
Retro aggregation only computes sums and averages, we
can aggregate hierarchically (e.g. inside each machine and
rack), further reducing the required network bandwidth
and thereby supporting much larger deployments.

Whilst Retro requires manual developer intervention
to propagate workflow IDs across network boundaries
and to verify correct behavior of Retro’s automatic instru-
mentation, our experience shows that this requires little
work. For example, instrumenting each of the five sys-
tems required only between 50 and 200 lines of code; for
example to handle RPC messages. Instrumenting resource
operations happens automatically through AspectJ.

7 Discussion
In Retro, we made the decision to implement both re-
source measurement and control points at the application
level. While applying Retro in the OS, hypervisor, or
device driver level could provide more accurate measure-
ments and fine-granularity enforcement, our approach has
the advantages of fast and pervasive deployment, and of

12
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not requiring specially built OS or drivers (we deployed
Retro in both Windows and Linux environments). Retro’s
promising results indicate that OS’s, and distributed sys-
tems in general, should provide mechanisms to facilitate
the propagation of workflow IDs across their components.

Retro is extensible to handle custom resources. For ex-
ample, in systems with row-level locking we cannot treat
each lock/row as an individual resource because the num-
ber of resources might be unbounded. Instead, we could
define each data partition as a logical resource, which
would significantly reduce the number of resources in
the system. ZooKeeper uses a custom request processing
pipeline, which is not part of Java standard library. We
treat ZooKeeper queues as custom resources and estimate
their load and slowdown.

The current implementation of Retro has several lim-
itations. First, some resources cannot be automatically
revoked once a request has obtained them and have to
be explicitly released by the system. For example, this
applies to memory, sockets, or disk space. A developer
could implement application-specific hooks that Retro
could use to reclaim resources. Second, because the rates
of distributed token buckets are updated only once a sec-
ond, when workload is very variable, this might reduce the
throughput of the system. Using different local schedulers,
such as weighted fair queues [35] and reservations [15]
would alleviate this problem.

8 Related work
In [26] we introduced the design principles behind Retro,
as well as a preliminary implementation of resource mea-
surement for HDFS. This paper presents a complete
framework by adding the centralized controller, resource
management policies, and distributed control points, eval-
uated across five different distributed systems.
Multi-resource scheduling Several research projects
tackle multi-resource allocation, such as Cake [44],
mClock [15], IOFlow [39], and SQLVM [27]. These
frameworks are specific to particular systems, such as
storage or relational databases. Retro improves on top of
these by providing the workflow, resource, and control
point abstractions, which allow it to handle a wide range
of resources and system activities, and enforce policy
decisions across the whole system.

Cake provides isolation between low-latency and high-
throughput tenants using HBase and HDFS. However, it
treats HDFS as a single resource, and cannot target spe-
cific resource bottlenecks and workflows that overload
these resources. mClock is a disk IO scheduler that could
be implemented as a Retro control point. IOFlow pro-
vides per-tenant guarantees for remote disk IO requests
in datacenters but does not schedule other resources such
as threadpools, CPU, and locks. SQLVM [27] provides
isolation for CPU, disk IO, and memory for multiple rela-

tional databases deployed in a single machine, but does
not deal with distributed scenarios.

In the data analytics domain, task schedulers such as
Mesos [20], Yarn [42], or Sparrow [29] use a centralized
approach to allocate individual tasks to machines. In these
frameworks, each task passes through the scheduler be-
fore starting its execution, the scheduler can place it to
an arbitrary machine in the cluster and after starting ex-
ecution, the task is not scheduled any more. In typical
distributed systems, requests do not pass through a single
point of execution and routing of a request through the
system is driven by complex internal logic. Finally, to
achieve fine-grained control over resource consumption,
requests have to be throttled during its execution, not only
at the beginning. These frameworks thus do not directly
apply to scheduling in general distributed systems. On
the other hand, Retro requires no knowledge of internal
design of the system and provides fine-grained throttling
using control points on the request execution path.
End-to-end (resource) tracing Banga and Druschel ad-
dressed the mismatch between OS abstractions and the
needs of resource accounting with resource containers [4],
which, albeit in a single machine, aggregate resource us-
age orthogonally to processes, threads, or users. Our end-
to-end propagation of workflow IDs shares mechanisms
with taint tracking [28] and several causal tracing frame-
works [5, 8, 9, 11, 34, 37, 40]. Retro does not, however,
record causality or traces, but rather uses the workflow in-
formation to attribute resource usage. Whodunit [7] uses
causal propagation to record timings between parts of a
program, and provides a profile of where requests spent
their time. Timecard [33] also propagates cumulative time
information in the request path between a mobile web
client and a server, and uses this in real time to speed up
the processing of requests that are late. Retro, in contrast,
records aggregate resource profiles by workflow and uses
these to enforce flexible high-level policies.

9 Conclusion
Retro is a framework for implementing resource man-
agement policies in multi-tenant distributed systems.
Retro tackles important challenges and provides key
abstractions that enable a separation between resource-
management policies and mechanisms. It requires low
developer effort, and is lightweight enough to be run in
production. We demonstrate the applicability of Retro to
key components of the Hadoop stack and develop and
evaluate three targeted and reactive policies for achieving
fairness and latency targets. These policies are system-
agnostic, resource-agnostic, and uniformly treat all sys-
tem activities, including background management tasks.
To the best of our knowledge, Retro is the first framework
to do so. We plan to extend the control points to provide
fair scheduling, prioritization, and load balancing.
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Abstract

In distributed systems, data corruption on a single node

can propagate to other nodes in the system and cause

severe outages. The probability of data corruption is

already non-negligible today in large computer popula-

tions (e.g., in large datacenters). The resilience of pro-

cessors is expected to decline in the near future, making

it necessary to devise cost-effective software approaches

to deal with data corruption.

In this paper, we present SEI, an algorithm that tol-

erates Arbitrary State Corruption (ASC) faults and pre-

vents data corruption from propagating across a dis-

tributed system. SEI scales in three dimensions: mem-

ory, number of processing threads, and development ef-

fort. To evaluate development effort, fault coverage,

and performance with our library, we hardened two real-

world applications: a DNS resolver and memcached.

Hardening these applications required minimal changes

to the existing code base, and the performance overhead

is negligible in the case of applications that are not CPU-

intensive, such as memcached. The memory overhead

is negligible independent of the application when using

ECC memory. Finally, SEI covers faults effectively: it

detected all hardware-injected errors and reduced un-

detected errors from 44% down to only 0.15% of the

software-injected computation errors in our experiments.

1 Introduction

Distributed systems running in modern data centers must

be tolerant to faults. Since machine and process crashes

are commonly observed, the crash fault model is the one

typically adopted. In fact, many systems critical to Web-

scale online services are successfully using techniques

such as state machine replication [6, 17, 22, 31] to guar-

antee availability despite crash faults.

The crash model does not cover data corruption faults,

which might lead to errors propagating through incor-

rect messages after a fault. Incidents occurring in large

Internet services in the recent past already indicate that

data corruption can cause process state corruption [20],

data loss [2, 3, 4], or in some unlucky case of error prop-

agation, even multi-hour outages of entire services [1].

This is not surprising: several large scale studies show

that faults that would be very unlikely in a small cluster

become much more likely at scale and tend to reappear

more frequently after the first occurrence [25, 32, 43,

44, 50]. There can be several reasons for data corrup-

tion symptoms, for example, manufacturing problems,

overheating, an incorrect use of dynamic voltage scal-

ing, hardware/software incompatibility, or power supply

faults [2, 36]. For example, we used dynamic voltage

scaling while running memcached on a single processor

with a lower voltage level and found that undetected er-

ror propagation occurred in 4 out of 468 runs (see Sec-

tion 7.2). These problems are in fact known to datacenter

operators dealing with large server populations.

New processor generations have traditionally achieved

higher performance through higher circuit density and

lower energy consumption. This approach, however, has

reached physical limits that affect hardware-level relia-

bility negatively [15, 21]. The rate of transient errors for

processors has been rising [14, 16] and it might reach up

to one user-visible failure per day per chip with 16 nm

technology [26, 51].

