
conference

proceedings

11th USENIX Symposium on
Networked Systems Design
and Implementation

Seattle, WA, USA
April 2–4, 2014

Proceedings of the 11th U
SEN

IX Sym
posium

 on N
etw

orked System
s Design and Im

plem
entation

Seattle, W
A

, USA
April 2–4, 2014

Sponsored by

In cooperation with ACM SIGCOMM
and ACM SIGOPS

Thanks to Our USENIX and LISA SIG Supporters

USENIX Patrons
Google Microsoft Research NetApp VMware

USENIX and LISA SIG Partners
Cambridge Computer Google

USENIX Partners
EMC

USENIX Benefactors
Akamai Linux Pro Magazine Puppet Labs

© 2014 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primarily
for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-09-6

Thanks to Our NSDI ’14 Sponsors

Media Sponsors and Industry Partners
ACM Queue

ADMIN magazine
Distributed Management

Task Force (DMTF)

HPCwire
InfoSec News

Linux Pro Magazine
LXer

No Starch Press
O’Reilly Media

Raspberry Pi Geek
UserFriendly.org

Silver Sponsors

Gold Sponsors

Bronze Sponsors

General Sponsor

USENIX Association

April 2–4, 2014
Seattle, WA

Proceedings of NSDI ’14:
11th USENIX Symposium on Networked

Systems Design and Implementation

Conference Organizers

Program Co-Chairs
Ratul Mahajan, Microsoft Research Redmond
Ion Stoica, University of California, Berkeley

Program Committee
Katerina Argyraki, EPFL
Aruna Balasubramanian, University of Washington
Miguel Castro, Microsoft Research Cambridge
Prabal Dutta, University of Michigan
Mike Freedman, Princeton University
Ali Ghodsi, KTH Royal Institute of Technology and

University of California, Berkeley
Brighten Godfrey, University of Illinois at Urbana-

Champaign
Sharon Goldberg, Boston University
Shyamnath Gollakota, University of Washington
Ramesh Govindan, University of Southern California
Saikat Guha, Microsoft Research India
Kyle Jamieson, University College London
Ethan Katz-Bassett, University of Southern California
S. Keshav, University of Waterloo
Changhoon Kim, Microsoft
Dejan Kostić, IMDEA Networks
T. V. Lakshman, Bell Labs
Nikolaos Laoutaris, Telefónica
Bruce Maggs, Duke University
KyoungSoo Park, KAIST

George Porter, University of California, San Diego
Lili Qiu, University of Texas
Sanjay Rao, Purdue University
Jennifer Rexford, Princeton University
Vyas Sekar, Stony Brook University
Srinivasan Seshan, Carnegie Mellon University
Jonathan Smith, University of Pennsylvania
Nina Taft, Technicolor
Amin Vahdat, Google and University of California,

San Diego
Walter Willinger, Niksun
Yuan Yu, Microsoft
Ben Zhao, University of California, Santa Barbara

Poster Session Co-Chairs
T. S. Eugene Ng, Rice University
Amar Phanishayee, Microsoft Research Redmond

Steering Committee
Casey Henderson, USENIX Association
Arvind Krishnamurthy, University of Washington
Brian Noble, University of Michigan
Jennifer Rexford, Princeton University
Mike Schroeder, Microsoft Research
Alex C. Snoeren, University of California, San Diego
Chandu Thekkath, Microsoft Research

External Reviewers
Rachit Agarwal
Peter Bailis
Andrew Blake
Kirill Bogdanov
Mosharaf Chwdhury
Karthik Dantu
Tobias Flach

Mohammad Hajjat
Dongsu Han
George Katsikas
Maciej Kuzniar
Jie Liu
Mihai Moraru
Shankaranarayanan Narayanan

Miguel Peon
Peter Peresini
Ashiwan Sivakumar
Balajee Vamanan
Milan Vojnovic
Anduo Wang

NSDI ’14: 11th USENIX Symposium on
Networked Systems Design and Implementation

April 2–4, 2014
Seattle, WA

Message from the Program Co-Chairs . vii

Wednesday, April 2, 2014
Datacenter Networks
Circuit Switching Under the Radar with REACToR .1
He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter, University of California, San Diego

Catch the Whole Lot in an Action: Rapid Precise Packet Loss Notification in Data Center 17
Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin, Tsinghua University

High Throughput Data Center Topology Design .29
Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla, University of Illinois at Urbana–Champaign

Debugging Complex Systems
Adtributor: Revenue Debugging in Advertising Systems .43
Ranjita Bhagwan, Rahul Kumar, Ramachandran Ramjee, George Varghese, Surjyakanta Mohapatra, Hemanth
Manoharan, and Piyush Shah, Microsoft

DECAF: Detecting and Characterizing Ad Fraud in Mobile Apps .57
Bin Liu, University of Southern California; Suman Nath, Microsoft Research; Ramesh Govindan, University
of Southern California; Jie Liu, Microsoft Research

I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks 71
Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick McKeown,
Stanford University

Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks .87
Hongyi Zeng, Stanford University; Shidong Zhang and Fei Ye, Google; Vimalkumar Jeyakumar, Stanford
University; Mickey Ju and Junda Liu, Google; Nick McKeown, Stanford University; Amin Vahdat, Google
and University of California, San Diego

Software Verification and Testing
Software Dataplane Verification .101
Mihai Dobrescu and Katerina Argyraki, École Polytechnique Fédérale de Lausanne

NetCheck: Network Diagnoses from Blackbox Traces .115
Yanyan Zhuang, Polytechnic Institute of New York University and University of British Columbia; Eleni Gessiou,
Polytechnic Institute of New York University; Steven Portzer, University of Washington; Fraida Fund and Monzur
Muhammad, Polytechnic Institute of New York University; Ivan Beschastnikh, University of British Columbia;
Justin Cappos, Polytechnic Institute of New York University

Exalt: Empowering Researchers to Evaluate Large-Scale Storage Systems .129
Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, and Mike Dahlin, The University of Texas at Austin

(Wednesday, April 2, continues on p. iv)

Security and Privacy
ipShield: A Framework For Enforcing Context-Aware Privacy .143
Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser Shoukry, Matt Millar, and
Mani Srivastava, University of California, Los Angeles

Building Web Applications on Top of Encrypted Data Using Mylar .157
Raluca Ada Popa, MIT/CSAIL; Emily Stark, Meteor, Inc.; Steven Valdez, Jonas Helfer, Nickolai Zeldovich,
and Hari Balakrishnan, MIT/CSAIL

PHY Covert Channels: Can you see the Idles? .173
Ki Suh Lee, Han Wang, and Hakim Weatherspoon, Cornell University

cTPM: A Cloud TPM for Cross-Device Trusted Applications .187
Chen Chen, Carnegie Mellon University; Himanshu Raj, Stefan Saroiu, and Alec Wolman, Microsoft Research

Thursday, April 3, 2014
Operational Systems Track
Network Virtualization in Multi-tenant Datacenters .203
Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,
Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li,
Amar Padmanabhan, Justin Pettit, Ben Pfaff, and Rajiv Ramanathan, VMware; Scott Shenker, International
Computer Science Institute and the University of California, Berkeley; Alan Shieh, Jeremy Stribling, Pankaj Thakkar,
Dan Wendlandt, Alexander Yip, and Ronghua Zhang, VMware

Operational Experiences with Disk Imaging in a Multi-Tenant Datacenter . 217
Kevin Atkinson, Gary Wong, and Robert Ricci, University of Utah

VPN Gate: A Volunteer-Organized Public VPN Relay System with Blocking Resistance for
Bypassing Government Censorship Firewalls .229
Daiyuu Nobori and Yasushi Shinjo, University of Tsukuba

Data Storage and Analytics
Bolt: Data Management for Connected Homes .243
Trinabh Gupta, The University of Texas at Austin; Rayman Preet Singh, University of Waterloo;
Amar Phanishayee, Jaeyeon Jung, and Ratul Mahajan, Microsoft Research

Blizzard: Fast, Cloud-scale Block Storage for Cloud-oblivious Applications .257
James Mickens, Edmund B. Nightingale, and Jeremy Elson, Microsoft Research; Bin Fan, Carnegie Mellon
University; Asim Kadav and Vijay Chidambaram, University of Wisconsin—Madison; Osama Khan, Johns
Hopkins University

Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area .275
Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, and Michael J. Freedman, Princeton University

GRASS: Trimming Stragglers in Approximation Analytics .289
Ganesh Ananthanarayanan, University of California, Berkeley; Michael Chien-Chun Hung, University of
Southern California; Xiaoqi Ren, California Institute of Technology; Ion Stoica, University of California,
Berkeley; Adam Wierman, California Institute of Technology; Minlan Yu, University of Southern California

Interpreting Signals
Bringing Gesture Recognition to All Devices . .303
Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota, University of Washington

3D Tracking via Body Radio Reflections . 317
Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C. Miller, Massachusetts Institute of Technology

Epsilon: A Visible Light Based Positioning System .331
Liqun Li, Microsoft Research, Beijing; Pan Hu, University of Massachusetts Amherst; Chunyi Peng, The Ohio
State University; Guobin Shen, Microsoft Research, Beijing; Feng Zhao, Microsoft Research, Beijing

Improving Throughput and Latency (at Different Layers)
Enabling Bit-by-Bit Backscatter Communication in Severe Energy Harvesting Environments 345
Pengyu Zhang and Deepak Ganesan, University of Massachusetts Amherst

Full Duplex MIMO Radios .359
Dinesh Bharadia and Sachin Katti, Stanford University

Recursively Cautious Congestion Control .373
Radhika Mittal, Justine Sherry, and Sylvia Ratnasamy, University of California, Berkeley; Scott Shenker,
University of California, Berkeley and International Computer Science Institute

How Speedy is SPDY? .387
Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wetherall, University
of Washington

Friday, April 4, 2014
In-Memory Computing and Caching
FaRM: Fast Remote Memory .401
Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro, Microsoft Research

Easy Freshness with Pequod Cache Joins .415
Bryan Kate, Eddie Kohler, and Michael S. Kester, Harvard University; Neha Narula, Yandong Mao,
and Robert Morris, MIT/CSAIL

MICA: A Holistic Approach to Fast In-Memory Key-Value Storage .429
Hyeontaek Lim, Carnegie Mellon University; Dongsu Han, Korea Advanced Institute of Science and
Technology (KAIST); David G. Andersen, Carnegie Mellon University; Michael Kaminsky, Intel Labs

Scalable Networking
NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms 445
Jinho Hwang, The George Washington University; K. K. Ramakrishnan, Rutgers University; Timothy Wood,
The George Washington University

ClickOS and the Art of Network Function Virtualization .459
Joao Martins and Mohamed Ahmed, NEC Europe Ltd.; Costin Raiciu and Vladimir Olteanu, University
Politehnica of Bucharest; Michio Honda, Roberto Bifulco, and Felipe Huici, NEC Europe Ltd.

SENIC: Scalable NIC for End-Host Rate Limiting .475
Sivasankar Radhakrishnan, University of California, San Diego; Yilong Geng and Vimalkumar Jeyakumar,
Stanford University; Abdul Kabbani, Google Inc.; George Porter, University of California, San Diego;
Amin Vahdat, Google Inc. and University of California, San Diego

mTCP: a Highly Scalable User-level TCP Stack for Multicore Systems .489
EunYoung Jeong, Shinae Woo, Muhammad Jamshed, and Haewon Jeong, Korea Advanced Institute of Science
and Technology (KAIST); Sunghwan Ihm, Princeton University; Dongsu Han and KyoungSoo Park, Korea
Advanced Institute of Science and Technology (KAIST)

(Friday, April 4, continues on p. vi)

New Programming Abstractions
Warranties for Faster Strong Consistency .503
Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers, Cornell University

Tierless Programming and Reasoning for Software-Defined Networks .519
Tim Nelson, Andrew D. Ferguson, Michael J.G. Scheer, and Shriram Krishnamurthi, Brown University

Enforcing Network-Wide Policies in the Presence of Dynamic Middlebox Actions using FlowTags 533
Seyed Kaveh Fayazbakhsh, Carnegie Mellon University; Luis Chiang, Deutsche Telekom Labs; Vyas Sekar,
Carnegie Mellon University; Minlan Yu, University of Southern California; Jeffrey C. Mogul, Google

Message from the
11th USENIX Symposium on Networked Systems

Design and Implementation
Program Co-Chairs

Welcome to NSDI ’14!

Over the years, NSDI has established itself as the top venue for work on networked and distributed systems. This
year’s iteration is no exception, and we have an excellent program that spans the gamut from novel wireless tech-
nologies to debugging complex systems to data analytics.

We are particularly excited about the Operation Systems Track. It is new this year and is intended for a different
breed of papers. Rather than pure research results, these papers describe the design and experience with large-scale,
operational systems and networks. They offer a behind-the-scenes look at real networked and distributed systems,
which is otherwise hard to come by. This year’s session includes papers that describe the design of VMWare’s
network virtualization system, experience with disk imaging in a multi-tenant data center, and design and experience
with operating a VPN-based peer-to-peer system to bypass government censors.

We received a record number of 223 submissions (not counting those that violated submission guidelines). This
number represents a sharp increase compared to last year (170) and the previous record (175 in 2010). We accepted
38 papers, a number that is identical to last year. Our program committee had 34 members, including the co-chairs,
with diverse expertise and experiences.

The review process included two rounds of reviews, plenty of online discussion, and an in-person PC meeting. In
the first round, each paper received three independent reviews. Erring on the side of inclusion, we advanced to the
second round any paper with at least one positive review. 142 papers made the cut. In the second round, each paper
received at least two additional reviews. Based on the reviews and online discussions, 76 papers were selected for
discussion at the PC meeting. We sought external reviews sparingly, mostly in cases where the PC did not have suf-
ficient expertise. Consequently, the PC members bore a significant reviewing load, with 27.4 papers on average.

A conference like NSDI cannot succeed without the collective effort and support of many individuals and organi-
zations. This effort starts with the authors, and we thank them for submitting the product of their hard work. Our
PC members were heroic in the face of the sharp jump in the number of submissions, and we are grateful for their
 reviews, online discussions, and meeting participation. Special thanks to Nikolaos Laoutaris for managing papers
with which both chairs were conflicted. We are also grateful to our external reviewers for lending their expertise,
often on short notice. We thank Eugene Ng and Amar Phanishayee for serving as Poster and Demo chairs. USENIX
does a remarkable job of managing all non-technical aspects of the conference. USENIX does a remarkable job at
managing all non-technical aspects of the conference. Working with their staff, including Garrett Johnson, Casey
Henderson, and Michele Nelson, was a pleasure. They were always accommodating toward the many special-case
requests we made. Kirstie Magness of Microsoft Research helped organize the PC meeting.

Finally, we thank you—the NSDI ’14 attendees. It is your participation and interest that sustains and nourishes the
conference and our community.

Ratul Mahajan, Microsoft Research
Ion Stoica, University of California at Berkeley
NSDI ’14 Program Co-Chairs

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation vii

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 1

Circuit Switching Under the Radar with REACToR

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari
Geoffrey M. Voelker, George Papen, Alex C. Snoeren, and George Porter

University of California, San Diego

Abstract
The potential advantages of optics at high link speeds
have led to significant interest in deploying optical
switching technology in data-center networks. Initial
efforts have focused on hybrid approaches that rely on
millisecond-scale circuit switching in the core of the
network, while maintaining the flexibility of electrical
packet switching at the edge. Recent demonstrations of
microsecond-scale optical circuit switches motivate con-
sidering circuit switching for more dynamic traffic such
as that generated from a top-of-rack (ToR) switch. Based
on these technology trends, we propose a prototype hy-
brid ToR, called REACToR, which utilizes a combina-
tion of packet switching and circuit switching to appear
to end-hosts as a packet-switched ToR.

In this paper, we describe a prototype REACToR con-
trol plane which synchronizes end host transmissions
with end-to-end circuit assignments. This control plane
can react to rapid, bursty changes in the traffic from
end hosts on a time scale of 100s of microseconds, sev-
eral orders of magnitude faster than previous hybrid ap-
proaches. Using the experimental data from a system of
eight end hosts, we calibrate a hybrid network simula-
tor and use this simulator to predict the performance of
larger-scale hybrid networks.

1 Introduction
Designing scalable, cost-effective, packet-switched in-
terconnects that can support the traffic demands found
in modern data centers is already an extremely challeng-
ing problem that is only getting harder as per-server link
rates move from 10 to 40 to 100 Gb/s and beyond. In
this paper, we focus particularly on the challenge of up-
grading an existing network fabric that supports 10-Gb/s
end hosts to a network that can deliver 100 Gb/s to each
end host. We argue that this transition is inevitable be-
cause the PCIe Gen3 bus found in many current servers
can support 128 Gb/s, making emerging 100-Gb/s NICs
a drop-in upgrade for existing hardware.

Unlike previous generational upgrades, moving from
10- to 100-Gb/s link rates requires a fundamental tran-
sition in the way a data center is wired. At 100 Gb/s,
inexpensive copper cabling can no longer be used at dis-

tances greater than a few meters: virtually all cables
other than those internal to an individual rack must be
optical. If these cables interconnect electronic packet
switches, they further require optoelectronic transceivers
at both ends. Many popular packet-switched data-center
topologies like multi-rooted trees [25] require large num-
bers of connections between racks. Hence, the cost of
these designs begins to be dominated not by the con-
stituent packet switches, but instead by the transceivers
mandated by the optical interconnects necessary to sup-
port the increased link speed [10].

In contrast, if the switches internal to the network
fabric are themselves optical, the need for transceivers
can be significantly reduced. Researchers have previ-
ously proposed hybrid architectures consisting of a com-
bination of packet switches and optical circuit switches
managed by a common logical control plane [7, 10, 26].
Traditionally, however, their applicability has been lim-
ited by the delay incurred when reconfiguring the circuit
switches, as traffic has to be buffered while waiting for a
circuit assignment. Architectures based upon legacy op-
tical circuit switches designed for wire-area applications
are fundamentally dependent on stable, aggregated traf-
fic to amortize their long reconfiguration delays. There-
fore, their use has been restricted to either the core of the
network [10] or to highly constrained workloads [26].

Researchers have recently demonstrated optical circuit
switch prototypes with microsecond-scale reconfigura-
tion delays [6, 17, 19]. In prior work, we showed that
such a switch, when coupled with an appropriate control
plane [23], has the potential to support more dynamic
traffic patterns, potentially extending the applicability of
circuit switches to cover the entire network fabric re-
quired to interconnect racks of servers within a data cen-
ter. Circuit switching alone, however, incurs substantial
delays in order to achieve efficiency (e.g., 61–300 μs to
deliver 65–95% of the bandwidth of a comparable packet
switch in the case of our switch [23]), rendering it inad-
equate to meet the demands of latency sensitive traffic
within a data center. Moreover, the buffering required to
tolerate such delays with large port counts at 100 Gb/s
is substantial. By integrating a certain level of packet
switching, hybrid fabrics have the potential to address

2 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

these shortcomings. Existing hybrid designs, however,
are not capable of coping with the lack of traffic stability
and aggregation present at the rack level of today’s data
centers [2, 4, 15, 16].

In this paper, we propose a hybrid network architec-
ture in which optical circuit switching penetrates the
data center network to the top-of-rack (ToR) switch.
We leverage our recent work on the Mordia optical
circuit switch to build and experimentally prototype
the first hybrid network control plane that uses rapidly
reconfigurable optical circuit switches to potentially
provide packet-switch-like performance at substantially
lower cost than an entirely packet-switched network.
Our hybrid network design consists of a 100-Gb/s op-
tical circuit-switched network deployed alongside a pre-
existing 10-Gb/s electrical packet-switched network. In
this model, ToR switches support 100-Gb/s downlinks
to servers, and are “dual-homed” to a legacy 10-Gb/s
electrical packet switched network (EPS) and a new 100-
Gb/s optical circuit switched network (OCS).

REACToR’s design is based on two key insights. The
first is that it is impractical to buffer incoming traffic
bursts from each end host within the ToR’s switch mem-
ory. For a traditional in-switch time-division, multiple-
access (TMDA) queueing discipline, this architecture
would require a dedicated input buffer for each potential
circuit destination. Given the unpredictable nature of the
end-host network stack [16], these buffers would likely
need to be quite large.

Instead, REACToR buffers bursts of packets in low-
cost end-host DRAM memory until a circuit is provi-
sioned, at which point the control plane explicitly re-
quests the appropriate burst from each end host using a
synchronous signaling protocol that ensures that the in-
stantaneous offered load matches the current switch con-
figuration. Because each REACToR is dual-homed to
an EPS, the control plane can simultaneously schedule
the latency-sensitive traffic over the packet switch. The
packet switch can also service unexpected demand due
to errors in demand estimation or circuit scheduling.

The second insight is that if circuit switching is suf-
ficiently fast, then delays due using flow-level circuit-
switched TDMA at the end-host network stack will not
degrade the performance of higher-level packet-based
protocols; in a sense the circuit switch will “fly under the
radar” of these end-host transport protocols. As technol-
ogy trends enable faster OCS reconfiguration times, this
hybrid architecture blurs the distinction between packets
and circuits. By combining the strengths of each switch-
ing technology, a hybrid network can deliver higher per-
formance at lower cost than either technology alone,
even at the level of a ToR switch.

We evaluate our design for a 100/10-Gb/s OCS/EPS
hybrid network using a scaled-down 10/1-Gb/s hard-

Link rate Full fat tree Helios-like REACToR
10 Gb/s 2−4 1−3 N/A
100 Gb/s 4 3 1†

Table 1: Number of transceivers required per upward-facing
ToR port for different network architectures. (†Presuming a 10-
Gb/s packet network is already in place.)

ware prototype that supports eight end hosts. The proto-
type consists of two FPGA-based REACToRs with four
downward-facing 10-Gb/s ports each. Both REACToRs
connect to the Mordia [23] microsecond OCS and a com-
modity electrical packet switch. The circuit switch sup-
ports a line rate of 10 Gb/s while the packet switch is
rate limited to 1 Gb/s to enforce a 10:1 speed ratio. End
hosts connect to our prototype using commodity Intel 10-
Gb/s Ethernet NICs that we synchronize using standard
802.1Qbb PFC signaling.

Our experiments show that our REACToR prototype
can provide packet-switch-like performance by deliver-
ing efficient link utilization while reacting to changes in
traffic demand, and that its control plane is sufficiently
fast that changes in circuit assignment and schedule can
be made without disrupting higher-level transport pro-
tocols like TCP. Using simulation of more hosts, we
also illustrate the large benefits that a small underprovi-
sioned packet switch provides to a hybrid ToR relative to
a pure circuit ToR. We conclude that REACToR can ser-
vice published data-center demands with available tech-
nology, and can easily scale up to make effective use
of next-generation optical switches and 100-Gb/s hosts
by reusing an existing 10-Gb/s electrical packet-switched
network fabric.

2 Background
We start by motivating the benefits of a hybrid-ToR net-
work design, describing the work that REACToR builds
upon, and then discussing our design assumptions.

2.1 Motivation
Consider a data-center operator that wants to upgrade
an existing 10-Gb/s data center network—i.e., the part
of the network that connects the top-of-rack switches
together—to 100 Gb/s.

Table 1 shows the number of optical transceivers re-
quired for each upward-looking port of the ToR for three
different network architectures. The first architecture is
a fully provisioned three-level fat-tree network [1]. If all
of the links in the backbone network are optical, then this
network requires four transceivers per upward port. In a
Helios-like [10] architecture an optical circuit switch is
placed at the uppermost layer of the network, saving one
transceiver per port as compared to the number used in a
fat-tree network.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 3

At 10 Gb/s, if the links between aggregation switches
are short enough to be electrical, then transceivers may
only be required between aggregation and core switches,
potentially reducing the number of transceivers by up to
three per port. At 100 Gb/s, however, while electrical in-
terconnects may still be viable from an end host to a ToR
(i.e., distances less than 5 meters), all connections from
the ToR to the rest of the network are likely to be optical.
Hence, either architecture will require a full compliment
of optical transceivers. Moreover, in order to upgrade
the network the operator will have to replace the existing
10-Gb/s transceivers with new 100 Gb/s transceivers.

The REACToR architecture, in contrast, re-uses the
existing 10-Gb/s packet-based network and deploys a
parallel 100-Gb/s circuit-switched optical network un-
der a common control plane. As compared to the other
two architectures listed in Table 1, REACToR requires
only one 100-Gb/s transceiver per upward-facing port
of the ToR because the OCS does not use transceivers.
This means that for a fully provisioned three-level fat-
tree network, if the per-port cost of the OCS used in RE-
ACToR is less than three times the cost of a 100-Gb/s
optical transceiver, then a REACToR hybrid network
will cost less than an equivalent 100-Gb/s packet-based
network—even if the 100 Gb/s switches themselves were
free. Larger networks require even more transceivers
per end host: a five-level network requires eight trans-
ceivers to support each upward facing port, making the
economics of REACToR even more compelling. Over-
subscribed networks will use fewer transceivers in the
core network, but the scaling trends are still applicable.

While this example uses a 10-Gb/s EPS and a 100-
Gb/s OCS, the actual link rates for which a REACToR
architecture will be cost competitive with a fully provi-
sioned or over-subscribed packet-switched network de-
pends on market trends. Many OCS architectures are
based on MEMs devices and can easily support link rates
in excess of 100 Tb/s1 per port. For this kind of de-
vice, the cost per optically switched bit is decreasing
and is fundamentally inversely proportional to link rate.
While the costs per switched bit of optical transceivers
and packet switches are also decreasing, the rate of de-
crease is much slower. These trends imply the cost per
switched bit will eventually become comparable at some
link rate. What is less clear is the precise link rate when
this crossover point will occur and the economic viability
of a data-center network that supported such a link rate.

2.2 Related work
Hybrid data-center network architecture design is an ac-
tive research area. Helios [10] and c-Through [26] both

1The mirrors are typically reflective from approximately 1.3 μm to
1.6 μm which corresponds to a bandwidth of approximately 400 THz.

Rank-Ordered Connection Number
n21 n

Circuit
traffic

Tr
affi

c
pe

r C
on

ne
ct

io
n

Packet
traffic

90%

10%

Figure 1: Rank-ordered traffic for each of the n2 elements of
a demand matrix, for which most of the traffic (e.g. 90%) is
carried in a few (O(n)) flows.

rely on slower 3D-MEMs based optical circuit switch-
ing, restricting their use to either highly aggregated traf-
fic (i.e., in the core of the network), or highly stable
traffic (e.g., long file transfers). OSA [7] combines
an OCS-based reconfigurable topology with multi-hop
overlay networking. The bandwidths of links in OSA
can be varied through the use of wavelength-selective
switching. In addition to optical switching, reconfig-
urable wireless links have also been proposed in data-
center contexts [12, 14, 28]. In contrast to these previous
approaches, which employ switching technologies with
relatively long reconfiguration times, REACToR relies
upon the Mordia [8, 23] OCS, which can be reconfig-
ured in 10s of microseconds, in order to service a much
larger portion of the offered demand through the circuit-
switched portion of the hybrid network fabric.

The question of how much buffering should be de-
ployed in a network has been considered under a wide
variety of settings. In the Internet, a common rule of
thumb has been that at least a delay-bandwidth product
is necessary to support TCP effectively. Appenzeller et
al. [3] challenged this assumption for core switches, and
argue that for links carrying many TCP flows, less buffer-
ing is necessary. In the data center, Alizadeh et al. pro-
pose modifications to TCP that, along with appropriate
switch support, can reduce the amount of buffering re-
quired down to a single packet per flow [2]. Other net-
work technologies have also been created that reduce in-
network buffering, including Myrinet [5] and ATM [20].
Numerous proposals for entirely bufferless “network-
on-chip” (NoC) networks have been proposed [21], in-
cluding hybrid NoC networks that also leverage packet
switches [13].

2.3 Design assumptions
Studies of data-center traffic show that the traffic demand
inside a data center is frequently concentrated, with a
large fraction of the traffic at each switch port of a ToR

3

4 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

destined to a small number of output ports [15]. Such lo-
cality is not surprising, as application programmers and
workload managers frequently use knowledge about the
location of end hosts to coordinate workloads to mini-
mize inter-rack traffic. Based on these empirical obser-
vations, a fundamental premise of all hybrid networks—
including REACToR—is that a large fraction of the net-
work traffic is carried by a small number of relatively
long-lived flows. This observation can be expressed in
terms of the n2 rank-ordered elements of a demand ma-
trix for a network that connects n ToRs. Figure 1 shows
an example where 90% of the inter-ToR traffic is carried
by only n flows.

In such settings, the demand matrix is frequently both
sparse and stable [9, 12, 14]. This kind of traffic demand
is generally suitable for a large port-count optical circuit
switch, but these assumptions can be violated for specific
workflows over any given time interval. Therefore, RE-
ACToR switches the few high-traffic flows using an OCS
while forwarding the relatively small amount of traffic
between most ToRs using an under-provisioned standard
packet switch.

While rack-level coordination can lead to bursty traf-
fic at the upward looking ports of a ToR, we carry this
assumption one step further. Unlike previous hybrid de-
signs that focus on the core of the network, REACToR
critically depends upon individual hosts being able to fill
circuits assigned to them with data, which in turn de-
pends on hosts transmitting groups of packets to the same
destination ToR at fine time scales.

To verify this assumption, in previous work we mea-
sured individual flows, at microsecond granularity, em-
anating from a single host under a variety of work-
loads [16]. We find that host mechanisms such as TCP
segmentation offloading in the NIC and generalized seg-
mentation offloading in the operating system, cause traf-
fic to frequently leave the NIC in bursts of 10s to 100s of
microseconds. In Section 5.1, we expand upon this anal-
ysis to show that circuit switching these flows can further
enhance this behavior while not disturbing the transport
protocol. For regimes in which circuit switching does not
affect the transport performance of an end host, we say
that its flows are “flying under the radar”.

3 Design

A REACToR-enabled data center consists of N servers
grouped into R racks, each consisting of n nodes. We
assume that a preexisting 10-Gb/s packet-switched net-
work is already deployed within the data center. Overlaid
on top of this packet-switched network is an additional
100-Gb/s circuit-switched network. At each rack is a hy-
brid ToR called a REACToR, which is connected to the
packet-switched network with up ≤ n uplinks and is con-

��������
����������������
�������
	����

���������
�����������������
�������
�����

�	
��

��
��

up ≤ n uc ≤ n ������������
�������������
uc

��� ��� ��� ��������

	����������������

���
������

��� ��� ��� ��������

	����������������

���
������

����

���� �� ��

��������� ���������

Figure 2: 100-Gb/s hosts connect to REACToRs, which are in
turn dual-homed to a 10-Gb/s packet-switched network and a
100-Gb/s circuit-switched optical network.

nected to the circuit-switched network with a separate set
of uc ≤ n uplinks. This means that the packet-switched
network supports R× up ports, and the circuit-switched
network supports R× uc ports. Each REACToR has n
downward-facing 100-Gb/s ports to its n local servers. In
this work, we consider the fully provisioned case where
up = uc = n; however, additional cost savings are possi-
ble when either or both of up and uc are less than n. Our
architecture is agnostic to the particular technology used
to build the circuit-switched fabric, but, given technology
trends, we presume it is optical.

Referring to Figure 2, an (n,up,uc)-port REACToR
consists of n downward-facing ports connected to servers
at 100 Gb/s, up = n uplinks connected to the packet-
switched network at 10 Gb/s, and uc = n uplinks con-
nected to the 100-Gb/s circuit-switched network. At
each of the n server-facing input ports, there is a clas-
sifier (labeled ‘C’ in the figure) which directs incom-
ing packets to one of three destinations: to packet up-
links, to circuit uplinks, or through an interconnect fabric
to downward-facing ports to which the other rack-local
servers are attached. There is no buffering on the path
to the packet uplinks, as buffering is provided within the
packet switches themselves. There is also no buffering
on the path to the circuit uplinks; instead, packets are
buffered in the end-host where they originate. When a
circuit is established from the REACToR to a given des-
tination, the REACToR explicitly pulls the appropriate
packets from the attached end-host and forwards them to
the destination.

REACToR relies upon a control protocol to interact
with each of its n local end-hosts to: (1) direct the end
host to start or stop draining traffic from its output queues
(which we refer to as unpausing or pausing the queue, re-
spectfully), (2) set per-queue rate limits, (3) provide cir-
cuit schedules to the end-host, and (4) retrieve demand

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 5

estimates for use in computing future circuit schedules.
We first motivate the need for this functionality by de-
scribing the various other aspects of REACToR’s design
before detailing the host control protocol in Section 3.4.

3.1 End-host buffering
Each end-host buffers packets destined to the REAC-
ToR in its local memory, which is organized into traf-
fic classes, one per destination ToR, with an additional
class for packets specifically destined for the EPS (e.g.,
latency-sensitive requests). Each traffic class has its own
dedicated output queue (i.e., {Q0, Q1, ..., QN−1}), with
an additional queue for the EPS class, QP, as shown in
Figure 2. At any moment in time, the REACToR can ask
an end host to send packets from at most two classes:
one forwarded at line rate to an OCS uplink (or local
downlink port), and another forwarded to an EPS up-
link. This latter class of traffic must be rate limited at
the source NIC to conform to the link speed of the EPS
to prevent overdriving the EPS. In the reverse direction,
the EPS may emit packets into the REACToR at its full
rate to a particular downward-facing port. Because that
downward-facing port could potentially be shared by in-
coming line-rate circuit traffic heading to the same des-
tination, REACToR must further ensure that the circuit
traffic is sufficiently rate-limited so that there is enough
excess capacity to multiplex both flows at the destina-
tion. Hence, end hosts will be directed by REACToR to
similarly rate-limit traffic classes destined to the OCS at
the source NIC, but at much higher rates. Further details
on rate limiting are provided in Section 3.3.

Today, end-host NICs support modest amounts of
buffering, on the order of a few megabytes. However,
it is not organized in a way that can be directly used to
support circuits. NICs partition their buffers into a small
set of 8 to 64 transmit queues, which the OS uses to batch
and store packets waiting to be sent. The scheduling pol-
icy for these queues is typically built into the NIC (e.g.,
round robin), so the actual transmit time of individual
packets is outside the control of the OS.

To achieve high circuit utilization in REACToR, the
NIC needs the ability to send data for a particular circuit
destination to the ToR as soon as a circuit becomes estab-
lished, and to fill that circuit continuously until it is torn
down. At any one time, each circuit uplink within a RE-
ACToR is exclusive to a particular source port (attached
end host), so efficiency degrades any time that source has
no data to send. Thus, packets headed to the same circuit
destination (i.e., remote host) should be grouped together
within a host’s memory, so that when a circuit to that des-
tination becomes available, that group of packets can be
sent from the NIC to the REACToR at line rate.

Within each host, we define a traffic class per desti-
nation host, and task the OS with classifying outgoing

packets into the appropriate class based on, e.g., the des-
tination IP address. REACToR then uses the host control
protocol to pause and unpause end-host queues. In this
model, the role of the OS and of the NIC changes some-
what: rather than the OS “pushing” packets to the NIC
buffers based on queuing policies in the host, the NIC is
responsible for “pulling” packets from the host memory
into the NIC buffers according to the circuit schedule just
in time to transmit them to the connected circuit. (We
note that the NIC design advocated by Radhakrishnan et
al. [24] would be especially well suited for this model.)

Demand estimation. Over a short time scale (i.e.,
100s of μs, depending on the size of the NIC buffers), the
occupancy of these traffic classes defines the imminent
end-host demand because the packets in these queues
have already been committed to the network by the OS.
It is possible to query the OS, the application, or even a
cluster-wide job scheduler to form longer-term demand
estimates. For example, Wang et al. [26] use TCP send
buffer sizes as estimates of future demand. Our prototype
uses a demand oracle. In any case, the circuit scheduler
uses these demand estimates to determine a set of future
OCS circuit configurations.

3.2 Circuit scheduling
To make effective use of the capacity of the circuit
switch, REACToR must determine an appropriate sched-
ule of circuit switch configurations to service the esti-
mated demand over an accumulation period W . This is
the responsibility of a logically centralized, but poten-
tially physically distributed, circuit scheduling service,
which implements a hybrid circuit scheduling algorithm.
This service collects estimates of network-wide demand,
in the form of an N ×N matrix D. The service computes
a schedule, Pk, of m circuit switch configurations, which
are permutation matrices2, and corresponding durations,
φk.

The number m of configurations that comprise the
schedule is constrained because each circuit configu-
ration requires a finite reconfiguration time δ , during
which time no data can be forwarded over the circuit
switch. When δ is large with respect to W , it is more ef-
ficient to use fewer configurations. When δ is small with
respect to W , more configurations can be used. Including
this reconfiguration delay, the duration of the schedule is
constrained by the length of the accumulation period so
that ∑m

k=1 φk +δm ≤W . The goal of the scheduling algo-
rithm is to maximize ∑m

k=1 φk subject to these constraints.
Obviously, if the switch introduces a reconfigura-

tion delay, then it is impossible to service fully satu-
rated demand at line rate. Existing research in con-
strained scheduling has focused on switches that run

2A permutation matrix is a matrix of 0s and 1s in which each row
and column has and only has a single 1.

5

6 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

faster than the link rate, with the ratio of the switch rate
to the link rate called the speedup factor. These algo-
rithms [11, 18, 27] produce a variable-length schedule
which is dependent on the actual reconfiguration delay.

Hybrid networks in general, and REACToR in partic-
ular, do not use a speedup factor. Instead, REACToR
uses the lower-speed packet switch as a way to make up
for the reconfiguration delay and any scheduling ineffi-
ciency. This “back channel” is a key distinction between
REACToR and traditional blocking circuit scheduling
because REACToR continues to service a subset of flows
over the EPS when circuits are not available, thereby in-
creasing support for latency sensitive workloads.

We leave the selection and evaluation of an circuit
switch algorithm as future work; for now we compute the
schedule offline using a variant of existing constrained
switching algorithms based on a predetermined demand
matrix D. Any schedule computed for use in REACToR,
however, is subject to a number of constraints.

Class constraints. In order to ensure the offered load
can be effectively serviced by the ToR, REACToR im-
poses a number of constraints on the set of queues that
can be unpaused at any particular time. First, the ded-
icated EPS queue (QP) is always unpaused but rate-
limited to at most 10 Gb/s, providing the host with the
ability to send latency-sensitive traffic directly to the EPS
at any point in time. Second, at most one additional
queue can be unpaused at any one time for transmission
at (near) link rate (i.e., 100 Gb/s). When such circuit-
bound (or rack-local) traffic arrives at an input classifier
in the REACToR, it is directly forwarded to the appropri-
ate circuit uplink (or downward-facing port) without any
intermediate buffering. The third constraint is that, if a
queue is unpaused for link-rate transmission in the cur-
rent scheduling period, then it should never be unpaused
for transmission to the EPS. This constraint serves two
purposes: it prevents the EPS from being burdened with
high-bandwidth traffic better served by circuits, and it
gives that traffic class additional time to accumulate de-
mand so that the circuits are highly utilized.

Fourth, any traffic class which is not assigned to a cir-
cuit (or downward port) during a scheduling period is in-
stead remapped to the EPS, meaning that any packets in
that class’s queue are routed to the EPS uplink. Finally,
all of the queues corresponding to EPS-bound traffic (i.e.,
both the dedicated EPS queue and and any classes not
scheduled for a circuit in this period) must be rate lim-
ited such that the sum of their limits is less than or equal
to the EPS link rate (e.g., 10 Gb/s).

3.3 End-host rate limiting
At any given time, each of the REACToR’s downward-
facing server ports can transmit data from two sources:
a circuit from a single source established through the

OCS (or rack-local connection) fabric, and traffic from
any number of sources forwarded through the EPS. At
each downward-facing port there is a multiplexer which
performs this mixing. When the sum of bandwidth
from the EPS (BEPS) and OCS (BOCS) exceeds the rate
of the REACToR port (BToR), then without intervention,
(BEPS+BOCS)−BToR traffic would be dropped. To prevent
such drops, and to ensure high overall utilization, we rely
on end-host rate limiting.

The first way that we use end-host rate limiting is to
ensure that in steady state, BEPS + BOCS ≤ BTOR. Since
the OCS is bufferless, the multiplexer gives priority to
packets arriving from the OCS because otherwise they
would have to be dropped. Assuming a REACToR with a
100-Gb/s OCS and 10-Gb/s EPS as an example, each end
host would rate limit its circuit-bound traffic in the range
of 90–100% of the link capacity to leave sufficient head
room for the EPS traffic, based on the estimate of EPS
demand in the current schedule. Each time that a set of
configurations for a scheduling period is computed, a rate
limit is also computed per configuration, reflecting the
estimated load from the EPS. Note that this estimate need
not be perfect, and in fact we expect the EPS to absorb
inaccuracies in scheduling, demand estimation, and rate
limiting. For each scheduling interval, the associated rate
limits are computed and sent to each end-host via the host
control protocol.

The circuit rate limit also serves a second pur-
pose, which is providing statistical multiplexing at the
downward-facing REACToR port. Underpinning the de-
sign of REACToR is the assumption that on short time
scales, traffic emanating to a single destination is bursty.
Each burst by definition consists of a number of packets
sent back-to-back. From the point of view of the RE-
ACToR port multiplexer, this means that, absent other
controls, during the first portion of a given circuit-switch
configuration interval φk, the entire port’s bandwidth
would be dedicated to servicing a single burst of traf-
fic from the OCS. Thus, any packets originating from the
EPS would be delayed until the end of φk. Figure 3(a)
shows a pictorial representation of this behavior. The
challenge that arises is that the line rate of the EPS is
presumed to be lower than the REACToR port speed and
the OCS. Hence, the open region at the end of φk can
only be filled with packets at the rate of the EPS (e.g., 10
Gb/s) instead of the OCS (100 Gb/s). Thus, for this ex-
ample, the region at the end of φk only gets 10% utilized
since the EPS can only drive 10% of the outgoing port
bandwidth.

Instead, REACToR seeks to ensure that the circuit traf-
fic is spread out across φk by limiting it to less than full
line rate (e.g., 90 Gb/s of a 100-Gb/s link). Rate limit-
ing over time allows the EPS-serviced traffic to be mul-
tiplexed on REACToR’s downward-facing ports at a uni-

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 7

�������� ����

������
�����

������
�����

������
�����

�����

����

�
��
��

�

�
��
��

�

�
��
��

�

φ{k−1} φk φ{k+1}

(a) When a circuit-switch configuration interval φk begins,
queued traffic forms bursts which saturate the link during the first
part of the configuration, leaving capacity for EPS traffic at the
end of φk; since the EPS runs at a fraction of the line rate, it can-
not efficiently use the remaining time.

����

�����������
�����������

�����������
�����������

�����������
�����������

�����

����

φ{k−1} φk φ{k+1}

(b) By rate limiting circuit traffic, the EPS can spread its traffic
out over the entire configuration interval.

Figure 3: Rate limiting prevents bursts from the OCS from
starving the EPS, which would otherwise be unable to make
full use of each circuit-switch configuration interval φk. In both
cases, the circuit-switched traffic achieves 90 Gb/s during each
interval.

form rate across all configuration intervals φk, enabling
the entire interval to be utilized by both circuit traffic and
packet traffic. By setting circuit rate limits in the end
host, as described above, the traffic headed to the circuit
is paced to the appropriate rate. Figure 3(b) shows the
resulting treatment of circuit and packet data within that
same configuration interval φk.

3.4 REACToR host control protocol
An instance of the REACToR host control protocol runs
between each end-host and its REACToR switch. RE-
ACToR uses the protocol to retrieve demand estimates
collected by end-hosts, to set per-queue rate limits, as
described above, and to convey impending schedules to
the end host from the circuit scheduler. These functions
are relatively straight forward. In this section, we exam-
ine the fourth use of the host control protocol: managing
end-host traffic classes and buffering. The key to achiev-

ing efficient use of the hybrid network is being able to
drain the appropriate classes with fine-grained precision
at the right times. We now describe the host control pro-
tocol that achieves this precision.

Overview: To ensure reliable transmission, we cannot
reconfigure the OCS until all incoming circuit traffic has
ceased, since the OCS is unable to carry traffic during
the time δ when it is being reconfigured. While classi-
fiers on each REACToR input port can shunt all traffic
to the EPS nearly instantaneously, in general we would
like to ensure that almost all circuit-bound traffic has
been paused before reconfiguring the OCS. Otherwise,
a massive queue would build up at the EPS at the end
of each schedule. To avoid this buildup, we leverage the
802.1Qbb Priority Flow Control (PFC) protocol to pause
traffic at the end host. Each traffic class in the end host
corresponds to a PFC class.3 At the end of each sched-
ule, for each attached host, the REACToR first sends a
PFC frame to pause the traffic class destined for the cur-
rent schedule’s circuit (if any). Note that PFC frames are
selective, so traffic destined to the EPS will continue to
flow while the OCS is being reconfigured. Once inbound
circuit traffic has ceased, the OCS can be reconfigured.
After reconfiguration, the traffic class corresponding to
the next schedule’s circuit can be enabled by a PFC un-
pause frame.

Performance: The overall speed of the control plane
is bounded by the speed at which REACToR can pause
and unpause traffic classes buffered at the end hosts. Be-
cause the PFC frame must be both received and pro-
cessed at the NIC before traffic stops, there will be some
delay between when the controller wants to pause traffic
and when the traffic finally stops arriving at the incom-
ing ports at the REACToR. To quantify this delay, we
extended the classifiers on our prototype to timestamp all
incoming packets and mirror these timestamped packets
to a collection host. We then measured the time from
when the classifier sends a PFC frame to a host until it
stops receiving packets from that host.

We measured the minimum (maximum) delay on an
Intel 82599-based 10 Gb/s NIC as 1,014 (2,188) ns, with
the actual delay varying as a function of PFC offset,
meaning that if the PFC frame arrives more than 185.6 ns
after the start of the current frame, the NIC will generate
an additional frame before pausing, likely due to pipelin-
ing within the NIC implementation.

Once the OCS has established a circuit and is ready to
receive traffic, the REACToR needs to restart traffic for
the newly connected destination by sending another PFC
frame. The measured ‘on’ delay (i.e., from when the con-
figuration is started by the transmission of a PFC frame

3Although the current PFC specification is limited to eight frame
priority levels, it is possible to reuse classes across schedule periods by
recoloring.

7

8 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�

�������
�������������

�������
�������������

��������
��	
�����������������������

���
������������������
��	

�������
��� ����

�����
�����������

�	�����

������
�������

�	�����

�����������	

�����������	

����������	

� � � � � � �

� ��������

����������

Figure 4: Our prototype REACToR network.

unpausing the traffic) ranges between 1.2 μs and 1.3 μs.
From the ‘off’ delay measurement, it is clear that we can
hide the first microsecond of delay by sending the PFC
frame before we actually want the traffic to stop, but it
may take an additional 1.3 μs for all ports to cease send-
ing. There is one additional source of delay: a port may
be busy sending an outgoing packet at the moment the
classifier wishes to send the PFC frame. This delay is
bounded by the 1500-byte MTU in our prototype, lead-
ing to a worst-case combined delay of approximately 2.5
μs, which is the lower bound of the speed of the control
plane achievable in REACToR with 10-Gb/s end hosts, a
1500-byte MTU size, and the 802.1Qbb implementation
on our NIC.

4 Implementation

To evaluate our design, we have implemented two proto-
type four-port 10-Gb/s REACToRs (shown in Figure 4)
using two FGPAs, a Fulcrum Monaco 10-Gb/s electrical
packet switch, and the Mordia microsecond OCS [23].
Mordia is 24-port reconfigurable OCS built from six
4-port “binary MEMs” wavelength-selective switches,
with a reconfiguration delay of δ = 12μs, which includes
the physical switching time of the MEMs devices and
the time to reinitialize the attached 10-Gb/s transceivers.
Thus, our REACToR prototype supports the same 10:1
bandwidth ratio described earlier, but at 10 Gb/s (OCS)
and 1 Gb/s (EPS) rather than 100/10 Gb/s.

Each REACToR is implemented with a HiTech Global
HTG-V6HXT-100GIG-565 FPGA development board,
which supports 24 ports of 10-Gb/s I/O. The circuit
scheduling service runs as a user-level process on a ded-
icated Linux-based control server, and transmits sched-
ules to the FPGA via a dedicated 10-Gb/s Ethernet con-
nection. In our implementation, the end hosts are servers
equipped with Intel 82599-based NICs. The end hosts
classify traffic according to the destination using the
Linux tc facility. The classifier on the FPGA selectively

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

End−to−End Flow Switch Time (microsecond)

C
D

F
of

 L
at

en
cy

 D
is

tri
bu

tio
n

●

14.84us

Figure 5: Observed end-to-end circuit switch reconfiguration
delay δ .

enables or disables packets to a given destination using
the IEEE 802.1Qbb priority-based flow control standard,
which supports eight flow classes. We use seven of these
classes to correspond to the n circuit destinations reach-
able from a REACToR, and the eighth is reserved for the
EPS-dedicated class.

At each switch reconfiguration, the controller on the
FPGA updates the OCS and enables the corresponding
end-host traffic classes using 802.1Qbb PFC frames. The
controller also configures the classifiers so that they for-
ward the appropriate line-rate flow to the circuit uplink,
and forward the remaining traffic to the EPS.

Circuit switch characterization: The average recon-
figuration delay for the Mordia switch is approximately
12 μs, with a maximum observed delay of 14.84 μs (as
shown in Figure 5). The transceivers we use vary in their
“lock” time, necessitating setting a more conservative re-
configuration delay. This variance is an engineering arti-
fact of our hardware and is not fundamental; the IEEE
802.3av (10G-EPON) specification, for instance, calls
for a 400-ns lock time. Except as noted, in the exper-
iments that follow, we configure REACToR to assume
a 30-μs reconfiguration time which, contained within at
least a 160-μs configuration period, delivers at least 81%
link efficiency.

REACToR host control protocol: To tightly time
synchronize the attached hosts, REACToR sends the
schedule to each attached host using two UDP pack-
ets. The first packet contains the impending schedule
for the upcoming 3-millisecond period, whereas the sec-
ond packet indicates the start of the three-millisecond
time period, serving as a precise periodic heartbeat. End
hosts receive these packets in a kernel module via the
netpoll kernel APIs, which reduces the delay in act-
ing on them to less than 15 μs.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 9

5 Evaluation

In this section, we evaluate the performance of our
REACToR prototype implementation. We first show
that, with buffering and scheduling packets at end-host
NICs, circuit-switching does not negatively impact TCP
throughput. Second, we show that the REACToR can
dynamically update and switch schedules of many flows
without impacting throughput. Third, we show that RE-
ACToR can serve a time-varying workload that consists
of multiple high- and low-bandwidth flows, promoting
flows as appropriate from the packet-switched fabric to
the circuit-switched fabric. Finally, we use simulation to
illustrate the large benefits that a small underprovisioned
packet switch provides to a hybrid ToR.

To generate arbitrary traffic patterns, we implemented
a Linux kernel module based on pktget [22] that can
send MTU-sized UDP packets at arbitrary rates up to line
rate. When the module is sending, it runs on a dedicated
core and each packet it sends has a sequence number. At
the same time, the module also serves as a traffic sink that
receives UDP traffic via the netpoll kernel interface,
and records the sequence number and source address of
packets. For packet timing measurements, we configured
the FPGA to generate a record for each packet that cap-
tures the source, destination, and a timestamp with 6.4-
nanosecond precision. The prototype sends these records
out-of-band to a collection host using one of the 10 Gb/s
ports of the FPGA, which we then process offline.

5.1 TCP under TDMA scheduling
In Section 2.3, we described how application flows ex-
hibit intrinsic short-term correlated bursts as a conse-
quence of the NIC trying to efficiently use the link. We
therefore consider how flows behave in a hybrid fabric
where a circuit scheduler pauses flows at the host while
they wait for an assigned circuit and unpauses them when
the circuit is established. While its flow is paused, an ap-
plication may generate additional packets, increasing the
size of its burst when its flow is eventually unpaused and
thereby more efficiently use its circuit. However, the in-
creased latency and latency variation induced by pausing
and unpausing flows may detrimentally impact the trans-
port protocol (e.g., TCP) or the application itself.

To study the impact of circuit scheduling on TCP
throughput, we generate stride workloads where a sin-
gle host sends to another host, and at the same time sinks
a TCP flow from a third host. First we consider the case
where we pause and unpause a bi-directional circuit, i.e.,
pause both data and TCP ACKs at the same time. Next
we consider the case where we pause the data in the flow,
but allow ACKs to return unimpeded (e.g., via the EPS).
Finally, we consider the case where we pause the ACKs,
but enable data packets to transmit unimpeded.

Figure 6: Effect of pausing/unpausing data/ACK packets on
TCP throughput.

Figure 6 shows the resulting normalized throughput
when varying the reconfiguration delay δ for a stride
workload with eight hosts. In the first case, the normal-
ized throughput of uni-directional and bi-directional cir-
cuits is close to ideal, showing that pausing data pack-
ets on the end hosts does not affect throughput for pause
lengths considered by REACToR. When pausing only
the ACKs, we find that there are two regimes to con-
sider. During slow start (‘Small Flow’), pausing ACKs
decreases the overall throughput of the flow—up to 30%
for 3-ms delays. For shorter delays (e.g., ≤1 ms) there is
no detectable effect for pausing ACKs. Once the flow
leaves slow start (‘Large Flow’), there is no effect on
throughput regardless of the reconfiguration delay.

These experiments consider the effect of circuit
scheduling on TCP traffic in the absence of packet loss.
In practice, packets may be lost for a variety of reasons.
We repeated the experiments above where each end host
drops packets uniformly at random with a configurable
drop probability. While TCP throughput suffers as ex-
pected with increasing drop rates, the difference in per-
formance with and without circuit scheduling (e.g., with
and without issuing PFC pause frames) is insignificant
for steady state loss rates up to 1%.

5.2 Switching “under the radar”
Next we evaluate the speed and flexibility with which
REACToR can be reconfigured. We first run an all-to-
all workload on eight hosts, where every host streams a
TCP flow to each of the other seven hosts using all avail-
able bandwidth. To serve this workload, we load REAC-
ToR with a schedule of seven TDMA periods that fairly
shares the links among all the flows. Each schedule pe-
riod is 1.5 ms, within which each host sends and receives
from each other host for 214.3 μs (including a 30-μs cir-
cuit reconfiguration delay) in each circuit configuration.
We schedule all data packets via the circuit switch, and
all TCP ACKs via the packet switch. We could use the
same schedule for every period, but to further exercise

9

10 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Time (us)

Ack

Ack

Ack

Ack

Ack

Ack

Ack

Data

Data

Data

Data

Data

Data

Data

Host 6 → 7

Host 5 → 7

Host 4 → 7

Host 3 → 7

Host 2 → 7

Host 1 → 7

Host 0 → 7

Apply Apply Apply

0 1500 3000

Reconfig Reconfig Reconfig

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

Time (s)

Th
ro

ug
hp

ut
 (G

bp
s) Host 0 → 7

Host 1 → 7
Host 2 → 7
Host 3 → 7
Host 4 → 7
Host 5 → 7
Host 6 → 7

Figure 7: All-to-all workload with circuit configurations changing every scheduling period.

our prototype we change the schedule so that hosts re-
ceive circuits in different permutations in each period.

Figure 7 shows three seconds of an all-to-all workload
where flows start at the same time on the hosts. The bot-
tom part shows the achieved throughput as reported by
one of the hosts: the flows from the other seven hosts
evenly split the available bandwidth. Total TCP goodput
received is 8.1 Gb/s, the maximum given the 86% duty
cycle resulting from the 30-μs reconfiguration delay in a
214.3-μs circuit.

At the application level, the achieved TCP goodput
maximizes network capacity and is stable over time.
However, if we zoom in and look at the packet traces,
as shown in the top part of the figure, we can see the
fine-grained behavior of scheduling the flows on circuits.
A control packet triggers a new schedule each period,
which the controller sends to the REACToR during the
previous period (at the time marked ‘Reconfig’) and the
switch loads just before the new period starts (‘Apply’).
The schedule partitions each period into seven circuit
configurations, one for each of the seven hosts sending
to the host we are observing.

At time offset zero, for instance, host 0 has the first
configuration in the schedule. Its data packets arrive over
the circuit it receives, and no other host can send data
packets through the circuit switch to host 7. The sec-
ond configuration schedules host 3, and so on. ACKs
received at host 7 use the packet switch, and hence can
overlap circuits scheduled for other hosts. (The flow as-
signments are asymmetric; when host 0 is sending to

Time (us)

Host 6

Host 5

Host 4

Host 3

Host 2

Host 1

Rx from Host 0

PFC

Reconfig

0 1500 3000

Figure 8: Changing the number and duration of configurations
in scheduling periods.

host 7 at time zero, host 7 is sending to host 6 and re-
ceiving ACKs from it.)

This all-to-all workload does not vary demand over
time. Given the frequency with which we can recon-
figure the circuit switch, we can also serve time-varying
workloads by serving different workload demands under
different scheduling times with different numbers of con-
figurations and circuit assignments.

We use another experiment to demonstrate this flexi-
bility. We divide the eight hosts into two groups: GA con-
sists of hosts 0–3, and GB hosts 4–7. We then generate
traffic among the hosts using two workloads. The first is
a group-internal all-to-all, where each host streams TCP
packets to the other three hosts in its group at the max-
imum possible rate. To serve this workload, REACToR
uses a schedule that has three configurations in a schedul-

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 11

ing period. The period lasts 1,500 μs, and each config-
uration lasts 500 μs (including a 30-μs reconfiguration
delay). The second is a cross-talking all-to-all workload
where each host in GA streams to all the other four hosts
in GB, and vice versa. For this workload, REACToR uses
schedules with four configurations. These scheduling pe-
riods also last 1,500 μs, but each configuration lasts 375
μs (again including a 30-μs reconfiguration delay).

In the experiment, we change from the group-internal
to the cross-talk workloads midway through, loading
the REACToR with correspondingly different schedules.
Figure 8 shows the incoming packets to host 7 around
the workload transition time. We controlled the exper-
iment so that the workload changes at an inconvenient,
but more realistic, time for REACToR: during a schedul-
ing period, at time 750 μs on the graph. REACToR’s
schedules commit the switch based on predicted demand,
and workloads are apt to change their demand indepen-
dent of when REACToR can conveniently accommodate
them. At this workload transition, REACToR is halfway
through its scheduling period and packets already queued
at the first three hosts continue to arrive via circuits.
Overlapping these flows, the other four hosts start send-
ing packets to host 7. These hosts do not have circuits,
so the packets arrive via the EPS at a much lower rate.

At the end of its committed scheduling period (time
1,500 μs), REACToR can then react to the workload
transition and schedule circuit configurations that match
the workload. At this time, host 7 changes from receiving
packets in 500-μs configurations, scheduled round-robin
from hosts 4–6, to receiving packets in 375-μs configu-
rations from hosts 0–3.

In summary, these experiments demonstrate the speed
and flexibility with which REACToR can reconfigure its
circuit schedules given a known demand. Applications
achieve their expected goodput at a high level, while in-
dividual flows are paused and released at fine time scales
when their circuits are scheduled. Further, REACToR
can adjust the circuit schedule to adapt to changes in ap-
plication behavior and demand.

5.3 Time-varying workloads
Next we show that REACToR can dynamically serve
rapidly changing traffic demands and efficiently move
flows from the EPS to the OCS.

In this experiment, we vary the number of high band-
width and low bandwidth flows among hosts at small
timescales. The workload pattern is again all-to-all
among eight hosts, which we observe from the perspec-
tive of one of the hosts and its seven incoming flows.
Initially one of the flows is a high-bandwidth flow send-
ing at full demand and served on the circuit switch, and
the other flows are lower bandwidth flows (each paced at
96 Mb/s) served on the packet switch. At time t1, one of

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 0
t1 t2 t3 t4 t5 t6

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 1
t1 t2 t3 t4 t5 t6

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 2

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 3

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 4

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 5

0
2

4
6

8

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

0 10 20 30 40

Flow 6

Figure 9: Goodput achieved for a time-varying workload of
three flows to a single end host.

the low bandwidth flows changes to a second high band-
width flow — representing a dynamic shift in application
behavior — and needs to be served on the circuit switch.
At each subsequent time step, another lower bandwidth
flow becomes high bandwidth and transitions from the
EPS to the OCS.

Figure 9 shows the throughput achieved by each of the
flows. Initially, the high bandwidth flow has exclusive
use of the circuit switch. At each time step ti, another
flow transitions from low to high bandwidth and REAC-
ToR promotes it from the EPS to the OCS. Each time, all
high bandwidth flows then adjust to fairly share the link
bandwidth to the receiving host. In each case, REACToR
seamlessly handles the shift in traffic demands.

Note that a flow might send at a lower rate during the
first 1.5 ms scheduling period. This happens when the
schedule changes and a flow is served earlier in this pe-
riod than the previous one. As a result, the queue buffer
does not yet have enough enqueued packets to fully uti-
lize the link. The queue buffer will be built up start-
ing from the second scheduling period, and the flow will
fully utilize the link again.

11

12 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Performance of a circuit switch ToR and REAC-
ToR in different workload regimes.

5.4 Large benefits from a small EPS
As a final step, we illustrate how an underprovisioned
packet switch in REACToR substantially relaxes the con-
straints of a pure circuit switch. In particular, we show
how the ability to offload small flows to the packet switch
enables REACToR (1) to maintain high circuit utilization
and high workload goodput under our workload assump-
tions, and (2) to support full simultaneous endpoint con-
nectivity for small flows.

We use simulation for these experiments to evaluate
behavior beyond the constraints of our testbed. The sim-
ulator models a single REACToR switch, including the
behavior of end hosts with NIC buffers, a circuit switch
with switching overhead, a packet switch with buffers,
and the circuit scheduler from Section 3.2. We validated
the simulator output using our prototype: for workloads
involving eight or fewer hosts, flow goodput calculated
by the simulator always had errors less than 1% of flow
goodput measured on the prototype implementation.

Maximizing circuit utilization Using the simulator,
we explore the performance regimes of a single hy-
brid ToR-like REACToR at rack scale. For compari-
son, we simulate 64 end hosts connected first to a pure
circuit switch and then to a REACToR switch via 100-
Gb/s links. We compare with a circuit switch, not be-
cause we expect it to perform ideally well, but because
it helps illustrate how a REACToR switch performs. In
this experiment, each host j sends traffic to its neigh-
boring twenty-one hosts j + 1 through j + 21, one flow
per host. The total offered demand across all twenty-one
flows is 100 Gb/s. The flow from j to j+ 1 is a “large”
flow whose demand D we vary up to the full 100 Gb/s.
The other twenty “small” flows have equal demands di-
viding the remaining (100-D)-Gb/s bandwidth equally.
For scheduling circuits, each configuration has a dura-
tion of at least 40 μs (including reconfiguration delay),
the scheduling period is 3000 μs (at most 75 configura-
tions), and the reconfiguration delay is 20 μs (hence each
configuration has at least 50% utilization). For REAC-

ToR, we simulate a 100-Gb/s circuit switch and a packet
switch internally, where the packet switch is 10 Gb/s or
20 Gb/s.

Figure 10 shows the results for this experiment. The x-
axis shows the demand of the large flow from each host
as a percentage of link rate (100 Gb/s), and the y-axis
shows the goodput of the ToR given the offered work-
load. We show three curves, one for a pure circuit switch
and two for REACToR, with the curves overlapping at
points. We note, of course, that a fully-provisioned
packet switch as the ToR could switch this workload at
full rate.

The lowest curve shows the results of using a pure cir-
cuit switch for the ToR, with the right-most point of the
curve as the ideal case for a circuit switch. Hosts send
all of their traffic in the large flow at 100 Gb/s (small
flows have zero demand). In this case all of the flows can
take full advantage of a circuit when the switch schedules
one for them: each flow has data to transmit during their
entire allocation in the circuit schedule. Once the small
flows start to have a non-zero demand, though, there is a
cliff in circuit switch performance. The demands to the
other hosts, although small, are all non-zero; as a result,
the switch schedules each small flow a circuit to carry
its traffic. But the small flows do not have the traffic
demand to fully utilize their circuit allocations, leaving
them under-utilized. As the larger flow decreases in de-
mand moving to the left, and the smaller flows corre-
spondingly increase, the circuit switch performance im-
proves as the small flows are better able to utilize their
allocations. Once the small flows are able to fully use
their circuits (when the large flow demand is at 87%),
the pure circuit switch performance levels off. At this
point, the lower goodput of the circuit switch is entirely
due to reconfiguration delay overhead.

In comparison, the middle curve shows the perfor-
mance of a hybrid ToR-like REACToR with a 100:10
capacity ratio. Between 90–100 Gb/s for the large flow
(< 10 Gb/s combined for the small flows), REACToR
performs just like a packet switch because the com-
bined demands of the small flows go through REAC-
ToR’s packet switch while the large flows go through
REACToR’s circuit switch. This regime represents RE-
ACToR’s ability to efficiently switch traffic that does not
have good burst behavior. As long as the combination
of those flows fits within the EPS “budget”, REACToR
has the performance of a 100-Gb/s packet switch using a
combination of a 100-Gb/s circuit switch and a 10-Gb/s
packet switch.

Below 90 Gb/s, REACToR performance gradually and
gracefully degrades as the combined demands of the
small flows exceed the 10-Gb/s per-host rate of REAC-
ToR’s packet switch; notably, it avoids any discontinu-
ities in performance. REACToR then needs to schedule

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 13

Figure 11: Performance of a circuit switch ToR and REAC-
ToR as a function of the number of small flows.

an increasingly larger portion of small flow demand on
the circuit switch. REACToR goodput will decrease as
a combination of imperfect utilization of circuits when
assigned to small-flow demand, and additional reconfig-
uration delays for those circuit assignments.

Note that for this curve the circuit and packet switches
had a 100:10 capacity ratio. There is nothing funda-
mental about this choice. A network using REACToR
switches could tailor this ratio to balance cost and work-
loads: networks with more shorter-burst flows can de-
ploy more EPS resources at higher cost, or vice versa. In
terms of Figure 10, more EPS resources shift the point
of 100% goodput for REACToR to the left, as shown by
the top-most curve corresponding to an internal 20-Gb/s
packet switch in REACToR.

Endpoint connectivity. In addition to maintain-
ing high circuit utilization, the underprivisioned packet
switch also enables REACToR to support many simulta-
neous flows between endpoints in the tail of the work-
load distribution. To illustrate this point, we perform one
last experiment focusing on the number of simultaneous
small flows between distinct endpoints in the network.
In a network of 64 hosts, we represent the aspect of the
workload well matched to circuits using one single large
flow consuming 90% of the capacity: an ideal case for
a pure circuit switched network. We then evenly split
the remaining 10% among n small flows, where n varies
between 1 and 64.

Figure 11 shows the goodput of the ToR (percentage
of offered demand serviced by the ToR) as a function
of the number of small flows for this experiment. At
n = 1, both the hybrid and pure circuit ToRs perform
the same on the trivial single large flow. The bottom
curve shows the pure circuit ToR goodput in the pres-
ence of small flows. Goodput steadily decreases because
the circuit switch has to assign circuits to every flow. As
the number of small flows increases, the demand in each
flow decreases; circuit durations decrease, but the rate of
reconfigurations correspondingly increases. Hence the
pure circuit ToR becomes increasingly less efficient.

The top curve shows the hybrid ToR performance. By
construction, its internal packet switch can satisfy the
bandwidth demands of the small flows and therefore effi-
ciently handle the full endpoint connectivity of the work-
load. If the total demand of the small flows comprising
the tail of the workload exceeds the capacity of the un-
derprovisioned packet switch, then the performance of
the hybrid ToR will trend towards the left-hand regime
in Figure 10 (e.g., where the large flow demand drops
below 90% with a 10G EPS).

6 Conclusion
Hybrid ToRs, such as REACToR, have the potential
to enable scalable, high-speed networks by pairing the
numerous advantages of optical circuit switching with
comparatively underprovisioned packet switching. The
key insight driving our work is that by moving the vast
majority—but not all—of the buffering out of the switch
and into end hosts, more scalable interconnect fabrics
can be supported.

Practically speaking, this only works if 1) end hosts
emit bursts of traffic to a given destination that are both
predictable and of sufficient duration to fill OCS circuits,
and 2) the hybrid scheduler operates at timescales that
are invisible to the transport and applications running on
the end hosts. In the first case, in-NIC buffering that his-
torically has been used to drive line rate transmissions
can be repurposed to stage impending data bursts, there-
fore fully using OCS circuits. In the second case, for a
two-REACToR prototype, we have shown that we can
schedule end hosts to make use of an OCS without neg-
atively impacting TCP performance. A design challenge
posed by interconnecting a large number of REACToRs
is co-scheduling and synchronizing directly connected
REACToRs to avoid the need for buffering on uplink
ports. We leave this global scheduling problem for fu-
ture work.

Acknowledgments
This research was supported in part by the NSF
through grants EEC-0812072, MRI-0923523, and CNS-
1314921. Additional funding was provided by a Google
Focused Research Award and a gift from Cisco Systems.
The authors thank Mindspeed for technical support and
providing the custom switch board. The manuscript ben-
efited from feedback and discussions with D. Andersen,
J. Ford, D. Maltz, A. Vahdat, our shepherd, Changhoon
Kim, and the anonymous NSDI reviewers.

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-

able, commodity, data center network architecture.
In Proc. ACM SIGCOMM, Aug. 2008.

13

14 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data center TCP (DCTCP). In Proc. ACM
SIGCOMM, Aug. 2010.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Siz-
ing router buffers. In Proc. ACM SIGCOMM, Oct.
2004.

[4] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
Proc. ACM IMC, 2010.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W. Su.
Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro, 15(1):29–36, Feb. 1995.

[6] N. Calabretta, R. Centelles, S. Di Lucente, and
H. Dorren. On the Performance of a Large-Scale
Optical Packet Switch Under Realistic Data Center
Traffic. Journal of Optical Communications and
Networking, 5(6):565–573, June 2013.

[7] K. Chen, A. Singla, A. Singh, K. Ramachandran,
L. Xu, Y. Zhang, and X. Wen. OSA: An Optical
Switching Architecture for Data Center Networks
and Unprecedented Flexibility. In Proc. USENIX
NSDI, Apr. 2012.

[8] N. Farrington, A. Forencich, G. Porter, P.-C. Sun,
J. Ford, Y. Fainman, G. Papen, and A. Vahdat. A
Multiport Microsecond Optical Circuit Switch for
Data Center Networking. IEEE Photonics Technol-
ogy Letters, 25(16):1589–1592, June 2013.

[9] N. Farrington, G. Porter, Y. Fainman, G. Papen, and
A. Vahdat. Hunting mice with microsecond circuit
switches. In Proc. ACM HotNets, Oct. 2012.

[10] N. Farrington, G. Porter, S. Radhakrishnan, H. Baz-
zaz, V. Subramanya, Y. Fainman, G. Papen, and
A. Vahdat. Helios: A hybrid electrical/optical
switch architecture for modular data centers. In
Proc. ACM SIGCOMM, Aug. 2010.

[11] S. Fu, B. Wu, X. Jiang, A. Pattavina, L. Zhang,
and S. Xu. Cost and delay tradeoff in three-stage
switch architecture for data center networks. In
Proc. IEEE High Performance Switching and Rout-
ing, July 2013.

[12] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and
D. Wetherall. Augmenting Data Center Networks
with Multi-gigabit Wireless Links. In Proc. ACM
SIGCOMM, Aug. 2011.

[13] N. Jerger, M. Lipasti, and L. Peh. Circuit-Switched
Coherence. Computer Architecture Letters, 6(1):5–
8, July 2007.

[14] S. Kandula, J. Padhye, and P. Bahl. Flyways To
De-Congest Data Center Networks. In Proc. ACM
HotNets, Oct. 2009.

[15] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The Nature of Data Center Traf-
fic: Measurements & Analysis. In Proc. ACM IMC,
Nov. 2009.

[16] R. Kapoor, A. C. Snoeren, G. M. Voelker, and
G. Porter. Bullet Trains: A Study of NIC Burst Be-
havior at Microsecond Timescales. In Proc. ACM
CoNEXT, Dec. 2013.

[17] B. Lee, A. Rylyakov, W. Green, S. Assefa, C. Baks,
R. Rimolo-Donadio, D. Kuchta, M. Khater, T. Bar-
wicz, C. Reinholm, E. Kiewra, S. Shank, C. Schow,
and Y. Vlasov. Four- and Eight-Port Photonic
Switches Monolithically Integrated with Digital
CMOS Logic and Driver Circuits. In Proc.
OFC/NFOEC, Mar. 2013.

[18] X. Li and M. Hamdi. On scheduling optical packet
switches with reconfiguration delay. IEEE Journal
on Selected Areas in Communications, 21(7), Sept.
2003.

[19] D. Marom. Switching Capacity of MEMS Tilting
Micromirrors. In Proc. IEEE Optical MEMS and
Nanophotonics, Aug. 2012.

[20] J. Martin, K. K. Chapman, and J. Leben. Asyn-
chronous Transfer Mode: ATM Architecture and
Implementation. Prentice-Hall, Inc., 1997.

[21] T. Moscibroda and O. Mutlu. A Case for Bufferless
Routing in On-Chip Networks. In Proc. ISCA, June
2009.

[22] R. Olsson. pktgen the linux packet generator. Proc.
Linux Symposium, July 2005.

[23] G. Porter, R. Strong, N. Farrington, A. Forencich,
P.-C. Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating microsecond circuit switch-
ing into the data center. In Proc. ACM SIGCOMM,
Aug. 2013.

[24] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kab-
bani, G. Porter, and A. Vahdat. SENIC: A scalable
NIC for end-host rate limiting. In Proc. USENIX
NSDI, Apr. 2014.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 15

[25] A. Vahdat, M. Al-Fares, N. Farrington, R. N.
Mysore, G. Porter, and S. Radhakrishnan. Scale-
out networking in the data center. IEEE Micro,
30(4):29–41, Aug. 2010.

[26] G. Wang, D. G. Andersen, M. Kaminsky, K. Papa-
giannaki, T. S. E. Ng, M. Kozuch, and M. Ryan.
c-Through: Part-time Optics in Data Centers. In
Proc. ACM SIGCOMM, Aug. 2010.

[27] B. Wu, K. L. Yeung, and X. Wang. Improving
scheduling efficiency for high-speed routers with
optical switch fabrics. In Proc. IEEE Globecom,
Dec. 2006.

[28] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar,
A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror Mir-
ror on the Ceiling: Flexible Wireless Links for Data
Centers. In Proc. ACM SIGCOMM, Aug. 2012.

15

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 17

Catch the Whole Lot in an Action:
Rapid Precise Packet Loss Notification in Data Centers

Peng Cheng, Fengyuan Ren, Ran Shu, Chuang Lin
Dept. of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Email: {chengpeng5555, renfy, shuran, clin}@csnet1.cs.tsinghua.edu.cn

Abstract
An increasing number of TCP performance issues in-
cluding TCP Incast, TCP Outcast, and long query com-
pletion times are common in large-scale data centers. We
demonstrate that the root cause of these problems is that
existing techniques are unable to maintain self-clocking
or to achieve accurate and rapid packet loss notification.
We present cutting payload (CP), a mechanism that sim-
ply drops a packet’s payload at an overloaded switch,
and a SACK-like precise ACK (PACK) mechanism to
accurately inform senders about lost packets. Exper-
iments demonstrate that CP successfully addresses the
root cause of TCP performance issues. Furthermore, CP
works well with other TCP variants used in data center
networks.

1 Introduction
Modern large-scale data centers, which enable cloud
computing and host online services with intensive server-
side computing and storage, are significantly different
from traditional data centers because of shorter round
trip time (RTT), higher bandwidth, highly variable flow
characteristics [4, 18] and very low latency requirements
[4, 28]. Because of these differences, TCP has been
found to have various performance issues in large-scale
data center networks (DCNs).

In recent years, TCP Incast [22], TCP Outcast [24], the
TCP out-of-order problem [32], and long-query comple-
tion times [4] have been found to significantly affect TCP
performance in DCNs. Through experiments, we found
that throughput cliff (described in § 2.1) and TCP unfair-
ness in multiple-bottleneck scenarios [20] may also exist
in DCNs. Collectively, these problems are referred to
as “TCP problems” in this paper. These problems must
be resolved to achieve high throughput and low latency,
which are critical requirements of many data center ap-
plications [4, 14].

Our experimental observations and comprehensive

analysis attribute TCP problems to three issues. First,
self-clocking stall caused by insufficient ACKs results
in Incast, throughput cliff, and unfairness. Second, in-
accurate packet-loss notification caused by ambiguous
loss indication results in the TCP out-of-order problem.
Third, slow packet loss detection leads to long query
completion time.

Packet loss notification is a powerful mechanism to ad-
dress these problems. It maintains self-clocking, makes
unambiguous differentiation between packet loss and
out-of-order packets and shortens the detection time of
packet loss. We propose a simple solution called CP1 for
packet loss notification. CP drops only the packet pay-
load instead of the entire packet during buffer overload
and uses a SACK-like precise ACK (PACK) technique to
accurately inform senders of lost packets. In our exper-
iments, CP successfully demonstrates its ability to solve
TCP problems.

We implement CP in NetFPGA cards. In our imple-
mentation, CP only results in a 56-ns processing delay
and less than a 2% increase in resource usage. Further-
more, the additional overhead is rarely introduced be-
cause the processing is only triggered by packet loss.
Because of its low overhead and limited extra resource
usage, CP can be easily added to existing commercial
switches.

This paper makes two main contributions:

• Our comprehensive analysis identifies three key is-
sues with TCP in large-scale DCNs: self-clocking
stall, inaccurate packet loss notification, and slow
packet loss detection.

• We propose CP, which leaves the packet header
intact during packet drop processing, merely cut-
ting out the payload to rapidly inform the sender of
packet loss. Experiments demonstrate that this can
solve many TCP problems and has good compati-
bility with other variations of TCP used in DCNs.

1CP is the abbreviation of “cutting payload”.

1

18 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

550

600

650

700

750

800

850

900

1 25 50 75 100 125 150 175 200 225 250

Go
od

pu
t(
M
bp

s)

Number of Senders

DCTCP(RTO_MIN=10ms)
TCP(RTO_MIN=10ms)

PTC=
170

PTC=
85

PTC=
42

PTC=
14

Figure 1: In this experiment, each sender transfers 64 KB
data to one receiver through 128 KB bottleneck link simul-
taneously . The network topology and other experimental
configurations are the same as MapReduce-like application
scenario described in § 6 .1 . We observe that DCTCP avoids
the throughput cliff where PTC=14 and postpones it from
PTC=42 to PTC=50, but still suffers the throughput cliff
with an increasing number of senders .

The remainder of this paper is organized as follows.
In Section 2, we summarize the existing TCP problems.
In Section 3, we analyze inherent reasons for these prob-
lems. In Section 4 and Section 5, we propose CP and
describe its design and implementation in detail. In Sec-
tion 6, we test and illustrate the performance of CP when
handling TCP performance issues in DCNs. Finally, we
conclude the paper in Section 7.

2 TCP in Contemporary DCNs
In this section, we summarize and discuss TCP prob-
lems in DCNs based on experimental results from a small
testbed. Our testbed is made up of one aggregation
switch, four top-of-rack (ToR) switches, and twelve end-
hosts. More details are discussed in § 6.

2 .1 Low and Volatile Throughput
In current data centers, the many-to-one communica-
tion pattern is common in applications such as MapRe-
duce [10] and Web search applications [18]. In this pat-
tern, data from many synchronized senders is transferred
to the same receiver in parallel; thus, TCP Incast col-
lapse naturally occurs and throughput decreases sharply.
Many approaches have been proposed to address TCP
Incast, such as DCTCP [4], ICTCP [29], and decreas-
ing RTOmin [27]. However, through experimental ob-
servation, we found that these approaches are not able to
satisfy the particular demands of two major types of ap-
plications: MapReduce-like applications and Web search
applications.

In MapReduce-like applications, the number of
senders varies dramatically (the average is 154 with a
standard deviation of 558) [19]. When the number of
senders is large, the buffer associated with the bottleneck
link overflows even though each sender transmits only
one packet [4]. Then, because of packet loss and the one-
packet transmission window, timeouts are inevitable. In

0

100

10 20 30 40 50 60 70 80 90
Number of Experimental Flow

0

100

200

300

400

500

600

700

800

900

1000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Su
m

 o
f M

BF
's

Go
od

pu
t(

M
bp

s)

Ratio of MBF to SBF

SBF=5
SBF=25
SBF=50
Theory

Figure 2: In this experiment, all flows use TCP with SACK,
and the topology is shown in Fig . 9 (b) . Other experimental
configuration are the same as those described in § 6 .2 .

order to keep high throughput and avoid TCP Incast
collapse, even with DCTCP and ICTCP, the number of
senders needs to stay within an upper limit. In practice,
this limit fails to meet demands of large-scale applica-
tions. In addition, we observed a particular phenomenon
when using a small value for RTOmin, as shown in Fig.
1. We call this a throughput cliff, reflecting that the
throughput will sharply decline at the point of through-
put cliff (PTC) and then slowly climb. We found that
the throughput cliff is due to synchronous adjustment
of the congestion window at senders and synchronous
packet loss2. The synchronous packet loss leads to in-
creasing timeouts and throughput decline. Thus, these
well-known approaches to alleviate TCP Incast collapse
cannot maintain sufficiently high throughput with a large
number of senders.

In Web search applications, because of the fixed size
of search result, the number of senders is not significantly
large. However, the query completion time is closely re-
lated to Web search performance [28]. From our exper-
iments, we were surprised to find that, because a high
and stable throughput cannot be guaranteed by TCP or
its variants, query completion time is far greater than ex-
pected and has frequent fluctuations3.

2 .2 TCP Unfairness
TCP unfairness in wide area networks and wireless net-
works is well known. In DCNs, TCP unfairness occurs
in both single-bottleneck and multi-bottleneck scenarios.

In a single-bottleneck scenario, a port blackout [24], in
which each input port accidently loses a series of pack-
ets, causes the consecutive packets loss or even entire
window loss leading to TCP timeout. When there are

2For example, with 14 senders, if the bottleneck buffer is 128
KB and each sender increases its congestion window to 7 packets
(1.5KB× 14× 6 = 126KB), all senders will see a drop synchronously.
Consequently, synchronous adjustment of congestion window and syn-
chronous packet loss happen at PTC.

3The concrete results are presented in Fig. 8(b) in § 6.1. Using
TCP with 10ms-RTOmin, there is a delay of twice the expected value
when the number of senders is greater than 26. Using DCTCP, there
is a severe fluctuation in query completion time when the number of
senders is between 22 and 42.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 19

both a large and small number of flows from two differ-
ent input ports to one output port, timeouts preferentially
happen on the small flows, which results in TCP Out-
cast. A straightforward solution called equal-length rout-
ing [24] changes the routing paths through core switches
to address this problem. However, this imposes signifi-
cant pressure on core switches and increases end-to-end
delay. Therefore, alleviating or eliminating the damage
caused by a port blackout without imposing additional
costs is desirable.

In the multiple-bottleneck scenario, multiple-
bottleneck flows (MBF), i.e., cross-rack flows, share two
bottlenecks with two different single-bottleneck flows
(SBF), i.e., in-rack flows, which have the same number
of flows. Fig. 2 shows that when the packet loss ratio is
very high (i.e., SBFs = 50), MBFs have a significantly
lower throughput. However, when the packet loss ratio
is low (i.e., SBFs = 5 or 25), the throughput of MBFs
is higher than the theoretical value. Further analysis
indicates that MBFs always have a higher packet loss
ratio than SBFs; thus, they may lose all transmitted
packets and trigger timeouts in a high packet loss ratio
scenario. However, in a low packet loss ratio scenario,
SBFs suffer the TCP Outcast problem, which leads to
the higher throughput of MBFs. Thus, in both situations,
either SBFs or MBFs suffer from unfairness.

2 .3 TCP Out-of-order Problem
Several data center topologies [1, 14, 15] have been pro-
posed to deal with bottlenecks in core switches; how-
ever, they employ many redundant links that are uti-
lized to only 40% -50% [8, 25]. Therefore, many mul-
tipath routing techniques have been proposed, such as
ECMP, Hedera [2], and Valiant Load Balancing (VLB)
[14]. All these techniques are flow-based traffic split-
ting schemes, which are dramatically worse than an ideal
packet-level one. However, packet-level schemes lead to
serious throughput degradation because of out-of-order
packets [11]. Therefore, tackling the out-of-order prob-
lem can significantly improve the performance of multi-
path routing techniques.

2 .4 Long Query Completion Time
Data centers host many soft real-time online services
such as retail, advertisement, and Web search[28]. Query
completion time is very critical because it is directly re-
lated to the quality of these online services.

Query completion time is influenced by the amount
of queuing delay and retransmission time. Long queu-
ing delay has been addressed by some proposed schemes
[4, 5, 28]. We conducted an experiment to determine if
query completion time is affected by a long retransmis-
sion time. In our experiment, we ran a query with 20
flows. As shown in Fig. 3, in flow No.18, the delay

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
m

s

Flow Number

15.37

Figure 3: Each of 20 DCTCP flows transfers 50 KB to the
same receiver through the 128 KB bottleneck link . We con-
ducted experiments for 10,000 random instances, and found
that in 1,231 experiments, some flow completion times are
larger than 15ms. The figure shows detailed information
of the completion time of each flow in one of these experi-
ments .

is approximately two times that of other flows, thereby
resulting in delay of the completion time of the entire
query. After more in-depth observation, we found that
flow No.18 suffers from many fast retransmissions and
wastes significant time retransmitting. More than 12%
of the queries suffer the same problem in our 10,000
random experimental instances. Therefore, we conclude
that retransmission delay imposes a significant influence
on query completion time.

3 Why TCP Does Not Work Well in DCNs
Here, we discuss three fundamental weaknesses of TCP
and its variants used in DCNs.

3 .1 Self-clocking Stall
The self-clocking mechanism was proposed in 1988 [17].
Essentially, the arrival of an ACK tells the sender that the
network can accept another packet. Through this mech-
anism, TCP can maintain continuous and stable trans-
mission and quickly fill up the pipeline. Without suffi-
cient ACKs, however, self-clocking stops, which causes
a timeout. In DCNs, the congestion window of each flow
is relatively small because of the low delay-bandwidth
product and large number of concurrent connections. In
addition, the many-to-one traffic pattern often causes se-
vere congestion and a high packet loss ratio. Therefore,
self-clocking stall in a many-to-one traffic pattern of-
ten triggers timeouts that result in low and volatile TCP
throughput. The port blackout phenomenon and high
packet loss ratio of MBFs lead to the loss of the vast
majority of packets in a window or even the entire win-
dow. This makes it increasingly less likely that a flow
can receive a sufficient number of ACKs to maintain self-
clocking. Therefore, self-clocking stall is an essential
reason for low and volatile TCP throughput and TCP un-
fairness.

3

20 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To maintain self-clocking, three enhancements have
been proposed in prior work. The first mechanism is de-
fined in RFC 3042 [7]: when a sender receives two dupli-
cate ACKs, it sends one more packet immediately. The
second mechanism is the TCP implementation in Linux
kernel 2.6.3, in which a sender sends one more packet ev-
ery time it receives a duplicate ACK. Unfortunately, the
two mechanisms mentioned above fail when all segments
in whole congestion window are lost, such as with the
port blackout phenomenon. The third mechanism is tail
loss probe (TLP) [12]. It transmits one packet every two
round-trips when no ACK is received at the end of the
transaction. This mechanism is an incomplete solution
to avoid self-clocking stall because it still fails except in
the tail loss case. Therefore, whether we use standard
TCP, RFC 3042, TCP in Linux, or TLP, self-clocking
stall remains inevitable.

This leads to the realization that we need a com-
plementary method, apart from ACK, to maintain self-
clocking for addressing TCP Incast and unfairness.

3.2 Inaccurate Packet-loss Notification
In § 2.3, we see that packet-level multipath routing tech-
niques cause performance problems due to TCP’s reac-
tion to out-of-order packets. Here, by considering the
features of DCNs, we provide further explanation. Since
queuing delay causes most of the end-to-end delay in
DCNs, a high-latency path is always accompanied by
link congestion. Therefore, the phenomena of packet
loss and out-of-order packets often co-exist in multipath
DCNs. TCP deals poorly with these mixed paths due
to the one-size-fits-all solution of using a fixed thresh-
old value (three duplicate ACKs) to determine whether
packet is out-of-order or lost. This often leads to spu-
rious retransmission or sluggish congestion control [32]
because it is impossible to determine the exact number of
allowable out-of-order packets to set an effective thresh-
old. TCP SACK is an effective way to avoid retrans-
mitting received packets, however, it also cannot address
this problem because it is not able to distinguish whether
a packet is out-of-order or lost. Therefore, only by accu-
rately distinguishing between lost or out-of-order pack-
ets, can TCP make correct decisions regarding packet re-
transmission and congestion window size.

3 .3 Slow Packet loss Detection
In § 2.4, we claimed that reducing retransmission delay is
important to shorten query completion time. Retransmis-
sion delay is composed of the detection time of packet
loss and the retransmission time of lost packets. How-
ever, it is difficult to improve the retransmission time of
lost packets because it depends on a relatively mature
congestion control algorithm. Thus, we focus on reduc-
ing detection time.

There are two indicators of packet loss in TCP: time-
out and three duplicate ACKs. The detection time of
packet loss caused by timeout is directly related to RTT
estimations and RTOmin. Imprecise RTT estimations
[31] and improper RTOmin [27] lead to slow packet loss
detection. Timeouts lead to other problems as well [31];
thus, avoiding timeouts is a good strategy, as discussed
in § 3.1.

In the traditional Internet, packet loss is detected by
the reception of three duplicate ACKs. In DCNs, due to
the small congestion window, it is very unlikely that the
window size is large enough to cause enough duplicate
ACKs to be received by the sender in one RTT. More-
over, packet loss implies congestion where RTT becomes
very long as a result of a crowded queue. Therefore,
timeouts and the need for three duplicate ACKs further
delays packet loss detection.

3 .4 Related Work
There are three typical types of schemes to address these
problems.

One is to use a TCP-like protocol, such as DCTCP.
DCTCP uses ECN to adjust the congestion window. Un-
fortunately, when packets are dropped by the switch, the
ECN information is also lost and DCTCP degenerates
to standard TCP or SACK, which do not work well in
DCNs. DCTCP also does not work normally in such an
environment, especially with the loss of the entire con-
gestion window. Furthermore, DCTCP does not work
well in a multipath environment because of the potential
for out-of-order packet. Finally, DCTCP must wait to
receive three packets before retransmission when packet
loss occurs, and this period can be relatively long be-
cause of potential queuing delays on switches. Both
HULL [5] and D2TCP [26], which extend DCTCP, have
these same problems.

The second class of schemes is based on rate control.
QCN [3], D3 [28] and PDQ [16] use implicit or explicit
rate control to avoid self-clocking stall. However, they
cannot achieve accurate and rapid packet loss detection.
pFabric [6] is a clean-slate design that totally solves all
the above problems. Using rapid retransmission by re-
ducing RTOmin to one RTT, pFabric avoids inaccurate
and slow packet loss detection. However, it is hard to
implement it in practice because it needs changes to both
endhosts and switch hardware.

The third class of schemes uses special packets to in-
form the sender of a packet loss. For example, source
quench [23] sends ICMP packets for every loss. The
problem with such schemes is that it is very difficult for
a switch to create a packet to be sent in the reverse direc-
tion when traversing the forward path. It also destroys
TCP self-clocking and self-pacing.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 21

0 16 32

(a) SACK

0 16 32

(b) PACK

Figure 4: Unambiguous identities of SACK and PACK .

4 CP Design
We now discuss the design of CP.

4 .1 Packet Types
CP uses four types of packets.

(1) Normal packets are sent by a sender that does not
support CP. These packets are dropped by a switch when
the buffer exceeds the defined threshold.

(2) CP-enabled packets are data packets with pay-
loads that are sent by CP-capable senders. Only the pay-
load portion of a CP-enabled packet is dropped when the
buffer exceeds the defined threshold.

(3) Payload-cut packets are header-only packets
without payloads. A CP-enabled packet becomes a
payload-cut packet after payloads are cut off by the
switch. Switches should ignore the IP length field in
payload-cut packets.

(4) PACKs contain accurate packet loss information
and are sent by CP-capable receivers when payload-cut
packets are received.

4 .2 CP Drop Processing
A switch with the payload-cutting function is called a CP
switch. A CP switch has a buffer for each port to store
packets awaiting forwarding. If the total size of packets
in any port buffer exceeds the threshold, and a new CP-
enabled packet arrives, the switch will cut off the payload
of the CP-enabled packet. During this operation, first,
the packet is marked as payload-cut packet. Then, the IP
length is preserved for the receiver to calculate the packet
size (further explanations in § 4.3), and the TCP check-
sum is recalculated and revised. After that, the regener-
ated packet without the payload queues in the buffer as
a normal packet and waits for forwarding. It should be
noted that a little extra buffer space is necessary to store
new payload-cut packets. This will be further discussed
in § 4.6.

Because of IP length field conservation, payload-cut
packets may be dropped at modern switch ASICs or
many middle boxes. As an alternative to achieve CP
drop processing, we can preserve the first two bytes of
the data payload to carry the IP length. In consideration
of the similarity between these two methods, we will just
discuss the first method.

4 .3 Packet-loss Feedback: PACK
For backwards compatibility, we define a PACK option
similar to the SACK option. As shown in Fig. 4(a), the
SACK option uses the left and right edges of the block

to indicate a SACKed block. The left edge represents
the first sequence number of the block, and the right
edge corresponds to the sequence number immediately
following the last seen sequence number [21].

There are two key considerations to accomplish de-
signing PACK. The first is determining the left edge and
right edge of the lost packet from the payload-cut packet.
The second is how to represent the lost packet infor-
mation such that it is compatible with SACK. For the
first issue, we can easily obtain the left edge from the
sequence number in the TCP header of the payload-cut
packet. The original packet length in the IP header is pre-
served; hence, we can use it to calculate the right edge4.
For the second issue, as shown in Fig. 4(b), we swap the
position of the left and right edge to indicate lost packet
information. This arrangement will not produce ambigu-
ity because the left edge must be smaller than the right
edge in the SACK option. In this manner, we can parsi-
moniously indicate lost packet information in the PACK
option. When a payload-cut packet arrives, the receiver
simply parses it and adds the lost packet information in
the first block of the PACK option, which is similar to
the processing in SACK. For convenience, the receiver
marks the packet to tell the sender to parse the PACK
option. Marking will be discussed in § 5.1.

For simplicity, the two-byte PACK-Permitted option is
similar to SACK-Permitted option. The option is sent in
the SYN by the sender to inform the receiver that it can
support the PACK option. In our implementation, we just
use the SACK-Permitted option: this does not affect the
performance of CP.

4 .4 Sender Reaction to PACK
TCP SACK maintains a “scoreboard” to store the status
of packets [9]. Every packet is in one of four states, i.e.,
“received” (or “SACKed”), “out-of-order,” “lost,” and
“retransmitted.” Like SACK, CP stores packet informa-
tion in a “scoreboard.” When the new packet is transmit-
ted, its status changes to “out-of-order.” We divide the
sender action on receiving PACK into three steps. In the
first step, the sender parses the PACK option as described
in § 4.3 and checks state of the packet. If the status of
the packet is “received” or “lost,” the sender takes no ac-
tion. Otherwise, it enters the second step, converting the
packet status in the scoreboard to “lost” and adding the
packet to the retransmission queue. In the third step, if
TCP is not in a state of fast retransmission, the sender
triggers the fast retransmission mechanism and performs
congestion control. When the packet has been retrans-

4right edge = left edge + SYN + FIN + original length -
IP header length - TCP header length. In Linux kernel, SYN and FIN
have only 1 bytes payload by default, although the payload length is 0
in reality. Therefore, if the packet is SYN or FIN packet, SYN or FIN
in the above formula equals 1. Otherwise, both are 0.

5

22 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mitted, the packet status changes to “retransmitted”. It
should be noted that using three duplicate ACKs to indi-
cate packet loss is not necessary unless payload-cut pack-
ets or PACKs themselves are lost. Therefore, we recom-
mend that the threshold for duplicate ACKs is set to a
relatively large number.

4.5 Benefits
CP overcomes the three TCP defects as follows:
Self-clocking Stall: Payload-cut packets and PACKs
provide the sender with packet loss notification. Using
this notification, the sender can maintain a self-clocking
mechanism and avoid timeouts.
Inaccurate Packet loss Notification: Payload-cut pack-
ets provide the receiver with accurate packet-loss infor-
mation, which is brought back to the sender by PACKs.
Thus, the sender can easily distinguish between lost and
out-of-order packets.
Slow Packet loss Detection: Because PACKs quickly
carry the information of packet loss back to the sender,
the sender could start the retransmission immediately
without waiting for three duplicate ACKs. Therefore, CP
shortens the packet loss detection time.

Note that CP is compatible with existing congestion
control protocols proposed for data centers because it is
an additional mechanism for loss detection. In addition,
it is TCP-friendly and backward compatible.

4 .6 Discussion
The extra buffer can be small: An extra buffer or a
lower drop threshold is needed at a CP switch to hold
payload-cut packets during an output buffer overload. It
only needs to be one maximum packet size because the
input bandwidth becomes smaller than output bandwidth
after CP processing. For example, the average packet
size (without MAC header) in DCNs is 850 bytes [8]. CP
reduces the packet length to only 66 bytes, a reduction
by about 92.37%5. Thus, with CP, a 1 Gbps output link
can tolerate an input burst at about 13.1 Gbps (1 Gbps
/ 7.63%). Therefore, the extra buffer can be quite small
without loss of payload-cut packets.
Loss of payload-cut packets or PACKs: The loss of
payload-cut packets or PACKs is a rare occurrence be-
cause of their small size. Nevertheless, even if one PACK
is dropped, the sender can recover the information of
the lost PACK from a subsequent PACK. Similarly, if a
payload-cut packet is dropped, the sender can use dupli-
cate ACKs to confirm the lost packet, which causes CP
to degenerate to standard TCP SACK.

5The average packet length is 864 B (14 MAC header + 850 average
length) and payload-cut packet length is 66 B (14 MAC header + 20
IP header + 20 TCP header + 12 timestamp option). The ratio of the
header length to packet length is about 7.63% for this packet length.

Source Port Number Destination Port Number
Sequence Number

Acknowledgment Number

Options and Padding

0 8 16 24 32

Reserved

Window SizeHeader
Length

Urgent PointerTCP Checksum

Figure 5: Extended TCP header for CP implementation

NetFPGA

In
pu

t A
rb

ite
r

O
ut

pu
t P

or
t L

oo
ku

p

O
ut

pu
t Q

ue
ueFIFO

Pa
ck

et
 R

ef
or

m
er

D
ro

p
 P

ay
lo

ad

Buffer Size
Registers

EC
N

 &
 C

P
M

ar
ke

r

CP Handler

TCP Checksum Calculation
(6 cycle delay)

New Packet Length Calculation
(7 cycle delay)

CP Controller
(no delay)

ECN Handler

IP Checksum Calculation
(1 cycle delay)

Data Path Control Path
Figure 6: Structure of NetFPGA for implementing the CP
switch . The packets are forwarded through the data path,
and the decision-making modules in the data path generate
signals that tell the processing modules whether or how to
deal with the packet via the control path .

5 Implementation
This section discusses CP implementation details.

5 .1 Protocol Details
As shown in Fig. 5, two reserved bits in the TCP header
are defined as CP-available (CPA) and precise packet
loss (PPL) to identify the four types of packets men-
tioned in § 4.1. Packets with CPA = 1 and PPL = 0 are
CP-enabled packets and those with CPA = 0 and PPL =
1 are PACK packets. When the payload of CP-enabled
packets are cut off, PPL becomes 1. Therefore, packets
with CPA = 1 and PPL = 1 are payload-cut packets. To
maintain compatibility, packets with CPA = 0 and PPL =
0 are defined as normal TCP packets. CP switches han-
dle them in the same way as commodity switches.

5 .2 CP switch
CP switches cut off the payload of CP-enabled packets
and change the TCP checksum when a buffer exceeds the
threshold. In our prototype, we also add ECN capability
to allow us to compare DCTCP with CP as discussed in
§ 6, .

Fig. 6 shows the basic structure of the CP switch im-
plemented in NetFPGA cards. When a packet enters the
switch, it first looks for an output port and then waits
for the handling of the ECN & CP marker. Depend-
ing on the packet type and buffer occupancy level, the
ECN & CP marker determines how to deal with packets

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 23

Table 1: Resource Usage of NetFPGA
Reference

Switch
ECN

Switch
CP

Switch
Slices 12807 13579 13777

Slice Flip Flops 14158 14365 14511
4 Input LUTs 17589 17907 18239

and directs the operation of related modules. For exam-
ple, on seeing payload-cut packets or PACK packets, the
ECN & CP marker allows them to pass directly through
all modules in the data path and places them in the for-
warding buffer. All modules work in parallel, and the
packet waits in the FIFO queue until all modules have
finished their processing. After a short processing delay
(seven-cycle delay for CP handler; one-cycle delay for
ECN handler; no delay for others6), packet reformer re-
generates the packet, which introduces no delay and little
additional overhead. Finally, the packet is placed in the
output buffer and waits for forwarding. As discussed in
§ 4.6, an extra buffer space may be necessary to absorb
all payload-cut packets corresponding to dropped pack-
ets; however, the extra buffer size can generally be quite
small, because some payload-cut packet loss is accept-
able. Therefore, the extra buffer is set to 4 KB in our
implementation.

The CP handler comes out three operations to im-
plement CP: (1) TCP checksum calculation . Re-
computing a checksum is only needed for the TCP
header whose maximum size is 48 B (8 IP address + 20
TCP header + 20 padding); thus, the overhead is very
limited. For example, NetFPGA can process 8 B in a cy-
cle, and no more than 6 cycles (i.e., 48 ns) are consumed
to re-compute the checksum. With increased process-
ing capacity, this overhead can be further reduced and
will become negligible. (2) New packet length calcula-
tion . This module changes the packet length parameter
when sending a packet header because of NetFPGA re-
quirement. (3) CP controller . This module tells packet
reformer to cut out the payload.

Clearly, CP implementation is quite simple, and the
processing delay at the switch is very small. Further-
more, the cutting off payload mechanism is not a normal
operation for each packet, because it is only triggered
to avoid packet dropping. Therefore, the additional pro-
cessing delay at the switch is not introduced frequently.
In addition, CP introduces only a little resource con-
sumption on switches. Table 1 shows that, compared
with ECN switches, the resource usage in CP switches
only increases by less than 2%.

6The clock rate of NetFPGA is 125 MHz. Each cycle is equivalent
to 8 ns, i.e., CP drop processing introduces a delay of 56 ns, and an
additional delay of ECN is 8 ns. ECN marking must change one bit
in each packet; thus, the new IP checksum is similar to the former
and is easily calculated. Otherwise, the CP mechanism will cut off all
payloads and require more time to recalculate the TCP checksum.

Agg1

ToR1

Rack1

ToR2

Rack2

ToR3

Rack3

ToR4

Rack4
Figure 7: Basic topology of our testbed

We conclude that the implementation complexity, pro-
cessing delay, and resource consumption of CP switches
are acceptable; thus, CP drop processing can be built into
commercial switches.

6 Evaluation

This section is divided into four parts. In each subsec-
tion, we test the effectiveness of CP in addressing each
TCP problem mentioned in § 2. We also compare its
performance with that of other state-of-the-art protocols
used in DCNs. Our experimental results showed that CP
addresses the TCP problems and achieves the expected
performance goals.
Testbed . We use a real testbed to evaluate CP perfor-
mance. Our testbed is shown in Fig. 7. All switches
in our experiments are NetFPGA cards with four 1-Gbps
Ethernet ports. The implementation of the CP switch as
described in § 5.2 is downloaded to the NetFPGA cards,
and the buffer sizes of each port are arbitrarily set from
1 KB to 512 KB. Each ToR switch communicates with
others through the aggregation switch and connects three
hosts (Dell OptiPlex 360 desktops with an Intel Celeron
Dual-Core 2930 MHz CPU, 4 GB RAM and 1 Gbps
NIC). All hosts in our testbed are running CentOS 5.5
with Linux kernel 2.6.38 with protocol patches applied.
The RTT without queuing delay is approximately 100 μs
between two endhosts in the same rack.
Protocols . We study four congestion control schemes.
(i) TCP: The TCP variant we study is TCP SACK. We
also allow DSACK [13]. The TCP receive window size
is set to 256 KB so that TCP can meet a 1 Gbps line rate.
We disable delayed ACK to avoid performance problem
[30]. The number of tolerable out-of-order packets is
three by default. Furthermore, RTOmin is set to either
10 ms or 200 ms and this is denoted TCP (10ms) and
TCP (200ms), respectively.
(ii) CP: Switches carry out CP; receivers generate
PACKs. Other settings are the same as TCP.
(iii) DCTCP: The parameters are set to K = 32 KB and
g = 1/16 [4]. The other settings are the same as for TCP,
including two values for RTOmin.
(iv) DCTCP with CP (CP&DCTCP): CP is used along
with DCTCP. Other settings are the same as for DCTCP.

7

24 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Go
od

pu
t(

M
bp

s)

550

600

650

700

750

800

850

1 25 50 75 100 1

Go
od

pu
t(

M
bp

s)

Number of S

PTC= 85

PTC= 42

PTC= 14

0
100
200
300
400
500
600
700
800
900

1000

1 25 50 75 100 125 150 175 200 225 250

Go
od

pu
t(

M
bp

s)

Number of Senders

CP & DCTCPCP

DCTCP(10ms)

TCP(10ms)

DCTCP(200ms)
TCP(200ms)

(a) MapReduce-like Apps
P(200ms) TCP(10ms) TCP(200ms)

8

16

32

64

128

256

1 25 50 75 100

Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(m
s)

Number of Senders

CP & DCTCPCP

DCTCP(10ms)TCP(10ms)

DCTCP(200ms)

TCP(200ms)

(b) Web search Apps

Figure 8: Experimental results of scenarios for many-to-
one transmission . Notice the log scale in Fig . 8(b) .

6 .1 Low and Volatile Throughput Impair-
ment

Here, we explore the results of using CP in two typi-
cal scenarios (MapReduce-like and Web search applica-
tion scenarios), which have different performance crite-
ria (see § 2.1).
Topology and parameter settings . In these tests, nine
hosts send data to a host on another rack. Each sending
host is used to emulate multiple senders [28]. Flows are
bottlenecked at the link from the aggregation switch to
the receiving host. The buffer on the bottleneck link is
128 KB, and the other buffers are 512 KB. Because the
settings of RTOmin can have a significant impact on per-
formance in these scenarios [27], two different RTOmin
settings (10ms and 200ms) were studied.
MapReduce-like application scenario . In this test, a
receiver generates a query to each sender, and each of
them immediately responds with 64 KB of data. Fig.
8(a) shows that only CP successfully avoids both TCP In-
cast and the throughput cliff when the number of senders
is large. both DCTCP and TCP with 10-ms-RTOmin
maintain a throughput of about 600 Mbps; however,
the throughput cliff is not avoided. We see that CP
and DCTCP with CP achieve a high throughput7 and
avoid throughput cliff because the payload-cut packets

7In CP implementation, the receiver obtains approximately 43
payload-cut packets for each sender and only wastes 4.32% of the 1
Gbps bandwidth when the number of senders is 250.

S1

Dest 1

Dest 2

S2S3Dest 3

Bottleneck
LinkBottl

eneck

Lin
k

Bottleneck
Link

Dest 1 Dest 2

S1 S2

ToR1

ToR2
ToR1 ToR2

Agg1

(a) Single Bottleneck (b) Multiple Bottleneck

Experimental Flows
Background Flows

Figure 9: Experimental scenario of unfairness impairment
assessment .

and PACK packets maintain the self-clocking.
Web search application scenario . In this test, each of
n different senders transfers 1024/n KB to the receiver
through the bottleneck link. Fig. 8(b) shows that CP
and DCTCP with CP have better performance than TCP
and DCTCP in reducing query completion time. The
query completion times of CP and DCTCP with CP are
approximately 9 ms when the number of senders is less
than 50 and slightly increases by 0.4 ms as the number
of senders increases from 1 to 100. In comparison, de-
pending on 10-ms- and 200-ms-RTOmin, the delays of
TCP or DCTCP converge at 16.1 ms and 201.6 ms, re-
spectively. Through closer observation and analysis, we
found that CP totally eliminates timeouts and wastes only
3.49% of the 1 Gbps bandwidth to send 554 payload-cut
packets (554 × 66 B = 35.7 KB) for each query when the
number of senders is 100. However, increasing the num-
ber of senders8 for TCP and DCTCP results in timeouts
and prolongs the query completion time. In addition, us-
ing DCTCP with CP reduces the query completion time
by 91.3 μs compared with CP because DCTCP with CP
maintains short queue length and reduces the probability
of packet loss.

6 .2 TCP Unfairness
In this section, we focus on whether CP can improve TCP
unfairness.
Topology . We use topologies studied in prior works for
both the single-bottleneck case [24] and the multiple-
bottleneck case [20], as shown in Fig. 9. It should be
noted that the number of background flows shown in Fig.
9 (b) are equal. We use a subset of our testbed to achieve
these scenarios, and each buffer on the bottleneck links
is 128 KB9.

8In our experiment, DCTCP and TCP suffer from TCP Incast when
the numbers of senders are 38 and 23, respectively. Below these num-
ber of senders, there are large fluctuations in the query completion time
even if TCP Incast disappears.

9only the critical components are illustrated. An aggregation switch
(Fig. 9(a)) and a ToR switch (Fig. 9(b)) are not shown because they do
not affect the results.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 25

0

20

40

60

80

100

120

cp&dctcp cp dctcp(200ms) dctcp(10ms) tcp(200ms) tcp(10ms)

3-hop 12 flows 3-hop 2 flows

0

20

40

60

80

100

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Go
od

pu
t(
M
bp

s)

background flows experimental flows

(a) 12-2 flow pair

0

2

4

6

8

10

12

14

16

18

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Go
od

pu
t(
M
bp

s)

background flows experimental flows

(b) 60-10 flow pair

ows
0

2

4

6

8

10

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Go
od

pu
t(
M
bp

s)

background flows experimental flows

(c) 120-20 flow pair

Figure 10: Average goodput of different flow-pairs in the single-bottleneck experiment. We use the notation n−m to refer
to n background and m experimental flows.

0

10

20

30

40

50

60

70

80

90

12-2 flow-pair 60-10 flow-pair 120-20 flow-pair

EF
JR

 (%
)

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Figure 11: Experimental flows jitter ratio (EFJR) in single-
bottleneck scenario

Single-bottleneck scenario . We refer to the combina-
tion of n background flows and m experimental flows as
an n-m flow pair. From the experiments, we found that
TCP and DCTCP with different RTOmin have similar
features; therefore, we only show the results for 10-ms-
RTOmin TCP and DCTCP. Three flow pairs from our
experiment are shown in Fig. 10. The error bars indi-
cate the average absolute deviation of goodput. For con-
venience, we refer to the experimental flow ratio of the
average absolute deviation to average throughput as the
experimental flow jitter ratio (EFJR). EFJR reflects the
fairness among experimental flows.

Three points are evident from Fig. 10 and Fig. 11.
First, the experimental flows using TCP suffer the TCP
Outcast problem in all three cases. The goodput of flows
with larger number is much lower than that with smaller
number. Second, DCTCP can alleviate the TCP Out-
cast problem for the 60-10 flow pair and the 12-2 flow
pair; however, when the number of flows is large (e.g.,
the 120-20 flow pair), DCTCP suffers the TCP Outcast
problem and its EFJR is high. In additional, the EFJR of
DCTCP significantly fluctuates from 3% to 48%. It is ev-
ident that DCTCP can maintain flow fairness only when
number of flows is small. Third, CP prevents TCP Out-
cast from occurring and maintains the EFJR below 15%.
DCTCP with CP has a smaller EFJR than CP; therefore,
DCTCP with CP provides better fairness among flows.
In conclusion, compared with TCP and DCTCP, DCTCP
with CP and CP both avoid TCP Outcast problem and

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10
Go

od
pu

t(
M

bp
s)

Number of Experimental Flows

CP DCTCP
TCP(200ms) TCP(10ms)
Theory

(a) Background Flows = 5

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

Go
od

pu
t(
M
bp

s)

Number of Experimental Flows

CP&DCTCP CP
DCTCP TCP(10ms)
TCP(200ms) Theory

(b) Background Flows = 50

Figure 12: Total goodput of all experimental flows in the
multiple-bottleneck scenario .

achieve reasonable fairness among flows.
Multiple-bottleneck scenario . In this scenario, from
Fig. 9(b), we see that experimental flows are MBFs and
background flows are SBFs. Two sets of experiments
were conducted to explore the fairness of experimental
flows under different packet loss conditions. We chose 5
flows and 50 flows for the number of background flows
to represent low and high packet loss scenarios, respec-
tively. Each experiment lasted 22 minutes. The ratio of
the number of experimental flows to that of the back-
ground flows was increased by 20% every two minutes
from 0 to 200%. From the experiments, we found that
DCTCP with different RTOmin values has a similar per-

9

26 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

formance, so Fig. 12 only illustrates DCTCP with 200-
ms-RTOmin, denoted DCTCP.

In Fig. 12, the line denoted “Theory” is determined by
calculating the throughput according to RTT fairness 10.
Deviation above this line indicates unfairness to SBFs,
and below this line to MBFs. Three conclusions can be
drawn from the data presented in the low loss rate ex-
periment shown in Fig. 12(a). First, we discover that
200-ms-RTOmin TCP suffers the TCP Outcast problem
when the number of flows is greater than 8 because back-
ground flows suffers timeout and share extremely low
bandwidth. Under these conditions, the other protocols
show normal performance. Second, compared with 10-
ms-RTOmin TCP and CP, DCTCP demonstrates poor
fairness because it only achieves an average of 70% of
the theoretical fair value, while 10-ms-RTOmin TCP and
CP achieve an average of 87.1% and 86.8%, respectively.
Third, compared to 10-ms-RTOmin TCP, CP has slight
unfairness because rapid packet loss notification favors
short RTT flows. Fig. 12(b) shows that, in a high packet
loss environment, 200-ms-RTOmin TCP has very low
goodput. In addition, 10-ms-RTOmin TCP and DCTCP
experience the TCP Outcast problem when the number
of experimental flows increases. In conclusion, CP and
DCTCP with CP perform better.

From these results above, we conclude that, as the
packet loss ratio increases, the TCP Outcast problem oc-
curs initially and then low throughput of MBF occurs.
Both phenomena affect TCP fairness; 10-ms-RTOmin
TCP and DCTCP can only alleviate the problem but not
solve it. Furthermore, DCTCP with CP significantly
improves TCP fairness and increases throughput up to
75.1% of the theoretical fair value. Unfortunately, CP
alone, which achieves only an average of only 45.6% of
the theoretical value, only eases unfairness rather than
solving it because TCP congestion control is signifi-
cantly affected by the violent queue oscillations in a high
packet loss environment. Thus, CP with DCTCP is the
best approach to maintain fairness in low or high packet
loss environments with multiple bottlenecks.

6 .3 TCP Out-of-order Problem
Topology . Fig. 13 shows the basic topology used in these
experiments. An additional aggregation switch is added
to the testbed. It should be noted that the ToR1 switch
is a random forwarding switch that sends packets from
S1 to Path A or Path B with the probability of selecting
each path chosen by a configuration parameter. Other
switches forward packets according to the look-up table.

10We define G as the theoretical goodput and N as the number
of flows. Through experimental measurements, we found that the
RTT of background flows is half that of experimental flows. There-
fore, Gexperimental = Nexperimental/(Nbackground ∗ 2 + Nexperimental) ×
Gtotal where Gtotal = 910Mbps.

Agg2Agg1

S1 S2 Dest 2Dest 1

ToR3ToR2ToR1

Multipath Flows

Background Flows

Non-congested Path A

Congested Path B

Figure 13: Basic topology of TCP out-of-order experiment

200

300

400

500

600

700

800

900

1000

 1/8 1/4 3/8 1/2 5/8 3/4 7/8

Go
od

pu
t(

M
bp

s)

Probability of Packets Through the Path A

TCP(DupACK=3) DCTCP
TCP(DupACK=∞,RTO_MIN=200ms) TCP(DupACK=∞,RTO_MIN=10ms)
CP(DupACK=3) CP(DupACK=∞)
Theory

Figure 14: Experiment results of TCP out-of-order experi-
ment

ACKs from Dest1 only pass through Path B back to S1.
Furthermore, the bottleneck buffer is set to 256 KB. This
creates an environment in which packets passing through
Path A to reach Dest1 take less time than the packets
through Path B.
Experimental parameter settings . We allow the num-
ber of tolerable out-of-order packets to be set to three
or infinity. In our experiment, DCTCP achieved similar
throughput in both cases; thus, we only show the results
for DCTCP with three duplicate ACKs (denoted DCTCP
in Fig. 14). The theoretical value is calculated by the
probability of packets passing through Path A11.
Experimental results . We can draw four conclu-
sions from the results shown in Fig. 14. First, the
small number of tolerable out-of-order packets (three)
causes throughput decline even though most packets pass
through the non-congested Path A. With the increasing
number of packets passing through Path A, the through-
put of TCP or CP with three duplicate ACKs decreases
from 825 Mbps to around 600 Mbps. This occurs be-
cause a small number of packets moving through the
congested Path B leads to spurious retransmission and

11We define G as the theoretical goodput, P as the probability of
packets through the Path A. Theoretically the sub-flows of multi-
path flows through Path B gets half of the bandwidth. Therefore,
GMultipath = 1/2×Gbandwith/(1−P) where Gbandwith = 910Mbps.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 27

0
5

10
15
20
25
30
35
40
45
50

99th 99.9th

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

CP&DCTCP DCTCP CP TCP

(a) Agg Buffer=128KB

99.9th

cp&dctcp

cp

dctcp(10ms)

tcp(10ms)

0
5

10
15
20
25
30
35
40
45
50

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Avearage 95th 99th 99.9th

Pe
rc

en
ta

ge
 o

f
In

cr
ea

se

CP&DCTCP CP

0
5

10
15
20
25
30
35
40
45
50

99th 99.9th

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

CP&DCTCP DCTCP CP TCP

(b) Agg Buffer=384KB

Figure 15: Query completion time under realistic Data
Center traffic

dctcp(200ms)

dctcp(10ms)

tcp(200ms)

tcp(10ms)

1

2

4

8

16

32

64

128

256

512

Ave

Q
u

er
y

C
o

m
p

le
ti

o
n

 T
im

e
m

s

1

2

4

8

16

32

64

128

256

512

Q
u

er
y

C
o

m
p

le
ti

o
n

 T
im

e
(m

s)

0
50
100
150
200
250
300
350
400
450
500

99th 99.9th

Q
u

er
y

C
o

m
p

le
ti

o
n

 T
im

e
m

s

CP&DCTCP DCTCP CP TCP

(a) 10X Expanded Traffic

0

5

10

15

20

25

30

35

40

45

Avearage 50th 95th 99th 99.9th

0

10

20

30

40

50

99th 99.9th

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

32KB 64KB 128KB 256KB

(b) Different Buffer Size

Figure 16: Query completion time under different condi-
tions .

unnecessary congestion control. Second, the large num-
ber of tolerable out-of-order packets (infinity) causes
TCP to have a slow response to congestion and triggers
a significant number of timeouts. From the compari-
son of 200-ms-RTOmin TCP, 10-ms-RTOmin TCP and
the theoretical value, we find that 200-ms-RTOmin TCP
achieves less throughput than 10-ms-RTOmin TCP be-
cause RTOmin determines how quickly the protocol re-
acts to congestion as the timeout occurs. Rapid reaction
to congestion increases total bandwidth utilization. In
addition, the extent of congestion declines with increas-
ing probability of packets passing through Path A. There-
fore, TCP throughput approaches the theoretical value.
Third, DCTCP is affected by the ECN mechanism and
the early congestion control makes the throughput lower
than the theoretical value. Finally, CP with no threshold
for out-of-order packets works well and matches the the-
oretical value. In summary, CP with no threshold for
duplicate ACKs can completely solve the out-of-order
problem.

6 .4 Query Completion Time
Experimental parameter settings . The literature [4]
describes the PDF of background flow size distribution,
the interval time between arrivals of queries, and the in-
terval time between arrivals of background flows in real-
istic DCNs. According to this information, we generate
realistic traffic of DCNs with 12 servers in our testbed.
Unless otherwise specified, all switch buffers of each
port are set to 128 KB. In the experiment, each server
independently selects a time value and data size from
identical time interval and data size distributions. One
query is immediately sent to the other 11 servers after
its arrival, and responses are sent back to the originat-

ing server. Both query size and response size are 2 KB.
We conducted the experiment using DCTCP with CP, CP,
10-ms-RTOmin DCTCP, and 10-ms-RTOmin TCP. The
experiment lasted 10 minutes and generated over 50,000
queries and background flows separately. We also con-
ducted the previously reported 10x-realistic traffic exper-
iment [4] in which the size of responses and background
flows larger than 1 MB were increased tenfold. Further-
more, in the different buffer size experiments, all switch
buffers are set to a specific value.
Realistic data center traffic. Fig. 15 shows the 99th
and 99.9th percentile of query completion time with 128
KB and 384 KB at the aggregation switch. It can be seen
that CP reduces the query completion time of TCP and
DCTCP. In Fig. 15(a), compared with TCP, CP achieves
a 34.06% reduction at 99th percentile and a 11.74% re-
duction at 99.9th percentile, respectively. At the 99th
and 99.9th percentile, query completion time of DCTCP
is 0.56ms and 1.41ms higher than that of DCTCP with
CP, respectively. Similarly, in Fig. 15(b), query comple-
tion time of CP is 61.91% and 88.60% of that of TCP at
the 99th and 99.9th percentile, respectively. Compared
with DCTCP, CP with DCTCP achieves a 4.5ms de-
crease at 99th percentile and a 2.4ms decrease at 99.9th
percentile. No query traffic suffered timeouts during the
experiments. Thus, the query completion time reduction
is due to the rapid packet loss detection using CP.
Expanded traffic or different buffer size. We con-
ducted experiments using 10x-expanded traffic and a dif-
ferent buffer size. As can be seen in Fig. 16(a), com-
pared with TCP, CP achieves a 35.71% reduction at 99th
percentile and a 76.55% reduction at 99.9th percentile.
Compared with DCTCP, DCTCP with CP achieves a
18.5% reduction at 99th percentile and a 26.2% reduc-
tion at 99.9th percentile. These results indicate that CP
effectively decreases query completion time even under
10x-expanded traffic condition.

Fig. 16(b) shows the query completion times with
CP with different buffer size. Compared with 128 KB
and 256 KB buffer, 32 KB buffer achieves 33.07% and
56.49% time reduction at the 99th percentile, respec-
tively. The 99.9th percentile query completion time with
a 32 KB buffer is only 6.426 ms, which is 17.77% and
15.34% of that with 128 KB and 256 KB buffer, respec-
tively. It is clear that the combination of CP and a shal-
low buffer can achieve good performance in DCNs.

7 Conclusion
In this paper, we proposed the cutting payload (CP) ap-
proach to solve TCP problems. Analysis indicates that
TCP problems are due to three types of issues. To ad-
dress these imperfections, CP uses payload-cut pack-
ets and PACK packets to maintain self-clocking and to

11

28 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rapidly and precisely inform a sender of packet loss. The
experimental results verify that CP can solve the prob-
lems with TCP discussed in this paper. In addition, CP
is compatible with nearly all existing congestion con-
trol protocols in DCNs. In particular, the combination
of DCTCP and CP has the best performance across all
topologies in experiments.

Acknowledgments
We gratefully appreciate our shepherd Prof. S. Ke-
shav for his constructive suggestions, and acknowledge
the anonymous reviewers for their valuable comments.
This work is supported in part by National Basic Re-
search Program of China (973 Program) under Grant No.
2012CB315803 and 2014CB347800, and National Nat-
ural Science Foundation of China (NSFC) under Grant
No. 61225011.

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In SIG-
COMM, August 2010.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic Flow Scheduling for
Data Center Networks. In NSDI, August 2010.

[3] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikan-
tha, R. Pan, B. Prabhakar, and M. Seaman. Data Center
Transport Mechanisms: Congestion Control Theory and
IEEE Standardization. In Allerton CCC, August 2008.

[4] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. DCTCP:
Efficient Packet Transport for the Commoditized Data
Center. In SIGCOMM, August 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center. In
NSDI, April 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal Near-
Optimal Datacenter Transport. In SIGCOMM, August
2013.

[7] M. Allman, H. Balakrishnan, and S. Floyd. RFC 3042:
Enhancing TCP’s Loss Recovery Using Limited Trans-
mit.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang. Under-
standing Data Center Traffic Characteristics. In WREN,
August 2009.

[9] E. Blanton, M. Allman, K. Fall, and L. Wang. RFC 3517:
A Conservative Selective Acknowledgment (SACK)-
based Loss Recovery Algorithm for TCP.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, December 2004.

[11] A. Dixit, P. Prakash, and R. R. Kompella. On the Efficacy
of Fine-grained Traffic Splitting Protocols in Data Center
Networks. In SIGCOMM, August 2011.

[12] N. Dukkipati. Tcp: Tail Loss Probe (TLP). http://lwn.
net/Articles/542642/.

[13] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. RFC
2883: An Extension to the Selective Acknowledgement
(SACK) Option for TCP.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: A Scalable and Flexible Data Center Network. In
SIGCOMM, August 2009.

[15] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, August 2009.

[16] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows
Quickly with Preemptive Scheduling. In SIGCOMM, Au-
gust 2012.

[17] V. Jacobson. Congestion Avoidance and Control. In SIG-
COMM, August 1988.

[18] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The Nature of Datacenter Traffic: Measure-
ments & Analysis. In IMC, November 2009.

[19] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An
Analysis of Traces from a Production Mapreduce Cluster.
In CCGRID, May 2010.

[20] A. Mankin. Random Drop Congestion Control. In SIG-
COMM, September 1990.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC
2018: TCP Selective Acknowledgment Options.

[22] D. Nagle, D. Serenyi, and A. Matthews. The Panasas Ac-
tiveScale Storage Cluster: Delivering scalable high band-
width storage. In SC, November 2004.

[23] J. Postel. RFC 792: Internet Control Message Protocol.
[24] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella. The

TCP Outcast Problem: Exposing Unfairness in Data Cen-
ter Networks. In NSDI, April 2012.

[25] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wis-
chik, and M. Handley. Improving Datacenter Perfor-
mance and Robustness with Multipath TCP. In SIG-
COMM, August 2011.

[26] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-
Aware Datacenter TCP(D2TCP). In SIGCOMM, August
2012.

[27] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller.
Safe and Effective Fine-grained TCP Retransmissions for
Datacenter Communication. In SIGCOMM, August 2009.

[28] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron.
Better Never than Late: Meeting Deadlines in Datacenter
Networks. In SIGCOMM, August 2011.

[29] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast
Congestion Control for TCP in Data Center Networks. In
CoNEXT, December 2010.

[30] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling Network Performance
for Multi-tier Data Center Applications. In NSDI, March
2011.

[31] L. Zhang. Why TCP Timers Don’t Work Well. In SIG-
COMM, August 1986.

[32] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP:
A Reordering-Robust TCP with DSACK. In Proceedings
of ICNP, November 2003.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 29

High Throughput Data Center Topology Design

Ankit Singla, P. Brighten Godfrey, Alexandra Kolla
University of Illinois at Urbana–Champaign

Abstract
With high throughput networks acquiring a crucial role in
supporting data-intensive applications, a variety of data
center network topologies have been proposed to achieve
high capacity at low cost. While this work explores a
large number of design points, even in the limited case
of a network of identical switches, no proposal has been
able to claim any notion of optimality. The case of het-
erogeneous networks, incorporating multiple line-speeds
and port-counts as data centers grow over time, intro-
duces even greater complexity.

In this paper, we present the first non-trivial upper-
bound on network throughput under uniform traffic pat-
terns for any topology with identical switches. We then
show that random graphs achieve throughput surpris-
ingly close to this bound, within a few percent at the scale
of a few thousand servers. Apart from demonstrating that
homogeneous topology design may be reaching its lim-
its, this result also motivates our use of random graphs as
building blocks for design of heterogeneous networks.
Given a heterogeneous pool of network switches, we ex-
plore through experiments and analysis, how the distri-
bution of servers across switches and the interconnec-
tion of switches affect network throughput. We apply
these insights to a real-world heterogeneous data center
topology, VL2, demonstrating as much as 43% higher
throughput with the same equipment.

1 Introduction

Data centers are playing a crucial role in the rise of In-
ternet services and big data. In turn, efficient data center
operations depend on high capacity networks to ensure
that computations are not bottlenecked on communica-
tion. As a result, the problem of designing massive high-
capacity network interconnects has become more impor-
tant than ever. Numerous data center network architec-
tures have been proposed in response to this need [2, 10–
15, 20, 23, 25, 26, 30], exploiting a variety of network
topologies to achieve high throughput, ranging from fat
trees and other Clos networks [2, 13] to modified gener-
alized hypercubes [14] to small world networks [21] and
uniform random graphs [23].

However, while this extensive literature exposes sev-
eral points in the topology design space, even in the lim-

ited case of a network of identical switches, it does not
answer a fundamental question: How far are we from
throughput-optimal topology design? The case of hetero-
geneous networks, i.e., networks composed of switches
or servers with disparate capabilities, introduces even
greater complexity. Heterogeneous network equipment
is, in fact, the common case in the typical data cen-
ter: servers connect to top-of-rack (ToR) switches, which
connect to aggregation switches, which connect to core
switches, with each type of switch possibly having a dif-
ferent number of ports as well some variations in line-
speed. For instance, the ToRs may have both 1 Gbps
and 10 Gbps connections while the rest of the network
may have only 10 Gbps links. Further, as the network
expands over the years and new, more powerful equip-
ment is added to the data center, one can expect more
heterogeneity — each year the number of ports sup-
ported by non-blocking commodity Ethernet switches in-
creases. While line-speed changes are slower, the move
to 10 Gbps and even 40 Gbps is happening now, and
higher line-speeds are expected in the near future.

In spite of heterogeneity being commonplace in data
center networks, very little is known about heteroge-
neous network design. For instance, there is no clarity
on whether the traditional ToR-aggregation-core organi-
zation is superior to a “flatter” network without such a
switch hierarchy; or on whether powerful core switches
should be connected densely together, or spread more
evenly throughout the network.

The goal of this paper is to develop an understand-
ing of how to design high throughput network topolo-
gies at limited cost, even when heterogeneous compo-
nents are involved, and to apply this understanding to im-
prove real-world data center networks. This is nontriv-
ial: Network topology design is hard in general, because
of the combinatorial explosion of the number of possible
networks with size. Consider, for example, the related1

degree-diameter problem [9], a well-known graph the-
ory problem where the quest is to pack the largest pos-
sible number of nodes into a graph while adhering to
constraints on both the degree and the diameter. Non-
trivial optimal solutions are known for a total of only

1Designing for low network diameter is related to designing for high
throughput, because shorter path lengths translate to the network using
less capacity to deliver each packet; see discussion in [23].

1

30 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

seven combinations of degree and diameter values, and
the largest of these optimal networks has only 50 nodes!
The lack of symmetry that heterogeneity introduces only
makes these design problems more challenging.

To attack this problem, we decompose it into sev-
eral steps which together give a high level understand-
ing of network topology design, and yield benefits to
real-world data center network architectures. First, we
address the case of networks of homogeneous servers
and switches. Second, we study the heterogeneous case,
optimizing the distribution of servers across different
classes of switches, and the pattern of interconnection
of switches. Finally, we apply our understanding to a
deployed data center network topology. Following this
approach, our key results are as follows.

(1) Near-optimal topologies for homogeneous net-
works. We present an upper bound on network through-
put for any topology with identical switches, as a func-
tion of the number of switches and their degree (num-
ber of ports). Although designing optimal topologies is
infeasible, we demonstrate that random graphs achieve
throughput surprisingly close to this bound—within a
few percent at the scale of a few thousand servers for ran-
dom permutation traffic. This is particularly surprising in
light of the much larger gap between bounds and known
graphs in the related degree-diameter problem [9]2.

We caution the reader against over-simplifying this re-
sult to ‘flatter topologies are better’: Not all ‘flat’ or
‘direct-connect’ topologies (where all switches connect
to servers) perform equally. For example, random graphs
have roughly 30% higher throughput than hypercubes
at the scale of 512 nodes, and this gap increases with
scale [16]. Further, the notion of ‘flat’ is not even well-
defined for heterogeneous networks.

(2) High-throughput heterogeneous network design.
We use random graphs as building blocks for heteroge-
neous network design by first optimizing the volume of
connectivity between groups of nodes, and then forming
connections randomly within these volume constraints.
Specifically, we first show empirically that in this frame-
work, for a set of switches with different port counts but
uniform line-speed, attaching servers to switches in pro-
portion to the switch port count is optimal.

Next, we address the interconnection of multiple types
of switches. For tractability, we limit our investigation to
two switch types. Somewhat surprisingly, we find that a
wide range of connectivity arrangements provides nearly
identical throughput. A useful consequence of this re-
sult is that there is significant opportunity for cluster-

2For instance, for degree 5 and diameter 4, the best known graph has
only 50% of the number of nodes in the best known upper bound [27].
Further, this gap grows larger with both degree and diameter.

ing switches to achieve shorter cable lengths on aver-
age, without compromising on throughput. Jellyfish [23]
demonstrated this experimentally. Our results provide
the theoretical underpinnings of such an approach.

Finally, in the case of multiple line-speeds, we show
that complex bottleneck behavior may appear and there
may be multiple configurations of equally high capacity.

(3) Applications to real-world network design. The
topology proposed in VL2 [13] incorporates heteroge-
neous line-speeds and port-counts, and has been de-
ployed in Microsoft’s cloud data centers.3 We show
that using a combination of the above insights, VL2’s
throughput can be improved by as much as 43% at the
scale of a few thousand servers simply by rewiring exist-
ing equipment, with gains increasing with network size.

While a detailed treatment of other related work fol-
lows in §2, the Jellyfish [23] proposal merits attention
here since it is also based on random graphs. Despite this
shared ground, Jellyfish does not address either of the
central questions addressed by our work: (a) How close
to optimal are random graphs for the homogeneous case?
and (b) How do we network heterogeneous equipment
for high throughput? In addition, unlike Jellyfish, by an-
alyzing how network metrics like cut-size, path length,
and utilization impact throughput, we attempt to develop
an understanding of network design.

2 Background and Related Work

High capacity has been a core goal of communication
networks since their inception. How that goal manifests
in network topology, however, has changed with systems
considerations. Wide-area networks are driven by geo-
graphic constraints such as the location of cities and rail-
roads. Perhaps the first high-throughput networks not
driven by geography came in the early 1900s. To inter-
connect telephone lines at a single site such as a tele-
phone exchange, nonblocking switches were developed
which could match inputs to any permutation of out-
puts. Beginning with the basic crossbar switch which
requires Θ(n2) size to interconnect n inputs and outputs,
these designs were optimized to scale to larger size, cul-
minating with the Clos network developed at Bell Labs
in 1953 [8] which constructs a nonblocking interconnect
out of Θ(n logn) constant-size crossbars.

In the 1980s, supercomputer systems began to reach
a scale of parallelism for which the topology connect-
ing compute nodes was critical. Since a packet in a su-
percomputer is often a low-latency memory reference
(as opposed to a relatively heavyweight TCP connec-
tion) traversing nodes with tiny forwarding tables, such

3Based on personal exchange, and mentioned publicly at http://
research.microsoft.com/en-us/um/people/sudipta/.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 31

systems were constrained by the need for very simple,
loss-free and deadlock-free routing. As a result the se-
ries of designs developed through the 1990s have simple
and regular structure, some based on non-blocking Clos
networks and others turning to butterfly, hypercube, 3D
torus, 2D mesh, and other designs [17].

In commodity compute clusters, increasing paral-
lelism, bandwidth-intensive big data applications and
cloud computing have driven a surge in data center net-
work architecture research. An influential 2008 paper of
Al-Fares et al. [2] proposed moving from a traditional
data center design utilizing expensive core and aggrega-
tion switches, to a network built of small components
which nevertheless achieved high throughput — a folded
Clos or “fat-tree” network. This work was followed
by several related designs including Portland [20] and
VL2 [13], a design based on small-world networks [21],
designs using servers for forwarding [14, 15, 29], and
designs incorporating optical switches [12, 26].

Jellyfish [23] demonstrated, however, that Clos net-
works are sub-optimal. In particular, [23] constructed a
random degree-bounded graph among switch-to-switch
links, and showed roughly 25% greater throughput than
a fat-tree built with the same switch equipment. In ad-
dition, [23] showed quantitatively that random networks
are easier to incrementally expand — adding equipment
simply involves a few random link swaps. Several chal-
lenges arise with building a completely unstructured net-
work; [23] demonstrated effective routing and conges-
tion control mechanisms, and showed that cable opti-
mizations for random graphs can make cable costs simi-
lar to an optimized fat-tree while still obtaining substan-
tially higher throughput than a fat-tree.

While the literature on homogeneous network design
is sizeable, very little is known about heterogeneous
topology design, perhaps because earlier supercomputer
topologies (which reappeared in many recent data cen-
ter proposals) were generally constrained to be homo-
geneous. VL2 [13] provides a point design, using mul-
tiple line-speeds and port counts at different layers of
its hierarchy; we compare with VL2 later (§7). The
only two other proposals that address heterogeneity are
LEGUP [11] and REWIRE [10]. LEGUP uses an opti-
mization framework to search for the cheapest Clos net-
work achieving desired network performance. Being re-
stricted to Clos networks impairs LEGUP greatly: Jel-
lyfish achieves the same network expansion as LEGUP
at 60% lower cost [23]. REWIRE removes this restric-
tion by using a local-search optimization (over a period
of several days of compute time at the scale of 3200
servers) to continually improve upon an initial feasible
network. REWIRE’s code is not available so a compar-
ison has not been possible. But more fundamentally, all
of the above approaches are either point designs [13] or

heuristics [10, 11] which by their blackbox nature, pro-
vide neither an understanding of the solution space, nor
any evidence of near-optimality.

3 Simulation Methodology

Our experiments measure the capacity of network
topologies. For most of this paper, our goal is to study
topologies explicitly independent of systems-level is-
sues such as routing and congestion control. Thus, we
model network traffic using fluid splittable flows which
are routed optimally. Throughput is then the solution
to the standard maximum concurrent multi-commodity
flow problem [18]. Note that by maximizing the min-
imum flow throughput, this model incorporates a strict
definition of fairness. We use the CPLEX linear program
solver [1] to obtain the maximum flow. Unless otherwise
specified, the workload we use is a random permutation
traffic matrix, where each server sends traffic to (and re-
ceives traffic from) exactly one other server.

In §8, we revisit these assumptions to address systems
concerns. We include results for several other traffic ma-
trices besides permutations. We also show that through-
put within a few percent of the optimal flow values from
CPLEX can be achieved after accounting for packet-
level routing and congestion control inefficiencies.

Any comparisons between networks are made using
identical switching equipment, unless noted otherwise.

Across all experiments, we test a wide range of param-
eters, varying the network size, node degree, and over-
subscription. A representative sample of results is in-
cluded here. Most experiments average results across 20
runs, with standard deviations in throughput being ∼1%
of the mean except at small values of throughput in the
uninteresting cases. Exceptions are noted in the text.

Our simulation tools are publicly available [24].

4 Homogeneous Topology Design

In this setting, we have N switches, each with k ports.
The network is required to support S servers. The sym-
metry of the problem suggests that each switch be con-
nected to the same number of servers. (We assume for
convenience that S is divisible by N.) Intuitively, spread-
ing servers across switches in a manner that deviates
from uniformity will create bottlenecks at the switches
with larger numbers of servers. Thus, we assume that
each switch uses out of its k ports, r ports to connect to
other switches, and k− r ports for servers. It is also as-
sumed that each network edge is of unit capacity.

The design space for such networks is the set of all
subgraphs H of the complete graph over N nodes KN ,
such that H has degree r. For generic, application-
oblivious design, we assume that the objective is to max-

3

32 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Degree

All to All
Permutation (10 Servers per switch)
Permutation (5 Servers per switch)

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

Pa
th

 L
en

gt
h

Network Degree

Observed ASPL
ASPL lower-bound

(b)
Figure 1: Random graphs versus the bounds: (a) Throughput
and (b) average shortest path length (ASPL) in random regular
graphs compared to the respective upper and lower bounds for
any graph of the same size and degree. The number of switches
is fixed to 40 throughout. The network becomes denser right-
ward on the x-axis as the degree increases.

imize throughput under a uniform traffic matrix such
as all-to-all traffic or random permutation traffic among
servers. To account for fairness, the network’s through-
put is defined as the maximum value of the minimum
flow between source-destination pairs. We denote such a
throughput measurement of an r-regular subgraph H of
KN under uniform traffic with f flows by TH(N,r, f). The
average path length of the network is denoted by 〈D〉.

For this scenario, we prove a simple upper bound on
the throughput achievable by any hypothetical network.

Theorem 1. TH(N,r, f)≤ Nr
〈D〉 f .

Proof. The network has a total of Nr edges (counting
both directions) of unit capacity, for a total capacity of
Nr. A flow i whose end points are a shortest path distance
di apart, consumes at least xidi units of capacity in to ob-
tain throughput xi. Thus, the total capacity consumed by
all flows is at least ∑

i
xidi. Given that we defined network

throughput TH(N,r, f) as the minimum flow throughput,
∀i,xi ≥ TH(N,r, f). Total capacity consumed is then at
least TH(N,r, f)∑

i
di. For uniform traffic patterns such as

random permutations and all-to-all traffic, ∑
i

di = 〈D〉 f

because the average source-destination distance is the
same as the graph’s average shortest path distance. Also,
total capacity consumed cannot exceed the network’s ca-
pacity. Therefore, 〈D〉 f TH(N,r, f) ≤ Nr, rearranging
which yields the result.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Size

All to All
Permutation (10 Servers per switch)
Permutation (5 Servers per switch)

(a)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 20 40 60 80 100 120 140 160 180 200

Pa
th

 L
en

gt
h

Network Size

Observed ASPL
ASPL lower-bound

(b)
Figure 2: Random graphs versus the bounds: (a) Throughput
and (b) average shortest path length (ASPL) in random regular
graphs compared to the respective upper and lower bounds for
any graph of the same size and degree. The degree is fixed to
10 throughout. The network becomes sparser rightward on the
x-axis as the number of nodes increases.

Further, [7] proves a lower bound on the average short-
est path length of any r-regular network of size N:

〈D〉 ≥ d∗ =

k−1

∑
j=1

jr(r−1) j−1 + kR

N −1

where R = N −1−
k−1

∑
j=1

r(r−1) j−1 ≥ 0

and k is the largest integer such that the inequality holds.
This result, together with Theorem 1, yields an up-

per bound on throughput: TH(N,r, f) ≤ Nr
f d∗ . Next, we

show experimentally that random regular graphs achieve
throughput close to this bound.

A random regular graph, denoted as RRG(N, k, r), is
a graph sampled uniform-randomly from the space of all
r-regular graphs. This is a well-known construct in graph
theory. As Jellyfish [23] showed, RRGs compare favor-
ably against traditional fat-tree topologies, supporting a
larger number of servers at full throughput. However,
that fact leaves open the possibility that there are network
topologies that achieve significantly higher throughput
than even RRGs. Through experiments, we compare the
throughput RRGs achieve to the upper bound we derived
above, and find that our results eliminate this possibility.

Fig. 1(a) and Fig. 2(a) compare throughput achieved
by RRGs to the upper bound on throughput for any topol-
ogy built with the same equipment. Fig. 1(a) shows this
comparison for networks of increasing density (i.e., the

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 33

 1

 2

 3

 4

 5

 6

 17 53 161 485 1457
 1

 1.04

 1.08

 1.12

 1.16

 1.2

Pa
th

 L
en

gt
h

R
at

io
 (

ob
se

rv
ed

 /
bo

un
d)

Network Size (log scale)

Observed ASPL
ASPL lower-bound

Ratio

Figure 3: ASPL in random graphs compared to the lower
bound. The degree is fixed to 4 throughout. The bound shows
a “curved step” behavior. In addition, as the network size in-
creases, the ratio of observed ASPL to the lower bound ap-
proaches 1. The x-tics correspond to the points where the
bound begins new distance levels.

degree r increases, while the number of nodes N remains
fixed at 40) for 3 uniform traffic matrices: a random per-
mutation among servers with 5 servers at each switch,
another with 10 servers at each switch, and an all-to-all
traffic matrix. For the high-density traffic pattern, i.e.,
all-to-all traffic, exact optimal throughput is achieved by
the random graph for degree r ≥ 13. Fig. 2(a) shows a
similar comparison for increasing size N, with r = 10.
Our simulator does not scale for all-to-all traffic be-
cause the number of commodities in the flow problem
increases as the square of the network size for this pat-
tern. Fig. 1(b) and 2(b) compare average shortest path
length in RRGs to its lower bound. For both large net-
work sizes, and very high network density, RRGs are sur-
prisingly close to the bounds (right side of both figures).

The curve in Fig. 2(b) has two interesting features.
First, there is a “curved step” behavior, with the first step
at network size up to N = 101, and the second step be-
ginning thereafter. To see why this occurs, observe that
the bound uses a tree-view of distances from any node
— for a network with degree d, d nodes are assumed to
be at distance 1, d(d −1) at distance 2, d(d −1)2 at dis-
tance 3, etc. While this structure minimizes path lengths,
it is optimistic — in general, not all edges from nodes at
distance k can lead outward to unique new nodes4. As
the number of nodes N increases, at some point the low-
est level of this hypothetical tree becomes full, and a new
level begins. These new nodes are more distant, so aver-
age path length suddenly increases more rapidly, corre-
sponding to a new “step” in the bound. A second feature
is that as N →∞, the ratio of observed ASPL to the lower
bound approaches 1. This can be shown analytically by
dividing an upper bound on the random regular graph’s
diameter [6] (which also upper-bounds its ASPL) by the
lower bound of [7]. For greater clarity, we show in Fig. 3
similar behavior for degree d = 4, which makes it easier
to show many “steps”.

4In fact, prior work shows that graphs with this structure do not
exist for d ≥ 3 and diameter D ≥ 3 [19].

The near-optimality of random graphs demonstrated
here leads us to use them as a building block for the more
complicated case of heterogeneous topology design.

5 Heterogeneous Topology Design

With the possible exception of a scenario where a new
data center is being built from scratch, it is unreasonable
to expect deployments to have the same, homogeneous
networking equipment. Even in the ‘greenfield’ set-
ting, networks may potentially use heterogeneous equip-
ment. While our results above show that random graphs
achieve close to the best possible throughput in the ho-
mogeneous network design setting, we are unable, at
present, to make a similar claim for heterogeneous net-
works, where node degrees and line-speeds may be dif-
ferent. However, in this section, we present for this
setting, interesting experimental results which challenge
traditional topology design assumptions. Our discussion
here is mostly limited to the scenario where there are two
kinds of switches in the network; generalizing our results
for higher diversity is left to future work.

5.1 Heterogeneous Port Counts
We consider a simple scenario where the network is
composed of two types of switches with different port
counts (line-speeds being uniform throughout). Two nat-
ural questions arise that we shall explore here: (a) How
should we distribute servers across the two switch types
to maximize throughput? (b) Does biasing the topology
in favor of more connectivity between larger switches in-
crease throughput?

First, we shall assume that the interconnection is an
unbiased random graph built over the remaining con-
nectivity at the switches after we distribute the servers.
Later, we shall fix the server distribution but bias the ran-
dom graph’s construction. Finally we will examine the
combined effect of varying both parameters at once.

Distributing servers across switches: We vary the
numbers of servers apportioned to large and small
switches, while keeping the total number of servers and
switches the same5. We then build a random graph over
the ports that remain unused after attaching the servers.
We repeat this exercise for several parameter settings,
varying the numbers of switches, ports, and servers. A
representative sample of results is shown in Fig. 4. The
particular configuration in Fig. 4(a) uses 20 larger and 40
smaller switches, with the port counts for the three curves
in the figure being 30 and 10 (3:1), 30 and 15 (2:1), and
30 and 20 (3:2) respectively. Fig. 4(b) uses 20 larger
switches (30 ports) and 20, 30 and 40 smaller switches

5Clearly, across the same type of switches, a non-uniform server-
distribution will cause bottlenecks and sub-optimal throughput.

5

34 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Servers at Large Switches
(Ratio to Expected Under Random Distribution)

3:1 Port-ratio
2:1 Port-ratio
3:2 Port-ratio

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Servers at Large Switches
(Ratio to Expected Under Random Distribution)

20 Small Switches
30 Small Switches
40 Small Switches

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Servers at Large Switches
(Ratio to Expected Under Random Distribution)

480 Servers
510 Servers
540 Servers

(c)

Figure 4: Distributing servers across switches: Peak throughput is achieved when servers are distributed proportionally to port
counts i.e., x-axis=1, regardless of (a) the absolute port counts of switches; (b) the absolute counts of switches of each type; and
(c) oversubscription in the network.

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

β

Avg port-count 6
Avg port-count 8

Avg port-count 10

Figure 5: Distributing servers across switches: Switches have
port-counts distributed in a power-law distribution. Servers
are distributed in proportion to the β th power of switch port-
count. Distributing servers in proportion to degree (β = 1) is
still among the optimal configurations.

(20 ports) respectively for its three curves. Fig. 4(c)
uses the same switching equipment throughout: 20 larger
switches (30 ports) and 30 smaller switches (20 ports),
with 480, 510, and 540 servers attached to the network.
Along the x-axis in each figure, the number of servers
apportioned to the larger switches increases. The x-axis
label normalizes this number to the expected number of
servers that would be apportioned to large switches if
servers were spread randomly across all the ports in the
network. As the results show, distributing servers in pro-
portion to switch degrees (i.e., x-axis= 1) is optimal.

This result, while simple, is remarkable in the light
of current topology design practices, where top-of-rack
switches are the only ones connected directly to servers.

Next, we conduct an experiment with a diverse set
of switch types, rather than just two. We use a set of
switches such that their port-counts ki follow a power law
distribution. We attach servers at each switch i in pro-
portion to kβ

i , using the remaining ports for the network.
The total number of servers is kept constant as we test
various values of β . (Appropriate distribution of servers
is applied by rounding where necessary to achieve this.)
β = 0 implies that each switch gets the same number of
servers regardless of port count, while β = 1 is the same
as port-count-proportional distribution, which was opti-
mal in the previous experiment. The results are shown in

Fig. 5. β = 1 is optimal (within the variance in our data),
but so are other values of β such as 1.2 and 1.4. The
variation in throughput is large at both extremes of the
plot, with the standard deviation being as much as 10%
of the mean, while for β ∈ {1,1.2,1.4} it is < 4%.

Switch interconnection: We repeat experiments sim-
ilar to the above, but instead of using a uniform ran-
dom network construction, we vary the number of con-
nections across the two clusters of (large and small)
switches6. The distribution of servers is fixed through-
out to be in proportion to the port counts of the switches.

As Fig. 6 shows, throughput is surprisingly stable
across a wide range of volumes of cross-cluster connec-
tivity. x-axis = 1 represents the topology with no bias
in construction, i.e., vanilla randomness; x < 1 means
the topology is built with fewer cross-cluster connec-
tions than expected with vanilla randomness, etc. Re-
gardless of the absolute values of the parameters, when
the interconnect has too few connections across the two
clusters, throughput drops significantly. This is perhaps
unsurprising – as our experiments in §6.1 will confirm,
the cut across the two clusters is the limiting factor for
throughput in this regime. What is surprising, however,
is that across a wide range of cross-cluster connectivity,
throughput remains stable at its peak value. Our theoret-
ical analysis in §6.2 will address this behavior.

Combined effect: The above results leave open the pos-
sibility that joint optimization across the two parameters
(server placement and switch connectivity pattern) can
yield better results. Thus, we experimented with varying
both parameters simultaneously as well. Two representa-
tive results from such experiments are included here. All
the data points in Fig. 7(a) use the same switching equip-
ment and the same number of servers. Fig. 7(b), likewise,
uses a different set of equipment. Each curve in these
figures represents a particular distribution of servers. For
instance, ‘16H, 2L’ has 16 servers attached to each larger

6Note that specifying connectivity across the clusters automatically
restricts the remaining connectivity to be within each cluster.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

3:1 Port-ratio
2:1 Port-ratio
3:2 Port-ratio

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

20 Smaller Switches
30 Smaller Switches
40 Smaller Switches

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

300 Servers
500 Servers
700 Servers

(c)

Figure 6: Interconnecting switches: Peak throughput is stable to a wide range of cross-cluster connectivity, regardless of (a) the
absolute port counts of switches; (b) the absolute counts of switches of each type; and (c) oversubscription in the network.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

16H, 2L
14H, 3L
12H, 4L
10H, 5L
8H, 6L

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

22H, 3L
18H, 5L
14H, 7L
10H, 9L
6H, 11L

(b)

Figure 7: Combined effect of server distribution and cross-
cluster connectivity: Multiple configurations are optimal, but
proportional server distribution with a vanilla random inter-
connect is among them. (a) 20 large, 40 small switches, with
30 and 10 ports respectively. (b) 20 large, 40 small switches,
with 30 and 20 ports respectively. Results from 10 runs.

switch and 2 to each of the smaller ones. On the x-
axis, we again vary the cross-cluster connectivity (as in
Fig. 6(a)). As the results show, while there are indeed
multiple parameter values which achieve peak through-
put, a combination of distributing servers proportionally
(corresponding to ‘12H, 4L’ and ‘14H, 7L’ respectively
in the two figures) and using a vanilla random intercon-
nect is among the optimal solutions. Large deviations
from these parameter settings lead to lower throughput.

5.2 Heterogeneous Line-speeds

Data center switches often have ports of different line-
speeds, e.g., tens of 1GbE ports, with a few 10GbE ports.
How does this change the above analysis change?

To answer this question, we modify our scenario such
that the small switches still have only low line-speed
ports, while the larger switches have both low line-speed
ports and high line-speed ports. The high line-speed
ports are assumed to connect only to other high line-
speed ports. We vary both the server distribution and
the cross-cluster connectivity and evaluate these config-
urations for throughput. As the results in Fig. 8(a) in-
dicate, the picture is not as clear as before, with mul-
tiple configurations having nearly the same throughput.
Each curve corresponds to one particular distribution of
servers across switches. For instance, ‘36H, 7L’ has 36
servers attached to each large switch, and 7 servers at-
tached to each small switch. The total number of servers
across all curves is constant. While we are unable to
make clear qualitative claims of the nature we made for
scenarios with uniform line-speed, our simulation tool
can be used to determine the optimal configuration for
such scenarios.

We also investigate the impact of the number and
the line-speed of the high line-speed ports on the large
switches. For these tests, we fix the server distribu-
tion, and vary cross-cluster connectivity. We measure
throughput for various ‘high’ line-speeds (Fig. 8(b)) and
numbers of high line-speed links (Fig. 8(c)). While
higher number or line-speed does increase throughput,
its impact diminishes when cross-cluster connectivity is
too small. This is expected: as the bottlenecks move to
the cross-cluster edges, having high capacity between the
large switches does not increase the minimum flow.

In the following, we attempt to add more than just the
intuition for our results. We seek to explain throughput
behavior by analyzing factors such as bottlenecks, total
network utilization, shortest path lengths between nodes,
and the path lengths actually used by the network flows.

6 Explaining Throughput Results

We investigate the cause of several of the throughput ef-
fects we observed in the previous section. First, in §6.1,

7

36 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

36H, 7L
35H, 8L
34H, 9L

33H, 10L
32H, 11L

(a)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

High-speed = 2
High-speed = 4
High-speed = 8

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

3 H-links
6 H-links
9 H-links

(c)

Figure 8: Throughput variations with the amount of cross-cluster connectivity: (a) various server distributions for a network with
20 large and 20 small switches, with 40 and 15 low line-speed ports respectively, with the large switches having 3 additional 10×
capacity connections; (b) with different line-speeds for the high-speed links keeping their count fixed at 6 per large switch; and (c)
with different numbers of the high-speed links at the big switches, keeping their line-speed fixed at 4 units.

we break down throughput into component factors —
network utilization, shortest path length, and “stretch”
in paths — and show that the majority of the through-
put changes are a result of changes in utilization, though
for the case of varying server placement, path lengths are
a contributing factor. Note that a decrease in utilization
corresponds to a saturated bottleneck in the network.

Second, in §6.2, we explain in detail the surprisingly
stable throughput observed over a wide range of amounts
of connectivity between low- and high-degree switches.
We give an upper bound on throughput, show that it is
empirically quite accurate in the case of uniform line-
speeds, and give a lower bound that matches within a
constant factor for a restricted class of graphs. We show
that throughput in this setting is well-described by two
regimes: (1) one where throughput is limited by a sparse
cut, and (2) a “plateau” where throughput depends on
two topological properties: total volume of connectiv-
ity and average path length 〈D〉. The transition between
the regimes occurs when the sparsest cut has a fraction
Θ(1/〈D〉) of the network’s total connectivity.

Note that bisection bandwidth, a commonly-used mea-
sure of network capacity which is equivalent to the spars-
est cut in this case, begins falling as soon as the cut be-
tween two equal-sized groups of switches has less than 1

2
the network connectivity. Thus, our results demonstrate
(among other things) that bisection bandwidth is not a
good measure of performance7, since it begins falling
asymptotically far away from the true point at which
throughput begins to drop.

6.1 Experiments

Throughput can be exactly decomposed as the product of
four factors:

T =
C ·U

〈D〉 ·AS
=C ·U · 1

〈D〉 ·
1

AS

7This result is explored further in followup work [16], where we
point out problems with bisection bandwidth as a performance metric.

where C is the total network capacity, U is the average
link utilization, 〈D〉 is the average shortest path length,
and AS is the average stretch, i.e., the ratio between av-
erage length of routed flow paths8 and 〈D〉. Throughput
may change due to any one of these factors. For example,
even if utilization is 100%, throughput could improve
if rewiring links reduces path length (this explained the
random graph’s improvement over the fat-tree in [23]).
On the other hand, even with very low 〈D〉, utilization
and therefore throughput will fall if there is a bottleneck
in the network.

We investigate how each of these factors influences
throughput (excluding C which is fixed). Fig. 9 shows
throughput (T), utilization (U), inverse shortest path
length (1/〈D〉), and inverse stretch (1/AS). An increase
in any of these quantities increases throughput. To ease
visualization, for each metric, we normalize its value
with respect to its value when the throughput is highest
so that quantities are unitless and easy to compare.

Across experiments, our results (Fig. 9) show that
high utilization best explains high throughput. Fig. 9(a)
analyzes the throughput results for ‘480 Servers’ from
Fig. 4(c), Fig. 9(b) corresponds to ‘500 Servers’ in
Fig. 6(c), and Fig. 9(c) to ‘3 H-links’ in Fig. 8(c). Note
that it is not obvious that this should be the case: Net-
work utilization would also be high if the flows took long
paths and used capacity wastefully. At the same time,
one could reasonably expect ‘Inverse Stretch’ to also cor-
relate with throughput well — if the paths used are close
to shortest, then the flows are not wasting capacity. Path
lengths do play a role — for example, the right end of
Fig. 9(a) shows an increase in path lengths, explaining
why throughput falls about 25% more than utilization
falls — but the role is less prominent than utilization.

Given the above result on utilization, we examined
where in the network the corresponding bottlenecks oc-
cur. From our linear program solver, we are able to
obtain the link utilization for each network link. We

8This average is weighted by amount of flow along each route.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 37

averaged link utilization for each link type in a given
network and flow scenario i.e., computing average uti-
lization across links between small and large switches,
links between small switches only, etc. The movement
of under-utilized links and bottlenecks shows clear cor-
respondence to our throughput results. For instance, for
Fig. 6(c), as we move leftward along the x-axis, the num-
ber of links across the clusters decreases, and we can
expect bottlenecks to manifest at these links. This is ex-
actly what the results show. For example, for the leftmost
point (x = 1.67, y = 1.67) on the ‘500 Servers’ curve in
Fig. 6(c), links inside the large switch cluster are on aver-
age < 20% utilized while the links between across clus-
ters are close to fully utilized (> 90% on average). On
the other hand, for the points with higher throughput, like
(x = 1, y = 0.49), all network links show uniformly high
utilization (∼100%). Similar observations hold across
all our experiments.

6.2 Analysis

Fig. 6 shows a surprising result: network throughput is
stable at its peak value for a wide range of cross-cluster
connectivity. In this section, we provide upper and lower
bounds on throughput to explain the result. Our upper
bound is empirically quite close to the observed through-
put in the case of networks with uniform line-speed. Our
lower bound applies to a simplified network model and
matches the upper bound within a constant factor. This
analysis allows us to identify the point (i.e., amount of
cross-cluster connectivity) where throughput begins to
drop, so that our topologies can avoid this regime, while
allowing flexibility in the interconnect.

Upper-bounding throughput. We will assume the
network is composed of two “clusters”, which are sim-
ply arbitrary sets of switches, with n1 and n2 attached
servers respectively. Let C be the sum of the capaci-
ties of all links in the network (counting each direction
separately), and let C̄ be that of the links crossing the
clusters. To simplify this exposition, we will assume
the number of flows crossing between clusters is ex-
actly the expected number for random permutation traf-
fic: n1

n2
n1+n2

+ n2
n1

n1+n2
= 2n1n2

n1+n2
. Without this assump-

tion, the bounds hold for random permutation traffic with
an asymptotically insignificant additive error.

Our upper bound has two components. First, recall our
path-length-based bound from §4 shows the throughput
of the minimal-throughput flow is T ≤ C

〈D〉 f where 〈D〉 is
the average shortest path length and f is the number of
flows. For random permutation traffic, f = n1 +n2.

Second, we employ a cut-based bound. The cross-
cluster flow is ≥ T 2n1n2

n1+n2
. This flow is bounded above

by the capacity C̄ of the cut that separates the clusters, so
we must have T ≤ C̄ n1+n2

2n1n2
.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Bound A
Throughput A

Bound B
Throughput B

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.5 1 1.5 2 2.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Bound A
Throughput A

Bound B
Throughput B

Bound C
Throughput C

(b)

Figure 10: Our analytical throughput bound from Eqn. 1 is
close to the observed throughput for the uniform line-speed sce-
nario (a) for which the bound and the corresponding through-
put are shown for two representative configurations A and B,
but can be quite loose with non-uniform line-speeds (b).

Combining the above two upper bounds, we have

T ≤ min
{

C
〈D〉(n1 +n2)

,
C̄(n1 +n2)

2n1n2

}
(1)

Fig. 10 compares this bound to the actual observed
throughput for two cases with uniform line-speed
(Fig. 10(a)) and a few cases with mixed line-speeds
(Fig. 10(b)). The bound is quite close for the uni-
form line-speed setting, both for the cases presented here
and several other experiments we conducted, but can be
looser for mixed line-speeds.

The above throughput bound begins to drop when the
cut-bound begins to dominate. In the special case that
the two clusters have equal size, this point occurs when

C̄ ≤ C
2〈D〉 . (2)

A drop in throughput when the cut capacity is in-
versely proportional to average shortest path length has
an intuitive explanation. In a random graph, most flows
have many shortest or nearly-shortest paths. Some flows
might cross the cluster boundary once, others might cross
back and forth many times. In a uniform-random graph
with large C̄, near-optimal flow routing is possible with
any of these route choices. As C̄ diminishes, this flexi-
bility means we can place some restriction on the choice
of routes without impacting the flow. However, the flows

9

38 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 M
et

ri
c

Number of Servers at Large Switches
(Ratio to Expected Under Random Distribution)

Throughput
Inverse SPL

Inverse Stretch
Utilization

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 M
et

ri
c

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Throughput
Inverse SPL

Inverse Stretch
Utilization

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 M
et

ri
c

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Throughput
Inverse SPL

Inverse Stretch
Utilization

(c)

Figure 9: The dependence of throughput on all three relevant factors: inverse path length, inverse stretch, and utilization. Across
experiments, total utilization best explains throughput, indicating that bottlenecks govern throughput.

which cross clusters must still utilize at least one cross-
cluster hop, which is on average a fraction 1/〈D〉 of their
hops. Therefore in expectation, since 1

2 of all (random-
permutation) flows cross clusters, at least a fraction 1

2〈D〉
of the total traffic volume will be cross-cluster. We
should therefore expect throughout to diminish once less
than this fraction of the total capacity is available across
the cut, which recovers the bound of Equation 2.

However, while Equation 2 determines when the up-
per bound on throughput drops, it does not bound the
point at which observed throughput drops: since the up-
per bound might be loose, throughput may drop earlier
or later. However, given a peak throughput value, we can
construct a bound based on it. Say the peak throughput
in a configuration is T ∗. T ∗ ≤ C̄ n1+n2

2n1n2
implies throughput

must drop below T ∗ when C̄ is less than C∗ := T ∗ 2n1n2
n1+n2

.
If we are able to empirically estimate T ∗ (which is not
unreasonable, given its stability), we can determine the
value of C̄∗ below which throughput must drop.

Fig. 11 has 18 different configurations with two clus-
ters with increasing cross-cluster connectivity (equiva-
lently, C̄). The one point marked on each curve cor-
responds to the C̄∗ threshold calculated above. As pre-
dicted, below C̄∗, throughput is less than its peak value.

Lower-bounding throughput. For a restricted class of
random graphs, we can lower-bound throughput as well,
and thus show that our throughput bound (Eqn. 1), and
the drop point of Eqn. 2, are tight within constant factors.

We restrict this analysis to networks G = (V,E) with
n nodes each with constant degree d. All links have unit
capacity in each direction. The vertices V are grouped
into two equal size clusters V1,V2, i.e., |V1| = |V2| = 1

2 n.
Let p,n be such that each node has pn neighbors within
its cluster and qn neighbors in the other cluster, so that
p+q = d/n = Θ(1/n). Under this constraint, we choose
the remaining graph from the uniform distribution on
all d-regular graphs. Thus, for each of the graphs un-
der consideration, the total inter-cluster connectivity is
C̄ = 2q · |V1| · |V2| = q · n2

2 . Decreasing q corresponds to
decreasing the cross-cluster connectivity and increasing

 0

 0.5

 1

 1.5

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Figure 11: Throughput shows a characteristics profile with
respect to varying levels of cross-cluster connectivity. The one
point marked on each curve indicates our analyticallly de-
termined threshold of cross-cluster connectivity below which
throughput must be smaller than its peak value.

the connectivity within each cluster. Our result below
holds with high probability (w.h.p.) over the random
choice of the graph. Let T (q) be the throughput with
the given value of q, and let T ∗ be the throughput when
p = q (which will also be the maximum throughput).

Our main result is the following theorem, which ex-
plains the throughput results by proving that while q ≥
q∗, for some value q∗ that we determine, the throughput
T (q) is within a constant factor of T ∗. Further, when
q < q∗, T (q) decreases roughly linearly with q. We refer
the reader to our technical report [22] for the proof.

Theorem 2. There exist constants c1,c2 such that if q∗ =
c1

1
〈D〉 p, then for q ≥ q∗ w.h.p. T (q)≥ c2T ∗. For q < q∗,

T (q) = Θ(q).

7 Improving VL2

In this section, we apply the lessons learned from our
experiments and analysis to improve upon a real world
topology. Our case study uses the VL2 [13] topology
deployed in Microsoft’s data centers. VL2 incorporates
heterogeneous line-speeds and port-counts and thus pro-
vides a good opportunity for us to test our design ideas.

VL2 Background: VL2 [13] uses three types of
switches: top-of-racks (ToRs), aggregation switches, and

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 39

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree (DA)

16 Agg Switches (DI=16)
20 Agg Switches (DI=20)
24 Agg Switches (DI=24)
28 Agg Switches (DI=28)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Aggregation Switch Degree (DA)

20% Chunky
60% Chunky

100% Chunky

(b)

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree (DA)

All-to-All Traffic
Permutation Traffic

100% Chunky Traffic

(c)

Figure 12: Improving VL2: (a) The number of servers our topology supports in comparison to VL2 by rewiring the same equip-
ment; (b) Throughput under various chunky traffic patterns; and (c) The number of servers our topology can support in comparison
to VL2 when we require it to achieve full throughput for all-to-all traffic, permutation traffic, and chunky traffic.

core switches. Each ToR is connected to 20 1GbE
servers, and has 2 10GbE uplinks to different aggregation
switches. The rest of the topology is a full bipartite inter-
connection between the core and aggregation switches.
If aggregation switches have DA ports each, and core
switches have DI ports each, then such a topology sup-
ports DA.DI

4 ToRs at full throughput.

Rewiring VL2: As results in §5.1 indicate, connecting
ToRs to only aggregation switches, instead of distribut-
ing their connectivity across all switches is sub-optimal.
Further, the results on the optimality of random graphs in
§4 imply further gains from using randomness in the in-
terconnect as opposed to VL2’s complete bipartite inter-
connect. In line with these observations, our experiments
show significant gains obtained by modifying VL2.

In modifying VL2, we distribute the ToRs over aggre-
gation and core switches in proportion to their degrees.
We connect the remaining ports uniform randomly. To
measure our improvement, we calculate the number of
ToRs our topology can support at full throughput com-
pared to VL2. By ‘supporting at full throughput’, we
mean observing full 1 Gbps throughput for each flow
in random permutation traffic across each of 20 runs.
We obtain the largest number of ToRs supported at full
throughput by doing a binary search. As Fig. 12(a)
shows, we gain as much as a 43% improvement in the
number of ToRs (equivalently, servers) supported at full
throughput at the largest size. Note that the largest size
we evaluated is fairly small – 2,400 servers for VL2 –
and our improvement increases with the network’s size.

8 In Practice

In this section, we address two practical concerns: (a)
performance with a more diverse set of traffic matri-
ces beyond the random permutations we have used so
far; and (b) translating the flow model to packet-level
throughput without changing the results significantly.

8.1 Other Traffic Matrices

We evaluate the throughput of our VL2-like topology
under other traffic matrices besides random permuta-
tions. For these experiments, we use the topologies cor-
responding to the ‘28 Agg Switches (DI=28)’ curve in
Fig. 12(a). (Thus, by design, the throughput for ran-
dom permutations is expected, and verified, to be 1.)
In addition to the random permutation, we test the fol-
lowing other traffic matrices: (a) All-to-all: where each
server communicates with every other server; and (b) x%
Chunky: where each of x% of the network’s ToRs sends
all of its traffic to one other ToR in this set (i.e., a ToR-
level permutation), while the remaining (100−x)% ToRs
are engaged in a server-level random permutation work-
load among themselves.

Our experiments showed that using the network to in-
terconnect the same number of servers as in our earlier
tests with random permutation traffic, full throughput is
still achieved for all but the chunky traffic pattern. In
Fig. 12(b), we present results for 5 chunky patterns. Ex-
cept when a majority of the network is engaged in the
chunky pattern, throughput is within a few percent of
full throughput. We note that 100% Chunky is a hard
to route traffic pattern which is easy to avoid. Even as-
signing applications to servers randomly will ensure that
the probability of such a pattern is near-zero.