These trends are already changing the way large-scale

distributed systems are designed today. Mesa, a data

warehousing system for business-critical data used in

Google, uses application-level integrity checks to deal

with transient data corruption during computation, which

is common at scale [28].

We argue that preventing end-to-end error propaga-

tion due to data corruption, including corruption in the

computation, is an important requirement for large-scale

fault-tolerant distributed systems. Application-specific

solutions like the ones used in Mesa leave application de-

velopers with the burden of guaranteeing data integrity.
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Instead, we advocate for hardening approaches that en-

able crash-tolerant systems to handle data corruption

with minimal changes to the application code base.

Existing hardening solutions are not sufficiently cost-

effective at scale: they either rely on expensive servers

with hardware-level redundancy [7, 53] or require pro-

cess replication and coordination over multiple physical

machines even to achieve simple error isolation [30]. Re-

cent software-based approaches ensure end-to-end error

isolation in distributed systems without physical repli-

cation, but they still increase the application state by a

factor of two and do not support multithreading [12, 23].

The widespread use of multi-core machines with large

main memory requires solutions that scale well with

many application threads and a large in-memory state.

We introduce Scalable Error Isolation (SEI), a scal-

able hardening algorithm that transforms the processes

of an arbitrary event-based distributed system to ensure

error isolation. With error isolation, local errors cannot

propagate to other processes via output messages in an

undetectable manner. SEI is designed to formally guar-

antee error isolation in the presence of Arbitrary State

Corruption (ASC) faults, a well defined and general fault

model [23]. We have implemented a C library called

libsei to harden distributed systems using the SEI al-

gorithm. Hardening is semi-automated: a developer sim-

ply annotates, using the libsei API, the portions of the

code of a distributed system process that are responsible

for handling messages, as well as the input and output

messages. The compiler then automatically hardens the

implementation by instrumenting it with libsei.

SEI and libsei are scalable in three dimensions. For

memory, the additional state and redundant information

they use is small and independent of the memory usage

of the hardened process. For computation, they support

multithreading and thus cover complex error propagation

patterns among threads sharing the same state. For de-

velopment effort, they enable hardening real-world ap-

plications with minor developer involvement.

SEI detects data corruption in the computation, i.e.,

errors in the arithmetic and logic units of the proces-

sors and in the register files, by processing each mes-

sage twice and comparing the results locally. The SEI

hardening code itself is untrusted, so checks might be in-

correct or skipped due to faults. Consequently, SEI runs

multiple integrity checks for data and control-flow errors.

SEI detects data corruption in memory using compact

error detection codes. These codes can be implemented

in software, but SEI can also leverage hardware-level

mechanisms, such as ECC or Chipkill in DRAM memory

modules, to virtually eliminate the memory overhead.

These hardware mechanisms both perform this part of

the hardening very efficiently and are effective for data

in memory [32, 50]. Given that there is no expectation

that memory error rates will increase [15, 51], they are

likely to remain effective.

To show that hardening existing systems with a small

amount of effort is possible, we have hardened real-

world applications: memcached, a popular in-memory

distributed cache system, and Deadwood, a recursive

DNS resolver. Hardening these systems required a good

understanding of the code base but only small changes.

We conducted extensive fault injection experiments,

both software- and hardware-implemented, and a perfor-

mance evaluation of our hardened applications. We in-

jected faults at hardware level by reducing the CPU volt-

age and observed that SEI detected all errors. We also in-

jected targeted data corruption faults during computation

and found that SEI makes the likelihood of error propa-

gation under these faults negligible: from 44% down to

only 0.15% of the errors.

Performance results show that the overhead depends

on the original bottlenecks of the system. In the case of

memcached, the application is not CPU-bound so there

are spare cycles available for additional processing and

the overhead is negligible. Deadwood, however, is CPU

intensive so its throughput is reduced to nearly one half.

The remainder of this paper is structured as follows.

Section 2 discusses related work. Section 3 introduces

the system and fault models. Section 4 presents the SEI

algorithm. Sections 5 and 6 discuss the libsei imple-

mentation and our experience hardening memcached and

Deadwood. Sections 7 and 8 present our fault injection

and performance results. Section 9 concludes this work.

2 Related work

We now discuss the most related approaches for error

isolation in distributed systems.

Byzantine fault tolerance. Given the body of work on

Byzantine Fault Tolerance (BFT), it is natural to consider

Byzantine faults to cover data corruption [18, 37, 40].

The Byzantine model assumes a powerful adversary, and

consequently a Byzantine-tolerant system is able to cope

with data corruption. Byzantine-tolerant protocols, how-

ever, also tolerate faults that are orthogonal to resilience

against data corruption, such as intrusions or bugs, as

long as replicas use diverse implementations to guaran-

tee fault independence [19]. In particular, intrusions fall

into the domain of security, which is often treated as a

separate concern in data center applications [13].

Deadwood and memcached are instances of a large

class of systems in which integrity (safety) is sufficient

and continuous availability is not strictly necessary. In

the Byzantine model, providing just safety does not sig-

nificantly reduce cost; see for example Nysiad, which

achieves safety through replication and agreement [30].
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The Thema system also shows the additional complex-

ity of building Byzantine-tolerant three-tiered Web sys-

tems [42]. In contrast to BFT, SEI is lightweight, not

requiring replication nor complex agreement protocols.

SEI can still be used to harden replicated systems, e.g.,

replicated state machines based on Paxos [39]. Finally,

BFT primarily targets single-threaded state machines.

Eve runs multithreaded state machines in multi-core sys-

tems by leveraging commutative operations [35]. SEI

supports regular multithreaded applications and does not

rely on commutativity.

Software-level error detection. Software-level error

detection has been subject of a large body of research

work. Most such techniques do not provide end-to-end

guarantees in distributed systems under ASC faults (see

for example SWIFT [48] or [47]). Recent work has pro-

posed using encoded execution to harden distributed sys-

tems and provide end-to-end guarantees [12]. Encod-

ing presents important drawbacks, however. First, it in-

duces a significant overhead, showing a response time in-

creased up to 20 times even at modest request loads. For

a service such as memcached that is sensitive to latency,

such an overhead is not acceptable. Second, encoding

blows up the application state by a factor of two. Op-

timizations for both issues exist [10], but are limited to

state machine replication. In contrast, SEI presents mod-

erate overhead and has a small memory footprint with

hardware error detection codes.

PASC is a hardening algorithm that, like SEI, guaran-

tees coverage of ASC faults, is untrusted, and does not

require physical replication [23]. PASC can be used to

harden state machine replication: a comparison between

BFT and an ASC-tolerant version of Paxos is presented

in Correia et al. [23]. However, PASC is not scalable

in any of the three dimensions indicated by SEI: it does

not support processes with multiple threads, it doubles

the memory requirements of the hardened application,

and it requires implementing the distributed system from

scratch using a fixed template. The first two points limit

its applicability to multithreaded, memory-intensive sys-

tems like memcached. The last point makes it hard to

harden existing code bases, also because all state ac-

cesses must be mediated by a single state object [9].

3 System and fault model

This section presents an informal description of our sys-

tem and fault model, which is an adaptation of the ASC

fault model [23] to multithreaded settings. We refer to

our technical report [11] for a complete formalization.

System model. SEI targets event-based processes of

distributed systems. Processes consist of one or more

threads that spin over three phases:

- Dispatching receives a new event (message) and se-

lects an event handler;

- Handling executes the actual system logic;

- Output sends out messages produced by the event

handler.

Threads read from and write to state variables, which

collectively form the state of the process. These vari-

ables persist across the multiple event handling cycles

and can be shared among threads. A thread might also

have a local state, which encompasses the variables that

are instantiated every time a handler is executed, but

do not persist across handler executions. The state of

a process includes all state that is directly observed by

its threads and used to determine their behavior. In this

work, we consider only state stored in memory, but the

model could also be extended to disk storage.

The event handling logic is deterministic, i.e., the state

updates and outputs it produces depend uniquely on the

input message and the values returned by its reads from

the process state. However, we do not require determin-

istic thread scheduling. Threads can be scheduled in any

order and preempted arbitrarily.

Threads can interact through shared variables, which

are only accessed in critical sections protected by locks.

While this requirement does not cover applications us-

ing lock-free state sharing, it represents a very com-

mon approach. We assume that threads use lock hier-

archies [29], a standard technique to avoid circular waits

and deadlocks. Lock hierarchies determine a fixed total

order among all locks, and threads acquire and release

the locks they need according to this order.

Fault model. We consider a conservative fault model

for transient hardware faults. An Arbitrary State Corrup-

tion (ASC) fault can either crash the process or modify its

state by assigning an arbitrary value to any number of its

variables. A fault can also corrupt the program counter

and make it jump to a different instruction.

This fault model admits worst-case state corruption

scenarios. Faults can modify any number of variables

and assign them any value. Corruption can occur while

data is stored, for example, in main memory, or data is

computed, for example, by the combinational logic of

a processor. Since it is difficult to determine precisely

which part of a process state can be corrupted by a hard-

ware malfunction, a worst-case model is easier to gener-

alize over different applications and platforms.

To guarantee data integrity, the ASC model assumes

that it is possible to implement reliable integrity checks

to detect data corruption while data is stored, for exam-

ple, in memory, or transmitted as a message. Formally,

a variable v in the process state is accessed with the in-

structions read(v) and write(v,val), where val is the new

value of v. The integrity check of a variable v is per-

formed by calling check(v). The model assumes the fol-
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lowing corruption coverage property of integrity checks:

if the current value of a variable v has been determined

by an ASC fault, then check(v) detects the error by eval-

uating to FALSE. The ASC model does not specify how

integrity checks are implemented. Possible options are

Cyclic Redundant Codes (CRC) or hardware techniques

like ECC memory. The corruption coverage property is

consistent with these techniques: check(v) cannot detect

errors if the current value val of v has been written by

a write(v,val) instruction. With an ECC implementation

of integrity checks, errors that are detected and not cor-

rected correspond to check(v) calls returning FALSE right

before read(v) calls. The write(v,val) calls overwrite the

memory locations storing v and update their ECCs.

ASC faults cannot occur infinitely often. An execu-

tion of the system comprises an unbounded number of

thread steps. Such an execution might include an un-

bounded number of faults, but at most one fault occurs

during any event-handling phase of any thread (multi-

ple faults can still occur before that thread starts the next

event-handling phase). This assumption does not limit

the number of faults in an execution, but it limits fault

frequency; we justify this assumption as follows. The

distributed systems we target handle events such as pro-

cessing an incoming message in no more than a few mil-

liseconds. The fault model consequently assumes that no

two faults happen within such a short time window. The

frequency of uncorrectable hardware-level data corrup-

tion previously reported indicates that this assumption

holds with very high probability [32, 43, 50]. It holds

even if we consider hard errors that occur intermittently

at the same memory location [32].

After an ASC fault, computation is expected to con-

tinue according to the specification, although perhaps

from an instruction that is inconsistent with the previous

execution flow and from a wrong state. Transient text-

segment corruption typically results in ASC faults: an

incorrect operation might corrupt some of the operands,

update the wrong variable, or result in an incorrect jump.

Related work on the Ensemble system confirms this ob-

servation [8]. These faults are often enough tolerated by

ASC-hardening, and in fact, the injection of text-segment

faults on an ASC-hardened Paxos implementation has

shown no case of error propagation [23]. In our hard-

ened memcached, text-segment corruption resulted in er-

ror propagation with negligible probability (3 out of 7000

errors). There are, however, some cases of text-segment

corruption, like some corruptions of load and store in-

structions, that cannot be tolerated in our model.

4 The SEI hardening algorithm

The SEI algorithm takes an event-based process as speci-

fied in the previous section and transforms it into a hard-

ened process. A hardened process executes the same ap-

plication logic as the original process, together with ad-

ditional checks against ASC faults.

The SEI algorithm comprises a set of transformation

rules that introduce both redundant execution and addi-

tional verification steps to the original code. To prevent

error propagation, SEI might induce a faulty process to

abort (i.e., crash) if an internal corruption is detected, or

might make a correct process discard a corrupt message

it has received. While a faulty process might still send

out incorrect messages, incorrect messages do not appear

correct to receivers.

In a distributed system where all processes are hard-

ened, SEI guarantees the following properties [11]:

• Error isolation: A correct process discards any cor-

rupt input message.

• Accuracy: Hardening never causes a correct process

to crash or discard a correct input message.

Messages are either correct or corrupt. A correct mes-

sage is informally defined as follows. Let p be a process

and s be the sequence of correct messages p received be-

fore sending a message m. Message m is correct if and

only if there exists a subsequence hm of s, called a gen-

eration history, such that the correct behavior of p after

receiving only hm would be to output m. By induction,

each generation history of each output message that p

produces after sending m extends some generation his-

tory of m. In presence of multiple threads processing

input messages in parallel, there exists also a consistent

interleaving of steps that generates all output messages.

With error isolation, a distributed system designed to

tolerate crashes and message omissions is guaranteed to

also tolerate ASC faults once its processes are hardened.

Accuracy rules out trivial ways to achieve error isolation.

Before discussing details of SEI, we show with an ex-

ample how to harden an event handler against a small

subset of ASC faults by progressively adding checks.

4.1 SEI by example

We illustrate the hardening transformation by presenting

an example in which a simple event handler eliminates

all but the least significant digit (modulo 10) of the state

variable X using a temporary variable V (see Figure 1a).

In this example, a fault might corrupt X before the pro-

cess sends out the message containing X and propagates

the incorrect value of X to another process.

A first improvement is to duplicate instructions and

variables (see Figure 1b). This approach resembles

EDDI [46] and SWIFT [48]. Instruction duplication pre-

vents error propagation if a fault only corrupts one vari-

able (i.e., V , V ′, X , or X ′) before the check of Line 6.

Instruction duplication, however, cannot detect several

other corruption scenarios. As an example, consider
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a) Original code

// handler

V ← X1

V ← V % 102

X ← V3

// send message

send X4

b) Instruction duplication

// handler

if X �= X’ then Abort1

V ← X2

V’ ← X’3

V ← V % 104

V’ ← V’% 105

if V �= V’ then Abort6

X ← V7

X’ ← V’8

// send message

send X9

c) PASC-like

// Execution 1

if X �= X’ then Abort1

V ← X2

V ← V % 103

N ← V4

// Execution 2

if X �= X’ then Abort5

V ← X’6

V ← V % 107

X’ ← V8

// Validation

if N �= X’ then Abort9

// Final update

X ← N10

// send message

send X, CRC(X’)11

d) Simplified SEI

// Execution 1

V ← X if X = X’ else Abort1

V ← V % 102

O ← X if X = X’ else Abort3

X, X’ ← V4

// Reset

N ← V5

X, X’ ← O6

// Execution 2

V ← X if X = X’ else Abort7

V ← V % 108

X, X’ ← V9

C ← CRC(V)10

// Validation

if N �= X then Abort11

// send message

send X, C12

Figure 1: Hardening of a handler that updates a state

variable X via a temporary variable V , then sends X out.

Primed variables are replica variables (e.g., X ′ is a replica

of X). Comparisons among replicas (e.g., if X = X ′) im-

plement the check(v) operation. “←” represents either

read(v) or write(v,val) or a combination of them.

a last-mile fault: a fault corrupting V or X between

Lines 6 and 9. Even adding a further check comparing X

to X ′ before Line 9 does not help because a fault could

still occur after the check.