Even so, we repeat the experiment from Fig. 12(a)
where we had measured the number of servers our mod-
ified topology supports at full throughput under random
permutations. In this instance, we require our topology
to support full throughput under the 100% Chunky traffic
pattern. The results in Fig. 12(c) show that the gains are
smaller, but still significant, 22% at the largest size, and
increasing with size. It is also noteworthy that all-to-all
traffic is easier to route than both the other workloads.

8.2 From Flows to Packets

Following the method used by Jellyfish [23], we use
Multipath TCP (MPTCP [28]) in a packet level simu-
lation to test if the throughput of our modified VL2-like

11

40 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Aggregation Switch Degree

Flow-level
Packet-level

Figure 13: Packet level simulations of random permutation
traffic over our topology show that throughput within a few per-
cent of the optimal flow-level throughput can be achieved using
MPTCP over the shortest paths.

topology is similar to what flow simulations yield. We
use MPTCP with the shortest paths, using as many as
8 MPTCP subflows. The results in Fig. 13 show that
throughput within a few percent (6% gap at the largest
size) of the flow-level simulations is achievable. Note
that we deliberately oversubscribed the topologies so that
the flow value was close to, but less than 1. This makes
sure that we measure the gap between the flow and packet
models accurately — if the topology is overprovisioned,
then even inefficient routing and congestion control may
possibly yield close to full throughput.

9 Discussion

Why these traffic matrices? In line with the design ob-
jective of hosting arbitrary applications at high through-
put, the approach we have taken is to study difficult traf-
fic matrices, rather than TMs specific to particular envi-
ronments. We show in [16] that an all-to-all workload
bounds performance under any workload within a factor
of 2. As such, testing this TM is more useful than any
other specific, arbitrary choice. In addition, we evalu-
ate other traffic matrices which are even harder to route
(Fig. 12(c)). Further, our code is available [24], and is
easy to augment with arbitrary traffic patterns to test.

What about latency? We include a rigorous analysis of
latency in terms of path length (Fig. 1(b), 2(b)), showing
that average shortest path lengths are close to optimal in
random graphs. Further, Jellyfish [23] showed that even
worst-case path length (diameter) in random graphs is
smaller than or similar to that in fat-trees. Beyond path
length, latency depends on the transport protocol’s ability
to keep queues small. In this regard, we note that tech-
niques being developed for low latency transport (such
as DCTCP [3], HULL [4], pFabric [5]) are topology ag-
nostic.

But randomness?! ‘Random’ � ‘inconsistent perfor-
mance’: the standard deviations in throughput are ∼1%

of the mean (and even smaller for path length). Also,
by ‘maximizing the minimum flow’ to measure through-
put, we impose a strict definition of fairness, eliminat-
ing the possibility of randomness skewing results across
flows. Further, Jellyfish [23] showed that random graphs
achieve flow-fairness comparable to fat-trees under a
practical routing scheme. Simple and effective physical
cabling methods were also shown in [23].

Limitations: While we have presented here founda-
tional results on the design of both homogeneous and
heterogeneous topologies, many interesting problems
remain unresolved, including: (a) a non-trivial upper
bound on the throughput of heterogeneous networks; (b)
theoretical support for our §5.1 result on server distribu-
tion; and (c) generalizing our results to arbitrarily diverse
networks with multiple switch types.

Lastly, we note that this work does not incorporate
functional constraints such as those imposed by middle-
boxes, for instance, in its treatment of topology design.

10 Conclusion

Our result on the near-optimality of random graphs for
homogeneous network design implies that homogeneous
topology design may be reaching its limits, particularly
when uniformly high throughput is desirable. The re-
search community should perhaps focus its efforts on
other aspects of the problem, such as joint optimization
with cabling, or topology design for specific traffic pat-
terns (or bringing to practice research proposals on the
use of wireless and/or optics for flexible networks that
adjust to traffic patterns), or improvements to heteroge-
neous network design beyond ours.

Our work also presents the first systematic approach to
the design of heterogeneous networks, allowing us to im-
prove upon a deployed data center topology by as much
as 43% even at the scale of just a few thousand servers,
with this improvement increasing with size. In addition,
we further the understanding of network throughput by
showing how cut-size, path length, and utilization affect
throughput.

While significant work remains in the space of design-
ing and analyzing topologies, this work takes the first
steps away from the myriad point solutions and towards
a theoretically grounded approach to the problem.

Acknowledgments

We would like to thank our shepherd Walter Willinger
and the anonymous reviewers for their valuable sugges-
tions. We gratefully acknowledge the support of Cisco
Research Council Grant 573665. Ankit Singla was sup-
ported by a Google PhD Fellowship.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 41

References

[1] CPLEX Linear Program Solver. http:

//www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-

able, commodity data center network architecture.
In SIGCOMM, 2008.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. DCTCP: Efficient packet transport for the
commoditized data center. In SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a
little Bandwidth for Ultra-Low Latency in the Data
Center. NSDI, 2012.

[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. Deconstructing dat-
acenter packet transport. HotNets, 2012.

[6] B. Bollobás and W. F. de la Vega. The diameter of
random regular graphs. In Combinatorica 2, 1981.

[7] V. G. Cerf, D. D. Cowan, R. C. Mullin, and R. G.
Stanton. A lower bound on the average shortest
path length in regular graphs. Networks, 1974.

[8] C. Clos. A study of non-blocking switching net-
works. Bell System Technical Journal, 32(2):406–
424, 1953.

[9] F. Comellas and C. Delorme. The (degree, diame-
ter) problem for graphs. http://maite71.upc.

es/grup_de_grafs/table_g.html/.
[10] A. R. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-

Ortiz, and S. Keshav. Rewire: An optimization-
based framework for unstructured data center net-
work design. In INFOCOM, 2012.

[11] A. R. Curtis, S. Keshav, and A. Lopez-Ortiz.
LEGUP: using heterogeneity to reduce the cost of
data center network upgrades. In CoNEXT, 2010.

[12] N. Farrington, G. Porter, S. Radhakrishnan, H. H.
Bazzaz, V. Subramanya, Y. Fainman, G. Papen,
and A. Vahdat. Helios: A hybrid electrical/optical
switch architecture for modular data centers. In
SIGCOMM, 2010.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. Vl2: A scalable and flexible data center net-
work. In SIGCOMM, 2009.

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,
C. Tian, Y. Zhang, and S. Lu. Bcube: A high per-
formance, server-centric network architecture for
modular data centers. In SIGCOMM, 2009.

[15] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
Dcell: A scalable and fault-tolerant network struc-
ture for data centers. In SIGCOMM, 2008.

[16] S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla.

Measuring and Understanding Throughput of Net-
work Topologies. Technical report, 2014. http:

//arxiv.org/abs/1402.2531.
[17] F. T. Leighton. Introduction to parallel algorithms

and architectures: Arrays, trees, hypercubes. 1991.
[18] T. Leighton and S. Rao. Multicommodity max-flow

min-cut theorems and their use in designing ap-
proximation algorithms. Journal of the ACM, 1999.

[19] M. Miller and J. Siran. Moore graphs and beyond:
A survey of the degree/diameter problem. ELEC-
TRONIC JOURNAL OF COMBINATORICS, 2005.

[20] R. N. Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subra-
manya, and A. Vahdat. Portland: A scalable fault-
tolerant layer 2 data center network fabric. In SIG-
COMM, 2009.

[21] J.-Y. Shin, B. Wong, and E. G. Sirer. Small-world
datacenters. ACM SOCC, 2011.

[22] A. Singla, P. B. Godfrey, and A. Kolla. High
Throughput Data Center Topology Design. Techni-
cal report, 2013. http://arxiv.org/abs/1309.
7066.

[23] A. Singla, C.-Y. Hong, L. Popa, and P. B. God-
frey. Jellyfish: Network Data Centers Randomly.
In NSDI, 2012.

[24] A. Singla, S. A. Jyothi, C.-Y. Hong, L. Popa, P. B.
Godfrey, and A. Kolla. TopoBench: A network
topology benchmarking tool. https://github.

com/ankitsingla/topobench, 2014.
[25] A. Singla, A. Singh, K. Ramachandran, L. Xu, and

Y. Zhang. Proteus: a topology malleable data center
network. In HotNets, 2010.

[26] G. Wang, D. G. Andersen, M. Kaminsky, K. Papa-
giannaki, T. S. E. Ng, M. Kozuch, and M. Ryan.
c-through: Part-time optics in data centers. In SIG-
COMM, 2010.

[27] C. Wiki. The Degree-Diameter Problem for Gen-
eral Graphs. http://goo.gl/iFRJS.

[28] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Han-
dley. Design, implementation and evaluation of
congestion control for multipath tcp. In NSDI,
2011.

[29] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. Md-
cube: A high performance network structure for
modular data center interconnection. In CoNext,
2009.

[30] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar,
A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mir-
ror on the ceiling: flexible wireless links for data
centers. In SIGCOMM, 2012.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 43

Adtributor: Revenue Debugging in Advertising Systems

Ranjita Bhagwan, Rahul Kumar, Ramachandran Ramjee, George Varghese,
Surjyakanta Mohapatra, Hemanth Manoharan, and Piyush Shah

Microsoft

Abstract

Advertising (ad) revenue plays a vital role in support-
ing free websites. When the revenue dips or increases
sharply, ad system operators must find and fix the root-
cause if actionable, for example, by optimizing infras-
tructure performance. Such revenue debugging is analo-
gous to diagnosis and root-cause analysis in the systems
literature but is more general. Failure of infrastructure
elements is only one potential cause; a host of other di-
mensions (e.g., advertiser, device type) can be sources
of potential causes. Further, the problem is complicated
by derived measures such as costs-per-click that are also
tracked along with revenue.

Our paper takes the first systematic look at revenue
debugging. Using the concepts of explanatory power,
succinctness, and surprise, we propose a new multi-
dimensional root-cause algorithm for fundamental and
derived measures of ad systems to identify the dimen-
sion mostly likely to blame. Further, we implement the
attribution algorithm and a visualization interface in a
tool called the Adtributor to help troubleshooters quickly
identify potential causes. Based on several case studies
on a very large ad system and extensive evaluation, we
show that the Adtributor has an accuracy of over 95%
and helps cut down troubleshooting time by an order of
magnitude.

1 Introduction
Many free websites are supported today by revenue gen-
erated through advertisements (ads). Website ads can be
of two types, namely, search and display. In the case of
a search ad, an end user goes to a publisher website such
as bing.com and enters a query phrase. The response to
the query is a search results page that may contain one
or more ads. If the user clicks on one of these ads, the
publisher earns revenue. In the case of a display ad, an
end user may visit a publisher website, such as cnn.com,
where she might see ads at the top or sides of the page.
The display of these ads earns revenue for the publisher.

Ad systems facilitate generation and accounting of
millions of such search and display ads every day. Apart
from users and publishers noted above, there are two
other key constituents who interact with the ad system.
The ads shown to the user are the result of an ad auction
between various advertisers who bid to compete to have

their ad displayed to the user. Also in the midst are vari-
ous fraud operators [8] that try to usurp a fraction of the
advertising revenue.

Ad systems manage the interaction between users,
publishers, advertisers and fraud operators. Ad sys-
tems implement various ad-related algorithms that run
the real-time ad auctions between the advertisers, return
the winning ads to the publisher, monitor the user clicks,
detect and remove potential fraudulent activity, compute
the revenue from each displayed or clicked ad, charge
the advertiser the appropriate bid amount, and pay the
publishers. At the core of the ad system is a large-scale
distributed system consisting of thousands of servers dis-
tributed across several data centers that execute the ad al-
gorithms and manage the serving and accounting of ads.

The focus of this paper is on debugging ad systems.
Typically, an ad system monitor issues an alert whenever
a measure of interest is identified as anomalous (e.g., rev-
enue or number of searches is down sharply). 1 Our goal
is to automatically identify the potential root cause of
this anomaly. We term our approach revenue debugging,
even though it is applicable to several measures of inter-
est to ad system operators, to acknowledge the promi-
nence of the revenue metric. In this paper, we describe a
new revenue debugging algorithm that analyses the large
amount of data logged by the ad system and narrows
down the scope of potential root-cause of an anomaly to
a sub-component of the ad system for further investiga-
tion by a human troubleshooter.

Root-cause identification and diagnostics is an age-
old problem in systems. Various performance root-
causing tools have been proposed in the past [1, 2, 3,
10, 14, 15]. But all these solutions have focused on per-
formance/failure debugging. Here, we address a sim-
ilar yet more general problem: diagnostics in ad sys-
tems. While performance/failure of infrastructure sys-
tems components can be one possible root-cause for an
anomalous measure, there may be various other root-
causes that depend on other components that interact
with the ad system. Consider the following examples.
1. Papal Election: We noticed that the papal election
caused a revenue drop because many searches were made
for non-monetizable query terms such as pope or papal

1Anomaly detection is a challenging problem in itself but is out of
scope of this paper.

44 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

election, that advertisers typically do not bid for. The
total number of ads shown dropped which resulted in
an anomalous revenue drop. While identifying the root-
cause as the papal election is not actionable, root-cause
identification is still important as it eliminates an action-
able root-cause such as the example below.
2. Browser Ad Failure: We found a revenue drop was
caused by a manual error in updating a configuration
file that had the side-effect of not showing ads on cer-
tain browser versions. In this case, quick identification
helped rectify the configuration error, thereby restoring
advertising revenue. A more extensive set of examples is
depicted in Table 1 and discussed in Section 2.1.

The first challenge in ad systems debugging is sheer
scale. There are hundreds of millions of searches and
clicks every day; performing diagnostics at the level of a
search or a click is not scalable (imagine running Mag-
pie [3] or tracking a string of system calls through hun-
dreds of system components for every click). Thus, for
scalability reasons, ad system debugging operates over
aggregates of various measures. These measures are
typically counters aggregated over certain time intervals
(e.g., revenue generated over the last 1 hour). Root-cause
identification can only be triggered by anomalous behav-
ior of these aggregate counters.

A second distinguishing characteristic of ad systems
as compared to typical systems trouble shooting is the ex-
istence of multiple dimensions, and the need to first iso-
late the dimension that explains the anomaly. Measures
such as revenue can be broken down or projected along
different dimensions such as advertiser, browser, or data
center. For instance, in Example 2, if revenue were pro-
jected along the browser dimension, one could observe
that some browser versions were not generating their
“typical” share of revenue. However, if the same rev-
enue were sliced by the advertiser dimension, perhaps
the distribution of revenue would not have changed sig-
nificantly.

Typical systems root-causing algorithms such as
SCORE [11] use succinctness (Occam’s razor) and
explanatory power (does the root-cause explain the
change?) as their main parameters for optimization and
do not have to account for multiple dimensions. To iso-
late anomalous dimensions, we introduce the notion of
surprise, captured by quantifying the change in distribu-
tion of measure values across each dimension. For in-
stance, in Example 2, change in distribution of revenue
along the browser dimension is more surprising than the
change in distribution of revenue along the advertiser di-
mension. Thus, our first contribution in the paper is
the root-causing algorithm described in Section 3 that
uses surprise in addition to succinctness and explanatory
power to identify root-causes in ad systems.

A third unique characteristic of ad systems is the

prevalence of derived measures. Consider two funda-
mental measures: revenue per hour and number of clicks
per hour. From these two measures, one can define a de-
rived measure called cost-per-click that is simply revenue
divided by number of clicks. Ad system operators moni-
tor and track many such derived measures that are func-
tions of various fundamental measures (see Figure 1).
For example, the change in number of clicks and change
in revenue may be small by themselves and not anoma-
lous (e.g., less than 10%). However, correlated changes
(e.g., revenue drops and simultaneously clicks increase,
each by say 10%), are anomalous and is captured by the
derived cost-per-click measure (20% change). As we
discuss in Section 4, attributing a root-cause to derived
measures is challenging. To address this, we propose a
novel partial-derivative inspired attribution solution for
derived measures, our second contribution of the paper.

The outcome of our root-cause identification algo-
rithm is a set of candidates that potentially explain an
anomaly. However, this is only the first step in the di-
agnosis process where a troubleshooter may, if appro-
priate, take actions to fix the issue. To help the trou-
bleshooter quickly identify potential root-cause candi-
dates, we have implemented our root-cause identification
algorithm and a graphical visualizer in a tool called the
Adtributor, our third contribution of the paper. Through
experiences from a pilot deployment in a production sys-
tem, we have refined the visualization interface and data
representation techniques in Adtributor to further reduce
turnaround time for troubleshooters.

Finally, we perform extensive evaluation of our root-
causing algorithm. First, we tabulate and discuss a rep-
resentative set of case studies that highlight the value of
our root-causing tool. Second, we evaluate our algorithm
on 128 anomaly alerts over 2 weeks of real ad system
data and find that our algorithm achieves an accuracy of
over 95%. In fact, Adtributor even found root-causes for
a few anomalies that were missed by the manual trou-
bleshooters. Further, the tool also speeds up the trou-
bleshooting process by an order of magnitude.

2 Problem Statement
In this section, after providing a system overview, we
show examples of real problems and their root-causes.
Next, we state the problem more precisely and motivate
our solution.

2.1 System Overview
Figure 1 shows a simplified representation of an ad
system, and the entities such as users, fraud opera-
tors, publishers and advertisers that directly interact with
the ad system. The ad system itself has various sub-
components, some of which we show.

While the logging infrastructure does track each

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 45

Figure 1: A simplified representation of an ad system, and the measures it monitors.

search request or ad-click, the sheer scale makes it hard
to track down a problem at the individual request level.
Instead, the system monitors a set of aggregate measures,
as shown in Figure 1. From the raw logs, it first cal-
culates, for each time interval, total searches received,
total ads shown, total ad-clicks received, and total rev-
enue from these clicks. These measures are all additive,
and can be sliced along different dimensions. For in-
stance, the total revenue is the sum of the revenue made
from each advertiser using the system. The total revenue
is also the sum of revenue received from different geo-
graphical regions where the ad system is active. We term
such additive measures fundamental measures.

Additionally, the system also monitors a set of
non-additive derived measures, which are functions
of fundamental measures, such as ads-per-search
(ads/searches), clicks-per-ad (clicks/ads), cost-per-
click (revenue/clicks), and revenue-per-search (rev-
enue/searches).

An anomalous rise or drop in any of these measures is
an indication of a problem. Therefore, a diagnostic en-
gine needs to first detect an anomaly, and then perform
root-cause analysis. In this paper, we focus on the lat-
ter aspect of root-causing, while relying on well-known
ARMA model-based methods [4] for anomaly detection.
The anomaly detector generates a model-based predic-
tion of measure values based on 8 weeks of historical
data, taking into account normal time-of-day and day-of-
week fluctuations. It then compares the actual value with
the forecasted value – when the actual value of a mea-
sure is significantly different from the forecasted value,
it generates an anomaly alert. The threshold difference
above which we generate an alert is measured in terms
of a percentage deviation from the expected value. In the
current system, troubleshooters manually set this value
based on experience. For each alert, our objective is to
attribute the anomaly in a measure to a dimension and its
corresponding elements. We define these terms next.

Dimension: A dimension is an axis along which a mea-
sure can be projected. For instance, we can project rev-
enue along the axis of advertisers, and determine how

much revenue comes in from each advertiser. The di-
mension in this case is “Advertiser”. Derived measures
can be similarly projected across dimensions. Some
other dimensions are “Publisher”, “Data Center”, and
“User Location”. Typically, an ad system deals with
dozens of such dimensions. Note that a dollar of rev-
enue could be added to Advertiser 1 in one dimension,
and Publisher 3 in a second dimension.
Element: Every dimension has a domain of values called
elements. For instance, the “Advertiser” domain can
have the following elements: {Geico, Microsoft, Toyota,
Frito-Lay, ...}. The Publisher dimension may have ele-
ments: {Bing, Amazon, NetFlix, ...}.

Table 1 provides a number of problem examples we
encountered, both actionable and not actionable, that
need to be detected and root-caused to the appropriate
dimensions and elements. Column 1 shows that prob-
lems can happen at various levels. Column 3 shows the
anomalous measure. Column 4 shows the output of the
root-cause analysis, the focus of this paper.

Note that Column 4 is only the first step towards root-
causing, but it is essential as it gives the troubleshooter
the best indication of where the problem actually lies.
Other post-processing techniques (correlation engines,
NLP techniques, manual investigation) use the output of
the multi-dimensional analysis to perform a deeper dive
into the issue to arrive at the final root-cause, shown in
Column 5, but this aspect of root-causing is outside the
scope of this paper. For instance, in row 9, while the
multi-dimensional analysis did narrow down the problem
to a few query strings, an administrator had to seman-
tically interpret the strings to determine that the papal
election was the cause.

2.2 Problem Definition and Scope
The multi-dimensional analysis problem of revenue de-
bugging is to find the dimension and its elements that
best explain an anomalous rise or fall in a measure. In
this context, we need to define what constitutes the “best
explanation” for an anomaly.

Consider the following example. The revenue of an ad
system was forecasted to be $100 at a given time. In real-

3

46 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Category No. Symptom Faulty Di-
mension and
Elements

Final Root-Cause

Infrastructure 1. Ads shown dropped Data Center:
DC1

Deployment of certain updates to data center DC1 failed.

2. Revenue dropped Log Server: L10,
L11, L12

Bug caused abnormally large logs on these logging servers, and they went
out of storage.

Ad System 3. Revenue increased Bucket: B1, B2 Buckets are A/B tests that are run on disjoint subsets of traffic to test new
algorithms. Buckets B1 and B2 were using a different algorithm that in-
creased the number of ads they showed.

4. Ads, revenue dropped Browser: WB1 Configuration file error caused no ads to be shown to users who used web
browser WB1. See Section 6.

Advertiser 5. Cost-per-click, rev-
enue increased

Advertiser: A1,
A2, ..., An

These advertisers were all retail companies who increased their budgets
during the holiday shopping season. This caused auction prices to go up,
thereby increasing cost-per-click and revenue. See Section 6.

6. Cost-per-click
dropped

Advertiser: Ax A large advertiser Ax reduced their marketing budget drastically. This
caused an overall drop in revenue, and clicks on ads from this advertiser.
This made the cost-per-click drop anomalously.

Publisher 7. Clicks-per-ad in-
creased

Publisher: P1 One publisher launched a new UI with more ads shown on the top of the
page than on the side. Users tend to click more on ads at the top of the
page, and so this publisher reported more ad-clicks. See Section 6.

8. Revenue dropped Publisher: P2, P3 Publishers P2 and P3 started blocking ads returned by the ad system to
make for a cleaner UI. Their revenue dropped.

User 9. Ads-per-search
dropped

Query string:
“pope”, “papal
election”

During the papal election, users searched for ”Pope”, ”Papal election”, etc.
which are non-monetizable searches. These searches showed no ads, con-
sequently the derived measure ads-per-search dropped.

10. Revenue dropped User Location:
New Orleans

A hurricane in New Orleans caused fewer searches from the affected geo-
graphical areas.

Fraud 11. Searches increased User-agent String A large number of searches used an identical user-agent string. This was
traced to a bot that was spoofing search requests and blindly replicating the
user-agent string. See Section 6.

Table 1: Some example issues that cause anomalies in advertising system measures.

Data Forecasted Actual Diff-
Center Revenue Revenue erence

X $94 $47 $47
Y $6 $3 $3

Total $100 $50 $50

Table 2: Revenue by Data Center

Device Forecasted Actual Diff-
Type Revenue Revenue erence
A1 $50 $24 $26
A2 $20 $21 -$1
A3 $20 $4 $16
A4 $10 $1 $9

Total $100 $50 $50

Table 3: Revenue by Advertiser

Device Forecasted Actual Diff-
Type Revenue Revenue erence
PC $50 $49 $1

Mobile $25 $1 $24
Tablet $25 $0 $25
Total $100 $50 $50

Table 4: Revenue by Device Type

ity, the actual revenue was only $50. An alert is triggered
on the revenue measure, which brings a troubleshooters
attention to the problem.

To find the root-cause when such problems occur,
the ad system continuously tracks the revenue generated
across a host of dimensions. For this scenario, con-
sider three such dimensions: Data center (DC), Adver-
tiser (AD), and Device type (DT). Tables 2, 3, 4 show
the projection of revenue values along these dimensions,
and the values attributed to the individual elements.

We now explain the semantics of these attributions.
When the ad system receives a search query, it routes
the query to a data center that in turn serves a number
of ads in response. The revenue attributed to a data cen-
ter is the total revenue received from clicks on ads that
this data center serves. Each ad has an associated adver-
tiser. When a user clicks an ad, the system charges the
advertiser a pre-determined sum of money. The revenue
attributed to the advertiser is the total cost of all such
clicks made on the advertiser’s ads. Users make search
queries using a host of devices, which could be phones,

tablets, or PCs. The revenue attributed to a device type
is the sum total of all revenue that the ad system obtains
from ad-clicks from that specific device-type.

The question that we seek to answer is: how do we
pinpoint the revenue drop to the right dimensions and
their elements? We restate the problem as follows:

“Find a Boolean expression, in terms of dimensions
and their elements, such that the revenue drop attributed
to the expression best explains the total drop in revenue.”

While we examine how to determine “best” shortly,
consider the following expressions that could explain the
$50 revenue drop:

Revenue Drop(DC == X) = $47 (1)

Revenue Drop(AD == A1 ∨AD == A3 ∨AD == A4) = $51
(2)

Revenue Drop(DT == Mobile ∨DT == Tablet) = $49
(3)

For example, equation 2 states that the sum of the dif-
ferences between the forecasted and actual revenues for
rows 1, 3, and 4 of the advertiser table is $51, which is
very close to the total revenue drop of $50.

In general, such expressions could include multiple

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 47

dimensions such as Revenue Drop (DT == PC ∧
DC == X) which refers to a revenue drop across PC
users served ads from data center X . Based on about
one year of monitoring alerts in ad systems we have ob-
served, through manual study as well as through using an
attribution algorithm that blames anomalies on multiple
dimensions, that such cases where multiple dimensions
contribute together to a root-cause are very rare. There-
fore, for simplicity of exposition, in this paper, we limit
our discussions to finding a Boolean expression that in-
volves a single dimension and a set of its elements that
explains the anomalous change.

To understand what constitutes the “best” dimension
and a set of its elements, we studied several criteria. Con-
sider the following strawman approach that motivates our
final problem statement.
Strawman: Find the dimension and a set of its elements
whose revenue drop is at least a threshold fraction, TEP ,
of the total revenue drop, and is most succinct.

We quantify the explanatory power (EP) of a set of
elements as the fraction of the measure change that it
explains. We quantify succinctness (P) of a set of ele-
ments as the total number of elements in the expression.
Therefore, the strawman will find the expression that has
explanatory power of at least TEP , and uses the smallest
number of elements.

Occam’s razor suggests that the most succinct set, as
long as it explains the drop within a certain margin of
error (TEP), is the best explanation. By this argument, if
TEP is set to 0.9, the best dimension and set of elements
among the three equations is in Equation 1, since the data
center X alone can explain 94% of the total drop.

This approach, however, has deficiencies for root-
causing in the presence of multiple dimensions. Though
data center X’s revenue drop is a high 94% of the total
revenue drop, notice that both the forecasted and actual
revenue are equally spread between the two data centers
X and Y. Data center X provided 94% of the forecasted
revenue ($94 out of $100), and actual revenue ($47 out
of $50). Data center Y contributed 6% across both val-
ues. By comparison, in the device type dimension, de-
vice type PC contributed 50% of forecasted revenue ($50
out of $100), but 98% of actual revenue ($49 out of $50).
The contributions of Mobile and Tablet device types also
varies widely from 25% of forecasted revenue to 0% of
actual revenue. The contributions vary along the adver-
tiser dimensions as well, but not as much as they do along
the device type dimension.

This large change in the contributions between fore-
casted and actual revenue from the different elements of
the device type dimension is, in general, surprising and
unexpected. Consequently, we propose that surprise is a
better indication of a problem than if we only used suc-
cinctness and explanatory power of an expression. Say

the root-cause of this revenue drop was due to a configu-
ration file error which caused no ads to be shown on mo-
biles and tablets. While data center X would still show
a huge drop in revenue because it provides 94% of all
ads shown across devices, the actual root-cause is bet-
ter explained by the device type dimension, and the ele-
ments Mobile and Tablet. In other words, the expression
in Equation 3 is the best one, even though it is not the
most succinct.

To capture this observation, our approach includes a
notion of “surprise” (S) associated with an expression
(Section 3 has the precise definition). Therefore, gen-
eralizing to any measure, our final revenue debugging
problem statement can be captured in three steps:
• For a dimension, find all sets of elements that explain

at least a threshold fraction, TEP , of the change in the
measure (have high explanatory power).

• Among all such sets for each dimension, find the sets
that are most succinct in that dimension.

• Across all such sets for all dimensions, find the one
set that is the most surprising in terms of changes in
contribution.

Again, for the mock example, with TEP = 0.9, the first
step will narrow down the sets to {X} for Data Center,
{A1, A3, A4} for Advertiser, and {Mobile, Tablet} and
{PC, Mobile, Tablet} for Device Type. Step 2 will nar-
row down the sets for each dimension to {X}, {A1, A3,
A4}, and {Mobile, Tablet}. Step 3 will then use the sur-
prise metric to pick the Device Type dimension and its
set {Mobile, Tablet} as the best explanation of the drop.

Our algorithm use a per-element threshold of the
change in the measure, TEEP , to add to the idea of suc-
cinctness. Not only do we want the smallest set of ele-
ments, we also want only those elements that contribute
at least a fraction of TEEP to the anomaly.

We show in Section 3.4 that solving this problem can
take exponential time (in number of elements) in the
worst case. Therefore, we use a greedy approach that
solves this problem approximately.

3 Root-Cause Identification Algorithm
We start with some notation and use it to formally define
explanatory power and surprise. We then describe the
root-cause identification algorithm. While the algorithm
remains the same for fundamental and derived measures,
the way explanatory power and surprise are computed
for derived measures is more complex and is discussed
separately in Section 4.

3.1 Notation
The list of important terms used in this section and
their notation are summarized in Table 5. Let the
set of measures (e.g., revenue, number of searches)

5

48 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Term Notation Example
Dimensions D = {D1, D2, ..., Dn} {Advertiser,Data center,...}

Cardinality of Dimension Di Ci 1000’s for advertiser, 10’s for Data center,...
Elements of Dimension Di Ei = {Ei1, Ei2, ..., EiCi

} {Flower123,...} for Advertisers
Measures M = {m1,m2, ...,mk} {Revenue, Number of Searches,...}

Forecasted and Actual Values of measure m for element Eij Fij(m), Aij(m) Revenue for Flowers123: forecast = $100, actual = $90
Overall forecasted and actual values of measure m F (m), A(m) Total revenue: forecast = $1,000,000 and actual = $900,000

Table 5: Notation

be denoted as M = {m1,m2, ...,mk} and let the
set of dimensions (e.g., advertisers, data centers) be
D = {D1, D2, ..., Dn}. Further, let the set of ele-
ments of a given dimension Di be denoted as Ei =
{Ei1, Ei2, ..., EiCi} where Ci is the cardinality of di-
mension i. For example, E21 may be “Flowers123”, an
element of the advertiser dimension.

For each of the measures m ∈ M of interest (includ-
ing the fundamental and derived measures) and for each
of the elements Eij , we have access to the predicted or
forecasted values, Fij , as well as the actual observed val-
ues, Aij . Note that, as discussed earlier, these values are
aggregates corresponding to some time interval of inter-
est (e.g., $100 revenue forecast, $90 revenue actual for
element Flower123, dimension advertiser).

For fundamental measures such as revenue or number
of searches, both the overall forecasted value for the mea-
sure, F (m), as well as the overall actual value, A(m), re-
main identical across all the dimensions (e.g., $100 fore-
casted and $50 actual revenue in the example in the pre-
vious section). For fundamental measures, the overall
measure is simply the summation of value of the mea-
sures of the elements of the respective dimensions, but
the same is not true for derived measures as they are not
additive (Section 4).

Thus, given F (m) and A(m), the algorithm needs to
output a potential root cause to explain the difference be-
tween the two. For this, it uses explanatory power and
surprise, defined next.

3.2 Explanatory power
Explanatory power of an element can be defined as the
percentage of change in the overall value of the measure
that is explained by change in the given element’s value.
For fundamental measures, the explanatory power of an
element j in dimension i is simply

EPij = (Aij(m)− Fij)/(A(m)− F (m)) (4)

For example, the total number of searches at a given
hour deviates from a forecasted value of 1 million to 0.8
million, and the number of searches at the same hour at
a particular data center, DC1, differs from its forecasted
value of 0.5 million to 0.4 million, the explanatory power
for element DC1 is (0.4-0.5)/(0.8-1) = 50%.

Note that, explanatory power for an element can be
more than 100% or even negative, if the change in ele-

ment is in opposite direction to overall change. However,
the sum of explanatory powers of all elements of any
dimension should sum up to 100%. Thus, explanatory
power fully explains the change in the overall measure.

3.3 Surprise
As discussed in the example in Section 2, a dimension
that has large change in its distribution (e.g., Device
Type) is more likely to be a root-cause than the dimen-
sion that does not exhibit such a change (e.g., Data Cen-
ter). We now formally define a measure of surprise to
capture this notion.

For each element Eij , let pij(m) be the forecasted or
prior probability value given by

pij(m) = Fij(m)/F (m), ∀Eij (5)

Given a new anomalous observation, let qij(m) be the
actual or posterior probability value

qij(m) = Aij(m)/A(m), ∀Eij (6)

Intuitively, the new observations for a given dimension
are surprising if the posterior probability distribution is
significantly different from the prior probability distri-
bution. This difference between two probability distri-
butions P and Q can be captured by the relative entropy
or Kullback-Leibler (KL) divergence [12]. However, the
use of KL divergence in our context has two issues. First,
KL divergence is not symmetric. Second, KL divergence
is only defined if, for all i, qi = 0 only if pi = 0, which
does not hold in our setting (e.g., advertiser pauses his
campaign).

Thus, instead of KL Divergence, we use a related mea-
sure called the Jensen-Shannon (JS) divergence [12] for
computing surprise, defined as

DJS(P,Q) = 0.5(Σipi log
2pi

pi + qi
+Σiqi log

2qi
pi + qi

)

Observe that DJS(P,Q) is symmetric and is finite
even when qi = 0 and/or pi = 0. Further, 0 ≤
DJS(P,Q) ≤ 1, where 0 denotes no change in distri-
bution between P and Q, with higher values denoting
greater differences.

Thus, to compute surprise Sij for element Eij , we use
p = pij(m) and q = qij(m) to compute

Sij(m) = 0.5 (p log(
2p

p+ q
) + q log(

2q

p+ q
)) (7)

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 49

3.4 Algorithm

1 Foreach m ∈ M // Compute surprise for all measures
2 Foreach Eij // all elements, all dimensions
3 p = Fij(m)/F (m) // Equation 5
4 q = Aij(m)/A(m) // Equation 6
5 Sij(m) = DJS(p, q) // Equation 7
6 ExplanatorySet = {}
7 Foreach i ∈ D
8 SortedE = Ei.SortDescend(Sij(m)) //Surprise
9 Candidate = {}, Explains = 0, Surprise = 0

10 Foreach Eij ∈ SortedE
11 EP = (Aij(m)− Fij(m))/(A(m)− F (m))
12 if (EP > TEEP) // Occam’s razor
13 Candidate.Add += Eij

14 Surprise += Sij(m)
15 Explains += EP
16 if (Explains > TEP) // explanatory power
17 Candidate.Surprise = Surprise
18 ExplanatorySet += Candidate
19 break
20 //Sort Explanatoryset by Candidate.Surprise
21 Final = ExplanatorySet.SortDescend(Surprise)
22 Return Final.Take(3) // Top 3 most surprising

Figure 2: Root-Cause Identification Algorithm

The root-cause identification algorithm seeks to solve
the optimization problem specified in Section 2 using the
above definitions of explanatory power and surprise.

Note that, obtaining the optimal solution to the prob-
lem in the worst case will take exponential time. This
can be shown through a simple example: consider a set
of size n where each element has an identical explana-
tory power and we require n/2 elements of the set to
explain TEP . In this case, every possible subset of car-
dinality n/2 is of minimum size possible (succinct) and
has explanatory power of TEP . Thus, we have to com-
pare the surprise values of all these subsets (whose count
is exponential in n) in order to find the subset that has the
maximum surprise, the optimal solution.

Instead of enumerating various minimum cardinality
subsets that have explanatory power of at least TEP , our
algorithm (Figure 2) uses the following greedy heuris-
tic. In each dimension, after computing the surprise for
all elements (lines 1–5), it first sorts the elements in de-
scending order of surprise (line 8). It then adds each ele-
ment to a candidate set as long as the element explains at
least TEEP of the total anomalous change by itself (lines
12–15). The parameter TEEP helps control the cardinal-
ity of the set (Occam’s razor). For example, if TEEP is
10% and TEP is 67%, we can have at most 7 elements
that explain anomalous change. Further, by examining

elements in descending order of surprise, we greedily
seek to maximize the surprise of the candidate set. The
algorithm adds at most one candidate set per dimension
(lines 16–19), as long as the set is able to explain a major-
ity (TEP) of the anomalous change (explanatory power).
Finally, the algorithm sorts the various candidate sets by
their surprise value and returns the top three most sur-
prising candidate sets as potential root-cause candidates
(lines 21–22).

4 Derived Measures
Derived measures are functions of fundamental measures
that are tracked by troubleshooters since they reveal more
information than if one simply tracked the fundamental
measures. In this section, we discuss how we compute
explanatory power and surprise for derived measures.

4.1 Explanatory Power
While attributing contribution of an individual element
to the overall value of a derived measure is important for
root-cause identification, this is not as straightforward
as computing the same for fundamental measures. In
this section, we first start with a illustrative example that
helps define explanatory power for derived measures and
then present our solution to the derived measure attribu-
tion problem.
Example. Consider the hypothetical example in Tables 6
and 7 that shows revenue and number of clicks, respec-
tively, for four different advertisers during an anomalous
period. For these two fundamental measures, attribution
of the overall change to each of the advertisers is simple
using the explanatory power (equation 4) and is shown
in the column labelled EP. Thus, for the revenue drop,
one can attribute it to advertiser A1 (400%) while for the
increase in clicks, one can attribute it to advertiser A2
(200%).

Let us assume that an anomaly is thrown on a mea-
sure if it differs from its expected value by at least 20%.
Note that the overall revenue has gone down by 10%
while the number of clicks is up 16%, neither of which
exceeds the anomalous threshold. The corresponding
cost-per-click values are shown in Table 8 and using the
same 20% threshold, the overall cost-per-click (22.5%
decrease) can be labelled anomalous Thus, one can see
that derived measures can be useful in surfacing anoma-
lies that are not surfaced by just examining fundamental
measures. We confirm this quantitatively in Section 6.

The derived measure attribution problem is the follow-
ing: how does one attribute the drop in overall cost-per-
click from 0.2 (expected) to 0.155 (actual) to each of
the advertisers? If one examines the individual cost-per-
clicks of the advertisers in Table 8, we see that cost-per-
click for advertisers A1, A2, A4, are unchanged while
the cost-per-click for advertiser A3 has increased. Thus,

7

50 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Adver- Forecasted Actual EP
tiser Revenue Revenue %

Overall 100 90 -10
A1 50 10 400
A2 0 0 0
A3 40 70 -300
A4 10 10 0

Table 6: Revenue

Adver- Forecasted Actual EP
tiser Clicks Clicks %

Overall 500 580 16
A1 100 20 -100
A2 200 360 200
A3 100 100 0
A4 100 100 0

Table 7: Clicks

Adver- Forecasted Actual EP
tiser Cost/Click Cost/Click %

Overall 0.2 0.155 -22.5
A1 0.5 0.5 125
A2 0 0 106
A3 0.4 0.7 -131
A4 0.1 0.1 0

Table 8: Cost-per-click

at first glance, it appears that none of the advertisers can
be blamed for the overall drop but surely one or more of
them must be responsible! Given this situation, how do
we go about assigning explanatory power values for the
change in cost-per-click to these advertisers?

Examining the fundamental measures does help shed
more light. For example, even though cost-per-click of
A1 is unchanged, A1 had a 5X drop compared to its
forecasted values for both revenue and clicks. Given
A1’s cost-per-click (0.5) was higher than the overall
value (0.2), the 5X reduction implies that A1 was indeed
pulling down the overall cost-per-click. The fact that A1
explains some of the decrease in the overall derived mea-
sure can be further validated by observing that if we used
A1’s actual values but assume that the rest of the adver-
tisers delivered their respective forecasted values, then
the overall cost-per-click goes down to 60/420 = 0.143
for an impact of -29%.

Similarly, while A2 had 0 revenue as forecasted, A2
had a large increase in clicks, which ends up decreas-
ing the overall cost-per-click. Again, if we used A2’s
actual values but keep the rest of the advertisers’ mea-
sures to their forecasted value, the overall cost-per-click
goes down to 100/660 = 0.152 for an impact of -24%.
The above exercise of changing one advertiser’s value at
a time also suggests that A1 was more responsible for
pulling down overall cost-per-click than A2 (since use of
A1’s actual values resulted in lower overall value than
for A2).

Now consider A3. A3 had a higher revenue than fore-
casted without change in clicks, so A3 was clearly not
contributing to the overall drop. Using A3’s actual val-
ues in the above exercise would in fact increase the over-
all cost-per-click to 0.26, for an impact of +30%.

Finally, A4 had no change in either revenue or clicks.
Therefore, A4 had no impact in overall cost-per-click.

Normalizing the individual impact values so that all
the elements in total explain 100% of the overall change,
the above exercise would give A1’s explanatory power as
125%, A2’s as 106%, A3’s as -131% and A4’s as 0%.

Summarizing the observations in the above example,
one can see that an element’s explanatory power for de-
rived measures can be determined by computing a new
derived measure value, where the actual value of the
given element and forecasted values of all other elements
are used, and comparing this derived measure value to
the expected value of the derived measure.

Now, the question is how do we formalize this intu-
ition in order to determine the explanatory power for ar-
bitrary derived measures? We describe this next.
Derived measure attribution. Our solution to the de-
rived measure attribution problem is adapted from par-
tial derivatives and finite-difference calculus. Recall that
a partial derivative is a measure of how a function of sev-
eral variables changes when one of its variable changes.
However, since we operate in the discrete domain, we
use partial derivative equivalents from finite-difference
calculus [13].

We formally define explanatory power of an element i
for a derived measure, which is function h(m1,...,mk) of
fundamental measures m1, ...,mk, as the partial deriva-
tive with respect to i in finite-differences of h(.), normal-
ized so that the value across all elements of the dimen-
sion sum up to 100%.

While the above definition is general and applica-
ble to derived measures that are arbitrary functions of
fundamental measures (as long as they are differen-
tiable in finite-differences), we now illustrate it through
the specific example of derived functions of the form
A(m1)/A(m2), which make up many of the derived
measures in ad systems (Figure 1). For example, for the
cost-per-click derived measure, we have m1 = revenue
and m2 = clicks.

The partial derivative in finite-differences of f(.)/g(.)
is of the form (∆f ∗ g − ∆g ∗ f)/(g ∗ (g + ∆g)), and
is similar to continuous domain partial derivative, except
for the extra ∆g in the denominator.

Thus, explanatory power of element j for dimension i
for derived measures of the form m1/m2 is given by

EPij = ((Aij(m1)− Fij(m1)) ∗ F (m2)

−(Aij(m2)− Fij(m2)) ∗ F (m1))

/(F (m2) ∗
(F (m2) +Aij(m2)− Fij(m2))) (8)

We compute EPij for each of the elements using the
above equation and normalize it so that they add up to
100%.

Table 8 shows the explanatory power computed using
the above formula for each of the advertisers. We can see
that the rank ordering of A1, A2, A4, and A3 and their
respective explanatory power values for the attribution to
the overall change agrees with the intuitive observations
made earlier.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 51

4.2 Surprise
Recall that we defined surprise for fundamental mea-
sures in Section 3.3 based on the relative entropy (specif-
ically, JS divergence) between the prior and posterior
mass functions of values for measure m. In this section,
we seek to extend the notion of surprise to derived func-
tions of multiple measures.

Consider the cost-per-click example in the previous
section. A simple approach for computing surprise for
derived measure is as follows. Just as for fundamental
measures, one could compute prior and posterior proba-
bility values for cost-per-click for each element Eij , say
pij(cost-per-click) and qij(cost-per-click) and compute
the surprise just as in Section 3.3.

However, such an approach will not work. Consider
the example of advertiser A2 in Table 8. A2’s cost-per-
click was forecasted to be zero and the actual value was
also 0. Thus, if one used the above approach to com-
pute surprise for element A2, it would have a value of 0
(no surprise). However, we found that A2 had a high ex-
planatory power of 106% for the overall change in cost-
per-click due to changes in A2’s number of clicks.

Examining the problem from the perspective of
relative-entropy, given several measures, we first need
to compute the joint probability distribution of the mea-
sures and then compute relative entropy of the joint prob-
ability distribution function. If the measures are indepen-
dent, then the relative entropy (JS divergence as well) of
the joint probability distribution is simply the sum of the
relative entropy of the individual measure’s probability
distributions. In ad systems, the measures are not always
strictly independent since some of them can be correlated
(e.g., as the number of searches increase, revenue can be
expected to increase). However, as an approximation, we
assume that measures are independent, and compute the
surprise for derived measures as the summation of the
surprise of the individual measures that are part of the
derived function.

5 Implementation and Experience
In this section, we describe our implementation of the
above algorithms in the Adtributor tool and outline our
experience with a pilot deployment in a production ad
system.

5.1 Implementation
In our implementation, a database records, in real-time,
counters for all measures, dimensions, and elements and
exposes them as an OLAP service that supports multi-
dimensional analytical queries [19]. When the system
triggers an anomalous event, the Adtributor toolchain
first gathers data relevant to the anomaly such as time
of anomaly, measure, data for various measures, dimen-
sions and elements. After the data has been queried

Figure 3: An example output of the Adtributor. Note:
certain sensitive fields are masked.

from the database, Adtributor employs the root-cause al-
gorithm to discover potential root-causes for the given
anomaly.

Recall that measures are not necessarily independent
of each other. An anomaly on a certain measure could
be correlated with changes in value of another. There-
fore, we build a dependency graph of measures, and for
a given anomalous measure, run the root-causing algo-
rithm for every measure that correlates with it.

Adtributor filters the candidate set of root-causes (as
described in Section 3) to produce the final list of root-
causes. We use a TEP value of 67% and a TEEP value of
10%. These threshold values are driven by what the trou-
bleshooters already use in the manual process. Also, our
current implementation singles out a list of the top three
dimensions. The troubleshooting experts recommended
this number based on their own requirements and also on
ease of visualization. With a smaller number they could
miss useful information, while a larger number would
lead to too much information for them to sift through.

The final output is a self-contained HTML5 applica-
tion. Figure 3 shows an example of the output produced
by the Adtributor toolchain. The visualization of the
root-causes contains the following information:
• Dependency Graph: A graphical representation of

dependencies between the different measures in the
system (left half).

• Measure Historical Graph: A graph depicting the
historical behavior of a measure (top right graph).

• Element Root-Causes and Historical Graph: For a
given measure and dimension, the top elements that
are root-causes. The element root-causes are grouped
by dimensions with their historical graphs (under top
right graph).

We arrived at the visualization requirements through
iterative discussions with the troubleshooting experts.
The dependency graph allows them to observe causality
between the values of different measures, and the histori-

9

52 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cal graphs per-dimension help them in making a more in-
formed choice on what exactly was the root-cause. The
entire Adtributor toolchain is implemented using .NET
Framework 4 using 12,500 lines of code and executed
automatically for each anomaly.

5.2 Deployment Experience
We conducted a pilot deployment of Adtributor between
May 1, 2013 and May 10, 2013 with the troubleshooters
who work with the production system on root-causing
anomalies to understand the usefulness of Adtributor.
This deployment was partially successful in helping the
troubleshooters with their current processes. The find-
ings of this pilot resulted in a set of improvements to
our algorithm and visualization which led to significantly
better performance as we show in our evaluation in Sec-
tion 6.
Volatile dimensions: Various dimensions can be ex-
tremely volatile, and unexpected changes can occur in
measures along these axes even though they are not nec-
essarily the root-cause of the problem. Consider the ex-
ample of an advertiser who frequently changes the bud-
get allotment to their ads. When there is a revenue
anomaly, this can sometimes cause the root-causing al-
gorithm to pick the advertiser as a culprit even though
the change coincidentally occurred just a little before the
anomaly event. This drove us to improve our predic-
tion algorithm for measures associated with elements of
volatile dimensions by increasing the weightage given to
large changes in the near-past in our prediction model,
thereby fixing this problem to a large extent.
Visualization enhancements: The dependency graph of
related measures was found to be very useful by the trou-
bleshooters. However, the current view in the tool is lim-
ited to a small set of measures. There are hundreds of
other measures being monitored within the ad system for
which the dependencies are not known. We have there-
fore used a Bayesian structure learning algorithm [5] to
infer a subset of these dependencies and plan to enhance
the visualization of the dependency graph with these ad-
ditional measures.

6 Evaluation
In the Section, we first describe four case studies in
which multi-dimensional analysis is key to arriving at the
final root-cause. Next, we provide a quantified evalua-
tion of the accuracy of Adtributor, and the time savings
we achieve with the tool.

6.1 Case Studies
Case 1: This was triggered by an anomalous drop in rev-
enue. On performing the multi-dimensional analysis, we
found that the dimension Browser was responsible. Fig-
ure 4 helps explain how Adtributor arrived at this result.

It shows the percentage contribution to revenue along
three dimensions – Browser, Data Center, and Bucket
– for predicted revenue and actual revenue (see Table 1,
example 3 for the definition of a bucket.). Notice that
Browser 3’s revenue contribution was predicted to be
12%, but its actual revenue was 0%! Similarly, Browser
1’s contribution was predicted to be 60%, but was actu-
ally much higher at 74%. Neither the Data Center di-
mension nor the Bucket dimension show such surprising
changes in contribution. This problem was actionable,
since a further investigation revealed that a configuration
error had caused no ads to be shown to users on Browser
3. Correcting the error fixed the problem and further loss
in revenue.

Case 2: We noted an anomalous revenue increase at
a particular time, which Adtributor attributed to a cer-
tain set of six advertisers. Two of these advertisers were
airline ticket vendors, two were car rental agencies, and
the remaining two were hotels. In aggregate, they fully
explained the change in revenue. Delving into the is-
sue, we noticed that these advertisers had deliberately
increased their budgets for a certain period of time. The
ads were appearing in a geographic region which had a
long-weekend holiday approaching. Thus, we inferred
that the advertisers were trying to capitalize and capture
the attention of users as they performed vacation-related
searches. Clearly, in this case, the sudden rise in revenue
was attributed to advertiser behavior and not due to an ac-
tionable bug in the system. Several such anomalies also
occur when advertisers deliberately drop their budgets as
well.

Case 3: The total number of searches went anoma-
lously high, and an analysis showed that most of the in-
crease was attributed along the User-agent string dimen-
sion. From post-processing on this result, it was inferred
that a majority of the searches with the repeated user-
agent string were coming from a small range of IP ad-
dresses, and therefore, suspiciously characteristic of bot-
traffic. In particular, the goal of this bot was to perform
queries and collect information for search-engine opti-
mization (SEO). This was an actionable issue which was
fixed promptly by filtering the contribution of this traffic
to the various metrics.

Case 4: We notice that sometimes, publishers change
the placement of advertisements on their page, which
make ads more (or less) conspicuous. This in turn causes
a corresponding increase or decrease in revenue. These
show up as revenue changes along the dimension of Ad
Position on the page. For instance, if the publisher moves
an ad meant to be shown on the side of the page to the top
of the page, this presents itself as a surprising increase in
revenue attributed to ads shown on the top. This is be-
cause users tend to click more on ads shown on the top
of a page than they do on ads shown on the side.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 53

Figure 4: Predicted and actual revenues for the Browser, Data center, and Bucket dimensions (Case Study 1).

6.2 Comparative Study
Our quantitative evaluation is based on using Adtribu-
tor to root-cause problems in a widely deployed ad sys-
tem. We evaluate all anomalies generated on a total of
12 measures, both fundamental and derived, across 33 di-
mensions. The results we present here use a subset of 128
valid anomalies generated by over a billion searches be-
tween September 1, 2013 and September 15, 2013 across
8 populations: PC and Mobile ad systems for USA, UK,
France and Germany. For the purpose of this study, we
do not consider false-positives in the anomaly genera-
tion process as they are weeded out by troubleshooters
before applying the root-causing process2. 50% of the
tested anomalies were generated solely on derived mea-
sures, with no related anomalies being generated on the
respective fundamental measures that constitute the de-
rived measure. This shows that using derived measures
in aggregate root-cause analysis is extremely important.

We compare the output of Adtributor’s multi-
dimensional analysis with the output of the troubleshoot-
ing team that performs an in-depth and detailed analysis
of these anomalies through manual means with the assis-
tance of other tools (not Adtributor). Manually analyz-
ing the cause of the anomalies has a number of advan-
tages. The troubleshooters are aware of a large amount of
information and domain-knowledge, and they frequently
use this knowledge in the troubleshooting process. An
automated tool such as Adtributor cannot possibly have
an understanding of all of this. Further, Adtributor only
narrows the scope of the root-cause (Column 4 of Ta-
ble 1) – a manual process may still be necessary in many
cases to identify the final root-cause (Column 4 of Ta-
ble 1) since some of the data necessary to do this next
step may not be available for the automated process (e.g.,
verifying whether the publisher indeed changed the po-
sition of ads).

However, the advantage of using Adtributor is that
it aids the manual troubleshooting process by 1) us-
ing the multi-dimensional root-cause analysis to exhaus-
tively check all possible dimensions (as we show, in a

2Evaluating the number of false-positives and negatives would be to
evaluate the anomaly detection algorithm which, as mentioned earlier,
is out of scope of this paper.

few cases, the manual process may overlook a dimen-
sion, leading to erroneous conclusions) and 2) Signifi-
cantly faster processing to bubble up the top suspect can-
didates. For example, there are dozens of dimensions and
some dimensions can have thousands of elements.

As described in Section 5, Adtributor displays the
top three dimensions and their elements as potential sus-
pects. We say that Adtributor matches the output of the
manual root-causing process if it shows the same dimen-
sion and exactly the same elements as the manual process
at any one of these three positions.

No. of anomalies 128
No. of matches 118 (1:81, 2:27,3:10)
Manual errors found 4
Adtributor’s errors 5
Ambiguous 1
Adtributor accuracy (118+4)/128=95.3%
Strawman accuracy (no surprise) 20.0%

Table 9: Results summary from our comparison of
Adtributor with manual scrutiny (and Strawman).

Table 9 shows the results of the comparison between
the output of Adtributor and the manual investigation.
Of the 128 anomalies, Adtributor matched the results of
the manual analysis in 118 cases. Of these, 81 (69%)
matched in position 1, 27 (23%) matched only in po-
sition 2 and not in position 1, and 10 (8%) matched in
position 3, and not in position 1 or 2. Of the 10 anoma-
lies for which we did not match the manual output, we
performed a deeper dive with the troubleshooting expert.
On careful scrutiny, we found that out of the 10, 4 of
the manual root-causes were erroneous, and Adtributor’s
output in position 1 was, in fact, the correct root-cause.
This shows the utility of using a systematic algorithm, as
in Adtributor, that exhaustively searching all dimensions
to perform multi-dimensional root-cause analysis.

Out of the remaining 6 anomalies, the manual output
was correct in 5 of them while the output of Adtribu-
tor was erroneous. In all of these cases, Adtributor suf-
fered from a lack of domain knowledge, or the lack of
knowledge of events external to the system which the
troubleshooters were explicitly aware of. In one case
(labelled ambiguous), however, the troubleshooter felt
the dimension and elements blamed by Adtributor was

11

54 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

as likely to be the true root-cause as the one obtained
through manual analysis. In this case, he felt a fur-
ther drill-down would be required to determine the cor-
rect root-cause. Taking the manual errors into account,
Adtributor’s overall accuracy was (118+4)/128, or 95%.

We also compare the potential time that could be saved
using Adtributor compared to the first step in the man-
ual troubleshooting process that identifies the dimension
and elements that may be potential root-causes. Adtrib-
utor uses a multi-threaded implementation and caching
to speed up the process of studying every dimension
and every measure. It has a turnaround of approxi-
mately 3-5 minutes for each anomaly. The manual pro-
cess of troubleshooting took between 13 minutes for the
fastest anomaly to up to 231 minutes, with an average
turnaround time of 73 minutes. Therefore, we conclude
that Adtributor speeds up the initial root-causing process
by an order of magnitude.

Finally, we show the value of using surprise by com-
paring our algorithm to the Strawman discussed in Sec-
tion 2 that only uses succinctness and explanatory power.
Compared to Adtributor’s accuracy of 95%, we found
that Strawman had an accuracy of only 20%. This clearly
demonstrates the value of using surprise to identify the
right dimension and elements as the root-cause.

7 Applicability beyond Ad Systems
We believe that the techniques introduced in this paper
are general enough to be useful in other settings. For
example,
Multi-dimensional analysis: Consider a web-server
with a global audience that suddenly sees the number of
hits drop sharply. Many of the dimensions considered
in this paper such as data centers or CDNs, browsers,
user locations, fraud operators/bots, etc. may all be po-
tential root-causes that a multi-dimensional analysis can
help disambiguate.
Derived measure attribution: Consider the following
problem. The Mean-opinion-score (MOS) for VoIP calls
has dropped and the investigators would like to under-
stand which of the links in the route of the call is most
responsible for this drop. Each link may have different
amounts of delay, jitter, and loss percentages, and the
MOS is a complex function of measures such as delay,
loss, and jitter [6]. The use of the derived attribution
technique can help compute the explanatory power of the
drop in MOS for each of links.

8 Related Work
System and Network Root-Cause Analysis: Previ-
ous research has extensively studied root-causing perfor-
mance and failure problems in systems and networks [14,
2, 10, 1, 21, 15, 3, 20, 11, 18]. Some of these use traces
across individual requests through systems [3, 14] to di-

agnose problems, while others use aggregate counters of
system performance or configuration values [15, 10, 20]
to diagnose problems.

Distalyzer [14] is an example of the former category.
It uses individual event logs and learns anomalous pat-
terns between events that indicate a performance prob-
lem in a system component. Ganesha [15] is an example
of the latter. It uses clustering approaches across aggre-
gate measures, such as CPU usage, to build distinct pro-
files of MapReduce nodes. While our approach too uses
aggregate measures, we intend to find more than perfor-
mance problems or diagnose failures.

Q-Score [18] uses machine-learning to arrive at root-
causes. We tried similar approaches and decided against
them because selecting the right set of features to input
to a stock machine-learning algorithm turned out to be a
non-trivial task. Instead, we found that building a cus-
tomized algorithm was simpler and better suited to anal-
ysis and feedback by our domain experts.

SCORE [11] localizes IP faults to underlying com-
ponents using succinctness of explanation. Given a set
of link failures as observation, it determines the smallest
set of risk groups that explain failures. However, as we
show, this approach is not enough to perform attribution
across dimensions and a notion of surprise is essential to
complete our solution.
Data Mining for Summarization: Previous work in
data mining [17, 16, 7] has concentrated on summariz-
ing multi-dimensional data in OLAP products. The ob-
jective is to provide an easily interpretable summary of
the differences in data values across multiple dimensions.
Such summarization techniques have been applied to net-
work traffic summarization as well [9]. While data sum-
marization across multiple dimensions is related to our
work, it does not match our objective of finding sur-
prising changes to perform root-cause analysis. In fact,
our approach to root-cause analysis is complementary to
these approaches and can be applied on the summaries
that they generate.

9 Conclusion
We have described an algorithm, implementation, and
evaluation of an approach that uses multi-dimensional
analysis for root-causing problems in large-scale ad sys-
tems. We found that our approach has high accuracy
(95%), helped identify more accurate root causes than
the manual investigation in a few cases, and was able to
reduce troubleshooting time significantly.

10 Acknowledgments
We would like to thank our shepherd VYAS SEKAR for
his valuable comments and suggestions. We would also
like to thank MURALI KRISHNA for helping us validate
the output of Adtributor and determine its accuracy.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 55

References
[1] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran,

V. Padmanabhan, and G. Voelker. NetPrints: Di-
agnosing Home Network Misconfigurations using
Shared Knowledge. In NSDI, 2009.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula,
D. A. Maltz, and M. Zhang. Towards Highly Reli-
able Enterprise Network Services Via Inference of
Multi-level Dependencies. In SIGCOMM, 2007.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload
modelling. In Proceedings of USENIX OSDI, 2004.

[4] G. Box, G. M. Jenkins, and C. Gregory. Time Series
Analysis: Forecasting and Control. Prentice-Hall,
1994.

[5] D. M. Chickering. The winmine toolkit. Technical
Report MSR-TR-2002-103, Microsoft, Redmond,
WA, 2002.

[6] R. Cole and J. Rosenbluth. Voice over IP perfor-
mance monitoring. CCR, Apr 2001.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Diamond in the rough: Finding hier-
archical heavy hitters in multi-dimensional data. In
Proceedings of ACM SIGMOD, 2004.

[8] V. Dave, S. Guha, and Y. Zhang. Measuring and
fingerprinting click-spam in ad networks. In Pro-
ceedings of ACM SIGCOMM, 2012.

[9] C. Estan, S. Savage, and G. Varghese. Mining
anomalies using traffic feature distributions. In Pro-
ceedings of ACM SIGCOMM, 2003.

[10] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal,
and J. Padhye. Detailed diagnosis in computer net-
works. In Sigcomm. ACM, 2010.

[11] R. R. Kompella, J. Yates, A. Greenberg, and
A. Snoeren. IP fault localization via risk modelling.
In Proceedings of USENIX NSDI, 2005.

[12] J. Lin. Divergence measures based on the shannon
entropy. IEEE Transactions on Information Theory,
37(1):145–151, 1991.

[13] L. Milne-Thomson. The calculus of Finite Differ-
ences. Macmillan, 1933.

[14] K. Nagaraj, C. Killian, and J. Neville. Structured
comparative analysis of systems logs to diagnose
performance problems. In Proceedings of USENIX
NSDI, 2012.

[15] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and
P. Narasimhan. Ganesha: blackBox diagnosis of
MapReduce systems. ACM SIGMETRICS Perfor-
mance Evaluation Review, 37(3):8–13, 2009.

[16] S. Sarawagi. Explaining differences in multidimen-
sional aggregates. In Proceedings of VLDB, 1999.

[17] S. Sarawagi. iDiff: Informative Summarization of
Differences in Multidimensional Aggregates. Data
Mining and Knowledge Discovery, 5(4):255–276,

2001.
[18] H. H. Song, Z. Ge, A. Mahimkar, J. Wang, J. Yates,

Y. Zhang, A. Basso, and M. Chen. Q-score: Proac-
tive service quality assessment in a large IPTV sys-
tem. In Proceedings of ACM IMC, 2011.

[19] E. Thomsen, G. Spofford, and D. Chase. Microsoft
OLAP solutions. John Wiley & Sons, Inc., 1999.

[20] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang.
Automatic Misconfiguration Troubleshooting with
PeerPressure. In OSDI, 2004.

[21] H. Yan, L. Breslau, D. Massey, D. Pei, and J. Yates.
G-RCA: A Generic Root Cause Analysis Platform
for Service Quality Management in Large IP Net-
works. In Proceedings of ACM CoNext, 2010.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 57

DECAF: Detecting and Characterizing Ad Fraud in Mobile Apps

Bin Liu∗, Suman Nath‡, Ramesh Govindan∗, Jie Liu‡

∗University of Southern California, ‡Microsoft Research

Abstract

Ad networks for mobile apps require inspection of
the visual layout of their ads to detect certain types of
placement frauds. Doing this manually is error prone,
and does not scale to the sizes of today’s app stores. In
this paper, we design a system called DECAF to auto-
matically discover various placement frauds scalably and
effectively. DECAF uses automated app navigation, to-
gether with optimizations to scan through a large number
of visual elements within a limited time. It also includes
a framework for efficiently detecting whether ads within
an app violate an extensible set of rules that govern ad
placement and display. We have implemented DECAF
for Windows-based mobile platforms, and applied it to
1,150 tablet apps and 50,000 phone apps in order to char-
acterize the prevalence of ad frauds. DECAF has been
used by the ad fraud team in Microsoft and has helped
find many instances of ad frauds.

1 Introduction
Several recent studies have pointed out that advertising
in mobile (smartphones and tablets) apps is plagued by
various types of frauds. Mobile app advertisers are esti-
mated to lose nearly 1 billion dollars (12% of the mobile
ad budget) in 2013 due to these frauds [4]. The frauds
fall under two main categories: (1) Bot-driven frauds em-
ploy bot networks or paid users to initiate fake ad impres-
sions and clicks [4] (more than 18% impressions/clicks
come from bots [13]), and (2) Placement frauds ma-
nipulate visual layouts of ads to trigger ad impressions
and unintentional clicks from real users (47% of user
clicks are reportedly accidental [12]). Mobile app pub-
lishers are incentivized to commit such frauds since ad
networks pay them based on impression count [10, 7, 8],
click count [7, 8], or more commonly, combinations of
both [7, 8]. Bot-driven ad frauds have been studied re-
cently [4, 20, 40], but placement frauds in mobile apps
have not received much attention.

Contributions. In this paper, we make two contribu-
tions. First, we present the design and implementation of
a scalable system for automatically detecting ad place-
ment fraud in mobile apps. Second, using a large collec-
tion of apps, we characterize the prevalence of ad place-
ment fraud and how these frauds correlate with app rat-

Figure 1: Placement Fraud Examples

ings, app categories, and other factors.
Detecting ad fraud. In Web advertising, most fraud de-
tection is centered around analyzing server-side logs [51]
or network traffic [38, 39], which are mostly effective for
detecting bot-driven ads. These can also reveal place-
ment frauds to some degree (e.g., an ad not shown to
users will never receive any clicks), but such detection
is possible only after fraudulent impressions and clicks
have been created. While this may be feasible for mo-
bile apps, we explore a qualitatively different approach:
to detect fraudulent behavior by analyzing the structure
of the app, an approach that can detect placement frauds
more effectively and before an app is used (e.g., before it
is released to the app store). Our approach leverages the
highly specific, and legally enforceable, terms and con-
ditions that ad networks place on app developers (Sec-
tion 2). For example, Microsoft Advertising says devel-
opers must not “edit, resize, modify, filter, obscure, hide,
make transparent, or reorder any advertising” [11]. De-
spite these prohibitions, app developers continue to en-
gage in fraud: Figure 1 shows (on the left) an app in
which 3 ads are shown at the bottom of a page while ad
networks restrict developers to 1 per page, and (on the
right) an app in which an ad is hidden behind UI buttons.

The key insight in our work is that manipulation of
the visual layout of ads in a mobile app can be program-
matically detected by combining two key ideas: (a) a UI
automation tool that permits automated traversal of all
the “pages” of a mobile app, and (b) extensible fraud
checkers that test the visual layout of each “page” for
compliance with an ad network’s terms and conditions.

1

58 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

While we use the term ad fraud, we emphasize that our
work deems as fraud any violation of published terms
and conditions, and does not attempt to infer whether the
violations are intentional or not.

We have designed a system called DECAF that lever-
ages the insight discussed above (Section 3). First, it em-
ploys an automation tool called a Monkey that, given a
mobile app binary, can automatically execute it and nav-
igate to various parts (i.e., states) of the apps by sim-
ulating user interaction (e.g., clicking a button, swip-
ing a page, etc.). The idea of using a Monkey is not
new [44, 35, 33, 47]. The key optimization goals of
a Monkey are good coverage and speed—the Monkey
should be able to traverse a good fraction of app states
within a short time. However, even for relatively sim-
pler apps, naı̈ve state traversal based on a UI automa-
tion framework can take several hours per app, as re-
ported in a recent work [33]. Combined with the mas-
sive sizes of popular app stores, this clearly motivates
for scalable traversals. Recent works therefore propose
optimization techniques, many of which require instru-
menting apps [44, 47] or the OS [35].

DECAF treats apps and the underlying OS as black
boxes and relies on a UI automation framework. The ad-
vantage of this approach is that DECAF can scan apps
written in multiple languages (e.g., Windows Store apps
can be written in C#, HTML/JavaScript, and C++) and
potentially from different platforms (e.g., Windows and
Android). However, this flexibility comes at the cost of
limited information from the UI automation framework;
existing automation frameworks do not provide informa-
tion on callback functions, system events, z-coordinate of
UI elements, etc. that are required by optimizations pro-
posed in [44], [35], and [47]. To cope with this, DECAF
employs several novel techniques: a fuzzy matching-
based technique to robustly identify structurally similar
pages with similar ad placement (so that it suffices for the
Monkey to visit only one of them), a machine learning-
based predictor to avoid visiting equivalent pages, an app
usage based technique to prioritize app navigation, and a
resource usage based technique for fast and reliable de-
tection of page load completion.

The second component of DECAF is to efficiently
identify fraudulent behavior in a given app state. We
find that, rather surprisingly, analyzing visual layout of
an app page to detect possible ad fraud is nontrivial. This
is due to complex UI layouts of app pages (especially in
tablet apps), incomplete UI layout information from the
UI automation framework (e.g., missing z-coordinate),
mismatch between device’s screen size and app’s page
size (e.g., panoramic pages), and variable behavior of ad
networks (e.g., occasionally not serving any ad due to
unavailability of specific types of ads), etc. We develop
novel techniques to reliably address these challenges.

We have implemented DECAF to run on Windows 8
(tablet) apps and Windows Phone 8 apps (Section 5). Ex-
periments show that DECAF achieves a coverage of 94%
(compared to humans) in 20 minutes of execution per
app and is capable of detecting many types of ad frauds
in existing apps (Section 6).
Characterizing Ad Fraud. Using DECAF we have also
analyzed 50,000 Windows Phone 8 apps and 1,150 Win-
dows tablet apps, and discovered many occurrences of
various types of frauds (Section 7). Many of these frauds
were found in apps that have been in app stores for
more than two years, yet the frauds remained undetected.
We have also correlated the fraud data with various app
metadata crawled from the app store and observed inter-
esting patterns. For example, we found that fraud inci-
dence appears independent of ad rating on both phone
and tablet, and some app categories exhibit higher inci-
dence of fraud than others but the specific categories are
different for phone and tablet apps. Finally, we find that
few publishers commit most of the frauds. These results
suggest ways in which ad networks can selectively allo-
cate resources for fraud checking.

DECAF has been used by the ad fraud team in Mi-
crosoft and has helped detect many fraudulent apps.
Fraudulent publishers were contacted to fix the problems,
and the apps whose publishers did not cooperate with
such notices have been blacklisted and denied ad deliv-
ery. To our knowledge, DECAF is the first tool to auto-
matically detect ad fraud in mobile app stores.

2 Background, Goals and Challenges
Background. Many mobile app publishers use in-app
advertisements as their source of revenue; more than
50% of the apps in major app stores show ads [28]. To
embed ads in an app, an app publisher registers with a
mobile ad network such as AdMob[6], iAd [8], or Mi-
crosoft Mobile Advertising [9]. In turn, ad networks con-
tract with advertisers to deliver ads to apps. Generally
speaking, the ad network provides the publisher with an
ad control (i.e., a library with some visual elements em-
bedded within). The publisher includes this ad control in
her app, and assigns it some screen real estate. When the
app runs and the ad control is loaded, it fetches ads from
the ad network and displays it to the user.

Ad networks pay publishers based on the number of
times ads are seen (called impressions) or clicked by
users, or some combination thereof. For example, Mi-
crosoft Mobile Advertising pays in proportion to total
impression count × the overall click probability.

To be fair to advertisers, ad networks usually impose
strict guidelines (called prohibitions) on how ad controls
should be used in apps, documented in lengthy Publisher
Terms and Conditions. We call all violations of these
prohibitions frauds, regardless of whether they are vio-

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 59

lated intentionally or unintentionally.
Goals. In this paper, we focus on automated detection
of a special category of mobile app frauds that we call
placement frauds. Such frauds are different from inter-
action frauds such as illegitimate clicks by bots and con-
tent frauds such as modifying ad contents [34].
Placement Fraud. These frauds relate to how and where
the ad control is placed. Ad networks impose placement
restrictions to prevent impression or click inflation, while
the advertiser may restrict what kinds of content (i.e., ad
context) the ads are placed with. For instance, Microsoft
Mobile Advertising stipulates that a publisher must not
“edit, resize, modify, filter, obscure, hide, make transpar-
ent, or reorder any advertising” and must not “include
any Ad Inventory or display any ads ... that includes ma-
terials or links to materials that are unlawful (including
the sale of counterfeit goods or copyright piracy), ob-
scene,...” [11]. Similarly, Google AdMob’s terms dictate
that “Ads should not be placed very close to or under-
neath buttons or any other object which users may ac-
cidentally click while interacting with your application”
and “Ads should not be placed in areas where users will
randomly click or place their fingers on the screen” [1].

We consider two categories of placement frauds.
Structural frauds: These frauds relate to how the ad con-
trols are placed. Violators may manipulate the UI lay-
out to inflate impressions, or to reduce ad’s foot print on
screen. This can be done in multiple ways:

• An app page contains too many ads (Microsoft Ad-
vertising allows at most 1 ad per phone screen and 3
ads per tablet screen [11]).

• Ads are hidden behind other controls (e.g., buttons or
images) or placed outside the screen. (This violates
the terms and conditions in [11, 1]). Developers often
use this trick to give users the feel of an “ad-free app”,
or to accommodate many ads in a page while evading
manual inspection.

• Ads are resized and made too small for users to read.
• Ads are overlapped with or placed next to actionable

controls, such as buttons, to capture accidental clicks.
Contextual frauds: These frauds place ads in inappropri-
ate contexts. For example, a page context fraud places
ads in pages containing inappropriate (e.g., adult) con-
tent. Many advertisers who try to increase brand image
via display ads, do not want to show such ads in pages.
Ad networks therefore prohibit displaying ads in pages
containing “obscene, pornographic, gambling related or
religious” contents [11]. Publishers may violate these
rules in an attempt to inflate impression counts.

Detecting placement frauds manually in mobile apps
can be extremely tedious and error prone. This is be-
cause an app can have a large number of pages and some
violations (e.g., ads hidden behind UI controls) cannot

often be detected visually. This, combined with the scale
of popular app stores clearly suggests the need for au-
tomation in mobile app ad fraud detection.

Beyond detecting fraud, a second goal of this paper
is to characterize the prevalence of ad fraud by type,
and correlate ad fraud with app popularity, app type, or
other measures. Such a characterization provides an ini-
tial glimpse into the incidences of ad fraud in today’s
apps, and, if tracked over time, can be used to access the
effectiveness of automated fraud detection tools.
Challenges. The basic approach to detecting placement
fraud automatically is to programmatically inspect the
visual elements and content in an app. But, because
of the large number of apps and their visual complex-
ity (especially on tablets), programmed visual inspec-
tion of apps requires searching a large, potentially un-
bounded. space. In this setting, inspection of visual el-
ements thus faces two competing challenges: coverage,
and speed. A more complete search of the visual ele-
ments can yield high coverage at the expense of requiring
significant computation and therefore sacrificing speed.
A key research contribution in this paper is to address
the tension between these challenges.

Beyond searching the space of all visual elements, the
second key challenge is to accurately identify ad fraud
within a given visual element. Detecting structural frauds
in an app page requires analyzing the structure of the
page and ads in it. This analysis is more challenging than
it seems. For example, checking if a page shows more
than one ad (or k ads in general) in a screen at any given
time might seem straightforward, but can be hard on a
panoramic page that is larger than the screen size and
that the user can horizontally pan and/or vertically scroll.
Such a page may contain multiple ads without violating
the rule, as long as no more than one ad is visible in any
scrolled/panned position of the screen (this is known as
the “sliding screen” problem). Similarly whether an ad
is hidden behind other UI controls is not straightforward
if the underlying framework does not provide the depths
(or, z-coordinates) of various UI controls. Finally, detect-
ing contextual fraud is fundamentally more difficult as it
requires analyzing the content of the page (and hence not
feasible in-field when real users use the apps).

3 DECAF Overview
DECAF is designed to be used by app stores or ad net-
works. It takes a collection of apps and a set of fraud
compliance rules as input, and outputs apps/pages that
violate these rules. DECAF runs on app binaries and does
not assume any developer input.

One might consider using static analysis of an app’s
UI to detect structural fraud. However, a fraudulent app
can dynamically create ad controls or change their prop-
erties during run time and bypass such static analysis.

3

60 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: The architecture of DECAF includes a Mon-
key that controls the execution and an extensi-
ble set of fraud detection policies.

Static analysis also fails to detect contextual fraud. DE-
CAF therefore performs dynamic checking (analogous
to [44, 35, 33, 43]) in which it checks the implementa-
tion of an app by directly executing it in an emulator.

Unlike [44, 35], DECAF uses a black-box approach
and does not instrument the app binary or the OS. This
choice is pragmatic: Windows 8 tablet apps are im-
plemented in multiple languages (C#, HTML/Javascript,
C++)1, and our design allows us to be language-agnostic.
However, as we discuss later, this requires novel tech-
niques to achieve high coverage and speed.

Figure 2 shows the architecture of DECAF. DECAF
runs mobile apps in an emulator and interacts with the
app through two channels: a UI Extraction channel for
extracting UI elements and their layout in the current
page of an app (shown as a Document Object Model
(DOM) tree in Figure 2), and a UI Action channel for
triggering an action on a given UI element (such as click-
ing on a button). In Section 5, we describe how these
channels are implemented. DECAF itself has two key
components: (1) a Monkey that controls the app execu-
tion using these channels and (2) a fraud checker that
examines page contents and layout for ad fraud.

3.1 The Monkey

The execution of an app by a Monkey can be viewed
as traversal on a state-transition graph that makes tran-
sitions from one state to the next based on UI inputs,
such as clicking, swiping, and scrolling. Each state cor-
responds to a page in the app, and the Monkey is the
program that provides UI inputs (through the UI Action
channel) for each visited state.

At each state that it visits, the Monkey uses the UI
extraction channel to extract page information, which in-
cludes (1) structural metadata such as size, location, visi-
bility, layer information of each ad and non-ad control in
the current page, and (2) content such as the text, images,
and urls in the page. The information is extracted from

1In a sample of 1,150 tablet apps, we found that about 56.5% of the
apps were written in C#, 38.3% in HTML/Javascript, and 5.2% in C++.

the DOM tree of the page; the DOM tree contains all
UI elements on a given page along with contents of the
elements. The Monkey also has a dictionary of actions
associated with each UI type, such as clicking a button,
swiping a multi-page, and scrolling a list, and uses this
dictionary to generate UI inputs on the UI action channel.

Starting from an empty state and a freshly loaded app,
the Monkey iterates through the UI controls on the page
to the next state, until it has no transitions to make (either
because all its transitions have been already explored, or
it does not contain any actionable UI control). Before
making a transition, the Monkey must wait for the cur-
rent page to be completely loaded; page load times can
be variable due to network delays, for example. After
visiting a state, it uses one of two strategies. If a (hard-
ware or software) back button is available, it retracts to a
previous (in depth-first order) state. If no back button is
available (e.g., many tablets do not have a physical back
button and some apps do not provide a software back but-
ton), the Monkey restarts the app, navigates to the previ-
ous state through a shortest path from the first page, and
starts the exploration process.

In order to explore a large fraction of useful states
within a limited time, the Monkey needs various opti-
mizations. For example, it needs to determine if two
states are equivalent so that it can avoid exploring states
that have already been visited. It also needs to priori-
tize states, so that it can explore more important or use-
ful states within the limited time budget. We discuss in
Section 4 how DECAF addresses these. The Monkey
also needs to address many other systems issues such
as dealing with non-deterministic transitions and tran-
sient crashes, detecting transition to an external program
(such as a browser), etc. DECAF incorporates solutions
to these issues, but we omit the details here for brevity.

3.2 Fraud Checker

At each quiescent state, DECAF invokes the fraud
checker. The checker has a set of detectors, each of
which decides if the layout or page context violates a par-
ticular rule. While DECAF’s detectors are extensible, our
current implementation includes the following detectors.
Small Ads: The detector returns true if any ad in the given
page is smaller than the minimal valid size required by
the ad network. The operation is simple as the automa-
tion framework provides widths and heights of ads.
Hidden Ads: The detector returns true if any ad in the
given page is (partially) hidden or unviewable. Concep-
tually, this operation is not hard. For each ad, the detector
first finds the non-ad GUI elements, then checks if any of
these non-ad elements is rendered above the ad. In prac-
tice, however, this is nontrivial due to the fact that exist-
ing automation frameworks (e.g., for Windows and for
Android) do not provide z-coordinates of GUI elements,

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 61

complicating the determination of whether a non-ad ele-
ment is rendered above an ad. We describe in Section 4.4
how DECAF deals with this.

Intrusive Ads: The detector returns true if the distance
between an ad control and a clickable non-ad element is
below a predefined threshold or if an ad control partially
covers a clickable non-ad control. Detecting the latter
can also be challenging since the automation framework
does not provide z-coordinates of UI elements. We de-
scribe in Section 4.4 how DECAF deals with this.

Many Ads: The detector returns true if the number of
viewable ads in a screen is more than k, the maximum
allowed number of ads. This can be challenging due to
the mismatch of apps’ page size and device’s screen size.
To address the sliding screen problem discussed before, a
naı̈ve solution would check all possible screen positions
in the page and see if there is any violation at any posi-
tion. We propose a more efficient solution in Section 4.4.

Inappropriate Context: The detector returns true if an
ad-containing page has inappropriate content (e.g., adult
content) or if the app category is inappropriate. Detecting
whether or not page content is inappropriate is outside
the scope of the paper; DECAF uses an existing system2

that employs a combination of machine-classifiers and
human inputs for content classification.

4 Optimizations for Coverage and Speed

The basic system described in Section 3 can explore most
states of a given app3. However, this may take a long
time: as [33] reports, this can take several hours for apps
designed to have simple UIs for in-vehicle use, and our
work considers content-rich tablet apps for which naı̈ve
exploration can take significantly longer. This is not
practical when the goal is to scan thousands of apps. In
such cases, the Monkey will have a limited time budget,
say few tens of minutes, to scan each app; indeed, in
DECAF, users specify a time budget for each app, and
the Monkey explores as many states as it can within that
time. With limited time, naı̈ve exploration can result in
poor coverage of the underlying state transition graph,
and consequent inaccuracy in ad fraud detection. In this
section, we develop various techniques to address this
problem. The techniques fall under three general cate-
gories that we describe next.4

2Microsoft’s internal system, used by its online services.
3Without any human involvement, however, the Monkey can fail to

reach states that require human inputs such as a login and a password.
4In a companion technical report [34], we discuss an alternative ap-

proach to detecting ad fraud using “smart” ad controls that are aware
of, and enforce, ad network placement policies. Such ad controls pose
many research challenges, since they need to permit communication
among ad controls on the same page (to collaboratively detect place-
ment violations) and this can compromise security.

4.1 Detecting Equivalent States

To optimize coverage, a commonly used idea is that after
the Monkey detects that it has already explored a state
equivalent to the current state, it can backtrack without
further exploring the current state (and other states reach-
able from it). Thus, a key determinant of coverage is the
definition of state equivalence. Prior work [33] points out
that using a strict definition, where two states are equiv-
alent if they have an identical UI layout, may be too re-
strictive; it advocates a heuristic for UI lists that defines
a weaker form of equivalence.

DECAF uses a different notion of state equivalence,
dictated by the following requirements. First, the equiv-
alence should be decided based on fuzzy matching rather
than exact matching. This is because even within the
same run of the Monkey, the structure and content of the
“same” state can slightly vary due to dynamic page con-
tent and variability in network conditions.

Second, the equivalence function should be tunable to
accommodate a wide range of fraud detection scenarios.
For detecting contextual frauds, the Monkey may want
to explore all (or as many as possible within a given time
budget) distinct pages of an app, so that it can check ap-
propriateness of all contents of the app. In such a case,
two states are equivalent only if they have the same con-
tent. For detecting structural frauds, on the other hand,
the Monkey may want to explore only the pages that have
unique structure (i.e., layout of UI elements). In such
cases, two states with the same structure are equivalent
even if their contents differ. How much fuzziness to tol-
erate for page structure and content should also be tun-
able: the ad network may decide to scan some “poten-
tially bad” apps more thoroughly than the others (e.g.,
because their publishers have bad histories), and hence
can tolerate less fuzziness on those potentially bad apps.

DECAF achieves the first requirement by using a flex-
ible equivalence function based on cosine similarity of
feature vectors of states. Given a state, it extracts vari-
ous features from the visible elements in the DOM tree
of the page. More specifically, the name of a feature is
the concatenation of a UI element type and its level in the
DOM tree, while its value is the count and total size of
element contents (if the element contains text or image).
For example, the feature (TextControl@2, 100,
2000) implies that the page contains 100 Text UI el-
ements of total size 2000 bytes at level 2 of the DOM
tree of the page. By traversing the DOM tree, DECAF
discovers such features for all UI element types and their
DOM tree depths. This gives a feature vector for the page
that looks like: [(Image@2, 10, 5000), (Text@1, 10,
400), (Panel@2, 100, null),. . .].

To compare if two states are equivalent, we com-
pute cosine similarity of their feature vectors and con-
sider them to be equivalent if the cosine similarity is

5

62 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

above a threshold. This configurable threshold achieves
our second requirement; it acts as a tuning parameter
to configure the strictness of equivalence. At one ex-
treme, a threshold of 1 specifies content equivalence of
two states5. A smaller threshold implies a more relaxed
equivalence, fewer states to be explored by the Mon-
key, and faster exploration of states with less fidelity in
fraud detection. To determine structural equivalence of
two states, we ignore the size values in feature vectors
and use a smaller threshold to accommodate slight vari-
ations in page structures. Our experiments indicate that
a threshold of 0.92 strikes a good balance between thor-
oughness and speed while checking for structural frauds.

4.2 Path Prioritization

Many (especially tablet) apps contain too many states for
a Monkey to explore within a limited time budget. In-
deed, some apps may even contain a practically infinite
number of pages to explore, e.g., a news app whose con-
tent can dynamically change while the monkey is explor-
ing the app. Given that the Monkey can explore only a
fraction of app pages, without careful design, the Mon-
key can waste its time exploring states that do not add
value to ad fraud detection, and so may not have time
to explore useful states. To address this, DECAF uses
a novel state equivalence prediction method to priori-
tize which paths to traverse in the UI graph for detecting
structural fraud, and a novel state importance assessment
for detecting contextual fraud.

4.2.1 State Equivalence Prediction

To motivate state equivalence prediction, consider ex-
ploring all structurally distinct pages of a news-serving
app. Assume that the Monkey is currently in state
P0, which contains 100 news buttons (leading to struc-
turally equivalent states P0,0 · · ·P0,99) and one video but-
ton (leading to P0,100). The Monkey could click the but-
tons in the same order as they appear in the page. It
would first recursively explore state P0,0 and its descen-
dent states, then visit all the P0,1−99 states, realize that
that they are all equivalent to already visited state P0,1,
return to P0. Finally, it will explore P0,100 and its descen-
dant states. This is clearly sub-optimal, since the time re-
quired to (1) go from P0 to each of the states P0,1−99 (for-
ward transition) and (2) then backtracking to P0 (back-
ward transition) is wasted. The forward transition time
includes the time for the equivalent page to completely
load (we found this to be as large as 30 secs).

Backward transitions can be expensive. The naı̈ve
strategy above can also be pathologically sub-optimal in

5On rare occasions, two pages with different content can be classi-
fied as equivalent if their text (or image) content has exactly the same
count and total size. This is because we rely on count and size, instead
of contents, of texts and images to determine equivalence of pages.

some cases. Most mobile devices do not have a physi-
cal back button, so apps typically include software back
buttons and our Monkey uses various heuristics based on
their screen location and name to identify them. How-
ever, in many apps, the Monkey can fail to automatically
identify the back button (e.g., if they are placed in un-
usual locations in the page and are named differently). In
such cases the Monkey does not have any obvious way
to directly go back to the previous page, creating uni-
directional edges in the state graph. In our example, if
the transition between P0 and P0,1 is unidirectional, the
backward transition would require the Monkey to restart
the app and traverse through all states from the root to
P0, while waiting for each state to load completely be-
fore moving to the next state. Overall, the wasted time
per button is as high as 3 minutes in some of our exper-
iments, and this can add up to a huge overhead if there
are many such pathological traversals.

The net effect of above overheads is that the Monkey
can run out of time before it gets a chance to explore the
distinct state P0,100. A better strategy would be to first
explore pages with different UI layouts (P0,0 and P0,100 in
previous example), and then if the time budget permits,
to explore remaining pages.
Minimizing state traversal overhead using prediction.
These overheads could have been minimized if there was
a way to predict whether a unidirectional edge would
take us to a state equivalent to an already visited state.
Our state equivalence prediction leverages this intuition,
but in a slightly different way. On a given page, it de-
termines which buttons would likely lead to the same (or
similar) states, and then explores more than one of these
buttons only if the time budget permits. Thus, in our ex-
ample, if the prediction were perfect, it would click on
the button leading to the video page P0,100 before click-
ing on the second (and third and so on) news button.

One might attempt to do such prediction based on
event handlers invoked by various clickable controls, as-
suming that buttons leading to equivalent states will in-
voke the same event handler and those leading to dif-
ferent states will invoke different handlers. The event
handler for a control can be found by static analysis of
code. This, however, does not always work as event han-
dlers can be bound to controls during run time. Even if
the handlers can be reliably identified, different controls
may be bound to the same handler that acts differently
based on runtime arguments.

DECAF uses a language-agnostic approach that only
relies on the run-time layout properties of the various UI
elements. The approach is based on the intuition that
UI controls that lead to equivalent states have similar
“neighborhoods” in the DOM tree: often their parents
and children in the UI layout hierarchy are of similar type
or have similar names. This intuition, formed by exam-

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 63

Control Do they have the same name?
Features Do they have the same ID?

Are they with the same UI element type?
Parent Do they have a same parent name path?
Features Do they have a same parent ID path?

Do they have a same parent UI element type path?
Child Do their children share a same name set?
Features Do their children share a same ID set?

Do their children share a same UI element type set?

Table 1: SVM classifier features

ining a number of apps, suggests that it might be possible
to use machine-classification to determine if two UI con-
trols are likely to lead to the same state.

Indeed, our approach uses supervised learning to con-
struct a binary classifier for binary feature vectors. Each
feature vector represents a pair of UI controls, and each
element in the feature vector is a Boolean answer to the
questions listed in Table 1. For any two UI controls, these
questions can be answered from the DOM tree of the
page(s) they are in. We construct a binary SVM classifier
from a large labelled dataset; the classifier takes as input
the feature vector corresponding to two UI controls, and
determines whether they are likely to lead to equivalent
states (if so, the UI controls are said to be equivalent).

In constructing the classifier, we explored various fea-
ture definitions, and found ones listed in Table 1 to be
most accurate. For instance, we found that features di-
rectly related to a control’s appearance (e.g., color and
size) are not useful for prediction because they may be
different even for controls leading to equivalent states.

Our Monkey uses the predictor as follows. For ev-
ery pair of UI controls in a page, the Monkey determines
whether that pair is likely to lead to the same state. If
so, it clusters the UI controls together, resulting in a set
of clusters each of which contains equivalent controls.
Then, it picks one control (called the representative con-
trol) from each cluster and explores these; the order in
which they are explored is configurable (e.g., increas-
ing/decreasing by their cluster size, or randomly). The
Monkey then continues its depth-first state exploration,
selecting only representative controls in each state tra-
versed. After all pages have been visited by exploring
only representative controls, the Monkey visits the non-
representative controls if the time budget permits. Note
that the SVM-based clustering is also robust to dynam-
ically changing pages—since the Monkey explores con-
trols based on their clusters, it can simply choose what-
ever control is available during exploration and can ig-
nore the controls that have disappeared between the time
clusters were computed and when the Monkey is ready
to click on a control.

4.2.2 State Importance Assessment

State prediction and fuzzy state matching does not help
with state equivalence computed based on page content,
as is required for contextual fraud detection. In such
cases, the Monkey needs to visit all content-wise distinct

pages in an app, and apps may contain too many pages
to be explored within a practical time limit.

DECAF exploits the observation that not all pages
within an app are equally important. There are pages
that users visit more often and spend more time than oth-
ers. From ad fraud detection point, it is more important
to check those pages first, as those pages will show more
ads to users. DECAF therefore prioritizes its exploration
of app states based on their “importance”—more impor-
tant pages are explored before less important ones.
Using app usage for estimating state importance. The
importance of a state or page is an input to DECAF and
can be obtained from app usage statistics from real users,
either by using data from app analytic libraries such as
Flurry [5] and AppInsight [46] or by having users use
instrumented versions of apps.

From this kind of instrumentation, it is possible to ob-
tain a collection of traces, where each trace is a path from
the root state to a given state. The importance of a state
is determined by the number of traces that terminate at
that state. Given these traces as input, DECAF combines
the traces to generate a trace graph, which is a subgraph
of the state transition graph. Each node in the trace graph
has a value and a cost, where value is defined as the im-
portance of the node (defined above) and cost is the av-
erage time for the page to load.
Prioritizing state traversal using state importance. To
prioritize Monkey traversal for contextual fraud, DECAF
solves the following optimization problem: given a cost
budget B (e.g., total time to explore the app), it deter-
mines the set of paths that can be traversed within time B
such that total value of all nodes in the paths is max-
imized. The problem is NP-Hard, by reduction from
Knapsack, so we have evaluated two greedy heuristics
for prioritizing paths to explore: (1) Best node, which
chooses the next unexplored node with the best value to
cost ratio, and (2) Best path, which chooses the next un-
explored path with the highest total value-total cost ratio.
We evaluate these heuristics in Section 6.

Since app content can change dynamically, it is pos-
sible that a state in a trace disappears during the Mon-
key’s exploration of an app. In that case, DECAF uses
the trained SVM to choose another state similar to the
original state. Finally, traces can be useful not only to
identify important states to explore, but also to navigate
to states that require human inputs. For example, if nav-
igating to a state requires username/password or special
text inputs that the Monkey cannot produce, and if traces
incorporate such inputs, the Monkey can use them during
its exploration to navigate to those states.

4.3 Page Load Completion Detection

Mobile apps are highly asynchronous but UI extraction
channels typically do not provide any callback to an

7

64 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

external observer when the rendering of a page com-
pletes. Therefore, DECAF has no way of knowing when
the page has loaded in order to check state equivalence.
Fixed timeouts, or timeouts based on a percentile of the
distribution of page load times, can be too conservative
since these distributions are highly skewed. App instru-
mentation is an alternative, but has been shown to be
complex even for managed code such as C# or Java [46].

DECAF uses a simpler and app language-agnostic
technique. It monitors all I/O (Networking, Disk and
Memory) activities of the app process, and maintains
their sum over a sliding window of time T . If this sum
goes below a configurable threshold ε , the page is con-
sidered to be loaded; the intuition here is that as long
as the page is loading, the app should generate non-
negligible I/O traffic. The method has the virtue of sim-
plicity, but comes at a small cost of latency, given by
sliding window length, to detect the page load.

4.4 Fraud Checker Optimizations

DECAF incorporates several scalability optimizations as
part of its fraud checkers.
Detecting too many ads. As mentioned in Section 3,
detecting whether a page contains more than k ads in any
screen position can be tricky. DECAF uses an efficient al-
gorithm whose computational complexity depends only
on the total number of ads N in the page and not on
the page or screen size. The algorithm uses a vertical
moving window across the page whose width is equal to
the screen width and height is equal to the page height;
this window is positioned successively at the right edges
of rectangles representing ads. Within each such win-
dow, a horizontal strip of height equal to the screen
height is moved from one ad rectangle bottom-edge to
the next; at each position, the algorithms computes the
number of ads visible inside the horizontal strip, and ex-
its if this number exceeds a certain threshold. The com-
plexity of this algorithm (see [34] for pseudocode), is
O(N2 log(N)).
Detecting hidden and intrusive ads. As discussed in
Section 3, determining if an ad is completely hidden or
partially overlapped by other GUI elements is challeng-
ing due to missing z-coordinates of the elements. To deal
with that, DECAF uses two classifiers described below.
Exploiting DOM-tree structure. This classifier predicts
relative z-coordinates of various GUI elements based on
their rendering order. In Windows, rendering order is the
same as the depth-first traversal order of the DOM tree;
i.e., if two elements have the same x- and y-coordinates,
the one at the greater depth of the DOM tree will be ren-
dered over the one at the smaller depth. The classifier
uses this information, along with x- and y-coordinates of
GUI elements as reported by the automation framework,
to decide if an ad element is hidden or partially over-

lapped by a non-ad element.
This classifier is not perfect. It can occasionally clas-

sify a visible ad as hidden (i.e., false positives) when GUI
elements on top of the ad are invisible and their visibility
status is not available from the DOM information.

Analyzing screenshots. This approach uses image pro-
cessing to detect if a target ad is visible in the app’s
screenshots. It requires addressing two challenges: (1)
knowing what the ad looks like, so that the image pro-
cessing algorithm can search for target ad, and (2) refo-
cusing, i.e., making sure that the screenshot captures the
region of the page containing the ad.

To address the first challenge, we use a proxy that
serves the apps with fiducials: dummy ads with easily
identifiable (e.g., checker-board) patterns. The proxy in-
tercepts all requests to ad servers and replies with fidu-
cials without affecting normal operation of the app. The
image processing algorithm then looks for the specific
pattern in screenshots. To address the refocusing chal-
lenge, the Monkey scrolls and pans app pages and an-
alyzes screenshots only when the current screen of the
page contains at least one ad. The classifier, like the pre-
vious one, is not perfect. It can classify hidden ads as
visible and vice versa due to errors in image processing
and to the failure of the Monkey to refocus.

Combining the classifiers. The two classifiers described
above can be combined. In our implementation, we take
a conservative approach and declare an ad to be hidden
if it is classified as hidden by both the classifiers.

5 Implementation

Tablet/Phone differences. We have implemented DE-
CAF for Windows Phone apps (hereafter referred to as
phone apps) and Windows Store apps (referred to as
tablet apps). One key difference between our proto-
types for these two platforms is how the Monkey inter-
acts with apps. Tablet apps run on Windows 8, which
provides Windows UI automation framework (similar to
Android MonkeyRunner [2]); DECAF uses this frame-
work directly. Tablet apps can be written in C#,
HTML/JavaScript, or C++ and the UI framework allows
interacting with them in a unified way. On the other
hand, DECAF runs phone apps in Windows Phone Emu-
lator, which does not provide UI automation, so we use
techniques from [44] to extract UI elements in current
page and manipulate mouse events on the host machine
running the phone emulator to interact with apps. Un-
like Windows Phone, tablets do not have any physical
back button, so DECAF uses various heuristics to iden-
tify software back button defined within the app.

Other implementation details. We use Windows per-
formance counter [16] to implement the page load moni-
tor. To train the SVM classifier for state equivalence, we

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 65

manually generated 1,000 feature vectors from a collec-
tion of training apps and used grid search with 10-fold
cross validation to set the model parameters. The chosen
parameter set had a highest cross-validation accuracy of
98.8%. For the user study reported in the next section, we
use Windows Hook API [14] and Windows Input Simu-
lator [15] to record and replay user interactions.

6 Evaluation
In this section, we evaluate the overall performance of
DECAF optimizations. For lack of space, we limit the
results to tablet apps only, since they are more complex
than phone apps. Some of our results are compared with
ground truth, which we collect from human users; but
since the process is not scalable, we limit our study to
the 100 top free apps (29 HTML/JavaScript apps and 71
C# apps) from the Windows Store. In the next section,
we run DECAF on a larger set of phone and tablet apps
to characterize ad frauds.

6.1 State Equivalence Prediction

To measure accuracy of our SVM model, we use humans
to find the ground truth. We gave all the 100 apps to real
users, who explored as many unique pages as possible6.
For each app, we combined all pages visited by users and
counted the number of structurally distinct pages. Since
apps typically have a small number of structurally dis-
tinct pages (mean 9.15, median 5), we found humans to
be effective in discovering all of them.
Accuracy of SVM model. We evaluated our SVM
model on the ground truths and found that it has a false
positive rate of 8% and false negative rate of 12%7. Note
that false negatives do not affect the accuracy of the Mon-
key; it only affects the performance of the Monkey by
unnecessarily sending it to equivalent states. However,
false positives imply that the Monkey ignores some dis-
tinct states by mistakenly assuming they are equivalent
states. To deal with this, we keep the Monkey running
and let it explore the remaining states in random order
until the time budget is exhausted. This way, the Mon-
key gets a chance to explore some of those missed states.
Benefits of using equivalence prediction. To demon-
strate this, we use an SVM Monkey, with prediction en-
abled, and a Basic Monkey, that does not do any predic-
tion and hence realizes a state is equivalent only after vis-
iting it. We run each app twice, once with each version of
the Monkey for 20 minutes. We measure the Monkey’s
state exploration performance using a structural cover-
age metric, defined as the fraction of structurally distinct
states the Monkey visits, compared with the ground truth
found from real users.

6This also mimics manual app inspection for frauds.
7We emphasize that these rates are not directly for fraud detection,

but for the optimization of state equivalence prediction in § 4.

Figure 3(a) shows the structural coverage of the basic
and the SVM Monkey, when they are both given 20 min-
utes to explore each app. In this graph, lower is better:
the SVM Monkey achieves perfect coverage for 71% of
the apps, while the basic Monkey achieves perfect cover-
age for only 30% of the apps. Overall, the mean and me-
dian coverages of the SVM Monkey are 92% and 100%
respectively, and its mean and median coverage improve-
ments are 20.37% and 26.19%, respectively.

Figure 3(b) shows median coverage of the SVM and
the basic Monkey as a function of exploration time per
app (the graph for mean coverage looks similar, and
hence is omitted). As shown, the SVM monkey achieves
better coverage for other time limits as well, i.e., for
a given target coverage, the SVM Monkey runs much
faster than the basic Monkey. For example, the basic
Monkey achieves a median coverage of 66% in 20 min-
utes, while the SVM Monkey achieves a higher median
coverage of (86%) in only 5 mins.

The SVM Monkey fails to achieve perfect coverage for
29 of the 100 apps we tried, for these reasons: the Win-
dows Automation Framework occasionally fails to rec-
ognize a few controls; some states require app-specific
text inputs (e.g., a zipcode for location-based search) that
our Monkey cannot handle; and some apps just have a
large state transition graph. Addressing these limitations
is left to future work, but we are encouraged by the cov-
erage achieved by our optimizations. Below, we demon-
strate that DECAF can be scaled to a several thousand
apps, primarily as a result of these optimizations.

6.2 Assessing State Importance

We now evaluate the best node and path strategies (Sec-
tion 4.2.2) with two baselines that do not exploit app us-
age statistics: random node, where the Monkey chooses
a random unexplored next state and random path, where
the Monkey chooses a random path in the state graph.

To assign values and costs of various app states, we
conducted a user study to obtain app usage information.
We picked five random apps from five different cate-
gories and for each app, we asked 16 users to use it for
5 minutes each. We instrumented apps to automatically
log which pages users visit, how much time they spend
on each page, how long each page needs to load, etc.
Based on this log, we assigned each state a value pro-
portional to the total number of times the page is visited
and a cost proportional to the average time the page took
to load. To compare various strategies, we use the met-
ric value coverage, computed as the ratio of the sum of
values of visited states and that of all states.

We ran the Monkey with all four path prioritization
strategies for total exploration time limits of 5, 10, 20
and 40 minutes. As Figure 4 shows, value coverage in-
creases monotonically with exploration time. More im-

9

66 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Structural coverage

C
D

F
Basic Monkey
SVM Monkey

(a) Structural coverage in 20
minutes of exploration per app

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Execution time, in minutes, per app

M
ed

ia
n

st
ru

ct
ur

al
 c

ov
er

ag
e

Basic Monkey
SVM Monkey

(b) Median coverage as a func-
tion of exploration time

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Page crawling time (second)

C
D

F

(c) Page crawling speed

0 300 600 900 1200
0

0.2

0.4

0.6

0.8

1

SVM mode finish time (second)

C
D

F

(d) App crawling speed

Figure 3: CDF of evaluation result

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

V
al

ue
 C

ov
er

ag
e

Execution time, in minutes, per app

Random Node
Best Node
Random Path
Best Path

Figure 4: Value coverage vs. exploration time per app,
for various prioritization algorithms.

portantly, path-based algorithms outperform node-based
algorithms, as they can better exploit global knowledge
of values of entire paths; the best-path algorithm signif-
icantly outperforms the random-path algorithm (average
improvement of 27%), highlighting the value of exploit-
ing app usage. Furthermore, exploring all (content-wise)
valuable states of an app can take longer than exploring
only structurally distinct states. For the set of apps we
use in this experiment, achieving a near-complete cover-
age takes the Monkey 40 minutes.

6.3 Overall Speed and Throughput

Figure 3(c) shows the CDF of time the Monkey needs
to explore one app state, measured across all 100 apps.
This time includes all the operations required to process
the corresponding page: waiting for the page to be com-
pletely loaded, extracting the DOM tree of the page, de-
tecting structural fraud in the state, and deciding the next
transition. The mean and median times to explore a page
is 13.5 and 12.1 sec respectively; a significant compo-
nent of this time is the additional 5-second delay in de-
tecting page load completion as discussed in Section 4.3.
We are currently exploring methods to reduce this de-
lay. Figure 3(d) shows the CDF of time DECAF needs
to explore one app. The CDF is computed over 71 apps
that the Monkey could finish exploring within 20 min-
utes. The mean and median time for an app is 11.8 min-
utes and 11.25 minutes respectively; at this rate, DECAF
can scan around 125 apps on a single machine per day.

Table 2: Occurrences of various fraud types among all
fraudulent apps

Fraud type Phone Apps Tablet Apps
Too many (Structural/impression) 13% 4%
Too small (Structural/impression) 40% 54%
Outside screen (Structural/impression) 19% 4%
Hidden (Structural/impression) 39% 32%
Structural/Click 11% 18%
Contextual 2% 20%

7 Characterizing Ad Fraud
In this section, we characterize the prevalence of ad
frauds, compare frauds by type across phone and tablet
apps, and explore how ad fraud correlates with app rat-
ing, size, and several other factors. To obtain these re-
sults, we ran DECAF on 50,000 Windows Phone apps
(phone apps) and 1,150 Windows 8 apps (tablet apps).8

The Windows 8 App Store prevents programmatic app
downloads, so we had to manually download the apps
before running them through DECAF, hence the limit of
1,150 on tablet apps. Phone apps are randomly chosen
from all SilverLight apps in the app store in April 2013.
Microsoft Advertising used DECAF after April 2013 to
detect violations in apps and force publishers into com-
pliance, and our results include these apps. Tablet apps
were downloaded in September 2013, and were taken
from top 100 free apps in 15 different categories.
Fraud by Type. Our DECAF-based analysis reveals that
ad fraud is widespread both in phone and in tablet apps.
In the samples we have, we discovered more than a thou-
sand phone apps, and more than 50 tablet apps, with at
least one instance of ad fraud; the precise numbers are
proprietary, and hence omitted.

Table 2 classifies the frauds by type (note that an app
may include multiple types of frauds). Apps exhibit all
of the fraud types that DECAF could detect, but to vary-
ing degrees; manipulating the sizes of ads, and hiding ads
under other controls seem to be the most prevalent both
on the phone and tablet. There are, however, interest-
ing differences between the two platforms. Contextual

8 For Windows Phone, we consider SilverLight apps only. Some
apps especially games are written in XNA that we ignore. Also, the
Monkey is not yet sophisticated enough to completely traverse games
such as Angry Birds. For Tablet apps, we manually sample simple
games from the Games category.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 67

0%

5%

10%

15%

20%

Bo
ok

s &
 R
ef
er
en

ce
Bu

sin
es
s

Ed
uc
at
io
n

En
te
rt
ai
nm

en
t

Fi
na

nc
e

Fo
od

 &
 D
in
in
g

G
am

es
G
ov

er
nm

en
t

He
al
th
 &
 F
itn

es
s

Ki
ds
 +
 F
am

ily
Li
fe
st
yl
e

M
us
ic
+V

id
eo

N
ew

s &
 W

ea
th
er

Ph
ot
o

So
ci
al

Sp
or
ts

Pr
od

uc
tiv

ity
 +
 T
oo

ls
Tr
av
el

%
 F
ra
ud

ul
en

t a
pp

s
Phone Tablet

Figure 5: Fraudulent apps in various categories.

0%
10%
20%
30%
40%
50%
60%
70%

Rating 1 Rating 2 Rating 3 Rating 4 Rating 5

Fraud (phone)
NoFraud (Phone)
Fraud (Tablet)
NoFraud (Tablet)

Figure 6: Distribution of ratings for fraudulent and non-
fraudulent phone and tablet apps

fraud is significantly more prevalent on the tablet, be-
cause tablet apps are more content-rich (due to the larger
form factor). Ad count violations are more prevalent on
the phone, which has a stricter limit (1 ad per screen)
compared to the tablet (3 ads per screen).

Fraud by App Category. App stores classify apps by
category, and Figure 5 depicts distribution of ad fraud
frequency across app categories for both phone and tablet
apps. In some cases, fraud is equally prevalent across
the two platforms, but there are several instances where
fraud is more prevalent in one platform than the other.
For instance, navigation and entertainment (movie re-
views/timings) based apps exhibit more fraud on the
phone, likely because they are more frequently used on
these devices and publishers focus their efforts on these
categories. For a similar reason, tablets show a signif-
icantly higher proportion of fraud than phones in the
Health, News and Weather, and Sports categories.

Frauds by rating. We also explore the prevalence of
fraud by two measures of the utility of an app. The first
measure is its rating value, rounded to a number from
1-5, and we seek to understand if fraud happens more of-
ten at one rating level than at another. Figure 6 plots the
frequency of different rating values across both fraudu-
lent and non-fraudulent apps, both for the phone and the
tablet. One interesting result is that the distribution of
rating values is about the same for fraudulent and non-
fraudulent apps; i.e., for a given rating, the proportion of
fraudulent and non-fraudulent apps is roughly the same.
Fraudulent and non-fraudulent phone apps have average
ratings of 1.8 and 1.98. For tablet apps, the average rat-
ings are 3.79 and 3.8, for fraudulent and non-fraudulent

apps respectively9. If rating is construed as a proxy for
utility, this suggests that the prevalence of fraud seems to
be independent of the utility of an app.

A complementary aspect of apps is popularity. While
we do not have direct measures of popularity, Figure 7
plots the cumulative distribution of rating counts (the
number of ratings an app has received) for phone apps,
which has been shown to be weakly correlated with
downloads [21] and can be used as a surrogate for
popularity (the graphs look similar for tablet apps as
well). This figure suggests that there are small distri-
butional differences in rating counts for fraudulent and
non-fraudulent apps; the mean rating counts for phone
apps is 83 and 118 respectively, and for tablet apps is 136
and 157 respectively. However, these differences are too
small to make a categorical assertion of the relationship
between popularity and fraud behavior.

We had expected to find at least that less popular apps,
or those with lower utility would exhibit fraud behavior,
since they have more incentive to do so. These results
are a little inconclusive and suggest that our intuitions are
wrong, or that we need more direct measures of popular-
ity (actual download counts) to establish the relationship.

The propensity of publishers to commit fraud. Each
app in an app store is developed by a publisher. A sin-
gle publisher may publish more than one app, and we
now examine how the instances of fraud are distributed
across publishers. Figure 8 plots the compliance rate for
phone and tablet apps for publishers who have more than
one app in the app store. A compliance rate of 100%
means that no frauds were detected across all of the pub-
lisher’s apps, while a rate of 0% means all the publisher’s
apps were fraudulent. The rate of compliance is much
higher in tablet apps, but that may also be because our
sample is much smaller. The phone app compliance may
be more reflective of the app ecosystem as a whole: a
small number of publishers never comply, but a signifi-
cant fraction of publishers commit fraud on some of their
apps. More interesting, the distribution of the number
of frauds across publishers who commit fraud exhibits a
heavy tail (Figure 9): a small number of publishers are
responsible for most of the fraud.

Takeaways. These measurement results are actionable
in the following way. Given the scale of the problem,
an ad network is often interested in selectively invest-
ing resources in fraud detection, and taken together, our
results suggest ways in which the ad network should,
and should not, invest resources wisely. The analysis
of fraud prevalence by type suggests that ad networks
could preferentially devote resources to different types
of fraud on different platforms; for instance, the ad count

9Average ratings for tablet apps are higher than that for phone apps
because we chose top apps for tablet.

11

68 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

CD
F

Rating Count

FraudApp
NoFraudApp

Figure 7: CDF of of rating counts
for phone apps

0%

20%

40%

60%

80%

100%

0 500 1000

Co
m
pl
ia
nc
e

Publisher ID

Phone
0%

20%

40%

60%

80%

100%

0 50 100
Publisher ID

Tablet

Figure 8: Compliance rate of publishers
with multiple apps

1

10

100

1000

1 10 100 1000

Fr
au

du
le
nt
 a
pp

s

Publisher ID

Figure 9: Fraudulent app count
per phone app publisher

and contextual frauds constitute the lion’s share of frauds
on tablets, so an ad network may optimize fraud detec-
tion throughput by running only these checkers. Sim-
ilarly, the analysis of fraud by categories suggests cat-
egories of apps to which ad networks can devote more
resources, and points out that these categories may de-
pend on the platforms. The analysis also points out that
ad networks should not attempt to distinguish by rating
or rating count. Finally, and perhaps most interesting, the
distribution of fraud counts by publisher suggests that it
may be possible to obtain significant returns on invest-
ment by examining apps from a small set of publishers.

8 Related Work
DECAF is inspired by prior work on app automation and
ad fraud detection.

App Automation. Today, mobile platforms provide UI
automation tools [3, 2] to test mobile apps. But these
tools rely on the developer to provide automation scripts,
and do not provide any visibility into the app runtime, so
cannot be easily used for detecting ad frauds.

Recent research efforts have built upon these tools to
provide full app automation, but their focus has been on
different applications: automated testing [47, 35, 50, 18,
19, 26, 30, 41] and automated privacy and security de-
tection [24, 27, 36, 45]. Automated testing efforts eval-
uate their system only on a handful of apps and many of
their UI automation techniques are tuned to those apps.
Systems that look for privacy and security violations ex-
ecute on a large collection of apps but they only use ba-
sic UI automation techniques. Closest to our work is
AMC [33], which uses automated app navigation to ver-
ify UI properties for vehicular Android apps, but reported
exploration times of several hours per app and has been
evaluated on 12 apps. In contrast to all of these, DECAF
is designed for performance and scale to automatically
discover ad frauds violations in several thousand apps.

Ad Fraud. Existing works on ad fraud mainly focus on
the click-spam behaviors, characterizing the features of
click-spam, either targeting specific attacks [17, 20, 40,
42], or taking a broader view [22]. Some work has ex-
amined other elements of the click-spam ecosystem: the

quality of purchased traffic [49, 52], and the spam profit
model [32, 37]. Very little work exists in exploring click-
spam in mobile apps. From the controlled experiment,
authors in [22] observed that around one third of the mo-
bile ad clicks may constitute click-spam. A contempo-
raneous paper [25] claimed that they are not aware of
any mobile malware in the wild that performs advertising
click fraud. Unlike these, DECAF focuses on detecting
violations to ad network terms and conditions, and even
before potentially fraudulent clicks have been generated.

With regard to detection, most existing works focus on
bot-driven click spam, either by analyzing search engine
query logs to identify outliers in query distributions [51],
characterizing networking traffic to infer coalitions made
by a group of bot-driven fraudsters [38, 39], or authen-
ticating normal user clicks to filter out bot-driven clicks
[29, 31, 48]. A recent work, Viceroi [23], designed a
more general framework that is possible to detect not
only bot-driven spam, but also some non-bot driven ones
(like search-hijacking). DECAF is different from this
body of work and focuses on user-based ad fraud in the
mobile app setting rather than the click-spam fraud in the
browser setting – to the best of our knowledge, ours is the
first work to detect ad fraud in mobile apps.

9 Conclusion
DECAF is a system for detecting placement fraud in mo-
bile app advertisements. It efficiently explores the UI
state transition graph of mobile apps in order to detect
violations of terms and conditions laid down by ad net-
works. DECAF has been used by Microsoft Advertis-
ing to detect ad fraud and our study of several thousand
apps reveals interesting variability in the prevalence of
fraud by type, category, and publisher. In the future, we
plan to explore methods to increase the coverage of DE-
CAF’s Monkey, expand the suite of frauds that it is capa-
ble of detecting, evaluate other metrics for determining
state importance, and explore attacks designed to evade
DECAF and develop countermeasures for these attacks.
Acknowledgements. We thank the anonymous refer-
ees and our shepherd Aruna Balasubramanian for their
comments. Michael Albrecht, Rich Chapler and Navneet
Raja provided valuable feedback on DECAF.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 69

References
[1] AdMob Publisher Guidelines and Policies.

http://support.google.com/admob/answer/
1307237?hl=en&ref topic=1307235.

[2] Android Monkeyrunner. http://developer.android.
com/tools/help/monkeyrunner concepts.html.

[3] Android UI/Application Exerciser Monkey. http:
//developer.android.com/tools/help/monkey.html.

[4] Bots Mobilize. http://www.dmnews.com/
bots-mobilize/article/291566/.

[5] Flurry. http://www.flurry.com/.

[6] Google Admob. http://www.google.com/ads/
admob/.

[7] Google Admob: What’s the Difference Between
Estimated and Finalized Earnings? http://support.
google.com/adsense/answer/168408/.

[8] iAd App Network. http://developer.apple.com/
support/appstore/iad-app-network/.

[9] Microsoft Advertising. http://advertising.
microsoft.com/en-us/splitter.

[10] Microsoft Advertising: Build your business. http:
//advertising.microsoft.com/en-us/splitter.

[11] Microsoft pubCenter Publisher Terms and
Conditions. http://pubcenter.microsoft.com/
StaticHTML/TC/TC en.html.

[12] The Truth About Mobile Click Fraud. http://www.
imgrind.com/the-truth-about-mobile-click-fraud/.

[13] Up To 40% Of Mobile Ad Clicks May
Be Accidents Or Fraud? http://www.
mediapost.com/publications/article/182029/
up-to-40-of-mobile-ad-clicks-may-be-accidents-or.
html#axzz2ed63eE9q.

[14] Windows Hooks. http://msdn.microsoft.com/
en-us/library/windows/desktop/ms632589(v=vs.
85).aspx.

[15] Windows Input Simulator. http://inputsimulator.
codeplex.com/.

[16] Windows Performance Counters. http:
//msdn.microsoft.com/en-us/library/windows/
desktop/aa373083(v=vs.85).aspx.

[17] S. Alrwais, A. Gerber, C. Dunn, O. Spatscheck,
M. Gupta, and E. Osterweil. Dissecting Ghost
Clicks: Ad Fraud Via Misdirected Human Clicks.
In ACSAC, 2012.

[18] D. Amalfitano, A. Fasolino, S. Carmine,
A. Memon, and P. Tramontana. Using GUI
Ripping for Automated Testing of Android
Applications. In IEEE/ACM ASE, 2012.

[19] S. Anand, M. Naik, M. Harrold, and H. Yang. Au-
tomated Concolic Testing of Smartphone Apps. In
ACM FSE, 2012.

[20] T. Blizard and N. Livic. Click-fraud monetizing
malware: A survey and case study. In MALWARE,
2012.

[21] P. Chia, Y. Yamamoto, and N. Asokan. Is this App
Safe? A Large Scale Study on Application Permis-
sions and Risk Signals. In WWW, 2012.

[22] V. Dave, S. Guha, and Y. Zhang. Measuring and
Fingerprinting Click-Spam in Ad Networks. In
ACM SIGCOMM, 2012.

[23] V. Dave, S. Guha, and Y. Zhang. ViceROI: Catch-
ing Click-Spam in Search Ad Networks. In ACM
CCS, 2013.

[24] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: an
Information-flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In USENIX
OSDI, 2010.

[25] A. Felt, Porter, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A Survey of Mobile Malware in the
Wild. In ACM SPSM, 2011.

[26] S. Ganov, C. Killmar, S. Khurshid, and D. Perry.
Event Listener Analysis and Symbolic Execution
for Testing GUI Applications. In ICFEM, 2009.

[27] P. Gilbert, B. Chun, L. Cox, and J. Jung. Vision:
Automated Security Validation of Mobile apps at
App Markets. In MCS, 2011.

[28] M. Grace, W. Zhou, X. Jiang, and A. Sadeghi. Un-
safe Exposure Analysis of Mobile In-App Adver-
tisements. In ACM WiSec, 2012.

[29] H. Haddadi. Fighting Online Click-Fraud Using
Bluff Ads. ACM Computer Communication Re-
view, 40(2):21–25, 2010.

[30] C. Hu and I. Neamtiu. Automating GUI Testing for
Android Applications. In AST, 2011.

[31] A. Juels, S. Stamm, and M. Jakobsson. Combat-
ing Click Fraud via Premium Clicks. In USENIX
Security, 2007.

13

70 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[32] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalytics:
An Empirical Analysis of Spam Marketing Conver-
sion. In ACM CCS, 2008.

[33] K. Lee, J. Flinn, T. Giuli, B. Noble, and C. Peplin.
AMC: Verifying User Interface Properties for Ve-
hicular Applications. In ACM MobiSys, 2013.

[34] B. Liu, S. Nath, R. Govindan, and J. Liu. DECAF:
Detecting and Characterizing Ad Fraud in Mobile
Apps. In University of Southern California Techni-
cal Report 13-938, 2013.

[35] A. MacHiry, R. Tahiliani, and M. Naik. Dynodroid:
An Input Generation System for Android Apps. In
ACM FSE, 2013.

[36] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei,
S. Malek, and A. Stavrou. A Whitebox Approach
for Automated Security Testing of Android Appli-
cations on the Cloud. In AST, 2012.

[37] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver,
C. Kreibich, B. Krebs, G. Voelker, S. Savage, and
K. Levchenko. PharmaLeaks: Understanding the
Business of Online Pharmaceutical Affiliate Pro-
grams. In USENIX Security, 2012.

[38] A. Metwally, D. Agrawal, and A. El Abbadi. DE-
TECTIVES: DETEcting Coalition hiT Inflation at-
tacks in adVertising nEtworks Streams. In WWW,
2007.

[39] A. Metwally, F. Emekci, D. Agrawal, and A. El Ab-
badi. SLEUTH: Single-pubLisher attack dEtection
Using correlaTion Hunting. In PVLDB, 2008.

[40] B. Miller, P. Pearce, C. Grier, C. Kreibich, and
V. Paxson. What’s Clicking What? Techniques and
Innovations of Today’s Clickbots. In IEEE DIMVA,
2011.

[41] N. Mirzaei, S. Malek, C. Pasareanu, N. Esfahani,
and R. Mahmood. Testing Android Apps through
Symbolic Execution. ACM SIGSOFT Software En-
gineering Notes, 37(6):1–5, 2012.

[42] T. Moore, N. Leontiadis, and N. Christin. Fashion
Crimes: Trending-Term Exploitation on the Web.
In ACM CCS, 2011.

[43] M. Musuvathi, D. Park, A. Chou, D. Engler, and
D. Dill. CMC: a Pragmatic Approach to Model
Checking Real Code. In USENIX OSDI, 2002.

[44] Suman Nath, Felix Lin, Lenin Ravindranath, and
Jitu Padhye. SmartAds: Bringing Contextual Ads
to Mobile Apps. In ACM MobiSys, 2013.

[45] V. Rastogi, Y. Chen, and W. Enck. Appsplay-
ground: Automatic Security Analysis of Smart-
phone Applications. In ACM CODASPY, 2013.

[46] L. Ravindranath, J. Padhye, S. Agarwal, R. Maha-
jan, I. Obermiller, and S. Shayandeh. AppInsight:
Mobile App Performance Monitoring in the Wild.
In USENIX OSDI, 2012.

[47] Lenin Ravindranath, Suman Nath, Jitendra Padhye,
and Hari Balakrishnan. Automatic and Scalable
Fault Detection for Mobile Applications. Techni-
cal Report MSR-TR-2013-98, Microsoft Research,
2013.

[48] F. Roesner, T. Kohno, A. Moshchuk, B. Parno,
H. Wang, and C. Cowan. User-Driven Access Con-
trol: Rethinking Permission Granting in Modern
Operating Systems. In IEEE S & P, 2012.

[49] K. Springborn, , and P. Barford. Impression Fraud
in Online Advertising via Pay-Per-View Networks.
In USENIX Security, 2013.

[50] W. Yang, M. Prasad, and T. Xie. A Grey-box Ap-
proach for Automated GUI-model Generation of
Mobile Applications. In FASE, 2013.

[51] F. Yu, Y. Xie, and Q. Ke. SBotMiner: Large Scale
Search Bot Detection. In ACM WSDM, 2010.

[52] Q. Zhang, T. Ristenpart, S. Savage, and G. Voelker.
Got Traffic? An Evaluation of Click Traffic
Providers. In WebQuality, 2011.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 71

I Know What Your Packet Did Last Hop:
Using Packet Histories to Troubleshoot Networks

Nikhil Handigol†, Brandon Heller†, Vimalkumar Jeyakumar†, David Mazières, Nick McKeown
{nikhilh,brandonh}@cs.stanford.edu, {jvimal,nickm}@stanford.edu, http: // www. scs. stanford. edu/ ~ dm/ addr/

Stanford University, Stanford, CA USA
† These authors contributed equally to this work

Abstract

The complexity of networks has outpaced our
tools to debug them; today, administrators use man-
ual tools to diagnose problems. In this paper, we
show how packet histories—the full stories of every
packet’s journey through the network—can simplify
network diagnosis. To demonstrate the usefulness
of packet histories and the practical feasibility of
constructing them, we built NetSight, an extensible
platform that captures packet histories and enables
applications to concisely and flexibly retrieve packet
histories of interest. Atop NetSight, we built four
applications that illustrate its flexibility: an inter-
active network debugger, a live invariant monitor,
a path-aware history logger, and a hierarchical net-
work profiler. On a single modern multi-core server,
NetSight can process packet histories for the traf-
fic of multiple 10 Gb/s links. For larger networks,
NetSight scales linearly with additional servers and
scales even further with straightforward additions to
hardware- and hypervisor-based switches.

1 Introduction
Operating networks is hard. When networks go
down, administrators have only a rudimentary set of
tools at their disposal (traceroute, ping, SNMP, Net-
Flow, sFlow) to track down the root cause of the out-
age. This debugging toolkit has remained essentially
unchanged, despite an increase in distributed proto-
cols that modify network state. Network adminis-
trators have become “masters of complexity” [40]
who use their skill and experience to divine the root
cause of each bug. Humans are involved almost ev-
ery time something goes wrong, and we are still far
from an era of automated troubleshooting.

We could easily diagnose many network problems
if we could ask the network about suspect traffic and
receive an immediate answer. For example:

1. “Host A cannot talk to Host B. Show me where
packets from A intended for B are going, along
with any header modifications.”

2. “I don’t want forwarding loops in my network,
even transient ones. Show me every packet that
passes the same switch twice.”

3. “Some hosts are failing to grab IP addresses.
Show me where DHCP traffic is going in the
network.”

4. “One port is experiencing congestion. Show me
the traffic sources causing the congestion.”

Today, we cannot “just ask” these questions. Our
network diagnosis tools either provide no way to
pose such a question, or lack access to the informa-
tion needed to provide a useful answer. But, these
questions could be answered with an omniscient view
of every packet’s journey through the network. We
call this notion a packet history. More specifically,

Definition A packet history is the route a packet
takes through a network plus the switch state and
header modifications it encounters at each hop.

A single packet history can be the “smoking gun”
that reveals why, how, and where a network failed,
evidence that would otherwise remain hidden in gi-
gabytes of message logs, flow records [8, 34], and
packet dumps [15, 18, 32].
Using this construct, it becomes possible to build

network analysis programs to diagnose problems.
We built four such applications: (1) ndb, an inter-
active network debugger, (2) netwatch, a live net-
work invariant monitor, (3) netshark, a network-
wide packet history logger, and (4) nprof, a hier-
archical network profiler. The problems described
above are a small sample from the set of problems
these applications can help solve.
These four applications run on top of a prototype

platform we built, called NetSight. With a view of

1

72 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

every packet history in the network, NetSight sup-
ports both real-time and postmortem analysis. Ap-
plications use Packet History Filter, a regex-like lan-
guage that we developed, to concisely specify paths,
switch state, and packet header fields for packet his-
tories of interest. The fact that each application is
less than 200 lines of code demonstrates the power
of Packet History Filter in NetSight.
NetSight assembles packet histories using

postcards—event records created whenever a packet
traverses a switch. Each postcard contains a copy of
the packet header, the switch ID, the output ports,
and a version number for the switch forwarding
state. To generate postcards, our prototype trans-
parently interposes on the control channel between
switches and controllers, and we have tested it with
both hardware and software OpenFlow switches.1

The challenge for any system offering packet his-
tories is to efficiently and scalably process a stream
of postcards into archived, queryable packet histo-
ries. Surprisingly, a single NetSight server suffices
to assemble and store packet histories from packet
headers collected at each hop, for every packet that
crosses 14 routers in the Stanford backbone net-
work. To support larger networks, NetSight scales
out on general-purpose servers—increasing its as-
sembly, query, and storage capabilities linearly with
the number of processing cores, servers, and disks.
To scale further to bandwidth-heavy enterprise and
data center networks, we present two additional Net-
Sight variants. NetSight-SwitchAssist proposes new
switch hardware changes to reduce postcard band-
width, while NetSight-HostAssist spreads postcard
and history processing among virtualized servers. In
contrast to the näıve method of collecting packet
headers that requires 31% bandwidth overhead in
the average case (§8), the SwitchAssist and HostAs-
sist designs drastically reduce the bandwidth over-
head to 7% and 3%, respectively (§8).
To summarize, our contributions include:

• Language: Packet History Filter concisely rep-
resents packet histories of interest. (§3)

• Applications: a suite of network diagnosis
apps built atop the NetSight API. (§4)

• Platform: the design (§5), implementa-
tion (§6), and evaluation (§7) of NetSight.

• A discussion of the two other designs, NetSight-
SwitchAssist and NetSight-HostAssist (§8).

This method of network analysis complements
techniques that model network behavior [23, 24].
Rather than predict the forwarding behavior of hy-

1Our prototype uses OpenFlow but the design does not require it.

packet [dl_src: 0x123, ...]:

switch 1: { inport: p0, outports: [p1]

mods: [dl_dst -> 0x345]

matched flow: 23 [...]

matched table version: 3 }

switch 2: { inport: p0, outports: [p2]

mods: []

matched flow: 11 [...]

matched table version: 7 }

...

switch N: { inport: p0

table miss

matched table version: 8 }

Figure 1: A packet history shows the path taken by a packet
along with the modifications and switch state encountered
by it at each hop.

pothetical packets, NetSight shows the actual for-
warding behavior of real packets. NetSight makes no
assumptions about the correctness of network con-
trol software. However, it assumes that the hard-
ware correctly forwards postcards to the NetSight
server(s). If it doesn’t, NetSight can flag it as a hard-
ware error, but the information might not be helpful
in accurately homing in on the root cause. Thus,
NetSight helps network operators, control program
developers, and switch implementers to discover and
fix errors in firmware or control protocols that cause
network elements to behave in unexpected ways.
The source code of our NetSight prototype is pub-

licly available with a permissive license [1]. We en-
courage the readers to download, use, extend, and
contribute to the codebase.

2 Motivating Packet Histories
In this section, we define packet histories, show an
example, note their challenges, and describe where
Software-Defined Networking (SDN) can help.
Packet History Definition. A packet history

tells the full story of a packet’s journey through the
network. More precisely, a packet history describes:
• what the packet looked like as it entered the
network (headers)

• where the packet was forwarded (switches +
ports)

• how it was changed (header modifications)

• why it was forwarded that way (matched
flow/actions + flow table).

Figure 1 shows an example packet history.
Why Packet Histories? Put simply, packet his-

tories provide direct evidence to diagnose network
problems. For example, consider a WiFi handover
problem we recently encountered [26]. To diagnose
the problem, our network admins started with pings.
Then they collected and manually inspected for-
warding rules. Then they visually parsed control

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 73

plane logs, looking for the problem. After hours of
debugging, they diagnosed the (surprisingly simple)
cause: upon handover to a new AP, forwarding rules
in the upstream wired switch were improperly up-
dated, sending incoming packets to the original AP.

Instead, our admins might simply ask NetSight:
“Show me all packet histories for packets to the
client when the handover occurred.” Each history
would have shown a packet going to the wrong AP
along with the upstream flow table state that caused
the error, enabling an immediate diagnosis.

This example shows how just one packet history
can single-handedly confirm or disprove a hypothesis
about a network problem, by showing events that
actually transpired in the network, along with all
relevant state. Access to the stream of all packet
histories enables diagnostics that would otherwise
be impractical, time-consuming, or impossible for a
network administrator using conventional tools.

Challenges. Generating, archiving, and query-
ing packet histories in operational networks requires:

(1) Path Visibility: we must somehow view and
record the paths taken by every packet.

(2) State Visibility: we must reconstruct the ex-
act switch state encountered at each packet hop.

(3) Modification Visibility: we must know
where and how each packet has changed.

(4) Collection Scale: all of the above must run
at the maximum observed traffic rate.

(5) Storage Scale: querying histories requires
storing everything, for some time.

(6) Processing Scale: query processing should
keep up with collection and storage.

Observing switch states from an external van-
tage point, by either logging the control messages
or querying the switches for their state, will not
guarantee precise state-packet correlation. The only
place where packets can be correlated with the exact
switch state is the data plane itself [20].

Opportunities with SDN. SDN offers a path
to the correlated visibility we need: logically cen-
tralized control provides a natural location to mod-
ify forwarding rules, while a common representa-
tion of switch state enables us to reason about any
changes. Later, in §6, we show how to precisely cor-
relate packets with the state used to forward them.
We solve the remaining scale concerns with careful
system architecture, aggressive packet header com-
pression, and an optimized implementation. Next,
we describe our API for specifying packet histories.

3 The NetSight API

NetSight exposes an API for applications to spec-
ify, receive, and act upon packet histories of in-
terest. NetSight provides a regular-expression-like
language—Packet History Filter (PHF)—to express
interest in packet histories with specific trajectories,
encountered switch state, and header fields. The
main function of the NetSight API is:2

add_filter(packet_history_filter, callback)

For every packet history matching the PHF
packet_history_filter , the callback function is
called along with the complete packet history.

Postcard Filters. The atomic element in a
PHF is the postcard filter (PF). A PF is a filter
to match a packet at a hop. Syntactically, a PF
is a conjunction of filters on various qualifiers:
packet headers, switch ID (known as datapath ID,
or dpid), input port, output port, and the switch
state encountered by the packet (referenced by a
“version” as described in §5). A PF is written as
follows:
--bpf [not] <BPF> --dpid [not] <switch ID>

--inport [not] <input port> --outport [not]

<output port> --version [not] <version>

where, <BPF> is a Berkeley Packet Filter [30] expres-
sion. The nots are optional and negate matches. A
PF must have at least one of the above qualifiers.
For example, a PF for a packet with source IP A,
entering switch S at any input port other than port
P is written as:
--bpf "ip src A" --dpid S --inport not P.

Packet History Filter Examples. A PHF is a
regular expression built with PFs, where each PF is
enclosed within double braces. The following sample
PHFs use X and Y as PFs to match packets that:

• start at X: ^{{X}}

• end at X: {{X}}$

• go through X: {{X}}

• go through X, and later Y: {{X}}.*{{Y}}

• start at X, never reach Y: ^{{X}}[^{{Y}}]*$

• experience a loop: (.).*(\1)

4 Applications

The ability to specify and receive packet histories
of interest enables new network-diagnosis applica-
tions. This section demonstrates the utility of the
NetSight API by presenting the four applications we
built upon it.

2The other important function is delete_filter.

3

74 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.1 ndb: Interactive Network Debugger

The original motivating application for NetSight is
ndb, an interactive network debugger. The goal of
ndb is to provide interactive debugging features for
networks, analogous to those provided by gdb for
software programs. Using ndb, network application
developers can set PHFs on errant network behavior.
Whenever these occur, the returned packet histories
will contain the sequence of switch forwarding events
that led to the errant behavior, helping to diagnose
common bugs like the following:

Reachability Error: Suppose host A is unable
to reach host B. Using ndb, the developer would
use a PHF to specify packets from A destined for B
that never reach the intended final hop:
^{{--bpf "ip src A and dst B" --dpid X --

inport p1}}[^{{--dpid Y --outport p2}}]*$

where, (X, p1) and (Y, p2) are the (switch, port)
tuples at which hosts A and B are attached. Recall
that the regular expression ‘^X’ matches any string
that starts with character X, but ‘[^X]’ matches any
character except ‘X’. Thus, the above PHF matches
all packet histories with (source,destination)-IP
addresses (A,B) that start at (X,p1) but never
traverse (Y,p2).

Race condition: A controller may insert new
flow entries on multiple switches in response to net-
work events such as link failures or new flow ar-
rivals. If a controller’s flow entry insertions are de-
layed, packets can get dropped, or the controller
can get spurious ‘packet-in’ notifications. To query
such events, NetSight inserts a forwarding rule at
the lowest priority in all switches at switch initial-
ization time. This rule generates postcards and per-
forms the default action (by sending to either out-
port NULL that would drop the packet, or to out-
port CONTROLLER that would send the packet to
the controller). Since this rule is hit only when there
is no other matching flow entry, the following PHF
captures such events, by matching on packet histo-
ries that do not match any flow entry at switch X:
{{--dpid X --outport NULL}}$

Incorrect packet modification: Networks with
many nodes and rules can make it difficult to see
where and why errant packet modifications occurred.
Packets reaching the destination with unexpected
headers can be captured by the following PHF:
^{{--bpf "BPF1"}}.*{{--bpf "BPF2"}}$

Where BPF1 matches the packet when it enters the
network and BPF2matches the modified packet when
it reached the destination.

4.2 netwatch: Live Invariant Monitor
The second application is netwatch, a live network
invariant monitor. netwatch allows the operator to
specify desired network behavior in the form of in-
variants, and triggers alarms whenever a packet vio-
lates any invariant (e.g., freedom from traffic loops).
netwatch is a library of invariants written using
PHFs to match packets that violate those invari-
ants. Once PHFs are pushed to NetSight, the call-
back returns the packet history that violated the in-
variant(s). The callback not only notifies the opera-
tor of an invariant violation, but the PHF provides
useful context around why it happened. netwatch

currently supports the following network invariants:

Isolation: Hosts in group A should not be able
to communicate with hosts in group B. Raise an
alarm whenever this condition is violated. The func-
tion isolation(a_host_set, b_host_set, topo)

pushes down two PHFs:
^{{ GroupA }}.*{{ GroupB }}$

^{{ GroupB }}.*{{ GroupA }}$

GroupA and GroupB can be described by a set of
host IP addresses or by network locations (switch,
port) of hosts. This PHF matches packets that are
routed from GroupA to GroupB.

Loop Freedom: The network should have no
traffic loops. The function loop_freedom() pushes
down one PHF: (.).*(\1)

Waypoint routing: Certain types of traffic
should go through specific waypoints. For ex-
ample, all HTTP traffic should go through the
proxy, or guest traffic should go through the IDS
and Firewall. The function waypoint_routing(

traffic_class, waypoint_id) installs a PHF of
the form: {{--bpf "traffic_class" --dpid not

"waypoint_id"}}{{--dpid not "waypoint_id

"}}*$

This PHF catches packet histories of packets that
belong to traffic_class and never go through the
specified waypoint.

Max-path-length: No path should ever exceed
a specified maximum length, such as the diameter
of the network. The function max_path_length(n)

installs a PHF of the form: .{n+1}
This PHF catches all paths whose lengths exceed n.

4.3 netshark: Network-wide Path-Aware
Packet Logger

The third application is netshark, a wireshark-like
application that enables users to set filters on the
entire history of packets, including their paths and
header values at each hop. For example, a user could
look for all HTTP packets with src IP A and dst IP

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 75

B arriving at (switch X, port p) that have also tra-
versed through switch Y. netshark accepts PHFs
from the user, returns the collected packet histories
matching the query, and includes a wireshark dis-
sector to analyze the results. The user can then view
properties of a packet at a hop (packet header val-
ues, switch ID, input port, output port, and matched
flow table version) as well as properties of the packet
history to which it belongs (path, path length, etc.).

4.4 nprof: Hierarchical Network Profiler
The fourth application is nprof, a hierarchical net-
work profiler. The goal of nprof is to ‘profile’ any
collection of network links to understand the traffic
characteristics and routing decisions that contribute
to link utilization. For example, to profile a partic-
ular link, nprof first pushes a PHF specifying the
link of interest:
{{--dpid X --outport p}}

nprof combines the resulting packet histories with
the topology information to provide a live hierar-
chical profile, showing which switches are sourcing
traffic to the link, and how much. The profile tree
can be further expanded to show which particular
flow entries in those switches are responsible.
nprof can be used to not only identify end hosts

(or applications) that are congesting links of inter-
est, but also identify how a subset of traffic is be-
ing routed across the network. This information can
suggest better ways to distribute traffic in the net-
work, or show packet headers that cause uneven load
distributions on routing mechanisms such as equal-
cost or weighted-cost multi-path.

5 How NetSight Works
In this section, we present NetSight, a platform to
realize the collection, storage, and filtering of all
packet histories, upon which one can build a range
of applications to troubleshoot networks.
The astute reader is likely to doubt the scalability

of any system that attempts to store every header
traversing a network, along with its corresponding
path, state, and modifications, as well as apply com-
plex filters. This is a lot of data to forward, let alone
process and archive.
Hence, NetSight is designed from the beginning to

scale out and see linear improvements with increas-
ing numbers of servers. The design implements all
software processing, such as table lookups, compres-
sion operations, and querying, in ways that are sim-
ple enough to enable hardware implementations. As
an existence proof that such a system is indeed fea-
sible, the implementation described in §6 and eval-
uated in §7 can perform all packet history process-

History Plane

NetSight
Coordinator

Network Apps
ndb

netwatch
netshark
nprof

Postcard
Generation
Postcard

Generation
Forwarding

Element

Data Plane

NetSight
APIforwarding

state
changes

packets

network
admin

Postcard
Generation
Postcard

Generation
Control
Element

Control Plane

postcards
Postcard

Generation
Postcard

Generation
NetSight
Servers

Figure 2: NetSight architecture.

ing and storage steps for a moderately-sized network
like the Stanford University backbone network on a
single server. For networks with higher aggregate
bandwidths, processing capabilities increase linearly
with the number of servers.

5.1 NetSight Philosophy
NetSight assembles packet histories using postcards,
event records sent out whenever a packet traverses
a switch. This approach decouples the fate of the
postcard from the original packet, helping to trou-
bleshoot packets lost down the road, unlike ap-
proaches that append to the original packet. Each
postcard contains the packet header, switch ID, out-
put port, and current version of the switch state.
Combining topology information with the postcards
generated by a packet, we can reconstruct the com-
plete packet history: the exact path taken by the
packet along with the state and header modifications
encountered by it at each hop along the path.
We first explain how NetSight works in the com-

mon case, where: (1) the network does not drop
postcards, (2) the network does not modify packets,
and (3) packets are all unicast. Then, in §5.4, we
show how NetSight handles these edge cases.

5.2 System Architecture
Figure 2 sketches the architectural components of
NetSight. NetSight employs a central coordinator to
manage multiple workers (called NetSight servers).
NetSight applications issue PHF-based triggers and
queries to the coordinator, which then returns a
stream or batch of matching packet histories. The
coordinator sets up the transmission of postcards
from switches to NetSight servers and the transmis-
sion of state change records from the network con-
trol plane to the coordinator. Finally, the coordi-

5

76 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Postcard
Generation

packets postcards

headers
version
switch
outport

Postcard
Processing

History
Processing

...

headersdata

compressed
postcard

lists

hash based
 on flow key

(5-tuple)
all postcards from

a switch
all postcards

for a flow

compressed
packet

histories

headers
state headers

state

headers
state

switch,
ports switch,

ports

switch,
ports

{pcard}
{pcard}
{pcard}
{pcard}

s switches

... n servers

... n servers

... d disks

shuffle
stage

Figure 3: Processing flow used in NetSight to turn packets into packet histories across multiple servers.

nator performs periodic liveness checks, broadcasts
queries and triggers, and communicates topology in-
formation for the workers to use when assembling
packet histories.

5.3 Life Of a Postcard
NetSight turns postcards into packet histories. To
explain this process, we now follow the steps per-
formed inside a NetSight server, shown in Figure 3.

Postcard Generation. Goal: record all infor-
mation relevant to a forwarding event and send for
analysis. As a packet enters a switch, the switch
creates a postcard by duplicating the packet, trun-
cating it to the minimum packet size, marking it
with relevant state, and forwarding it to a NetSight
server. The marked state includes the switch ID,
the output port to which this packet is about to be
forwarded, and a version ID representing the exact
state of this switch when the packet was forwarded.
The original packet remains untouched and contin-
ues on its way. Switches today already perform
similar packet duplication actions to divert packets
for monitoring (e.g. RSPAN [7] and sFlow). Post-
card generation should be much faster than normal
packet forwarding, because it does not require any
expensive IP lookups. It requires encapsulating the
packet to a known port and duplicating the packet
output; both of these are cheap operations relative
to typical IP lookups. Newer switches [17] also sup-
port hardware-accelerated encapsulation for tunnel-
ing traffic at line-rate (e.g., MPLS, GRE, VXLAN,
etc.).

Postcard Collection. Goal: to send all post-
cards for a packet to one server, so that its packet
history can be assembled. In order to reconstruct

packet histories, NetSight needs to collect all post-
cards corresponding to a single packet at a single
server. To scale processing, NetSight needs to en-
sure that these groups of postcards are load balanced
across servers. NetSight achieves this by shuffling
postcards between NetSight servers, using a hash on
the flow ID (5-tuple) to ensure postcard locality.

Postcard shuffling is batched into time-based
“rounds.” At the end of a round, servers send post-
cards collected during the round to their final desti-
nation, where the corresponding packet histories can
be assembled and archived. This stage provides an
opportunity to compress postcard data before shuf-
fling, by exploiting the redundancy of header values,
both within a flow, and between flows. Section 6
details NetSight’s fast network-specific compression
technique to reduce network bandwidth usage.

History Assembly. Goal: to assemble packet
histories from out-of-order postcards. Packet his-
tories must be ordered, but postcards can arrive
out-of-order due to varying propagation and queuing
delays from switches to NetSight servers. NetSight
uses topology information, rather than fine-grained
timestamps, to place postcards in order.

When a NetSight server has received the complete
round of postcards from every other server, it decom-
presses and merges each one into the Path Table, a
data structure that helps combine all postcards for
a single packet into a group. To identify all post-
cards corresponding to a packet, NetSight combines
immutable header fields such as IP ID, fragment off-
set, and TCP sequence number fields into a “packet
ID,” which uniquely identifies a packet within a flow.
To evaluate the strategy of using immutable header
fields to identify packets, we analyzed a 400k-packet

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 77

trace of enterprise packet headers [28]. Nearly 11.3%
of packets were indistinguishable from at least one
other packet within a one-second time window. On
closer inspection, we found that these were mostly
UDP packets with IPID 0 generated by an NFS
server. Ignoring these UDP packets removed all
IP packet ambiguity, leaving only seven ambiguous
ARPs. This initial analysis suggests that most of the
packets have enough entropy in their header fields to
be uniquely identified. The Path Table is simply a
hash table indexed by packet ID, where values are
lists of corresponding postcards.

The NetSight server extracts these postcard
groups, one-at-a-time, to assemble them into packet
histories. For each group, NetSight then performs a
topological sort, using switch IDs and output ports,
along with topology data.3 The resulting sorted list
of postcards is the packet history.

Filter triggers. Goal: to immediately notify ap-
plications of fresh packet histories matching a pre-
installed PHF. Once the packet history is assem-
bled, NetSight matches it against any “live” PHFs
pre-installed by applications such as netwatch, and
immediately triggers notifications back to the appli-
cation on a successful match.

History archival. Goal: to efficiently store the
full set of packet histories. Next, the stream of
packet histories generated in each round is written to
a file. NetSight compresses these records using the
same compression algorithm that is used before the
shuffle phase to exploit redundancy between post-
cards of a packet and between packets of a flow.

Historical queries. Goal: to enable applications
to issue PHF queries against archived packet histo-
ries. When an application issues a historical PHF
query to a specified time region, that query runs in
parallel on all NetSight servers. Compression helps
to improve effective disk throughput here, and hence
reduces query completion times.4

5.4 Relaxing the Assumptions
We now describe how NetSight handles corner cases.

Dropped Postcards. When postcard drops oc-
cur (e.g., due to congestion), packet histories be-
come incomplete, causing NetSight to return er-
rantly matched histories as well as to miss histories
that should have matched the installed PHFs. Net-
Sight delegates the responsibility for handling these
events to apps. For example, ndb returns partial his-

3In the current implementation the topology data needs to be exter-
nally fed into NetSight. Alternatively, with the SDN implementation
described in §6, the proxy can dynamically learn the topology.

4Ideally the filesystem is log-structured, to restore individual rounds
at the full disk throughput, with minimal seeking [37].

tories to the user, who can often resolve the omis-
sion by using the topology information and filling
the missing postcards.5 Out-of-band control links
and highest-priority queues for postcards can help
to minimize postcard drops.
Non-unicast Packets. For broadcast and mul-

ticast traffic, NetSight returns packet histories as di-
rected graphs, rather than lists. For loops, NetSight
returns the packet history with an arbitrary starting
point and marks it as a loop.
Modified Packets. When Network Address

Translation (NAT) boxes modify the header fields in
the flow key, the postcards for one packet may arrive
at different NetSight servers, preventing complete
packet history assembly. Using immutable headers
or hashes of packet contents in the shuffle phase
would ensure that all postcards for one packet ar-
rive at the same server.6 However, with such keys,
packet histories of packets belonging to a single flow
will be evenly spread among servers, reducing oppor-
tunities for storage compression: each of n servers
will see packet histories of 1/n-th of the packets of
each flow.
Adding a second shuffle stage can ensure both cor-

rectness and storage efficiency. In the first stage,
packet histories are shuffled for assembly using their
packet ID, while in the second stage, they are shuf-
fled for storage using a hash of the 5-tuple flow key
of their first packet. The reduced storage comes at
a cost of additional network traffic and processing.

6 NetSight Implementation
Our NetSight implementation has two processes:
one interposes between an OpenFlow controller and
its switches to record configuration changes, while
another does all postcard and history processing. To
verify that it operates correctly on physical switches,
we ran it on a chain topology of 6 NEC IP8800
switches [31]. To verify that it ran with unmodified
controllers, we tested it on the Mininet emulation en-
vironment [27] with multiple controllers (OpenFlow
reference, NOX [19], POX [35], RipL-POX [36]) on
multiple topologies (chains, trees, and fat trees).
This section describes the individual pieces of our
prototype, which implements all postcard and his-
tory processing in C++ and implements the control
channel proxy in Python.

6.1 Postcard Generation
The NetSight prototype is for SDN, leveraging the
fact that network state changes are coordinated by

5These can indicate an unexpected switch configuration too, as we
saw the first time using NetSight on a network (§6.4).

6That is, if middleboxes don’t mess with packet contents.

7

78 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a controller. This provides an ideal place to mon-
itor and intercept switch configuration changes. It
uses a transparent proxy called the flow table state
recorder (recorder for short) that sits on the control
path between the controller and OpenFlow switches.
When a controller modifies flow tables on a switch,

the recorder intercepts the message and stores it in a
database. For each OpenFlow rule sent by the con-
troller to the switch, the recorder appends new ac-
tions to generate a postcard for each packet match-
ing the rule in addition to the controller-specified
forwarding.
Specifically, the actions create a copy of the packet

and tag it with the switch ID,7 the output port, and
a version number for the matching flow entry. The
version number is simply a counter that is incre-
mented for every flow modification message. The
tag values overwrite the original destination MAC
address (the original packet header is otherwise un-
changed). Once assembled, postcards are sent to
a NetSight server over a separate VLAN. Postcard
forwarding can be handled out-of-band via a sepa-
rate network, or in-band over the regular network;
both methods are supported. In the in-band mode,
switches recognize postcards using a special VLAN
tag to avoid generating postcards for postcards.

6.2 Compression
NetSight compresses postcards in two places: (1) be-
fore shuffling them to servers, and (2) before archiv-
ing assembled packet histories to disk. While we
can use off-the-shelf compression algorithms (such as
LZMA) to compress the stream of packets, we can do
better by leveraging the structure in packet headers
and the fact that all the packets in a flow—identified
by the 5-tuple flow id (srcip, dstip, srcport,

dstport, protocol)—look similar.
NetSight compresses packets by computing diffs

between successive packets in the same stream.
A diff is a (Header,Value) pair, where Header

uniquely identifies the field that changed and Value

is its new value. Certain fields (e.g. IPID and TCP
Sequence numbers) compress better if we just store
the successive deltas. Compression works as fol-
lows: the first packet of each flow is stored verba-
tim. Subsequent packets are only encoded as the
(Header,Value) tuples that change, with a back-
reference to the previous packet in the same stream.
Finally, NetSight pipes the stream of encoded diffs
through a standard fast compression algorithm (e.g.
gzip at level 1). Our compression algorithm is a gen-

7To fit into the limited tag space, NetSight uses a locally created
“pseudo switch ID” (PSID) and maintains an internal mapping from
the 8 B datapath ID to the PSID.

eralization of Van Jacobson’s compression of TCP
packets over slow links [21].

6.3 PHF Matching
The PHF matching engine in NetSight is based on
the RE1 regex engine [9] and uses the Linux x86 BPF
compiler [5] to match packet headers against BPF
filters. RE1 compiles a subset (concatenation, alter-
nation and the Kleene star) of regular expressions
into byte codes. This byte code implements a Non-
deterministic Finite Automaton which RE1 executes
on an input string. In RE1, character matches trig-
ger state machine transitions; we modify RE1 and
“overload” the character equality check to match
postcards against postcard filters.

6.4 Test Deployment Anecdote
NetSight helped to uncover a subtle bug during our
initial test deployment. While connectivity between
hosts seemed normal, the packet histories returned
by ndb for packets that should have passed through a
particular switch were consistently returned as two
partial paths on either side of the switch. These
packet histories provided all the context our admin-
istrator needed to immediately diagnose the prob-
lem: due to a misconfiguration, the switch was be-
having like an unmanaged layer-2 switch, rather
than an OpenFlow switch as we intended.
With no apparent connectivity issues, this bug

would have gone unnoticed, and might have mani-
fested later in a much less benign form, as forwarding
loops or security policy violations. This unexpected
debugging experience further highlights the power of
packet histories.

7 Evaluation
This section quantifies the performance of the server-
side mechanisms that comprise NetSight, to investi-
gate the feasibility of collecting and storing every
packet history. From measurements of each step, in-
cluding compression, assembly, and filtering, we can
determine the data rate that a single core can han-
dle. For switch-side mechanisms and scaling them,
skip to §8.
7.1 Compression
NetSight compresses postcards before the shuffle
phase to reduce network bandwidth, then com-
presses packet histories again during the archival
phase to reduce storage costs. We investigate three
questions:

Compression: how tightly can NetSight compress
packet headers, and how does this compare to off-
the-shelf options?

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 79

Compression Type Description
Wire Raw packets on the wire
PCAP All IP packets, truncated up to

Layer-4 headers
gzip PCAP compressed by gzip level 6
NetSight (NS) Van Jacobson-style compression

for all IP 5-tuples
NetSight + gzip
(NS+GZ)

Compress packet differences with
gzip level 1

Table 1: Compression techniques.

Speed: how expensive are the compression and de-
compression routines, and what are their time vs.
size tradeoffs?

Duration: how does the round length (time be-
tween data snapshots) affect compression proper-
ties, and is there a sweet spot?

Traces. While we do not have a hardware imple-
mentation of the compression techniques, we answer
the performance questions using thirteen packet cap-
ture (pcap) data sets: one from a university enter-
prise network (UNIV), two from university data cen-
ters (DCs), and nine from a WAN. We preprocessed
all traces and removed all non-IPv4, non-TCP and
non-UDP packets, then stripped packet headers be-
yond the layer 4 TCP header, which accounted for
less than 1% of all traffic. UNIV is the largest trace,
containing 31 GB of packet headers collected over an
hour on a weekday afternoon. The average flow size
over the duration of this trace is 76 packets. The
data center traces DC1 and DC2 have average flow
sizes of about 29 and 333 packets per flow respec-
tively. However, in the WAN traces, we observed
that flows, on average, have less than 3 packets over
the duration of the trace. We do not know why;
however, this extreme point stresses the efficiency of
the compression algorithm.

The UNIV trace contains packets seen at one core
router connecting Clemson University to the Inter-
net. The data center traces—DC1 and DC2—are
from [4] whose IP addresses were anonymized using
SHA1 hash. And finally, each WAN trace (from [43])
accounts for a minute of packet data collected by
a hardware packet capture device. IP addresses in
this trace are anonymized using a CryptoPan prefix-
preserving anonymization.

Storage vs CPU costs. Figure 4 answers many
of our performance questions, showing the tradeoff
between compression storage costs and CPU costs,
for different traces and compression methods. This
graph compares four candidate methods, listed in
Table 1: (a) PCAP: the uncompressed list packet
headers, (b) gzip compression directly on the pcap

Figure 4: NetSight reduces storage relative to PCAP files, at
a low CPU cost. Combining NS with gzip (NS+GZ) reduces
the size better than gzip, at a fraction of gzip’s CPU costs.
The WAN traces compress less as we observe fewer packets
in a flow compared to other traces.

file, (c) NS: the adaptation of Van Jacobson’s com-
pression algorithm, (d) NS+GZ: output of (c) fol-
lowed by gzip compression (level 1, fastest). Each
one is lossless with respect to headers; they recover
all header fields and timestamps and maintain the
packet ordering.

We find that all candidates reduce storage rela-
tive to PCAP files, by up to 4x, and as expected,
their CPU costs vary. GZ, an off-the-shelf option,
compresses well, but has a higher CPU cost than
both NS and NS+GZ, which leverage knowledge of
packet formats in their compression. NetSight uses
NS+GZ, because for every trace, it compresses better
than pure GZ, at a reasonably low CPU cost.

We also find that the compressed sizes depend
heavily on the average flow size of the trace. Most
of the benefits come from storing differences between
successive packets of a flow, and a smaller average
flow size reduces opportunities to compress. We see
this in the WAN traces, which have shorter flows
and compress less. Most of the flow entropy is in
a few fields such as IP identification, IP checksums
and TCP checksums, and the cost of storing diffs for
these fields is much lower than the cost of storing a
whole packet header.

To put these speeds in perspective, consider our
most challenging scenario, NS+GZ in the WAN,
shown by the blue stars. The average process time
per packet is 3.5µs, meaning that one of the many
cores in a modern CPU can process 285K postcard-
s/sec. Assuming an average packet size of 600 bytes,
this translates to about 1.37 Gb/s of network traffic,
and this number scales linearly with the number of
cores. Moreover, the storage cost (for postcards) is
about 6.84 MB/s; a 1 TB disk array can store all

9

80 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Packet compression quality for NS+GZ as a func-
tion of packets seen in the trace. In our traces from three
operating environments, we find that NetSight quickly ben-
efits from compression after processing a few 100s of thou-
sands of packets.

Scenario Enterprise WAN Data Center
CPU cost 0.725µs 0.434µs 0.585µs
per packet

Table 2: Decompression Speeds.

postcards for an entire day. The actual duration for
which postcards need to be stored depends on the
scenario and the organizational needs. For exam-
ple, to troubleshoot routine network crashes whose
symptoms are usually instantly visible, storing a day
or two worth of postcards might suffice. On the
other hand, to troubleshoot security breaches, whose
effects might show up much later, postcards might
have to be stored for a longer period, say a week.
Most of this storage cost goes into storing the first
packet of a flow; as the number of packets per flow in-
creases (e.g. in datacenter traces), the storage costs
reduce further.

Duration. A key parameter for NetSight is the
round length. Longer rounds present more opportu-
nities for postcard compression, but increase the de-
lay until the applications see matching packet histo-
ries. Smaller rounds reduce the size of the hash table
used to store flow keys in NS compression, speeding
up software implementations and making hardware
implementations easier. Figure 5 shows packet com-
pression performance as a function of the number of
packets in a round. This graph suggests that short
rounds of 1000 packets see many of the compression
benefits, while long rounds of 1M postcards maxi-
mize them. On most lightly loaded 10Gb/s links, a
1M postcard round translates to about a second.

Decompression Speed. Table 2 shows NS+GZ
decompression costs for one trace from each of the
environments. In every case, NS+GZ decompres-
sion is significantly faster than compression. These
numbers underrepresent the achievable per-postcard

Packet History Length

La
te

nc
y

(u
s)

.*X

X.*X

X.*X.*X

.*X.*

no-match
match
no-match
match

Figure 6: PHF matching latency microbenchmark for vari-
ous sample PHFs and packet histories of increasing length.

latencies, because the implementation loads the en-
tire set of first packets and timestamps into memory
before iterating through the list of diff records. As
with compression, a small round timer would im-
prove cache locality and use less memory.

7.2 Packet History Assembly
At the end of the shuffle phase, each NetSight server
assembles packet histories by topologically sorting
received postcards, which may have arrived out-of-
order. We measure the speed of our history assembly
module written in C++. Topological sorting is fast
– it runs in O(p), where p is the number of postcards
in the packet history, and typically, p will be small.
For typical packet history lengths (2 to 8 hops long in
each of the networks we observed) history assembly
takes less than 100 nanoseconds. In other words, a
single NetSight server can assemble more than 10
million packet histories per second per core.

7.3 Triggering and Query Processing
NetSight needs to match assembled packet histories
against PHFs, either on a live stream of packet his-
tories or on an archive. In this section, we measure
the speed of packet history matching using both mi-
crobenchmarks and a macrobenchmark suite, look-
ing for where matching might be slowest. The PHF
match latency depends on (1) the length of the
packet history, (2) the size and type of the PHF,
and (3) whether the packet history matches against
the PHF.

Microbenchmarks. Figure 6 shows the perfor-
mance of our PHF implementation for sample PHFs
of varying size on packet histories of varying length.
The sample PHFs are of the type .*X, .*X.*, X.*X,
and X.*X.*X, where each X is a postcard filter and

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 81

an
y

ho
stip

-17
2.1

9.3
.83

ho
stip

-13
0.1

27
.12

0.2
21

wire
les

s dc

ca
mpu

s

dc
_lo

c-c
am

pu
s_

loc

dc
_b

oth
-ca

mpu
s_

bo
th

dc
_h

dr-
ca

mpu
s_

hd
r0.0

0.2

0.4

0.6

0.8

1.0
La

te
nc

y
(u

s)

Figure 7: Representative results from the macrobenchmark
suite of queries run on the Clemson trace. The most expen-
sive queries were those with complex BPF expressions.

contains filters on packet headers (BPF), switch ID,
and input ports. We match a large number of packet
histories against each PHF and calculate the aver-
age latency per match. In order to avoid any data-
caching effects, we read the packet histories from a
6GB file, and we ignore the I/O latency incurred
while reading packet histories from the disk.
The dashed lines show the latency when the

packet history matches the PHF (“match”), while
the solid lines show the latency when the packet his-
tory does match the PHF (“no-match”). We see that
the “match” latencies are typically smaller than the
corresponding “non-match” latencies, since the code
can return as soon as a match is detected. We also
see that the match latency increases with the num-
ber of PFs in the PHF as well as the length of the
packet history. Importantly, the region of interest is
the bottom left corner – packet histories of length 2
to 8. Here, the match latency is low: a few hundred
nanoseconds.
Macrobenchmarks. The UNIV trace was cap-

tured at the core router connecting two large dat-
acenters and 150 buildings to the Internet. We re-
construct packet histories for packets in this trace
using topology and subnet information. Then we
run a suite of 28 benchmark PHF queries which in-
clude filters on specific hosts, locations (datacenter,
campus and Internet), paths between locations, and
headers. Figure 7 shows the average PHF match
time (on a single CPU core) for a representative set
of queries on hosts, subnets (campus), and paths
(dc hdr–campus hdr). Most matches execute fast
(<300ns/match); the most expensive ones (900ns/-
match) are complex BPF queries that contain a pre-
dictate on 24 subnets.
The above results show that even an unoptimized

single-threaded implementation of PHF matching
can achieve high throughput. In addition, PHF

matching is embarrassingly parallel: each packet his-
tory can be matched against a PHF independent of
all other packet histories, enabling linear multi-core
scalability. A future optimized implementation can
also perform the matching directly on compressed
archives of packet histories, rather than on each in-
dividual packet history.

7.4 Provisioning Scenario
At the beginning of this paper, we suggested a set
of questions, each of which maps to a filter in Net-
Sight. With performance numbers for each piece of
NetSight, we can estimate the traffic rate it can han-
dle to answer those questions.
Adding up the end-to-end processing costs in

NetSight – compressing, decompressing, assembling,
and filtering packets – yields a per-core through-
put of 240K postcards/second. With five hops on
the typical path and 1000-byte packets, a single 16-
core server, available for under $2000, can handle
6.1 Gb/s of network traffic. This is approximately
the average rate of the transit traffic in our cam-
pus backbone. To handle the peak, a few additional
servers would suffice, and as the network grows, the
administrator can add servers knowing that Net-
Sight will scale to handle the added demand.
The key takeaway is that NetSight is able to han-

dle the load from an entire campus backbone with
20,000 users, with a small number of servers.

8 Scaling NetSight
If we do not compress postcards before sending them
over the network, we need to send them each as a
min-sized packet. We can calculate the bandwidth
cost as a fraction of the data traffic as:

cost = postcard packet size
avg packet size ×avg number of hops.

The bandwidth cost is inversely proportional to
the average packet size in the network.
For example, consider our university campus

backbone with 14 internal routers connected by
10Gb/s links, two Internet-facing routers, a net-
work diameter of 5 hops, and an average packet
size of 1031 bytes. If we assume postcards are
minimum-sized Ethernet packets, they increase traf-
fic by 64B

1031B ×5(hops) = 31%.8

The average aggregate utilization in our university
backbone is about 5.9Gb/s, for which postcard traf-
fic adds 1.8Gb/s. Adding together the peak traffic
seen at each campus router, we get 25Gb/s of packet
data, which will generate 7.8Gb/s of postcard traffic,

8If we overcome the min-size requirement by aggregating the 40
byte postcards into larger packets before sending them, the bandwidth
overhead reduces to 19%.

11

82 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetSight-SwitchAssist

Hypervisors Switches Dedicated Servers
NetSight

NetSight-HostAssist

single postcards in
min-size packets

postcard lists

packets

identity-marked packetspackets

compressed
header
postcard lists

Postcard Generation Postcard Processing

History Processing

History Processing

Postcard Generation

Postcard Processing
(1) extract identity field
(2) append to postcard list
(3) send lists

uncompressed
mini-postcard

lists

Identity Postcard Gen

Mark Packet Identity

compressed
postcard lists
in max-size

packets

(1) hash packet header
(2) append to postcard list
(3) compress lists
(4) send lists

Postcard Generation

Postcard Processing History Processing

packets

Figure 8: NetSight uses only dedicated servers, but
adding switch processing (-SwitchAssist) and VM servers
(-HostAssist) can reduce bandwidth costs and increase scal-
ability. Postcard generation is common to all approaches.

yet can be handled by two NetSight servers (§7.4).
If the postcards are sent in-band, this extra traffic
may affect the network performance.

For a low-utilization network, especially test net-
works or production networks in the bring-up phase,
these bandwidth costs may be acceptable for the de-
bugging functionality NetSight provides. But for a
live network with more hops, smaller packets, or
higher utilization, our NetSight may consume too
much network bandwidth. To scale NetSight to a
large data center or an enterprise, we present two
design modifications that reduce network bandwidth
by moving some of the processing into the switches
and end hosts, respectively.

NetSight-SwitchAssist, shown in the middle
of Figure 8, uses additional logic in the switches
to locally implement the Postcard Stage with com-
pression, thus avoiding the extra network capacity
needed to transport uncompressed postcards to the
NetSight servers in minimum-size packets. Since
switches send compressed aggregates of postcards
to NetSight servers (rather than individual uncom-
pressed postcards), the bandwidth requirement di-
minishes. For example, with a size of 15 bytes per
compressed postcard (as shown in §7), the band-
width requirement reduces from 31% to 7%.

NetSight-HostAssist, shown at the bottom of
Figure 8, is suited for environments where end hosts
can be modified. This design reduces postcard traf-
fic by using a thin shim layer at each end host (e.g.

in a software switch such as Open vSwitch [33]) to
tag packets to help switches succinctly describe post-
cards. The shim tags each outgoing packet with a
sequentially-incrementing globally-unique packet ID
and locally stores the mapping between the ID and
the packet header. When a switch receives a packet,
it extracts the tag and generates a mini-postcard
that contains only the packet ID, the flow table state
and the input/output ports. This state is appended
to a hash table entry keyed by the source address
of this packet. Since a packet ID is valid only to a
particular host, the shim can use fewer bytes (e.g. 4
bytes) to uniquely identify a packet. When enough
bytes accumulate, the switch dispatches the hash en-
try (a list of packet IDs and state) to the source. At
the end of a round, the hosts locally assemble and
archive the packet history.
If on average, it takes 15 bytes per packet to store

compressed headers at the VM hosts (§7), and 6
bytes per mini-postcard, the bandwidth overhead to
collect postcards in the network reduces to 3%. This
number contrasts with 31% overhead when post-
cards are collected naively. Since each end host
stores packet histories for its own traffic, the mech-
anism scales with the number of hosts. If 3% is
still unacceptable, then NetSight may be deployed
for a subset of packets or a subset of switches. How-
ever, both of these options are qualitatively different;
either NetSight cannot guarantee that a requested
packet history will be available when ignoring some
packets, or NetSight cannot guarantee that each gen-
erated packet history will represent a packet’s com-
plete path when not enabled network-wide.
To put things in perspective, while NetSight re-

quires firmware modifications to expose existing
hardware functionality, NetSight-SwitchAssist and
NetSight-HostAssist require hardware modifications
in the switches. If our campus network (§7.4) were
to get upgraded to NetSight-SwitchAssist, one of
the expensive compression steps would go away and
yield a traffic processing rate of 7.3 Gb/s per server.
Adding NetSight-HostAssist would yield a rate of
55 Gb/s per server, because mini-postcards require
no compression or decompression. The processing
costs are heavily dominated by compression, and re-
ducing these costs seems like a worthwhile future
direction to improve NetSight.