Another example where instruction duplication falls

short is multi-variable corruption (recall that a single

ASC fault may corrupt any number of variables). By the

corruption coverage property, an ASC fault alone can-

not corrupt X and make check(X) true, i.e., a fault cor-

rupting X and X ′ has to result in X �= X ′. However, if

an ASC fault corrupts X and X ′ between Lines 1 and 2,

then the execution of the subsequent instructions can let

V and V ′ have incorrect but equal values in Line 6. For

example, if initially X = X ′ = 101 and an ASC fault be-

tween Lines 1 and 2 results in X = 10 and X ′ = 20, then

V = V ′ = 0 in Line 6. X is corrupt but equal to X ′ in

Line 9, and consequently the error is propagated.

The next step is to apply the checks in the PASC hard-

ening algorithm [23], which we show in Figure 1c. With

this approach, we first execute all instructions using the

original variables (i.e., X), and then execute all instruc-

tions using the replica variables (i.e., X ′). During the first

execution, the process stores in N the updates to the state

variable X (Line 4). In the second execution, it writes

directly into X ′. Next, the process compares the updates

in N and X ′ and applies them to X . Finally, the process

sends a message containing X and its replica X ′.

The PASC-like approach detects last-mile corruption

scenarios by adding X ′ to the output message. If a fault

corrupts X right before the message is sent in Line 9, the

receiver detects it by comparing X and X ′. In practice, it

is not necessary to send the full value of X ′ and a CRC is

sufficient. Also important, the PASC-like algorithm can

detect multi-variable corruptions: the process detects a

fault corrupting X and X ′ between Lines 1 and 2 via the

check of Line 5, since X is not modified by Execution 1.

If ECC memory is available, the hardware can perform

the checks of Lines 1 and 5. Nonetheless, PASC always

performs check(v) comparisons in software. Having du-

plicated state variables for comparison doubles the mem-

ory footprint of the process state.

SEI leverages the presence of ECC to minimize mem-

ory overhead, but it requires a different algorithm to deal

with the fact that a variable and its replica are not stored

separately (see Figure 1d). During the first execution,

SEI takes a snapshot O of the original value of X . The

new reset phase restores the snapshot and stores the state

updates in N. The second execution is then executed

again on the original state. This snapshot-and-reset strat-

egy introduces additional hardening-specific data struc-

tures, which could be corrupted by ASC faults. We dis-

cuss next how to deal with these corruptions. Hardening

of multithreaded applications, another major improve-

ment of SEI over PASC, is also covered in Section 4.2.

4.2 SEI algorithm description

We now present the SEI algorithm and informally argue

its correctness in the presence of some ASC faults. For

a more detailed description and a complete correctness

proof, we refer to our technical report [11].

Overview. SEI modifies all the three phases executed by

event-driven threads (see Section 3). Hardening the dis-

patching and output phases consists of attaching a mes-

sage replica c to every message m, e.g., in the form of

a CRC. The core challenge is hardening the event han-

dling phase. SEI replaces the original event handler with

a hardened event handler consisting of five phases: an

initialization phase (I), a first-execution phase (E1), a re-

set phase (R), a second-execution phase (E2), and a final

validation phase (V) (see Figure 2).

Figure 3 describes these phases in more detail. The op-

erations in Phases I, R, and V are under the control of SEI

and independent of the event handler code. Phases E1

and E2 execute the original event handling code of the

application; SEI only inserts additional checks and op-

erations according to Rules R1-R9. Some rules are ac-

tions taken before or after statements of the original
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E

Original event handler

mi mo

I → E1 → R → E2 → V

Hardened event handler

mi,ci mo,co

automatic

transformation

Figure 2: SEI transformation of an event handler E.

handler (denoted using before/do and after/do construc-

tions), others are statements of the original handler that

are replaced (denoted using replace/with constructions).

Phase I initializes SEI-internal data structures if the

input message mi matches its CRC ci, otherwise it dis-

cards mi. Phase E1 updates the state and generates one

or more output messages mo. Phase R restores the state

prior to the event handler execution E1. Phase E2 up-

dates the state again and generates the CRC co sent with

each message mo. Phase V compares the state updates of

E1 and E2, aborting the process if they mismatch.

We start by describing SEI for single-threaded applica-

tions and then extend the description to include our mul-

tithreading support.

Internal data structures. During Phase E1, SEI takes a

snapshot of the current value of variables before they are

updated for the first time and stores them in a snapshot

buffer O (Rule R2). Before Phase E2, it runs a reset phase

(Phase R), which stores the current state of the variables

updated by Phase E1 in a new-value buffer N, and re-

stores the original values in O. The new value buffer

is compared during Phase V with the update buffer U ,

which is created during Phase E2 (Rule R6), to make

sure that the same set of variables is modified.

ASC faults during event handling. SEI executes event

handlers twice to detect computation errors. To give

some intuition on how SEI detects faults, say a process

executes all phases in order I → E1 → R → E2 → V,

and the internal data structures used by SEI for harden-

ing are not corrupt. By the fault frequency property (Sec-

tion 3), we have at most one fault during these steps, so

either Phase E1 or E2 is fault-free. The integrity checks

of Rules R1 and R5 guarantee that a fault-free execution

of E1 or E2 does not read values corrupted by a fault.

Although SEI does not require ECC, an implemen-

tation of SEI can leverage ECC in the memory hierar-

chy because R1 (and its counterpart R5 in Phase E2) can

be efficiently checked by the hardware (we perform the

check when reading the variable). If the thread reaches

Phase V and executes it correctly, then the latest state up-

dates and output messages are correct. Note that even if

a fault corrupts one of the two event handlers and skips

Phase I

if CRC(mi) �= ci then1

discard mi and return2

initialize SEI variables3

increment checking barrier4

Phase R

store current values of updated1

variables in N

restore original values from O using2

write(v,val)

Phase E1 (generate output mo)

before read(v) doR1:

if ¬check(v) then Abort

replace write(v,val) withR2:

if first write to v then
add old value of v to O

write(v,val)

before acquire lock L doR3:

add L to Q

replace release lock L withR4:

if not holding L then Abort

Phase E2 (generate CRC co for mo)

before read(v) doR5:

if ¬check(v) then Abort

replace write(v,val) withR6:

add v to U

write(v,val)

after write(v,val)with v ∈ mo doR7:

if last write to v then
append val to CRC co

before acquire lock L doR8:

add L to Q

replace release lock L withR9:

if not holding L then Abort

Phase V

if ¬check(U) or ¬check(N) or ¬check(v) for each v in N then Abort1

if CRC(mi) �= ci then Abort2

if CRC(mo) �= co for each output message mo then Abort3

if current state inconsistent with the updates in N then Abort4

if N and U do not contain the same set of variables then Abort5

release all locks in Q6

wait at checking barrier7

Figure 3: Rules and actions for each of the phases of a

hardened handler. The pairs before/do, after/do, and re-

place/with indicate operations of the original event han-

dler that are intercepted. The Rules R2 and R6 are de-

scribed in more detail in Figure 4.

Phase V, the recipient of the message can still use mo and

co to verify that the outputs of E1 and E2 match.

Control-flow gates. SEI can handle much more com-

plex fault scenarios. Due to control-flow faults, a se-

quence of instructions may be executed multiple times,

in full or in part, or may be skipped altogether. We

use control-flow gates, similar to PASC, to detect incor-

rect control-flow jumps from one phase of the hardened

event handler (Figure 2) into another. We show a sim-

plified example in Figure 4a, in which we use a control-

flow variable cf (initially set to FALSE) to detect control-

flow faults jumping from some phase P1 to its subsequent

phase P2 and the other way around. Both phases, and thus

Lines 1 and 5, represent multiple instructions. If a fault

jumps from some instruction in P1 to some instruction in

P2, then cf is not TRUE at Line 6, causing the process to

abort. Likewise, if a fault jumps from some instruction

in P2 to some instruction in P1, then cf is already TRUE at

Line 2, causing the process to abort. Our technical report

contains a more detailed description of gates and covers

many more control flow scenarios, including cases where

faults corrupt the control-flow variables.

Corruption of SEI-internal data structures. SEI also

tolerates faults corrupting SEI-internal data structures.