9 Related Work
Commercial tools for troubleshooting networks pro-
vide visibility through packet sampling [8, 34], con-
figurable packet duplication [15, 18, 32], or log anal-
ysis [42]. Most lack the network-wide visibility and
the packet-level state consistency provided by Net-

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 83

Sight. cPacket Networks has a commercial product
that offers a central view with a grep-based interface,
but it is unclear whether they support mechanisms
to obtain network state that pertains to a specific
packet’s forwarding [10].
In the SDN space, OFRewind [45] records and

plays back SDN control plane traffic; like NetSight,
it also records flow table state via a proxy and logs
packet traces. ndb [20] proposes the postcard-based
approach to reconstruct the path taken by a packet.
In this paper, we build upon those ideas with the
packet history abstraction, the PHF API, four trou-
bleshooting applications, and also describe and eval-
uate methods to scale the system. Other academic
work, IP traceback, builds paths to locate denial-
of-service attacks on the Internet [12, 38, 41]. Flow
sampling monitors traffic and its distribution [14] or
improves sampling efficiency and fairness [2, 13, 39];
NetSight has a different goal (network diagnosis) and
uses different methods. Packet Obituaries [3] pro-
poses an accountability framework to provide infor-
mation about the fate of packets. Its notion of a
“report” is similar to a packet history but provides
only the inter-AS path information. Each lacks a
systematic framework to pose questions of these re-
ports in a scalable way.
Another class of related systems look for invari-

ant violations atop a model of network behavior.
These include data-plane configuration checkers like
Anteater [29], Header Space Analysis [23, 22], and
VeriFlow [25], as well as tools like NICE [6], which
combines model checking and symbolic execution to
verify network programs. These systems all model
network behavior, but firmware and hardware bugs
can creep in and break this idealized model. Net-
Sight on the other hand, takes a more direct ap-
proach – it finds bugs that manifest themselves as
errantly forwarded packets and provides direct ev-
idence to help identify their root cause. Auto-
matic Test Packet Generation [46] shares our overall
approach, but uses a completely different method:
sending test packets, as opposed to monitoring ex-
isting traffic. NetSight appears better suited for net-
works with rapidly changing state, because it avoids
the expensive test packet set minimization step.
Virtual Network Diagnosis [44] shares surface sim-

ilarities with NetSight, such as a distributed imple-
mentation and a query API; however, its focus is per-
formance diagnosis for tenants, rather than connec-
tivity debugging for the infrastructure owner. Gigas-
cope [11] is a stream query processing system used to
process large streams of packet data using an SQL-
like query language. NetSight’s query engine uses
PHF, a regular-expression-like query language for

fast processing of packet histories. X-Trace [16] is
a tracing framework that helps in debugging general
distributed systems by tracing tasks across differ-
ent administrative domains. While similar in spirit,
NetSight takes a different approach to address state-
correlation and scalability challenges specific to trac-
ing, storing, and querying packet histories.

10 Summary
Networks are inherently distributed, with highly
concurrent data-plane and control-plane events, and
they move data at aggregate rates greater than any
single server can process. These factors make it
challenging to pause or “single-step” a network, and
none of our network diagnosis tools try to connect
packet events to control events. As a result, admin-
istrators find it hard to construct a packet’s perspec-
tive of its forwarding journey, despite the value for
diagnosing problems.

NetSight addresses these challenges to improve
network visibility in operational networks, by lever-
aging SDN to first gain visibility into forwarding
events, and then tackling performance concerns with
a scale-out system architecture, aggressive packet
header compression, and carefully optimized C++
code. The surprising result is the feasibility and
practicality of collecting and storing complete packet
histories for all traffic on moderate-size networks.

Furthermore, NetSight demonstrates that given
access to a network’s complete packet histories, one
can implement a number of compelling new appli-
cations. Atop the NetSight Packet History Filter
(PHF) API, we implemented four applications—a
network debugger, invariant monitor, packet logger,
and hierarchical network profiler—none of which re-
quired more than 200 lines of code. These tools
manifested their utility immediately, when a sin-
gle, incompletely assembled packet history revealed
a switch configuration error within minutes of our
first test deployment.

Acknowledgments
We would like to thank our shepherd Ethan Katz-
Bassett and the anonymous NSDI reviewers for their
valuable feedback that helped significantly improve
the quality of this paper. This work was funded
by NSF FIA award CNS-1040190, NSF FIA award
CNS-1040593-001, Stanford Open Networking Re-
search Center (ONRC), a Hewlett Packard Fellow-
ship, and a gift from Google.

References
[1] NetSight Source Code. http://yuba.stanford.edu/

netsight.

13

84 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[2] A. Arefin, A. Khurshid, M. Caesar, and K. Nahrstedt.
Scaling Data-Plane Logging in Large Scale Networks.
MILCOM, 2011.

[3] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker.
Providing Packet Obituaries. HotNets, 2004.

[4] T. Benson, A. Akella, and D. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. IMC, 2010.

[5] A JIT for packet filters. http://lwn.net/Articles/

437981/.

[6] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE Way to Test OpenFlow Applica-
tions. NSDI, 2012.

[7] Cisco: Configuring Local SPAN, RSPAN, and ERSPAN.
http://www.cisco.com/en/US/docs/switches/lan/

catalyst6500/ios/12.2SX/configuration/guide/

span.html.

[8] B. Claise. RFC 5101: Specification of the IP Flow In-
formation Export (IPFIX) Protocol for the Exchange of
IP Traffic Flow Information. http://tools.ietf.org/

html/rfc5101.

[9] R. Cox. Regular Expression Matching: the Virtual
Machine Approach. http://swtch.com/~rsc/regexp/

regexp2.html.

[10] cPacket Networks. Product overview. http://cpacket.

com/products/.

[11] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk. Gigascope: A Stream Database
for Network Applications. SIGMOD, 2003.

[12] D. Dean, M. Franklin, and A. Stubblefield. An Alge-
braic Approach to IP Traceback. ACM Transactions on
Information and System Security (TISSEC), 2002.

[13] N. Duffield. Fair Sampling Across Network Flow Mea-
surements. SIGMETRICS, 2012.

[14] N. G. Duffield and M. Grossglauser. Trajectory Sampling
for Direct Traffic Observation. IEEE/ACM Transactions
on Networking, 2001.

[15] Endace Inc. http://www.endace.com/.

[16] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. X-Trace: A Pervasive Network Tracing Framework.
NSDI, 2007.

[17] Intel Ethernet Switch FM5000/FM6000 Series. http://
www.intel.com/content/www/us/en/switch-silicon/

ethernet-switch-fm5000-fm6000-series.html.

[18] Gigamon. http://www.gigamon.com/.

[19] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
and N. McKeown. NOX: Towards an Operating System
for Networks. SIGCOMM CCR, July 2008.

[20] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. Where is the Debugger for my Software-
Defined Network? HotSDN, 2012.

[21] V. Jacobson. RFC 1144: Compressing TCP. http://

tools.ietf.org/html/rfc1144.

[22] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McK-
eown, and S. Whyte. Real Time Network Policy Check-
ing Using Header Space Analysis. NSDI, 2013.

[23] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking For Networks. NSDI,
2012.

[24] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
VeriFlow: Verifying Network-Wide Invariants in Real
Time. HotSDN, 2012.

[25] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. Brighton Godfrey. VeriFlow: Verifying Network-Wide
Invariants in Real Time. NSDI, 2013.

[26] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appen-
zeller, J. Little, J. van Reijendam, P. Weissmann, and
N. McKeown. Maturing of OpenFlow and Software-
Defined Networking through Deployments. Computer
Networks (Elsevier), 2013.

[27] B. Lantz, B. Heller, and N. McKeown. A network in
a laptop: Rapid prototyping for software-defined net-
works. HotNets, 2010.

[28] LBNL/ICSI Enterprise Tracing Project. http://www.

icir.org/enterprise-tracing/download.html.

[29] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. God-
frey, and S. T. King. Debugging the Data Plane with
Anteater. SIGCOMM, 2011.

[30] S. McCanne and V. Jacobson. The BSD Packet Fil-
ter: A New Architecture for User-level Packet Capture.
USENIX Winter Conference, 1993.

[31] NEC IP8800 OpenFlow-enabled Switch. http://

support.necam.com/pflow/legacy/ip8800/.

[32] Net optics: Architecting visibility into your network.
http://www.netoptics.com/.

[33] Open vSwitch: An Open Virtual Switch. http://

openvswitch.org/.

[34] P. Phaal. sFlow Version 5. http://sflow.org/sflow_

version_5.txt.

[35] The POX Controller. http://github.com/noxrepo/pox.

[36] RipL-POX (Ripcord-Lite for POX): A simple network
controller for OpenFlow-based data centers. https://

github.com/brandonheller/riplpox.

[37] M. Rosenblum and J. Ousterhout. The Design and Im-
plementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 1992.

[38] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical Network Support for IP Traceback. SIG-
COMM, 2000.

[39] V. Sekar, M. Reiter, W. Willinger, H. Zhang, R. Kom-
pella, and D. Andersen. CSAMP: A System for Network-
Wide Flow Monitoring. NSDI, 2008.

[40] S. Shenker. The Future of Networking, and the Past of
Protocols. Open Networking Summit, 2011.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 85

[41] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-
based IP traceback. SIGCOMM, 2001.

[42] Splunk: Operational Intelligence, Log Management, Ap-
plication Management, Enterprise Security and Compli-
ance. http://splunk.com.

[43] The CAIDA UCSD Anonymized Internet Traces 2012
– Nov 15 2012. http://www.caida.org/data/passive/

passive_2012_dataset.xml.

[44] W. Wu, G. Wang, A. Akella, and A. Shaikh. Virtual
Network Diagnosis as a Service. SoCC, 2013.

[45] A. Wundsam, D. Levin, S. Seetharaman, and A. Feld-
mann. OFRewind: Enabling Record and Replay Trou-
bleshooting for Networks. USENIX ATC, 2011.

[46] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. CoNEXT, 2012.

15

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 87

Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks

Hongyi Zeng†∗, Shidong Zhang§, Fei Ye§, Vimalkumar Jeyakumar†∗

Mickey Ju§, Junda Liu§, Nick McKeown†, Amin Vahdat§‡

†Stanford University §Google ‡UCSD

Abstract
Data center networks often have errors in the forward-

ing tables, causing packets to loop indefinitely, fall into
black-holes or simply get dropped before they reach the
correct destination. Finding forwarding errors is possible
using static analysis, but none of the existing tools scale
to a large data center network with thousands of switches
and millions of forwarding entries. Worse still, in a large
data center network the forwarding state is constantly in
flux, which makes it hard to take an accurate snapshot of
the state for static analysis.

We solve these problems with Libra, a new tool for
verifying forwarding tables in very large networks. Libra
runs fast because it can exploit the scaling properties of
MapReduce. We show how Libra can take an accurate
snapshot of the forwarding state 99.9% of the time, and
knows when the snapshot cannot be trusted. We show
results for Libra analyzing a 10,000 switch network in
less than a minute, using 50 servers.

1 Introduction
Data center networks are immense. Modern data cen-

ters can employ 10,000 switches or more, each with its
own forwarding table. In such a large network, failures
are frequent: links go down, switches reboot, and routers
may hold incorrect prefix entries. Whether routing en-
tries are written by a distributed routing protocol (such
as OSPF) or by a remote route server, the routing state is
so large and complex that errors are inevitable. We have
seen logs from a production data center reporting many
thousands of routing changes per day, creating substan-
tial opportunity for error.

Data centers withstand failures using the principles of
scale-out and redundant design. However, the under-
lying assumption is that the system reacts correctly to
failures. Dormant bugs in the routing system triggered

∗Hongyi Zeng and Vimalkumar Jeyakumar were interns at Google
when this work was done. Hongyi Zeng is currently with Facebook.

by rare boundary conditions are particularly difficult to
find. Common routing failures include routing loops and
black-holes (where traffic to one part of the network dis-
appears). Some errors only become visible when an oth-
erwise benign change is made. For example, when a
routing prefix is removed it can suddenly expose a mis-
take with a less specific prefix.

Routing errors should be caught quickly before too
much traffic is lost or security is breached. We therefore
need a fast and scalable approach to verify correctness of
the entire forwarding state. A number of tools have been
proposed for analyzing networks including HSA [10],
Anteater [13], NetPlumber [9] and Veriflow [11]. These
systems take a snapshot of forwarding tables, then ana-
lyze them for errors. We first tried to adopt these tools
for our purposes, but ran into two problems. First, they
assume the snapshot is consistent. In large networks with
frequent changes to routing state, the snapshot might be
inconsistent because the network state changes while the
snapshot is being taken. Second, none of the tools are
sufficiently fast to meet the performance requirements
of modern data center networks. For example, Anteater
[13] takes more than 5 minutes to check for loops in a
178-router topology.

Hence, we set out to create Libra, a fast, scalable tool
to quickly detect loops, black-holes, and other reach-
ability failures in networks with tens of thousands of
switches. Libra is much faster than any previous sys-
tem for verifying forwarding correctness in a large-scale
network. Our benchmark goal is to verify all forwarding
entries in a 10,000 switch network with millions of rules
in minutes.

We make two main contributions in Libra. First, Libra
capture stable and consistent snapshots across large net-
work deployments, using the event stream from routing
processes (Section 3). Second, in contrast to prior tools
that deal with arbitrarily structured forwarding tables, we
substantially improve scalability by assuming packet for-
warding based on longest prefix matching.

1

88 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Forwarding Graph

Prefix A’s
subgraph

Prefix B’s
subgraphLOOP!

(1) Map (2) Reduce

OK

Prefix A
Prefix B
Process Boundary

Figure 1: Libra divides the network into multiple forwarding
graphs in mapping phase, and checks graph properties in re-
ducing phase.

192.168.0/24 192.168.1/24

S21:
192.168.0/24→S11
192.168.1/24→S12

S22:
192.168.0/24→S11
192.168.1/24→S12

S11:
192.168.1/24→S21, S22
192.168.0/24→DIRECT

S12:
192.168.0/24→S21, S22
192.168.1/24→DIRECT

Rules

Subnets

S21 S22

S11 S12

Figure 2: Small network example for describing the types of
forwarding error found by Libra.

Libra uses MapReduce for verification. It starts with
the full graph of switches, each with its own prefix table.
As depicted in Figure 1, Libra completes verification in
two phases. In the map phase, it breaks the graph into a
number of slices, one for each prefix. The slice consists
of only those forwarding rules used to route packets to
the destination. In the reduce phase, Libra indepedently
analyzes each slice, represented as a forwarding graph,
in parallel for routing failures.

We evaluate Libra on the forwarding tables from three
different networks. First, “DCN” is an emulated data
center network with 2 million rules and 10,000 switches.
Second, “DCN-G” is made from 100 replicas of DCN
connected together; i.e., 1 million switches. Third,
“INET” is a network with 300 IPv4 routers each con-
tains the full BGP table with half a million rules. The
results are encouraging. Libra takes one minute to check
for loops and black-holes in DCN, 15 minutes for DCN-
G and 1.5 minutes for INET.

2 Forwarding Errors
A small toy network can illustrate three common types

of error found in forwarding tables. In the two-level
tree network in Figure 2 two top-of-rack (ToR) switches
(S11, S12) are connected to two spine switches (S21,

S11

S21 S22

S12

(a) Normal

S11

S21 S22

S12

(b) Loops

S11

S21 S22

S12

(c) Blackhole

S11

S21 S22

S12

(d) Incorrect Snapshot

Figure 3: Forwarding graphs for 192.168.0/24 as in Figure 2,
and potential abnormalities.

S22). The downlinks from S11 and S12 connect to up
to 254 servers on the same /24 subnet. The figure shows
a “correct” set of forwarding tables. Note that our ex-
ample network uses multipath routing. Packets arriving
at S12 on the right and destined to subnet 192.168.0/24
on the left are load-balanced over switches S21 and S22.
Our toy network has 8 rules, and 2 subnets.

A forwarding graph is a directed graph that defines
the network behavior for each subnet. It contains a list
of (local switch, remote switch) pairs. For example, in
Figure 3(a), an arrow from S12 to S21 means the pack-
ets of subnet 192.168.0/24 can be forwarded from S12
to S21. Multipath routing can be represented by a node
that has more than one outgoing edge. Figure 3(b)-(d)
illustrates three types of forwarding error in our simple
network, depicted in forwarding graphs.

Loops: Figure 3(b) shows how an error in S11’s for-
warding tables causes a loop. Instead of forwarding
192.168.0/24 down to the servers, S11 forwards packets
up, i.e., to S21 and S22. S11’s forwarding table is now:

192.168.0/24 → S21, S22

192.168.1/24 → S21, S22

The network has two loops: S21-S11-S21 and S22-
S11-S22, and packets addressed to 192.168.0/24 will
never reach their destination.

Black-holes: Figure 3(c) shows what hap-
pens if S22 loses one of its forwarding entries:
192.168.0/24 → S11. In this case, if S12 spreads
packets destined to 192.168.0/24 over both S21 and S22,
packets arriving to S22 will be dropped.

Incorrect Snapshot: Figure 3(d) shows a subtle prob-
lem that can lead to false positives when verifying for-
warding tables. Suppose the link between S11-S22 goes
down. Two events take place (shown as dashed arrows

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 89

Figure 4: Routing related tickets by month and type.

in the figure): e1: S22 deletes 192.168.0/24 → S11,
and e2: S12 stops forwarding packets to S22. Because
of the asynchronous nature of routing updates, the two
events could take place in either order (e1,e2) or (e2,e1).
A snapshot may capture one event, but not the other, or
might detect them happening in the reverse order.

The sequence (e1,e2) creates a temporary blackhole
as in Figure 3(c), whereas the desired sequence (e2,e1)
does not. To avoid raising an unnecessary alarm (by
detecting (e1,e2) even though it did not happen), or
missing an error altogether (by incorrectly assuming that
(e2,e1) happened), Libra must detect the correct state of
the network.

2.1 Real-world Failure Examples
To understand how often forwarding errors take place,

we examined a log of “bug tickets” from 14 months of
operation in a large Google data center. Figure 4 cate-
gorizes 35 tickets for missing forwarding entries, 11 for
loops, and 11 for black-holes. On average, four issues
are reported per month.

Today, forwarding errors are tracked down by hand
which - given the size of the network and the number
of entries - often takes many hours. And because the
diagnosis is done after the error occurred, the sequence
of events causing the error has usually long-since disap-
peared before the diagnosis starts. This makes it hard to
reproduce the error.

Case 1: Detecting Loops. One type of loop is caused
by prefix aggregation. Prefixes are aggregated to com-
pact the forwarding tables: a cluster E can advertise a
single prefix to reach all of the servers connected “be-
low” it to the core C, which usually includes the ad-
dresses of servers that have not yet been deployed. How-
ever, packets destined to these non-deployed addresses
(e.g., due to machine maintenance) can get stuck in
loops. This is because C believes these packets are des-
tined to E, while E lacks the forwarding rules to digest

these packets due to the incomplete deployment, instead,
E’s default rules lead packets back to C.

This failure does not cause a service to fail (because
the service will use other servers instead), but it does de-
grade the network causing unnecessary congestion. In
the past, these errors were ignored because of the pro-
hibitive cost of performing a full cluster check. Libra can
finish checking in less a minute, and identify and report
the specific switch and prefix entry that are at risk.

Case 2: Discovering Black-holes. In one incident,
traffic was interrupted to hundreds of servers. Initial in-
vestigation showed that some prefixes had high packet
loss rate, but packets seemed to be discarded randomly.
It took several days to finally uncover the root cause: A
subset of routing information was lost during BGP up-
dates between domains, likely due to a bug in the routing
software, leading to black-holes.

Libra will detect missing forwarding entries quickly,
reducing the outage time. Libra’s stable snapshots also
allow it to disambiguate temporary states during updates
from long-term back-holes.

Case 3: Identifying Inconsistencies. Network con-
trol runs across several instances, which may fail from
time to time. When a secondary becomes the primary,
it results in a flurry of changes to the forwarding ta-
bles. The changes may temporarily or permanently con-
flict with the previous forwarding state, particularly if the
changeover itself fails before completing. The network
can be left in an inconsistent state, leading to packet loss,
black-holes and loops.

2.2 Lessons Learned

Simple things go wrong: Routing errors occur even
in networks using relatively simple IP forwarding. They
also occur due to firmware upgrades, controller failure
and software bugs. It is essential to check the forwarding
state independently, outside the control software.

Multiple moving parts: The network consists of mul-
tiple interacting subsystems. For example, in case 1
above, Intra-DC routing is handled locally, but routing
is a global property. This can create loops that are hard
to detect locally within a subsystem. There are also mul-
tiple network controllers. Inconsistent state makes it hard
for the control plane to detect failures on its own.

Scale matters: Large data center networks use mul-
tipath routing, which means there are many forwarding
paths to check. As the number of switches, N, grows the
number of paths and prefix tables grow, and the complex-
ity of checking all routes grows with N2. It is essential
for a static checker to scale linearly with the network.

3

90 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Stable Snapshots
It is not easy to take an accurate snapshot of the for-

warding state of a large, constantly changing network.
But if Libra runs its static checks on a snapshot of
the state that never actually occurred, it will raise false
alarms and miss real errors. We therefore need to cap-
ture - and check - a snapshot of the global forwarding
state that actually existed at one instant in time. We call
these stable snapshots.1

When is the state stable? A large network is usually
controlled by multiple routing processes,2 each responsi-
ble for one or more switches. Each process sends times-
tamped updates, which we call routing events, to add,
modify and delete forwarding entries in the switches it
is responsible for. Libra monitors the stream of routing
events to learn the global network state.

Finding the stable state of a single switch is easy: each
table is only written by one routing process using a single
clock, and all events are processed in order. Hence, Libra
can reconstruct a stable state simply by replaying events
in timestamp order.

By contrast, it is not obvious how to take a globally
stable snapshot of the state when different routing pro-
cesses update their switches using different, unsynchro-
nized clocks. Because the clocks are different, and events
may be delayed in the network, simply replaying the
events in timestamp order can result in a state that did
not actually occur in practice, leading to false positives
or missed errors (Section 2).

However, even if we can not precisely synchronize
clocks, we can bound the difference between any pair
of clocks with high confidence using NTP [15]. And we
can bound how out-of-date an event packet is, by prior-
itizing event packets in the network. Thus, every times-
tamp t can be treated as lying in an interval (t −ε, t +ε),
where ε bounds the uncertainty of when the event took
place.3 The interval represents the notion that network
state changes atomically at some unknown time instant
within the interval.

Figure 5 shows an example of finding a stable snap-
shot instant. It is easy to see that if no routing events
are recorded during a 2ε period we can be confident that
no routing changes actually took place. Therefore, the
snapshot of the current state is stable (i.e., accurate).4

The order of any two past events from different pro-
cesses is irrelevant to the current state, since they are

1Note that a stable snapshot is not the same as a consistent snap-
shot [3], which is only one possible state of a distributed system that
might not actually have occurred in practice.

2Libra only considers processes that can directly modify tables.
While multiple high-level protocols can co-exist (e.g., OSPF and BGP),
there is usually one common low-level table manipulation API.

3The positive and negative uncertainties can be different, but here
we assume they are the same for simplicity.

4A formal proof can be found in [14, § 3.3].

Routing
Process 1

Routing
Process 2

Flow of time

Libra

x
x
x

x
x x x x

x
2 ε

Snapshot instant

Libra's
reconstruction
of the timeline

Time instant of
a routing event

Time instant when
Libra receives routing

event updates

Figure 5: Libra’s reconstruction of the timeline of routing
events, taking into account bounded timestamp uncertainty ε .
Libra waits for twice the uncertainty to ensure there are no out-
standing events, which is sufficient to deduce that routing has
stabilized.

100ms 1s 10s 100s 1000s
RIB updates inter-arrival time

90

95

99
100

Pe
rc

en
til

es

Figure 6: CDF of inter-arrival times of routing events from a
large production data center. Routing events are very bursty:
over 95% of events happen within 400ms of another event.

applied to different tables without interfering with each
other (recall that each table is controlled by only one pro-
cess). So Libra only needs to replay all events in times-
tamp order (to ensure events for the same table are played
in order) to accurately reconstruct the current state.

This observation suggests a simple way to create a sta-
ble snapshot by simply waiting for a quiet 2ε period with
no routing update events.
Feasibility: The scheme only works if there are frequent
windows of size 2ε in which no routing events take place.
Luckily, we found that these quiet periods happen fre-
quently: we analyzed a day of logs from all routing pro-
cesses in a large Google data center with a few thousand
switches. Figure 6 shows the CDF of the inter-arrival
times for the 28,445 routing events reported by the rout-
ing processes during the day. The first thing to notice is
the burstiness — over 95% of events occur within 400ms
of another event, which means there are long periods
when the state is stable. Table 1 shows the fraction of
time the network is stable, for different values of ε . As
expected, larger ε leads to fewer stable states and smaller
percentage of stable time. For example, when ε=100ms,
only 2,137 out of all 28,445 states are stable. However,

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 91

ε/ms # of stable states time in stable state/%
0 28,445 100.00
1 16,957 99.97

100 2,137 99.90
1,000 456 99.75

10,000 298 99.60

Table 1: As the uncertainty in routing event timestamps (ε) in-
creases, the number of stable states decreases. However, since
routing events are bursty, the state is stable most of the time.

because the event stream is so bursty, the unstable states
are extremely short-lived, occupying in total only 0.1%
(∼1.5min) of the entire day. Put another way, for 99.9%
of the time, snapshots are stable and the static analysis
result is trustworthy.
Taking stable snapshots: The stable snapshot instant
provides a reference point to reconstruct the global state.
Libra’s stable snapshot process works as follows:

1) Take an initial snapshot S0 as the combination of all
switches’ forwarding tables. At this stage, each table can
be recorded at a slightly different time.

2) Subscribe to timestamped event streams from all
routing processes, and apply each event ei, in the order
of their timestamps, to update the state from Si−1 to Si.

3) After applying e j, if no event is received for 2ε
time, declare the current snapshot S j stable. In other
words, S0 and all past events ei form a stable state that
actually existed at this time instant.

4 Divide and Conquer
After Libra has taken a stable snapshot of the forward-

ing state, it sets out to statically check its correctness.
Given our goal of checking networks with over 10,000
switches and millions of forwarding rules, we will need
to break down the task into smaller, parallel computa-
tions. There are two natural ways to consider partitioning
the problem:
Partition based on switches: Each server could hold
the forwarding state for a cluster of switches, partition-
ing the network into a number of clusters. We found
this approach does not scale well because checking a
forwarding rule means checking the rules in many (or
all) partitions - the computation is quickly bogged down
by communication between servers. Also, it is hard to
balance the computation among servers because some
switches have very different numbers of forwarding rules
(e.g. spine and leaf switches).
Partition based on subnets: Each server could hold the
forwarding state to reach a set of subnets. The server
computes the forwarding graph to reach each subnet,
then checks the graph for abnormalities. The difficulty
with this approach is that each server must hold the en-

S11:
192.168.1/24→S21, S22
192.168.0/24→DIRECT

S12:
192.168.0/24→S21, S22
192.168.1/24→DIRECT

S21:
192.168.0/24→S11
192.168.1/24→S12

S22:
192.168.0/24→S11
192.168.1/24→S12

Matching
/Slicing

192.168.0/24:
S11→DIRECT
S12→S21, S22
S21→S11
S22→S11

192.168.1/24:
S21→DIRECT
S11→S21, S22
S21→S12
S22→S12

Graph
Computing

S11

S21 S22

S12

192.168.0/24

S11

S21 S22

S12

192.168.1/24

Figure 7: Steps to check the routing correctness in Figure 2.

tire set of forwarding tables in memory, and any update
to the forwarding rules affects all servers.

Libra partitions the network based on subnets, for rea-
sons that will become clear. We observe that the route
checker’s task can be divided into two steps. First, Libra
associates forwarding rules with subnets, by finding the
set of forwarding rules relevant to a subnet (i.e., they are
associated if the subnet is included in the rule’s prefix).
Second, Libra builds a forwarding graph to reach each
subnet, by assembling all forwarding rules for the sub-
net. Both steps are embarrassingly parallel: matching is
done per (subnet, forwarding rule) pair; and each sub-
net’s forwarding graph can be analyzed independently.

Libra therefore proceeds in three steps using N
servers:

Step 1 - Matching: Each server is initialized with the
entire list of subnets, and each server is assigned 1/N
of all forwarding rules. The server considers each for-
warding rule in turn to see if it belongs to the forwarding
graph to a subnet (i.e. the forwarding rule is a prefix of
the subnet).5 If there is a match, the server outputs the
(subnet, rule) pair. Note that a rule may match more than
one subnet.

Step 2 - Slicing: The (subnet, rule) pairs are grouped
by subnet. We call each group a slice, because it contains
all the rules and switches related to this subnet.

Step 3 - Graph Computing: The slices are distributed
to N servers. Each server constructs a forwarding graph
based on the rules contained in the slice. Standard
graph algorithms are used to detect network abnormal-
ities, such as loops and black-holes.

Figure 7 shows the steps to check the network in Fig-
ure 2. After the slicing stage, the forwarding rules are or-
ganized into two slices, corresponding to the two subnets
192.168.0/24 and 192.168.1/24. The forwarding graph
for each slice is calculated and checked in parallel.

5Otherwise, a subnet will be fragmented by a more specific rule,
leading to a complex forwarding graph. See the last paragraph in Sec-
tion 9 for detailed discussion.

5

92 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SDN
Controllers

Route
Dumper

Rules

DFS

M

M

M

R

R

R

R
Subnets

Rules Shard 1

Rules Shard 2

Rules Shard 3

Report for
Subnet 4

MapReduce

Figure 8: Libra workflow.

If a routing error occurs and the second rule in S11
becomes 192.168.0/24 → S21, S22, the loop will
show up in the forwarding graph for 192.168.0/24. S11
will point back to S21 and S22, which will be caught in
graph loop detection algorithm.

Our three-step process is easily mapped to MapRe-
duce, which we describe in the next section.

5 Libra

Libra consists of two main components: a route
dumper and a MapReduce-based route checker. Figure 8
shows Libra’s workflow.

The route dumper takes stable snapshots from
switches or controllers, and stores them in a distributed
file system. Next, the snapshot is processed by a
MapReduce-based checker.
A quick review of MapReduce: MapReduce [5] di-
vides computation into two phases: mapping and reduc-
ing. In the mapping phase, the input is partitioned into
small “shards”. Each of them is processed by a map-
per in parallel. The mapper reads in the shard line by
line and outputs a list of <key, value> pairs. After
the mapping phase, the MapReduce system shuffles out-
puts from different mappers by sorting by the key. After
shuffling, each reducer receives a <key, values> pair,
where values=[value1, value2, . . .] is a list of all
values corresponding to the key. The reducer processes
this list and outputs the final result. The MapReduce sys-
tem also handles checkpointing and failure recovery.

In Libra, the set of forwarding rules is partitioned into
small shards and delivered to mappers. Each mapper also
takes a full set of subnets to check, which by default con-
tains all subnets in the cluster, but alternatively can be
subsets selected by user. Mappers generate intermedi-
ate keys and values, which are shuffled by MapReduce.
The reducers compile the values that belong to the same
subnet and generate final reports.

10.0.0.0/8

10.2.1.1/3210.1.0.2/3210.1.0.1/32

10.1.0.0/30

Rule
10.1.0.0/16

Subnet

No Subnet

10.1.0.0/16
< 10.1.0.0/30
< 10.1.0.1/32

Figure 9: Find all matching subnets in the trie. 10.1.0.0/30
(X) is the smallest matching trie node bigger than the
rule 10.1.0.0/16 (A). Hence, its children with subnets
10.1.0.1/32 and 10.1.0.2/32 match the rule.

5.1 Mapper
Mappers are responsible for slicing networks by

subnet. Each mapper reads one forwarding rule at a
time. If a subnet matches the rule, the mapper out-
puts the subnet prefix as the intermediate key, along
with the value <rule mask len, local switch,

remote switches, priority>. The following
is an example (local switch, remote switches,
priority is omitted):

Subnets: 192.168.1.1/32

192.168.1.2/32

Rules: 192.168.1.0/28

192.168.0.0/16

Outputs: <192.168.1.1/32, 28>

<192.168.1.1/32, 16>

<192.168.1.2/32, 16>

Since each mapper only sees a portion of the forward-
ing rules, there may be a longer and more specific—but
unseen—matching prefix for the subnet in the same for-
warding table. We defer finding the longest matching to
the reducers, which see all matching rules.

Mappers are first initialized with a full list of subnets,
which are stored in an in-memory binary trie for fast pre-
fix matching. After initialization, each mapper takes a
shard of the routing table, and matches the rules against
the subnet trie. This process is different from the con-
ventional longest prefix matching: First, in conventional
packet matching, rules are placed in a trie and packets
are matched one by one. In Libra, we build the trie with
subnets. Second, the goal is different. In conventional
packet matching, one looks for the longest matching rule.
Here, mappers simply output all matching subnets in the
trie. Here, matching has the same meaning—the subnet’s
prefix must fully fall within the rule’s prefix.

We use a trie to efficiently find “all matching prefixes,”
by searching for the smallest matching trie node (called
node X) that is bigger or equal to the rule prefix (called

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 93

node A). Here, “small” and “big” refer to the lexico-
graphical order (not address space size), where for each
bit in an IP address, wildcard < 0< 1. X may or may not
contain a subnet. If X exists, we enumerate all its non-
empty decedents (including X itself). Otherwise, we de-
clare that there exist no matching subnets in the trie. Fig-
ure 9 shows an example. 10.1.0.0/30 (X) is the small-
est matching trie node bigger than the rule 10.1.0.0/16
(A). Hence, its children with subnets 10.1.0.1/32 and
10.1.0.2/32 match the rule.
Proof: We briefly prove why this algorithm is correct.
In an uncompressed trie, each bit in the IP address is
represented by one level, and so the algorithm is correct
by definition: if there exist matching subnets in the trie,
A must exist in the trie and its descendants contain all
matching prefixes, which means A = X .

In a compressed trie, nearby nodes may be combined.
A may or may not exist in the trie. If it exists, the prob-
lem reduces to the uncompressed trie scenario. If A does
not exist in the trie, X (if it exists) contains all matching
subnets in its descendants. This is because:

a) Any node Y smaller than X does not match A. Be-
cause there is no node bigger than A and smaller than X
(otherwise X is not the smallest matching node), Y < X
also means Y < A. As a result, Y cannot fall within A’s
range. This is because for Y to fall within A, all A’s non-
wildcard bits should appear in Y , which implies Y ≥ A.

b) Any node Y bigger than the biggest descendants of
X does not match A. Otherwise, X and Y must have a
common ancestor Z, where Z matches A because both X
and Y match A, and Z < X because Z is the ancestor of
X (a node is always smaller than its descendants). This
contradicts the assumption that X is smallest matching
node of A.
Time complexity: We can break down the time con-
sumed by the mapping phase into two parts. The time to
construct the subnet trie is O(T), where T is the number
of subnets, because inserting an IP prefix into a trie takes
constant time (≤ length of IP address). If we consider a
single thread, it takes O(R) time to match R rules against
the trie. So the total time complexity is O(R+T). If N
mappers share the same trie, we can reduce the time to
O(R+ T

N). Here, we assume R � T . If T � R, one may
want to construct a trie with rules rather than subnets (as
in conventional longest-prefix-matching).

5.2 Reducer
The outputs from the mapping phase are shuffled

by intermediate keys, which are the subnets. When
shuffling finishes, a reducer will receive a subnet,
along with an unordered set of values, each containing
rule mask len, local switch, remote switches,
and priority. The reducer first selects the high-
est priority rule per local switch: For the same

local switch, the rule with higher priority is se-
lected; if two rules have the same priority, the one with
larger mask len is chosen. The reducer then constructs a
directed forwarding graph using the selected rules. Once
the graph is constructed, the reducer uses graph library to
verify the properties of the graph, for example, to check
if the graph is loop-free.
Time complexity: In most networks we have seen, a
subnet matches at most 2-4 rules in the routing table.
Hence, selecting the highest priority rule and construct-
ing the graph takes O(E) time, where E is the number
of physical links in the network. However, the total run-
time depends on the verification task, as we will discuss
in Section 6.

5.3 Incremental Updates
Until now, we have assumed Libra checks the forward-

ing correctness from scratch each time it runs. Libra also
supports incremental updates of subnets and forwarding
rules, allowing it to be used as an independent “correct-
ness checking service” similar to NetPlumber [9] and
Veriflow [11]. In this way, Libra could be used to check
forwarding rules quickly, before they are added to the
forwarding tables in the switches. Here, a in-memory,
“streaming” MapReduce runtime (such as [4]) is needed
to speed up the event processing.
Subnet updates. Each time we add a subnet for verifi-
cation, we need to rerun the whole MapReduce pipeline.
The mappers takes O(R

N) time to find the relevant rules.
And a single reducer takes O(E) time to construct the di-
rected graph slice for the new subnet. If one has several
subnets to add, it is faster to run them in a batch, which
takes O(T + R

N) instead of O(RT
N) to map.

Removing subnets is trivial. All results related to the
subnets are simply discarded.
Forwarding rule updates. Figure 10 shows the work-
flow to add new forwarding rules. To support incremen-
tal updates of rules, reducers need to store the forward-
ing graph for each slice it is responsible for. The reducer
could keep the graph in memory or disk—the trade-off is
a larger memory footprint.6 If the graphs are in disk, a
fixed number of idle reducer processes live in the mem-
ory and fetch graphs upon request. Similarly, the map-
pers need to keep the subnet trie.

To add a rule, a mapper is spawned just as it sees an-
other line of input (Step 1). Matching subnets from the
trie are shuffled to multiple reducers (Step 2). Each re-
ducer reads the previous slice graph (Step 3), and recal-
culates it with the new rule (Step 4).

Deleting a rule is similar. The mapper tags the rule as
“to be deleted” and pass it to reducers for updating the

6At any time instance, only a small fraction of graphs will be up-
dated, and so keeping all states in-memory can be quite inefficient.

7

94 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Request(s) M

Subnets

(1)

R

R

R

(2)
(3)

(4)

Figure 10: Incremental rule updates in Libra. Mappers dis-
patch matching <subnet, rule> pair to reducers, indexed by
subnet. Reducers update the forwarding graph and recompute
graph properties.

slice graph. However, in the graph’s adjacency list, the
reducer not only needs to store the highest priority rule,
but also all matching rules. This is because if a highest
priority rule is deleted, the reducer must use the second
highest priority rule to update the graph.

Besides updating graphs, in certain cases, graph prop-
erties can also be checked incrementally, since the update
only affects a small part of graph. For example, in loop-
detection, adding an edge only requires a Depth-First-
Search (DFS) starting from the new edge’s destination
node, which normally will not traverse the entire graph.

Unlike NetPlumber and Veriflow, Libra does not need
to explicitly remember the dependency between rules.
This is because the dependency is already encoded in the
matching and shuffling phases.

5.4 Route Dumper
The route dumper records each rule using five fields:

<switch, ip, mask len, nexthops, priority>.
switch is the unique ID of the switch; ip and mask len

is the prefix. nexthops is a list of port names because
of multipath. priority is an integer field serving as a
tie-breaker in longest prefix matching. By storing the
egress ports in nexthops, Libra encodes the topology
information in the forwarding table.

Although the forwarding table format is mostly
straightforward, two cases need special handling:
Ingress port dependent rules. Some forwarding rules
depend on particular ingress ports. For example, a rule
may only be in effect for packets entering the switch from
port xe1/1. In reducers we want to construct a simple di-
rected graph that can be represented by an adjacency list.
Passing this ingress port dependency to the route checker
will complicate the reducer design, since the next hop in
the graph depends not only on the current hop, but also
the previous hop.

We use the notion of logical switches to solve this
problem. First, if a switch has rules that depend on the
ingress port, we split the switch into multiple logical

VRF_OVERRIDE

VRF_DEFAULT VRF_1 VRF_2

Inter-VRF
Rules

VRF_FALLBACK

Figure 11: Virtual Routing and Forwarding (VRFs) are mul-
tiple tables within the same physical switch. The tables have
dependency (inter-VRF rules) between them.

switches. Each logical switch is given a new name and
contains the rules depending on one ingress port, so that
the port is “owned” by the new logical switch. We copy
rules from the original switch to the logical switch. Sec-
ond, we update the rules in upstream switches to forward
to the logical switch.
Multiple tables. Modern switches can have multi-
ple forwarding tables that are chained together by ar-
bitrary matching rules, usually called “Virtual Routing
and Forwarding” (VRF). Figure 11 depicts an exam-
ple VRF set up: incoming packets are matched against
VRF OVERRIDE. If no rule is matched, they enter
VRF 1 to VRF 16 according to some “triggering” rules.
If all matching fails, the packet enters VRF DEFAULT.

The route dumper maps multiple tables in a physical
switch into multiple logical switches, each containing
one forwarding table. Each logical switch connects to
other logical switches directly. The rules chaining these
VRFs are added as lowest priority rules in the logical
switch’s table. Hence, if no rule is matched, the packet
will continue to the next logical switch in the chain.

6 Use cases
In Libra, the directed graph constructed by the reducer

contains all data plane information for a particular sub-
net. In this graph, each vertex corresponds to a forward-
ing table the subnet matched, and each edge represents
a possible link the packet can traverse. This graph also
encodes multipath information. Therefore, routing cor-
rectness directly corresponds to graph properties.
Reachability: A reachability check ensures the subnet
can be reached from any switch in the network. This
property can be verified by doing a (reverse) DFS from
the subnet switch, and checking if the resulting vertex
set contains all switches in the network. The verification
takes O(V +E) time where V is the number of switches
and E the number of links.
Loop detection: A loop in the graph is equivalent to at
least one strongly connected component in the directed
graph. Two vertices s1 and s2 belong to a strongly con-
nected component, if there is a path from s1 to s2 and
a path from s2 to s1. We find strongly connected com-
ponents using Tarjan’s Algorithm [21] whose time com-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 95

plexity is O(V +E).
Black-holes: A switch is a black-hole for a subnet if the
switch does not have a matching route entry for the sub-
net. Some black-holes are legitimate: if the switch is the
last hop for the subnet, or there is an explicit drop rule.
Implicit drop rules need to be checked if that is by de-
sign. Black-holes map to vertices with zero out-degree,
which can therefore be enumerated in O(V) time.
Waypoint routing: Network operators may require traf-
fic destined to certain subnets to go through a “way-
point,” such as a firewall or a middlebox. Such behavior
can be verified in the forwarding graph by checking if the
waypoint exists on all the forwarding paths. Specifically,
one can remove the waypoint and the associated links,
and verify that no edge switches appear any more in a
DFS originated from the subnet’s first hop switch, with
the runtime complexity of O(V +E).

7 Implementation
We have implemented Libra for checking the correct-

ness of Software-Defined Network (SDN) clusters. Each
cluster is divided into several domains where each do-
main is controlled by a controller. Controllers exchange
routing information and build the routing tables for each
switch.

Our Libra prototype has two software components.
The route dumper, implemented in Python, connects to
each controller and downloads routing events, forward-
ing tables and VRF configurations in Protocol Buffers
[17] format in parallel. It also consults the topology
database to identify the peer of each switch link. Once
the routing information is downloaded, we preprocess
the data as described in Section 5.4 and store it in a dis-
tributed file system.

The route checker is implemented in C++ as a MapRe-
duce application in about 500 lines of code. We use a
Trie library for storing subnets, and use Boost Graph Li-
brary [1] for all graph computation. The same binary can
run at different levels of parallelism—on a single ma-
chine with multiple processes, or on a cluster with mul-
tiple machines, simply by changing command line flags.

Although Libra’s design supports incremental up-
dates, our current prototype only does batch processing.
We use micro-benchmarks to evaluate the specific costs
for incremental processing in Section 8.5, on a simplified
prototype with one mapper and one reducer.

8 Evaluation
To evaluate Libra’s performance, we first measure

start-to-finish runtime on a single machine with multi-
threading, as well as on multiple machines in a cluster.
We also demonstrate Libra’s linear scalability as well as
its incremental update capability.

Data set Switches Rules Subnets
DCN 11,260 2,657,422 11,136

DCN-G 1,126,001 265,742,626 1,113,600
INET 316 151,649,486 482,966

Table 2: Data sets used for evaluating Libra.

8.1 Data Sets
We use three data sets to evaluate the performance of

Libra. The detailed statistics are shown in Table 2.
DCN: DCN is an SDN testbed used to evaluate the scal-
ability of the controller software. Switches are emulated
by OpenFlow agents running on commodity machines
and connected together through a virtual network fabric.
The network is partitioned among controllers, which ex-
change routing information to compute the forwarding
state for switches in their partition. DCN contains about
10 thousand switches and 2.6 million IPv4 forwarding
rules. VRF is used throughout the network.
DCN-G: To stress test Libra, we replicate DCN 100
times by shifting the address space in DCN such that
each DCN-part has a unique IP address space. A sin-
gle top-level switch interconnects all the DCN pieces to-
gether. DCN-G has 1 million switches and 265 million
forwarding rules.
INET: INET is a synthetic wide area backbone network.
First, we use the Sprint network topology discovered
by RocketFuel project [20], which contains roughly 300
routers. Then, we create an interface for each prefix
found in a full BGP table from Route Views [18] (∼500k
entries as of July 2013), and spread them randomly and
uniformly to each router as “local prefixes.” Finally, we
compute forwarding tables using shortest path routing.

8.2 Single Machine Performance
We start our evaluation of Libra by running loop de-

tection locally on a desktop with Intel 6-core CPU and
32GB memory. Table 3 summarizes the results. We
have learned several aspects of Libra from single ma-
chine evaluation:
I/O bottlenecks: Standard MapReduce is disk-based:
Inputs are piped into the system from disks, which can
create I/O bottlenecks. For example, on INET, reading
from disk take 15 times longer than graph computation.
On DCN, the I/O time is much shorter due to the smaller
number of forwarding rules. In fact, in both cases, the
I/O is the bottleneck and the CPU is not fully utilized.
The runtime remains the same with or without mapping.
Hence, the mapping phase is omitted in Table 3.
Memory consumption: In standard MapReduce, inter-
mediate results are flushed to disk after the mapping
phase before shuffling, which is very slow on a single
machine. We avoid this by keeping all intermediate states

9

96 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Threads 1 2 4 6 8
Read/s 13.7
Shuffle/s 7.4
Reduce/s 46.3 25.8 15.6 12.1 11.1
Speedup 1.00 1.79 2.96 3.82 4.17

a) DCN with 2000 subnets
Threads 1 2 4 6 8
Read/s 170
Shuffle/s 3.8
Reduce/s 11.3 5.9 3.2 2.7 2.1
Speedup 1.00 1.91 3.53 4.18 5.38

b) INET with 10,000 subnets

Table 3: Runtime of loop detection on DCN and INET data sets
on single machine. The number of subnets is reduced compared
to Table 2 so that all intermediate states can fit in the memory.
Read and shuffle phases are single-threaded due to the frame-
work limitation.

Figure 12: Example progress percentage (in Bytes) of Libra on
DCN. The three curves represent (from left to right) Mapping,
Shuffling, and Reducing phases, which are partially overlap-
ping. The whole process ends in 57 seconds.

in-memory. However, it limits the number of subnets
that can be verified at a time—intermediate results are
all matching (subnet, rule) pairs. On a single machine,
we have to limit the number of subnets to 2000 in DCN
and 10,000 in INET to avoid running out of memory.

Graph size dominates reducing phase: The reducing
phase on DCN is significantly slower than on INET, de-
spite INET having 75 times more forwarding rules. With
a single thread, Libra can only process 43.2 subnets per
second on DCN, compared with 885.0 subnets per sec-
ond on INET (20.5 times faster). Note that DCN has 35.6
times more nodes. This explains the faster running time
on INET, since the time to detect loops grows linearly
with the number of edges and nodes in the graph.

Multi-thread: Libra is multi-threaded, but the multi-
thread speedup is not linear. For example, on DCN, using
8 threads only resulted in a 4.17 speedup. This effect is
likely due to inefficiencies in the threading implementa-
tion in the underlying MapReduce framework, although
theoretically, all reducer threads should run in parallel
without state sharing.

DCN DCN-G INET
Machines 50 20,000 50

Map Input/Byte 844M 52.41G 12.04G
Shuffle Input/Byte 1.61G 16.95T 5.72G
Reduce Input/Byte 15.65G 132T 15.71G

Map Time/s 31 258 76.8
Shuffle Time/s 32 768 76.2
Reduce Time/s 25 672 16
Total Time/s 57 906 93

Table 4: Running time summary of the three data sets. Shuffle
input is compressed, while map and reduce inputs are uncom-
pressed. DCN-G results are extrapolated from processing 1%
of subnets with 200 machines as a single job.

8.3 Cluster
We use Libra to check for loops against our three data

sets on a computing cluster. Table 4 summarizes the re-
sults. Libra spends 57 seconds on DCN, 15 minutes on
DCN-G, and 93 seconds on INET. To avoid overloading
the cluster, the DCN-G result is extrapolated from the
runtime of 1% of DCN-G subnets with 200 machines.
We assume 100 such jobs running in parallel—each job
processes 1% of subnets against all rules. All the jobs
are independent of each other.

We make the following observations from our cluster-
based evaluation.
Runtime in different phases: In all data sets, the sum
of the runtime in the phases is larger than the start-to-
end runtime. This is because the phases can overlap each
other. There is no dependency between different map-
ping shards. A shard that finishes the mapping phase
can enter the shuffling phase without waiting for other
shards. However, there is a global barrier between map-
ping and reducing phases since MapReduce requires a
reducer to receive all intermediate values before start-
ing. Hence, the sum of runtime of mapping and reducing
phases roughly equals the total runtime. Table 4 shows
the overlapping progress (in bytes) of all three phases in
an analysis of DCN.
Shared-cluster overhead: These numbers are a lower
bound of what Libra can achieve for two reasons: First,
the cluster is shared with other processes and lacks per-
formance isolation. In all experiments, Libra uses 8
threads. However, the CPU utilization is between 100%
and 350% on 12-core machines, whereas it can achieve
800% on a dedicated machine. Second, the machines
start processing at different times—each machine may
need different times for initialization. Hence, all the ma-
chines are not running at full-speed from the start.
Parallelism amortizes I/O overhead: Through detailed
counters, we found that unlike in the single machine case
(where I/O is the bottleneck), the mapping and reducing

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 97

Figure 13: Libra runtime increases linearly with network size.

time dominates the total runtime. We have seen 75%–
80% of time spent on mapping/reducing. This is because
the aggregated I/O bandwidth of all machines in a cluster
is much higher than a single machine. The I/O is faster
than the computation throughput, which means threads
will not starve.

8.4 Linear scalability
Figure 13 shows how Libra scales with the size of

the network. We change the number of devices in the
DCN network, effectively changing both the size of the
forwarding graph and the number of rules. We do not
change the number of subnets. Our experiments run the
loop detection on 50 machines, as in the previous section.
The figure shows that the Libra runtime scales linearly
with the number of rules. The reduce phase grows more
erratically than the mapping time, because it is affected
by both nodes and edges in the network, while mapping
only depends on the number of rules.

Libra’s runtime is not necessarily inversely propor-
tional to the number of machines used. The linear scal-
ability only applies when mapping and reducing time
dominate. In fact, we observe that more machines can
take longer to finish a job, because the overhead of the
MapReduce system can slow down Libra. For example,
if we have more mapping/reducing shards, we need to
spend an additional overhead on disk shuffling. We omit
the detailed discussion as it depends on the specifics of
the underlying MapReduce framework.

8.5 Incremental Updates
Libra can update forwarding graphs incrementally as

we add and delete rules in the network, as shown in Sec-
tion 5.3. To understand its performance, we can break-
down Libra’s incremental computation into two steps:
(1) time spent in prefix matching (map phase) to find
which subnets are affected, and (2) time to do an incre-
mental DFS starting from the node whose routing entries
have changed (reduce phase). We also report the total

Map (µs) Reduce (ms) Memory (MB)
DCN 0.133 0.62 12

DCN-G 0.156 1.76 412
INET 0.158 <0.01 7

Table 5: Breakdown of runtime for incremental loop checks.
The unit for map phase is microsecond and the unit for reduce
phase is millisecond.

heap memory allocated.
We measured the time for each of the components as

follows: (1) for prefix matching, we randomly select
rules and find out all matching subnets using the algo-
rithm described in Section 5.1, and (2) for incremental
DFS, we started a new DFS from randomly chosen nodes
in the graph. Both results are averaged across 1000 tests.
The results are shown in Table 5.

First, we verified that no matter how large the sub-
net trie is, prefix matching takes almost constant time:
DCN-G’s subnet trie is 100 times larger than DCN-G’s
but takes almost the same time. Second, the results also
show that the runtime for incremental DFS is likely to be
dominated by I/O rather than compute, because the size
of the forwarding graph does not exceed the size of the
physical network. Even the largest dataset, DCN-G, has
only about a million nodes and 10 million edges, which
fits into 412MBytes of memory. This millisecond run-
time is comparable to results reported in [9] and [11],
but now on much bigger networks.

9 Limitations of Libra
Libra is designed for static headers: Libra is faster and
more scalable than existing tools because it solves a nar-
rower problem; it assumes packets are only forwarded
based on IP prefixes, and that headers are not modified
along the way. Unlike, say HSA, Libra cannot process a
graph that forwards on an arbitrary mix of headers, since
it is not obvious how to carry matching information from
mappers to reducers, or how to partition the problem.

As with other static checkers, Libra cannot handle
non-deterministic network behavior or dynamic forward-
ing state (e.g., NAT). It requires a complete, static snap-
shot of forwarding state to verify correctness. Moreover,
Libra cannot tell why a forwarding state is incorrect or
how it will evolve as it does not interpret control logic.
Libra is designed to slice the network by IP subnet:
If headers are transformed in a deterministic way (e.g.,
static NAT and IP tunnels), Libra can be extended by
combining results from multiple forwarding graphs at
the end. For example, 192.168.0/24 in the Intra-DC net-
work may be translated to 10.0.0/24 in the Inter-DC net-
work. Libra can construct forwarding graphs for both
192.168.0/24 and 10.0.0/24. When analyzing the two

11

98 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

subgraphs we can add an edge to connect them.
Forwarding graph too big for a single server: Libra
scales linearly with both subnets and rules. However, a
single reducer still computes the entire forwarding graph,
which might still be too large for a single server. Since
the reduce speed depends on the size of the graph, we
could use distributed graph libraries [16] in the reduce
phase to accelerate Libra.
Subnets must be contained by a forwarding rule: In
order to break the network into one forwarding graph per
subnet, Libra examines all the forwarding rules to decide
which rules contain the subnet. This is a practical as-
sumption because, in most networks, the rule is a prefix
that aggregates many subnets. However, if the rule has
a longer, more specific prefix (e.g., it is for routing to a
specific end-host or router console) than the subnet’s, the
forwarding graph would be complicated since the rule,
represented as an edge in the graph, does not apply to all
addresses of the subnet. In this case, one can use Veri-
flow [11]’s notion of equivalence classes to acquire sub-
nets directly from the rules themselves. This technique
may serve as an alternative way to find all matching (sub-
net, rule) pairs. We leave this for future work.

10 Related Work
Static data plane checkers: Xie et. al introduced al-
gorithms to analyze reachability in IP networks [22].
Anteater [13] makes them practical by converting the
checking problem into a Boolean satisfiability prob-
lem and solving it with SAT solvers. Header space
analysis [10] tackles general protocol-independent static
checking using a geometric model and functional simu-
lation. Recently, NetPlumber [9] and Veriflow [11] show
that, for small networks (compared to the ones we con-
sider here) static checking can be done in milliseconds
by tracking the dependency between rules. Specifically,
Veriflow slices the network into equivalence classes and
builds a forwarding graph for each class, in a similar
fashion to Libra.

However, with the exception of NetPlumber, all of
these tools and algorithms assume centralized comput-
ing. NetPlumber introduces a “rule clustering” tech-
nique for scalabilty, observing that rule dependencies can
be separated into several relatively independent clusters.
Each cluster is assigned to a process so that rule updates
can be handled individually. However, the benefits of
parallelism diminish when the number of workers ex-
ceeds the number of natural clusters in the ruleset. In
contrast, Libra scales linearly with both rules and sub-
nets. Specifically, even two rules have dependency, Libra
can still place them into different map shards, and allow
reducers to resolve the conflicts.
Other network troubleshooting techniques: Existing
network troubleshooting tools focus on a variety of net-

work components. Specifically, the explicitly layered de-
sign of SDN facilitates systematic troubleshooting [8].
Efforts in formal language foundations [6] and model-
checking control programs [2] reduce the probability of
buggy control planes. This effort has been recently ex-
tended to the embedded software on switches [12]. How-
ever, based on our experience, multiple simultaneous
writers in a dynamic environment make developing a
bug-free control plane extremely difficult.

Active testing tools [23] reveal the inconsistency be-
tween the forwarding table and the actual forwarding
state by sending out specially designed probes. They can
discover runtime properties such as congestion, packet
loss, or faulty hardware, which cannot be detected by
static checking tools. Libra is orthogonal to these tools
since we focus on forwarding table correctness.

Researchers have proposed systems to extract abnor-
malities from event histories. STS [19] extracts “minimal
causal sequences” from control plane event history to ex-
plain a particular crash or other abnormalities. NDB [7]
compiles packet histories and reasons about data plane
correctness. These methods avoid taking a stable snap-
shot from the network.

11 Conclusion
Today’s networks require way too much human in-

tervention to keep them working. As networks get
larger and larger there is huge interest in automating the
control, error-reporting, troubleshooting and debugging.
Until now, there has been no way to automatically ver-
ify all the forwarding behavior in a network with tens of
thousands of switches. Libra is fast because it focuses on
checking the IP-only fabric commonly used in data cen-
ters. Libra is scalable because it can be implemented us-
ing MapReduce allowing it to harness large numbers of
servers. In our experiments, Libra can meet the bench-
mark goal we set out to achieve: it can verify the cor-
rectness of a 10,000-node network in 1 minute using 50
servers. In future, we expect tools like Libra to check the
correctness of even larger networks in real-time.

Modern large networks have gone far beyond what
human operators can debug with their wisdom and in-
tuition. Our experience shows that it also goes beyond
what single machine can comfortably handle. We hope
that Libra is just the beginning of bringing distributed
computing into the network verification world.

References
[1] Boost Graph Library. http://www.boost.org/libs/

graph.

[2] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rex-
ford. A NICE Way to Test OpenFlow Applications. NSDI,
2012.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 99

[3] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
ToCS, 1985.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. NSDI,
2010.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. OSDI, 2004.

[6] N. Foster, A. Guha, M. Reitblatt, A. Story, M. Freed-
man, N. Katta, C. Monsanto, J. Reich, J. Rexford,
C. Schlesinger, D. Walker, and R. Harrison. Languages
for Software-Defined Networks. IEEE Communications
Magazine, 2013.

[7] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. Where is the Debugger for my Software-
Defined Network? HotSDN, 2012.

[8] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wund-
sam, H. Zeng, S. Whitlock, V. Jeyakumar, N. Handigol,
J. McCauley, K. Zarifis, and P. Kazemian. Leveraging
SDN layering to systematically troubleshoot networks.
HotSDN, 2013.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte. Real Time Network Policy Checking
using Header Space Analysis. NSDI, 2013.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. NSDI,
2012.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. God-
frey. VeriFlow: Verifying Network-Wide Invariants in
Real Time. NSDI, 2013.

[12] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and
D. Kostic. A SOFT Way for OpenFlow Switch Interoper-
ability Testing. CoNEXT, 2012.

[13] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. God-
frey, and S. T. King. Debugging the data plane with
anteater. SIGCOMM, 2011.

[14] K. Marzullo and G. Neiger. Detection of global state
predicates. Springer, 1992.

[15] D. L. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on Communications,
1991.

[16] The Parallel Boost Graph Library. http://osl.iu.

edu/research/pbgl/.

[17] Protocol Buffers. https://code.google.com/p/

protobuf/.

[18] Route Views. http://www.routeviews.org/.

[19] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang,
K. Zarifis, and S. Shenker. How Did We Get Into This
Mess? Isolating Fault-Inducing Inputs to SDN Control
Software. Technical Report UCB/EECS-2013-8, 2013.

[20] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring ISP topologies with rocketfuel. IEEE/ACM
TON, 2004.

[21] R. Tarjan. Depth-first search and linear graph algorithms.
12th Annual Symposium on Switching and Automata The-
ory, 1971.

[22] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On static reachability
analysis of IP networks. INFOCOM, 2005.

[23] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. CoNEXT, 2012.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 101

Software Dataplane Verification

Mihai Dobrescu and Katerina Argyraki

EPFL, Switzerland

Abstract

Software dataplanes are emerging as an alternative to tra-
ditional hardware switches and routers, promising pro-
grammability and short time to market. These advan-
tages are set against the risk of disrupting the network
with bugs, unpredictable performance, or security vul-
nerabilities. We explore the feasibility of verifying soft-
ware dataplanes to ensure smooth network operation.
For general programs, verifiability and performance are
competing goals; we argue that software dataplanes are
different—we can write them in a way that enables veri-
fication and preserves performance. We present a verifi-
cation tool that takes as input a software dataplane, writ-
ten in a way that meets a given set of conditions, and
(dis)proves that the dataplane satisfies crash-freedom,
bounded-execution, and filtering properties. We evaluate
our tool on stateless and simple stateful Click pipelines;
we perform complete and sound verification of these
pipelines within tens of minutes, whereas a state-of-the-
art general-purpose tool fails to complete the same task
within several hours.

1 Introduction

Software dataplanes are emerging from both re-
search [17,26,27,37] and industry [2,3] backgrounds as a
more flexible alternative to traditional hardware switches
and routers. They promise to cut network provisioning
costs by half, by enabling dynamic allocation of packet-
processing tasks to network devices [42]; or to turn the
Internet into an evolvable architecture, by enabling con-
tinuous functionality update of devices located at strate-
gic network points [41].

Flexibility, however, typically comes at the cost of re-
liability. A system of non-trivial size that is subject to
frequent updates is typically plagued by behavior and
performance bugs, as well as security vulnerabilities. It
makes sense then that network operators are skeptical
about the vision of software dataplanes that are contin-
uously reprogrammed in response to user and operator
needs—as they were skeptical a decade ago toward ac-
tive networking. The question is, has anything changed?
Have software verification techniques matured enough to
enable us to reason about the behavior and performance
of software dataplanes? Or must we accept that fre-
quently reprogrammed software dataplanes will always
be less reliable than their static hardware counterparts?

The subject of this work is a verification tool that
takes as input the executable binary of a software data-
plane and proves that it does (or does not) satisfy a target
property; if the target property is not satisfied, the tool
should provide counter-examples, i.e., packet sequences
that cause the property to be violated. Developers of
packet-processing apps could use such a tool to produce
software with guarantees, e.g., that never seg-faults or
kernel-panics, no matter what traffic it receives. Network
operators could use the tool to verify that a new packet-
processing app they are considering for deployment will
not destabilize their network, e.g., it will not introduce
more than some known fixed amount of per-packet la-
tency. One might even envision markets for packet-
processing apps—similar to today’s smartphone/tablet
app markets—where network operators would shop for
new code to “drop” into their network devices. The op-
erators of such markets would need a verification tool to
certify that their apps will not disrupt their customers’
networks.

For general programs, verifiability and performance
are competing goals. Proving properties of real programs
(unlike searching for bugs) remains an elusive goal for
the systems community, at least for programs that consist
of more than a few hundred lines of code and are writ-
ten in a low-level language like C++. A high-level lan-
guage like Haskell can guarantee certain properties (like
the impossibility of buffer overflow) by construction, but
typically at the cost of performance.

For software dataplanes, it does not have to be this
way: we will argue that we can write them in a way that
enables verification and preserves performance. The key
question then is: what defines a “software dataplane” and
how much more restricted is it than a “general program”?
how much do we need to restrict our dataplane program-
ming model so that we can reconcile verifiability with
performance?

There are different ways to approach this question:
one could start from a restricted, easily verifiable model
and broaden it as much as possible without losing verifi-
ability; or, one could start from a popular, but not verifi-
able model and restrict it as little as necessary to achieve
verifiability. We chose the latter in an effort to be prac-
tical. We present in this paper the result of working it-
eratively on two tasks: designing a verification tool for
software dataplanes, while trying to identify a minimal
set of conditions that a software dataplane must meet in
order to be verifiable.

102 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We fundamentally rely on the assumption that soft-
ware dataplanes follow a pipeline structure, i.e., they are
composed of distinct packet-processing elements (e.g.,
an IP lookup element, an element that performs Network
Address Translation or NAT) that are organized in a di-
rected graph and do not share mutable state. Intuitively,
the fact that there are no state interactions between ele-
ments (other than one passing a packet to another) makes
it feasible to reason about each element in isolation, as
opposed to having to reason about the entire pipeline
as a whole. Software dataplanes that are created with
Click [33] typically conform to this structure, and these
arguably constitute the majority of research prototypes.
We also know of at least one industry prototype that uses
Click [1], while the vision of a “composable” dataplane
put forward by Intel earlier this year [3] strongly implies
a pipeline structure as well.

We aim to prove properties that, in the case of hard-
ware dataplanes, are either taken for granted or can
be proved using practical techniques [28–30, 38, 43]:
crash-freedom, which means that no packet sequence
can cause the dataplane to stop executing; bounded-

execution, which means that no packet sequence can
cause the execution of more than a known, reasonable
number of instructions; or filtering properties, e.g., “any
packet with source IP A and destination IP B will be
dropped by the pipeline.”

In this paper, we describe a verification tool that
proves such properties for stateless pipelines (e.g., an IP
router or static firewall) and two simple stateful pipelines
(a NAT box and a traffic monitor). Certain proofs assume
arbitrary configuration1, while others assume a specific
one. For instance, we prove crash-freedom or bounded-
execution assuming arbitrary configuration, and such
proofs are useful independently of the frequency of con-
figuration changes. In contrast, proving that a pipeline
will drop a packet with given headers makes sense only
given a specific configuration, and such proofs are useful
when configuration changes relatively slowly.

We evaluate our tool by proving crash-freedom and
bounded-execution for different Click pipelines. Our
proofs complete within tens of minutes, whereas a state-
of-the-art general-purpose tool fails to complete the same
task within hours. Keeping verification time within min-
utes is necessary and sufficient given our goals: We en-
vision our tool being used by developers, for instance to
ensure that a new piece of packet-processing code cannot
seg-fault, or by network operators, for instance to ensure
that a given configuration change will not result in unde-
sirable network behavior. In both cases, having to wait
for hours would be impractical; waiting for tens of min-
utes is non-negligible, but on par with the experience of

1By “configuration” we mean all state that the control plane writes
into the dataplane, e.g., the contents of forwarding or filtering tables.

waiting for compilation to complete or configuration to
be downloaded to network devices.

Even though we focus on conceptually simple
pipelines, performing complete and sound verification on
them required overcoming significant challenges (deal-
ing with path explosion, loops, and large data struc-
tures). Our contribution is to address these challenges
by applying existing verification ideas (symbolic execu-
tion [10, 21] and compositionality [4, 20, 22]) and com-
bining them with certain domain specifics of packet-
processing software (pipeline structure, bounded loops
over packet contents, pre-allocated data structures that
expose a key/value store interface). We share common
ground with many verification tools, especially the ones
that use compositional symbolic execution [4, 22], but
those were designed for different goals (increase line
coverage or find bugs), so they do not solve our problem.

The rest of the paper is organized as follows: After
providing the necessary background (§2), we describe
our system (§3) and the properties that it can prove (§4).
Then we present our evaluation (§5), discuss limitations
(§6) and related work (§7), and conclude (§8).

2 Setup

In this section, we provide background on symbolic ex-
ecution (§2.1), summarize our approach (§2.2), and de-
scribe our basic assumption about the structure of soft-
ware dataplanes (§2.3).

2.1 Background

Symbolic Execution.

A program can be viewed as an “execution tree,”
where each node corresponds to a program state, and
each edge is associated with a basic block. Running the
program for a given input leads to the execution of a se-
quence of instructions that corresponds to a path through
the execution tree, from the root to a leaf. For example,
the program E1 in Fig. 1 may execute two instruction se-
quences: one for input in < 0 and the other for input
in ≥ 0; hence, its execution tree (shown to the right of
the program) consists of two edges, one for each “input
class” and instruction sequence.

Symbolic execution [10, 21] is a practical way of gen-
erating execution trees. During normal execution of a
program, each variable is assigned a concrete value, and
only a single path of the tree is executed. During sym-
bolic execution, a variable may be symbolic, i.e., as-
signed a set of values that is specified by an associated
constraint. For example, a symbolic integer x with asso-
ciated constraint x > 2 ∧ x < 5 is the set of concrete
values x = {3, 4}. A symbolic-execution engine can

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 103

take a program, make the program’s input symbolic, and
execute all the paths that are feasible given this input.

Consider the program E2 in Fig. 1 and assume that the
input in can take any integer value. To symbolically exe-
cute this program, we start at the root of the tree and exe-
cute all the feasible paths. As we go down each path, we
collect two pieces of information: the “path constraint”
specifies which values of in lead to this path, and the
“symbolic state” maps each variable to its current value
on this path. For example, at the end of path e4, the path
constraint is C = (in ≥ 0 ∧ in < 10), and the symbolic
state is S = {out = 10}; at the end of path e5, the path
constraint is C = (in ≥ 10), and the symbolic state is
S = {out = in}.

Construction of Proofs.

If we can execute all the feasible paths of a program
and verify that none of them violates a target property,
that constitutes proof that the entire program satisfies this
property. By constructing proofs in this manner, we can
also automatically determine all the problematic inputs
that prevent us from completing the proof.

However, proof by execution can be rarely used in
practice, because of path explosion [9]: The sheer num-
ber of feasible paths in a real program (even one that
consists of a few hundred lines of code) is typically so
large that it is impossible to execute all of them in use-
ful time. This is because the number of paths generally
grows exponentially in the number of branching points,
and real software has a branching point every few in-
structions. For instance, when Klee [10] symbolically
executes UNIX coreutils like nice or cat, it achieves
more than 70% line coverage, but executes less than 1%
of the feasible paths [35]. This is fine when the goal is
high line coverage or discovery of interesting paths (e.g.,
to uncover bugs), but not when the goal is to reason about
all feasible paths (i.e., to prove properties).

Researchers have been proposing smarter ways to ad-
dress path explosion [4,20,22,35], but constructing com-
plete and sound proofs for real programs that consist of
more than a few hundred lines of code still takes a lot of
manual effort [32].

2.2 Our Approach

We observe that symbolic execution is a good fit for
packet-processing pipelines, because their special struc-
ture can help sidestep path explosion. In a typical
pipeline, two elements (stages) never concurrently hold
read or write permissions to the same mutable state, re-
gardless of whether that state is a packet being processed
or some other data structure. This level of isolation can
help significantly with path explosion.

Our approach is to first analyze each pipeline element
in isolation, then compose the results to prove properties

about the entire pipeline. This reduces by an exponen-
tial factor the amount of work that needs to be done to
prove something about the pipeline: If each element has
n branches and roughly 2n paths, a pipeline of m such
elements has roughly 2m·n paths. Analyzing each ele-
ment in isolation—as opposed to the entire pipeline in
one piece—cuts the number of paths that need to be ex-
plored roughly from 2m·n to m · 2n. In the worst case,
the per-element analyses yield that every single pipeline
path warrants further analysis—so we end up having to
consider all the paths anyway. In practice, we expect that
most pipeline paths are irrelevant to the target property,
and we only need to consider a small fraction.

Our verifier relies on S2E [13], an automated path ex-
plorer with pluggable path analyzers: the explorer uses
symbolic execution to drive the target system down mul-
tiple execution paths, while the analyzers measure and/or
check properties of each such path. We chose S2E for
two reasons: First, it performs what is called “in-vivo”
(as opposed to “in-vitro”) program analysis, i.e., ana-
lyzes code that runs within a real (not modeled) software
stack; this enables us to analyze a software pipeline with-
out having to model the underlying system—libraries,
kernel, drivers, etc. Second, it can directly analyze bi-
naries (as opposed to source code); this enables us to an-
alyze proprietary packet-processing elements, for which
we do not have access to the source code. We use S2E
as a building block, to symbolically execute pieces of
packet-processing code and obtain, for each piece, a set
of path constraints and symbolic states.

2.3 Starting Point: Pipeline Structure

We focus on packet-processing pipelines that consist of
packet-processing elements, where each element may ac-
cess three types of state (Table 1):

Packet state is owned by exactly one element at any
point in time. It can be read or written only by its
owner; the current owner (and nobody else) may atomi-
cally transfer ownership to another element. Packet state
is used for communicating packet content and metadata
between elements. For each newly arrived packet, there
is typically an element that reads it from the network,
creates a packet object, and transfers object ownership
to the next element in the pipeline. Once an element has
transferred ownership of a packet, it cannot read or write
it any more.

Private state is owned by one element and never
changes ownership. It can be read or written only by its
owner, and it persists across the processing of multiple
packets. A typical example is a map in a NAT element,
or a flow table in a traffic-monitoring element.

Static state can be read by any element but not writ-
ten by any element. This state is immutable as far as the

104 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Written by Read by
Transferable
ownership

Packet state owner owner yes
Private state owner owner no
Static state – any –

Table 1: Types of packet-processing state.

pipeline is concerned. A typical example is an IP for-
warding table.

This structure is not accidental: it is a natural fit
for any platform that must perform high-performance
streaming. The alternative would be to allow multiple
stages of the pipeline to share read/write access to the
same data, which would necessarily require synchroniza-
tion and the unavoidable contention and complexity that
comes with it.

3 System

In this section, we describe our system: first how it lever-
ages the pipeline structure to sidestep inter-element path
explosion (§3.1); second, how it leverages other aspects
of packet processing to sidestep intra-element path ex-
plosion resulting from loops (§3.2), large data structures
(§3.3), and mutable state (§3.4).

As we describe each technique used by our system, we
also state any extra conditions (on top of pipeline struc-
ture) that this technique requires from the target software
in order to work well. If a software dataplane does not
meet these conditions, our tool may not be able to com-
plete a proof for this dataplane.

We will illustrate our system through Fig. 1, which
shows a pipeline consisting of two elements. We will
use the term segment to refer to an instruction sequence
through a single element, and the term path to refer to
an instruction sequence through the entire pipeline. The
input in corresponds to a newly received packet, and we
assume that this may contain anything, i.e., we make in

symbolic and unconstrained.
For illustration purposes, our examples simplify two

aspects of our system: first, our example input in is an
integer, whereas in reality the input packet object is an
array of bytes; second, our example code snippets consist
of pseudo-code, whereas in reality S2E takes as input
X86 code.

3.1 Pipeline Decomposition

Verification consists of two main steps: step 1 searches
inside each element, in isolation, for code that may vio-
late the target property, while step 2 determines which of
these potential violations are feasible once we assemble
the elements into a pipeline. More specifically, we cut
each pipeline path into element-level segments (Fig. 1).

out E1 (in):

 if in < 0 then

 out ← 0

 else

 out ← in

 end if

 return out

out E2 (in):

 assert in ≥ 0

 if in < 10 then

 out ← 10

 else

 out ← in

 end if

 return out

out ToyPipeline (in):

 out1 ← E1 (in)

 out2 ← E2 (out1)

 return out2

in
 <

 0
in ≥ 0

in
 <

 0

in
 ≥ 0

return 0 return in

0
≤

in
 <

 1
0 in

 ≥ 10

in
 <

 0

in
 ≥ 0

crash

return 10 return in

0
≤

in
’
<

10 in
’ ≥ 10

in
’
<

0 in
’ ≥ 0

��

0
≤

in
’
<

10 in
’ ≥ 10

in
’
<

0 in
’ ≥ 0

�� �� �� ��

��

�� ��

��

�� ��

Figure 1: A toy pipeline that consists of two elements.

In step 1, we obtain, for each segment, a logical expres-
sion that specifies how this segment transforms state; this
allows us to identify all the “suspect segments” that may
cause the target property to be violated. In step 2, we de-
termine which of the suspect segments are feasible and
indeed cause the target property to be violated, once we
assemble segments into paths.

In step 1, we analyze each element in isolation: First,
we symbolically execute the element assuming uncon-
strained symbolic input. Next, we conservatively tag as
“suspect” all the segments that may cause the target prop-
erty to be violated. For example, in Fig. 1, if the target
property is crash-freedom, segment e3 is tagged as sus-
pect, because, if executed, it leads to a crash.

If we stopped at step 1, our verification would catch
all property violations, but could yield false positives: If
this step does not yield any suspect segments for any el-
ement, then we have proved that the pipeline satisfies the
target property. For instance, if none of the elements ever
crashes for any input, we have proved that the pipeline
never crashes. However, a suspect segment does not nec-
essarily mean that the pipeline violates the target prop-
erty, because a segment that is feasible in the context of
an individual element may become infeasible in the con-
text of the full pipeline. For example, in Fig. 1, if we
consider element E2 alone, segment e3 leads to a crash;
however, in a pipeline where E2 always follows E1,
segment e3 becomes infeasible, and the pipeline never

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 105

crashes. In program-analysis terminology, in step 1, we
over-approximate, i.e., we execute some segments that
would never be executed within the pipeline that we are
aiming to verify.

Step 2 discards suspect segments that are infeasible in
the context of the pipeline: First, we construct each po-
tential path pi that includes at least one suspect segment;
each pi is a sequence of segments ej . Next, we compose
the path constraint and symbolic state for pi based on
the constraints and symbolic state of its constituent seg-
ments (that we have already obtained in step 1). Finally,
for every pi, we determine whether it is feasible (based
on its constraints) and whether it violates the target prop-
erty (based on its symbolic state). Note that the last step
does not require actually executing pi, only composing
the logical expressions of its constituent segments.

For example, here is how we prove that the pipeline in
Fig. 1 does not crash:

Step 1:

1. We symbolically execute E1 assuming input in can
take any integer value. We collect the following
constraints and symbolic state for its segments e1
and e2.

• C1(in) = (in < 0), S1(in) = {out = 0}.

• C2(in) = (in ≥ 0), S2(in) = {out = in}.

2. We symbolically execute E2 assuming input in can
take any integer value. We collect the following
constraints and symbolic state for its segments e3,
e4, and e5:

• C3(in) = (in < 0), S3(in) = {crash}.

• C4(in) = (in ≥ 0 ∧ in < 10),
S4(in) = {out = 10}.

• C5(in) = (in ≥ 10), S5(in) = {out = in}.

3. We tag segment e3 as suspect.

Step 2:

1. The paths that include the suspect segment are p1
(i.e., sequence < e1, e3 >) and p4 (i.e., sequence
< e2, e3 >).

2. We compute p1’s path constraint as C ∗

1
(in) =

C1(in) ∧ C3(S1(in) [out]) =

C1(in) ∧ C3(0) = (in < 0) ∧ (0 < 0) = False.

3. We compute p4’s path constraint as C ∗

4
(in) =

C2(in) ∧ C3(S2(in) [out]) =

C2(in) ∧ C3(in) = (in ≥ 0) ∧ (in < 0) = False.

4. Both path p1’s and path p4’s constraints always
evaluate to false, hence p1 and p4 are infeasible, i.e.,
there are no feasible paths that include suspect seg-
ments, hence the platform never crashes.

Pipeline decomposition enables us to prove properties
about the pipeline without having to consider every sin-
gle pipeline path; but it still requires us to consider every
single element segment. This is not straightforward for
elements that involve loops, large data structures, and/or
mutable private state. We will next discuss how we ad-
dress each of these scenarios.

3.2 Loops

In general, loops can be a challenge for program veri-
fication, especially when the number of loop iterations
depends on the input. For example, a loop of t iterations,
where t is a 64-bit unsigned integer input, can yield 264

execution paths.
In contrast to general programs, a software dataplane

typically will not contain input-dependent loops with
such a large number of maximum iterations. A worst-
case realistic example is a packet-processing element that
loops over the bytes of a packet for encryption or com-
pression; in this case, the number of loop iterations is
bounded by the maximum packet size, typically 1500.

Still, loops can create an impractical number of seg-
ments within an element. Consider an element that im-
plements the processing of IP options: for each received
packet, it loops over the options stored in the packet’s
IP header and performs the processing required by each
specified option type. If the processing of one option
yields up to 2n segments, then the processing of t op-
tions yields up to 2t·n segments. For example, in the IP-
options element that comes with the Click distribution,
the processing of 3 options yields millions of segments
that—we estimated—would take months to symbolically
execute.

To address this, we reuse the idea of decomposition,
this time applying it not to the entire pipeline, but to
each loop: If a loop has t iterations, we view it as a
“mini-pipeline” that consists of t “mini-elements,” each
one corresponding to one iteration of the loop. We have
described how, if we have a pipeline of m elements,
we symbolically execute each element in isolation, then
compose the results to reason about the entire pipeline.
Similarly, if we have a loop of t mini-elements (iter-
ations), we symbolically execute each mini-element in
isolation, then compose the results to reason about the
entire loop. Unlike a pipeline that consists of different
element types, a loop of t iterations consists of the same
mini-element type, repeated t times; hence, for each
loop, we only need to symbolically execute one mini-
element.

106 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This brings us to our first extra condition on packet-
processing code: To use decomposition as we do, the
only mutable state shared across components must be
the packet object itself. For instance, to decompose
a pipeline into individual elements, we rely on the fact
that the only mutable state shared across elements is the
packet object. Similarly, to decompose a loop into in-
dividual iterations, the only mutable state shared across
iterations must be part of the packet object.

For example, consider again an IP-options element:
Such an element typically includes a next variable,
which points to the IP-header location that stores the next
option to be processed; each iteration of the main loop
starts by reading this variable and ends by incrementing
it. In a conventional element, next would be a local vari-
able. In our verification-optimized element, next is part
of the packet metadata, hence part of packet. And since,
in step 1, we make packet symbolic and unconstrained,
next is also symbolic and unconstrained, allowing us to
reason about the behavior of one iteration of the main
loop, assuming that iteration may start reading from any-

where in the IP header.

Condition 1 Any mutable state shared across loop iter-

ations is part of the packet metadata.

To make a packet-processing element satisfy this con-
dition, a developer needs to identify any variables that are
read and written across loop iterations and make these
variables part of the packet metadata. For the Click IP-
options element, this process required changing 26 lines
(12%) of the code and took less than an hour. Alter-
natively, this can be done automatically by a compiler
(that would force developers to explicitly declare muta-
ble state shared across iterations of a loop). Either way,
this condition does not restrict the functionality that a
packet-processing element can implement; it only forces
the developer to create—either manually or with com-
piler help—an explicit interface between loop iterations.

3.3 Data Structures

Symbolic-execution engines lack the semantics to reason
about data structures in a scalable manner. For instance,
symbolically executing an element that uses a packet’s
destination IP address to index an array with a thou-
sand entries will cause a symbolic-execution engine to
essentially branch into a thousand different segments—
independently from the array content or the logic of the
code that uses the returned value. So, if we naïvely feed
an element with a forwarding or filtering table of more
than a few hundred entries to a symbolic-execution en-
gine, step 1 of our verification process will not complete
in useful time.

value = read (key)
write (key, value)

{True, False} = test (key)
expire (key, value)

Figure 2: An interface for dataplane data structures.

To address this, when we reason about an element, we
abstract away any data-structure access; this allows us
to symbolically execute the element and identify suspect
segments, without requiring the symbolic-execution en-
gine to handle any data structures. To reason about the
data structures themselves, we rely on other means, e.g.,
manual or static analysis; this restricts us to using only
data structures that are manually or statically verifiable,
but we have evidence that these are typically sufficient
for packet-processing functionality.

This brings us to our second extra condition on packet-
processing code: To reason about different components
of the same executable separately, there must exist a
well-defined interface between them. For instance, to
reason about each pipeline element separately and com-
pose the results, we rely on the existence of a well-
defined interface between each pair of elements, which
specifies all the state that can be exchanged between
them (the packet object). Similarly, to reason about a
data structure separately from the element that uses it
and compose the results, the data structure must expose
a well-defined interface to the element.

We need an interface that abstracts a data structure as
a key/value store that supports at least read, write, mem-
bership test, and expiration. The first three operations
are straightforward; the last one—expiration—allows an
element to indicate that a {key, value} pair will not be
accessed by the element any more, hence is ready to be
removed and processed by the higher layers. For exam-
ple, suppose an element maintains a data structure with
per-flow packet counters; when a flow completes (e.g.,
because a FIN packet from that flow is observed), the el-
ement can use the expiration operation to signal this com-
pletion to the control-plane process that manages traffic
statistics.

Condition 2 Elements use data structures that expose a

key/value-store interface like the one in Fig. 2.

Moreover, we need data structures that expose the
above interface and can be verified in useful time. When
we say that a data structure is “verified,” we mean that
the implementation of the interface exposed by the data
structure is proved to satisfy crash-freedom, bounded-
execution, and correctness. The latter depends on the
particular semantics of the data structure, e.g., a hash-
table should satisfy the following property: a “write (
key, value)” followed by a “read (key)” should return

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 107

“value.” If an element uses only data structures for which
these properties hold, then, when we reason about the el-
ement, we can abstract away all the data-structure imple-
mentations and consider only the rest of the element code
plus the data-structure interfaces.

Condition 3 Elements use data structures that are im-

plemented on top of verifiable building blocks, e.g., pre-

allocated arrays.

As evidence that such data structures exist, we imple-
mented a hash table and a longest-prefix-match table that
satisfy crash-freedom and bounded-execution. They both
consist of chains of pre-allocated arrays. Our hash table
is a sequence of K such arrays; when adding the k-th
key/value pair that hashes to the same index, if k ≤ K,
the new pair is stored in the k-th array, otherwise it can-
not be added (the write operation returns False). For the
longest-prefix-match table, we use the idea of “flatten-
ing” of all entries to /24 prefixes [25].

We chose arrays as the main building block, because
they combine two desirable properties: (a) They enable
line-rate access to packet-processing state, because of
their O(1) lookup time. (b) They are easy to verify, be-
cause of the simplicity of their semantics. For example,
a write to an array (that is within the array bounds) is
guaranteed not to cause a crash and not to cause the exe-
cution of more than a known number of instructions that
depends on the particular CPU architecture. In contrast,
a write to a dynamically-growing data structure, e.g., a
linked list or a radix trie, may result in a variable num-
ber of memory allocations, deallocations and accesses,
which can fail in unpredictable ways.

Conditions 2 and 3 introduce two kinds of overhead:
First, existing elements may need to be rewritten to

satisfy them; this involves replacing existing data struc-
tures with ones that satisfy the two conditions and chang-
ing any line of code that accesses a data structure. We
have not yet applied our approach widely enough to
have statistically meaningful results on the correspond-
ing amount of effort. In one case (Click IP lookup el-
ement), we had to change about 130 lines (20%) of the
code, which took a few hours. In another case (Click
NAT element), we had to write the element from scratch
(because most of the NAT code is about accessing data
structures), which took a couple of days. To reduce this
overhead, part of our work is to create a library of data
structures that satisfy the two conditions.

Second, implementing sophisticated data structures on
top of pre-allocated arrays typically requires more mem-
ory than conventional implementations. For instance, the
original Click NAT element stores per-connection state
in a hash table, implemented as an array of dynamically
growing linked lists (when adding the k-th key/value pair
that hashes to the same index, the new pair is stored as

the k-th item of a linked list). In contrast, our NAT ele-
ment uses the hash-table implementation outlined above,
with K = 3 pre-allocated arrays (this value makes the
probability of dropping a connection negligible). Hence,
our NAT element may use up to 3 times more memory to
store the same amount of state. In our opinion, sacrific-
ing memory for verifiability is worth considering given
the relative costs of memory and the human support for
dealing with network problems.

3.4 Mutable Private State

Mutable private state is hard to reason about because it
may depend on a sequence of observed packets (as op-
posed to the currently observed packet alone). For in-
stance, if an element maintains connection state or traffic
statistics, then its private state is a function of all traffic
observed since the element was initialized. Hence, it is
not enough to reason about the segments of the element
that can result from all possible contents of the current
packet; we need to reason about the segments that can
result from all possible contents of all possible packet se-
quences that can be observed by the element. The chal-
lenge is that symbolic-execution engines (and verifica-
tion tools in general) are not yet at the point where they
can handle symbolic inputs of arbitrary length in a scal-
able manner.

We can currently verify two kinds of elements that
maintain mutable state: a NAT element (maintains per-
connection state and rewrites packet headers accord-
ingly) and a traffic monitor (collects per-flow statistics).
We believe that our approach can be generalized to other
elements, but we do not expect to be able to perform
complete and sound verification of an element that per-
forms arbitrary state manipulation—claiming that would
be close to claiming that we could verify arbitrary soft-
ware.

Our approach is to break verification step 1 (§3.1) into
two sub-steps: the first one searches for “suspect” values
of the private state that would cause the target property
to be violated, while the second one determines which
of these potential violations are feasible given the logic
of the element. In the first sub-step, we assume that the
private state can take any value allowed by its type (i.e.,
we over-approximate). In the second sub-step, we take
into account the fact that private state cannot, in reality,
take any value, but is restricted by the particular type of
state manipulation performed by the given element.

So far, we have not needed to exercise the second sub-
step in practice: in the two stateful elements that we have
experimented with, the first sub-step did not reveal any
suspect states, hence the second one was not exercised.
We describe both sub-steps through a manufactured ex-
ample in our technical report [16].

108 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Target Properties

In this section, we describe the three target properties
that our current prototype can (dis)prove. These prop-
erties are expressed imperatively using the S2E analyzer
interface [13].

Crash-freedom.

We say that a pipeline is crash-free when it is guar-
anteed not to execute any instruction that would cause it
to terminate abnormally, e.g., an assertion with a false
argument or a division by zero. The definition of “abnor-
mal termination” depends on the environment where the
pipeline runs: in the case of user-mode Click, it is the re-
ceipt of a signal (e.g., SIGSEGV, SIGABRT, SIGFPE)
that is not handled by the Click process and causes the
process to terminate; in the case of kernel-mode Click, it
is a call to the kernel’s panic method. As stated in §2.2,
our verifier is built on top of an in-vivo path explorer,
which can detect any of these conditions.

We prove crash-freedom for a pipeline given an arbi-
trary input packet and arbitrary configuration state. If a
pipeline does not include any instruction that may cause
abnormal termination, proving crash-freedom is trivial.
On the other hand, if a pipeline does include an instruc-
tion that may cause abnormal termination, that does not
necessarily mean that this instruction may be executed.
So, proving crash-freedom is equivalent to proving that
any such instruction will never be executed, and proving
lack of crash-freedom is equivalent to providing a spe-
cific packet and specific state that causes such an instruc-
tion to be executed.

Bounded-execution.

We say that a pipeline satisfies bounded-execution

when it is guaranteed to execute no more than Imax in-
structions per packet. This ensures that no packet is ever
caught in an infinite loop. It can also be used to pro-
duce a “latency envelope,” i.e., argue that once a packet
enters the pipeline, it will exit within a bounded amount
of time. To translate instruction sequences into latency
bounds, we need to map each instruction to the mini-
mum and maximum number of cycles that it can take to
complete, which can be typically obtained from the CPU
and/or chip manual.

We prove bounded-execution for a pipeline given an
arbitrary input packet and arbitrary configuration state.
We find the longest path of a pipeline as follows: In step
1 of the verification process, when we symbolically ex-
ecute an element, we also record the length (number of
instructions) of each of its segments. In step 2, we search
for the longest feasible path by considering different seg-
ment combinations. We use a simple search heuristic that
first checks if the path that consists of the longest seg-
ment of each element is feasible (if yes, we are done),

then checks if any path that involves either the first or
second longest segment of each element is feasible, and
so on. In the worst case, we have to check all possible
segment combinations; in practice, we find the longest
feasible path after considering only a few combinations.

Filtering.

Given a pipeline with specific configuration state, can
we guarantee that a packet that enters the pipeline with
source IP A and destination IP B will be dropped?

We leverage existing work that answers this type of
question for hardware dataplanes [28–30, 38, 43]. This
work abstracts each network device as a function that
maps an input packet header to an output port, and then it
composes different device functions to reason about the
entire network; the mapping function of each device is
determined by the contents of its forwarding table. In
contrast, we abstract each packet-processing element as
a function that maps an input packet header to an output
port, and then we compose different element functions
to reason about the entire pipeline; the mapping func-
tion of each element is automatically derived by sym-
bolically executing the element’s code given an arbitrary
input packet.

The main difference lies in the derivation of the map-
ping function of each packet-processing element (that we
do by symbolically executing the element in isolation).
This is useful in cases where an element, e.g., includes
a line of code that drops all packets with source IP A,
even though the device’s forwarding table indicates oth-
erwise. Composing element functions to reason about a
pipeline is equivalent to composing device functions to
reason about a network, and we can reuse the algorithms
proposed by the above work.

5 Evaluation

We tested our system on pipelines created with Click. In
each tested pipeline, packets are generated by a “genera-
tor” element and dropped by a “sink” element; what we
verify is the packet-processing code between generator
and sink. We answer the following questions: Can we
perform complete and sound verification of software dat-
aplanes (§5.1)? How does verification time increase with
pipeline length (§5.2)? Can we use our tool to uncover
bugs, useful performance characteristics, or unintended
dataplane behavior (§5.3)?

5.1 Feasibility

We verified pipelines that consist of various combina-
tions of the elements in Table 2. The table indicates the
origin of each element (whether it is an original Click el-
ement, one that we modified, or one that we wrote from

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 109

Element
New LoC

Loops
Data Mutable

(% of total) Structs State
Click:
Classifier
CheckIPhdr
EthEncap
EthDecap
DecTTL
DropBcast

Click+:
IPoptions 26 (12%) X
IPlookup 130 (20%) X

Ours:
NAT 870 X X
TrafficMonitor 650 X X

Table 2: Verified packet-processing elements. “Click” in-
dicates an unmodified element from Click distribution 2.0.1;
“Click+” indicates an element from the same distribution that
we modified modestly; “ours” indicates an element that we
wrote from scratch. “New LoC” is the number of lines of code
that we modified or introduced in each element. “X”s indicate
which technique(s) we applied to each element.

scratch). Our modifications consisted of loop rewriting
and replacing data structures with our verifiable ones.
The table also indicates the number of new lines of code
(LoC) and which of our techniques were needed to com-
plete step 1 of the verification process for each element.

For each pipeline, we proved crash-freedom and
bounded-execution. More generally, for each pipeline,
we were able to answer questions of the following kind:
can line X in element Y be executed with arguments Z
in the context of this pipeline? if yes, what is a packet
that would cause this line to be executed with these argu-
ments?

5.2 Scalability

We now examine how verification time increases with
pipeline length. Given the intended uses of our tool, it
should not take more than a few tens of minutes to prove
a target property per pipeline. We first look at meaningful
pipelines (that it makes sense to actually deploy), then at
microbenchmarks that illustrate different aspects of our
system. To show the benefit of our domain-specific tech-
niques, we use as a baseline vanilla S2E—a state-of-the-
art, publicly available verification framework for general
software. We refer to our tool as “dataplane-specific ver-
ification” and to S2E as “generic verification.” We feed
the same code to the two systems.

Meaningful Pipelines.

We consider three meaningful pipelines: (a) edge

router implements a standard IP router (the first 8 ele-
ments in Table 2) with a small forwarding table (10 en-
tries); (b) core router is similar but has a large forwarding

(a) IP router. For the dataplane-specific tool, the results are the same for
the edge and core pipelines.

(b) Network gateway

5
states

21
states

1813
states

7445
states

5
states

10
states

123
states

236
states

0

5

10

15

20

25

IP_dst +IP_src +port_dst +port_src

Ve
rif
ic
at
io
n
tim

e
(m

in
ut
es
)

Filter criteria

generic dataplane specific

(c) Pipeline microbenchmark

12h+

0

100

200

300

400

500

600

700

1 2 3

Ve
rif
ic
at
io
n
tim

e
(m

in
ut
es
)

Number of loop iterations

generic dataplane specific

(d) Loop microbenchmark

Figure 3: Verification time as a function of pipeline length.
“preproc” consists of the first 3 elements in Table 2.

table (100, 000 entries); (c) network gateway implements
NAT and per-flow statistics collection. Each of them
presents an extra verification challenge: the first one in-

110 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cludes a loop (in IPoptions), the second one a large data
structure (in IPlookup), and the third one mutable private
state (in NAT and TrafficMonitor).

Fig. 3(a) shows how verification time increases as we
add more elements to the IP-router pipelines: Dataplane-
specific verification completes in less than 20 minutes.
Most of this time is spent on IP options, because this el-
ement has significantly more branching points than the
rest. Generic verification of the edge router exceeds 12
hours (at which point we abort it) the moment we allow
packets to carry 2 IP options (so we do not show any
data point for it beyond “+IPoption2”). Generic verifi-
cation of the core router exceeds 12 hours the moment
we add the IP lookup element to the pipeline (so we do
not show any data point for it beyond “+IPlookup”). The
difference between the two tools comes from our special
treatment of loops and large data structures.

Fig. 3(b) shows the same information for the network-
gateway pipeline: Dataplane-specific verification com-
pletes in less than 6 minutes, whereas generic verification
exceeds 12 hours the moment we add either the Traffic-
Monitor or the NAT element. The difference comes from
the fact that we abstract away data-structure implemen-
tations.

Compositionality Microbenchmarks.

We consider two synthetic pipelines to illustrate the
benefit of pipeline and loop decomposition. The first one
consists of a sequence of simple filtering elements, each
of which reads a different part of the input packet’s IP
header to make a filtering decision. The second pipeline
implements a simplified version of the IP options pro-
cessing loop, i.e., in each iteration, it reads some portion
of the IP header, updates it, and advances a next variable
that indicates where the next read should start.

Fig. 3(c) shows how verification time increases as
we add more filtering elements to the first pipeline:
generic verification time increases significantly faster
than dataplane-specific verification time. This is because
the former executes all feasible segments of each ele-
ment in isolation, whereas the latter executes all feasible
paths of the pipeline. In this scenario, generic verifica-
tion does complete in useful time, because this pipeline
involves few elements, without loops, that access mini-
mal state. Still, it takes an order of magnitude more time
than dataplane-specific verification because of the expo-
nential increase in the number of paths. To make this
clear, we note, on top of each bar, the number of verifi-
cation states that each tool generates and processes.

Fig. 3(d) shows how verification time increases as we
add more iterations to the loop of the second pipeline:
dataplane-specific verification time remains constant,
whereas generic verification time increases exponen-
tially. This is because the former executes all feasible

segments of one loop iteration, whereas the latter exe-
cutes all feasible paths of the entire loop. Dataplane-
specific verification is slower than generic verification
only in the special case where we have a loop with a
single iteration. That is because it symbolically executes
one loop iteration, assuming that iteration may start read-
ing from anywhere in the IP header; this pays off as soon
as we add a second loop iteration, but it is unnecessary
in the special case of a loop with a single iteration.

5.3 Usefulness

We said that our tool can help developers debug their
code, and network operators better understand the per-
formance and behavior of their dataplanes; we now look
at a few specific examples.

Bugs in Click Elements.

We found the following while trying to prove
crash-freedom and bounded-execution for various Click
pipelines:

Bug #1: Any pipeline that includes the Click IP frag-
menter element will enter an infinite loop, if it tries to
fragment a packet with IP options. This is because the for

loop that processes IP options in the fragmenter does not
have an increment (the programmer forgot to add one).2

Bug #2: Any pipeline that does not include an IP op-
tions element but includes the Click IP fragmenter ele-
ment will enter an infinite loop, if it tries to fragment
a packet that carries a zero-length IP option. This is
because the current option length determines where the
next iteration of the loop will start reading, so, a zero-
length option causes the loop to get stuck.3 The Click IP
options element discards any packet with a zero-length
option, so including it in the pipeline prevents the bug
from being exercised.

Bug #3: Any pipeline that includes the Click NAT el-
ement4 will hit a failed assertion5, if it receives a packet
with source IP address/port tuple Ts = T and destination
tuple Td = T , where T is the public IP address/port of
the NAT box.

All three bugs constitute security vulnerabilities: they
enable any end-host to disable the pipeline by sending a
specially crafted packet.

How hard would it be to find these bugs manually?
The first one is probably not that hard: a loop missing its
increment stands out visually, plus any serious testing of
the fragmenter element would involve a packet with IP
options. The other two bugs, however, manifest in sce-
narios that a developer is unlikely to test, but an attacker
can easily exploit: fragmentation of an illegal packet

2elements/ip/ipfragmenter.cc, line 64
3elements/ip/ipfragmenter.cc, line 69
4elements/tcpudp/iprewriter.cc
5include/click/heap.hh, line 149

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 111

Bug Pipeline Time # Paths

#1
Edge router with 1 IP option

3 min 432
+ Click IP fragmenter

#2
Edge router with 1 IP option

47 min 8423
+ Click IP fragmenter

#2
Edge router without options

5 sec 26
+ Click IP fragmenter

#3
Network gateway

5 sec 10
with Click NAT

Table 3: Time spent and number of paths composed in verifi-
cation step 2, when the pipeline contains buggy elements.

while processing of IP options is turned off (which does
happen, in practice, for performance or security reasons);
and processing of an IP header that would be meaning-
less in a legitimate packet.

In §2.2, we said that we expected verification step 2
to compose the constraints only for a small fraction of
the pipeline paths. Table 3 reports, for a given bug and
pipeline, the amount of time spent and the number of
paths composed in this step. Consider bug #2: When
verifying a pipeline that includes the Click IP fragmenter
element, step 1 determines that this element has a sus-
pect segment. If the pipeline does not support IP op-
tions, step 2 determines that the suspect segment is fea-
sible in this pipeline (hence the pipeline does not sat-
isfy bounded-execution); this requires finding one feasi-
ble path that contains the suspect segment, and we suc-
ceed after composing the constraints for 26 paths, which
takes 5 seconds. If the pipeline supports one IP option,
step 2 determines that the suspect element is not feasible
in this pipeline; this requires showing that all the paths
that contain the suspect segment are not feasible, and we
succeed after composing the constraints for 8423 paths,
which takes 47 minutes. These numbers are consistent
with our expectation that, in practice, verification step 2
completes in useful time.

Longest paths in IP router.

We used our tool to construct adversarial—from a
performance point of view—workloads for a pipeline
implementing a standard IP router. Recent research
showed that such a router is capable of multi-Gbps lines
rates [17], but this result was obtained using work-
loads of well-formed packets, not meant to exercise the
pipeline’s exception paths. Instead, we obtained the
pipeline’s 10 (it could have been any number) longest
paths, as well as the packets that cause them to be exe-
cuted.

It is not surprising that the longest paths are executed
in response to problematic packets that trigger further
packet examination and logging; what may be surpris-
ing is that these paths execute 2.5 times as many instruc-
tions than the most common path. Moreover, these extra
instructions are CPU-heavy, i.e., they include memory

accesses and system calls for logging; an attacker may
cause significant performance degradation by sending a
sequence of packets that are specially crafted to exercise
these particular paths. This is useful information to a de-
veloper, because it reveals to him paths that may require
his attention. It is also useful to a network operator, be-
cause it reveals to her the performance limits of a pipeline
and the workloads that trigger them—allowing her to de-
cide whether it is suitable for her network.

Unintended behavior.

Certain implementations of the Loose Source Record
Route (LSRR) IP option may enable illegal traffic to by-
pass a firewall [23]: An IP router that supports the LSRR
option may replace the source IP address of an incom-
ing packet with its own IP address. In this case, any fil-
tering based on the source IP address of the packet that
happens after the processing of IP options is ineffective.
This has been exploited to bypass firewalls, eventually
causing network operators to disable LSRR and router
manufacturers to change their LSRR implementations.

Our tool would have uncovered this vulnerability. To
verify that, we created a pipeline that includes an IP
options element followed by a firewall, and we tried to
prove that it satisfies the following property: “any packet
whose source IP address is blacklisted by the firewall will
be dropped.” The tool responded that the property is not
satisfied, and it provided an example packet that causes
it to be violated: a packet with a blacklisted source IP
address that carries the LSRR option.

6 Limitations

The key enabler and at the same time limitation of our
work is that we focus on software dataplanes that fol-
low a pipeline structure and also satisfy three other con-
ditions (§3). The pipeline structure is a natural fit for
dataplanes; most research prototypes are already written
this way, and we know of at least one industry proto-
type as well. Favoring an already popular programming
model is, in our opinion, a modest price to pay for verifi-
ability. The other three conditions introduce overheads:
existing code may need to be changed to satisfy them
(but the resulting code is, in our opinion, easier to read
and maintain); compared to their more dynamic coun-
terparts, data structures that satisfy Conditions 2 and 3
typically require more memory (but trading off memory
for verifiability is, in our opinion, worth considering).

We currently handle only two specific, simple forms of
mutable private state. As stated earlier, we do not expect
to be able to completely remove this limitation, but we do
expect to expand the range of state-manipulation patterns
that we can formally reason about.

112 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Our approach is applicable to packet-processing plat-
forms where each packet is handled by a single pro-
cessing core and different cores never need to synchro-
nize. We focused on such platforms, because there
is compelling evidence that they lead to better perfor-
mance (by minimizing the number of compulsory cache
misses) [17]. We would need new results in order to ver-
ify platforms where different cores contend for access to
the same data structures.

7 Related Work

Our work is feasible because of advances in program
analysis tools for C/C++ code, from Verisoft [19] to
modern model checkers [34,40] and tools based on sym-
bolic execution [10,11,13,21]. These tools target general
code, so they cannot typically construct complete and
sound proofs (which is what we want). Instead, they try
to increase line coverage or identify buggy paths without

having to reason about all the paths of the analyzed pro-
gram (whereas we want to reason about all feasible paths
of the analyzed pipeline). There exist tools that prove
properties of real programs, but, to the best of our knowl-
edge, they are tailored to specific domains other than dat-
aplanes; notable examples are Astrée [8], SLAM [5, 6],
and Terminator [14].

Compositionality has been leveraged before to address
path explosion, in compositional dynamic test genera-
tion [20] and follow-on work [4,22]. The particular tools
evaluated in these proposals use “top-down” composi-
tion: when symbolically executing a program, encoun-
tering a function triggers the construction of a summary
(logical representation) of that function in the context of
its caller. This makes sense, because—to the best of our
understanding—the goal of this line of work is to max-
imize line coverage with as little work as possible (ide-
ally, hit each program statement exactly once). We use
“bottom-up” composition: we first compute context-free
summaries of all elements, then we compose them as
necessary to reason about the entire pipeline.

Verification techniques have been used before to de-
bug or verify networked systems (but not dataplanes):
Musuvathi and Engler adapted the CMC model checker
to test the Linux TCP implementation for interoperabil-
ity with the TCP specification [39]. Bishop et al. con-
tributed a formal specification of TCP/IP and the sockets
API, and they tested existing implementations for confor-
mance to their specification [7]. Killian et al. contributed
new algorithms for finding liveness bugs in systems like
Pastry and Chord [31]. NICE finds bugs in OpenFlow ap-
plications [12]. SOFT tests OpenFlow switches for inter-
operability with reference implementations [36]. Guha et
al. contributed “the first machine-verified [Software De-
fined Networking] controller” [24].

Ennals et al. contributed a new language for packet-
processing applications [18]. The goal of that language
was to simplify the “compilation of high-level programs
to the distributed memory architectures of modern Net-
work Processors.” The proposed language ensured that
no two threads referenced the same packet, which is akin
to our requirement that no two pipeline elements have
access to the same packet.

Finally, an earlier version of this work was presented
in a workshop paper [15]. That paper reported the feasi-
bility of proving crash-freedom and bounded-execution
only for stateless pipelines; it did not include a scala-
bility analysis (§5.2) or report on bugs found using our
approach (§5.3).

8 Conclusions

We presented a verification tool that takes as input a soft-
ware dataplane and proves that it does (or does not) sat-
isfy properties like crash-freedom, bounded-execution,
and filtering. Proving such properties for general soft-
ware faces fundamental challenges, unsolvable with ex-
isting tools; we sidestepped them by applying exist-
ing ideas (symbolic execution and compositionality),
and combining them with domain specifics of packet-
processing code (most importantly, that it is structured
as a pipeline of elements that do not exchange mutable
state outside the packet itself and its metadata). We eval-
uated our tool on stateless and two simple stateful Click
dataplanes; we were able to perform complete and sound
verification of these pipelines within tens of minutes,
whereas a state-of-the-art general-purpose tool failed to
complete the same task within several hours.

Acknowledgments. We are grateful for the help
offered by Stefan Bucur, George Candea, Vitaly Chi-
pounov, Johannes Kinder, Vova Kuznetsov, Christian
Maciocco, Dimitris Melissovas, David Ott, Iris Safaka,
Simon Schubert, and Cristian Zamfir, as well as our shep-
herd, Brighten Godfrey, and the anonymous reviewers.
This work is supported by an Intel grant and a Swiss Na-
tional Science Foundation grant.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 113

References

[1] Meraki. http://meraki.cisco.com.

[2] Vyatta Hardware Appliances. http://www.vyatta.
com/solutions/physical/appliances.

[3] Intel RFP Announcement: SDN Extensions for Pro-
grammable Data Services, 2012.

[4] S. Anand, P. Godefroid, and N. Tillmann. Demand-
Driven Compositional Symbolic Execution. In Proc. of

the International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), 2008.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Us-
tuner. Thorough Static Analysis of Device Drivers. In
Proc. of the ACM EuroSys Conference, 2006.

[6] T. Ball and S. K. Rajamani. SLAM: Debugging System
Software via Static Analysis. In Proc. of the ACM Sym-

posium on the Princinples of Programming Languages

(POPL), 2002.

[7] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith,
and K. Wansbrough. Rigorous Specification and Confor-
mance Testing Techniques for Network Protocols, as ap-
plied to TCP, UDP, and Sockets. In Proc. of the ACM

SIGCOMM Conference, 2005.

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. MinÃl’, D. Monniaux, and X. Rival.
A Static Analyzer for Large Safety-Critical Software. In
Proc. of the ACM Conference on Programming Language

Design and Implementation (PLDI), 2003.

[9] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: At-
tacking Path Explosion in Constraint-Based Test Gener-
ation. In Proc. of the International Conference on Tools

and Algorithms for the Construction and Analysis of Sys-

tems (TACAS), 2008.

[10] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In Proc. of the USENIX

Symposium on Operating Systems Design and Implemen-

tation (OSDI), 2008.

[11] C. Cadar and D. R. Engler. EXE: Automatically Gener-
ating Inputs of Death. In ACM Conference on Computer

Communication Security (CCS), 2006.

[12] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rex-
ford. A NICE Way to Test OpenFlow Applications. In
Proc. of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2012.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E
Platform: Design, Implementation, and Applications.
ACM Transactions on Computer Systems, 30(1), 2012.

[14] B. Cook, A. Podelski, and A. Rybalchenko. Termination
Proofs for Systems Code. In Proc. of the ACM Conference

on Programming Language Design and Implementation

(PLDI), 2006.

[15] M. Dobrescu and K. Argyraki. Toward Verifiable Soft-
ware Dataplanes. In Proc. of the ACM Workshop on Hot

Topics in Networks (HotNets), 2013.

[16] M. Dobrescu and K. Argyraki. Software Dataplane Verifi-
cation. Technical Report EPFL-REPORT-197121, EPFL,
Switzerland, 2014.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proc. of the ACM Symposium on Operating

Systems Principles (SOSP), 2009.

[18] R. Ennals, R. Sharp, and A. Mycroft. Linear Types for
Packet Processing. In European Symposium on Program-

ming, 2004.

[19] P. Godefroid. Model Checking for Programming Lan-
guages Using Verisoft. In Proc. of the ACM Symposium

on the Princinples of Programming Languages (POPL),
1997.

[20] P. Godefroid. Compositional Dynamic Test Generation.
In Proc. of the ACM Symposium on the Princinples of

Programming Languages (POPL), 2007.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proc. of the ACM Confer-

ence on Programming Language Design and Implemen-

tation (PLDI), 2005.

[22] P. Godefroid, A. Nori, S. Rajamani, and S. D. Tetali.
Compositional May-Must Program Analysis: Unleashing
The Power of Alternation. In Proc. of the ACM Sym-

posium on the Princinples of Programming Languages

(POPL), 2010.

[23] F. Gont, R. Atkinson, and C. Pignataro. Recom-
mendations on Filtering of IPv4 packets Containing
IPv4 Options. http://tools.ietf.org/html/

draft-ietf-opsec-ip-options-filtering-05#

section-4.3.

[24] A. Guha, M. Reitblatt, and N. Foster. Machine-Verified
Network Controllers. In Proc. of the ACM Conference

on Programming Language Design and Implementation

(PLDI), 2013.

[25] P. Gupta, S. Lin, and N. McKeown. Routing Lookups
in Hardware at Memory Access Speeds. In Proc. of the

IEEE INFOCOM Conference, 1998.

[26] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated Software Router. In Proc. of the ACM

SIGCOMM Conference, 2010.

[27] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: Cheap SSL Acceleration with Commod-
ity Processors. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2011.

[28] P. Kazemian, M. Chang, H. Zeng, S. Whyte, G. Varghese,
and N. McKeown. Real Time Network Policy Checking
using Header Space Analysis. In Proc. of the USENIX

Symposium on Networked Systems Design and Implemen-

tation (NSDI), 2013.

114 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[29] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In Proc.

of the USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2012.

[30] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. God-
frey. VeriFlow: Verifying Network-Wide Invariants in
Real Time. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2013.

[31] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,
Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2007.

[32] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, M. Nor-
rish, R. Kolanski, T. Sewell, H. Tuch, and S. Winwood.
seL4: Formal Verification of an OS Kernel. In Proc.

of the ACM Symposium on Operating Systems Principles

(SOSP), 2009.

[33] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions

on Computer Systems (TOCS), 18(3):263–297, 2000.

[34] D. Kroening, E. Clarke, and K. Yorav. Behavioral Consis-
tency of C and Verilog Programs Using Bounded Model
Checking. In Proc. of the Design Automation Conference

(DAC), 2003.

[35] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Effi-
cient State Merging in Symbolic Execution. In Proc. of

the ACM Conference on Programming Language Design

and Implementation (PLDI), 2012.

[36] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and
D. Kostic. A SOFT Way for OpenFlow Switch Inter-
operability Testing. In Proc. of the ACM Conference

on emerging Networking EXperiments and Technologies

(CoNEXT), 2012.

[37] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging Par-
allelism for Multi-dimensional Packet Classification on
Software Routers. In Proc. of the ACM SIGMETRICS

Conference, 2010.

[38] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. God-
frey, and S. T. King. Debugging the Data Plane with
Anteater. In Proc. of the ACM SIGCOMM Conference,
2011.

[39] M. Musuvathi and D. R. Engler. Model Checking Large
Network Protocol Implementations. In Proc. of the

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2004.

[40] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A Pragmatic Approach to Model Checking.
In Proc. of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2002.

[41] B. Raghavan, T. Koponen, A. Ghodsi, M. Casado, S. Rat-
nasamy, and S. Shenker. Software Defined Internet Ar-
chitecture. In Proc. of the ACM Workshop on Hot Topics

in Networks (HotNets), 2012.

[42] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and Implementation of a Consolidated Middle-
box Architecture. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2012.

[43] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On Static reachability
Analysis of IP Networks. In Proc. of the IEEE INFOCOM

Conference, 2005.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 115

NetCheck: Network Diagnoses from Blackbox Traces

Yanyan Zhuang†‡∗, Eleni Gessiou†∗, Steven Portzer�, Fraida Fund†,
Monzur Muhammad†, Ivan Beschastnikh‡, Justin Cappos†

†NYU Poly, ‡University of British Columbia, �University of Washington

Abstract

This paper introduces NetCheck, a tool designed to di-
agnose network problems in large and complex applica-
tions. NetCheck relies on blackbox tracing mechanisms,
such as strace, to automatically collect sequences of
network system call invocations generated by the appli-
cation hosts. NetCheck performs its diagnosis by (1) to-
tally ordering the distributed set of input traces, and by
(2) utilizing a network model to identify points in the to-
tally ordered execution where the traces deviated from
expected network semantics.

Our evaluation demonstrates that NetCheck is able to
diagnose failures in popular and complex applications
without relying on any application- or network-specific
information. For instance, NetCheck correctly identified
the existence of NAT devices, simultaneous network dis-
connection/reconnection, and platform portability issues.
In a more targeted evaluation, NetCheck correctly de-
tects over 95% of the network problems we found from
bug trackers of projects like Python, Apache, and Ruby.
When applied to traces of faults reproduced in a live net-
work, NetCheck identified the primary cause of the fault
in 90% of the cases. Additionally, NetCheck is efficient
and can process a GB-long trace in about 2 minutes.

1 Introduction
Application failures due to network issues are some of
the most difficult to diagnose and debug. This is be-
cause the failure might be due to in-network state or state
maintained by a remote end-host, both of which are in-
visible to an application host. For instance, data might
be dropped due to MTU issues [26], NAT devices and
firewalls introduce problems due to address changes and
connection blocking [11], default IPv6 options can cause
IPv4 applications to fail [8], and default buffer size set-
tings can cause UDP datagrams to be dropped or trun-
cated [49].

∗The two authors are co-primary authors.

Such application failures are challenging for develop-
ers and administrators to understand and fix. Hence, nu-
merous fault diagnosis tools have been developed [3, 13,
17, 37, 23, 19]. However, few of these tools are applica-
ble to large applications whose source code is not avail-
able. Without source code, administrators often resort
to probing tools such as ping and traceroute, which
can help to diagnose reachability, but cannot diagnose
application-level issues.

This paper presents NetCheck. In contrast with most
prior approaches, NetCheck does not require application-
or network-specific knowledge to perform its diagnoses,
and no modification to the application or the infrastruc-
ture is necessary. NetCheck treats an application as a
blackbox and requires only a set of system call (syscall)
invocation traces from the relevant end-hosts. These
traces can be easily collected at runtime with standard
blackbox tracing tools, such as strace. To perform its
diagnosis, NetCheck derives a global ordering of the in-
put syscalls by simulating the syscalls against a network
model. The model is also used to identify those syscalls
that deviate from expected network semantics. These de-
viations are then mapped to a diagnosis using a set of
heuristics.

NetCheck diagnosis output is intended for application
developers and network administrators. NetCheck out-
puts high-level diagnosis information, such as “an MTU
issue on a flow is the likely cause of loss,” which may
be useful to network administrators. NetCheck also out-
puts detailed low-level information about the sequence of
system calls that triggered the high-level diagnosis. This
information can help developers locate the underlying is-
sue in the application code.

This work makes the following three contributions:

• Accurate diagnosis of network issues from plau-
sible global orderings. Because of complex net-
work semantics, it is not always possible to glob-
ally order an input set of host traces without a global

116 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

clock. NetCheck approximates the true ordering by
generating a plausible ordering of the input traces.
We show that for 46 of the bugs reproduced from
public bug-trackers, this strategy correctly detected
and diagnosed over 90% of the bugs. Additionally,
NetCheck found and diagnosed a new bug in Virtu-
alBox [49].

• Modeling expected network behavior to identify
unexpected behavior. By using a model of an ide-
alized network environment NetCheck is capable of
diagnosing issues even in applications that execute
in complex environments. We demonstrate that this
approach is effective at detecting many real-world
problems, including failures reported in bug track-
ers of projects like Python and Apache, and prob-
lems in everyday applications such as Pidgin, Skype
and VirtualBox.

• Efficient algorithm for finding plausible global
orderings. We present a heuristic trace-ordering
algorithm that utilizes valuable information inher-
ent in network API semantics. We prove that our
algorithm has a best-case linear running time and
demonstrate that NetCheck needs less than 1 second
to process most of the traces studied in this paper
(Section 6.4). Even on large traces, such as a 1 GB
trace collected from Skype, NetCheck completes in
less than two minutes.

The following section provides an overview of
NetCheck. Section 3 describes the challenges and
corresponding contributions of this work. Details of
NetCheck’s design and implementation are given in Sec-
tions 4 and 5, respectively. In Section 6, we evaluate
the accuracy, effectiveness, and efficiency of NetCheck.
Section 7 outlines limitations of NetCheck and our fu-
ture work. Related work is discussed in Section 8 and
we conclude with Section 9.

2 NetCheck Overview
To use NetCheck, a user needs to first gather a set of
host traces for an application using a tool like strace,
dtrace, ktrace, or truss. The user invokes NetCheck
with a configuration file that lists the host trace files to
analyze and the IP addresses of the hosts. A host trace,
as in Figure 1, is a sequence of syscall invocations at
a single host. A syscall invocation is a 4-tuple that in-
cludes (1) a string, such as socket denoting the name
of the syscall, (2) the arguments passed to the invoked
syscall, (3) the returned value, and optionally, (4) an er-
ror number (errno) that is returned upon a syscall failure.

For example, the first line of the host A trace in Fig-
ure 1 is socket(...)=4, which is a socket syscall in-
vocation with a return value of 4. For certain syscalls the

Host A trace: Host B trace:
A1. socket(...) = 4 B1. socket(...) = 3
A2. bind(4, ...) = 0 B2. connect(3, ...) = 0
A3. listen(4, 1) = 0 B3. send(3, "Hello", ...) = 5
A4. accept(4, ...) = 6
A5. recv(6, "Hola!", ...) = 5

Figure 1: An example input trace detailing a TCP connection
between two hosts. Many system call arguments are omitted
for readability. Returned values (including buffer contents) are
underlined. Data sent by host B (“Hello”) has been modified
in-transit before being received by host A (“Hola!”).

A1. socket(...) = 4
B1. socket(...) = 3
A2. bind(4, ...) = 0
A3. listen(4, 1) = 0
B2. connect(3,...) = 0
A4. accept(4, ...) = 6
B3. send(3,"Hello",...) = 5
A5. recv(6,"Hola!",...) = 5

Figure 2: A valid global ordering of syscall invocations from
the two host traces in Figure 1.

value is returned through an argument pointer1. Figure 1
shows an example of this: recv call on host A passes a
buffer to a location in memory where the kernel writes
a 5-byte string indicated by one of the logged arguments
(“Hola!”). For clarity we omit some arguments and errno
from syscall invocations in this paper.

The example traces in Figure 1 indicate an error with
the network. Host B sends a 5-byte string “Hello” to A,
but A receives “Hola!”, a different 5-byte string. Used in-
dependently, the two host traces are insufficient to iden-
tify this issue — the corresponding send and recv calls
both returned successfully. To detect the problem, a de-
veloper must manually reason about both the order in
which the calls occurred (their serialization) and the un-
derlying behavior of the calls (their semantics). For the
traces in Figure 1, the logical serialization of the two host
traces reveals a semantic problem: what was received is
different from what was sent. NetCheck automatically
detects this and other issues by serializing the traces, sim-
ulating the calls, and then observing their impact on net-
work and host state.

To detect and diagnose network problems such as the
issue in Figure 1, NetCheck uses a global ordering that
it automatically reconstructs from the input set of black-
box host traces. Figure 2 shows one global ordering for
the two input traces in Figure 1. A valid global order-
ing must preserve the local orders of host traces, and
conform to the network API semantics. For example,
the local ordering at host A in Figure 1 requires that
bind occur after socket has returned successfully. And,
connect at host B cannot be ordered before listen at
host A, as such an ordering violates the network API se-

1NetCheck expects the host traces to include such return values,
which are provided by most common tools.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 117

Host A trace: Host B trace:
A1. send("hello") = 5 B1. send("hi") = 2
A2. recv("hi") = 2 B2. recv() = -1, EWOULDBLOCK

(a) Two input host traces. All operations are performed on a single con-
nected TCP socket.

Valid ordering 1: Valid ordering 2:
B1. send("hi") = 2 A1. send("hello")= 5
B2. recv() = -1, EWOULDBLOCK B1. send("hi") = 2
A1. send("hello")= 5 A2. recv("hi") = 2
A2. recv("hi") = 2 B2. recv() = -1, EWOULDBLOCK

(b) Two valid orderings of (a): (left) recv returned EWOULDBLOCK be-
cause the data has not been sent yet. (right) recv returned EWOULDBLOCK
because the content is still in the network.

A1. send("hello") = 5
A2. recv("hi") = 2
B1. send("hi") = 2
B2. recv() = -1, EWOULDBLOCK

(c) An invalid ordering of (a): data is received before being sent.

Figure 3: An example illustrating the ambiguity of recon-
structing a valid order from two host traces considered by
NetCheck. For the two host traces in (a), there are two pos-
sible valid orderings in (b). An invalid ordering, such as (c),
will never be produced by NetCheck.

mantics.
NetCheck reconstructs the global ordering without

relying on globally synchronized clocks or logical
clocks [18, 31]. Both approaches require modification
of the existing systems, and incur performance overhead
and complexity2. Instead, NetCheck uses a heuristic al-
gorithm and a network model to simulate and check if a
particular ordering of syscall invocations is feasible. As
a result, NetCheck has a higher level of transparency and
usability.

Next, we overview the challenges that NetCheck faces
in diagnosing network issues in complex applications,
and then describe the contributions of our work.

3 Challenges and Contributions
Challenge 1. Accuracy: ambiguity in order re-

construction. Reconstructing a global order of traces
collected from edge hosts without a globally synchro-
nized clock is sometimes impossible. For example,
Figure 3(b) lists two valid orderings of the traces in
Figure 3(a). In the ordering shown on the left the
recv call on B failed because it occurred before the
send("hello") call on A. In the ordering shown on the
right the send("hello") call on A occurred before the
recv call on B, but network delay prevented B from re-
ceiving the message when recv was invoked. The order-
ing in Figure 3(c) is invalid since data must be sent be-
fore it is received. However, even if invalid orderings are
eliminated, from the traces in Figure 3(a) it is impossible

2Over 90% of syscall invocations we observed completed in less
than 0.1 ms. Widespread and practical clock-synchronization tech-
niques do not provide a sufficiently fine timing granularity to unam-
biguously order traces from multiple hosts.

to tell if the send call on A occurred before or after the
recv call on B. How can NetCheck diagnose issues with-
out being able to reconstruct what actually happened?

Challenge 2. Network complexity: diagnosing is-
sues in real networks. The host traces that we consider
are blackbox traces: they omit information regarding the
physical network or the environment in which the traces
were collected. How can NetCheck diagnose network
issues without this crucial information?

Challenge 3. Efficiency: exploring an exponential
space of possible orderings. The space of the potential
sequences is exponential in the length of the host traces
and the number of hosts. Exhaustive exploration of this
space to find an ordering is intractable even at small trace
lengths (e.g., 30 – 100 syscalls). Real-world applica-
tions, such as a Pidgin client, make over 100K syscall
invocations in a single execution. Given this huge space
of possible orderings, how can NetCheck efficiently find
problems in user applications?

NetCheck handles each of the above three challenges
as follows:

Contribution 1. Deriving a plausible global order-
ing as a proxy for the ground truth. NetCheck ap-
proximates the true ordering by generating a plausible
ordering of the input traces that preserves the host-local
orderings of syscalls (Section 4.1). For this, NetCheck
assumes that syscalls are atomic: a syscall runs to com-
pletion before the next syscall in the trace. Our evalua-
tion shows that for 46 of the bugs reproduced from public
bug-trackers, NetCheck correctly detects and diagnoses
more than 90% of the problems (Sections 6.1 and 6.2).
Additionally, NetCheck fails to find a plausible ordering
in only 5% of the input traces that we studied in our eval-
uation.

Contribution 2. Modeling expected simple network
behavior to identify unexpected behavior. NetCheck
tackles the complexity of an application’s execution envi-
ronment by modeling an idealized network (Section 4.2).
We rely on the fact that, from the network edge, network
behavior can be described with a simple model due to
the end-to-end principle. Our network model is based on
Deutsch’s Fallacies [15, 16, 39], and encodes misconcep-
tions commonly held by developers, such as: the network
is reliable, latency is zero, hosts communicate over a di-
rect link, etc. NetCheck detects and diagnoses network
problems and application failures by finding deviations
from this ideal model of the network (Section 4.3). Our
evaluation (Section 6) demonstrates that this approach
is effective at detecting many real-world problems, in-
cluding failures reported in bug trackers of projects like
Python and Apache, and problems in everyday applica-
tions such as Pidgin, Skype and VirtualBox.

Contribution 3. A best-case linear time algorithm
to find a plausible global ordering. We present a

3

118 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ordering Algorithm

Network Model

Diagnoses Engine
Input

Diagnosis
Output

Host Traces

NetCheck

syscall simulation
result

simulation state
errors

Figure 4: Overview of NetCheck.

Algorithm 1 NetCheck pseudo code.
1: function NETCHECK(trace0, ..., tracen-1)
2: // tracei is a list of syscall invocations at host i
3: netModel = new POSIXNetworkModel()
4: (orderError, permReject) = (False, False)
5: try:
6: // Call Algorithm 2 for trace ordering
7: OrderingAlg(trace0,...,tracen-1, netModel)
8: catch OrderError:
9: orderError = True

10: catch PermanentReject:
11: permReject = True
12: diagnosis = DiagnosesEngine(netModel.state,

orderError, permReject)
13: Output diagnosis

heuristic trace-ordering algorithm that utilizes valuable
information inherent in network API semantics. The
best case running time of our algorithm is linear in the
length of the input host traces. In the worst case, our
algorithm is asymptotic with the length of the input host
traces times the number of traces. Our evaluation demon-
strates these bounds and illustrates that NetCheck needs
less than 1 second to process most of the traces studied
in this paper (Section 6.4). Even on large traces, such as
a 1 GB trace collected from Skype, NetCheck completes
in less than two minutes.

Next, we explain NetCheck’s design in further detail.

4 NetCheck Design
First, NetCheck orders the syscalls with a heuristic algo-
rithm and a network model. Following this, NetCheck
uses a diagnoses engine to compile any detected devia-
tions from the network model into a diagnosis. These
steps are overviewed in Figure 4 and Algorithm 1. The
next three sections describe each of these steps in further
detail.

4.1 Ordering host traces

Algorithm 2 lists the pseudocode of the trace-ordering
algorithm in NetCheck. The algorithm traverses the set
of all input traces in local-host order, and at each itera-
tion considers the calls that are at the top of each of the
host traces (maintained in a priority queue topCalls,
defined on line 5). In each iteration of the outer while
loop (line 3), one of the calls from topCalls is pro-
cessed. If this is not possible because no call at the top of

Algorithm 2 Trace ordering algorithm pseudo code.
1: function ORDERINGALG(trace0, ..., tracen-1, netModel)
2: // tracei is a list of syscall invocations at host i
3: while (trace0, ..., tracen-1) not empty do
4: // Record topmost calls
5: topCalls = top(trace0, ..., tracen-1)
6: // Assign each call a priority (see Table 1)
7: topCalls.sort()
8: // Process each call in topCalls or raise OrderError
9: while True do

10: if topCalls empty then // No calls can be processed
11: raise OrderError
12: // Highest priority call remaining
13: calli = topCalls.dequeue()
14: outcome = netModel.simulate(calli)
15: if outcome == ACCEPT then // Completed this call
16: ordered_trace.push(tracei.pop())
17: break // Break to outer while
18: else if outcome == REJECT then
19: continue // Continue in inner while
20: else // outcome == PERMANENT_REJECT
21: raise PermanentReject
22: end while
23: end while

the trace can be executed, an OrderError is raised. This
completes execution of the ordering algorithm (returning
to Algorithm 1) and thus no further calls are processed.

To find a call in topCalls to process, the algorithm
performs two steps. First, the algorithm sorts topCalls
(line 7) according to syscall priorities in Table 1. These
priorities are derived from the dependency graph in Fig-
ure 5 (discussed below). Second, the algorithm simu-
lates the highest priority call using the network model
(see Section 4.2). This simulation can result in one of
three outcomes: (1) accept the call (line 16) and con-
tinue with the outer while loop iteration, (2) reject the
call (line 19) and then try another call in priority order
from topCalls, or (3) a PermanentReject exception
is raised (line 21) — the syscall can never be processed
by the model, return back to the NetCheck algorithm (Al-
gorithm 1 line 10).

Prioritizing syscalls. The key to the efficiency of the
order reconstruction algorithm is to simulate syscalls in
an order that is derived from the POSIX syscalls depen-
dency graph in Figure 5. This graph was created by ex-
amining the POSIX specification for each system call
and looking at which calls can modify the state used by
other calls. This graph can be used to derive a priority
value for each syscall (for simplicity we use integer pri-
ority values): if syscall x may-depend-on y, then x has
a higher priority value and should be simulated before y
(Table 1). For example, according to Figure 5, connect
should be simulated before listen. This scheme is justi-
fied because processing a syscall y in the network model
could affect x and make it impossible to simulate x with-
out undoing y. This helps NetCheck to avoid significant

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 119

Priority value Syscalls

0 socket, bind, getsockname,
getsockopt, setsockopt

1 poll, select, getpeername
2 accept, recv, recvfrom, recvmsg, read

3 connect, send, sendto, sendmsg,
write, writev, sendfile

4 close, shutdown, listen

Table 1: Simulation priority of common syscalls: the lower
the priority value, the higher the priority.

socketbind getsockopt,
setsockoptgetsockname

accept getpeername

poll, select

connect recv, recvfrom,
recvmsg, read

send, sendto, sendmsg,
write, writev, sendfileclose, shutdownlisten

Figure 5: Dependency graph of system calls in the POSIX
networking API. Edges represent the may-depend-on relation.

backtracking in the case where the return value of x re-
quires that y has not yet occurred.

Syscall prioritization enables the ordering algorithm to
permanently process a syscall after trying (in the worst
case) the top syscall on each trace. The inner while loop
(line 9) iterates through the top-most syscalls on each
trace and removes them from a priority queue (thus con-
sidering each syscall at most once per inner loop execu-
tion). If this syscall is accepted (lines 15–17), then pop
removes it from tracei (line 16) which permanently con-
sumes the syscall (there is no way to later undo this call).
If this call cannot currently be processed and is rejected
(lines 18–19), then it will be placed again in topCalls
(line 5) after a syscall in the current priority queue (and
thus on the top of a trace) is consumed. Therefore, in the
worst case, Algorithm 2 will never backtrack beyond the
current rejected call. This makes the trace-ordering algo-
rithm in Figure 2 efficient — its best-case running time
is linear in the length of the input host traces if no back-
tracking occurs, and its worst-case running time is the
length of the input host traces multiplied by the number
of host traces i.e., the number of hosts (see Section 6.4).

4.2 Model-based syscall simulation

The network model component of NetCheck simulates
syscalls (line 14 in Algorithm 2) to determine if a given
syscall can be added as the next syscall in the global or-
der. The network model treats the network and the ap-
plication that generated the traces as a blackbox and re-
quires no application-specific information.

To simulate a syscall, the model uses the current net-
work and host states tracked by the model, and net-

A2. bind(3, ...) = 0
A3. listen(3, 1) = 0
B2. connect(3, ...) = 0

(a) One valid ordering: all syscalls returned successfully.

A2. bind(3, ...) = 0
B2. connect(3, ...) = -1, ECONNREFUSED
A3. listen(3, 1) = 0

(b) A second valid ordering: connect returned ECONNREFUSED.

Figure 6: An example that demonstrates how return values of
syscalls can guide trace ordering.

work semantics defined by the POSIX API. The network
model state includes information related to the observed
connections/protocols (e.g., pending or established TCP
connections), buffer lengths and their contents, data-
grams sent/lost, etc. Simulating a syscall with a model
results in one of three determinations: accept the call,
reject the call, or permanently reject the call.

A key technique used by the model to determine if a
syscall can be accepted is to use the syscall’s logged re-
turn and errno values. As an example, Figure 6 shows
two possible orderings for bind and listen calls at host
A, and a connect call at host B. For connect to return
0 (success), it is necessary for listen to have already
occurred. So, a return value of 0 by connect indicates
that (a) is a valid ordering. However, had connect at
host B returned -1 (and a connection refused errno), then
(b) would have been the valid ordering.

The current state of the model determines if the model
can accept a syscall invocation with a specific return
value. In certain cases the model can accept a syscall
with a range of possible return values. For example, if
the model’s receive buffer for a connection has n bytes,
then the return value of the read syscall (number of bytes
read) may be a value between 0 and n.

We now explain how NetCheck produces one of the
three outcomes through Figure 7, which illustrates how
NetCheck processes the log in Figure 1. We use A.x to
denote a syscall x at host A. When a call is accepted, the
vertex of this syscall and all of its incoming edges are
removed in the next step in the figure; the removed call
is added to the final output ordering in Figure 7(l). If
a call is rejected, the dashed-arrow may-depend-on rela-
tion edge between two syscalls is converted into a solid-
arrow depends-on relation edge. The network model pro-
duces one of three outcomes:

Accept the syscall: the simulation of the syscall is
successful, and the return value and errno match the
logged values. In Figure 7(a), the syscalls in priority
queue topCalls (defined on line 5 of Algorithm 2) are
A.socket and B.socket, shaded in yellow. The prior-
ity of the two calls are the same, so either of them could
be simulated. In this case, A.socket is simulated, ac-
cepted, and then removed from the trace. In Figure 7(a),

5

120 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

this corresponds to removing the vertex and all its incom-
ing edges to generate Figure 7(b). Similarly, B.socket
and A.bind are accepted and removed from the traces in
Figure 7(b) and (c), indicated by the bold circle around
each syscall.

Reject the syscall: the network model cannot simulate
the syscall because the model is not in a state that can
accept the syscall with its logged return value and er-
rno. This indicates that the syscall should be simulated
at a later point. In Figure 7(d), the calls A.listen and
B.connect are dependent according to Figure 5. In Ta-
ble 1, connect has a higher priority than listen, so
B.connect is simulated first. (This is necessary because
of situations like Figure 6(b) where connect fails be-
cause listen was not yet called.) However, the network
model rejects this syscall (indicated by a bold and red cir-
cle) because for B to successfully connect to A, A must
be actively listening. In Figure 7(e), the directed edge
from B.connect to A.listen indicates that B.connect
should be ordered after A.listen. As A.listen is the
next call with the highest priority in topCalls, it gets sim-
ulated and accepted — its vertex and all incoming edges
are removed in Figure 7(f).

We describe all of the cases in which our NetCheck
prototype rejects a syscall on our wiki3.

Permanently reject the syscall: there are errors during
the simulation of the syscall and the call can never be
correctly simulated at a future point. In Figure 7(j) and
(k), the network model first accepts B.send and then at-
tempts to simulate A.recv. This triggers an error since
the content in the receiving buffer of A, “Hola!”, is dif-
ferent from the content in the send buffer. No additional
system calls will allow A.recv to correctly complete in
the future.

4.3 Fault diagnoses engine

When NetCheck finished processing the trace (Algo-
rithm 1), either through consuming all actions, finding an
order error, or permanently rejecting an action, the state
of the model contains valuable information. The diag-
noses engine analyzes the model simulation state and any
simulation errors to derive a diagnosis. The diagnoses
engine makes the simulation results more meaningful to
an administrator who might be tasked with resolving the
issue.

The diagnoses engine infers a diagnosis based on a set
of rules. If the simulation state matches a rule, then the
corresponding diagnosis is emitted. Table 2 summarizes
the rules; our technical report contains example output
for each of the rules [56]. Although the diagnosis rules
are heuristics, Section 6 shows that these are effective at

3https://netcheck.poly.edu/projects/project/wiki/
network_model

detecting problems in a wide range of applications.

Figure 8 lists an example of NetCheck output for the
multibyte unit test from Table 4. In this test, the server
incorrectly uses byte size to calculate the content-length
of an HTTP header. This gives the wrong value for HTTP
responses with multi-byte characters and the client fails
to get the entire content that it requested. This fault was
listed on the Ruby bug tracker (test case 2.16 in [56]).

The output in Figure 8 consists of three parts, each
of which can be optionally omitted. Part (1) lists non-
fatal errors uncovered through simulation by the network
model in the form of a snippet of the valid ordering de-
rived with OrderingAlg and any model deviations at the
syscall level. This information is useful to application
developers to understand the series of actions leading to
the fault. In the figure, the model detected that there is
still data remaining in the buffer at Browser even though
both close on Browser and shutdown on Server re-
turned successfully. Part (2) presents statistics for the
observed connections, which may be useful for network
administrators to perform performance debugging or see
loss / MTU issues. Finally, part (3) present a high-level
diagnosis summary generated by the diagnoses engine,
which is of interest to all users of NetCheck. Part (3)
of Figure 8 shows that the network connection with out-
standing data has been shut down by the Browser. This is
due to an application-level miscommunication between
the Browser and Server.

In larger applications, small network errors can accu-
mulate to cause an application failure. For example, an
MTU problem that can only be detected after consider-
ing a loss pattern across multiple transmission attempts.
Packet loss is not unexpected as the network may drop
packets, but diagnoses engine correctly diagnoses this as
an MTU issue by considering the pattern of loss over the
entire trace set (Section 6.2).

5 Implementation

NetCheck consists of 5.1K lines of Python code and is
released freely under an MIT license [33]. The imple-
mentation supports the widely used POSIX network API,
including support for common flags and optional argu-
ments. This includes all of the syscalls that operate on
file descriptors, and optional flags observed in traces of
popular applications. It took 2 person-months to imple-
ment the network model.

NetCheck currently supports traces generated by
strace on Linux. We are developing parsers for traces
generated by other syscall tracing tools, such as truss
on Solaris and dtrace on BSD and Mac OSX, to pro-
cess these traces in a uniform manner [35].

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 121

socket

bind

listen

accept

recv

socket

connect

send

bind

listen

accept

recv

socket

connect

send

bind

listen

accept

recv

connect

send

listen

accept

recv

connect

send

listen

accept

recv

connect

send

accept

recv

connect

send

accept

recv

connect

send

accept

recv

send recv send recv send

A.socket B.socket A.bind

A B A B A B A B A B

A B A B A B A B A B

A.listen B.connect A.accept B.send A.recv

(a) Accept A.socket (b) Accept B.socket (c) Accept A.bind (d) Reject B.connect (e) Accept A.listen

(f) Reject A.accept (g) Accept B.connect (h) Accept A.accept (i) Reject A.recv (j) Accept B.send

(l) Recovered ordering, with a permanent rejection of A.recv

recv

A

(k) Permanently reject
A.recv

B

None

Figure 7: A step-by-step demonstration of how the ordering algorithm (Algorithm 1) processes the traces in Figure 1. Vertices
are syscall invocations and solid edges represent dependency — capturing both the local ordering constraint and dependencies
between remote syscall invocations. Shaded yellow vertices in each step represent the syscall invocations in the topCalls list in
Algorithm 2. The syscall invocation simulated by the model at each step of the algorithm is circled in bold. A dashed edge denotes
the may-depend-on relation from Figure 5. Each model simulation step either accepts or rejects a syscall. If accepted, the vertex of
the syscall and all its incoming edges are removed in the next step, and the call is placed in the final output ordering (l). Steps (d),
(f), and (i) show steps in which the syscall invocations were rejected (converting the may-depend-on relation edge into a depends-on
relation edge). In step (k), the A.recv is permanently rejected because the traces in Figure 1 contain a bug: what was received is
different from what was sent. The final output ordering in (l) orders all of the calls, except for the permanently rejected A.recv.

(1) Verifying Traces

Serve: write(6, "<html>\n<head>\n<title> ... ") = 343
Browser: read(3, "<html>\n<head>\n<title> ... ") = 302
Browser: close(3) = 0
=> NONEMPTY_BUFFER: Socket closed with data in buffer.
Server: read(6, ...) = -1, ECONNRESET (Connection reset)
=> UNEXPECTED_FAILURE: Recv failed unexpectedly.
Server: shutdown (6) = 0
=> ENOTCONN: [Application Error] Attempted to shutdown

a socket that is not connected.

(2) TCP Connection Statistics

Connection from Browser (128.238.38.67:40830) to Server
(128.238.38.71:3000)
* Data sent to accepting Server: 114 bytes sent,

114 bytes received, 0 bytes lost
* Data sent to connected Browser: 517 bytes sent,

476 bytes received, 41 bytes lost (7.93%)

(3) Possible Problems Detected

* Browser has 1 TCP connection to 128.238.38.71:3000

with data in the buffer
* Connection to Server has been reset by Browser
* Server attempted to shutdown an unconnected socket
* Data loss is most likely due to application behavior

Figure 8: NetCheck’s output for the multibyte unit test from
Table 4.

Rule Description

1. Unaccepted
Connections

If a TCP connection has unaccepted (pending)
connections, this is an indicator that the con-
necting host may be behind a middlebox.

2. Ignored Accepts No matching connect corresponding for an ac-
cept (middlebox indicator).

3. Connect Failure
Connect fails for reasons other than (1) or (2),
indicating that a middlebox (e.g., NAT) is fil-
tering network connections.

4. Connection Refused Connection is refused to an address that is be-
ing listened on (middlebox indicator).

5. Nonblocking
Connect Failure

A nonblocking connect never connects (mid-
dlebox indicator).

6. No Relevant Traffic
A host has outgoing traffic, but not to a rele-
vant address, then the host is likely connecting
through a proxy.

7. Datagram Loss A significant (user-defined) fraction of data-
grams are lost.

8. MTU Datagrams larger than a certain size are
dropped by the network.

9. Non-transitive
Connectivity

A can communicate with B, B can communi-
cate with C, but A cannot communicate with C.

Table 2: NetCheck post-processing diagnoses. Example of
rule (1): when a client is behind a NAT, (i) the client uses a
private IP, (ii) the peer socket address in server’s accept is not
the client’s IP.

7

122 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Evaluation
We evaluated NetCheck in four ways. First, we ex-
amined network issues in popular applications reported
on public bug trackers (Section 6.1). NetCheck diag-
nosed known bugs across multiple projects with a rate
of 95.7%, demonstrating its accuracy. Second, we repli-
cated failures on a real network, the WITest testbed [51],
and used NetCheck to diagnose the issues (Section 6.2).
This result indicates that we can diagnose real network
issues as deviations from a simple model of expected
network behavior. Third, we used NetCheck to diag-
nose the root cause of faults in widely-used applications,
such as FTP, Pidgin, Skype and VirtualBox (Section 6.3).
Finally, we evaluated NetCheck’s performance across all
of the test cases and applications detailed in our evalu-
ation and proved that the algorithm has a best-case lin-
ear running time (Section 6.4). This demonstrates that
NetCheck is efficient. A detailed description of all the
bug traces in this section, and the corresponding bug re-
ports are provided on our wiki [33] and in our technical
report [56].

6.1 Diagnosing Bugs Reported in Bug Trackers

As noted in Section 3, the first challenge for NetCheck
is to reconstruct a global ordering of traces. To evalu-
ate NetCheck’s accuracy, we collected bugs from pub-
lic bug trackers of 30 popular projects. We targeted
networked-related bugs that are small, reproducible, and
have a known cause. We did not intentionally select bugs
based on how NetCheck works. For each bug report we
reproduced the issue from the report description by writ-
ing code to cause the observed behavior. This generated
a total of 71 traces. Table 3 lists the results of running
NetCheck on these traces. The traces are grouped into
24 categories based on the exhibited bug or behavior.
Note that not all traces produce a bug. Some traces gen-
erate different behaviors on different OSes and can po-
tentially lead to portability problems. For example, the
loopback_address category captures the case when a
socket exhibited different behaviors bound to the local
interface (0.0.0.0 or 127.0.0.1). We briefly review four
bugs from this evaluation.

1. MySQL provides a server-side option to only accept
TCP connections from the loopback interface. If a user
connects to the local IP address of the host that is host-
ing the MySQL server configured with this option, the
connection is refused. This option provides extra secu-
rity, but it is also difficult to debug. NetCheck correctly
diagnoses the root cause as a socket bound to the loop-
back interface attempting to connect to a non-loopback
address — bind_local_interface in Table 3.

2. When a Skype call’s quality degrades, the user
often terminates and restarts the call or restarts Skype.
This may cause a known issue: when a TCP/UDP socket

Bug category (number of traces) Bugs detected & correctly
diagnosed / # Bugs

bind_local_interface (2) 2 / 2
block_udp_close_socket (2) 1 / 1
block_tcp_close_socket (2) 1 / 1
broadcast_flag (2) 2 / 2
buffer_full (1) 1 / 1
invalid_port (3) 3 / 3
loopback_address (7) 0 / 0
multicast_issue (3) 3 / 3
multiple_bind (1) 1 / 1
nonblock_connect (13) 8 / 9
nonblock_flag_inheritance (2) 1 / 1
oob_data (5) 5 / 5
readline (1) 0 / 0
recvtimeo (1) 1 / 1
setsockopt_misc (3) 2 / 2
shutdown_reset (1) 0 / 1
sigstop_signal (3) 0 / 0
so_linger (5) 2 / 2
so_reuseaddr (2) 2 / 2
tcp_nodelay (3) 0 / 0
tcp_set_buf_size_vm (4) 4 / 4
udp_large_datagram_vm (2) 2 / 2
udp_set_buf_size_vm (2) 2 / 2
vary_udp_datagram (1) 1 / 1
Total Number of Traces: 71 44 / 46 (95.7%)

Table 3: Evaluating NetCheck on reported network bugs.

is waiting on recv/recvfrom, a close call made on
the socket from a different thread will keep the socket
blocking indefinitely. This bug has also been reported
on GCC and Ruby bug trackers [10, 45]. We repro-
duced this bug, and NetCheck successfully diagnosed it
(block_tcp/udp_close_socket in Table 3).

3. Different interpretations of network APIs have re-
sulted in OS portability issues. For example, implemen-
tations of accept vary in whether file status flags, such
as O_NONBLOCK and O_ASYNC, are inherited from a lis-
tening socket [1]. This has caused faults in a variety
of applications, including Python’s socket implementa-
tion [2, 34]. This issue is successfully diagnosed by
NetCheck (nonblock_flag_inheritance in Table 3).

4. Variations in socket API implementations can
also have security implications. On Windows, an ap-
plication can exploit the SO_REUSEADDR socket option
to deny access to, or impersonate, services listening
on the same local address. Over a dozen major soft-
ware projects [47, 43, 41, 50, 42, 36] include platform-
specific code to mitigate security risks associated with
SO_REUSEADDR. This issue is successfully diagnosed by
NetCheck (so_reuseaddr in Table 3).

Overall, NetCheck correctly detected and diagnosed
95.7% of the 46 reported bugs we considered. This
indicates that NetCheck is accurate. Our technical re-
port [56] further details the test cases in Table 3.

6.2 Diagnosing Injected Bugs in a Testbed

Deployed applications run in complex networking envi-
ronments. To evaluate whether NetCheck can diagnose
issues in real networks, we conducted an experiment on
the WITest testbed [51] — a networking environment

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 123

Bug Total number
of diagnoses Bug detected Incorrect

diagnoses
bind6 1 � 0
bind6-2 1 � 0
clientpermission 2 � 0
closethread 3 � 0
conn0 1 � 0
firewall 2 � 1
gethostbyaddr 1 � 0
httpprox1 1 � 0
httpprox2 1 � 0
keepalive 1 � 0
local 3 � 0
max1 3 � 0
maxconn 4 � 0
maxconn2 6 � 0
mtu 2 � 0
multibyte 2 � 0
noread 1 � 0
permission 1 � 0
portfwd 1 � 0
special 1 � 0
Total: 38 18/20 (90%) 1/38 (3%)

Table 4: NetCheck’s classification of controlled network bugs.
The total number of diagnoses are all the issues detected by
NetCheck. The �/� indicate the success/failure of NetCheck
in diagnosing the root cause of the bug. Incorrect diagnoses are
false positives.

for studying wireless connectivity. We used a typical
setup for this testbed, running a client-side application
that issued requests to a WEBrick [48] HTTP server. For
the experiment, an administrator replicated and injected
network-related bugs from the WEBrick tracker into the
testbed. We then gathered trace data from both hosts with
strace. Table 4 lists the results from this evaluation.
We now review two categories of bugs that NetCheck
successfully diagnosed: IPv6 compatibility, and issues
related to middleboxes.

IPv6 compatibility. With pervasive IPv6 deployment,
applications are beginning to set IPv6-only socket op-
tions by default. However, IPv6 lacks backward compat-
ibility and can break many legacy IPv4 applications [8].
For example, the IPv6-only option breaks the network-
ing functionality in Java and triggers a “network un-
reachable” exception [21]. Other applications including
Eclipse, VNC, Google Go, etc., will generate similar ex-
ceptions that are too generic to diagnose the root cause.
NetCheck’s model expects that IPv6 does not preempt
IPv4 in an idealized environment, making it possible to
detect this incompatibility by tracking inconsistent ad-
dressing schemes (bind6/bind6-2 bugs in Table 4). As
a result, NetCheck generates a much more informative
diagnosis of this issue [56].

Middleboxes. Middleboxes, such as firewalls and
NATs, introduce features that impact most network ap-
plications. NetCheck can be used to detect and diag-
nose the effects of middleboxes on an application. For
example, in an FTP session, a PASV command on the
client-side allows the server to define an IP/port that the
client can use to connect to the server and receive data.

The negotiated port is usually a high numbered port on
the server that is typically blocked by firewalls on the
server-side. NetCheck can detect and diagnose this kind
of failure (firewall bug in Table 4).

Note that for many of the injected bugs, NetCheck also
provided accurate supplementary information (included
in the total diagnoses count in Table 4), such as packet
loss information and buffer state. For example, if a con-
nection is closed with data in the receive buffer, then
NetCheck warns that the connection might have been
closed prematurely by the receiver.

Our evaluation of injected bugs in a controlled net-
work environment (Table 4) shows that despite the com-
plexity of a real network, NetCheck’s idealized network
model is effective, diagnosing 90% of the injected bugs
with a false positive rate of 3%. The injected bugs used
in this study are detailed in [56].

6.3 Bugs in Popular Applications

We also evaluated NetCheck on traces generated by
large, widely used applications — an FTP client, Pid-
gin, Skype and VirtualBox. The issues detailed in this
section were uncovered through normal, practical use
of the applications on university and home networks.
NetCheck produced useful diagnosis for problems across
all of these applications (Table 5).

While using an FTP client to interact with an FTP
server, we noticed that certain commands, such as cd
and pwd, executed successfully, while others, like ls or
get, would not be processed. When one of the latter
command was issued, the FTP client was locked up until
the connection timed-out. We used NetCheck to diag-
nose the issue by applying it to traces from the server
and the client. NetCheck’s diagnoses are summarized
in Table 5. The problem is that commands like ls and
get are followed by a PORT command from the client to
inform the server about the IP/port that the client is lis-
tening on to receive the data (default behavior in most
FTP clients). Since the client was behind a NAT, the des-
tination IP address in the PORT command was a local ad-
dress. Therefore, all connection attempts from the server
failed to reach the client. NetCheck correctly identified
that the problem is that the client was behind a NAT. The
diagnoses engine in NetCheck did this by detecting a dif-
ference between the IP of the client’s original connection
to the server and the IP specified in the PORT command.

Pidgin is a commonly used chat client application.
Pidgin clients communicate with each other via an
XMPP server. During a group meeting, one of the users
(user A) was repeatedly dropped from the group con-
versation; another user (user B) could not log in with
the Pidgin client. Traces were gathered from all the
Pidgin clients and the XMPP server (4 hosts in total),
and NetCheck was used to diagnose the network issues.

9

124 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application: Issue NetCheck Diagnoses Trace Size
FTP: Could issue
only some of the
commands.

• Client is behind NAT.
• 42% data loss.

Client: 245 KB
Server: 497 KB

Pidgin: Loss of
connection; file
transfer and login
failure.

• The IP address that getsock-
name returns is different from
the one the socket is bound to.
• Message being received that
has not been sent.

Client1: 49 MB
Client2: 67 MB
Client3: 81 MB
Server: 93 MB

Skype: Poor call
quality and
messages lost.

• Data loss due to delay.
• A different thread attempts to
close sockets.
• Client is behind NAT.

Client1: 831 MB
Client2: 1.6 GB

VirtualBox: Silent
drop of large UDP
datagrams.

• Virtualization misbehavior.
• Guest OS: MTU.
• Host OS: UDP buffer size mis-
match.

2.5 MB

Table 5: NetCheck diagnosis of faults in popular applications.

NetCheck detected two important issues:
(1) Invocations of the getsockname syscall by user

A’s Pidgin client repeatedly returned an IP address that
was different from the address that the socket was bound
to. User A was multi-homed and was connected to both
an ethernet and a wireless network. The wireless con-
nection was poor, causing the default IP address of user
A to change as she disconnected and reconnected to the
wireless network. In this case, the network model simu-
lated a connect syscall call on a socket bound to one IP
to an endpoint that expected a different IP address. The
connect generated a permanent rejection (line 21 in Al-
gorithm 2). NetCheck therefore diagnosed the problem
as a mismatch between the intended IP address and the
IP address actually used.

(2) User B’s Pidgin client could send data to the XMPP
server, but all of the server’s responses were lost. User
B was behind a firewall that filtered packets with high-
numbered source port values, including port 5222 on the
XMPP server. By examining the model state towards the
end of the trace, specifically considering the pattern of
packet loss, diagnoses engine observed the selective fil-
tering and diagnosed the problem as a middlebox issue.

Skype is a widely used VoIP service and instant mes-
saging client. During a Skype session we noticed poor
call quality and that messages were frequently dropped.
Traces from two instances of Skype were gathered and
evaluated with NetCheck. NetCheck detected that both
clients were behind a NAT and that network delay caused
severe data loss. NetCheck also revealed that when call
quality degrades, Skype attempts to close its sockets
from a separate thread. However, this does not termi-
nate the blocked socket operation, but instead hangs the
thread that is blocked on this operation. This is a known
issue for some operating systems — a close call on
a blocking socket from a different thread will keep the
socket blocking indefinitely on recv or recvfrom [10,
45] (also block_tcp/udp_close_socket in Table 3).
NetCheck diagnoses this issue correctly. The diagnoses
engine also outputs a potential solution for Skype devel-

1MB 4MB 32MB 256MB 1G 4G

0.25sec

1sec

4sec

16sec

1min

4min

10min

Trace Size

R
un

tim
e

Linear
Quadratic

Figure 9: Runtime performance overhead of NetCheck. Data
includes all traces in Sections 6.1–6.3.

opers as part of the diagnoses: invoking shutdown on the
blocking socket immediately unblocks recv/recvfrom.

VirtualBox is a popular tool for running virtualized
operating system instances. We found and diagnosed a
new bug in VirtualBox using Netcheck – applications
running in a Linux VirtualBox instance on a Windows
host OS would discard UDP datagrams of size over 8 KB
when sent over an interface with VirtualBox’s NAT vir-
tual adapter [49]. When run on application traces gath-
ered from the Linux instance (the guest OS), NetCheck
correctly diagnoses the UDP datagram loss as a MTU
issue. This is because from the standpoint of the guest
VM, UDP datagrams over a certain size are discarded.

However, the root cause for this bug is as follows. The
default receive buffer size on Windows is 8 KB. When
the receive buffer is not full, Windows sockets can hold
at least one more datagram even if the total datagram
size exceeds the buffer size. When VirtualBox queries
the socket for the amount of received data, Windows re-
turns either the total size of datagrams in the buffer, or
the buffer size, whichever is smaller. When a datagram
larger than 8 KB is placed in the receive buffer, Virtual-
Box believes that the available datagram is only 8 KB
and allocates an 8 KB application buffer. VirtualBox
then silently drops the large datagram. To understand the
usefulness of NetCheck for diagnosing this bug in Virtu-
alBox, we collected traces of syscalls made by Virtual-
Box to the Windows host OS (udp_set_buf_size_vm
in Table 3) to reproduce this issue. The network model
of NetCheck correctly indicates the issue as being a UDP
buffer size mismatch interfering with datagram delivery.
Therefore, on the host OS, NetCheck also produces an
accurate diagnosis of the root cause.

Our evaluation shows that NetCheck is effective at di-
agnosing faults in large applications in practical use.

6.4 Performance

Dynamically recording syscall invocations of complex
applications can produce huge traces. Therefore, effi-

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 125

ciency is a key challenge to designing a diagnosis tool
that relies on logged syscall information. Figure 9 shows
NetCheck’s running time for traces of varying lengths.
The figure plots the data for all the traces mentioned in
this paper. Note that both the x and the y axes of Fig-
ure 9 have a logarithmic scale (i.e., a quadratic function
is a straight line). The figure illustrates that NetCheck’s
performance across the various input traces lies between
a quadratic and a linear function. NetCheck completes
in less than 1 second on most traces, and even on 1 GB
long traces, NetCheck completes in less that two min-
utes4. These measurements demonstrate that NetCheck
is efficient for practical use.

Algorithm complexity. We now consider the com-
plexity of the trace-ordering algorithm (Algorithm 2) —
the key algorithm in NetCheck. Let n be the number of
hosts, and l be the sum of the lengths of all input host
traces. The inner while loop in Algorithm 2 must accept
one syscall (if it rejects all syscalls, then the algorithm
terminates). In the best case, this loop accepts a syscall
on the first iteration, and in the worst case it must run
n times to accept a syscall. The outer while loop iterates
until all syscalls are accepted, or a total of l times. There-
fore, Algorithm 2 makes l simulation calls in the best
case, and n∗ l simulation calls in the worst case. Suppos-
ing that the model simulates a syscall in constant time,
the worst-case running time of Algorithm 2 is O

(
nl
)

and
its best-case running time is O

(
l
)
. Typically, the num-

ber of logged syscalls is much larger than the number of
hosts, so the runtime will trend towards O

(
l
)
.

Tracing overhead. To evaluate the overhead of
strace, we micro-benchmarked the unit tests in Sec-
tion 6.1, both with and without strace, 1K times.
The overhead of strace across these runs, measured in
elapsed time, had a median of 41 ms (0.79%), which is
negligible. The standard deviation was 60 sec, due to the
varying I/O behavior of the programs. Furthermore, in
our experience, the overhead of strace on larger appli-
cations, such as Pidgin and Skype, was not perceptible.

6.5 Ordering Heuristic Efficacy

Algorithm 2 in Section 4.1 is a heuristic. One poten-
tial problem is if this algorithm terminates early: line 11
terminates the trace-ordering algorithm when no calls in
topCalls can be accepted. Such a termination can oc-
cur before NetCheck detects an issue in the application
traces. To evaluate the frequency of this early termi-
nation one of the authors manually inspected all of the
traces collected in Sections 6.1 and 6.2, i.e., bug track-
ers evaluation (71 traces) and the testbed evaluation (20

4This suggests that NetCheck can derive multiple plausible order-
ings without a significant performance penalty and use these to diag-
nose the issue. However, this would make NetCheck unnecessarily
more complex and it already achieves high accuracy (Section 6.1).

traces). On just 2 of these traces (of 91), or 2.2%, did
NetCheck not find any bugs and terminated without fully
processing all the syscalls. This indicates that the order-
ing heuristic in NetCheck is effective at reconstructing
plausible orderings that can then be used for diagnosis.

7 Limitations
IPC blindspots. NetCheck cannot detect faults that do
not impact an application’s syscall trace. This limita-
tions impacts two situations. First, if an application
uses non-socket IPC mechanism, then NetCheck will
not see the resulting network traffic. For example, the
gethostbyaddr error in Section 6.2 is due to an is-
sue in how DNS requests are handled. Since DNS
requests are handled in part by a non-native program
avahi, the application’s strace information does not
include the relevant calls. However, NetCheck can be ex-
tended to parse strace call data and arguments to han-
dle application-specific situations, for instance, to better
understand DNS resolution errors reported by avahi.

Network blindspots. NetCheck observation of and
reasoning about the network is limited to what is cap-
tured in system call traces. For example, NetCheck does
not know the state of the OS network buffers, the network
topology, etc. However, NetCheck’s reliance on traces
allows it to process previously generated traces, which is
useful for reproducing and diagnosing bug reports.

Dynamic analysis. By relying on observed behav-
ior, NetCheck can be considered as a dynamic analysis
technique. As such, it cannot diagnose latent application
behaviors that are possible, but have not been observed.
However, dynamic analysis allows NetCheck to diagnose
application issues that arise in deployment, such as those
due to in-network state.

Improving the diagnoses engine. The diagnoses en-
gine in NetCheck may be further improved with machine
learning [3, 52]. For example, a supervised machine
learning approach can be used to derive a signature from
application traces or network packet traces, which can
then be labeled according to previously observed patterns
of correct and incorrect behavior [13].

Network model completeness. The network model in
NetCheck simulates the behavior of network syscalls in
an idealized network. To correctly perform this simula-
tion, the model must be faithful and complete. Currently,
the network model implements all syscalls and optional
flags observed in traces of popular applications (Sec-
tion 6). We continue to refine and improve this model
as we encounter important new behaviors.

Multithreading. Currently, NetCheck cannot model
systems with multiple threads that access shared re-
sources (e.g., use the same socket descriptor). Improving
multithreading support is part of our future work.

11

126 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 Related Work
Blackbox diagnosis. Aguilera et al. introduced an im-
portant blackbox approach to debugging distributed sys-
tems [4]. In this approach, observations of a distributed
executions are used to infer causality, dependencies,
and other characteristics of the system. This approach
was relaxed in later work to produce more informative
and application-specific results in Magpie [5] and X-
Trace [19]. This prior work focuses on tracking request
flows through a distributed system. BorderPatrol [27] is
another approach that traces requests among binary mod-
ules. In contrast, NetCheck is a blackbox approach to
diagnosing network issues in applications.

Khadke et al. [24] introduced a performance debug-
ging approach that relies on system call tracing. Unlike
this prior work, NetCheck does not assume synchronized
clocks and reconstructs a plausible global ordering.

Ordering events in a distributed setting. The
happens-before relation logically orders events in a dis-
tributed system [28]. This relation can be realized with
vector time, which produces a partial ordering of events
in the system [18, 31]. Vector time requires non-trivial
instrumentation of the application. NetCheck recon-
structs a plausible order of the captured syscalls through
heuristics, without modifying the application.

Globally synchronized clocks can order events across
hosts. However, over 90% of syscall invocations we ob-
served completed in less than 0.1 ms. Achieving syn-
chronization at a granularity that is sufficient to order
syscalls at hosts on a LAN is expensive and difficult.

Log mining. Prior work that uses dynamically cap-
tured logs of a program’s execution is extensive and in-
cludes work on detecting anomalies [12, 22, 52, 30],
linking logs and source code [55], identifying perfor-
mance bugs [40, 44], and generating models to support
system understanding [7, 6]. In contrast to this work,
NetCheck’s focus is on diagnosing network issues from
logs of syscalls, though prior work on log mining can be
used to expand the scope of NetCheck.

Debugging distributed systems. Techniques for de-
bugging distributed systems are relevant to NetCheck’s
context of diagnosing network issues in applications.
Many tools exist for run-time checking of distributed
systems. These tools monitor a system’s execution and
check for specific property violations [37, 20, 29, 54, 14].
NetCheck is a more light-weight approach to diagnose
issue observed through the syscall interface. This makes
NetCheck broadly applicable, but it also limits the kinds
of issues that NetCheck can uncover (see Section 7).

Specification and runtime verification. Substantial
work has been done in validating API and protocol be-
haviors, e.g., finding faults in Linux TCP implementa-
tion [32], SSH2 and RCP [46], BGP configuration [17],
and identifying network vulnerabilities [38]. Rigorously

specifying protocols and APIs for testing and trace vali-
dation has also been described in [9]. These techniques
are effective at finding bugs in an API or a protocol, but
are not effective when the environment and networking
semantic are also contributing factors. NetCheck can di-
agnose issues even if the input traces are valid API ac-
tions. Further, the simplicity of the NetCheck approach
is one of its key advantages over prior work.

Application-specific fault detection. Pip [37] and
Coctail [53] are distributed frameworks that enable de-
velopers to construct application-specific models, which
have proven effective at finding detailed application
flaws. However, to utilize these methods, a knowl-
edge of the nature of the failures needs to be ac-
quired, and the specific system properties must be spec-
ified. NetCheck diagnoses application failures without
application-specific models. Khanna [25] identifies the
source of failures using a rule base of allowed state tran-
sition paths. However, it requires specialized human-
generated rules for each application.

9 Conclusion
This work proposes NetCheck, a tool for fault detection
and diagnosis in networked applications. NetCheck is
a blackbox technique that performs its diagnosis on an
input set of traces of syscall invocations from multiple
application hosts. NetCheck derives a plausible global
ordering as a proxy for the ground truth, and uses a model
of expected and simple network behavior to identify and
diagnose unexpected behavior.

Our evaluation demonstrates that NetCheck is accu-
rate and efficient. It correctly diagnosed over 95% of
faults from traces that reproduce faults reported on bug
trackers of 30 popular open-source projects. When ap-
plied to injected faults in a testbed, NetCheck identi-
fied the main cause in 90% of the cases. Furthermore,
we used NetCheck to diagnose issues in large applica-
tions, such as Skype and VirtualBox, and in VirtualBox
NetCheck found a new bug. We proved that NetCheck’s
algorithm derives a plausible global ordering in best-case
linear running time and that it is efficient in practice.

Our experience with NetCheck demonstrates that it is
possible to have an application-agnostic tool that pro-
vides practical and accurate fault diagnosis. NetCheck
is freely available for download [33].

Acknowledgements
We thank our shepherd Dejan Kostic, Ulrike Stege for dis-
cussing ordering algorithms with us, and our reviewers for
their invaluable feedback. This work was supported in part by
the National Science Foundation through Awards 1223588 and
1205415, NSF Graduate Research Fellowship Award 1104522,
the NYU WIRELESS research center and the Center for Ad-
vanced Technology in Telecommunications (CATT).

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 127

References
[1] accept. Accessed 2/27/2014, http://pubs.opengroup.org/

onlinepubs/009695399/functions/accept.html.

[2] add SOCK_NONBLOCK and SOCK_CLOEXEC to socket
module. Accessed 2/27/2014, http://bugs.python.org/
issue7523.

[3] AGGARWAL, B., BHAGWAN, R., DAS, T., ESWARAN, S., PAD-
MANABHAN, V. N., AND VOELKER, G. M. Netprints: diagnos-
ing home network misconfigurations using shared knowledge. In
NSDI (2009).

[4] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. In SOSP (2003).

[5] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using magpie for request extraction and workload modelling. In
OSDI (2004).

[6] BESCHASTNIKH, I., BRUN, Y., ERNST, M. D., AND KRISHNA-
MURTHY, A. Inferring Models of Networked Systems from Logs
of their Behavior with CSight. In ICSE (2014).

[7] BESCHASTNIKH, I., BRUN, Y., SCHNEIDER, S., SLOAN, M.,
AND ERNST, M. D. Leveraging existing instrumentation to au-
tomatically infer invariant-constrained models. In FSE (2011).

[8] Biggest mistake for IPv6: It’s not backwards compat-
ible, developers admit. Accessed 2/27/2014, http:
//www.networkworld.com/news/2009/032509-ipv6-
mistake.html.

[9] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,
SMITH, M., AND WANSBROUGH, K. Rigorous specification and
conformance testing techniques for network protocols, as applied
to TCP, UDP, and sockets. In SIGCOMM (2005).

[10] Cannot interrupt blocking I/O calls with close(). Ac-
cessed 2/27/2014, http://gcc.gnu.org/bugzilla/show_
bug.cgi?id=15430.

[11] CHEN, K.-T., HUANG, C.-Y., HUANG, P., AND LEI, C.-L.
Quantifying skype user satisfaction. In ACM SIGCOMM Com-
puter Communication Review (2006), vol. 36, ACM, pp. 399–
410.

[12] CHEN, M., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem determination in large, dynamic
internet services. In DSN (2002).

[13] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND
CHASE, J. Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In OSDI
(2004).

[14] DAO, D., ALBRECHT, J., KILLIAN, C., AND VAHDAT, A. Live
debugging of distributed systems. In Compiler Construction
(2009), Springer, pp. 94–108.

[15] Fallacies of distributed computing. Accessed 2/27/2014,
http://en.wikipedia.org/wiki/Fallacies_of_
Distributed_Computing.

[16] Deutsch’s fallacies, 10 years after. Accessed 2/27/2014, http:
//java.sys-con.com/node/38665.

[17] FEAMSTER, N., AND BALAKRISHNAN, H. Detecting BGP con-
figuration faults with static analysis. In NSDI (2005).

[18] FIDGE, C. J. Timestamps in message-passing systems that pre-
serve the partial ordering. In 11th Australian Computer Science
Conference (1988).

[19] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-Trace: A pervasive network tracing framework. In
NSDI (2007).

[20] GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND
STOICA, I. Friday: Global comprehension for distributed replay.
In NSDI (2007).

[21] net.ipv6.bindv6only=1 breaks some buggy programs. Ac-
cessed 2/27/2014, http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=560238#54.

[22] JIANG, G., CHEN, H., UNGUREANU, C., AND YOSHIHIRA, K.
Multi-resolution abnormal trace detection using varied-length N-
grams and automata. In International Conference on Automatic
Computing (2005).

[23] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,
PADHYE, J., AND BAHL, P. Detailed diagnosis in enterprise
networks. ACM SIGCOMM Computer Communication Review
39, 4 (2009), 243–254.

[24] KHADKE, N., KASICK, M. P., KAVULYA, S. P., TAN, J., AND
NARASIMHAN, P. Transparent system call based performance
debugging for cloud computing. In Workshop on Managing Sys-
tems Automatically and Dynamically (MAD) (2012).

[25] KHANNA, G., CHENG, M., VARADHARAJAN, P., BAGCHI, S.,
CORREIA, M., AND VERÍSSIMO, P. Automated rule-based di-
agnosis through a distributed monitor system. IEEE Transactions
on Dependable and Secure Computing 4, 4 (2007).

[26] KNOWLES, S. IESG advice from experience with path MTU
discovery. RFC, Internet Engineering Task Force, 1993.

[27] KOSKINEN, E., AND JANNOTTI, J. Borderpatrol: isolating
events for black-box tracing. In Eurosys (2008).

[28] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21, 7 (1978), 558–
565.

[29] LIU, X., GUO, Z., WANG, X., CHEN, F., LIAN, X., TANG, J.,
WU, M., KAASHOEK, M. F., AND ZHANG, Z. D3S: Debugging
deployed distributed systems. In NSDI (2008).

[30] LOU, J.-G., FU, Q., YANG, S., XU, Y., AND LI, J. Mining
invariants from console logs for system problem detection. ATC
(2010).

[31] MATTERN, F. Virtual time and global states of distributed sys-
tems. Parallel and Distributed Algorithms 1, 23 (1989), 215–226.

[32] MUSUVATHI, M., AND ENGLER, D. R. Model checking large
network protocol implementations. In NSDI (2004).

[33] NetCheck. Accessed 2/27/2014, https://netcheck.poly.
edu/.

[34] On Mac / BSD sockets returned by accept inherit the parent’s
FD flags. Accessed 2/27/2014, http://bugs.python.org/
issue7995.

[35] Posix-omni-parser. Accessed 2/27/2014, https://github.
com/ssavvides/posix-omni-parser.

[36] Prevent socket hijacking on OSes that don’t prevent it by default
(Windows). Accessed 2/27/2014, https://tahoe-lafs.org/
trac/tahoe-lafs/ticket/870.

[37] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. In NSDI (2006).

[38] RITCHEY, R., AND AMMANN, P. Using model checking to ana-
lyze network vulnerabilities. In Security and Privacy (2000).

[39] ROTEM-GAL-OZ, A. Fallacies of distributed computing ex-
plained. Accessed 2/27/2014, URL http://www. rgoarchitects.
com/Files/fallacies. pdf (2006).

[40] SAMBASIVAN, R. R., ZHENG, A. X., DE ROSA, M., KREVAT,
E., WHITMAN, S., STROUCKEN, M., WANG, W., XU, L., AND
GANGER, G. R. Diagnosing performance changes by comparing
request flows. In NSDI (2011).

13

128 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] Security: SO_EXCLUSIVEADDRUSE should be enabled when
binding to ports on Windows. Accessed 2/27/2014, http://
twistedmatrix.com/trac/ticket/4195.

[42] SO_REUSEADDR broken on Windows. Accessed 2/27/2014,
http://bugs.sun.com/bugdatabase/viewc_bug.do?
bug_id=4476378.

[43] SO_REUSEADDR doesn’t have the same semantics on Windows
as on Unix. Accessed 2/27/2014, http://bugs.python.org/
issue2550.

[44] SUBHLOK, J., AND XU, Q. Automatic construction of coordi-
nated performance skeletons. In IPDPS (2008).

[45] TCPSocket readline doesn’t raise if the socket is close’d in an-
other thread. Accessed 2/27/2014, http://bugs.ruby-lang.
org/issues/4390.

[46] UDREA, O., LUMEZANU, C., AND FOSTER, J. Rule-based
static analysis of network protocol implementations. Information
and Computation 206, 2 (2008), 130–157.

[47] Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE.
Accessed 2/27/2014, http://msdn.microsoft.com/en-us/
library/ms740621%28VS.85%29.aspx.

[48] webrick: Ruby Standard Library Documentation. Ac-
cessed 2/27/2014, http://www.ruby-doc.org/stdlib-1.
9.3/libdoc/webrick/rdoc/index.html.

[49] When using NAT interface on Windows host, guest can’t receive
UDP datagrams larger than 8 KB. Accessed 2/27/2014, https:
//www.virtualbox.org/ticket/12136.

[50] Windows ntpd should secure UDP 123 with
SO_EXCLUSIVEADDRUSE. Accessed 2/27/2014, https:
//support.ntp.org/bugs/show_bug.cgi?id=1149.

[51] Wireless Implementation Testbed Laboratory (WITest) at NYU-
Poly. Accessed 2/27/2014, http://witestlab.poly.edu.

[52] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,
M. I. Detecting large-scale system problems by mining console
logs. In SOSP (2009).

[53] XUE, H., DAUTENHAHN, N., AND KING, S. Using replicated
execution for a more secure and reliable web browser. In NDSS
(2012).

[54] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. Crystalball: Predicting and preventing inconsistencies in de-
ployed distributed systems. In NSDI (2009).

[55] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND
PASUPATHY, S. Sherlog: error diagnosis by connecting clues
from run-time logs. In ASPLOS (2010).

[56] ZHUANG, Y., BESCHASTNIKH, I., AND CAPPOS, J. NetCheck
Test Cases: Input Traces and NetCheck Output. Tech. Rep. TR–
CSE–2013–03, NYU Poly, 2013.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 129

Exalt: Empowering Researchers to Evaluate Large-Scale Storage Systems

Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, Mike Dahlin
The University of Texas at Austin

Abstract
This paper presents Exalt, a library that gives back to

researchers the ability to test the scalability of today’s
large storage systems. To that end, we introduce Tar-
dis, a data representation scheme that allows data to be
identified and efficiently compressed even at low-level
storage layers that are not aware of the semantics and
formatting used by higher levels of the system. This
compression enables a high degree of node colocation,
which makes it possible to run large-scale experiments
on as few as a hundred machines. Our experience with
HDFS and HBase shows that, by allowing us to run the
real system code at an unprecedented scale, Exalt can
help identify scalability problems that are not observable
at lower scales: in particular, Exalt helped us pinpoint
and resolve issues in HDFS that improved its aggregate
throughput by an order of magnitude.

1 Introduction

This paper presents Exalt, a library that gives back
to researchers the ability to verify the scalability claims
of today’s large storage systems, which, ironically, have
become hard to corroborate precisely because of the scale
of these systems.

The advent of Big Data has strained the scalability of
traditional storage systems, and several new architectures
have been proposed to respond to this challenge [2–4, 7,
12, 13, 17, 22] by supporting up to hundreds of petabytes
of storage and tens of thousands of storage nodes. Testing
systems at such scale, however, requires access to tens
of thousands of machines and at least as many disks, and
few researchers have access to resources that plentiful:
the rest of us have to design systems that are supposed
to operate at a scale much larger than the infrastructure
available to test them. Nor are such resource limitations
affecting only academia: even industrial researchers who
are within reach of clusters of the necessary size may not
be able to reserve them for large scale experiments, since

these clusters are a primary source of revenue.
These limitations are typically sidestepped in one of

two ways. The first is to run experiments on a medium-
sized cluster (100-200 machines) and extrapolate the re-
sults to larger scales. While this may work reasonably
well in some cases, the fundamental assumption on which
it rests—that resource consumption increases linearly
with the load and the number of machines in the system—
does not always hold, as we show in Section 2. To make
matters worse, sources of non-linear growth are some-
times hard or impossible to observe in small deployments.
For example, the time needed to add a new block to an
HDFS file [22] increases with the file’s size, but it is
only after that size has grown beyond what is likely to
be observable in small deployments that the slowdown
becomes a limiting factor for the system’s performance.

The second common approach for predicting the be-
havior of large-scale systems is simulation [18, 24, 26].
Unfortunately, the results of a simulation are only as ac-
curate as the model on which the simulation relies; as
systems grow in size and complexity, modeling them
faithfully becomes prohibitive.

This paper proposes a third way: the Exalt library of-
fers researchers the ability to test the scalability of a large-
scale storage system by running its real code, but without
requiring access to thousands of machines. The basic
insight at the core of Exalt is that, in many large-scale
experiments, how data is processed is not affected by the
content of the data being written, but only by its size. Ex-
alt leverages this freedom by virtualizing the data, while
keeping the metadata intact to ensure that the system con-
tinues to function correctly. Specifically, Exalt clients
write data in a specific format, Tardis, that has two key
advantages. First, it allows Exalt to compress the behavior
of the system in both space and time. Space compression
is a powerful tool for performing large-scale experiments:
for example, running 10,000 storage nodes on just 100
machines can bring to light previously unknown scalabil-
ity bottlenecks in the metadata service. Since compressed

1

130 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

data takes much less time to write, compression in space
can in turn result in compression in time: with the sys-
tem running faster, bugs and performance issues can be
discovered more rapidly.

The second key advantage of Tardis is that it addresses
a fundamental challenge in virtualizing data: being able
to distinguish data from metadata. While the content of
the former is not important for the system to function cor-
rectly and can therefore be virtualized, the integrity of the
latter is essential. This problem is particularly prominent
in modern storage systems, which employ a two-layer
architecture where the upper layer uses the lower layer as
black-box storage: files written to the lower layer contain
both data and metadata, which look indistinguishable to
the lower layer. The need to ensure the integrity of the
metadata is why approaches that virtualize data by alto-
gether disposing of file contents (e.g. [1]) cannot be used
in our context.

In summary, this paper makes the following contribu-
tions:

• We introduce Tardis, a data representation scheme
that allows data to be identified and efficiently com-
pressed even at lower-level storage layers that are
not aware of the semantics and formatting used by
higher levels of the system. Tardis provides transpar-
ent, lossless, computationally efficient compression
of data and achieves high compression ratios.

• We present a methodology that utilizes Tardis to test
the scalability and robustness of large-scale storage
systems: our goal is not to predict every aspect of the
performance of such systems (e.g. their power con-
sumption) but, more modestly, to identify scalability
problems. Our approach has a “Truman-show” [25]
feel: the part of the system whose scalability is be-
ing tested processes real data and interacts with the
rest of the system as it would in a true large-scale
deployment, while the rest of the system uses Tar-
dis to compress data and achieve high degrees of
colocation, thereby emulating the behavior of a large
number of nodes.

• We present our experience using Exalt, a library that
implements Tardis and uses our methodology to iden-
tify scalability issues in large-scale storage systems.
Using Exalt we found and fixed several such issues in
two mature storage systems: HDFS [22] and HBase
[2]. All the problems we identified manifest when
the scale of the system becomes larger than a typi-
cal research cluster. In the case of HDFS, resolving
these problems resulted in an order of magnitude im-
provement of the aggregate system throughput. Our
ability to identify these issues was not, for better or
worse, due to a prior deep understanding, but rather

to the opportunity offered by Exalt to test them at an
unprecedented scale.

The rest of the paper is organized as follows. Section
2 discusses the common practices for testing the scala-
bility of large systems. Section 3 introduces the Tardis
data representation scheme and Section 4 describes how
it can be used to identify scalability problems in large-
scale systems. Section 5 reviews the assumptions of Exalt
and discusses its applicability in various contexts. Sec-
tion 6 presents our experience using Exalt to identify
performance problems in two mature systems: HDFS and
HBase. Section 7 discusses related work and Section 8
concludes the paper.

2 Testing for scalability: common prac-
tices

When faced with the challenge of running experiments
on a system whose scale vastly exceeds their infrastruc-
ture, researchers typically resort to one of two options:
they either run the system at the largest scale they can af-
ford and try to extrapolate their results, or they explicitly
forgo running certain components of the system, substitut-
ing them with stubs that, ideally, maintain the interactions
of the original components with the rest of the system,
but are simpler and less resource-demanding to run. We
discuss both options, and why they are not well-suited for
performing scalability tests on large-scale systems.

2.1 Extrapolation

A common approach to estimate the behavior of sys-
tems that are too big to test is to run them at a small or
medium scale and then to extrapolate, based on those re-
sults, how they will behave at a large scale. For example,
if the CPU utilization of a bottleneck node is 10% in a
100-node experiment, extrapolation would lead one to
estimate that the system will scale to about 1,000 nodes.
While attractive for its simplicity, this approach has sev-
eral drawbacks that make it inaccurate in practice.

First, extrapolation is based on the assumption that
resource usage grows linearly with the scale of the system.
However, because of design choices and implementation
issues, this assumption is frequently violated in practice.
For example, HDFS uses an array to maintain a sorted list
of files within a directory. Using an array causes insertion
to be an O(N) operation, where N is the number of files
in the directory. As more files are added to the directory,
insertion becomes increasingly expensive: indeed, the
cost of adding N files to a directory is O(N2) . Note that a
more efficient directory implementation (e.g. a sorted tree
map) does not restore linear growth in resource usage,
but simply reduces the growth rate to O(N · logN). In
general, once the load on the system is not linear, accurate

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 131

extrapolation becomes much harder, especially because,
as we have seen, the system’s performance may depend
on the details of the implementation.

A second, more subtle drawback of extrapolation is
that at small scales some important behaviors can easily
escape notice. Consider again the above example of a
workload of O(N2) complexity: as long as the value of N
is low, the potential scalability bottleneck remains largely
inconspicuous. To exacerbate the problem, measuring
resource utilization is an inherently noisy process. For
example, observing that a Java process uses 100 MB of
memory does not, by itself, indicate how much memory
is being used by the data structures of that process. An-
swering that question requires accurate information about
the amount of memory used internally by the JVM, the
amount of non-garbage-collected memory, etc. The uncer-
tainty added by measurement noise is significantly more
prominent at lower scales, where resource utilization is
low.

The final drawback, which is closely related to the pre-
vious one, is that extrapolation cannot be used to predict
behaviors that are only triggered when some resource uti-
lization reaches a certain threshold. For example, HDFS
has a blocking disk-scanning procedure that becomes in-
creasingly expensive as the system grows in size. Beyond
a certain size, running the procedure causes the corre-
sponding DataNode to start missing heartbeats, which in
turn can cause it to be evicted and force all its data to be
re-replicated, with serious performance repercussions.

2.2 Using stubs

Another technique for predicting the performance of a
system too big to test is to emulate, rather than actually
run, some of its components. The emulated components
are implemented as stubs, running either locally or re-
motely. For this approach to be successful, the stubs
should be simple to implement and require much more
modest resources than the original components they stand
in for; at the same time, they should be able to correctly
exercise the rest of the system, allowing it to be stress-
tested at scale using relatively modest resources.

While attractive in theory, the promises of emulation
are often elusive in practice: reproducing accurately the
behavior of a non-trivial real system component is hard,
and in the process the stub component can end up being
almost as complex as the real one, defeating its purpose.

We faced this challenge first-hand when trying to test
the scalability of the HDFS NameNode using stub DataN-
odes. Our goal was to create a large number of stub
DataNodes and use them to stress-test the NameNode.
Our first attempt did not involve the DataNodes in the pro-
tocol at all; to create files and add blocks to them, clients
simply invoked createFile and addBlock at the Na-

meNode. However, the system did not work, since the
NameNode expects the DataNodes to confirm the receipt
of each block. We therefore modified our clients to notify
the stub DataNodes, so they could in turn appropriately
notify the NameNode. This did not work, either: the
NameNode, we discovered, also expects each DataNode
to periodically report the list of blocks it stores on disk.
After several frustrating iterations, we eventually came to
realize that emulating the correct behavior of DataNodes
would have required us to reimplement the full HDFS
protocol, including all inter-DataNode communication,
local bookkeeping, etc.

3 Compressing data with Tardis

Our approach is based on a simple intuition: for the
purposes of testing the scalability of large-scale storage
systems, it is typically the size of the data being written
that matters, not its actual content. We are then free to
choose what data clients write during our tests: our work
explores the opportunities that this freedom affords.

Specifically, our approach is to design a data format
that achieves fast and efficient compression and decom-
pression. As we discuss in Section 3.3, using compressed
data lets us colocate multiple nodes on the same machine,
which in turn enables running large-scale experiments on
a small infrastructure.

Before presenting Tardis, our compression scheme, we
set forth the requirements that it must fulfill.

3.1 Compression scheme requirements

The scheme must be lossless. While compression
can reduce resource usage and allow node colocation,
the ability to recreate the original data is essential. Mod-
ern large-scale storage systems typically use a two-layer
architecture, where the upper layer uses the lower as a
black-box storage [2–4]. What appears like generic data
to the lower storage layer may actually be metadata nec-
essary for the correct functioning of the upper layer; it is
critical that none of this metadata be lost.

The scheme must achieve a high compression ratio.
The motivation for this requirement is straightforward,
since the compression ratio directly affects the amount of
colocation we can achieve.

The scheme must be computationally efficient. As
a counterexample, consider a straw-man scheme in which
clients simply write sequences of 0’s. This scheme offers
obvious opportunities for significant compression; how-
ever, if it is possible for the system to interleave client data
with metadata, the compression algorithm would need to
scan all the input bytes to determine where the sequence
of 0’s begins and where it ends. The disk and network
bottlenecks would have been removed, but at the expense

3

132 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Examples of the Tardis format in compressed and uncompressed form.

of introducing a CPU bottleneck, severely limiting the
scalability of this scheme.

Data chunks should be independently compressible.
Modern storage systems do not necessarily store data as
a single unit, but instead split it into multiple, separately
stored chunks, which must be independently compress-
ible. Meeting this requirement is challenging, however,
since a client in general has no control over how data
is divided into chunks. For example, in HBase the pro-
cedure of splitting data into chunks depends on a non-
deterministic race between multiple threads.

3.2 Tardis compression

This paper introduces a novel compression scheme,
called Tardis, that satisfies the above requirements. Tardis
consists of a data format and an algorithm for compress-
ing and decompressing the data. Intuitively, Tardis aims
to achieve the following two complementary goals. When
no metadata is inserted in the middle of the data, the com-
pression algorithm should be able to compress the entire
data after scanning only a small fraction of it. Other-
wise, the compression algorithm should be able to quickly
identify the location of the inserted metadata.

Data format Clients write data as a series of <flag>
<marker> entries, where <flag> is a predefined byte
sequence that does not appear in the system metadata,
and <marker> denotes the number of remaining bytes
in the data. For example, using a 4-byte flag and 4-byte
markers, 1 KB of data would be formatted as:

<flag>1016<flag>1008...<flag>8<flag>0

In this example, the first marker denotes that there are
1016 bytes remaining in the sequence, since the (first) flag
and the marker itself are 4 bytes each. Of course, the size
of flags and markers need not be the same: our prototype
uses 8-byte flags and 4-byte markers.

Compressed data format Given a byte sequence in
the above format, the compression algorithm would sim-
ply need to return its length. However, to enable data
chunks to be independently compressible, the algorithm
actually returns two numbers: the starting byte of the

sequence as well as its length. In the above example (also
illustrated in Figure 1a), if the entire 1 KB of data were be-
ing compressed, the result would be the pair (1024,1024).
If, however, the data were split into two chunks of 512
bytes each (Figure 1b), the first chunk would be com-
pressed as (1024,512) and the second as (512,512).

As we discussed above, in modern storage systems
data and metadata are frequently stored together. Figure
1c shows an example where metadata is inserted in the
middle of a Tardis sequence. In this case, the metadata
splits the original sequence into two subsequences, of
length 20 and 1004, respectively. Ideally, we would like
to compress each of these sequences separately, leaving
the metadata uncompressed. However, since in this case
the metadata is inserted in the middle of a flag-marker
pair, we simply leave these 8 bytes—the flag and the
corresponding marker—uncompressed.1 This shortens
the first subsequence to a length of 16 and the second
subsequence to 1000. Note that even if the metadata were
not aligned with the flags and markers, the result would
be the same: only the flag-marker pair that is split by the
metadata is left uncompressed and the rest of the data is
compressed as two separate subsequences.

To distinguish between compressed and uncompressed
data during decompression, an uncompressed sequence is
preceded by a 0 and a 4-byte integer denoting its length,
while a compressed sequence is preceded by a 1.

Compression Figure 2 shows the pseudocode
for the Tardis compression algorithm. The main
function, TardisCompress, iteratively calls the
FindSubsequence function until all input data has
been consumed. When FindSubsequence returns a
new subsequence (line 7), the main function appends
the appropriate bytes to the compressed data buffer.
We detect the presence of metadata between two
subsequences by checking whether the starting position
of the new subsequence (pos) is after the end of the
previous subsequence (index). If so, we append a 0 to
denote the beginning of an uncompressed sequence,

1It is actually possible to include the flag in the compressed sequence,
but we omit this optimization for simplicity of presentation.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 133

1 #define unit_size = flag_size + marker_size

3 (compressed_data) TardisCompress(data)
4 result = empty buffer
5 index = 0
6 while index < data.len
7 (pos,marker,len)=FindSubsequence(data,index)
8 if pos == -1
9 result.AppendMeta(data,index,data.len-index)

10 return result
11 else
12 if pos > index
13 result.AppendMeta(data,index,pos-index)
14 result.AppendTardis(data,pos,marker,len)
15 index = pos+len
16 return result

18 (pos,marker,length) FindSubsequence(data,startIndex)
19 (pos,marker) = ScanForFlag(data,startIndex)
20 if pos == -1
21 return (-1,-1,-1)
22 lastMarker = data.len-(unit_size+(data.len-

position)%unit_size)
23 target = min(pos+marker,lastMarker)
24 marker2 = BinarySearch in data from pos to target
25 for the rightmost flag-marker pair such that:
26 (pos2,marker2) = ScanForFlag(data,target) and
27 pos2 != -1 and pos2-pos == marker-marker2
28 return (pos, marker, marker-marker2+unit_size)
29 if no such marker2 is found
30 return (-1,-1,-1)

32 (position, marker) ScanForFlag(data, startIndex)
33 index = linearly search data for (flag,marker)

starting at startIndex
34 if index >= 0
35 return (index, marker)
36 else
37 return (-1, -1)

Figure 2: Pseudocode for Tardis compression.

followed by the length of the metadata, and finally by the
metadata itself, uncompressed (AppendMeta, line 13).

It is then time to add the new subsequence. To denote
that what follows is compressed, we append a 1 before
the compressed form of the Tardis subsequence (which,
recall, consists of the starting point and length of the
subsequence) (AppendTardis, line 14).

Function FindSubsequence is the core of the algo-
rithm: its task is to identify a Tardis subsequence. Two
factors complicate this task: the sequence may have been
split into multiple chunks and metadata may have been
inserted somewhere in the sequence. Given a starting
index in the data, FindSubsequence first scans the data
to find the first flag, indicating the start of a Tardis se-
quence, and reads the corresponding marker (line 19).
Then, it checks whether some metadata has been added
in the middle of this sequence. The check is simple: if
no metadata is inserted between two markers with val-
ues A and B, then these markers should be placed B−A
bytes apart. The purpose of lines 22-23 is to determine
which marker should serve as marker B. If the original
sequence is not split across chunks, then B is marker 0,
which should be m bytes after the first marker, where m is
the value of the first marker. Otherwise, B is set to the last

marker of the current chunk. If the difference between
the values of markers B and A is indeed equal to the byte
distance between the markers, the algorithm has found an
uninterrupted Tardis subsequence. If that is not the case,
the algorithm performs a binary search to find the right-
most flag-marker pair that satisfies the above condition,
leveraging the fact that the values of the markers form a
sorted sequence (lines 24-30).

In practice, the common case is very simple: as long
as there is no metadata inserted in the byte sequence,
the compression algorithm needs only to check the first
and last number of the sequence. This allows Tardis to
compress data much faster than off-the-shelf compres-
sion algorithms. For example, when compressing data
chunks of 1 MB, Tardis is about 33,000 times faster than
Gzip [11] and 2,300 times faster than the straw man com-
pression scheme where client data consists only of 0’s
and the compression algorithm simply scans the data and
compresses sequences of 0’s into an integer denoting their
length. Of course, the comparison to GZip is not apples-
to-apples, since Gzip is a generic compression algorithm;
what it does show, however, is that being able to choose
the data format drastically reduces the CPU overhead of
our approach.

Decompression The decompression algorithm is
straightforward. Given a compressed sequence, it iterates
through each sequence, whether compressed (preceded
by a 1) or uncompressed (preceded by a 0 and the length
of the sequence). Uncompressed sequences are copied
without modification, while compressed sequences are
expanded to their uncompressed form.

Choosing the flag To prevent portions of metadata
from being accidentally compressed, the flag sequence
should never appear in the metadata. If it did and, by un-
lucky coincidence, the length value following the fake flag
pointed to another flag followed by a 0, all that sequence
of bytes would be compressed. Although we could alto-
gether eliminate this danger,2 it seems unnecessary: Exalt
is not intended for production use, and an accidental com-
pression would simply require us to rerun the affected
experiment. With a sufficiently large flag, the odds of
a false positive can be driven arbitrarily low: our prag-
matic approach was to choose as flag an 8-byte random
sequence and take our chances. Our experiments have yet
to produce a false positive.

3.3 Using compression to enable large-
scale tests

Since we are attempting to run a large number of nodes
on a much smaller number of machines, we will nec-

2It would suffice to escape the flag sequence in the metadata. How-
ever, this would require intrusive modifications to the server code, as all
metadata insertions would need to be aware of the escaping logic.

5

134 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

essarily have to colocate multiple nodes on the same
machine. However, such colocation will cause signifi-
cant contention on the physical resources of the machine.
Specifically, the disk- and memory capacity, and the disk-
and network bandwidth available to each machine are
typically enough to support only a single node, making
straightforward colocation infeasible.

Data compression can help here: storing compressed
data on disk decreases the disk capacity and bandwidth
requirements of each node, as well as memory capacity
and network bandwidth. Of course, data compression is
not without cost; in this case, the cost is CPU utilization.

This tradeoff, however, is very attractive for storage
systems, where CPU cycles are plentiful and bandwidth
and storage capacity are typically the system’s bottleneck.
It also opens the door to emulating the behavior of storage
systems too big to test using HPC computation clusters:
indeed, as we will see in Section 6, our analysis of the
scalability of HDFS/HBase has been performed by run-
ning Exalt on the Stampede high performance cluster at
the Texas Advanced Computing Center (TACC) [23].

If data compression is used without colocation, it re-
sults in a system that is “compressed” in time, rather than
space, since each write will take less time to complete.
Running the system at an accelerated pace offers the po-
tential of identifying bugs or performance problems much
faster: Section 6.1.4 discusses a case where time compres-
sion allowed us to identify a problematic behavior about
100 times faster than a real deployment.

3.4 Implementation

Our implementation of Exalt performs data compres-
sion for three key resources: disk, network, and mem-
ory. Our goal is to be minimally intrusive. While in-
memory compression does require minor modifications
to the source code of the storage system being tested,
we achieve fully transparent disk and network compres-
sion by using byte code instrumentation (BCI) to modify
the relevant Java library classes (Socket, SocketInput-
Stream, SocketOutputStream, SocketChannel for network
compression; File, FileInputStream, FileOutputStream,
RandomAccessFile, and FileChannel for on-disk com-
pression).

File compression is more challenging than network
compression because the file interface allows a user to
partially update existing data. When that data is already
compressed, updating it in place is not straightforward. A
naive solution would be to decompress the existing data,
update it, and compress it again. However, if the old and
the newly compressed data have different sizes, all fol-
lowing data chunks would have to be moved. To address
this problem, similarly to the Log-Structured File System
(LFS) [20], we transform in-place update operations into

append operations. This allows us to efficiently process
in-place updates, with only a small bookkeeping overhead
to keep track of the latest version of each range of bytes.

Memory compression In-memory data structures do
not use a well-defined interface, such as the File or Socket
abstraction used by the disk and network. As a result,
transparently modifying these data structures to compress
and decompress data at the application layer is very hard.3

Instead, when the in-memory data needs to be compressed,
we manually modify the source code of the system. Fortu-
nately, this process is quite simple. One need only identify
the data structures that hold the client data. When data is
stored in the data structure, it is compressed; when data is
retrieved from the data structure, it is decompressed. For
example, compressing the in-memory key-value store of
HBase required adding 71 lines of code across 4 files.

4 Finding scalability bottlenecks

Data compression gives us the ability to colocate mul-
tiple nodes on a single physical machine: in this section,
we discuss how we can selectively use this ability to
draw meaningful conclusions about the scalability of a
large-scale storage system. We will view the system as a
collection of real and emulated nodes. A real node runs
the system’s actual code and handles unmodified data. An
emulated node still runs the system’s actual code, but, as
needed to support colocation, may (i) store compressed
data on its disk, (ii) send compressed data over the net-
work, when it communicates with other emulated nodes,
and (iii) store compressed data in memory.

4.1 Exalt methodology

We use this combination of real and emulated nodes as
a microscope of sorts that we can focus on a part of the
system to identify performance bottlenecks. To ensure
that the part of the system “under inspection” behaves
exactly as it would in a real large-scale deployment, we
leave the corresponding nodes real, while using emulated
nodes for the rest of the system. This approach works
particularly well at identifying performance issues at cen-
tralized components that can become a bottleneck as the
scale of the system increases (e.g. HDFS NameNode,
HBase Master). Section 6 discusses our experience using
this technique to find scalability problems in real systems.

A downside of this methodology is that it may not
discover scalability problems that arise at the nodes that
are being emulated. To address this issue, after having
stress-tested the part of the system under inspection by
using the maximum amount of colocation for emulated
nodes, we perform a new set of experiments where a small

3Transparent compression of in-memory data could be potentially
implemented at the kernel level, but it would sacrifice portability.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 135

subset of formerly emulated nodes are also run as real,
while the rest is kept emulated. This hybrid configuration
makes it possible to identify scalability problems also at
nodes that are not under inspection, while maintaining
a high degree of colocation, but it is not a panacea: for
example, it is still unable to detect performance issues
that only manifest when a large number of nodes that are
not under inspection perform some collective action (e.g.
system-wide recovery).

5 Limitations and applicability

Exalt relies on a number of assumptions to provide
high-degrees of node colocation. This section reviews
these assumptions and discusses which of them can be
weakened to widen the applicability of our approach.

Exalt is primarily designed to evaluate I/O-intensive
applications like distributed file systems storing large
files [7, 22] or key-value stores with relatively large val-
ues [3, 17]. Applications that are not I/O-intensive or
store small values can not benefit significantly from Tar-
dis, as they gain little by compressing data. In Section 6.2
we explore in more detail how the size of the value in a
key-value store affects the colocation ratio of Exalt.

Our current implementation of Exalt makes two addi-
tional assumptions: first, that the target application does
not modify the data written by the clients, although it
can split the data and insert metadata; and second, that
experiments are not sensitive to the contents of the data,
so that clients can operate with synthetic data.

While these assumptions hold for the systems we have
so far applied Exalt to, they are not fundamentally re-
quired for Exalt to be applicable. We consider below
some popular techniques that violate these assumptions
and discuss how our implementation of Exalt can be mod-
ified to work in conjunction with them.

Encryption and erasure coding Both techniques in-
volve encoding data into a different format, violating the
assumption that client data is immutable. To handle these
cases, Exalt would compress the data using Tardis before
encoding it, and then add filler bytes as necessary to match
the length of the (encoded) original data. Filler bytes
would use the same format as Tardis (making them highly
compressible), but with a different flag sequence (so that
they can be distinguished from real data). When read-
ing the data, Exalt would remove the filler bytes before
performing decryption and then decompress the Tardis
sequence to obtain the client data.

Deduplication Deduplication compares the contents
of different data units (files, chunks, etc.) to eliminate
duplicates and, by making execution dependent on the
actual data, violates our second assumption. Indeed, dedu-
plication schemes that directly compare the units’ data
are incompatible with Exalt. However, Exalt can still be

applied to deduplication approaches that only compare
hashes of data units. Exalt would first compute the hash
of the client data and then replace the client data with
data formatted using an extended version of Tardis, which
inserts the hash of the data unit between the flag and the
marker. The deduplication module could then use this
hash directly to identify duplicate data units.

Compression If the system being tested already uses
compression, it is in general not possible to use synthetic
data at the clients, since the compression ratio depends
on the actual data. If, however, compression is performed
only at the client side, Exalt could apply a technique
similar to the one used to handle encryption and erasure
coding: the client would first compress the real data to de-
termine its compressed size, then create synthetic (Tardis)
data, compress it using Tardis’ compression and finally
append the right amount of filler bytes to match the length
of the (compressed) real data.

Data sensitive applications Many applications use
SQL-like languages for their queries. The execution of
these queries depends on the data, since SQL predicates
can be expressed as a function of the data. The rest of the
data, which does not affect the processing of the queries,
can be synthetic. The efficiency of Exalt in these cases
depends on the ratio of sensitive to non-sensitive data.

6 Case studies

Exalt allows us to evaluate storage systems at an un-
precedented scale. This section presents our experience
applying Exalt to evaluate two real-world storage sys-
tems: the Hadoop Distributed File System (HDFS) and
the HBase key-value store [2, 22]. We chose these sys-
tems for several reasons. First, not only they are popular
in their own right, especially among researchers, but their
architecture is representative of the majority of existing
large-scale storage systems. Second, both systems are
open-source, which allows us to perform code modifica-
tions where necessary (i.e. for in-memory compression).
Finally, both systems have a large development commu-
nity that has produced a mature and stable codebase. De-
spite the maturity of the code, we identified several perfor-
mance issues that arise as the scale of the system increases.
Our ability to diagnose these issues was not due to a prior
deeper understanding of these systems, but simply to the
ability to evaluate them at an unprecedented scale.

In our evaluation, we run HDFS and HBase at a scale
about 100 times larger than the size of the infrastructure
available to us. For example, one of our experiments
uses 96 machines to run an HDFS cluster with 9600
DataNodes. Our experiments identify a number of per-
formance problems that arise at such large scales. Some
of these problems pertain to low-level implementation
details, while others are due to high-level design choices.

7

136 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

For example, we find that storing many files on an HDFS
directory causes file creations to that directory to become
increasingly slow; and that keeping less than 3

4 of the re-
gion data in the memory of an HBase region server causes
its performance to degrade precipitously. Using Exalt,
we were able to identify and fix many of these problems,
improving as a result the aggregate HDFS throughput by
an order of magnitude.

Unfortunately, we have not yet been able to validate our
results by running the actual systems at a large scale: after
all, it is the very reason that we do not have access to such
plentiful resources that has motivated our work in the first
place. The largest validation we have performed involved
running HDFS/HBase on 1,500 nodes of the Stampede
cluster at the Texas Advanced Computing Center [23]:
while our results confirm the prediction of Exalt for that
configuration, the scale of the system is still too small to
exhibit even the first of the scalability issues identifies
by Exalt. Our current confidence in Exalt’s effectiveness
stems from two sources. First, for each problem that Exalt
has identified, we have traced the cause of the problem in
the source code, fixed it, and run the modified system to
confirm that its performance has been improved. Second,
some of our findings have been confirmed by engineers at
Facebook, among the few who have access to a large-scale
deployment of HDFS [6].

Most of our experiments were performed on the Stam-
pede cluster at TACC, whose machines have 16 cores,
32 GB of memory, but only 80 GB of local disk storage.
Since our access to TACC was limited, we ran some of
our experiments on three local machines with 16 cores,
64 GB memory and 10 1 TB disks each. These machines
were used to test the capacity limitations of individual
storage nodes.

6.1 Case study: HDFS

HDFS [22] is an open source implementation of the
Google File System (GFS) [7]. Each HDFS cluster con-
tains a single NameNode that stores the file system names-
pace information and several DataNodes that store the file
contents. Each file is split into multiple blocks and each
block is stored on three DataNodes. When a client creates
a file or adds a block to an existing file, it first contacts the
NameNode, which responds with a list of the DataNodes
that will store the new block. The client can then directly
write the block contents to these DataNodes.

We mainly focus on write workloads since they are
more likely to cause scalability problems. Unless other-
wise specified, in our experiments each client creates a
file in its own directory, writes 192MB of data to it (as
suggested by the HDFS developers in their white paper
on how to test HDFS’ scalability [21]), closes the file,
and then starts a new file. This workload achieves the

 0

 100

 200

 300

 400

 500

 600

Ag
gr

eg
at

e
th

ro
ug

hp
ut

 (G
B/

s)

Increase number of RPC threads

Write debug information
to tmpfs

Disable sync
Write log to tmpfs

Ideal throughput

1.2K2.4K 4.8K 9.6K 19.2K

Number of DataNodes

Figure 3: HDFS throughput scalability.

highest scalability among all workloads that we tried;
Section 6.1.3 describes the performance problems caused
by other workloads. We use a block size of 128 MB and
the default 3-way replication (again, as suggested in [21]).
Unless otherwise specified, we run DataNodes and clients
in emulated mode while the NameNode runs in real mode.

For the above workload, Tardis achieves a compres-
sion ratio of over 500, but in practice the degree of colo-
cation is limited by CPU utilization: we colocate 100
DataNodes on one machine and achieve an effective write
bandwidth of 10 GB/sec on a disk with 100 MB/sec phys-
ical bandwidth. For experiments with modest storage
capacity requirements, we can increase the write band-
width to 20 GB/sec by writing to tmpfs, an in-memory file
system. Our largest configuration experiment uses 192
server machines, to emulate an HDFS cluster with 19,200
DataNodes.

6.1.1 HDFS throughput scalability

In some respect, the result of our experiments to test the
scalability of HDFS is not surprising: the bottleneck of
the system is the centralized NameNode. What is perhaps
surprising is that, thanks to Exalt, we were able to increase
the system throughput by an order of magnitude without
changing the architecture of the system.

Figure 3 reports the results of our experiments. On
the x-axis we increase the number of DataNodes and
on the y-axis we plot the aggregate throughput of the
system, as observed by the clients. The vertical arrows
represent the process of fixing an issue that was limiting
the system throughput. When an issue is fixed, we rerun
the experiment for the same number of DataNodes, to
verify that the system indeed achieves a higher throughput.
For reference, we also plot a straight line that shows the
ideal throughput achievable by a perfectly scalable system
that leverages the full bandwidth of all disks (100 MB/s).

Our first experiment shows that the original HDFS sys-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 137

Memory size 1GB 2GB 4GB 8GB
HDFS Capacity 1.15PB 2.35PB 4.76PB 9.49PB

Figure 4: HDFS space scalability as a function of Na-
meNode memory size.

tem quickly saturates at around 37 GB/s. We discovered
through profiling that the default number of RPC threads
at the NameNode was limiting the achievable through-
put; increasing the number of RPC threads from 10 to 256
allows the NameNode to achieve much higher throughput.

After fixing the first issue, the system saturates at
around 286 GB/s. Further profiling showed that the I/O
accesses at the NameNode were becoming the system
bottleneck. More specifically, the NameNode debug in-
formation was being stored on the same disk as its log file.
This prevented both files from sequentially accessing the
disk, thereby introducing a large number of seek calls
that reduced performance. Our solution was to write the
debug information to tmpfs instead, thereby making sure
that the NameNode log file was sequentially accessing the
disk. Alternatively, one could store the debug information
on another disk, if one were available.

Applying the second fix increases the system throu-
ghput to 418 GB/s, at which point the system again be-
comes saturated. This finding is consistent with the scala-
bility assessment of the HDFS developers that “assuming
each client has a write throughput of 40 MB/s, the system
can support no more than 10,000 clients”, which corre-
sponds to an aggregate throughput of 400 GB/s. While
this assessment was obtained using extrapolation, we con-
sider it reasonably accurate since it is based on a large
deployment of 4,000 nodes.

Since we suspected disk I/O to be the system bottleneck
at this point, we performed a final experiment in which
disk sync is disabled and the NameNode writes all logs
to tmpfs. The purpose of this experiment is to project
the scalability of the system in the presence of a fast stor-
age medium (e.g. NVRAM,SSD). In this configuration,
the system throughput increases by a further 50%, to a
maximum throughput of 595 GB/s.

Of course, we do not claim that Exalt’s throughput
predictions are perfectly accurate; on the contrary, we
acknowledge the limitations of running a system whose
resources are partially emulated. Nonetheless, the bene-
fits of Exalt are clear: it allowed us to test the system’s
real code and identify and resolve performance issues
at a scale that would have otherwise remained the sole
province of a few large companies.

6.1.2 HDFS capacity

The capacity of an HDFS cluster is limited by the
amount of memory available to the NameNode. In this

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

Ag
gr

eg
at

e
th

ro
ug

hp
ut

 (G
B/

s)

Number of files already created (x105)

Store files in seperate directories
Store files in the same directory

Figure 5: HDFS throughput degradation as the size of
directories increases.

experiment, we try to measure how much memory the
NameNode needs per 1 PB of HDFS storage space. Fig-
ure 4 shows that the capacity of HDFS grows linearly with
the amount of memory at the NameNode. In particular,
1 GB of NameNode memory can support about 1.2 PB
of raw HDFS space (400 TB of data, since blocks are
3-way replicated). This result is close to the estimation of
HDFS developers: “1 GB of metadata ≈ 1 PB of physical
storage” [21].

Using Exalt allows us to perform this experiment using
only 16 TB of disk storage, while a real deployment would
require a total of 10 PB of disk storage.

6.1.3 Performance degradation in HDFS

The above experiments use a workload that provides
high scalability. Other workloads are not as accommodat-
ing. We evaluate two such workloads that can drastically
degrade the HDFS performance.

In the first workload, all clients create files in the same
directory. As shown in Figure 5, the aggregate system
throughput steadily decreases as more files are created.
Further profiling allowed us to identify the cause of this
behavior in the source code: the NameNode uses an Ar-
rayList data structure to maintain an alphabetically sorted
list of the files inside a directory. Adding an element to
a sorted array is an O(N) operation, since it requires a
suffix of the sorted array to be shifted by one position.
Therefore, the bigger the directory, the longer it takes to
add a file to it. As a double check, we verified that, if we
limit the number of files written to each directory, creating
more files does not cause a performance degradation.

In the second workload, one client creates a file and
keeps appending data to it. As shown in Figure 6, once the
file grows sufficiently large, the aggregate system through-
put decreases steadily. Note that in this experiment there
are only a few clients and the system is not fully sat-

9

138 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

Ag
gr

eg
at

e
th

ro
ug

hp
ut

 (G
B/

s)

Number of blocks already created per file (x103)

Write big file after applying our patch
Write big file in original HDFS

Figure 6: HDFS throughput degradation as the size of
files increases.

urated, which accounts for the fact that the aggregate
system throughput is lower than in the previous experi-
ment. Profiling led us to the cause of the problem: before
the NameNode creates a new block for a file, it needs
to calculate the file’s length. It does this by scanning all
existing blocks and computing the sum of the lengths of
all blocks. This, too, is an O(N) operation. We fixed this
problem by adding a length field to each file and updating
the field when a block is added or updated. As Figure 6
shows, after applying our fix the system throughput no
longer decreases as the files grow in size.

As before, Exalt allows us to identify these perfor-
mance issues without requiring access to a large amount
of disk storage. Running this experiment in a real deploy-
ment would require 900 TB of disk storage; with Exalt,
we only need 1.5 TB.

6.1.4 DataNode scalability

As disk capacities increase every year, and most HDFS
deployments use multiple disks per DataNode, it is impor-
tant for the DataNode’s performance to not decrease as
more storage capacity is added to it. While running HDFS
in hybrid mode—keeping some DataNodes real— we ob-
served uncommonly high latencies for some requests. Our
profiling indicated that the source of the problem was a
disk scan that the DataNode periodically performs on all
its blocks. Figure 7 shows that the time a real node takes
to perform this scan increases linearly with the number
of blocks stored on the disk. Unfortunately, this scan
is a blocking operation, preventing write requests and
heartbeats from being sent or received. As the duration
of this scan becomes longer, it can have serious perfor-
mance consequences, including timeouts at the clients
or even missed heartbeats, which would cause unneces-
sary re-replication of the DataNode’s data. This issue

 0

 5

 10

 15

 20

 25

 0 20000 40000 60000 80000 100000 120000

Ti
m

e
to

 p
er

fo
rm

 th
e

sc
an

 (s
ec

on
ds

)

Number of blocks to scan

Figure 7: Time of the block-scan procedure on a DataN-
ode, as the number of blocks increases.

is confirmed by Facebook engineers; to address it, they
modified HDFS to allow the block scan to be performed
in parallel with heartbeats and write requests [6].

While reproducing this problem is easy, triggering it in
a real deployment would require 8 TB of disk storage on
a single DataNode; using Exalt, we triggered this prob-
lem using an 80 GB disk. After identifying the problem,
we reproduced it on a real DataNode with 8 TB of disk
storage (Figure 7).

Note that although it could be triggered with only a
few machines, this problem would be hard to identify and
tedious to reproduce during debugging, since it would
take at least a few hours for the latency increase to be
observable. Exalt’s time compression helps in this case.
If emulated nodes have exclusive access to a machine’s re-
sources, the system works at an accelerated speed: in this
example, the problem would manifest itself in a matter of
minutes.

6.2 HBase

HBase [2] is a distributed key-value store built upon
HDFS. The basic data unit of HBase is a region, which
corresponds to a continuous key range in a table. An
HBase cluster includes a Master, responsible for assign-
ing regions to different region servers. Client requests to
a specific region are directed to the corresponding region
server. The region server processes write requests by log-
ging them to HDFS while also keeping them in a memory
buffer called memcache. When the size of the memcache
exceeds a threshold, the region server writes the whole
memcache into a checkpoint file on HDFS, so that it can
garbage collect the previous log files. A checkpoint is also
taken if the total memory usage across all regions exceeds
some limit; in this case, a region server checkpoints the
region with the largest memcache. When necessary to

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 139

 0

 10

 20

 30

 40

 50

 60

 70

 80
Ag

gr
eg

at
e

th
ro

ug
hp

ut
 (G

B/
s)

480 960 1.92K 3.84K 5.76K
Number of region servers

Figure 8: HBase throughput scalability.

free up space, the region server performs compaction to
merge several checkpoints. In essence, a region server
transforms the random access patterns of a key-value store
into the append-only interface of HDFS. When a region
grows large, HBase splits that region into two for load
balancing; conversely, if two adjacent regions are too
small, they are merged into one. Apart from the Master
and the region servers, an HBase cluster incorporates a
ZooKeeper ensemble that performs lease management.

We evaluate HBase using a simple workload that can
achieve a high throughput: we create enough regions so
that each region server stores about 10 regions. We start
multiple clients that randomly write key-value pairs to
those regions. The key size is 4 bytes and the value size is
1 MB. To measure the maximum achievable throughput,
we disable split, merge, and compaction operations—to
ensure that split and merge operations do not occur, we
limit the number of key-value pairs written to a region. We
plan to study the effects of split, merge, and compaction
in the future.

In our experiments, we keep the HBase Master, HDFS
NameNode and ZooKeeper cluster real, while all DataN-
odes and region servers are emulated. In each experiment
we assign 500 MB of physical memory to region servers.
However, we perform in-memory compression, which ef-
fectively increases each region server’s memory to 16 GB.

Figure 8 demonstrates the throughput scalability of
HBase as the number of available region servers increases.
Note that the raw throughput of HBase is much lower than
that of HDFS (see Figure 3). This is due to two reasons:
first, HBase needs to write data twice to HDFS—once
for logging and once for checkpointing. Second, region
servers are relatively more CPU-intensive than DataNodes
and therefore can not benefit as much from colocating
multiple nodes on the same machine.

HBase can achieve a maximum write throughput of
about 80 GB/s. Considering that HBase writes data twice,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

Ag
gr

eg
at

e
th

ro
ug

hp
ut

 (G
B/

s)

Number of regions per GB of memory

Figure 9: HBase aggregate throughput as the number of
regions per GB of memory changes.

this translates to a 160 GB/s throughput at the HDFS layer,
which is about 40% of the maximum throughput achiev-
able by HDFS. Our profiling shows that the sync calls to
disk at the HDFS NameNode are still the bottleneck of
the system. The reason for this 60% performance loss is
that the region servers perform many additional directory
operations, other than simply creating and closing files.
For example, when a log file is garbage-collected, the
region server first moves it to an “old log” directory as a
backup and only deletes it after some time has elapsed.

In Figure 8 each region server has 16 GB of memory
and holds 10 regions: since the default maximum size
of a region is 200MB, all data can be cached in memory.
Our next experiment evaluates how the performance of
HBase is affected when we decrease the memory size
per region. As shown in Figure 9, HBase throughput
drops significantly when the number of regions per GB
of memory exceeds 7, which translates to about 150 MB
of memory per region. In other words, in order for HBase
to work efficiently in a large-scale deployment, each re-
gion server must be equipped with a considerably large
amount of memory: enough to hold at least 3

4 of its on-
disk data. The reason for this performance drop is that
region servers flush their regions to HDFS files when their
memory usage exceeds a certain threshold. If the number
of regions per GB of memory is high, this will create a
large number of small files on HDFS, which stresses the
HDFS NameNode. Resolving this problem requires a
significant redesign of HBase, which is beyond the scope
of this paper. Note that this performance drop is only
observed at large scales, since small deployments can not
generate enough load to saturate the HDFS NameNode.

Our last experiment explores the effect of writing small
values on the colocation ratio achievable in Exalt (Fig-
ure 10). Not surprisingly, Exalt achieves high colocation
ratios when the value sizes are large (around 500 KB),

11

140 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 120

 4 100 500 1000

Ex
al

t c
ol

oc
at

io
n

ra
tio

Value size (KB)

Figure 10: Colocation ratio of Exalt.

but does not fare equally well for small values. It is
worth noting that the achievable colocation ratio for a
given workload is not infinite; eventually CPU utilization
becomes the bottleneck of the system. For HBase, this
happens at a colocation ratio of about 110.

7 Related work

As we mentioned earlier, two common approaches to
evaluating the scalability of large storage systems are
using extrapolation and stub components. For example,
extrapolation is used, among others, in RAMCloud [19],
Spanner [12], and Salus [27], while the stub approach
is used in HDFS [21, 22]. Section 2 discusses these ap-
proaches in detail, so we do not discuss them further here.

Several tools have been proposed to address the gap be-
tween the size of the experiments that researchers would
like to run and the resources available to them.

In DieCast [9] this experimental gap is addressed us-
ing time dilation [10]. DieCast runs multiple processes
inside virtual machines on a single host and slows down
each process by a constant factor. It compensates for this
slow-down by multiplying the measured throughput by
the same factor. DieCast can achieve some degree of
colocation when CPU utilization is the bottleneck, but
does nothing to reduce the large amount of disk space
necessary to evaluate large-scale storage systems.

The system that comes closer to addressing the ex-
perimental gap for storage systems is David [1]. David
leverages the observation that to evaluate a local file sys-
tem it is not necessary to store the actual data. Thus,
David only stores the file system’s metadata: the data is
simply discarded. This technique allows David to eval-
uate local file systems of much larger size than that of
the local disk on which they are run. Unfortunately, this
approach cannot be easily applied to distributed storage
services. For example, when users write a key-value pair
to HBase, the region server adds a timestamp and a region

identifier to the write request and stores this metadata,
together with the users’ data, on the local file system of
an HDFS DataNode. Since data and metadata look in-
distinguishable to the HDFS layer, David would discard
metadata critical for the correct operation of the system.

Memulator [8] emulates nonexistent storage compo-
nents by storing data in memory and accurately predicting
how long each operation takes. Its purpose is to test the
behavior of the system on devices that the researchers
do not have access to. Unlike Exalt, it does not save any
resource usage, which makes it not applicable to our goal.

Finally, simulation is a technique used by several sys-
tems to evaluate the performance of large-scale deploy-
ments. The approaches vary from disk simulation [24],
network simulation [15, 18], to simulation of large-scale
P2P systems [26]. A well-known drawback of simulation
is that its results are only as good as its model of how the
system works. Unfortunately, as systems grow in com-
plexity, coming up with a model that accurately captures
all their features becomes prohibitively hard.

There exist several compression algorithms [5, 14, 16,
28, 29] one may consider using in our context. However,
all these algorithms are designed to be general-purpose
and as such they need to scan all the input bytes. Tardis,
on the other hand, owes its efficiency largely to the fact
that it does not have to scan most of the input bytes.

8 Conclusion

Exalt is a library that gives back to researchers the abil-
ity to evaluate the scalability of large storage systems.
Exalt is based on the Tardis compression scheme, which
leverages a specific data format to achieve efficient com-
pression and high degrees of colocation, which in turn
allows researchers to perform large-scale experiments on
as few as one hundred machines. We have used Exalt
to identify several performance problems in HDFS and
HBase. Fixing these problems allowed the system to sig-
nificantly increase its maximum achievable throughput.
We plan to use Exalt to evaluate the performance of more
large-scale systems (e.g. Cassandra [13]).

Finally, we plan to further explore the relationship be-
tween space and time compression to quickly diagnose
problems that might otherwise require several days or
weeks of testing.

Acknowledgements

We thank Mark Silberstein for his insight during early
discussions of this work, our shepherd Miguel Castro and
the anonymous reviewers for their helpful comments, and
TACC for providing access to the Stampede cluster. This
work was supported in part by NSF grant CiC-FRCC-
1048269 and by a Google Graduate Fellowship.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 141

References

[1] N. Agrawal, L. Arulraj, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Emulating Goliath Storage
Systems with David. In FAST, 2011.

[2] Apache HBASE. http://hbase.apache.org/.

[3] B. Calder et al. Windows Azure Storage: a highly
available cloud storage service with strong consis-
tency. In SOSP, 2011.

[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. Gru-
ber. Bigtable: A distributed storage system for struc-
tured data. In OSDI, 2006.

[5] J. G. Cleary and I. H. Witten. Data compression
using adaptive coding and partial string matching.
IEEE Transactions on Communications, 1984.

[6] Private communication with Facebook engineers
Siying Dong and Liyin Tang.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, pages 29–43. ACM
Press, 2003.

[8] J. L. Griffin, J. S. andSteven W. Schlosser, J. S. Bucy,
and G. R. GangerNitin. Timing-accurate Storage
Emulation. In FAST, 2002.

[9] D. Gupta, K. V. Vishwanath, and A. Vahdat.
DieCast: Testing Distributed Systems with an Accu-
rate Scale Model. In NSDI, 2008.

[10] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren,
A. Vahdat, and G. M. Voelker. To Infinity and Be-
yond: Time-Warped Network Emulation. In NSDI,
2006.

[11] Gzip. http://www.gzip.org/.

[12] J. Corbett et al. Spanner: Google’s Globally-
Distributed Database. In OSDI, 2012.

[13] A. Lakshman and P. Malik. Cassandra – A decen-
tralized structured storage system. In LADIS, 2009.

[14] A. Moffat. Implementing the PPM data compression
scheme. IEEE Transactions on Communications,
38(11):1917–1921, Nov. 1990.

[15] Network Emulation with the NS Simulator.
http://www.isi.edu/nsnam/ns/ns-emulation.html.

[16] C. G. Nevill-Manning and I. H. Witten. Identify-
ing Hierarchical Structure in Sequences: A linear-
time algorithm. Journal of Artificial Intelligence
Research, 7(1):67–82, July 1997.

[17] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,
J. Howell, and Y. Suzue. Flat Datacenter Storage.
In OSDI, 2012.

[18] NS-2. http://www.isi.edu/nsnam/ns/.

[19] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-
hout, and M. Rosenblum. Fast Crash Recovery in
RAMCloud. In SOSP, 2011.

[20] M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems (TOCS),
10(1):26–52, Feb. 1992.

[21] K. Shvachko. HDFS scalability: the limits to
growth. http://c59951.r51.cf2.rackcdn.com/5424-
1908-shvachko.pdf.

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In MSST,
2010.

[23] Texas Advanced Computing Cener (TACC).
https://www.tacc.utexas.edu/.

[24] The DiskSim Simulation Environment.
http://www.pdl.cmu.edu/DiskSim/.

[25] The Truman Show.
http://www.imdb.com/title/tt0120382/.

[26] K. Wang. Exploring the Design Tradeoffs for
Exascale System Services through Simulation.
http://datasys.cs.iit.edu/ kewang/documents/presen-
tation 1.pptx.

[27] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan,
J. Kirubanandam, L. Alvisi, and M. Dahlin. Ro-
bustness in the Salus scalable block store. In NSDI,
2013.

[28] J. Ziv and A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions
on Information Theory, 23(3):337–343, May 1977.

[29] J. Ziv and A. Lempel. Compression of Individual
Sequences via Variable-Rate Coding. IEEE Transac-
tions on Information Theory, 24(5):530–536, Sept.
1978.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 143

ipShield: A Framework For Enforcing Context-Aware Privacy

Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan,
Yasser Shoukry, Matt Millar, Mani Srivastava

University of California, Los Angeles

Abstract

Smart phones are used to collect and share personal
data with untrustworthy third-party apps, often leading
to data misuse and privacy violations. Unfortunately,
state-of-the-art privacy mechanisms on Android provide
inadequate access control and do not address the vulner-
abilities that arise due to unmediated access to so-called
innocuous sensors on these phones. We present ipShield,
a framework that provides users with greater control over
their resources at runtime. ipShield performs monitoring
of every sensor accessed by an app and uses this infor-
mation to perform privacy risk assessment. The risks are
conveyed to the user as a list of possible inferences that
can be drawn using the shared sensor data. Based on
user-configured lists of allowed and private inferences, a
recommendation consisting of binary privacy actions on
individual sensors is generated. Finally, users are pro-
vided with options to override the recommended actions
and manually configure context-aware fine-grained pri-
vacy rules. We implemented ipShield by modifying the
AOSP on a Nexus 4 phone. Our evaluation indicates
that running ipShield incurs negligible CPU and mem-
ory overhead and only a small reduction in battery life.

1 Introduction

Smartphones have evolved from mere communica-
tion devices into sensing platforms supporting a sprawl-
ing ecosystem of apps which thrive on the continu-
ous and unobtrusive collection of personal sensory data.
This data is often used by the apps to draw inferences
about our personal, social, work and even physiological
spaces [10, 41, 16, 53, 9, 58, 49, 51] often under the
pretext of providing personalized experiences and cus-
tomized recommendations. However, not all app devel-
opers are equally trustworthy, and this coupled with user
naı̈veté leads to data misuse and privacy concerns.

To safeguard user privacy, Android requires develop-
ers to specify the permissions needed by their apps. At

install time, a user can either grant access to all the re-
quested resources or opt to not use the app at all. But
despite these provisions, cases of privacy violations by
third-party apps are rampant [33, 6, 55]. We observe
multiple problems with the current privacy mechanisms
in Android. First, only a select set of sensors such as
GPS, camera, bluetooth are considered to be privacy-
prone and have their access mediated through protected
APIs [3]. Other onboard sensors such as accelerometer,
gyroscope, light, etc. are considered to be innocuous, re-
quiring no user permission. This specific vulnerability of
unrestricted access to accelerometer and gyroscope data
has been exploited to mount keylogging attacks [43],
and for reconstruction of travel trajectories [31]. Sec-
ond, various studies [52, 28], to understand users’ per-
ception of privacy in general and their understanding of
Android permissions in particular, reveal that users are
often oblivious to the implications of granting access to
a particular type of sensor or resource on their phone at
install time. However, the perception quickly changes
to one of concern when apprised of the various sensitive
inferences that could be drawn using the shared data. Fi-
nally, users only have a binary choice of either accepting
all the requested permissions or not installing the app at
all. Once installed, users do not have any provision to
revoke or modify the access restrictions during runtime.

Prior research have tried to address some of the above
problems. TaintDroid [24] extends the Android OS by
adding taint bits to sensitive information and then track-
ing the flow of those bits through third-party apps to de-
tect malicious behavior. However, tainting sensor data
continuously for all apps has high runtime overhead, and
is often conservative as data sensitivity typically depends
on user context. Moreover, TaintDroid stops at detection
and does not provide any recommendation on countering
the privacy threat. MockDroid [18] is a modified An-
droid OS designed to allow users the ability to mock re-
sources requested by the app at runtime. Mocking is used
to simulate the absence of resources (e.g., lack of GPS

1

144 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

fix, or Internet connectivity), or provide fixed data. How-
ever, MockDroid only works for resources explicitly re-
quested by an app (innocuous sensors are not handled), is
binary because a user can either mock a resource or pro-
vide full access to it and finally MockDroid falls short
on providing any guidance to the user regarding which
sensors to mock. PMP [12] is a system that runs on iOS
and allows users to control access to resources at run-
time. It uses a crowdsourced recommendation engine to
guide users towards effective privacy policies. However,
PMP does not handle sensor data.

In this paper, we present ipShield [5], a privacy-
enforcing framework on the Android OS. ipShield al-
lows users to specify their privacy preferences in terms
of semantically-meaningful inferences that can be drawn
from the shared data, auto generates privacy actions on
sensors, and supports an advanced mode for manual con-
figuration of fine-grained privacy rules for accessed sen-
sors on a per app basis at runtime. We build on prior
work in [7, 18] and make the following contributions.

• We modified the Android OS to monitor all the sen-
sors accessed by an app regardless of whether they are
specified explicitly (e.g., in the manifest file for An-
droid apps) at install time. As per our knowledge, ours
is the first system that tracks innocuous sensors.

• We took an important step towards presenting the pri-
vacy risks in a more user-understandable format. In-
stead of listing sensors, we list the inferences that
could be made using the accessed sensors. Users can
specify their privacy preferences in the form of a prior-
itized blacklist of private inferences and a prioritized
whitelist of allowed inferences.

• We implemented a recommendation engine to trans-
late the blacklist and the whitelist of inferences into
lower-level binary privacy actions (suppression, al-
low) on individual sensors.

• Finally, we provided the user with options to config-
ure context-aware fine-grained privacy actions on dif-
ferent sensors on a per app basis at runtime. These ac-
tions range in complexity from simple suppression to
setting constant values, adding noise of varying mag-
nitude, and even play-back of synthetic sensor data.

ipShield is open source and implemented by modify-
ing Android Open Source (AOSP) [2] version 4.2.2 r1.
We evaluated it using computation intensive apps requir-
ing continuous sensor data. Our results indicate that ip-
Shield has negligible CPU and memory overhead and the
reduction in battery life is ∼ 8% in the worst case.

2 Case Studies
Using two typical scenarios we illustrate below how

ipShield can help app users protect their privacy.

Classroom

My Home

Friend’s
Home

Starbucks
Bar

Restaurant

Actual trace
Spoofed trace

My Home

Friend’s
Home

Classroom

Bar

Figure 1: Left: Saga app showing actual trace of the user.
Right: Both actual trace and spoofed trace on the map.

2.1 Transportation Mode and KeyLog-
ging: Accelerometer/Gyroscope

Activity recognition algorithms [16, 53] are used by
various fitness apps to infer the users’ Transportation
Mode (e.g., to predict one of three labels: walking, mo-
torized or still). For example, the Ambulation app in [53]
combines accelerometer and GPS data to infer the la-
bels with over 90% accuracy. However, the same data
can also be used to infer other labels sensitive to the
user. For example, accelerometer together with gyro-
scope data can be used to perform keylogging and to in-
fer keystrokes (Onscreen Taps) on the softkeyboard [43]
(and separately to also infer Location [31]) with over
80% accuracy. This leads to the leakage of sensitive in-
formation like password and PIN entered on the phone.

Using ipShield, a user would add the Transportation
Mode and the Onscreen Taps to the whitelist and the
blacklist, respectively. This will block the accelerometer
and gyroscope data from reaching the Ambulation app
preventing keylogging. However, this will also cause the
app to stop performing activity recognition. In Section 8
we will show how ipShield can be used to configure fine-
grained rules and maximize the utility of the app.

2.2 Saga: Location

Saga [10] is a life logging app which runs in the back-
ground and keeps track of the places visited by a user.
By analyzing the location trace of a user, Saga can in-
fer useful information such as average daily commute
time, time spent at work, etc. However, it can also de-
rive sensitive inferences about locations such as home,
office, hospital private to the user. Fig. 1(left) shows a
mobility trace recorded using Saga. The user starts from
home, picks up her friend and drives to school for class;
later she also visits a nearby bar and wants to keep the
visit private. In addition to this direct privacy require-
ment, there is also an indirect privacy concern. Saga

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 145

reveals the home location of the user’s friend. The lo-
cation information can be coupled with other online re-
sources to identify the home owner, and infer that the
friend had gone to the bar too. Thus, privacy of both
the user and her friend is compromised, even though the
friend is not using Saga. We therefore want ipShield to
allow spoofing of location traces to protect visits to sen-
sitive places. A plausible spoofed trace is shown on the
map in Fig. 1(right). We illustrate how ipShield achieves
this in Section 8.

3 Inference Privacy Problem

Inferences are labels (of activity, behaviour, places
etc.) associated with data. We group labels of a sim-
ilar (semantic) type into an inference category. The
category names and the grouping are based on prior
work (see Table 3). For example, hospital, home, office
are grouped under Location category. An adversary tries
to infer/predict these labels from the shared data. The
prediction accuracy of an inference category corresponds
to correctly predicting a label in that category. We now
define the inference privacy problem.

Problem statement: Data is typically shared with an
app for a specific set of inference categories. For ex-
ample, in Section 2.1, data is shared for inferring the
Transportation Mode, and in Section 2.2 it is for inferring
travel statistics. These categories and their labels form a
whitelist which the user wants to allow and obtain utility.
However, the same data can be used to infer keystrokes
and sensitive locations – inferences sensitive to the user.
The sensitive categories and their labels form the black-
list which the user wants to keep private. Each inference
category can also be associated with a user specified pri-
ority level (Section 6.2). The privacy problem is to de-
sign a system which will take as input a whitelist and a
blacklist of prioritized inference categories and translate
them into privacy actions on sensors such that the two
lists are balanced as per user specified priorities.

Side-Channel Attacks: Traditionally, side channel at-
tacks are designed to exploit the information revealed by
execution of cryptographic algorithms to recover their
secret key. These attacks typically use information chan-
nels which include but are not limited to running time,
cache behavior, power consumption pattern, acoustic
emanations and timing information [36, 54, 29] during
execution. Sometimes, even with no program execution,
information side channels can exist due to physical sig-
nals emanating from a hardware while it is being used
by a user. For example, acoustic [13, 42] and electro-
magnetic [57] emanations from a keyboard has been used
to infer keystrokes and recover sensitive passwords and
PINs. The feasibility of such attacks on the smart phone
using sensor data has been demonstrated in [14, 43].

Privacy Analysis Kirin [25], SOM [17], Stowaway [27]

Privacy Detection
Static: BlueSeal [32]
Dynamic: TaintDroid [24]

Privacy Mitigation

Mobile Based:
Dr. Android Mr. Hide [34], PMP [12],
Apex [45], MockDroid [18], AppFence [33],
pDroid [7], πBox [38]
Cloud Based:
Lockr [56], PDV [44], Persona [15]

Table 1: Categorization of prior work.

Our inference privacy problem differs from traditional
side-channel attacks in several ways. First, the shared
data used for the attack are not unintended physical sig-
nals emanated from the hardware, or covert timing infor-
mation but sensor data intended for the recipient. Sec-
ond, in our setting the recipient is also the adversary
whereas in case of side-channel attacks the adversary is
typically different from the intended recipient. Finally,
at least in principle, the side-channel attacks can be pre-
vented by placing the computational hardware in physi-
cally isolated and secure chamber whose boundaries the
electromagnetic, acoustic and such emanations cannot
cross which is not the case in our scenario. In [14], in-
ferring the keystrokes is referred as a side-channel at-
tack. However, we call it a blacklist inference as the sen-
sor data are intended to be shared with the app for the
whitelisted inferences and are not a side-channel.

4 Related Work

We group prior work on systems for protecting privacy
under three broad categories as shown in Table 1. The
Privacy Analysis category summarizes contributions to-
wards analysis of the Android permission model, confor-
mance of the various apps to this model, the usage pattern
of permissions across apps, and finally the expressibility
of the permission model [25, 17, 27]. Under Privacy De-
tection we have tools such as BlueSeal [32] which use
static analysis of the app bytecode to detect if sensitive
information is being leaked over the network interface
and inform it to the user at install time. Other systems
like TaintDroid [24] use dynamic flow tracking to detect
malicious app behavior. However, both techniques can
only alert the users of malicious behavior (BlueSeal at in-
stall time, and TaintDroid at runtime), and do not provide
suitable mechanisms to prevent information leakage.

Under the Privacy Mitigation category we group pri-
vacy systems implemented on mobile platforms. Dr.
Android and Mr. Hide [34] instrument and modify the
app’s dex bytecode to ensure that access to all private
resources is made available only through their trusted in-
terface. AppFence [33] builds on TaintDroid and pro-
vides shadow or synthetic data to untrusted apps and
measures the effect of such data on app utility. Other
systems in [18, 7, 45, 12, 38] provide users with the

3

146 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

K
er

ne
l

D
ri

ve
rs

Sensors

SensorHAL

SensorService
LocationManager

Service

SensorManager

GPS

LocationManager

1

2

3

4

6

7

8

Li
br

ar
ie

s
A

pp
lic

at
io

n
Fr

am
ew

or
k

A
pp

lic
at

io
n

System Processes User Processes

App

Sy
st

em

Se
rv

ic
es

Path-S Path-G

5

9

10

Figure 2: The data flow path from sensors to apps. Same
colored blocks represent components within the same process.

ability to control access to their resources at runtime -
a feature that is currently being integrated into the latest
Android release [1]. However, the above systems pro-
vide binary access control to resources, do not monitor
access to innocuous sensors, and lack high-level user-
understandable privacy abstractions (inferences). Cloud-
based solutions in [56, 44, 15] are for protecting pri-
vacy of data streams but require additional infrastructure.
A detailed exposition of other various privacy preserv-
ing techniques, and initial ideas on ipShield can also be
found in [21].

5 Background: Android

Below we describe data paths, from sensors to apps
and also highlight Android’s security model [3] to un-
derstand the process level isolation of the components.

5.1 Android Sensor Data Flow Path

We consider two data paths as shown in Fig. 2.
Path-S is used by sensors such as accelerometer, gy-
roscope, light and so on. Path-G is from the GPS
to apps. Note that the paths are simplified represen-
tation showing only the components of the Android
OS that are relevant to ipShield. SensorService and
LocationManagerService are system services (run-
ning continuously in the background) which are started
by the Android OS at boot time. These services run as
separate threads within the system server process, poll
the SensorHAL layer for sensor data and are responsible
for pushing the data to the apps. The apps typically do
not communicate directly with the services. Each sys-
tem service has a corresponding Manager which acts as
its proxy. Thus, to access sensor data an app instantiates
either a SensorManager or a LocationManager object
and uses the object’s public methods to register an event
listener for the desired sensor. As shown in Fig. 2, both
the app and the manager objects are part of the same pro-

App
Sensor Data

S

K

P
Rule-Based
Obfuscator

Context Engine

SV
M

G
M

M

H
M

M

D
T

white black
 listed inferences

Rule Recommender
Direct Firewall
Configurator

Semantic
Firewall Configurator

User

rules

built-in
contexts

external
contexts

Inference DB

Sensor Counters
for Apps

User

A

B

C

D

E G

H

I

F

rules

Configurator
Switcher

J

FirewallManager

rules

Figure 3: ipShield data flow.

cess (which also runs the Dalvik Virtual Machine).

5.2 Android Security Model

Application Sandboxing: The core of the Android OS
is built on top of the Linux kernel, and this allows An-
droid to re-purpose the traditional security controls built
into Linux to protect user data, system resources, and to
provide app isolation. Android enforces kernel level Ap-
plication Sandboxing for every software that runs above
the kernel which includes all apps, OS libraries, OS-
provided app framework and app runtime. The Android
system sets up the sandbox and enforces security be-
tween apps by assigning a unique user ID (UID) to each
app and by running it as that user in a separate process.
Running apps within a sandbox environment ensures that
any memory corruption error will only allow arbitrary
code execution in the context of that particular app and
with the permissions established by the OS. User-specific
privileges also ensure that files created by one app cannot
be read or altered by another app.

Secure IPC: Android not only supports traditional
mechanisms such as filesystem, sockets and signals but
also implements newer and more secure mechanisms
such as Binder and Intents.

Access Control Using Manifest: Finally, Android
controls app access to resources by designating certain
APIs (such as camera, location, bluetooth etc.) as pro-
tected [3]. To use these resources an app needs to define
its requirements in its manifest (a control file provided by
every app). The user can either grant all of the requested
permissions as a block or not install the app at all.

6 Architectural Design

The design of ipShield is guided by four objectives
– better monitoring of sensor access, meaningful pri-
vacy abstraction, privacy rule recommendation and fine-
grained control over shared data. The architectural
requirements to achieve the above functionalities are

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 147

shown in Fig. 3 and can be broken down into four major
blocks – (i) Databases (ii) Context Engine (iii) Firewall-
Manager (iv) Rule-Based Obfuscator. We describe each
of the blocks and their components in detail below.

Databases: We maintain two databases: Sensor Coun-
ters and Inference DB. Currently, apps have unrestricted
access to the class of innocuous sensors. One of our goals
in ipShield is to instrument the OS to monitor the number
of sensors accessed by an app. The information is popu-
lated in the Sensor Counters database (marked F) and is
provided as an input to the FirewallManager block. The
database needs to be updated when a new sensor is ac-
cessed by an installed app or when an app in uninstalled.

Motivated by the database of virus signatures main-
tained by antivirus software, we maintain a similar
database for mapping the list of inference categories (and
their labels) that could be predicted using a combination
of sensors, together with the prediction accuracy and the
machine learning algorithm employed (Table 2 shows a
small subset of the Inference DB). Advances in sensing
coupled with increases in the sophistication of learning
algorithms result in newer inference categories and im-
proved accuracy. The inference DB (marked E) thus
needs to be kept updated.

Context Engine: For granularity of rules, ipShield al-
lows trusted Context Engines (marked D) to register
and provide as input context labels. A context engine
is a set of machine learning algorithms, which take as in-
put raw sensor data and output the current context label.
An inference label is same as the context label but it is
inferred from the shared data by the adversary. A user
can configure privacy rules to trigger on context labels.

FirewallManager interacts with the user and is re-
sponsible for generating the privacy rules. There are four
different sub-blocks within FirewallManager (marked
G through J).

The Semantic Firewall Configurator (G) takes as in-
put the sensors accessed by an app and queries the Infer-
ence DB to present the user with a list of possible infer-
ence categories that can be predicted by the app. Using
inferences instead of sensors allow us to better commu-
nicate the privacy risks to the user [52]. The user then
configures a whitelist and a disjoint blacklist from the
enumerated list of inference categories.

The Rule Recommender (H) (Section 6.2) takes as
input the privacy preferences of the user expressed in
terms of the whitelist and blacklist and translates them
to actual privacy actions on the sensors. We observe that
the privacy actions are dependent on the inference labels,
the learning algorithm employed and the features used.
Therefore, to keep the recommender simple and generic
we limit the auto-generated privacy actions to Normal
and Suppress (Section 6.1). While the auto-generated

Contexts Action

Built-In External

Time
OfDay

Place

SensorType

App
Name

Day
OfWeek

Rule

Walking Running ...

Suppress Perturb Play-back

Distribution
Name

Distribution
Param

Sensor
Source

Constant

Scalar Vector

Sensor
Type

Normal

Figure 4: Tree showing all the possible options currently im-
plemented in ipShield for constructing privacy rules. The leaf
nodes of the tree are instantiated to form the privacy rules.

rules are binary and conservative, we provide the user
with the flexibility to override them.

The Direct Firewall Configurator (I) allows the user
to manually configure fine-grained context-aware rules.
The contexts used can either be ones provided by ip-
Shield, or ones which are externally obtained from the
trusted Context Engine. ipShield is designed to operate
in the Semantic mode. The Direct Configurator is an op-
tional mode, which provides flexibility of rule configura-
tion at the cost of increased human interaction.

Finally, the Configurator Switcher block (J) allows
the user to switch between the Semantic and Direct Con-
figurator modes and configure rules.

Rule-Based Obfuscator (B) implements the different
privacy actions. It takes as input privacy rules and sensor
data and, depending on the app, applies the appropriate
rules to the data before releasing them.

6.1 Taxonomy of Privacy Rules

The complete list of choices for configuring privacy
rules is illustrated in Fig. 4. A rule has three basic
parts: Context, SensorType, and Action. We also al-
low conjunction (denoted by the ∧ operator) of the con-
text labels within a rule. The general form of a rule is
if (∧n

i=1Contexti) then apply Action on SensorType. For
example, if ((TimeO f Day in [10am−5pm])∧ (Place =
school)∧(AppName = f acebook)) then apply Action =
Suppress on SensorType = gps. As shown in Fig. 4
some of the simple contexts such as TimeOfDay, Day-
OfWeek, Place and AppName are built into ipShield. Ex-
ternal contexts provided by a registered Context Engine
can also be used to configure rules. SensorType refers
to the sensor (e.g., accelerometer, GPS, gyroscope) on
which the action is to be applied.

Excluding the default action of releasing data without
any changes (Normal), ipShield currently supports four
different privacy actions. The Suppress action (S-block
in B) when applied blocks data from reaching an app
and the app is unable to detect any sensor event. The
Constant action (K-block in B) allows user to replace

5

148 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

actual data with a constant value. The user-specified con-
stant can be vector or scalar valued depending on the type
of sensor whose data is being replaced. The Perturb ac-
tion (P-block in B) can be used to add noise to sensor
data. The noise values can be drawn from different prob-
ability distributions, the parameters of which are input
to this action. Finally, the Play-back action can be used
to suppress the data from the actual sensor hardware and
instead send synthetic sensor measurements from an ex-
ternal service to the requesting app (U-shaped datapath).
The synthetic data source and sensor type are input to this
action. The Play-back option can be used for generating
any arbitrary transformation on the data offline.

6.2 Rule Recommender

The Rule Recommender takes as input the whitelist
and the blacklist of inference categories and generates
a configuration for enabling or blocking of sensors ac-
cessed by an app. The goal is to ensure that only those
inference labels which form part of the whitelist are al-
lowed and those in the blacklist are blocked.

6.2.1 Problem Formulation

Let N be the number of sensors used by an app (ob-
tained from Sensor Counters) and s = [s1, . . . ,sN] repre-
sent the sensor state vector where si ∈ {0,1} represents
the state of the ith sensor. Setting si to 0 indicates that
the sensor is disabled and a value of 1 indicates that
the sensor is enabled. We denote the set of inference
categories by L = {l1, . . . , l|L |}. We define a mapping
M : {0,1}N ×L → [0,1] where M(ψ, l) = 0 indicates
that there exists no learning algorithm which can use the
data streams from the sensors which are enabled as per
state vector ψ and infer a label in category l. A non-zero
value of M(ψ, l) correspond to the maximum accuracy
among all the learning algorithms that can be used to in-
fer category l from the data streams released as per the
state vector ψ . A value of 1 indicates that l can be per-
fectly inferred using the enabled sensors. Note, we might
use different learning algorithms to predict the same la-
bels using different sensor state vectors. The mapping M
is obtained from the Inference DB. Learning algorithms
typically work on features extracted from the raw sensor
data. But, our current model is agnostic to features be-
cause we are sharing the raw sensor data itself and hence
every required feature can be extracted from it. The set of
whitelisted categories W ⊆L , and the set of blacklisted
categories B ⊆L , are as specified by the users such that
W ∩B = /0. Finally, let pl ∈ {0, . . . ,Pmax} denote the pri-
ority level set for category l by the user such that a higher
value of pl indicates higher priority. The priority levels
represent a relative gradation of risk as perceived by the
user. For example, Pmax = 3 could correspond to low,

medium and high levels of perceived risks. We use the
above notations to formulate the inference-privacy prob-
lem as the following constrained optimization problem

maxψ∈2N ∑
l∈W

M(ψ, l)2pl − ∑
l∈B

M(ψ, l)2pl (1)

s.t. ∑
l∈B

pl=Pmax

M(ψ, l) = 0. (2)

The objective function in Eqn. 1 is designed to maximize
the prediction accuracy of the whitelisted labels and min-
imize the prediction accuracy of the blacklisted labels.
The priorities are exponentially scaled up to account for
whitelisted labels which can be detected with low accu-
racy than other labels but have a higher priority. The
constraint in Eqn. 2 ensures that users can force black-
listed inferences to be blocked by setting their priority to
Pmax. We note that the search space in the optimization
problem shown in Eqn. 1 is constrained to the vector of
elements with 0’s and 1’s corresponding to the enabled
and blocked sensors respectively. It then follows that
the search space is constrained to the vertices of a hy-
percube. It is also easy to show that this search space
is non-convex. Moreover, the optimization function de-
pends on the relation M on which we impose no structure
or even linearity. Thus, our program is non-linear inte-
ger program which is non-convex and NP-complete. We
observe from our investigation of prior work and apps
from Google Play (Section 8) that N ≤ 6 for almost all
the apps. Therefore, to solve a specific instance of the
optimization problem above (a given choice of whitelist,
blacklist, N, and priorities) we apply brute force and enu-
merate all possible state vector combinations. We filter
out all state vectors which satisfy the blacklisted con-
straint and maximize the objective function over this re-
duced space. The output vector ψ shows which sensors
should be enabled or disabled mapping preferences on
inferences to privacy actions on sensors. There will be
scalability issues for large N (> 15) but in practice we do
not think there will be a single inference made using 15
different sensor types on a phone in the near future.

6.2.2 Numerical Example

We return to the motivating example (Section 2.1) and
express it in terms of the notation described above. Thus,
L = {Transportation Mode,Location,Onscreen Taps}, W =
{Transportation Mode} and B = {Location,OnscreenTaps}.
The mapping M is presented in Table 2 (under Inference
Categories). We set the maximum priority level Pmax =
10 throughout this example and represent a user speci-
fied priority vector as a tuple (ptransport , plocation, ptap).
We apply the algorithm above for different choices of
priority vectors and report the evaluation results also in
Table 2 (under column titled Evaluation).

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 149

Sensor Combination Inference Categories Evaluation
Transportation
Mode

Location
Onscreen
Taps

Priority1
{10,4,10}

Priority2
{10,0,7}

Priority3
{5,9,9}

GPS+ Acc + Gyro 95% 97% 80% 0 869.4 -875.8
GPS+WiFi 83.1% 97% 0% 835.4 849.9 -470.0
GPS+GSM 81.7% 98.2% 0% 820.9 835.6 -476.6
GSM+WiFi 72.9% 94.03% 0% 731.45 745.5 -458.1
GSM+Wifi+Acc+Gyro 92% 94.03% 80% 0 838.7 -861.6
Wifi+Acc+Gyro 91.1% 23.08% 80% 0 830.2 -498.6
GSM+Acc+Gyro 88.1% 94.03% 80% 0 798.8 -862.8
GPS 75.8% 97% 0% 760.7 775.2 -472.4
GSM 61.8% 94.03% 0% 617.8 631.9 -461.7
Acc+Gyro 84.6% 23.08% 80% 0 763.7 -500.7

Table 2: Left: A portion of the Inference DB (mapping M). Each entry (in %)is the maximum prediction accuracy for the inference
category using the sensor combination. Right: The objective function (Eqn. 1) evaluated for different priority vectors and Pmax = 10.

Consider Priority1 = (10,4,10) as the selected prior-
ity vector. The user is not too concerned about revealing
his Location and sets plocation to 4. She however wants to
strictly suppress the detection of Onscreen Taps and sets
ptap to 10. A high priority is also given to the whitelisted
inference category by setting ptransport = 10. The objec-
tive function values for the different sensor combinations
is shown in the column under heading Priority1. The
maximum occurs for the combination corresponding to
GPS+WiFi and is selected by the recommender. The se-
lected sensor state vector is such that accelerometer data
is suppressed in order to guarantee no leakage of the On-
screen Taps information. We also note that GPS+WiFi
configuration provides higher accuracy in predicting the
Transportation Mode and lower accuracy for Location
prediction compared to other sensor combinations.

We consider another scenario with priority vector
Priority2 = (10,0,7). In this case, the user does not
worry about Location disclosure, but wants to increase
the prediction accuracy of the Transportation Mode
while blocking the Onscreen Taps if possible. The ob-
jective function values are shown under column Prior-
ity2. The recommender selects the GPS+Accelerometer
combination which is biased towards performance. In
addition to meeting blacklist requirements the combina-
tion also provides the best accuracy.

Finally, the third user has high levels of concern about
revealing both Location and Onscreen Taps information.
She would like to trade the performance with privacy and
thus selects a priority vector Priority3 = (5,9,9). The
resulting sensor combination chosen is GSM+WiFi. The
rule recommender starts by suppressing the accelerom-
eter data (to prevent tap inference). It then selects the
combination which results in the worst Location infer-
ence from among the remaining set of combinations
(GSM and GSM+WiFi), while simultaneously maximiz-
ing the whitelist accuracy.

Model-Based Augmentation of Rule Recommender:
Prior research has shown that a user’s various context la-

Hardware

Linux Kernel

Libs Daemons

Binder Interface

Third-party
Apps

Context
Engine

Inference DBTrusted App part of ipShield

Semantic Firewall Configuratorcontexts
Rule Recommender

Direct Firewall Configurator

User

Whitelist and Blacklist
of inference

SensorHAL
Other Native

Services

Android Runtime/Dalvik VM

System Server System Server

FirewallConfig
Service LocationManager

Service

Rule-Based
Obfuscator

System Server

SensorService

Rule-Based
Obfuscator

Sensor Manager FirewallConfig
Manager Location Manager

Android Framework

Rules

Rules

Sensor Data Sensor Accessed

Rules Rules

Sensor DataSensor Data Sensor Accessed

Sensor
Accessed

Sensor
Accessed

System Processes User Processes Trusted App (User Process)

FirewallManager

Figure 5: Implementation of ipShield on Android.

bels and transitions between them can be captured by a
Markov chain [30], by using a Dynamic Bayesian Net-
work [47], or explicitly enumerated [20]. A user speci-
fies a whitelist and a blacklist of inference categories, and
depending on the current context label and the learned
model the system can determine whether to release a
context with a particular probability. In other words, the
probability of release of a context should not increase the
adversarial accuracy of predicting a blacklisted inference
label. We envision that such model-based techniques can
also be included in our recommendation system for gen-
erating a richer set of privacy rules.

7 Implementation

The implementation of ipShield within the Android
stack (Fig. 5) is described below.

7

150 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7.1 Trust Model

We assume that the user installed third-party apps
(e.g., from Google Play) are untrusted but do not col-
lude with each other and share information. We trust the
Linux kernel on which Android OS is built and also the
Application Sandbox implemented by the kernel (Sec-
tion 5). We extend the chain of trust to include the OS
libraries and system services which run within the Ap-
plication Sandbox and are protected by UID and group
ID privileges. However, recent successful exploits from
Facebook on modifying the internal data structures of
the Dalvik VM [11] leads us to not trust the Applica-
tion Framework components which run within the same
process as the Dalvik VM.

7.2 Intercepting Data: Possible Choices

As indicated by the markers (1 - 10) in Fig. 2, there
exist different operating points in both the data paths
(Path-S and Path-G) at which we can intercept the sen-
sor data, apply privacy actions, and obfuscate it. How-
ever, also associated with an operating point is the im-
plementation complexity of the Rule-Based Obfuscator
block (B in Fig. 3) at that point and also its vulnerabil-
ity to security attacks. We discuss below the trade offs in
selecting an operating point.

Points 1 and 6 , correspond to modifying the kernel
drivers to obfuscate data. While the drivers are protected
by kernel security mechanisms, they require our imple-
mentation to be vendor specific. It is also hard to push
app and rule information to the drivers and periodically
update rules inside a driver.

Points 2 and 7 correspond to changes in the Sen-
sorHAL layer. The HAL provides the abstraction be-
tween device specific kernel drivers and the Android sys-
tem above. However, changing the HAL like the kernel
driver has a high implementation complexity in terms of
pushing app and rule information.

Points 3 and 8 , correspond to modifying the An-
droid system services, namely SensorService and
LocationManagerService which are responsible for
handling the different sensors and the GPS respec-
tively. These services as shown in Fig. 2 run in a pro-
cess separate from the app and hence are protected by
the Application Sandbox. Both SensorService and
LocationManagerService maintain information about
installed apps, and can be easily signaled using binder
calls and as we show later in Section 8 they incur low
overhead while updating rules.

Points 4 and 9 correspond to changing the
SensorManager and LocationManager, respectively.
These points have the least implementation complexity,
however both SensorManager and LocationManager

accelerometer
GPS

microphone
WIFI

software sensors
bluetooth

gyroscope
cellular
camera
others

0 5 10 15 20 25
9

5
5
5

7
11

13
14

21
21

(a) Sensor Usage Statistics

N
am

e
of

 S
en

so
r

1
2
3
4
5
6

0 10 20 30

1
1

5
9

13
23

(b) Number of Sensors Used Statistics

N
um

be
r o

f S
en

so
rs

Figure 6: Statistics of sensor usage from the Inference DB.

run within the same process as the app, and hence they
are not protected by process-level isolation. Recent ex-
ploits have used the above security vulnerability to mod-
ify code data structures at runtime [11].

Finally, points 5 and 10 correspond to static analy-
sis of the app code to understand privacy violations [32].
However, the information flow approaches are often con-
servative, incur large instrumentation and runtime over-
head, and typically stop at identification of a malicious
app. Based on the available choices we decided to im-
plement the Rule-Based Obfuscator block within the OS
in the SensorService and LocationManagerService
blocks in the respective data paths.

7.3 ipShield Code Blocks

ipShield is an open source project. The code for each
of the blocks together with complete instructions for
downloading and installing ipShield are available at [5].

7.3.1 Databases

Sensor Counters: This database, implemented as a
file, maintains a counter for each sensor on a per-app
basis. The counter for a sensor represents the num-
ber of events from the sensor that have been sent to
the app. We use an unsigned 64− bit long int for
our counter. Even at the maximum sampling rate of a
sensor, under continuous sensing, the counter will not
overflow within the lifetime of a phone. The entry for
an app together with the counters are deleted when the
app is uninstalled from the phone. A counter value
of zero indicates that the sensor is not being used by
the app. These counters are maintained by {Sensor,
LocationManager}Service and are periodically written
to the /data/sensor-counter file every minute. The
permissions on the file are such that it can be read by any
app but can be written to only by system services.

Inference DB: A knowledge repository generated
from a survey of 60+ papers published in relevant con-
ferences and journals over the past 3 − 5 years. This

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 151

Inference Category Labels
Transportation Mode [53] still, walking, motorized
Device Placement [48] hand, ear, pocket, bag
Onscreen Taps [43] location of taps on screen
Location [19] [35] [46] home, work, public, restaurant...
Emotion [50] [22] happy, sad, fear, anger, neutral
Speaker [39] [46] male/female, identity
Text Entered on Phone [43] alphabets
Stress [40] [22] stressful or not

Table 3: Selected inference categories from Inference DB.

database captures a wide variety of inference categories
a small set of which is shown in Table 3. For each in-
ference category, we store the prediction accuracy over
the constituents labels for a particular sensor combina-
tion. If there are multiple papers using the same sensor
combinations predicting the same set of labels we store
details of the one with highest accuracy. We also main-
tain information about the set of sensors used, the fea-
tures extracted from the sensor data, the classifiers used,
and finally the paper title under which the results were
published. In Fig. 6, we show statistics of sensor usage
computed using the inference database. Based on our
survey, we found that (a) GPS and accelerometer sen-
sors are the most commonly used; (b) the number of
sensors accessed by any app is almost always less than
6 (we do not include papers which use external body
worn sensors in the plot, but even externally worn sen-
sors are less than 6 types). While newer inferences are
being made, we do not expect the database to change
rapidly. To enable crowdsourcing of the inference DB,
we have designed and published a web interface where
people can contribute entries [5]. Currently, we rely on
manual screening of the received entries before adding
them to the Inference DB.

7.3.2 Context Engine

To allow fine-grained context-aware rules, ipShield al-
lows trusted external context engines to register contexts
that they can provide using the interface in Fig. 7(e). The
user can then configure rules which will be triggered on
a particular context. ipShield expects the context engines
to use Android supported intents (action=label) as the
IPC mechanism for providing the context labels.

Contexts such as battery status, contact list, ringer
status etc., do not require access to sensor data and
can be obtained through APIs provided by the Android
OS. However, for contexts that require sensor data, the
external context engine must have access to raw sen-
sor data. To implement this when a data buffer from
the HAL is received by the SensorService and/or the
LocationManagerService it is first sent to the context
engine to get the current context label. On receiving the
context, the associated rules are then loaded and used by
the Rule-Based Obfuscator to obfuscate the data buffer.

We modified the Transportation Mode app [53] to im-
plement an activity context engine and test its integration
with ipShield. In our implementation, the context engine
used SensorManager for subscribing to accelerometer
data at the rate of SENSOR DELAY GAME. This resulted
in sensor data at a rate of 50Hz or a sample every 0.02s.
We used data buffered over a sliding window of 1s for
inferring the activity context. On an average, the engine
took about 8ms to generate activity context from a 1s ac-
celerometer window. Even with additional overhead due
to binder call and rule loading, we found that the asso-
ciated rules can take effect before the next sensor data
sample. This meant that our buffer size could be equal
to 1s of data without losing any sample. In general, for
keeping the buffer size bounded we observe that the pro-
cessing time of the context engine together with the rule
update time should be less than the inter arrival time be-
tween two data samples.

7.3.3 FirewallManager

The FirewallManager is a trusted Android app which
has three different components described below.

Semantic Firewall Configurator: This is an Android
activity. It reads the Sensor Counters for the installed
apps and queries the inference DB for possible inference
categories for each app. When launched it displays this
information (Fig. 7 (a)) for the user. Once the user selects
an app she is presented with the inference categories with
an option to classify each into a whitelist or a blacklist
(Fig. 7 (b)). The Configurator then passes the data user
preferences to the Rule Recommender.

Rule Recommender: The algorithmic aspects of the
rule recommender are described in detail in Section 6.2.
It is implemented within the Semantic Firewall Config-
urator. It then uses the FirewallConfigManager to
write the rules to /data/firewall-config file and
also use a binder call to signal the SensorService and
LocationManagerService to reload the new rules.

Direct Firewall Configurator: In this mode the user
can configure context-aware privacy rules (Fig. 7 (c) and
(d)). The user can specify actions on sensors used by
apps, and for each action also associate either built-in
contexts such as TimeOfDay, DayOfWeek, Place, or ex-
ternal contexts as triggers. For defining the Place context,
the user can drop a marker on the map as shown in Fig. 7
(f) to annotate a < latitude, longitude > tuple with a sig-
nificant place name. For external contexts the Configura-
tor implements a BroadcastReceiver which listens for
intents. When an intent containing a particular label is
received, the BroadcastReceiver invokes a rule loader
service which passes a pre-configured set of rules asso-
ciated with the label to the FirewallConfigManager.
The FirewallConfigManager in turn writes the rules
into the /data/firewall-config file and signals

9

152 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

both SensorService and LocationManagerService

to reload the new rules. Note that the user can also ex-
plicitly request for loading a new set of rules.

7.3.4 Rule-Based Obfuscator

The Rule-Based Obfuscator block is responsible for
enforcing the actions specified by the privacy rules
described in Section 6.1. This block is imple-
mented both within LocationManagerService and
SensorService with the same functionality. The rules
are read from the /data/firewall-config file and in-
serted into a HashMap for faster access. The serialization
and deserialization of both rules and Sensor Counter is
implemented using Google Protocol Buffer [8]. The hash
for each rule is computed on the fields {appName, UID,

sensorType, ruleSeqNum} where ruleSeqNum is a
sequence number assigned to a rule for a sensorType.
This allows multiple rules for a sensor implementing
the OR operation on contexts (AND operation is im-
plemented by allowing multiple contexts for each rule).
UID is assigned to an app by Android at install time.

FirewallConfigManager, FirewallConfigService:
The FirewallConfigManager interfaces with both the
Semantic and the Direct Configurator modules of Fire-
wallManager app and communicates the privacy rules
to the FirewallConfigService through the binder
interface. The service runs within a system process and
writes the rules to the /data/firewall-config file
and signals the LocationManagerService as well as
the SensorService to reload the new rules.

8 Evaluation

We implemented ipShield by modifying the Android
Open Source Project [2] (AOSP, branch 4.2.2 r1).
We deployed and performed all our tests on the
Google Nexus 4 phone (1.5GHz quad-core Qualcomm
Snapdragon

TM
Pro, 2GB RAM).

8.1 Performance Overhead

We measured the overhead incurred by running ip-
Shield to highlight that it is feasible to deploy it on cur-
rent mobile platforms without impacting user experience
in terms of battery life and app responsiveness.

8.1.1 Rule Access

Android supports four different sampling rates.
On the Nexus 4 we found that on average SEN-
SOR DELAY NORMAL and SENSOR DELAY UI are less
than 10Hz, SENSOR DELAY GAME is around 50Hz and
SENSOR DELAY FASTEST is around 200Hz. In Fig. 8
(a), the blue bars show the times taken to load the
rules from the file (/data/firewall-config) into the

0

0.02

0.04

0.06

1 50 100 150 200

Ti
m

e
(s

ec
)

Load rules from file Enforce rules

(a) (b)
Number of rules

Accelerometer
Gravity

Linear Acceleration
Rotation vector

Gyroscope
Orientation

Magnetometer
Barometer

0 5 10 15 20
Time (microsecond)

Figure 8: (a) Time taken in for the rules to load into memory
and take effect. (b) Time overhead to fetch one sensor data
sample sampled at SENSOR DELAY FASTEST.

HashMap, which are negligible. The green bars in the
figure represent total time for the rules to take effect after
configuration. For SENSOR DELAY NORMAL and SEN-
SOR DELAY UI no data sample will be released before
the new rules take effect even for 200 rules. In reality, we
believe that the number of privacy rules will typically be
less than 50, therefore for SENSOR DELAY GAME and
SENSOR DELAY FASTEST less than 2 and 6 samples will
be released before the 50 rules take effect, respectively.

8.1.2 Sensor Data Access

The overhead i.e., difference in time for fetching one
data sample using ipShield compared to that on unmodi-
fied AOSP is shown in Fig. 8 (b). The overhead is com-
puted by taking the average of fetching 30000 samples.
Each sensor is sampled at SENSOR DELAY FASTEST
(200Hz). The time for ipShield is averaged over the
time for performing each of Constant, Perturb, and Nor-
mal (no change) actions on every accessed sample. We
can see that the access overhead per sample is less than
20µsec – negligible even for the fastest sampling rate.

8.1.3 CPU and Memory Overhead

The Rule-Based Obfuscator block is part of both
SensorService and LocationManagerService

which run as threads inside the system server process.
For each data sample, the Rule-Based Obfuscator block
is called to apply the privacy actions. We compare
the overhead of the Obfuscator block with AOSP by
profiling the average CPU utilization of the phone while
running the Ambulation app [53] which continuously
requests sensor data (GPS, accelerometer) at a rate of
1Hz on a Nexus 4 phone. CPU utilization with AOSP
averaged 2%. CPU utilization with various privacy
actions averaged 2.5% and never exceeded 3%. It should
be noted that the CPU utilization (and hence energy
consumption) will scale with the sampling rate. As
shown in the energy analysis that follows this section,
we believe that the overhead of ipShield is small enough
to have negligible effects on overall system performance.

Memory overhead for the transformations is shown in
Fig. 9 (a). The highest overhead is for Perturb and is less
than 0.5MB. There is a dip in memory usage for Sup-

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 153

(a) (b) (c) (d) (e) (f)

Figure 7: (a) List of installed apps showing number of sensors and number of possible inferences. (b) Semantic Firewall Configu-
rator showing list of inference categories with option to block or allow. (c) List of rules configured for different sensors. Multiple
rules with combination of contexts can be configured for each sensor. (d) Direct Firewall Configurator for privacy actions and
their parameters. (e) List of external contexts registered with FirewallManager and ability to add new ones. (f) Screen to annotate
significant places on the map (provides built-in Location context for rules).

26.00

26.33

26.67

27.00

AO
SP

No
rma

l

Co
nst

ant

Sup
pre

ss
Per

turb

M
em

or
y

U
sa

ge
 (i

n
M

B
)

(a) (b)
0

15

30

45

AOSP Normal Constant PerturbTi
m

e
to

 d
ra

in
 1

0%
 b

at
te

ry
 (m

in
)

Figure 9: (a) Memory Overhead. (b) Energy Overhead.

press action which lowers the average memory overhead
over all the operations in ipShield to around 0.07MB.

8.1.4 Energy Overhead

We compare the energy overhead of ipShield to AOSP
by plotting the time to drain the phone battery from 100%
to 90%, while the Ambulation app is continually run-
ning in the foreground for Transportation Mode infer-
ence. All network interfaces and radios are turned off,
and the screen display is on at the lowest brightness. We
acquire a CPU wakelock in the app to prevent the phone
from sleeping. The inference frequency of the app is set
to 4Hz. We measure the drain due to three actions: Nor-
mal, Constant, and Perturb which will consume more
power than the AOSP. Fig. 9 (b) shows the results: ip-
Shield on average drains the battery 3min 37s (∼ 8.2%)
faster than AOSP, which we consider as a marginal over-
head. In typical usage scenarios where the screen is at
a higher brightness setting and the network subsystem is
active we expect the energy overhead for ipShield to be
relatively lower.

8.2 Vulnerability of Current Apps

We did a survey of the top 60 free apps from Google
play store to find the different sensors used by these apps.

We installed and executed each of the apps from the play
store, and noted the permissions to sensors requested by
the apps at install time, and also the sensors which were
being accessed without permission using ipShield. We
also made use of the description of the app provided at
the app store for additional information (if any). This
provided the list of sensors used by each app. We then
used the Inference DB to create the association between
app and possible inference categories as shown in Ta-
ble 4. The results from this survey validates our claim
that GPS and accelerometer which are the most used
sensors in academic research (Fig. 6) are also the most
widely used sensors in apps. We further note, that many
of these apps have access to data from innocuous sen-
sors, combinations of which can be maliciously used to
predict a lot more inferences than what they advertise.

8.3 Case Studies: Revisited

We now illustrate how ipShield can be used to config-
ure simple rules to overcome the privacy issues outlined
in the examples in Section 2.

Transportation Mode and KeyLogging: While
suppressing accelerometer at all times is a naive
solution, to obtain better utility from the app, the
user can use the Direct Rule Configurator to se-
lect an external context KEYBOARD UP, and use
it to define the following rules: If ((TimeO f Day
in [12am − 11 : 59pm]) ∧ (ExternalContext =
KEY BOARD UP) ∧ (AppName = Ambulation))
then apply action = Suppress on SensorType = acc;
and a similar rule for suppressing SensorType = gyro.
We exploit the fact that it is sufficient to block the ac-
celerometer and gyroscope data while the softkeyboard
is active to protect against keylogging. On executing
the above rules, the act of suppression will inform an

11

154 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sensor Combination App Name Inference Categories

GPS
Twitter, iHeartRadio, Calorie Counter, Amazon,
eBay, MyTracks, Google Earth (and 12 more..) A1: Loc, Speed, Route

Acc Despicable me, Subway Surfers, Accupedo Pedometer A2: TM, Device Placement, Text on Keyboard
Audio Snapchat, Vine, Google Translate, Cadiograph A3: Speaker, Loc, Emotions, Stress
Acc + GPS Picsart, Noom Weight Loss Coach, Temple Run A1 + A2
GPS + Audio FB, FB Messenger, Tango, Whatsapp, Shazam, GoSMS A1 + A3
Acc + GPS + Audio Instagram, Neon motocross A1 + A2 + A3
Acc + Pro + GPS + Audio Skype A1 + A2 + A3
Acc + Rot + GPS Maps A1 + A2, Onscreen Taps, Text Entered on Phone
Acc + Gyro + Pre + GPS Saga Lifelogging A1 + A2, Onscreen Taps, Text Entered on Phone

Table 4: Sensors and possible inferences from top apps in Google Play Store (all have access to network). Loc:Location,
Acc:acclerometer, Pro:proximity, Rot:rotation vector, Gyro:gyroscope, Pre:pressure, TM:Transportation Mode.

adversary that the user is entering text, but she cannot
infer anything more. The Ambulation app will now
continue to work at all times when the user is not
entering text, maximizing its utility to the user.

Saga and Location: A user would often like to
keep some of his visits to sensitive places private.
ipShield allows the user to configure the following
rules to spoof her location trace: (1) If ((TimeO f Day
in [12am − 11 : 59pm]) ∧ (Place = Friend′sHome) ∧
(AppName = Saga)) then apply action = Constant
and value = Starbucks on SensorType = GPS; (2) If
((TimeO f Day in [12am−11 : 59pm])∧(Place = Bar)∧
(AppName = Saga)) then apply action = Constant and
value = Restaurant on SensorType = GPS; As we men-
tioned earlier user can configure labels such as Starbucks,
friend’s home, bar using the map interface in ipShield.
To ensure plausibility of the shared location data the per-
turbation performed, or even the constant value provided,
should conform to a map [37].

9 Concluding Remarks

While phones have evolved into sophisticated sens-
ing platforms the corresponding sensing stack where
starting at the raw sensor data meaningful data abstrac-
tions are created at each layer (akin to a communica-
tion stack) [26] has not yet taken shape. Efforts like
CondOS [23], together with architectural changes such
as dedicated co-processors for context detection [4] are
steps in the direction towards introducing greater seman-
tic clarity for shared data. With such a stack in place it
is then a natural design choice to have a privacy system
built within the OS itself exploiting the semantic granu-
larity of data for improved privacy.

With ipShield we advocated the above design philoso-
phy and took the first step towards creating a framework
with architectural changes built within the Android OS to
protect user privacy. We introduced better monitoring of
accessed resources, proposed a user-understandable pri-
vacy abstraction in the form of possible inferences, al-
lowed users to configure semantic privacy rules, and en-

sured that user preferences are securely enforced.
Orthogonal to the enforcement of rules is their cre-

ation. In future, to minimize user interaction in rule for-
mulation it is imperative that systems are able to learn
rules based on the semantic similarity of shared data and
basic user preferences. With respect to granularity of
rules, even with user participation privacy rules can of-
ten tend to become conservative impacting the app utility.
To this end, careful integration of ipShield with various
static analysis tools [32] could provide better insight into
the working of apps and in the creation of balanced rules.

The other pertinent question is regarding the selection
of a suitable set of privacy actions. Integration of crypto-
graphic solutions would enrich the spectrum of available
actions. In addition, currently ipShield does not handle
traditional side-channels attacks and it will be an inter-
esting extension to the current system.

Finally, any such system should be able to run on re-
source constrained platforms. Our experiments with ip-
Shield indicate that it has low performance overhead and
can run continuously on various mobile platforms with-
out impacting app responsiveness.

Acknowledgement
We thank our shepherd Jonathan M. Smith, the anony-

mous reviewers, and our collaborators Haksoo Choi,
Nicolas Bitouze and Lara Dolecek for their valuable
comments. This work was supported in part by the U.S.
ARL, U.K. Ministry of defense (MoD) under Agreement
Number W911NF-06-3-0001, by the NSF under awards
CNS-0910706 and CNS-1213140, by the Office of the
Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via US
Navy (USN) SPAWAR Systems Center Pacific (SSC-
Pac). Any findings in this material are those of the au-
thor(s) and do not reflect the views of any of the above
funding agencies. The U.S. and U.K. Governments are
authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright nota-
tion hereon.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 155

References
[1] Android 4.3’s Hidden App Permission Manager. http:

//www.androidpolice.com/2013/07/25/app-ops-

android-4-3s-hidden-app-permission-manager-

control-permissions-for-individual-apps/.

[2] Android Open Source Project. http://source.android.

com/.

[3] Android Security Overview. http://source.android.com/

devices/tech/security/.

[4] Apple M7 Co-Processor. http://en.wikipedia.org/wiki/

Apple_M7.

[5] ipShield: A Framework For Enforcing Context-Aware Privacy.
http://tinyurl.com/ipshieldgit.

[6] Pausing Google Play: More Than 100,000 Android Apps May
Pose Security Risks. https://www.bit9.com/download/

reports/Pausing-Google-Play-October2012.pdf.

[7] PDroid patch for Android Jelly Bean. http://github.com/

gsbabil/PDroid-AOSP-JellyBean.

[8] Protocol Buffers. https://developers.google.com/

protocol-buffers/.

[9] RunKeeper. http://www.runkeeper.com/.

[10] Saga Lifelogging. http://www.getsaga.com/.

[11] Under the Hood: Dalvik patch for Facebook for An-
droid. https://www.facebook.com/notes/facebook-

engineering/under-the-hood-dalvik-patch-for-

facebook-for-android/10151345597798920.

[12] AGARWAL, Y., AND HALL, M. Protectmyprivacy: Detecting
and mitigating privacy leaks on ios devices using crowdsourcing.
In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services (2013), MobiSys ’13,
pp. 97–110.

[13] ASONOV, D., AND AGRAWAL, R. Keyboard acoustic emana-
tions. In Security and Privacy, 2004. Proceedings. 2004 IEEE
Symposium on (2004), pp. 3–11.

[14] AVIV, A. J., SAPP, B., BLAZE, M., AND SMITH, J. M. Practi-
cality of accelerometer side channels on smartphones. In Pro-
ceedings of the 28th Annual Computer Security Applications
Conference (2012), ACSAC ’12, pp. 41–50.

[15] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE, B.,
AND STARIN, D. Persona: An online social network with user-
defined privacy. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication (2009), SIGCOMM ’09,
pp. 135–146.

[16] BAO, L., AND INTILLE, S. S. Activity recognition from user-
annotated acceleration data. Pervasive LNCS 3001 (2004), 1–17.

[17] BARRERA, D., KAYACIK, H. G., VAN OORSCHOT, P. C.,
AND SOMAYAJI, A. A methodology for empirical analysis of
permission-based security models and its application to android.
In Proceedings of the 17th ACM conference on Computer and
communications security (2010), ACM, pp. 73–84.

[18] BERESFORD, A. R., RICE, A., SKEHIN, N., AND SOHAN,
R. Mockdroid: Trading privacy for application functionality
on smartphones. In Proceedings of the 12th Workshop on Mo-
bile Computing Systems and Applications (2011), HotMobile ’11,
pp. 49–54.

[19] BROUWERS, N., AND WOEHRLE, M. Detecting dwelling in ur-
ban environments using gps, wifi, and geolocation measurements.
In Proc. 2nd Intl Workshop on Sensing Applications on Mobile
Phones (2011), pp. 1–5.

[20] CHAKRABORTY, S., BITOUZÉ, N., SRIVASTAVA, M., AND
DOLECEK, L. Protecting data against unwanted inferences. In
Information Theory Workshop (ITW), 2013 IEEE (2013), pp. 1–5.

[21] CHAKRABORTY, S., RAGHAVAN, K. R., JOHNSON, M. P., AND
SRIVASTAVA, M. B. A framework for context-aware privacy of
sensor data on mobile systems. In Proceedings of the 14th Work-
shop on Mobile Computing Systems and Applications (2013),
HotMobile ’13, pp. 11:1–11:6.

[22] CHANG, D. F. K.-H., AND CANNY, J. Ammon: A speech anal-
ysis library for analyzing affect, stress, and mental health on mo-
bile phones. Proceedings of PhoneSense 2011 (2011).

[23] CHU, D., KANSAL, A., LIU, J., AND ZHAO, F. Mobile apps:
it’s time to move up to condos. HotOS.

[24] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. Taintdroid: An
information-flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation (2010),
OSDI’10, pp. 1–6.

[25] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On lightweight
mobile phone application certification. In Proceedings of the
16th ACM Conference on Computer and Communications Secu-
rity (2009), CCS ’09, pp. 235–245.

[26] ESTRIN, D., AND SIM, I. Open mHealth Architecture: An En-
gine for Health Care Innovation. Science 330, 6005 (2010), 759–
760.

[27] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAG-
NER, D. Android permissions demystified. In Proceedings of the
18th ACM Conference on Computer and Communications Secu-
rity (2011), CCS ’11, pp. 627–638.

[28] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android permissions: User attention, com-
prehension, and behavior. In Proceedings of the Eighth Sym-
posium on Usable Privacy and Security (2012), SOUPS ’12,
pp. 3:1–3:14.

[29] GENKIN, D., SHAMIR, A., AND TROMER, E. Rsa key extrac-
tion via low-bandwidth acoustic cryptanalysis. Cryptology ePrint
Archive, Report 2013/857, 2013.

[30] GÖTZ, M., NATH, S., AND GEHRKE, J. Maskit: Privately re-
leasing user context streams for personalized mobile applications.
In Proceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data (2012), SIGMOD ’12, pp. 289–
300.

[31] HAN, J., OWUSU, E., NGUYEN, L., PERRIG, A., AND ZHANG,
J. Accomplice: Location inference using accelerometers on
smartphones. In Communication Systems and Networks (COM-
SNETS), 2012 Fourth International Conference on (2012), pp. 1–
9.

[32] HOLAVANALLI, S., MANUEL, D., NANJUNDASWAMY, V.,
ROSENBERG, B., AND SHEN, F. Flow permissions for android.
In Tech Report.

[33] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
Retrofitting android to protect data from imperious applications.
In Proceedings of the 18th ACM Conference on Computer and
Communications Security (2011), CCS ’11, pp. 639–652.

[34] JEON, J., MICINSKI, K. K., VAUGHAN, J. A., REDDY, N.,
ZHU, Y., FOSTER, J. S., AND MILLSTEIN, T. Dr. android and
mr. hide: Fine-grained security policies on unmodified android.

[35] KIM, D. H., KIM, Y., ESTRIN, D., AND SRIVASTAVA, M. B.
Sensloc: Sensing everyday places and paths using less energy.
In Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems (2010), SenSys ’10, pp. 43–56.

13

156 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[36] KÖPF, B., AND BASIN, D. An information-theoretic model for
adaptive side-channel attacks. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (2007),
CCS ’07, pp. 286–296.

[37] KRUMM, J. A survey of computational location privacy. Personal
Ubiquitous Comput. 13, 6 (Aug. 2009), 391–399.

[38] LEE, S., WONG, E. L., GOEL, D., DAHLIN, M., AND
SHMATIKOV, V. πbox: A platform for privacy-preserving apps.
In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (2013), NSDI’13, pp. 501–
514.

[39] LIU, B., JIANG, Y., SHA, F., AND GOVINDAN, R. Cloud-
enabled privacy-preserving collaborative learning for mobile
sensing. In Proceedings of the 10th ACM Conference on Em-
bedded Network Sensor Systems (2012), Sensys ’12, pp. 57–70.

[40] LU, H., FRAUENDORFER, D., RABBI, M., MAST, M. S., CHIT-
TARANJAN, G. T., CAMPBELL, A. T., GATICA-PEREZ, D.,
AND CHOUDHURY, T. Stresssense: Detecting stress in uncon-
strained acoustic environments using smartphones. In Proceed-
ings of the 2012 ACM Conference on Ubiquitous Computing
(2012), Ubicomp ’12, pp. 351–360.

[41] LU, H., PAN, W., LANE, N. D., CHOUDHURY, T., AND CAMP-
BELL, A. T. Soundsense: Scalable sound sensing for people-
centric applications on mobile phones. In Proceedings of the 7th
International Conference on Mobile Systems, Applications, and
Services (2009), MobiSys ’09, pp. 165–178.

[42] MARQUARDT, P., VERMA, A., CARTER, H., AND TRAYNOR,
P. (sp)iphone: Decoding vibrations from nearby keyboards using
mobile phone accelerometers. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (2011),
CCS ’11, pp. 551–562.

[43] MILUZZO, E., VARSHAVSKY, A., BALAKRISHNAN, S., AND
CHOUDHURY, R. R. Tapprints: Your finger taps have finger-
prints. In Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services (2012), MobiSys ’12,
pp. 323–336.

[44] MUN, M., HAO, S., MISHRA, N., SHILTON, K., BURKE, J.,
ESTRIN, D., HANSEN, M., AND GOVINDAN, R. Personal data
vaults: A locus of control for personal data streams. In Proceed-
ings of the 6th International COnference (2010), Co-NEXT ’10,
pp. 17:1–17:12.

[45] NAUMAN, M., KHAN, S., AND ZHANG, X. Apex: extend-
ing android permission model and enforcement with user-defined
runtime constraints. In Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security (2010),
ACM, pp. 328–332.

[46] NIRJON, S., DICKERSON, R. F., ASARE, P., LI, Q., HONG, D.,
STANKOVIC, J. A., HU, P., SHEN, G., AND JIANG, X. Audi-
teur: A mobile-cloud service platform for acoustic event detec-
tion on smartphones. In Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services
(2013), MobiSys ’13, pp. 403–416.

[47] PARATE, A., CHIU, M.-C., GANESAN, D., AND MARLIN,
B. M. Leveraging graphical models to improve accuracy and

reduce privacy risks of mobile sensing. In Proceeding of the
11th Annual International Conference on Mobile Systems, Ap-
plications, and Services (2013), MobiSys ’13, pp. 83–96.

[48] PARK, J.-G., PATEL, A., CURTIS, D., TELLER, S., AND
LEDLIE, J. Online pose classification and walking speed es-
timation using handheld devices. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing (2012), UbiComp
’12, pp. 113–122.

[49] PLARRE, K., RAIJ, A., HOSSAIN, S., ALI, A., NAKA-
JIMA, M., AL’ABSI, M., ERTIN, E., KAMARCK, T., KU-
MAR, S., SCOTT, M., SIEWIOREK, D., SMAILAGIC, A., AND
WITTMERS, L. Continuous inference of psychological stress
from sensory measurements collected in the natural environment.
In Information Processing in Sensor Networks (IPSN), 2011 10th
International Conference on (2011), pp. 97–108.

[50] RACHURI, K. K., MUSOLESI, M., MASCOLO, C., RENTFROW,
P. J., LONGWORTH, C., AND AUCINAS, A. Emotionsense: a
mobile phones based adaptive platform for experimental social
psychology research. In Proceedings of the 12th ACM interna-
tional conference on Ubiquitous computing (2010), pp. 281–290.

[51] RAHMAN, M. M., ALI, A. A., PLARRE, K., AL’ABSI, M.,
ERTIN, E., AND KUMAR, S. mconverse: Inferring conversation
episodes from respiratory measurements collected in the field. In
Proceedings of the 2Nd Conference on Wireless Health (2011),
WH ’11, pp. 10:1–10:10.

[52] RAIJ, A., GHOSH, A., KUMAR, S., AND SRIVASTAVA, M.
Privacy risks emerging from the adoption of innocuous wear-
able sensors in the mobile environment. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(2011), CHI ’11, pp. 11–20.

[53] REDDY, S., MUN, M., BURKE, J., ESTRIN, D., AND HANSEN,
MARK A ND SRIVASTAVA, M. Using mobile phones to deter-
mine transportation modes. ACM Trans. Sen. Netw. 6, 2 (Mar.
2010), 13:1–13:27.

[54] SONG, D. X., WAGNER, D., AND TIAN, X. Timing analysis of
keystrokes and timing attacks on ssh. In Proceedings of the 10th
Conference on USENIX Security Symposium - Volume 10 (2001),
SSYM’01, pp. 25–25.

[55] THURM, S., AND KANE, Y. Your apps are watching you. The
Wall Street Journal, 2012.

[56] TOOTOONCHIAN, A., SAROIU, S., GANJALI, Y., AND WOL-
MAN, A. Lockr: Better privacy for social networks. In Proceed-
ings of the 5th International Conference on Emerging Networking
Experiments and Technologies (2009), CoNEXT ’09, pp. 169–
180.

[57] VUAGNOUX, M., AND PASINI, S. Compromising electromag-
netic emanations of wired and wireless keyboards. In Proceed-
ings of the 18th Conference on USENIX Security Symposium
(2009), SSYM’09, pp. 1–16.

[58] ZHAN, A., CHANG, M., CHEN, Y., AND TERZIS, A. Accurate
caloric expenditure of bicyclists using cellphones. In Proceed-
ings of the 10th ACM Conference on Embedded Network Sensor
Systems (2012), SenSys ’12, pp. 71–84.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 157

Building web applications on top of encrypted data using Mylar

Raluca Ada Popa, Emily Stark,† Jonas Helfer, Steven Valdez,
Nickolai Zeldovich, M. Frans Kaashoek, and Hari Balakrishnan

MIT CSAIL and †Meteor Development Group

ABSTRACT

Web applications rely on servers to store and process con-
fidential information. However, anyone who gains access
to the server (e.g., an attacker, a curious administrator, or
a government) can obtain all of the data stored there. This
paper presents Mylar, a platform for building web applica-
tions, which protects data confidentiality against attackers
with full access to servers. Mylar stores sensitive data
encrypted on the server, and decrypts that data only in
users’ browsers. Mylar addresses three challenges in mak-
ing this approach work. First, Mylar allows the server
to perform keyword search over encrypted documents,
even if the documents are encrypted with different keys.
Second, Mylar allows users to share keys and encrypted
data securely in the presence of an active adversary. Fi-
nally, Mylar ensures that client-side application code is
authentic, even if the server is malicious. Results with a
prototype of Mylar built on top of the Meteor framework
are promising: porting 6 applications required changing
just 36 lines of code on average, and the performance
overheads are modest, amounting to a 17% throughput
loss and a 50 ms latency increase for sending a message
in a chat application.

1 INTRODUCTION

Using a web application for confidential data requires the
user to trust the server to protect the data from unautho-
rized disclosures. This trust is often misplaced, however,
because there are many ways in which confidential data
could leak from a server. For example, attackers could
exploit a vulnerability in the server software to break
in [42], a curious administrator could peek at the data
on the server [9, 10], or the server operator may be com-
pelled to disclose data by law [20]. Is it possible to build
web applications that protect data confidentiality against
attackers with full access to servers?

A promising approach is to give each user their own
encryption key, encrypt a user’s data with that user’s key
in the web browser, and store only encrypted data on the
server. This model ensures that an adversary would not
be able to read any confidential information on the server,
because they would lack the necessary decryption keys.
In fact, this model has been already adopted by some
privacy-conscious web applications [28, 40].

Unfortunately, this approach suffers from three sig-
nificant security, functionality, and efficiency shortcom-
ings. First, a compromised server could provide malicious
client-side code to the browser and extract the user’s key
and data. Ensuring that the server did not tamper with
the application code is difficult because a web application
consists of many files, such as HTML pages, Javascript
code, and CSS style sheets, and the HTML pages are
often dynamically generated.

Second, this approach does not provide data sharing
between users, a crucial function of web applications.
To address this problem, one might consider encrypting
shared documents with separate keys, and distributing
each key to all users sharing a document via the server.
However, distributing keys via the server is challenging
because a compromised server can supply arbitrary keys
to users, and thus trick a user into using incorrect keys.

Third, this approach requires that all of the application
logic runs in a user’s web browser because it can decrypt
the user’s encrypted data. But this is often impractical:
for instance, doing a keyword search would require down-
loading all the documents to the browser.

This paper presents Mylar, a new platform for building
web applications that stores only encrypted data on the
server. Mylar makes it practical for many classes of ap-
plications to protect confidential data from compromised
servers. It leverages the recent shift in web application
frameworks towards implementing logic in client-side
Javascript code, and sending data, rather than HTML,
over the network [29]; such a framework provides a clean
foundation for security. Mylar addresses the challenges
mentioned above with a combination of systems tech-
niques and novel cryptographic primitives, as follows.

Data sharing. To enable sharing, each sensitive data
item is encrypted with a key available to users who share
the item. To prevent the server from cheating during key
distribution, Mylar provides a mechanism for establishing
the correctness of keys obtained from the server: My-
lar forms certificate paths to attest to public keys, and
allows the application to specify what certificate paths
can be trusted in each use context. In combination with
a user interface that displays the appropriate certificate
components to the user, this technique ensures that even

1

158 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a compromised server cannot trick the application into
using the wrong key.

Computing over encrypted data. Keyword search is
a common operation in web applications, but it is often
impractical to run on the client because it would require
downloading large amounts of data to the user’s machine.
While there exist practical cryptographic schemes for
keyword search, they require that data be encrypted with
a single key. This restriction makes it difficult to apply
these schemes to web applications that have many users
and hence have data encrypted with many different keys.

Mylar provides the first cryptographic scheme that can
perform keyword search efficiently over data encrypted
with different keys. The client provides an encrypted
word to the server and the server can return all documents
that contain this word, without learning the word or the
contents of the documents.

Verifying application code. With Mylar, code running
in a web browser has access to the user’s decrypted data
and keys, but the code itself comes from the untrusted
server. To ensure that this code has not been tampered
with, Mylar checks that the code is properly signed by
the web site owner. This checking is possible because
application code and data are separate in Mylar, so the
code is static. Mylar uses two origins to simplify code
verification for a web application. The primary origin
hosts only the top-level HTML page of the application,
whose signature is verified using a public key found in
the server’s X.509 certificate. All other files come from a
secondary origin, so that if they are loaded as a top-level
page, they do not have access to the primary origin. Mylar
verifies the hash of these files against an expected hash
contained in the top-level page.

To evaluate Mylar’s design, we built a prototype on
top of the Meteor web application framework [29]. We
ported 6 applications to protect confidential data using
Mylar: a medical application for endometriosis patients,
a web site for managing homework and grades, a chat
application called kChat, a forum, a calendar, and a photo
sharing application. The endometriosis application is
used to collect data from patients with that medical condi-
tion, and was designed under the aegis of the MIT Center
for Gynepathology Research by surgeons at the Newton-
Wellesley hospital (affiliated with the Harvard Medical
School) in collaboration with biological engineers at MIT;
the Mylar-secured version is currently being tested by pa-
tients and is undergoing IRB approval before deployment.

Our results show that Mylar requires little developer
effort: we had to modify an average of just 36 lines of
code per application. We also evaluated the performance
of Mylar on three of the applications above. For example,
for kChat, our results show that Mylar incurs modest

overheads: a 17% throughput reduction and a 50 msec
latency increase for the most common operation (sending
a message). These results suggest that Mylar is a good fit
for multi-user web applications with data sharing.

2 RELATED WORK

Mylar is the first system to protect data confidentiality in
a wide range of web applications against arbitrary server
compromises. In the rest of this section, we relate My-
lar to prior work on securing web applications, building
systems using untrusted servers, and computing over en-
crypted data.

2.1 Web application security
Much of the work on web application security focuses
on preventing security vulnerabilities caused by bugs in
the application’s source code, either by statically check-
ing that the code follows a security policy [11, 44], or
by catching policy violations at runtime [18, 24, 46]. In
contrast, Mylar assumes that any part of the server can be
compromised, either as a result of software vulnerabili-
ties or because the server operator is untrustworthy, and
protects data confidentiality in this setting.

On the browser side, prior work has explored tech-
niques to mitigate vulnerabilities in Javascript code that
allow an adversary to leak data or otherwise compromise
the application [1, 16, 45]. Mylar assumes that the de-
veloper does not inadvertently leak data from client-side
code, but in principle could be extended to use these tech-
niques for dealing with buggy client-side code.

There has been some work on using encryption to pro-
tect confidential data in web applications, as we describe
next. Unlike Mylar, none of them can support a wide
range of complex web applications, nor compute over
encrypted data at the server, nor address the problem of
securely managing access to shared data.

A position paper by Christodorescu [12] proposes en-
crypting and decrypting data in a web browser before
sending it to an untrusted server, but lacks any details of
how to build a practical system.

Several data sharing sites encrypt data in the browser
before uploading it to the server, and decrypt it in the
browser when a user wants to download the data [14,
28, 35]. The key is either stored in the URL’s hash frag-
ment [28, 35], or typed in by the user [14], and both the
key and data are accessible to any Javascript code from
the page. As a result, an active adversary could serve
Javascript code to a client that leaks the key. In contrast,
Mylar’s browser extension verifies that the client-side
code has not been tampered with.

Several systems transparently encrypt and decrypt data
sent to a server [7, 13, 33, 34]. These suffer from the same
problems as above: they cannot handle active attacks, and

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 159

cannot compute over encrypted data at the server without
revealing a significant amount of information.

Cryptocat [40], an encrypted chat application, dis-
tributes the application code as a browser extension rather
than a web application, in order to deal with active at-
tacks [39]. Mylar’s browser extension is general-purpose:
it allows verifying the code of web applications without
requiring users to install a separate extension for each
application. Cryptocat could also benefit from Mylar’s
search scheme to perform keyword search over encrypted
data at the server.

2.2 Untrusted servers
SUNDR [25] protects file system integrity, providing fork
consistency in the face of a malicious server. SPORC [15]
and Depot [27] extend SUNDR’s design to build applica-
tions on top of an encrypted server. For example, SPORC
provides conflict resolution using operational transforms,
and consistently handles access control changes. These
systems do not allow an application to perform server-
side computation, such as Mylar’s server-side keyword
search. Furthermore, with SPORC, the application logic
is hard-coded into the client, whereas with Mylar, the
application logic is determined at runtime, based on the
URL that the user visits.

CryptDB [32] protects confidential data in a SQL
database server by running SQL queries over encrypted
data. However, in a typical database-backed web appli-
cation, the application server gets access to unencrypted
data, and receives each user’s key when the user logs
in. Consequently, while CryptDB protects against at-
tacks on the database server, it provides no guarantees
for users logged in during an attack on the application
server. For example, if an administrator with access to all
data is logged in when the application server is compro-
mised, then the attacker can compromise all data. Finally,
CryptDB cannot compute over data encrypted with differ-
ent keys as in Mylar’s multi-key keyword search. On the
other hand, CryptDB allows computing more functions
over encrypted data than Mylar.

2.3 Computation over encrypted data
Theoretical results on fully homomorphic encryption and
functional encryption have shown that it is possible for an
untrusted server to compute arbitrary functions over en-
crypted data [17, 19, 26]. However, such general-purpose
schemes are too slow to be practical.

Many schemes for performing keyword search over
encrypted data have been proposed [21, 36]. All of these
schemes for keyword search have assumed that the data
is encrypted with a single key; Mylar provides the first
practical scheme for performing keyword search over data
encrypted with different keys. Proxy re-encryption [3]
allows switching the key under which some data is en-

crypted in the context of public-key encryption, but this
does not provide an efficient search scheme.

2.4 Trusted hardware
An alternative approach for computing over encrypted
data is to rely on trusted hardware [2, 4, 22]. Such ap-
proaches are complementary to Mylar, and could be used
to extend the kinds of computations that Mylar can per-
form over encrypted data at the server, as long as the
application developer and the users believe that trusted
hardware is trustworthy.

3 MYLAR ARCHITECTURE

There are three different parties in Mylar: the users, the
web site owner, and the server operator. Mylar’s goal is to
help the site owner protect the confidential data of users
in the face of a malicious or compromised server operator.

3.1 System overview
Mylar embraces the trend towards client-side web appli-
cations; Mylar’s design is suitable for platforms that:

1. Enable client-side computation on data received from
the server.

2. Allow the client to intercept data going to the server
and data coming from the server.

3. Separate application code from data, so that the HTML
pages supplied by the server are static.

AJAX web applications with a unified interface for send-
ing data over the network, such as Meteor [29], fit this
model. Such frameworks provide a clean foundation
for security, because they send data separately from the
HTML page that presents the data. In contrast, traditional
server-side frameworks incorporate dynamic data into the
application’s HTML page in arbitrary ways, making it
difficult to encrypt and decrypt the dynamic data on each
page while checking that the fixed parts of the page have
not been tampered with [37].

3.1.1 Mylar’s components

The architecture of Mylar is shown in Figure 1. Mylar
consists of the four following components:

Browser extension. It is responsible for verifying that
the client-side code of a web application that is loaded
from the server has not been tampered with.

Client-side library. It intercepts data sent to and from
the server, and encrypts or decrypts that data. Each user
has a private-public key pair. The client-side library stores
the private key of the user at the server, encrypted with the
user’s password.1 When the user logs in, the client-side

1The private key can also be stored at a trusted third-party server, to
better protect it from offline password guessing attacks and to recover
from forgotten passwords without re-generating keys.

3

160 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Mylar page verification

webpage

user

Mylar client

encrypt/
decrypt/search

principal
library

password

data sharing

data

 client-side
app code

database

principal
graphs

webpage

Mylar serverClient browser
Server

search on
encrypted data

authentication

principal
module

data

data

server-side
app code

IDP

create
account

Figure 1: System overview. Shaded components have access only to encrypted data. Thick borders indicate components introduced by Mylar.

library fetches and decrypts the user’s private key. For
shared data, Mylar’s client creates separate keys that are
also stored at the server in encrypted form.

Server-side library. It performs computation over en-
crypted data at the server. Specifically, Mylar supports
keyword search over encrypted data, because we have
found that many applications use keyword search.

Identity provider (IDP). For some applications, Mylar
needs a trusted identity provider service (IDP) to verify
that a given public key belongs to a particular username.
An application needs the IDP if the application has no
trusted way of verifying the users who create accounts,
and the application allows users to choose whom to share
data with. For example, if Alice wants to share a sensitive
document with Bob, Mylar’s client needs the public key
of Bob to encrypt the document. A compromised server
could provide the public key of an attacker, so Mylar
needs a way to verify the public key. The IDP helps Mylar
perform this verification by signing the user’s public key
and username. An application does not need the IDP if the
site owner wants to protect against only passive attacks
(§3.4), or if the application has a limited sharing pattern
for which it can use a static root of trust (see §4.2).

An IDP can be shared by many applications, similar
to an OpenID provider [30]. The IDP does not store per-
application state, and Mylar contacts the IDP only when a
user first creates an account in an application; afterwards,
the application server stores the certificate from the IDP.

3.2 Mylar for developers
The developer starts with a regular (non-encrypted) web
application implemented in Mylar’s underlying web plat-
form (Meteor in our prototype). To secure this application
with Mylar, a developer uses Mylar’s API (Figure 2), as
we explain in the rest of this paper. First, the developer
uses Mylar’s authentication library for user login and ac-
count creation. If the application allows a user to choose

what other users to share data with, the developer should
also specify the URL and public key of a trusted IDP.

Second, the developer specifies which data in the appli-
cation should be encrypted, and who should have access
to it. Mylar uses principals for access control; a principal
corresponds to a public/private key pair, and represents
an application-level access control entity, such as a user,
a group, or a shared document. In our prototype, all data
is stored in MongoDB collections, and the developer an-
notates each collection with the set of fields that contain
confidential data and the name of the principal that should
have access to that data (i.e., whose key should be used).

Third, the developer specifies which principals in the
application have access to which other principals. For
example, if Alice wants to invite Bob to a confidential
chat, the application must invoke the Mylar client to grant
Bob’s principal access to the chat room principal.

Fourth, the developer changes their server-side code
to invoke the Mylar server-side library when performing
keyword search. Our prototype’s client-side library pro-
vides functions for common operations such as keyword
search over a specific field in a MongoDB collection.

Finally, as part of installing the web application, the
site owner generates a public/private key pair, and signs
the application’s files with the private key using Mylar’s
bundling tool. The web application must be hosted using
https, and the site owner’s public key must be stored in
the web server’s X.509 certificate. This ensures that even
if the server is compromised, Mylar’s browser extension
will know the site owner’s public key, and will refuse to
load client-side code if it has been tampered with.

3.3 Mylar for users
To obtain the full security guarantees of Mylar, a user
must install the Mylar browser extension, which detects
tampered code. However, if a site owner wants to protect
against only passive attacks (§3.4), users don’t have to
install the extension and their browsing experience is
entirely unchanged.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 161

Function Semantics

idp_config(url, pubkey) Declares the url and pubkey of the IDP and returns the
principal corresponding to the IDP.

create_user(uname, password, auth_princ) Creates an account for user uname which is certified by
principal auth_princ.

login(uname, password) Logs in user uname.
logout() Logs out the currently logged-in user.

collection.encrypted({field: princ_field}, . . .) Specify that field in collection should be encrypted for
the principal in princ_field.

collection.auth_set([princ_field, fields], . . .) Authenticate the set of fields with principal in princ_field.
collection.searchable(field) Mark field in collection as searchable.
collection.search(word, field, princ, filter, proj) Search for word in field of collection, filter results by filter

and project only the fields in proj from the results. Use
princ’s key to generate the search token.

princ_create(name, creator_princ) Create principal named name, sign the principal with
creator_princ, and give creator_princ access to it.

princ_create_static(name, password) Create a static principal called name, hardcode it in the
application, and wrap its secret keys with password.

princ_static(name, password) Return the static principal name; if a correct password is
specified, also load the secret keys for this principal.

princ_current() Return the principal of currently logged in user.
princ_lookup(name1, . . . , namek, root) Look up principal named name1 as certified by a chain of

principals named namei rooted in root (e.g., the IDP).
granter.add_access(grantee) Give the grantee principal access to the granter principal.
grantee.allow_search(granter) Allow matching keywords from grantee on granter’s data.

Figure 2: Mylar API for application developers split in three sections: authentication, encryption/integrity annotations, and access
control. All of the functions except princ_create_static and searchable run in the client browser. This API assumes a
MongoDB storage model where data is organized as collections of documents, and each document consists of fieldname-and-value
pairs. Mylar also preserves the generic functionality for unencrypted data of the underlying web framework.

3.4 Threat model
Threats. Both the application and the database servers
can be fully controlled by an adversary: the adversary
may obtain all data from the server, cause the server to
send arbitrary responses to web browsers, etc. This model
subsumes a wide range of real-world security problems,
from bugs in server software to insider attacks.

Mylar also allows some user machines to be controlled
by the adversary, and to collude with the server. This may
be either because the adversary is a user of the application,
or because the adversary broke into a user’s machine.

We call this adversary active, in contrast to a passive
adversary that eavesdrops on all information at the server,
but does not make any changes, so that the server responds
to all client requests as if it were not compromised.

Guarantees. Mylar protects a data item’s confidential-
ity in the face of arbitrary server compromises, as long
as none of the users with access to that data item use a
compromised machine. Mylar does not hide data access
patterns, or communication and timing patterns in an ap-
plication. Mylar provides data authentication guarantees,

but does not guarantee the freshness or correctness of
results from the computation at the server.

Assumptions. To provide the above guarantees, Mylar
makes the following assumptions. Mylar assumes that
the web application as written by the developer will not
send user data or keys to untrustworthy recipients, and
cannot be tricked into doing so by exploiting bugs (e.g.,
cross-site scripting). Our prototype of Mylar is built on
top of Meteor, a framework that helps programmers avoid
many common classes of bugs in practice.

Mylar also assumes that the IDP correctly verifies each
user’s identity (e.g., email address) when signing certifi-
cates. To simplify the job of building a trustworthy IDP,
Mylar does not store any application state at the IDP, con-
tacts the IDP only when a user first registers, and allows
the IDP to be shared across applications.

Finally, Mylar assumes that the user checks the web
browser’s security indicator (e.g., the https shield icon)
and the URL of the web application they are using, before
entering any sensitive data. This assumption is identical to
what users must already do to safely interact with a trusted
server. If the user falls for a phishing attack, neither Mylar

5

162 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

nor a trusted server can prevent the user from entering
confidential data into the adversary’s web application.

3.5 Security overview
At a high level, Mylar achieves its goal as follows. First, it
verifies the application code running in the browser (§6),
so that it is safe to give client-side code access to keys
and plaintext data. Then, the client code encrypts the data
marked sensitive before sending it to the server. Since
users need to share data, Mylar provides a mechanism to
securely share and look up keys among users (§4). Finally,
to perform server-side processing, Mylar introduces a new
cryptographic scheme that can perform keyword search
over documents encrypted with many different keys, with-
out revealing the content of the encrypted documents or
the word being searched for (§5).

4 SHARING DATA BETWEEN USERS

Many web applications share data between users accord-
ing to some policy. A simple example is a chat application,
where messages are shared between the sender and the
recipients. In Mylar’s threat model, an application cannot
trust the server to enforce the sharing policy, because the
server is assumed to be compromised. As a result, the
application must encrypt shared data using a key that will
be accessible to just the right set of users.

Mylar allows an application to specify its security pol-
icy in terms of application-defined principals. In partic-
ular, each principal has an application-chosen name, a
public key used to encrypt data for that principal, and a
private key used to decrypt that principal’s data.

In addition to allowing the application to create prin-
cipals, and to use the principals’ keys to encrypt and
decrypt data, Mylar provides two critical operations to
the application for managing principals:

• Find a principal so that the application can use the
corresponding private key to decrypt data. The goal is
to ensure that only authorized users can get access to
the appropriate private key.

• Find a principal so that the application can use the
corresponding public key to encrypt or share data with
other users. The goal is to ensure that a malicious
server cannot trick Mylar into returning the wrong
public key, which could lead the application to share
confidential data with the adversary.

Mylar cryptographically enforces the above goals by form-
ing two graphs on top of principals: an access graph,
which uses key chains to distribute the private keys of
shared principals to users, and a certification graph, which
uses certificate chains to attest to the mapping between a
principal name and its public key.

�����
������

����������
‘work’�

����������
boss won’t�

���������������
������

��������
���������

�����
����

�����
�����

����������
‘party’�

Figure 3: Example access graph for a chat application. Rounded
rectangles represent principals, and arrows represent access
relationships. Alice and Bob share the chat room “party” so
they both have access to the principal for this room. Messages
in each chat room are encrypted with the key of the room’s
principal.

4.1 Access graph
To ensure that only authorized users can access the pri-
vate key of a principal, Mylar requires the application to
express its access control policy in terms of access rela-
tionships between principals. Namely, if principal A can
access principal B’s private key, then we say A has access
to B. The has access to relation is transitive: if B in turn
has access to C, then A can access C’s private key as well.
To express the application’s policy in the access graph,
the application must create appropriate has access to re-
lationships between principals. The application can also
create intermediate principals to represent, say, groups of
users that all should have access to the same private keys.

As an example, consider a chat application where mes-
sages in each chat room should be available only to that
room’s participants. Figure 3 shows the access graph for
this scenario. Both Alice and Bob have access to the key
encrypting the “party” room, but the boss does not.

Key chaining. To enforce the access graph cryptograph-
ically, Mylar uses key chaining, as in CryptDB [32].
When an application asks to add a new has access to
edge from principal A to principal B, Mylar creates a
wrapped key: an encryption of B’s private keys under the
public key of principal A. This ensures that a user with
access to A’s private key can decrypt the wrapped key
and obtain B’s private key. For example, in Figure 3, the
private key of the “party” chat room is encrypted under
the public key of Alice, and separately under the public
key of Bob as well. The server stores these wrapped keys,
which is safe since the keys are encrypted.

In practice, has access to relationships are rooted in
user principals, so that a user can gain access to all of their
data when they initially log in and have just the private
key of their own user principal. When Mylar needs to
decrypt a particular data item, it first looks up that data
item’s principal, as specified by the encrypted annotation
(Figure 2). Mylar then searches for a chain of wrapped
keys, starting from the principal of the currently logged
in user, and leading to the data item’s principal.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 163

4.2 Certification graph
Mylar applications must look up public keys of principals
when sharing data, for two broad purposes: either to en-
crypt data with that key, or to give some principal access
to that key. In both cases, if a compromised server tricks
the client application into using the public key of the ad-
versary, the adversary will gain access to confidential data.
For example, in the chat example, suppose Bob wants to
send a confidential message to the “work” chat room. If
the server supplies the adversary’s public key for the chat
room principal and the application client uses it, the ad-
versary will be able to decrypt the message. Preventing
such attacks is difficult because all of the wrapped keys
are stored at the server, and the server may be malicious.

To prevent such attacks, Mylar relies on a certification
graph, which allows one principal to vouch for the name
and the public key of another principal. The nodes of this
graph are principals from the access graph together with
some authority principals, which are principals providing
the root of trust (described in §4.3). Applications create
certificate chains for principals, rooted in an authority
principal. For instance, in the chat example, the applica-
tion can sign the “chatroom:work” principal with the key
of the “user:boss” principal that created the chat room.
Using the certification graph, applications can look up
the public key of a principal by specifying the name of
the principal they are looking for, along with a chain of
certifications they expect to find.

Since the server is not trusted, there is no single au-
thority to decide on the public key for a given principal
name: in our chat example, both the real boss and a mali-
cious server may have created chat rooms named “work.”
To prevent such naming ambiguity, one approach is to
display the names in a certification chain to the user, sim-
ilar to how web browsers display the hostname from an
X.509 certificate for https web sites. As we describe
later in §8, if the chat application displays the email ad-
dress of the chat room creator (who signed the chat room
principal), in addition to the name of the chat room, the
user could distinguish a correct “work” chat room, cre-
ated by the boss, from an impostor created by an attacker.
This requires Mylar applications to unambiguously map
human-meaningful names, such as the “work” chat room
and the identity of the Boss user, onto principal names,
such as “chatroom:work” and “user:boss.”

Mylar’s certificate chains are similar to X.509; the
difference is that X.509 typically has fixed roots of trust
and fixed rules for what certificate chains are allowed,
whereas Mylar allows the application to specify different
roots of trust and acceptable chains for each lookup.

4.3 Principals providing the root of trust
The authority principals can be either the IDP or static
principals. Static principals are access control entities

fixed in the application’s logic. For example, the en-
dometriosis medical application has a group called “sur-
geons” representing the surgeons that have access to all
patient data. Similarly, the homework submission applica-
tion has a group called “staff” representing staff members
with access to all student homework submissions and
grades. In these applications, static principals can alto-
gether remove the need for an IDP.

A developer can create a static principal by running
princ_create_static(name, password) with the help of
a command-line tool. This generates fresh keys for a
principal, and encrypts the secret keys with password,
so they can be retrieved only by providing password to
princ_static. The resulting public key and encrypted
secret key are hardcoded into the application’s source
code. This allows the application to refer to the static
principal by name without relying on the IDP.

Static principals can also certify other principals. For
example, in the endometriosis application, all user ac-
counts are manually created by surgeons. This allows
all user principals to be certified by the static “surgeons”
principal, avoiding the need for an IDP to do the same.

4.4 User principals
To create an account for a new user, the application must
invoke create_user, as shown in Figure 2. This causes
the Mylar client to generate a new principal for the user,
encrypt the secret key with the user’s password, and store
the principal with the encrypted secret key on the server.

To enable the application to later look up this user’s
public key, in the presence of active adversaries, the prin-
cipal must be certified. To do this, the application supplies
the auth_princ argument to create_user. This is typically
either a static principal or the IDP. For static principals,
the certificate is generated directly in the browser that
calls create_user; the creator must have access to the pri-
vate key of auth_princ. For example, the endometriosis
application, where all users are manually created by a
surgeon, follows this model. If auth_princ is the IDP, the
Mylar client interprets uname as the user’s email address,
and contacts the IDP, which verifies the user’s email ad-
dress and signs a certificate containing the user’s public
key and email address.

Even though multiple applications can share the IDP,
a buggy or malicious application will not affect other
applications that use the same IDP (unless users share
passwords across applications). This property is ensured
by never sending passwords or secret keys to the IDP,
and explicitly including the application’s origin in the
certificate generated by the IDP.

4.5 Data integrity
To prevent an attacker from tampering with the data, My-
lar provides two ways to authenticate data, as follows.

7

164 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

First, all encrypted data is authenticated with a MAC
(message authentication code),2 which means that clients
will detect any tampering with the ciphertext. However,
an adversary can still replace the ciphertext of one field in
a document with any other ciphertext that was encrypted
using the same key.

To protect against such attacks, developers can spec-
ify an authentication set of fields whose values must be
consistent with one other, using the auth_set annotation.
This annotation guarantees that if a client receives some
document, then all fields in each authentication set were
consistent at some point, according to the corresponding
principal. Mylar enforces authentication sets by comput-
ing a MAC over the values of all fields in each set.

For example, in a chat room application, each message
has several fields, including the message body and the
(client-generated) timestamp. By putting these two fields
into an authentication set, the developer ensures that an
adversary cannot splice together the body of one message
with the timestamp from another message.

Mylar does not guarantee data freshness, or correctness
of query results. An adversary can roll back the entire
authentication set to an earlier version without detection,
but cannot roll back a subset of an authentication set.

5 COMPUTING ON ENCRYPTED DATA

The challenge facing Mylar in computing over encrypted
data is that web applications often have many users, result-
ing in data encrypted with many different keys. Existing
efficient encryption schemes for computation over en-
crypted data, such as keyword search, assume that all data
is encrypted with a single key [21, 36]. Using such a
scheme in Mylar would require computation over one key
at a time, which is inefficient.

For example, consider a user with access to N doc-
uments, where each document is encrypted with a dif-
ferent key (since it can be shared with a different set of
users). Searching for a keyword in all of these docu-
ments would require the user to generate N distinct cryp-
tographic search tokens, and to send all of them to the
server. Even for modest values of N, such as 1000, this
can result in noticeable computation and network costs
for the user’s machine. Moreover, if the N keys are not
readily available in the client browser, fetching these keys
may bring further overhead.

To address this limitation, Mylar introduces a multi-key
search scheme, as described in the rest of this section.

5.1 Multi-key search
Mylar’s multi-key search scheme provides a simple ab-
straction. If a user wants to search for a word in a set of
documents on a server, each encrypted with a different

2For efficiency, Mylar uses authenticated encryption, which concep-
tually computes both the ciphertext and the MAC tag in one pass.

key, the user’s machine needs to provide only a single
search token for that word to the server. The server, in
turn, returns each encrypted document that contains the
user’s keyword, as long as the user has access to that
document’s key.

The intuition for our scheme is as follows. Say that the
documents that a user has access to are encrypted under
keys k1, . . . ,kn and the user’s own key is uk. The user’s
machine computes a search token for a word w using key
uk, denoted tkw

uk. If the server had tkw
k1
, . . . , tkw

kn
instead

of tkw
uk, the server could match the search token against

the encrypted documents using an existing searchable
encryption scheme.

Our idea is to enable the server to compute these tokens
by itself; that is, to adjust the initial tkw

uk to tkw
ki

for each
i. To allow the server to perform the adjustment, the
user’s machine must initially compute deltas, which are
cryptographic values that enable a server to adjust a token
from one key to another key. We use Δuk→ki to denote
the delta that allows a server to adjust tkw

uk to tkw
ki

. These
deltas represent the user’s access to the documents, and
crucially, these deltas can be reused for every search, so
the user’s machine needs to generate the deltas only once.
For example, if Alice has access to Bob’s data, she needs
to provide one delta to the server, and the server will be
able to adjust all future tokens from Alice to Bob’s key.

In terms of security, our scheme guarantees that the
server does not learn the word being searched for, and
does not learn the content of the documents. All that
the server learns is whether the word in the search token
matched some word in a document, and in the case of
repeated searches, whether two searches were for the
same word. Knowing which documents contain the word
being searched for is desirable in practice, to avoid the
overhead of returning unnecessary documents.

This paper presents the multi-key search scheme at a
high level, with emphasis on its interface and security
properties as needed in our system. We provide a rigorous
description and a cryptographic treatment of the scheme
(including formal security definitions and proofs) in a
technical report [31]. Readers that are not interested in
cryptographic details can skip to §5.3.

5.2 Cryptographic construction

We construct the multi-key search scheme using bilin-
ear maps on elliptic curves, which, at a high level, are
functions e : G1 ×G2 →GT , where G1, G2, and GT are
special groups of prime order p on elliptic curves. Let
g be a generator of G2. Let H and H2 be certain hash
functions on the elliptic curves. e has the property that
e(H(w)a,gb) = e(H(w),g)ab. Figure 4 shows pseudo-
code for our multi-key search scheme.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 165

Client-side operations:
procedure KEYGEN() � Generate a fresh key

key ← random value from Zp
return key

procedure ENC(key, word)
r ← random value from GT
c ← �r,H2(r,e(H(word),g)key)�
return c

procedure TOKEN(key, word)
� Generate search token for matching word

tk ← H(word)key in G1
return tk

procedure DELTA(key1, key2)
� Allow adjusting search token from key1 to key2

Δkey1→key2 ← gkey2/key1 in G2
return Δkey1→key2

Server-side operations:
procedure ADJUST(tk, Δk1→k2)

� Adjust search token tk from k1 to k2
atk ← e(tk,Δk1→k2) in GT
return atk

procedure MATCH(atk, c = �r,h�)
� Return whether c and atk refer to same word

h� ← H2(r,atk)

return h� ?
= h

Figure 4: Pseudo-code for Mylar’s multi-key search scheme.

5.3 Indexing search

One efficiency issue with this algorithm is that the server
has to scan through every word of every document to
identify a match. This can be slow if the documents are
large, but is unavoidable if the encryption of each word is
randomized with a different r, as in Figure 4.

To enable the construction of an efficient index over the
words in a searchable document, Mylar supports an index-
able version of this multi-key search scheme. The idea
is to remove randomness without compromising security.
Intuitively, randomness is needed to hide whether two
words encrypted under the same key are equal. But for
words within one document, Mylar can remove the dupli-
cates at the time the document is encrypted, so per-word
randomness is not needed within a document.

Therefore, to encrypt a document consisting of words
w1, . . . ,wn, the client removes duplicates, chooses one
random value r, and then uses the same r when encrypting
each of the words using ENC().

When searching for word w in a document, the server
performs the adjustment as before and obtains atk. It
then computes v ← COMBINE(r,atk) = �r,H2(r,atk)� us-
ing the document’s randomness r. If one of the words
in the document is w, its encryption will be equal to v,

because they use the same randomness r. Therefore, the
server can perform direct equality checks on encrypted
words. This means that it can build an index over the
encrypted words in the document (e.g., a hash table), and
then use that index and v to figure out in constant time if
there is a match without scanning the document.

A limitation is that the server has to use an index per
unique key rather than one holistic index.

5.4 Integrating search with the principal graph
Mylar integrates the multi-key search scheme with the
principal graph as follows. When a principal P is cre-
ated, Mylar generates a key kP using KEYGEN (Figure 4).
Whenever P receives access to some new principal A, My-
lar includes kA in the wrapped key for P. The first time
a user with access to P comes online, the Mylar client
in that user’s browser retrieves kA from the wrapped key,
computes ΔkP→kA ←DELTA(kP, kA), and stores it at the
server. This delta computation happens just once for a
pair of principals.

To encrypt a document for some principal A, the user’s
browser encrypts each word w in the document separately
using ENC(kA, w). Since the multi-key search scheme
does not support decryption, Mylar encrypts all search-
able documents twice: once with the multi-key search
scheme, for searching, and once with a traditional encryp-
tion scheme like AES, for decryption.

To search for a word w with principal P, the user’s
client uses TOKEN(kP, w) to compute a token tk, and
sends it to the server. To search over data encrypted
for principal A, the server obtains ΔkP→kA , and uses
ADJUST(tk, ΔkP→kA) to adjust the token from kP to kA,
obtaining the adjusted token atkA. Then, for each docu-
ment encrypted under kA with randomness r, the server
computes v ← COMBINE(r,atkA) and checks if v exists
in the document using an index. The server repeats the
same process for all other principals that P has access to.

Integrating the access graph with keyword search
brings up two challenges. The first comes from the fact
that our multi-key search scheme allows adjusting tokens
just once. In the common case of an access graph where
all paths from a user to the data’s encryption key consist
of one edge (such as the graph in Figure 3), Mylar asso-
ciates the search delta with the edge, and stores it along
with the wrapped key. In our chat example, this allows a
user’s browser to search over all chat rooms that the user
has access to, by sending just one search token.

Some applications can have a more complex access
graph. For example, in the endometriosis application, all
doctors have access to the staff principal, which in turn
has access to all patient principals. Here, the optimal
approach is to use the ADJUST() function on the server
between principals with the largest number of edges, so as
to maximize the benefit of multi-key search. For instance,

9

166 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

if a doctor wanted to search over patient records, the doc-
tor’s browser should fetch the staff principal it has access
to, and produce a search token using the staff principal’s
private key. The server would then use ADJUST() to look
for matches in documents encrypted with each patient’s
key. Because most of our applications have simple access
graphs, our prototype does not automate this step, and a
developer must choose the principal with which to search.

The second challenge comes from the fact that search-
ing over data supplied by an adversary can leak the word
being searched for. For example, suppose an adversary
creates a document containing all the words in a dictio-
nary, and gives the user access to that document. If the
user searches for a word w in all of the documents he has
access to, including the one from the adversary, the server
will see which of the words in the adversary’s document
matches the user’s token, and hence will know which
dictionary word the user searched for. To prevent this,
users must explicitly accept access to a shared document,
and developers must invoke the allow_search function,
provided by Mylar for this purpose, as appropriate.

6 VERIFYING CLIENT-SIDE CODE

Although Mylar uses encryption to protect confidential
data stored on the untrusted server, the cryptographic keys
and the plaintext data are both available to code executing
in the user’s web browser. The same-origin policy [47]
ensures that applications from other origins running in the
browser do not access the data in the Mylar application.
However, Mylar must also ensure that code running in the
application’s origin has not been tampered with.

Since the code in a web page is static in Mylar, a straw-
man solution is to sign this code and verify the signature
in the browser. The strawman does not suffice because
of a combination of two factors. On the one hand, most
web applications (including those using Mylar) consist
of multiple files served by the web server. On the other
hand, the only practical way to control what is loaded in
a browser is to interpose on individual HTTP requests.

The problem arises because at the level of individual
HTTP requests, it is difficult to reason about what code the
browser will execute. For example, if an image is loaded
in the context of an tag, it will not exe-
cute Javascript code. But if the same image is loaded as a
top-level page, the browser’s content-sniffing algorithm
may decide the file is actually HTML, and potentially
execute Javascript code embedded in the image [6]. Thus,
a well-meaning developer must be exceedingly careful
when including any content, such as images, in their web
application. If the developer inadvertently includes a mali-
cious image file in the application, an adversary can cause
the browser to load that file as a top-level page [5] and
trigger this attack. Similar problems can arise with other
content types, including CSS style sheets, PDF files, etc.

procedure PROCESSRESPONSE(url, cert, response)
� url is the requested URL

� cert is server’s X.509 certificate
if cert contains attribute mylar_pubkey then

pk ← cert.mylar_pubkey
sig ← response.header["Mylar-Signature"]
if not VERIFYSIG(pk, response, sig) then

return ABORT

if url contains parameter “mylar_hash=h” then
if hash(response) �= h then return ABORT

return PASS

Figure 5: Pseudo-code for Mylar’s code verification extension.

Two-origin signing. To address this problem, Mylar
uses two origins to host an application. The primary
origin hosts exactly one file: the application’s top-level
HTML page. Consequently, this is the only page that
can gain access to the application’s encryption keys and
plaintext data in the browser. All other files, such as
images, CSS style sheets, and Javascript code, are loaded
from the secondary origin. Mylar verifies the authenticity
of these files to prevent tampering, but if an adversary
tries to load one of these files as a top-level page, it will
run with the privileges of the secondary origin, and would
not be able to access the application’s keys and data.

To verify that the application code has not been tam-
pered with, Mylar requires the site owner to create a
public/private key pair, and to sign the application’s top-
level HTML page (along with the corresponding HTTP
headers) with the private key. Any references to other
content must refer to the secondary origin, and must be
augmented to include a mylar_hash=h parameter in the
query string, specifying the expected hash of the response.
The hash prevents an adversary from tampering with that
content or rolling it back to an earlier version. Rollback
attacks are possible on the top-level HTML page (because
signatures do not guarantee freshness), but in that case,
the entire application is rolled back: hashes prevent the
adversary from rolling back some but not all of the files,
which could confuse the application.

This signing mechanism can verify only the parts of
an application that are static and supplied by the web site
owner ahead of time. It is up to the application code to
safely handle any content dynamically generated by the
server at runtime (§3.4). This model is a good fit for
AJAX web applications, in which the dynamic content is
only data, rather than HTML or code.

Browser extension. Each user of Mylar applications
should install the Mylar browser extension in their web
browser, which verifies that Mylar applications are prop-
erly signed before running them. Figure 5 shows the
pseudo-code for the Mylar browser extension. The site
owner’s public key is embedded in the X.509 certificate

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 167

of the web server hosting the web application. Mylar
assumes that certificate authorities will sign certificates
for the web application’s hostname only on behalf of the
proper owner of the web application’s domain (i.e., the
site owner). Thus, as long as the site owner includes the
public key in all such certificates, then users visiting the
correct web site via https will obtain the owner’s public
key, and will verify that the page was signed by the owner.

7 IMPLEMENTATION

We implemented a prototype of Mylar by building on
top of the Meteor web application framework [29]. Me-
teor allows client-side code to read and update data via
MongoDB operations, and also to issue RPCs to the server.
Mylar intercepts and encrypts/decrypts data accessed via
the MongoDB interface, but requires developers to explic-
itly handle data passed via RPCs. We have not found this
to be necessary in our experience.

We use the SJCL library [38] to perform much of our
cryptography in Javascript, and use elliptic curves for
most public-key operations, owing to shorter ciphertexts
and higher performance. As in previous systems, Mylar
uses faster symmetric-key encryption when possible [32].
For bilinear pairings, we use the PBC C++ library to
improve performance, which runs either as a Native Client
module (for Chrome), as a plugin (for Firefox), or as
an NDK-based application (for Android phones). To
verify code in the user’s browser, we developed a Firefox
extension. Mylar comprises ∼9,000 lines of code in total.

When looking up paths in the principal graphs, Mylar
performs breadth-first search. We have not found this to
be a bottleneck in our experience so far, but more efficient
algorithms, such as meet-in-the-middle, are possible.

8 BUILDING A MYLAR APPLICATION

To demonstrate how a developer can build a Mylar appli-
cation, we show the changes that we made to the kChat
application to encrypt messages. In kChat, users can cre-
ate chat rooms, and existing members of a chat room can
invite new users to join. Only invited users have access
to the messages from the room. A user can search over
data from the rooms he has access to. Figure 6 shows the
changes we made to kChat, using Mylar’s API (Figure 2).

The call to Messages.encrypted specifies that data in
the “message” field of that collection should be encrypted.
This data will be encrypted with the public key of the
principal specified in the “roomprinc” field. All future
accesses to the Messages collection will be transparently
encrypted and decrypted by Mylar from this point. The
call to Messages.searchable specifies that clients will
need to search over the “message” field; consequently,
Mylar will store a searchable encryption of each message
in addition to a standard ciphertext.

// On both the client and the server:
idp = idp_config(url, pubkey);
Messages.encrypted({"message": "roomprinc"});
Messages.auth_set(["roomprinc", ["id", "message",

"room", "date"]]);
Messages.searchable("message");

// On the client:
function create_user(uname, password):

create_user(uname, password, idp);
function create_room(roomtitle):

princ_create(roomtitle, princ_current());
function invite_user(username):

global room_princ;
room_princ.add_access(princ_lookup(username, idp));

function join_room(room):
global cur_room, room_princ;
cur_room = room;
room_princ = princ_lookup(room.name,

room.creator, idp);
function send_message(msg):

global cur_room, room_princ;
Messages.insert({message: msg, room: cur_room.id,

date: new Date().toString(),
roomprinc: room_princ});

function search(word):
return Messages.search(word, "message",

princ_current(), all, all);

Figure 6: Pseudo-code for changes to the kChat application to
encrypt messages. Not shown is unchanged code for managing
rooms, receiving and displaying messages, and login/logout
(Mylar provides wrappers for Meteor’s user accounts API).

When a user creates a new room (create_room), the
application in turn creates a new principal, named after
the room title and signed by the creator’s principal. To
invite a user to a room, the application needs to give the
new user access to the room principal, which it does by
invoking add_access in invite_user.

When joining a room (join_room), the application must
look up the room’s public key, so that it can encrypt
messages sent to that room. The application specifies
both the expected room title as well as the room creator
as arguments to princ_lookup, to distinguish between
rooms with the same title. By displaying both the room
title and the creator email address, as in Figure 7, the
application helps the user distinguish the correct room
from an identically named room that an adversary created.

To send a message to a chat room, kChat needs to
specify a principal in the roomprinc field of the newly
inserted document. In this case, the application keeps the
current room’s principal in the room_princ global vari-
able. Similarly, when searching for messages containing
a word, the application supplies the principal whose key
should be used to generate the search token. In this case,
kChat uses the current user principal, princ_current().

11

168 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application LoC LoC added Number and types of fields secured Existed Keyword
before for Mylar before? search on

kChat [23] 793 45 1 field: chat messages Yes messages
endometriosis 3659 28 tens of medical fields: mood, pain, surgery, . . . Yes N/A
submit 8410 40 3 fields: grades, homework, feedback Yes homework
photo sharing 610 32 5 fields: photos, thumbnails, captions, . . . Yes N/A
forum 912 39 9 fields: posts body, title, creator, user info, . . . No posts
calendar 798 30 8 fields: event body, title, date, user info, . . . No events

WebAthena [8] 4800 0 N/A: used for code authentication only Yes N/A

Figure 8: Applications ported to Mylar. “LoC before” reports the number of lines of code in the unmodified application, not
including images or Meteor packages. “Existed before” indicates whether the application was originally built independent of Mylar.

Figure 7: Two screenshots from kChat. On the top, Alice
is chatting with Bob as intended. On the bottom, the server
provided a fake “sensitive” chat room created by the adversary;
Alice can detect this by checking the creator’s email address.

9 EVALUATION

This section answers two main questions: first, how much
developer effort is required to use Mylar, and second,
what are the performance overheads of Mylar?

9.1 Developer effort
To measure the amount of developer effort needed to use
Mylar, we ported 6 applications to Mylar. Two of these
applications plan to start using Mylar in production in the
near future: a medical application in which endometriosis
patients record their symptoms, and a web site for man-
aging homework and grades for a class at MIT. We also
ported an existing chat application called kChat, in which
users share chat rooms by invitation and exchange pri-
vate messages, and a photo sharing application. We also
built a Meteor-based forum and calendar, which we then
ported to Mylar. Finally, to demonstrate the generality of
Mylar’s code verification, we used it to verify the code for
WebAthena [8], an in-browser Javascript Kerberos client.

Figure 8 summarizes the fields we secured with Mylar
in the above applications, along with how much code the

developer had to change. In the case of the endometriosis
application, fields were stored in the database as field
name and field value pairs, so encrypting the generic
“value” field secured tens of different kinds of data. In the
other apps, a field corresponded to one kind of sensitive
data. The results show that Mylar requires little devel-
oper effort to protect a wide range of confidential data,
averaging 36 lines of code per application.

9.2 Performance
Mylar’s performance goal is to avoid significantly affect-
ing the user experience with the web application. To
evaluate whether Mylar meets this goal, we answer the
following questions:

• How much latency does Mylar add to the web applica-
tion’s overall user interface?

• How much throughput overhead does Mylar impose
on a server?

• Is Mylar’s multi-key search important to achieve good
performance?

• How much storage overhead does Mylar impose?

To answer these questions, we measured the performance
of kChat, the homework submission application (“sub-
mit”), and the endometriosis application. Although kChat
has only one encrypted field, every message sent exercises
this field. We used two machines running recent versions
of Debian Linux to perform our experiments. The server
had an Intel Xeon 2.8 GHz processor and 4 GB of RAM;
the client had eight 10-core Intel Xeon E7-8870 2.4 GHz
processors with 256 GB of RAM. The client machine
is significantly more powerful to allow us to run enough
browsers to saturate the server. For browser latency ex-
periments, we simulate a 5 Mbit/s client-server network
with 20 msec round-trip latency. All experiments were
done over https, using nginx as an https reverse proxy
on the server. We used Selenium to drive a web browser
for all experiments. We also evaluated Mylar on Android
phones and found that performance remained acceptable,
but we omit these results for brevity.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 169

 0
 100
 200
 300
 400
 500
 600
 700

transmit

join room

search
invite

T
im

e
(m

se
c)

kChat
kChat+Mylar

Figure 9: End-to-end latency of four operations in kChat. Trans-
mit includes the time from when one user sends a message to
when another user receives it.

End-to-end latency. Figure 9 shows the end-to-end la-
tency Mylar introduces for four main operations in kChat:
transmitting a message, joining a room, searching for a
word in all rooms, and inviting a user to a room. For
message transmission, we measured the time from the
sender clicking “send” until the message renders in the
recipient’s browser. This is the most frequent operation
in kChat, and Mylar adds only 50 msec of latency to it.
This difference is mostly due to searchable encryption,
which takes 43 msec. The highest overhead is for invit-
ing a user, due to principal operations: looking up and
verifying a user principal (218 msec) and wrapping the
key (167 msec). Overall, we believe the resulting latency
is acceptable for many applications, and subjectively the
application still feels responsive.

We also measured the latency of initially loading a
page. The original kChat application loads in 291 msec.
The Mylar version of kChat, without the code verification
extension, loads in 356 msec, owing to Mylar’s additional
code. Enabling the code verification extension increases
the load time to 1109 msec, owing to slow signature veri-
fication in the Javascript-based extension. Using native
code for signature verification, as we did for bilinear
pairings, would reduce this overhead. Note that users ex-
perience the page load latency only when first navigating
to the application; subsequent clicks are handled by the
application without reloading the page.

We also measured the end-to-end latency of the most
common operations in the endometriosis application
(completing a medical survey and reading such a sur-
vey), and the submit application (a student uploading an
assignment, and a staff member reading such a submis-
sion); the results are shown in Figure 11. For the submit
application, we used real data from 122 students who
used this application during the fall of 2013 in MIT’s
6.858 class. Submit’s latency is higher than that of other
applications because the amount of data (student submis-
sions) is larger, so encryption with search takes longer.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40

M
es

sa
ge

s
/ m

in
ut

e

Number of clients

kChat
kChat+Mylar

Figure 10: Server throughput for kChat.

For comparison, we also show the latency of submit when
search is turned off. The search encryption can happen
asynchronously so the user does not have to wait for it.

Throughput. To measure Mylar’s impact on server
throughput, we used kChat, and we set up many pairs
of browsers—a sender and a receiver—where the sender
continuously sends new messages. Receivers count the
total number of messages received during a fixed interval.
Figure 10 shows the results, as a function of the total num-
ber of clients (each pair of browsers counts as 2 clients).
Mylar decreases the maximum server throughput by 17%.
Since the server does not perform any cryptographic oper-
ations, Mylar’s overhead is due to the increase in message
size caused by encryption, and the encrypted search index
that is added to every message to make it searchable.

Figure 11 also shows the server throughput of the en-
dometriosis and class submit application when clients
perform representative operations.

Search. To evaluate the importance of Mylar’s multi-
key search, we compare it to two alternative approaches
for secure search. The first alternative is single-key server-
side search, in which the client generates a token for every
key by directly computing the adjusted token from our
multi-key search. This alternative is similar to prior work
on encrypted keyword search. In this case, the client
looks up the principal for every room, computes a token
for each, and the server uses one token per room. The
second alternative is to perform the search entirely at the
client, by downloading all messages. In this case, the
client still needs to look up the principal for each room so
that it can decrypt the data.