We now discuss two example scenarios. First, consider
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a) Control-flow gate example

// one phase

some phase P11

if read(cf ) = TRUE then2

Abort3

write(cf ,TRUE)4

// another phase

subsequent phase P25

if read(cf ) = FALSE then6

Abort7

b) Detailed hardening Rules R2 and R6

replace write(v,val) withR2:

if read(Oc(v)) = FALSE then1

write(Ov(v),read(v))2

if read(Oc(v)) = TRUE then Abort3

write(Oc(v),TRUE)4

if read(v) �= read(Ov(v)) then Abort5

write(v,val)6

if read(Oc(v)) = FALSE then Abort7

replace write(v,val) withR6:

write(U(v),TRUE)1

write(v,val)2

if read(U(v)) = FALSE then Abort3

Figure 4: Control-flow gates and details of SEI-internals.

the example of a cross-execution propagation: if a fault

occurs during the first execution (i.e., Phase E1) and a

variable update is not recorded in O, then the update

will not be reset. As a consequence, the second exe-

cution (i.e., Phase E2) could run incorrectly. Figure 4b

shows the detailed pseudocode of Rule R2. We split the

data structure O in two maps Ov and Oc. For each vari-

able v updated during Phase E1, a variable Ov(v) keeps

the old value of v while a variable Oc(v) determines (with

a boolean) whether the old value of v is already contained

in Ov(v) or not. Technically, Ov(v) and Oc(v) are also

variables in the process state. Before updating a vari-

able v, the process stores the current value of v into Ov(v)
if Oc does not contain v yet, i.e., read(Oc(v)) = FALSE.

After updating v, the process checks that now Oc con-

tains v in Line 7. This guarantees that if v is updated in

Line 6, then by fault frequency either (a) no fault occurs

before the update in the current (hardened) event handler

execution, so the original value of v is stored into Ov(v),
or (b) no fault occurs after the update in the current (hard-

ened) event handler execution, so the process crashes if

it detects the absence of an entry for v in Oc. A simi-

lar pattern is used to update variable U (see Rule R6 in

Figure 4b) and during Phase R to update the map N (see

technical report for details).

As another example, consider a snapshot buffer cor-

ruption: if a variable v is updated multiple times dur-

ing Phase E1 and a fault occurs, then a newer value of v

could be written into Ov(v) instead of the original value.

To deal with this problem, SEI first writes the value of

v into Ov(v) in Rule R2 and later marks v as contained

(Lines 2 and 4 of Figure 4b). Between these two oper-

ations, SEI checks that v is not contained in Oc yet, and

aborts the process otherwise. Say v is updated a second

time. After the first update of v, read(Oc(v)) = TRUE,

otherwise the process would have aborted in Line 7;

hence, the condition of Line 1 in the second update of v

is false. If Ov(v) is anyway overwritten in Line 2 during

the second update, a fault must have changed the control

flow to skip Line 1; by the fault frequency assumption,

Line 3 executes correctly and aborts the process.

Computation scalability. Threads in a multithreaded

application share the memory space of the process, but

they can also have a set of private variables (stack and

thread-local variables). Concurrently executing threads

and sharing variables make single-threaded hardening

techniques, like the one of Correia et al. [23], unsuitable

for multithreaded applications. Consider two threads t1
and t2 that access the same set of shared variables. If

a fault occurs, thread t1 could write an incorrect value

in a shared variable v. Thread t2 could then read from

v in the first execution of the event handler code with-

out being able to detect the error through integrity check.

Thread t1 could then write an incorrect value into v again

just before t2 reads v in its second execution of the event

handler code. The main consequence is that t2 may ex-

perience a situation that, in a single-threaded setting, is

equivalent to multiple state corruptions during the same

(hardened) event handler execution.

The basic requirement of SEI to prevent this type of

situations is that the threads of the original application

access shared state only within critical sections protected

by locks, as discussed in Section 3. Furthermore, in the

presence of multiple locks, threads avoid deadlocks by

acquiring and releasing the locks they need according to

a predefined total order (or hierarchy).

SEI prevents error propagation across threads through

shared state using three techniques: deferred lock releas-

ing, validated locking, and checking barrier. Deferred

lock releasing prevents error propagation among threads

as long as no two threads enter the same critical section.

A thread hardened with SEI postpones lock release oper-

ations during Phases E1 and E2 (Rules R4 and R9). The

thread releases its locks only after Phase V, which guar-

antees that a thread only reads validated state updates

from another thread. Deferred lock releasing results in

longer critical sections, but this is not a problem for live-

ness since we target applications using lock hierarchies

to avoid deadlocks.

Validated locking addresses situations when a control-

flow error causes two threads to enter the same criti-

cal section. SEI ensures that the process crashes before

any message is sent in such cases. During Phase E1,

SEI records the locks a thread acquires (Rules R3 and

R8). When SEI intercepts release operations in Phase E1

or E2, it verifies that the thread actually holds the lock

(Rules R4 and R9). If the verification fails, then the pro-

cess crashes.

Consider threads t1 and t2 entering the same critical

section C. Let S be the process state when t2 executes the

first operation of C. Since t1 and t2 are in the same critical

section, there must have been a fault during the execution

of the current event handler of t1 or t2 before S. By fault

frequency, there is no fault after S in the current hardened

event handler execution of t1 or t2. Given S and C, there
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while (1) {
ilen = recv_msg_and_crc(imsg , &crc);
// hardened event handler
if (__begin(imsg , ilen , crc)) {

do_something_here(msg);
omsg = create_a_message_here (&olen);
__output_append(omsg , olen);
__output_done (); // finalize CRC
__end ();

} else continue; // discard invalid input
send_msg_and_crc(omsg , olen , __crc_pop ());

}

Figure 5: Example of event loop and hardened handler.

is a unique set of locks that will be eventually released

after C. At the state S, at most one of the two threads

holds all necessary locks in the set. While releasing the

locks, either t1 or t2 detects that it does not hold the nec-

essary locks and crash the process. This verification step

is still not sufficient, however. Say t1 does not hold the

necessary locks but t2 does. Even if t1 crashes the process

upon exiting C, t2 might still have time to exit C correctly

and send an incorrect message before the crash.

The checking barrier is designed to prevent this last

problem. It guarantees that if two threads execute a crit-

ical section concurrently, like t1 and t2 in the previous

example, they do not send out any message before both

have exited their critical sections and checked their locks.

Each thread is associated to a concurrency counter, ini-

tially zero. When starting the execution of an event han-

dler, a thread increments its own counter (Phase I). After

comparing all state modifications in Phase V, the thread

increments its counter again. If the counter value of any

thread is odd, then it indicates that the thread (e.g., t2
in the previous example) might hold locks that have not

been yet released and verified. After incrementing its

counter, a thread takes a snapshot of the current coun-

ters for all threads and waits until all threads have ei-

ther an even counter (they have released and verified all

their locks and are ready to complete the execution of the

event handler) or a counter higher than the snapshot (they

have already started the next event handler execution).

The checking barrier’s caveat is the additional assump-

tion that a single fault cannot make a thread skip the bar-

rier increment (Line 4 of Phase I), enter a critical section

in Phase E1 or E2 without acquiring a lock, and write an

incorrect value onto a variable, because this would create

an undetectable error for other threads. This scenario did

not arise in our fault injection experiments.

5 SEI-hardening implementation

We now present libsei,1 a library designed to automat-

ically harden crash-tolerant distributed systems. libsei

does not require re-developing the system from scratch,

1http://bitbucket.org/db7/libsei

enabling existing code to be hardened with minimal ef-

fort, as we discuss in this section and in Section 6.

Hardening code with libsei. Hardening an event

handler using libsei only requires: (i) marking the

beginning and the end of an event handler using the

macro functions begin() and end(); (ii) calling

output append(var, var len) to indicate that a

variable var is added to the current output messages;

(iii) calling output done() to indicate that the out-

put message is complete and its CRC can be final-

ized and added to the output buffer; (iv) appending

CRCs to output messages after retrieving them by call-

ing crc pop(); and finally (v) starting the compiler as

described below. The developer must enclose all oper-

ations modifying the process state with begin() and

end(). During run time, the event handler executes

twice with mechanism similar to setjmp/longjmp [33]

implemented in libsei. Dispatching and output phases

are external to libsei and do not require interaction

with the library. Note that output append() and

output done() can be called multiple times to gen-

erate multiple output messages in one handler.