Figure 12 shows the time taken to search for a word
in kChat for a fixed number of total messages spread
over a varying number of rooms, using multi-key search
and the two alternatives described above. We can see
that multi-key search is much faster than either of the
two alternatives, even with a small number of rooms.
The performance of the two alternatives is dominated by

13

170 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application Operation Latency Latency Throughput Throughput Throughput
for latency w/o Mylar with Mylar w/o Mylar with Mylar units

submit send and read a
65 msec

606 msec
723

394
submissions/min

submit w/o search submission 70 msec 595

endometriosis fill in/read survey 1516 msec 1582 msec 6993 6130 field updates/min

Figure 11: Latency and throughput of different applications with and without Mylar. The latency is the end-to-end time to perform
the most common operation in that application. For submit, the latency is the time from one client submitting an assignment until
another client obtains that submission. For endometriosis, the latency is the time from one client filling out a survey until another
client obtains the survey.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

T
im

e
(m

s)

Number of rooms

Client download
Server single-key
Server multi-key

Figure 12: End-to-end latency of keyword search in kChat,
searching over 100 6-word messages, spread over a varying
number of rooms.

Encrypt Delta Token Adjust Match

6.5 ms 7.1 ms 0.9 ms 5.6 ms 0.007 ms

Figure 13: Time taken to run each multi-key search operation.

the cost of looking up the principal for each room and
obtaining its private key. Multi-key search does not need
to do this, because the server directly uses the deltas, and
it achieves good performance because both ADJUST and
MATCH are fast, as shown in Figure 13.

Storage overhead. For kChat, the server storage over-
head after inserting 1,000 messages with Mylar was 4×
that of unmodified kChat. This is due to three factors:
principal graphs (storing certificates and wrapped keys),
symmetric key encryption, and searchable encryption.
Our prototype stores ciphertexts in base-64 encoding; us-
ing a binary encoding would reduce storage overheads.

10 DISCUSSION

Mylar focuses on protecting confidential data in web ap-
plications. However, Mylar’s techniques for searching
over encrypted data and for verifying keys are equally
applicable to desktop and mobile phone applications; the
primary difference is that code verification becomes sim-
pler, since applications are explicitly installed by the user,
instead of being downloaded at application start time.

Mylar relies on X.509 certificates to supply the web
site owner’s public key for code verification. Alternative
schemes could avoid the need for fully trusted certificate
authorities [41, 43], and the Mylar extension could al-
low users to manually specify site owner public keys for
especially sensitive web sites.

Revoking access to shared data is difficult, because
Mylar cannot trust the server to forget a wrapped key.
Complete revocation requires re-encrypting shared data
under a new key, and giving legitimate users access to the
new key. In less sensitive situations, it may suffice to try
deleting the key from the server, which would work if the
server is not compromised at the time of the deletion.

11 CONCLUSION

Mylar is a novel web application framework that enables
developers to protect confidential data in the face of ar-
bitrary server compromises. Mylar leverages the recent
shift to exchanging data, rather than HTML, between the
browser and server, to encrypt all data stored on the server,
and decrypt it only in users’ browsers. Mylar provides a
principal abstraction to securely share data between users,
and uses a browser extension to verify code downloaded
from the server that runs in the browser. For keyword
search, which is not practical to run in the browser, Mylar
introduces a cryptographic scheme to perform keyword
search at the server over data encrypted with different
keys. Experimental results show that using Mylar requires
few changes to an application, and that the performance
overheads of Mylar are modest.

Mylar and the applications discussed in this paper are
available at http://css.csail.mit.edu/mylar/.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,
Mike Freedman, for their feedback. We also thank Linda
Griffith, John Guttag, Nicolaas Kaashoek, and Michelle
Park for providing a real medical use case for Mylar with
their endometriosis application. This research was sup-
ported by NSF award IIS-1065219, by DARPA CRASH
under contracts #N66001-10-2-4088 and #N66001-10-2-
4089, by Quanta, and by Google.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 171

REFERENCES

[1] D. Akhawe, P. Saxena, and D. Song. Privilege sep-
aration in HTML5 applications. In Proceedings of
the 21st Usenix Security Symposium, Bellevue, WA,
Aug. 2012.

[2] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Koss-
mann, R. Ramamurthy, and R. Venkatesan. Orthog-
onal security with Cipherbase. In Proceedings of the
6th Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, Jan. 2013.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved proxy re-encryption schemes with appli-
cations to secure distributed storage. In Proceedings
of the 13th Annual Network and Distributed System
Security Symposium, San Diego, CA, Feb. 2006.

[4] S. Bajaj and R. Sion. TrustedDB: a trusted hardware
based database with privacy and data confidentiality.
In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
205–216, Athens, Greece, June 2011.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. In Proceedings
of the 17th Usenix Security Symposium, San Jose,
CA, July–Aug. 2008.

[6] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers
from reviewing themselves. In Proceedings of the
30th IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2009.

[7] F. Beato, M. Kohlweiss, and K. Wouters. Scramble!
your social network data. In Proceedings of the
11th Privacy Enhancing Technologies Symposium,
Waterloo, Canada, July 2011.

[8] D. Benjamin. Adapting Kerberos for a browser-
based environment. Master’s thesis, Massachusetts
Institute of Technology, Department of Electrical
Engineering and Computer Science, Sept. 2013.

[9] D. Borelli. The name Edward Snowden should
be sending shivers up CEO spines. Forbes,
Sept. 2013. http://www.forbes.com/sites/
realspin/2013/09/03/the-name-edward-
snowden-should-be-sending-shivers-up-
ceo-spines/.

[10] A. Chen. GCreep: Google engineer stalked teens,
spied on chats. Gawker, Sept. 2010. http://
gawker.com/5637234/.

[11] A. Chlipala. Static checking of dynamically-varying
security policies in database-backed applications. In

Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI), Van-
couver, Canada, Oct. 2010.

[12] M. Christodorescu. Private use of untrusted web
servers via opportunistic encryption. In Proceed-
ings of the Web 2.0 Security and Privacy Workshop,
Oakland, CA, May 2008.

[13] CipherCloud. Cloud data protection solution. http:
//www.ciphercloud.com.

[14] Defuse Security. Encrypted pastebin. https://
defuse.ca/pastebin.htm, Sept. 2013.

[15] A. J. Feldman, W. P. Zeller, M. J. Freedman, and
E. W. Felten. SPORC: Group collaboration using
untrusted cloud resources. In Proceedings of the
9th Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct.
2010.

[16] R. Fischer, M. Seltzer, and M. Fischer. Privacy
from untrusted web servers. Technical Report
YALEU/DCS/TR-1290, Yale University, Depart-
ment of Computer Science, May 2004.

[17] C. Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC),
pages 169–178, Bethesda, MD, May–June 2009.

[18] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Maz-
ières, J. C. Mitchell, and A. Russo. Hails: Protect-
ing data privacy in untrusted web applications. In
Proceedings of the 10th Symposium on Operating
Systems Design and Implementation (OSDI), Holly-
wood, CA, Oct. 2012.

[19] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikun-
tanathan, and N. Zeldovich. Reusable garbled cir-
cuits and succinct functional encryption. In Proceed-
ings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 555–564, Palo Alto,
CA, June 2013.

[20] Google, Inc. User data requests – Google
transparency report, Sept. 2013. http:
//www.google.com/transparencyreport/
userdatarequests/.

[21] S. Kamara, C. Papamanthou, and T. Roeder. Dy-
namic searchable symmetric encryption. In Proceed-
ings of the 19th ACM Conference on Computer and
Communications Security, Raleigh, NC, Oct. 2012.

[22] J. Kannan, P. Maniatis, and B.-G. Chun. Secure
data preservers for web services. In Proceedings
of the 2nd USENIX Conference on Web Application

15

172 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Development, Portland, OR, June 2011.

[23] KiqueDev. kChat. https://github.com/
KiqueDev/kChat/.

[24] M. Krohn. Building secure high-performance web
services with OKWS. In Proceedings of the 2004
USENIX Annual Technical Conference, Boston, MA,
June–July 2004.

[25] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), pages 91–106,
San Francisco, CA, Dec. 2004.

[26] A. López-Alt, E. Tromer, and V. Vaikuntanathan.
On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In Pro-
ceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC), New York, NY, May
2012.

[27] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud stor-
age with minimal trust. In Proceedings of the 9th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Vancouver, Canada, Oct. 2010.

[28] Mega. The privacy company. https://mega.co.
nz/#privacycompany, Sept. 2013.

[29] Meteor, Inc. Meteor: A better way to build apps.
http://www.meteor.com, Sept. 2013.

[30] OpenID Foundation. OpenID. http://openid.
net, Sept. 2013.

[31] R. A. Popa and N. Zeldovich. Multi-key search-
able encryption. Cryptology ePrint Archive, Re-
port 2013/508, Aug. 2013. http://eprint.iacr.
org/.

[32] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidential-
ity with encrypted query processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), pages 85–100, Cascais, Portugal,
Oct. 2011.

[33] K. Puttaswamy, C. Kruegel, and B. Zhao. Sil-
verline: Toward data confidentiality in storage-
intensive cloud applications. In Proceedings of the
2nd ACM Symposium on Cloud Computing, Cascais,
Portugal, Oct. 2011.

[34] F. Y. Rashid. Salesforce.com acquires SaaS encryp-
tion provider Navajo Systems. eWeek.com, August
2011.

[35] S. Sauvage. ZeroBin - because ignorance is
bliss. http://sebsauvage.net/wiki/doku.
php?id=php:zerobin, Feb. 2013.

[36] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Pro-
ceedings of the 21st IEEE Symposium on Security
and Privacy, pages 44–55, Oakland, CA, May 2000.

[37] E. Stark. From client-side encryption to secure web
applications. Master’s thesis, Massachusetts Insti-
tute of Technology, Department of Electrical Engi-
neering and Computer Science, June 2013.

[38] E. Stark, M. Hamburg, and D. Boneh. Symmetric
cryptography in Javascript. In Proceedings of the
Annual Computer Security Applications Conference,
Honolulu, HI, Dec. 2009.

[39] The Cryptocat Project. Moving to a browser
app model. https://blog.crypto.cat/2012/
08/moving-to-a-browser-app-model/, Aug.
2012.

[40] The Cryptocat Project. Cryptocat. http://www.
cryptocat.com, Sept. 2013.

[41] Thoughtcrime Labs. Convergence. http://
convergence.io/, 2011.

[42] J. Tudor. Web application vulnerability statistics,
June 2013. http://www.contextis.com/
files/Web_Application_Vulnerability_
Statistics_-_June_2013.pdf.

[43] D. Wendlandt, D. G. Andersen, and A. Perrig. Per-
spectives: Improving SSH-style host authentication
with multi-path probing. In Proceedings of the 2008
USENIX Annual Technical Conference, Boston, MA,
June 2008.

[44] Y. Xie and A. Aiken. Static detection of security vul-
nerabilities in scripting languages. In Proceedings
of the 15th Usenix Security Symposium, Vancouver,
Canada, July 2006.

[45] A. Yip, N. Narula, M. Krohn, and R. Mor-
ris. Privacy-preserving browser-side scripting with
BFlow. In Proceedings of the ACM EuroSys Confer-
ence, Nuremberg, Germany, Mar. 2009.

[46] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow asser-
tions. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages 291–
304, Big Sky, MT, Oct. 2009.

[47] M. Zalewski. The Tangled Web. No Starch Press,
2012.

16

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 173

PHY Covert Channels: Can you see the Idles?

Ki Suh Lee, Han Wang, Hakim Weatherspoon

Computer Science Department, Cornell University

kslee,hwang,hweather@cs.cornell.edu

Abstract

Network covert timing channels embed secret messages

in legitimate packets by modulating interpacket delays.

Unfortunately, such channels are normally implemented

in higher network layers (layer 3 or above) and easily

detected or prevented. However, access to the physi-

cal layer of a network stack allows for timing channels

that are virtually invisible: Sub-microsecond modula-

tions that are undetectable by software endhosts. There-

fore, covert timing channels implemented in the physi-

cal layer can be a serious threat to the security of a sys-

tem or a network. In fact, we empirically demonstrate

an effective covert timing channel over nine routing hops

and thousands of miles over the Internet (the National

Lambda Rail). Our covert timing channel works with

cross traffic, less than 10% bit error rate, which can be

masked by forward error correction, and a covert rate of

81 kilobits per second. Key to our approach is access

and control over every bit in the physical layer of a 10

Gigabit network stack (a bit is 100 picoseconds wide at

10 gigabit per seconds), which allows us to modulate and

interpret interpacket spacings at sub-microsecond scale.

We discuss when and how a timing channel in the phys-

ical layer works, how hard it is to detect such a channel,

and what is required to do so.

1 Introduction
Covert channels are defined as channels that are not in-

tended for information transfer, but can leak sensitive

information [21]. In essence, covert channels provide

the ability to hide the transmission of data within es-

tablished network protocols [37], thus hiding their exis-

tence. Covert channels are typically classified into two

categories: Storage and timing channels. In storage

channels, a sender modulates the value of a storage loca-

tion to send a message. In timing channels, on the other

hand, a sender modulates system resources over time to

send a message [10].

Network covert channels send hidden messages over

legitimate packets by modifying packet headers (stor-

age channels) or by modulating interpacket delays (tim-

ing channels). Because network covert channels can

deliver sensitive messages across a network to a re-

ceiver multiple-hops away, they impose serious threats

to the security of systems. Network storage chan-

nels normally exploit unused fields of protocol head-

ers [20, 28, 34, 35], and, thus, are relatively easy to de-

tect and prevent [14, 19, 26]. Network timing channels

deliver messages by modulating interpacket delays (or

arrival time of packets). As a result, arrivals of pack-

ets in network timing channels normally create patterns,

which can be analyzed with statistical tests to detect tim-

ing channels [11, 12, 16, 32], or eliminated by network

jammers [17]. To make timing channels robust against

such detection and prevention, more sophisticated timing

channels mimic legitimate traffic with spreading codes

and a shared key [24], or use independent and identically

distributed (i.i.d) random interpacket delays [25].

In this paper, we present a new method of creating

a covert timing channel that is high-bandwidth, robust

against cross traffic, and undetectable by software end-

hosts. The channel can effectively deliver 81 kilobits per

second with less than 10% errors over nine routing hops,

and thousands of miles over the National Lambda Rail

(NLR). We empirically demonstrate that we can create

such a timing channel by modulating interpacket gaps

at sub-microsecond scale: A scale at which sent infor-

mation is preserved through multiple routing hops, but

statistical tests cannot differentiate the channel from le-

gitimate traffic. Unlike approaches mentioned above,

our covert timing channel, Chupja1, is implemented in

the physical layer of a network protocol stack. In or-

der to hide the existence of the channel, we mainly ex-

ploit the fact that statistical tests for covert channel de-

tection rely on collected interpacket delays, which can

be highly inaccurate in a 10 Gigabit Ethernet (GbE) net-

work, whereas access to the physical layer provides fine-

grained control over interpacket delays at nanosecond

scale [15, 22]. As a result, a network monitoring appli-

cation needs to have the capability of fine-grained times-

tamping to detect our covert channel. We argue that

nanosecond level of resolution is key to do so.

The contributions of this paper are as follows:

• We discuss how to design and implement a covert

timing channel via access to the physical layer.

• We demonstrate that a covert timing channel imple-

mented in the physical layer can effectively deliver

secret messages over the Internet.

• We empirically illustrate that we can quantify per-

turbations added by a network, and the quantified

1Chupja is equivalent to spy in Korean

1

174 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

perturbation is related to bit error rate of the covert

timing channel.

• We show that in order to detect Chupja, fine-grained

timestamping at nanosecond scale is required.

2 Network Covert Channels
Network covert channels are not new. However, imple-

menting such a channel in the physical layer has never

been tried before. In this section, we briefly discuss

previous approaches to create and detect network covert

channels, and why access to the physical layer can cre-

ate a covert channel that is hard to detect. Although our

focus of this paper is covert timing channels, we discuss

both covert storage channels and covert timing channels

in this section.

In a network covert channel, the sender has secret in-

formation that she tries to send to a receiver over the

Internet. The sender has control of some part of a net-

work stack including a network interface (L1∼2), kernel

network stack (L3∼4) and/or user application (L5 and

above). Thus, the sender can modify protocol headers,

checksum values, or control the timing of transmission

of packets. The sender can either use packets from other

applications of the system or generate its own packets.

Although it is also possible that the sender can use packet

payloads to directly embed or encrypt messages, we do

not consider this case because it is against the purpose

of a covert channel: hiding the existence of the chan-

nel. The adversary (or warden), on the other hand, wants

to detect and prevent covert channels. A passive adver-

sary monitors packet information to detect covert chan-

nels while an active adversary employs network appli-

ances such as network jammers to reduce the possibility

of covert channels.

In network storage channels, the sender changes the

values of packets to secretly encode messages, which is

examined by the receiver to decode the message. This

can be easily achieved by using unused bits or fields

of protocol headers. The IP Identification field, the

IP Fragment Offset, the TCP Sequence Number field,

and TCP timestamps are good places to embed mes-

sages [20, 28, 34, 35]. As with the easiness of embedding

messages in packet headers, it is just as easy to detect and

prevent such storage channels. The adversary can easily

monitor specific fields of packet headers for detection, or

sanitize those fields for prevention [14, 19, 26].

In network timing channels, the sender controls the

timing of transmission of packets to deliver hidden mes-

sages. The simplest form of this channel is to send or

not send packets in a pre-arranged interval [12, 31]. Be-

cause interpacket delays are perturbed with noise from a

network, synchronizing the sender and receiver is a ma-

jor challenge in these on/off timing channels. However,

synchronization can be avoided when each interpacket

delay conveys information, i.e. a long delay is zero, and

a short delay is one [11]. JitterBugs encodes bits in a sim-

ilar fashion, and uses the remainder of modulo operation

of interpacket delays for encoding and decoding [36].

These timing channels naturally create patterns of in-

terpacket delays which can be analyzed with statistical

tests for detection. For example, regularity tests [11, 12],

shape tests [32], or entropy tests [16] are widely used for

covert timing channel detection. On the other hand, to

avoid detection from such statistical tests, timing chan-

nels can mimic patterns of legitimate traffic, or use ran-

dom interpacket delays. Liu et al., demonstrated that

with spreading codes and a shared key, a timing chan-

nel can be robust against known statistical tests [24].

They further developed a method to use independent and

identically distributed (i.i.d) random interpacket delays

to make the channel less detectable [25].

Access to the physical layer (PHY) allows the sender

to create new types of both storage and timing channels.

The sender of a covert storage channel can embed se-

cret messages into special characters that only reside in

the physical layer, which are discarded before the deliv-

ery of packets to higher layers of a network stack. As a

result, by embedding messages into those special char-

acters, higher layers of a network stack will have no way

to detect the existence of the storage channel. In fact,

idle characters (/I/s), which are used to fill gaps be-

tween any two packets in the physical layer, would make

for great covert channels if they could be manipulated.

The IEEE 802.3 standard requires that at least twelve

/I/ characters must be inserted after every packet [3].

Therefore, it is possible to create a high-bandwidth stor-

age channel that cannot be detected without access to the

PHY. Unfortunately, this covert storage channel can only

work for one hop, i.e. between two directly connected

devices, because network devices discard the contents of

idle characters when processing packets. However, if a

supply chain attack is taken into account where switches

and routers between the sender and the receiver are com-

promised and capable of forwarding hidden messages,

the PHY storage channel can be very effective. We have

implemented a PHY covert storage channel and verified

that it is effective, but only for one hop. To prevent the

PHY storage channel, all special characters must be san-

itized (or zeroed) at every hop.

Our focus, however, is not a PHY covert storage chan-

nel. Instead, we demonstrate that sophisticated covert

timing channels can be created via access to the PHY.

The idea is to control (count) the number of /I/s to en-

code (decode) messages. i.e. to modulate interpacket

gaps in nanosecond resolution.

Any network component that has access to the PHY,

and thus /I/s, can potentially detect PHY covert chan-

nels. Indeed, routers and switches have the capability to

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 175

access the physical layer (i.e. /I/s). Unfortunately, they

are not normally programmable and do not provide an in-

terface for access to /I/s. Instead, anyone that wants to

detect PHY covert timing channels would need to apply

statistical tests on interpacket delays (discussed earlier in

this section). Of course, interpacket delays needs to be

captured precisely before doing so.

In other words, PHY covert timing channels could be

potentially detected if the time of packet reception could

be accurately timestamped with fine-grained resolution

(i.e. nanosecond precision; enough precision to measure

interpacket gaps of 10 GbE networks). However, com-

modity network devices often lack precise timestamping

capabilities. Further, although high-end network mon-

itoring appliances [2, 9] or network monitoring inter-

face cards [1, 6] are available with precise timestamp-

ing capabilities, deploying such high-end appliances in a

large network is not common due to the volume of traf-

fic they would need to process (they have limited mem-

ory/storage) and cost.

Given that programmatic access to the PHY and ac-

curate timestamping capabilities in high-speed networks

are not readily available, we assume a passive adversary

who uses commodity servers with commodity network

interface cards (NIC) for network monitoring. An ex-

ample adversary is a network administrator monitoring a

network using pcap applications. This implies that the

adversary does not have access to the PHY of a network

stack.

Can a passive adversary built from a commodity server

and NIC detect a PHY timing channel? We will demon-

strate that it cannot (Section 4.4). In particular, we will

show how to exploit inaccurate timestamping of network

monitoring applications in order to hide the existence of

such a channel. It has been shown that access to the PHY

allows very precise timestamping at sub-nanosecond res-

olution, whereas endhost timestamping is too inaccurate

to capture the nature of 10 GbE [15, 22]. In particular,

an endhost relies on its own system clock to timestamp

packets which normally provides microsecond resolu-

tion, or hardware timestamping from network interface

cards which provides sub-microsecond resolution. Un-

fortunately, packets can arrive much faster than the end-

host can timestamp them. Therefore, inaccurate times-

tamping at an endhost can lead to an opportunity to create

a timing channel. In this paper, we will discuss how to

create a timing channel by modulating interpacket gaps

precisely in a way that network monitoring applications

cannot detect any regularities from them.

3 Chupja: PHY timing channel
In this section, we discuss the design and implementa-

tion of our physical layer (PHY) covert timing channel,

Chupja. Since Chupja is implemented via access to the

physical layer, we briefly discuss the IEEE 802.3 10 Gi-

gabit Ethernet standard first, and present the design goal

of Chupja, how to encode and decode secret messages,

how Chupja is implemented, and other considerations.

3.1 10 GbE Physical Layer

According to the IEEE 802.3 standard [3], when Eth-

ernet frames are passed to the PHY, they are reformat-

ted before being sent across the physical medium. On

the transmit path, the PHY encodes every 64 bits of an

Ethernet frame into a 66-bit block, which consists of a

two bit synchronization header (syncheader) and a 64-

bit payload. As a result, a 10 GbE link actually operates

at 10.3125 Gbaud (10G× 66
64

). The PHY also scrambles

each block before passing it down the network stack to

be transmitted. The entire 66-bit block is transmitted as

a continuous stream of symbols which a 10 GbE network

transmits over a physical medium. As 10 GbE always

sends 10.3125 gigabits per second (Gbps), each bit in the

PHY is about 97 picoseconds wide. On the receive path,

the PHY descrambles each 66-bit block before decoding

it.

Idle characters (/I/) are special characters that fill

any gaps between any two packets in the PHY. When

there is no Ethernet frame to transmit, the PHY con-

tinuously inserts /I/ characters until the next frame is

available. The standard requires at least twelve /I/s af-

ter every packet. An /I/ character consists of seven or

eight bits, and thus it takes about 700∼800 picoseconds

to transmit one /I/ character. /I/s are typically inac-

cessible from higher layers (L2 or above), because they

are discarded by hardware.

3.2 Design Goal

The design goal of our timing channel, Chupja, is to

achieve high-bandwidth, robustness and undetectability.

By high-bandwidth, we mean a covert rate of many tens

or hundreds of thousands of bits per second. Robust-

ness is how to deliver messages with minimum errors,

and undetectability is how to hide the existence of it. In

particular, we set as our goal for robustness to a bit error

rate (BER) of less than 10%, an error rate that is small

enough to be compensated with forward error correction

such as Hamming code, or spreading code [24]. We de-

fine BER as the ratio of the number of bits incorrectly

delivered from the number of bits transmitted.

In order to achieve these goals, we precisely modu-

late the number of /I/s between packets in the physical

layer. If the modulation of /I/s is large, the channel

can effectively send messages in spite of noise or per-

turbations from a network (robustness). At the same

time, if the modulation of /I/s is small, an adversary

will not be able to detect regularities (undetectability).

Further, Chupja embeds one timing channel bit per in-

terpacket gap to achieve high-bandwidth. Thus, higher

3

176 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

overt packet rates will achieve higher covert timing chan-

nel rates. We focus on finding an optimal modulation of

interpacket gaps to achieve high-bandwidth, robustness,

and undetectability (Section 4).

3.3 Model

In our model, the sender of Chupja has control over a net-

work interface card or a compromised switch2 with ac-

cess to and control of the physical layer. In other words,

the sender can easily control the number of /I/ char-

acters of outgoing packets. The receiver is in a network

multiple hops away, and taps/sniffs on its network with

access to the physical layer. Then, the sender modulates

the number of /I/s between packets destined to the re-

ceiver’s network to embed secret messages.

Our model includes an adversary who runs a network

monitoring application and is in the same network with

the sender and receiver. As discussed in Section 2, we as-

sume that the adversary is built from a commodity server

and commodity NIC. As a result, the adversary does not

have direct access to the physical layer. Since a commod-

ity NIC discards /I/s before delivering packets to the

host, the adversary cannot monitor the number of /I/s

to detect the possibility of covert timing channels. In-

stead, it runs statistical tests with captured interpacket

delays.

3.4 Terminology

We define interpacket delay (IPD) as the time difference

between the first bits of two successive packets, and in-

terpacket gap (IPG) as the time difference between the

last bit of the first packet and the first bit of the next

packet. Thus, an interpacket delay between two packets

is equal to the sum of transmission time of the first packet

and the interpacket gap between the two (i.e. IPD = IPG

+ packet size). A homogeneous packet stream consists

of packets that have the same destination, the same size

and the same IPGs (IPDs) between them. Furthermore,

the variance of IPGs and IPDs of a homogeneous packet

stream is always zero.

3.5 Encoding and Decoding

Chupja embeds covert bits into interpacket gaps of a ho-

mogeneous packet stream of an overt channel. In order

to create Chupja, the sender and receiver must share two

parameters: G and W . G is the number of /I/s in the

IPG that is used to encode and decode hidden messages,

and W (Wait time) helps the sender and receiver synchro-

nize (Note that interpacket delay D = G + packet size).

Figure 1 illustrates our design. Recall that IPGs of a

homogeneous packet stream are all the same (=G, Fig-

ure 1a). For example, the IPG of a homogeneous stream

with 1518 byte packets at 1 Gbps is always 13738 /I/s;

the variance is zero. To embed a secret bit sequence

2We use the term switch to denote both bridge and router.

Pi Pi+1 Pi+2

D D

G G

IPG IPG

(a) Homogeneous packet stream

Pi Pi+1 Pi+2

D - ε D + ε

G - ε G + ε

IPG IPG

(b) Timing channel: Sender

Pi Pi+1 Pi+2

Di Di+1

Gi Gi+1

IPG IPG

(c) Timing channel: Receiver

Figure 1: Chupja encoding and decoding.

{bi, bi+1, · · · }, the sender encodes ‘one’ (‘zero’) by in-

creasing (decreasing) the IPG (G) by ε /I/s (Figure 1b):

Gi = G− ε if bi = 0

Gi = G+ ε if bi = 1

where Gi is the ith interpacket gap between packet i and

i+1. When Gi is less than the minimum interpacket gap

(or 12 /I/ characters), it is set to twelve to meet the

standard requirement.

Interpacket gaps (and delays) will be perturbed as

packets go through a number of switches. However, as

we will see in Section 4.3, many switches do not sig-

nificantly change interpacket gaps. Thus, we can expect

that if ε is large enough, encoded messages will be pre-

served along the path. At the same time, ε must be small

enough to avoid detection by an adversary. We will eval-

uate how big ε must be with and without cross traffic and

over multiple hops of switches over thousands of miles

in a network path (Section 4).

Upon receiving packet pairs, the receiver decodes bit

information as follows:

b′i = 1 if Gi ≥ G

b′i = 0 if Gi < G

b′i might not be equal to bi because of network noise. We

use BER to evaluate the performance of Chupja (Sec-

tion 4.2).

Because each IPG corresponds to a signal, there is no

need for synchronization between the sender and the re-

ceiver [11]. However, the sender occasionally needs to

pause until the next covert packet is available. W is used

when there is a pause between signals. The receiver con-

siders an IPG that is larger than W as a pause, and uses

the next IPG to decode the next signal.

3.6 Implementation

We used SoNIC to implement and evaluate Chupja.

SoNIC [22] allows users to access and control every bit

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 177

102
103
104
105
106
107
108

0.01 0.1 0.5 1 3 6 9C
ov

er
t c

ha
nn

el
 c

ap
ac

ity
 (b

ps
)

Overt channel throughput (Gbps)

64B
512B

1024B
1518B

Figure 2: Maximum capacity of PHY timing channel

of 10 GbE physical layer, and thus we can easily control

(count) the number of /I/s between packets. We ex-

tended SoNIC’s packet generation capability to create a

timing channel. Given the number of /I/ characters in

the original IPG (G), the number of /I/s to modulate (ε)

and a secret message, IPGs are changed accordingly to

embed the message. On the receiver side, it decodes the

message by counting the number of /I/s between pack-

ets in realtime. The total number of lines added to the

SoNIC implementation was less than 50 lines of code.

The capacity of this PHY timing channel is equal to

the number of packets being transmitted from the sender

when there is no pause. Given a packet size, the max-

imum capacity of the channel is illustrated in Figure 2.

For example, if an overt channel sends at 1 Gbps with

1518 byte packets, the maximum capacity of the covert

channel is 81,913 bits per second (bps). We will demon-

strate in Section 4.2 that Chupja can deliver 81 kilo-

bits per second (kbps) with less than 10% BER over

nine routing hops and thousands of miles over National

Lambda Rail (NLR).

3.7 Discussion

Chupja uses homogeneous packet streams to encode

messages, which creates a regular pattern of IPGs. For-

tunately, as we will discuss in the following section, the

adversary will be unable to accurately timestamp incom-

ing packets when the data rate is high (Section 4.4). This

means that it does not matter what patterns of IPGs are

used for encoding at above a certain data rate. Therefore,

we chose the simplest form of encoding for Chupja. The

fact that the PHY timing channel works over multiple

hops means that a non-homogeneous timing channel will

work as well. For instance, consider the output after one

routing hop as the sender, then the PHY timing chan-

nel works with a non-homogeneous packet stream. If,

on the other hand, the sender wants to use other patterns

for encoding and decoding, other approaches can easily

be applied [12, 24, 25, 36]. For example, if the sender

wants to create a pattern that looks more random, we can

also use a shared secret key and generate random IPGs

for encoding and decoding [25]. However, the focus of

this paper is to demonstrate that even this simplest form

of timing channel can be a serious threat to a system and

not easily be detected.

Sender

Cross Traffic
 Generator

Adversary
splitter

Receiver

SoNIC1 SoNIC1

SoNIC2

Figure 3: Network topology for evaluation. All lines are

10 gigabit fiber optic cables

Finally, note that a Chupja sender and receiver do not

need to be endpoints of a network path, but could actually

be within the network as middleboxes. Such a covert

timing channel middlebox would require constant overt

traffic in order to manipulate interpacket gaps.

4 Evaluation
In this section, we evaluate Chupja over real networks.

We attempt to answer following questions.

• How robust is Chupja (Section 4.2)? How effec-

tively can it send secret messages over the Internet?

• Why is Chupja robust (Section 4.3)? What proper-

ties of a network does it exploit?

• How undetectable is Chupja (Section 4.4)? Why is

it hard to detect it and what is required to do so?

In Section 4.2, we first demonstrate that Chupja works

effectively over the Internet, and achieves a Bit Error

Rate (BER) less than 10% which is the design goal of

Chupja (Section 3). In particular, we evaluated Chupja

over two networks: A small network that consists of

multiple commercial switches, and the National Lambda

Rail (NLR). We discuss what is the optimal interpacket

gap (IPG) modulation, ε , that makes Chupja work. Then,

in order to understand why Chupja works, we provide a

microscopic view of how network devices behave in Sec-

tion 4.3. We conducted a sensitivity analysis over com-

mercial switches. We mainly show how network devices

preserve small interpacket delays along the path even

with and without the existence of cross traffic. Lastly,

we discuss how to detect a sophisticated timing channel

such as Chupja in Section 4.4.

4.1 Evaluation Setup

For experiments in this section, we deployed two SoNIC

servers [22] each equipped with two 10 GbE ports to

connect fiber optic cables. We used one SoNIC server

(SoNIC1) to generate packets of the sender destined to a

server (the adversary) via a network. We placed a fiber

optic splitter at the adversary which mirrored packets

to SoNIC1 for capture (i.e. SoNIC1 was both the tim-

ing channel sender and receiver). SoNIC2 was used to

generate cross traffic flows when necessary (Figure 3).

Throughout this section, we placed none or multiple

commercial switches between the sender and the adver-

sary (the cloud within Figure 3).

Table 1 summarizes the commercial switches that we

5

178 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Type 40G 10G 1G Full bandwidth Forwarding

SW1 Core 0 8 0 160 Gbps SF

SW2 ToR 4 48 0 1280 Gbps CT

SW3 ToR 0 2 48 136 Gbps SF

SW4 ToR 0 2 24 105.6 Gbps SF

Table 1: Summary of evaluated network switches. “SF”

is store-and-forward and “CT” is cut-through.

used. SW1 is a core / aggregate router with multiple 10

GbE ports, and we installed two modules with four 10

GbE ports. SW2 is a high-bandwidth 10 GbE top-of-rack

(ToR) switch which is able to support forty eight 10 GbE

ports at line speed. Moreover, it is a cut-through switch

whose latency of forwarding a packet is only a few mi-

croseconds. SW3 and SW4 are 1 GbE ToR switches with

two 10 GbE uplinks. Other than SW2, all switches are

store-and-forward switches.

We used a Dell 710 server for the adversary. The

server has two X5670 2.93GHz processors each with six

CPU cores, and 12 GB RAM. The architecture of the

processor is Westmere [4] that is well-known for its capa-

bility of processing packets in a multi-threading environ-

ment [13, 18, 27]. We used one 10 GbE Dual-port NICs

for receiving packets. No optimization or performance

tuning such as irq balancing, or interrupt coalescing,

was performed except New API (NAPI) [7] which is en-

abled by default.

Packet size Data Rate Packet Rate IPD IPG

[Bytes] [Gbps] [pps] [ns] [/I/]

1518 9 737028 1356.8 170

1518 6 491352 2035.2 1018

1518 3 245676 4070.4 3562

1518 1 81913 12211.2 13738

64 6 10416666 96.0 48

64 3 5208333 192.0 168

64 1 1736111 576.0 648

Table 2: IPD and IPG of homogeneous packet streams.

ε (/I/s) 16 32 64 128 256 512 1024 2048 4096

ns 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8

Table 3: Evaluated ε values in the number of /I/s and

their corresponding time values in nanosecond.

For most of the evaluation, we used 1518 byte and

64 byte packets for simplicity. We define packet size

as the number of bytes from the first byte of the Eth-

ernet header to the last byte of the Ethernet frame check

sequence (FCS) field (i.e. we exclude seven preamble

bytes and start frame delimiter byte from packet size).

Then, the largest packet allowed by Ethernet is 1518

bytes (14 byte header, 1500 payload, and 4 byte FCS),

and the smallest is 64 bytes. In this section, the data rate

refers to the data rate of the overt channel that Chupja

is embedded. Interpacket delays (IPDs) and interpacket

gaps (IPGs) of homogeneous packet streams at different

data rates and with different packet sizes are summarized

SW3 Server2 Server3 SW4

SW2 SW2

SW1 SW1

SoNIC SoNICServer1 Server4

α

α

αα α

α

α α

ββ3α 3α

3α+β 3α+β3α+β

Figure 4: A small network. Thick solid lines are 10G

connections while dotted lines are 1G connections.

in Table 2. Table 3 shows the number of /I/s (ε) we

modulate to create Chupja and their corresponding time

values in nanosecond. We set ε starting from 16 /I/s

(= 12.8 ns), doubling the number of /I/s up to 4096

/I/s (= 3276.8 ns). We use a tuple (s, r) to denote a

packet stream with s byte packets running at r Gbps. For

example, a homogeneous stream with (1518B, 1Gbps) is

a packet stream with 1518 byte packets at 1 Gbps.

4.2 Efficiency of Chupja

The goal of a covert timing channel is to send secret mes-

sages to the receiver with minimum errors (robustness).

As a result, Bit Error Rate (BER) and the achieved covert

bandwidth are the most important metrics to evaluate a

timing channel. Our goal is to achieve BER less than

10% over a network with high bandwidth. In this section,

we evaluate Chupja over two networks, a small network

and the Internet (NLR), focusing on the relation between

BER and the number of /I/s being modulated (ε).

4.2.1 A small network

We created our own network by connecting six switches,

and four servers (See Figure 4). The topology resembles

a typical network where core routers (SW1) are in the

middle and 1 GbE ToR switches (SW3 and SW4) are leaf

nodes. Then, SoNIC1 (the sender) generates packets to

SW3 via one 10 GbE uplink, which will forward packets

to the receiver which is connected to SW4 via one 10

GbE uplink. Therefore, it is a seven-hop timing channel

with 0.154 ms round trip time delay on average, and we

measured BER at the receiver.

Before considering cross traffic, we first measure BER

with no cross traffic. Figure 5a illustrates the result.

The x-axis is ε modulated in the number of idle (/I/)

characters (see Table 3 to relate /I/s to time), and

the y-axis is BER. Figure 5a clearly illustrates that the

larger ε , the smaller BER. In particular, modulating 128

/I/s (=102.4 ns) is enough to achieve BER=7.7% with

(1518B, 1Gbps) (filled in round dots). All the other

cases also achieve the goal BER except (64B, 6Gbps)

and (64B, 3Gbps). Recall that Table 2 gives the capacity

of the covert channel. The takeaway is that when there is

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 179

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 32 64 128 256 512 1024 2048 4096

B
ER

ε (/I/s)

S-6G
S-3G
S-1G
B-9G
B-6G
B-3G
B-1G

(a) Without cross traffic over a small network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 32 64 128 256 512 1024 2048 4096

B
ER

ε (/I/s)

M-B-6G
L-S-1G

M-S-1G
L-B-6G
H-S-1G
H-B-3G
M-B-3G
H-B-1G
M-B-1G
L-B-3G
L-B-1G

(b) With cross traffic over a small network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 32 64 128 256 512 1024 2048 4096

B
ER

ε (/I/s)

S-6G
S-3G
S-1G
B-6G
B-3G
B-1G

(c) Over National Lambda Rail

Figure 5: BER of Chupja over a small network and NLR. X-Y-Z means that workload of cross traffic is X (H-heavy,

M-medium, or L-light), and the size of packet and data rate of overt channel is Y (B-big=1518B or S-small=64B) and

Z (1, 3, or 6G).

no cross traffic, modulating small number of /I/s (128

/I/s, 102.4 ns) is sufficient to create a timing channel.

In addition, it is more efficient with large packets.

Now, we evaluate Chupja with cross traffic. In order

to generate cross traffic, we used four servers (Server1

to 4). Each server has four 1 GbE and two 10 GbE

ports. Server1 (Server4) is connected to SW3 (SW4) via

three 1 GbE links, and Server2 (Server3) is connected

to SW3 via two 10 GbE links. These servers gener-

ate traffic across the network with Linux pktgen [30].

The bandwidth of cross traffic over each link between

switches is illustrated in Figure 4: 1 GbE links were

utilized with flows at α Gbps and 10 GbE links at

β Gbps. We created three workloads where (α,β) =
(0.333,0.333), (0.9,0.9), and (0.9,3.7), and we call

them Light, Medium and Heavy workloads. Packets

of cross traffic were always maximum transmission unit

(MTU) sized. Then SoNIC1 generated timing channel

packets at 1, 3, and 6 Gbps with 1518 and 64 byte pack-

ets. Figure 5b illustrates the result. At a glance, be-

cause of the existence of cross traffic, ε must be larger

to transmit bits correctly compared to the case without

cross traffic. There are a few takeaways. First, regardless

of the size of workloads, timing channels with (1518B,

1Gbps) and (1518B, 3Gbps) work quite well, achieving

the goal BER of less than 10% with ε ≥ 1024 . On the

other hand, channels at a data rate higher than 6 Gbps

are not efficient. In particular, ε = 4096 is not sufficient

to achieve the goal BER with (1518B, 6Gbps). Second,

creating timing channels with small packets is more dif-

ficult. Generally, BER is quite high even with ε = 4096

except H-S-1G case (BER=9%).

4.2.2 National Lambda Rail

In this section, we evaluate Chupja in the wild over a

real network, National Lambda Rail (NLR). NLR is a

wide-area network designed for research and has signif-

icant cross traffic [29]. We set up a path from Cornell

university to NLR over nine routing hops and 2500 miles

BostonChicago

Cleveland

Cornell (NYC) NYC

Cornell (Ithaca)

Sender Receiver

Figure 6: Our path on the National Lambda Rail

one-way (Figure 6). All the routers in NLR are Cisco

6500 routers. We used a SoNIC server to generate and

capture Chupja packets at each end. The average round

trip time of the path was 67.6 ms, and there was always

cross traffic. In particular, many links on our path were

utilized with 1∼2 Gbps cross traffic during the experi-

ment. Cross traffic was not under our control, however

we received regular measurements of traffic on external

interfaces of all routers.

Figure 5c illustrates the results. Again, we changed

the size and the data rate of overt packets. In NLR, it

becomes more difficult to create a timing channel. In

particular, only (1518B, 1Gbps) achieved BER less than

10% when ε is larger than 2048 (8.9%). All the other

cases have higher BERs than our desired goal, although

BERs are less than 30% when ε is 4096. Creating a chan-

nel with 64 byte packet is no longer possible in NLR.

This was because more than 98% of IPGs were mini-

mum interpacket gaps, i.e. most of bit information was

discarded because of packet train effects [15].

We demonstrated in this section (Figure 5c) that

we can create an effective covert timing channel with

(1518B, 1Gbps), and with large enough ε over the NLR.

The capacity of this channel can be as high as 81 kbps

(Table 2). In general, large packets at slower data rate is

desirable to create a timing channel. In the following sec-

7

180 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion, we will investigate why this is possible by closely

analyzing the behavior of network devices with respect

to IPG modulations, ε .

4.3 Sensitivity Analysis

Network devices change interpacket gaps while forward-

ing packets; switches add randomness to interpacket

gaps. In this section, we discuss how Chupja can de-

liver secret messages via a PHY timing channel in spite

of the randomness added from a network. In particular,

we discuss the following observations.

• A single switch does not add significant perturba-

tions to IPDs when there is no cross traffic.

• A single switch treats IPDs of a timing channel’s

encoded ‘zero’ bit and those of an encoded ‘one’

bit as uncorrelated distributions; ultimately, allow-

ing a PHY timing channel receiver to distinguish an

encoded ‘zero’ from an encoded ‘one’.

• The first and second observations above hold for

multiple switches and cross traffic.

In other words, we demonstrate that timing channels

can encode bits by modulating IPGs by a small number

of /I/ characters (hundreds of nanoseconds) and these

small modulations can be effectively delivered to a re-

ceiver over multiple routing hops with cross traffic.

In order to understand and appreciate these observa-

tions, we must first define a few terms. We denote the

interpacket delay between packet i and i + 1 with the

random variable Di. We use superscript on the variables

to denote the number of routers. For example, D1
i is

the interpacket delay between packet i and i + 1 after

processed by one router, and D0
i is the interpacket delay

before packet i and i+ 1 are processed by any routers.

Given a distribution of D, and the average interpacket

delay µ , we define I90 as the smallest ε that satisfies

P(µ − ε ≤ D ≤ µ + ε)≥ 0.90. In other words, I90 is the

interval from the average interpacket delay, µ , which

contains 90% of D (i.e. at least 90% of distribution D

is within µ ± I90). For example, I90 of a homogeneous

stream (a delta function, which has no variance) that

leaves the sender and enters the first router is zero; i.e.

D0 has I90 = 0 and P(µ −0 ≤D ≤ µ +0) = 1 since there

is no variance in IPD of a homogeneous stream. We will

use I90 in this section to quantify perturbations added by

a network device or a network itself. Recall that the goal

of Chupja is to achieve a BER less than 10%, and, as a

result, we are interested in the range where 90% of D

observed by a timing channel receiver is contained.

First, switches do not add significant perturbations to

IPDs when there is no cross traffic. In particular, when a

homogeneous packet stream is processed by a switch, I90

is always less than a few hundreds of nanoseconds, i.e.

90% of the received IPDs are within a few hundreds of

nanoseconds from the IPD originally sent. Figure 7 dis-

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.1 12.2 +0.1

C
D

F

Interpacket delay (us)

SW1
SW2
SW3
SW4

Figure 7: Comparison of IPDs after switches process a

homogeneous packet stream (1518B, 1Gbps)

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

I9
0

(n
s)

of hops

SW1 1G
SW1 3G
SW1 9G
SW2 1G
SW2 3G
SW2 9G

SW3 1G
SW3 3G
SW3 9G
SW4 1G
SW4 3G
SW4 9G

Figure 8: I90 comparison between various switches

plays the received IPD distribution measured after pack-

ets were processed and forwarded by one switch: The

x-axis is the received IPD and the y-axis is the cumula-

tive distribution function (CDF). Further, different lines

represent different switches from Table 1. The char-

acteristics of the original sender’s homogeneous packet

stream was a data rate of 1 Gbps with 1518B size pack-

ets, or (1518B, 1Gbps) for short, which resulted in an

average IPD of 12.2 us (i.e. µ = 12.2 us). We can

see in Figure 7 that when µ is 12.2 us and ε is 0.1

us, P(12.2− 0.1 < D < 12.2+ 0.1)≥ 0.9 is true for all

switches. In general, the range of received IPDs was al-

ways bounded by a few hundreds of nanoseconds from

the original IPD, regardless of the type of switch.

Moreover, when a packet stream is processed by the

same switch type, but for multiple hops, I90 increases

linearly. Each packet suffers some perturbation, but the

range of perturbation is roughly constant at every hop

over different packet sizes [23] resulting in a linear in-

crease in I90. In Figure 8, we illustrate I90 for different

switches, at different data rates (1, 3, and 9G), and as we

increase the number of hops: The x-axis is the number

of routing hops, y-axis is measured I90, and each line is

a different type of switch with a different packet stream

data rate. Packet size was 1518B for all test configu-

rations. One important takeaway from the graph is that

I90 for the same switch shows similar patterns regardless

of data rates, except SW3 9 Gbps. In particular, the de-

gree of perturbation added by a switch is not related to

the data rate (or the average interpacket delay). Instead,

IPD perturbation is related to the number of hops, and

the size of packet. Further, a second takeaway is that I90

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 181

10-6

10-4

10-2

100

11.4 11.8 12.2 12.6 13.0

PD
F

Interpacket delay (us)

(a) HOM after one SW1

10-6

10-4

10-2

100

11.4 11.8 12.2 12.6 13.0

PD
F

Interpacket delay (us)

(b) HOM after fifteen SW1

10-6

10-4

10-2

100

11.4 11.8 12.2 12.6 13.0

PD
F

Interpacket delay (us)

(c) HOM after one SW1 with cross

traffic (64B, 1Gbps)

10-4

10-2

100

6.2 9.2 12.2 15.2 18.2

PD
F

Interpacket delay (us)

(d) HOM over NLR

10-6

10-4

10-2

100

11.4 11.8 12.2 12.6 13.0

PD
F

Interpacket delay (us)

Zero
One

(e) ε = 256 after one SW1

10-6

10-4

10-2

100

11.4 11.8 12.2 12.6 13.0

PD
F

Interpacket delay (us)

Zero
One

(f) ε = 256 after fifteen SW1

10-6

10-4

10-2

100

11.4 11.8 12.2 12.6 13.0

PD
F

Interpacket delay (us)

Zero
One

(g) ε = 256 after one SW1 with cross

traffic (64B, 1Gbps)

10-4

10-2

100

6.2 9.2 12.2 15.2 18.2

PD
F

Interpacket delay (us)

Zero
One

(h) ε = 2048 over NLR

Figure 9: Comparison of homogeneous streams and covert channel streams of (1518B, 1Gbps)

values after one hop are all less than 100 ns, except SW3

9 Gbps, and still less than 300 ns after fifteen hops. 300

ns is slightly greater than 256 /I/s (Table 3). Unfortu-

nately, we do not have a definitive explanation on why

I90 of SW3 9 Gbps is larger than any other case, but it is

likely related to how SW3 handles high data rates.

Second, switches treat IPDs of an encoded ‘zero’ bit

and those of an encoded ‘one’ bit as uncorrelated dis-

tributions. After encoding bits in a timing channel,

there will be only two distinctive IPD values leaving the

sender: µ + ε for ‘one’, and µ − ε for ‘zero’. Let a ran-

dom variable D+ be the IPDs of signal ‘one’, and D− be

those of signal ‘zero’. We observed that the encoded dis-

tributions after one routing hop, D1+ and D1−, looked

similar to the unencoded distribution after one routing

hop, D1. The similarity is likely due to the fact that at

the sender the encoded distributions, D0+ and D0−, are

each homogeneous packet streams (i.e. D0, D0+, and

D0− are all delta functions, which have no variance). For

instance, using switch SW1 from Table 1, Figure 9a il-

lustrates D1 (the unencoded distribution of IPDs after one

routing hop) and Figure 9e illustrates D1+ and D1− (the

encoded distribution after one routing hop). The data rate

and packet size was 1Gbps and 1518B, respectively, with

ε = 256 /I/s for the encoded packet stream. We en-

coded the same number of ‘zeros’ and ‘ones’ randomly

into the packet stream. Note the similarity in distribu-

tions between D1 in Figure 9a and D1+ and D1− in Fig-

ure 9e. We observed a similarity in distributions among

D1, D1+, and D1− throughout different data rates and

switches. We can conjecture that D+ and D− are un-

correlated because the computed correlation coefficient

between D+ and D− is always very close to zero.

Because the distributions of D1+ and D1− are uncor-

related, we can effectively deliver bit information with

appropriate ε values for one hop. If ε is greater than

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16

B
ER

of hops

16
32
64

128
256
512

1024

Figure 10: BER over multiple hops of SW1 with various

ε values with (1518B, 1Gbps)

I90 of D1, then 90% of IPDs of D1+ and D1− will not

overlap. For example, when I90 is 64 ns, and ε is 256

/I/s (=204.8 ns), two distributions of D1+ and D1−
are clearly separated from the original IPD (Figure 9e).

On the other hand, if ε is less than I90 of D1, then many

IPDs will overlap, and thus the BER increases. For in-

stance, Table 4 summarizes how BER of the timing chan-

nel varies with different ε values. From Table 4, we can

see that when ε is greater than 64 /I/s, BER is always

less than 10%. The key takeaway is that BER is not re-

lated with the data rate of the overt channel, rather it is

related to I90.

ε (/I/s) 16 32 64 128 256 512 1024

BER

1G 0.35 0.24 0.08 0.003 10−6 0 0

3G 0.37 0.25 0.10 0.005 10−5 0 0

6G 0.35 0.24 0.08 0.005 0.8×10−6 0 0

9G 0.34 0.24 0.07 0.005 0.0005 0.0004 0.0005

Table 4: ε and associated BER with (1518B, 1Gbps)

Third, switches treat IPDs of an encoded ‘zero’ bit and

those of an encoded ‘one’ bit as uncorrelated distribu-

tions over multiple switches and with cross traffic. In

particular, distributions Dn+ and Dn− are uncorrelated

regardless of the number of hops and the existence of

9

182 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400

C
D

F

Packet size (B)

CAIDA1
CAIDA2
CAIDA3
CAIDA4

Figure 11: Packet size distributions of CAIDA traces

cross traffic. However, I90 becomes larger as packets go

through multiple routers with cross traffic. Figures 9b

and 9f show the distributions of D15, D15+, and D15−
without cross traffic (Note that the y-axis is log-scale).

The data rate and packet size was 1 Gbps and 1518B,

respectively, with ε = 256 /I/s for the encoded packet

stream. We conjecture that the distributions are still un-

correlated without cross traffic and after multiple hops of

routers: The computed correlation coefficient was close

to zero. Further, the same observation is true with the

other switches from Table 1. Figure 10 shows BER over

multiple hops of SW1. When ε is greater than 256 /I/s

(=204.8 ns), BER is always less than 10% after fifteen

hops. Recall that I90 of D after 15 hops of SW1 is 236 ns

(Figure 8).

Figures 9c and 9g show the distributions after one

routing hop when there was cross traffic: Distributions

D1, D1+, and D1− using overt data rate and packet size

1 Gbps and 1518B, respectively. The cross traffic was

(64B, 1Gbps). We can see in the figures that there is

still a similarity in D1+ and D1− even with cross traffic.

However, I90 becomes larger due to cross traffic when

compared to without cross traffic. Table 6 summarizes

how I90 changes with cross traffic. We used five different

patterns of cross traffic for this evaluation: 10-clustered

(10C), 100-clustered (100C), one homogeneous stream

(HOM), two homogeneous streams (HOM2), and ran-

dom IPD stream (RND). A N-clustered packet stream

consists of multiple clusters of N packets with the mini-

mum interpacket gap (96 bits, which is 12 /I/ charac-

ters) allowed by the standard [3] and a large gap between

clusters. Note that a larger N means the cross traffic is

bursty. For the RND stream, we used a geometric dis-

tribution for IPDs to create bursty traffic. In addition, in

order to understand how the distribution of packet sizes

affect I90, we used four CAIDA traces [8] at different

data rates to generate cross traffic (Table 5). With packet

size and timestamp information from the traces, we re-

constructed a packet stream for cross traffic with SoNIC.

In the CAIDA traces, the distribution of packet sizes is

normally a bimodal distribution with a peak at the lowest

packet size and a peak at the highest packet size (Fig-

ure 11).

Data Rate Packet Rate I90 BER

[Gbps] [pps] [ns] ε = 512 ε = 1024

CAIDA1 2.11 418k 736.0 0.10 0.041

CAIDA2 3.29 724k 848.1 0.148 0.055

CAIDA3 4.27 723k 912.1 0.184 0.071

CAIDA4 5.12 798k 934.4 0.21 0.08

Table 5: Characteristics of CAIDA traces, and measured

I90 and BER

We observe that I90 increases with cross traffic (Ta-

ble 6). In particular, bursty cross traffic at higher data

rates can significantly impact I90, although they are still

less than one microsecond except 100C case. The same

observation is also true using the CAIDA traces with dif-

ferent data rates (Table 5). As a result, in order to send

encoded timing channel bits effectively, ε must increase

as well. Figure 9d and 9h show the distributions of IPDs

over the NLR. It demonstrates that with external traffic

and over multiple routing hops, sufficiently large ε can

create a timing channel.

Data Rate Packet Size I90

[Gbps] [Byte] 10C 100C HOM HOM2 RND

0.5

64 79.9 76.8 166.45 185.6 76.8

512 79.9 79.9 83.2 121.6 86.3

1024 76.8 76.8 80.1 115.2 76.8

1518 111.9 76.8 128.0 604.7 83.2

1

64 111.9 108.8 236.8 211.2 99.3

512 115.2 934.4 140.8 172.8 188.9

1024 111.9 713.5 124.9 207.9 329.5

1518 688.1 1321.5 64.0 67.1 963.3

Table 6: I90 values in nanosecond with cross traffic.

Summarizing our sensitivity analysis results, I90 is de-

termined by the characteristics of switches, cross traf-

fic, and the number of routing hops. Further, I90 can

be used to create a PHY timing channel like Chupja.

In particular, we can refine the relation between I90 and

ε∗ (the minimum ε measured to achieve a BER of less

than 10%). Let I+90 be the minimum ε that satisfies

P(D > µ − ε)≥ 0.90 and let I−90 be the minimum ε that

satisfies P(D < µ + ε) ≥ 0.90 given the average inter-

packet delay µ . Table 7 summarizes this relationship be-

tween ε∗, I90 and max(I+90, I
−
90) over the NLR (Figure 6)

and our small network (Figure 4).

Network Workload I90 max(I+90,I
−
90) ε∗ (ns)

Small network Light 1065.7 755.2 819.2

Small network Medium 1241.6 1046.3 1638.4

Small network Heavy 1824.0 1443.1 1638.4

NLR 2240.0 1843.2 1638.4

Table 7: Relation between ε , I90, and max(I+90, I
−
90) over

different networks with (1518B, 1Gbps). Values are in

nanosecond.

In our small network, BER is always less than 10%

when ε is greater than max(I+90, I
−
90). On the other hand,

we were able to achieve our goal BER over the NLR

when ε∗ is slightly less than max(I+90, I
−
90). Because we

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 183

 0
 0.2
 0.4
 0.6
 0.8

 1

0.0 5.0 10.0 15.0 20.0

C
D

F

Interpacket delay (us)

HOM
16
32
64

128

256
512

1024
2048
4096

(a) Kernel timestamping.

 0
 0.2
 0.4
 0.6
 0.8

 1

0.0 5.0 10.0 15.0 20.0

C
D

F

Interpacket delay (us)

HOM
16
32
64

128

256
512

1024
2048
4096

(b) Zero-copy timestamping.

 0
 0.2
 0.4
 0.6
 0.8

 1

0.0 5.0 10.0 15.0 20.0

C
D

F

Interpacket delay (us)

HOM
16
32
64

128
256
512

1024
2048
4096

(c) Hardware timestamping.

Figure 12: Comparison of various timestampings. Each line is a covert channel stream of (1518B, 1Gbps) with a

different ε value.

do not have control over cross traffic in the NLR, I90 var-

ied across our experiments.

4.4 Detection

In order to detect timing channels, applying statistical

tests to captured IPDs is widely used. For example, the

adversary can use regularity, similarity, shape test, and

entropy test of IPDs in order to detect potential timing

channels [11, 12, 16, 32]. The same strategies can be ap-

plied to Chupja. Since our traffic is very regular, those

algorithms could be easily applied to detect Chupja.

However, we argue that none of these algorithms will

work if the IPG modulations cannot be observed at all.

In particular, endhost timestamping is too inaccurate to

observe fine-grained IPG modulations whereas Chupja

modulates IPGs in hundreds of nanoseconds to create a

timing channel. In fact, the accuracy of endhost times-

tamping is at most microsecond resolution. Specialized

NICs can provide a few hundreds of nanosecond reso-

lution. In this section, we demonstrate that endhost or

hardware timestamping is not sufficient to detect Chupja

timing channels. We focus on measuring and comparing

an endhost’s ability to accurately timestamp arrival times

(i.e. accurately measure IPDs) since the ability to detect

a PHY timing channel is dependent upon the ability to

accurately timestamp the arrival time of packets. As a

result, we do not discuss statistical approaches further.

There are mainly three places where packets can be

timestamped at an endhost: Kernel, userspace, and hard-

ware (NIC). Kernel network stacks record arrival times

of packets upon receiving them from a NIC. Since so

many factors are involved during the delivery of a packet

to kernel space, such as DMA transaction, interrupt rou-

tines, and scheduler, kernel timestamping can be inac-

curate in a high-speed network. As a result, userspace

timestamping will also be inaccurate because of delays

added due to transactions between kernel and userspace.

To reduce the overhead of a network stack between ker-

nel and userspace and between hardware and kernel, a

technique called zero-copy can be employed to improve

the performance of userspace network applications. An

example of a zero-copy implementation is Netmap [33].

In Netmap, packets are delivered from a NIC directly to

a memory region which is shared by a userspace appli-

cation. This zero-copy removes expensive memory op-

erations and bypasses the kernel network stack. As a re-

sult, Netmap is able to inject and capture packets at line

speed in a 10 GbE network with a single CPU. There-

fore, detection algorithms can exploit a platform similar

to Netmap to improve the performance of network moni-

toring applications. We call this zero-copy timestamping.

In hardware timestamping, a NIC uses an external clock

to timestamp incoming packets at a very early stage to

achieve better precision. The accuracy of timestamping

is determined by the frequency of an external clock. Un-

fortunately, hardware timestamping is not often available

with commodity NICs. However, we did include in our

evaluation a specialized NIC, the Sniffer 10G [5], which

can provide 500 ns resolution for timestamping.

In order to compare kernel, zero-copy, and hardware

timestamping, we connected a SoNIC server and a net-

work monitor directly via an optical fiber cable, gener-

ated and transmitted timing channel packets to a NIC in-

stalled in the network monitor, and collected IPDs using

different timestampings. The network monitor is a pas-

sive adversary built from a commodity server. Further,

we installed Netmap in the network monitor. Netmap

originally used the do gettimeofday for timestamp-

ing packets in kernel space, which provides only mi-

crosecond resolution. We modified the Netmap driver to

support nanosecond resolution instead. For this evalua-

tion, we always generated ten thousand packets for com-

parison because some of the approaches discarded pack-

ets when more than ten thousand packets were delivered

at high data rates.

Figure 12 illustrates the results. Figure 12a demon-

strates the effectiveness of kernel timestamping of a tim-

ing channel with various IPG modulation (ε) values. The

data rate of the overt channel was 1 Gbps and the packet

size was 1518 bytes. The x-axis is interpacket delays

(IPDs) in microsecond and y-axis is a cumulative dis-

tribution function (CDF). The vertical line in the mid-

dle is the original IPD (=12.2 us) of Chupja. In order

to detect Chupja, the timestamping CDF would be cen-

11

184 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 5.0 10.0 15.0 20.0

C
D

F

Interpacket delay (us)

HOM
10C

100C
iid

Figure 13: Kernel timestamping with (1518B, 1Gbps).

tered around the vertical line at ≈12.2 us. Instead, as

can be seen from the graph, all measured kernel times-

tamps were nowhere near the vertical line regardless of ε
values (ε varied between ε=0 [HOM] to ε=4096 /I/s).

As a result, kernel timestamping cannot distinguish a

PHY covert channel like Chupja. In fact, even an i.i.d

random packet stream is inseparable from other streams

(Figure 13). Unfortunately, zero-copy timestamping does

not help the situation either (Figure 12b). Netmap does

not timestamp every packet, but assigns the same times-

tamp value to packets that are delivered in the one DMA

transaction (or polling). This is why there are packets

with zero IPD. Nonetheless, Netmap still depends on un-

derlying system’s timestamping capability, which is not

capable.

On the other hand, hardware timestamping using

the Sniffer 10G demonstrates enough fidelity to detect

Chupja when modulation (ε) values are larger than 128

/I/s (Figure 12c). However, hardware timestamping

still cannot detect smaller changes in IPDs (i.e. modu-

lation, ε , values smaller than 128 /I/s), which is clear

with a timing channel with smaller packets. A timing

channel with 64 byte packets at 1 Gbps is not detectable

by hardware timestamping (Figure 14). This is because

packets arrive much faster with smaller packets making

IPGs too small for the resolution of hardware to accu-

rately detect small IPG modulations.

The takeaway is that to improve the possibility of de-

tecting Chupja, which modulates IPGs in a few hundreds

of nanoseconds, a network monitor (passive adversary)

must employ hardware timestamping for analysis. How-

ever, using better hardware (more expensive and sophis-

ticated NICs) still may not be sufficient; i.e. for much

finer timing channels. Therefore, we can conclude that a

PHY timing channel such as Chupja is invisible to a soft-

ware endhost. However, a hardware based solutions with

fine-grained capability [1] may be able to detect Chupja.

5 Countermeasures
So far, we demonstrated that covert timing channels im-

plemented in the physical layer can leak secret informa-

tion without being detected. Such channels are great

threats to a system’s security, and should be prevented

or detected. However, as we discussed, detecting a PHY

timing channel is not easy with commodity components.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 1.0 2.0 3.0 4.0 5.0 6.0

C
D

F

Interpacket delay (us)

HOM
16
32
64

128
256
512

1024
2048
4096

Figure 14: Hardware timestamping with (64B, 1Gbps)

As a result, a network administrator who is worried about

information leaks from the network must employ ca-

pable network appliances for prevention or detection:

PHY-enhanced network jammers or monitoring appli-

ances could potentially prevent or detect the existence

of a covert channel.

6 Conclusion
In this paper, we presented Chupja, a PHY covert timing

channel that is high-bandwidth, robust and undetectable.

The covert timing channel embeds secret messages into

interpacket gaps in the physical layer by modulating in-

terpacket gaps at sub-microsecond scale. We empirically

demonstrated that our channel can effectively deliver 81

kilobits per second over nine routing hops and thousands

miles over the Internet, with a BER less than 10%. As a

result, a Chupja timing channel works in practice and is

undetectable by software endhosts since they are not ca-

pable of detecting such small modulations in interpacket

gaps employed by Chupja. Now that we have demon-

strated that a PHY covert timing channel is a security

risk, future directions include efficient methods to pre-

vent or detect such covert channels.

7 Availability
The Chupja and SoNIC source code is published under

a BSD license and is freely available for download at

http://sonic.cs.cornell.edu

8 Acknowledgements
This work was partially funded and supported by an

IBM Faculty Award received by Hakim Weatherspoon,

DARPA (No. D11AP00266), DARPA MRC, NSF CA-

REER (No. 1053757), NSF TRUST (No. 0424422),

NSF FIA (No. 1040689), NSF CiC (No. 1047540), and

NSF EAGER (No. 1151268). We would like to thank

our shepherd, Shyamnath Gollakota, and the anonymous

reviewers for their comments. We further recognize the

engineers who helped establish and maintain the network

infrastructure on which we performed these experiments:

Eric Cronise (Cornell Information Technologies); Scott

Yoest, and his team (Cornell Computing and Information

Science Technical Staff). We also thank Danial Freed-

man, Ethan Kao, Erluo Li, and Chiun Lin Lim for re-

viewing and comments.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 185

References
[1] Endace dag network cards. http://www.endace.com/

endace-dag-high-speed-packet-capture-cards.

html.

[2] Endaceprobes. http://www.endace.com/

endace-high-speed-packet-capture-probes.

html.

[3] IEEE Standard 802.3-2008. http://standards.ieee.

org/about/get/802/802.3.html.

[4] Intel Westmere. http://ark.intel.com/products/

codename/33174/Westmere-EP.

[5] Myricom Sniffer10G. http://www.myricom.com/

sniffer.html.

[6] Napatech. http://www.endace.com/

endace-high-speed-packet-capture-probes.

html.

[7] NAPI. http://linuxfoundation.org/en/Net:NAPI.

[8] The CAIDA UCSD Anonymized Internet Traces. http://

www.caida.org/datasets/.

[9] Wildpackets. http://www.wildpackets.com/

products/network_recorders.

[10] Trusted computer system evaluation criteria. Tech. Rep. DOD

5200.28-STD, National Computer Security Center, December

1985.

[11] BERK, V., GIANI, A., AND CYBENKO, G. Detection of

covert channel encoding in network packet delays. Tech. Rep.

TR2005-536, Department of Computer Science, Dartmouth Col-

lege, November 2005.

[12] CABUK, S., BRODLEY, C. E., AND SHIELDS, C. IP Covert

Timing Channels: Design and Detection. In Proceedings of the

11th ACM conference on Computer and Communications Secu-

rity (2004).

[13] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,

FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND

RATNASAMY, S. RouteBricks: exploiting parallelism to scale

software routers. In Proceedings of the ACM SIGOPS 22nd sym-

posium on Operating systems principles (2009).

[14] FISK, G., FISK, M., PAPADOPOULOS, C., AND NEIL, J. Elim-

inating steganography in internet traffic with active wardens. In

Revised Papers from the 5th International Workshop on Informa-

tion Hiding (2003).

[15] FREEDMAN, D. A., MARIAN, T., LEE, J. H., BIRMAN, K.,

WEATHERSPOON, H., AND XU, C. Exact temporal characteri-

zation of 10 gbps optical wide-area network. In Proceedings of

the 10th ACM SIGCOMM Conference on Internet Measurement

(2010).

[16] GIANVECCHIO, S., AND WANG, H. Detecting covert timing

channels: an entropy-based approach. In Proceedings of the

14th ACM Conference on Computer and Communications Secu-

rity (2007).

[17] GILES, J., AND HAJEK, B. An information-theoretic and game-

theoretic study of timing channels. IEEE Transactions on Infor-

mation Theory 48, 9 (Sept. 2002), 2455–2477.

[18] HAN, S., JANG, K., PARK, K., AND MOON, S. Packetshader:

a gpu-accelerated software router. In Proceedings of the ACM

SIGCOMM 2010 Conference (2010).

[19] HANDLEY, M., KREIBICH, C., AND PAXSON, V. Network in-

trusion detection: Evasion, traffic normalization. In Proceedings

of the 10th USENIX Security Symposium (2001).

[20] KUNDUR, D., AND AHSAN, K. Practical internet steganogra-

phy: Data hiding in ip. In Proceedings of Texas workshop on

Security of Information Systems (2003).

[21] LAMPSON, B. W. A note on the confinement problem. Commu-

nications of the ACM 16, 10 (October 1973), 613–615.

[22] LEE, K. S., WANG, H., AND WEATHERSPOON, H. SoNIC: Pre-

cise Realtime Software Access and Control of Wired Networks.

In Proceedings of the 10th USENIX Symposium on Networked

Systems Design and Implementation (2013).

[23] LIM, C. L., LEE, K. S., WANG, H., WEATHERSPOON, H.,

AND TANG, A. Packet clustering introduced by routers: Model-

ing, analysis and experiments. In Proceedings of the 48th Annual

Conference on Information Sciences and Systems (2014).

[24] LIU, Y., GHOSAL, D., ARMKNECHT, F., SADEGHI, A.-R.,

SCHULZ, S., AND KATZENBEISSER, S. Hide and Seek in Time:

Robust Covert Timing Channels. In Proceedings of the 14th Eu-

ropean Conference on Research in Computer Security (2009).

[25] LIU, Y., GHOSAL, D., ARMKNECHT, F., SADEGHI, A.-R.,

SCHULZ, S., AND KATZENBEISSER, S. Robust and Unde-

tectable Steganographic Timing Channels for i.i.d. Traffic. In

Proceedings of the 12th International Conference on Information

Hiding (2010).

[26] MALAN, G. R., WATSON, D., JAHANIAN, F., AND HOWELL,

P. Transport and application protocol scrubbing. In Proceedings

of IEEE Conference on Computer Communications (2000).

[27] MARIAN, T., LEE, K. S., AND WEATHERSPOON, H. Netslices:

Scalable multi-core packet processing in user-space. In Proceed-

ings of ACM/IEEE Symposium on Architectures for Networking

and Communications Systems (2012).

[28] MURDOCH, S. J., AND LEWIS, S. Embedding covert channels

into tcp/ip. In Proceedings of 7th Information Hiding workshop

(2005).

[29] NLR. National Lambda Rail. http://www.nlr.net/.

[30] OLSSON, R. pktgen the linux packet generator. In Proceeding of

the Linux symposium (2005).

[31] PADLIPSKY, M. A., SNOW, D. W., AND KARGER, P. A. Lim-

itations of end-to-end encryption in secure computer networks.

Tech. Rep. ESD-TR-78-158, Mitre Corporation, August 1978.

[32] PENG, P., NING, P., AND REEVES, D. S. On the secrecy of

timing-based active watermarking trace-back techniques. In Pro-

ceedings of the 2006 IEEE Symposium on Security and Privacy

(2006).

[33] RIZZO, L. Netmap: a novel framework for fast packet I/O. In

Proceedings of the 2012 USENIX conference on Annual Techni-

cal Conference (2012).

[34] ROWLAND, C. H. Covert channels in the tcp/ip protocol suite.

First Monday (July 1997).

[35] RUTKOWSKA, J. The implementation of passive covert channels

in the linux kernel. In Proceedings of Chaos Communication

Congress (2004).

[36] SHAH, G., MOLINA, A., AND BLAZE, M. Keyboards and covert

channels. In Proceedings of the 15th conference on USENIX Se-

curity Symposium (2006).

[37] ZANDER, S., ARMITAGE, G., AND BRANSH, P. A survey of

covert channels and countermeasures in computer network proto-

cols. IEEE Communications Surveys and Tutorials 9, 3 (October

2007), 44–57.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 187

cTPM: A Cloud TPM for Cross-Device Trusted Applications
Chen Chen†, Himanshu Raj, Stefan Saroiu, and Alec Wolman

Microsoft Research and †CMU

Abstract:
Current Trusted Platform Modules (TPMs) are ill-

suited for cross-device scenarios in trusted mobile ap-
plications because they hinder the seamless sharing of
data across multiple devices. This paper presents cTPM,
an extension of the TPM’s design that adds an addi-
tional root key to the TPM and shares that root key with
the cloud. As a result, the cloud can create and share
TPM-protected keys and data across multiple devices
owned by one user. Further, the additional key lets the
cTPM allocate cloud-backed remote storage so that each
TPM can benefit from a trusted real-time clock and high-
performance, non-volatile storage.

This paper shows that cTPM is practical, versatile,
and easily applicable to trusted mobile applications. Our
simple change to the TPM specification is viable because
its fundamental concepts – a primary root key and off-
chip, NV storage – are already found in the current spec-
ification, TPM 2.0. By avoiding a clean-slate redesign,
we sidestep the difficult challenge of re-verifying the se-
curity properties of a new TPM design. We demonstrate
cTPM’s versatility with two case studies: extending Pas-
ture with additional functionality, and re-implementing
TrInc without the need for extra hardware.

1 Introduction
People are increasingly relying on more than one mo-

bile device. Recent news reports estimate that: the av-
erage US consumer owns 1.57 mobile devices [8]; Sin-
gapore has 7.8 million mobile devices, which translates
to 150% mobile penetration [36]; and the average Aus-
tralian will own five mobile devices by 2040 [37]. Given
this trend, mobile platforms are recognizing the need for
“cross-device” functionality that automatically synchro-
nizes photos, videos, apps, data, and even games across
all devices owned by a single user.

Simultaneously, laptops, smartphones, and tablets
are increasingly incorporating trusted computing hard-
ware. For example, Google’s Chromebooks use TPMs
to prevent firmware rollbacks and to store and attest
user’s data encryption keys [11]. Windows 8 (on tablets
and phones) offers BitLocker full-disk encryption [21]
and virtual smart cards [23] using TPMs. Recent re-
search leverages TPMs to build new trusted mobile ser-
vices [30, 32, 9, 17, 14], new trusted cloud services [31],
and new operating systems [33].

Unfortunately, these two trends may be at odds:

trusted hardware, such as the trusted platform module
(TPM), does not provide good support for cross-device
functionality. By design, TPMs offer a hardware root-
of-trust bound to a single, standalone device. TPMs
come equipped with encryption keys whose private parts
never leave the TPM hardware chip, reducing the pos-
sibility those keys may be compromised. The tension
between single-device TPM guarantees and the need for
cross-device sharing makes it difficult for trusted appli-
cations to cope with multi-device scenarios. For exam-
ple, Pasture [14], a TPM-based secure offline data ac-
cess system that can be used for movie rentals, limits
all its guarantees to one device due to TPM limitations.
Similarly, Windows TPM-based virtual smart cards are
single-device only – users have to provision and renew
their credentials separately on each device they own.

Support for cross-device sharing requires altering the
TPM design, which raises the following question: Can
a small-scale TPM design change overcome these limi-
tations? While a clean-slate TPM re-design could pro-
vide a variety of additional security properties, there are
two pragmatic reasons why a smaller change is prefer-
able. First, TPMs have undergone a decade of API and
implementation revisions to reduce the likelihood of vul-
nerabilities. A clean-slate re-design would demand con-
siderable time and effort to provide a mature codebase.
Second, TPM manufacturers would more willingly adopt
smaller and simpler changes.

This paper proposes a single, simple design change
to the TPM, called cTPM, that overcomes the limitations
noted above by equipping the TPM with one additional
root key that is shared with the cloud. This key lets
trusted applications overcome their cross-device limita-
tions with the cloud’s assistance. It ensures that the cloud
can control only a portion of TPM resources: those en-
crypted with the shared key. The cloud remains restricted
from accessing the TPM resources protected by all other
device-local, TPM root keys. We verified the security of
the communication protocol between the TPM and the
cloud using a protocol verifier [3].

The new key also lets cTPM allocate non-volatile
(NV) storage in the cloud. The cTPM’s remote storage
enables the cloud to provide a trusted, synchronized and
highly accurate source of time by periodically recording
the time to remote storage. Today’s TPMs lack a trusted
source of time (i.e., a trusted real-time clock). Although
the TPM provides an internal trusted timer, this timer

188 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Remote NV storage

NV index values
clock

crypto

TPM chip
NV storage

Keys, persistent state, NV index values

µcontroller RAM timer

OS + applications

CRK
CRK

Figure 1. Diagram of cTPM architecture.

alone is insufficient to build a trusted real-time clock.
Finally, the cTPM’s remote cloud storage offers TPM
applications large amounts of NV storage and lets them
perform frequent NV writes. In contrast, TPM chips can-
not offer such resources because they suffer from serious
resource and performance limitations. These limitations
drastically reduce the use cases for TPMs in both mobile
and server scenarios, and have led researchers investigate
alternatives to TPMs such as trusted devices whose stor-
age offers increased performance [16]. Figure 1 shows a
diagram of cTPM’s architecture.

We demonstrate the benefits of cTPM by presenting
two case studies. First, the cloud’s ability to manage a
portion of the TPM’s state provides Pasture [14] with
additional functionality. With cTPM, Pasture can ex-
tend its guarantees across all devices owned by a single
user and can support server-side revocation, an opera-
tion not offered by the original Pasture protocol. Fur-
ther, cTPM’s trusted clock enables Pasture to grant data
access at a specific time in the future (e.g., make this
movie available on Friday at midnight). Second, the
high-performance nature of cTPM’s remote storage im-
proves the performance of applications that require fre-
quent writes. We re-implement TrInc [16] without the
need of extra hardware (TrInc requires a smartcard).

2 Background
TPM Primer. At manufacturing time, TPM chips are
provisioned with a couple of public/private key-pairs for
cryptography (i.e., digital signatures and asymmetric en-
cryption). The TPM design guarantees that the private
keys of these root key-pairs never leave the TPM, thereby
reducing the possibility of compromise. TPMs can also
generate public/private key-pairs with private keys stored
in the TPM’s NV storage. However, TPMs have limited
NV storage and thus cannot store many such key-pairs.

TPMs are equipped with a set of platform configura-
tion registers (PCRs) guaranteed to be reset upon a com-
puter reboot. PCRs are primarily used to store finger-
prints of a portion of the software booting on a computer
(e.g., the BIOS, firmware, and OS bootloader); Chrome-
books [11] and BitLocker [21] use PCRs in this way.

TPMs can perform cryptographic algorithms for en-
crypting, authenticating, and attesting data. Implement-
ing functionality beyond that offered by TPMs in a

trustworthy manner can be done using secure execu-
tion mode, a form of hardware protection offered by
x86 CPUs. Intel’s secure execution architecture, called
Trusted Execution Technology (TXT), offers a runtime
environment strongly isolated from other software run-
ning on the computer.

The TPM spec does not provide minimum perfor-
mance requirements, and, as a result, today’s commod-
ity TPMs are slow and inefficient [19, 14]. TPM vendors
have little incentive to use faster but more expensive in-
ternal parts when building their TPM chips. This perfor-
mance handicap has limited the use of TPMs to scenarios
that do not require fast or frequent operations. However,
no technological constraints prevents a hardware vendor
from building a high-performance TPM.

Describing the full functionality of a TPM is beyond
the scope of this paper. Ryan [29] and Challener et al. [5]
provide good overviews of how TPMs work, although
the TPM specs [39] remain the authoritative source for a
full description of TPM functionality.

TPM 2.0. The Trusted Computing Group (TCG) is
currently defining the specification for TPM version
2.0 [38], the next version of the TPM. TPM 2.0 of-
fers several improvements, including a more complete
set of cryptographic algorithms, i.e., SHA-2 and ellip-
tic curve cryptography (ECC) in addition to SHA-1 and
RSA offered by TPM 1.2. TPM 2.0 also provides more
PCRs and supports more flexible authorization policies
that control access to TPM-protected data. Finally, TPM
2.0 provides a reference implementation, while TPM 1.2
provides only an open-source implementation developed
by a third party [10]. A complete list of differences be-
tween the two versions is provided by the TCG [38].

In TPM 2.0, three entities can control the TPM’s re-
sources: the platform manufacturer, the owner, and the
privacy administrator. The TPM 2.0 spec control do-
main refers to the specific resources that each entity con-
trols. The platform firmware control domain overseen
by the platform manufacturer updates the TPM firmware
as needed. The owner control domain protects keys and
data on behalf of users and applications. The privacy ad-
ministrator control domain safeguards privacy-sensitive
TPM data. This role can be played by anyone; for exam-
ple, in an enterprise the IT department acts as the privacy
administrator for all its machines’ TPMs.

Each TPM 2.0 control domain has a primary seed,
which is a large, random value permanently stored in
the TPM. Primary seeds are used to generate symmet-
ric/asymmetric keys and proofs for each control domain.

3 Motivation
This section first describes how the additional TPM

functionality can be implemented at present and why this

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 189

approach is problematic. We then discuss specific fea-
ture limitations of existing TPMs for cross-device shar-
ing, trusted clock, and NV storage. Finally, we describe
how cTPM addresses each limitation.

3.1 Secure Execution Mode Limitations

Extending the TPM functionality can be done at
present by leveraging its extensibility mechanism, which
is a secure execution mode integrated into the system
CPU. Both Intel’s TXT and AMD’s SEM are extensibil-
ity mechanisms for the TPM – they enable the develop-
ment of trusted computing features not easily achieved
solely through the built-in TPM commands. Unfortu-
nately, major stumbling blocks prevent a secure execu-
tion mode from providing needed features. The first
stumbling block is performance; to use the secure exe-
cution mode, CPU interrupts must be disabled, and, in
a multiprocessor system, only one CPU core can be en-
abled. Entering this mode requires the OS to save its
state and suspend execution, operations that are relatively
heavyweight. Second, none of today’s smartphones and
tablets includes a CPU that supports TXT or SEM; these
features are provided only on laptops and desktops sold
to enterprises. Third, even if they did, using secure ex-
ecution mode is remarkably difficult. It requires support
from the motherboard chipset, BIOS , and, in the case of
Intel’s TXT, an additional chipset-specific authenticated
code module. Also, once in secure execution mode, the
code only has access to a “barebones” machine without
any I/O, OS, or library support. Building such support
without relying on interrupts may be challenging. We
know of no production software that uses secure execu-
tion mode1.

Section 6 will describe how cTPM solves this prob-
lem in a simpler way that does not require the use of se-
cure execution mode. Despite cTPM’s benefits, however,
changing the TPM design raises a legitimate concern:
Does the verification cost of introducing TPM changes
outweigh the additional benefits of the new design? Al-
though we cannot provide a reliable estimate of these
costs, we deliberately kept our design changes minimal.
The cTPM design affects only the TPM commands that
access NV data (to indicate whether operations are local
or remote) and adds three TPM commands that synchro-
nize data between the device TPM and the cloud TPM.
The vast majority of the TPM logic remains the same.

3.2 Limitation 1: Cross-Device Data Sharing

Current TPM abstractions offer guarantees about one
single computer, and the TPM’s hardware protection

1See the Flicker [19] Web page for details on the difficulty of
finding the appropriate hardware and software to use SEM (https:
//sparrow.ece.cmu.edu/group/flicker.html).

mechanisms do not extend across devices. For example,
the TPM owner domain provides an isolation mechanism
for only a single TPM. When a new owner takes owner-
ship of the TPM, they cannot access the previous owner’s
TPM-protected secrets. When the same user owns two
different TPMs (on two different devices), the owner do-
mains of each TPM remain isolated and cannot jointly
offer hardware-based protection of the user’s keys and
data. Thus, mobile services cannot rely on TPMs alone
to enable secure data sharing across devices.

3.2.1 Secure Key Exchange

To better illustrate these challenges, we now describe
in-depth how to perform secure key exchange between
two TPM-equipped mobile devices, a critical building
block in enabling secure data sharing across devices. Key
exchange is a common bootstrapping step used in secu-
rity protocols that provide authentication and encryption,
such as SSL, SSH, VPNs, etc. The TPM offers hardware-
protection for cryptographic keys. Thus, even if a sys-
tem were compromised, the key itself would remain pro-
tected. A desirable property for secure key exchange be-
tween two TPM-equipped devices is the establishment of
a secure communication channel even when both are in-
fected by malware. This requires TPMs to perform the
cryptographic steps for key exchange without leaking the
key to the malware.

Unfortunately exchanging a key securely between two
parties is notoriously challenging in practice because of
the identity problem – one party needs to verify the cor-
rect identity of the other. One way to do this is to use a
public key infrastructure (PKI) where each party applies
to a certificate authority for a digital certificate, which
serves for others as a non-tamperable authentication of
identity.

Thus, the TPM specification does not directly provide
an implementation of any secure key exchange protocol.
Because TPMs lack the functionality of a key exchange
protocol (e.g., Diffie-Hellman), two TPMs can exchange
keys only by performing a one-time key migration from
one device’s TPM to another in the absence of malware.
Without either of these properties, malware could either
migrate the key to a malicious device or obtain a copy of
it during migration.

Figure 2 shows the pseudo-code a device must exe-
cute to generate a key that can be shared with another
device. This code requires use of the secure execution
mode (i.e., Intel’s TXT or AMD’s SEM) to reduce its
TCB and thereby reduce the likelihood of the presence
of malware. To ensure that key migration is a one-time
only operation, the code assigns a migration policy to the
key based on a secret (denoted by S in the pseudo-code).
Once S is destroyed, the key can no longer be migrated.

190 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

//Reduce the likelihood of malware.
1. Enter secure execution mode

//Create a shared key K. K is migrateable
//only by knowing a secret S.
2. Create symmetric key K
3. Create secret S
4. Set migration policy of K to a secret S

//Secure identity verification of device 2.
5. Verify identity of device 2

//Encrypt K with device 2’s public key. Secret S
//is needed for this operation.
6. Using S, create migrateable copy of K for device 2

//Permanently disable K’s ability to migrate.
7. Permanently destroy S

//Exit SEM and send encrypted K to device 2.
8. Leave secure execution mode
9. Send migrateable copy of K to device 2

Figure 2. Pseudo-code for secure key exchange.

3.3 Limitation 2: Trusted Clock

Today’s TPMs do not offer a trusted real-time clock.
Instead, the TPM combines a trusted timer with a secure,
non-volatile counter. For every tick received, the TPM
increments the value of a counter stored in memory. For
every n increments of this counter, the counter value is
persisted to the TPM’s NV storage. The TPM has an es-
timate of the timer’s frequency and thus has an approxi-
mate notion of time. However, this mechanism can keep
track of time only when the TPM is running (and not
when the platform is powered off). Because the counter
value is persisted only every n increments, this mecha-
nism does not even provide a guarantee of monotonicity.
Upon a reboot, the timer is rolled back to the last per-
sisted counter value violating monotonicity. The TPM’s
timer mechanism solely guarantees that as long as the
platform does not reboot, the timer will move forward.
As such, it can provide an approximate time-since-boot.

This mechanism is inadequate for offering real-time
guarantees that would be useful for offline content ac-
cess. For example, movie studios already charge a pre-
mium to make a movie available on home theaters on the
day of release. Although TPMs can provide offline ac-
cess securely, they cannot offer make the following movie
available for watching next Friday at midnight.

3.4 Limitation 3: NV Storage

The TPM’s NV storage is inadequate for applications
that require frequent writes or require large amounts
of trusted storage. For example, previous work [16]
has shown that a trusted module offering a mono-
tonic counter and a key solves several problems in dis-
tributed systems that stem from participants’ ability to
equivocate. Unfortunately, even though TPMs offer
this functionality, their implementation of NV storage
cannot meet the write frequency requirements of dis-

tributed systems protocols. The TPM specification dic-
tates the inclusion of monotonic counters, but the spec
requires only the ability to increment these counters at a
very slow place (e.g., once every five seconds), which
is insufficient for high-event applications such as net-
worked games [16]. Similarly, although the TPM spec-
ification mandates access-controlled, non-volatile stor-
age, most implementations provide only 1,280 bytes of
NVRAM [26]. These limitations have led researchers to
seek alternative designs for trusted devices [16].

3.5 How cTPM Overcomes These Limitations
To address these limitations, we propose cTPM, a

modification to the TPM design that includes an addi-
tional cloud control domain. This domain offers the same
functionality as the owner domain except that its primary
seed is also shared with the cloud. Sharing the seed with
the cloud allows both cTPM and the cloud to generate the
same cloud root key (see Section 5.3 for details). Com-
bining the cloud root key with remote storage lets cTPM:
1) better share data via the cloud, 2) have access to a
trusted real-time clock, and 3) have access to remote NV
storage that supports a large quantity of storage, and high
frequency writes.

cTPM’s design facilitates data sharing. The pre-
shared primary seed lets the cloud effectively act as a
PKI. The cloud and the device’s TPM can use this shared
secret to encrypt and authenticate their messages to each
other. The identity problem has now been “pushed” to
ensuring that the cloud primary seed is shared securely
between cTPM and the cloud. This initial sharing step
should be done at cTPM manufacturing time when the
cTPM’s three other primary seeds are provisioned.

The cloud domain also equips cTPM with a trusted
clock using a protocol similar to the Time Protocol de-
scribed in RFC 868 [27]. Once the clock value is ob-
tained from the cloud, cTPM uses its local timer to ad-
vance the clock. It has a global variable that dictates how
often it should re-synchronize the clock; the TPM owner
sets this variable whose value default is one day.

Finally, cTPM uses the cloud for additional NV stor-
age to overcome TPM NV storage limitations. There are
no limits on how much additional NV storage the cloud
can provide to a single cTPM. A portion of the physi-
cal cTPM chip’s RAM is thus allocated as a local cache
for the cloud-backed NV storage. The performance of
cTPM cloud-backed NV storage exceeds that of the TPM
because TPM NV accesses are no longer needed.

4 Trust Assumptions and Threat Model
4.1 Trusting the Cloud

All the new cTPM functionality associated with the
cloud domain assumes the cloud is trustworthy and

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 191

not compromised by malware. While everyone may
not agree with this assumption, cloud providers have
more incentives and resources to monitor and eliminate
malware than average users. Security-conscious cloud
providers could use secure hypervisors with a small
TCB [18], narrow interfaces [24], or increased protec-
tion against cloud administrators [40, 28].

Whether using a TPM or not, a cloud compromise
would already affect the security of a mobile service re-
lying on the cloud for its functionality. However, even
if the cloud were compromised, all secrets protected by
the TPM-specific control domains other than the cloud
domain would remain secure. For example, all device-
specific secrets protected in the owner’s control domain
(i.e., using TPM’s SRK) would remain uncompromised.

In the event that the cloud were compromised, cTPM
could no longer offer its security guarantees. To recover
would require changing the cloud seed (rekeying). To do
so, we see only two options: issue a new device to the
user, or implement a secure rekeying mechanism by vis-
iting an authorized store (e.g., a mobile operator store
such as AT&T) where the staff has specialized hard-
ware to perform a secure rekey. A rekey would also
be required whenever devices change ownership. While
cTPM lets the owner clear the device (i.e., erase its cloud
seed and all secrets protected by it), the new owner would
need to physically visit a store to obtain a new seed.

One alternative to the current cTPM design is to have
a trusted 3rd party offer the remote cTPM functionality
rather than the cloud. For example, the cTPM could be
offered by a TPM manufacturer rather than by the cloud.
However, we have not fully pursued such an alternative
cTPM design.

4.2 Threat Model

Our threat model resembles that of traditional TPMs:
all software attacks are in scope (including side-channel
attacks) because cTPM is isolated from the host platform
and can therefore provide its security guarantees even
if the host were compromised (e.g., infected with mal-
ware). However, physical attacks are out of scope. Such
attacks include decapsulation, microprobing, or focused
ion beaming the TPM chip [34], monitoring its internal
buses [35], or inserting traffic on the bus between the
CPU and the TPM. Furthermore, DoS attacks in which
the (untrusted) operating system or applications deny ac-
cess to the cTPM or to the cloud are out of scope. For
example, a TPM can be put in lockout mode if an appli-
cation attempts to “guess” an authorization value (e.g., a
“password”) to a secret it protects. During the lockout,
the TPM refuses to serve any requests to protected se-
crets made by any application. Once the lockout timeout
expires, the TPM exits lockout and can receive additional
requests. TPMs today are thus susceptible to DoS at-

tacks by applications that repeatedly attempt to guess the
wrong authorization values until the TPM enters lockout
and refuses to answer additional requests.

Another class of attacks specific to the cTPM stems
from our use of remote cloud storage. The (untrusted)
operating system could drop, corrupt, or re-order mes-
sages from the cloud. Even worse, it could delay mes-
sages from the cloud in an effort to serve stale data to
the TPM. All such attacks are in scope and addressed by
cTPM; for example, to ensure freshness, cTPM uses a
local timer to timeout any pending requests not yet ser-
viced.

cTPM has a dual relationship with the cloud. On one
hand, it trusts the cloud with any keys and data the cloud
stores in the cloud-backed NV storage. The cloud must
offer increased assurance that these keys are not com-
promised; for example, cloud-stored keys should be pro-
tected against malware, malicious administrators [31],
and side-channel attacks [41]. On the other hand, cTPM
has additional local NV storage that protects its own se-
crets from the cloud, as needed. We believe that this dual
relationship helps mobile services share data across de-
vices, yet does not place unlimited trust in the cloud. The
owner or privacy administrator can always use their own
control domain to protect secrets from the cloud.

5 cTPM High-Level Design
The cTPM design extends the TPM 2.0 by adding:

the ability to share a primary seed with the cloud, and
the ability to access cloud-hosted non-volatile (NV) stor-
age. This section describes the high-level design and
the challenges we encountered when implementing these
features. While our description is TPM 2.0-specific, our
changes could be equally applied to TPM 1.2.

5.1 Cross-Device Usage Model

Each device has a unique cTPM with a unique pri-
mary seed shared with the cloud and used to derive ad-
ditional keys (Section 5.3 describes the derived keys in
more depth). All devices registered with the same owner
have their keys tied to the owner’s credentials. The cloud
could then offer cTPM services that create a shared key
across all devices owned by the same user. For example,
when “bob@hotmail.com” calls this service, a shared
key is automatically provisioned to the cTPM on each
of Bob’s devices. This shared key can bootstrap the data
sharing scenarios described by this paper.

5.2 Architecture

cTPM consists of two different components, one run-
ning on the device and the other in the cloud. Both com-
ponents implement the full TPM 2.0 software stack with
the additional cTPM features. This ensures that all cloud

192 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

crypto

cTPM chip

NV
storage

µcontroller

RAM

timer

cTPM chip on mobile device

OS cTPM VM

NV
storage

crypto

CPU

RAM

clock

cTPM software running in VM

Figure 3. cTPM High-level Architecture.

operations made to the cTPM strictly follow TPM se-
mantics, and thus we do not need to re-verify their secu-
rity properties. On the device-side, the cTPM software
stack runs in the TPM chip, whereas the cloud runs the
cTPM software inside a VM. On the cloud-side, the NV
storage is regular cloud storage, and the timer offers a
real-time clock function. The cloud-side cTPM software
reads the local time upon every initialization and uses
NTP to synchronize with a reference clock. When run-
ning in the cloud, cTPM resources (e.g., storage, clock)
need not be encapsulated in hardware because the OS
running in the VM is assumed to be trusted. In contrast,
the device’s OS is untrusted, and thus the cTPM chip
itself must be able to offer these resources in isolation
from the OS. Figure 3 illustrates the high-level architec-
ture of the cTPM.

5.3 Shared Cloud Primary Seed

Upon starting, the local cTPM checks whether a
shared cloud primary seed is present. If not, it disables its
cloud control domain and all commands associated with
it. A cTPM is provisioned with a cloud primary seed via
a proprietary interface available only to the device man-
ufacturer.

The cTPM uses the cloud primary seed to generate an
asymmetric storage root key, called the cloud root key
(CRK), and a symmetric communication key, called the
cloud communication key (CCK). Both keys are derived
from the cloud primary seed. These key derivations oc-
cur twice: once on the device-side and once on the cloud-
side of the cTPM. Because the key derivations are de-
terministic, both the device and the cloud end up with
identical key copies. The CRK’s semantics are identical
to those of the storage root key (SRK) controlled by the
TPM’s owner domain. The CRK encrypts all objects pro-
tected within the cloud control domain (similar to how
SRK encrypts all objects within the owner domain). The
CCK is specific to the cloud domain, and it protects all
data exchanged with the cloud.

The cTPM uses the same mechanism to generate keys
as TPM 2.0. In particular, the generation of a primary key
from a seed is based on use of an approved key derivation
function (KDF). TPM 2.0 uses the KDF from SP800-
108 [25] in its specification.

We now examine the design challenges associated

TPM Caller cTPM Caller Cloud

Figure 4. The sequence of steps for issuing a syn-
chronous command (left) versus an asynchronous
command (right). The cTPM remains responsive to
other commands while the caller relays the blob to the
cloud.

with exchanging data between the local cTPM and the
cloud cTPM.

The Need for Secure Asynchronous Communication.
cTPM cannot directly communicate with the cloud. In-
stead, it must rely on the OS for all its communication
needs. Since the OS is untrusted, cTPM must protect
the integrity and confidentiality of all data exchanged be-
tween the cTPM and the cloud-backed storage, as well
as protect against rollback attacks. The OS is regarded
merely as an insecure channel that forwards information
to and from the cloud.

In addition to ensuring security, cTPM must support
asynchronous communication between the local cTPM
and the cloud. Today, the TPM is single-threaded, and all
TPM commands are synchronous. When a command ar-
rives, the caller blocks and the TPM cannot process any
other commands until the command terminates. Mak-
ing cTPM cloud communication synchronous would lead
to unacceptable performance. For example, consider is-
suing a cTPM command that increments a counter in
cloud-backed NV storage. This command would make
the TPM unresponsive and block until the increment up-
date propagates all the way to the cloud and the response
returns to the local device.

Instead, we chose to make cloud communication
asynchronous. Whenever a command that needs access
to remote NV is received, cTPM returns to the caller an
encrypted blob that needs to be sent remotely. The caller
must send this blob to the cloud; if the cloud accepts
the blob, it returns another encrypted blob reply to the
caller. The caller then passes this reply to the cTPM, at
which point the command completes. cTPM remains re-
sponsive to all other commands during this asynchronous
communication with the cloud. Figure 4 illustrates these
steps and contrasts them with a traditional simple TPM
command. All cTPM commands that do not require ac-
cess to remote NV storage remain synchronous, similar
to TPMs today.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 193

Dealing with Connectivity Loss. Loss of connectiv-
ity is transparent to the cTPM because all network sig-
naling and communication is done by the operating sys-
tem. However, the two-step nature of asynchronous
commands requires the cTPM to maintain in-memory
state between the steps. This introduces another poten-
tial resource allocation denial-of-service attack: a mali-
cious OS could issue many asynchronous commands that
cause the cTPM to fill up its RAM. Also, as mentioned in
our threat model, an attacker could launch a staleness at-
tack whereby artificial delays are introduced in the com-
munication with the cloud.

To protect against these attacks, cTPM maintains a
global route timeout (GRT) value. Whenever an asyn-
chronous request is issued, cTPM starts a timer set to
the GRT. Additionally, to free up RAM, cTPM scans all
outstanding asynchronous commands and discards those
whose timers have expired. The GRT can be set by the
cTPM’s owner and has a default value of 5 minutes.

5.4 Cloud-backed NV Storage

The TPM uses a special data structure, called an NV
index, to store data values persistently to NV storage.
When a persistent object is referenced in a TPM com-
mand, the TPM loads the object into its RAM. When al-
locating a new index, an application must specify its ac-
cess control (read-only or read-write), its type, and size.
There are four possible types of NV indexes: (1) ordi-
nary, for storing data blobs, (2) counters, for storing se-
cure monotonic counters, (3) bit-fields, which can be set
individually, and (4) extend, which can be modified only
by using an extend operation similar to PCRs.

At a high level, the cloud-backed NV storage is just
a key-value store whose keys are NV indices. Access-
ing the remote NV index entries requires the OS to as-
sist with the communication between the cTPM and the
cloud. These operations are thus asynchronous and fol-
low the same two-step model described in Figure 4.
However, the remote nature of these NV indices raises
additional design challenges.

Local NV Storage Cache. Remote NV entries can be
cached locally in the cTPM’s RAM. To do so, we add
a time-to-live (TTL) to remote NV entries. The TTL
specifies how long (in seconds) the cTPM can cache an
NV entry in its local RAM. Once the TTL expires, the
NV index is deleted from RAM and must be re-loaded
from the remote cloud NV storage with a fresh, up-to-
date copy. The local storage cache is not persistent – it
is fully erased each time the computer reboots. We also
add a synchronization timestamp (ST) set to the time the
entry was last cached locally. If there is no in-memory
cached entry of the NV index, this timestamp is null.

Caching’s main benefits are performance and avail-
ability; remote NV read operations may not require a
round-trip to the cloud if they can be read from the lo-
cal cache. This enables the reading of NV storage entries
even when the device is disconnected as long as their
TTL has not expired. The trade-off is that locally cached
entries could be stale. Cloud updates to a cloud-backed
NV entry are reflected locally only after the TTL expires.
The TTL controls the trade-off between performance and
staleness for each NV index entry.

For writes, the local cache’s policy is write back, and
it relies on the caller to propagate the write to the cloud
NV storage. A cTPM NV write command updates the
cache first and returns an error code that indicates the
write back to the NV storage is pending. The caller must
initiate a write protocol to the cloud NV. If the caller fails
to complete the write back, the write remains volatile,
and the cTPM makes no guarantees about its persistence.

Trusted Clock. In cTPM, the trusted clock is an NV
entry (with a pre-assigned NV index) that only the cloud
can update. The local device can read the trusted clock
simply by issuing an NV read command for this remote
entry. Reading the entry is subject to a timeout much
stricter than the regular global route timeout (GRT),
called the global clock timeout (GCT). The trusted clock
NV entry is cached in the on-chip RAM. In this way, the
cTPM always has access to the current time by adding
the current timer tick count to the synchronization times-
tamp (ST) of the clock NV entry.

maxClockError ≤ TTL× drift+GCT (1)

Equation (1) describes the upper bound of the local
clock’s accuracy as a function of TTL, drift and GCT. By
default, the TTL is set to 1 day and the global clock time-
out (GCT) to 1 second. A low GCT improves local clock
accuracy, but may lead to unavailability if the device-
to-cloud communication has high latency. We find that
these values are sufficiently accurate for our mobile sce-
nario (i.e., the release of movies on Fridays at midnight).
However, setting the GCT even lower can further im-
prove accuracy, while setting the TTL lower reduces the
effect of drift.

5.5 Islanded Devices

Although connectivity loss is masked by the OS, de-
vices could be offline for long periods of time. We refer
to such devices as islanded devices. Islanded devices do
not raise additional security concerns, even when they
are out of sync with the cloud. Instead, when long
periods of disconnection occur the cTPM functionality
slowly degrades as entries in the local NV cache become
stale. When devices reconnect, they need to re-sync their
cloud-based cTPM state. However, we believe that most

194 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NV_Read(NVIndex idx) {

// Garbage collect all local cache
foreach nvIdx in LocalCache
if LocalCache[nvIdx].TTL Is Expired
delete nvIdx from LocalCache

endif
endforeach

// return NV entry if present
if idx in LocalCache return LocalCache[idx]

// return not found in cache
return ErrorCode.NotFoundInCache
}

Figure 5. Reading NV entry from local cache.

mobile devices become islanded only when left unused.
When used regularly, devices have ample opportunity to
connect to the Internet and sync their cTPM state.

6 Detailed Design and Implementation
This section provides more detail on the cTPM’s de-

sign and implementation. We describe how the cTPM
shares TPM-protected keys between the cloud and the
device, and we present the changes made to support NV
reads and writes. We also describe the cloud/device
synchronization protocol, and the three new TPM com-
mands we added to implement synchronization.

6.1 Sharing TPM-protected Keys

The TPM 2.0 API facilitates the sharing of TPM-
protected keys by decoupling key creation from key us-
age. TPM2 Create(), a TPM 2.0 command, creates a
symmetric key or asymmetric key-pair. The TPM cre-
ates the key internally and encrypts any private (or sym-
metric) keys with its storage key before returning them
to the caller. To use the key, the caller must issue a
TPM2 Load() command, which passes in the public
storage key and the encrypted private (or symmetric) key.
The TPM decrypts the private key and loads it in RAM.
The TPM can then begin to encrypt or decrypt using the
key.

The separation between create and load is needed due
to the limited RAM available on the TPM chip. It lets
callers create many keys without having to load them all
into RAM. As long as the storage root key (SRK) never
leaves the chip, encrypting the new keys’ private parts
with the SRK guarantees their confidentiality.

This separation lets cTPM use cloud-created keys on
the local device to gain two benefits. First, key sharing
between devices becomes trivial. The cloud can perform
the key sharing protocol between two cTPM VMs, as de-
scribed earlier in Figure 2. Unlike TPM 2.0, this proto-
col does not need to use a PKI, nor does it need to run in
a SEM. Once a shared key is created between two cloud
cTPM VMs, both mobile devices can load the key in their
chips separately by issuing TPM2 Load() commands.

NV_Write(NVEntry entry) {

//Garbage collect all local cache
foreach nvIdx in LocalCache
if LocalCache[nvIdx].TTL Is Expired
delete nvIdx from LocalCache

endif
endforeach

//Insert the entry in the cache
idx = LocalCache.Append(entry)

//Set the entry’s TTL
LocalCache[idx].TTL = DefaultTTL
}

Figure 6. Writing NV entry to local cache.
Second, key creation can be performed even when the
mobile device is offline. This makes it simple for users to
create shared keys across all their devices without having
to ensure those devices are online first. We illustrate both
these benefits in our extension of Pasture in Section 7.

6.2 Accessing Cloud NV Storage
The cTPM maintains a local cache of all reads and

writes made to the cloud NV storage. A read returns a
cache entry, and a write updates a cache entry only. The
cTPM does not itself update remote cloud NV storage;
instead the caller must synchronize the on-chip RAM
cache with the cloud NV storage. This is done using a
synchronization protocol.

Read Cloud NV. Upon an NV read command, the cor-
responding NV entry is returned from the local cache. If
not found, cTPM returns an error code. The caller must
now check the remote NV; to do so, it needs to initiate a
pull synchronization operation (described in Section 6.3)
to update the local cache. After synchronization com-
pletes, the caller must reissue the read TPM command,
which will now be answered successfully from the cache.
Figure 5 shows the pseudo-code for reading a remote NV
entry from the local cache.

Write Cloud NV. An NV write command first updates
the cache and returns an error code that indicates the
write back to the remote NV storage is pending. The
caller must initiate a push synchronization operation to
the cloud NV (see Section 6.3). If the caller fails to
complete the write back, the write remains volatile, and
cTPM makes no guarantees about its persistence. Fig-
ure 6 shows the pseudo-code for writing an NV entry to
the local cache.

6.3 Synchronization Protocol
The synchronization protocol serves to: (1) update

the local cache with entries from the cloud-backed NV
storage for NV reads) and (2) write updated cache en-
tries back to the cloud-backed NV storage (for NV
writes). On the device side, the caller performs the proto-
col using two new commands, TPM2 Sync Begin() and

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 195

𝑇𝑇𝑇𝑇𝑇: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑁𝑁𝑁𝑁_𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶

If 𝑇𝑇𝑇𝑇2 − 𝑇𝑇𝑇𝑇1 > GRT , read is not fresh.

9

𝑇𝑇𝑇𝑇𝑇: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑅𝑅𝑅𝑅_𝑇𝑇𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇, 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶

Figure 7. Synchronization protocol: pull NV entry
from cloud-backed NV storage.

TPM2 Sync End(). These commands take a parameter
called direction, which can be set to either a pull or push
to distinguish between reads and writes. All messages
are encrypted with the cloud communication key (CCK),
a symmetric key.

Pull from Cloud-backed NV Storage. The cTPM first
records the value of its internal timer and sends a mes-
sage that includes the requested NV index and a nonce.
The nonce checks for freshness of the response and pro-
tect against replay attacks. Upon receipt, the cloud de-
crypts the message and checks its integrity. In response,
the cloud sends back the nonce together with the value
corresponding to the NV index requested. The cTPM
decrypts the message, checks its integrity, and verifies
the nonce. If these checks are successful, cTPM per-
forms one last check to verify that the response’s delay
did not exceed its global read timeout (GRT) value. If
all checks pass, cTPM processes the read successfully.
Figure 7 shows the precise messages exchanged between
the cTPM and the cloud to read the remote NV.

Push to Cloud-backed NV Storage. The protocol for
writing back an NV entry is more complex because it
must also handle the possibility that an attacker may try
to reorder write operations. For example, a malicious
OS or application can save an older write and attempt
to reapply it later, effectively overwriting the up-to-date
value. To overcome this, the protocol relies on a secure
monotonic counter maintained by the cloud. Each write
operation must present the current value of the counter to
be applied; thus, stale writes cannot be replayed. cTPM
can read the current value of the secure counter using the
previously described pull protocol. Figure 8 shows the
precise messages exchanged between the cTPM and the
cloud to write a remote NV entry. Note that reading the
secure counter need not be done on each write because
the local cTPM caches the up-to-date value in RAM.

When the cloud receives an NV entry through the
push synchronization protocol, it must update its NV
storage. To do so, we equipped the cTPM with a
third command, called TPM2 Sync Proc() (for pro-
cess). This command can be issued only by the cloud;
the cloud takes the message received from the local de-
vice and calls sync process with it. The cloud cTPM
decrypts the message and applies the NV update.

𝑇𝑇𝑇𝑇𝑇: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑐𝑐𝑐𝑐, 𝑁𝑁𝑁𝑁_𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑊𝑊, 𝑁𝑁𝑁𝑁_𝑇𝑇𝑛𝑛𝑆𝑆, 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶

11

𝑇𝑇𝑇𝑇𝑇: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑐𝑐𝑐𝑐, 𝑊𝑊𝑅𝑅_𝑇𝑇𝑆𝑆𝑅𝑅𝑅𝑅𝑊𝑊𝑇𝑇𝑇𝑇, 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶

Figure 8. Synchronization protocol: push NV entry
to cloud-backed NV storage.

6.4 Implementation
We implemented cTPM by modifying the TPM 2.0

(release 0.96) codebase; this codebase serves as both the
TPM specification and a reference implementation. The
original codebase was 23,163 lines of code; for cTPM,
we added 1,304 lines of code, for a total of 24,467 lines
of code. The bulk of this code implements the three new
cTPM commands – sync begin, end, and process. We
also made minor changes to the commands that update
the TPM NV. These commands indicate whether NV ac-
cess should be to the local on-chip NV or the cloud-
backed NV. If the latter, the command can return addi-
tional error codes depending on whether the NV entry is
found in the local cache (for reads) or whether the update
must be written back to the cloud NV.

The TPM 2.0 codebase does not include a cryptog-
raphy library. This is deliberate in order to reduce the
hurdle of porting it to different OEM hardware environ-
ments. For example, one hardware OEM might want
to use its own in-house crypto library, whereas another
might want to use OpenSSL. The TPM 2.0 codebase just
defines a crypto API. We used a Microsoft internal cryp-
tography library for the TPM 2.0 needs.

TPM 2.0 also does not include platform resources,
such as how to obtain entropy, how to receive a power-
on/power-off signal, or how to access the underlying
NV storage. For all platform needs, we used a library
that provides the TPM platform resources from the un-
derlying OS (Windows). Our platform implementation
receives TPM commands via a network socket using a
home-baked command/response protocol.

All our testing code and applications, such as Pasture
and TrInc, were implemented in C#. All TPM commands
are relayed via the network socket to and from cTPM.

7 Case Studies
This section presents two case studies on using cTPM

to build trusted mobile services. In each case, we de-
scribe these services’ current limitations and show how
cTPM addresses them by improving performance or
adding functionality.

7.1 Case Study 1: Pasture
Pasture [14] is a TPM-based protocol for secure of-

fline data access. Using Pasture, the content receiver cre-
ates a TPM-bound encryption key, called a bound key,

196 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with a usage policy dictating that the TPM can use the
key for decrypting content only when a certain PCR reg-
ister contains a specified value. This policy provides ac-
cess undeniability – once the key is used for decryption,
the user cannot lie about its usage, and verifiable revoca-
tion – the user cannot use the key once revoked. Issuing
a TPM extend operation on the PCR register to a pre-
determined value R represents the receiver’s decision to
consume the content. If the receiver decides to revoke the
content instead, it extends the PCR to a different value.
In this case, the PCR cannot be extended to R any longer.
Over time, the PCR value represents a chain of decisions
about whether to watch or revoke a sequence of movies.

Upon receiving a bound key, the content server checks
that the key is bound to a correct usage policy, encrypts
the content using it, and sends the encrypted content to
the receiver. At any point in the future, the receiver can
choose whether or not to decrypt the content; this choice
can occur even in disconnected mode. Once made how-
ever, this choice cannot be undone.

The Pasture protocol also addresses computer reboots.
An adversary could try to use such reboots to reset the
PCR register, which opens the door to rollback attacks.
This part of the Pasture protocol requires secure execu-
tion mode (SEM). In our cross-device Pasture implemen-
tation, we eliminated the need for SEM by leveraging a
new TPM 2.0 type of NV index that has behavior similar
to a PCR and is modified using TPM2 NV Extend().

Limitation 1: Lack of Sharing. The lack of sharing
primitives in TPM prevents extending Pasture to a set
of devices owned by a single user. Instead, each device
must run its own version of Pasture, creating a TPM-
specific bound key and uploading it to the server. The
server then runs a Pasture session with each individual
device. All devices must act separately despite being
owned by the same user.

With cTPM, the cloud performs the Pasture protocol
on behalf of all devices owned by a single user. A single
bound key is shared by all devices, and a single copy of
the content is encrypted with this bound key. The cloud
can write this bound key directly to the cloud-backed NV
storage and encrypt the content even when the client is
disconnected. When the receiver connects to the cloud,
it can then re-sync its nonvolatile state to receive a copy
of the bound key and to start downloading encrypted con-
tent. As with the original Pasture, the policy specifies the
PCR value necessary to use the key bound to it.

This multi-device version of Pasture complicates the
process of accepting and revoking content. If any device
accepts content and starts decrypting it, then the content
can no longer be revoked. Thus, the content server ac-
cepts a revoke decision only when all of a user’s devices
have decided to revoke.

CreateBoundKey(hM):

//For each device, read current PCR and
// future PCR if decision is accept.
foreach dev in Owner.AllDevices() do

Rdevt ← TPM_Read(PCRdevAPP)

Rdevt+1 ← SHA2(Rdevt ||hM)
endfor

//Create bound key with a disjunction of commit values.
E←TPM_CreateWrapKey({
{

PCRAPP = Rdev1t+1 ||

PCRAPP = Rdev2t+1 ||
...

PCRAPP = RdevNt+1

}
&&
PCRSEM = SemHappy

})

//Create proof for the bound key.
EP← (‘‘CreateBoundKey’’, hM,

Rdev1t , Rdev1t+1 , · · · , RdevNt , RdevNt+1 , E, α)

Figure 9. Create bound key in multi-device Pasture.

Another interesting challenge of multi-device Pasture
is when one user makes conflicting decisions on differ-
ent devices. This causes different values to be stored
in their PCR registers. One solution is to insist that all
devices owned by the same user share the same log of
decisions about accepting or revoking the content. This
ensures that the PCR registers on each device share the
same value and work in sync. However, it is very dif-
ficult to enforce this coordination across devices when
some are offline.

An alternate approach lets different devices maintain
their own per-device log of decisions. This more flexible
solution lets a user make different decisions for different
devices without having to reconcile them. Because the
per-device decisions can differ, the content server must
ensure that a content revocation occurs only when all de-
vices revoke. This approach requires the bound key to be
attached to a policy that specifies a set of possible PCR
values corresponding to each separate device.

We implemented this latter approach using the
TPM2 PolicyOR() command, which creates a single pol-
icy as a disjunction of individual conditions (in our case,
each condition corresponds to one PCR value). As long
as a device’s PCR value matches one condition, the
bound key can decrypt the content. Note that extend-
ing the accept decision from one value to multiple val-
ues does not reduce protocol security even though it in-
creases the chances of a hash collision. If hash colli-
sions ever become a cause of concern, TPM 2.0 (and thus
cTPM) permits the use of stronger hash functions (e.g.,
192-bit SHA384). Figure 9 shows the multi-device Cre-
ateBoundKey implementation (CreateBoundKey in the
original Pasture is shown in Figure 3 of [14]).

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 197

Attest(i, c’, h, n):

1. Assert NV_Read(i) is a remote NV of type counter.
2. Let c be the value of that counter.
3. Assert no roll-over: c ≤ c′.
4. a ←< i, c, c′, h >TRINCPRIV

.

5. Insert a into Q, ejecting the oldest value.
6. NV_Write(i, c’).
7. Return a.

Figure 10. Attest in cTPM TrInc [16].

Limitation 2: Lack of Server-side Revocation. The
original Pasture protocol lets a receiver revoke access to
content in a verifiable manner. Once revoked, the re-
ceiver cannot further access the content. However, Pas-
ture does not support server-side revocation. A Pasture
movie server could use revocation to deny access to ma-
licious clients, such as clients that paid using stolen credit
cards.

Implementing server-side revocation in Pasture would
prove very challenging because the client would have to
agree to run code that would unload the bound key from
the TPM. The client could always refuse to run such code
and prevent a server from revoking the bound key.

With cTPM, the content server could simply ask the
cloud to delete the bound key from the cloud-backed
cTPM NV storage. This would not necessarily cause
an immediate revocation because the device could be of-
fline and store a cached copy of the key. However, the
cached copy would eventually expire (based on its TTL),
at which point the key is guaranteed to be revoked.

Limitation 3: Lack of Trusted Clock Guarantees.
Because TPMs lack a trusted source of time, a Pasture
movie server cannot offer time-based guarantees for its
content (e.g., make the following movie available for
watching next Friday at midnight). This scenario is quite
attractive to consumers: a startup is currently selling pro-
prietary technology for watching movies at home the
same day they arrive in theaters. This hardware costs
$35,000, and each movie release costs $500 [6].

With cTPM’s trusted clock, a bound key could in-
corporate a clause specifying a future timestamp as an
additional condition for using the key for decryption.
The bound key could be revoked (either client-side or
server-side) at any time; however its usage for decryption
would remain restricted to only a future, pre-specified
time value.

7.2 Case Study 2: TrInc

TrInc [16] is a trusted incrementer used to combat
“equivocation”, i.e., making conflicting statements to
others in a distributed system. It uses a secure counter
and a key, and was implemented on a smartcard due to
its poor performance on TPMs.

TrInc’s main API, a function called Attest, produces
an attestation that the secure counter has been incre-

TPM 2.0 TPM 1.2
TPM2 NV Write() TPM NV Write()
TPM2 NV Read() TPM NV Read()
TPM2 NV Read (Counter)() TPM ReadCounter()
TPM2 PCR Read() TPM PCRRead()
TPM2 PCR Extend() TPM PCRWrite()
TPM2 Create() TPM Create()
TPM2 Load() TPM Load()
TPM2 Unseal(Unbind)() TPM Unbind()
TPM2 Sign() TPM Sign()
TPM2 Quote() TPM Quote()
TPM2 CertifyCreation() TPM Sign()
TPM2 Sync Begin() TPM Unbind()
TPM2 Sync End() TPM Unbind()

Table 1. Mapping TPM 2.0 commands to their TPM
1.2 counterparts.

mented from the current value c to a value c′ not smaller
than c. Each attestation covers the secure counter’s in-
terval (c, c′]. TrInc uses these attestations to prove state-
ments that prevent nodes from equivocating without be-
ing detected. In BitTorrent, for instance, the counter
represents the number of blocks a peer has received, a
value which is naturally monotonically increasing. Fig-
ure 10 illustrates our implementation of the Attest func-
tion using cTPM (the original Attest implementation is
described in Section 3.5.1 of [16]).

8 Evaluation

8.1 Protocol Verification

We verified the correctness of our protocols using an
automated theorem prover, ProVerif [3], which supports
the specification of security protocols for distributed sys-
tems in concurrent process calculus (pi-calculus). We
specified the synchronization protocol used by our sys-
tem, both pull and push, in 98 lines of pi-calculus code.
ProVerif verified the security of our protocols in the pres-
ence of an attacker with unrestricted access to the OS,
applications, or network. The attacker could intercept,
modify, replay and inject new messages into the network
(similar to the Dolev-Yao model).

8.2 Performance Evaluation

Our main challenge in evaluating the performance
of cTPM was the unavailability of a hardware TPM
2.0 chip. The TPM 2.0 specification, currently re-
leased for public review, is not yet available off-the-shelf.
Through private conversations with TPM manufacturers,
we learned that they are already porting the TPM 2.0
specification to their hardware, and that the hardware
performance profile for TPM 2.0 will be similar to that
of TPM 1.2. As a result, we used a TPM 1.2 chip to
emulate the hardware performance of a future TPM 2.0
chip. To do so, we mapped TPM 2.0 commands used in
our cTPM implementation to their equivalent TPM 1.2
counterparts, as shown in Table 1.

198 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

200

400

600

800

TMP 2.0
NVRead

cTPM
NVRead

(3G)

cTPM
NVRead
(WiFi)

TPM 2.0
NVWrite

cTPM
NVWrite

(3G)

cTPM
NVWrite

(WiFi)

La
te

nc
y

(m
se

c)
 TPM_NV Command

TPM2_Sync_End
Xfer + TPM2_Sync_Proc
TPM2_Sync_Begin

Figure 11. cTPM NV performance: 640 bytes.

Our experiments used the following setup. All ap-
plications that ran on the local cTPM used Windows 7
running on a PC with a 2 GHz Quad Intel Core i7. When
a local cTPM command was issued, it was translated ac-
cording to the map in Table 1 and executed against an
Infineon TPM 1.2 chip. In the cloud, we ran the cTPM
software in a Windows 7 VM (to emulate cloud behav-
ior). By design, the cloud component of cTPM did not
need to interact with a TPM chip.

Benchmarking NV Storage Performance. cTPM
trades off the accessing of limited local TPM NV storage
for the accessing of cloud-backed storage. While cloud-
backed storage is very fast, it introduces latency between
the device and the cloud. To evaluate this trade-off, we
measured the latency of NV read and write operations
for both TPM 2.0 and cTPM. We emulated Internet la-
tencies using a standard network emulator [22] primed
with 3G/4G and Wi-Fi Internet latency distributions from
a recent measurement project [13].

We repeated our experiments with differently sized
objects accessed in NV storage; sizes ranged from 256
bytes (corresponding to the size of a regular NV counter)
to the maximum size allowed by the hardware TPM. Un-
fortunately, TPMs have low NV storage capacities: the
largest write allowed by our TPM was only 640 bytes
(whereas cTPM had no restrictions on the maximum size
of its NV data). We present results using only 640-byte
data objects; the results for the lower-sized objects are
similar.

Figure 11 shows the access latencies for 640-byte NV
objects. The local TPM 2.0 latencies are all due to the
running of TPM NV commands. In contrast, cTPM
latencies are the combination of four steps: (1) issu-
ing a TPM2 Sync Begin() command, (2) transferring the
data to and from the cloud (labeled Xfer) and issuing
a TPM2 Sync Proc() command in the cloud, (3) issu-
ing a TPM2 Sync End() command, and (4) issuing a
TPM NV command to access the data in memory. For
NV reads, Internet latencies make the cTPM commands
slightly slower in the case of 3G latencies and slightly
faster in the case of Wi-Fi latencies. Note, however, that
NV reads become much faster once cached locally.

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(s
ec

on
ds

)

TPM 2.0

cTPM

Figure 12. Latency of TPM RSA 2048 key creation.

Benchmarking Key Creation. When creating a key,
the TPM uses local on-chip entropy, whereas cTPM can
use any entropy source available to the cloud, such as a
high performance hardware entropy source. For exam-
ple, a company in Japan sells hardware able to produce
550 MBytes/sec of entropy for less than US$10K [15].
Our experiments used local hardware entropy found on
commodity PCs. Even this entropy source was much
faster than that found in TPMs.

Figure 12 shows the latencies of running 100 consec-
utive TPM commands to create an RSA key. The laten-
cies of TPM commands are highly variable because the
TPM blocks incoming commands to wait for the entropy
source to generate random bits. The same is true for the
hardware source of entropy on our PC, but this source
is much faster, i.e., an average of an order of magnitude
(factor of 12) faster than the TPM chip.

9 Related Work
cTPM draws inspiration from previous work on com-

modity trusted hardware and trusted applications.

Commodity Trusted Hardware Other than TPMs.
The ARM architecture’s solution for trusted comput-
ing is known as the ARM TrustZone [1]. ARM Trust-
Zone provides a trusted execution environment on CPU
cores, with hardware support for memory protection of
the trusted environment, flexible control over interrupt
delivery to the trusted environment, and the full power of
the CPU for cryptographic operations. One could equip
an ARM device with a TPM (or a cTPM) by running the
TPM software stack inside the TrustZone.

Recent work from Intel has described Secure Guard
Extensions (SGX) [20, 2, 12], a set of new instructions
and architectures that support the concept of enclaves,
which are isolated runtime environments similar to ARM
TrustZone. Intel has shown the possibility of running se-
cure applications inside of an enclave, such as a pass-
word manager, an enterprise rights management solu-
tion, and secure video conferencing [12]. It appears fea-
sible for the TPM and cTPM software stacks to run inside
an enclave, as well.

Trusted Applications. In addition to Pasture [14] and
TrInc [16], several previous works have proposed the use

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 199

of TPMs for building trusted mobile services. TruWal-
let described a TPM-based authentication tool for Web
password protection [7]. It offered password sharing
across devices owned by the same user (called secure
migration). However, TruWallet needed to assume that
the GUI and kernel were both trusted. Another project
implemented a credentials manager in secure execution
mode [4]. It encountered many of the performance chal-
lenges associated with this mode; for example, the net-
work driver froze when running in SEM for more than
8 seconds. More recently, Windows 8 provided virtual
smart cards, a way to use TPMs for remote authentica-
tion with server-side support [23]; these cards, bound to
a single TPM, cannot migrate. For all these applications,
cTPM would greatly ease sharing across devices.

Memoir describes a technique to protect the state of
a trusted application while minimizing the number of
NVRAM write operations [26]. With cTPM, applica-
tions could write their state to the cloud-backed NV stor-
age and rely on Memoir-like techniques only when oper-
ating in disconnected mode.

10 Conclusions

This paper introduced cTPM, a cloud-enhanced de-
sign change to a traditional TPM that enables the simple
sharing of keys and data across a user’s many devices.
We demonstrated cTPM’s versatility by: 1) extending
Pasture to support offline data access across multiple de-
vices, server-side revocation, and real-time based guar-
antees for content availability, and 2) re-implementing
TrInc without the need for extra hardware. We veri-
fied the protocols used to synchronize the cTPM’s re-
mote cloud storage and showed that cTPM’s perfor-
mance meets or exceeds that of a traditional TPM.

Acknowledgments: We are grateful to Ron Aigner,
Ramakrishna Kotla, Jay Lorch, Bryan Parno, and Scott
Shell for their feedback on this work and on the paper.
We would like to thank Jonathan Smith and the anony-
mous reviewers for their feedback.

References

[1] ARM Security Technology – Building a Secure
System using TrustZone Technology. ARM Tech-
nical White Paper, 2005-2009.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative Technology for CPU Based Attestation
and Sealing. In Proc. of Workshop on Hardware
and Architectural Support for Security and Privacy,
Tel-Aviv, Israel, 2013.

[3] B. Blanchet. An Efficient Cryptographic Proto-
col Verifier Based on Prolog Rules. In Proc. of

14th IEEE Computer Security Foundations Work-
shop (CSFW), Cape Breton, NS, 2001.

[4] S. Bugiel and J.-E. Ekberg. Implementing an
Application-Specific Credential Platform Using
Late-Launched Mobile Trusted Module. In Proc.
of 5th Annual Workshop on Scalable Trusted Com-
puting, Chicago, IL, 2010.

[5] D. Challener, K. Yoder, R. Catherman, D. Safford,
, and L. V. Doorn. A Practical Guide to Trusted
Computing. IBM Press, 2007.

[6] Digital Trends. Prima Cinema brings movies to
home theaters on the day of the release for $500 a
pop. http://www.digitaltrends.com/
home-theater/prima-cinema-brings-
movies-to-the-home-on-the-day-of-
the-release/.

[7] S. Gajek, H. Lohr, and A.-R. Sadeghi. TruWallet:
Trustworthy and Migratable Wallet-Based Web Au-
thentication. In Proc. of 4th Annual Workshop on
Scalable Trusted Computing, Chicago, IL, 2009.

[8] GigaOM. The average US subscriber owns 1.57
mobile devices. http://gigaom.com/2012/
10/22/the-average-us-subscriber-
owns-1-57-mobile-devices/.

[9] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey,
A. Sheth, and L. P. Cox. YouProve: Authenticity
and Fideltiy in Mobile Sensing. In Proc. of 10th
International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys), Lake District,
UK, 2012.

[10] K. A. Goldman. IBM’s Software Trusted Plat-
form Module. http://sourceforge.net/
projects/ibmswtpm/.

[11] Google. The Chromium Projects. http://www.
chromium.org/developers/design-
documents/tpm-usage.

[12] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas,
V. Phegade, and J. del Cuvillo. Using Innovative
Instructions to Create Trustworthy Software Solu-
tions. In Proc. of Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, Tel-
Aviv, Israel, 2013.

[13] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A Close Examination of Perfor-
mance Power Characteristics of 4G LTE Networks.
In Proc. of 10th International Conference on Mo-
bile Systems, Applications, and Services (MobiSys),
Lake District, UK, 2012.

[14] R. Kotla, T. Rodeheffer, I. Roy, P. Stuedi, and
B. Wester. Pasture: Secure Offline Data Access
Using Commodity Trusted Hardware. In Proc. of
10th USENIX Symposium on Operating Systems

200 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Design and Implementation (OSDI), Hollywoood,
CA, 2012.

[15] LETech. The Fastest True Random Num-
ber Generator with a real-time self-test func-
tion. http://www.letech.jpn.com/rng/
grang_24ch_e.html.

[16] D. Levin, J. R. Douceur, J. R. Lorch, and T. Mosci-
broda. TrInc: Small trusted hardware for large dis-
tributed systems. In Proc. of 6th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), Boston, MA, 2009.

[17] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
Abstractions for Trusted Sensors. In Proc. of 10th
International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys), Lake District,
UK, 2012.

[18] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient
TCB Reduction and Attestation. In Proc. of IEEE
Symposium on Security and Privacy, Oakland, CA,
May 2010.

[19] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An Execution Infrastruc-
ture for TCB Minimization. In Proc. of the ACM
European Conference on Computer Systems (Eu-
roSys), Glasgow, UK, 2008.

[20] F. Mckeen, I. Alexandrovich, A. Berenzon,
C. Rozas, H. Shafi, V. Shanbhogue, and U. Sav-
agaonkar. Innovative Instructions and Software
Model for Isolated Execution. In Proc. of Work-
shop on Hardware and Architectural Support for
Security and Privacy, Tel-Aviv, Israel, 2013.

[21] Microsoft. Help protect your files with
BitLocker Driver Encryption. http:
//windows.microsoft.com/en-
us/windows-8/using-bitlocker-
drive-encryption.

[22] Microsoft. Standalone Network Emulator
Tool. http://blogs.technet.com/
b/juanand/archive/2010/03/05/
standalone-network-emulator-
tool.aspx.

[23] Microsoft. Understanding and Evaluating Virtual
Smart Cards. http://www.microsoft.
com/en-us/download/details.aspx?
id=29076.

[24] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and
A. Wolman. Delusional Boot: Securing Cloud Hy-
pervisors without Massive Re-engineering. In Proc.
of the European Conference on Computer Systems
(EuroSys), Bern, Switzerland, April 2012.

[25] NIST. Recommendation for Key Deriva-

tion Using Pseudorandom Functions.
http://csrc.nist.gov/publications/
nistpubs/800-108/sp800-108.pdf.

[26] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens,
and J. M. McCune. Memoir: Practical State Con-
tinuity for Protected Modules. In Proc. of IEEE
Symposium on Security and Privacy, Oakland, CA,
2011.

[27] J. Postel and K. Harrenstien. Time Protocol.
http://tools.ietf.org/html/rfc868.

[28] H. Raj, D. Robinson, T. Tariq, P. England,
S. Saroiu, and A. Wolman. Credo: Trusted Com-
puting for Guest VMs with a Commodity Hyper-
visor. Technical Report MSR-TR-2011-130, Mi-
crosoft Research, 2011.

[29] M. Ryan. Introduction to the TPM 1.2.
www.cs.bham.ac.uk/˜mdr/research/
papers/pdf/08-intro-TPM.pdf.

[30] N. Santos, H. Raj, S. Saroiu, and A. Wol-
man. Trusted Language Runtime (TLR): Enabling
Trusted Applications on Smartphones. In Proc. of
12th Workshop on Mobile Computing Systems and
Applications (HotMobile), Phoenix, AZ, 2011.

[31] N. Santos, R. Rodrigues, K. P. Gummadi, and
S. Saroiu. Policy-Sealed Data: A New Abstrac-
tion for Building Trusted Cloud Services. In Proc.
of the 21st USENIX Security Symposium, Bellevue,
WA, 2012.

[32] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus
Authorization Logic (NAL): Design Rationale and
Applications. ACM Transactions on Information
and System Security, 14(1), 2011.

[33] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, , and F. B. Schneider. Logi-
cal Attestation: An Authorization Architecture For
Trustworthy Computing. In Proc. of Symposium
on Operating Systems Principles (SOSP), Cascais,
Portugal, 2011.

[34] S. Skorobogatov. Physical Attacks on Tamper Re-
sistance: Progress and Lessons. In Proc. of 2nd
ARO Special Workshop on Hardware Assurance,
Washington, DC, 2011.

[35] C. Tarnovsky. Semiconductor Security Aware-
ness, Today & Yesterday. BlackHat 2010 –
http://www.youtube.com/watch?v=
YzejlrGcnY8.

[36] The Economic Times (indiatimes). Singapore
leads the world on mobile take up and market-
ing. http://articles.economictimes.
indiatimes.com/2012-12-19/news/
35912444_1_mobile-app-mobile-
sales-singaporeans.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 201

[37] The Register. Five mobile devices per person
for 2040? http://www.theregister.
co.uk/2012/07/18/acma_05_mobile_
numbers/.

[38] Trusted Computing Group. TPM 2.0
Library Specification FAQ. http:
//www.trustedcomputinggroup.
org/resources/tpm_20_library_
specification_faq.

[39] Trusted Computing Group. TPM Main Specifica-
tion Level 2 Version 1.2, Revision 116. http:
//www.trustedcomputinggroup.org/
resources/tpm_main_specification.

[40] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVi-
sor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In
Proc. of Symposium on Operating Systems Princi-
ples (SOSP), Cascais, Portugal, 2011.

[41] Y. Zhang, A. Juels, M. Reiter, and T. Ristenpart.
Cross-VM Side Channels and Their Use to Extract
Private Keys. In Proc. of the 19th ACM Confer-
ence on Computer and Communications Security,
Raleigh, NC, 2012.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 203

Network Virtualization in Multi-tenant Datacenters
Teemu Koponen∗, Keith Amidon∗, Peter Balland∗, Martín Casado∗, Anupam Chanda∗,

Bryan Fulton∗, Igor Ganichev∗, Jesse Gross∗, Natasha Gude∗, Paul Ingram∗, Ethan Jackson∗,
Andrew Lambeth∗, Romain Lenglet∗, Shih-Hao Li∗, Amar Padmanabhan∗, Justin Pettit∗,

Ben Pfaff∗, Rajiv Ramanathan∗, Scott Shenker†, Alan Shieh∗, Jeremy Stribling∗,
Pankaj Thakkar∗, Dan Wendlandt∗, Alexander Yip∗, Ronghua Zhang∗

∗VMware, Inc. †UC Berkeley and ICSI
Operational Systems Track

ABSTRACT
Multi-tenant datacenters represent an extremely challeng-
ing networking environment. Tenants want the ability
to migrate unmodified workloads from their enterprise
networks to service provider datacenters, retaining the
same networking configurations of their home network.
The service providers must meet these needs without
operator intervention while preserving their own opera-
tional flexibility and efficiency. Traditional networking
approaches have failed to meet these tenant and provider
requirements. Responding to this need, we present the
design and implementation of a network virtualization
solution for multi-tenant datacenters.

1 Introduction
Managing computational resources used to be a time-
consuming task requiring the acquisition and config-
uration of physical machines. However, with server
virtualization – that is, exposing the software abstraction
of a server to users – provisioning can be done in the
time it takes to load bytes from disk. In the past fifteen
years server virtualization has become the dominant
approach for managing computational infrastructures,
with the number of virtual servers exceeding the number
of physical servers globally [2, 18].

However, the promise of seamless management through
server virtualization is only partially realized in practice.
In most practical environments, deploying a new applica-
tion or development environment requires an associated
change in the network. This is for two reasons:

Topology: Different workloads require different network
topologies and services. Traditional enterprise workloads
using service discovery protocols often require flat L2,
large analytics workloads require L3, and web services
often require multiple tiers. Further, many applications
depend on different L4-L7 services. Today, it is difficult
for a single physical topology to support the configuration
requirements of all of the workloads of an organization,
and as a result, the organization must build multiple
physical networks, each addressing a particular common
topology.

Address space: Virtualized workloads today operate in
the same address space as the physical network.1 That is,
the VMs get an IP from the subnet of the first L3 router
to which they are attached. This creates a number of
problems:

• Operators cannot move VMs to arbitrary locations.
• Operators cannot allow VMs to run their own IP

Address Management (IPAM) schemes. This is a
common requirement in datacenters.

• Operators cannot change the addressing type. For
example, if the physical network is IPv4, they
cannot run IPv6 to the VMs.

Ideally, the networking layer would support similar
properties as the compute layer, in which arbitrary
network topologies and addressing architectures could
be overlayed onto the same physical network. Whether
hosting applications, developer environments, or actual
tenants, this desire is often referred to as shared multi-
tenancy; throughout the rest of this paper we refer to this
as a multi-tenant datacenter (MTD).

Unfortunately, constructing an MTD is difficult be-
cause while computation is virtualized, the network is
not. This may seem strange, because networking has long
had a number of virtualization primitives such as VLAN
(virtualized L2 domain), VRFs (virtualized L3 FIB), NAT
(virtualized IP address space), and MPLS (virtualized
path). However, these are traditionally configured on a
box-by-box basis, with no single unifying abstraction
that can be invoked in a more global manner. As a
result, making the network changes needed to support
server virtualization requires operators to configure many
boxes individually, and update these configurations in
response to changes or failures in the network. The
result is excessive operator overhead and the constant
risk of misconfiguration and error, which has led to
painstaking change log systems used as best practice in
most environments. It is our experience in numerous
customer environments that while compute provisioning
is generally on the order of minutes, network provisioning
can take months. Our experience is commonly echoed in
analyst reports [7, 29].
1This is true even with VMware VDS and Cisco Nexus 1k.

1

204 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Academia (as discussed in Section 7) and industry
have responded by introducing the notion of network
virtualization. While we are not aware of a formal
definition, the general consensus appears to be that a
network virtualization layer allows for the creation of
virtual networks, each with independent service models,
topologies, and addressing architectures, over the same
physical network. Further, the creation, configuration and
management of these virtual networks is done through
global abstractions rather than pieced together through
box-by-box configuration.

And while the idea of network virtualization is not
new, little has been written about how these systems are
implemented and deployed in practice, and their impact
on operations.

In this paper we present NVP, a network virtualization
platform that has been deployed in dozens of production
environments over the last few years and has hosted tens
of thousands of virtual networks and virtual machines.
The target environment for NVP is enterprise datacenters,
rather than mega-datacenters in which virtualization is
often done at a higher level, such as the application.

2 System Design
MTDs have a set of hosts connected by a physical network.
Each host has multiple VMs supported by the host’s
hypervisor. Each host hypervisor has an internal software
virtual switch that accepts packets from these local VMs
and forwards them either to another local VM or over the
physical network to another host hypervisor.

Just as the hypervisor on a host provides the right
virtualization abstractions to VMs, we build our archi-
tecture around a network hypervisor that provides the
right network virtualization abstractions. In this section
we describe the network hypervisor and its abstractions.

2.1 Abstractions
A tenant interacts with a network in two ways: the
tenant’s VMs send packets and the tenant configures
the network elements forwarding these packets. In
configuring, tenants can access tenant- and element-
specific control planes that take switch, routing, and
security configurations similar to modern switches and
routers, translating them into low-level packet forwarding
instructions. A service provider’s network consists of a
physical forwarding infrastructure and the system that
manages and extends this physical infrastructure, which
is the focus of this paper.

The network hypervisor is a software layer interposed
between the provider’s physical forwarding infrastructure
and the tenant control planes, as depicted in Figure 1.
Its purpose is to provide the proper abstractions both to
tenant’s control planes and endpoints; we describe these
abstractions below:

VM

CP

Network Hypervisor

Physical Forwarding Infrastructure

Control
Abstraction

L2 L3 L2 VM

CP CP

Packet
Abstraction

Figure 1: A network hypervisor sits on top of the service provider
infrastructure and provides the tenant control planes with a control
abstraction and VMs with a packet abstraction.

Control abstraction. This abstraction must allow ten-
ants to define a set of logical network elements (or, as we
will call them, logical datapaths) that they can configure
(through their control planes) as they would physical
network elements. While conceptually each tenant has
its own control planes, the network hypervisor provides
the control plane implementations for the defined logical
network elements.2 Each logical datapath is defined
by a packet forwarding pipeline interface that, similar
to modern forwarding ASICs, contains a sequence of
lookup tables, each capable of matching over packet
headers and metadata established by earlier pipeline
stages. At each stage, packet headers can be modified or
the packet can be dropped altogether. The pipeline results
in a forwarding decision, which is saved to the packet’s
metadata, and the packet is then sent out the appropriate
port. Since our logical datapaths are implemented in
software virtual switches, we have more flexibility than
ASIC implementations; datapaths need not hardcode the
type or number of lookup tables and the lookup tables can
match over arbitrary packet header fields.
Packet abstraction. This abstraction must enable pack-
ets sent by endpoints in the MTD to be given the same
switching, routing and filtering service they would have
in the tenant’s home network. This can be accomplished
within the packet forwarding pipeline model described
above. For instance, the control plane might want to
provide basic L2 forwarding semantics in the form of
a logical switch, which connects some set of tenant
VMs (each of which has its own MAC address and is
represented by a logical port on the switch). To achieve
this, the control plane could populate a single logical
forwarding table with entries explicitly matching on
destination MAC addresses and sending the matching
packets to ports connected to the corresponding VMs.
Alternatively, the control plane could install a special
learning flow that forwards packets to ports where traffic
from the destination MAC address was last received
(which will time out in the absence of new traffic)
and simply flood unknown packets. Similarly, it could
broadcast destination addresses with a flow entry that
sends packets to all logical ports (excluding the port on
which the packet was received) on the logical switch.
2In other words, the network hypervisor does not run third-
party control plane binaries but the functionality is part of the
hypervisor itself. While running a third-party control plane stack
would be feasible, we have had no use case for it yet.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 205

Logical
Datapath 2

Logical
Datapath 1

Source
vNIC

Logical Forwarding

Dest.
vNIC

Source Hypervisor DstTunneling

Logical
Ingress

Port

Logical
Egress

Port

Physical
Datapath (OVS) Physical

Fabric
(ECMP)

Figure 2: The virtual switch of the originating host hypervisor
implements logical forwarding. After the packet has traversed the
logical datapaths and their tables, the host tunnels it across the physical
network to the receiving host hypervisor for delivery to the destination
VM.

2.2 Virtualization Architecture

The network hypervisor supports these abstractions by
implementing tenant-specific logical datapaths on top of
the provider’s physical forwarding infrastructure, and
these logical datapaths provide the appropriate control
and packet abstractions to each tenant.

In our NVP design, we implement the logical datapaths
in the software virtual switches on each host, leveraging a
set of tunnels between every pair of host-hypervisors (so
the physical network sees nothing other than what appears
to be ordinary IP traffic between the physical hosts). The
logical datapath is almost entirely implemented on the
virtual switch where the originating VM resides; after
the logical datapath reaches a forwarding decision, the
virtual switch tunnels it over the physical network to
the receiving host hypervisor, which decapsulates the
packet and sends it to the destination VM (see Figure 2).
A centralized SDN controller cluster is responsible for
configuring virtual switches with the appropriate logical
forwarding rules as tenants show up in the network.3

While tunnels can efficiently implement logical point-
to-point communication, additional support is needed
for logical broadcast or multicast services. For packet
replication, NVP constructs a simple multicast overlay
using additional physical forwarding elements (x86-based
hosts running virtual switching software) called service
nodes. Once a logical forwarding decision results in the
need for packet replication, the host tunnels the packet
to a service node, which then replicates the packet to
all host hypervisors that need to deliver a copy to their
local VMs. For deployments not concerned about the
broadcast traffic volume, NVP supports configurations
without service nodes: the sending host-hypervisor sends
a copy of the packet directly to each host hypervisor
needing one.

In addition, some tenants want to interconnect their
logical network with their existing physical one. This

3NVP does not control physical switches, and thus does not
control how traffic between hypervisors is routed. Instead, it is
assumed the physical network provides uniform capacity across
the servers, building on ECMP-based load-balancing.

Hypervisor Hypervisor

Gateway
Cluster

VM1 VM2 VM3 VM4

Physical,
Non-

virtualized
Workloads

Service Node Cluster

Hypervisor

VM5 VM6

Controller
Cluster

Figure 3: In NVP, controllers manage the forwarding state at all
transport nodes (hypervisors, gateways, service nodes). Transport nodes
are fully meshed over IP tunnels (solid lines). Gateways connect the
logical networks with workloads on non-virtualized servers, and service
nodes provide replication for logical multicast/broadcast.

is done via gateway appliances (again, x86-based hosts
running virtual switching software); all traffic from the
physical network goes to the host hypervisor through
this gateway appliance, and then can be controlled by
NVP (and vice versa for the reverse direction). Gateway
appliances can be either within the MTD or at the tenant’s
remote site. Figure 3 depicts the resulting arrangement of
host hypervisors, service nodes and gateways, which we
collectively refer to as transport nodes.

2.3 Design Challenges
This brief overview of NVP hides many design challenges,
three of which we focus on in this paper.
Datapath design and acceleration. NVP relies on soft-
ware switching. In Section 3 we describe the datapath
and the substantial modifications needed to support high-
speed x86 encapsulation.
Declarative programming. The controller cluster is
responsible for computing all forwarding state and then
disseminating it to the virtual switches. To minimize
the cost of recomputation, ensure consistency in the face
of varying event orders, and promptly handle network
changes, we developed a declarative domain-specific
language for the controller that we discuss in Section 4.
Scaling the computation. In Section 5 we discuss the
issues associated with scaling the controller cluster.

After we discuss these design issues, we evaluate the
performance of NVP in Section 6, discuss related work
in Section 7, and then conclude in Sections 8 and 9.

3 Virtualization Support at the Edge
The endpoints of the tunnels created and managed by NVP
are in the virtual switches that run on host hypervisors,
gateways and service nodes. We refer to this collection
of virtual switches as the network edge. This section
describes how NVP implements logical datapaths at the
network edge, and how it achieves sufficient data plane
performance on standard x86 hardware.

3.1 Implementing the Logical Datapath
NVP uses Open vSwitch (OVS) [32] in all transport nodes
(host hypervisors, service nodes, and gateway nodes) to
forward packets. OVS is remotely configurable by the

3

206 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NVP controller cluster via two protocols: one that can
inspect and modify a set of flow tables (analogous to
flow tables in physical switches),4 and one that allows the
controller to create and manage overlay tunnels and to
discover which VMs are hosted at a hypervisor [31].

The controller cluster uses these protocols to implement
packet forwarding for logical datapaths. Each logical
datapath consists of a series (pipeline) of logical flow
tables, each with its own globally-unique identifier.
The tables consist of a set of flow entries that specify
expressions to match against the header of a packet, and
actions to take on the packet when a given expression is
satisfied. Possible actions include modifying a packet,
dropping it, sending it to a given egress port on the logical
datapath, and modifying in-memory metadata (analogous
to registers on physical switches) associated with the
packet and resubmitting it back to the datapath for further
processing. A flow expression can match against this
metadata, in addition to the packet’s header. NVP writes
the flow entries for each logical datapath to a single OVS
flow table at each virtual switch that participates in the
logical datapath. We emphasize that this model of a
logical table pipeline (as opposed to a single table) is the
key to allowing tenants to use existing forwarding policies
with little or no change: with a table pipeline available
to the control plane, tenants can be exposed to features
and configuration models similar to ASIC-based switches
and routers, and therefore the tenants can continue to use
a familiar pipeline-based mental model.

Any packet entering OVS – either from a virtual
network interface card (vNIC) attached to a VM, an
overlay tunnel from a different transport node, or a
physical network interface card (NIC) – must be sent
through the logical pipeline corresponding to the logical
datapath to which the packet belongs. For vNIC and NIC
traffic, the service provider tells the controller cluster
which ports on the transport node (vNICs or NICs)
correspond to which logical datapath (see Section 5);
for overlay traffic, the tunnel header of the incoming
packet contains this information. Then, the virtual
switch connects each packet to its logical pipeline by
pre-computed flows that NVP writes into the OVS flow
table, which match a packet based on its ingress port
and add to the packet’s metadata an identifier for the first
logical flow table of the packet’s logical datapath. As
its action, this flow entry resubmits the packet back to
the OVS flow table to begin its traversal of the logical
pipeline.

The control plane abstraction NVP provides internally
for programming the tables of the logical pipelines is
largely the same as the interface to OVS’s flow table and

4We use OpenFlow [27] for this protocol, though any flow
management protocol with sufficient flexibility would work.

NVP writes logical flow entries directly to OVS, with two
important differences:

• Matches. Before each logical flow entry is written to
OVS, NVP augments it to include a match over the
packet’s metadata for the logical table’s identifier.
This enforces isolation from other logical datapaths
and places the lookup entry at the proper stage of
the logical pipeline. In addition to this forced match,
the control plane can program entries that match
over arbitrary logical packet headers, and can use
priorities to implement longest-prefix matching as
well as complex ACL rules.

• Actions. NVP modifies each logical action sequence
of a flow entry to write the identifier of the next
logical flow table to the packet’s metadata and to
resubmit the packet back to the OVS flow table.
This creates the logical pipeline, and also prevents
the logical control plane from creating a flow entry
that forwards a packet to a different logical datapath.

At the end of the packet’s traversal of the logical
pipeline it is expected that a forwarding decision for that
packet has been made: either drop the packet, or forward it
to one or more logical egress ports. In the latter case, NVP
uses a special action to save this forwarding decision in
the packet’s metadata. (Dropping translates to simply not
resubmitting a packet to the next logical table.) After the
logical pipeline, the packet is then matched against egress
flow entries written by the controller cluster according to
their logical destination. For packets destined for logical
endpoints hosted on other hypervisors (or for physical
networks not controlled by NVP), the action encapsulates
the packet with a tunnel header that includes the logical
forwarding decision, and outputs the packet to a tunnel
port. This tunnel port leads to another hypervisor for
unicast traffic to another VM, a service node in the case
of broadcast and multicast traffic, or a gateway node for
physical network destinations. If the endpoint happens to
be hosted on the same hypervisor, it can be output directly
to the logical endpoint’s vNIC port on the virtual switch.5

At a receiving hypervisor, NVP has placed flow entries
that match over both the physical ingress port for that end
of the tunnel and the logical forwarding decision present
in the tunnel header. The flow entry then outputs the
packet to the corresponding local vNIC. A similar pattern
applies to traffic received by service and gateway nodes.

The above discussion centers on a single L2 datapath,
but generalizes to full logical topologies consisting
of several L2 datapaths interconnected by L3 router
5For brevity, we don’t discuss logical MAC learning or stateful
matching operations, but in short, the logical control plane can
provide actions that create new lookup entries in the logical
tables, based on incoming packets. These primitives allow the
control plane to implement L2 learning and stateful ACLs, in a
manner similar to advanced physical forwarding ASICs.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical
Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance

OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

208 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it will first encounter this fake TCP header, and consider
everything after that to be part of the TCP payload; thus,
the NIC can employ its standard offloading mechanisms.

Although on the wire the STT packet looks like
standard TCP packet, the STT protocol is stateless and
requires no TCP handshake procedure between the tunnel
endpoints. VMs can run TCP over the logical packets
exchanged over the encapsulation.

Placing contextual information into the encapsulation
header, at the start of the fake TCP payload, allows for a
second optimization: this information is not transferred
in every physical packet, but only once for each large
packet sent to the NIC. Therefore, the cost of this context
information is amortized over all the segments produced
out of the original packet and additional information (e.g.,
for debugging) can be included as well.

Using hardware offloading in this way comes with a
significant downside: gaining access to the logical traffic
and contextual information requires reassembling the
segments, unlike with traditional encapsulation protocols
in which every datagram seen on wire has all headers in
place. This limitation makes it difficult, if not impossible,
for the high-speed forwarding ASICs used in hardware
switch appliances to inspect encapsulated logical traffic;
however, we have found such appliances to be rare in
NVP production deployments. Another complication is
that STT may confuse middleboxes on the path. STT
uses its own TCP transport port in the fake TCP header,
however, and to date administrators have been successful
in punching any necessary holes in middleboxes in the
physical network. For environments where compliance
is more important than efficiency, NVP supports other,
more standard IP encapsulation protocols.

3.3 Fast Failovers

Providing highly-available dataplane connectivity is a
priority for NVP. Logical traffic between VMs flowing
over a direct hypervisor-to-hypervisor tunnel clearly
cannot survive the failure of either hypervisor, and must
rely on path redundancy provided by the physical network
to survive the failure of any physical network elements.
However, the failure of any of the new appliances that
NVP introduces – service and gateway nodes – must cause
only minimal, if any, dataplane outage.

For this reason, NVP deployments have multiple
service nodes, to ensure that any one service node
failure does not disrupt logical broadcast and multicast
traffic. The controller cluster instructs hypervisors to load-
balance their packet replication traffic across a bundle of
service node tunnels by using flow hashing algorithms
similar to ECMP [16]. The hypervisor monitors these
tunnels using BFD [21]. If the hypervisor fails to receive
heartbeats from a service node for a configurable period of
time, it removes (without involving the controller cluster)

Hypervisor Hypervisor Gateway
VM1 VM2 VM3 VM4 VLAN VLAN

 ControllerProvisioned
Configuration (2)

Location information (1) and Forwarding State (3)

Network Hypervisor

Logical Control Planes
nlog Logical Datapaths

Figure 5: Inputs and outputs to the forwarding state computation process
which uses nlog, as discussed in §4.3.

the failed service node from the load-balancing tunnel
bundle and continues to use the remaining service nodes.

As discussed in Section 2, gateway nodes bridge
logical networks and physical networks. For the reasons
listed above, NVP deployments typically involve multi-
ple gateway nodes for each bridged physical network.
Hypervisors monitor their gateway tunnels, and fail
over to backups, in the same way they do for service
tunnels.9 However, having multiple points of contact with
a particular physical network presents a problem: NVP
must ensure that no loops between the logical and physical
networks are possible. If a gateway blindly forwarded
logical traffic to the physical network, and vice versa, any
traffic sent by a hypervisor over a gateway tunnel could
wind up coming back into the logical network via another
gateway attached to the same network, due to MAC
learning algorithms running in the physical network.

NVP solves this by having each cluster of gateway
nodes (those bridging the same physical network) elect
a leader among themselves. Any gateway node that is
not currently the leader will disable its hypervisor tunnels
and will not bridge traffic between the two networks,
eliminating the possibility of a loop. Gateways bridging
a physical L2 network use a lightweight leader election
protocol: each gateway broadcasts CFM packets [19]
onto that L2 network, and listens for broadcasts from all
other known gateways. Each gateway runs a deterministic
algorithm to pick the leader, and if it fails to hear
broadcasts from that node for a configurable period
of time, it picks a new leader.10 Broadcasts from an
unexpected gateway cause all gateways to disable their
tunnels to prevent possible loops.

4 Forwarding State Computation
In this section, we describe how NVP computes the
forwarding state for the virtual switches. We focus on a
single controller and defer discussion about distributing
the computation over a cluster to the following section.

4.1 Computational Structure of Controller
The controller inputs and outputs are structured as
depicted in Figure 5. First, hypervisors and gateways
9Gateway and service nodes do not monitor hypervisors, and
thus, they have little per tunnel state to maintain.

10L3 gateways can use ECMP for active-active scale-out instead.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 209

provide the controller with location information for vNICs
over the OVS configuration protocol [31] (1), updating
this information as virtual machines migrate. Hypervisors
also provide the MAC address for each vNIC.11 Second,
service providers configure the system through the NVP
API (see the following section) (2). This configuration
state changes as new tenants enter the system, as logical
network configuration for these tenants change, and when
the physical configuration of the overall system (e.g., the
set of managed transport nodes) changes.

Based on these inputs, the logical control plane com-
putes the logical lookup tables, which the network
hypervisor augments and transforms into physical for-
warding state (realized as logical datapaths with given
logical lookup entries, as discussed in the previous
section). The forwarding state is then pushed to transport
nodes via OpenFlow and the OVS configuration protocol
(3). OpenFlow flow entries model the full logical
packet forwarding pipeline, whereas OVS configuration
database entries are responsible for the tunnels connecting
hypervisors, gateways and service nodes, as well as any
local queues and scheduling policies.12

The above implies the computational model is en-
tirely proactive: the controllers push all the necessary
forwarding state down and do not process any packets.
The rationale behind this design is twofold. First, it
simplifies the scaling of the controller cluster because
infrequently pushing updates to forwarding instructions
to the switch, instead of continuously punting packets to
controllers, is a more effective use of resources. Second,
and more importantly, failure isolation is critical in that
the managed transport nodes and their data planes must
remain operational even if connectivity to the controller
cluster is transiently lost.

4.2 Computational Challenge

The input and output domains of the controller logic
are complex: in total, the controller uses 123 types
of input to generate 81 types of output. A single
input type corresponds to a single configured logical
feature or physical property; for instance, a particular
type of logical ACL may be a single logical input type,
whereas the location of a vNIC may be a single physical
input information type. Similarly, each output type
corresponds to a single type of attribute being configured
over OpenFlow or the OVS configuration protocol; for
example, a tunnel parameter and particular type of ACL
flow entries are both examples of individual output types.

The total amount of input state is also large, being
11The service provider’s cloud management system can provision
this information directly, if available.

12One can argue for a single flow protocol to program the entire
switch but in our experience trying to fold everything into a
single flow protocol only complicates the design.

proportional to the size of the MTD, and the state
changes frequently as VMs migrate and tenants join,
leave, and reconfigure their logical networks. The
controller needs to react quickly to the input changes.
Given the large total input size and frequent, localized
input changes, a naïve implementation that reruns the
full input-to-output translation on every change would
be computationally inefficient. Incremental computation
allows us to recompute only the affected state and push
the delta down to the network edge. We first used
a hand-written state machine to compute and update
the forwarding state incrementally in response to input
change events; however, we found this approach to be
impractical due to the number of event types that need
to be handled as well as their arbitrary interleavings.
Event handling logic must account for dependencies
on previous or subsequent events, deferring work or
rewriting previously generated outputs as needed. In
many languages, such code degenerates to a reactive,
asynchronous style that is difficult to write, comprehend,
and especially test.

4.3 Incremental State Computation with nlog

To overcome this problem, we implemented a domain-
specific, declarative language called nlog for computing
the network forwarding state. It allows us to separate logic
specification from the state machine that implements the
logic. The logic is written in a declarative manner that
specifies a function mapping the controller input to output,
without worrying about state transitions and input event
ordering. The state transitions are handled by a compiler
that generates the event processing code and by a runtime
that is responsible for consuming the input change events
and recomputing all affected outputs. Note that nlog is
not used by NVP’s users, only internally by its developers;
users interact with NVP via the API (see §5.3).

nlog declarations are Datalog queries: a single dec-
laration is a join over a number of tables that produces
immutable tuples for a head table. Any change in the
joined tables results in (incremental) re-evaluation of
the join and possibly in adding tuples to, or removing
tuples from, this head table. Joined tables may be
either input tables representing external changes (input
types) or internal tables holding only results computed by
declarations. Head tables may be internal tables or output
tables (output types), which cause changes external to the
nlog runtime engine when tuples are added to or removed
from the table. nlog does not currently support recursive
declarations or negation.13 In total, NVP has about 1200
declarations and 900 tables (of all three types).

13The lack of negation has had little impact on development
but the inability to recurse complicates computations where the
number of iterations is unknown at compile time. For example,
traversing a graph can only be done up to maximum diameter.

7

210 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1. Determine tunnel from a source hypervisor
to a remote, destination logical port.
tunnel(dst_lport_id, src_hv_id, encap, dst_ip) :-

Pick logical ports & chosen encap of a datapath.
log_port(src_lport_id, log_datapath_id),
log_port(dst_lport_id, log_datapath_id),
log_datapath_encap(log_datapath_id, encap),

Determine current port locations (hypervisors).
log_port_presence(src_lport_id, src_hv_id),
log_port_presence(dst_lport_id, dst_hv_id),

Map dst hypervisor to IP and omit local tunnels.
hypervisor_locator(dst_hv_id, dst_ip),
not_equal(src_hv_id, dst_hv_id);

2. Establish tunnel via OVS db. Assigned port # will
be in input table ovsdb_tport. Ignore first column.
ovsdb_tunnel(src_hv_id, encap, dst_ip) :-

tunnel(_, src_hv_id, encap, dst_ip);

3. Construct the flow entry feeding traffic to tunnel.
Before resubmitting packet to this stage, reg1 is
loaded with ’stage id’ corresponding to log port.
ovs_flow(src_hv_id, of_expr, of_actions) :-

tunnel(dst_lport_id, src_hv_id, encap, dst_ip),
lport_stage_id(dst_lport_id, processing_stage_id),
flow_expr_match_reg1(processing_stage_id, of_expr),
OF output action needs the assigned tunnel port #.
ovsdb_tport(src_hv_id, encap, dst_ip, port_no),
flow_output_action(port_no, of_actions);

Figure 6: Steps to establish a tunnel: 1) determining the tunnels, 2) creating OVS db entries, and 3) creating OF flows to output packets into tunnels.

The code snippet in Figure 6 has simplified nlog
declarations for creating OVS configuration database
tunnel entries as well as OpenFlow flow entries feeding
packets to tunnels. The tunnels depend on API-provided
information, such as the logical datapath configuration
and the tunnel encapsulation type, as well as the location
of vNICs. The computed flow entries are a part of the
overall packet processing pipeline, and thus, they use
a controller-assigned stage identifier to match with the
packets sent to this stage by the previous processing stage.

The above declaration updates the head table tunnel for
all pairs of logical ports in the logical datapath identified
by log_datapath_id. The head table is an internal table
consisting of rows each with four data columns; a single
row corresponds to a tunnel to a logical port dst_lport_id
on a remote hypervisor dst_hv_id (reachable at dst_ip)
on a hypervisor identified by src_hv_id for a specific
encapsulation type (encap) configured for the logical
datapath. We use a function not_equal to exclude tunnels
between logical ports on a single hypervisor. We will
return to functions shortly.

In the next two declarations, the internal tunnel table
is used to derive both the OVS database entries and
OpenFlow flows to output tables ovsdb_tunnel and
ovs_flow. The declaration computing the flows uses func-
tions flow_expr_reg1 and flow_output_action to compute
the corresponding OpenFlow expression (matching over
register 1) and actions (sending to a port assigned for
the tunnel). As VMs migrate, the log_port_presence
input table is updated to reflect the new locations of
each log_port_id, which in turn causes corresponding
changes to tunnel. This will result in re-evaluation of the
second and third declaration, which will result in OVS
configuration database changes that create or remove
tunnels on the corresponding hypervisors, as well as
OpenFlow entries being inserted or removed. Similarly,
as tunnel or logical datapath configuration changes, the
declarations will be incrementally re-evaluated.

Even though the incremental update model allows
quick convergence after changes, it is not intended for
reacting to dataplane failures at dataplane time scales. For
this reason, NVP precomputes any state necessary for
dataplane failure recovery. For instance, the forwarding

state computed for tunnels includes any necessary backup
paths to allow the virtual switch running on a transport
node to react independently to network failures (see §3.3).

Language extensions. Datalog joins can only rearrange
existing column data. Because most non-trivial programs
must also transform column data, nlog provides extension
mechanisms for specifying transformations in C++.

First, a developer can implement a function table,
which is a virtual table where certain columns of a row
are a stateless function of others. For example, a function
table could compute the sum of two integer columns and
place it in a third column, or create OpenFlow match
expressions or actions (like in the example above). The
base language provides various functions for primitive
column types (e.g., integers, UUIDs). NVP extends these
with functions operating over flow and action types, which
are used to construct the complex match expressions and
action sequences that constitute the logical datapath flow
entries. Finally, the developer is provided with not_equal
to express inequality between two columns.

Second, if developers require more complicated trans-
formations, they can hook an output and an input table
together through arbitrary C++ code. Declarations
produce tuples into the output table, which transforms
them into C++ and feeds them to the output table
C++ implementation. After processing, the C++ code
transforms them back into tuples and passes them to
nlog through the input table. For instance, we use this
technique to implement hysteresis that dampens external
events such as a network port status flapping.

5 Controller Cluster
In this section we discuss the design of the controller
cluster: the distribution of physical forwarding state
computation to implement the logical datapaths, the
auxiliary distributed services that the distribution of the
computation requires, and finally the implementation of
the API provided for the service provider.

5.1 Scaling and Availability of Computation
Scaling. The forwarding state computation is easily par-
allelizable and NVP divides computation into a loosely-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 211

Logical
Controllers

Physical
Controllers

Universal
Flows

Transport
nodes

Physical
Flows

(OpenFlow) &
OVS configAPI

Physical
State

Location
Information

Figure 7: NVP controllers arrange themselves into two layers.

coupled two-layer hierarchy, with each layer consisting of
a cluster of processes running on multiple controllers. We
implement all of this computation in nlog, as discussed in
the previous section.

Figure 7 illustrates NVP’s two-layer distributed con-
troller cluster. The top layer consists of logical controllers.
NVP assigns the computation for each logical datapath to
a particular live controller using its identifier as a sharding
key, parallelizing the computation workload.

Logical controllers compute the flows and tunnels
needed to implement logical datapaths, as discussed
in Section 3. They encode all computed flow entries,
including the logical datapath lookup tables provided
by the logical control planes and instructions to create
tunnels and queues for the logical datapath, as universal
flows, an intermediate representation similar to OpenFlow
but which abstracts out all transport-node-specific details
such as ingress, egress or tunnel port numbers, replacing
them with abstract identifiers. The universal flows are
published over RPC to the bottom layer consisting of
physical controllers.

Physical controllers are responsible for communicating
with hypervisors, gateways and service nodes. They
translate the location-independent portions of universal
flows using node- and location-specific state, such as IP
addresses and physical interface port numbers (which
they learn from attached transport nodes), as well as
create the necessary configuration protocol instructions
to establish tunnels and queue configuration. The
controllers then push the resulting physical flows (which
are now valid OpenFlow instructions) and configuration
protocol updates down to the transport nodes. Because
the universal-to-physical translation can be executed
independently for every transport node, NVP shards this
responsibility for the managed transport nodes among the
physical controllers.

This arrangement reduces the computational complex-
ity of the forwarding state computation. By avoiding the
location-specific details, the logical controller layer can
compute one “image” for a single ideal transport node
participating in a given logical datapath (having O(N)
tunnels to remote transport nodes), without considering
the tunnel mesh between all transport nodes in its full
O(N2) complexity. Each physical controller can then
translate that image into something specific for each of
the transport nodes under its responsibility.

Availability. To provide failover within the cluster, NVP
provisions hot standbys at both the logical and physical
controller layers by exploiting the sharding mechanism.
One controller, acting as a sharding coordinator, ensures
that every shard is assigned one master controller and
one or more other controllers acting as hot standbys. On
detecting the failure of the master of a shard, the sharding
coordinator promotes the standby for the shard to master,
and assigns a new controller instance as the standby for
the shard. On detecting the failure of the standby for a
shard, the sharding coordinator assigns a new standby
for the shard. The coordinator itself is a highly-available
service that can run on any controller and will migrate as
needed when the current coordinator fails.

Because of their large population, transport nodes do
not participate in the cluster coordination. Instead, OVS
instances are configured by the physical controllers to
connect to both the master and the standby physical
controllers for their shard, though their master controller
will be the only one sending them updates. Upon master
failure, the newly-assigned master will begin sending
updates via the already-established connection.

5.2 Distributed Services
NVP is built on the Onix controller platform [23] and
thus has access to the elementary distributed services
Onix provides. To this end, NVP uses the Onix repli-
cated transactional database to persist the configuration
state provided through API, but it also implements two
additional distributed services.
Leader election. Each controller must know which
shard it manages, and must also know when to take
over responsibility of slices managed by a controller
that has disconnected. Consistent hashing [20] is one
possible approach, but it tends to be most useful in
very large clusters; with only tens of controllers, NVP
simply elects a sharding coordinator using Zookeeper [17].
This approach makes it easier to implement sophisticated
assignment algorithms that can ensure, for instance, that
each controller has equal load and that assignment churn
is minimized as the cluster membership changes.
Label allocation. A network packet encapsulated in a
tunnel must carry a label that denotes the logical egress
port to which the packet is destined, so the receiving
hypervisor can properly process it. This identifier must
be globally unique at any point in time in the network, to
ensure data isolation between different logical datapaths.
Because encapsulation rules for different logical datapaths
may be calculated by different NVP controllers, the
controllers need a mechanism to pick unique labels, and
ensure they will stay unique in the face of controller
failures. Furthermore, the identifiers must be relatively
compact to minimize packet overhead. We use Zookeeper
to implement a label allocator that ensures labels will not

9

212 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

be reused until NVP deletes the corresponding datapath.
The logical controllers use this label allocation service
to assign logical egress port labels at the time of logical
datapath creation, and then disseminate the labels to the
physical controllers via universal flows.

5.3 API for Service Providers
To support integrating with a service provider’s existing
cloud management system, NVP exposes an HTTP-based
REST API in which network elements, physical or logical,
are presented as objects. Examples of physical network
elements include transport nodes, while logical switches,
ports, and routers are logical network elements. Logical
controllers react to changes to these logical elements,
enabling or disabling features on the corresponding
logical control plane accordingly. The cloud management
system uses these APIs to provision tenant workloads,
and a command-line or a graphical shell implementation
could map these APIs to a human-friendly interface for
service provider administrators and/or their customers.

A single API request can require state from multiple
transport nodes, or both logical and physical information.
Thus, API operations generally merge information from
multiple controllers. Depending on the operation, NVP
may retrieve information on-demand in response to a
specific API request, or proactively, by continuously
collecting the necessary state.

6 Evaluation
In this section, we present measurements both for the
controller cluster and the edge datapath implementation.

6.1 Controller Cluster
Setup. The configuration in the following tests has 3,000
simulated hypervisors, each with 21 vNICs for a total
of 63,000 logical ports. In total, there are 7000 logical
datapaths, each coupled with a logical control plane
modeling a logical switch. The average size of a logical
datapath is 9 ports, but the size of each logical datapath
varies from 2 to 64. The test configures the logical control
planes to use port ACLs on 49,188 of the logical ports
and generic ACLs for 1,553 of the logical switches.14

The test control cluster has three nodes. Each controller
is a bare-metal Intel Xeon 2.4GHz server with 12 cores,
96GB of memory, and 400GB hard disk. The logical and
physical computation load is distributed evenly among the
controllers, with one master and one standby per shard.
The physical network is a dedicated switched network.

Each simulated hypervisor is a Linux VM that contains
an OVS instance with a TUN device simulating each
virtual interface on the hypervisor. The simulated hyper-
visors run within XenServer 5.6 physical hypervisors, and

14This serves as our base validation test; other tests stress the
system further both in scale and in complexity of configurations.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

Time Since Start (s)

Figure 8: Cold start connectivity as a percentage of all pairs connected.

are connected via Xen bridges to the physical network.
We test four types of conditions the cluster may face.
Cold start. The cold start test simulates bringing the
entire system back online after a major datacenter disaster
in which all servers crash and all volatile memory is lost.
In particular, the test starts with a fully configured system
in a steady state, shuts down all controllers, clears the
flows on all OVS instances, and restarts everything.
Restore. The restore test simulates a milder scenario
where the whole control cluster crashes and loses all
volatile state but the dataplane remains intact.
Failover. The failover test simulates a failure of a single
controller within a cluster.
Steady state. In the steady state test, we start with a
converged idle system. We then add 10 logical ports to
existing switches through API calls, wait for connectivity
correctness on these new ports, and then delete them. This
simulates a typical usage of NVP, as the service provider
provisions logical network changes to the controller as
they arrive from the tenant.

In each of the tests, we send a set of pings between
logical endpoints and check that each ping either succeeds
if the ping is supposed to succeed, or fails if the ping is
supposed to fail (e.g., when a security policy configuration
exists to reject that ping). The pings are grouped into
rounds, where each round measures a sampling of logical
port pairs. We continue to perform ping rounds until all
pings have the desired outcome and the controllers finish
processing their pending work. The time between the
rounds of pings is 5-6 minutes in our tests.

While the tests are running, we monitor the sizes of all
the nlog tables; from this, we can deduce the number of
flows computed by nlog, since these are stored in a single
table. Because nlog is running in a dedicated thread, we
measure the time this thread was running and sleeping to
get the load for nlog computation.

Finally, we note that we do not consider routing
convergence of any kind in the tests. Physical routing
protocols handle any failures in the connectivity between
the nodes, and thus, aside from tunnel failovers, the
network hypervisor can remain unaware of such events.

Results. Figure 8 shows the percentage of correct pings
over time for the cold start test, beginning at time 0. It

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 213

400k

800k

1.2M

1.6M

2.0M

 0 500 1000 1500 2000 2500 3000

8M

16M

24M

32M

40M

F
lo

w
s

T
up

le
s

Time Since Start (s)

Figure 9: Total physical flows (solid line) and nlog tuples (dashed line)
in one controller after a cold start.

5G

10G

15G

20G

25G

30G

 0 200 400 600 800 1000 1200 1400 1600 1800

Time Since Start (s)

Figure 10: Memory used by a controller after a cold start.

starts at 17% because 17% of the pings are expected to
fail, which they do in the absence of any flows pushed
to the datapath. Note that, unlike typical OpenFlow
systems, NVP does not send packets for unclassified flows
to the controller cluster; instead, NVP precomputes all
necessary flow changes after each configuration change.
Thus, cold start represents a worst-case scenario for
NVP: the controller cluster must compute all state and
send it to the transport nodes before connectivity can
be fully established. Although it takes NVP nearly
an hour to achieve full connectivity in this extreme
case, the precomputed flows greatly improve dataplane
performance at steady state. While the cold-start time is
long, it is relevant only in catastrophic outage conditions
and thus considered reasonable: after all, if hypervisors
remain powered on, the data plane will also remain
functional even though the controllers have to go through
cold-start (as in the restore test below).

The connectivity correctness is not linear for two
reasons. First, NVP does not compute flows for one
logical datapath at a time, but does so in parallel for all of
them; this is due to an implementation artifact stemming
from arbitrary evaluation order in nlog. Second, for a
single ping to start working, the correct flows need to be
set up on all the transport nodes on the path of the ping
(and ARP request/response, if any).

We do not include a graph for connectivity correctness
during the restore or failover cases, but merely note that
connectivity correctness remains at 100% during these
tests. The connectivity is equally well-maintained in the
case of adding or removing controllers to the cluster, but
again we do not include a graph here for brevity.

Figure 9 shows the total number of tuples, as well
as the total number of flows, produced by nlog on a

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

Time Since Start (s)

Figure 11: nlog load during cold start.

single controller over time during the cold start test. The
graphs show that nlog is able to compute about 1.8M
flows in about 20 minutes, involving about 37M tuples in
total across all nlog tables. This means that to produce
1 final flow, we have an average of 20 intermediary
tuples, which points to the complexity of incorporating
all of the possible factors that can affect a flow. After
converging, the measured controller uses approximately
27G of memory, as shown in Figure 10.

Since our test cluster has 3 controllers, 1.8M flows
is 2/3 of all the flows in the system, because this one
controller is the master for 1/3 of the flows and standby for
1/3 of the flows. Additionally, in this test nlog produces
about 1.9M tuples per minute on average. At peak
performance, it produces up to 10M tuples per minute.

Figure 11 shows nlog load during the cold start test.
nlog is almost 100% busy for 20 minutes. This shows
that controller can read its database and connect to the
switches (thereby populating nlog input tables) faster than
nlog can process it. Thus, nlog is the bottleneck during
this part of the test. During the remaining time, NVP
sends the computed state to each hypervisor.

A similar load graph for the steady state test is
not included but we merely report the numeric results,
highlighting nlog’s ability to process incremental changes
to inputs: the addition of 10 logical ports (to the existing
63,000) results in less than 0.5% load for a few seconds.
Deleting these ports results in similar load. This test
represents the usual state of a real deployment – constantly
changing configuration at a modest rate.

6.2 Transport Nodes
Tunnel performance. Table 1 shows the throughput and
CPU overhead of using non-tunneled, STT, and GRE to
connect two hypervisors. We measured throughput using
Netperf’s TCP_STREAM test. Tests ran on two Intel
Xeon 2.0GHz servers with 8 cores, 32GB of memory, and
Intel 10Gb NICs, running Ubuntu 12.04 and KVM. The
CPU load represents the percentage of a single CPU core
used, which is why the result may be higher than 100%.
All the results only take into account the CPU used to
switch traffic in the hypervisor, and not the CPU used by
the VMs. The test sends a single flow between two VMs
on the different hypervisors.

We see that the throughput of GRE is much lower

11

214 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

No encap STT GRE
TX CPU load 49% 49% 85%
RX CPU load 72% 119% 183%
Throughput 9.3Gbps 9.3Gbps 2.4Gbps

Table 1: Non-tunneled, STT, and GRE performance.

25

50

75

100

1k 2k 3k 4k 5k

Tunnels
Figure 12: Tunnel management CPU load as a % of a single core.

and requires more CPU than either of the other methods
due to its inability to use hardware offloading. However,
STT’s use of the NIC’s TCP Segmentation Offload (TSO)
engine makes its throughput performance comparable to
non-tunneled traffic between the VMs. STT uses more
CPU on the receiving side of the tunnel because, although
it is able to use LRO to coalesce incoming segments, LRO
does not always wait for all packet segments constituting
a single STT frame before passing the result of coalescing
down to OS. After all, for NIC the TCP payload is a byte
stream and not a single jumbo frame spanning multiple
datagrams on the wire; therefore, if there is enough time
between two wire datagrams, the NIC may decide to pass
the current result of the coalescing to the OS, just to avoid
introducing excessive extra latency. STT requires the full
set of segments before it can remove the encapsulation
header within the TCP payload and deliver the original
logical packet, and so on these occasions it must perform
the remaining coalescing in software.

Connection set up. OVS connection setup performance
has been explored in the literature (see e.g., [32–34]) and
we have no new results to report here, though we return
to the topic shortly in Section 8.

Tunnel scale. Figure 12 shows the keepalive message
processing cost as the number of tunnels increases. This
test is relevant for our gateways and service nodes, which
have tunnels to potentially large numbers of hypervisors
and must respond to keepalives on all of these tunnels.
The test sends heartbeats at intervals of 500ms, and the
results indicate a single CPU core can process and respond
to them in a timely manner for up to 5000 tunnels.

7 Related Work
NVP borrows from recent advances in datacenter network
design (e.g., [1, 12, 30]), software forwarding, program-
ming languages, and software defined networking, and
thus the scope of related work is vast. Due to limited
space, we only touch on topics where we feel it useful
to distinguish our work from previous efforts. While

NVP relies on SDN [3, 4, 13, 14, 23, 27] in the form of an
OpenFlow forwarding model and a control plane managed
by a controller, NVP requires significant extensions.

Virtualization of the network forwarding plane was
first described in [6]; NVP develops this concept fur-
ther and provides a detailed design of an edge-based
implementation. However, network virtualization as a
general concept has existed since the invention of VLANs
that slice Ethernet networks. Slicing as a mechanism to
share resources is available at various layers: IP routers
are capable of running multiple control planes over one
physical forwarding plane [35], and FlowVisor introduced
the concept of slicing to OpenFlow and SDN [36].
However, while slicing provides isolation, it does not
provide either the packet or control abstractions that
enable tenants to live within a faithful logical network.
VMs were proposed as a way to virtualize routers [38]
but this is not a scalable solution for MTDs.

NVP uses a domain-specific declarative language for
efficient, incremental computation of all forwarding
state. Expressing distributed (routing) algorithms in
datalog [24, 25] is the most closely related work, but
it focuses on concise, intuitive modeling of distributed
algorithms. Since the early versions of NVP, our
focus has been on structuring the computation within
a single node to allow efficient incremental computation.
Frenetic [10,11] and Pyretic [28] have argued for reactive
functional programming to simplify the implementation
of packet forwarding decisions, but they focused on
reactive packet processing rather than the proactive
computations considered here. Similarly to NVP (and [6]
before it), Pyretic [28] identifies the value of an abstract
topology and uses it to support composing modular
control logic.

8 Discussion
After having presented the basic design and its perfor-
mance, we now return to discuss which aspects of the
design were most critical to NVP’s success.

8.1 Seeds of NVP’s Success
Basing NVP on a familiar abstraction. While one
could debate which abstraction best facilitates the manage-
ment of tenant networks, the key design decision (which
looks far more inevitable now than four years ago when
we began this design) was to make logical networks look
exactly like current network configurations. Even though
current network control planes have many flaws, they
represent a large installed base; NVP enables tenants to
use their current network policies without modification in
the cloud, which greatly facilitates adoption of both NVP
and MTDs themselves.
Declarative state computation. Early versions of NVP
used manually designed state machines to compute

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 215

forwarding state; these rapidly became unwieldy as
additional features were added, and the correctness of
the resulting computations was hard to ensure because of
their dependency on event orderings. By moving to nlog,
we not only ensured correctness independent of ordering,
but also reduced development time significantly.

Leveraging the flexibility of software switching. Inno-
vation in networking has traditionally moved at a glacial
pace, with ASIC development times competing with the
IETF standardization process for which is slower. On
the forwarding plane, NVP is built around Open vSwitch
(OVS); OVS went from a crazy idea to a widely-used
component in SDN designs in a few short years, with
no haggling over standards, low barriers to deployment
(since it is merely a software upgrade), and a diverse
developer community. Moreover, because it is a software
switch, we could add new functionality without concerns
about artificial limits on packet matches or actions.

8.2 Lessons Learned

Growth. With network virtualization, spinning up a new
environment for a workload takes a matter of minutes
instead of weeks or months. While deployments often
start cautiously with only a few hundred hypervisors, once
the tenants have digested the new operational model and
its capabilities their deployments typically witness rapid
growth resulting in a few thousand hypervisors.

The story is similar for logical networks. Initial
workloads require only a single logical switch connecting
a few tens of VMs, but as the deployments mature, tenants
migrate more complicated workloads. At that point,
logical networks with hundreds of VMs attached to a
small number of logical switches interconnected by one or
two logical routers, with ACLs, become more typical. The
overall trends are clear: in our customers’ deployments,
both the number of hypervisors as well as the complexity
and size of logical networks tend to grow steadily.

Scalability. In hindsight, the use of OpenFlow has been
a major source of complications, and here we mention
two issues in particular. First, the overhead OpenFlow
introduces within the physical controller layer became the
limiting factor in scaling the system; unlike the logical
controller which has computational complexity of O(N),
the need to tailor flows for each hypervisor (as required by
OpenFlow) requires O(N2) operations. Second, as the
deployments grow and clusters operate closer to their
memory limits, handling transient conditions such as
controller failovers requires careful coordination.

Earlier in the product lifecycle, customers were not
willing to offload much computation into the hypervisors.
While still a concern, the available CPU and memory
resources have grown enough over the years that in
the coming versions of the product, we can finally run

the physical controllers within the hypervisors without
concern. This has little impact to the overall system
design but moving the physical controllers down to the
hypervisors reduces the cluster requirements by an order
of magnitude. Interestingly, this also makes OpenFlow
a local protocol within the hypervisor, which limits its
impact on the rest of the system.

Failure isolation. While the controller cluster provides
high-availability, the non-transactional nature of Open-
Flow results in situations where switches operate over
inconsistent and possibly incomplete forwarding state
due to a controller crash or connectivity failure between
the cluster and hypervisor. While a transient condition,
customers expect better consistency between the switches
and controllers. To this end, the next versions of NVP
make all declarative computation and communication
channels “transactional”: given a set of changes in
the configuration, all related incremental updates are
computed and pushed to the hypervisors as a batch which
is then applied atomically at the switch.

Forwarding performance. Exact match flow caching
works well for typical workloads where the bulk of the
traffic is due to long-lived connections; however, there
are workloads where short-lived connections dominate.
In these environments, exact match caching turned out
to be insufficient: even if the packet forwarding rates
were sufficiently high, the extra CPU load introduced was
deemed unacceptable by our customers.

As a remedy, OVS replaced the exact match flow
cache with megaflows. In short, unlike exact match
flow cache, megaflows caches wildcarded forwarding
decisions matching over larger traffic aggregates than
a single transport connection. The next step is to re-
introduce the exact match flow cache and as a result there
will be three layers of packet processing: exact match
cache handling packets after the first packets of transport
connections (one hash lookup), megaflows that handle
most of the first packets of transport connections (a single
flow classification) and a slow path finally handling the
rest (a sequence of flow classifications).

9 Conclusion
Network virtualization has seen a lot of discussion and
popularity in academia and industry, although little
has been written about practical network virtualization
systems, or how they are implemented and deployed. In
this paper, we described the design and implementation
of NVP, a network virtualization platform, that has been
deployed in production environments for last few years.

Acknowledgments. We would like to thank our shep-
herd, Ratul Mahajan, and the reviewers for their valuable
comments.

13

216 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 References

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In Proc.
of SIGCOMM, August 2008.

[2] T. J. Bittman, G. J. Weiss, M. A. Margevicius, and
P. Dawson. Magic Quadrant for x86 Server Virtualization
Infrastructure. Gartner, June 2013.

[3] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and
Implementation of a Routing Control Platform. In Proc.
NSDI, April 2005.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking Control of
the Enterprise. In Proc. of SIGCOMM, August 2007.

[5] M. Casado, T. Koponen, D. Moon, and S. Shenker.
Rethinking Packet Forwarding Hardware. In Proc. of
HotNets, October 2008.

[6] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker.
Virtualizing the Network Forwarding Plane. In Proc. of
PRESTO, November 2010.

[7] D. W. Cearley, D. Scott, J. Skorupa, and T. J. Bittman.
Top 10 Technology Trends, 2013: Cloud Computing and
Hybrid IT Drive Future IT Models. Gartner, February
2013.

[8] B. Davie and J. Gross. A Stateless Transport Tunneling
Protocol for Network Virtualization (STT). Internet draft.
draft-davie-stt-04.txt, IETF, September 2013.

[9] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.
Generic Routing Encapsulation (GRE). RFC 2784, IETF,
March 2000.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a Network
Programming Language. In Proc. of SIGPLAN ICFP,
September 2011.

[11] N. Foster, R. Harrison, M. L. Meola, M. J. Freedman,
J. Rexford, and D. Walker. Frenetic: A High-Level
Language for OpenFlow Networks. In Proc. of PRESTO,
November 2010.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: A Scalable and Flexible Data Center Network. In
Proc. of SIGCOMM, August 2009.

[13] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A
Clean Slate 4D Approach to Network Control and
Management. SIGCOMM CCR, 35(5), 2005.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an
Operating System for Networks. SIGCOMM CCR, 38,
2008.

[15] P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. In Proc. of SIGCOMM, August 1999.

[16] C. Hopps. Analysis of an Equal-Cost Multi-Path
Algorithm. RFC 2992, IETF, November 2000.

[17] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for Internet-scale
systems. In Proc. of USENIX ATC, June 2010.

[18] Server Virtualization Multiclient Study. IDC, January
2012.

[19] IEEE. 802.1ag - Virtual Bridged Local Area Networks
Amendment 5: Connectivity Fault Management. Standard,
IEEE, December 2007.

[20] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent Hashing and Random Trees:

Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web. In Proc. of STOC, May 1997.

[21] D. Katz and D. Ward. Bidirectional Forwarding Detection
(BFD). RFC 5880, IETF, June 2010.

[22] C. Kim, M. Caesar, A. Gerber, and J. Rexford. Revisiting
Route Caching: The World Should Be Flat. In Proc. of
PAM, April 2009.

[23] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,
T. Hama, and S. Shenker. Onix: A Distributed Control
Platform for Large-scale Production Networks. In Proc. of
OSDI, October 2010.

[24] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing Declarative
Overlays. In Proc. of SOSP, October 2005.

[25] B. T. Loo, J. M. Hellerstein, I. Stoica, and
R. Ramakrishnan. Declarative Routing: Extensible
Routing with Declarative Queries. In Proc. of SIGCOMM,
August 2005.

[26] M. Mahalingam et al. VXLAN: A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks. Internet draft.
draft-mahalingam-dutt-dcops-vxlan-08.txt, IETF,
February 2014.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM CCR, 38(2):69–74, 2008.

[28] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software Defined Networks. In
Proc. of NSDI, April 2013.

[29] B. Munch. IT Market Clock for Enterprise Networking
Infrastructure, 2013. Gartner, September 2013.

[30] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and
A. Vahdat. PortLand: A Scalable Fault-tolerant Layer 2
Data Center Network Fabric. In Proc. of SIGCOMM,
August 2009.

[31] B. Pfaff and B. Davie. The Open vSwitch Database
Management Protocol. RFC 7047, IETF, December 2013.

[32] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado,
and S. Shenker. Extending Networking into the
Virtualization Layer. In Proc. of HotNets, October 2009.

[33] L. Rizzo. Netmap: a Novel Framework for Fast Packet
I/O. In Proc. of USENIX ATC, June 2012.

[34] L. Rizzo, M. Carbone, and G. Catalli. Transparent
Acceleration of Software Packet Forwarding Using
Netmap. In Proc. of INFOCOM, March 2012.

[35] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private
Networks. RFC 4364, IETF, February 2006.

[36] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
Production Network Be the Testbed? In Proc. of OSDI,
October 2010.

[37] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
Classification Using Multidimensional Cutting. In Proc.
of SIGCOMM, August 2003.

[38] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and
J. Rexford. Virtual Routers on the Move: Live Router
Migration as a Network-management Primitive. In Proc.
of SIGCOMM, August 2008.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 217

Operational Experiences with Disk Imaging in a Multi-Tenant Datacenter
USENIX Symposium on Networked Systems Design and Implementation—Operational Systems Track

Kevin Atkinson ∗ Gary Wong Robert Ricci

University of Utah School of Computing
{kevina, gtw, ricci}@cs.utah.edu www.emulab.net

Abstract
Disk images play a critical role in multi-tenant datacen-
ters. In this paper, the first study of its kind, we analyze
operational data from the disk imaging system that forms
part of the infrastructure of the Emulab facility. This
dataset spans four years and more than a quarter-million
disk image loads requested by Emulab’s users. From our
analysis, we draw observations about the nature of the
images themselves (for example: how similar are they to
each other?) and about usage patterns (what is the statis-
tical distribution of image popularity?). Many of these
observations have implications for the design and opera-
tion of disk imaging systems, including how images are
stored, how caching is employed, the effectiveness of
pre-loading, and strategies for network distribution.

1 Introduction

Computers in datacenters are frequently re-allocated from
one purpose to another, need to have their software up-
graded, or need to be returned to a known “clean” state.
This type of re-provisioning is particularly important in
multi-tenant datacenters [4], which are shared by a large
number of applications running on behalf of different
clients. Notably, this is the model adopted by “Infrastruc-
ture as a Service” (IaaS) clouds such as Amazon EC2 [2],
Rackspace [11], and datacenters managed with software
such as OpenStack [15]. These facilities provide physical
or virtual servers (infrastructure) on which users run their
own operating systems and applications [9, 15].

The primary means for initializing user resources is to
load them with an initial disk image, which is a block-level
snapshot of a filesystem containing an installed operating
system and set of applications. Typically, a cloud will
provide a set of images that any user may install on servers
that they provision (facility images). Users may also
create their own images (user images): this is commonly
accomplished by loading a facility image, customizing it,
and taking a snapshot of the resulting disk.

∗Work done at the University of Utah; now at Rice University

Large multi-tenant facilities have hundreds to hundreds
of thousands of servers and thousands to millions of
users [5]. A busy facility may have many thousands of
user images and provision tens of thousands of servers per
day. Disk images are commonly written to drives attached
to the host; EC2, for example, calls this “instance stor-
age” [1], and it is available on nearly all VM types. Disk
imaging is on the critical path for provisioning servers,
which cannot be booted until the requested image has
been loaded. Images can consume significant resources
on the facility, including the space used to store them and
the network bandwidth required to distribute them to the
hosts on which they are to be used. Thus, understanding
disk images and their use is important to the design and
operation of multi-tenant datacenters.

In this paper, we study four years’ worth of data from
the operation of the Emulab testbed [16], a multi-tenant
facility with approximately six hundred hosts and over
five thousand user accounts. The data we examine covers
279,972 requests for disk images (Section 2) and is, to
our knowledge, the only dataset currently available to the
public that contains detailed traces of disk imaging in a
multi-tenant datacenter. It allows us to study properties
of the disk images themselves as well as how they are
used by the facility’s users, and we draw a number of
conclusions that are applicable to the design and operation
of imaging systems. Our key findings include:

• Section 3: There is substantial block-level similarity
between many images, suggesting that deduplicating
storage is appropriate. The lifespan of images varies
greatly, from days to years, and many images go
unused for months at a time, making multi-tier data
storage attractive.

• Section 4: The working set of images is quite small
(mean: 12 per day, 30 per week), making caching of
frequently used images potentially effective. How-
ever, the makeup of this working set changes fre-
quently, and there are no dominant images. The
daily working set size grows linearly with the num-
ber of users, but the total number of facility and user

218 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

images follow different curves.

• Section 5: The popularity of user images follows
a heavy-tailed distribution, while the popularity of
facility images does not. Most users skew heavily
towards using either facility provided images or cus-
tom images, not both. While most users do not create
their own images, those who do number among the
facility’s heaviest users.

• Section 6: We consider the technique of pre-loading
popular facility images, allowing some requests to
be satisfied without waiting for the image to load.
We find that two factors control the potential benefit
from this strategy: (a) the ratio of the working set
size to the number of idle disks available for pre-
loading, and (b) the ratio of the rate at which the
facility can load disks to the arrival rate of requests.

• Section 7: Differential loading (pre-loading a base
image, then transferring only differing blocks as re-
quired) shows potential. In order to be effective, it
will require development of sophisticated prediction
techniques that take into account both the popularity
of images themselves and their block-level similarity
to each other.

We conclude in Section 8 with several concrete sugges-
tions regarding the design and operation of disk imaging
systems, and point to fertile areas for future work.

2 Dataset
Emulab is a network testbed widely used by the dis-
tributed systems and networking communities. An ex-
perimenter describes a network in terms of links and
hosts. Included in this specification is the disk image to
be loaded on each host. Emulab then provisions servers,
physical or virtual, loading the requested disk image. This
provisioning is done on demand as requests come in, and
there is only limited support for ahead-of-time scheduling
or batch jobs. The facility provides a number of standard
images, including “default” images that are used if the
user does not explicitly request an image. Many users
create their own images by booting from a facility im-
age, customizing it (for example, by installing software
packages or modifying the operating system), and taking
a snapshot. This user image can be referenced in future
requests, saving the user the effort of re-installing the
packages they use, or to scale out to much larger experi-
ments. This basic model of image usage and creation is
similar to that used in most IaaS clouds [14].

Emulab is capable of provisioning both physical and
virtual machines; physical machines are the most com-
monly allocated resource. While many IaaS clouds provi-

sion solely virtual machines, we believe that this differ-
ence does not have a significant impact on conclusions
drawn from the dataset: in either case, the user is pre-
sented with the abstraction of an PC on which they may
load and boot an operating system. While the details of
operating systems that run within physical and virtual
machines may vary, the quantity and diversity of users’
desired images is unlikely to be affected.

Emulab uses block-level disk images and distributes
them using the Frisbee [6] disk imaging system. The
format uses filesystem-aware compression, meaning that
it does not store disk blocks that are not used by the
filesytem, and compresses the allocated blocks with
zlib [7] for efficient storage. Frisbee uses IP multicast to
distribute images, and is highly optimized so that the bot-
tleneck in image distribution and installation is the write
speed of the target disk. The amount of time required to
load a disk image depends on the number of used blocks
in the filesystem that it contains, but is typically on the
order of a few minutes. Facility images are visible to and
may be requested by all users. User images are visible
only to their creators unless the creator decides to make
the image public, which few do.

2.1 Dataset Details

The dataset that we study covers four years of disk image
requests on Emulab, from March 2009 to March 2013.
The dataset covers a total of 279,972 requests for 714
unique images. The requests were made by 368 users, at
an average rate of 192 disk images loaded per day. The
records cover the identity of the image, the user making
the request, and the timestamp at which the request was
made. Furthermore, the data indicates whether each im-
age was a facility image or a user image, and whether it
was requested explicitly by the user or was chosen as a
default because the user did not specify an image. To pre-
serve user anonymity, users and user images are assigned
random integers as identifiers in this paper. We present
the names of facility images using their Emulab-assigned
names; user images are presented as user/image pairs.

One of the things we studied was the block-level dif-
ferences between images. Our primary interest in exam-
ining the contents of images is to determine the potential
savings from loading a “base” image (usually a facility
image), then transferring and writing only the disk blocks
required to transform it into a particular “derived” image
(usually a user image). We define the difference of two
images A and B as:

∆(A,B) = |∀i ∈ b : B[i] �= A[i]| (1)

where b is the set the indices of allocated storage blocks
in image B, and A[i] and B[i] are the contents of images
A and B, respectively, at index i. This measure directly

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 219

captures the numbers of blocks in image B that would
need to be written to a disk that already contains image A.
We define δ(A,B) as the fraction of blocks that would
need to be written: that is,

δ(A,B) =
∆(A,B)

|b| (2)

The Emulab dataset does not record the provenance
of images (that is, which user images where based on
which facility images). We assume that each user image
U was based on the facility image F for which ∆(F,U)
is minimized. For a particular image U , we refer to this
base image as UB . Emulab allow users to delete their
image files: only 37.4% (267) of the images found in the
request traces were available for analysis of block-level
similarities. Though large in number, the missing images
were relatively unpopular, accounting for only 15.8% of
all requests. Emulab also allows its users to modify im-
ages, so the image files that we analyzed represented a
snapshot of image contents at a particular point in time.

2.2 Removing Sources of Bias in the Dataset

We filtered the dataset to remove certain biases. First, we
omit all uses of the facility by its operational staff: the
maintenance, testing, etc. that they perform is likely to
follow different patterns than users of the facility. Sec-
ond, as a network testbed, Emulab supports a feature
known as “delay nodes,” [13, 12] which perform a traffic-
shaping role that does not represent a function present in
most multi-tenant datacenters. Third, Emulab includes
some resources that are not the standard PC servers used
in clouds and datacenters: these include wireless nodes,
programmable network hardware, and sensors. This fil-
tering removed 183,824 of the original 463,796 requests
(39.6%), 215 images (23.1%), and 30 users (7.5%), leav-
ing us with the 279,972 requests, 714 images, and 368
users that we studied.

It is worth making special note of Emulab’s “default”
images. If an Emulab experimenter does not specify a
particular disk image in their experiment description, they
get a default that is, for historical reasons, quite old. Due
to their ages, the default images are not very popular.
Most users select the facility image that best meets their
needs; as a result, the presence of a default does not have
a dominating effect on the way that users select images.

2.3 Users and Projects

For the purposes of this study, we consider users at the
level of organizations. Emulab groups individual users
into “projects.” These loosely-defined groups represent
research groups, classes, or cross-institution collabora-
tions. Because of this, they are analogous to businesses

that purchase time on a cloud such as EC2, or individual
business units that share a company-wide datacenter. In
the remainder of this paper, we consider all individuals
who are part of the same project to be a singe “user” of the
facility—when we refer to “users,” we are referring to Em-
ulab projects. The number of individuals who requested
disk image loads over this time period was 1,301.

2.4 Limitations of This Study

The Emulab dataset is, to our knowledge, the only one of
its type currently publicly available. Therefore, we can-
not quantitatively assess the degree to which it matches
other multi-tenant facilities. We believe our analysis re-
mains valuable nonetheless, for two reasons. First, it is
the only analysis to date to apply such a large quantity of
real-world data to the problem of improving disk imaging
systems. Second, we conjecture that the most funda-
mental findings in our work remain applicable in other
environments, even if specifics (such as the λ parameter
to the facility image popularity distribution) differ.

Our dataset covers a large number of disk image loads,
but comes from a mid-sized facility. We attempt to ana-
lyze the effects of facility size in Section 4.3, but appli-
cation of our conclusions to larger facilities necessarily
involves extrapolation. In addition, two features unique
to Emulab affected our ability to run certain analyses.

First, the nature of resource allocation in Emulab makes
it difficult to study the inter-arrival times of image re-
quests. Emulab’s primary unit of resource allocation is
the experiment: a collections of hosts that together make
up a network experiment. In contrast, most IaaS clouds
consider only individual servers or “instances,” and the
cloud has no semantic information about which instances
are contributing to the same application. Thus, image
requests in Emulab arrive in well-defined bursts that do
not have a direct analog in many other datacenters. De-
ploying an application in a datacenter or cloud does often
involve provisioning of multiple machines in a short time-
frame; however, we have no data that would allow us to
analyze whether experiment sizes in Emulab are repre-
sentative of burst sizes in other environments. For this
reason, we avoid analyzing this aspect of the dataset, and
all of our analyses are with respect to individual loads of
disk images rather than Emulab experiments.

Second, we chose not to analyze the relative popular-
ity of the operating systems contained in the images (eg.
Linux vs. BSD, or the relative popularities of Linux dis-
tributions). Emulab’s user base is overwhelmingly com-
prised of academic researchers and students, and their OS
preferences may not be representative of a broader pop-
ulation. In particular, while Emulab supports Windows,
it constitutes a small fraction of all Emulab use—almost
certainly a smaller fraction than would be seen in other

220 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300 400 500 600

1
10

10
0

10
00

10
00
0

Rank

R
eq
ue
st
s

Facility
User

Figure 1: Requests for facility and user images, sorted on the x
axis by popularity. Note the log-scale y axis.

settings. We restrict our analysis to the popularity of disk
images rather than the operating systems they contain,
and it is possible that this distribution is affected by the
operating system preferences of Emulab’s user base.

3 Storage of Disk Images
We begin our study by examining the basic properties of
the images in our dataset, with an eye towards understand-
ing how they should be stored. We pay special attention to
the relationship between images that are provided by the
facility and images that are created by users; as we will
see through further analysis, these images have different
characteristics that warrant different treatment.

3.1 Prevalence of User Images

During the 48 months covered by our dataset, there were
a total of 368 users. Of these, nearly two thirds (231) used
only facility images, and slightly over one third (137, or
37.2%) used at least one user image. This implies that op-
timizing the provisioning of facility images can improve
the experience of a majority of users. For example, if a
suitable set of facility images can be identified for pre-
loading on to servers, this could take image loading out
of the critical path for creation of those users’ instances.
We explore this issue further in Section 6.

The number of users who request user images, how-
ever, is non-negligible, suggesting that an imaging system
should also take their needs into account. In fact, we find
that there are more user images in our dataset (619) than
facility images (94), meaning that, on average, each user
who creates at least one disk image creates 4.5 of them.

3.2 Popularity of User Imags

The top of Table 1 shows the relative popularity of facility
and user images. We see that the percentage of requests
for user images is over 44%; since only 37.2% of users

Image name Requests %
All facility images 155,617 55.6%

u All user images 124,355 44.4%
RHL90-STD [D] 21,993 7.9%
FEDORA10-STD 18,042 6.4%
UBUNTU10-STD 14,402 5.1%
RHL90-STD 13,182 4.7%
FC4-UPDATE 12,097 4.3%

u 715/10 11,156 4.0%
FBSD410-STD 8,916 3.2%
FEDORA8-STD 8,153 2.9%

u 237/69 7,512 2.7%
u 296/35 7,179 2.6%
u 787/24 6,243 2.2%

UBUNTU70-STD 6,021 2.2%
UBUNTU12-64-STD 5,834 2.1%

u 787/14 5,231 1.9%
u 226/44 5,198 1.9%

FEDORA10-UPDATE 4,861 1.7%
CENTOS55-64-STD 4,710 1.7%
FC6-STD 4,455 1.6%

u 762/69 4,213 1.5%
FC4-WIRELESS 3,700 1.3%
FC4-STD 3,615 1.3%
FEDORA10-STD [D] 3,604 1.3%
UBUNTU11-64-STD 3,383 1.2%

u 624/89 3,277 1.2%
u 238/50 3,113 1.1%
u 226/51 2,899 1.0%

Table 1: Total requests for all user and facility images. Also
shown are the number of requests for all images that account for
more than 1% of all requests. User images are marked with a ‘u’
in the left column, and images requested implicitly as defaults
are marked with a ‘[D]’; explicit requests for default images are
counted separately.

create their own images, this imples that this set of users
are heavier users of the testbed by at least 18%. Table 1
also shows all images that made up at least 1% of the
requests. Of these twenty four images, ten are user images.
Note that RHL90-STD and FEDORA10-STD each appear
twice, because they are both common explicitly requested
images and also images loaded by default. The complete
image popularity data is plotted in Figure 1. We can see
that the number of user images is much larger than the
number of facility images, but that the population of user
images contains many images that are used few times.
Together, the top 17 facility images are more popular than
the top 17 user images (the 17th facility image had 1,772
requests, and the 17th user 1,330). From the 18th image
onwards, the user images are more popular—the 18th user
image had 1,260 requests and the 18th facility image had

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 221

1,233. Both facility and user images have tails consisting
of images that were requested fewer than ten times, but
this tail is much more prevalent in the case of user images,
where the tail represents nearly half of all user images.

From this data, we can conclude that facility images
dominate, but that there are a small number of user images
that are as popular as some facility images.

3.3 Image Lifespan

The Emulab dataset does not include explicit creation and
deletion dates for images. Thus, we define the lifespan
of an image to be the number of days between when the
image was first seen in the request stream and when it
was last seen. Note that this will tend to underestimate
lifespan: some images were likely first used before our
dataset begins, and some will continue to be used after
the end of the dataset.

A histogram of user image lifespans can be seen in
Figure 2. While the majority of images have very short
lifespans, there is a long tail: several were used through-
out the entire four years covered by the dataset. The
observed mean lifespan is 100.4 days.

We found the number of images with short lifespans to
be quite surprising, so we examined them in greater detail,
and it became clear that a large majority of these short-
lifespan images were requested only on a single day: 196
of the 619 user images (31%) fall into this usage pattern.
This suggests that a number of users create images for
the purposes of running a single experiment, a conclusion
borne out by looking at the experiment metadata.

Finally, we looked at how long user images “go idle”.
We found that it is common for user images to have gaps
of months in between requests for them. During this time,
there is no need to have the images constantly available;
they could be moved to cheaper, but slower, storage. The
distribution of the maximum idle periods for the 214 user
images with a lifespan of at least 30 days is shown in
Figure 3. In total, 162 of the images (76% of long-lived
images, and 26% of images overall) had gaps in usage of
one month or more. Two images even had gaps of over
two years between successive uses.

3.4 Block-Level Differences Between Images

We next examined how much user images differ from
the facility images they are based on. We use the defini-
tions of ∆(A,B), δ(A,B), and “base” images given in
Section 2.1. Figure 4 shows a histogram of similarities
between user images and their associated base facility
images. From this figure, it is clear that many user im-
ages do show significant similarities to their bases—most
are more than 50% similar, with a significant peak in
the 60%–80% range. This is in line with findings from

Image lifetime (days)

Fr
eq

ue
nc

y

0 100 300 500 700 900 1100 1300 1500

0
1

5
10

50
20

0
50

0

Figure 2: Histogram of the lifespans of user images. Note that
the y axis is log-scale.

Maximum interval between requests (days)

Fr
eq

ue
nc

y

0 90 180 270 360 450 540 630 720 810

0
10

20
30

40
50

Figure 3: Histogram of usage gaps for user images.

% similarity

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
10

20
30

40

Figure 4: Histogram of similarity (1− δ(UB , U)) between user
images and their associated base images. Higher percentages
indicate more similarity.

smaller studies in the past [8]. There is also a significant
tail of more than twenty images images with very low
similarity (below 10%) to their base images.

Overall, these numbers point to two potential strategies
for improving disk imaging systems. First, they suggest
that significant storage savings can be had by storing im-
ages in a deduplicating storage system [10], which would

222 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Variation of facility image popularity over time. The
fifteen most popular facility images are shown.

store only one copy of the blocks that the base and derived
images have in common. Second, they suggest that the
technique of differential disk loading, which transforms
a base image into a derived image by writing only the
blocks that differ, has a potential for reducing the time
and bandwith for distributing the user images. We explore
the latter in detail in Section 7.

4 Working Set Size and Caching Potential
Having looked at the images themselves, we turn our
attention to trends of usage over time, paying particular
attention to the working set; understanding the size and
composition of the working set is critical to designing
strategies for caching and pre-loading.

4.1 No Dominant Images

If a small set of facility images dominates the request
stream, it would be possible to design the disk imaging
system around that fact. In particular, it would make sense
to pre-load most or all idle disks with popular images,
allowing user requests to be satisfied without waiting for
a disk to load. This is the policy adopted by Emulab: the
images labeled ‘[D]’ in Table 1 are loaded as part of the
process of freeing machines for the next user.

As we can see in Figure 5, there is no such dominant
image. The popularity of all facility images fluctuates
wildly from month to month, with new images becoming
popular quickly, old images falling out of favor, and some
images swinging between popular and unpopular. Even
the default images, which remain active throughout the
entire time period, sees large changes in popularity. Note
that we do not distinguish between explicit and implicit
requests for default images as we did in Table 1; for the
purposes of disk loading, these two cases are equivalent.

As a result, we conclude that the strategy of pre-loading
a single default image is unhelpful. It is, in fact, coun-
terproductive: servers must be taken out of circulation

Images used during day

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
50

10
0

15
0 Median = 12.00

Mean = 11.98
Std. dev. = 4.33

Figure 6: Histogram showing the distribution of the working set
size over one-day periods (midnight to midnight).

Images used during week

Fr
eq

ue
nc

y

15 20 25 30 35 40 45

0
5

10
15

Median = 30.00
Mean = 30.17

Std. dev. = 6.43

Figure 7: Histogram showing the distribution of the working set
size over one week periods (Sunday to Saturday).

while they are loaded with the default image, and most
are re-loaded a second time when requested by a user. If
pre-loading strategies are to be useful, they will require
more sophisticated methods for predicting future requests.

4.2 Size and Variation of the Working Set

Figure 6 depicts the working set size (number of unique
images requested) over one-day periods. The mean work-
ing set size is quite small, at a mean of 11.98 images per
day—this represents only 1.7% of the total number of
images. While there is some variation in the working set
size, it is not large: it follows a normal distribution with
a standard deviation of 4.33. This result is encouraging
from the perspective of caching: it suggests that only a
small fraction of images need to be available for quick
loading at any point in time, and that others could be
stored in cheaper, slower storage systems. Figure 7 shows
the distribution over week-long periods. The average
working set size is approximately two and a half times
larger than the daily average, and again follows a normal
distribution with a reasonably small standard deviation.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 223

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Percentage of user base

N
um

be
r o

f i
m

ag
es

 u
se

d
User
Facility

Figure 8: Total number of images used over four years when
considering random subsamples of the Emulab userbase.

4.3 Scaling of the Working Set

To get a feel for how the size of the working set might
vary on facilities larger or smaller than Emulab, we sub-
sampled our data to simulate differently sized userbases.
Figure 8 shows the total number of images used over the
4-year period when considering only 10% of the user-
base, 20%, etc. The set of facility images quickly reaches
saturation (all images are used at least once) and stops
growing with additional users. The set of user images, on
the other hand, grows linearly with respect to the number
of users. This is explained by simple intuition: the set of
useful facility images is more a function of the facility
than of the userbase, while more users mean more user-
created images. Thus, we can expect that a facility with
many more users than Emulab will have a greater number
of user images in proportion roughly to its greater user-
base, but that its set of facility images will not be larger
by the same proportion. Indeed, Amazon EC2, which has
a userbase that is at least three orders of magnitude larger
than Emulab, advertises less than thirty images provided
directly by AWS [3] and less than a hundred public im-
ages provided by their business partners. In comparison,
Emulab has 94 public facility-provided images.

However, this does not quite tell the whole story. Fig-
ure 9 shows the same subsampings, but this time looks
at the mean daily working set size. Here, we see that
the number of images loaded in a typical day increases
linearly with the userbase for both facility and user im-
ages. Thus, we can expect that facilities much larger than
Emulab do exhibit larger working sets. The working set
of facility images is capped by the total number of such
images, so very large facilities are likely to include most
or all of their facility images in the daily working set.

The general trend we can expect, is that for small fa-
cilities, the daily image working set size is in direct pro-
portion to the size of the userbase. For large facilities, the
working set will contain a relatively small set of facility

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Percentage of user base

M
ea

n
da

ily
 w

or
ki

ng
 s

et
 s

ize

User
Facility

Figure 9: Mean daily working set size when considering random
subsamples of the Emulab userbase.

images, and a very large set of user images; however, we
find that the fraction of requests that are for user images
stays fairly constant regardless of the size of the userbase,
meaning that these requests must necessarily be diverse.

5 Users’ Behavior

We now turn our attention to the behavior of individual
users; a facility that understands how its users interact
with images is in a better position to provide the interfaces
and image management tools that they require.

5.1 Distribution of Image Popularity

In distributions with “light” tails, such as the normal distri-
bution, a relatively small subset of the population accounts
for most of the popularity. For “heavy tailed” distribu-
tions (defined as those whose tail is not bounded by the
exponential [17]), this effect is less pronounced, and it
takes more of the population to cover the same level of
popularity. We compared the popularity distributions of
facility and user images separately to exponential distribu-
tions chosen to match the sample means. We found that
facility images are a reasonably good match for the cor-
responding exponential distribution (with Kolmogorov-
Smirnov statistic

√
nDn = 1.13), but user images are not

(
√
nDn = 5.54). As can be seen in Figure 10, the tail for

user images lies substantially above the exponential.
This is a key finding: user-created images have a sig-

nificant heavy tail, while facility-provided images do not.
The primary consequence of this discrepancy is that strate-
gies that depend on being able satisfy a large number of
requests with a relatively small number of images (such
as pre-loading, examined in detail in Section 6), will be
more effective with facility images than with user images.

224 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300 400 500 600

1
10

10
0

10
00

10
00
0

Rank

R
eq
ue
st
s

Facility
Exp(λ=0.143)
User
Exp(λ=0.026)

Figure 10: Distribution of image popularity compared to the
exponential (shown as dashed lines); note the log-scale y axis.

Images used

Fr
eq

ue
nc

y

0 10 20 30 40 50 60

0
20

40
60

Figure 11: Histogram showing the number of users who use
different quantities of images.

5.2 Users and Images

As we can see in Figure 11, most users use a relatively
small set of images. There are, however, two surprising
features of this data.

Only 20% of users used a single image—a large ma-
jority used two or more. We believe that this is due to
three factors. First, since our sample period covers four
years, many users likely migrated to newer versions of
images as operating systems were updated. Second, any
user who creates a custom image will use at least two
images: they will request the base facility image at least
once, then move to the custom image they create. Third,
users may have started off using the default images pro-
vided by Emulab, found them unsuitable for their needs,
and switched to non-default images.

Another surprising feature is that there are a small
number of users who use a very large number of images.
Twenty users use at least 20 images, and one outlier uses
more than 60.

Figure 12: Profile of users making at least 500 disk image
requests. Requests for facility images are shown as bars above
the axis, and user images are below the axis.

5.3 Behavior of Heavy Users

Because user images are created by customizing facility
images, we can expect that all users will employ facility
images at least once, and likely a few times. The question
remains, however, whether users tend to use primarily
facility images, primarily their own images, or some bal-
anced mixture of the two. We are particularly interested in
the answer to this question for heavy users of the facility.

Figure 12 shows a profile of the heaviest users (those
who made at least 500 image requests) from the Emulab
dataset. Two important facts are evident. First, while a
few users do mix facility and user images (i.e. have bars
both above and below the axis in the figure), most tend
to skew heavily towards one or the other. Second, among
the twenty heaviest users, twelve employ primarily user
images. Past this point, facility images dominate. This
clearly establishes that custom user images are a “power
user” feature: their dominant use is by a relatively small
number of users, who use them heavily.

6 Prediction and Pre-Loading

We now turn our attention to techniques that may allow
the facility to service user requests more quickly. The first
technique that we consider is pre-loading: if it is possible
to predict which images will be requested in the near
future, the facility can pre-load them onto idle disks. If
the predictions are correct, users requests may be satisfied
immediately; if not, the user will have to wait for their
image to be loaded. Note that this strategy does not save
bandwidth on the datacenter’s image distribution network;
it simply shifts the image distribution to before the user’s
request arrives. In fact, pre-loading may increase the
bandwidth used for distributing images: in the case of
mispredictions, a node pre-loaded with one disk image
may need to be re-loaded with another.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 225

 0

 20

 40

 60

 80

 100

20
09

-0
3

20
09

-0
4

20
09

-0
5

20
09

-0
6

20
09

-0
7

20
09

-0
8

20
09

-0
9

20
09

-1
0

20
09

-1
1

20
09

-1
2

20
10

-0
1

20
10

-0
2

20
10

-0
3

20
10

-0
4

20
10

-0
5

20
10

-0
6

20
10

-0
7

20
10

-0
8

20
10

-0
9

20
10

-1
0

20
10

-1
1

20
10

-1
2

20
11

-0
1

20
11

-0
2

20
11

-0
3

20
11

-0
4

20
11

-0
5

20
11

-0
6

20
11

-0
7

20
11

-0
8

20
11

-0
9

20
11

-1
0

20
11

-1
1

20
11

-1
2

20
12

-0
1

20
12

-0
2

20
12

-0
3

20
12

-0
4

20
12

-0
5

20
12

-0
6

20
12

-0
7

20
12

-0
8

20
12

-0
9

20
12

-1
0

20
12

-1
1

20
12

-1
2

20
13

-0
1

20
13

-0
2

TO
TA

L

Default Other Facility User Images

Figure 13: Percentage of requests for three classes of images.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio of free pool size to number of images

Pr
ob

ab
ilit

y
of

 s
at

is
fy

in
g

re
qu

es
t

Figure 14: Fraction of requests satisfied from pre-loaded images
for varying ratios of free pool size to the working set size.

6.1 Free Pool vs. Working Set Size

We begin with the observation from Section 3.2 that the
popularity of user images has a much longer, heavier tail
than the set of requests for facility images. Therefore,
strategies targeting prediction of facility images are likely
to bear more fruit. We also recall from Section 4.1 that
there does not exist a consistently dominant image, though
Section 4.2 showed us that the working set size over a day
is fairly small. This small working set size is encouraging
from a prediction standpoint.

An illustration of the potential for prediction can be
found in Figure 13, which shows three classes of image
requests. Requests for default images can be satisfied by
simply pre-loading default images without complicated
prediction strategies. This strategy is clearly ineffective
in Emulab, as few requests are for the defaults. On top of
these are requests for non-default facility images, which
represent attractive targets for pre-loading. Finally, we see
that approximately 40% of requests are for user images,
which are a poor target for prediction because of their
long tail. Thus, we target the 60% of requests that are for
the relatively predictable facility images.

We first consider how the size of the free pool affects
the potential for prediction, where the free pool is defined

as the set of idle nodes or disks that are not in use and
are thus available for pre-loading. We consider a simple
model in which we assume that the inter-arrival time of
requests is greater than the time required to load an image.
(We will relax this assumption below.) In this model, the
determinant of prediction accuracy is the ratio between
the size of the free pool and the working set size. In this
scenario, the best prediction mechanism is to pre-load
those N disks with the N most popular images.

Figure 14 shows the percentage of requests for facility
images satisfied under this model, using the empirical
request and working set data from Emulab. Intuitively, if
there are no disks available for pre-loading, it is not possi-
ble to satisfy any requests from pre-loaded machines, and
if one can pre-load the entire working set of images (the
ratio is 1.0 or greater), it is possible to satisfy all requests.
Because the distribution of facility image popularity is
roughly exponential, the ability to load the top 25% of
images satisfies 95% of all facility requests.

It is interesting to consider how this result applies to
different sizes of facilities. In many cases, the size of
the free pool will be a fraction of the physical resources,
meaning that it is much larger, in absolute terms, for
larger facilities. At the same time, we have seen that the
working set size of facility images grows linearly with the
userbase, but is capped at a relatively small size by the
total number of facility images. The practical effect is that
small facilities (tens of nodes) are likely to fall on the left
side of the curve in Figure 14, meaning that pre-loading
is not likely to be particularly effective. Large facilities
(thousands of nodes), on the other hand, are likely to
be on the far right, with free pool sizes that far exceed
the number of facility images—for them, pre-loading is
likely to be able to satisfy all requests for facility images.
In between these extremes, a facility needs to carefully
consider the free pool to working set ratio to determine
whether pre-loading makes sense.

6.2 Reload Rate vs. Arrival Rate

Our previous experiment made the simplifying assump-
tion that request inter-arrival time was smaller than the
time required to re-load an image; this enables the facil-
ity to ensure that the N most popular facility images are
loaded at all times, and that only one copy of each image
needs to be kept pre-loaded. We now consider the relation-
ship between the arrival rate of new requests and the rate
at which the facility can pre-load images in response. If
bursts of requests arrive at a faster rate the the facility can
re-image, it is useful to have more than one pre-loaded
copy of each image. It is also possible for bursts of re-
quests to outpace the facility’s ability to keep the image
loaded, meaning that there can be mispredictions even for
very popular images.

226 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reload rate (normalised to mean arrival rate)

Pr
ob

ab
ilit

y
of

 s
at

is
fy

in
g

re
qu

es
t

Figure 15: Fraction of requests satisfied against the rate at which
images can be pre-loaded.

We model this scenario using standard tools from queu-
ing theory: each image is modeled as a queue, with a num-
ber of queue slots equal to the number of disks onto which
the image is pre-loaded. The distribution of pre-loaded
images is taken directly from the observed distribution of
requests; using our results from Section 5.1, we model
this distribution as being exponential with λ = 0.143.
We make the standard queuing theory assumption that
requests arrive according to a Poisson process [18]. We
picked a facility size of 1,000 disks, with an average uti-
lization rate of 90%, meaning that on average, 100 disks
are available for pre-loading.

Figure 15 shows the results of a Monte Carlo simulation
using this model. We varied the ratio of reload rate to
the mean request arrival rate, and find that this ratio is
critical. If the facility can reload images at a faster rate
than requests arrive (the area to the right of the 1.0 ratio),
it can easily keep the proper set of facility images pre-
loaded and can satisfy most requests for these images;
this matches the case modeled in Figure 14. If the reload
rate is lower (to the left of the 1.0 ratio), the value of pre-
loading falls quickly, as bursts of requests overwhelm the
facility’s ability to keep a pre-loaded pool that contains
the appropriate set of images.

We conclude that pre-loading facility images can be
an effective strategy for reducing user wait time, but that
the critical determining factors for its success are: (1) the
ratio betwen the size of the free pool and the working set
size; and (2) the ratio between the facilities’ reload rate
and the mean arrival rate.

7 Differential Disk Loading
The second optimization we consider targets requests for
user images: it may be possible to pre-load facility im-
ages, and when requests for user images arrive, load only
the blocks that differ. This differential loading strategy
is attractive for two reasons. As we saw in Section 5.1,
the distribution of user image popularity has a heavy tail,
making it difficult to pre-load enough of them to satisfy
many requests. But, as we saw in Section 3.4, user images
have high levels of similarity to the smaller set of facility
images. Thus, we have the potential to reduce user wait
times by picking a pre-loaded facility image and doing
a fast load of just the blocks that differ. In this section,
we develop metrics that quantify the potential benefits
of differential disk loading and give us a general under-
standing of the potential effectiveness of this technique.
In order to realize these benefits, additional methods for
predicting future requests would need to be developed,
which take into account not only image popularity, but
also block-level similarity between the pre-loaded images
and the images that may be layered on top of them.

We consider only the problem of finding the differ-
ences between two disk images, and not the more general
problem of taking the difference between a disk image
and arbitrary disk state (i.e. the state in which the disk
is left by the previous user). Earlier work [6] has shown
that disk distribution and installation can run at the full
write speed of the target disk, meaning that schemes that
require reading disk contents before writing are likely to
slow the process down, and are likely to be fruitful only
in cases where users do not write much to the disk.

7.1 Limits to Savings

As we have seen, the set of facility images is smaller and
more predictable than the set of user images. Thus, as
with the last section, we continue to pre-load only facility
images; when a user image U is requested, if its base
image UB has been pre-loaded, we need to transfer only
∆(UB , U) blocks instead of the full |u| blocks belonging
to the image. Clearly, this strategy relies on having the
correct set of base images pre-loaded. To simplify, we
start by assuming that we have an oracle that tells us what
facility images to pre-load or sufficient capacity to pre-
load all facility images; we relax this assumption below.

We begin by defining the number of disk blocks loaded
for user images when differential loading is not in use (i.e.
the entire user image must be loaded). For an individual
image U , this quantity is:

|u| · UC (3)

Recall that u is the set of block addresses with defined
values in image U , and therefore |u| represents the size

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 227

of the image. We define UC to be the number of times
the image is loaded. Intuitively, then, this quantity is
simply the number of blocks in the image multiplied by
the number of times the image is used.

To obtain the total number of blocks loaded across the
universe of all user images, U, we sum the total blocks
loaded for each image U ∈ U:

∑
U∈U

|u| · UC (4)

To adapt these equations for differential loading, we
substitute ∆(UB , U) for |u|, giving us the number of
blocks that must be loaded assuming the base image has
been pre-loaded. This gives us the total number of blocks:

∑
U∈U

∆(UB , U) · UC (5)

Differential Savings Potential (DSP): The maximum
relative savings from differential loading (assuming the
correct UB images are always loaded) is derived by com-
bining Equation 4 and Equation 5:

DSP =
∑
U∈U

|u| −∆(UB , U)

|u| UC (6)

In the Emulab dataset, the values for Equation 4 and
Equation 5 are 174 TB and 78 TB, giving a DSP of 0.55.
This indicates that, in the presence of an oracle, the Emu-
lab facility could save over half of the blocks it transfers
for user images at request time, potentially halving the
average time users must wait for custom images to load.

Adjusted Differential Savings (ADS): We next relax
the assumption of an oracle. To do so, we use the notation
P [I] to indicate the probability that image I is pre-loaded
on the facility. We adjust Equation 6 to indicate that with
some probability, the user request can be fulfilled with
differential loading because the requisite base image is
loaded. If not, the entire image must be loaded (resulting
in no savings):

ADS =
∑
U∈U

P [UB]
|u| −∆(UB , U)

|u| UC (7)

Note that if P [UB] = 1 for all images (perfect pre-
diction), this gives us Equation 6. For smaller P [UB]
values (worse predictions), the adjusted savings are lower
than the savings potential, which fits with the intuitive
notion that sub-optimal pre-loading will reduce the value
of differential loading.

7.2 Savings With Predictions

Figure 16 shows the effectiveness of differential loading
as a function of the fraction of facility images that are

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of facility images pre−loaded

U
se

r i
m

ag
e

tra
ffi

c
re

qu
ire

d

Figure 16: Network traffic required to load user images, when
various facility images may be pre-loaded.

pre-loaded. The y axis of this graph represents the frac-
tion of blocks that must be loaded at request time, with
lower numbers being better, and the limit being 1−DSP
(0.45). Along the x axis, we show the fraction of facility
images loaded—we rank facilitiy images by an adjusted
popularity that is the sum of their own popularity and the
popularity of all users images that use that facility image
as a base, and then pre-load the x most popular. What we
can see is that relatively few facility images act as bases
for user images, so it is necessary to pre-load only a small
subset of them (approximately 20%) in order to get most
of the benefit of differential loading. This implies that
this technique can be effective even on facilities that have
low free pool to working set ratios.

Also of interest in Figure 16 is that, for our dataset, the
most popular facility images (the default images) are not
commonly used as bases for user images—this accounts
for the small plateau on the left of the graph. We hypothe-
size that this is due to the age of Emulab’s defaults.

8 Recommendations and Future Work
In our exploration of the Emulab disk image request
dataset, we have uncovered a number of properties that
can be used to guide the operation and design of disk
image storage and installation systems. Based on our
analysis, we make the following recommendations:

• Storing images in a deduplicating image store is
likely to result in substantial savings. Reads from
deduplicating stores can be slow, but the working
set size is small enough that it is possible to cache
images in faster storage.

• Focusing pre-loading strategies on facility images
is likely to produce the best results. The tail of
user images is much longer and heavier than the
one for facility images, and only a few user images
approach the popularity of the heaviest-used facility

228 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

images. For very large facilities, it is likely that
most facility images appear in the daily working set,
making prediction straightforward.

• Pre-loading of a single default image is not a useful
strategy, as the diversity of user requests means that
no one image, even the default, is dominant on any
time scale.

• For small facilities (those where the number of idle
disks is significantly smaller than the working set
size), pre-loading is likely not a valuable strategy.
For large facilities, the number of idle disks is likely
to be much larger than the working set size, making
simple pre-loading strategies highly effective. To
accurately model the effectiveness of pre-loading
for mid-sized facilities, additional study of request
inter-arrival distributions is necessary.

• Large facilities would do well to focus on techniques
that allow them to sustain high reload rates. The only
way for pre-loading to be effective is to keep this rate
significantly above the request arrival rate, which is
likely to be high for large facilities. Techniques of in-
terest include distribution using multicast and image
distribution servers spread throughout the datacenter.

• Differential loading has the potential to be effec-
tive, especially on facilities with limited free pools.
It shows the potential to halve the number of disk
blocks transferred to satisfy user requests, but that
potential depends on correct predictions when pre-
loading the appropriate base images. This changes
the criteria for pre-loading, since base images should
be selected not only on their own popularity, but also
on the popularity of images that may be laid down
on top and their block-level similarly with the base
image. This complex optimization problem presents
an interesting area for future study.

An anonymized version of the dataset used for thus
study, plus all code used to analyze it and produce the
figures for this paper, can be found at:
http://aptlab.net/p/tbres/nsdi14

Acknowledgments

We would like to thank the administrators of Emulab for
their assistance in collecting the data used for this study.
We would also like to thank Dave Andersen, our shepherd
Bruce Maggs, and the anonymous reviewers for their
valuable comments. This work was supported by NSF
under award CNS-0709427.

References
[1] Amazon Web Services. Amazon EC2 instance store:

User guide. http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/InstanceStorage.html.

[2] Amazon Web Services. Amazon Elastic Compute Cloud
website. http://aws.amazon.com/ec2/.

[3] Amazon Web Services. Amazon Machine Images (AMIs).
https://aws.amazon.com/amis.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Sto-
ica, and M. Zaharia. Above the clouds: A Berkeley view
of cloud computing. Technical Report UCB/EECS-2009-
28, EECS Department, University of California, Berkeley,
Feb 2009.

[5] L. A. Barroso and U. Holzle. The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale
Machines, volume 6 of Synthesis Lectures on Computer
Architecture. Morgan and Claypool, 2009.

[6] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb.
Fast, scalable disk imaging with Frisbee. In Proc. of the
USENIX Annual Technical Conference (ATC), pages 283–
296, San Antonio, TX, June 2003.

[7] Jean-loup Gailly and Mark Adler. zlib website. http:

//www.zlib.org.
[8] K. Jin and E. L. Miller. The effectiveness of deduplication

on virtual machine disk images. In Proc. of SYSTOR, the
Israeli Experimental Systems Conference, May 2009.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, and D. Zagorodnov. The Eucalyp-
tus open-source cloud-computing system. In Proc. of
the Workshop on Cloud Computing and its Applications
(CCA), 2008.

[10] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In Proc. of the USENIX Conference on
File and Storage Technologies (FAST), pages 89–101, Jan.
2002.

[11] Rackspace US, Inc. Rackspace hosting website. http:

//www.rackspace.com/.
[12] L. Rizzo. Dummynet: a simple approach to the evaluation

of network protocols. Computer Communication Review,
27(1):31–41, Jan. 1997.

[13] P. Sanaga, J. Duerig, R. Ricci, and J. Lepreau. Modeling
and emulation of Internet paths. In Proc. of the USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI), Boston, MA, Apr. 2009.

[14] The OpenStack Team. OpenStack user documentation.
http://docs.openstack.org/user-guide/.

[15] The OpenStack Team. OpenStack website. http://www.
openstack.org.

[16] The University of Utah. Emulab website. http://www.
emulab.net/.

[17] Wikipedia: Heavy-tailed Distribution. http:

//en.wikipedia.org/wiki/Heavy-tailed_

distribution.
[18] Wikipedia: Poisson Process. http://en.wikipedia.

org/wiki/Poisson_process.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 229

1

VPN Gate: A Volunteer-Organized Public VPN Relay System with
Blocking Resistance for Bypassing Government Censorship Firewalls

Operational Systems Track

Daiyuu Nobori and Yasushi Shinjo
Department of Computer Science, University of Tsukuba, Japan

Abstract
VPN Gate is a public VPN relay service designed to
achieve blocking resistance to censorship firewalls such
as the Great Firewall (GFW) of China. To achieve such
resistance, we organize many volunteers to provide a
VPN relay service, with many changing IP addresses. To
block VPN Gate with their firewalls, censorship author-
ities must find the IP addresses of all the volunteers. To
prevent this, we adopted two techniques to improve
blocking resistance. The first technique is to mix a num-
ber of innocent IP addresses into the relay server list pro-
vided to the public. The second technique is collabora-
tive spy detection. The volunteer servers work together
to create a list of spies, meaning the computers used by
censorship authorities to probe the volunteer servers. Us-
ing this list, each volunteer server ignores packets from
spies. We launched VPN Gate on March 8, 2013. By the
end of August it had about 3,000 daily volunteers using
6,300 unique IP addresses to facilitate 464,000 VPN
connections from users worldwide, including 45,000
connections and 9,000 unique IP addresses from China.
At the time VPN Gate maintained about 70% of volun-
teer VPN servers as unblocked by the GFW.

1. Introduction
Some countries in the world have censorship firewalls
operated by their governments to prohibit access to serv-
ers in foreign countries. For instance, the Great Firewall
(GFW) of China blocks access to Twitter, Facebook, and
YouTube. Internet users in countries subject to censor-
ship often use overseas public relay servers to bypass
censorship firewalls. Public proxies, VPN servers, and
Tor nodes [7] are popular examples of such relay servers.
Usually, the IP addresses of relay servers are publically
available for user convenience. A censorship authority
can easily block these relays, however, by adding the IP
addresses to its firewall blocking list. Moreover, the Chi-
nese authority, in particular, scans for unlisted Tor nodes
and blocks them automatically [19]. Tor relays currently
have no blocking resistance [12] against such scanning
activities.

In this research, we have built a public VPN relay
server system with blocking resistance to censorship

firewalls such as the GFW. We call this system VPN Gate.
To achieve blocking resistance, VPN Gate uses fre-
quently changing IP addresses that are provided by vol-
unteers. The central list server, called the VPN Gate List
Server, manages a list of the IP addresses of all active
VPN servers. We call this list the Server List. A user can
get only part of the Server List and connect his/her PC to
an active VPN server in the list. The user can then com-
municate with blocked Internet servers through the ac-
tive VPN server. It is hard for a censorship authority to
block all the active VPN servers in VPN Gate.

It is important for anti-censorship systems to achieve
blocking resistance. We adopted two techniques for
blocking resistance: innocent IP mixing and collabora-
tive spy detection. In innocent IP mixing, we include a
number of IP addresses, which are unrelated to VPN
Gate, in the Server List. For instance, we include vitally
important servers (e.g., Windows Update servers). This
technique forces a censorship authority to remove inno-
cent IP addresses from the Server List before adding ad-
dresses to the firewall blocking list. The second tech-
nique, collaborative spy detection, seeks probing activi-
ties from censorship authority’s computers, called spies.
In this technique all the volunteer VPN servers work to-
gether to create a source IP address list of spies, called
the Spy List, and they ignore probing packets from spies.
This technique makes the authority unable to distinguish
between the IP addresses of active VPN servers and in-
nocent IP addresses or those of inactive VPN servers.

The VPN Gate system consists of instances of the
VPN Gate Server software, an optional application, the
VPN Gate Client software, and a central List Server. Vol-
unteers can easily install and execute VPN Gate Server.
For instance, volunteers don't have to configure Network
Address Translation (NAT) boxes to open TCP/UDP
ports. Users can connect to VPN Gate Server with a Se-
cure Sockets Layer (SSL)-VPN protocol by using VPN
Gate Client. Users can also connect to a VPN server with
the L2TP/IPsec, OpenVPN, and MS-SSTP protocols by
using the built-in, OS-provided VPN clients on PCs and
smartphones. As for the third piece of the system, our re-
search group runs the VPN Gate List Server which ac-
cepts registration from volunteer servers, generates the
Server List, and distributes it to users.

230 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2

We launched VPN Gate on March 8, 2013. On Au-
gust 29, we had about 3,000 active VPN Gate servers.
This number is comparable to the number of Tor relay
nodes. On the same day we had 464,000 connections to
the VPN Gate servers. These connections were from
88,000 unique source IP addresses.

VPN Gate has blocking resistance against the GFW.
Shortly after we started the service, the GFW authority
added the IP addresses of all the volunteer servers into
the GFW blocking list. On April 4, the GFW blocked
81% of all volunteers, so only 19% of active volunteers
were reachable from China. Hence, we implemented the
innocent IP mixing and collaborative spy detection tech-
niques. As a result, we achieved 50% reachability from
China on April 26, and 75% on May 9. Moreover, around
40% of our volunteers’ IP addresses changed every day.
The GFW could not catch up to our increasing number
of volunteers and their changing IP addresses. VPN Gate
has thus provided stable reachability for Chinese users.
At the end of August, 2013, we have about 45,000 daily
connections from 9,000 unique IP addresses in China,
while Tor had an estimated 3,000 users from China.

VPN Gate is a system for bypassing censorship. It is
not an anonymizer. Unlike Tor, VPN Gate volunteer
servers record packet logs. VPN Gate also has no multi-
hop relaying function.

2. Related Work
VPN Gate organizes VPN servers provided by volun-
teers. This method is similar to that of the well-known
anonymizer Tor [7]. Since communications in Tor are re-
layed by three Tor nodes to achieve anonymity, they are
slow.

Tor nodes are classified into two types: public relays
and non-public bridges. It is easy for censorship author-
ities to block the public relays. Users behind censorship
firewalls must find non-public bridges through web sites,
email, and other means of contact. Although bridges are
not public, censorship authorities can probe and block
them [18, 19]. Using obfsproxy, it is possible to obfus-
cate the network traffic exchanged between Tor clients
and bridges [17]. However, Tor bridges currently have
no blocking resistance against such probing activities.

Unlike Tor, VPN Gate focuses on bypassing censor-
ship firewalls and does not provide anonymity. Since
communications in VPN Gate are relayed by a single
VPN server, they are much faster than in Tor. To use
VPN Gate, users behind censorship firewalls must get a
list of VPN servers through web sites, email, and so forth.
Unlike Tor, VPN Gate also includes innocent IP ad-
dresses in a list of VPN servers. We describe this aspect
in Section 4.2. Furthermore, VPN Gate has a mechanism
making it harder for censorship authorities to probe VPN
servers. We describe this aspect in Section 4.3.

It is not trivial to run Tor relay and bridge nodes.
Rbox-Tor helps volunteers run Tor nodes by using virtual
machines [16]. VPN Gate also helps volunteers run VPN
servers by a variety of techniques, including Network
Address Translation (NAT) traversal capability. We de-
scribe this capability in Section 5.2.

VPN Gate maintains the list of VPN servers in a cen-
tralized server. This mechanism is similar to a tracker in
BitTorrent [6]. It is easy for censorship authorities to
block communications to a tracker. To avoid using cen-
tralized trackers, BitTorrent introduced a distributed
hash table (DHT), implemented in the Mainline and Az-
ureus DHTs [2, 4]. We chose a centralized server instead
of a DHT for two reasons. First, we have to return a dif-
ferent partial server list for each client. Second, we have
to accumulate all information from all active VPN serv-
ers in a central server to analyze unusual usages. We de-
scribe these design choices in Section 4.3.

Many researchers are working on censorship-re-
sistant systems [3, 5, 8, 9, 13, 14, 20]. These systems ei-
ther are Web-access-specific ones or require modifying
existing protocol stacks. Here, in contrast, we describe a
VPN-based censorship-resistant system that allows us-
ing arbitrary protocols without modifying an existing
protocol stack.

Many free and commercial VPN services are also
used to bypass censorship firewalls [10]. Since most
such services use a set of centralized VPN servers with
fixed IP addresses, censorship authorities can easily
block these services with firewalls. Some VPN services
do have a decentralized or peer-to-peer (P2P) architec-
ture [11, 15]. There have been no published reports or
results, however, on bypassing methods.

Finally, our collaborative spy detection technique is
similar to collaborative intrusion detection [22]. In this
paper, we show a specific method to protect VPN servers.

3. VPN Gate Overview
Figure 1 shows an overview of VPN Gate. A volunteer
downloads the VPN Gate Server software and runs it on
a PC. While VPN Gate Server is running, it registers it-
self to the VPN Gate List Server. This server maintains
the Server List, a list of IP addresses for active VPN Gate
Server instances.

Assume here that a VPN Gate user lives behind a
censorship firewall and cannot access blocked servers in
foreign countries. The user first accesses a web page for
the VPN Gate List Server to get a list of VPN servers. To
avoid discovery of all VPN servers by censorship author-
ities, VPN Gate List Server returns only a small part of
the entire Server List. Next, the user chooses a VPN Gate
Server instance from the partial list. Finally, the user
connects his/her PC to the chosen server by using either
a native VPN client on the PC or dedicated VPN client

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 231

3

software, called VPN Gate Client. Once the VPN con-
nection is established, the VPN server relays all the
user’s communications to the Internet.

3.1. Hosting VPN Gate Server as a volunteer
As described above, a volunteer installs and runs VPN
Gate Server on a PC. At this time, the volunteer does not
need to show his/her name, address, or any other per-
sonal information. While VPN Gate Server is running, it
waits for new VPN connections from users. It accepts
four VPN protocols: L2TP/IPsec, OpenVPN, MS-SSTP,
and SoftEther VPN Protocol.

While VPN Gate Server is running, it periodically
checks the type of Internet connection on the PC. If the
PC is behind a NAT box, VPN Gate Server attempts to
open a port via Universal Plug and Play (UPnP) or UDP
hole punching. With the recognized type of Internet con-
nection, VPN Gate Server registers itself to VPN Gate
List Server, which we describe in Section 3.3.

3.2. Connecting to VPN Gate as a user
A VPN Gate user accesses the web site of the VPN Gate
List Server and obtains part of the Server List. This con-
tains information about volunteer servers, including IP
addresses and port numbers, geographic locations, line
quality parameters such as bandwidth and delay, num-
bers of current VPN connections, and numbers of cumu-
lative VPN connections. The user thus chooses a pre-
ferred VPN server from the subset of the Server List.

Since censorship authorities can easily discover the
web site of the VPN Gate List Server, a user in a country
subject to censorship likely cannot access the web site
directly. Such a user can instead access it via an HTTP
relay site provided by VPN Gate Server. Section 4.5
gives the details of this mechanism.

Next, the user can establish a VPN connection by us-
ing one of the following methods:

1. Using a built-in VPN client in the operating sys-

tem (OS).
The user inputs the IP address of the chosen VPN server
in the configuration window of the L2TP/IPsec or MS-
SSTP VPN client. In this window, the user also fills in
the user name and password fields with fixed values,
“vpn” and “vpn”. The advantage of this method is that it
does not require installing any software.

2. Using OpenVPN Client.
The user installs the OpenVPN Client software once.
Then, he/she downloads an OpenVPN connection setting
file (.ovpn file) from the VPN Gate List Server web site
and runs OpenVPN Client with the same setting file each
time when he/she connects to VPN Gate.

VPN Gate List Server
VPN Gate Server #1

VPN Gate Server #2

VPN Gate Server #3

Server list

IP1 IP2 IP3

VPN Client

User

Internet servers
(e.g. Twitter)

1. Register itself to the VPN Gate List Server.
2. Get the server list directly.
3. Get the server list with the Indirect Server List Transfer Protocol.
4. Access to Internet servers through the VPN server.

1

2 3
3

4

Provided by volunteers.

The free world

Behind the
censorship
firewall

2

1

1

IPn : The IP address of VPN Gate Server #n.

4

Figure 1. Overview of VPN Gate.

Figure 2. Screenshot of VPN Gate Client.

3. Using VPN Gate Client.
The user installs the VPN Gate Client software once and
runs it each time he/she needs a VPN connection. VPN
Gate Client displays the user’s portion of the Server List,
as shown in Figure 2, and he/she chooses a server for
connection. The advantage of this method is that it is
easy, and it supports the Indirect Server List Transfer
Protocol, which we describe in Section 4.4.

3.3. VPN Gate List Server
The VPN Gate List Server software accepts registrations
from active VPN Gate Server instances and monitors
these servers’ statuses. When VPN Gate List Server re-
ceives a server list request from a client, it returns a small
part of the Server List. In addition, VPN Gate List Server
implements the firewall resistance system described in
Section 4.

232 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4

4. Firewall Resistance System
The firewall resistance system in VPN Gate achieves
blocking resistance to censorship firewalls. This system
is implemented in both VPN Gate Server and VPN Gate
List Server. In this section, we first briefly describe the
blocking methods of the Chinese censorship firewall.
After that, we describe our blocking resistance tech-
niques. The two key techniques are innocent IP mixing
and collaborative spy detection.

4.1. Blocking methods used in the Great

Firewall of China
We set our goal in designing the system to achieve

blocking resistance to the Chinese GFW. To do so, we
studied the GFW’s blocking methods. According to var-
ious reports [1, 5, 21], the GFW exists at borders between
Chinese internet service providers (ISPs) and overseas
ISPs, and it can block all IP packets sent to IP addresses
on the blocking list. The GFW authority must maintain a
blocking list of IP addresses. It exploits both human re-
sources and automated scanners to maintain the blocking
list. For instance, the GFW authority performs scanning
to detect hidden Tor nodes [19].

4.2. Innocent IP mixing
The first technique for achieving blocking resistance in
VPN Gate is innocent IP mixing, illustrated in Figure 3.
In this technique, we include a number of fake IP ad-
dresses, called innocent IP addresses, when VPN Gate
List Server returns a list of VPN servers to a user. Inno-
cent IP addresses are chosen from among addresses un-
related to VPN Gate, and they should be addresses of vi-
tally important hosts in the Internet. Examples of good
innocent IP addresses include DNS root servers, top-
level-domain DNS servers, Windows Update servers,
and popular email servers. After a censorship authority
notices innocent IP mixing, it cannot automatically add
all obtained IP addresses from the Server List to its fire-
wall blocking list. Instead, the authority has to verify
whether each of the obtained IP addresses is the real IP
address of a VPN Gate Server. We do not have to mix
innocent IP addresses every day, all the time; it is suffi-
cient to mix in a small number of innocent IP addresses
occasionally to keep the authority's attention.

As a disclaimer, we have included the following
warning sentence on the web site for the VPN Gate List
Server: “This server list might contain wrong IP ad-
dresses, and authorities should not use these IP addresses
for firewall blocking lists.”

Innocent IP mixing does not affect regular users of
VPN Gate. If a user occasionally chooses an innocent IP
address, he/she will just get a connection error. The user
can then simply try another IP address from the Server
List.

Innocent IP mixing does not cause distributed denial
of service (DDoS) attacks on innocent servers. Suppose
that we have 100 million users each day, and we mix in
one innocent IP address for every 1,000 real VPN serv-
ers. If each user chooses a target VPN server randomly
from the list, the server for an innocent IP address will
receive an expected 100,000,000 / 1,000 = 100,000 con-
nection requests each day. If we assume five retry pack-
ets per connection request, the server will receive 7 use-
less packets per second. We believe that such a small
number of useless packets is harmless to Internet servers
of the present day.

In practice, a typical user does not choose a VPN
server randomly but tries servers from top to bottom in
the list. A user’s list typically has 100 VPN servers, and
we can put the innocent IP address in the middle of the
list. Since the user will most likely succeed in connecting
or stop trying before reaching the innocent IP address,
the corresponding server will never receive any connec-
tion requests.

VPN Gate List Server

Innocent IP address
(e.g. DNS Root Server)

VPN Gate Server #1

VPN Gate Server #2

Server list

! IP1 IP2

VPN Gate
probing program

Censorship
authority Censorship

firewall1. Get the server list.
2. Request VPN connections to verify all IP addresses in the server list.
3. Real VPN Gate servers reply responses.
4. Add verified IP addresses to the firewall.

1

2 2

2

3

3

4

!

IPn

: An innocent (fake) IP address.

: The IP address of VPN Gate Server #n.

1

! IP1 IP2
IP1 IP2

Figure 3. Innocent IP mixing.

4.3. Collaborative spy detection
The second technique for achieving blocking resistance
in VPN Gate is collaborative spy detection. This tech-
nique detects probing activities from the computers of a
censorship authority, called spies. To find spies, all in-
stances of VPN Gate Server work together and build a
source IP address list of spies, called a Spy List. As illus-
trated in Figure 4, the servers then ignore probing pack-
ets from spies in the Spy List. The Spy List contains both
IP addresses and ranges of IP addresses. This technique
prevents censorship authorities from distinguishing
whether VPN Gate Server is running on a specific IP ad-
dress.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 233

5

Collaboration is vital to detecting spies in VPN Gate.
Since a spy establishes a VPN connection with regular
VPN protocol procedures, a single VPN Gate Server in-
stance cannot distinguish between a spy and a regular
client. When a single VPN Gate Server instance does
find a spy by recognizing the unusual behavior of the spy
client, it is too late because the spy has already succeeded
in discovering the VPN server by that time. Therefore,
the VPN server must distinguish whether a client is a spy
before sending its first response to the client. This is im-
possible for a single VPN Gate Server instance.

To solve this problem, all VPN Gate Servers work
together to detect spies, share the Spy List, and deny con-
nections from clients in the Spy List. The process of gen-
erating the Spy List consists of the following two proce-
dures:

1. Procedure in VPN Gate Server
VPN Gate Server records VPN connection logs, which
we classify into three types: complete calls, incomplete
calls, and tiny calls. A complete call means a VPN con-
nection that is normally established between a client and
a server, where the amount of actual data transfer ex-
ceeds a threshold. An incomplete call is a VPN connec-
tion that is disconnected either by a client before a nego-
tiation completes or because of a protocol error. A tiny
call is a VPN connection that has either a very short du-
ration or a small amount of data transfer. VPN Gate
Server records all these calls with metadata such as
source IP addresses, times, data transfer amounts, and
durations. Each VPN Gate Server instance regularly
sends these logs to the VPN Gate List Server.

2. Procedure in VPN Gate List Server
VPN Gate List Server aggregates the logs from all VPN
Gate Server instances in order to find spies by using the
following conditions:

I. If many VPN servers received incomplete calls
from a specific IP address or a specific range of
IP addresses, we mark the address or range as a
spy.

II. If many VPN servers received tiny calls from a
specific IP address or a specific range of IP ad-
dresses, we mark the address or range as a spy.

VPN Gate List Server performs this procedure peri-
odically and distributes the generated Spy List to all
VPN servers. We reduce the size of the Spy List by ag-
gregating multiple IP addresses into a range of IP ad-
dresses in a /24 block. We apply this aggregation tech-
nique when the number of IP addresses in a block ex-
ceeds a threshold, which varies according to the
frequency of accesses and other conditions. For example,
the threshold for Chinese IP addresses is smaller than
that for United States IP addresses.

VPN Gate List Server

VPN Gate Server #2

VPN Gate Server #3

VPN Gate
probing program

Censorship
authority

Censorship
firewall

Log
DB

VPN Gate Server #1

Spy List

Spy List

Spy List

1. The authority performs probing activities.
2. Connection logs are aggregated to the list server.
3. The log analyzer detects source IP addresses of the probing activities,
 builds a Spy List and distributes it to all servers.
4. VPN Gate servers ignore probing packets from IP addresses
 in the Spy List.
5. The authority adds only verified IP addresses to the firewall.

1

2

3

3

3

4

4

5

: A verified IP address.
 It can be safely put into the
 blocking list of the firewall.
: A non-verified IP address.
 Since it can be an innocent
 IP address, the authority
 cannot put it into the
 blocking list of the firewall.

IP1 IP2 IP3
IP1

? ?

?

IPn : The IP address of
 VPN Gate Server #n.

Spy List

Server list

IP1 IP2 IP3

Log analyzer

3

Figure 4. Collaborative spy detection.

4.4. Distributing server lists to users
Anti-censorship systems that use relay servers face the
relay server discovery problem: how can clients discover
relay servers without having a censorship authority also
discover and block these servers [9]? To address this
problem, VPN Gate applies several techniques.

First, we use a technique called keyspace hopping
[9]. In keyspace hopping, each client pseudorandomly
uses a unique set of servers, just as a wireless node uses
frequency hopping to resist jamming. This technique en-
sures that each client discovers only a small fraction of
the total number of VPN Gate servers. Furthermore, we
use the network address of a client as the seed of a pseu-
dorandom number generator in keyspace hopping. This
method forces the censorship authority to have a large
number of IP addresses in order to collect the IP ad-
dresses of all the VPN Gate servers.

The second technique is to introduce the Indirect
Server List Transfer Protocol. When a user in a country
subject to censorship tries to get a fresh server list
through VPN Gate Client, a firewall will likely block the
communication with VPN Gate List Server. We thus im-
plemented the Indirect Server List Transfer Protocol to
solve this problem. This protocol allows VPN Gate Cli-
ent to get a fresh server list via an intermediate server.
The intermediate server is a VPN Gate Server instance
known by the client. Note that a server list transferred
with this protocol is digitally signed to prevent modifi-
cation by the intermediate server.

The third technique is dynamic generation of initial
server lists. It is useful for a first-time user of VPN Gate
Client to have a fresh initial list of VPN Gate servers. To

234 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6

achieve this, our download Web server dynamically gen-
erates a fresh initial server list for each destination and
includes it in the installation package of VPN Gate Cli-
ent. We generate this initial list by applying keyspace
hopping, the first technique mentioned above. We also
mix innocent IP addresses into the initial list.

On August 19, 2013, our VPN Gate List Server ac-
cepted about 379,000 indirect server list transfer re-
quests, representing 23.2% of the total of about
1,630,000 user requests on that date.

4.5. HTTP relay function and Daily Mirror

URL Mail Service
It is easy for a censorship authority to block our down-
load web server and the web site of the VPN Gate List
Server. To overcome this problem, we implement an
HTTP relay function in VPN Gate Server. This function
gives users the chance to download VPN Gate Client at
the time of first use. This function also provides access
to the VPN Gate Server List web site for those who use
built-in VPN clients.

As we described in Section 4.1, censorship firewalls
can detect and block our HTTP relay function by key-
word inspection. To make this inspection task difficult,
we respond with gzip-compressed HTTP contents.

VPN Gate also provides a Daily Mirror URL Mail
Subscription service. This service emails the latest URL
list to subscribers every day. Each list contains the URLs
of a small number of active VPN Gate Server instances
that enables the HTTP relay function. These URLs are
suitable for distribution via online and offline social net-
works in countries subject to censorship. On September
13, 2013, we had 11,000 subscribers to this mail service.
Through keyspace hopping, we disclose only a small
fraction of VPN Gate servers in this service. When a sub-
scriber signs up the service, we record the IP address of
the subscriber’s Web browser and use it as the seed of a
pseudorandom number generator for keyspace hopping.

5. Implementation
In this section, we describe the implementation of VPN
Gate Server, VPN Gate Client, and VPN Gate List
Server.

5.1. Implementation of VPN Gate Server
We have implemented VPN Gate Server as an applica-
tion program for Windows. The program code is based
on SoftEther VPN Server, which is our free VPN server
program1. VPN Gate Server supports the following four

1 http://www.softether.org/

VPN protocols. VPN Gate Server treats all VPN clients
using any of these VPN protocols equally.

1. L2TP/IPsec
2. OpenVPN protocol
3. MS-SSTP
4. SoftEther VPN protocol

The SoftEther VPN protocol implements Ethernet over
SSL on TCP or UDP. It has affinity with most firewalls.
It requires VPN Gate users to install the specific VPN
Gate Client in their devices. Unlike MS-SSTP, this VPN
protocol is usable in UDP-only environments.

We have also implemented an Internet sharing func-
tion in VPN Gate Server. This function allows sharing of
a single outgoing IP address for the server while allocat-
ing a different private address for each VPN client.

5.2. Running VPN Gate Server behind a

NAT box
We assume that the PCs of most volunteers running VPN
Gate Server are behind NAT boxes. To increase the num-
ber of available volunteer servers, it is necessary to make
VPN servers reachable from the Internet even when they
are behind NAT boxes. Therefore we implemented an
automatic port-opening function in VPN Gate Server, via
UPnP and UDP hole punching. This function also works
in the intermediate servers for the Indirect Server List
Transfer Protocol described in Section 4.4.

To increase NAT affinity, we also added UDP sup-
port to our SoftEther VPN protocol. The previous
SoftEther VPN Protocol was based on SSL and worked
only with TCP. To extend it to work with UDP, as well,
we designed and implemented a Reliable UDP (RUDP)
protocol that has a retransmission control mechanism
like that of TCP.

5.3. Status monitoring of VPN servers
VPN Gate List Server performs status checking of all
registered VPN servers. It executes this checking not
only the first time it registers a VPN server but also pe-
riodically thereafter. After VPN Gate List Server verifies
that a VPN server is functional, it adds an entry for the
VPN server into the Server List.

In addition to functional checking, VPN Gate List
Server collects the Internet connection qualities of regis-
tered VPN servers. To measure communication delays of
the last one mile network, each VPN server sends ICMP
echo requests to the Google Public DNS server
(8.8.8.8)2. To measure communication bandwidths, each
VPN server runs a TCP speed test tool with our speed
test servers. The VPN servers then report these results to

2 Google Public DNS server is located around the world.
https://developers.google.com/speed/public-dns/faq

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 235

7

the VPN Gate List Server. Users can view these results
on the List Server’s web site, thus enabling them to
choose a good VPN server instance with a low-delay,
high-bandwidth Internet connection.

5.4. VPN connection logs and packet logs
Each VPN server records VPN connection logs when a
VPN client establishes a tunnel, and when the user dis-
connects the tunnel. Each VPN server also records
packet logs that include not only TCP and UDP headers
but also payloads. A volunteer can read these logs and
know the source IP addresses of VPN clients. When a
criminal uses a VPN server, the owner of the server may
pass these logs to a public authority. The VPN servers
also transmit the VPN connection logs to the VPN Gate
List Server, which uses them for collaborative spy detec-
tion, as described in Section 4.3.

Each VPN server records VPN connection logs when
a VPN client establishes a tunnel, and when the user dis-
connects the tunnel. The VPN servers transmit the VPN
connection logs to the VPN Gate List Server, which uses
them for collaborative spy detection, as described in Sec-
tion 4.3.

In addition to connection logs, each VPN server also
records the following minimum information for packet
logging.

1. TCP Packets
The VPN server records the IP and TCP headers of SYN,
SYN+ACK, and ACK packets. It records no payloads
other than HTTP request headers.

2. UDP Packets
The VPN server records the IP and UDP headers for
DHCP and IPsec/UDP and OpenVPN/UDP initiate
packets. We record the headers because these VPN pro-
tocols can be used to hide client IP addresses. The VPN
server does not record payloads.

Since we do not want VPN Gate to be used as an

anonymizer, we intentionally designed it to record these
logs so as to prevent abuse by criminals while maintain-
ing the privacy of normal users. Without a packets log-
ging function, criminals could abuse VPN Gate to hide
their client IP addresses. When a criminal uses a VPN
server, the owner can pass packets logs to a law enforce-
ment agency. The “VPN Gate Anti-Abuse Policy” on the
web site clearly states that each VPN Gate server records
packet logs in order to prevent such abuse.

5.5. Implementation of VPN Gate Client
We implemented VPN Gate Client as an extension of
SoftEther VPN Client, a VPN client program for estab-
lishing VPN connections to SoftEther VPN Server in-
stances. SoftEther VPN Client consists of a virtual net-
work adapter kernel-mode driver, a VPN processing
module, and a GUI. We modified the GUI by adding a
window to show a list of VPN servers (Figure 2). We also
implemented a client module for the Indirect Server List
Transfer Protocol.

Furthermore, we include the VPN Gate Server func-
tion in the VPN Gate Client program. We took this idea
from P2P file sharing applications such as BitTorrent. In
P2P file sharing, each client also contributes to the net-
work as a server. The VPN Gate Server function in VPN
Gate Client is disabled by default. A user who wants to
be a volunteer can enable this function manually. This
function is also automatically disabled while using VPN
Gate Client to connect to another VPN server.

5.6. Dynamic generation of VPN Gate Client

package
VPN Gate users download VPN Gate Client from the
download server or relays, as described in Sections 4.4
and 4.5. Every time the download server responds to a
user, it generates a new ZIP package. The fixed content
of each ZIP package consists of the binary of VPN Gate
Client. The package also includes variable content in the
form of an initial server list. The ZIP file also includes a
file with a random filename and random data at the head,
for blocking resistance to censorship firewalls. This
technique eliminates characteristics of TCP streams for
VPN Gate Client downloading traffic.

If the download server generated a temporary ZIP
file each time it received a request, this would increase
the disk I/O load at the server. To eliminate this load, we
implemented a lightweight, in-memory ZIP generator in
the download server. For each downloading user, the ZIP
generator consumes only a fixed small amount of a
buffer in the server’s memory.

6. Experiences
We initiated the VPN Gate web site and released the pro-
grams VPN Gate Server and Client on March 8, 2013. In
this section, we demonstrate achievement of our pur-
poses described in Section 1, by evaluating our experi-
ences for six months after the release of VPN Gate.

6.1. Statistics of users and volunteers
Figure 5 shows the variation in the number of daily VPN
connections, and Figure 6 shows the number of unique
IP addresses for VPN clients on a daily basis. For in-
stance, we had about 464,000 connections from 88,000
unique IP addresses on August 29. On this day, there

236 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8

were 5.3 VPN connections on average from a unique
source IP address. Figure 7 shows the variation in the to-
tal bandwidth. We had a total of 1.6 Gbps on August 29.
The total bandwidth steadily increased because the num-
ber of active volunteers increased along with the number
of users.

Table 1 lists the top ten countries in terms of the num-
ber of client VPN connections on August 30, 2013. Table
2 lists the top ten countries in terms of the amount of cli-
ent VPN traffic through August 30, 2013. Each of these
tables includes China, Thailand, and Iran, countries that
have censorship firewalls. VPN Gate thus helped users
in these countries to bypass the firewalls. Table 2 also
includes Korea, the United States, Japan, and Taiwan.
Since high-speed home Internet lines are popular in Ko-
rea, it ranked first in total data transfer but only seventh
in the number of VPN connections. On the other hand,
while Thailand and Iran had large numbers of VPN con-
nections, they did not yield large amounts of transferred
data. This means that most users in these countries have
low-speed Internet lines. These results show that the bot-
tlenecks are mostly on the client side, and not on the
server side.

Table 1. Numbers of VPN connections
at different client locations.

Ranking Location Number of
VPN connections

Percentage

1 Taiwan 7,253,003 27%
2 China 3,974,954 15%
3 Thailand 3,841,947 14%
4 Iran 2,281,446 8%
5 Japan 1,768,716 6%
6 Vietnam 1,399,833 5%
7 Korea 1,373,906 5%
8 Indonesia 742,640 3%
9 United States 589,148 2%
10 Hong Kong 466,265 2%
 190 other locations 3,536,359 13%
 Total 27,228,217 100%

Table 2. Total transferred data
at different client locations.

Ranking Location Transferred
data amount

Percentage

1 Korea 460.0 TB 35%
2 China 193.4 TB 15%
3 United States 145.7 TB 11%
4 Japan 111.1 TB 8%
5 Taiwan 90.4 TB 7%
6 Iran 45.1 TB 3%
7 Hong Kong 28.2 TB 2%
8 Malaysia 26.3 TB 2%
9 Vietnam 25.8 TB 2%
10 France 18.0 TB 1%
 190 other locations 187.1 TB 14%
 Total 1,331.1 TB 100%

Figure 8. Numbers of VPN servers with
changed and unchanged IP addresses.

We gained a total of 16,523 volunteer servers from

127 countries or regions over the course of 175 days.
These servers have used 108,633 unique IP addresses.

Figure 8 shows the numbers of VPN servers with
changed and unchanged IP addresses from April 5 to Au-
gust 30. The lower blue area corresponds to servers
whose IP addresses were unchanged from the previous
day, while the upper orange area corresponds to servers
whose IP addresses did change. For instance, on August
30 we had 3,935 unchanged IP addresses and 2,363
changed IP addresses. This means that 38% of the VPN
servers had a different IP address from that of the previ-
ous day. On average, 40% of VPN servers had new IP
addresses every day. This changing of IP addresses con-
tributed to increasing the reachability from countries
subject to censorship.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

4/5/2013 4/30/2013 5/25/2013 6/19/2013 7/14/2013 8/8/2013

Same IP address as previous day Different IP address from previous day

Figure 5. Number of daily VPN connections.

Figure 6. Number of daily unique IP addresses for
VPN clients.

Figure 7. Daily total bandwidth for VPN connections.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

3/8/2013 4/8/2013 5/8/2013 6/8/2013 7/8/2013 8/8/2013

0

20,000

40,000

60,000

80,000

100,000

120,000

3/8/2013 4/8/2013 5/8/2013 6/8/2013 7/8/2013 8/8/2013

0 Mbps

200 Mbps

400 Mbps

600 Mbps

800 Mbps

1,000 Mbps

1,200 Mbps

1,400 Mbps

1,600 Mbps

1,800 Mbps

3/8/2013 4/8/2013 5/8/2013 6/8/2013 7/8/2013 8/8/2013

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 237

9

Table 3. Locations of VPN Gate Server
 instances on August 30, 2013.

Ranking Location Number of
volunteer servers

Percentage

1 Korea 841 30%
2 Japan 637 23%
3 Vietnam 444 16%
4 United States 181 6%
5 Russia 119 4%
6 France 57 2%
7 Thailand 51 2%
8 United Kingdom 41 1%
9 Indonesia 38 1%
10 Canada 29 1%
 66 other locations 362 13%
 Total 2,800 100%

Table 4. Active VPN servers on August 30, 2013.

 Volunteers Percentage
Direct connection (non-NAT) 3,884 27%
NAT (UPnP compatible) 7,384 52%
NAT (UDP hole punching compatible) 3,006 21%
Total 14,274 100%

Figure 9. Round-trip time between volunteer servers

and Google Public DNS on August 30, 2013.

Figure 10. TCP throughput to the Japan server.

Figure 11. Number of daily unique IP addresses

for VPN clients in China.

Table 3 shows the geographical distribution of the
2,800 volunteer servers running at 15:00 (GMT) on Au-
gust 30, 2013. We resolved the location of each volunteer
by using IP address allocation information. We found
that 77% of the volunteers were from five countries: Ko-
rea, Japan, Vietnam, United States, and Russia.

We examined the quality of the Internet connections
provided by the VPN servers. Figure 9 shows the round-
trip times (RTTs) between each VPN server and the
Google Public DNS server (IP address: 8.8.8.8), on Au-
gust 30, 2013. Since Google Public DNS Servers are lo-
cated worldwide, the RTT implies the quality of the last-
mile line to the ISP of each VPN server. Most of the VPN
servers had RTT values of 100ms or less. This means that
most of the VPN servers are connected to the Internet
with pretty good lines. Figure 10 shows the TCP band-
width between each VPN server and our speed test server
in Japan. More than 50% of the VPN servers had band-
width of 5Mbps or faster. We estimated the total availa-
ble bandwidth as 70Gbps. This is much larger than the
used bandwidth of 1.6Gbps shown in Figure 7.

Table 4 lists the types of Internet connections used
by the VPN servers on August 30, 2013. The data shows
that 72.8% of VPN servers were behind NAT boxes. This
means that the NAT affinity function described in Sec-
tion 5.2 worked well.

6.2. Users from China
The Chinese GFW authority began to block the IP ad-
dress of the VPN Gate List Server on March 12, 2013. It
also began attempting to block all IP addresses of VPN
servers listed on the web site for the List Server. Despite
this, Figure 11 shows that the number of users from
China increased continuously. This figure does not in-
clude spies detected by our collaborative spy detection.
On August 29, the number of unique IP addresses for cli-
ents in China was 8,000, and this occupied 10% of all
unique source IP addresses for VPN connections. These
results show that our blocking resistance techniques are
working effectively.

We measured the blocking rate of our VPN servers
by the GFW since March 22. Early on, as shown in Fig-
ure 12, the GFW authority succeeded in blocking our
VPN servers effectively. At that time only 30% of VPN
servers were reachable from China. After we started in-
nocent IP mixing and collaborative spy detection, how-
ever, the blocking rate decreased. On June 19, 78.5% of
VPN servers were reachable from China. At the end of
August, we typically had 60-70% of servers reachable
from China. On August 8, the rate of servers blocked by
the GFW suddenly decreased. We suppose that this was
due to technical problems in the GFW.

In summary, we have achieved strong blocking re-
sistance to China’s GFW with VPN Gate Server. This

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

N
um

be
r

of
 s

er
ve

rs

RTT to Google Public DNS (ms)

0

20

40

60

80

100

120

140

160

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

N
um

be
r

of
 s

er
ve

rs

TCP throughput to Japan (Mbps)

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

3/8/2013 4/8/2013 5/8/2013 6/8/2013 7/8/2013 8/8/2013

We started collaborative spy detection
on 4/24/2013.

238 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10

was achieved by applying two techniques, namely, inno-
cent IP mixing and collaborative spy detection. Rapid
changing of server IP addresses has also contributed to
this result.

6.3. Cat-and-mouse game with the Great

Firewall authority
We played a cat-and-mouse game with the Chinese GFW
authority until we implemented innocent IP mixing and
collaborative spy detection. Here, we outline the history
of this game.

March 8: We launched VPN Gate.
We initiated the web site and released the server and cli-
ent programs on a Friday. Many Chinese users found
VPN Gate within the first four days before blocking. On
March 11, we had 5,663 unique IP addresses for clients
from China. We assumed that the officers of the GFW
authority did nothing on Saturday and Sunday.

March 11: GFW blocked VPN Gate List Server.
The GFW authority blocked the IP address of the VPN
Gate List Server. Users in China could no longer visit the
VPN Gate web site or download VPN Gate Client after
this time. Some users in China began to spread URLs for
the relay sites described in Section 4.5 by using domestic
Chinese SNS web sites (e.g., Weibo). The relay sites
helped Chinese users to visit the VPN Gate List Server
web site and download VPN Gate Client. VPN Gate Cli-
ent users could continue to use it with the support of the
Indirect Server List Transfer Protocol.

March 12: GFW started automatic blocking.
The authority started to get the list of active VPN servers
from the VPN Gate List Server periodically, and it
started adding all IP addresses in the list to the GFW. On
March 12 and 13, the authority performed this task twice
a day. After March 14, the authority performed this task
several times a day. We assume that the authority imple-
mented an automated tool for this task. This response re-
vealed that the GFW authority can discover an anti-fire-
wall service and develop a blocking tool for it within
only four days after the service starts.

March 13: We discovered a single spy IP address.
We set up 32 servers that did not run VPN Gate Server.
We also added code in VPN Gate List Server to mix dif-
ferent portions of the IP addresses of these servers ac-
cording to each request. We used these IP addresses as
steganographic codes. For example, if the source IP ad-
dress was 1.2.3.4, we mixed IP addresses #7, #14, #20,
#21, and #27 into the list sent to the requester. Approxi-
mately 30 minutes later, the GFW blocked some of the
steganographic IP addresses. We could then calculate
that the IP address of the spy was 210.72.128.200. Ac-
cording to Whois, this is an IP address operated by China
Science and Technology Network (CSTNET), an institu-
tion of the Chinese Academy of Sciences. We confirmed
that the authority used this IP address to get our VPN
server list and blocked this address from accessing the
VPN Gate List Server web site. We also found that the
user agent value of the spy program was “Python-urllib”.
We thus assumed that the authority wrote the spy pro-
gram in Python.

March 14: GFW started getting the VPN server list
from oversea cloud servers.
After we had blocked the source IP address of the author-
ity, it started using Amazon EC2 and Gorilla Servers to
get VPN server lists. We found that the user agent value
was still “Python-urllib”, as shown in Figure 13. The au-
thority obtained the VPN server lists at fixed intervals.
We could thus distinguish spies from regular users, but
since it was easy for the authority to vary the user agent
value and interval, we decided not to use these charac-
teristics for detecting spies. The authority obtained many
IP addresses of our VPN servers and put them in the
GFW blocking list. After this automated process began,
approximately 80% of all VPN servers became unreach-
able from China.

March 14: We started innocent IP mixing.
We began to mix unrelated IP addresses at the University
of Tsukuba into the VPN server lists. We observed that
these IP addresses became unreachable from China
within 30 minutes. We tested this several times for
around four hours. The GFW always blocked our newly
mixed IP addresses within 30 minutes or less. This
means that the GFW authority trusted our VPN server
list at that time, and they did not verify the IP addresses
in the list before blocking them. In other words, we had
power to control the GFW for a short time.

March 16: GFW suspended using the automated tool.
The authority noticed that the VPN server lists included
unrelated IP addresses. It thus suspended using the auto-
mated tool for inserting IP addresses in the VPN server

Figure 12. Numbers of VPN servers blocked and not
blocked by the GFW.

0

500

1,000

1,500

2,000

2,500

3,000

3/31/2013 4/30/2013 5/31/2013 6/30/2013 7/31/2013

Servers blocked by GFW Servers not blocked by GFW

We started collaborative spy detection
on 4/24/2013.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 239

11

list into the GFW blocking list. The authority also dis-
charged all blocking of VPN Gate servers. For four days
after that, no VPN servers were blocked by the GFW.

March 20: GFW started verifying IP addresses.
The authority started verifying IP addresses before in-
serting them into the GFW blocking list.

April 24: We started collaborative spy detection.
We started collaborative spy detection as described in
Section 4.3.

6.4. Scalability
As the number of volunteers increases, the total available
bandwidth increases. Therefore, the scalability of VPN
Gate is bounded by the VPN Gate List Server.

The VPN Gate List Server instance currently consists
of three web servers, a database server, a status monitor-
ing server, and a log analysis server. These servers are
connected to the Internet via the campus network at our
university. Only the web servers receive requests from
VPN servers and users. Since these servers execute the
same web application, we can easily scale-out their per-
formance.

We use Microsoft SQL Server for our database
server, which runs on a PC with an Intel Xeon E3-1230
3.2-GHz processor (Fujitsu PRIMERGY TX100 S3).
This PC has 1.0 MB of L2 cache, 32 GB of main
memory, and two SSD drives. The load of the database
server is lower than the loads of the web servers. The
CPU usage of the database server is approximately 5%,
while the disk I/O bandwidth is approximately 1.3 MB/s.
We estimate that the database server could handle up to
10 times the current load without upgrading the hard-
ware. When this database server becomes overloaded,
we can divide VPN servers and clients into several
groups and allocate a database server for each group. We

3 https://metrics.torproject.org/graphs.html

think that each group could perform collaborative spy
detection independently. This division would also in-
crease availability.

We have found that we can perform status monitor-
ing on 3,000 VPN servers within 10 minutes. We can
easily divide this task and allocate subtasks to multiple
servers.

6.5. Comparison to Tor
On August 29, 2013, the number of VPN servers was
3,000, which was comparable to the number of Tor
nodes. Tor had 4,000 listed relay nodes and 2,000 hidden
bridge nodes. We hope that the number of VPN servers
in VPN Gate will exceed the number of Tor nodes be-
cause we added 500 new servers each in both July and
August, 2013.

The number of Chinese users of VPN Gate was larger
than that of Tor. At the end of August 2013, we had 9,000
daily unique IP addresses from China, while Tor had an
estimated 3,000 daily users from China according to the
Tor metrics site3. We achieved this result because we fo-
cused on bypassing firewalls and implementing collabo-
rative spy detection. In contrast, it is hard for Tor to
achieve such collaboration among nodes.

VPN Gate has another advantage over Tor. Since
VPN Gate provides a VPN tunnel for IP, a user can use
any TCP or UDP application through VPN Gate without
having to modify the application or set proxies.

6.6. Problems and discussion
Criminals might use VPN Gate to hide their IP addresses.
We can repress such abuse through logging as described
in Section 5.4. Another problem is that a volunteer run-
ning a VPN server can tap or modify the decapsulated
packets of VPN users. This problem is not new. Existing
open proxies and Tor exit relays have the same problem,
and we currently have no solution to offer. Lastly, a VPN
server can potentially use up the bandwidth of a volun-
teer’s Internet line. In response, volunteers can use traffic
shaping tools such as NetLimiter4 to limit the bandwidth
of VPN servers.

The innocent IP mixing technique could disturb the
owners of innocent IP addresses with users in a country
subject to censorship. We have not yet received any com-
plaints from such IP address owners.

Instead of probing VPN servers, a censorship author-
ity could build a whitelist. Maintaining such a whitelist,
however, would be quite difficult. Even in a country sub-
ject to censorship, Internet access is vital for both resi-
dents and visiting businesspeople. One day we might
suddenly mix in the IP address of Yahoo! US Mail. The

4 http://www.netlimiter.com/

Figure 13. Spying from Amazon EC2 and

Gorilla Servers by the GFW authority.

ID Access Date Client FQDN URL User Agent
3312453 3/23/13 7:40 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3312674 3/23/13 7:41 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3313273 3/23/13 7:45 PM 198-136-27-242.static.gorillaservers.com http://www.vpngate.net/ Python-urllib/1.17
3313385 3/23/13 7:45 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3313579 3/23/13 7:46 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3314469 3/23/13 7:50 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3314708 3/23/13 7:51 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3315395 3/23/13 7:55 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3315642 3/23/13 7:56 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3316250 3/23/13 8:00 PM 198-136-27-242.static.gorillaservers.com http://www.vpngate.net/ Python-urllib/1.17
3316252 3/23/13 8:00 PM 198-136-27-242.static.gorillaservers.com http://www.vpngate.net/cn/ Python-urllib/1.17
3316383 3/23/13 8:00 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3316570 3/23/13 8:01 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3317306 3/23/13 8:05 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3317533 3/23/13 8:07 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3318339 3/23/13 8:10 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3318553 3/23/13 8:12 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3319069 3/23/13 8:15 PM 198-136-27-242.static.gorillaservers.com http://www.vpngate.net/ Python-urllib/1.17
3319072 3/23/13 8:15 PM 198-136-27-242.static.gorillaservers.com http://www.vpngate.net/cn/ Python-urllib/1.17
3319236 3/23/13 8:15 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3319480 3/23/13 8:17 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3320192 3/23/13 8:20 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3320439 3/23/13 8:22 PM ec2-50-16-163-135.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17
3321185 3/23/13 8:26 PM ec2-23-20-4-19.compute-1.amazonaws.com http://www.vpngate.net/en/ Python-urllib/1.17

240 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

12

next day we might mix in some important servers for
Amazon EC2. Moreover, some servers share the same
Akamai or other CDN IP addresses. It would be impos-
sible for a censorship authority to find all important hosts
and put their IP addresses into a whitelist in advance.

 A censorship authority could also run fake VPN
Gate servers to paralyze the VPN Gate network. Such
fake servers could send fake logs with false IP addresses
to the VPN Gate List Server in order to induce errors in
our collaborative spy detection. The false IP addresses
could include the valid IP addresses of innocent users. A
small number of fake servers cannot impact the entire
network, because we can ignore such a small number of
false IP addresses. If a censorship authority ran many
fake servers, however, these could impact the network. It
would be very costly to run so many servers. We assume
that a censorship authority would not be willing to pay
for such an active attack.

Well-budgeted censorship authorities, like the GFW
authority, probably have a large number of IP address
blocks available for probing sources. Such IP connectiv-
ity infrastructure, however, should have long-term as-
signed static IP address blocks. Such IP address blocks
cannot change frequently. Table 5 lists the actual de-
tected numbers of probing source IP addresses operated
by the GFW authority in part of 2013. According to this
data, every month the GFW authority reused most of the
IP address blocks that had appeared in the previous
month. This implies that the GFW authority has only
about 4,000 IP address blocks as fixed infrastructure.

6.7. Updated experiences
Since the submission of this paper to NSDI, the follow-
ing events have happened.

On September 2, 2013 the blocking function of the
GFW against VPN Gate became unstable. First, the
GFW suddenly stopped blocking all the VPN Gate serv-
ers. A few hours later, the GFW recovered and began
blocking VPN Gate again. This alternation between
blocking and non-blocking continued for a few days.

Since September 5, the GFW has completely stopped
blocking all the VPN Gate servers while continuing the
probing activity. All servers were reachable through the

GFW from September 5, 2013 to February 4, 2014. We
do not know why the GFW stopped the blocking.

The number of users and volunteers has increased
continuously. On February 4, 2014 we had 5,200 daily
volunteers, 1,049,000 daily connections (156,000 unique
IP addresses) worldwide, and 123,000 daily connections
(16,000 unique IP addresses) from China.

7. Conclusions
We have designed and implemented VPN Gate, a VPN
relay system with strong blocking resistance to censor-
ship firewalls such as China’s Great Firewall (GFW). In
VPN Gate, we use two key techniques to achieve block-
ing resistance: innocent IP mixing, and collaborative spy
detection. We have achieved a proportion of 60-70% of
VPN servers not blocked by the GFW. Users in a country
subject to censorship can bypass a firewall if they can
reach at least one unblocked VPN server. Censorship au-
thorities must block all VPN servers, and this is a very
hard task.

VPN Gate works effectively because it relies on
many volunteers. We have spent nothing on providing
VPN relaying functions. Instead, distributed volunteers
contribute small amounts of their electric power and line
bandwidth. In contrast, censorship authorities must build
expensive censorship infrastructures, implement com-
plex probing programs, and operate them at all times.

The tension between stronger blocking and stronger
blocking resistance is essentially a cat-and-mouse game.
It is not a fair game, however, and blocking resistance
has advantages over blocking. After launching VPN
Gate, we played this game with the GFW authority, and
we have won the game for the moment. In the future, we
are ready to improve our blocking resistance.

In the future, we would like to improve the scalabil-
ity of the VPN Gate List Server. Additionally, we plan to
support IPv6 in VPN Gate.

Note that we did not violate any laws in Japan, where
we performed all studies, research, and implementation
of blocking resistance to foreign censorship firewalls.

8. Acknowledgements
We would like to thank the NSDI reviewers, our shep-
herd Professor Sharon Goldberg, Professor Kozo Itano,
Professor Kazuhiko Kato, Professor Hisashi Nakai, Pro-
fessor Akira Sato, Professor Takahiro Shinagawa, Doc-
tor Hiromitsu Takagi, Doctor Tetsuo Sugiyama, Doctor
Junpei Kuwana, Doctor Mitsuo Yoshida, Takao Ito, Mei
Sharie Ann Yamaguchi, Satoshi Matsumoto, Genya
Hatakeyama, Christopher Smith, the Academic Compu-
ting and Communications Center of University of Tsu-
kuba, and the National Police Agency of Japan. We are
also grateful to the many volunteers and users of VPN
Gate.

Table 5. Monthly transition of the number of
GFW authority IP address blocks used for probing.
Year: 2013 IP address

blocks (/24)
New
blocks

Reused
blocks % reuse

March 2,792 2,792 0 0%
April 2,645 441 2,204 83%
May 1,199 103 1,096 91%
June 1,509 93 1,416 94%
July 1,856 235 1,621 87%

August 1,792 98 1,694 95%
September 1,516 92 1,424 94%

October 1,168 129 1,039 89%

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 241

13

9. References
[1] Daniel Anderson: "Splinternet Behind the Great

Firewall of China", ACM Queue, Vol. 10, No. 11,
2012.

[2] "Azureus User Guide", http://azureus.source-
forge.net/.

[3] Oliver Berthold, Hannes Federrath, and Stefan
Koopsell: "Web MIXes: A system for anonymous
and unobservable Internet access", Designing Pri-
vacy Enhancing Technologies, Springer LNCS
2009, pp 115-129, 2001.

[4] "BitTorrent User Manual", http://www.bit-
torrent.com/help/manual/.

[5] Richard Clayton, Steven J. Murdoch, and Robert N.
M. Watson: "Ignoring the Great Firewall of China",
In the Proceedings of the Sixth Workshop on Pri-
vacy Enhancing Technologies (PET 2006), pp.20-
35, 2006.

[6] Bram Cohen: "Incentives build robustness in Bit-
Torrent", In Proceedings of the Workshop on Eco-
nomics of Peer-to-Peer Systems, pp.68-72, 2003.

[7] Roger Dingledine, Nick Mathewson, and Paul Syv-
erson: "Tor: the second-generation onion router", In
Proceedings of the 13th conference on USENIX
Security Symposium, 2004.

[8] Nick Feamster, Magdalena Balazinska, Greg Harfst,
Hari Balakrishnan, and David Karger: "Infranet:
Circumventing Web Censorship and Surveillance",
In the Proceedings of the 11th USENIX Security
Symposium, August 2002.

[9] Nick Feamster, Magdalena Balazinska, Winston
Wang, Hari Balakrishnan, and David Karger:
"Thwarting web censorship with untrusted messen-
ger discovery", In Proceedings of the 3rd Workshop
on Privacy Enhancing Technologies (PET 2003),
Springer LNCS 2760, pp. 125-140, 2003.

[10] "Free VPN Info and PC Tips @ VpnSurfing.com",
vpnsurfing.com. [Online]. Available:
http://www.vpnsurfing.com/. [Accessed: 04-Sep-
2013].

[11] David Isaac Wolinsky, Kyungyong Lee, P. Oscar
Boykin, Renato Figueiredo: "On the design of au-
tonomic, decentralized VPNs", 6th International
Conference on the Collaborative Computing: Net-
working, Applications and Worksharing (Collabo-
rateCom), 2010.

[12] Stefan Köpsell and Ulf Hilling: "How to achieve
blocking resistance for existing systems enabling
anonymous web surfing", In Proceedings of the
Workshop on Privacy in the Electronic Society
(WPES 2004), 2004.

[13] David Martin and Andrew Schulman: "Deanony-
mizing users of the SafeWeb anonymizing service",

Proceedings of the 11th USENIX Security Sympo-
sium, 2002.

[14] Damon McCoy and Jose Andre Morales and Kirill
Levchenko: "Proximax: A measurement based sys-
tem for proxies dissemination," Financial Cryptog-
raphy and Data Security, 2011.

[15] "PrivacyProtectorGVN", Privacy Protector.
[Online]. Available: https://privacyprotec-
tor.eu/technology/. [Accessed: 04-Sep-2013].

[16] “rbox-tor: an easy to use Tor server”, redct.
[Online]. Available: http://redct.info/rbox/tor.html.
[Accessed: 13-Sep-2013].

[17] "Tor Project: obfsproxy", torproject.org. [Online].
Available: https://www.torproject.org/projects/ob-
fsproxy. [Accessed: 04-Sep-2013].

[18] Tim Wilde: "Great Firewall Tor probing Circa 09
Dec 2011." [Online]. Available:
https://gist.github.com/da3c7a9af01d74cd7de7.
[Accessed: 04-Sep-2014].

[19] Philipp Winter and Stefan Lindskog: "How the
great firewall of china is blocking Tor," Proceed-
ings of the 2nd USENIX Workshop on Free and
Open Communications on the Internet, 2012.

[20] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J.
Alex Halderman: "Telex: Anticensorship in the net-
work infrastructure", In the Proceedings of the 20th
USENIX Security Symposium, August 2011.

[21] Xueyang Xu, Z. Morley Mao and J. Alex Halder-
man: "Internet censorship in China: Where does the
filtering occur?", In Proceedings of the 12th Inter-
national Conference on Passive and Active Meas-
urement (PAM 11), pp. 133-142, 2011.

[22] Chenfeng Vincent Zhou, Christopher Leckie, and
Shanika Karunasekera: "A survey of coordinated
attacks and collaborative intrusion detection",
Computers & Security, Vol.29, No.1, pp.124-140.
2010.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 243

Bolt: Data management for connected homes

Trinabh Gupta Rayman Preet Singh
University of Texas at Austin University of Waterloo

Amar Phanishayee Jaeyeon Jung Ratul Mahajan

Microsoft Research

Abstract— We present Bolt, a data management sys-
tem for an emerging class of applications—those that
manipulate data from connected devices in the home. It
abstracts this data as a stream of time-tag-value records,
with arbitrary, application-defined tags. For reliable
sharing among applications, some of which may be run-
ning outside the home, Bolt uses untrusted cloud stor-
age as seamless extension of local storage. It organizes
data into chunks that contains multiple records and are
individually compressed and encrypted. While chunking
enables efficient transfer and storage, it also implies that
data is retrieved at the granularity of chunks, instead of
records. We show that the resulting overhead, however,
is small because applications in this domain frequently
query for multiple proximate records. We develop three
diverse applications on top of Bolt and find that the per-
formance needs of each are easily met. We also find that
compared to OpenTSDB, a popular time-series database
system, Bolt is up to 40 times faster than OpenTSDB
while requiring 3–5 times less storage space.

1 Introduction
Our homes are increasingly filled with connected de-
vices such as cameras, motion sensors, thermostats, and
door locks. At the same time, platforms are emerging
that simplify the development of applications that inter-
act with these devices and query their state and sensed
data. Examples include HomeOS [20], MiCasaVerde [5],
Nest [6], Philips Hue [2], and SmartThings [9].

While such platforms provide high-level abstractions
for device interaction, they do not provide such abstrac-
tions for data management other than the local file sys-
tem. Many applications, however, require richer data ma-
nipulation capabilities. For instance, PreHeat stores data
from occupancy sensors and uses historical data from
specific time windows to predict future occupancy and
control home heating [36]; Digital Neighborhood Watch
(DNW) [16, 19] stores information about objects seen
by security cameras, and shares this information upon

request by neighboring homes, based on a time window
specified in the requests. Developing such applications
today is difficult; developers must implement their own
data storage, retrieval, and sharing mechanisms.

Our goal is to simplify the management of data from
connected devices in the home. By studying existing and
proposed applications, we uncover the key requirements
for such a system. First, it should support time-series
data and allow for values to be assigned arbitrary tags;
device data is naturally time-series (e.g., occupancy sen-
sor readings) and tags can provide a flexible way to as-
sign application-specific semantics (e.g., DNW may use
“car” as a tag for object information). Second, the sys-
tem should enable sharing across homes because many
applications need access to data from multiple homes
(e.g., DNW application or correlating energy use across
homes [14]). Third, the system should be flexible to
support application specified storage providers because
applications are in the best position to prioritize storage
metrics like location, performance, cost, and reliability.
Fourth, the system should provide data confidentiality,
against potential eavesdroppers in the cloud or the net-
work, because of the significant privacy concerns asso-
ciated with home data. As we discuss later, none of the
existing systems meet these requirements.

We develop Bolt, a system for efficiently storing,
querying, and sharing data from connected home de-
vices. It abstracts data as a stream of time-tag-value
records, over which it builds indices to support efficient
querying based on time and tags. To facilitate sharing,
even when individual homes may be disconnected, Bolt
uses cloud storage as seamless extension of local stor-
age. It organizes data into chunks of multiple records
and compress these chunks prior to the transfer, which
boosts storage and network efficiency. To protect confi-
dentiality, the chunks are encrypted as well. Bolt decou-
ples the index from the data to support efficient query-
ing over encrypted data. Applications use the index to
identify and download the chunks they need. Our design

1

244 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

leverages the nature of queries in this domain. Applica-
tions are often interested in multiple proximate records.
Retrieving data at the granularity of chunks, rather than
individual records, improves network efficiency through
batching of records and improves performance through
prefetching records for subsequent queries.

Our current implementation of Bolt supports Windows
Azure and Amazon S3 as cloud storage. We evaluate
it first using microbenchmarks to understand the over-
head of Bolt’s streams supporting rich data abstractions
compared to raw disk throughput. We find that chunk-
ing improves read throughput by up to three times due to
strong temporal locality of reads and that the overhead of
encrypting data is negligible.

We then develop three diverse applications on top
Bolt’s APIs and evaluate their read and write perfor-
mance. We find that Bolt significantly surpasses the per-
formance needs of each application. To place its perfor-
mance in context, we compare Bolt to OpenTSDB [10],
a popular data management system for time-series data.
Across the three applications, Bolt is up to 40 times faster
than OpenTSDB while requiring 3–5 times less storage
space. OpenTSDB does not provide data confidential-
ity, which makes our results especially notable; by cus-
tomizing design to the home setting, Bolt simultaneously
offers confidentiality and higher performance.

While our work focuses on the home, connected de-
vices are on the rise in many other domains, including
factories, offices, and streets. The number of these de-
vices worldwide is projected to surpass 50 billion by
2020 [3]. Effectively managing the deluge of data that
these devices are bound to generate is a key challenge in
other domains too. The design of Bolt can inform sys-
tems for data storage, querying, and sharing in other do-
mains as well.

2 Application Requirements
To frame the requirement for our system, we surveyed
several applications for connected homes. We first de-
scribe three of them, which we pick for their diversity in
the type of data they manipulate and their access patterns.
We then outline the requirements that we inferred.

2.1 Example applications
PreHeat: PreHeat uses occupancy sensing to efficiently
heat homes [36]. It records home occupancy and uses
past patterns to predict future occupancy to turn a home’s
heating system on or off. It divides a day into 15-minute
time slots (i.e., 96 slots/day), and records the occupancy
value at the end of a slot: 1 if the home was occupied
during the preceding slot, and 0 otherwise. At the start
of each slot, it predicts the occupancy value, using the
slot occupancy values for the past slots on the same day
and corresponding slots on previous days. For instance,

for the nth slot on the day d, it uses occupancy values for
slots 1 · · ·(n−1) on the day d. This is called the partial
occupancy vector (POV n

d). Additionally, PreHeat uses
POV n

d−1, POV n
d−2, . . . , POV n

1. Of all past POVs, K POVs
with the least Hamming distance to POV n

d are selected.
These top-K POVs are used to predict occupancy, and
the heating system is turned on or off accordingly.
Digital Neighborhood Watch (DNW): DNW helps
neighbors jointly detect suspicious activities (e.g., an un-
known car cruising the neighborhood) by sharing secu-
rity camera images [16, 19]. The DNW instance in each
home monitors the footage from security cameras in the
home. When it detects a moving object, it stores the ob-
ject’s video clip as well as summary information such as:

Time: 15:00 PDT, 27th September, 2013

ID: 001

Type: human

Entry Area: 2

Exit Area: 1

Feature Vector :{114, 117, ... , 22}.

This summary includes the inferred object type, its loca-
tion, and its feature vector which is a compact represen-
tation of its visual information.

When a home deems a current or past object interest-
ing, it asks neighbors if they saw the object around the
same time. Each neighbor extracts all objects that it saw
in a time window (e.g., an hour) around the time specified
in the query. If the feature vector of one of the objects is
similar to the one in the query, it responds positively and
optionally shares the video clip of the matching object.
Responses from all the neighbors allow the original in-
stance to determine how the object moved around in the
neighborhood and if its activity is suspicious.
Energy Data Analytics (EDA): Utility companies
around the world are deploying smart meters to record
and report energy consumption readings. Given its fine-
grained nature, compared to one reading a month, data
from smart meters allows customers to get meaningful
insight into their energy consumption habits [39]. Much
recent work has focused on analysing this data, for in-
stance, to identify the consumption of different appli-
ances, user activities, and wastage [14, 22, 29, 33].

A specific EDA application that we consider is where
the utility company presents to consumers an analy-
sis of their monthly consumption [14]. It disaggre-
gates hourly home energy consumption values into dif-
ferent categories—base, activity driven, heating or cool-
ing driven, and others. For each home, the variation
in consumption level as a function of ambient tempera-
ture is analysed by computing for each temperature value
the median, 10th, and 90th-percentile home energy con-
sumption. These quantities are then reported to the con-
sumer, along with a comparison with other homes in the
neighborhood or city.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 245

Other applications that we surveyed include
DigiSwitch [17], which supports elders who reside
separately from their caregivers by sharing sensed
activity in the home, and a few commercial systems
such as Kevo that come with the Kwikset wireless door
lock [4]. The requirements, which we describe next,
cover these applications as well.

2.2 Data management requirements
We distill the requirements of connected home applica-
tions into four classes.

Support time-series, tagged data: Most applications
generate time-series data and retrieve it based on time
windows. The data may also be tagged and queried using
application-specific concepts. For example, object type
“human” is a possible tag in DNW and “heating con-
sumption” is a possible tag in EDA.

We make other observations about data manipulation
patterns of home applications. First, data in these set-
tings has a single writer. Second, writers always generate
new data and do not perform random-access updates or
deletes. Third, readers typically fetch multiple proximate
records by issuing temporal range & sampling queries for
sliding or growing time windows. Traditional databases
with their support for transactions, concurrency control,
and recovery protocols are an overkill for such data [37],
and file-based storage offers inadequate query interfaces.

Efficiently share data across homes: It is not uncom-
mon for applications to access data from multiple homes.
Both DNW and EDA fall in this category. Online storage
services, like Dropbox [1] or OneDrive [7], can simplify
cross-home sharing, but they will unnecessarily synchro-
nize large quantities of data. Applications may want to
access only part of the data produced by a device. For
example, in DNW, it would be wasteful to access the en-
tire day worth of video data if the search for suspicious
objects needs to be done only over a few hours.

Support policy-driven storage: Different types of data
have different storage requirements for location, access
performance, cost, and reliability. A camera that records
images might store them locally and delete them once
the DNW application has extracted images of objects
in them. The DNW application might store these im-
ages on a remote server to correlate with images cap-
tured by neighbours. Once analysed, they can be stored
on cheaper archival storage servers. Applications are in
the best position to prioritize storage metrics and should
be able to specify these policies.

Ensure data confidentiality & integrity: Applications
may use remote storage infrastructure to simplify data
management and sharing, but may not trust them for con-
fidentiality or integrity of data. Data generated by home
applications may contain sensitive information; DNW

contains clips of residents, and data from occupancy sen-
sors and energy meters reveal when residents are away,
which can be exploited by attackers. Therefore, the data
management system for these applications should guar-
antee the confidentiality and integrity of stored data. The
system should also support efficient changes in access
policies, without requiring, for instance, re-encryption of
a large amounts of data.

Efficiently meeting all the requirements above is chal-
lenging. For example, storing data locally facilitates con-
fidentiality but inhibits efficient sharing, remote access,
and reliable storage. By the same token, storing data in
the cloud provides reliable storage and sharing, but un-
trusted storage servers can compromise confidentiality;
also, sharing by synchronizing large amounts of data is
inefficient. Finally, naı̈vely storing encrypted data on un-
trusted servers inhibits efficient sharing.

As we review in detail in §7, existing systems either
expose inefficient sharing and querying abstractions for
temporal data [21, 23, 30], assume partial or complete
trust on the storage servers [31], or store data locally
while ignoring application storage policies [25]. In the
following sections we describe the design of Bolt to sup-
port the storage requirements listed above.

3 Overview of Bolt
The data abstraction exposed by Bolt is a stream in which
each record has a timestamp and one or more tag-value
pairs, i.e., <timestamp, <tag1,value1>, [<tag2, value2>,
...]>. Streams are uniquely identified by the three-tuple:
<HomeID, AppID, StreamID>. Bolt supports filtering and
lookups on streams using time and tags.

3.1 Security assumptions and guarantees
Bolt does not trust either the cloud storage servers or the
network to maintain data confidentiality or integrity. We
assume that the storage infrastructure is capable of unau-
thorized reading or modification of stream data, return-
ing old data, or refusing to return any data at all. Atop
this untrusted infrastructure, Bolt provides the following
three security and privacy guarantees:

1. Confidentiality: Data in a stream can be read only
by an application to which the owner grants access,
and once the owner revokes access, the reader can-
not access data generated after revocation.

2. Tamper evidence: Readers can detect if data has
been tampered by anyone other than the owner.
However, Bolt does not defend against denial-of-
service attacks, e.g., where a storage server deletes
all data or rejects all read requests.

3. Freshness: Readers can detect if the storage server
returns stale data that is older than a configurable
time window.

3

246 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.2 Key techniques
The following four main techniques allow Bolt to meet
the requirements listed in the previous section.

Chunking: Bolt stores data records in a log per stream,
enabling efficient append-only writes. Streams have an
index on the datalog to support efficient lookups, tem-
poral range and sampling queries, and filtering on tags.
A contiguous sequence of records constitute a chunk. A
chunk is a basic unit of transfer for storage and retrieval.
Data writers upload chunks instead of individual records.
Bolt compresses chunks before uploading them, which
enhances transfer and storage efficiency.

Readers fetch data at the granularity of chunks as well.
While this means that more records than needed may
be fetched, the resulting inefficiency is mitigated by the
fact that applications, like the ones we surveyed earlier,
are often interested in multiple records in a time win-
dow, rather than a single record generated at a particu-
lar time. Fetching chunks, instead of individual records,
makes common queries with temporal locality efficient,
avoiding additional round trip delays.

Separation of index and data: Bolt always fetches the
stream index from the remote server, and stores the in-
dex locally at readers and writers; data may still reside
remotely. This separation opens the door to two prop-
erties that are otherwise not possible. First, because the
index is local, queries at endpoints use the local index to
determine what chunks should be fetched from remote
servers. No computation (query engine) is needed in the
cloud, and storage servers only need to provide data read-
/write APIs, helping reduce the cost of the storage sys-
tem. Second, it allows Bolt to relax its trust assumptions
of storage servers, supporting untrusted cloud providers
without compromising data confidentiality by encrypt-
ing data. The data can be encrypted before storing and
decrypted after retrievals, and the provider needs to un-
derstand nothing about it. Supporting untrusted cloud
providers is challenging if the provider is expected to
perform index lookups on the data.

Segmentation: Based on the observation that applica-
tions do not perform random writes and only append new
data, streams can grow large. Bolt supports archiving
contiguous portions of a stream into segments while still
allowing efficient querying over them. The storage lo-
cation of each segment can be configured, enabling Bolt
streams to use storage across different providers. Hence,
streams may be stored either locally, remotely on un-
trusted servers, replicated for reliability, or striped across
multiple storage providers for cost effectiveness. This
configurability allows applications to prioritize their stor-
age requirements of space, performance, cost, and relia-
bility. Bolt currently supports local streams, Windows
Azure storage, and Amazon S3.

Decentralized access control and signed hashes: To
maintain confidentiality in the face on untrusted storage
servers, Bolt encrypts the stream with a secret key gener-
ated by the owner. Bolt’s design supports encryption of
both the index and data, but by default we do not encrypt
indices for efficiency,1 though in this configuration infor-
mation may leak through data stored in indices. Further,
we use lazy revocation [28] for reducing computation
overhead of cryptographic operations. Lazy revocation
only prevents evicted readers from accessing future con-
tent as the content before revocation may have already
been accessed and cached by these readers. Among the
key management schemes for file systems using lazy re-
vocation, we use the hash-based key regression [24] for
its simplicity and efficiency. It enables the owner to share
only the most recent key with authorized readers, based
on which readers can derive all the previous keys to de-
crypt the content.

We use a trusted key server to distribute keys. Once a
stream is opened, all subsequent reads and writes occur
directly between the storage server and the application.
This way, the key server does not become a bottleneck.

To facilitate integrity checks on data, the owners gen-
erate a hash of stream contents, which is verified by
the readers. To enable freshness checks, similar to SF-
SRO [23] and Sirius [26], freshness time window is part
of the stream metadata. It denotes until when the data
can be deemed fresh; it is based on the periodicity with
which owners expect to generate new data. Owners peri-
odically update and sign this time window, which readers
can check against when a stream is opened.

4 Bolt Design
We now describe the design of Bolt in more detail.

4.1 APIs
Table 1 shows the Bolt stream APIs. Applications, iden-
tified by the <HomeID, AppID> pair, are the principals
that read and write data. On create and open, they
specify the policies shown in Table 2, which include the
stream’s type, storage location, and protection and shar-
ing requirements. The stream type can be ValueStream,
useful for small data values such as temperature readings,
or FileStream, useful for large values such as images or
videos. The two types are stored differently on disk.

Each stream has one writer (owner) and one or more
readers. Writers add time-tag-value records to the stream
using append. Records can have multiple tag-value
pairs and multiple tags for a value. Tags and values
are application-defined types that implement IKey and
IValue interfaces, allowing Bolt to hash, compare, and

1Index decryption and encryption is a one time cost paid at stream
open & close respectively and is proportional to the size of the index.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 247

Function Description

createStream(name, R/W, policy) Create a data stream with specified policy properties (see Table 2)
openStream(name, R/W) Open an existing data stream
deleteStream(name) Delete an existing data stream

append([tag, value]) Append the list of values with corresponding tags. All get same timestamp
append([tag], value) Append data labelled with potentially multiple tags

getLatest() Retrieve latest < time, tag,value > tuple inserted across all tags
get(tag) Retrieve latest < time, tag,value > tuple for the specified tag
getAll(tag) Retrieve all time-sorted < time, tag,value > tuples for specified tag
getAll(tag, tstart , tend) Range query: get all tuples for tag in the specified time range
getAll(tag, tstart , tend , tskip) Sampling range query
getKeys(tagstart , tagend) Retrieve all tags in the specified tag range

sealStream() Seal the current stream segment and create a new one for future appends
getAllSegmentIDs() Retrieve the list of all segments in the stream
deleteSegment(segmentID) Delete the specified segment in the current stream

grant(appId) Grant appId read access
revoke(appId) Revoke appId’s read access

Table 1: Bolt stream APIs: Bolt offers two types of streams: (i) ValueStreams for small data values (e.g.,
temperature readings); and (ii) FileStreams for large values (e.g., images, videos).

Property Description
Type ValueStream or FileStream
Location Local, Remote, or Remote Replicated
Protection Plain or Encrypted
Sharing Unlisted (private) or Listed (shared)

Table 2: Properties specified using Bolt policies

serialize them. Finally, writers can grant and revoke
read access other applications. Readers can filter and
query data using tags and time (get*). We currently
support querying for the latest record, the latest record
for a tag, temporal range and sampling queries, and range
queries on tags. Range queries return an iterator, which
fetches data on demand, when accessed.

4.2 Writing stream data
An owner first creates a new Bolt stream and appends
data records to it. Figure 1 shows the data layout for
a stream. Streams consist of two parts: a log of data
records (DataLog), and an index that maps a tag to a
list of data item identifiers. Item identifiers are fixed-
size entries and the list of item identifiers in the index
is sorted by time, enabling efficient binary searches for
range and sampling queries. The index is memory resi-
dent and backed by a file; records in the DataLog are on
disk and retrieved when referenced by the application.
The DataLog is divided into fixed sized chunks of con-
tiguous data records.

DataLog
(on disk)

animal
Tags

car
person

Chunk #1,
Hash(Chunk #1)

ts1,
offset1

ts6,
offset6

ts2,
offset2

Val
1

Val
2

Val
3

Val
4

Val
5

Val
6

Val
7

Val
8

Index
(in memory,
disk backed)

Item identifiers
ts5,

offset6
ts7,

offset7
ts8,

offset8

ts8,
offset8

ts3,
offset3

ts4,
offset4

ts6,
offset6

Chunk #2,
Hash(Chunk #2)

Chunk #3,
Hash(Chunk #3) ChunkList

Figure 1: Data layout of a ValueStream. FileStream
layout is similar, except that the values in the DataLog
are pointers to files that contain the actual data.

To reduce the memory footprint of the index, which
can grow large over time, streams in Bolt can be
archived. This snapshot of a stream is called a seg-
ment, where each segment has its own DataLog and cor-
responding index. Hence, streams are a time ordered list
of segments. If the size of the index in memory exceeds
a configurable threshold (indextresh), the latest segment
is sealed, its index is flushed to disk, and a new segment
with a memory resident index is created. Writes to the
stream always go to the latest segment and all other seg-
ments of the stream are read-only entities. The index for
the latest segment of the stream is memory resident and
backed by a file (Figure 1); As shown in Figure 2 all other
segments are sealed and store their indices on disk with

5

248 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Chunk #1,
Hash(Chunk #1)

ts1,
offset1

ts6,
offset6

ts2,
offset2

Val
1

Val
2

Val
3

Val
4

Val
5

Val
6

Val
7

Val
8

Index
(on disk)

Item identifiers
ts5,

offset6
ts7,

offset7
ts8,

offset8

ts8,
offset8

ts3,
offset3

ts4,
offset4

ts6,
offset6

Chunk #2,
Hash(Chunk #2)

Chunk #3,
Hash(Chunk #3)

animal,
ts1, ts8

car,
ts6, ts8

person,
ts2, ts6

Compact Index
(in memory,
disk backed)

DataLog
(on disk)

ChunkList
(on disk)

Figure 2: Data layout of a sealed segment in Bolt.

a compact in-memory index header that consists of the
tags, the timestamp for the first and last identifier in their
corresponding item identifier list, and the location of this
list in the index file.

4.3 Uploading stream data
Each principal (<HomeID, AppID> pair) in Bolt is as-
sociated with a private-public key pair, and each stream
in Bolt is encrypted with a secret key, Kcon, generated
by the owner. When a stream is synced or closed, Bolt
flushes the index to disk, chunks the segment DataLog,
compresses and encrypts these chunks, and generates the
ChunkList. The per-segment ChunkList is an ordered
list of all chunks in the segment’s DataLog and their cor-
responding hashes. Bolt has to do this for all mutated
segments: new segments generated since the last close
and the latest segment which may have been modified
due to data appends; All other segments in the stream are
sealed and immutable.

Bolt then generates the stream’s integrity meta-
data (MDint). Let n denote the number of segments
within the stream. Then, MDint is computed as follows:
SigKpriv

owner [H[TTL||H[Ii]||...||H[In]||H[CLi]||...||H[CLn]].
Bolt uses TTL to provide guarantees on data freshness
similar to SFSRO and Chefs [23], ensuring any data
fetched from a storage server is no older than a con-
figurable writer-specified consistency period, and also

1. TTL: tfresh
start, tfresh

end
2. H[x]: Cryptographic hash of x
3. SigK[x]: Digital signature of x with the key K
4. Kpub

owner, Kpriv
owner: a public-private key pair of owner

4. CLi: ChunkList of the ith segment
5. Ii: Index of the ith segment
6. ||: Concatenation

Table 3: Glossary

Storage
Server

Step 4:
Read: Fetch chunks, decrypt locally

App:
A1

Home: H1

Storage
Lib.

Step 1: Request
content key for Data

Stream H1/A1/S1

Index Datalog

Step 3 (local):
Verify integrity &

freshness
Stream: H1/A1/S1

Metadata Server

Enc-H1/A1(Kcon),
Enc-H2/B1(Kcon),

Segment Info List,
Location of MDint

metadata for H1/A1/S1

Step 2: Fetch
index

Write: Encrypt chunks locally, store index & data

Figure 3: Steps during reads and writes for applica-
tion A1 in home H1 accessing stream H1/A1/S1

no older than any previously retrieved data. As shown
in Table 3, MDint is a signed hash of the duration for
which the owner guarantees data freshness (TTL) and
the per-segment index and ChunkList hashes. For all
mutated segments, Bolt uploads the chunks, the updated
ChunkList, and the modified index to the storage server.
Chunks are uploaded in parallel and applications can
configure the maximum number of parallel uploads.
Bolt then uploads MDint . Finally Bolt uploads the
stream metadata to the meatadata server if new segments
were created.2

4.4 Granting and revoking read access

A metadata server, in addition to maintaining the princi-
pal to public-key mappings, also maintains the following
stream metadata: (i) a symmetric content key to encrypt
and decrypt data (Kcon), (ii) principals that have access
to the data (one of them is the owner), (iii) the location
of MDint , and (iv) per-segment location and key version.
Kcon is stored encrypted — one entry for each principal
that has access to the stream using their public key.

To grant applications read access, the owner updates
stream metadata with Kcon encrypted with the reader’s
public key. Revoking read access also involves updating
stream metadata: owners remove the appropriate princi-
pal from the accessor’s list, remove the encrypted content
keys, roll forward the content key and key version for all
valid principals as per key-regression [24]. Key regres-
sion allows readers with version V of the key to generate
keys for all older versions 0 to V − 1. On a revocation,
Bolt seals the current segment and creates a new one. All
chunks in a segment are always encrypted using the same
version of the content key.

2In our initial design, we assume that stream metadata is stored on
a trusted key server to prevent unauthorized updates. In Section 8 we
discuss how this assumption can be relaxed.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 249

4.5 Reading stream data
Figure 3 shows the steps during reads; Owners also fol-
low these steps when they reopen their streams. Bolt
opens a stream (step 1) and fetches stream metadata. Us-
ing this information, Bolt then fetches the stream’s in-
tegrity metadata (MDint) from untrusted storage. On ver-
ifying MDint’s integrity using the owner’s public key, and
freshness using the TTL in MDint , the reader fetches in-
dex & ChunkList for every segment of the stream (step
2) and verifies their integrity using MDint (step 3).

Owner can store new data record in the stream on ver-
ifying the integrity of index data. For readers, once in-
dex & ChunkList integrity verifications for all segments
complete (step 3), Bolt uses the index to identify chunks
that need to be fetched from remote storage to satisfy
get requests. Chunk level integrity is checked lazily;
Bolt downloads these chunks and verifies their integrity
by using the segment’s ChunkList. Bolt decrypts and de-
compress the verified chunk and stores these chunks in a
local disk-based cache for subsequent reads.

5 Implementation
We have implemented Bolt using C# over the .NET
Framework v4.5. Our implementation is integrated into
the HomeOS [20] platform, but it can also be used as an
independent library. In addition to the applications we
evaluate in the next section, several other HomeOS ap-
plications have been ported by others to use Bolt. The
client-side code is 6077 lines of code, and the metadata
server is 473 lines. Our code is publicly available at
labofthings.codeplex.com.

Our client library uses Protocol Buffers [8] for data
serialization and can currently use Windows Azure and
Amazon S3 for remote storage. It uses their respective li-
braries for reading and writing data remotely. On Azure,
each segment maps to a container, the index & DataLog
each map to a blob, and individual chunks map to parts
of the DataLog blob (blocks). On S3, each segment maps
to a bucket, the index maps to an object, and chunks of
the DataLog map to individual objects.

The communication between the clients and the meta-
data server uses the Windows Communication Founda-
tion (WCF) framework. The server is hosted in a Win-
dows Azure VM with 4-core AMD Opteron Processor
and 7GB RAM and runs Windows Server 2008 R2.

6 Evaluation
We evaluate Bolt in two ways: 1) microbenchmarks,
which compare the performance of different Bolt stream
configurations to the underlying operating system’s per-
formance, 2) applications, which demonstrate the feasi-
bility and performance of Bolt in real-world use cases.
Table 4 summarizes the major results.

Finding Location

Bolt’s encryption overhead is negligible, mak-
ing secure streams a viable default option.

§6.1.1

Chunking in Bolt improves read throughput by
up to 3x for temporal range queries.

§6.1.2

Bolt segments are scalable: querying across 16
segments incurs only a 3.6% overhead over a
single segment stream.

§6.1.3

Three applications (PreHeat, DNW, EDA) im-
plemented using Bolt abstractions.

Bolt is up to 40x faster than OpenTSDB. §6.2

Bolt is 3–5x more space efficient than
OpenTSDB.

Table 4: Highlights of evaluation results

All Bolt microbenchmark experiments (Section 6.1)
are run on a VM on Windows Azure. The VM has a 4-
core AMD Opteron Processor, 7GB RAM, 2 virtual hard
disks and runs Windows Server 2008 R2. All application
experiments (Section 6.2) are run on a physical machine
with an AMD-FX-6100 6-core processor, 16 GB RAM,
6 Gbps SATA hard disk, running Windows 7.

6.1 Bolt microbenchmarks
Setup. In each experiment a client issues 1,000 or 10,000
write or read requests for a particular Bolt stream con-
figuration. The size of the data-value written or read is
one of 10B, 1KB, 10KB or 100KB. We fix the chunk size
for these experiments at 4MB unless otherwise specified.
We measure the throughput in operations/second and the
storage space used (for writes). To compare Bolt’s write
performance we bypass Bolt and write data directly to
disk (referred to as DiskRaw)–either to a single local
file (baseline for ValueStream), to multiple files, one for
each data value (baseline for FileStream), or upload data
directly to Azure (baseline for remote ValueStream and
FileStream). Similarly, for data reads i.e., Get(tag)
and GetAll(tag, timestart, timeend) queries, we
compare Bolt’s read performance to data read directly
from a single local file (baseline for ValueStream), data-
values read from separate files (baseline for FileStream),
and data read by downloading an Azure blob (baseline
for remote ValueStream). We report the mean and stan-
dard deviation across 10 runs of each experiment.

6.1.1 Write performance

ValueStream: Figure 4 compares the write throughput at
the client for three different data-value sizes (10B, 1KB
and 10KB). Writes to local ValueStreams are slower than
DiskRaw because of the overhead of three additional

7

250 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10
0

10
1

10
2

10
3

10
4

10
5

10B 1KB 10KB

ap
p

en
d

s/
se

co
n

d

data value size

DiskRaw
Local

Remote
RemoteEnc

Figure 4: Write throughput (appends/second) for
Bolt ValueStreams (local, remote, remote encrypted)

subtasks: index update/lookup, data serialization, and
writing index & DataLog to disk. Table 5 shows these
breakdown for 10,000 appends of 10B values. As the
size of individual records inserted goes up, the through-
put, measured in MBps, goes up; DiskRaw and local Val-
ueStreams saturate the local disk write throughput. For
supporting the new abstractions, the storage space taken
by Bolt streams is 0.1× (for large values) to 2.5× (for
10B values) compared to DiskRaw for local writes.

For remote streams, we find that the absolute time
taken to perform the above mentioned subtasks is sim-
ilar, however, a high percentage of the total time is spent
uploading the DataLog and index to the cloud. For exam-
ple, Table 5 shows that 64% of the total time is taken to
chunk & upload the DataLog; uploading the index took
close to 3% of the total time. Chunking and uploading
involves the following six major components: (i) read-
ing chunks from the DataLog and computing the hash of
their contents, (ii) checking the blob’s existence on the
storage server and creating one if not present, (iii) com-
pressing and encrypting chunks if needed, (iv) uploading
individual chunks to blocks in a blob, (v) committing the
new block list to Azure reflecting the new changes, and
(vi) uploading the new chunk list containing chunk IDs
and their hashes. For remote-encrypted streams, the time
taken to encrypt data is less than 1% of the total time.
FileStream: Figure 5 compares the write throughput for
1000 appends at the client, for three different data-value

Component Local Remote Remote
Encrypted

Lookup, Update Index 5% 2.1% 0.6%
Data Serialization 14.3% 2.3% 1.7%
Flush Index 39.8% 9.9% 10.2%
Flush Data 33.2% 7.3% 10.5%
Uploading Chunks - 63.6% 61.9%
Encrypting Chunks - - 0.6%
Uploading Index - 2.8% 2.6%

Table 5: Percentage of total experiment time spent in
various tasks while appending 10,000 items to a Val-
ueStream for 10B value sizes.

10
0

10
1

10
2

10
3

1KB 10KB 100KB

ap
p

en
d

s/
se

co
n

d

data value size

DiskRaw
Local

Remote
RemoteEnc

Figure 5: Write throughput (appends/second) for
Bolt FileStreams (local, remote, remote encrypted)

sizes (1KB, 10KB, and 100KB). Unlike ValueStreams,
the latency for writes in FileStreams is influenced pri-
marily by two tasks: writing each data record to a sep-
arate file on disk and uploading each file to a sepa-
rate Azure blob. As a result, the performance of lo-
cal FileStream is comparable to DiskRaw. For remote
streams writing to local files matches the performance of
local streams, but creating a new Azure blob for every
data record in the stream dominates the cost of writes
(over 80% of the total time). Encryption has an overhead
of approximately 1%.
Storage overhead: Table 6 shows the storage overhead
of Bolt’s local ValueStreams over DiskRaw for 10B,
1KB, 10KB value sizes. In DiskRaw tag-value pairs
and timestamp are appended to a file on disk. Val-
ueStream’s overheads are primarily due to offsets in the
index, and index & DataLog serialization data. Bolt
stores each unique tag only once in the index, benefiting
streams with large tags. We define storage overhead as
the amount of additional disk space used by ValueStream
compared to DiskRaw, expressed as a percentage. Stor-
age overhead decreases with larger value sizes, but re-
mains constant with increasing number of data records
for a given value size. Stream metadata overhead does
not change with value size and is small.

6.1.2 Read Performance

ValueStream: Figure 6 compares the read throughput
at the client for three different data-value sizes (10B,
1KB and 10KB) using three ValueStream configurations.
The client issues 10,000 Get(tag) requests with a ran-
domly selected tag on every call.

In DiskRaw, values are read from random parts of

Value Size % overhead

10 B 30.6
1 KB 0.86
10 KB 0.09

Table 6: Storage overhead of local ValueStreams over
DiskRaw. This percentage overhead is independent of
the number of data items inserted.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 251

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10B 1KB 10KB

g
et

s/
se

co
n

d

data value size

DiskRaw
Local

Remote
RemoteEnc

Figure 6: Read throughput, in Get(key) calls per
second with randomly selected keys, for Bolt Val-
ueStreams (local, remote, and remote encrypted)

the DataLog. Despite random reads, for both DiskRaw
and ValueStream streams, the effect of file system buffer
cache shows up in these numbers. Local ValueStreams
incur an overhead of index lookup and data deserial-
ization. For example, for 1KB sized data values, lo-
cal ValueStreams spend 5% of the total time in index
lookup, 60% reading records from the DataLog (match-
ing DiskRaw speeds), and 30% deserializing data. Re-
mote reads in ValueStream are dominated by the cost of
downloading chunks from Azure and storing them in the
chunk cache (90% of the read latency).
FileStream: Compared to DiskRaw, FileStreams incur
the overhead of index lookup, downloading individual
blobs from remote storage, and reading the data record
from the file. Figure 7 shows the effect of these on
throughput. For remote streams most of the time (99%)
is spent downloading individual blobs from remote stor-
age. For remote-encrypted streams, the time taken to de-
crypt data is less than 1% of the total time.
Effect of chunking on temporal range queries: Fig-
ure 8 shows that chunking improves read throughput as
it batches transfers and prefetches data for range queries
with locality of reference. We experiment with two range
queries that retrieve the same amount of data, one with a
narrow window of 10 records, and another with a larger
window of 100 records; the start times of the windows

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1KB 10KB 100KB

g
et

s/
se

co
n

d

data value size

DiskRaw
Local

Remote
RemoteEnc

Figure 7: Read throughput, in Get(key) calls
per second with randomly selected keys, for Bolt
FileStreams (local, remote, and remote encrypted).

 0

 100

 200

 300

 400

 500

128KB 256KB 512KB 1MB 2MB 4MBD
a
ta

 i
te

m
s
 r

e
a
d

/s
e
c
o

n
d

Chunk Size

100 item window

10 item window

Figure 8: Effect of chunking on reads. Chunking im-
proves throughput because of batching transfers and
prefetching data for queries with locality of reference.
In this experiment, the stream contains 10,000 data
items each 10KB in size.

are picked randomly from the time range of data stored.
Larger chunks cause higher read throughput by reducing
the number of chunk downloads as chunks are cached
locally. For a fixed chunk and value size, queries with
a wider window have comparatively larger throughput.
This is because wider queries cause fewer downloads by
leveraging caching to answer queries. Whereas narrow
queries are comparatively dispersed across the DataLog,
hence causing more chunk downloads.

6.1.3 Scalability of Bolt ValueStream segments

Figure 9 shows the effect of scaling the number of seg-
ments for a local ValueStream on opening the stream
(one time cost), index lookup, and reading data records.
Each segment has 10,000 keys, and 10,000 Get(key) re-
quests are issued for randomly selected keys. The time
taken for opening a stream is dominated by the time to
build the segment index in memory and it grows lin-
early with the number of segments. Query time across
segments with compact memory-resident index headers
grows negligibly with the number of such segments.

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 128

to
ta

l
ti

m
e

(m
s)

number of segments

Open stream
Lookup offset

Read item from disk

Figure 9: Open, index look-up, and DataLog record
retrieval latencies scale well as a function of the num-
ber of segments of the stream, while issuing 10,000
Get(key) requests for random keys. Each segment has
10,000 keys.

9

252 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.2 Applications
We demonstrate the feasibility and performance of three
real-world applications using Bolt: PreHeat, Digital
Neighborhood Watch, and Energy Data Analytics. For
comparison we also evaluate the performance of these
applications using OpenTSDB [10]. It is a popular sys-
tem for time-series data analytics. It is written in Java
and uses HBase to store data. Unlike Bolt’s library that is
loaded into the client program, OpenTSDB allows query-
ing only over HTTP endpoints. Further, unlike Bolt,
OpenTSDB neither provides security guarantees nor the
flexibility offered by policy-driven storage.

6.2.1 PreHeat: Occupancy prediction

PreHeat [36], is a system that enables efficient home
heating by recording and predicting occupancy informa-
tion. We described PreHeat’s algorithm in Section 2.1.
In implementing PreHeat’s data storage and retrieval us-
ing Bolt, we identify each slot by its starting timestamp.
A single local unencrypted ValueStream thus stores the
(timestamp, tag, value) tuples where the tag is a string
(e.g., “occupancy”). We instantiate two different PreHeat
implementations that optimize for either disk storage or
retrieval time, and hence store different entities as values:

Naı̈ve: In this implementation the value stored for
each slot is simply the slot’s measured occupancy (0 or
1). Thus for computing predicted occupancy for the nth
slot on day d, POVs are obtained by issuing d temporal
range queries [getAll(k, ts, te)].

Smart: Here the value stored for a slot is its POV con-
catenated to its measured occupancy value. Thus com-
puting predicted occupancy for the nth slot on day d
requires one get(k) query for POV n

d and (d − 1) tempo-
ral range queries that return a single value for POV n

d−1,
POV n

d−2, . . . , POV n
1. As compared to the naı̈ve imple-

mentation, range queries over time are replaced with
simple get queries for a particular timestamp. The stor-
age overhead incurred in this approach is larger than the
naı̈ve approach, but retrieval latency is reduced due to the
reduced number of disk reads.

Naı̈ve + OpenTSDB: We implement the naı̈ve Pre-
Heat approach to store and retrieve data locally from
OpenTSDB. It groups occupancy values spanning an
hour into one row of HBase (OpenTSDB’s underlying
datastore). That is, 4 PreHeat slots are grouped into a
single HBase row. OpenTSDB’s usability is limited by
values being restricted to real numbers. Bolt allows byte
arrays of arbitrary length to be stored as values. Conse-
quently, an analogous implementation of the smart Pre-
Heat approach is not possible with OpenTSDB.

Of all the 96 slots in a day, the 96th, or last, slot has
the maximum retrieval, computation, and append time,
as POV d

96 is longest POV d
i ,∀i ∈ [1,96]. Thus to compare

the approaches we use the retrieval, computation, and ap-

 0.1

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128

T
im

e
ta

k
en

 t
o

 r
et

ri
ev

e
d

at
a

(m
s)

Number of days

Naive+OpenTSDB
Naive+ValueStream
Smart+ValueStream

Figure 10: Time to retrieve past occupancy data with
increasing duration of a PreHeat deployment.

pend times for the 96th slot of each day. Figure 10 shows
a comparison of time taken to retrieve data for the 96th
slot. We observe that as the number of days increase the
retrieval latency for both the naı̈ve and smart approaches
grows due to increasing number of range and get queries.
However, the smart approach incurs less latency than
naı̈ve as it issues fewer random disk reads. As compared
to OpenTSDB, Bolt performs approximately 40× faster
for the naı̈ve approach in analysing 100 days of data.
Lastly, as expected, the time taken to perform compu-
tation for occupancy prediction is unchanged across the
three implementations.

Table 7 shows the disk footprint incurred by the im-
plementations for 1000 days of operation. We observe
that the smart approach uses 8× the storage compared
to naı̈ve as it stores slots’ POVs in addition to occu-
pancy values. Using Bolt’s compressed streams, the
naı̈ve scheme achieves up to a 1.6× reduction, and the
smart scheme achieves up to a 8× reduction in stor-
age overhead, as compared to their uncompressed stream
counterparts. OpenTSDB incurs 3× larger disk footprint
than its corresponding implementation using Bolt with
uncompressed streams. Row key duplication in HBase is
one potential source of storage inefficiency.

To understand the effect of chunk-based prefetching
on application performance, we run naı̈ve PreHeat for 10
days using a remote ValueStream, clear the chunk cache,
and measure the retrieval time of each slot on the 11th
day. Figure 11 shows the average of all 96 slot retrieval

Configuration Naive Smart

ValueStream 2.38 MB 19.10 MB
ValueStream using GZip 1.51 MB 3.718 MB
ValueStream using BZip2 1.48 MB 2.37 MB
OpenTSDB 8.22 MB -

Table 7: Storage space for a 1000-day deployement of
PreHeat.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 253

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 120 240 360 480 600 720 840 960

R
et

ri
ev

al
 T

im
e

(i
n
 m

s)

Chunk Size (in Bytes)

Average Retrieval Time on Day 11

Figure 11: Average retrieval time for all 96 slots on
the 11th day of a PreHeat deployment, with a remote
ValueStream, decreases with increasing chunk size.

times on the 11th day, for different chunk sizes. As the
chunk size increases, the average slot retrieval time de-
creases, as newly downloaded chunks prefetch additional
occupancy values used in subsequent slots’ queries.

6.2.2 Digital Neighborhood Watch (DNW)

DNW helps neighbors detect suspicious activities (e.g.,
an unknown car cruising the neighborhood) by sharing
security camera images [16]. We implement DNW’s data
storage, retrieval and sharing mechanisms using Bolt and
OpenTSDB. Due to Bolt’s (timestamp, tag, value) ab-
straction, objects can be stored (and retrieved) in a sin-
gle remote ValueStream (per home), with each object
attribute in a separate tag e.g., type, ID, feature-vector,
all bearing the same timestamp. Queries proceed by
performing a getAll(feature-vector, ts, te)
where time window (w)=[ts,te], and then finding a match
amongst the retrieved objects. Similarly, in OpenTSDB,
each home’s objects are recorded against its metric (e.g.,
home-id), and OpenTSDB tags store object attributes.
We run OpenTSDB remotely on an Azure VM. The
DNW clients that store and retrieve data, for both Bolt
and OpenTSDB, run on our lab machines.

To evaluate DNW, we instrument each home to record
an object every minute. After 1000 minutes, one ran-
domly selected home queries all homes for a matching
object within a recent time window w. We measure the
total time for retrieving all object summaries from ten
homes for window sizes of 1 hour and 10 hours.

Figure 12 shows that, for Bolt, larger chunks improve
retrieval time by batching transfers. For queries that span
multiple chunks, Bolt downloads these chunks on de-
mand. Range queries return an iterator (Section 4.1);
When applications uses this iterator to access a data
record, Bolt checks if the chunk the data record resides in
is present in the cache, and if not downloads the chunk.
Hence queries that span many chunks, like the DNW
run for 10 hours with a 100KB chunk size, cause these

DNW EDA

Bolt 4.64 MB 37.89 MB
OpenTSDB 14.42 MB 212.41 MB

Table 8: Disk space used for 10 homes in DNW for
1000 minutes, and 100 homes in EDA for 545 days.

chunks to be downloaded on demand, resulting in multi-
ple round trips and increasing the overall retrieval time.
This can be improved by prefetching chunks in paral-
lel, in the background, without blocking the application’s
range query. For larger chunks, fewer chunks need to be
downloaded sequentially, resulting in fewer round trips
and improving the overall retrieval time. OpenTSDB has
no notion of chunking. Hence OpenTSDB retrieval times
are independent of chunk size.

For Bolt, beyond a certain chunk size, additional data
fetched in the chunk does not match the query and the
benefits of batched transfers on retrieval time plateau
out. In fact, because chunk boundaries don’t necessar-
ily line up with the time window specified in queries,
data records that don’t match the query may be fetched
even for small chunk sizes. Figure 12(right) shows that
as chunk size increases, the data overhead i.e., the per-
centage of data records in chunks downloaded, that don’t
match the query’s time window w, also increases. Bolt
allows applications to chose chunk sizes as per their
workloads, by trading overhead for performance.

Lastly, Table 8 shows that Bolt incurs a 3× smaller
disk footprint than OpenTSDB.

6.2.3 Energy Data Analytics (EDA)

In this application (Section 2.1), we study a scenario
where a utility company presents consumers with an
analysis of their consumption on their monthly bill, with
a comparison with other homes in the neighborhood, city,
or region within a given time window e.g., one month.

In the implementation using Bolt, we use a single re-
mote ValueStream per home which stores the smart meter
data. For each hour, the energy consumption value is ap-
pended to the ValueStream with the mean ambient tem-
perature value of the hour (rounded to the nearest whole
number) as the tag. This enables quick retrieval of energy
values for a given temperature. In the OpenTSDB based
implementation, we create one metric for each tempera-
ture value, for each home; i.e. Metric home-n-T stores
values recorded at T◦ C, for home n. For each home we
retrieve data in the time interval [ts, te] for each temper-
ature T between -30◦ C and 40◦ C. The median, 10th,
and 90th percentile values computed using one home’s
data are compared to all other homes. Data for multiple
homes is retrieved sequentially.

11

254 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000

R
et

ri
ev

al
 T

im
e

(i
n
 S

ec
o
n
d
s)

Chunk Size (in KB)

Bolt: 10 hours
OpenTSDB: 10 hours

Bolt: 1 hour
OpenTSDB: 1 hour

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

N
u
m

b
e
r

o
f

c
h
u
n
k
s
 d

o
w

n
lo

a
d
e
d

Chunk Size (in KB)

Time Window

1 hour

10 hours

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

%
R

e
tr

ie
v
e
d
 C

h
u
n
k
 D

a
ta

 U
n
u
s
e
d

Chunk Size (in KB)

1 hour

10 hours

Figure 12: Retrieving DNW summaries from 10 homes, for 1 hour & 10 hour time windows: Chunks improves
retrieval time by batching transfers but can get additional data that might not match the query immediately.

 0

 200

 400

 600

 800

 1000

 1200

1 10 100

T
im

e
ta

k
en

 t
o
 r

et
ri

ev
e

d
at

a
(i

n
 s

ec
o
n
d
s)

Number of homes

OpenTSDB: 1 Year
OpenTSDB: 1 Month
Bolt: 1 Year
Bolt: 1 Month

Figure 13: Time taken to retrieve smart meter data of
multiple homes for different time windows.

Figure 13 shows the average time, with 95% confi-
dence intervals, taken to retrieve data for two time win-
dows of 1 month, and 1 year, as we increase the num-
ber of homes. Bolt uses Windows Azure for storage.
We use a home energy consumption dataset from a util-
ity company in Waterloo. Retrieval time for Bolt and
OpenTSDB increases proportionally at approximately
1.4 sec/home and 11.4 sec/home respectively, for a
one month window; 2.5 sec/home and 12 sec/home
respectively for one year window. Bolt outperforms
OpenTSDB by an order of magnitude primarily due to
prefetching data in chunks; A query for 10◦ C might be
served from the local chunk cache as queries for previous
temperature values might have prefetched this data.

Finally, as shown in Table 8, we find that OpenTSDB
incurs a 5× larger disk footprint than its corresponding
implementation using Bolt.

7 Related Work
Our work is related to three strands of other works: i)
sharing and managing personal data, ii) securing data
stored in untrusted remote storage, and iii) stream pro-
cessing systems for temporal data. We discuss each in
turn below.

Personal and home data management: Perspec-
tive [35] is a semantic file system to help users manage
data spread across personal devices such as portable mu-
sic players and laptops in the home. It exposes a view
abstraction where a view is an attribute-based descrip-
tion of a set of files with support for queries on file at-
tributes. It allows devices to participate in the system
in a peer-to-peer fashion. Security and access control
are not a focus of the work. HomeViews [25] eases the
management and sharing of files among people. It ex-
poses database-style views over one’s files and supports
access-controlled sharing of views with remote users in a
peer-to-peer manner. Both systems target user-generated
data (e.g., photos, digital music, documents) rather than
device-generated time series data which is our focus.

Secure systems using untrusted storage: SUNDR [30]
is a network file system that provides integrity and con-
sistency guarantees of files stored in untrusted remote
storage. SPORC [21] is a framework for building group
collaboration services like shared documents using un-
trusted servers. Venus [38] and Depot [32] expose a key-
value store to clients on top of untrusted cloud storage
providers. Chefs [23] enables replicating an entire file
system on untrusted storage servers in order to support
a large number of readers. Farsite [13] uses a loosely
coupled collection of insecure and unreliable machines,
within an administrative domain, to collaboratively es-
tablish a virtual file server that is secure and reliable. It
supports the file-I/O workload of desktop computers in a
large company or university. All these systems expose a
storage interface atop untrusted storage; however, none
is suited for supporting semi-structured time series data.

These systems also do not provide configurability on
where to store data: local versus remote for privacy
concerns, partitioned across multiple storage providers
for cost-effectiveness, and replicated across multiple
providers for reliability and avoiding vendor lock-in (as
in RACS [12] and HAIL [15]). Bolt does not need to deal
with file system concurrency control and consistency is-
sues, but instead leverages the nature of time series data
to provide these capabilities.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 255

A related line of work focuses on accountability and
auditing (see Cloudproof [34]) of cloud behavior but
again they are not suitable for the home setting and re-
quire server-side changes. Ming et al. [31] store patient
health records (PHR) on the cloud and support attribute-
based access control policies to enable secure and effi-
cient sharing of PHR’s. However, their system again re-
quires cooperation from storage servers. Goh et al. [26]
propose a security overlay called SiRiUS that extends
local file systems with untrusted cloud storage systems
with the support of data integrity and confidentiality.
SiRiUS supports multiple writers and readers per file but
does not provide any freshness guarantee.

Stream processing systems: Data access in database
management systems is pull-based: a user submits a
query to the system and an answer is returned. For appli-
cations that perform time series data analytics, traditional
databases such as PostgresSQL, have made way for
specialized time series databases like OpenTSDB [10]
(which uses HBase as the backing datastore). In contrast,
in stream-based systems, application’s data is pushed to
a processing system that must evaluate queries in real-
time, in response to detected events — these systems
offer straight-through processing of messages with op-
tional storage. Some stream based systems are central-
ized (e.g., Aurora [18]), and others distributed (e.g., Bo-
rialis [11]), but they assume an environment in which all
nodes fall under a single administrative domain. Bolt
supports a pull-based model where there is no centralized
query processing node, and end points evaluate the query
and retrieve relevant data from storage servers in poten-
tially different and untrusted administrative domains.

An early version of our work appears in a workshop
paper [27] that outlined the problem and presented a ba-
sic design. The current paper extends the design (e.g.,
with chunking), implements real applications, and eval-
uates performance.

8 Discussion
We discuss two promising ways to extend Bolt to im-
prove the overall reliability and sharing flexibility.

Relaxing the assumption on the trusted key server:
Bolt’s current design includes a trusted metadata/key
server (i) to prevent unauthorized changes to the prin-
cipal to public-key mappings and (ii) to prevent unautho-
rized updates (rollback) of the key version stored in each
segment of a stream. The violation of (i) may trick the
owner of a stream to grant access to a malicious prin-
cipal whereas the violation of (ii) may cause the owner
to use an invalid content key to encrypt data, potentially
exposing the newly written content to principals whose
access has been already revoked. Bolt also relies on the

metadata/key server to distribute the keys and the meta-
data of a stream. Moving forward, we are looking into
ways to minimize this trust dependency and improve the
scalabilty of the metadata server. One approach is to
replicate the information stored at the metadata server at
2 f +1 servers and go by majority, to tolerate up to f ma-
licious servers. An alternate solution would be to employ
a Byzantine quorum system, similar to COCA [40], to
tolerate up to a third of servers being compromised at any
given time. Partitioning can be used to implement a scal-
able distributed metadata service; For example, a set of
geographically distributed metadata servers can be used
to group the metadata for streams generated at homes in
the same geographical locality.

Supporting finer-grained sharing: Currently, readers
are granted access to the entire stream. Once their read
access has been revoked, they cannot access any new seg-
ments of the stream created since the revocation although
they could still access all the previous segments. Bolt can
potentially support finer-grained read access, by creating
a different key for each segment. This approach trades
off metadata storage space for segment-level sharing.

9 Conclusion
Bolt is a storage system for applications that manipulate
data from connected devices in the home. Bolt uses a
combination of chunking, separation of index and data,
and decentralized access control to fulfill the unique and
challenging set of requirements that these applications
present. We have implemented Bolt and ported three
real-world applications to it. We find that for these ap-
plications, Bolt is up to 40 times faster than OpenTSDB
while reducing storage overhead by 3–5x.

Acknowledgments We thank A.J. Brush and Khurshed
Mazhar for being early adopters of Bolt; Rich Draves,
Danny Huang, Arjmand Samuel, and James Scott for
supporting this work in various ways; and our shepherd,
Sharon Goldberg, the NSDI ’14 reviewers, and John
Douceur for feedback on drafts of this paper.

References
[1] Dropbox. https://www.dropbox.com/.