Figure 5 shows the pseudo-code of a typical event-

based process. The functions provided by libsei are

prefixed with “ ”; all remaining code is part of the pre-

existing code base that needs to be hardened. Apart from

adding some annotations and adding CRCs to messages,

which is good practice anyway, there is not much a de-

veloper needs to do for hardening.

When the hardened system runs with multiple threads,

the function barrier() returns false if the thread

should wait for another thread to complete the execution

of its handler. The developer is responsible for calling

barrier() and blocking the output while it returns

false. In Section 6, we discuss how to mitigate the over-

head of blocking on the checking barrier.

Development effort. Scaling to large or existing code

bases requires minimizing the development effort of us-

ing libsei. A major challenge is storing snapshots and

state updates transparently. Instead of letting the devel-

oper notify the hardening library about state accesses,

libsei automatically intercepts memory operations us-

ing a compiler transformation available out-of-the-box.

In particular, we use transactional memory (TM) sup-

port of GCC, which is available from version 4.7 [27].

The TM compiler option redirects all memory operations

within begin() and end() markers to a standard-

ized application binary interface (ABI) [34]. Note that

libsei provides the ABI but does not implement or rely

on a TM algorithm. libsei merely executes procedures

that store snapshots, state updates and perform valida-

tion, as described in Section 4.

libsei allows the developer to choose what event
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handlers are and to protect only the important variables.

For example, if a piece of code only manipulates a per-

formance statistics variable, the developer might decide

to keep the code outside any event handler since the vari-

able does not contain critical data for the application

safety. Also, libsei supports local handlers, helping

the developer to call event handlers without explicitly

receiving a message by marking the event handler with

begin nm(), taking no messages as argument.

libsei internals. libsei tracks lock acquisitions and

memory management by wrapping the pthread mutex

interface, malloc() and free(). After calling these

functions in Phase E1, libsei saves the arguments and

return value of the calls in a queue. In Phase E2, after

checking the arguments to be the same as in Phase E1,

it returns the values in the queue to the caller. Dealloca-

tions, similarly to lock releases, are postponed to the end

of Phase V. In general, any function performing an ex-

ternal action – e.g., sending a message – called inside an

event handler has to be wrapped since it will be executed

twice; the compiler terminates with an error otherwise.

Among others, libsei currently wraps sendto() and

sendmsg(), postponing their calls until the end of the

second execution. No wrapper is necessary for external

actions performed outside the event handler.

By default, libsei relies on memory error detection

codes to keep variable replicas and execute check oper-

ations. This allows us to nearly eliminate the CPU and

memory overhead of these operations.

6 Hardening real-world code bases

We have hardened two applications implemented in C:

memcached and Deadwood. memcached is a popular

multithreaded in-memory key-value cache [24], highly

optimized for performance, that exposes a get/set in-

terface to remote clients. memcached is essentially a

large hashtable with an LRU eviction logic with linked

lists to evict items. Deadwood is the single-threaded re-

cursive DNS resolver of MaraDNS [49]. We have used

memcached 1.4.15 and Deadwood version 3.2.05.

There are three main steps to harden a code base.

Step 1: Event handlers annotation. The initial chal-

lenge is choosing the right code lines to introduce the

event handler markers. A good understanding of the

code base is necessary to determine what state is per-

sistent across the processing of multiple requests. In

memcached, we marked 8 event handlers and added 7

lines related to the CRC of messages. More than 120

functions were automatically instrumented. In Dead-

wood, we marked 2 handlers and added 8 lines of

code. More than 170 functions were automatically in-

strumented.

Step 2: Code base adaptation. Instrumentation is par-

ticularly simple in distributed systems that are logically

organized as a collection of event handlers. These are

common and Deadwood is a good example; we had to

adapt only 2 code lines of Deadwood, moving a buffer

to the heap to enable the reset of updates. Standard

distributed computing algorithms such as the ones for

state machine replication are typically specified and im-

plemented as event-based algorithms as well. In some

distributed system implementation, however, identifying

a clean event-based pattern may be more challenging.

Hardening required modifying and adding about 60 code

lines to memcached because it does not always follow

the pattern “dispatching, handling, output”. One exam-

ple is when an event handler of a get request retrieves

an item: after sending the content of the item back to

the client in the output phase, memcached decrements

the reference counter of the item, which, being part of

the state, should also be modified in hardened handlers.

For such cases we have used local event handlers (see

begin nm() in Section 5).

Another issue is that SEI currently only supports lock-

based synchronization (see Section 4). The slab allocator

of memcached, for example, uses ad hoc synchroniza-

tion, so we disabled it for the hardened version. We left

it enabled for the original version, however.

Step 3: Performance tuning. In some cases, the TM

compiler might “over-protect” the code from the SEI’s

point of view. In Deadwood, dozens of strings are al-

located and freed in the scope of a single handler; al-

though these strings are in the heap memory, they are

local variables of the handler and do not have to be

protected. The developer can inform libsei to ignore

writes into a region of memory, e.g., into a string, by

calling ignore addr(addr, size). Moreover, if a

complete function only modifies local variables, the in-

strumentation of the function can be disabled by declar-

ing it with the SEI LOCAL attribute.

To mitigate the effect of the checking barrier on the

system scalability, the developer can adapt the system to

handle other requests while a thread is waiting for other

threads to complete the execution of concurrent event

handlers. In memcached, a thread always serves another

connection if sending a message would block the thread

on the socket. We consequently fake a “would-block”

case when a thread has to wait for the barrier. The caveat

of this solution is the further 40 lines of code added to

memcached. Alternatively, one can disable the barrier

altogether, allowing threads to complete the handler ex-

ecution without waiting for other threads. This solution

requires no additional code change, but assumes locks

cannot be skipped by ASC faults. We have implemented

and evaluated both approaches and report results next.
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Group Fault Description

CF CF IP register changes (control-flow fault)

DF

WREG register value changes after it is written

WVAL memory value changes after it is written

WADDR calculated address changes before write

RADDR calculated address changes before read

RD
RREG register value changes before it is read

RVAL memory value changes before it is read

Table 1: Fault types supported by our tool.

7 Fault coverage evaluation

The evaluation of SEI comprises two parts: fault cover-

age and performance. In this section, we report our fault

coverage results; the performance results appear in Sec-

tion 8. In the interest of space, we focus in this paper on

the memcached results and briefly mention Deadwood

experiments only to reinforce these results. Our techni-

cal report [11] contains all results for Deadwood.

To assess fault coverage, we performed two groups of

experiments. First, we perform an extensive software

fault injection campaign. Our goal is to determine (1)

whether SEI effectively guarantees error isolation; and

(2) how memory and computation scalability affect fault

coverage. The second part consists of hardware fault in-

jection using the dynamic voltage scaling of a processor.

Our goal here is to collect evidence that our approach can

indeed detect and isolate real, physically induced faults.

7.1 Software fault injection

Setup and methodology. In our fault injection exper-

iments, we follow the approach of Basile et al. [8] and

Correia et al. [23] injecting single bit flips. We have

implemented a tool with Intel’s Pin dynamic binary in-

strumentation framework [41] to inject faults during run-

time. Our tool can inject three groups of faults described

in Table 1. A control-flow (CF) fault flips a bit of the

instruction pointer. A fault in the data-flow (DF) group

affects the computation: WREG and WVAL represent

incorrectly computed values that are respectively written

into a register or a memory location, e.g., an addition

that results in a wrong value and is stored in a regis-

ter; WADDR and RADDR represent computational er-

rors while calculating an indexed address for reading or

writing from memory. Finally, a fault in the RD group

directly corrupts a register (RREG) before being used or

a memory location (RVAL) before being read.

Field studies show that most memory faults are de-

tected by ECC [32, 50]. Injected RVAL faults, however,

automatically overwrite both, the value and its ECC.