[2] Philips Hue. http://www.meethue.com/.

[3] The Internet of Things. http://share.cisco.

com/internet-of-things.html/.

[4] Kwikset Door Locks. http://www.kwikset.com/.

[5] Mi Casa Verde. http://www.micasaverde.com/.

[6] Nest. http://www.nest.com/.

13

256 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[7] Microsoft OneDrive. onedrive.live.com.

[8] Fast, portable, binary serialization for .NET. http://

code.google.com/p/protobuf-net/.

[9] SmartThings. http://www.smartthings.com/.

[10] OpenTSDB. http://www.opentsdb.net/.

[11] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack,
J. hyon Hwang, W. Lindner, A. S. Maskey, E. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The de-
sign of the borealis stream processing engine. In CIDR,
2005.

[12] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon.
RACS: A case for cloud storage diversity. In SoCC, 2010.

[13] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, Jon, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely trusted
environment. In OSDI, 2002.

[14] B. J. Birt, G. R. Newsham, I. Beausoleil-Morrison, M. M.
Armstrong, N. Saldanha, and I. H. Rowlands. Disag-
gregating categories of electrical energy end-use from
whole-house hourly data. Energy and Buildings, 2012.

[15] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A high-
availability and integrity layer for cloud storage. In CCS,
2009.

[16] A. B. Brush, J. Jung, R. Mahajan, and F. Martinez. Digital
neighborhood watch: Investigating the sharing of camera
data amongst neighbors. In CSCW, 2013.

[17] K. E. Caine, C. Y. Zimmerman, Z. Schall-Zimmerman,
W. R. Hazlewood, L. J. Camp, K. H. Connelly, L. L. Hu-
ber, and K. Shankar. DigiSwitch: A device to allow older
adults to monitor and direct the collection and transmis-
sion of health information collected at home. J. Medical
Systems, 35(5):1181–1195, 2011.

[18] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams: a new class of data man-
agement applications. In VLDB, 2002.

[19] C.-T. Chu, J. Jung, Z. Liu, and R. Mahajan. sTrack: Se-
cure tracking in community surveillance. Technical Re-
port MSR-TR-2014-7, Microsoft Research, 2014.

[20] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl. An operating system for the home.
In NSDI, 2012.

[21] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group collaboration using untrusted
cloud resources. In OSDI, 2010.

[22] S. Firth, K. Lomas, A. Wright, and R. Wall. Identify-
ing trends in the use of domestic appliances from house-
hold electricity consumption measurements. Energy and
Buildings, 2008.

[23] K. Fu. Integrity and access control in untrusted content

distribution networks. PhD thesis, MIT, 2005.

[24] K. Fu, S. Kamara, and T. Kohno. Key regression: En-
abling efficient key distribution for secure distributed
storage. In NDSS, 2006.

[25] R. Geambasu, M. Balazinska, S. D. Gribble, and H. M.
Levy. Homeviews: Peer-to-peer middleware for personal
data sharing applications. In SIGMOD, 2007.

[26] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
SiRiUS: Securing remote untrusted storage. In NDSS,
2003.

[27] T. Gupta, A. Phanishayee, J. Jung, and R. Mahajan. To-
wards a storage system for connected homes. In LADIS,
2013.

[28] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. In FAST, 2003.

[29] J. Z. Kolter, S. Batra, and A. Ng. Energy disaggregation
via discriminative sparse coding. In NIPS, 2010.

[30] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, 2004.

[31] M. Li, S. Yu, K. Ren, and W. Lou. Securing personal
health records in cloud computing: Patient-centric and
fine-grained data access control in multi-owner settings.
In SecureComm, 2010.

[32] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. TOCS, 29(4), Dec. 2011.

[33] D. J. Nelson. Residential baseload energy use: Concept
and potential for AMI customers. In ACEEE Summer
Study on Energy Efficiency in Buildings, 2008.

[34] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and
L. Zhuang. Enabling security in cloud storage SLAs with
CloudProof. In USENIX ATC, 2011.

[35] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R.
Ganger. Perspective: semantic data management for the
home. In FAST, 2008.

[36] J. Scott, A. J. B. Brush, J. Krumm, B. Meyers, M. Hazas,
S. Hodges, and N. Villar. PreHeat: Controlling home
heating using occupancy prediction. In Ubicomp, 2011.

[37] I. Shafer, R. R. Sambasivan, A. Rowe, and G. R. Ganger.
Specialized storage for big time series. In HotStorage,
2013.

[38] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket. Venus: Verification for untrusted cloud
storage. In CCSW, 2010.

[39] R. P. Singh, S. Keshav, and T. Brecht. A cloud-based
consumer-centric architecture for energy data analytics.
In e-Energy, 2013.

[40] L. Zhou, F. B. Schneider, and R. Van Renesse. COCA:
A secure distributed online certification authority. TOCS,
20(4), Nov. 2002.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 257

Blizzard: Fast, Cloud-scale Block Storage for Cloud-oblivious
Applications

James Mickens, Edmund B. Nightingale, Jeremy Elson, Krishna Nareddy, Darren Gehring
Microsoft Research

Bin Fan∗
Carnegie Mellon University

Asim Kadav†, Vijay Chidambaram‡

University of Wisconsin-Madison

Osama Khan§

Johns Hopkins University

Abstract
Blizzard is a high-performance block store that ex-

poses cloud storage to cloud-oblivious POSIX and
Win32 applications. Blizzard connects clients and
servers using a network with full-bisection bandwidth,
allowing clients to access any remote disk as fast as if
it were local. Using a novel striping scheme, Blizzard
exposes high disk parallelism to both sequential and ran-
dom workloads; also, by decoupling the durability and
ordering requirements expressed by flush requests, Bliz-
zard can commit writes out-of-order, providing high per-
formance and crash consistency to applications that issue
many small, random IOs. Blizzard’s virtual disk drive,
which clients mount like a normal physical one, provides
maximum throughputs of 1200 MB/s, and can improve
the performance of unmodified, cloud-oblivious appli-
cations by 2x–10x. Compared to EBS, a commercially
available, state-of-the-art virtual drive for cloud appli-
cations, Blizzard can improve SQL server IOp rates by
seven-fold while still providing crash consistency.

1 Introduction
As enterprises leverage cloud storage to process big-data
workloads, there is increasing pressure to migrate tra-
ditional desktop and server applications to the cloud as
well. However, migrating POSIX/Win32 applications to
the cloud has historically required users to select from
a variety of unattractive options. Databases like MySQL
and email servers like Exchange can be trivially migrated
to the cloud by running the server binaries inside of VMs
that reside on cloud servers. Unfortunately, the storage

∗Work completed as a Microsoft intern; now at Google.
†Work completed as a Microsoft intern; now at NEC Labs.
‡Work completed as a Microsoft intern.
§Work completed as a Microsoft intern; now at Twitter.

abstractions exposed to those VMs lack the high perfor-
mance and transparent scaling that are enjoyed by non-
POSIX applications written for scale-out cloud stores
like HDFS [6] and FDS [30]. For example, Azure and
EC2 provide virtual disks that are backed by remote stor-
age and that unmodified POSIX/Win32 applications can
mount. However, each virtual drive only provides 50–
250 MB/s of throughput [1, 28]; in contrast, a raw cloud
store can provide more than a thousand MB/s to clients.

Datacenter operators provide “cloud-optimized” ver-
sions of a few popular applications like SQL and Ac-
tiveDirectory [3, 4, 15, 26, 27], implicitly acknowledg-
ing the difficulty of extracting cloud-scale performance
from unmodified POSIX1 applications. These cloud-
optimized programs directly interface with the network
storage using raw cloud APIs. This strategy provides
higher performance than a naı̈ve VM port, but such
cloud-optimized applications offer fewer customization
options than traditional POSIX/Win32 versions, making
it difficult for users to tweak performance for individ-
ual workloads. More importantly, for the long tail of
the application distribution, there are no pre-built, cloud-
optimized versions. Large or technologically savvy com-
panies may have the resources to write cloud-optimized
versions of their applications, but for safety reasons, da-
tacenter operators do not provide external developers
with full access to the raw cloud APIs that are needed
to maximize performance. Even if customers had such
access, many customers would prefer to simply deploy
their standard binaries to the cloud and automatically re-
ceive fast, scalable IO.

Unfortunately, desktop and server applications have
significantly different IO patterns than traditional cloud-

1For conciseness, we use “POSIX” to mean “POSIX/Win32” in the
rest of this paper.

258 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

scale applications. A typical MapReduce-style work-
load issues large, sequential IOs, but POSIX applications
issue small, random IOs that are typically 32–128 KB
in size [25, 41]. POSIX applications also require finer-
grained consistency than many big-data workloads. For
an application like an Internet-scale web crawl, append-
at-least-once semantics [14] are often reasonable, and
losing MBs of append-only data may be an acceptable
risk for higher throughput; in contrast, for a POSIX
database, compiler, or email server that is randomly ac-
cessing small blocks, the loss or duplication of just a
few adversarially-chosen blocks can result in metadata
inconsistencies and catastrophic data loss. To enforce
fine-grained consistency, POSIX applications use disk
flushes to order writes [8, 33, 39], but these flushes intro-
duce write barriers. In the context of cloud storage, these
barriers make it difficult for POSIX applications to issue
large numbers of parallel writes to remote cloud disks.
Lower disk parallelism leads to lower performance.

In this paper, we introduce Blizzard, a high-
performance block store that exposes unmodified, cloud-
oblivious applications to fast, scalable cloud storage.
From the perspective of a client application, Blizzard’s
virtual disk looks like a standard SATA drive. How-
ever, Blizzard translates block reads and writes to par-
allel IOs on remote cloud disks, transparently handling
the removal, addition, or failure of those remote disks.

Blizzard is not the first system to propose a virtual disk
backed by remote storage [2,11,24]. However, Blizzard’s
virtual drive has several unique characteristics:

Locality-oblivious, full-bisection bandwidth block
access: Blizzard is built atop a CLOS network with
no oversubscription [17], i.e., arbitrary client/server
pairs can exchange data at full NIC speeds without
inducing network congestion. Blizzard also pairs
each server disk with enough network bandwidth
to read and write that disk at full sequential speed.
These properties mean that clients can stripe their data
across arbitrary remote disks in a locality-oblivious
manner. This simplifies Blizzard’s striping algorithm
and permits very aggressive sharding (which results
in better performance, since spreading data over more
disks increases IO parallelism).

Nested striping: POSIX applications typically issue
small, random IOs, but even when their IOs are large,
client file systems often break such large operations
into smaller pieces. A naı̈ve stripe of a virtual drive
across remote disks will cause IOp convoy dilation—
as the small requests belonging to a single large
operation travel from the client to a remote disk, the
inter-request spacing will increase due to network
jitter and scheduling vagaries on the client and the

server. The longer the dilation, the less likely that
the remote disk can use a single seek to handle all
of the adjacent disk requests in the convoy. Blizzard
uses a novel striping scheme called nested striping
which avoids these problems. Nested striping ensures
that convoy blocks are spread across multiple disks
in parallel. This amortizes the seek costs for the
individual blocks, and globally acts to prevent disk
hotspots.

Fast flushes with prefix write commits: POSIX ap-
plications use disk flushes to order writes and provide
crash consistency. However, such flushes restrict IO
parallelism, and massive IO parallelism is the primary
technique that clients must leverage to unlock cloud-
scale IO performance. When Blizzard’s virtual disk
receives a flush request, it immediately acknowledges
the flush to the client application, even though Bliz-
zard has not made writes from that flush epoch durable.
Asynchronously, the virtual drive issues writes in a
way that respects prefix epoch semantics. If the client
or the virtual disk crashes, the disk will always re-
cover to a consistent state in which writes from differ-
ent flush epochs will never be intermingled—all writes
up to some epoch N − 1 will be durable; some writes
from epoch N may be durable; and all writes from
subsequent epochs are lost. Blizzard’s asynchronous
writes lengthen the window for potential data loss,
but they permits much higher levels of write perfor-
mance. This approach also reduces the penalty for N-
way data replication, since acknowledging a write no
longer proceeds at the pace of the slowest replica for
that write. Prior work has shown how prefix seman-
tics can be added to the ext4 file system [7], but Bliz-
zard shows how such semantics can be added at the
disk level, in a file-system agnostic manner, and in a
way that also provides high performance to applica-
tions that bypass the file system entirely and issue raw
disk IOs.

Blizzard has several additional features, like support for
disconnected operation2, and tunable levels of disk par-
allelism (§2.4).

We have built a Blizzard prototype consisting of
1,200 disks and 150 servers. Using this prototype,
we demonstrate that Blizzard can improve the perfor-
mance of unmodified IO-intensive applications by 2x–
10x. Importantly, our Blizzard prototype coexists along-
side our FDS [30] deployment, using the same servers,
disks, and networking equipment. FDS is optimized for
large, business-scale computations. Thus, using Bliz-
zard, cloud providers can leverage a single set of clus-
ter hardware for both big-data computations and POSIX

2Not discussed further due to space constraints.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 259

applications, reducing hardware outlays while consoli-
dating administrative costs and providing fast, scalable
IO to both types of workloads. From the perspective of
developers, Blizzard allows POSIX applications to re-
ceive cloud-scale performance and availability without
requiring datacenter operators to expose their raw, un-
safe cloud APIs—instead, developers simply write ap-
plications under the assumption that (virtual) disk drives
are extremely fast.

2 Design
Blizzard has two high-level goals. First, it has to run
unmodified, cloud-oblivious POSIX applications on the
same cloud infrastructure used by traditional big-data ap-
plications. Second, it must provide those POSIX ap-
plications with the storage performance, scalability, and
availability that big-data programs receive. By “cloud-
level performance,” we mean that a single client should
be able to issue hundreds of MBs of IO requests every
second. By “cloud-level scalability and availability,” we
mean that client storage should transparently improve
as the cloud operator adds more remote disks or better
networking capacity. Also, administrative efforts that
help big-data applications should also improve unmod-
ified POSIX applications.

To satisfy these design goals, Blizzard must efficiently
handle two aspects of POSIX workloads:

• POSIX applications typically generate small,
random IOs between 32 KB and 128 KB in
size [25,41]. To offer high performance to such
seek-bound workloads, Blizzard needs to ex-
pose applications to massive disk parallelism.
This allows applications to issue multiple op-
erations simultaneously and overlap the seek
costs.

• POSIX applications use the fsync() system
call to control the ordering and durability of
writes, ensuring consistency after crashes [7,
8, 33, 39]. An fsync() call generates a disk
flush, and the disk flush acts as a write bar-
rier, preventing writes issued after the flush
from completing before all previous writes are
durable. These write barriers limit disk par-
allelism, which results in poor performance.
Thus, Blizzard needs to handle fsync() calls
in a way that preserves notions of write order-
ing, but does not require clients to wait for syn-
chronous disk events before issuing new writes.

In Section 2.3, we describe how Blizzard leverages full-
bisection bandwidth networks to aggressively stripe each
client’s data across a large number of disks. In the ab-
sence of flush requests, this scheme would suffice to
provide clients with massive disk parallelism. How-
ever, POSIX applications commonly issue flush requests.

Thus, as described in Section 2.5, Blizzard uses even-
tual durability semantics [7] to remove synchronous disk
operations from the flush path. When a client issues a
flush, Blizzard records ordering information about pend-
ing writes; then, Blizzard immediately acknowledges the
flush request. Asynchronously, Blizzard writes data to
remote disks in a way that respects the client’s order-
ing constraints, and allows the client to recover a consis-
tent view after a crash. In the extreme, Blizzard can is-
sue writes from multiple flush periods completely out-of-
order (§2.5.3), removing all synchronization constraints
involving writes, but still preserving consistency.

2.1 Blizzard’s Storage Abstraction
Frameworks like pNFS [38] and BlueSky [42] expose
cloud storage to cloud-oblivious applications by trans-
lating (say) NFS operations into operations on cloud
disks. However, these systems lock applications into a
particular set of file semantics which will not be appro-
priate for all applications. For example, some applica-
tions desire NFS’s close-to-open consistency semantics,
but other applications require POSIX-style consistency
in which a newly written block is immediately visible
to readers of the enclosing file [20]. Since all file sys-
tems eventually issue reads and writes to a block device
(and since some applications issue raw disk commands),
we decided to implement Blizzard as a virtual block de-
vice which stripes data across remote disks. This allowed
us to support heterogeneous POSIX and Win32 file sys-
tems like ext3 and NTFS; it also allowed us to expose
fast storage to applications like databases that issue raw
block-level IOs.

2.2 The Low-level Storage Substrate
Blizzard stripes each virtual drive across several remote
physical disks. As the striping factor increases, the
virtual drive benefits from greater spindle parallelism
(and thus higher IO performance). However, a tradi-
tional oversubscribed network constrains how aggres-
sively Blizzard can stripe. In an oversubscribed net-
work, the available cross-rack bandwidth is lower than
the available intra-rack bandwidth; thus, for a system
with medium-to-high utilization, clients access rack-
local disks faster than they access disks in external racks.
If Blizzard restricted each virtual drive to use rack-local
disks, this would limit spindle parallelism, constrain the
total capacity of the virtual drive, and makes job allo-
cation more difficult, since a single job could not har-
ness idle disks spread across multiple racks. However, if
Blizzard allowed a virtual disk to span racks, contention
in the oversubscribed cross-rack links would prevent the
client from fully utilizing rack-external disks.

To avoid this dilemma, Blizzard uses Flat Datacenter
Storage (FDS) as its low-level storage substrate [30].

260 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bytes in Virtual Disk

…

 Segment1 (2 tracts)

…

 Tract1 on Disk X Tract2 on Disk Y

Figure 1: An example of nested striping with a segment
size of 2. Virtual disk blocks are striped across tracks,
and tracks are scattered across disks.

FDS is a datacenter-scale blob store that connects all
clients and disks using a network with full-bisection
bandwidth, i.e., no oversubscription [17]. FDS also pro-
visions each storage server with enough network band-
width to match its aggregate disk bandwidth. For exam-
ple, a single physical disk has roughly 128 MB/s of max-
imum sequential access speed. 128 MB/s is 1 Gbps, so if
a storage server has ten disks, FDS provisions that server
with a 10 Gbps NIC; if the server has 20 disks, it receives
two 10 Gbps NICs. The resulting storage substrate pro-
vides a locality-oblivious storage layer—any client can
access any remote disk at maximum disk speeds3.

A Blizzard virtual disk is backed by a single FDS blob
(although Blizzard does not use a linear mapping be-
tween a virtual disk address and the corresponding byte
in the FDS blob (§2.3 and §2.5)). FDS breaks each blob
into 8 MB segments called tracts, and uses these tracts
as the striping unit. Blizzard typically instructs FDS to
stripe a blob across 64 or 128 physical disks; optionally,
FDS performs N-way replication of each tract.

2.3 Data Placement
FDS provides Blizzard with some nice properties out-of-
the-box, and allows Blizzard to satisfy the design goal
of running on the same infrastructure that supports tradi-
tional big-data applications. However, FDS is optimized
for large, sequential IOs. In particular, FDS divides each
FDS blob into a series of large tracts. A tract resides in a
contiguous location on a particular disk, but FDS scatters
a blob’s tracts across a large number of different disks.
Tracts are 8 MB in size, and FDS’s primary read/write in-
terface works at the granularity of tracks. POSIX IOs are
typically much smaller than 8 MB. Thus, we had to de-
vise a way for Blizzard’s virtual disk to map these small,
random IOs onto FDS tracts (which FDS would then map
to remote disks).

3This assumes that RTTs between clients and storage servers are
much smaller than a seek time. We explore the impact of network
latency in Section 4.6.

FDS natively supports a raw, low-level interface that
lets applications read and write data in chunks that are
smaller than a tract. This interface allows applications
to process small pieces of tract metadata without having
to read or write entire 8 MB tracts. Our first prototype
of Blizzard’s virtual disk used this interface, and a very
simple block mapping, to translate virtual disk addresses
to tract-level offsets. In this initial prototype, the virtual
disk split its linear address space into contiguous, tract-
sized chunks, and assigned each chunk to a separate FDS
tract. A virtual disk IO with offset byteOffset would go
to tract byteOffset/TRACT SIZE BYTES. This mapping
was straightforward, but it led to disappointing perfor-
mance. A convoy of sequential IOs often hit the same
tract (and thus the same remote disk), eliminating oppor-
tunities for disk parallelism. Even worse, sequential con-
voys often experienced dilation. Even if the client used
a tight loop to issue writes to adjacent offsets, the tem-
poral spacing between those operations often grew as the
operations traveled from client to remote disk. Client-
side scheduling jitter increased the spacing, as did ran-
dom network delays and scheduling jitter on the remote
server. Thus, a sequential convoy that initially had lit-
tle inter-request spacing at the client often arrived at the
remote hard disk with larger inter-request gaps. In many
cases, this prevented the remote disk from efficiently ser-
vicing the entire convoy with a single seek. Instead, the
convoy operations were handled with multiple seeks and
rotational delays, increasing the total IO latency for all
operations on that disk.

Given these observations, we designed a new mecha-
nism called nested striping that maps linear byte ranges
to FDS tracts. We define a segment as a logical group
of one or more tracts; a segment of N bytes contains
striped data for a linear byte range of N bytes. Fig-
ure 1 demonstrates nested striping when each segment
contains two tracts. Intuitively, increasing the segment
size allows Blizzard to provide greater disk parallelism
for sequential workloads. For example, a segment size of
one restricts sequential IOs to one disk. As shown in Fig-
ure 1, a segment size of two spreads sequential IOs across
two disks. Figure 1 also demonstrates why we call this
striping scheme “nested”: Blizzard stripes blocks across
FDS tracts, and FDS distributes the tracts in a blob across
many remote disks. By default, our Blizzard implemen-
tation uses a segment size of 128 tracts.

Experiments show that nested striping dramatically
decreases the impact of convoy dilation. Using a seg-
ment size of 128 provides over 1000 MB/s of sequential
read throughput (§4.1). In contrast, using a segment size
of one tract results in sequential read throughput of 222
MB/s.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 261

2.4 Role-based Striping
Up to this point, we have assumed that Blizzard is de-
ployed in a shared, public cloud that is utilized by mul-
tiple customers. However, Blizzard can also be used in
private, enterprise-local clouds. Indeed, one deployment
model for Blizzard is a building-scale deployment—all
of the rooms in the building are connected via a full-
bisection bandwidth network, and all desktop and server
machines use Blizzard virtual drives to store and manip-
ulate data. Datacenters already deploy full-bisection net-
works at the scale of thousands of machines [17], so this
deployment model is technically feasible, and it would
allow an enterprise to consolidate storage and IT effort
for a particular building.

In such a building-scale deployment, different users
will have different performance needs. For exam-
ple, a programmer that runs large compilations re-
quires better storage performance than a receptionist who
mainly sends emails and performs word processing. For
building-wide Blizzard deployments, segment sizes offer
a convenient knob that administrators can use to control
the amount of disk parallelism that Blizzard exposes to
different users with different roles.

2.5 Write Semantics
Blizzard’s virtual disk provides three types of data con-
sistency: write-through commits, flush epoch commits
with fast acknowledgments, and out-of-order commits
with fast acknowledgments. We describe each approach
below. Note that, when we say that Blizzard “acknowl-
edges” an operation to a “client,” the client is either a
file system or an application that issues raw disk IOs. A
write request or a flush request is “acknowledged” when
that operation returns to the client.

2.5.1 Write-through

In this mode, Blizzard does not acknowledge a virtual
disk write until the associated FDS operation has become
durable on the relevant remote disk. This approach pro-
vides the smallest window of potential data loss if a crash
occurs. However, write-through consistency provides the
lowest performance, since a thread which issues a block-
ing write must wait for that write to become durable be-
fore issuing additional IOs.

2.5.2 Flush epoch commits with fast acks

Let a flush epoch be a period of time between two flush
requests from the client. Each flush epoch contains one
or more writes. A flush epoch is issued if all of its writes
have been sent to remote disks. The epoch is retired if
all of those writes have been reported as durable by the
remote disks.

Setup: Blizzard maintains a counter called
epochToIssue; this counter starts at 0 and repre-
sents which writes Blizzard can send to FDS. Blizzard
maintains another counter called currEpoch that also
starts at 0. This counter represents the total number
of flush requests that the client has issued. As ex-
plained below, currEpoch will often be greater than
epochToIssue.

Acknowledging writes: When Blizzard receives a write
request or a flush request, it immediately acknowledges
that operation, allowing the client to quickly issue more
IO requests. If the incoming operation was a flush,
Blizzard increments currEpoch by 1. If the operation
was a write, Blizzard tags the write with the currEpoch
value and places the write request in a queue that is
ordered by epoch tags.

Draining the write queue: Once a new write is en-
queued and acknowledged to the client, Blizzard tries
to issue enqueued writes to remote disks. Blizzard it-
erates from the front of the write queue to the end, i.e.,
from the oldest unretired epoch to the newest. If the cur-
rently examined write is from epochToIssue, Blizzard
dequeues the write and issues it immediately; otherwise,
Blizzard terminates the queue traversal. Later, when a
write from epoch N completes, Blizzard checks whether
epoch N has now retired. If so, Blizzard increments
epochToIssue and tries to release new writes from the
head of the write queue.

When Blizzard issues a write, it removes it from the
write queue. However, Blizzard keeps the write in a
separate cache until the write is durable. Meanwhile, if a
read arrives for the write’s byte range, Blizzard services
the read using the cached, fresh data, instead of issuing a
read to the underlying remote disk and possibly getting
old data.

Consistency semantics: In this consistency scheme,
Blizzard treats a flush as an ordering constraint, but not a
durability constraint; using the terminology of optimistic
crash consistency, Blizzard provides “eventual durabil-
ity” [7]. This means that Blizzard issues writes in a way
that respects flush-order durability, but a flush epoch may
retire at an arbitrarily long time after the flush was ac-
knowledged to the client. Indeed, the epoch may never
retire if the client crashes before it can issue the associ-
ated writes. However, the rebooted client is guaranteed
to see a consistent prefix of all writes that were acknowl-
edged as flushed; this suffices for many applications [9].

2.5.3 Out-of-order commits with fast acks

To maximize the rate at which writes are issued, Blizzard
defines a scheme that allows writes to be acknowledged

262 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

immediately and issued immediately, regardless of their
flush epoch. This means that writes may become durable
out-of-order. However, Blizzard enforces prefix consis-
tency using two mechanisms. First, Blizzard abandons
nested striping and uses a log structure to avoid updating
blocks in place; thus, if a particular write fails to become
durable, Blizzard can recover a consistent version of
the target virtual disk block. Second, even though
Blizzard issues each new write immediately, Blizzard
uses a deterministic permutation to determine which log
entry (i.e., which <tract,offset>) should receive the
write. To recover to a consistent state after a crash, the
client can start from the last checkpointed epoch and
permutation position, and roll the permutation forward,
examining log entries and determining the last epoch
which successfully retired.

Setup: Let there be V blocks in the virtual disk, where
each block is of equal size, a size that reflects the aver-
age IO size for the client (say, 64 KB or 128 KB). The V
virtual blocks are backed by P >V physical blocks in the
underlying FDS blob. Blizzard treats the physical blocks
as a log structure. Blizzard maintains a blockMap that
tracks the backing physical block for each virtual block.
Blizzard also maintains an allocationBitMap that in-
dicates which physical blocks are currently in use. When
the client issues a read to a virtual block, Blizzard con-
sults the blockMap to determine which physical block
contains the desired data. Handling writes is more com-
plicated, as explained below.

Blizzard maintains a counter called currEpoch;
this counter is incremented for each flush request, and
all writes are tagged with currEpoch. Blizzard also
maintains a counter called lastDurableEpoch which
represents the last epoch for which all writes are retired.

The virtual-to-physical translation: When Blizzard
initializes the virtual disk, it creates a deterministic per-
mutation of the physical blocks. This permutation repre-
sents the order in which Blizzard will update the log. For
example, if the permutation begins 18, 3,. . . , then the
first write, regardless of the virtual block target, would
go to physical block 18, and the second write, regardless
of the virtual block target, would go to physical block
3. Importantly, Blizzard can represent a permutation of
length P in O(1) space, not O(P) space. Using a linear
congruential generator [44], Blizzard only needs to store
three integer parameters (a, c, and m), and another inte-
ger representing the current position in the permutation.
As we will describe later, the serialized permutation will
go into the checkpoints that Blizzard creates.

Handling reads is simple: when the client wants
data from a particular virtual block, Blizzard uses the
blockMap to find which physical block contains that
data; Blizzard then fetches the data. Handling writes re-

quires more bookkeeping. When a write arrives, Bliz-
zard iteratively calls the deterministic permutation func-
tion, and immediately sends the write to the first physical
block that is not marked in the allocationBitMap as
used. However, once the write is issued, Blizzard does
not update the allocationBitMap or the blockMap—
those structures are reflected into checkpoints, so they
can only be updated in a way that respects prefix seman-
tics. So, after Blizzard issues the write, it places the write
in a queue. Blizzard uses the write queue to satisfy reads
to byte ranges with in-flight (but possibly non-durable)
writes. When a write becomes durable, Blizzard checks
whether, according to the permutation order, the write
was the oldest unretired write in lastDurableEpoch+1.
If so, Blizzard removes the relevant write queue entry,
and updates blockMap and allocationBitMap. Oth-
erwise, Blizzard waits for older writes to commit first.
Once all writes in the associated epoch are durable, Bliz-
zard increments lastDurableEpoch.

When Blizzard issues a write to FDS, it actually writes
an expanded block. This expanded block contains the
raw data from the virtual block, as well as the virtual
block id, the write’s epoch number, and a CRC over the
entire expanded block. As we explain below, Blizzard
will use this information during crash recovery.

If the client issues a write that is smaller than the size
of a virtual block, Blizzard must read the remaining parts
of the virtual block before calculating the CRC and then
writing the new expanded block. This read-before-write
penalty is similar to the one suffered by RAID arrays that
use parity bits. This penalty is suffered for small writes,
or for the bookends of a large write that straddles multi-
ple blocks. For optimal performance, Blizzard’s virtual
block size should match the expected IO size of the
client. For example, POSIX applications like databases
and email servers often have a configurable “page size”;
these applications try to issue reads and writes that are
integral multiples of the page size, so as to minimize disk
seeks. For these applications, Blizzard’s virtual block
size should be set to the application-level page size.
For other applications that 1) frequently generate writes
that are not an even multiple of Blizzard’s block size,
or 2) generate writes that are not aligned on Blizzard’s
block boundaries, Blizzard should be configured to use
write-through mode, or fast acknowledgment mode with
nested striping (§4.7).

Checkpointing: Periodically, the client checkpoints the
blockMap, the allocationBitMap, the four permuta-
tion parameters, lastDurableEpoch, and a CRC over
the preceding quantities. For a 500 GB virtual disk,
the checkpoint size is roughly 16 MB. Blizzard does
not update the checkpoint in place; instead, it reserves
enough space on the FDS blob for two checkpoints, and
alternates checkpoint writing between the two locations.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 263

Blizzard Virtual Drive

wx(1)
 wy(1)

wy(0)

CRC
epoch:0
VID:y

wx(1)

CRC
epoch:1
VID:x

wy(1)

CRC
epoch:1
VID:y

wy(2)

CRC
epoch:2
VID:y

allocated
Not

wx(1) wy(2)

.. x y ..VID
flu

sh wy(2) Blizzard Cache

next write goes here

Physical log threaded across multiple remote disks

wy(0)

flu
sh

allocated
Not

1

1 2 3 4 5

6 7 7 8

5

3

Figure 2: An example of Blizzard’s log-based, out-of-
order commit scheme. Disks with thick borders contain
durable writes. See the main paper text for an explana-
tion of what happens at each time step.

Recovery: To recover from a crash, Blizzard loads the
two serialized checkpoints and initializes itself using
the checkpoint with the highest lastDurableEpoch
and a valid CRC. Blizzard then rolls forward from
the permutation position in the checkpoint, scanning
physical blocks in permutation order. Since Blizzard
issues log writes in epoch order, the recovery scan will
process writes in epoch order. If the allocationBitMap
says that the current physical block is in use, Blizzard
inspects the next physical block in the permutation. If
the allocationBitMap says that the current physical
block is not in use, Blizzard inspects the physical
block’s epoch number. If the number is less than
lastDurableEpoch, Blizzard terminates roll-forward.
If the CRCs from all of the physical block’s replicas
are inconsistent or do not match each other, Blizzard
terminates roll-forward. Otherwise, Blizzard updates
the allocationBitMap to mark the physical block as
used (and the old physical block for the virtual block as
unused); Blizzard also updates the relevant blockMap
entry to point to the physical block. Finally, Blizzard sets
lastDurableEpoch to the epoch value in the physical
block. The permutation position at which roll-forward
terminates will be the position to which Blizzard sends
the next write.

Example: Figure 2 provides an example of Blizzard’s
log-based, out-of-order commits. For simplicity, this ex-
ample uses the permutation generator (writeNumber %
logSize), such that physical log entries are scanned in
linear order, from left to right. At time (1), a write ar-
rives for virtual block Y. Blizzard issues the write to re-
mote storage immediately, and places the write in an in-
memory cache, so that reads for Y’s data can access the
fresh data without having to wait for the remote write to
finish. A flush request arrives at (2), which Blizzard ac-

knowledges immediately. The current flush epoch is now
1. At (3), writes to virtual blocks X and Y arrive. Blizzard
acknowledges those writes immediately, issuing them in
parallel to the next positions in the log, and updating the
write cache entries for blocks X and Y (in the latter case,
overwriting the old cache value for Y). At (4), another
flush arrives, and Blizzard increments the flush epoch to
2. At (5), another write arrives for Y, causing Blizzard
to issue a new write to the next position in the log, and
updating Y’s write cache value. At (6), the first write to
Y becomes durable on a remote disk, causing Blizzard to
update the blockMap entry for Y to point to that log entry.
At time (7), the write to X becomes durable, and Blizzard
updates the blockMap appropriately. However, at time
(7), the second write to Y has not committed. At time (7),
the client takes a checkpoint (note that the last permuta-
tion index that the client knows is durable is the second
log entry). At time (8), the client learns that the third
write to Y is durable. However, since the second write
to Y is not durable yet, the client does not change the
blockMap–thus, virtual block Y still points to the write
from epoch 0.

Suppose that the client crashes immediately after it
makes a checkpoint at (7). Further suppose that this
crash prevents the write to the third physical block from
becoming durable, e.g., because the client needed to
retry the write, but crashed before it could do so. After
the client reboots, it looks at the checkpoint and extracts
the last permutation index known to be durable (log
entry two). The client then rolls forward through the
log in permutation order. The client examines the third
physical log entry and sees that it is marked as unused by
the allocationBitMap. The client examines the entry’s
epoch number and CRC. Since the associated write
failed, one or both of those quantities will have invalid
values. At this point, the client stops the roll-forward.
Even though the write to the fourth log block completed,
that write is lost to the client. However, the client has
recovered to a prefix-consistent view of the virtual block
Y (and the rest of the disk).

IOp dilation: Even though log-based consistency does
not use nested striping, the linear congruential generator
produces striping patterns that “jump around” enough
to prevent convoy dilation. Adversarial write patterns
can still result in dilation, but such patterns are rare in
practice.

2.6 Application-perceived Consistency
In write-through mode, Blizzard minimizes application-
perceived data loss. Since all writes are synchronous and
go directly to remote disks, writes can only be lost if the
application transfers write data to the virtual drive, but

264 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the drive or the client machine crashes before Blizzard
can write the data to the remote disks. Once Blizzard has
acknowledged a write operation to the client, the client
knows that the write data is durable.

For the fast acknowledgment schemes, Blizzard trades
higher performance for an increased possibility of data
loss. In these schemes, if a crashed client issued writes
belonging to flush epochs F0,F1, . . . ,FN , the client will
recover to a virtual disk which contains all writes from
epochs F0 . . .FR; some, all, or no writes from epoch FR+1;
and no writes from epochs FR+2 . . .FN . Denote these
three write segments as the preserved epochs, the ques-
tionable epoch, and the disavowed epochs, respectively.
With traditional flush semantics for a local physical disk,
there are no disavowed epochs—clients cannot issue new
writes across a flush barrier if prior writes are outstand-
ing, so, at worst, a client can lose some or all writes
from its last, questionable epoch. With Blizzard’s fast ac-
knowledgment schemes, N−R may be greater than zero,
i.e., there may be a questionable epoch and disavowed
epochs.

When operating in fast acknowledgment mode, Bliz-
zard can minimize data loss (i.e., N−R) by issuing writes
as quickly as possible; the log-based write scheme does
precisely this. However, for all three of Blizzard’s write
schemes, unmodified POSIX file systems and applica-
tions will always recover to a prefix-consistent version of
the Blizzard drive. Using fast acknowledgments, appli-
cations are more likely to share acknowledged (but cur-
rently non-durable) writes to external parties, meaning
that, if the application crashes, it may not be able to re-
cover those externalized writes from the Blizzard drive.
In practice, we do not believe that this is a problem,
since many users are willing to receive high performance
and crash consistency in exchange for potentially exter-
nalizing non-durable data [9]. Users that wish to never
externalize non-durable data can run Blizzard in write-
through mode.

2.7 Server-side Failure Recovery
Blizzard relies on FDS to recover failed tracts belonging
to a virtual drive. However, FDS clients are responsible
for retrying aborted writes caused by remote disk fail-
ures. Thus, if Blizzard detects that an FDS write was
unsuccessful, it must contact the FDS metadata server,
download the new mapping between tracts and remote
disks, and retry the write. If replication is enabled, Bliz-
zard also ensures that each write to a virtual block results
in R successful writes to the R replica disks.

2.8 Coexisting Workloads
Blizzard is built atop FDS, and both systems use a
shared physical infrastructure of servers, disks, and net-
work equipment. The network provides full-bisection

Read,Write,Flush

Kernel space

User space

FDS Cluster

Blizzard disk driver

FDS Library
Blizzard Client

NTFS driver
Virtual SATA

interface

ALPC shared
sections

Figure 3: A Blizzard virtual disk on Windows.

bandwidth, and FDS uses a request-to-send/clear-to-send
mechanism which ensures that senders cannot overrun
receivers [30]. Thus, neither Blizzard workloads nor
native FDS applications can induce network congestion
at the core or the edge. This lack of congestion does
not guarantee any notion of application-level “network
fairness,” so operators that desire such properties must
use client-side mechanisms like admission control or rate
limiting.

Both Blizzard and FDS use aggressive, randomized
striping across disks. As the aggregate client IO pres-
sure increases, service times at each disk degrade grace-
fully, since the workload is spread evenly across each
disk (§4.5). In principle, a single disk can store data
for both Blizzard applications and native FDS applica-
tions. In practice, we typically allocate a single disk to
either Blizzard or native FDS applications, but not both.
POSIX applications often require low-latency IO in ad-
dition to high throughput, so our allocation scheme pre-
vents small POSIX IOs from getting queued behind the
much larger IOs from big-data applications.

3 Implementation
Figure 3 shows the architecture for our Blizzard imple-
mentation on Windows. The virtual disk contains two
pieces: a kernel-mode SATA driver, and a user-mode
component which links to the FDS client library. File
systems (and applications which issue raw disk IO) send
IO request packets (IRPs) to the SATA driver. The driver
forwards these requests to the user-mode client, which
translates the requests into the appropriate FDS oper-
ations. For IRPs that correspond to reads and writes,
Blizzard issues reads or writes to the appropriate re-
mote disks. Once the client receives a response from a

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 265

remote disk, it hands the response to the kernel mode
driver, which then informs the requesting application that
the IRP has completed. To minimize the overhead of
exchanging data across the user-kernel boundary, Bliz-
zard uses Window’s Advanced Local Procedure Calls
(ALPC); ALPC provides zero-copy IPC using shared
memory pages.

To maximize performance, Blizzard uses asyn-
chronous interfaces to exchange data between the kernel
driver, the FDS client, and the FDS cluster. The user-
mode component of the virtual disk is multi-threaded,
and it maximizes throughput by handling multiple ker-
nel requests and FDS operations in parallel. Such high
levels of concurrency and asynchrony make it tricky to
preserve the prefix semantics discussed in Section 2.5.
In terms of wall-clock time, reads and writes arrive at
the user-mode component in the order that the kernel is-
sued them. However, the user-mode component handles
each read and write in a separate thread; lacking guid-
ance from the kernel, writes might issue to FDS in a
nondeterministic fashion, based on whichever user-mode
write threads happened to grab more CPU time. To al-
low the user-mode component to implement prefix se-
mantics, the kernel driver tags each write request with
its flush epoch, its sequence number within that epoch,
and the maximum sequence number for writes from the
previous epoch. This way, different user-mode threads
can use lightweight interlocked-increment operations on
integers to track the number of writes that have issued
for each epoch. Blizzard does eventually require heavy-
weight locking to add writes to the write queue (§2.5),
but this locking takes place in the latter part of the write
path, leaving the first part contention-free.

4 Evaluation
In this section, we use a variety of experiments to
demonstrate that Blizzard provides low-latency, high-
throughput IO to unmodified, cloud-oblivious applica-
tions. Unless stated otherwise, when we refer to “Bliz-
zard in fast acknowledgment mode,” we refer to the sec-
ond consistency scheme in Section 2.5, not the log-based
approach.

4.1 Microbenchmarks
Figure 4 depicts the raw performance of a Blizzard vir-
tual disk backed by 128 remote disks and using single
replication. To generate these results, we ran a cus-
tom client program that issued asynchronous, block-level
reads and writes to the virtual disk as quickly as possible.
Blizzard was configured in write-through mode, to iden-
tify the steady-state performance that Blizzard could pro-
vide to a completely IO-bound client. The results show
that, depending on the block size and the segment size,
Blizzard can provide throughputs of 700 MB/s for se-

0
200
400
600
800

1000
1200

32 KB 64 KB 128 KB 256 KB

Th
ro

ug
hp

ut
 (M

B/
s)

Block Size

Seq. Writes

Seq. Reads

Rand. Writes

Rand. Reads

(a) Segment size: 1

0
200
400
600
800

1000
1200

32 KB 64 KB 128 KB 256 KB

Th
ro

ug
hp

ut
 (M

B/
s)

Block Size

Seq. Writes

Seq. Reads

Rand. Writes

Rand. Reads

(b) Segment size: 64

0
200
400
600
800

1000
1200

32 KB 64 KB 128 KB 256 KB

Th
ro

ug
hp

ut
 (M

B/
s)

Block Size

Seq. Writes

Seq. Reads

Rand. Writes

Rand. Reads

(c) Segment size: 128

Figure 4: Throughput microbenchmarks.

quential writes, and over 1000 MB/s for sequential reads,
random reads, and random writes.

From the perspective of a client, increasing the seg-
ment size is roughly analogous to adding disks to a pri-
vate RAID-0 array—it increases the number of disks that
a client can access in parallel, improving both perfor-
mance and load balancing. As shown in Figure 4(a),
small segment sizes lead to poor sequential IO perfor-
mance due to convoy dilation effects (§2.3). However,
even for a segment size of one, Blizzard services random
IOs at 400 MB/s or faster. This is because, at any given
time, a random workload accesses more disks than a se-
quential workload, improving disk parallelism (and thus
aggregate throughput). In the rest of this section, unless
otherwise specified, all experiments use a segment size
of 128, and 128 backing disks.

Increasing the block size beyond 32 KB improves
performance, since disks can fetch more data per seek.
However, increasing the block size beyond 128 KB leads
to diminishing throughput returns.

Figure 5 compares Blizzard’s write latency under sev-
eral consistency settings and replication levels. For this
experiment, we intentionally included some old, slow

266 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

10

20

30

40

50

4 KB 64 KB 128 KB 1 MB

W
rit

e
la

te
nc

y
(m

s)

8 threads

BlizzardWriteThrough-1rep
BlizzardWriteThrough-3reps
BlizzardFastACK-3reps

Figure 5: Write latency: Blizzard in write-through mode
(1 and 3 replicas) and Blizzard in fast acknowledgment
mode (3 replicas).

0

20

40

60

80

100

120

4 KB 64 KB 128 KB 1 MB

IO
p

La
te

nc
y

(m
s)

16 Threads

Rd-EBS

Rd-BlizzardWriteThrough

Rd-BlizzardFastACK

Wr-EBS

Wr-BlizzardWriteThrough

Wr-BlizzardFastACK

Figure 6: IOp latency: EBS and Blizzard.

disks that we typically exclude from production work-
loads. Figure 5 shows that fast acknowledgments dra-
matically reduce the cost of data redundancy—despite
the presence of known-slow disks, the write latency of
triple replication with fast acknowledgments is 2x–5x
lower than the latency of single replication with write-
through semantics. Blizzard clients obviously cannot is-
sue an infinite number of low-latency IOs, since, at some
point, some resource (e.g., the network or a remote disk)
will become saturated. However, our results show that,
until that point is reached, Blizzard’s fast acknowledg-
ments provide very low-latency IOs.

4.2 Blizzard vs. EBS
In this section, we compare Blizzard’s virtual drive to
Amazon’s Elastic Block Store (EBS) drive. Our EBS
deployment used one Amazon EC2 instance (an EBS-
optimized m1.xlarge) which had 4 CPUs and 15 GB of
memory, and which ran 64-bit Windows 2008 R2 SP1
Datacenter Edition. The virtual EBS drive was backed
by 12 disks, each of which was provisioned for 100 IOps
and 10 GB of storage; we constructed a RAID-0 striped
volume as the backing storage for the EBS drive. The
disks and the EC2 instance were connected by a 1 Gbps
network connection. To provide a fair comparison to
Blizzard, we configured Blizzard’s virtual drive to use 12
backing disks, and we used FDS’s built-in rate-limiter to
restrict the Blizzard client to 1 Gbps of network band-

0
20
40
60
80

100
120
140

1 4 12 16

SQ
L

IO
s p

er
 se

co
nd

Number of Threads

Bl-FastACK

Bl-WThroughBl-FastACK-wpf-20

EBS

Figure 7: SQL read and write IOs per second: EBS, Bliz-
zard in write-through mode, Blizzard in fast acknowledg-
ment mode, and Blizzard in fast acknowledgment mode
with forced epochs every 20 writes. Each pair of circled
lines represents the read and write speeds for a particular
configuration.

width. The Blizzard client had 4 CPUs and 12 GB of
RAM, similar to the EBS client.

Using a multithreaded synthetic load generator, we
tested IO latency in EBS, Blizzard in write-through
mode, and Blizzard with fast acknowledgments enabled.
Since the load generator did not generate flush requests,
the latter Blizzard configuration provided good perfor-
mance, but not prefix consistency; this configuration is
still a useful one to investigate, because many people
disable disk flushes for the sake of performance [7, 31].
Figure 6 shows that the read latencies for both Blizzard
schemes were 2x–4x lower than EBS’s latency. Both
Blizzard schemes had similar read latencies because de-
layed durability tricks do not directly affect the comple-
tion times of reads (although a client may generate more
reads per second if writes require less time to complete).

For write latencies, Blizzard with fast acknowledg-
ments was 7x–14x faster than EBS. Blizzard in write-
through mode was essentially equivalent to EBS for
small to medium operations, but much faster for 1 MB
writes. It is unclear to us why EBS was so much slower
for large writes. Throughput tests (which we elide due to
space constraints) showed that, even for large IO sizes,
EBS only utilized about 80% of the available network
bandwidth; thus, the EBS client may be exchanging con-
trol traffic with other nodes that we cannot see.

Figure 7 shows the performance of sqliosim, a pop-
ular SQL benchmark tool, on EBS and several different
configurations of Blizzard. We used sqliosim in a con-
figuration that had several threads doing random IO to 4
databases in parallel. Each database was 4 GB in size,
with its own log file. In the background, read-ahead
and bulk updates occurred. Note that sqliosim uses
write-through IO, not flushes, to provide consistency, so
Blizzard with fast acknowledgment simply writes data
to remote disks as quickly as possible and provides no
crash consistency. We also ran a variant of fast ac-

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 267

0

100

200

300
Th

ro
ug

hp
ut

 (M
B/

s)
Local Disk
Blizzard Disk

Figure 8: Macrobenchmarks: Blizzard’s virtual drive
(write-through, single replication) versus a local physi-
cal drive.

knowledgment mode which inserted a fake flush every
20 writes. That variant, which immediately acknowl-
edges writes but bounds data loss to 20 writes, performs
slower than Blizzard with write-through or vanilla fast
acknowledgments; this is because the fake flushes re-
duced the amount of write parallelism. Nonetheless, all
three versions of Blizzard issued significantly more IOps
than EBS.

4.3 Macrobenchmarks
Figure 8 shows Blizzard’s performance for several IO-
intensive Win32 workloads; Blizzard was configured in
write-through mode and used single replication. The
WIM-create workload represents the time needed to
generate a bootable WinPE [29] .iso file using the
Windows Automated Installation Kit (a WinPE im-
age is a minimal Windows installation that is useful
for creating recovery CDs and other diagnostic tools).
JetStress [23] is a seek-intensive application with 16
threads that emulates the IO load of an Exchange email
server. Gzip is a file compression program that uses four
IO threads. Virus scan represents the throughput of a
full system analysis performed by System Center 2012
Endpoint. DirCopy is derived from the built-in Win-
dows robocopy tool, and it recursively copies directo-
ries using eight threads. Grep is an eight-way threaded
program that evaluates regular expressions over file data.
SQL refers to the sqliosim tool that database administra-
tors use to characterize disk performance. By default, the
tool launches eight threads that perform random database
queries, eight threads that perform sequential queries,
and eight threads that perform bulk database updates.

In Figure 8, throughput numbers refer to application-
level performance, not disk-level performance. For ex-
ample, Gzip throughput refers to how many MBs of file
data the program can compress per second. Similarly,
SQL throughput refers to how quickly the SQL engine can
read or write the database. Figure 8 shows that Blizzard
can improve unmodified application’s performance by a

0

50

100

150

200

Ex
ch

an
ge

 th
ro

ug
hp

ut

(M
B/

s)

Figure 9: Exchange throughput. For the log-based com-
mit results, Blizzard’s block size was set to 64 KB, to
match the size of Exchange’s transactional IOs. Other
Blizzard configurations used a block size of 128 KB.

factor of 2x–10x. Blizzard provides the greatest boost to
programs like DirCopy and Grep which spend very little
time on CPU operations.

4.4 Log-based Commit
To test the performance of Blizzard’s out-of-order, log-
based commit scheme (§2.5), we ran several tests involv-
ing the JetStress tool, which emulates the workload for
an Exchange email server. Unlike sqliosim, which is-
sues write-through operations to implement consistency,
JetStress uses disk flushes. As shown in Figure 9,
Blizzard in write-through mode with single replication
provides a 4x throughput improvement over a local phys-
ical disk, and Blizzard in single replicated, fast acknowl-
edgment mode provides a 9x improvement. Using single
replication, Blizzard’s log-based, out-of-order commit
scheme was only 3% slower than single-replicated fast
acknowledgment, despite occasionally needing to per-
form read-before-writes (§2.5.3). The triple-replicated
log scheme was only 5% slower, since Blizzard could
hide much of the latency associated with slow replicas
(§4.1).

Log-based commits do not provide faster throughput
or lower IO latency than simple fast acknowledgments
because both schemes acknowledge writes and flushes
immediately. However, the log-based scheme issues all
writes immediately, whereas the simple scheme issues
writes in epoch order, waiting for writes from epoch N to
commit before issuing writes from epoch N+1. Thus, the
simple scheme is more prone to data loss in the case of a
client crash, since it buffers more writes in-memory than
the log-based scheme (§4.7). The increased buffering re-
quirement will also cause client-submitted IO requests to
block more often, until Blizzard can deallocate memory
belonging to newly retired epochs.

4.5 Multiple Active Clients
Blizzard clients stripe their data across a shared set of
disks. As the number of active clients grows, the aggre-

268 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20
IOp Latency (ms)

100-Med

100-High

130-Med

130-High

175-AllHeavy

Figure 10: CDF of IOp latency (VDI workloads). The
legend format is XXX-YYY, where XXX is the number
of clients and YYY describes the client IOp rates. There
were 130 remote disks.

gate request pressure on the disks increases. We designed
nested striping (§2.3) and log-based permutation maps
(§2.5) so that clients would spread their requests across
multiple disks, preventing hotspots from emerging and
leading to graceful degradation of disk IO queues. To
test our design, we issued IO requests using a synthetic
load generator that simulated a variable number of clients
with varying levels of IOs per second (IOps). Each emu-
lated client received 10 Gbps of network connectivity,
and each client’s virtual user was marked as “Light,”
“Normal,” “Power,” or “Heavy” based on its IOps rate (5,
10, 20, or 40 respectively). The size of each IOp ranged
from 512 bytes to 1 MB, with the statistical distribution
of IOp sizes and read/write ratios governed by empiri-
cal studies of VDI workloads [12, 13]. Note that a single
high-level IOp resulted in multiple FDS operations if the
IOp was larger than a Blizzard virtual block.

Figure 10 provides a CDF of IOp latencies for sev-
eral different client deployments; to measure true IOp
latencies, Blizzard was operated in write-through mode.
The “Medium” deployment was 10% Light, 50% Nor-
mal, 25% Power, and 15% Heavy. The “High” client
split was 10%/30%/40%/20%, and the pessimistic “All-
Heavy” split was 0%/0%/0%/100%. In all cases, there
were 130 remote disks. Figure 10 shows that, with
100 clients (i.e., more than one disk per client) and 130
clients (exactly one disk per client), Blizzard provides
IOp latencies that are competitive with those of a local
physical disk: at least 62% of IOps had 5 ms of latency
or lower, and 85% of IOps had 10 ms of latency or lower.

Interestingly, latencies in the 130 client test were
slightly lower than those in the 100 client test, e.g., in
the “High” IOps test, 65.7% of IOps in the 130 node
deployment had 5 ms or less of latency, but this was
true for only 61.9% of IOps in the 100 node test. The
reason is that nested striping distributes the aggregate
client load evenly across all disks. Thus, each disk sees
a random stream of seek offsets. When the number

0

200

400

600

800

1000

0 ms 5 ms 10 ms 20 ms

Th
ro

ug
hp

ut
 (M

B/
s)

Added Latency

Seq. Write

Seq. Read

Rand. Write

Rand. Read

Figure 11: Comparing Blizzard’s performance in our de-
ployed network (far left) and our deployed network with
synthetic latencies added.

of clients increased from 100 to 130, disk queues got
deeper, but this was better for disks that were serving
random workloads—as each disk arm swept across its
platters, there were more opportunities to service queued
IO requests. Of course, longer disk queues will even-
tually increase IOp latency, as demonstrated by the pes-
simistic “AllHeavy” deployment which had 175 clients
(i.e., 1.34 clients for each disk) and 40 IOps per client.
Even in this case, 56% of IOs had latencies no worse
than 5 ms, and 77% had latencies no worse than 10 ms.

4.6 Latency Sensitivity
Blizzard is designed for full-bisection networks in which
clients have fast, low-latency connections to remote
disks. For example, in our current deployment, clients
and storage nodes communicate via links with 500 mi-
croseconds of latency. This is an order of magnitude
smaller than the seek time for a disk, allowing Blizzard
to make network-attached disks as fast to access as local
ones. Figure 11 depicts Blizzard’s performance with syn-
thetic network latencies added, and with write-through
semantics enabled (i.e., the virtual drive does not ac-
knowledge writes to clients until those writes are durable
on remote disks). With five milliseconds of additional
latency, Blizzard’s throughput drops by a factor of 5x–
10x, and with twenty milliseconds of additional latency,
performance is essentially equivalent to that of a single
local disk.

These experiments highlight the importance of Bliz-
zard’s congestion-free, full-bisection bandwidth net-
work. In such a system, network delays are negligible,
and the client-perceived latency for a write-through IO
is governed by the time needed to perform a single seek
on a remote storage server (see Figure 10). Figure 11
shows that if the storage network lacks a fast intercon-
nect, then millisecond-level network latencies effectively
double or triple the seek penalty for accessing a remote
disk. In these scenarios, Blizzard’s fast acknowledgment
schemes are crucial for eliminating remote access penal-
ties from the critical path of writes.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 269

Crash-consistent recoveries
Write workload Write-

through
FastACK FastACK

+ log
Only new physical
blocks targeted

50/50 50/50 50/50

50% new targets, 50%
overwrites

50/50 50/50 50/50

JetStress 50/50 50/50 50/50

Figure 12: For all 450 injected crashes, Blizzard recov-
ered to a prefix-consistent version of the virtual disk.

4.7 Reliability
In this section, we demonstrate two things. First,
Blizzard always recovers a crashed virtual drive to a
prefix-consistent state. Second, if a Blizzard client
primarily issues block-aligned writes for entire blocks of
data, the client should use log-based commit to reduce
data loss and decrease memory pressure. If clients
frequently issue writes that are misaligned, or not an
even multiple of Blizzard’s block size, clients should use
the simple fast acknowledgment scheme (if they wish to
maximize performance), or write-through mode (if they
wish to minimize data loss).

Recovering to consistent virtual drives: To test Bliz-
zard’s reliability in the presence of crashes, we modi-
fied the user-mode portion of the virtual driver so that
it randomly injected emulated failures. At each emu-
lated failure point, the driver logged the set of writes that
were buffered in memory, as well as the subset of those
writes that had been issued to remote disks, but not yet
acknowledged as being durable. Writes that are buffered
but unissued at crash time are lost. Writes that are issued
but unacknowledged at crash time may or may not be
durable—their durability depends on whether the client
OS had actually sent the writes over the network before
the crash, and whether remote disks crashed while han-
dling the writes, and so on.

We used three synthetic workloads to explore Bliz-
zard’s reliability. Our first workload issued 40 writes
per second, such that each write targeted a previously
unwritten portion of the virtual disk. Our second work-
load also issued 40 writes per second, but 50% of the
writes targeted new locations, and 50% targeted previ-
ously written blocks. Note that a write-only workload
of 40 IOps is intense for a POSIX application [12, 13].
We configured Blizzard to use a block size of 128 KB,
with half of the writes being 64 KB in size, and the
other half being 128 KB, ensuring that, when Blizzard
was run in log-based commit mode, the read-after-write
code paths would be stressed. Our final workload was
JetStress [23], a seek-intensive workload that simulates
an Exchange email server. The JetStress tests also used

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

Av
er

ag
e

da
ta

 lo
ss

 p
er

 cr
as

h
(K

B)

IOps

FastACK (wpf=1, blockSize=4KB)
FastACK (wpf=1, blockSize=64KB)
FastACK (wpf=4, blockSize=4KB)
FastACK (wpf=4, blockSize=64KB)
FastACK+log (blockSize=4KB)
FastACK+log (blockSize=64KB)

Figure 13: Blizzard loss rates when the size of each
write is aligned with Blizzard’s block size. “wpf” means
“writes per flush.”

1

10

100

1000

10000

100000

0 25 50 75 100

Av
er

ag
e

da
ta

 lo
ss

 p
er

cr

as
h

(K
B)

IOps

FastACK (wpf=1)
FastACK (wpf=4)
FastACK+log (blockSize=4KB)
FastACK+log (blockSize=16KB)

Figure 14: Blizzard loss rates for a simulated write-only
VM workload (writes vary between 4KB and 1 MB in
size). Note that the y-axis is log-scale.

a Blizzard block size of 128 KB, and in all experiments,
the virtual drive used 128 backing disks.

Figure 12 shows the results of our experiments.
For all 450 injected crashes, Blizzard recovered a
prefix-consistent version of the virtual drive. To validate
whether the recovered drive was prefix-consistent,
we ran Blizzard’s recovery code, and then used the
write log to verify that the recovered disk contained a
prefix-consistent representation of the write stream.

Bounding data loss: In fast acknowledgment mode
and log-based commit mode, Blizzard exchanges per-
formance for the risk of data loss. A recovered virtual
drive is always consistent, but the drive may not con-
tain a trailing set of writes that Blizzard acknowledged
to the client but failed to make durable before the crash
occurred. To measure this data loss, we ran two addi-
tional experiments.

270 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In the first experiment, we generated a synthetic
stream of write operations. Each write was the exact
size of Blizzard’s block size, and it was aligned with a
block boundary, ensuring that, when Blizzard used log-
based commits, there was no read-before-write penalty
(§2.5.3). Using our instrumented Blizzard driver, we
picked random moments to simulate crashes, and logged
the amount of buffered, unacknowledged data that would
be lost in the simulated crash. Our load generator also in-
jected a configurable number of flush requests. Figure 13
shows the results. Each data point represents 100 simu-
lated crashes.

As expected, the loss rate increases as the IO rate in-
creases, because Blizzard must buffer more data. With
one write per flush, i.e., with a total ordering over all
writes, the simple fast acknowledgment scheme can only
have one outstanding write to a remote disk. This
severely limits the rate at which writes can retire, and it
increases the memory pressure needed to buffer writes.
With a write size of 4 KB, the fast acknowledgment
scheme can only handle 100 IOps before too many writes
queue up, and the virtual drive throttles the client to
bound potential data loss; with a write size of 64 KB, the
scheme can only handle 50 IOps before it throttles the
client. The log-based commit scheme can issue writes
immediately, regardless of the flush rate, so this scheme
can gracefully scale up to 300 IOps.

For a flush rate of once-every-four writes, the fast ac-
knowledgment scheme does much better, scaling all the
way to 300 IOps. With a wider flush epoch, the fast ac-
knowledgment scheme can issue more writes in parallel,
and when a write from a new epoch arrives, old writes
from the prior epoch are likely to already be commit-
ted, or at least issued; thus, the new write is unlikely to
be delayed by a full seek time on a remote disk. With a
write size of 4 KB, the difference in average loss rates be-
tween the two schemes is large in relative percentage, but
small in absolute value—at 300 IOps, the fast acknowl-
edgment scheme loses 4.1 writes representing 16.4 KB
of data, and the log-based scheme loses 2.4 writes repre-
senting 11.5 KB of data. For a larger write size of 64 KB,
the data loss per dropped write increases, and the two
schemes show bigger differences in absolute amounts of
data loss. For IOp rates above 100, the log-based scheme
decreases loss rates by 12–30%. For example, at 300
IOps with 64 KB writes, the log-based scheme loses 191
KB per crash, whereas the simple fast acknowledgment
scheme loses 272 KB.

Blizzard’s log-based commit scheme pays a read-
before-write penalty for writes that are smaller than Bliz-
zard’s block size. If writes are frequently misaligned
(or not even multiples of the block size), the log-based
scheme will force many writes to wait for synchronous
reads. This will increase buffering requirements and the

issue latencies for writes, causing loss rates after a crash
to increase. Figure 14 shows this effect. In this example,
the writes are aligned with Blizzard’s block boundaries,
but they range in size from 4 KB to 1 MB, as determined
by empirical distributions of VM write sizes [12, 13]. In
these experiments, the log-based scheme with a block
size of 16 KB could only handle up to 50 IOps—beyond
that, the read-before-write penalty forced Blizzard to
throttle the client’s write rate. Decreasing the block size
to 4 KB resulted in fewer read-before-writes, allowing
the log-based scheme to scale better. At 75 IOps, the
log-based scheme beat the fast acknowledgment scheme
by 37%, with a data loss of 135 KB instead of 214
KB. However, at 100 IOps, the log-based scheme can no
longer hide the read-before-write penalties, and it has an
average data loss of 54 MB, an order of magnitude worse
than fast acknowledgments with a wpf of 1, and two or-
ders of magnitude worse than fast acknowledgments with
a wpf of 4.

5 Related Work
Block-level interfaces: A variety of protocols use
a block interface to expose a single disk to remote
clients. Examples of such protocols include ATA-over-
Ethernet [22] and iSCSI [36]. Blizzard extends the sim-
ple block interface, mapping each virtual drive to mul-
tiple backing disks, and providing high-level software
abstractions like replication and failure recovery across
thousands of disks.

Like Blizzard, Petal [24] defines a distributed,
software-implemented virtual disk that is backed by re-
mote storage. However, Blizzard can coexist with tradi-
tional big-data workloads, and Blizzard leverages a full-
bisection bandwidth network to stripe data more aggres-
sively than Petal; the latter exposes Blizzard clients to
higher levels of disk parallelism. Blizzard also leverages
delayed durability semantics to increase the rate at which
clients can issue writes while still achieving crash consis-
tency.

Salus [43] is another example of a virtual block store.
Salus is built atop HDFS/HBase [5, 6], and it provides
ordered-commit semantics during normal operation, and
prefix semantics when failures occur. Salus achieves
these properties with pipelined commit, a protocol
that resembles two-phase commit. In contrast, Bliz-
zard achieves consistency with only a single round of
communication between the client and the remote data
stores. This reduces both network traffic and software
complexity.

Mapping schemes: Using techniques like nested
striping (§2.3) and deterministic permutations (§2.5),
Blizzard translates virtual block accesses to FDS-level
block accesses. This is similar to how SSDs use a

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 271

Flash Translation Layer (FTL) to map virtual blocks to
physical ones. SSDs employ a variety of optimizations
to minimize the size of the mapping table that is kept
in the SSD’s small, on-board SRAM (e.g., [18, 45]).
While these optimizations could be applied to Blizzard’s
mapping structures, we have not found a need for such
approaches, since Blizzard’s tables are small (∼20 MB)
and they easily fit within main memory. FTLs must also
implement compaction and garbage collection, since
SSD writes and SSD erases have different data sizes.
Blizzard’s log-based commit scheme avoids compaction
and garbage collection by using equivalent sizes for
writes and erases in the log.

Cloud-scale storage systems: BlueSky [42] uses NFS
or CIFS proxies to expose commercial cloud storage like
Azure to enterprise clients. BlueSky allows an enterprise
to offload the administrative costs of the storage cluster
to a third party. However, compared to systems in which
clients and servers reside in the same cloud, BlueSky in-
troduces several new sources of overhead. Pulling data
from commercial cloud servers injects wide-area laten-
cies into the IO path. BlueSky proxies also use the
chatty, text-based HTTP protocol to communicate with
remote servers. The HTTP overhead is magnified if the
enterprise has asymmetric upload/download speeds to
the cloud—slower upload speeds mean that even small
HTTP headers can add significant transfer delays [16].

Unlike BlueSky’s focus on WAN access to cloud
storage, Parallel NFS (pNFS) exposes clients to local
(i.e., on-premise) cloud storage [38]. Storage servers
can export a block interface, an object interface, or a
file interface; pNFS clients transparently convert NFS
requests to the appropriate lower-level access format.
pNFS requires applications to adhere to NFS semantics,
and both pNFS and BlueSky lack key Blizzard features
like role-based striping and asynchronous epoch-based
commits for writes.

Desktop/server file systems: OptFS demonstrated how
to decouple durability from ordering in the context
of a journaling file system [7]. Blizzard shows that
these ideas can be applied at the disk level, providing
OptFS-style performance improvements in a file system-
agnostic way that does not depend on knowledge of the
file system’s consistency scheme (e.g., journaling [40]
or shadow paging [21, 35]). OptFS requires disks to
be modified to provide asynchronous durability notifi-
cations; in contrast, Blizzard’s virtual disk implements
prefix consistency using standard, asynchronous write-
through operations on the backing remote disks.

When Blizzard uses log-based commit, it leverages
expanded blocks to enable crash recovery and dis-
connected operation. Transactional Flash [34] and

backpointer-based consistency [8] also embed extra
metadata in out-of-band areas.

BPFS [10] is a file system for use with byte-
addressable, persistent memory hardware (e.g., Phase
Change Memory). BPFS introduces an abstraction,
called an epoch barrier, that allows ordering guarantees
to be expressed without requiring an immediate flush of
dirty data in the CPU cache. Epoch barriers provide data
consistency while preserving the ability of the memory
controller to reorder writes within an epoch. Epoch bar-
riers require custom hardware, and BPFS expects that the
persistent memory resides directly on the memory bus.
Like BPFS, Blizzard also separates ordering from dura-
bility; however, the separation is implemented in the con-
text of a distributed system, rather than a single machine
with access to persistent memory.

The Zebra file system [19] combines ideas from
RAID [32] and log-based file systems [35], striping a
per-client file log across a RAID array. Zebra does not
provide mechanisms for asynchronous flush handling,
and this constrains the level of disk parallelism that Ze-
bra can provide to applications. Zebra uses compaction
and garbage collection to manage dead block data; when
such log cleaning occurs, it can introduce unpredictable
performance fluctuations [37]. In contrast, when Bliz-
zard operates in log-based asynchronous commit mode,
it uses reads-before-writes to only commit full blocks of
data. This smooths out the background IO traffic that
is required for log maintenance. However, Section 4.7
demonstrates that if clients frequently issue misaligned
writes, Blizzard’s read-after-write penalty can be large,
making Blizzard’s simple fast acknowledgment scheme
more attractive.

6 Conclusions
Blizzard exposes unmodified, cloud-oblivious POSIX
applications to a fast, cloud-scale block store. This block
store, which clients mount as a virtual disk, efficiently
supports small, random IOs, but it coexists alongside
big-data file systems, and deploys atop the same servers,
disks, and switches. Using a network with full-bisection
bandwidth, Blizzard provides clients with fast access to
any remote disk. Using a novel striping scheme, Blizzard
maximizes disk parallelism, avoids disk hotspots, and re-
duces IOp convoy dilation. By carefully ordering writes,
Blizzard can immediately acknowledge flush requests
while still providing crash consistency; with fewer write
barriers, clients can issue writes faster, and better lever-
age the spindle parallelism of remote storage. A Bliz-
zard prototype improves the speed of unmodified POSIX
applications by up to an order of magnitude. In sum-
mary, Blizzard makes it much easier for cloud-agnostic
POSIX applications to receive cloud-scale performance
and availability.

272 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Amazon. Amazon EBS-Optimized In-

stances. AWS Documentation. http:
//docs.aws.amazon.com/AWSEC2/latest/
UserGuide/EBSOptimized.html. October 15,
2013.

[2] Amazon. Amazon Elastic Block Store (EBS).
http://aws.amazon.com/ebs/. 2014.

[3] Amazon. Amazon Relational Database Service
(Amazon RDS). http://aws.amazon.com/rds/.
2014.

[4] Amazon. Amazon Simple Email Service (Amazon
SES). http://aws.amazon.com/ses/. 2013.

[5] Apache. Apache HBase. http://hbase.apache.
org. 2014.

[6] D. Borthakur. The Hadoop Distributed File Sys-
tem: Architecture and Design. http://hadoop.
apache.org/docs/r0.18.0/hdfs_design.pdf.
2007.

[7] V. Chidambaram, T. Pillai, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. Optimistic Crash Consistency.
In Proceedings of SOSP, pages 228–243, Farming-
ton, PA, November 2013.

[8] V. Chidambaram, T. Sharma, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. Consistency Without Or-
dering. In Proceedings of FAST, pages 101–116,
San Jose, CA, February 2012.

[9] J. Cipar, G. Ganger, K. Keeton, C. Morrey III,
C. Soules, and A. Veitch. LazyBase: Trading
Freshness for Performance in a Scalable Database.
In Proceedings of EuroSys, pages 169–182, Bern,
Switzerland, April 2012.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
B. Lee, D. Burger, and D. Coetzee. Better I/O
Through Byte-addressable, Persistent Memory. In
Proceedings of SOSP, pages 133–146, Big Sky,
MT, 2009.

[11] A. Edwards and B. Calder. Exploring Windows
Azure Drives, Disks, and Images. Microsoft. http:
//blogs.msdn.com/b/windowsazurestorage/
archive/2012/06/28/exploring-windows-
azure-drives-disks-and-images.aspx. June
27, 2012.

[12] D. Feller. Virtual Desktop Resource Allocation.
The Citrix Blog. http://blogs.citrix.com/
2010/11/12/virtual-desktop-resource-
allocation. November 12, 2010.

[13] R. Fellows. Storage Optimization for VDI.
Tutorial: Storage Networking Industry As-
sociation. http://www.snia.org/sites/
default/education/tutorials/2011/fall/
StorageStorageMgmt/RussFellowsSNW_Fall_
2011_VDI_best_practices_final.pdf. 2011.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. ACM SIGOPS Operating Sys-
tems Review, 37(5):29–43, December 2003.

[15] Google. Google Cloud SQL. https://cloud.
google.com/products/cloud-sql. 2014.

[16] Google. Performance Best Practices: Minimize re-
quest overhead. https://developers.google.
com/speed/docs/best-practices/request.
March 28, 2012.

[17] A. Greenberg, J. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sen-
gupta. VL2: A Scalable and Flexible Data Center
Network. In Proceedings of SIGCOMM, pages 51–
62, Barcelona, Spain, 2009.

[18] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a
Flash Translation Layer Employing Demand-Based
Selective Caching of Page-Level Address Map-
pings. In Proceedings of ASPLOS, pages 229–240,
Washington, DC, March 2009.

[19] J. Hartman and J. Ousterhout. The Zebra Striped
Network File System. ACM Transactions on Com-
puter Systems, 13(3):274–310, 1995.

[20] D. Hildebrand, A. Nisar, and R. Haskin. pNFS,
POSIX, and MPI-IO: A Tale of Three Semantics.
In Proceedings of the Workshop on Petascale Data
Storage, pages 32–36, Portland, OR, November
2009.

[21] D. Hitz, J. Lau, and M. Malcolm. File System De-
sign for an NFS File Server Appliance. In Proceed-
ings of the USENIX Winter Technical Conference,
San Francisco, CA, January 1994.

[22] S. Hopkins and B. Coile. AoE (ATA over Ether-
net). http://support.coraid.com/documents/
AoEr11.txt. February 2009.

[23] N. Johnson. JetStress 2010: JetStress Field
Guide. Microsoft. http://gallery.technet.
microsoft.com/Jetstress-Field-Guide-
1602d64c. March 27, 2012.

[24] E. Lee and C. Thekkath. Petal: Distributed Virtual
Disks. ACM SIGOPS Operating Systems Review,
30(5):84–92, December 1996.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 273

[25] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and Analysis of Large-Scale Net-
work File System Workloads. In Proceedings of
USENIX ATC, pages 213–226, Boston, MA, June
2008.

[26] Microsoft. Introducing Windows Azure SQL
Database. http://msdn.microsoft.com/en-
us/library/windowsazure/ee336230.aspx.
2014.

[27] Microsoft. Windows Azure Active Direc-
tory. http://www.windowsazure.com/en-us/
services/active-directory/. 2014.

[28] Microsoft. Windows Azure Storage Scalability
and Performance Targets. Windows Azure Doc-
umentation. http://msdn.microsoft.com/en-
us/library/windowsazure/dn249410.aspx.
June 20, 2013.

[29] Microsoft. Windows PE Technical Refer-
ence. http://technet.microsoft.com/en-us/
library/dd744322(WS.10).aspx. October 22,
2009.

[30] E. Nightingale, J. Elson, O. Hofmann, Y. Suzue,
J. Fan, and J. Howell. Flat Datacenter Storage. In
Proceedings of OSDI, pages 1–15, Hollywood, CA,
October 2012.

[31] E. Nightingale, K. Veeraraghavan, P. Chen, and
J. Flinn. Rethink the Sync. In Proceedings of OSDI,
pages 1–14, November 2006.

[32] D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID).
ACM SIGMOD Record, 17(3):109–116, 1988.

[33] V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. Analysis and Evolution of Journaling File
Systems. In Proceedings of USENIX ATC, pages
105–120, Anaheim, CA, April 2005.

[34] V. Prabhakaran, T. Rodeheffer, and L. Zhou. Trans-
actional Flash. In Proceedings of OSDI, pages 147–
160, San Diego, CA, December 2008.

[35] M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems,
10(1):26–52, February 1992.

[36] J. Satran, K. Meth, C. Sapuntzakis, M. Chadala-
paka, and E. Zeidner. Internet small computer
systems interface (iSCSI). Technical report, RFC
3720, April, 2004.

[37] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File System
Logging Versus Clustering: A Performance Com-
parison. In Proceedings of the USENIX Winter
Technical Conference, pages 249–264, New Or-
leans, LA, January 1995.

[38] S. Shepler, M. Eisler, and D. Noveck. Network File
System (NFS) Version 4 Minor Version 1 Protocol.
Technical report, RFC 5661, January, 2010.

[39] M. Steigerwald. Imposing Order. Linux Magazine,
May 2007.

[40] S. Tweedie. Journaling the Linux ext2fs File Sys-
tem. In Proceedings of the Fourth Annual Linux
Expo, Durham, North Carolina, May 1998.

[41] W. Vogels. File system usage in Windows NT 4.0.
In Proceedings of SOSP, pages 93–109, Kiawah Is-
land Resort, SC, December 1999.

[42] M. Vrable, S. Savage, and G. Voelker. BlueSky:
A Cloud-Backed File System for the Enterprise.
In Proceedings of FAST, pages 237–250, San Jose,
CA, 2012.

[43] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan,
J. Kirubanandam, L. Alvisi, and M. Dahlin. Ro-
bustness in the Salus Scalable Block Store. In Pro-
ceedings of NSDI, pages 357–370, Lombard, IL,
April 2013.

[44] E. Weisstein. Linear Congruence Method.
MathWorld: A Wolfram Web Re-
source. http://mathworld.wolfram.com/
LinearCongruenceMethod.html. 2014.

[45] Y. Zhang, L. Arulraj, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. De-indirection for Flash-based
SSDs with Nameless Writes. In Proceedings of
FAST, pages 1–16, San Jose, CA, February 2012.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 275

Aggregation and Degradation in JetStream:
Streaming analytics in the wide area

Ariel Rabkin, Matvey Arye, Siddhartha Sen∗, Vivek S. Pai, and Michael J. Freedman
Princeton University

Abstract
We present JetStream, a system that allows real-time

analysis of large, widely-distributed changing data sets.
Traditional approaches to distributed analytics require
users to specify in advance which data is to be backhauled
to a central location for analysis. This is a poor match
for domains where available bandwidth is scarce and it is
infeasible to collect all potentially useful data.

JetStream addresses bandwidth limits in two ways, both
of which are explicit in the programming model. The sys-
tem incorporates structured storage in the form of OLAP
data cubes, so data can be stored for analysis near where
it is generated. Using cubes, queries can aggregate data
in ways and locations of their choosing. The system also
includes adaptive filtering and other transformations that
adjusts data quality to match available bandwidth. Many
bandwidth-saving transformations are possible; we dis-
cuss which are appropriate for which data and how they
can best be combined.

We implemented a range of analytic queries on web
request logs and image data. Queries could be expressed
in a few lines of code. Using structured storage on source
nodes conserved network bandwidth by allowing data
to be collected only when needed to fulfill queries. Our
adaptive control mechanisms are responsive enough to
keep end-to-end latency within a few seconds, even when
available bandwidth drops by a factor of two, and are
flexible enough to express practical policies.

1 Introduction
This paper addresses the problem of analyzing data that is
continuously created across wide-area networks. Queries
on such data often have real-time requirements that need
the latency between data generation and query response to
be bounded. Existing stream processing systems, such as
Borealis, System-S, Storm, or Spark Streaming [2, 6, 29,
32], address latency in the context of a single datacenter
where data streams are processed inside a high-bandwidth
network. These systems are not designed to perform well
in the wide area, where limited bandwidth availability
makes it impractical to backhaul all potentially useful
data to a central location. Instead, a system for wide-area

∗Current affiliation: Microsoft Research

analytics must prioritize which data to transfer in the face
of time-varying bandwidth constraints.

We have designed and built such a system, called Jet-
Stream, that extends today’s dataflow streaming program-
ming model in two ways. We incorporate structured stor-
age that facilitates aggregation, combining related data
together into succinct summaries. We also incorporate
degradation that allows trading data size against fidelity.
Just as MapReduce helps developers by handling fault
tolerance and worker placement, JetStream aims to dras-
tically reduce the burden of sensing and responding to
bandwidth constraints.

Wide-area data analysis is a problem in a variety of con-
texts. Logs from content distribution networks and other
computing infrastructure are created on nodes spread out
across the globe. Smart electric grids, highways, and other
infrastructure also generate large data volumes. Much of
this data is generated “near the edge,” with limited net-
work connectivity over cellular or wireless links. Unlike
traditional sensor network deployments, many of these
infrastructure sensors are not energy limited, and can have
substantial co-located computation and storage.

Wide-area analysis also applies to data that does not
resemble traditional logs. Networks of video cameras are
used for a wide variety of applications. These include
not only urban surveillance but also highway traffic moni-
toring and wildlife observation. The cost of electronics,
including sensors, storage, and processors, is currently
falling faster than the cost of wireless bandwidth or of
installing new wired connectivity. As a result, bandwidth
is already becoming the limiting constraint in such sys-
tems [9] and we expect the gap between sensing capacity
and bandwidth to increase in the coming years.

In the examples above, a large amount of data is stored
at edge locations that have adequate compute and storage
capacity, but there is limited or unpredictable bandwidth
available to access the data. Today’s analytics pipelines
lack visibility into network conditions, and do not adapt
dynamically if available bandwidth changes. As a result,
the developer must specify in advance which data to store
or collect based on pessimistic assumptions about avail-
able bandwidth. The consequence is that bandwidth is
typically over-provisioned compared to average usage,
and so capacity is not used efficiently.

1

276 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

JetStream’s goal is to enable real-time analysis in this
scenario, by reducing the volume of data being trans-
ferred. Storing and aggregating data where it is gen-
erated helps, but does not always reduce data volumes
sufficiently. Thus, JetStream also includes degradations.
These are data transformations analogous to “lossy” com-
pression: they reduce data size at the expense of accuracy.
Examples include computing per-minute aggregates for
queries requesting per-second data, or dropping some frac-
tion of the data via sampling. Since degradations impose
a (tunable) accuracy penalty, JetStream is designed to
monitor available bandwidth and use the minimal degree
of degradation required to keep latency bounded.

Integrating aggregation and degradation into a stream-
ing system required us to address three main challenges:

(1) Incorporating storage into the system while support-
ing real-time aggregation. Aggregation for queries with
real-time requirements is particularly challenging in an
environment where data sources have varying bandwidth
capacities and may become disconnected. JetStream inte-
grates structured storage as a first-class abstraction in its
programming model, allowing aggregation to be specified
in a flexible but unified way.

(2) Dynamically adjusting data volumes to the available
bandwidth using degradation mechanisms. Such adapta-
tion must be performed on a timescale of seconds to keep
latency low.

(3) Allowing users to formulate policies for collecting
data that maximize data value and that can be imple-
mented effectively by the system. The policy framework
must be expressive enough to meet the data quality needs
of diverse queries. In particular, it should support com-
bining multiple degradation mechanisms.

In meeting these challenges, we created the first wide-
area analysis system that adjusts data quality to bound the
latency of streaming queries in bandwidth-constrained
environments. Our architecture decouples bandwidth
sensing from the policy specifying how to aggregate and
degrade the data to guarantee a timely response. The inter-
faces defined by our architecture support a wide-range of
sensing methods and response techniques—for example,
we implemented a diverse set of degradations, including
those using complex data structures and multi-round pro-
tocols. We consider our architecture and its associated
interfaces to be the key contribution of this paper.

By ignoring bandwidth limitations, previous systems
force users to make an unappealing choice: they can be
optimistic about available bandwidth and backhaul too
much data, leading to buyer’s remorse if bandwidth is
costly; or they can be pessimistic about bandwidth and
backhaul only limited data, leading to analyst’s remorse
if a desired query cannot be answered. By integrating
durable storage into the dataflow and supporting dynamic
adjustments to data quality, JetStream allows a user to fo-

cus on fundamentally different trade-offs: deciding which
query results are needed in real-time and which inaccura-
cies are acceptable to maintain real-time performance.

2 Design Overview
JetStream is designed for near-real-time analysis of chang-
ing data, such as log data or audiovisual data. The system
integrates data storage at the edge to allow users to col-
lect data that may be useful for future analysis without
necessarily transferring it to a central location. Users can
define ad-hoc queries (“give me the video from camera
#129 between 6am and 7am last night”) as well as stand-
ing queries (“send a down-sampled copy of the video data
from every camera back to a control center” or “tell me the
top-10 domains by number of requests over 10 seconds”).
Standing queries can be useful in and of themselves or
they can be used to create centralized data structures to
optimize the performance of common queries.

Standing queries are considerably more challenging
than ad-hoc queries, and therefore are the focus of this
paper. A standing query has a hard real-time requirement:
if the query cannot handle the incoming data rate, then
queues and queuing delays will grow, resulting in stale
results. Giving users fresh results means that the system
must keep latency bounded. This bound must be main-
tained even as the incoming data volume and the available
bandwidth fluctuate.

Since JetStream aims to provide low-latency results on
standing queries, it borrows the basic computation model
of many of today’s stream-processing systems. A worker
process runs on each participating compute node. A query
is implemented by a set of linked dataflow operators that
operate on streams of tuples. Each operator is placed on
a particular host and performs some transformations on
the data. The system routes tuples between operators,
whether on the same host or connected by the network.

2.1 Integrating structured storage
In a departure from previous stream processing systems,
we integrate structured storage inside the operator graph.
This storage lets us keep data where it is generated until it
is needed. In our vision, nodes at the edge of the network
can store hours or days worth of data that the user does
not need to immediately analyze, but which may (or may
not) be required later.

Because edge storage can involve large data volumes,
we use structured storage to reduce query times. Past
streaming systems incorporated storage in the form of
a durable buffer of input tuples [2]. This would per-
form poorly for ad-hoc queries, since it would require
re-scanning all stored data on every query. We instead
adopt the data cube abstraction previously used in OLAP
databases [15], which supports queries efficiently. We
discuss our use of cubes in detail in Section 3.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 277

������������
�������

��������������

�����������

������������ �������������

�������
�������������

�������

�	��

�����
�������

����������������

�����
��������������

Figure 1: JetStream’s high-level architecture. Users
define query graphs with operators and cubes. A co-
ordinator deploys the graph to worker nodes.

Integrating structured storage allows us to simplify
other operators, enabling more graceful handling of miss-
ing or delayed data. Previous streaming systems defined a
large set of stateful operators, including Sort, Aggregate,
Join, and Resample [2]. When made stateful, each of
these operators requires complex semantics to cope with
missing inputs. In comparison, in our design, cubes are
the only element with durable state and the only place
where streams are merged, and so subsume the function-
ality of these operators. They are responsible not only for
storage, but also for aggregation inside queries.

We opt for stream equi-joins over general joins, since
general joins across streams would impose a global syn-
chronization barrier, causing excessive latency when links
are congested or disabled. We have not found the lack of
a general join to be a serious limitation. Cubes can handle
stream equi-joins from an arbitrary number of streams
and this has been enough for us in practice.

2.2 Reducing data volumes

Operators can apply lossy transformations that reduce
data volumes. For example, they can randomly sample
tuples from a stream, or drop all tuples with values below
a threshold. To maximize data quality, it is desirable to ap-
ply data reduction only when necessary to conserve band-
width. JetStream therefore includes specialized tunable
degradation operators. The system automatically adjusts
these operators to match available bandwidth, thus mini-
mizing the impact on data quality. These mechanisms are
described in Section 4.

Because the system dynamically changes degradation
levels, it needs a way to indicate the fidelity of the data it
is sending downstream. Therefore, we added the ability
for operators to send metadata messages both upstream
and downstream. Metadata messages are ordered with
respect to data messages and act as punctuations [30].
This mechanism is broadly useful in the system: we use
it to signal congestion and also to implement multi-round
protocols within the operator graph (see Section 5).

Class Operators

I/O FileReader, Echo, FileWriter, UnixCmd
Parser CSVParser, RegexParser
Filter Grep, LessThan, Equals
Map ExtendTupleWithConst, Project, AddTimestamp,

URL2Domain, Histogram2Quantile
Degradation VariableSubscriber, DegradeHistogram, Sampling

Table 1: Examples of the operators currently pro-
vided by JetStream’s client library.

2.3 Programming model
Operator graphs are constructed using a client library.
The library’s programming interface makes it convenient
to configure operators and data cubes and to link them
together into dataflow graphs. The system includes a
library of pre-defined operators, and users can also de-
fine their own operators using a library of base classes.
These base classes streamline development for common
operator functionality such as map and filter, which both
require implementing a single virtual function. We list
some examples in Table 1 to give the flavor of the tasks
operators perform. We discuss the details of the system
architecture and implementation in Section 6.

Figure 2 gives a simple example of our programming
model. Suppose there is a set of N nodes, each with a
directory full of images. Over time, a camera adds data
to this directory. The system will scan the directory and
copy new images across the network to a destination,
tagging each with the time and hostname at which it
was created. In this example, placement is explicit: the
semantics of the application requires that the readers are
on the source nodes and that the result is produced at the
union node. If there had been intermediate processing,
the programmer could have let the system handle the
placement of this computation. Later in the paper, we will
extend this example to cope with insufficient bandwidth;
we offer it here to give a sense of the programming model.

JetStream is primarily an execution engine, more
like the Dryad or MapReduce engines than like the
DryadLINQ or Pig languages [10, 20, 24, 31]. If in the fu-
ture a widely-accepted declarative programming language
for stream processing emerges, we expect that JetStream
should be able to support it.

3 Aggregation
Integrating structured storage into a streaming operator
graph solves several problems. Cubes, unlike key-value or
general relational models, have unambiguous semantics
for inserting and aggregating data. This lets JetStream
handle several different forms of aggregation in a unified
way. Windowed aggregation combines data residing on
the same node across time. For example, all web request

3

278 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

g = QueryGraph()
dest = Operators.StoreImages(g, IMAGE_OUT_DIR)
dest.instantiate_on(union_node)

for node in source_nodes:
reader = Operators.FileReader(g, options.dirname)
reader.instantiate_on(node)
add_time = Operators.Timestamp()
add_host = Operators.Extend("$HOSTNAME")
g.chain([reader, add_time, add_host, dest])

Figure 2: Example code for a query. Each source
node has an image reader connected by a chain of op-
erators to a common destination operator.

records for the same second can be merged together to
produce a per-minute request count. Tree aggregation
combines data residing on different nodes for the same
period. This can be applied recursively: data can be
grouped within a datacenter or point of presence, and
then data from multiple locations is combined at a central
(“union”) point. Both these forms of aggregation are
handled in JetStream by inserting data into structured
storage and then extracting it by appropriate queries.

While JetStream borrows the cube interface from
OLAP data warehouses, we substitute a different imple-
mentation. Cubes in data warehouses typically involve
heavy precomputation. Many roll-ups or indexes are con-
structed, incurring high ingest times to support fast data
drill-downs. In contrast, JetStream uses cubes for edge
storage and aggregation and only maintains a primary-key
index. This reduces ingest overhead and allows cubes to
be effectively used inside a streaming computation.

Integrating storage with distributed streaming requires
new interfaces and abstractions. Cubes can have multi-
ple sources inserting data and multiple unrelated queries
reading results. In a single-node or datacenter system it is
clear when all the data has arrived since synchronization
is cheap. In a wide-area system, however, synchronization
is costly, particularly if nodes are temporarily unavailable.
In this setting, queries need a flexible way to decide when
a cube has received enough data to send updates down-
stream. Our context also requires cubes to deal with late
tuples that arrive after results have been emitted. Before
explaining how we solve these problems, we describe our
storage abstraction in more detail.

3.1 Data Cubes and Their API
A data cube is a multi-dimensional array that can encapsu-
late numerical properties and relationships between fields
in structured input data, similar to a database relation. It
is defined by a set of dimensions, which specify the coor-
dinates (the key) of an array cell, and a set of aggregates,
which specify the statistics (values) stored in a cell.

Suppose for example that we are collecting statistics
about traffic to a website. We might define a cube with
dimensions for URLs and time periods. The cube would

g = QueryGraph()
dest = Cube(g, "stored_images")
dest.add_dimension(TIME, "timestamp")
dest.add_dimension(HOSTNAME, "timestamp")
dest.add_aggregate(BLOB, "img_data")
dest.instantiate_on(union_node)

for node in source_nodes:
reader = Operators.FileReader(g, options.dirname)
reader.instantiate_on(node)
add_time = Operators.Timestamp()
add_host = Operators.Extend("$HOSTNAME")
g.chain([reader, add_time, add_host, dest])

Figure 3: Running example but with the destination
now a cube.

then map each unique pair of URL and time period to
a cell with a set of aggregates, such as the total num-
ber of requests and the maximum request latency. Each
web request, when added to the cube, updates the cell
corresponding to its URL and time period.

A query can slice a cube to yield a subset of its val-
ues, such as “all URLs starting with foo.com ordered by
total requests.” A query can roll up a slice, aggregating
together the values along some dimension of the cube,
such as asking for the total request count, summed across
all URLs in the slice. Roll-ups use the same aggregation
function as insertion. Whereas insertion potentially aggre-
gates data at write time, a roll-up performs aggregation
at query time. Aggregate functions must be deterministic
and order-independent (i.e., max and average, but not
last-k tuples); this means that the system need not
worry about the ordering between inserts.

Aggregates can be more complex than simple integers.
A cube cell can include a histogram or sketch, describing
a whole statistical distribution. (This relies on the fact that
the underlying sketches or histograms can be combined
straightforwardly, without loss of accuracy.) One might,
for instance, build a cube not merely of request counts
over time, but directly representing the distribution of
latencies over time. This allows a query to do powerful
statistical processing, such as finding quantiles over ar-
bitrary subsets of events. Histograms and sketches are
fixed-size, regardless of the underlying data size; they are
an especially compact form of aggregation.

The cube abstraction is powerful enough to directly
express all the aggregation we need in JetStream. Win-
dowed operations (such as moving averages) are repeated
roll-ups over a time-varying slice of the cube. Both sliding
windows and tumbling windows fit into this model.

Even when data is not aggregated together, a data cube
is a useful storage abstraction that allows queries on mul-
tiple attributes. For example, Figure 3 shows how a cube
can be integrated into our running example. Each im-
age frame is stored as an aggregate, with the timestamp
and source hostname as dimensions. This allows queries
based on any combination of time and source. (Modern

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 279

video encoding does not store each frame separately. A
more complex example might store short segments of
video data in cube cells. Alternatively, a more complex
implementation of the cube API might offer programmers
the abstraction of a sequence of frames, while using a
differential coding scheme underneath.)

Many implementations of the cube abstraction are pos-
sible; ours uses MySQL as the underlying data store. This
allows us to leverage MySQL’s optimizations for handling
large data volumes as well as its support for transactions.
Transactions greatly simplify failure recovery, as we ex-
plain in Section 6.

3.2 Integrating Cubes with Streaming

While the semantics of inserting data into the cube is
straightforward (“apply the aggregation function”), ex-
tracting data from cubes is not. A query needs to make
a policy decision of when and how often to read data
from a cube. This decision affects the latency, bandwidth
consumption, and completeness of results. In JetStream,
these policies are encapsulated in specialized operators
called subscribers.

Aggregation trades latency for bandwidth. The longer
a query waits before reading the aggregate, the more data
potentially can be aggregated into a fixed-size summary,
reducing data volumes at the price of latency. There is
also a trade-off between latency and completeness. It may
not be worth waiting for stragglers before emitting a result.
(As discussed below, the system can sometimes correct
an inaccurate result later.) In the local area, stragglers can
be masked by speculative execution or retries [10]. In the
wide area, this strategy is unable to compensate for late
data caused by limited bandwidth or connectivity.

We allow users to tune these trade-offs by giving sub-
scriber operators fine-grained control over when to emit
the results of aggregation. Subscribers have a richer API
than other operators. They are notified whenever a tuple
is inserted into the cube. They can also query the cube for
slices and rollups. This allows fairly complex policies. A
subscriber might repeatedly query for the last 10 seconds
of data, relative to the system clock. Or it might track the
highest timestamp from each source feeding into the cube,
and only query up to the point which all the sources have
reached. The default policy in JetStream combines these
two policies: if all sources have contributed data, the re-
sult is emitted immediately. Otherwise, the subscriber has
a fixed timeout before emitting results. Like all operators,
the parameters of a subscriber can be adjusted by the user.

If an update arrives at a cube that would modify a result
that has already been emitted by a subscriber, that update
is termed backfill. Because cubes are the location where
data is joined, the general problem of late updates only
appears in JetStream as backfill at cubes.

We handle backfill using similar techniques to prior
stream-processing work [2]. A backfill update results
in a subscriber emitting a delta record that contains the
old and new values. Delta records propagate in the same
manner as new data. They can cause tuples to be revoked,
e.g., if an operator filters an update that was previously
allowed. The effect of a delta update on an aggregate
depends on the aggregation function. Some aggregates,
such as average, can retract an item that was previously
added. For other items retraction can be an expensive
operation. For example, max requires keeping a full list
of its inputs to enable updates that reduce the value of
the item with the largest value. Like Naiad [23], we only
allow such functions if backfill input is impossible or the
source data is available locally.

Subscribers are free to query the cube multiple times
and are part of the metadata flow. They can therefore
take part in nontrivial iterative protocols before emitting
data. We exploited the flexibility of this interface when
implementing a specialized subscriber that carries out a
multi-round filtering protocol for finding the global top-k
elements (by a user-determined ranking) over distributed
data, without transferring all data. This is discussed fur-
ther in Section 5.

3.3 Aggregation is Sometimes Insufficient
Not all queries aggregate well. For example, our running
example of streams of image data is a case where aggre-
gation is of limited value. There is no straightforward
way to combine images taken at different times or from
different cameras pointing at different scenes.

For data that can be aggregated in principle, the under-
lying data distribution may make aggregation ineffective
at saving bandwidth. Data where the distribution of ag-
gregate groups has a long tail will not aggregate well.
This can depend on the coarseness of aggregation. For
example, aggregating web requests by URL is ineffective
because the popularity of URLs is long-tailed [16]. Ag-
gregating the same data by domain can be much more ef-
fective, since domain popularity is less long-tailed. Figure
4 illustrates the point using data from the Coral content
distribution network [13].

4 Adaptive Degradation
Even with partial aggregation at sources, some queries
will require more bandwidth than is available. If there
is insufficient bandwidth, the query will fall ever farther
behind, as new data arrives faster than it can be processed.
To keep latency low, JetStream allows queries to specify
a graceful degradation plan that trades a little data quality
for reduced bandwidth. For example, audiovisual data can
be degraded by downsampling or reducing the frame rate.
Similarly, quantitative data can be degraded by increasing
the coarseness of the aggregation or using sampling. We

5

280 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5s minute 5 m hour day
Aggregation time period

1

2

4

8

16

32

64

128

256
R

el
at

iv
e

sa
vi

ng
s

fro
m

 a
gg

re
ga

tio
n

URLs
Domains

Figure 4: For CoralCDN logs, domains aggregate ef-
fectively over time and URLs do not.

discuss techniques applicable to quantitative data in more
detail in Section 5.

Since degradations impose an accuracy penalty, they
should only be used to the extent necessary. JetStream
achieves this by using explicit feedback control [21].
Since wide-area networks can have substantial buffering
beyond our visibility or control, waiting for backpressure
to fill up queues incurs large delays and provides incom-
plete congestion information. By using explicit feedback,
JetStream can detect congestion before queues fill up,
enabling it to respond in a timely manner. Moreover,
this feedback reflects the degree of congestion, allowing
JetStream to tune the degradation to the right level.

JetStream’s congestion response is decentralized:
nodes react independently to their inferred bandwidth
limits. This avoids expensive synchronization over the
wide area, but it also means that sources may send data
at different degradation levels, based on their bandwidth
conditions at the time. Queries that aggregate data over
sources or time must therefore handle varying degradation
levels. We discuss how this is done for quantitative data
in §5.2.

JetStream achieves adaptive congestion control via
three components: (i) degradation operators that apply
data transformations to the data stream; (ii) congestion
monitors that measure the available bandwidth; and (iii)
policies that specify how the system should adjust the
level of degradation to the available bandwidth. Figure 5
illustrates the interaction between these three components;
we discuss each component in the following sections.

4.1 Degrading data with operators
Degradation operators can be either standard operators
that operate on a tuple-by-tuple basis, or cube subscribers
that produce tuples by querying cubes. A degradation
operator is associated with a set of degradation levels,
which defines its behavior on cubes or data streams. For
example, our variable subscriber offers the ability to
roll-up data across different time intervals (e.g., send-
ing output every 1, 5 or 10 seconds) and characterizes

this degradation in terms of the estimated bandwidth use
relative to the operator’s maximum fidelity (in this ex-
ample, [1.0, 0.2, 0.1]). This interface gives flexibility to
operators. Some operators have fine-grained response
levels, while others are widely spaced—for example, an
audiovisual codec might only support a fixed set of widely
spaced bitrates.

As we discuss in §5.1, many useful degradations have
a data-dependent bandwidth savings. The interface we
adopted gives operators flexibility in how they estimate
the bandwidth savings. Levels (and their step size) can
be (i) dynamically changed by the operator, e.g., based
on profiling, (ii) statically defined by the implementation,
or (iii) configurable at runtime (as with our currently
implemented operators).

4.2 Monitoring available bandwidth
JetStream uses congestion monitors to estimate the rela-
tive available capacity of the system, or the ratio between
the maximum possible data rate and the current rate. A
ratio greater than one indicates spare capacity, while less
than one indicates congestion. A congestion monitor is
attached to each queue in the system and allows the as-
sociated policy to determine whether the data rate can
be increased, or must be decreased, and by how much.
Congestion monitoring can be done in many ways; we
use two techniques in our prototype.

For detecting network congestion, we track the time
required to process data. Sources insert periodic metadata
markers in their output, specifying that the data since the
last marker was generated over k seconds. When a net-
work receiver processes this marker (which occurs after
all prior data tuples are processed), it sends an upstream
acknowledgment. The congestion monitor records the
time t between seeing the last marker and receiving this
acknowledgment, and uses k

t as an estimate of the avail-
able capacity. (A similar approach is used to adapt bitrates
in HTTP streaming [1].) The advantage of this approach
is that it gives a meaningful estimate of how much spare
capacity there is when the system is not yet congested.

For detecting bottlenecks in our storage implementa-
tion, we have a congestion monitor that uses differences
in queue lengths over time to extrapolate ingestion rate.
We cannot use the data window measurement to monitor
data cubes because cubes can batch writes. With batching,
performance is not linear with respect to the data volume
in each window. Queue monitoring can detect conges-
tion quickly, and the rate of queue growth indicates how
congested the system is. However, it does not indicate
how much spare capacity there is if the system is not
overloaded and the queue is empty.

Congestion monitors report their capacity ratio up-
stream, both to other congestion monitors on the same
host and across the network using a metadata message.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 281

����� ��

����

���

�� ������

�������
�����

�����

�����
�����

�������
�����

��������

���

Figure 5: JetStream’s mechanisms for detecting and
adapting to congestion. Along with cubes and opera-
tors, JetStream employs explicit application queues,
congestion monitors (CM), policy managers (Pol),
and network receivers (RCV) to control when adap-
tations should be performed.

g = QueryGraph()
dest = Cube(g, "stored_images")
dest.add_dimension(TIME, "timestamp")
dest.add_dimension(HOSTNAME, "timestamp")
dest.add_aggregate(BLOB, "img_data")
dest.instantiate_on(union_node)

for node in source_nodes:
reader = Operators.FileReader(g, options.dirname)
reader.instantiate_on(node)
add_time = Operators.Timestamp()
add_host = Operators.Extend("$HOSTNAME")
drop_frames = Operators.LowerFramerate()
downsample = Operators.Downsample(min=0.5)
g.chain([reader, add_time, add_host, drop_frames,

downsample, dest])
g.congest_policy([downsample, drop_frames])

Figure 6: Running example with a degradation pol-
icy added: downsampling will be applied first, then
frame-rate lowering.

When a monitor is queried, it returns the minimum of its
own and the downstream ratio. In this way, congestion
signals propagate to sources in a multi-step pipeline.

4.3 Congestion response policies
Congestion response policies tune degradation operators
based on the available bandwidth reported by congestion
monitors. To effectively control data volumes while min-
imizing errors, policies need to be able to tune multiple
degradation operators.

Oftentimes, a given degradation technique is only use-
ful up to a certain level of degradation. Rolling up request
logs from a 10-second level to a 30-second level may im-
pose an acceptable delay for a data analysis pipeline, but
waiting for longer periods of time may not. If the band-
width required at the largest-acceptable roll-up coarseness
is still too large, it is necessary to use some other tech-
nique, such as dropping statistics about unpopular items.

Consider the following policy: “By default, send all
images at maximum fidelity from CCTV cameras to a
central repository. If bandwidth is insufficient, switch to
sending images at 75% fidelity, then 50% if there still
isn’t enough bandwidth. Beyond that point, reduce the
frame rate, but keep the images at 50% fidelity.” This pol-
icy involves two degradation operators: one to decrease

image fidelity (F), and one to drop frames (D). As the
system encounters congestion, F should respond first, fol-
lowed by D once F is fully degraded. However, if capacity
becomes available, D should respond first, followed by F.
We say that F has higher priority than D.

Figure 6 shows our running example, modified with
this policy. The policy is represented in two parts. Each
degradation operator is configured with its maximum
degradation level. Because this is part of the operator
configuration, it can use operator-specific notions, such
as frame rates. A separate policy statement specifies the
priority of the operators. This policy statement is agnostic
to the semantics of the operators in question.

At runtime, each policy is encapsulated in a policy
object. Each policy object is attached to a particular con-
gestion monitor and the set of local degradation operators
that it manages. The operators periodically query the
policy with their available and current degradation levels
(per §4.1). The policy returns the degradation level the
operator should use, based on the current congestion ratio
and the state of the other operators.

Importantly, an operator’s priority is unrelated to the
operator’s position in the dataflow graph. In this example,
the dataflow structure does per-frame degradation after
frame dropping, to avoid wasted computation on frames
that will later be dropped. This is irrespective of which
operator has higher priority in the policy.

Our framework can be extended to cope with still-more-
complex policies. One might, for instance, desire policies
that apply two different degradations simultaneously, such
as interleaving time-roll-up steps with some other degra-
dation operation.

5 Degrading Quantitative Data

Above, we discussed the abstractions that JetStream pro-
vides for data degradation. We now discuss how these
abstractions can be used to degrade quantitative analytics
data. While the techniques we describe are mostly well-
known, we evaluate them in the new context of wide-area
streaming analytics.

A wide range of degradations are possible for quantita-
tive data. Here are some that JetStream supports:

• Dimension coarsening: A subscriber that performs
roll-ups of data cube dimensions. To reduce output
size, the subscriber emits progressively coarser data.
For example, rolling up per-second data to output per-
minute data or rolling up URLs to the domain level.

• Local value threshold: A filter that only forwards
elements whose value is above a (tunable) threshold on
a particular node. For example, only passing Apache
request log entries where the latency of the request
exceeded 1 second.

7

282 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Global value threshold: A filter that only forwards
elements whose total value, across all nodes, is above
a threshold. This is implemented using a multi-round
distributed protocol [7]. For example, one can create
a filter that only keeps the top 1000 URLs requested
across a CDN in a 10-second window.

• Consistent sampling: Drops a fraction of inputs
based on the hash of some dimension. Two filters
with the same selectivity will pass the same elements.

• Synopsis approximation: Replaces a histogram,
sketch, or other statistical synopsis with a less accurate
but smaller synopsis.

5.1 Which degradations to use?

The best degradation for a given application depends not
only on the statistics of the data, but also on the set of
queries that may be applied to the data. As a result, the
system cannot choose the best degradation without know-
ing this intended use. We leave for future work the chal-
lenge of automatically synthesizing a degradation strategy
based on the data and a set of potential queries or other
downstream uses of the data. Here, we offer some guide-
lines for data analysts on which degradations to use for
different circumstances.

• For data with synopses that can be degraded, such as
histograms or sketches, degrading the synopsis will
have predictable bandwidth savings and (for some syn-
opses) predictable increases in error terms.

• If the dimension values for the data have a natural
hierarchy, then aggregation can effectively reduce the
data volume for many distributions. This is particularly
applicable to time-series data. As we discussed in §3.3,
coarsening is ineffective on long-tailed distributions,
however.

• A long-tailed distribution has a small number of highly
ranked “head” items, followed by a long tail of low-
ranked items. Many queries, such as “top k items” only
concern the head. In these cases, a filter can remove
the large-but-irrelevant tail. (Note that this depends on
the user’s subsequent plans for the data, and not just
the statistics of the data itself.) Either a local or global
value threshold is applicable here.

• A global value threshold gives exact answers for every
item whose total value is above a threshold; a local
threshold will have worse error bounds, but can do
well in practice in many cases. (We demonstrate this
empirically in Sec. 7.3.)

• Consistent samples help to analyze relationships be-
tween multiple aggregates. For example, to analyze the
correlation between hit count and maximum response
latency in a CDN, a query can sample from the space

of URLs. This yields exact values for the aggregates
of all the URLs in the sample.
One would like degradation operators to have a pre-

dictable bandwidth savings, so that JetStream can pick
the appropriate degradation level. One would also like
degradations to have predictable effects on data quality,
so that users can reason about the errors introduced. Most
degradation operators have only one or the other of these
properties, however. Because no one degradation is op-
timal, we took pains to allow compound policies. As a
result, users can specify an initial degradation with good
error bounds, and a fall-back degradation to constrain
bandwidth regardless.

5.2 Merging heterogeneous data
As we discussed above, degradation levels will vary over
time, and will vary across different nodes feeding into
a cube at the same time. It is therefore desirable to be
able to combine data of different fidelities without paying
an additional penalty. We call this property mergeability.
Formally, we define mergeability as the ability to combine
data of different fidelities so that the merged result has the
same error bounds as the input with the lowest fidelity.1

Mergeability constrains the ways in which data can be
approximated and analyzed. Suppose that two sources are
sending data every five seconds to a central point. One
source then switches to sending data every six seconds.
To represent the merged answer accurately, the data must
be further coarsened, to every 30 seconds. This implies
that the system sent 5.5x more data than it needed to if
both sources had simply sent every 30 seconds.

Mergeability guided several design choices in Jet-
Stream. Dimension coarsening is only mergeable if the
coarsening steps are consistent and strictly hierarchical.
We therefore define an explicit hierarchy for time dimen-
sions. Cubes can store (and subscribers can roll up) time
only in fixed intervals. (The first layers of the hierarchy
are 1, 5, 10, 30, and 60 seconds.) We also require slices
to start at a timestamp that is a multiple of the query’s
step size. Taken together, these requirements make time
coarsening mergeable.

Mergeability constrains other degradations besides di-
mension coarsening. Histograms are an effective approxi-
mation for computing quantiles. Making our histogram
implementation mergeable required careful programming.
In our implementation, every division between buckets in
an n-bucket histogram is also a division in an n+1 bucket
histogram, and consequently histograms are mergeable
regardless of the number of buckets.

Some degradations are intrinsically not mergeable. As
an example, consider web request data generated at two
servers. Lets analyze the top-k request counts by URL

1This definition is stronger than that typically used in the theory
streaming literature, which covers merging data of the same fidelity [3].

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 283

at both servers, so that we sum the counts for any URLs
common to both. For such a query, the top-k lists from
each server cannot be merged together.2 Similarly, for per-
minute top-k lists, there is in principle no way to compute
a daily top-k. For the same reasons, sets with a value
cutoff (“elements with value above x”) cannot always be
merged to give a correct set with a new value cutoff. This
is tolerable in practice for applications that do not need
to perform roll-ups, or where the data distribution is such
that the error bounds are small. A global filtering protocol,
such as the multi-round protocol supported by JetStream,
can give correct results when data is spread across many
sources.

6 Architecture and Implementation
JetStream’s architecture has three main components:
worker daemons access and process data on a distributed
set of nodes, a coordinator daemon distributes computa-
tion across available workers, and a client library defines
the computation to be performed and provides an interface
to the running system.

The life-cycle of a query: A query starts when a client
program creates a dataflow graph and submits it for exe-
cution. The library checks the dataflow graph for type and
structural errors, such as integer operators being applied
to string fields or filter operators with no inputs. The
graph is then sent to the coordinator, which chooses the
assignment of operators to worker nodes. The placement
algorithm attempts to minimize the data traversing wide-
area networks, placing operators on the send-side of the
link whenever possible.

After determining operator placement, the coordinator
sends the relevant subset of the graph to each node in the
system. The nodes then create any necessary network
connections amongst themselves, and start the operators.
The query will keep running until it is stopped via the
coordinator, or until all the sources send a stop marker
indicating that there will be no more data. As discussed
above, degradation is handled in a decentralized fash-
ion, and the coordinator’s involvement is not required to
maintain a running query.

Implementation: The JetStream coordinator is imple-
mented in about 2000 lines of Python, and is purely mem-
ory resident. The worker is implemented in a single pro-
cess, similar to a database management system. The
worker is about 15,000 lines of C++, including 3000 for
system-defined operators. Operators are implemented as
C++ classes, and can be dynamically loaded. Within a
node, each chain of operators from a source operator or
network link is executed sequentially, without queuing,

2Fagin et al [11] prove that it is not generally possible to find the top
k1 elements and their exact values using only the top k2 from each of
the subsets, for any fixed k2 (see their example 4.4).

by a single thread at a time. All tuples are processed
sequentially in the order received.

Failure Recovery: In a streaming system, failure recov-
ery requires two things: Each failed piece of the compu-
tation (e.g., each query operator on a failed node) must
be restarted and reattached to the graph. Additionally,
for stateful pieces of the computation, their state must
be restored to what it would have been absent the failure.
JetStream currently only does the former. The latter can
be implemented within our model but is a lower priority
for us than for datacenter streaming systems.

The coordinator has a complete view of which opera-
tors should be on each node, and therefore can restart them
when a node fails and recovers. This is implemented in
our existing prototype. Sources periodically try to recon-
nect to their destinations and therefore will automatically
recover when the failed node restarts. The coordinator’s
state can be made durable using group-consensus tools
like Zookeeper [18]. (This is not currently implemented.)

Unlike past streaming systems, we do not attempt
to make JetStream failure-oblivious. Datacenter-based
streaming systems rely on the presence of an underly-
ing reliable data store (such as a reliable message queue,
HDFS or BigTable) that is assumed to be always avail-
able [5, 29, 32]. Using this data store, these systems can
hide the existence of failures from computations, restart-
ing work immediately and carefully avoiding duplicated
or dropped data.

In wide-area analytics, failures cannot be hidden, since
data will be inaccessible if the network is partitioned. For
many analytic uses, users prefer queries that promptly sup-
ply approximate results based on the available data, and
revise these results as late data arrives [4]. (We discussed
how to incorporate these backfill updates in §3.2.) Thus,
the results of a computation will necessarily be affected
by failures. Retroactively changing the results to recover
completely from the failure is a low priority for us, since
enough time might have passed that the temporary results
have already been acted upon.

That said, it is possible to do precise failure recovery
in the JetStream model, as we sketch below. In the data-
center context, a number of failure recovery techniques
have been described. All these schemes have two ba-
sic ingredients: (i) The system must keep metadata to
track which tuples have been processed by each operator.
This metadata must be recorded atomically with the up-
date to ensure process-once semantics. (ii) There must
be a mechanism to retransmit the tuple until there is an
acknowledgment that it was fully processed by the chain.

Our system meets both these underlying requirements.
Since our underlying data store is a database, we already
have sufficient transaction support to atomically commit
updates along with the appropriate metadata. We could
add sequence numbers to tuples and use the fact that

9

284 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Name Output Operators Cubes LoC BW ratio

1 Big requests Requests above 95th percentile of size, with per-
centiles computed for past minute.

3n + 8 3n + 3 97 22

2 Slow requests All requests with throughput less than 10 kbytes/sec. 4n + 2 1 5 24

3 Requests-by-URL Counts for each URL-response code pair. 3n + 2 n + 1 5 351

4 Success by domain The fraction of success responses for each domain. 6n + 4 n + 2 30 445

5 Quantiles 95th percentiles of response time and size, for each
HTTP response code.

4n + 5 n +1 25 715

6 Top-k domains Top-10 domains every five seconds. n + 3 n + 1 40 2300

7 Bad referrers The 10 domains most responsible for referrals that
led to a 404 response, every five seconds.

8n + 2 n + 1 16 18600

8 Bandwidth by node Overall bandwidth used by each node, over time. 4n + 2 n + 1 15 49800

Table 2: Complexity and efficiency of example queries. For operator and cube counts, n is the number of
data source nodes in the system. LoC is the number of non-comment lines of code needed to write the query,
not counting shared library code. Bandwidth ratio is the ratio between source input size and the data volume
transferred over the network (e.g., 22 means a factor-of-22 savings from aggregation and filtering).

tuples are not reordered between data cubes to make sure
that upstream cubes retransmit data to downstream cubes
until appropriate acknowledgments are received.

7 Evaluation
In this section, we evaluate four main questions about
JetStream’s design.

§7.1 Does JetStream make it easy to write distributed
analytic queries?

§7.1 How effectively do hierarchical aggregation and
static filtering reduce bandwidth consumption?

§7.2 What latency can JetStream maintain, in the pres-
ence of changing bandwidth limits?

§7.3 How well does JetStream’s adaptive degradation
work with complex policies?

Given JetStream’s focus on adapting bandwidth con-
sumption, we omit extensive performance benchmark-
ing and comparisons to existing streaming systems. The
throughput of JetStream is largely limited by the under-
lying database and serialization code, neither of which is
relevant to our technical contributions.

7.1 Expressivity and Efficiency
To evaluate the usability of JetStream’s programming
framework, we use it to ask a number of analytical ques-
tions about a dataset of CoralCDN logs. Table 2 summa-
rizes the eight queries we evaluate, drawn from our expe-
rience observing and managing CoralCDN. The queries
include summary counts, histograms, filtered raw logs,
top-k queries, and outlier detection.

Our aim is to understand (i) if these questions can be
expressed succinctly in JetStream’s programming model,
and (ii) if many of our queries, even before applying data

degradation techniques, experience significant bandwidth
savings by storing data near where it is generated.

To test the queries, we select logs from 50 nodes in
CoralCDN for January 20, 2013, and transfer each log
to a node on the VICCI testbed [26]. To emulate wide-
area clusters of CDN nodes, we select 25 VICCI servers
from each of the MPI-SWS and Georgia Tech sites (in
Saarbruecken, Germany, and Atlanta, GA respectively).
These nodes serve as the sources of data; the queries
produce their output at a node in Princeton, NJ. The total
size of these logs is 51 GB, or 140 million HTTP requests.
Since the logs are drawn from actual operational nodes,
they are not equal in size. The largest is approximately
2 GB, while the smallest is 0.4 GB. This sort of size
skew is a real factor in operational deployments, not an
experimental artifact.

We observe large savings compared to backhauling the
raw logs, ranging from a factor of 22x to more than four
orders of magnitude. The large gains are primarily due
to the partial aggregation present in all these examples.
Thousands of requests can be tallied together in source
cubes to produce a single tuple to be copied across the
wide area for merging at the union cube. This demon-
strates that edge storage and partial aggregation are valu-
able design choices in wide-area analytics.

Code size is small but varies across queries. We wrote
about 150 lines of shared code for processing command
line arguments, parsing and storing CoralCDN logs, and
printing results. These are shared lines of code and are
therefore not included in the unique LoC measures above.
For simple aggregation tree queries, only a few lines are
needed, specifying what is to be aggregated. Queries with
more complex topologies require more code. In our expe-
rience, the code size and complexity is comparable to that
of MapReduce programs. As with MapReduce, higher-

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 285

0 20 40 60 80 100 120 140
Elapsed time (minutes)

0

200

400

600

800

1000
La

te
nc

y
(s

ec
)

Maximum in period
95th percentile

Median

0 20 40 60 80 100 120 140
Experiment time (minutes)

0

200

400

600

800

Ba
nd

w
id

th
 (M

bi
ts

/s
ec

)

Figure 7: (Top) Latencies, with percentiles computed
over each 8-second window. (Bottom) Data rate at re-
ceiver, showing extent and duration of traffic shaping.
Without degradation, latency grows without bound,
and takes a long time to recover from disruption.

level frameworks could further reduce the code size and
complexity. Most programming mistakes were caught by
the client-side type checker, reducing the difficulty and
time cost of development.

Only two user-defined functions (UDFs) are required
for these sample queries; one to convert URLs to domains
and a second to compute the success ratio in Query #4.
The parsing is performed with a generic configurable
operator for parsing field-separated strings. This suggests
that the cube API plus our existing operators are sufficient
to express a wide range of tasks.

We have preliminary evidence that JetStream’s pro-
gramming model can be learned by non-experts and does
not require knowledge of the system internals. Query #3
was written by an undergraduate who did not participate
in JetStream’s development, and received only limited
assistance from the core development team.

7.2 System Throughput and Latency
We benchmark the system’s overall throughput and la-
tency characteristics using a relatively simple processing
pipeline under several different network configurations.
This experiment used 80 source nodes running on the
VICCI infrastructure, divided between MPI-SWS (Ger-
many), Georgia Tech and the University of Washington

0 10 20 30 40 50 60 70 80 90
Elapsed time (minutes)

0

5

10

15

20

25

30

35

La
te

nc
y

(s
ec

)

Maximum in period
95th percentile

Median

0 10 20 30 40 50 60 70 80 90
Experiment time (minutes)

0

100

200

300

400

Ba
nd

w
id

th
 (M

bi
ts

/s
ec

)

Figure 8: The same as Figure 7, but with degrada-
tion enabled. The system rapidly adjusts to available
bandwidth, keeping latency low and bounded.

(United States). The source nodes send image data to a
single union node at Princeton. All images are the same
size (approximately 26 kilobytes). Nodes are configured
to send a maximum of 25 images per second, a rate that
the network can support without degradation. This is a
400 mb/sec data rate, so we are using nearly half our in-
stitution’s gigabit WAN link during the experiment. The
configured degradation policy is to reduce the frame rate
if bandwidth is insufficient.

Figure 7 shows the behavior of the system with degrada-
tion disabled. Generally, latency is low: However, around
minute 15, a slight drop in available bandwidth resulted
in some nodes experiencing uncontrolled queue growth,
leading to significant latency. (This is visible as a small
bump in the latency plot.) At minute 35, we impose a
400 kbit/sec bandwidth cap on each source node using
the Linux kernel’s traffic shaping options. The latency
of all the nodes starts rising sharply and continuously.
Around minute 60, we disable bandwidth shaping and
latency starts to drop. Notice that the 95th percentile and
maximum latency recovers much more slowly than me-
dian latency. Some nodes are able to drain their queues
quickly, while other nodes are starving for bandwidth. As
a result, it takes roughly 45 minutes for the system to
resume its previous behavior.

Figure 8 shows that our degradation mechanisms pre-
vent these unwanted behaviors. We repeated a similar

11

286 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

experiment, but with degradation enabled. Here, after we
apply bandwidth shaping, the degradation mechanisms
activate, and successfully keep queue size and latency
bounded at a few seconds. Approximately 40 minutes
into the experiment, we apply more bandwidth shaping,
to 250 kb/sec per node, and again latency stays bounded.
Notice the absence of a latency spike at each of the band-
width transitions; the system reacts promptly enough that
such spikes are not even visible on the graph. At the 60
minute mark we disable traffic shaping, and the system
again reacts promptly, returning to its original state.

7.3 Complex Degradation Policies
In our final experiment, we demonstrate that JetStream’s
degradation mechanisms, operating on a realistic work-
load, maintain responsiveness in situations in which full-
fidelity data would exceed available resources. For this
experiment, use the Requests-by-Url query from Table 2,
executing under the same setup as in §7.1. We compress
a full day’s logs (and thus the diurnal variation) into five
minutes of wall-clock time. We impose a bandwidth cap
of 80 kb/second per source node, which is artificially low,
but serves to emphasize system behavior. The limit is low
enough to force the configured degradation policies to
activate as data rates shift.

We compare the effect of four degradation policies.
Each policy starts by sending data every second, if possi-
ble, and performing roll-ups to five-second windows when
bandwidth is scarce. One policy (max window 5) does
no further degradation. The max window 10 policy will
further degrade to 10-second windows. The remaining
two policies employ either consistent-sampling (based on
a hash of the URL) or a local value threshold (dropping
tuples with the lowest counts).

Figure 9 shows the bandwidth and degradation from
each of the four policies and the bandwidth used by the
null policy (no degradation). As the load increases, most
of the source nodes hit the bandwidth cap and switch to
5-second windows. As the load keeps rising, the more
heavily-used nodes again reach their cap. Both the thresh-
olding and sampling policies can keep bandwidth usage
under the cap.

We noted earlier that many CoralCDN URLs are
unique, and therefore do not aggregate well. This is visi-
ble in the results here. Time coarsening by a factor of 5
and 10 reduces bandwidth, but by factors much less than
5 or 10. Much bandwidth is used reporting statistics about
low-traffic URLs—the tail of the distribution. Local value
thresholding effectively truncates this tail. As can be seen
on the graph, this has a minuscule effect on the relative
error, while reducing bandwidth by a factor of two. (In
this context, relative error is the maximum error in the
request count for any one URL as a fraction of the total
number of requests in that time period).

0 50 100 150 200 250 300 350
Experiment time (sec)

0

2

4

6

8

Ba
nd

w
id

th
 (M

bi
ts

/s
ec

)

No degradation
Max window 5
Max window 10

Max window 5 + Threshold
Max window 5 + Sampling

0 50 100 150 200 250 300 350
Experiment time (sec)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

%
 R

el
at

iv
e

er
ro

r

0

2

4

6

8

10

W
in

do
w

 s
iz

e
(s

ec
s)

Window size (max 10)
Window size (max 5)

Rel. error (threshholding)

Figure 9: (Top) Output bandwidth for five differ-
ent degradation choices. (Bottom) Window size and
thresholding error over time. For this query, window
sizes larger than 5 seconds have limited benefit, while
thresholding has minimal accuracy penalty. Degrada-
tion policies should depend on the data.

This experiment shows that JetStream is able to ef-
fectively combine different degradation techniques. The
limits of time coarsening on this workload illustrates why
compound policies are useful. The fact that different
degradations activate at the same point in the experiment
shows that the control loop works effectively with a vari-
ety of degradation operators.

8 Related Work
Our work has a large debt to the stream processing com-
munity. The original work on streaming [2, 6, 8] ad-
dressed the question of how to process incoming updates
with minimal latency. In contrast, JetStream targets dis-
persed and changing (stored) data sets, in the presence of
dynamic bandwidth constraints.

Spark-Streaming, MillWheel, and Storm [5, 29, 32] are
systems for large-scale stream processing within datacen-
ters. All these systems rely on an underlying fault-tolerant
storage system, respectively HDFS, BigTable, or a reli-
able message queue. Such systems or their implementa-
tion techniques, such as Spark’s memory-backed resilient
storage, could help scale JetStream within datacenters,

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 287

but are orthogonal to our concerns of efficiency and low
latency across the wide area.

Some research on streaming systems has considered
the wide area [19, 27]. One focus of this work was on
using redundant paths for performance and fault tolerance.
In contrast, we use degradation to cope with insufficient
bandwidth. Hourglass [27] places query operators to min-
imize network usage in an ad-hoc topology, but since it
does not include storage, users must choose which data to
collect (and thus the set of supported queries) beforehand.

Previous wide-area streaming work assumed that com-
putation resources were scattered in an ad-hoc manner,
e.g., on PlanetLab nodes. As a result, sophisticated al-
gorithms were needed for placement. This assumption
is overly pessimistic in our context. Due to the rise of
centralized datacenters, we expect there to be only two
or three options for operator or cube placement: the site
where the data is generated, the nearest point-of-presence,
or else a centralized datacenter.

Some single-node stream-processing systems, such as
TelegraphCQ [8], included relational storage, and others
have advocated tighter integration between stream pro-
cessing and relational databases [12]. The StreamCube
system evaluated which layers of a cube hierarchy to ma-
terialize in the context of stream processing [17]. These
uses of storage do not pose the latency-completeness
tradeoffs we address with our subscriber interface, nor do
they facilitate bandwidth reduction in distributed contexts.

Tree aggregation has been studied in the sensor net-
work community as a method of reducing bandwidth and
power consumption, notably in the Tiny Aggregation Ser-
vice [22]. Much subsequent sensor network research used
mesh topologies to compensate for unreliable connec-
tions and faulty nodes. In contrast, our hardware is not
power-constrained and we assume that conventional IP
networking will deliver suitable routes. Protocols such as
RCRT [25], the Rate-Controlled Reliable Transport Pro-
tocol for sensor networks, estimate available bandwidth
explicitly and convey rate allocation decisions to data
sources. They could serve as an alternative implementa-
tion of the congestion monitor in JetStream. However,
these works do not address how the application reacts to
the congestion signals, which in JetStream is specified
by the degradation operators, the policy manager, and the
interface between them.

Tree aggregation and local storage are also used in
the Ganglia [14] monitoring system. Ganglia supports
a limited set of queries and is oblivious to bandwidth
conditions.

Our work seeks to reduce data volumes while mini-
mizing the reduction in accuracy. Similarly, BlinkDB [4]
deploys sampling-based approximations on top of MapRe-
duce and Hive to reduce latency. In BlinkDB, the data is
carefully pre-sampled with specific statistical goals; small

probing jobs are used to estimate query run-time. In con-
trast, streaming wide-area analytics systems such as ours
have to measure and adapt to available bandwidth, with-
out the benefit of a prior data-import step. We also support
a range of degradation techniques, not just sampling.

Our previous workshop publication [28] argued for
decentralized wide-area analysis of the form conducted
by JetStream. It gave a high-level description of our ideas
and discussed use cases at length, but lacked this paper’s
detailed design, implementation, or evaluation.

9 Conclusions
This paper has presented a system, JetStream, for wide-
area data analysis in environments where bandwidth is
scarce. Our storage abstraction allows data to be stored
where it was generated and efficiently queried when
needed. It simplifies aggregation of data both across time
and across sources. Degradation techniques supplement
aggregation when available bandwidth is insufficient for
error-free results.

No single degradation technique is always best; a com-
bination of techniques can perform better than any indi-
vidual technique. Thus, our system supports combining
multiple techniques in a modular and reusable way using
policies. Our separation between congestion monitors,
degradation operators, and policies creates a powerful,
extensible framework for streaming wide-area analysis.

Acknowledgments
The authors appreciate the helpful advice and comments
of Jinyang Li, Jennifer Rexford, Erik Nordström, Rob
Kiefer, our shepherd Ramesh Govindan, and the anony-
mous reviewers. This work was funded under NSF awards
IIS-1250990 (BIGDATA) and CNS-1217782, as well as
the DARPA CSSG program.

References
[1] 3GPP Technical Specification 26.234. Transparent

end-to-end packet switched streaming service (PSS);
Protocols and codecs, 2013.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska,
U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. B. Zdonik. The design
of the Borealis stream processing engine. In CIDR,
2005.

[3] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,
Z. Wei, and K. Yi. Mergeable summaries. In PODS,
2012.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. BlinkDB: Queries with
Bounded Errors and Bounded Response Times on
Very Large Data. In EuroSys, 2013.

13

288 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[5] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nord-
strom, and S. Whittle. Millwheel: Fault-tolerant
stream processing at internet scale. In VLDB, 2013.

[6] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, Y. Park, and C. Venkatramani. SPC: A
distributed, scalable platform for data mining. In
DM-SSP, 2006.

[7] P. Cao. Efficient top-k query calculation in dis-
tributed networks. In PODC, 2004.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande,
M. Franklin, J. Hellerstein, W. Hong, S. Krishna-
murthy, S. Madden, F. Reiss, and M. Shah. Tele-
graphCQ: Continuous dataflow processing. In SIG-
MOD, 2003.

[9] Y. M. Chen, L. Dong, and J.-S. Oh. Real-time video
relay for uav traffic surveillance systems through
available communication networks. In IEEE WCNC,
2007.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. In PODS, 2001.

[12] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li,
A. Russakovsky, and N. Thombre. Continuous an-
alytics: Rethinking query processing in a network-
effect world. In CIDR, 2009.

[13] M. J. Freedman. Experiences with CoralCDN: A
five-year operational view. In NSDI, 2010.

[14] Ganglia monitoring system. http://ganglia.
sourceforge.net/, 2013.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-
hesh. Data cube: A relational aggregation opera-
tor generalizing group-by, cross-tab, and sub-totals.
Data Mining and Knowledge Discovery, 1(1), 1997.

[16] L. Guo, E. Tan, S. Chen, Z. Xiao, and X. Zhang. The
stretched exponential distribution of internet media
access patterns. In PODC, 2008.

[17] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah,
J. Wang, and Y. D. Cai. Stream cube: An architec-
ture for multi-dimensional analysis of data streams.
Distributed and Parallel Databases, 18(2), 2005.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

[19] J.-H. Hwang, U. Cetintemel, and S. B. Zdonik. Fast
and reliable stream processing over wide area net-
works. In Data Eng. Workshop, 2007.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from se-
quential building blocks. ACM SIGOPS Operating
Systems Review, 41(3), 2007.

[21] D. Katabi, M. Handley, and C. E. Rohrs. Congestion
control for high bandwidth-delay product networks.
In SIGCOMM, 2002.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation service for
ad-hoc sensor networks. In OSDI, 2002.

[23] F. McSherry, D. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In CIDR, 2013.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, 2008.

[25] J. Paek and R. Govindan. RCRT : Rate-Controlled
Reliable Transport Protocol for Wireless Sensor Net-
works. ACM Trans. Sensor Networks (TOSN), 7(3),
2010.

[26] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton Univ., Dept.
Comp. Sci., 2011.

[27] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopou-
los, M. Welsh, and M. Seltzer. Network-aware op-
erator placement for stream-processing systems. In
ICDE, 2006.

[28] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. J. Freed-
man. Making every bit count in wide-area analytics.
In HotOS, May 2013.

[29] Storm. https://github.com/
nathanmarz/storm/, 2012.

[30] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. IEEE Trans. Knowledge and Data Eng., 15
(3):555–568, 2003.

[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ: A
system for general-purpose distributed data-parallel
computing using a high-level language. In OSDI,
2008.

[32] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters. In
HotCloud, 2012.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 289

GRASS: Trimming Stragglers in Approximation Analytics

Ganesh Ananthanarayanan1, Michael Chien-Chun Hung2, Xiaoqi Ren3, Ion Stoica4, Adam Wierman3, Minlan Yu2

1Microsoft Research, 2University of Southern California, 3California Institute of Technology,
4University of California, Berkeley

ga@microsoft.com, {chienchun.hung, minlanyu}@usc.edu, {xren, adamw}@caltech.edu, istoica@cs.berkeley.edu

Abstract

In big data analytics, timely results, even if based on

only part of the data, are often good enough. For this

reason, approximation jobs, which have deadline or er-

ror bounds and require only a subset of their tasks to

complete, are projected to dominate big data workloads.

Straggler tasks are an important hurdle when designing

approximate data analytic frameworks, and the widely

adopted approach to deal with them is speculative execu-

tion. In this paper, we present GRASS, which carefully

uses speculation to mitigate the impact of stragglers in

approximation jobs. GRASS’s design is based on first

principles analysis of the impact of speculation. GRASS

delicately balances immediacy of improving the approx-

imation goal with the long term implications of using ex-

tra resources for speculation. Evaluations with produc-

tion workloads from Facebook and Microsoft Bing in an

EC2 cluster of 200 nodes shows that GRASS increases

accuracy of deadline-bound jobs by 47% and speeds up

error-bound jobs by 38%. GRASS’s design also speeds

up exact computations (zero error-bound), making it a

unified solution for straggler mitigation.

1 Introduction

Large scale data analytics frameworks automatically

compose jobs operating on large data sets into many

small tasks and execute them in parallel on compute

slots on different machines. A key feature catalyzing the

widespread adoption of these frameworks is their abil-

ity to guard against failures of tasks, both when tasks

fail outright as well as when they run slower than the

other tasks of the job. Dealing with the latter, referred to

as stragglers, is a crucial design component that has re-

ceived widespread attention across prior studies [1, 2, 3].

The dominant technique to mitigate stragglers

is speculation—launching speculative copies for the

slower tasks, where a speculative copy is simply a dupli-

cate of the original task. It then becomes a race between

the original and the speculative copies. Such techniques

are state-of-the-art and deployed in production clusters

at Facebook and Microsoft Bing, thereby significantly

speeding up jobs. The focus of this paper is on specula-

tion for an emerging class of jobs: approximation jobs.

Approximation jobs are starting to see considerable

interest in data analytics clusters [4, 5, 6]. These jobs

are based on the premise that providing a timely result,

even if only on part of the dataset, is more important than

processing the entire data. These jobs tend to have ap-

proximation bounds on two dimensions—deadline and

error [7]. Deadline-bound jobs strive to maximize the

accuracy of their result within a specified time deadline.

Error-bound jobs, on the other hand, strive to minimize

the time taken to reach a specified error limit in the re-

sult. Typically, approximation jobs are launched on a

large dataset and require only a subset of their tasks to

finish based on the bound [8, 9, 10].

Our focus is on the problem of speculation for approx-

imation jobs.1 Traditional speculation techniques for

straggler mitigation face a fundamental limitation when

dealing with approximation jobs, since they do not take

into account approximation bounds. Ideally, when the

job has many more tasks than compute slots, we want to

prioritize those tasks that are likely to complete within

the deadline or those that contribute the earliest to meet-

ing the error bound. By not considering the approxi-

mation bounds, state-of-the-art straggler mitigation tech-

niques in production clusters at Facebook and Bing fall

significantly short of optimal mitigation. They are 48%
lower in average accuracy for deadline-bound jobs and

40% higher in average duration of error-bound jobs.

Optimally prioritizing tasks of a job to slots is a classic

scheduling problem with known heuristics [11, 12, 13].

These heuristics, unfortunately, do not directly carry

over to our scenario for the following reasons. First,

they calculate the optimal ordering statically. Straggling

of tasks, on the other hand, is unpredictable and ne-

cessitates dynamic modification of the priority ordering

of tasks according to the approximation bounds. Sec-

ond, and most importantly, traditional prioritization tech-

niques assign tasks to slots assuming every task to oc-

cupy only one slot. Spawning a speculative copy, how-

ever, leads to the same task using two (or multiple)

slots simultaneously. Hence, this distills our challenge

1Note that an error-bound job with error of zero is the same as an

exact job that requires all its tasks to complete. Hence, by focusing on

approximation jobs, we automatically subsume exact computations.

1

290 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to achieving the approximation bounds by dynamically

weighing the gains due to speculation against the cost of

using extra resources for speculation.

Scheduling a speculative copy helps make immediate

progress by finishing a task faster. However, while not

scheduling a speculative copy results in the task running

slower, many more tasks may be completed using the

saved slot. To understand this opportunity cost, consider

a cluster with one unoccupied slot and a straggler task.

Letting the straggler complete takes five more time units

while a new copy of it would take four time units. While

scheduling a speculative copy for this straggler speeds it

up by one time unit, if we were not to, that slot could

finish another task (taking five time units too).

This simple intuition of opportunity cost forms the ba-

sis for our two design proposals. First, Greedy Spec-

ulative (GS) scheduling is an algorithm that greedily

picks the task to schedule next (original or speculative)

that most improves the approximation goal at that point.

Second, Resource Aware Speculative (RAS) scheduling

considers the opportunity cost and schedules a specula-

tive copy only if doing so saves both time and resources.

These two designs are motivated by first principles

analysis within the context of a theoretical model for

studying speculative scheduling. An important guideline

from our model is that the value of being greedy (GS)

increases for smaller jobs while considering opportunity

cost of speculation (RAS) helps for larger jobs. As our

model is generic, a nice aspect is that the guideline holds

not only for approximation jobs but also for exact jobs

that require all their tasks to complete.

We use the above guideline to dynamically combine

GS and RAS, which we call GRASS. At the beginning

of a job’s execution, GRASS uses RAS for scheduling

tasks. Then, as the job gets close to its approximation

bound, it switches to GS, since our theoretical model

suggests that the opportunity cost of speculation dimin-

ishes with fewer unscheduled tasks in the job. GRASS

learns the point to switch from RAS to GS using job and

cluster characteristics.

We demonstrate the generality of GRASS by imple-

menting it in both Hadoop [14] (for batch jobs) and

Spark [15] (for interactive jobs). We evaluate GRASS

using production workloads from Facebook and Bing on

an EC2 cluster with 200 machines. GRASS increases

accuracy of deadline-bound jobs by 47% and speeds up

error-bound jobs by 38% compared to state-of-the-art

straggler mitigation techniques deployed in these clus-

ters (LATE [2] and Mantri [1]). In fact, GRASS results

in near-optimal performance. In addition, GRASS also

speeds up exact jobs, that require all their tasks to com-

plete, by 34%. Thus, it is a unified speculation solution

for both approximation as well as exact computations.

2 Challenges and Opportunities

Before presenting our system design, it is important to

understand the challenges and opportunities for speculat-

ing straggler tasks in the context of approximation jobs.

2.1 Approximation Jobs

Increasingly, with the deluge of data, analytics applica-

tions no longer require processing entire datasets. In-

stead, they choose to tradeoff accuracy for response time.

Approximate results obtained early from just part of the

dataset are often good enough [4, 6, 5]. Approximation

is explored across two dimensions—time for obtaining

the result (deadline) and error in the result [7].

• Deadline-bound jobs strive to maximize the accu-

racy of their result within a specified time limit.

Such jobs are common in real-time advertisement

systems and web search engines. Generally, the job

is spawned on a large dataset and accuracy is pro-

portional to the fraction of data processed [8, 9, 10]

(or tasks completed, for ease of exposition).

• Error-bound jobs strive to minimize the time taken

to reach a specified error limit in the result. Again,

accuracy is measured in the amount of data pro-

cessed (or tasks completed). Error-bound jobs are

used in scenarios where the value in reducing the

error below a limit is marginal, e.g., counting of the

number of cars crossing a section of a road to the

nearest thousand is sufficient for many purposes.

Approximation jobs require schedulers to prioritize

the appropriate subset of their tasks depending on the

deadline or error bound. Prioritization is important for

two reasons. First, due to cluster heterogeneities [2, 3,

16], tasks take different durations even if assigned the

same amount of work. Second, jobs are often multi-

waved, i.e., their number of tasks is much more than

available compute slots, thereby they run only a fraction

of their tasks at a time [17]. For example, when a job

with 1000 tasks is given only 100 slots simultaneously

(due to, say, fair scheduling), it runs only one-tenth of its

tasks at a time. These tasks, though, are independent and

can be scheduled in any order. The trend of multi-waved

jobs is expected to grow with smaller tasks [18].

2.2 Challenges

The main challenge in prioritizing tasks of approxima-

tion jobs arises due to some of them straggling. Even

after applying many proactive techniques, in production

clusters in Facebook and Microsoft Bing, the average

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 291

job’s slowest task is eight times slower than the median.2

It is difficult to model all the complex interactions in

clusters to prevent stragglers [3, 20]. Ananthanarayanan

et al. (Section 2.1.2 in [3]) also show that blacklisting

machines based on their likeliness to cause stragglers

(in both the short- as well as long-term) has little ben-

efits; machines are neither consistently problematic nor

exhibit simple correlations with task durations.

The widely adopted technique to deal with straggler

tasks is speculation. This is a reactive technique that

spawns speculative copies for tasks deemed to be strag-

gling. The earliest among the original and speculative

copies is picked while the rest are killed. While schedul-

ing a speculative copy makes the task finish faster and

thereby increases accuracy, they also compete for com-

pute slots with the unscheduled tasks.

Therefore, our problem is to dynamically prioritize

tasks based on the deadline/error-bound while choosing

between speculative copies for stragglers and unsched-

uled tasks. This problem is, unfortunately, NP-Hard and

devising good heuristics (i.e., with good approximation

factors) is an open theoretical problem.

2.3 Potential Gains

Given the challenges posed by stragglers discussed

above, it is not surprising that the potential gains from

mitigating their impact are significant. To highlight this

we use a simulator with an optimal bin-packing sched-

uler. Our baselines are the the state-of-the-art mitigation

strategies (LATE [2] and Mantri [1]) in the production

clusters. Optimally prioritizing the tasks while correctly

balancing between speculative copies and unscheduled

tasks presents the following potential gains. Deadline-

bound jobs improve their accuracy by 48% and 44%, in

the Facebook and Bing traces, respectively. Error-bound

jobs speed up by 32% and 40%. We next develop an

online heuristic to achieve these gains.

3 Speculation Algorithm Design

The key choice made by a cluster scheduling algorithm

is to pick the next task to schedule given a vacant slot.

Traditionally, this choice is made among the set of tasks

that are queued; however when speculation is allowed,

the choice also includes speculative copies of tasks that

are already running. This extra flexibility means that

a design must determine a prioritization that carefully

weighs the gains from speculation against the cost of

extra resources while still meeting the approximation

goals. Thus, we first focus on tradeoffs in the design

2Task durations are normalized by their input sizes to be resistant

to data skews [19, 1].

of the speculation policy. Specifically, using both small

examples and analytic modeling we motivate the use of

two simple heuristics, Greedy Speculative (GS) schedul-

ing and Resource Aware Speculative (RAS) scheduling

that together make up the core of GRASS.

3.1 Speculation Alternatives

For simplicity, we first introduce GS and RAS in the

context of deadline-bound jobs and then briefly describe

how they can be adapted to error-bound jobs.

3.1.1 Deadline-bound Jobs

If speculation was not allowed, there is a natural, well-

understood policy for the case of deadline-bound jobs:

Shortest Job First (SJF), which schedules the task with

the smallest processing time. In many settings, SJF can

be proven to minimize the number of incomplete tasks

in the system, and thus maximize the number of tasks

completed, at all points of time among the class of non-

preemptive policies [11, 12]. Thus, without speculation,

SJF finishes the most tasks before the deadline.

If one extends this idea to the case where speculation

is allowed, then a natural approach is to allow the cur-

rently running tasks to also be placed in the queue, and

to choose the task with the smallest size, i.e., tnew (requir-

ing, of course, that the task finishes before the deadline).

If the chosen task has a copy currently running, we check

that the speculative copy being considered provides a

benefit, i.e., tnew < trem. So, the next task to run is still

chosen according to SJF, only now speculative copies are

also considered. We term this policy Greedy Speculative

(GS) scheduling, because it picks the next task to sched-

ule greedily, i.e., the one that will finish the quickest, and

thus improve the accuracy the earliest at present.

Figure 1 (left) presents an illustration of GS for a sim-

ple job with nine tasks and two concurrent slots. Tasks

T1 and T2 are scheduled first, and when T2 finishes, the

trem and tnew values are as indicated. At this point, GS

schedules T3 next as it is the one with the lowest tnew,

and so forth. Assuming the deadline was set to 6 time

units, the obtained accuracy is 7
9 (or 7 completed tasks).

Picking the earliest task to schedule next is often op-

timal when a job has no unscheduled tasks (i.e., either

single-waved jobs or the last wave of a multi-waved job).

However, when there are unscheduled tasks it is less

clear. For example, in Figure 1 (right) if we schedule

a speculative copy of T1 when T2 finished, instead of

T3, 8 tasks finish by the deadline of 6 time units.

The previous example highlights that running a spec-

ulative copy has resource implications which are impor-

tant to consider. If the speculative copy finishes early,

both slots (of the speculative copy and the original) be-

3

292 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: GS and RAS for a deadline-bound job with 9
tasks. The trem and tnew values are when T2 finishes. The

example illustrates deadline values of 3 and 6 time units.

come available sooner to start the other tasks. This op-

portunity cost of speculation is an important tradeoff to

consider, and leads to the second policy we consider: Re-

source Aware Speculative (RAS) scheduling.

To account for the opportunity cost of scheduling a

speculative copy, RAS speculates only if it saves both

time and resources. Thus, not only must tnew be less

than trem to spawn a speculative copy but the sum of the

resources used by the speculative and original copies,

when running simultaneously, must be less than letting

just the original copy finish. In other words, for a task

with c running copies, its resource savings, defined as

c× trem − (c+ 1)× tnew, must be positive.

By accounting for the opportunity cost of resources,

RAS can out-perform GS in many cases. As mentioned

earlier, in Figure 1 (right) where RAS achieves an ac-

curacy of 8
9 versus GS’s 7

9 in the deadline of 6 time

units. This improvement comes because, when T2 fin-

ishes, speculating on T1 saves 1 unit of resource.

However, RAS is not uniformly better than GS. In par-

ticular, RAS’s cautious approach can backfire if it over-

estimates the opportunity cost. In the same example in

Figure 1, if the deadline of the job were reduced from

6 time units to 3 time units instead, GS performs bet-

ter than RAS. At the end of 3 time units, GS has led to

three completed tasks while RAS has little to show for

its resource gains by speculating T1.

As the example alludes to, the value of the deadline

and the number of waves are two important factors im-

pact whether GS or RAS is a better choice. A third im-

portant factor, which we discuss later in §4.1, is the esti-

mation accuracy of trem and tnew.

Pseudocode 1 describes the details of GS and RAS.

The set T consists of all the running and unscheduled

tasks of the jobs. There are two stages in the scheduling

process: (i) Pruning Stage: In this stage (lines 5 − 12),

tasks that are not slated to complete by the deadline are

removed from consideration. Further, GS removes those

tasks whose speculative copy is not expected to finish

earlier than the running copy. RAS removes those tasks

1: procedure DEADLINE(�Task� T , float δ, bool OC)

⊲ OC = 1 → use RAS; 0 → use GS

2: if OC then

3: for each Task t in T do

4: if t.running then

t.saving = t.c ×t.trem − (t.c+1)× tnew

⊲ PRUNING STAGE

δ’ ← Remaining Time to δ

�Task�Γ ← φ

5: for each Task t in T do

6: if t.tnew > δ’ then continue ⊲ Exceeds deadline

7: if OC then

8: if t.saving > 0 then Γ.add(t)

9: else

10: if t.running then

11: if t.tnew < t.trem then Γ.add(t)

12: else Γ.add(t)

⊲ SELECTION STAGE

13: if Γ �= null then

14: if OC then SortDescending(Γ, “saving”)

15: else SortAscending(Γ, tnew)

return Γ.first()

Pseudocode 1: GS and RAS algorithms for deadline-

bound jobs (deadline of δ). T is the set of unfinished tasks

with the following fields per task: trem, tnew, and a boolean

“running” to denote if a copy of it is currently executing.

RAS is used when OC is set. At default, both algorithms

schedule the task with the lowest tnew within the deadline.

which do not save on resources by speculation. (ii) Se-

lection Stage: From the pruned set, GS picks the task

with the lowest tnew while RAS picks the task with the

highest resource savings (lines 13− 15).

3.1.2 Error-bound Jobs

Though error-bound jobs require a different form of

prioritization than deadline-bound jobs, the speculative

core of the GS and RAS algorithms are again quite natu-

ral. Specifically, the goal of error-bound jobs is to mini-

mize the makespan of the tasks needed to achieve the er-

ror limit. Thus, instead of SJF, Longest Job First (LJF) is

the natural prioritization of tasks. In particular, LJF min-

imizes the makespan among the class of non-preemptive

policies in many settings [11, 12]. This again represents

a “greedy” prioritization for this setting.

Despite the above change to the prioritization of which

task to schedule, the form of GS and RAS remain the

same as in the case of deadline-bound jobs. In particular,

speculative copies are evaluated in the same manner, e.g.,

RAS’s criterion is still to pick the task whose specula-

tion leads to the highest resource savings. Pseudocode 2

presents the details. The pruning stage (lines 5 − 11)

will remove from consideration those tasks that are not

the earliest to contribute to the desired error bound. The

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 293

1: procedure ERROR(�Task� T , float ǫ, bool OC)

⊲ OC = 1 → use RAS; 0 → use GS

⊲ Error ǫ is in #tasks

2: for each Task t in T do

t.duration = min(t.trem, t.tnew)
3: if OC then

4: if t.running then

t.saving = t.c ×t.trem − (t.c+1)× tnew

⊲ PRUNING STAGE

SortAscending(T , “duration”)

�Task�Γ ← φ

5: for each Task t in T [0 : T .count() (1− ǫ)] do

⊲ Earliest tasks

6: if OC then

7: if t.saving > 0 then Γ.add(t)

8: else

9: if t.running then

10: if t.tnew < t.trem then Γ.add(t)

11: else Γ.add(t)

⊲ SELECTION STAGE

12: if Γ �= null then

13: if OC then SortDescending(Γ, “saving”)

14: else SortDescending(Γ, trem)

return Γ.first()

Pseudocode 2: GS and RAS speculation algorithms for

error-bound jobs (error-bound of ǫ). T is the set of un-

finished tasks with the following fields per task: trem, tnew,

and a boolean “running” to denote if a copy of it is cur-

rently executing. The trem of the task is the minimum of all

its running copies. RAS is used when OC is set. At default,

both algorithms schedule the task with the highest trem.

list of earliest tasks is based on the effective duration of

every task, i.e., the minimum of trem and tnew. During se-

lection (lines 12−14), GS picks the task with the highest

trem while RAS picks the task with the highest saving.

Figure 2 presents an illustration of GS and RAS for an

error-bound job with 6 tasks and 3 compute slots. The

trem and tnew values are at 5 time units. GS decides to

launch a copy of T3 as it has the highest trem. RAS con-

servatively avoids doing so. Consequently, when the er-

ror limit is high (say, 40%) GS is quicker, but RAS is

better when the limit decreases (to, say, 20%).

3.2 Contrasting GS and RAS

To this point, we have seen that GS and RAS are two nat-

ural approaches for integrating speculation into a clus-

ter scheduler for approximation jobs. However, the ex-

amples we have considered highlight that neither of GS

or RAS is uniformly better. In order to develop a bet-

ter understanding of these two algorithms, as well as

other possible alternatives, we have developed a sim-

ple analytic model for speculation in approximation jobs.

The model assumes wave-based scheduling and constant

Figure 2: GS and RAS for error-bound job with 6 tasks.

The trem and tnew values are when T2 finishes. The example

illustrates error limit of 40% (3 tasks) and 20% (4 tasks).

1 2 3 4
x 106

0
1
2
3
4

β = 1.259

order statistics
H

ill
 e

st
im

at
e

of
 β

Figure 3: Hill plot of Face-

book task durations.

1 2 3 4 51
1.02
1.04
1.06
1.08
1.1

1.12 GS RAS

ω

Pr
oc

es
si

ng
 T

im
e/

O
pt

im
al

5 waves
4 waves
3 waves
2 waves
1 waves

Figure 4: Near-optimality

of GS & RAS under Pareto

task durations (β = 1.259).

wave-width for a job (see §A for details along with for-

mal results). For readability, here we present only the

three major guidelines from our analysis. Most impor-

tantly, these guidelines highlight that different specula-

tion policies are required during the early waves of a job

than during the final wave.

Guideline 1 During the early waves of a job, specu-

lation is only valuable if task durations are extremely

heavy tailed, e.g., Pareto with infinite variance (i.e., with

shape parameter β < 2). In this case, it is optimal to

speculate conservatively, using ≤ 2 copies of a task.

This guideline is relevant because task durations are in-

deed heavy-tailed for the Facebook and Bing traces (see

the Hill plot in Figure 3), which suggests that task dura-

tions have a Pareto tail (i.e., P (τ > x) = θ(x−β)) with

shape parameter β = 1.259.3 While both GS and RAS

speculate during early waves, RAS is more conservative

than GS and thus outperforms it during early waves.

Guideline 2 During the final wave of a job, speculate

aggressively to fully utilize the allotted capacity.

3A Hill plot provides a more robust estimation of Pareto distribu-

tions than the, more commonly used, regression on a log-log plot [21].

To interpret the plot, a flat region corresponds to an estimate of β. The

fact that the curve in Figure 3 is flat over a large range of order statistics

(on the x-axis), but not all order statistics, indicates that the distribu-

tion of task sizes is not exactly Pareto distribution in its body, but is

well-approximated by a Pareto (power-law) tail.

5

294 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This guideline says that, even if all tasks are currently

scheduled, if a slot becomes available it should be filled

with a speculative copy. While both GS and RAS do this

to some extent, GS speculates more aggressively than

RAS and thus, outperforms RAS during the final wave.

The previous two guidelines highlight a tradeoff be-

tween RAS and GS, which we formalize next.

Guideline 3 For jobs that require more than two waves

RAS is near-optimal, while for jobs that require fewer

than two waves GS is near-optimal.

To make this point more salient, consider the general

class of speculative replication policies that waits until

a task has run ω time before starting a speculative copy.

We study this broad class in §A, and GS and RAS corre-

spond to particular rules for how to chooseω. To see this,

we can define tnew = E[τ] and trem = E[τ − ω|τ > ω],
where τ is a random task size. Then, under GS, ω is the

time when E[τ] = E[τ − ω|τ > ω], and, under RAS, ω
is the time when 2E[τ] = E[τ − ω|τ > ω].

Figure 4 contrasts the performance of all the replica-

tion policies in this more general class. Specifically, it

shows the ratio of the response time of the replication

policy with parameter ω normalized to the optimal re-

sponse time. It illustrates this ratio for jobs of differing

numbers of waves, and for ω ∈ [0, 5]. To highlight GS

and RAS, they are shown via vertical lines. The response

times shown in the figure are computed using the model

and analysis described in §A. The main conclusion from

this figure is, as described in the guideline above, that

neither GS or RAS is universally optimal, but each is

near-optimal for jobs with a certain number of waves:

RAS for jobs with large numbers of waves and GS for

jobs with small numbers of waves.

4 GRASS Speculation Algorithm

In this section, we build our speculation algorithm called

GRASS.4 Our theoretical analysis summarized in §3.2

motivates a design that uses RAS during the early waves

of jobs and GS during the final two waves. A simple

strawman solution to achieve this would be as follows.

For deadline-bound jobs, switch from RAS to GS when

the time to the deadline is sufficient for at most two

waves of tasks. Similarly, for error-bound jobs, switch

when the number of (unique) scheduled tasks needed to

satisfy the error-bound makes up two waves.

Identifying the final two waves of tasks is difficult in

practice. Tasks are not scheduled at explicit wave bound-

aries but rather as and when slots open up. In addition,

the wave-width of jobs does not stay constant but varies

4GRASS is a concatenation of GS and RAS

considerably depending on cluster utilization. Finally,

task durations are varied and hard to estimate.

In light of these difficulties, we interpret the guideline

as follows: RAS is better when the deadline is loose or

the error limit is low, while otherwise GS performs bet-

ter. This mimics the intuition from the examples in §3.1.

Therefore, GRASS seeks to switch from RAS to GS as it

gets close to the job’s approximation bound.

The complexities in these systems mean that precise

estimates of the optimal switching point cannot be ob-

tained from our model. Instead, we adopt an indi-

rect learning based approach where inferences are made

based on executions of previous jobs (with similar num-

ber of tasks) and cluster characteristics (utilization and

estimation accuracy). We compare our learning ap-

proach to the strawman described above in §6.3.

4.1 Learning the Switching Point

An ideal approach would accumulate enough samples of

job performance (accuracy or completion time) based on

switching to GS at different points. For deadline-bound

jobs, this is decided by the remaining time to the dead-

line. For error-bound jobs, this is decided by the number

of tasks to complete towards meeting the error. To speed

up our sample collection, instead of accumulating sam-

ples of switching to GS, we simply generate samples of

job performance using GS or RAS throughout the job

(described shortly in §4.2).

An incoming job starts with RAS and periodically

compares samples of jobs smaller than its size during its

execution to check if it is better to switch to GS. It checks

by using its remaining work at any point (measured in

time remaining or tasks to complete). It steps through all

possible points in its remaining work at which it could

switch and estimates the optimal point using job sam-

ples of appropriate sizes. It continues with RAS until the

optimal switching point turns out to be at present. The

above calculation for the optimal switching point is per-

formed periodically during the job’s execution.

For example, when a deadline-bound job has 6s of its

deadline remaining, GRASS compares the potential ac-

curacy obtained if it were to switch at each point in its fu-

ture (at 1s granularity). The accuracy if it were to switch

after, say, 2s is the sum of accuracies of jobs with dead-

lines of 2s that used only RAS and those with 4s that used

only GS. Switching happens if among all such points, the

best accuracy is obtained by switching now.

The size of the job alone is insufficient to calculate the

optimal switching point. Even jobs of comparable size

might have different number of waves depending on the

number of available slots. Therefore, we augment our

samples of job performance with the number of waves,

simply approximated using current cluster utilization.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 295

Finally, estimation accuracy of trem and tnew also de-

cides the optimal switching point. RAS’s cautious ap-

proach of considering the opportunity cost of speculat-

ing a task is valuable when task estimates are erroneous.

In fact, at low estimation accuracies (along with certain

values of utilization and deadline/error-bound), it is bet-

ter to not switch to GS at all and employ RAS all along.

§6.3.2 analyzes the impact of these three factors.

Therefore, GRASS obtains samples of job per-

formance with both GS and RAS across values of

deadline/error-bound, estimation accuracy of trem and

tnew, and cluster utilization. It uses these three factors

collectively to decide when (and if) to switch from RAS

to GS. We next describe how the samples are collected.

4.2 Generating Samples

As described above, GRASS compares samples of job

performance that use only GS or RAS throughout, to

decide when to switch. These samples have to be up-

dated continuously to stay abreast with dynamic changes

in clusters. To continuously generate such samples, we

introduce a perturbation in GRASS’s switching decision.

With a small probability ξ, GRASS decides to not switch

and instead picks one of GS or RAS for the entire dura-

tion of the job (both GS and RAS are equally probable).

Such perturbation helps us obtain comparable samples.

The crucial trade-off in setting ξ is in balancing the

benefit of obtaining such comparable samples with the

performance loss incurred by the job due to not mak-

ing the right switching decision. Theoretical analyses of

such multi-armed bandit problems in prior work defines

an optimal value of ξ by making stochastic assumptions

about the distribution of the costs and the associated re-

wards [22]. Our setup, however, does not yield itself to

such assumptions as the underlying distribution can be

arbitrary. Another class of techniques that we consid-

ered modified ξ with time [23]. Over time, the value of

ξ is gradually reduced using a damping function, thus

indicating higher confidence in the learned value. We

decided against such damping of ξ because clusters con-

stantly evolve with new software and hardware modules,

leading to newer interactions between them.

Therefore, we pick a constant value of ξ using empiri-

cal analysis. A job is marked for generating performance

samples with a probability of ξ, and we pick GS or RAS

with equal probability. In practice, we bucket jobs by

their number of tasks and compare only within jobs of

the same bucket.

5 Implementation

We implement GRASS on top of two data-analytics

frameworks, Hadoop (version 0.20.2) [14] and Spark

(version 0.7.3) [15], representing batch jobs and inter-

active jobs, respectively. Hadoop jobs read data from

HDFS while Spark jobs read from in-memory RDDs.

Consequently, Spark tasks finished quicker than Hadoop

tasks, even with the same input size. Note that while

Hadoop and Spark use LATE[2] currently, we also im-

plement Mantri[1] to use as a second baseline.

Implementing GRASS required two changes: task ex-

ecutors and job scheduler. Task executors were aug-

mented to periodically report progress. We piggyback on

existing update mechanisms of tasks that conveyed only

their start and finish. Progress reports were configured to

be sent every 5% of data read/written. The job scheduler

collects these reports, maintains samples of completed

tasks and jobs, and decides the switching point.

5.1 Task Estimators

GRASS uses two estimates for tasks: remaining duration

of a running task (trem) and duration of a new copy (tnew).

Estimating trem: Tasks periodically update the sched-

uler with progress reports containing the fraction of in-

put read and output written. Since tasks of analytics jobs

are IO-intensive, we extrapolate the remaining duration

of the task based on the time elapsed thus far.

Estimating tnew: We estimate the duration of a new task

by sampling from durations of completed tasks (normal-

ized to input and output sizes). The tnew values of all

tasks are updated whenever a task completes.

Accuracy of estimation: While the above techniques

are simple, the downside is the error in estimation. Our

estimates of trem and tnew achieve moderate accuracies of

72% and 76%, respectively, on average. When a task

completes, we update the accuracy using the estimated

and actual durations. GRASS uses the accuracy of esti-

mation to appropriately switch from RAS to GS.

5.2 DAG of Tasks

Jobs are typically composed as a DAG of tasks with in-

put tasks (e.g., map or extract) reading data from the un-

derlying storage and intermediate tasks (e.g., reduce or

join) aggregating their outputs. Even in DAGs of tasks,

the accuracy of the result is decided by the fraction of

completed input tasks. This makes GRASS’s functioning

straightforward in error-bound jobs—complete as many

input tasks as required to meet the error-bound and all

intermediate tasks further in the DAG.

For deadline-bound jobs, we use a widely occurring

property that intermediate tasks perform similar func-

tions across jobs. Further, they have relatively fewer

stragglers. Thus, we estimate the time taken for interme-

diate tasks by comparing jobs of similar sizes and then

subtract it to obtain the deadline for the input tasks.

7

296 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input tasks of a job, typically, read equal amounts of

data. Thus, the fraction of tasks completed represents

fraction of data processed too, thus making it a good in-

dicator of the result’s accuracy.

6 Evaluation

We evaluate GRASS on a 200 node EC2 cluster.

Our focus is on quantifying the performance improve-

ments compared to current designs, i.e., LATE [2] and

Mantri [1], and on understanding how close to the opti-

mal performance GRASS comes. Our main results can

be summarized as follows.

1. GRASS increases accuracy of deadline-bound jobs

by 47% and speeds up error-bound jobs by 38%.

Even non-approximation jobs (i.e., error-bound of

zero) speed up by 34%. Further, GRASS nearly

matches the optimal performance. (§6.2)

2. GRASS’s learning based approach for determining

when to switch from RAS to GS is over 30% better

than simple strawman techniques. Further, the use

of all three factors discussed in §4.1 is crucial for

inferring the optimal switching point. (§6.3)

6.1 Methodology

Workload: Our evaluation is based on traces from

Facebook’s production Hadoop [14] cluster and Mi-

crosoft Bing’s production Dryad [24] cluster. The traces

capture over half a million jobs running across many

months (Table 1). The clusters run a mix of interactive

and production jobs whose performance have significant

impact on productivity and revenue. The jobs had di-

verse resource requirements of CPU, memory and IO.

To create our experimental workload, we retain the inter-

arrival times, input files and number of tasks of jobs. The

jobs were, however, not approximation queries and re-

quired all their tasks to complete. Hence, we convert the

jobs to mimic deadline- and error-bound jobs as follows.

For experiments on error-bound jobs, we pick the er-

ror tolerance of the job randomly between 5% and 30%.

This is consistent with the experimental setup in recently

reported research [4, 25]. Prior work also recommends

setting deadlines by calibrating task durations [4, 9]. For

the purpose of calibration, we obtain the ideal duration of

a job in the trace by substituting the duration of each of

its task by the median task duration in the job, again, as

per recent work on straggler mitigation [3]. We set the

deadline to be an additional factor (randomly between

2% to 20%) on top of this ideal duration.

Job Bins: We bin jobs by their number of tasks. We

use three distinctions “small” (< 50 tasks), “medium”

(51− 500 tasks), and “large” (> 500 tasks).

Facebook Microsoft Bing

Dates Oct 2012 May-Dec 2011
Framework Hadoop Dryad

Script Hive [26] Scope [27]

Jobs 575K 500K

Cluster Size 3,500 Thousands

Straggler– LATE [2] Mantri [1]

mitigation

Table 1: Details of Facebook and Bing traces.

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

(a) Facebook Workload–Hadoop

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(b) Bing Workload–Hadoop

0

10

20

30

40

50

60

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

(c) Facebook Workload–Spark

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(d) Bing Workload–Spark

Figure 5: Accuracy Improvement in deadline-bound jobs

with LATE [2] and Mantri [1] as baselines.

EC2 Deployment: We deploy our Hadoop and Spark

prototypes on a 200-node EC2 cluster and evaluate them

using the workloads described above. Each experiment

is repeated five times and we pick the median. We mea-

sure improvement in the average accuracy for deadline-

bound jobs and average duration for error-bound jobs.

We also use a trace-driven simulator to evaluate at

larger scales and over longer durations. The simulator

replays all the task properties including their straggling.

Baseline: We contrast GRASS with two state-of-the-art

speculation algorithms—LATE [2] and Mantri [1].

6.2 Improvements from GRASS

We contrast GRASS’s performance with that of

LATE [2], Mantri [1], and the optimal scheduler.

6.2.1 Deadline-bound jobs

GRASS improves the accuracy of deadline-bound jobs

by 34% to 40% in the Hadoop prototype. Gains in both

the Facebook and Bing workloads are similar. Figure 5a

and 5b split the gains by job size. The gains compared

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 297

0

10

20

30

40

50

2-5 6-10 11-15 16-20

Facebook Bing

Deadline (%) Bin

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

(a) Deadline Bins

0

10

20

30

40

5-10 11-15 16-20 21-25 26-30

Facebook Bing

Error (%) Bin

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

(b) Error Bins

Figure 6: GRASS’s overall gains (compared to LATE)

binned by the deadline and error bound. Deadlines are

binned by the factor over ideal job duration (see §6.1)

to LATE as baseline are consistently higher than Mantri.

Also, the gains in large jobs are pronounced compared to

small and medium sized jobs because their many waves

of tasks provides plenty of potential for GRASS.

The Spark prototype improves accuracy by 43% to

47%. The gains are higher because Spark’s task sizes

are much smaller than Hadoop’s due to in-memory in-

puts. This makes the effect of stragglers more distinct.

Again, large jobs gain the most, improving by over 50%
(Figure 5c and 5d). Large multi-waved jobs improving

more is encouraging because smaller task sizes in fu-

ture [18] will ensure that multi-waved executions will

be the norm. Unlike the Hadoop case, gains compared

to both LATE and Mantri are similar because both have

only limited effect when the impact of stragglers is high.

Figure 6a dices the improvements by the deadline

(specifically, the additional factor over the ideal job du-

ration (see §6.1)). Note that gains are nearly uniform

across deadline values. This indicates that GRASS can

not only cope with stringent deadlines but be valuable

even when the deadline is lenient.

Gains with simulations are consistent with deploy-

ment, indicating not only that GRASS’s gains hold over

longer durations but also the simulator’s robustness.

6.2.2 Error-bound jobs

Similar to deadline-bound jobs, improvements with the

Spark prototype (33% to 37%) are higher compared to

the Hadoop prototype (24% to 30%). This shows that

GRASS works well not only with established frame-

works like Hadoop but also upcoming ones like Spark.

Note that the gains are indistinguishable among differ-

ent job bins (Figures 7a and 7b) in the Spark prototype;

large jobs gain a touch more in the Hadoop prototype

(Figures 7c and 7d). Again, our simulation results are

consisten with deployment, and so are omitted.

As Figure 6b shows, GRASS’s gains persist at both

tight as well as moderate error bounds. At high error

bounds, there is smaller scope for GRASS beyond LATE.

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(a) Facebook Workload–Hadoop

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

0

10

20

30

40

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(b) Bing Workload–Hadoop

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(c) Facebook Workload–Spark

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(d) Bing Workload–Spark

Figure 7: Speedup in error-bound jobs with LATE [2] and

Mantri [1] as baselines.

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

0

10

20

30

40

50

60

< 50 51-500 > 501

GRASS Optimal

(a) Deadline-bound Jobs

0

10

20

30

40

50

< 50 51-500 > 501

GRASS Optimal

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

(b) Error-bound Jobs

Figure 8: GRASS’s gains matches the optimal scheduler.

The gains at tight error bounds is noteworthy because

these jobs are closer to exact jobs that require all (or most

of) their tasks to complete. In fact, exact jobs speed up

by 34%, thus making GRASS valuable even in clusters

that are yet to deploy approximation analytics.

6.2.3 Optimality of GRASS

While the results above show the speed up GRASS pro-

vides, the question remains as to whether further im-

provements are possible. To understand the room avail-

able for improvement beyond GRASS, we compare its

performance with an optimal scheduler that knows task

durations and slot availabilities in advance.