Hence, RVAL faults represent worst-case scenarios in

which the ECC memory is not able to detect data corrup-

tion as assumed by corruption coverage (see Section 3).

Group Variant Undetected Det/SEI Det/other Total

CF

mc 9.66% - 90.34% 6690

mc-sei 0.06% 14.70% 85.23% 6515

mc-sei-dup 0.00% 9.87% 90.13% 6594

DF

mc 44.18% - 55.82% 15180

mc-sei 0.15% 57.55% 42.29% 20264

mc-sei-dup 0.00% 45.81% 54.19% 15991

RD

mc 33.04% - 66.95% 10614

mc-sei 0.52% 46.78% 52.70% 11508

mc-sei-dup 0.00% 49.13% 50.87% 11442

Table 2: Errors classified in undetected, SEI-detected,

and detected with other mechanisms. Total errors out of

8,000 executions for each fault-variant combination.

To speed up our experiments and make the results re-

producible, we have modified memcached to read com-

mands from an input-trace file and write responses into

an output-trace file by wrapping functions reading from

and writing to sockets. To compare the output trace, we

first create a golden run output-trace file. We perform

two sets of experiments. The first set studies the fault

coverage of SEI and the effects of leveraging hardware

error detection codes in the implementation. We run,

with a single thread, the unhardened memcached (mc),

the SEI-hardened variant (mc-sei) with hardware error

detection codes, and a further SEI-hardened variant (mc-

sei-dup) with duplicated state assuming no error detec-

tion codes in hardware. The second set of experiments

investigates whether the computational scalability aspect

of our implementation affects the fault coverage. In this

set, we run mc-sei and mc-seil with 4 threads; mc-seil has

the checking barrier disabled and assumes that locks are

not skipped. We perform 8,000 executions for each fault

type and each single-threaded variant, with a subtotal of

64,000 executions for the DF group, 24,000 for the RD

group, and a total of 168,000 executions (see Table 2).

For the multithreaded experiments, we perform a total of

80,000 executions (see Table 3).

In each run, one fault is injected at a randomly selected

instruction inside or outside the event handler including

shared libraries; Pin cannot, however, instrument instruc-

tions inside syscalls. A fault that causes a trace deviation,

e.g., an unexpected message or a shorter trace, produces a

manifested error. The errors we report are all manifested,

consequently we refer to them as just errors henceforth.

Fault coverage and memory scalability. We initially

experimented with a single thread to observe the effects

of faults without the effects of concurrent access. Table 2

summarizes the results of our fault injection experiments

with a single thread. The right-most column shows, for

each fault-variant combination, the total number of er-

rors out of the total of each group. Errors are detected

or undetected, shown as percentage of the total number

of errors. Undetected errors are corrupt output messages



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 615

that cannot be detected by the client. They correspond

to error propagation scenarios where the error isolation

property is violated. Detected errors are further divided

into det/SEI, i.e., errors detected and isolated by libsei,

for example, crashes initiated by the library or invalid

messages detectable at the client; and det/other errors,

i.e., errors detected or isolated by other mechanisms, for

example, crashes due to segmentation fault or assertions,

infinite loops, and also error messages or partial mes-

sages detectable at the client. Note that each error prop-

agation percentage is relative to the total observations in

each fault group. They do not express probabilities since

the real frequency of CF, DF, and RD faults is unknown.

Hardening memcached drastically decreases the unde-

tected errors. The native mc variant shows from 9% up

to 44% undetected errors, depending on the fault group.

In contrast, the mc-sei variant shows at most 0.15% un-

detected errors for DF faults and 0.52% for RD faults.

The latter result indicates SEI is also resilient to fault

scenarios where the ECC memory does not detect data

corruption. Hardening Deadwood shows similar trends,

reducing undetected errors, for example, from 32.38%

down to at most 0.12% for the DF group.

Like PASC [23], mc-sei-dup uses software-duplicated

state and detects all injected faults. As this work focuses

on the use of hardware error detection, we now analyze

how errors manifest specifically on the mc-sei variant.

Detected non-silent errors. Since hardening cannot

guarantee fail-stop behavior, some errors are non-silent:

clients perceive them as unexpected messages. A mes-

sage is invalid if the message CRC does not match the

message payload. From 0.7% up to 3.4% of the errors in

mc-sei are invalid messages, representing the majority of

non-silent errors. Some messages also arrive truncated at

the client, e.g., when memcached crashes before writing

the complete message out. Interestingly, memcached it-

self produces error messages, for example, when a fault

makes memcached think it is out of memory. Truncated

and error messages constitute up to 1.2% of the errors.

As shown in Table 2, undetected errors (i.e., corrupt but

valid messages) represent up to 0.52% of the errors and

are the only cases that can violate error isolation. We

now study these cases in detail.

Undetected errors analysis. Analyzing the log files of

our experiments, we identified pointer corruption as the

major source of undetected errors in mc-sei. Leverag-

ing hardware error detection, as SEI does, has the side

effect that variables and their replicas (the ECC data)

are stored in the same memory location and accessed

together by the processor. A fault corrupting a pointer

to a variable in an undetectable manner causes both, the

variable and its replica, to become corrupt, invalidating

the fault diversity assumption. It is consequently a type

Group Variant Undetected Det/SEI Det/other Total

CF
mc-sei 0.02% 13.78% 86.20% 6366

mc-seil 0.05% 12.84% 87.11% 6330

DF
mc-sei 0.16% 58.58% 41.26% 19484

mc-seil 0.28% 58.61% 41.11% 19088

Table 3: Errors for 4-threaded executions classified in

undetected, detected with SEI, and detected with other

mechanisms. Total errors out of 8,000 executions for

each fault-variant combination.

of fault not covered by our fault model. The very low

overhead of libsei and the results presented above (a

drop of undetected errors from 44.18% to only 0.15%)

are encouraging, however. Note also that using software

replication overcomes this problem because we use two

separate pointers for the value and its replica. Using soft-

ware replication constitutes a trade-off between memory

footprint and fault coverage (see mc-sei-dup in Table 2).

To understand a typical scenario of error propagation,

consider the following instructions, which are executed

upon completion of sending a reply:

// item *it = *(c->icurr);
mov (%rax),%rax
mov %rax,-0xe0(%rbp)

After replying to a get request, memcached decre-

ments the reference counter of the retrieved item. The

object c is the connection, and *(c->icurr) is the ad-

dress of the retrieved item, which is kept in the hashtable.

The first instruction stores the address of the current item,

*(c->icurr), into register rax. The second instruc-

tion moves the address into the stack, i.e., into the tar-

get address -0xe0(%rbp). In our logs, a WADDR fault

flipped the calculated address, making the mov operation

write the pointer just after the stack. The execution pro-

ceeded to decrement the reference counter, which is ex-

ecuted in a hardened local event handler. The pointer

used, however, was the wrong pointer because the ad-

dress -0xe0(%rbp) still pointed to an old item in the

hashtable. The old item had its reference counter decre-

mented and was freed since its reference counter reached

zero. The memory location was later reused for another

entry of the hashtable, resulting in two item entries (keys)

pointing to the same item object in memory incorrectly.

Computational scalability effects. Table 3 shows the

results for our multithreaded experiments. The re-

sults indicate that (1) multithreaded executions do not

present more undetected errors than single-threaded ex-

ecutions; and (2) although mc-seil assumes locks cannot

be skipped, it does not show substantially more unde-

tected errors than mc-sei. In particular, CF faults, which

can potentially jump over locks, resulted in less than

0.1% of undetected errors in both variants.
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Variant Undetected Det/SEI Det/other Total

mc-sei 0 11 457 468

mc 4 - 464 468

Table 4: Errors when undervolting CPU.

7.2 Hardware fault injection

Software fault injection can reproduce fault cases very

precisely, making it easier to analyze and understand fail-

ures. However, there is the risk of introducing a bias, and

consequently, we have also used hardware fault injection

to reproduce realistic and unbiased failure scenarios.

We perform hardware fault injection by using the dy-

namic voltage and frequency scaling (DVFS) support of

an AMD FX based multi-core CPU (Bulldozer). DVFS

can be used to undervolt cores, reducing the voltage be-

low the predefined value while keeping the frequency

constant. The scenario of our experiments could be the

effect of misconfiguration of power-saving options or of

a power supply failure. Note that future microprocessors

are also expected to run at lower voltage, thus increasing

the likelihood of data corruption [15].

We experimented with variants mc and mc-sei running

a single thread. After launching the application, we low-

ered the voltage between 100 and 150 mV of the nomi-

nal CPU voltage (1.225 V). Table 4 shows the outcome

of 936 observations. The application often crashed in

at most 40 seconds of execution. In addition to crash-

ing, the machine froze very often, explaining the reduced

number of experiments performed.

The vast majority of errors were crashes caused by

segmentation faults, invalid instruction errors, and other

errors detected by the operating system. In mc-sei,

2.35% of the errors (11 cases) were detected by libsei,

and we observed no undetected errors. In mc, 0.85%

of the errors (4 cases) were undetected. Although not

conclusive, the experiment indicates that (1) undetected

errors, i.e., corrupt messages, can happen due to hard-

ware faults; and (2) some of these faults manifest as ASC

faults and are successfully detected by libsei.

8 Performance evaluation

Setup and methodology. We run the memcached with

a hashtable of 2 GB on a 12-core 2.66 GHz Intel Xeon

X5650 machine (Linux 3.8 kernel). We use 8 client ma-

chines with a similar configuration (8-core 2 GHz Xeon)

connected via Gigabit Ethernet. Each client machine

runs one instance of Facebook’s mcblaster workload

generator [38]. Each mcblaster instance measures av-

erages of the throughput and response time for 60 s.

The workload can be configured with value size in

bytes. One client machine with 64 connections is started
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Figure 6: Throughput of get requests varying threads

(with key range of 1000) and key range length (with 8

threads) for different value sizes (8, 128 and 256 bytes)

for each memcached thread. Clients randomly select (us-

ing uniform distribution) the next key to be issued from

the integer set {1, . . . ,K} where K is called key range. Fi-

nally, the load is the aggregated number of requests per

second issued by all clients. Clients mainly issue get

requests since they represent the vast majority of opera-

tions in typical workloads [5, 45, 52].

We consider the following memcached variants: mc,

mc-sei and mc-seil. Stock memcached has an important

bottleneck due to a global lock protecting the LRU evic-

tion list, i.e., cache lock, which is known to affect scal-

ability [5]. We have improved this bottleneck to increase

scalability by having all our variants of memcached ac-

quiring the cache lock with trylock(), and only up-

dating the list if there are no concurrent updates. Even

with this bottleneck improvement, mc still does not scale

above 8 threads, so we limit our experiments to up to 8

threads. Finally, to avoid modifying the workload gen-

erator, the hardened memcached variants compute 32-bit

CRCs as prescribed by the algorithm, but do not send

them along with messages. The expected performance

impact of 4 bytes of CRC is negligible when added.

Deadwood is a single-threaded server. It follows a

similar setup, but with up to 20 client machines running

nsping to query the IP of 100 popular websites.

Computation and memory scalability. Figure 6 (left)

represents the scalability limit for memcached when

varying the number of threads from 1 to 8. The y-axis

depicts the maximal throughput that can be achieved

while keeping the average response time across all re-

quests below 1 ms, a realistic response time target for

memcached. We also vary the value size from extremely

small messages (8 B) to medium messages (256 B). With

larger value sizes, fewer threads are necessary to achieve

the maximal throughput with any variant; all variants
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achieve their maximal throughput with 8 threads. With

value sizes larger or equal to 128 B and 8 threads, mc-sei

and mc-seil show negligible throughput overhead. With

a value size of 8 B and 8 threads, the overhead is 25%

for mc-sei and 20% for mc-seil. mc-seil shows a lower

overhead than mc-sei due to the disabled SEI’s barrier.

Figure 6 (right) depicts the maximal throughput

achieved when varying the key range and the value size

with 8 threads. Few keys introduce contention between

the threads, since they access the same buckets, acquir-

ing at least 2 locks per request. Critical sections become

longer due to hardening. Consequently, the scalability

with queries spanning very few keys, e.g., 10 keys, is

limited. Such scenario could also represent a workload

with a few hot keys. We expect, however, a memcached

instance to host and serve many thousands of differ-

ent keys. As we distribute the workload across more

keys, there is less contention and consequently more op-

portunity for concurrent execution. The overhead with

1 M keys and 8 B value sizes, for example, is about 25%

for both mc-sei and mc-seil. The overhead becomes neg-

ligible with larger value sizes and more than 100 keys.

Regarding memory overhead, each thread requires

about 30 KiB for hardening-related data structures.

Single-thread scenarios. libsei is designed to amor-

tize its overhead with the number of threads. Multi-

threading can release pressure on the CPU, making it

more likely for the system to become network bound. We

now consider single-threaded scenarios with Deadwood

and memcached running with one thread – see [11] for

details on these experiments.

When the system is not overloaded, the response time

overhead of mc-sei is small. For example, at a load of

10 k.req/s, the difference of response time between mc

and mc-sei varies from 2% to 7% depending on the size

of the messages – we experimented with values of 8 B up

to 8 KiB. In Deadwood, depending on the response size,

hardening incurs an overhead from 13% up to 21% in the

response time for loads of 1 k.req/s.

Deadwood becomes CPU bound very quickly. As a

result, the throughput overhead under maximal request

load reaches 40% to 50%. Using the timestamp counter

of the processor, we measured the average number of

cycles Deadwood consumes for a single request in the

dispatch, handling, and output phases (averaged over

10,000 requests). Table 5 shows the percentage of CPU

cycles spent in each phase relative to the native variant.

The dispatch and output phases do not increase signif-

icantly with hardening. The hardened handling phase

takes, however, 2.4 times the number of the cycles of

the native counterpart. This overhead is caused by the

double execution of the event handler, by the code instru-

mentation, and by the checks in libsei. Since the du-

plicated part constitutes only 27% of the used cycles, the

Variant Dispatch Handling Output Total Cycles

Native 41.75% 27.51% 30.74% 100% 83 k

SEI-hardened 42.71% 66.81% 31.47% 141% 117 k

Overhead +0.94% +39.30% +0.73% +41%

Table 5: Average CPU cycles consumed for a single re-

quest relative to the native Deadwood variant.

cycle-overhead of processing a single message by hard-

ened Deadwood is only 41%.

In contrast, mc-sei is not likely to saturate even with

a single thread. For 1 KiB large values, mc-sei has an

overhead of 20%. For 4 KiB or larger values, both mc-

sei and mc are network bound and show no significant

difference in the throughput.

Overall, even in single-threaded scenarios we ob-

served no more than 50% overhead. The low overhead

is due to the hardening of application event handlers, but

not the underlying software components, such as the op-

erating system. SEI expects faults in these components to

manifest as ASC faults, corrupting the application state

or its messages. According to our fault injection ex-

periments, SEI is sufficient and a “duplicate everything”

strategy is not strictly necessary. We expect long event-

handling phases, however, to induce higher overheads.

9 Conclusion

We have proposed a novel algorithm for ASC hardening,

SEI, that can leverage mechanisms provided in hardware,

such as error correction codes in memory modules, to

minimize overhead. The exercise of hardening an exist-

ing system like a DNS server and memcached exposed

a number of challenges, mostly related to deviations to

the structure our algorithm expects. Yet, we were able

to harden it with some reasonable amount of effort. SEI

introduces a negligible overhead in applications that are

not CPU-bound and is effective in avoiding error prop-

agation. The residual error propagation observed in our

fault injection results is due to pointer corruption, which

SEI is vulnerable to when using hardware ECC. It is sub-

ject of future work to design new techniques or exten-

sions that are able to overcome this limitation while us-

ing ECC memory for systems that are potentially more

susceptible to pointer corruption.
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