Figure 8 shows the results for the Facebook workload

with Spark. It highlights that GRASS’s performance

matches the optimal for both deadline as well as error-

bound jobs. Thus, GRASS is an efficient near-optimal

solution for the NP-hard problem of scheduling tasks for

approximation jobs with speculative copies.

9

298 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Length of DAG

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

0

10

20

30

40

50

2 3 4 5 6

Bing Facebook

(a) Deadline-bound Jobs.

I
m

p
r
o

v
e

m
e

n
t

(
%

)

in

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

Length of DAG

0

10

20

30

40

2 3 4 5 6

Bing Facebook

(b) Error-bound Jobs.

Figure 9: GRASS’s gains holds across job DAG sizes.

6.2.4 DAG of tasks

To complete the evaluation of GRASS we investigate

how performance gains depend on the length of the job’s

DAG. Intuitively, as long as our estimation of interme-

diate phases is accurate, GRASS’s handling of the input

phase should remain unchanged, and Figure 9 confirms

this for both deadline and error-bound jobs. Gains from

GRASS remain stable with the length of the DAG.

6.3 Evaluating GRASS’s Design Decisions

To understand the impact of the design decisions made in

GRASS, we focus on three questions. First, how impor-

tant is it that GRASS switches from RAS to GS? Second,

how important is it that this switching is learned adap-

tively rather than fixed statically? Third, how sensitive

is GRASS to the perturbation factor ξ? In the interest

of space, we present results on these topics for only the

Facebook workload using LATE as a baseline; results for

the Bing workload with Mantri are similar.

6.3.1 The value of switching

To understand the importance of switching between RAS

and GS we compare GRASS’s performance with using

only GS and RAS all through the job. Figure 10 performs

the comparison for deadline-bound jobs. GRASS’s im-

provements, both on average as well as in individual job

bins, are strictly better than GS and RAS. This shows

that if using only one of them is the best choice, GRASS

automatically avoids switching. Further, GRASS’s over-

all improvement in accuracy is over 20% better than the

best of GS or RAS, demonstrating the value of switching

as the job nears its deadline. The above trends are con-

sistent with error-bound jobs as well (Figure 11), though

GRASS’s benefit is slightly lower.

The contrast of GS and RAS is also interesting. GS

outperforms RAS for small jobs but loses out as job sizes

increase. The significant degradation in performance in

the unfavorable job bin (medium and large jobs for GS,

0

10

20

30

40

50

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

(a) Hadoop

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

0

10

20

30

40

50

60

< 50 51-500 > 501

GS-only RAS-only GRASS

(b) Spark

Figure 10: GRASS’s switching is 25% better than using

GS or RAS all through for deadline-bound jobs. We use

the Facebook workload and LATE as baseline.

0

10

20

30

40

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)
I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

(a) Facebook Workload–Hadoop

0

10

20

30

40

50

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

(b) Facebook Workload–Spark

Figure 11: GRASS’s switching is 20% better than using

GS or RAS all through for error-bound jobs. We use the

Facebook workload and LATE as baseline.

versus small jobs for RAS) illustrates the pitfalls of stat-

ically picking the speculation algorithm.

6.3.2 The value of learning

Given the benefit of switching, the question becomes

when this switching should occur. GRASS does this

adaptively based on three factors: deadline/error-bound,

cluster utilization and estimation accuracy of trem and

tnew. Now, we illustrate the benefit of this approach

compared to simpler options, i.e., choosing the switch-

ing point statically or based on a subset of these three

factors. Note that we have already seen that these three

factors are enough to be near optimal (Figure 8).

Static switching: First, when considering a static de-

sign, a natural “strawman” based on our theoretical anal-

ysis is to estimate the point when there are two remaining

waves as follows. For deadline-bound jobs, it is the point

when the time to the deadline is sufficient for at most

two waves of tasks. For error-bound jobs, it is when the

number of (unique) scheduled tasks sufficient to satisfy

the error-bound make up two waves. The strawman uses

the current wave-width of the job and assumes task du-

rations to be median of completed tasks.

Figure 12 compares GRASS with the above strawman.

Gains with the strawman are 66% and 73% of the gains

with GRASS for deadline-bound and error-bound jobs,

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 299

0

10

20

30

40

50

60

< 50 51-500 > 501

Strawman GRASS

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

(a) Deadline-bound Jobs

0

10

20

30

40

50

< 50 51-500 > 501

Strawman GRASS

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

Job Bin (#Tasks)

(b) Error-bound Jobs

Figure 12: Comparing GRASS’s learning based switching

approach to a strawman that approximates two waves of

tasks. GRASS is 30%− 40% better than the strawman.

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

0

10

20

30

40

50

< 50 51-500 > 501

Best-1 Best-2 GRASS

(a) Hadoop

0

10

20

30

40

50

60

< 50 51-500 > 501

Best-1 Best-2 GRASS

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

(b) Spark

Figure 13: Using all three factors for deadline-bound jobs

compared to only one or two is 18% − 30% better.

respectively. Small and medium jobs lag the most as

wrong estimation of switching point affects a large frac-

tion of their tasks. Thus, the benefit of adaptively deter-

mining the switching point is significant.

Adaptive switching: Next, we study the impact of

the three factors used to adaptively learn the switching

threshold. To do this, Figures 13 and 14 compares the

designs using the best one or two factors with GRASS.

When only one factor can be used to switch, picking

the deadline/error-bound provides the best results. This

is intuitive given the importance of the approximation

bound to the ordering of tasks. When two factors are

used, in addition to the deadline/error-bound, cluster uti-

lization matters more for the Hadoop prototype while

estimation accuracy is important for the Spark proto-

type. Tasks of Hadoop jobs are longer and more sen-

sitive to slot allocations, which is dictated by the utiliza-

tion. While the smaller Spark tasks are more fungible,

this also makes them sensitive to estimation errors.

Using only one factor is significantly worse than us-

ing all three factors. The performance picks up with

deadline-bound jobs when two factors are used, but

error-bound jobs’ gains continue to lag until all three are

used. Thus, in the absence of a detailed model for job

executions, the three factors act as good predictors.

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

0

10

20

30

40

< 50 51-500 > 501

Best-1 Best-2 GRASS

(a) Hadoop

0

10

20

30

40

50

< 50 51-500 > 501

Best-1 Best-2 GRASS

Job Bin (#Tasks)

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

(b) Spark

Figure 14: Using all three factors for error-bound jobs

compared to one or two factors is 15% − 25% better.

0

10

20

30

40

50

0 5 10 15 20

Facebook

Bing

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

A

c
c
u

r
a

c
y

Perturbation (ξ)

(a) Deadline-bound Jobs

0

10

20

30

40

0 5 10 15 20

Facebook

Bing

I
m

p
r
o

v
e

m
e

n
t

(
%

)

i
n

A
v
e

r
a

g
e

J
o

b

D

u
r
a

t
io

n

Perturbation (ξ)

(b) Error-bound Jobs

Figure 15: Sensitivity of GRASS’s performance to the per-

turbation factor ξ. Using ξ = 15% is empirically best.

6.3.3 Sensitivity to Perturbation

The final aspect of GRASS that we evaluate is the pertur-

bation factor, ξ, which decides how often the scheduler

does not switch during a job’s execution (described in

§4.2). This perturbation is crucial for GRASS’s learning

of the optimal switching point. All results shown previ-

ously set ξ to 15%, which was picked empirically.

Figure 15 highlights the sensitivity of GRASS to this

choice. Low values of ξ hamper learning because of

the lack of sufficient samples, while high values in-

cur performance loss resulting from not switching from

RAS to GS often enough. Our results show, that this

exploration–exploitation tradeoff is optimized at ξ =
15%, and that performance drops off sharply around this

point. Deadline-bound jobs are more sensitive to poor

choice of ξ than error-bound jobs. Using ξ of 15%
is consistent with studies on multi-armed bandit prob-

lems [28], which is related to our learning problem.

7 Related Work

The problem of stragglers was identified in the origi-

nal MapReduce paper [29]. Since then solutions have

been proposed to mitigate them using speculative execu-

tions [2, 1, 24]. These solutions, however, are not for

approximation jobs. These jobs require proritizing the

right subset of tasks by carefully considering the oppor-

tunity cost of speculation. Further, our evaluations show

11

300 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

that GRASS speeds up even for exact jobs that require all

their tasks to complete. Thus, it is a unified solution that

cluster schedulers can deploy for both approximation as

well as non-approximation computations.

Prioritizing tasks of a job is a classic scheduling prob-

lem with known heuristics [11, 12]. These heuristics as-

sume accurate knowledge of task durations and hence do

not require speculative copies to be scheduled dynami-

cally. Estimating task durations accurately, however, is

still an open challenge as acknowledged by many stud-

ies [3, 20]. This makes speculative copies crucial and

we develop a theoretically backed solution to optimally

prioritize tasks with speculative copies.

Modeling real world clusters has been a challenge

faced by other schedulers too. Recently reported re-

search has acknowledged the problem of estimating task

durations [16], predicting stragglers [3, 20] as well as

modeling multi-waved job executions [17]. Their so-

lutions primarily involve sidestepping the problem by

not predicting stragglers and upfront replicating the

tasks [3], or approximating number of waves to file

sizes [17]. Such sidestepping, however, is not an option

for GRASS and hence we build tailored approximations.

Finally, replicating tasks in distributed systems have a

long history [30, 31, 32] with extensive studies in prior

work [33, 34, 35]. These studies assume replication up-

front as opposed to dynamic replication in reaction to

stragglers. The latter problem is both harder and un-

solved. In this work, we take a stab at this problem that

yields near-optimal results in our production workloads.

8 Concluding Remarks and Future Work

This paper explores speculative task scheduling in the

context of approximation jobs. From the analysis of a

generic analytic model, we develop a speculation algo-

rithm, GRASS, that uses opportunity cost to determine

when to speculate early in the job and then switches to

more aggressive speculation as the job nears its approx-

imation bound. Prototypes on Hadoop and Spark, de-

ployed on a 200 node EC2 cluster shows that GRASS

improves accuracy fo deadline-bound jobs by 47% and

speeds up error-bound jobs by 38%, in production work-

loads from Facebook and Bing. Further, the evaluation

highlights that GRASS is a unified speculation solution

for both approximation and exact computations, since it

also provides a 34% speed up for exact jobs.

A topic that requires further work is scheduling spec-

ulative copies for stragglers across jobs. While GRASS

intelligently picks between scheduling a speculative

copy for a running task versus scheduling a new task of a

job, it does so within the slots allocated to the job (typi-

cally, based on fair allocations). The next step to GRASS

is to weigh the impact of speculating a running task with

scheduling a new task of any job. Answering this ques-

tion will not only involve comparing across jobs but also

revisit existing fairness based schedulers.

A Modeling and Analyzing Speculation

In this section we introduce the model and analysis that

led to the guidelines described in §3.2. The model fo-

cuses on one job that has T tasks5 and S slots out of a

total capacity normalized to 1. Let the initial job size

be x and the remaining amount of work in the job at

time t be x(t). We use W = T/S to denote the (frac-

tional) number of waves necessary to complete the job,

and throughout we assume W ≥ 1.

We focus our analysis on the rate at which work is

completed, which we denote by µ(t;x, S, T) or µ(t) for

short. Note that by focusing on the service rate we are

ignoring ordering of the tasks and focusing primarily on

the impact of speculation.

In our analysis we begin with proactive speculation,

and then move to reactive speculation. This progres-

sion is natural since the analysis of proactive speculation

serves as a stepping stone to the design of reactive specu-

lation policies. Further, in the case of proactive specula-

tion we can precisely specify the optimal policy, whereas

in the case of reactive speculation, we must resort to nu-

merical optimization.

A.1 Proactive speculation

We start by considering a general class of proactive poli-
cies that launch k(x(t)) speculative copies of tasks when
the job has remaining size x(t). We propose the follow-
ing approximate model for µ(t) in this case.

[(

x(t)

x

)(

T

S

)

k(x(t))

]1

k(x(t))
S

·

(

E[τ]

k(x(t))E
[

min(τ1, . . . , τk(x(t))

]

)

(1)

where τ is a random task size. Note that we assume task

sizes are i.i.d.

To understand this approximate model, note that the

first term approximates the completion rate of work and

the second term approximates the “blow up factor,” i.e.,

the ratio of the expected work completed without dupli-

cations to the amount of work done with duplications.

To understand the first term, note that (x(t)/x)T is the

fractional number of tasks that remain to be completed at

time t, and thus there are (x(t)/x)Tk(x(t)) tasks avail-

able to schedule at time t including speculative copies.

Recalling that the capacity of a slot is 1/S, that the maxi-

mum capacity that can be allocated is 1, and that the min-

imum number of slots is the number of copies k(x(t)),

5For approximation jobs T should be interpreted as the number of

tasks that are completed before the deadline or error limit is reached.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 301

we obtain the first term in (1). The second term com-

putes the “blow up factor,” which is the the expected

amount of work done per task without speculation (E[τ])
divide by the expected work done per task with specula-

tion (k(x(t))E[min(τ1, τ2, . . . , τk(x(t)))], since k(x(t))
copies are created and they are stopped when the first

copy completes. Perhaps the most important aspect of

this approximation is the fact that task sizes are i.i.d. in

this manner, and this is what leads both to stragglers and

to the benefits of replication. While this is certainly sim-

plistic, the value of the model is highlights be the useful-

ness of the guidelines that follow from our analysis.

Given the model in (1), the question is: What proac-

tive speculation policy minimizes job duration? As dis-

cussed in §3.2, the distribution of task sizes shows con-

siderable evidence of a Pareto-tail, and so we focus our

analysis on this setting. The following theorem follows

from first deriving the response time of a job given the

model for µ(t) in (1), and then deriving the k(x(t)) that

minimizes the response time. Each of these steps re-

quires significant, but not difficult, analysis, which we

omit due to space.

Theorem 1 When task sizes are Pareto(xm,β), the
proactive speculation policy that minimizes the comple-
tion time of the job is

k(x(t)) =

σ, x(t)
x

Tσ ≥ S

S/(x(t)
x

T), S > x(t)
x

Tσ and
x(t)
x

T ≥ 1;

S, 1 >
x(t)
x

T .

(2)

where σ = max(2/β, 1).

This theorem leads to Guidelines 1 and 2. Specifi-

cally, the first line corresponds to the “early waves” and

the second and third lines correspond to the “last wave”.

During the “early waves” the optimal policy may or may

not speculate, depending on the task size distribution –

speculation happens only when β < 2, which is when

task sizes have infinite variance. In contrast, during the

“last wave”, regardless of the task size distribution, the

optimal policy speculates to ensure all slots are used.

A.2 Reactive speculation

We now turn to reactive speculation policies, which

launches copies of a task only after it has completed ω
work. Both GS and RAS are examples of such policies

and can be translated into choices for ω as shown in §3.2.

Our analysis of proactive policies provides important

insight into the design of reactive policies. In particular,

during early waves the the optimal proactive policy runs

at most two copies of each task, and so we limit our re-

active policies to this level of speculation. Additionally,

the previous analysis highlights that during the last wave

the it is best to speculate aggressively in order to use up

the full capacity, and thus it is best to speculated imme-

diately without waiting ω time. This yields the following

approximation for µ(t):

E[τ1]
E[τ1|0≤τ1<ω] Pr(0≤τ1<ω)+(2E[Z−ω|τ1≥ω]+ω)Pr(τ1>ω)

,

when
x(t)
x

T (Pr(0 ≤ τ1 < ω) + 2Pr(τ1 ≥ ω)) ≥ S.

optimal proactive speculation (from (1)),

when
x(t)
x

T (Pr(0 ≤ τ1 < ω) + 2Pr(τ1 ≥ ω)) < S.

(3)

τ1, τ2 are random task sizes and Z = min(τ1, τ2 + ω).

Again, the first line in (3) approximates the service

rate during the early waves of the job, while the second

line approximates the service rate during the final wave

of the job. To understand the first line, note that dur-

ing early waves there are enough tasks to use capacity

1 (in expectation) as long as
x(t)
x

T (Pr(0 ≤ τ < ω) +
2Pr(T ≥ ω)) ≥ S. Thus, all that remains is the “blow

up factor.” As before, the numerator is the expected

amount of work per task without speculation (E[τ]) and

the denominator is the expected amount of work per task

with reactive speculation. This is E[τ |τ < ω] if the ini-

tial copy finishes before ω, and 2E[Z − ω|τ > ω] +ω if

the initial copy takes longer than ω.

Within this model, our design problem can now be re-

duced to finding ω that minimizes the response time of

the job. The complicated form of (3) makes it difficult to

understand the optimal ω analytically, and thus we use

numerical calculations. Figure 4 presents a numerical

optimization by comparing GS and RAS to other reac-

tive policies. It leads go Guideline 3, which highlights

that GS is near optimal if the number of waves in the

job is < 2, while RAS is near-optimal if the number of

waves in the job is ≥ 2. Note that the results in Figure 4

are for Pareto task sizes with β = 1.259, but the finding

is robust for β ∈ (1, 2).

Acknowledgments

We thank our shepherd Nina Taft and the anonymous re-

viewers for their suggestions to improve this work. We

also thank Rohan Gandhi for his feedback on our early

drafts. This research was partially funded by research

grant NSF CNS-1319820, NSF CISE Expeditions award

CCF-1139158, the DARPA XData Award FA8750-12-2-

0331, and gifts from Qualcomm, Amazon Web Services,

Google, SAP, Blue Goji, Cisco, Clearstory Data, Cloud-

era, Ericsson, Facebook, General Electric, Hortonworks,

Huawei, Intel, Microsoft, NetApp, Oracle, Quanta, Sam-

sung, Splunk, VMware and Yahoo!.

13

302 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

E. Harris, and B. Saha. Reining in the Outliers in Map-Reduce

Clusters Using Mantri. In USENIX OSDI, 2010.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.

Improving MapReduce Performance in Heterogeneous Environ-

ments. In USENIX OSDI, 2008.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Ef-

fective Straggler Mitigation: Attack of the Clones. In USENIX

NSDI, 2013.

[4] S.Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and

I. Stoica. BlinkDB: Queries with Bounded Errors and Bounded

Response Times on Very Large Data. In EuroSys. ACM, 2013.

[5] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy,

and R. Sears. MapReduce Online. In USENIX NSDI, 2010.

[6] Interactive Big Data analysis using approximate answers, 2013.

http://tinyurl.com/k5favda.

[7] J. Liu, K. Shih, W. Lin, R. Bettati, and J. Chung. Imprecise Com-

putations. Proceedings of the IEEE, 1994.

[8] S. Lohr. Sampling: design and analysis. Thomson, 2009.

[9] J. Hellerstin, P. Haas, and H. Wang. Online Aggregation. In ACM

SIGMOD, 1997.

[10] M. Garofalais and P. Gibbons. Approximate Query Processing:

Taming the Terabytes. In VLDB, 2001.

[11] M. Pinedo. Scheduling: theory, algorithms, and systems.

Springer, 2012.

[12] L. Kleinrock. Queueing systems, volume II: computer applica-

tions. John Wiley & Sons New York, 1976.

[13] C. Liu and J. Layland. Scheduling Algorithms for Multipro-

gramming in a Hard-real-time Environment. Journal of the ACM

(JACM), 1973.

[14] Hadoop. http://hadoop.apache.org.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M. Franklin, S. Shenker, and I. Stoica. Resilient Dis-

tributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing. In USENIX NSDI, 2012.

[16] E. Bortnikov, A. Frank, E. Hillel, S. Rao. Predicting Execu-

tion Bottlenecks in Map-Reduce Clusters. In USENIX HotCloud,

2012.

[17] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,

S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated

Memory Caching for Parallel Jobs. In USENIX NSDI, 2012.

[18] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin,

S. Ratnasamy, S. Shenker, and I. Stoica. The Case for Tiny Tasks

in Compute Clusters. In USENIX HotOS, 2013.

[19] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A Study of Skew

in MapReduce Applications. In Open Cirrus Summit, 2011.

[20] J. Dean. Achieving Rapid Response Times in Large Online Ser-

vices. In Berkeley AMPLab Cloud Seminar, 2012.

[21] S. Resnick. Heavy-tail phenomena: probabilistic and statistical

modeling. Springer, 2007.

[22] J. C. Gittins. Bandit Processes and Dynamic Allocation Indices.

Journal of the Royal Statistical Society. Series B (Methodologi-

cal), 1979.

[23] I. Sonin. A Generalized Gittins Index for a Markov Chain and Its

Recursive Calculation. Statistics & Probability Letters, 2008.

[24] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly. Dryad:

Distributed Data-parallel Programs from Sequential Building

Blocks. In ACM Eurosys, 2007.

[25] W. Baek and T. Chilimbi. Green: a Framework for Support-

ing Energy-conscious Programming Using Controlled Approxi-

mation. In ACM Sigplan Notices, 2010.

[26] Hive. http://wiki.apache.org/hadoop/Hive.

[27] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,

S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel Pro-

cessing of Massive Datasets. In VLDB, 2008.

[28] M. Tokic and G. Palm. Value-difference Based Exploration:

Adaptive Control between Epsilon-greedy and Softmax. In KI

2011: Advances in Artificial Intelligence. Springer, 2011.

[29] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. Communications of the ACM, 2008.

[30] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko. Charlotte:

Metacomputing on the Web. In 9th Conference on Parallel and

Distributed Computing Systems, 1996.

[31] E. Korpela D. Anderson, J. Cobb. SETI@home: An Experiment

in Public-Resource Computing. In Comm. ACM, 2002.

[32] M. Rinard and P. Diniz. Commutativity Analysis: a New Analy-

sis Framework for Parallelizing Compilers. In ACM PLDI, 1996.

[33] D. Paranhos, W. Cirne, and F. Brasileiro. Trading Cycles for

Information: Using Replication to Schedule Bag-of-Tasks Ap-

plications on Computational Grids. In Euro-Par, 2003.

[34] G. Ghare and S. Leutenegger. Improving Speedup and Response

Times by Replicating Parallel Programs on a SNOW. In JSSPP,

2004.

[35] W. Cirne, D. Paranhos, F. Brasileiro, L. Goes, and W. Voorsluys.

On the Efficacy, Efficiency and Emergent Behavior of Task

Replication in Large Distributed Systems. In Parallel Comput-

ing, 2007.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 303

Bringing Gesture Recognition To All Devices

Bryce Kellogg†, Vamsi Talla†, and Shyamnath Gollakota
University of Washington

†Co-primary Student Authors

Abstract

Existing gesture-recognition systems consume signifi-
cant power and computational resources that limit how
they may be used in low-end devices. We introduce
AllSee, the first gesture-recognition system that can op-
erate on a range of computing devices including those
with no batteries. AllSee consumes three to four or-
ders of magnitude lower power than state-of-the-art sys-
tems and can enable always-on gesture recognition for
smartphones and tablets. It extracts gesture information
from existing wireless signals (e.g., TV transmissions),
but does not incur the power and computational over-
heads of prior wireless approaches. We build AllSee
prototypes that can recognize gestures on RFID tags and
power-harvesting sensors. We also integrate our hard-
ware with an off-the-shelf Nexus S phone and demon-
strate gesture recognition in through-the-pocket scenar-
ios. Our results show that AllSee achieves classification
accuracies as high as 97% over a set of eight gestures.

1 Introduction

There is growing interest in using human gestures as a
means of interaction with computing devices. The suc-
cess of Xbox Kinect has led to the development of novel
gesture-recognition approaches including those based on
infrared [4], electric-field sensing [6], and more recently,
wireless signals (e.g., Wi-Fi) [32].

Existing approaches, however, are limited in how they
may be used for low-end devices. For example, the
“air gesture” system on Samsung Galaxy S4 drains the
battery when run continuously [2]. Similarly, wire-
less approaches [18, 32] consume significant power and
computational resources that limit their applicability to
plugged-in devices such as Wi-Fi routers.

This is due to two main reasons: First, existing
approaches need power-hungry sensing hardware —
always-on cameras drain the battery; wireless receivers

Figure 1: AllSee Prototype. It has two main compo-
nents: a pluggable receiver that extracts the amplitude
of wireless signals (e.g., TV and RFID transmissions),
and our classification logic implemented on a microcon-
troller. It also comes with LEDs and a UART interface.

use power-intensive analog components such as oscilla-
tors and high-speed ADCs. Second, they require rich sig-
nal processing capabilities — computing optical flows,
FFTs, frequency-time Doppler profiles, etc., is compu-
tationally expensive; performing these operations while
maintaining fast response times consumes power.

We introduce AllSee, a novel gesture-recognition sys-
tem that can be used for computing devices, no matter
how low-end and power-constrained they are. Such a ca-
pability can enable a number of interactive applications
for Internet-of-things, where sensor deployments enable
smart homes and cities [14, 24]; in fact, we show that
AllSee can operate on battery-free devices that run off
of harvested RF energy. AllSee can also be useful for
small form-factor consumer electronics without the need
for conventional input modalities like keypads. Finally,
AllSee consumes three to four orders of magnitude lower
power than existing systems; thus, it can also enable
always-on gesture recognition on mobile devices such as

1

304 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Gesture Sketches. AllSee can detect and clas-
sify these eight gestures using TV and RFID transmis-
sions with average classification accuracies of 94.4% and
97% respectively.

smartphones and tablets.
AllSee’s approach is to extract gesture information

from ambient RF signals (e.g., TV transmissions) that al-
ready exist around us. AllSee can also work with signals
from dedicated RF sources like RFID readers. AllSee
eliminates the need for power-hungry wireless hardware
components (e.g., oscillators) by using low-power ana-
log operations to extract just the signal amplitude. To
keep the computational complexity low, we avoid prior
Doppler-based approaches that require computing FFTs
and frequency-time Doppler profiles.1 Instead, we in-
troduce a novel design that extracts gesture information
from the amplitude of the received signal.

At a high level, we use the insight that motion at a
location farther from the receiver results in smaller wire-
less signal changes than from a close-by location. This
is because the reflections from a farther location experi-
ence higher attenuation and hence have lower energy at
the receiver. Now, consider the push and pull gestures
shown in Fig. 2(b) and Fig. 2(c). As the user moves her
arm toward the receiver, the wireless changes induced by
the gesture increase with time, as the arm gets closer to
the receiver. On the other hand, as the user moves her
arm away from the receiver, the changes decrease with
time. Thus, the receiver can distinguish between a pull
and a push gesture even without access to the Doppler in-
formation. In §3, we explore this time-domain analysis
further and extract deterministic rules to detect and clas-
sify the eight gestures in Fig. 2. Further in §3.3, we show
that a subset of these rules can be encoded in the analog
domain using passive components such as capacitors and
resistors, further reducing our power consumption.

To demonstrate the feasibility of AllSee, we built mul-
tiple prototypes (one of which is shown in Fig. 1) that
achieve gesture recognition on a range of devices. The
first prototype is a modified RFID tag that extracts ges-

1As we show in §3.2.1, AllSee’s receiver does not have phase in-
formation. Hence prior Doppler frequency solutions are in fact not
applicable.

ture information from signals of an RFID reader. The
second prototype is a battery-free device that uses ex-
isting 725 MHz TV signals as a source of both power
and gesture information. The third prototype encodes
our gesture-detection rules using analog components, to
further reduce the power consumption. We also integrate
our prototypes with an off-the-shelf Nexus S phone and
demonstrate gesture recognition in through-the-pocket
scenarios; this enables the user to gesture at the phone
in a pocket, to say change volume or mute the phone.

We evaluated our prototypes with up to five users us-
ing the gestures shown in Fig. 2. Our findings are as
follows:

• AllSee classifies the eight gestures shown in Fig. 2
with an average accuracy of 97% and 94.4% on our
RFID- and TV-based prototypes respectively; the accu-
racy is 92.5% with our phone prototype in through-the-
pocket scenarios. This is promising, given that the accu-
racy for random guesses is 12.5%.
• AllSee achieves the above accuracies for distances of
up to 2.5 feet from the device, while using 28.91 µW.
This is in contrast to a state-of-the-art low-power gesture
recognition system that consumes about 66 mW and has
a range of upto 15 centimeters [31].
• The rate of false positive events—gesture detection in
the absence of the target human—is 0.083 events per
hour over a 24-hour period. AllSee achieves this by using
a repetitive flick gesture to gain access to the system.
• AllSee’s response time (the time between the gesture’s
end and its recognition) is less than 80 µs.
• Our analog gesture-encoding prototype that uses ca-
pacitors and resistors to detect a subset of gestures, con-
sumes as little as 5.85 µW.

Contributions. We make the following contributions:

• We introduce the first gesture-recognition system that
can run on battery-free devices. Our approach also en-
ables always-on gesture recognition on mobile devices.
• We present computationally-light algorithms to extract
gesture information from time-domain wireless signals.
• We show how to encode gestures in the analog domain
using components such as capacitors and resistors.
• We build prototypes to demonstrate gesture recogni-
tion for multiple devices including RFID tags and power-
harvesting battery-free devices. We integrate our proto-
types with an off-the-shelf smartphone and use AllSee to
classify gestures while the phone is in a pocket.

Our current implementation is limited to locations that
have signals from either TV towers or RFID readers.
We believe, however, that the techniques developed in
this paper can be extended to leverage cellular and Wi-Fi
transmissions, making AllSee more ubiquitous.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 305

2 Related Work

Our work is related to prior art from both wireless and
gesture-recognition systems.

(a) Wireless Systems: Prior work has shown the feasi-
bility of using wireless signals for coarse motion detec-
tion (e.g., running [21] and walking forward and back-
ward [18]). Further, our recent work on WiSee has shown
how to extract gesture information from wireless sig-
nals [32]. These systems require power-hungry ultra-
wideband transceivers [20, 33], interference-nulling
hardware [18], or multiple antennas [18, 32]. Fur-
ther, they require receivers with power-consuming ana-
log components such as oscillators and high-speed ADCs
and impose significant computational requirements such
as 1024-point FFT and frequency-time Doppler profile
computations [32]. We also note that these systems were
implemented on USRPs, each of which consumes about
13.8 W [16]. In contrast, AllSee enables gesture recog-
nition with orders of magnitude lower power.

AllSee is also related to work on low-power ultra-
wideband radar sensors [1, 26, 27] that perform prox-
imity detection. AllSee builds on this work, but
goes beyond motion and velocity detection and designs
the first wireless gesture-recognition system for power-
constrained devices. We also show how to encode ges-
tures using analog components with as little as 5.85 µW.

Finally, prior work [25, 29] has leveraged backscat-
tered signals from RFID tags for activity recognition on
a powered RFID reader. These systems, however, require
quite a bit of computational processing and are designed
to operate on powered RFID readers. In contrast, we en-
able gesture recognition on power-constrained devices.

(b) Gesture-Recognition Systems: Prior gesture-
recognition systems can be primarily classified into
vision-based, infrared-based, electric-field sensing, ul-
trasonic, and wearable approaches. Xbox Kinect [17],
Leap Motion [9], PointGrab [12], and CrunchFish [5]
use advances in cameras and computer vision to enable
gesture recognition. Xbox Kinect uses the 3D sensor by
PrimeSense which consumes 2.25 W [13], while Point-
Grab and CrunchFish run on mobile devices and con-
sume as much power as the embedded camera.

Samsung Galaxy S4 introduced an “air gesture” fea-
ture that uses infrared cameras to enable gesture recog-
nition. It is, however, not recommended to keep the
gesture recognition system ON as it can drain the bat-
tery [2]. Further, it is known to be sensitive to light-
ing conditions [3] and does not work in through-the-
pocket scenarios. GestIC [6], which we believe is the
state-of-the-art system, uses electric-field sensing to en-
able gesture recognition using about 66 mW in the pro-
cessing mode [31]. However, it requires the user’s hand

to be within 15 centimeters of the screen and also does
not work in through-the-pocket scenarios. Further, it re-
quires a relatively large surface area for sensing the elec-
tric fields. AllSee on the other hand achieves gesture
recognition with three to four orders of magnitude lower
power, works on devices with smaller form factors and
in through-the-pocket scenarios.

Ultrasonic systems such as SoundWave [28] transmit
ultrasound waves and analyze them for gesture recogni-
tion. These systems require active ultrasound transmis-
sions and expensive operations such as 1024-point FFTs
and Doppler profile computations. In contrast, AllSee
leverages existing wireless signals (e.g., TV) and thus
does not require active transmissions; this reduces the
power consumption to the microwatts range. We note
that, in principle, the time-domain analysis developed in
this paper can be applied to ultrasonic systems to reduce
their computational complexity.

Finally, prior work on inertial sensing and other on-
body gesture recognition systems require instrumenting
the human body with sensing devices [11, 22, 23]. In
contrast, we focus on gesture recognition without requir-
ing such instrumentation.

3 AllSee

AllSee is an ultra-low power wireless gesture-
recognition sensor that consumes three to four orders of
magnitude lower power than state-of-the-art systems.
It uses ambient wireless signals (e.g., TV, cellular, and
Wi-Fi) to extract gesture information. In this paper, we
focus on demonstrating the feasibility of our designs
using TV (and RFID) transmissions.

Designing such a wireless system is challenging for
three main reasons: First, traditional radio receivers use
power-intensive components such as oscillators that pro-
vide magnitude and phase information; the latter allows
for gesture-recognition using Doppler frequency analy-
sis. In contrast, AllSee uses passive components that
significantly reduce the power consumption but provide
only magnitude information. Thus, we need to develop
algorithms and designs that can extract gesture informa-
tion without relying on Doppler frequencies. Second, our
designs should work on power-constrained devices and
hence should be highly power-efficient and require min-
imal computational resources. Finally, gesture recogni-
tion is interactive in nature and hence requires short re-
sponse times; this means that our algorithms and hard-
ware should introduce minimal delays.

The rest of this section describes how AllSee ad-
dresses these challenges. We first describe AllSee’s re-
ceiver design that extracts amplitude information using
passive hardware components, and then present our al-
gorithm to perform gesture classification using only this

3

306 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Envelope Detector

C1 R1

Antenna Port To ADC

R2 C2

Figure 3: AllSee’s receiver circuit. AllSee uses an enve-
lope detector to extract the amplitude information. Using
different values for the analog components, the receiver
can work with both TV and RFID transmissions.

magnitude information.

3.1 AllSee’s Receiver Design

We ask the following question: how can we extract am-
plitude information without using power-intensive com-
ponents such as oscillators? Oscillators generate the
carrier frequency (e.g., the 725 MHz TV carrier), and
are typically used at receivers to remove the carrier fre-
quency (down-conversion). At a high level, AllSee re-
moves the carrier frequency by using an analog envelope
detector. The rest of this section first describes how this
works for constant-wave transmissions (e.g., RFID) and
then extends it to work with fast-changing ambient TV
transmissions.

(a) With Constant-Wave Transmissions: AllSee uses the
envelope detector shown in Fig. 3 to remove the carrier
frequency and extract amplitude information. As shown
in the figure, the envelope detector tracks the envelope
of the received signal, while eliminating the carrier fre-
quency. The key point to note is that the envelope detec-
tor circuit is designed using passive analog components
(diodes, resistors, and capacitors) and hence is ultra-low
power in nature. The operating principle behind the de-
sign is similar to that used in RFID tags: To a first-order
approximation, diodes act as switches that allow current
to flow in the forward direction but not in the reverse; ca-
pacitors are charge-storage elements; and resistors regu-
late current flow. The diode in the above circuit provides
charge to the capacitor C1, whenever the input voltage
is greater than the voltage at the capacitor. On the other
hand, when the input is lower than the voltage at the ca-
pacitor, the diode does not provide charge and the resis-
tors R1 and R2 slowly dissipate the energy stored on the
capacitor, lowering its voltage. The rate of voltage drop
is determined by the product C1 ∗ (R1 +R2). Thus, by
choosing appropriate values of R1, R2 and C1, we can

pick the rate at which the signal’s envelope is tracked.
Effectively, the above circuit acts as a low-pass filter,
smoothing out the carrier in the constant-wave transmis-
sions; the additional capacitor C2 aids with this filtering.

Note that the envelope detector does not remove the
amplitude variations caused by human gestures. This is
because the circuit is tuned to track the variations caused
by human motion which happen at a rate orders of mag-
nitude lower than the carrier frequency.

(b) With Fast-Changing TV Transmissions: The key
problem with ambient signals is that they have informa-
tion encoded in them and hence have fast-varying am-
plitudes. For example, ATSC TV transmissions encode
information using 8VSB modulation, which changes the
instantaneous amplitude of the signal. In principle, the
receiver could decode the TV transmissions and estimate
the channel parameters to extract the amplitude changes
that are due to human gestures. This is, however, infeasi-
ble on a power-constrained device. Thus, the challenge is
to distinguish between the encoded TV information and
the changes in the received signal due to human gestures,
while operating on power-constrained devices.

Our key insight is that amplitude changes due to hu-
man gestures happen at a much lower rate than the
changes inherent to TV transmissions. Our design lever-
ages this difference in the rates to separate the two ef-
fects. Specifically, TV signals encode information at a
rate of 6 MHz, but human gestures occur at a maximum
rate of tens of Hertz. AllSee uses the envelope detector in
Fig. 3 to distinguish between these rates. Specifically, we
set the time constant of the envelope detector to be much
greater than 1

6MHz . This ensures that the encoded TV
data is filtered out, leaving only the amplitude changes
that are due to human gestures.

3.2 AllSee’s Classification Logic

AllSee extracts gesture information from the signal out-
put by the envelope detector. In this section, we first ex-
plain why prior approaches to wireless gesture recogni-
tion do not apply in our case. We then describe AllSee’s
algorithm to classify gestures.

3.2.1 Why Are Prior Approaches Not Applicable?

Prior approaches leverage wireless Doppler shifts for
gesture classification. For example, the reflections from
a user moving her hand toward the wireless receiver cre-
ates a positive Doppler shift. On the other hand, when the
user moves her hand away from the receiver, it creates a
negative Doppler shift. By using the sign of the Doppler
shift, prior work [32] distinguishes between these ges-
tures.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 307

The problem is that the output of the envelope detec-
tor does not have phase information, which makes it dif-
ficult to apply the above approach. To understand this in
more detail, let us consider a basic scenario where an RF
source transmits a sinusoid with a frequency of f . Thus,
the transmitted signal is given by:

sin f tsin fct

where fc is the transmitter’s center frequency. Now, say
that the user moves her arm towards the receiver and cre-
ates a Doppler shift, fd . The receiver now receives the
following signal [36]:

sin f tsin fct + sin f tsin(fc + fd)t

That is, the received signal is a linear combination of the
direct signal from the RF source and the Doppler-shifted
multi-path reflection from the user’s arm. For simplicity,
we assume that the user’s reflection has the same signal
strength as the direct signal, but the analysis would be
similar in the general case. Now we can simplify the
above equation to:

sin f t(sin fct + sin(fc + fd)t) (1)

= 2sin f tcos fdt
2 sin(fc +

fd
2)t (2)

Traditional receivers use oscillators tuned to the cen-
ter frequency fc; hence they can extract the Doppler
frequency fd from the last sinusoid term in the above
equation. AllSee, however, uses a low-power envelope-
detector circuit that by nature is not as frequency-
selective as an oscillator [19]. Specifically, the envelope
detector tracks the envelope of the fastest-changing sinu-
soid in the received signal. Thus, in Eq. 2 the envelope
detector considers the last sinusoid, sin(fc +

fd
2)t, as the

effective transmitted signal and removes it. So, the out-
put of the envelope detector is,

2sin f tcos fdt
2

= sin(f + fd
2)t + sin(f − fd

2)t

Now if the receiver computes an FFT of the above signal,
centered at f , it sees energy in both the positive and nega-
tive frequencies. This holds true independent of whether
the user performs the push or the pull action. As a re-
sult, the receiver cannot distinguish between these two
gestures using Doppler information.

Note that, from Eq. 2 the Doppler shift does not affect
the transmitted signal sin f t. Hence, replacing the trans-
mitted sinusoid with any other signal does not change the
above analysis.

3.2.2 AllSee’s Time-Domain Analysis

AllSee leverages both the structure of the magnitude
changes as well as the timing information to classify ges-
tures. To see this, consider the push and pull gestures. As

(a) Flick (b) Push (c) Pull (d) Double Flick

(e) Punch (f) Lever (g) Zoom In (h) Zoom Out

Figure 4: Changes created on the envelope detector’s
output. The amplitude changes have a unique corre-
spondence to the gestures in Fig. 2.

the user moves her arm towards the receiver, the changes
in magnitude increase, as the arm gets closer to the re-
ceiver. This is because the reflections from the user’s
arm undergo lower attenuations as the arm gets closer.
When the user moves her arm away from the receiver,
the changes in the magnitude decrease with time. Thus,
the changes in the time-domain signal can be uniquely
mapped to the push and the pull gestures as shown in
Figs. 4(b) and (c).

AllSee also leverages timing information to classify
gestures. Specifically, the wireless changes created by
the flick gesture, as shown in Fig. 4(a), occurs for a
shorter period of time compared to a push or a pull ges-
ture. Using this timing information one can distinguish
between these three gestures. Fig. 4 plots the amplitude
changes created by our gestures as a function of time.

In the rest of this section, we describe in more de-
tail how AllSee identifies and classifies these gestures.
Specifically, AllSee uses a low-rate 10-bit ADC operat-
ing at 200 Hz to digitally process the signal output by
the envelope detector. AllSee’s time-domain classifica-
tion algorithm has three main steps: (1) Signal condi-
tioning to remove location dependence, (2) Segmenta-
tion to identify a time-domain segment that corresponds
to a gesture, and (3) Classification to determine the most
likely gesture amongst a set of gestures.

(1) Signal Conditioning: Our goal is to extract a deter-
ministic location-independent mapping between gestures
and amplitude changes. Note that the actual amplitudes
vary with the user’s position. For example, when the user
performs the push gesture, the initial and final amplitudes
depend on where the user starts and ends the push action.
AllSee removes these location dependencies by perform-
ing a moving average over a time window (set to 320 ms
in our implementation) and subtracting the average from

5

308 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

each digital sample returned by the ADC; thus, effec-
tively normalizing the received signal.

(2) Segmentation: AllSee uses amplitude changes to de-
tects the start and end of a gesture. Specifically, it com-
putes a derivative of the received signal, i.e., the differ-
ence between the current and the previous sample. When
this difference rises above a threshold (set to 17.5 mV in
our implementation), AllSee detects the beginning of a
gesture. Similarly when this difference falls below the
same threshold, we detect the end of the gesture. The use
of the derivative operation to detect the beginning and
end of a gesture works because, as shown in Fig. 4, the
changes caused by a gesture tend to be high. This results
in large differences between adjacent samples, which we
can use for segmentation.

We note the following: First, in comparison to ambient
human motion such as walking and running, the changes
between adjacent samples tend to be higher during inten-
tional gestures close to the device. Thus, the above seg-
mentation procedure helps reduce the false positive rate.
Second, in some of our experiments, the difference be-
tween adjacent samples prematurely dropped below the
threshold, even before the end of the gesture. It rises
back up soon afterward, creating multiple close-by seg-
ments. To avoid this being detected as multiple gestures,
we combine any two segments that occur within 75 mil-
liseconds into a single segment.

(3) Gesture Classification: In principle, one could
run signal-processing algorithms such as dynamic time
warping to distinguish between the signals in Fig. 4.
However, this is not desirable since it increases the com-
putational complexity. Instead, AllSee uses simple rules
that have minimal complexity to distinguish between
gestures. For example, to classify between the push and
pull gestures, we use the following rule: if the maximum
changes in the signal occurs closer to the start of a ges-
ture segment, it is a pull action; otherwise, it is a push
action. In Alg. 1 we describe the rules for all eight of our
gestures. We note that the algorithm is a set of if-then-
else statements; in the worst case, these require only 56
instructions on an MSP430 microcontroller [10].

3.3 Analog Gesture Decoding

In this section, we ask if we can further reduce the power
consumption of the above design. As we see later in §5,
the main factor that contribute to power consumption is
the ADC. Specifically, we require an ADC with a reso-
lution of eight to ten bits for the classification algorithm
in §3.2 to work with high accuracy. So our goal is to
eliminate the need for such high-resolution ADCs.

Our idea is to encode gesture information directly us-
ing analog components such as capacitors and resistors.

Algorithm 1 Gesture Classification

while Vsig−Vsig_prev < THRESHOLD do
LOWPOWERSLEEP()

end while
[length,maxIndex]← GETGESTURE()
g0 ← CLASSIFYSUBGESTURE(length,maxIndex)

[length,maxIndex]← GETGESTURE()
g1 ← CLASSIFYSUBGESTURE(length,maxIndex)

if (g0 = FLICK and g1 = FLICK) then return D_FLICK
else if (g0 = FLICK and g1 = PULL) then return Z_OUT
else if (g0 = PUSH and g1 = FLICK) then return Z_IN
else if (g0 = PUSH and g1 = PULL) then return PUNCH
else if (g0 = PULL and g1 = PUSH) then return LEVER
else if (g0 = FLICK and g1 = NULL then return FLICK
else if (g0 = PUSH and g1 = NULL) then return PUSH
else if (g0 = PULL and g1 = NULL) then return PULL
end if

function CLASSIFYSUBGESTURE(length,maxIndex)
if (length < FLICKLENGTH) then return FLICK
else if (maxIndex < length/2) then return PUSH
else if (maxIndex ≥ length/2) then return PULL
end if

end function

Such an approach could reduce the need to processing
the signals in the digital domain and hence avoids high-
resolution ADCs. To show the feasibility of this idea, we
design a circuit, shown in Fig. 5, that can distinguish be-
tween the punch and the flick gestures from Fig. 2. The
circuit has four main components: an envelope detec-
tor to remove the carrier frequency, a second envelope
detector that tracks time-domain changes caused by the
gestures at a slow rate, an averaging circuit that computes
the slow-moving average of the second envelope detec-
tor, and finally a low-power comparator that outputs bits.

Fig. 5 annotates the signals for the two gestures at each
stage of the circuit. After the first envelope detector, the
signals no longer have the carrier frequency. The second
envelope detector tracks the signal at a much lower rate,
and hence the punch signal looks like an increase and
then a decrease in the amplitude levels; this corresponds
to starting the arm at an initial state and then bringing
it back to the same state. The flick signal, on the other
hand, is a transition between two reflection states: one
where the fingers are closed to another where the fingers
are wide open.

The averaging circuit and the comparator allow us to
distinguish between these two signals. Specifically, the
averaging circuit further averages these signals to create
the red signals shown in the figure. Now the comparator
takes these signals and their average values as inputs, and
outputs a ‘1’ bit whenever the signal is greater than the

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 309

First Envelope Detector

C1R1

Antenna Port

C2R2

Second Envelope Detector
Buffer

Averaging Circuit

R3 C3

Comparator

To Microcontroller
Punch

Flick

Punch

Flick

Punch

Flick

Punch

Flick

Punch

Flick

0

1

0

0

1 1

average
envelope

average

envelope

average

envelope

average

envelope

Figure 5: AllSee’s analog gesture encoding. The circuit has four main components: an envelope detector to remove
the carrier frequency, a second envelope detector that tracks changes caused by the gestures at a slow rate, an averaging
circuit and finally a low-power comparator that outputs bits. The buffer ensures that the envelope detector and the
averaging circuit do not affect each other. At each stage, input (dashed lines) and output (solid lines) waveforms
corresponding to the punch and flick gestures are annotated.

average and a ‘0’ bit otherwise. Thus, the comparator
outputs unique set of bit patterns for the two gestures
(010 and 011 in the figure). Thus, we can classify these
gestures with almost no computational complexity.

We note three main points: First, the comparator is es-
sentially a one-bit ADC; it has minimal resolution and
hence consumes the least amount of power. Second,
the parameters in our circuit are chosen to account for
the timing information inherent in our specific gestures.
Thus, it is unlikely that random human motions would
trigger the same bit patterns. Third, while the above cir-
cuit only classifies the flick and the punch gestures, in
principle, one can use higher order capacitor and resistor
networks to encode all the eight gestures. This however
is not in the scope of this paper.

4 Hardware Design

Fig. 6 shows the general hardware design of an AllSee
device. It has two core components: an AllSee ges-
ture receiver, and the computational logic that detects
and classifies human gestures. Our implementation per-
forms the digital logic operations on a low-power micro-
controller. The AllSee gesture receiver primarily is the
design in §3 that extracts amplitude information. How-
ever, it could also incorporate the analog gesture encod-
ing mechanism described in §3.3.

The figure also shows optional components: a trans-
mitter and receiver for communications, an RF energy
harvester and the power management circuit to extract
power from RF signals of either TV towers or RFID read-
ers. These components are essential in devices such as
RFID tags and ambient RF-powered devices, but are not
necessary when AllSee is used in battery-powered mo-

RF Energy
Harvester

Power
Management

Data Receiver
Digital Logic

Antenna

Data Transmitter

AllSee
Gesture
Receiver

Figure 6: AllSee’s Hardware Design. It consists of
two main components: the wireless receiver for gesture
recognition and our classification logic. The other com-
ponents such as transmitter and receiver for communica-
tions, and energy harvester are optional.

bile devices such as smartphones. We note that our de-
sign could, in principle, be incorporated into sensor hubs
that are becoming popular on mobile devices.

5 Prototype Implementation

AllSee prototypes are implemented on two-layer printed
circuit boards (PCBs) using off-the-shelf commercial cir-
cuit components. The PCBs were designed using the
Altium design software and manufactured by Sunstone
Circuits. The capacitor and resistor values R1, R2, C1
and C2 shown in Fig. 3 are set to 150 kΩ, 10 MΩ, 27 nF
and 0.2 µF respectively. Our pluggable gesture recogni-
tion component consists of a low-power microcontroller
(MSP430F5310 by Texas Instruments [10]) and an in-

7

310 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: AllSee’s Average Power Consumption
ADC-based Analog-based

No Gestures 26.96 µ W 4.57 µ W
15 Gestures/minute 28.91 µ W 5.85 µ W

terface to plug in our wireless receivers. It also features
a UART interface to send data to a computer for debug-
ging purposes as well as low-power LEDs. The output
from the wireless receivers is sampled by an ADC at a
frequency of 200 Hz (i.e., generating a digital sample ev-
ery 5 ms). In most of our experiments, AllSee uses 10
bits of resolution at the ADC; in §6.1, however, we use
other resolutions and sampling rates to understand their
effects on classification accuracy.

To minimize power consumption, the microcontroller
sleeps most of the time. The ADC wakes up the micro-
controller to deliver digital samples every 5 ms. The mi-
crocontroller processes these samples before going back
to sleep mode. The maximum time spent by the micro-
controller processing a digital sample is 280 µs.

We also build a prototype for the analog gesture en-
coding system described in §3.3 by incorporating addi-
tional components into our wireless receivers. Specifi-
cally, we use an ultra-low power comparator, TS881 [15],
and implement the buffer using an ultra-low power op-
erational amplifier (ISL28194 [8]). The output of the
comparator is fed to the digital input-output pin of the
microcontroller. The capacitor and resistor values R1,
R2, R3, C1, C2 and C3 shown in Fig. 5 are set to 470 kΩ,
56 MΩ, 20 kΩ, 0.47 µF , 22 µF and 100 µF respec-
tively. The RF energy harvester, transmitter, receiver and
power-management circuit we use in our prototypes are
similar to those in previous work [30, 34, 35].

Table 1 shows the total power consumption of our pro-
totypes. For the ADC-based prototype, the 10-bit ADC
continuously sampling at 200 Hz consumes 23.867 µW .
The micro-controller consumes 3.09 µW for signal con-
ditioning and gesture segmentation and 1.95 µW for ges-
ture classification (as described in §3.2.2); the average
power consumption is 26.96 µW when no gestures are
present and 28.91 µW when classifying 15 gestures (in-
cluding the starting gesture) per minute. In the analog-
based prototype, the hardware components, the buffer
and the comparator consume a total of 0.97 µW. The
micro-controller consumes 3.6 µW in sleep mode (i.e.,
no bit transitions at the comparator’s output). The av-
erage power consumption for the analog-based system
is 4.57 µW when no gestures are present and 5.85 µW
when classifying 15 gestures per minute.2

2Note that our prototypes use off-the shelf components and a gen-
eral purpose micro-processor. One can further reduce the power con-
sumption by using application specific integrated circuits.

 0

 20

 40

 60

 80

 100

 1.5 2 2.5 3 3.5D
e
te

c
ti
o
n
 +

 C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Distance (ft)

346 mW
173 mW

Figure 7: Effect of distance and transmit power level.
The plots show results for two transmit power levels at
the RFID reader. We operate in conservative settings –
commercial RFID readers operate at up to 1 W.

6 Evaluation

We first present micro-benchmarks to understand the ef-
fect of various parameters on our system. We then eval-
uate different system aspects including classification ac-
curacy, response time, and false-positive rate.

6.1 Micro-Benchmarks

We evaluate the key aspects that affect classification ac-
curacy: (1) the user’s distance from the prototype and the
transmit power level, and (2) the bit-resolution and sam-
pling rate of the ADC. Since it is easier to run controlled
benchmark experiments with RFID readers than with TV
towers, in this section we use our RFID prototype in the
presence of an RFID reader.

Effect of distance and transmit power level: We run
experiments to understand the effects of these param-
eters on classification accuracy. Specifically, we run
our USRP-based RFID reader at two different transmit
power levels: 346 mW and 173 mW. Note that commer-
cial RFID readers can go upto 1 W; thus, we are op-
erating in more conservative settings. For each of the
power levels, we place our RFID-prototype in the decod-
ing range of the reader. We then have the user stand at
different distances from our prototype and perform our
eight gestures, 20 times each, without fully blocking the
signal from the RFID reader. Note that the users were
not trained to orient themselves in a particular direction.
At each of these distances, we compute the average clas-
sification accuracy across all eight gestures.

Fig. 7 shows classification accuracy as a function of
the user’s distance from our prototype. The plots show
the following:

• As the distance between the user and the device in-
creases, the classification accuracy decreases. This is ex-
pected since the strength of the wireless reflections from

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 311

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200D
e
te

c
ti
o
n
 +

 C
la

s
s
if
ic

a
it
o
n
 A

c
c
u
ra

c
y
 (

%
)

Sampling Rate (Hz)

10 Bits
8 Bits
6 Bits

Figure 8: Effect of ADC parameters. The plot shows
the accuracies at three different ADC bit resolutions.

the user’s body decreases as the user moves away from
the device. This makes it harder to detect minute ges-
tures such as the flick motion, bringing down the classi-
fication accuracy. We note, however, that the accuracies
are greater than 90% at distances of 2.5 feet and 2 feet
respectively for the two power levels. Such distances
are sufficient for most gesture-recognition applications
on mobile devices and sensors.
• As the transmit power level decreases, the classifica-
tion accuracy decreases. This is because our wireless
receiver has a minimum sensitivity below which it can-
not accurately track changes from human gestures. We
note, however, that the power levels we use in this exper-
iment are lower than the 1 W power used by a commer-
cial RFID reader. Further, our prototype RFID tags have
about 11 dBm lower sensitivity than commercial tags. So
while the trends we see here would hold for commercial
tags, one can expect that the system would work at larger
distances between the user and the prototype.

Effect of ADC parameters: The power consumption
increases with the sampling rate and the bit resolution
at the ADC. To empirically evaluate this effect, we run
experiments in the presence of an RFID reader with a
transmit power of 346 mW. We compute the classifica-
tion accuracies for different ADC sampling frequencies
and 6-bit, 8-bit and 10-bit resolutions. The user performs
the eight gestures 20 times each, for each combination of
sampling rates and resolutions.

Fig. 8 shows the detection and classification accura-
cies for the eight gestures shown in Fig. 2 as a function
of the sampling rate. The different curves correspond to
different bit resolutions. The figure shows that the ac-
curacy typically increases with the ADC’s bit resolution.
The accuracy is also lower at low sampling rates; this is
expected because as the sampling rates decrease, we lose
timing information about the gestures.

Figure 9: Confusion matrix for our RFID prototype.
The average classification accuracy across all the ges-
tures is 97%.

6.2 AllSee’s Classification Accuracy

We evaluate AllSee’s accuracy in classifying gestures
with our RFID-based and TV-based prototypes using the
ADC design in §3.2.

Evaluating Our RFID-Based Prototype: We first eval-
uate the classification accuracy of gesture recognition us-
ing RFID signals.

Experiments: We run experiments in locations spanning
two lab spaces in the UW CSE building. To check if
AllSee works in the presence of multi-path reflections
from nearby objects, one of these locations has strong
reflective surfaces such as walls and objects (metallic
cupboards, desks) close to our prototype hardware. In
each of these locations, our prototype is placed in posi-
tions that are in the decoding range (about 1 meter) of
an USRP-based RFID reader with a 346 mW transmit
power. In our experiments, users perform the gestures in
Fig. 2 at a distance of 1.5 to 2.5 feet away from the proto-
type. Before each experiment, users were shown how to
perform all of the gestures. We ran the experiments with
five users who volunteered to perform gestures; one of
the five users is a co-author of this paper. Each gesture
is performed a total of 20 times. The gestures are de-
tected and classified on the microcontroller on our hard-
ware prototype using the algorithm described in Alg. 1.

Results: Fig. 9 plots the confusion matrix where each
row denotes the actual gesture performed by the user and
each column the gestures it was classified into. The last
column counts the fraction of gestures that were not de-
tected at the receiver. Each element in the matrix cor-
responds to the fraction of gestures in the row that were
classified as the gesture in the column; the fraction is
computed across all the locations and the users. The ta-
ble shows the following:

9

312 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Confusion matrix for our TV prototype.
The average classification accuracy across all the ges-
tures is 94.4%. The lower accuracy is due to lower RF
frequency of TV transmissions.

• The average accuracy is 97% with a standard devia-
tion of 2.51% when classifying among our eight ges-
tures. This is in comparison to a random guess, which
has an accuracy of 12.5% for eight gestures. This shows
that one can extract rich information about gestures from
time-domain wireless signals. We note that all the detec-
tion and classification operations were performed on our
hardware prototype. This demonstrates the feasibility of
achieving gesture recognition on battery-free devices.
• The flick motion was the most likely gesture to be un-
detected. This is because the flick gesture involves only
finger movements; wireless reflections from the fingers
have a much lower energy than those from the whole
arm. Thus, the receiver has a higher probability of not
detecting these gestures. Finally, there are small varia-
tions in the signals, due to differences in gesture artic-
ulation across users. These variation however are small
and do not necessitate per-user tuning.

Evaluating Our TV-Based Prototype: Next we evalu-
ate our accuracy using ambient TV signals.

Experiments: We run experiments using our battery-free
prototype that harvests TV signals for power. We use the
receiver design from our prior work on ambient backscat-
ter devices [30] that can currently operate up to 10 Km
away from a TV tower with power levels ranging be-
tween -24 dBm and -8 dBm. AllSee operates at similar
distances and power levels from the TV tower. In prin-
ciple, we can increase the distance and power sensitivity
by using ASIC designs; this, however, is not in the scope
of this paper. Our receiver prototype is tuned to harvest
power and extract gesture information from TV signals
in the 50 MHz band centered at 725 MHz. The users
stand in a random location 1.5 to 2.5 feet away from the

 0

 5

 10

 15

 20

 25

 30

 35

 40

12:00 AM 6:00 AM 12:00 PM 6:00 PM

#
 f
a
ls

e
 p

o
s
it
iv

e
s
 /
 h

o
u
r

Time of Day

0 Flicks
1 Flick
2 Flicks

Figure 11: False Positive Rate from a 24-Hour trace.
The figure plots the false positive rate when we use a flick
gesture as a starting sequence.

AllSee receiver and randomly perform all our eight ges-
tures 20 times each. As above, the microcontroller on our
prototype detects and classifies the gestures. We extract
this information and compute the classification accuracy
for the gestures.

Results: Fig. 10 shows the confusion matrix for our
TV-based prototype. The figure shows similar trends to
the results with our RFID-based prototype. The classi-
fication accuracies with our TV-based prototype, how-
ever, are lower than those with RFID signals. The main
reason for this is the lower transmission frequency of
TV signals. Specifically, lower transmission frequen-
cies (higher wavelengths) require larger displacements
to have a similar change in the received signals. Since
RFID transmissions occur at 915 MHz, small displace-
ments (e.g., a flick gesture) create large changes in the
wireless signal. In contrast, since the TV transmissions
occur at 725 MHz, the extent of wireless changes is
smaller, making it harder to detect such gestures.

6.3 AllSee’s False Positive Rate

To avoid random human motion near the device from be-
ing classified as the target gestures, AllSee uses a unique
gesture sequence (a repetitive flick gesture) at the begin-
ning to detect the target human. In this section, we eval-
uate the effectiveness of such an approach.

Experiments: Since our prototypes have the range of a
few feet, we stress-test our system by placing them next
to a participant’s desk. Specifically, we run experiments
in our lab over a 24-hour period during which the par-
ticipant continues to perform activities including typing,
eating, and moving around in the chair. Our prototype’s
location is such that five other lab occupants have to get
as close as a foot to enter or leave their workspace.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 313

 0

 20

 40

 60

 80

 100

Flick Push Pull Punch Lever Z-out Z-in D-flick

R
e
s
p
o
n
s
e
 T

im
e
 (

in
 m

ic
ro

s
e
c
o
n
d
s
)

Figure 12: Response time for various gestures. The
maximum response time is less than 80 µs across all the
gestures. Z-in, Z-out, and D-flick refer to the zoom in,
zoom out, and double flick gestures.

Results: Fig. 11 plots the average number of false detec-
tion events per hour as a function of time. The results
show that when the receiver does not use a starting se-
quence (zero repetitions), the number of false positive
events is about 11.1 per hour over the 24-hour period.
We note that this is surprisingly low despite running ex-
periments next to the user. This is because, as explained
in §3.2, our segmentation algorithm is designed to only
account for the large instantaneous changes in the re-
ceived amplitude, that occur with intentional gestures;
this reduces the probability of ambient motion resulting
in the expected segment lengths. The results also show
that the average number of false-positive events reduces
to 1.46 per hour when a single flick action is used as a
starting sequence. This is because the flick action creates
a very short burst of amplitude changes that rarely occur
with typical human activities. Note that as the number of
flick repetitions increase, the false-positive rate reduces.
Specifically, with two repetitions, this average rate re-
duces to 0.083 events per hour. This is again because
a repetitive flick motion creates periodic short bursts of
amplitude changes, which are unlikely to occur with typ-
ical activities. Further, since we expect these bursts to
have a specific range of periodicities, random mechanical
and environmental variations are unlikely to be confused
for the repetitive flick sequence.

6.4 AllSee’s Response Time

Short response times are important for the interactive na-
ture of gesture recognition. Here, we evaluate AllSee’s
response time, i.e., the time between the completion of
a gesture and its classification by our prototype. Re-
call that the microcontroller runs instructions at 1 MHz
and the ADC operates at 200 Hz, waking up the micro-
controller every 5 ms to deliver the digital samples. A
1 MHz microcontroller can run up to 10,000 instructions
in 10 ms. The number of instructions in Alg. 1 is signif-

Table 2: Classification With Analog Gesture Encoding
Classification Rate

Punch Gesture 25/25
Flick Gesture 23/25

icantly smaller and hence 10 ms is an upper bound on
AllSee’s response time.

Experiments: To compute the exact response time, we
measure the time difference between when the user fin-
ishes performing the gesture and when the microcon-
troller outputs the classified gesture. We program the
microcontroller to toggle two output pins: first pin when
it receives a data sample from the ADC and the second
at the end of gesture classification. We observe the two
output pins using an oscilloscope. In the absence of ges-
tures, the first pin toggles periodically at 5 ms (sampling
rate of ADC) and the second pin is steady. In the pres-
ence of a gesture, however, the second pin toggles im-
mediately after classification. We compute the response
time by measuring the time difference between the sec-
ond pin’s toggle and the periodic toggle on the first pin
right before it. During the evaluation, the user performs
our eight gestures 20 times and we compute the response
time for each gesture averaged across the 20 repetitions.

Results: Fig. 12 shows the average measured response
times for all the gestures. The plot shows the following:

• The maximum response time across all the gestures
is less than 80 µs. This demonstrates that AllSee’s ges-
ture recognition algorithm requires negligible computa-
tion that can be performed even on an MSP430 with lim-
ited memory and computational capabilities.
• The variance of the response time, within the repeti-
tions of the same gesture, is between 2–3 µs. This is
because across experiments, the number of instructions
that need to be run per gesture remains constant and de-
terministic. The only variability comes from the opera-
tional frequency of the microcontroller which is 1 MHz
and hence has a resolution of 1 µs.

6.5 Evaluating Analog Gesture Encoding
Next, we evaluate our prototype for analog gesture en-
coding in the presence of RFID signals. The user stands
at a distance of two feet away from our prototype tag and
randomly performs the flick and punch gestures, 25 times
each. Our prototype detects these gestures using analog
components such as capacitors and resistors as described
in §3.3. We extract the results and compute the classifi-
cation rates for the two gestures.

Table 2 shows the classification results. They show
that while the punch gesture was always correctly de-
tected and classified, the flick gesture was misclassified

11

314 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 13: Phone Prototype. We interface a Galaxy
Nexus with our miniaturized prototype mounted on a 3D
printed phone case. We achieve 92.5% accuracy for the
gestures in Fig. 2, in through-the-pocket scenarios.

in 2 out of the 25 trials. This is because the flick action
involves finger motion that has less effect on the wireless
signals than the arm motion in the punch action. Note
that the average accuracy across the two gestures is about
96%. These results show the feasibility of our analog
gesture encoding approach.

6.6 Through-the-Pocket Gestures

The ability to change the music or mute the phone while
it is in a pocket, purse, or jacket is a useful capability.
In this section, we integrate our miniaturized hardware
prototype with a Samsung Galaxy Nexus smartphone [7]
and demonstrate gesture recognition in such scenarios.
We designed a 3-D printed case to mount our prototype
on the phone. Further, as shown in Fig. 13, we modi-
fied the antenna for a better form factor and connect our
prototype to the phone via a USB OTG cable.

We evaluate our smartphone prototype by placing the
device in the pocket of a jacket that the user is wearing.
The user then performs the eight gestures in Fig. 2 on
the same x-y plane as the phone, 20 times each. Our
results show that the mean accuracy across gestures is
about 92.5%, which is encouraging. We note two main
points: First, in comparison to the previous scenarios,
the classification accuracy here is a bit lower. This is
because, in these experiments, our device is hidden be-
hind the jacket fabric and hence experiences higher sig-
nal attenuation. Second, our proof-of-concept prototype
is limited to scenarios where the user is stationary and
does not walk/run while performing the gestures. In prin-
ciple, one can leverage other low-power sensors such as
accelerometers on the phone to detect these scenarios;
this however is not in the scope of this paper.

7 Discussion

We describe how one may augment AllSee’s current de-
sign to make it more ubiquitous and robust.
Leveraging cellular and Wi-Fi signals: Our current pro-
totypes work with TV and RFID transmissions. How-
ever, building AllSee prototypes that work with other RF
signals such as Wi-Fi and cellular transmissions can en-
able greater ubiquity. We believe that the techniques de-
veloped in this paper can provide the framework for such
designs. For instance, one could design specific envelope
detectors that focus on human gestures while eliminating
uncorrelated changes caused by the burstiness in these
systems. Further, to address the issue of non-continuous
transmissions, one can leverage the periodically trans-
mitted beacons or pilot symbols in Wi-Fi and cellular
systems to extract gesture information.
Reducing the gesture recognition range: One of the ad-
vantages of using wireless signals is that they enable far-
field gesture recognition. However, one could reduce
the sensitivity of our wireless receivers to reduce their
range. This could be beneficial in certain applications
where proximity is used as a proxy for access control.
Integration with other power sources: Our current design
uses existing signals (e.g., TV and RFID transmissions)
as a source of both power as well as gesture information.
In principle, however, one can use AllSee to enable ges-
ture recognition on other harvesting devices where we
extract gesture information from wireless signals but use
solar or mechanical energy for harvesting.

8 Conclusion

We introduce AllSee, a novel gesture recognition system
that consumes three to four orders of magnitude lower
power than the state-of-the-art systems today. AllSee
can operate on battery-free devices such as ambient RF
powered devices and RFID tags; it also enables always-
on gesture recognition on mobile devices such as smart-
phones and tablets. We build prototypes and demonstrate
that our system can detect and classify a set of eight ges-
tures with classification accuracies as high as 97%. We
believe that this is a promising result and hope that the
techniques developed in this paper would take us closer
to the vision of ubiquitous gesture interaction.

Acknowledgements: We thank the members of the UW
Networks and Wireless group, David Wetherall, Ben
Ransford, our shepherd Lili Qiu, and the anonymous
NSDI reviewers for their helpful comments and Lilian de
Greef for help with the gesture sketches in Fig. 2. This
research is funded in part by a Google Faculty Research
Award and a Washington Research Foundation gift.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 315

References

[1] Advantaca. http://www.advantaca.com/
AboutAdvantaca.htm.

[2] Air Gesture on Samsung S4 drains battery.
http://www.1techportal.com/2013/
05/maximize-your-galaxy-s4s-
battery-in-five-ways/.

[3] Air Gesture on Samsung S4 works
well under very well lit conditions.
http://touchlessgeneration.
com/discover-touchless/
testing-of-air-gestures-on-the-
galaxy-s4/#.UkSVWIY3uSo.

[4] AN580: Ifrared gesture recognition by Sili-
con Labs. http://www.silabs.com/
Support%20Documents/TechnicalDocs/
AN580.pdf.

[5] CrunchFish. http://crunchfish.com/.

[6] GestIC: electrical near field (E-field) 3D Tracking
and Gesture Controller by Microchip. http:
//www.microchip.com/pagehandler/
en-us/technology/gestic/home.html.

[7] Google Nexus S. http://www.android.
com/devices/detail/nexus-s.

[8] ISL28194 op amp datasheet by Intersil.
http://www.intersil.com/content/
dam/Intersil/documents/fn62/
fn6236.pdf.

[9] Leap Motion. https://www.leapmotion.
com/.

[10] MSP430F5310 micro-controller by Texas In-
struments. http://www.ti.com/product/
msp430f5310.

[11] Myo by Thalmic Labs. https://www.
thalmic.com/en/myo/.

[12] Point Grab. http://www.pointgrab.com/.

[13] The PrimeSense 3D Awareness Sen-
sor. http://www.primesense.com/
wp-content/uploads/2012/12/
PrimeSense-3D-Sensor-A4-Lo.pdf.

[14] Smart Things. http://www.smartthings.
com/.

[15] TS 881 comparator datasheet by STMicroelectron-
ics. http://www.st.com/internet/com/
TECHNICAL_RESOURCES/TECHNICAL\

_LITERATURE/DATASHEET/DM00057901.
pdf.

[16] USRPN200/N210 by Ettus Research. https://
www.ettus.com/content/files/07495_
Ettus_N200-210_DS_Flyer_HR.pdf.

[17] Xbox Kinect. http://www.xbox.com/
en-US/kinect.

[18] F. Adib and D. Katabi. Seeing Through Walls Us-
ing WiFi! In SIGCOMM, 2013.

[19] R. Barnett, G. Balachandran, S. Lazar, B. Kramer,
G. Konnail, S. Rajasekhar, and V. Drobny. A pas-
sive uhf rfid transponder for epc gen 2 with -14dbm
sensitivity in 0.13 µm cmos. In Solid-State Circuits
Conference, 2007. ISSCC 2007. Digest of Technical
Papers. IEEE International, pages 582–623, 2007.

[20] G. Charvat, L. Kempel, E. Rothwell, C. Coleman,
and E. Mokole. A Through-dielectric Radar Imag-
ing System. In Trans. Antennas and Propagation,
2010.

[21] K. Chetty, G. Smith, and K. Woodbridge. Through-
the-wall Sensing of Personnel Using Passive
Bistatic WiFi Radar at Standoff Distances. In
Trans. Geoscience and Remote Sensing, 2012.

[22] G. Cohn, S. Gupta, T.-J. Lee, D. Morris, J. R.
Smith, M. S. Reynolds, D. S. Tan, and S. N. Patel.
An ultra-low-power human body motion sensor us-
ing static electric field sensing. In Proceedings of
the 2012 ACM Conference on Ubiquitous Comput-
ing, UbiComp ’12. ACM, 2012.

[23] G. Cohn, D. Morris, S. Patel, and D. Tan. Human-
tenna: using the body as an antenna for real-time
whole-body interaction. In CHI’12.

[24] G. Cohn, E. Stuntebeck, J. Pandey, B. Otis, G. D.
Abowd, and S. N. Patel. Snupi: sensor nodes utiliz-
ing powerline infrastructure. In Proceedings of the
12th ACM international conference on Ubiquitous
computing, Ubicomp ’10. ACM, 2010.

[25] A. Czeskis, K. Koscher, J. R. Smith, and T. Kohno.
Rfids and secret handshakes: defending against
ghost-and-leech attacks and unauthorized reads
with context-aware communications. In Proceed-
ings of the 15th ACM conference on Computer and
communications security, CCS ’08. ACM, 2008.

[26] P. Dutta, A. Arora, and S. Bibyk. Towards radar-
enabled sensor networks. In Information Process-
ing in Sensor Networks, 2006. IPSN 2006. The Fifth
International Conference on, pages 467–474, 2006.

13

316 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[27] P. Dutta and A. K. Arora. Integrating micropower
radar and motes. IEEE Conf. on Ultra Wideband
Systems and Technologies, Baltimore, MD, 2002.

[28] S. Gupta, D. Morris, S. Patel, and D. Tan. Sound-
wave: using the doppler effect to sense gestures. In
HCI 2012.

[29] L. Kriara, M. Alsup, G. Corbellini, M. Trotter, J. D.
Griffin, and S. Mangold. RFID Shakables: Pairing
Radio-Frequency Identification Tags with the Help
of Gesture Recognition. In ACM CoNEXT, 2013.

[30] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wether-
all, and J. R. Smith. Ambient Backscatter: Wire-
less Communication Out of Thin Air. In ACM SIG-
COMM, 2013.

[31] Microchip. GestIC: Single-Zone 3D Tracking and
Gesture Controller Data Sheet, 2012-2013.

[32] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-

Home Gesture Recognition Using Wireless Sig-
nals. In MOBICOM, 2013.

[33] T. Ralston, G. Charvat, and J. Peabody. Real-
time through-wall imaging using an ultrawideband
MIMO phased array radar system. In Array, 2010.

[34] A. Sample and J. R. Smith. Experimental results
with two wireless power transfer systems. In Radio
and Wireless Symposium, 2009. RWS ’09. IEEE,
pages 16 –18, jan. 2009.

[35] A. Sample, D. Yeager, P. Powledge, A. Mami-
shev, and J. Smith. Design of an rfid-based
battery-free programmable sensing platform. IEEE
Transactions on Instrumentation and Measure-
ment, 57(11):2608–2615, November 2008.

[36] D. Tse and P. Viswanath. Fundamentals of wireless
communication. Cambridge University Press, New
York, NY, USA, 2005.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 317

3D Tracking via Body Radio Reflections
Fadel Adib Zachary Kabelac Dina Katabi Robert C. Miller

Massachusetts Institute of Technology

Abstract – This paper introduces WiTrack, a system
that tracks the 3D motion of a user from the radio sig-
nals reflected off her body. It works even if the person
is occluded from the WiTrack device or in a different
room. WiTrack does not require the user to carry any wire-
less device, yet its accuracy exceeds current RF localiza-
tion systems, which require the user to hold a transceiver.
Empirical measurements with a WiTrack prototype show
that, on average, it localizes the center of a human body
to within a median of 10 to 13 cm in the x and y di-
mensions, and 21 cm in the z dimension. It also provides
coarse tracking of body parts, identifying the direction of
a pointing hand with a median of 11.2◦. WiTrack bridges a
gap between RF-based localization systems which locate
a user through walls and occlusions, and human-computer
interaction systems like Kinect, which can track a user
without instrumenting her body, but require the user to
stay within the direct line of sight of the device.

1 INTRODUCTION

Recent years have witnessed a surge in motion tracking
and localization systems. Multiple advances have been
made both in terms of accuracy and robustness. In par-
ticular, RF localization using WiFi and other communica-
tion devices has reached sub-meter accuracy and demon-
strated its ability to deal with occlusions and non-line of
sight scenarios [31, 18]. Yet these systems require the
user to carry a wireless device in order to be localized.
In contrast, systems like Kinect and depth imaging have
revolutionized the field of human-computer interaction by
enabling 3D motion tracking without instrumenting the
body of the user. However, Kinect and imaging systems
require a user to stay within the device’s line-of-sight and
cannot track her across rooms. We envision that if an RF
system can perform 3D motion tracking without requiring
the user to wear a radio, it will motivate the integration of
such a technology in systems like Kinect to expand their
reach beyond direct line of sight and enable through-wall
human-computer interaction.

Motivated by this vision, this paper introduces
WiTrack, a system that tracks the 3D motion of a user
using radio reflections that bounce off her body. It works
through walls and occlusions, but does not require the user
to carry any wireless device. WiTrack can also provide
coarse tracking of a body part. In particular, the user may
lift her hand and point at objects in the environment; the
device detects the direction of the hand motion, enabling
the user to identify objects of interest.

WiTrack has one antenna for transmission and three an-
tennas for receiving. At a high level, WiTrack’s motion
tracking works as follows. The device transmits a radio
signal and uses its reflections to estimate the time it takes
the signal to travel from the transmitting antenna to the re-
flecting object and back to each of the receiving antennas.
WiTrack then uses its knowledge of the position of the an-
tennas to create a geometric reference model, which maps
the round trip delays observed by the receive antennas to
a 3D position of the reflecting body.

Transforming this high-level idea into a practical sys-
tem, however, requires addressing multiple challenges.
First, measuring the time of flight is difficult since RF
signals travel very fast – at the speed of light. To distin-
guish between two locations that are closer than one foot
apart, one needs to measure differences in reflection time
on the order of hundreds of picoseconds, which is quite
challenging. To address this problem, we leverage a tech-
nique called FMCW (frequency modulated carrier wave)
which maps differences in time to shifts in the carrier fre-
quency; such frequency shifts are easy to measure in radio
systems by looking at the spectrum of the received signal.

A second challenge stems from multipath effects,
which create errors in mapping the delay of a reflection
to the distance from the target. WiTrack has to deal with
two types of multipath effects. Some multipath effects are
due to the transmitted signal being reflected off walls and
furniture. Others are caused by the signal first reflecting
off the human body then reflecting off other objects. This
is further complicated by the fact that in non-line-of-sight
settings, the strongest signal is not the one directly bounc-
ing off the human body. Rather it is the signal that avoids
the occluding object by bouncing off some side walls.
WiTrack eliminates reflections from walls and furniture
by noting that their distance (and time of flight) does not
change over time. Hence, they can be eliminated by sub-
tracting consecutive frames of the signals. Reflections that
involve a combination of a human and some static object
are more complex and are addressed through filters that
account for practical constraints on the continuity of hu-
man motion and its speed in indoor settings.

We have built a prototype of WiTrack and evaluated
it empirically. Since off-the-shelf radios do not perform
FMCW, we built an analog FMCW radio frontend, which
operates as a daughterboard for the USRP software radio.
In our evaluation, we use the VICON motion capture sys-
tem [6] to report the ground truth location. VICON can
achieve sub-centimeter accuracy but requires instrument-

1

318 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing the human body with infrared markers and positioning
an array of infrared cameras on the ceiling. Since VICON
cannot operate in non-line-of-sight, the human moves in
the VICON room while our device is placed outside the
room and tracks the motion across the wall. Our evalu-
ation considers three applications, each of them uses the
developed 3D tracking primitive in a different way.

In the first application, we consider 3D tracking of hu-
man motion through a wall. The objective of such an ap-
plication is to augment virtual reality and gaming systems
to work in non-line-of-sight and across rooms. We com-
pute the tracking error as the difference between the loca-
tion reported by our device and the actual location of the
body center as reported by VICON. Our results show that
WiTrack localizes the center of the human body to within
10 to 13 cm in the x and y dimensions, and 21 cm in the
z dimension. This high accuracy stems from WiTrack’s
ability to eliminate errors due to multipath and the com-
bined performance of FMCW and our geometric mapping
algorithm. The results also show that even the 90th per-
centile of the measurements stays within one foot along
the x/y-axis and two feet along the z-axis.

In the second application, we consider elderly fall de-
tection. Current solutions to this problem include inertial
sensors which old people tend to forget to wear [15], or
cameras which infringe on privacy, particularly in bed-
rooms and bathrooms [20]. In contrast, WiTrack does not
require the user to wear any device and protects her pri-
vacy much better than a camera. However, simply looking
at the change in elevation cannot allow us to distinguish
a fall from sitting on the floor. Thus, WiTrack identifies
a fall as a fast change in the elevation that reaches the
ground level. In a population of 11 users and over 133
experiments, WiTrack distinguishes a fall from standing,
walking, sitting on a chair and sitting on the floor with an
accuracy of 96.9% (the F-measure is 94.34%).

In the third application, we consider a user who desires
to control appliances by pointing at them (e.g., the user
can turn her monitor on or turn the lights off by simply
pointing at these objects.) We consider a gesture in which
the user lifts her arm, points at an appliance, and drops
her arm. By comparing the position of the arm over time,
WiTrack can identify the pointing direction. Our proto-
type estimates the pointing direction with a median of
11.2 degrees and a 90th percentile of 37.9 degrees.

Our results also show that the prototype operates in re-
altime, and outputs the 3D location within 75 ms from the
time the antennas receive the signal. Further, it operates
at a fairly low-power, transmitting only 0.75 milliwatts.
However, our current prototype can track a single person,
and requires the person to move to obtain an initial esti-
mate of his location.
Contributions: This paper introduces the first device that
can achieve centimeter-scale accuracy in tracking the 3D

(a) Antenna “T” Setup (b) FMCW Signal Generation

Figure 1—WiTrack’s Setup and Signal Generation. (a) shows
WiTrack’s directional antennas (dimension of each antenna: 5cm×5cm)
arranged in a “T”: the transmit antenna is placed at the crossing point
of the T, whereas the receive antennas are on the edges. (b) shows the
hardware we built to generate FMCW signals.

motion of a human based on radio reflections off her body.
The paper presents new algorithms for eliminating errors
due to multipath and performing accurate 3D tracking,
both of a whole body and a body part. The paper also
presents a prototype implementation that includes a low-
power FMCW radio frontend and realtime processing, de-
livering accurate 3D motion tracking to within a median
of 10 to 20 centimeters.

Our results demonstrate that WiTrack can expand the
space of human-computer interfaces and enable interac-
tion across walls, and occluded spaces. We believe that
WiTrack also expands the role that wireless computer net-
works may play in the future to enable them to provide a
variety of services: Communication is definitely a major
service, but other services may include motion tracking,
through-wall human-computer interaction, and a gesture
based interface for controlling appliances and interacting
with the environment.

2 WITRACK OVERVIEW
WiTrack is a wireless system that performs 3D motion

tracking in both line-of-sight and through wall scenarios.
It can also provide coarse tracking of body parts, like an
arm movement. WiTrack uses multiple directional anten-
nas: one antenna is used for transmitting, and three an-
tennas for receiving. In its default setup, the antennas are
arranged in a “T” shape, as shown in Fig. 1(a). In its cur-
rent version WiTrack tracks one moving body at any time.
Other people may be around but should be either behind
the antenna beam or they should be approximately static.1

WiTrack operates by transmitting an RF signal and cap-
turing its reflections off a human body. It tracks the mo-
tion by processing the signals from its received antennas
using the following three steps:
1. Time-of-Flight (TOF) Estimation: WiTrack first mea-

sures the time it takes for its signal to travel from its
transmit antenna to the reflecting body, and then back
to each of its receive antennas. We call this time the

1Small moving objects which do not have significant reflections (e.g.,
a plastic fan) create some noise but do not prevent WiTrack’s 3D track-
ing.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 319

TOF (time-of-flight). WiTrack obtains an initial mea-
surement of the TOF using FMCW transmission tech-
nique; it then cleans this estimate to eliminate multi-
path effects and abrupt jumps due to noise.

2. 3D Localization: Once it obtains the TOF as perceived
from each of its receiving antennas, WiTrack leverages
the geometric placement of its antennas to localize the
moving body in 3D.

3. Fall Detection and Pointing: WiTrack builds on the
3D localization primitive to enable new functionali-
ties. Specifically, WiTrack can detect a fall by moni-
toring fast changes in the elevation of a human and the
final elevation after the change. WiTrack can also dif-
ferentiate an arm motion from a whole body motion; it
can track the motion of raising one’s arm, localize the
initial and final position of the arm, and determine the
direction in which the arm is pointing.

3 TIME-OF-FLIGHT ESTIMATION
The first step for WiTrack is to measure the TOF from

its transmit antenna to each of its receive antennas and
clean this estimate from the effect of multi-path.
3.1 Obtaining Time-of-Flight Estimates

A straightforward approach for estimating the time
of flight is to transmit a very short pulse and measure
the delay between the transmitted pulse and its received
echo. Such a design requires sampling the signal at sub-
nanosecond intervals – i.e, it requires high speed analog-
to-digital converters (ADCs) that operate at multi-GS/s.
Such ADCs are high power, expensive, and have low bit
resolution, making this approach unattractive in practice.

Instead, WiTrack measures the TOF by leveraging
a technique called Frequency-Modulated Carrier Waves
(FMCW). We explain FMCW at a high level, and re-
fer the reader to [19] for a more detailed explanation.
FMCW transmits a narrowband signal (e.g., a few KHz)
whose carrier frequency changes linearly with time. To
identify the distance from a reflector, FMWC compares
the carrier frequency of the reflected signal to that of the
transmitted signal. Since the carrier frequency is chang-
ing linearly in time, delays in the reflected signals trans-
late into frequency shifts in comparison to the transmitted
wave. Therefore, by comparing the frequency difference
between the transmitted signal and the received signal,
one can discover the time delay that the signal incurred,
which corresponds to the TOF of that signal.

Fig. 2 illustrates this concept. The green line is the car-
rier frequency of the transmitted signal which sweeps lin-
early with time. The red line is the carrier frequency of
the reflected signal as a function of time. The time shift
between the two is the time-of-flight (TOF) for that re-
flector. The frequency shift Δf between the transmitted
and received signals is a function of both the slope of the
sweep and the TOF, i.e.:

TOF = Δf/slope (1)

���
�����

������ ������

���

����

������� ��������

���
	�����

Figure 2—FMCW operation. The transmitted signal has a carrier fre-
quency fx(t) that is repeatedly swept in time. Because the received sig-
nal is time-shifted with respect to the transmitted signal, its carrier fre-
quency fy(t) is frequency-shifted with respect to fx(t).

Though the above description is for a single reflector,
it can be easily generalized to an environment with many
reflectors. In this case, the transmitted signal would still
consist of a single carrier wave that is linearly swept in
time. However, because wireless reflections add up lin-
early over the medium, the received signal is a linear com-
bination of multiple reflections, each of them shifted by
some Δf that corresponds to its own TOF. Hence one can
extract all of these TOFs by taking a fourier transform (i.e,
an FFT) of the received baseband signal.2

In comparison to transmitting a very short pulse and
measuring its sub-nanosecond delay in the time domain,
FMCW does not require high speed ADCs because at any
point in time, the received baseband signal is narrowband.
FMCW Resolution: It is important to note that the reso-
lution of an FMCW system is a function of the total band-
width that the carrier frequency sweeps [19]. The resolu-
tion is defined by the ability to distinguish between two
nearby locations, which depends on the ability to distin-
guish their TOFs, which itself depends on the resolution
in distinguishing frequency shifts Δf . The resolution of
identifying frequency shifts is equal to the size of one bin
of the FFT. The FFT is typically taken over a duration
of one sweep of the carrier frequency (denoted by Tsweep)
and hence the size of one FFT bin is 1/Tsweep. Since the
minimum measurable frequency shift is Δfmin = 1/Tsweep,
the minimum measurable change in location is:

Resolution = C
TOFmin

2
= C

Δfmin

2× slope
, (2)

where C is the speed of light and the factor 2 accounts for
the fact that the reflected signal traverses the path back
and forth.

The slope, however, is equal to the total swept band-
width B divided by the sweep time Tsweep. Hence after
substituting for the slope in the above equation we get:

Resolution =
C
2B

(3)

Since C is very large, obtaining high resolution requires
a large B, i.e., the system has to take a narrowband signal

2The baseband signal is the received signal after mixing it by the
transmitted carrier. The mixing shifts the spectrum of the received signal
by the transmitted carrier frequency.

3

320 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0 5 10 15 20
Time (seconds)

 0

 5

 10

 15

 20

 25

 30

D
is

ta
n

c
e

 (
m

e
te

rs
)

(a) Spectrogram

 0 5 10 15 20
Time (seconds)

 0

 5

 10

 15

 20

 25

 30

D
is

ta
n

c
e

 (
m

e
te

rs
)

(b) After Background Subtraction

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

D
is

ta
n
c
e
 (

in
 m

e
te

rs
)

Time (in seconds)

Contour Denoised Contour

(c) Contour Tracking

Figure 3—Obtaining the Time-of-Flight (TOF) Estimates. WiTrack takes an FFT of the received signal in baseband over every sweep period to
generate the spectrogram in (a). Then, by subtracting out a given frame from the frame that precedes it, WiTrack eliminates static multipath as in (b).
The blue plot in (c) shows how WiTrack can address dynamic multipath by tracking the bottom contour of (b), and then denoise the signal (red plot)
to obtain a clean TOF estimate.

and sweep its carrier frequency across a wide bandwidth
of multiple GHz.

In our design we chose the following parameter for our
FMCW. We have built an FMCW system that sweeps a
total bandwidth of 1.69 GHz from 5.56 GHz to 7.25 GHz,
and transmits at 0.75 milliwatt. The choice of this band-
width has been dictated by the FCC regulations for civil-
ian use of spectrum [9]. Specifically, it is the largest con-
tiguous bandwidth below 10 GHz which is available for
civilian use at low power.

Based on Eq. 3, our sweep bandwidth allows us to
obtain a distance resolution of 8.8 cm. Hence the aver-
age error in mapping TOF to distance in 1D is about
4.4 cm. Note that the above derivation neglects the im-
pact of noise, and hence provides a lower bound on the
achievable resolution. In practice, the system’s resolution
is affected by the noise level. It also depends on the geo-
metric model that maps TOFs to 3D locations.
3.2 Addressing Static Multi-path

The next step in WiTrack’s operation is to distinguish
a human’s reflections from reflections off other objects
in the environment, like furniture and walls. Recall from
the previous section that every reflector in the environ-
ment contributes a component to the overall received sig-
nal, and that component has a frequency shift that is lin-
early related to the time-of-flight of the reflection based on
Eq. 1. Typically, reflections from walls and furniture are
much stronger than reflections from a human, especially
if the human is behind a wall. Unless these reflections are
removed, they would mask the signal coming from the
human and prevent sensing her motion. This behavior is
called the “Flash Effect”.

To remove reflections from all of these static objects
(walls, furniture), we leverage the fact that since these
reflectors are static, their distance to the WiTrack device
does not change over time, and therefore their induced fre-
quency shift stays constant over time. Fig. 3(a) plots the
spectrogram of the received signal as a function of time,
for one of the receive antennas of WiTrack. In particular,

we take the FFT of the received signal every sweep win-
dow, and compute the power in each frequency as a func-
tion of time. Note that there is a linear relation between
frequency shifts and the traveled distances as follows:

distance = C×TOF = C× Δf
slope

. (4)

Thus, instead of plotting the power in each frequency as a
function of time, we can use the above equation to plot the
power reflected from each distance as a function of time,
as shown in Fig. 3(a). The color code of the plot corre-
sponds to a heat-map of the power in the reflected signal.
Strong reflectors are indicated by red and orange colors,
weaker reflectors are indicated by yellow and green, and
the absence of a reflector is indicated by blue at the corre-
sponding frequency. The figure indicates the presence of
very strong static reflectors in the environment. Specifi-
cally, it has many horizontal stripes; each of these stripes
signifies the presence of a reflector at the corresponding
round-trip distance. Because these stripes are horizontal,
their corresponding reflectors are stationary over time.
Hence, we eliminate the power from these static reflec-
tors by simply subtracting the output of the FFT in a given
sweep from the FFT of the signal in the previous sweep.
This process is called background subtraction because it
eliminates all the static reflectors in the background.

Fig. 3(b) is the result of applying background subtrac-
tion to Fig. 3(a). The figure shows that all static reflec-
tors corresponding to the horizontal lines have been elim-
inated. This makes it easier to see the much weaker reflec-
tions from a moving human. Specifically, we see that the
distance of the dominant reflector (the red color signal) is
varying with time, indicating that the reflector is moving.

3.3 Addressing Dynamic Multi-path
By eliminating all reflections from static objects,

WiTrack is left only with reflections from a moving hu-
man (see Fig. 3(b)). These reflections include both signals
that bounce off the human body to the receive antennas,
and those that bounce off the human then bounce off other

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 321

objects in the environment before reaching WiTrack’s an-
tennas. We refer to these indirect reflections as dynamic
multi-path. It is quite possible that a human reflection
that arrives along an indirect path, bouncing off a side
wall, is stronger than her direct reflection (which could
be severely attenuated after traversing a wall) because the
former might be able to avoid occlusion.

Our idea for eliminating dynamic multi-path is based
on the observation that, at any point in time, the direct
signal reflected from the human to our device has trav-
elled a shorter path than indirect reflections. Because dis-
tance is directly related to TOF, and hence to frequency,
this means that the direct signal reflected from the hu-
man would result in the smallest frequency shift among
all strong reflectors after background subtraction.

We can track the reflection that traveled the shortest
path by tracing the bottom contour of all strong reflec-
tors in Fig. 3(b). The bottom contour can be defined as
the closest local maximum to our device. To determine
the first local maximum that is caused by human motion,
we must be able to distinguish it from a local maximum
due to a noise peak. We achieve this distinguishability by
averaging the spectrogram across multiple sweeps. In our
implementation, we average over five consecutive sweeps,
which together span a duration of 12.5 ms. For all prac-
tical purposes, a human can be considered as static over
this time duration; therefore, the spectrogram would be
consistent over this duration. Averaging allows us to boost
the power of a reflection from a human while diluting the
peaks that are due to noise. This is because the human
reflections are consistent and hence add up coherently,
whereas the noise is random and hence adds up incoher-
ently. After averaging, we can determine the first local
maximum that is substantially above the noise floor and
declare it as the direct path to the moving human.

The blue plot in Fig. 3(c) shows the output of WiTrack’s
contour tracking of the signal in Fig. 3(b). In practice, this
approach has proved to be more robust than tracking the
dominant frequency in each sweep of the spectrogram.
This is because, unlike the contour which tracks the clos-
est path between a human body and WiTrack’s antennas,
the point of maximum reflection may abruptly shift due
to different indirect paths in the environment or even ran-
domness in the movement of different parts of the human
body as a person performs different activities.

3.4 Dealing with Noise
After obtaining the bottom contour of the spectrogram

of the signal from each receive antenna, WiTrack lever-
ages common knowledge about human motion to miti-
gate the effect of noise and improve its tracking accuracy.
Specifically, by performing the following optimizations,
we obtain the red plot in Fig. 3(c):
• Outlier Rejection: WiTrack rejects impractical jumps

in distance estimates that correspond to unnatural hu-

man motion over a very short period of time. For ex-
ample, in Fig. 3(c) , the distance from the reflector (the
blue line) repeatedly jumps by more than 5 meters over
a span of few milliseconds. Such changes in distance
are not possible over such small intervals of time, and
hence WiTrack rejects such outliers.

• Interpolation: WiTrack uses its tracking history to lo-
calize a person when she stops moving. In particular, if
a person walks around in a room then sits on a chair and
remains static, the background-subtracted signal would
not register any strong reflector. In such scenarios, we
assume that the person is still in the same position and
interpolate the latest location estimate throughout the
period during which we do not observe any motion, en-
abling us to track the location of a subject even after
she stops moving.

• Filtering: Because human motion is continuous, the
variation in a reflector’s distance to each receive an-
tenna should stay smooth over time. Thus, WiTrack
uses a Kalman Filter to smooth the distance estimates.

4 LOCALIZING IN 3D
After contour tracking and de-noising of the estimate,

WiTrack obtains a clean estimate of the distance travelled
by the signal from the transmit antenna to the human re-
flector, and back to one of the receive antennas. Let us call
this estimate the round trip distance. At any time, there are
three such round trip distances that correspond to the three
receive antennas. The goal of this section is to use these
three estimates to identify the 3D position of the human,
for each time instance.

To do so, WiTrack leverages its knowledge of the place-
ment of the antennas. Recall that the antennas are placed
in a T, as in Fig.1(a) where the y-axis is a horizontal line
orthogonal to the plane of the T and the z-axis is along its
vertical line. WiTrack uses this reference frame to track
the 3D location of a moving target.

Let us focus on identifying the location at a particular
time ti. Also for clarity, let us first assume that we would
like to localize the person in the 2D plane defined by the
x and y axes. Consider the transmit antenna and the first
receive antenna. WiTrack knows the round trip distance
from the transmit antenna to the person and back to the
first receive antenna. The region of feasible 2D locations
for the target need to satisfy this constraint; hence, they
fall on the periphery of an ellipse, whose foci are collo-
cated with the Tx and Rx1 antennas and its major axis is
equal to the round trip distance. Now consider the second
receive antenna. WiTrack knows the round trip distance
from the Tx to the person and back to Rx2. Similarly, the
feasible solutions to this constraint in 2D are on the pe-
riphery of another ellipse whose foci are collocated with
the Tx and Rx2 antennas and its major axis is equal to
the round trip distance to Rx2. Since the correct location
is on both ellipses, it is one of the intersection points, as

5

322 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

������� ����

���������
�����������
�

���

	����������������
�

(a) 2D Localization

(b) 3D Localization
Figure 4—WiTrack’s Localization Algorithm. The TOF estimate
from a receive antenna defines an ellipse whose foci are the transmit
antenna and the receive antenna. (a) shows that WiTrack can uniquely
localize a person using the intersection of two ellipses. (b) shows that in
3D, the problem translates into an intersection of three ellipsoids.

shown in Fig. 4(a). In fact, since our antennas are direc-
tional, only one of the two intersection points is feasible,
which is the one that yields a location in the direction of
the antennas beams.

It is straightforward to generalize the argument to lo-
calizing in 3D. Specifically, in a 3D space, the round-trip
distance defines an ellipsoid whose two foci are the trans-
mit antenna and one of the receive antennas. In this set-
ting, the intersection of two ellipsoids would define an arc
in the 3D space, and hence is insufficient to pinpoint the
3D location of a person. However, by adding a third direc-
tional antenna, we obtain a unique solution in 3D that is
within the beam of all the directional antennas as shown in
Fig. 4(b). Therefore, our algorithm can localize a person
in 3D by using three directional receive antennas.

Finally we note two points:
• The T-shape placement for the antennas is chosen be-

cause we assume the user wants to localize motion be-
hind a wall, in which case all the antennas would have
to be arranged in one plane facing the wall. We place
one antenna below to help determine elevation, while
the others are on the same level.

• While the minimum number of Rx antennas necessary
to resolve a 3D location is three, adding more anten-
nas would result in more constraints. This would allow
us to over-constrain the solution and hence add extra
robustness to noise.

5 BEYOND 3D TRACKING
In this section, we build on WiTrack’s 3D localization

primitive to enable two additional capabilities: estimating

 0 5 10 15 20 25 30
Time (seconds)

 0

 5

 10

 15

 20

 25

 30

D
is

ta
n
c
e
 (

m
e
te

rs
)

Figure 5—Gestures. The figure shows a human moving then stopping
and pointing with her arm. The small bright regions around t = 18s and
t = 21s correspond to the arm lifting and dropping motions.

a pointing direction from the corresponding arm move-
ment, and detecting a fall.
5.1 Estimation of Pointing Angle

We explain how WiTrack provides coarse estimation of
body part motion. We consider the following motion: the
user starts from a state where her arm is rested next to her
body. She raises the arm in a direction of her choice with
the intention of pointing toward a device or appliance, and
then drops her hand to the first position. The user may
move around and at a random time perform the pointing
gesture. We require, however, that the user be standing
(i.e., not walking) when performing the pointing gesture.
The goal is to detect the pointing direction.

To track such a pointing gesture, WiTrack needs to dis-
tinguish between the movement of the entire body and the
motion of an arm. To achieve this goal, we leverage the
fact that the reflection surface of an arm is much smaller
than the reflection surface of an entire human body. We
estimate the size of the reflection surface from the spec-
trogram of the received signal at each of the antennas.
Fig. 5 illustrates the difference between the spectrogram
of a whole body motion and that of an arm pointing, as
captured by one of WiTrack’s receiving antennas. In the
figure the human was moving then stopped and performed
the pointing gesture. The two bright spots around t = 18s
and t = 21s refer to the arm being lifted and dropped re-
spectively. The figure shows that the signal variance along
the vertical axis is significantly larger when the reflector is
the entire human body than when it is just an arm motion
(note the bright yellow as opposed to the cyan color). If
the reflector is large, its parts have slightly different posi-
tions from each other; hence, at any point in time the vari-
ance of its reflection along the y-axis is larger than that of
an arm movement. WiTrack uses this spatial variance to
detect body part motion from a whole body motion.

Once we detect it is a body part, WiTrack tries to esti-
mate the direction of the motion to identify the pointing
direction, which involves the following steps:
1. Segmentation: The goal of segmentation is to deter-

mine the start and end of a pointing gesture. Fig. 5
shows how WiTrack segments the round trip distance
spectrogram obtained from each receive antenna. In

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 323

our pointing experiments, we ask the user to remain
static for a second before performing the pointing ges-
ture. Thus, we are able to detect the start of a pointing
gesture since it is always preceded by a period of ab-
sence of motion. Similarly, after a person raises her
arm in a pointing direction, we ask her to wait for a
second before resting her arm back to its initial po-
sition. Because WiTrack performs a frequency sweep
every 2.5 ms, we can easily distinguish the silence at
the start and end of a gesture.

2. Denoising: As is the case for a whole body motion, the
contour of the segmented spectrogram is denoised and
interpolated (see §3.4) to obtain a clean estimate of the
round trip distance of the arm motion as a function of
time, for each receive antenna.

3. Determining the Pointing direction: We perform ro-
bust regression on the location estimates of the mov-
ing hand, and we use the start and end points of the
regression from all of the antennas to solve for the ini-
tial and final position of the hand. WiTrack estimates
the direction of pointing as the direction from the ini-
tial state to the final extended state of the hand. Since
the user drops her hand after pointing, WiTrack repeats
the above steps for this drop motion obtaining a second
estimate of the pointing direction. Then, WiTrack es-
timates the pointing direction as the middle direction
between the two.3 Being able to leverage the approxi-
mate mirroring effect between the arm lifting and arm
dropping motions adds significant robustness to the es-
timation of the pointing angle.

We envision that an application of the estimation of
pointing direction can be to enable a user to control house-
hold appliances by simply pointing at them. Given a list of
instrumented devices and their locations, WiTrack would
track the user’s hand motion, determine the direction in
which she points, and command the device to change its
mode (e.g., turn on or off the lights, or control our blinds).

Finally, to demonstrate the pointing gesture within the
context of an application, we created a setup where the
user can control the operation mode of a device or appli-
ance by pointing at it. Based on the current 3D position of
the user and the direction of her hand, WiTrack automat-
ically identifies the desired appliance from a small set of
appliances that we instrumented (lamp, computer screen,
automatic shades). Our instrumentation is a basic mode
change (turn on or turn off). WiTrack issues a command
via Insteon home drivers [2] to control the devices. We en-
vision that this setup can evolve to support a larger set of
functionalities and be integrated within a home automa-
tion systems [16].
5.2 Fall Detection

Our objective is to automatically distinguish a fall from
other activities including sitting on the ground, sitting on

3by zooming on Fig. 5 the reader can see how the arm lifting and
dropping motions approximately mirror each other’s tilt.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

E
le

v
a
ti
o
n
 (

in
 m

e
te

rs
)

Time (in seconds)

Walk
Sit on Chair
Sit on Ground
Fall

Figure 6—Fall Detection. WiTrack automatically detects falls by mon-
itoring the absolute value and the change in elevation.

����������������
���������

����

��������
������������

����������
��������

���������������� ����

�� ���������
����������� �
��

	��

����

�����������������

����

Figure 7—Schematic of the Front End Design. WiTrack’s front end
consists of an FMCW signal generation component, and a receive chain
that is connected to a USRP.

a chair and walking. To do so, we build on WiTrack’s ele-
vation tracking along the z dimension. Note that simply
checking the person’s elevation is not sufficient to dis-
tinguish falls from sitting on the floor. To detect a fall,
WiTrack requires two conditions to be met: First, the per-
son’s elevation along the z axis must change significantly
(by more than one third of its value), and the final value
for her elevation must be close to the ground level. The
second condition is the change in elevation has to oc-
cur within a very short period to reflect that people fall
quicker than they sit.

Fig. 6 plots WiTrack’s estimate of the elevation along
the z dimension for four activities: a person walking, sit-
ting on a chair, sitting on the ground, and (simulated)
falling on the ground.4 The figure confirms that walking
and sitting on a chair can be identified from falling and
sitting on the floor based on elevation because the final el-
evation is far from z = 0. However, to distinguish a fall on
the ground from a sitting on the ground, one has to exploit
that during a fall the person changes her elevation faster
than when she voluntarily sits on the floor.

6 IMPLEMENTATION

FMCW Radio Front-End Hardware: We have built an
FMCW front-end that operates as a daughterboard for the
USRP software radio [5]. Below, we describe our design,
which is illustrated in the schematic of Fig. 7.

The first step of our front end design is the genera-
tion of an FMCW signal, which consists of a narrowband
signal whose carrier frequency is linearly swept over a
large bandwidth. This signal can be obtained by using

4The fall was performed in a padded room as detailed in §8.5.

7

324 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a voltage-controlled oscillator (VCO). Because the out-
put frequency of a VCO is a linear function of its input
voltage, we can generate our desired frequency sweep by
feeding a voltage sweep as an input to the VCO. How-
ever, small errors in the input voltage can create large non-
linearities in the output sweep.

To obtain a highly linear sweep, we use a feedback
mechanism. Specifically, we use a phase frequency de-
tector to compare the output frequency of the VCO with
a highly accurate reference signal, and use the offset be-
tween the two to control the VCO. Note that even though
the reference signal needs to be highly accurate, it does
not need to span the same bandwidth as our desired out-
put signal. In particular, rather than directly comparing
the output of the VCO to the reference signal, we first
use a frequency divider. This allows us to use a reference
signal that sweeps from 136.5–181.25 MHz to generate
an FMCW signal that sweeps from 5.46–7.25 GHz. This
FMCW signal is transmitted over the air using WA5VJB
directional antennas [7] after filtering and amplification.

At the receive chain, the transmitted signal is captured
using WA5VJB directional antennas and passed through
a low-noise amplifier and a high-pass filter to improve its
SNR. Recall from §3 that an FMCW receiver determines
the TOF by measuring the frequency offset between the
transmitted and the received signal. This offset can be
obtained by downconverting (mixing) the received sig-
nal with the transmitted signal. The output of the mixer is
then fed to the LFRX-LF daughterboard on USRP2 which
samples it at 1 MHz and passes the digitized samples to
the UHD driver.
Real-time Software Processing: The implemented pro-
totype performs real-time 3D motion tracking as de-
scribed in §3, §4 and §5. Tracking is implemented di-
rectly in the UHD driver of the USRP software radio. The
signal from each receiving antenna is transformed to the
Frequency domain using an FFT whose size matches the
FMCW sweep period of 2.5ms. To improve resilience to
noise, every five consecutive sweeps are averaged creat-
ing one FFT frame. Background subtraction is performed
by subtracting the averaged FFT frame from the frame
that precedes it. The spectrogram is processed for contour
tracking by identifying for each time instance the small-
est local frequency maximum that is significantly higher
than the noise level. Outlier rejection is performed by
declaring that the contour should not jump significantly
between two successive FFT frames (because a person
cannot move much in 12.5ms). The output is smoothed
with a Kalman filter.

To locate a person, instead of solving a system of el-
lipsoid equations in real-time, we leverage that the loca-
tion of the antennas does not change and is known a pri-
ori. Thus, before running our experiments, we use MAT-
LAB’s symbolic library to find a symbolic representation

of the solutions (x,y,z) as a function of symbolic TOF to
each of the receiving antennas. This means that the ellip-
soid equations need to be solved only once (for any fixed
antenna positioning), independent of the location of the
tracked person. After it obtains the 3D location of a per-
son, WiTrack uses python’s matplotlib library to output
this location in real-time.

Software processing has a total delay less than 75 ms
between when the signal is received an a corresponding
3D location is output.

7 EVALUATION

We empirically evaluate the performance of the
WiTrack prototype by conducting experiments in our lab
building with 11 human users.
(a) Ground Truth: We determine WiTrack’s localization
accuracy by testing it against the VICON motion capture
system. The VICON is a multi-hundred-thousand dollar
system used in filmmaking and video game development
to track the human motion and map it to a 3D charac-
ter animation model. It uses calibrated infrared cameras
and records motion by instrumenting the tracked body
with infrared-reflective markers. The VICON system has
a sub-centimeter accuracy and hence we use it to deter-
mine the ground truth location. To track a moving person
with the VICON, she is asked to wear a jacket and a hat,
which are instrumented with eight infrared markers. To
track a subject’s hand, she is asked to wear a glove that
is also instrumented with six markers. The VICON tracks
the infrared markers on the subject’s body and fits them
to a 3D human model to identify the subject’s location.

The VICON system has a built-in capability that can
track the center of any object using the infrared-reflective
markers that are placed on that object. This allows us to
determine the center position of a human subject who is
wearing the instrumented jacket and hat. WiTrack how-
ever computes the 3D location of the body surface where
the signal reflects. In order to compare WiTrack’s mea-
surements to those obtained by the VICON, we need to
have an estimate of the depth of the center with respect
to the body surface. Thus, we use the VICON to run of-
fline measurements with the person standing and having
infrared markers around her body at the same height as
the WiTrack transmit antenna (about the waist). We use
the VICON to measure the average depth of the center
from surface for each person. To compare the 3D location
computed by the two systems, we first compensate for the
average distance between the center and surface for that
person and then take the Euclidean distance.
(b) Device Setup: WiTrack is placed behind the wall of
the VICON room. The device uses one transmit antenna
and three receive antennas. The transmit antenna and two
receive antennas are lined up parallel to the wall, and a
third receive antenna is placed below the transmit antenna.
The distance between the transmit antenna and each re-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 325

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

c
ti
o

n
 o

f
m

e
a

s
u

re
m

e
n

ts

Location Error (in centimeters)

x dimension
y dimension
z dimension

(a) CDF in line-of-sight

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

c
ti
o

n
 o

f
m

e
a

s
u

re
m

e
n

ts

Location Error (in centimeters)

x dimension
y dimension
z dimension

(b) CDF through-wall
Figure 8—Performance of WiTrack’s 3D Tracking. (a) and (b) show the CDF of the location error for WiTrack in line-of-sight and through-wall
scenarios respectively.

ceive antenna is 1m, unless otherwise noted.
(c) Human Subjects: The experiments are performed
with eleven human subjects: two females and nine males.
The subjects are of different heights and builds, and span
an age range of 22 to 56 years. In each experiment, the
subject is asked to move at will in the VICON room;
he/she is tracked using both the VICON system and
WiTrack. Note that WiTrack tracks the subject through
the wall, from an adjacent room, while the VICON has to
be within direct line of sight from the subject.

8 PERFORMANCE RESULTS
8.1 Accuracy of 3D Tracking

We first focus on the developed 3D tracking primitive
and evaluate its accuracy across all three dimensions.

We run 100 experiments each lasting for 1 minute, dur-
ing which a human subject moves at will in the VICON
room. The VICON room has no windows. It has 6-inch
hollow walls supported by steel frames with sheet rock on
top, which is a standard setup for office buildings. The
WiTrack prototype is placed outside the room with all
transmit and receive antennas facing one of the walls of
the VICON room. Recall that WiTrack’s antennas are di-
rectional; hence, this setting means that the radio beam is
directed toward the wall of the VICON room. In each ex-
periment, we ask the subject to wear the jacket and hat that
were instrumented with VICON markers and move inside
the VICON-instrumented room. The subject’s location is
tacked by both the VICON system and WiTrack.

We note that the VICON IR cameras are set to accu-
rately track the target only when she moves in a 6×5 m2

area in the room. Their accuracy degrades outside that
area. Since VICON provides the ground truth in our ex-
periment, we ask the target to stay within the 6× 5 m2

area where the IR cameras are focused. This area is about
2.5m away from the wall. Thus, the minimum separation
between WiTrack and the human subject in these experi-
ments is 3 m and the maximum separation is about 9 m.

We perform a total of 100 experiments for this eval-
uation, each lasting for one minute. Since each FMCW
sweep lasts for 2.5ms and we average 5 sweeps to obtain
for each TOF measurement, we collect a total of about
480,000 location readings from these 100 experiments.

To show that WiTrack works correctly both in line of

sight and through a wall, we repeat the above 100 ex-
periments with one modification, namely we move the
WiTrack device inside the room and set it next to the wall
from the inside.

Fig. 8(a) and Fig. 8(b) plot the CDFs of the location
error along the x, y, and z coordinates. The figure reveals
the following findings:
• WiTrack’s median location error for the line-of-sight

experiments is 9.9 cm, 8.6 cm, and 17.7 cm along the
x, y, and z dimensions respectively. In comparison, the
median location error in the through-wall experiments
is 13.1 cm, 10.25 cm, and 21.0 cm along the x, y, and z
dimensions. As expected the location accuracy in line-
of-sight is higher than when the device is behind a wall
due to the extra attenuation and the reduced SNR. In
both cases, however, the median error is fairly small.
This is due to the use of an FMCW radio which en-
sures a highly accurate TOF estimate, and the ability to
prevent errors due to multipath and noise, allowing the
system to stay accurate as it moves from TOF to a 3D
location estimate of the human body.

• Interestingly, the accuracy in the y dimension is better
than the accuracy in the x dimension. This difference is
because the x and y dimensions are not equal from the
perspective of WiTrack’s antennas. Recall that in the
xy-plane, WiTrack’s antennas are all along the x-axis.
As a result, the two ellipses in the xy-plane, shown in
Fig. 8, both have their major radius along x and minor
radius along y. Hence, the same error in TOF produces
a bigger component when projected along the x axis
than along the y axis.

• The accuracy along the z-dimension is worse than the
accuracy along the x and y dimensions. This is the re-
sult of the human body being larger along the z dimen-
sion than along x or y.

8.2 Accuracy Versus Distance
We are interested in evaluating WiTrack’s accuracy as

the person gets further away from the device. Thus, we re-
peat the above through-wall experiments. As mentioned
above, VICON requires the human to move in a certain
space that is in line of sight of the IR cameras. Thus,
to increase the distance from WiTrack to the human we
move WiTrack away in the hallway next to the VICON

9

326 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(i
n
 c

e
n
ti
m

e
te

rs
)

Distance from transmitter (in meters)

Median
90th Percentile

(a) Accuracy in x-dimension

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(i
n
 c

e
n
ti
m

e
te

rs
)

Distance from transmitter (in meters)

Median
90th Percentile

(b) Accuracy in y-dimension

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(i
n
 c

e
n
ti
m

e
te

rs
)

Distance from transmitter (in meters)

Median
90th Percentile

(c) Accuracy in z-dimension
Figure 9—3D Localization Accuracy Versus Distance to Device. (a)-(c) show the location error along the x, y, and z dimensions as a function of
how far the subject is from WiTrack. The median and 90th percentile errors increase as the distance from the device to the person increases.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(i
n
 c

e
n
ti
m

e
te

rs
)

Antenna Separation (in meters)

Median
90th Percentile

(a) Accuracy in x-dimension

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(i
n
 c

e
n
ti
m

e
te

rs
)

Antenna Separation (in meters)

Median
90th Percentile

(b) Accuracy in y-dimension

 0

 20

 40

 60

 80

 100

 120

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(i
n
 c

e
n
ti
m

e
te

rs
)

Antenna Separation (in meters)

Median
90th Percentile

(c) Accuracy in z-dimension

Figure 10—3D Localization Accuracy Versus Size of Device. (a)-(c) show the median and 90th percentile location errors as a function of the
antenna separation. Along all three dimensions, a larger separation leads to a decrease in the location error.

room. Again, we collect 100 experiments, each spanning
one minute for a total of 480,000 location measurements.

Fig. 9 plots WiTrack’s localization error as a function
of its distance to the subject. The distance to the subject is
determined using the VICON ground-truth coordinates,
and rounded to the nearest meter. The figure shows the
median and 90th percentile of the estimation error for the
x, y, and z coordinates.

The figure shows that the median accuracy changes by
5 to 10 cm for distances that are 3 to 11 m away from the
device. As expected, the further the human moves from
the device, the larger the estimation error. This increase
in error with distance is expected since as the distance
gets larger the signal gets more attenuated. However, a
second reason stems from the geometry of the ellipsoid-
based localization model. Given the equations of the el-
lipsoid, the TOF multiplied by the speed of light is equal
to the major axis of the ellipsoid/ellipse that describes the
user’s location, and the antenna separation is the distance
between the foci. For a fixed antenna separation, as the
distance/TOF increases the ellipsoid’s surface increases,
increasing the overall space of potential locations.

The figure also shows that the accuracy is best along
the y dimension, then the x, and finally the z, which is due
to the reasons discussed in the previous section.

8.3 Accuracy Versus Antenna Separation
Our default setting places the receive antennas 1 m

away from the transmit antenna. In this section, we ex-
amine the impact of antenna separation on performance.

We evaluate five different configurations. In all of these
configurations, the transmit antenna is at an equal distance
from all receive antennas, and is placed at the crossing

point of a “T” whereas the receive antennas are placed
at the edges. We vary the distance between the transmit
antenna and each of the receive antennas from 25 cm to
2 m. We run 100 one-minute experiments, 20 for each
antenna setting. All experiments are run through a wall.
In each experiment, we ask the human subject to move at
will inside the VICON room, as we record her location
using both the VICON system and WiTrack.

Fig. 10 shows WiTrack’s localization accuracy as a
function of antenna separation. The figure shows that even
if one brings the antennas to within 25cm of each other,
the median location error stays less than 17 cm, 12 cm,
and 31 cm for the x, y, and z dimensions, and 90th per-
centile becomes 64cm, 35cm, and 116cm respectively.
While this is higher than the previous results where the
antennas were separated by 1 m, it is still comparable to
state of the art localization using a WiFi transmitter (in our
case, the user does not need to carry any wireless device).

The plots show that as the antenna separation increases,
the localization accuracy improves along all three dimen-
sions x, y, and z. This behavior is expected, because the
further the receive antennas are from each other, the larger
the spatial diversity between them. Because of the geo-
metric nature of the algorithm, a spatially diverse setup
would lead to a smaller intersection curve between any
pair of ellipsoids.5 For this reason, in a larger setup, the

5For simplicity, consider the 2D case with 1 Tx and 2 Rx antennas.
Because of the system’s resolution, each ellipse has some fuzzy region
about it (i.e., a thickness of +/ε , where ε is determined by the resolu-
tion). Thus, the intersection of two ellipses is a region rather than a sin-
gle point. This region becomes larger when the Rx antennas are closer to
each other, and the larger the region, the larger the ambiguity in localiza-
tion. In the extreme case where the two receive antennas are co-located,

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 327

same noise variance in the TOF estimates would be con-
fined to a smaller curve, thus, minimizing estimate error.

Mathematically, for any TOF, the antenna separation is
the distance between the foci of the ellipsoid that defines
the person’s location. Hence for any given TOF, increas-
ing the antenna separation increases the distance between
the foci while keeping the ellipsoid’s major radius con-
stant. Hence the ellipsoid gets more squashed and its cir-
cumference becomes smaller, reducing the region of po-
tential solutions.
8.4 Accuracy of Estimating Pointing Direction

In the experiments in this section, the human subjects
wear a glove that is instrumented with infrared reflexive
markers, and are asked to stand in a given location in-
side the VICON room and point in a direction of their
choice. Each pointing gesture consists of raising the sub-
ject’s hand in the direction of her choice, followed by the
subject returning her hand to its original resting position.
Across our experiments, we ask the human subjects to
stand in random different locations in the VICON room
and perform the pointing gesture. We determine the di-
rection in which the subject pointed by using both the VI-
CON recordings and WiTrack’s estimates (see §5.1).

Fig. 11 plots a CDF of the error between the angle
as determined by WiTrack and the ground truth angle
based on the VICON measurements. The figure shows
that the median orientation error is 11.2 degrees, and the
90th percentile is 37.9 degrees. These results suggest that
WiTrack provides an enabling primitive to track pointing
gestures. We used this capability to enable controlling dif-
ferent household appliances like shades, lamps and com-
puter screens by sending commands to these different ap-
pliances over Insteon drivers.
8.5 Fall Detection

We test the fall detection algorithm described in §5.2
by asking different participants to perform four different
activities: walk, sit on a chair, sit on the floor, and simulate
a fall. The floor of the VICON room is already padded.
We add extra padding to ensure no injury can be caused
by simulated falls. We perform 132 experiments in total,
33 for each activity. We log the data files from each of
these experiments and process them offline with our fall
detection algorithm. We obtain the following results:
• None of the walking or sitting on a chair activities are

classified as falls.
• One of the sitting on the floor experiments was classi-

fied as a fall.
• Two out of 33 simulated falls were not detected (they

were misclassified as sitting on the ground).
Thus, the precision of the fall detection algorithm is
96.9% (since out of the 32 detected falls only 31 are true
falls) , and the recall is 93.9% (since out of 33 true falls
we detected 31). This yields an F-measure of 94.4%.
the two ellipses perfectly overlap and the ambiguity region is large.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

c
ti
o

n
 o

f
m

e
a

s
u

re
m

e
n

ts

Orientation Accuracy (in degrees)

Figure 11—Orientation Accuracy. The CDF of the orientation accu-
racy shows that the median orientation error is 11.2 degrees, and the 90th

percentile error is 37.9 degrees.

9 RELATED WORK

Indoor wireless localization: WiTrack builds on recent
advances in RF-based localization [31, 18, 28, 11]. These
systems localize a wireless device using RSSI [11, 22],
fine-grained-OFDM channel information [25], antenna
arrays [31, 18], or RFID backscatter [28, 27]. In contrast,
WiTrack localizes a human using body radio reflections.

Some past works in radio tomography use a network of
tens or hundred sensors to track a person even if she does
not carry any wireless device [29, 30]. These works mea-
sure the RSSI for each of the resulting n2 links between
their sensors, and attribute the variation of RSSI on a link
to a human crossing that link. Other works on device-free
localization rely on RSSI fingerprints [32, 24], which are
generated in a training phase by asking a person to stand
in different locations throughout the area of interest. In
the testing phase, they localize a person by mapping the
resulting RSSI to the closest fingerprint. While WiTrack
shares the objective of tracking a person’s motion with-
out instrumenting her body, it differs in both technology
and accuracy. Specifically, WiTrack does not require prior
training and uses a few antennas that generate FMCW sig-
nals and measure the time-of-flight of the signal reflec-
tions to infer location of a human. Its technique extends
to 3D, and its 2D accuracy is more than 5× higher than
the state of the art RSSI-based systems [33, 24].
See through-wall & gesture recognition using WiFi:
WiTrack is motivated by recent research that used WiFi
signals to detect users through walls and identify some
of their gestures [10, 21, 13]. Similar to these systems,
WiTrack captures and interprets radio reflections off a hu-
man body. WiTrack, however, differs from these systems
both in capability and technology. Specifically, these sys-
tems rely on the Doppler shift of WiFi signals. Hence,
they can distinguish only between getting closer or get-
ting further away, but cannot identify the location of the
person.6 In contrast, WiTrack measures the time of flight
and, hence, can identify the exact location of a person.
Among these past systems, WiVi [10] focuses on track-

6The gestures recognized by WiVi and WiSee are sequences of get-
ting closer or getting further away, which translate into positive and neg-
ative Doppler shifts. The work in [13] provides a distance estimate with
an accuracy of about 30 meters.

11

328 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing through dense walls such as concrete by leveraging
interference nulling to eliminate the wall’s reflection. In
contrast, WiTrack focuses on accurate 3D motion track-
ing that operates through interior walls (which are less
dense than concrete)7, pinpointing the exact location of a
user at any point in time.
FMCW Radar: WiTrack builds on past work on FMCW
radar, including work that used FMCW for see-through-
wall that is targeted for the military [23, 12]. WiTrack
however differs along multiple dimensions. First, FMCW
radios in past work were high-power and heavy (needed to
be mounted on a truck). Their tracking capabilities hinge
on using large antenna arrays that can achieve a narrow
beam, which enables tracking a moving target. In con-
trast, we present a light weight, low-power FMCW ra-
dio that complies with the FCC regulations for consumer
devices. We are able to perform accurate tracking with
a low-power, relatively cheap FMCW prototype because
of two innovations: first, a geometric localization algo-
rithm that combines multiple measurements from differ-
ent antenna locations and fits them within a geometric ref-
erence to pinpoint an accurate 3D location, and second,
novel techniques that enable rejecting errors that are due
to both static and dynamic multi-path in indoor environ-
ments. Further, WiTrack extends its techniques to tracking
the motion of body parts, e.g., tracking a hand as it points
in a particular direction.
Motion tracking in user interfaces: Finally, WiTrack is
related to an emerging body of motion-tracking user inter-
faces. These include devices that the person needs to hold
(such as the Nintendo Wii [4]) or wear (e.g., on-body sen-
sors such as wristbands [1, 14, 17]). They also include
vision and infrared-based systems, like Xbox Kinect [8]
and Leap Motion [3], which can track a person’s move-
ment without requiring her to hold or wear any transmitter
or receiver but require the user to maintain a line-of-sight
path to their sensors. Similar to these systems, WiTrack
enables more natural human-computer interaction. How-
ever, in comparison to these systems, WiTrack does not
require the user to hold/wear any device or to maintain a
line-of-sight path to its sensors; it can track a user and her
gestures in non-line-of-sight and across different rooms.
10 LIMITATIONS & CONCLUSION

3D motion tracking based purely on RF reflections off
a human body is a challenging technical problem. We be-
lieve WiTrack has taken an important step toward address-
ing this problem. However, the current version of WiTrack
still has limitations:
Tracking one person: Our current design can track only
one person at any point in time. This does not mean that
WiTrack requires only one person to be present in the en-
vironment. Other people can be around, but they have to

7To enable WiTrack to track through thicker walls such as concrete
(as in WiVi), one may add a filter to remove the wall’s reflection.

be behind the directional antennas. We believe that this
limitation is not fundamental to the design of WiTrack
and can be addressed as the research evolves. Consider
for example, the case of two moving humans. In this case,
each antenna has to identify two concurrent TOFs (one for
each person), and hence two ellipsoids. To eliminate the
ambiguity, one may use more antennas which add more
constraints to the system.

Requiring motion: A second limitation stems from the
fact that WiTrack needs the user to move in order to locate
her. This is because WiTrack receives reflections from all
static objects in the environment; hence, it cannot distin-
guish the static user from a piece of furniture. To elimi-
nate these static reflectors, WiTrack subtracts consecutive
FMCW sweeps. Unfortunately, that eliminates the reflec-
tions of the static user as well. Future research may ad-
dress this issue by having WiTrack go through a training
period where the device is first presented with the space
without any user so that it may learn the TOFs of the
static objects. Naturally, this would require retraining ev-
ery time the static objects are moved in the environment.

Distinguishing between body parts: Currently WiTrack
can provide coarse tracking of the motion of one body
part. The tracked part has to be relatively large like an
arm or a leg. WiTrack however does not know which body
part has moved, e.g., it cannot tell whether it is an arm or
a leg. In our experiments, the users were pointing with
their arms. Extending this basic capability to tracking
more general movements of body parts will likely require
incorporating complex models of human motion. In par-
ticular, Kinect’s ability to track body parts is the result
of the combination of 3D motion tracking using infrared
with complex vision algorithms and advanced models of
human motion [26]. An interesting venue for research is
to investigate how WiTrack may be combined with these
techniques to produce a highly accurate motion tracking
system that operates across walls and occlusions.

While there is scope for many improvements, we be-
lieve WiTrack advances the state of the art in 3D mo-
tion tracking by enabling through wall operation without
requiring any instrumentation of the user body. Further-
more, its fall detection and pointing estimation primitives
enable innovative applications.

Acknowledgments: We thank Jue Wang, Haitham Hassanieh,
Ezz Hamad, Deepak Vasisht, Mary McDavitt, Diego Cifuentes,
Swarun Kumar, Omid Abari, and Jouya Jadidian for participat-
ing in our experiments. We also thank Nate Kushman, Lixin Shi,
the reviewers, and our shepherd, Kyle Jamieson, for their in-
sightful comments. This research is supported by NSF. We thank
members of the MIT Center for Wireless Networks and Mobile
Computing: Amazon.com, Cisco, Google, Intel, Mediatek, Mi-
crosoft, ST Microelectronics, and Telefonica for their interest
and support.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 329

REFERENCES

[1] Fitbit Flex. http://www.fitbit.com/flex.
[2] Insteon ApplianceLinc. http://www.insteon.com.

Insteon.
[3] Leap Motion. https://www.leapmotion.com.
[4] Nintendo Wii. http://www.nintendo.com/wii.
[5] USRP N210. http://www.ettus.com. Ettus Inc.
[6] VICON T-Series. http://www.vicon.com.
[7] WA5VJB antenna. http://www.wa5vjb.com. Kent

Electronics.
[8] X-box Kinect. http://www.xbox.com. Microsoft.
[9] Understanding the FCC Regulations for Low-power, Non-

licensed Transmitters. Office of Engineering and Technol-
ogy Federal Communications Commission, 1993.

[10] F. Adib and D. Katabi. See through walls with Wi-Fi! In
ACM SIGCOMM, 2013.

[11] P. Bahl and V. Padmanabhan. RADAR: an in-building RF-
based user location and tracking system. In IEEE INFO-
COM, 2000.

[12] G. Charvat, L. Kempel, E. Rothwell, C. Coleman, and
E. Mokole. A through-dielectric radar imaging system.
IEEE Trans. Antennas and Propagation, 2010.

[13] K. Chetty, G. Smith, and K. Woodbridge. Through-the-
wall sensing of personnel using passive bistatic wifi radar
at standoff distances. IEEE Trans. Geoscience and Remote
Sensing, 2012.

[14] G. Cohn, D. Morris, S. Patel, and D. Tan. Humantenna:
using the body as an antenna for real-time whole-body in-
teraction. In ACM CHI, 2012.

[15] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan. Perfalld:
A pervasive fall detection system using mobile phones. In
IEEE PERCOM, 2010.

[16] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee,
S. Saroiu, and V. Bahl. An operating system for the home.
In Usenix NSDI, 2012.

[17] C. Harrison, D. Tan, and D. Morris. Skinput: appropriating
the body as an input surface. In ACM CHI, 2010.

[18] K. Joshi, S. Hong, and S. Katti. Pinpoint: Localizing inter-
fering radios. In Usenix NSDI, 2013.

[19] B. R. Mahafza. Radar systems analysis and design using
MATLAB. Chapman & Hall, 2013.

[20] N. Noury, A. Fleury, P. Rumeau, A. Bourke, G. Laighin,
V. Rialle, and J. Lundy. Fall detection-principles and meth-
ods. In IEEE EBMS, 2007.

[21] Q. Pu, S. Jiang, S. Gollakota, and S. Patel. Whole-home
gesture recognition using wireless signals. In ACM Mobi-
Com, 2013.

[22] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and
R. Sen. Zee: zero-effort crowdsourcing for indoor local-
ization. In ACM MobiCom, 2012.

[23] T. Ralston, G. Charvat, and J. Peabody. Real-time
through-wall imaging using an ultrawideband multiple-
input multiple-output (MIMO) phased array radar system.
In IEEE ARRAY, 2010.

[24] M. Seifeldin, A. Saeed, A. Kosba, A. El-Keyi, and
M. Youssef. Nuzzer: A large-scale device-free passive lo-
calization system for wireless environments. IEEE Trans-
actions on Mobile Computing, 2013.

[25] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka.

Spot localization using phy layer information. In ACM
MobiSys, 2012.

[26] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finoc-
chio, A. Blake, M. Cook, and R. Moore. Real-time human
pose recognition in parts from single depth images. Com-
munications of the ACM, 2013.

[27] J. Wang, F. Adib, R. Knepper, D. Katabi, and D. Rus. RF-
Compass: Robot Object Manipulation Using RFIDs. In
ACM MobiCom, 2013.

[28] J. Wang and D. Katabi. Dude, where’s my card? RFID po-
sitioning that works with multipath and non-line of sight.
In ACM SIGCOMM, 2013.

[29] J. Wilson and N. Patwari. Radio tomographic imaging with
wireless networks. In IEEE Transactions on Mobile Com-
puting, 2010.

[30] J. Wilson and N. Patwari. See-through walls: Motion
tracking using variance-based radio tomography networks.
In IEEE Transactions on Mobile Computing, 2011.

[31] J. Xiong and K. Jamieson. ArrayTrack: a fine-grained in-
door location system. In Usenix NSDI, 2013.

[32] M. Youssef, M. Mah, and A. Agrawala. Challenges:
device-free passive localization for wireless environments.
In ACM MobiCom, 2007.

[33] Y. Zhao, N. Patwari, J. M. Phillips, and S. Venkatasubra-
manian. Radio tomographic imaging and tracking of sta-
tionary and moving people via kernel distance. In ACM
ISPN, 2013.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 331

Epsilon: A Visible Light Based Positioning System

Liqun Li1, Pan Hu3, Chunyi Peng2, Guobin Shen1, Feng Zhao1

1Microsoft Research, Beijing, China
2Department of Computer Science and Engineering, Ohio State University

3School of Computer Science, University of Massachusetts, Amherst

Abstract
Exploiting the increasingly wide use of Light-emitting
Diode (LED) lighting, in this paper, we study the prob-
lem of using visible LED lights for accurate localization.
The basic idea is to leverage the existing lighting infra-
structure and apply trilateration to localize any devices
with light sensing capability (e.g., a smartphone), using
LED lamps as anchors. Through the design of Epsilon,
we identify and tackle several technique challenges. In
particular, we establish and experimentally verify the op-
tical channel model for localization. We adopt BFSK
and channel hopping to enable reliable location beacon-
ing from multiple, uncoordinated light sources over the
shared optical medium. We handle realistic situations
towards robust localization, for example, we exploit us-
er involvement to resolve the ambiguity in case of in-
sufficient LED anchors. We have implemented the Ep-
silon system and evaluated it with a small scale hardware
testbed as well as moderate-size simulations. Experi-
mental results confirmed the effectiveness of Epsilon: the
90th percentile accuracies are 0.4m, 0.7m and 0.8m for
three typical office environments. Even in the extreme
situation with a single light, the 90th percentile accuracy
is 1.1m. We believe that visible light based localization
is promising to significantly improve the positioning ac-
curacy, despite few open problems in practice.

1 Introduction

We have been witnessing ever increasing roll-out of
location-based services, for which accurate location pro-
visioning is a key. GPS has largely solved the prob-
lem for outdoor scenarios. However, accurate localiza-
tion remains a grand challenge for indoor environments.
WiFi-based indoor localization has attracted lots of re-
search attentions, for the advantage of ease-use and low
deployment cost by leveraging existing WiFi infrastruc-
ture [3,6,23]. However, they usually deliver an accuracy

of up to few meters (refer to §8.4), suffering from wire-
less channel dynamics, fading, interference and environ-
mental noises.

In this paper, we propose Epsilon, a novel sub-meter
localization system exploiting visible Light-emitting
Diode (LED) lighting infrastructure. Such work is in-
spired by two observations. The first is the ever increas-
ingly widespread of LED lighting [14]. LED offers a new
and revolutionary lighting technology with the potential
for longer lifetime, energy saving, quality improvement,
and environment preservation. The second is its unique
dual-paradigm feature, i.e., illumination as well as com-
munication. It is attributed to the LED’s ability of in-
stantaneous on/off, which allows LEDs to be dimmed via
Pulse Width Modulation (PWM) and thus to carry digital
information in the visible light carrier, i.e., visible light
communication (VLC) [9, 11, 16].

Inspired by these favorable facts, Epsilon is designed
to provide high-accuracy positioning in a low(zero)-cost
and easy-to-use fashion. It has three-fold implications.
First, it reuses the existing lighting system for the lo-
calization purpose and can be gradually enabled. Sec-
ond, Epsilon does not rely on any centralized localiza-
tion service (e.g., a localization database in the WiFi-
based solutions). Ideally, the system would be capable
of “plug-and-play”. It facilitates receiver-side localiza-
tion so that a device (e.g., a smartphone) can infer its po-
sition at a minimum interaction (passive listening, here)
with the lighting infrastructure. Last but not least, Ep-
silon is able to yield high accuracy (sub-meter) localiza-
tion. In fact, it is promising to achieve unprecedented ac-
curacy by leveraging two advantages of the lighting sys-
tem rather than other infrastructure-based systems (e.g.,
WiFi-based). (1) The deployment of illumination lights
is much (over one order of magnitude) denser than that
of WiFi access points (APs). For example, in our of-
fice floor, there are about 21 APs whereas over 300 light
sources are deployed to cover the same space. (2) Light
sources, unlike WiFi radio signals, are always visible. It

1

332 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Conceptual design of Epsilon.

exposes a unique opportunity to involve the user in loop
for some challenging scenarios.

We design Epsilon to exploit illumination infrastruc-
ture for localization purpose. The basic idea is trilatera-
tion1 using visible LED light sources as anchors. In Ep-
silon (as shown in Figure 1), each bulb, in addition to its
major lighting role, also serves as a location landmark. It
broadcasts, via the light carrier, location beacons carry-
ing information, i.e., the position of the bulb and its duty
cycle, to facilitate receiver side localization. A receiver
(e.g., a mobile phone) employs a light sensor to retrieve
the beacon information, and measures the received signal
strengths (RSSs) from multiple bulbs and computes the
distances to each bulb through the optical channel mod-
el. Finally, it estimates its location based on the received
beacon information and distance measurements from all
light sources. Note that the beacons are transmitted via a
certain optical channel which is thus free from interfer-
ences from ambient light such as sunlight and fluorescent
light (more details in §4.2).

Though the basic idea sounds straightforward, it is
non-trivial to realize a fast and highly accurate light-
based localization system, due to the following three
technical challenges. Along with them, we briefly de-
scribe the Epsilon solution and our contributions accord-
ingly.
• It is nontrivial to accurately measure the distances be-

tween a receiver and surrounding light sources. Many
factors such as irradiation angles, phone orientation
and light emission power, affect the measurement ac-
curacy. To this end, We establish and experimentally
verify a precise optical channel model for localization
purpose. We identify all the factors that affect the mea-
surement and their extents, so that we can precisely
relate the distance to the RSS (§4).

• It is challenging to obtain a reliable information of
each LED bulb (e.g., ID, location, and optical channel
parameters), especially among multiple, uncoordinat-
ed light sources via the shared optical medium. Re-
liable information transmission over the shared medi-
um, in general, belongs to the VLC paradigm that is
yet to come. Therefore, we must design a scheme that

1The key difference between trilateration and triangulation is the
way of determining the location. The former uses the distances to a
few anchors while the latter uses the corresponding relative angles.

does not depend on the existence of a deployed VL-
C network. Our focus is more on avoiding interfer-
ences among a large amount of ad-hoc deployed light
sources without any explicit coordination, rather than
achieving high throughput. Specifically, we adop-
t binary frequency shift keying (BFSK) modulation
scheme, and mitigate possible collisions through chan-
nelization and hopping (§5).

• There are practical challenges to provide robust local-
ization in real situations. In some cases of dense light
deployment, given too many observations, how can we
precisely localize the receiver by making a full use of
all distance measurements which might even interferes
or conflicts with each other? In the contrary situations
with sparse light deployment, how can a receiver work
with few measurements that are even insufficient to
uniquely locate the receiver. To this end, we devel-
op precise localization through multilateration tech-
niques, as well as handling practical challenges with
the help of simple user interactions (§6).

Though Epsilon is based on existing techniques like
BFSK, channel hopping, and intensity modelling, inte-
grating them effectively is non-trivial, and has never been
examined before. We have implemented the Epsilon sys-
tem. To preliminarily evaluate the performance of Ep-
silon, we build a small hardware testbed by designing
and assembling five LED bulbs. We also made a light
sensor board that connects to mobile phone through the
audio jack. We evaluated Epsilon in typical office envi-
ronments, including a conference room, a cubicle area,
and a corridor, representing various environmental com-
plexities and light layouts. The experimental results con-
firmed that using visible light yields high localization ac-
curacy: the 90th percentile accuracy reaches 0.4m, 0.7m,
and 0.8m for the three environments, respectively. Even
in scenarios with a single light source, the 90th percentile
accuracy is 1.1m. Although recent work has investigated
the idea that exploits LED lighting for indoor localiza-
tion [13, 15, 22, 24], this is the first piece of work from
academia that actually designed, implemented and eval-
uated a real working system, to the best of our knowl-
edge.

2 LED Background

Light Emitting Diode: LED is a simple semiconduct-
ing device. We envision that LED lighting will become
the mainstream lighting technology in the near future for
its several advantages. First, LED bulbs are much more
energy efficient (2×) in comparison with the convention-
al compact fluorescent light (CFL) bulbs. Its lighting ef-
ficiency is almost constant (drop by less than 10% after
70,000 working hours [14]) throughout the whole lifes-

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 333

pan. Second, the lifetime is also much longer lifespan
(6×). Third, LED bulbs are free of mercury and thus
more environmentally friendly. One drawback of cur-
rent commodity LED bulbs is its higher production cost,
which however is still a win considering the savings on
the energy expense.

Instantaneous On/Off: As a semiconductor device,
LED possesses a feature – instantaneous on and off. In
other words, a LED bulb can be toggled within few mi-
croseconds. Our measurements using an oscilloscope
show that the rising and falling edges of an ordinary LED
are about 4µs. Due to such property, Pulse Width Mod-
ulation (PWM) is the most widely used approach to dim
a LED bulb, i.e., frequently turning on/off the LED. In
PWM, the brightness is determined by the duty cycle.
Figure 2 shows two examples with 60% and 20% duty
cycles, respectively.

T1 T2

60% Duty Cycle

20% Duty Cycle

Figure 2: Illustration of pulse width modulation.

Visible Light Communication (VLC): The instanta-
neous On/Off feature turns a LED lamp into an effective
transmitter for VLC. LED bulbs can use various modu-
lation schemes, such as on-off keying (OOK), variable
pulse-position modulation (VPPM), and color shift key-
ing (CSK), to embed digital information in its light. VLC
has been studied for years [9, 11] and was recently stan-
dardized in IEEE 802.15.7 [16]. One special mandatory
requirement of VLC is to avoid the flickering problem,
which is caused by the periodic changes in the instanta-
neous brightness. It is reported that low-frequency (less
than 120Hz [17] or 160Hz [9]) flickers make people feel
uncomfortable or even sick. Although there is no wide-
ly accepted criterion for the safe flicker frequency, it is
generally thought that a frequency higher than 200 Hz is
safe.

3 Epsilon Overview

We present Epsilon – a visible light based localization
system. Figure 3 plots the overall system architecture of
Epsilon. It consists of two parts, one on the LED bulb
and the other on the receiving device such as a smart-
phone. Each part consists of several functional modules
that collaboratively fulfil the three key technical compo-
nents of Epsilon, as briefly described below.

Light Beaconing: Each LED bulb broadcasts location

Figure 3: The system architecture of Epsilon.

beacons to the receiver. This is jointly achieved by the
modulation module at the LED side and the demodula-
tion module at the receiver side. We adopt binary fre-
quency shift keying (BFSK) modulation to encode the
messages. In precaution of possible collisions when mul-
tiple, uncoordinated light sources co-exist, we channel-
ize the overall usable spectrum and design a distributed
channel hopping logic at the LED bulb. Each beacon is
transmitted at a certain optical channel, and thus is in-
terference free from ambient light such as sunlight and
fluorescent light.

Distance Estimation: We need to estimate the distances
from the receiver to observed light sources, in order for
trilateration. The receiver decodes light beacons from
multiple light sources, and measure their RSSs, simulta-
neously. The RSS as well as the information embedded
in the light beacon are used to infer the distance from the
receiver to a particular light source.

Localization: We design different approaches to local-
ize the receiver, depending on the number of perceived
light sources. If over three light sources are perceived,
we locate the receiver via trilateration/multilateration
which involves an optimization process that maximally
respects all distance constraints. Otherwise, we involve
the user in loop, and design a process to locate the receiv-
er by fusing the measurements of light and IMU sensors
(accelerometer, magnetometer, and gyroscope).

These three design components echo the aforemen-
tioned challenges, respectively. Next we will elaborate
the details for each of them in the following sections.
We start with distance estimation because it is a critical
enabler to accurate localization of Epsilon.

4 RSS vs. Distance

To achieve high accuracy trilateration, we need to pre-
cisely measure the distances from the receiver to ob-
served LEDs. To this end, we establish a model that can
precisely relate the received light signal strength to the
distance of a light source.

3

334 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

phone coordinates

light source

incidence angle

irradiation angle

d θ
φ

Figure 4: The irradiation angle φ ; the distance between
the light source and the sensor d; and the incidence angle
θ . Note that the incidence angle is between the ray and
the z axis of the phone coordinate system.

4.1 Optical Channel Model
For an optical wireless link, the received energy over one
channel can be described as

Pr = Pt ·H(d) ·Gr, (1)

where Pt is the transmission power over a certain chan-
nel of the light source. H(d) is the channel gain that is
related to the actual sender-receiver distance d. Gr is the
receiver gain which can be calibrated once for good. In
fact, the channel gain H is not merely a function of the
distance, but also depends on the irradiation angle φ and
the incidence angle θ , as depicted in Figure 4. Intuitive-
ly, the longer the distance, or the larger the incidence or
the irradiation angle, the lower the received energy.

The radiant intensity of a LED chip is usually assumed
to follow a Lambertian radiation pattern [4]. Then, the
channel gain can be generally modelled by Eq. (2)2

H(0) = A ·g(φ) ·
[

m+1
2π

]
· cosm φ · cosθ

d2 (2)

where A is the area of the sensor detector and g(φ) is
called the optical concentrator which is a constant if the
incidence angle falls in the field of view (FoV) of the
sensor detector [11]. m is called the Lambertian order
which equals 0 for an ideal point light source. For typical
LED bulbs with limited illumination range like ±60◦, we
have m = 1 [4]. The accuracy of distance inference is
directly affected by the way of RSS measurement and
the precision of the channel gain model. We verify them
through a sender-receiver pair, where the sender is a LED
bulb and the receiver is a light sensor.

Incidence angle and irradiation angle: We first exam-
ine the received energy versus the incidence angle θ and
the irradiation angle φ . According to the channel model
in Eq. (2), the received energy follows the cosine of θ
and φ , which is shown in black solid curve (Theoretical)
in Figure 5(a) and 5(b). We measure the observed chan-
nel response for θ ∈ [−60◦,60◦] and φ ∈ [−60◦,60◦], at

2The parameter ’0’ in H(0) is an abbreviation, referring to all af-
fecting parameters.

0°
15°

30°

45°

60°

75°−75°

−60°

−45°

−30°

−15°

0.2

0.4

0.6

0.8

1

Theoretical

at 1m

at 5m

(a) Channel response of θ

0°
15°

30°

45°

60°

75°−75°

−60°

−45°

−30°

−15°

0.2

0.4

0.6

0.8

1

Theoretical

at 1m

at 5m

(b) Channel response of φ

−60 −40 −20 0 20 40 60
0

2

4

6

8

10

Incidence Angle (Degree)

A
b
s
o
lu

te
 E

rr
o
r

(%
)

at 1m

at 5m

(c) Relative error of θ

−60 −40 −20 0 20 40 60
0

2

4

6

8

10

Irradiation Angle (Degree)

A
b
s
o
lu

te
 E

rr
o
r

(%
)

at 1m

at 5m

(d) Relative error of φ

Figure 5: Normalized channel responses and relative er-
rors of the incidence angle θ and irradiation angle φ mea-
sured at 1m and 5m distances.

distances of 1m and 5m from a LED bulb, respectively.
The normalized measurement results are also plotted in
Figure 5(a) and 5(b) in red dashed and blue dotted curves,
respectively. To quantify the relative error between our
model-based estimation and actual measurement, we de-
fine the error ratio (denoted as r) as

r =
|rssmeasured − rssmodel |

rssmodel
(3)

where rssmeasured and rssmodel are the RSSs from mea-
surements and model-based derivations. The error ratios
regarding to both angles are shown in Figure 5(c) and
5(d), respectively. In Figure 5, we can see that the real
measurements fit the model very well. The error ratio is
mostly below 5% when the angles (θ and φ) are within
±60◦. Once they exceed ±60◦, the error ratio grows sig-
nificantly, though the absolute error still stays relatively
low. It is caused by the physical limitations in the FoV
of ordinary LED chipsets and the light sensor.

LED-receiver distance: According to Eq. (2), the re-
ceived energy falls off against the the distance d, follow-
ing an inverse-square law. We verify this by fixing the
incidence and irradiation angles to 0◦ and vary the dis-
tance from 1m to 5m with the step length of 0.25m. The
measured channel responses are shown with scatters in
Figure 6. We then fit the scatters with function C/d2

where C accounts for the constant coefficients in Eq. (2).
From Figure 6, we could see the overall fitting error is
very small, with root-mean-square error (RMSE) being
1.85e-4 and C = 0.0018. Therefore, the inverse square
model accurately characterizes the relation between dis-
tance and RSS.

In our experiments, we found that the constant C will
be different when using the same light sensor with differ-

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 335

0 1 2 3 4 5
10−5

10−4

10−3

10−2

10−1

Distance (m)

R
ec

ei
ve

d
Si

gn
al

 S
tre

ng
th Signal Strength

Fitting Curve

Figure 6: The received energy versus the distance from
1m to 5m with step length 0.25m. Both θ and φ are fixed
to 0◦. The duty cycle of the PWM is 50%.

ent light sources. We thus conducted additional experi-
ments using a cross-validation approach, that is, trying
different combinations of LEDs and light sensors. We
found the coefficient C can be factored into CL and Cs
(i.e., C =CL ·Cs), where CL is per-LED constant and re-
lates only to its maximum power, and Cs is a per-sensor
constant and related to its receiver gain. Both CL and Cs
are constant and can be measured once for good, e.g.,
preferably by the manufacturer, and stored in the LED
and the sensor device. Since we are exploiting multiple
light sources to locate a device, thus for sake of clear p-
resentation, we will leave out Cs and use C to indicate CL
in formulations throughout the rest of the paper.

Putting all insights we gain so far together, with known
C, θ and φ , the distance can then be precisely derived
with the measured RSS.

4.2 Emission Power from a LED
We now address how to model the emission power from
a LED light source. The light signal from a LED is a 0-1
pulse wave as shown in Figure 2. Suppose the period is
T with pulse time τ . The Fourier series expansion for
this pulse wave is

f (t) =
τ
T
+

∞

∑
n=1

2
nπ

sin
(πnτ

T

)
cos

(
2πn
T

t
)

(4)

The equation above indicates that the emission power of
the LED spreads over the baseband (the first AC compo-
nent) and all the harmonics. Thus, it is infeasible to mea-
sure the overall received energy. Fortunately, for sake of
localization, we only measure the portion of energy over
the baseband optical channel which already validates the
channel model in Eq. (2).

The RSS hereafter is thus defined as the magnitude of
the baseband frequency component. Actually, the trans-
mitted energy at the light source is proportional to the
coefficient of the first AC component in Eq. (4), i.e.,
Pt ∝ 2

π sin(πτ/T). Note that Pt is not affected by the actu-
al baseband frequency, but interestingly, it is a function

of duty cycle τ/T of the PWM. This insight indicates
that the light source also needs to convey the duty cy-
cle information in its beacon for the receiver to correctly
model the transmission power. In conclusion, the RSS
measured at a receiver is calculated as follows:

Pr =C · sin(
τ
T

π) · cosθ · cosφ
d2 (5)

where C and τ/T are the per-LED constant related to its
maximum emission power and the current duty cycle of
the LED, both included in its beacon.

Interference from ambient light: Note that the mea-
sured power from a LED is the portion within a certain
frequency range. Most ambient lights are with only DC
component (e.g., sunlight) or energy at a fixed frequen-
cy (e.g., incandescent and fluorescent bulbs at 100 Hz or
120 Hz). Therefore, the RSS at a receiver in our sys-
tem will not be affected by these ambient light sources,
by simply avoiding these colliding frequencies. In § 8,
we actually evaluate our system with the co-existence of
various kinds of ambient light sources.

5 Beaconing Over Visible Light

The PMW-based dimming mechanism of LED enables
communication with visible light. We now present our
design to achieve reliable location beaconing.

5.1 Communication with BFSK

Many modulation schemes were proposed in the VL-
C field, such as OOK, VPPM, and CSK. They all can
be adopted to carry location beacons in the light carri-
er. However, they require either sophisticated decoding
logic or special hardware, and also special mechanisms
to avoid the flickering problem. In Epsilon, we use the
binary frequency shift keying (BFSK) for its simplicity
and the natural prevention of flicker – there is no flicker
issue for the carrier frequencies over 200 Hz.

In BFSK, symbol 0 and 1 are represented by two fre-
quencies f0 and f1, each frequency lasting for a certain
duration (termed symbol length). The receiver demodu-
lates the incoming BFSK signal by transforming (FFT)
the sensed light signals in a decoding window, whose
length equals to the symbol length, to the frequency do-
main, and performing a binary decision on the major
frequency component. The transform is carried out in
a sliding fashion: each time the window advances by a
fraction of the symbol length. More details on modula-
tion/demodulation could be found in our previous work
[10], which is omitted here due to the space limitation.

5

336 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.2 Channelization and Hopping

The major challenge of reliable beaconing is the collision
problem caused by multiple, uncoordinated, and unsyn-
chronized light sources over shared light medium. It is
extremely difficult to coordinate among the light sources.
First, no light lamps are equipped with extra sensors to
find their neighbors. Moreover, the actual deployment of
light sources (e.g., usually attached to ceiling) makes it
difficult for the light sources to see/sense each other. This
is different from most wireless radios where each trans-
mitter also serves as the receiver. Consequently, time di-
vision multiple access is not feasible in our scenario as
they require synchronization or a carrier sensing mecha-
nism among senders.

We choose to channelize the whole available spectrum
into multiple disjoint and even spaced sub-carriers. In
Epsilon, each LED bulb is configurable, thus it tends to
think of manually assign a static channel for each LED.
Unfortunately, this is infeasible due to the unknown cov-
erage of each light source and how multiple sources’ cov-
erages may intersect with each other. Even though we
can see the coverage, it is unlikely to adjust the power
to avoid interference, as the power control should serve
primary lighting function. Therefore, we adopt random
channel hopping to avoid persistent collision among light
sources. The timeline is divided into slots (called a hop-
ping period) with equal length. Each light source ran-
domly picks one channel in each hopping period, trans-
mits a beacon, and then hops to another channel. As long
as the number of channels is large enough in compari-
son with the number of contending LEDs, random hop-
ping actually handles the problem of collision effectively.
We formulate and analyse the random channel hopping
scheme in the next section.

Another unsolved problem is to select the communi-
cation band. Intuitively, the overall usable spectrum is
jointly determined by a few factors such as the minimum
frequency to prevent flicker and the On/Off speed of the
LED bulb. We will discuss more about spectrum selec-
tion in § 7.

5.3 Minimizing the Waiting Time

Collisions may still occur under random channel hop-
ping. Note that when a collision happens, the receiver
needs to wait for additional hopping periods to correctly
receive the beacon.3 Regarding to good indoor localiza-
tion user experience, short waiting time is highly desired,
which is directly related to the time to correctly receive
all beacons from all sources.

3Sometimes, the receiver can still decode one beacon from the col-
lided signals due to the capture effect [19]. However, it will affect the
RSS measurement and hence adverse to distance estimation.

Suppose one light sensor observes M light sources and
the number of channels is N. The waiting time tw can be
formulated as

tw(M) = k(M) · τ (6)

where k is the number of hopping periods and τ is the
length of each hopping period. Note that both the tw and
k are functions of M. Given the fixed overall spectrum,
we have τ ∝ N as increasing the number of channels im-
plies narrower channels, hence lower data rates (i.e., τ ↑).
Nonetheless, increasing N reduces the collision proba-
bility, and less hopping periods will be waited (i.e., k ↓).
Based on this formulation, we discuss how to obtain the
optimal N below.

Note that, without clock synchronization among light
sources, the hopping periods of different light sources
are likely misaligned. Thus, one light source may par-
tially collide with another, leading to corrupted beacons
from the two colliding sources. Assume the channel se-
lection during each period is independent and uniformly
distributed in [1,N]. The probability that, in k consec-
utive hopping periods, one light source does not collide
with any other light sources for at least one hopping pe-
riod (which guarantees correct decoding at the receiver)
is

p = 1−
[

1−
(

1− 1
N

)2(M−1)
]k

(7)

In Eq. (7), M is a constant which is determined by the en-
vironment. Once N is given, we can derive the minimum
k so that p ≥ P0, where P0 is the success rate the system
desires:

k(M) = argmin
k

p ≥ P0 (8)

Once M and P0 are given, we can find the optimal N that
minimizes the waiting time by combining Eq. (6), (7),
and (8). For instance, the optimal number of channels
for M = 3 is 7, and the corresponding number of hopping
periods is 3.

In practice, the density of light sources varies from
place to place. Therefore, it is unable to find a globally
optimal N for all situations. Empirically, we may select
the N which minimizes the maximum waiting time for
typical settings such that M ∈ Mtypical , i.e.,

N = argmin
k

max
M∈Mtypical

tw(M) (9)

where Mtypical represents typical numbers of light
sources that are observed by the receiver. In our sys-
tem, P0 and Mtypical are set to 90% and [3,10] respec-
tively, where correspondingly N = 30 and k = 3, i.e., the
communication band is divided into 30 channels and the

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 337

receiver waits for 3 hopping periods. During the wait-
ing time, the receiver obtains multiple beacons from the
same light source. We select the one with the lowest sig-
nal strength for further processing, which is less likely
corrupted by other beacons. The actually waiting time
depends on the bandwidth of each channel which is fur-
ther discussed in §7.

6 The Localization Algorithm

The localization core is to use trilateration to calculate
the receiver’s position from distance measurements to
multiple light sources. We first address the normal cas-
es with sufficient light sources and then the challenging
cases with insufficient sources.

6.1 Localization with Trilateration
Given n light sources, we can apply Eq. (5) to establish
a series of constraints on measured RSSs and distances,
as well as the angles. Those are,

Pr1 =C1 · sin(α1π) · cosθ1·cosφ1
d2

1

Pr2 =C2 · sin(α2π) · cosθ2·cosφ2
d2

2
...

Prn =Cn · sin(αnπ) · cosθn·cosφn
d2

n

, (10)

where αi and Ci are obtained from the ith beacon.
Let the 3D coordinates of the receiver and the light

source are 〈x0,y0,z0〉 and 〈x,y,z〉, respectively. Their dis-
tance is d =

√
(x0 − x)2 +(y0 − y)2 +(z0 − z)2. For simplic-

ity, we assume all the light sources facing downward (it
is usually the most common case with lights on the ceil-
ing), we further have cosφ = |z− z0|/d. In case that the
receiver’s light sensor faces squarely upward toward the
ceiling, we have θ = φ . Therefore, only three unknowns
remain, namely x0, y0, z0. Later, we discuss the general
case with arbitrary light deployment or phone orienta-
tion, which only requires extra calibration, local angle
detection, or more distance measurements.

With four or more light sources, we may uniquely de-
termine all unknowns. The localization is an optimiza-
tion process trying to minimize the linear mean square
(LMS) error, which is actually a well-studied topic [18].
Here, we use Newton’s Method for the optimization. The
goal is to minimize the sum of absolute error between the
left and right side of each equation in Eq. (10). In our im-
plementation, we generate the initial values for each un-
known randomly and ran the optimization process multi-
ple times to avoid local minima. Note that if only three
light exist, the optimization may end up with two opti-
mums, one of which is actually fake (above the ceiling
due to even symmetry property of the cosine function in

x
yz

α1

(a)

North

d

z
y

x

α2

(b)

od
0 15 30 45 60 75 90

0.0

0.2

0.4

0.6

0.8

1.0

S
en

so
rR

ea
di

ng

Rotate Angle

Figure 7: Localization with only one light source. (a)
keep the phone in the horizontal plane and rotate it for an
angle of α1 until pointing to the light source (top view);
(b) pitch the phone for an angle of α2 where α2 ≥ the
incidence/irradiation angle (side view).

the model). In practice, light sources may deployed at
similar height and hence such ambiguous solutions can
be filtered out by common sense (e.g., the device is un-
likely higher than the ceiling). As a result, three light
sources are typically the minimum required number in
our system.

In real usage, the receiver (hence the light sensor) may
be in arbitrary orientation. This will complicate the prob-
lem. Intuitively, we can leverage the equipped orienta-
tion sensors (e.g., inertial measurement unit (IMU) on
the phone) to measure the device’s attitude and transfor-
m back to the horizontal attitude. In case not all the light
sources face downward, their angles can be pre-obtained
via calibration and delivered to the receiver via beacons.
More measurements can help to solve the general local-
ization problem by introducing more constraints. Even
the light source and the receiver is not perfectly facing
down or up, slight imperfection actually has little impact
to the location accuracy, as their impact to the distance
estimation is via a cosine function that changes slowly
near 0. We evaluate this in §8.3.

6.2 Involving the User
In real situations, we may end up with insufficient num-
ber (e.g., one or two) of light sources that cannot unique-
ly locate the device. For instance, there might be only
a single lamp in a room; in a long corridor or tunnel, a
serial of lamps are usually deployed with a long distance
between neighboring lamps, where the device can sense
only one (or two) light sources in most of the time. While
using the lamp position (coverage-based method) already
fulfils rough position estimation, we discuss the option
of involving the user if a higher location accuracy is de-
sired. Note that this is an advantage of visible light than
RF signals (e.g., WiFi, FM, and Geomagnetism) which
are not perceptible by human.

Figure 7 illustrates the procedure of the user gestures.
It contains two steps. The first step is exactly the same as
we use compass to find direction. That is, the user holds
the phone horizontally and rotates the phone (around de-
vice’s Z-axis) as shown in Figure 7(a), until the phone is

7

338 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

oriented to one light source. The second step is to grad-
ually pitch the phone. In the meantime, a continuous
measurement is performed to record the RSSs from the
light source at different phone pitch angles (Figure 7(b)).

The procedure above basically uses inertial sensors to
measure the irradiation and the incidence angles. In the
first step, it measures the orientation angle, α1, between a
virtual line connecting the phone and the light source and
the North from the compass. We also record the RSS, as
Pr1, at the point when the phone is pointing to the light
source. The user then continues with the second step
by pitching the phone from the horizontal attitude to the
roughly vertical attitude for an angle of α2 while keep-
ing the phone screen facing the light source. Note that α2
should be larger than the incidence/irradiation angle and
it can be easily fulfiled as long as it passes the point at
which the phone screen faces squarely towards the light.
The system logs the reading of the light sensor as well
as the instantaneous pitching angle (around device’s X-
axis) that is captured by the gyroscope. An instance of
the logged light sensor trace is given in Figure 7. We can
see that the sensor readings increase until a peak point
and then decrease. This is caused by the changing in-
cidence angle. Thus, the peak point is the instant that
the device faces squarely to the light. The correspond-
ing pitched angle from the beginning to the peak point is
the desired incidence angle θ when the phone was placed
horizontally.

After the two steps, we obtain the incidence angle θ ,
RSS Pr1, and the angle α1. With the model in Eq. (5), the
former two measured parameters ensure all the possible
device positions are in a 2-D horizontal circle around the
light source. Then, we can use α1 to finally determine
only one location in the circle.

7 System Implementation

Hardware Design: Note that Epsilon is still a pio-
neer work exploiting LED for localization, there is thus
no off-the-shelf product that supports programming and
VLC. We designed a small LED lamp, as shown in Fig-
ure 8, with a commercial LED (Model: Cree T6) [8] with
10W marked power and peripheral control circuit to ad-
just the beaconing content. The modifications to the LED
is easily met in practice. As the commodity LED bulb-
s already employ PWM for dimming purpose, we only
need to add the capability of varying the frequency for
BFSK. For the receiver design, modern mobile phones
ship with light sensors. However, it turns out that the OS
restricts the sampling rate (e.g., Motorola XT910 ∼ 5Hz,
Samsung Galaxy SIII ∼ 100 Hz). While we envision that
we can modify the driver in the future, we currently de-
sign a small light sensor board, that merely consists of a

Figure 8: The hardware design of Epsilon.

<Lat, Lon> Duty
cycle

16 bit 64 bit 8 bit

96 bit

CRC

8 bit

Preamble

Figure 9: Beacon frame used in Epsilon.

light sensor, an amplifier, and a small battery. We con-
nect the board to the phone through the audio jack. The
sampling of light sensor is performed using the ADC for
microphone. As will be shown later, the audio ADC im-
poses certain design constraints regarding to the usable
communication band.

Configuration and Frame Design: In our system, we
embed the coordinates of each light source in its bea-
con. Having a back-end service for mapping the ID of
each LED to its physic location is an alternative solu-
tion, which however relies on the network connection.
Therefore, we insist on making each LED bulb self-
contained. Another practical issue is that we need to con-
figure the location for each LED. We rely on the profile
(e.g., blueprint map) from building management to con-
figure the position of each bulb. Each beacon payload
consists three parts: preamble, location information, and
the duty cycle, as shown in Figure 9. The preamble con-
sists of 2 bits of zeros to facilitate RSS measurement.
The location information is a 64-bit latitude and longi-
tude tuple. We use a 8-bit number to represent the du-
ty cycle, which corresponds to ∼ 0.4% dimming adjust-
ment granularity. We also adopted a 8-bit CRC to check
the integrity of the contents.

Communication Band Selection: As discussed in §5.3,
we desire wider communication band for less waiting
time. Suppose the band used for communication is
[fl , fh] where fl and fh represent the lower and upper
boundaries, respectively. There are actually several con-
strains in determining the two boundaries.

1. fl should be high enough to avoid the flickering
problem, i.e., fl ≥ 200Hz. fh cannot exceed the
minimum of the LED On/Off speed and the light
sensor response speed as discussed in §5.2, which
is 118.2 kHz.

2. fh < 2 fl . Based on Eq. (4), the pulse wave carri-
er results in harmonics while the transmitted energy
spreads across all harmonic frequencies f = 2πn/T .

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 339

0 5000 10000 15000 20000

-140

-120

-100

-80

-60

-40

-20
A

m
pl

itu
de

(d
B

)

Frequency (Hz)

Figure 10: Power spectrum
of 10kHz light carrier

8 10 12 14 16 18 20 22
-20

-16

-12

-8

-4

0

4

Fr
eq

ue
nc

y
R

es
po

ns
e

(d
B

)

Frequency (kHz)

SoundCard
Cellphone

Figure 11: Frequency re-
sponse of audio ADC.

Figure 10 plots one such example, where the light
carrier frequency is 10kHz. Energy peaks can be
observed at 10kHz and 20kHz (30kHz, 40kHz, etc.
are omitted in the plot). To avoid harmonic interfer-
ence, fh should be lower than 2× fl .

3. Constrained by the sampling rate (up to 44.1 kHz)
by audio ADC, fh should not exceed 22.05 kHz, ac-
cording to the Nyquist theorem.

With above constraints, we choose to use the band
from 10 kHz to 19 kHz in our implementation. We di-
vide the band into 30 channels, each with 300Hz band-
width and the corresponding data rate at each channel is
120 bps. For each beacon, one hopping period is about
0.7s. The overall waiting time is thus around 2.1s.

Frequency Response of Audio ADC: The sensed light
signal is affected by the audio ADC circuit of the mo-
bile phone (we disabled the auto gain control). Figure
11 shows the frequency response we measured using a
high end sound card (AVID M-Audio C600 [2]) and a
smartphone (Samsung Galaxy S III). The frequency re-
sponse of the sound card is perfectly flat from 10 kHz to
20 kHz, so that the receiver gain in Eq. (1) can be viewed
as a constant. For the phone, there are small fluctuation-
s near 10.5 kHz and 14.5 kHz due to hardware issues.
The fluctuations are all below 1 dB which is thus small
enough to tolerate.

8 System Evaluation

We first evaluate Epsilon with a small-scale hardware-
based testbed, and then moderate-scale model-based
simulations. Our hardware-based evaluations focus on
the localization accuracy, while the simulations cover-
ing other performance aspects such as robustness with
respect to light source selection and imperfect incidence
angles. We designed and assembled 5 LED lamps, and e-
valuated Epsilon under three typical office environments:
a conference room, a cubicle area, and a corridor. The
environments and the deployed LEDs are shown in Fig-
ure 12. They represent different environmental com-
plexities and reflection characteristics. The areas are

5m×8m, 2m×12m, and 3.5m×6.5m, respectively. For
each area, we place the phone at 60 positions and run
multiple tests at each position.

Methods for Comparison: We compare Epsilon with
two intuitive methods in our experiments:

• Coverage Method: it locates a receiver to the position
of the light source that the receiver sees the highest
RSS.

• Weighted Average: it locates a receiver as the weight-
ed average of the locations of the sensed light sources,
using their RSSs as weights.

It is difficult to compare Epsilon with existing localiza-
tion algorithms based on other signals (e.g., WiFi) side
by side. We thus empirically elaborate some numeric re-
sults from our evaluation as well as those reported by the
state-of-art in §8.4.

8.1 Localization with Multiple LEDs
Figure 13 plots the localization errors in three scenarios
where the sensor is put at various locations in the inter-
ested area. It shows that Epsilon yields high accuracy for
all the three environments. The medium error is about
0.3m and the 90th percentile errors are 0.45m, 0.7m, and
0.8m in the conference room, the cubicle area, and the
corridor, respectively. Among the three scenarios, the
conference room is the simplest as it is mostly empty;
the cubicle environment is actually the most complicat-
ed. However, thanks to the better layout of the LEDs, the
performance in the cubicle area is actually better than
that in the corridor. The corridor is also empty, but the
LEDs are placed almost in a straight line.

We also examine the localization accuracy for each po-
sition in detail. We find that center area (i.e., the area
surrounded by lamps) positions tends to have smaller er-
rors than outer positions. The reason is that center area
positions have a better chance to observe light sources
with small incidence angles which are thus more robust
to measurement noise. For the corridor environment,
we find those positions with the largest errors are exact-
ly the positions at the two edges of the corridor. The
result suggests that we should evenly deploy the LEDs
for better accuracy. Fortunately, typical deployment of
light sources already follows this natural rule to deliv-
er even illumination conditions. One should note that
all the evaluations above are performed with various am-
bient light sources (e.g., sunlight or fluorescent lamps).
We also run experiments at night with all other lights off
and there is no visible difference with or without ambient
lights.

Epsilon always outperforms the Weighted Average
method and pure Coverage method. By exploiting the
characteristics of optical channels, Epsilon improves the

9

340 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Conference Room (b) Cubicle Area (c) Corridor

Figure 12: Deployments of Epsilon in a conference room, a corridor and a cubicle area, each with five LEDs.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error Distance (m)

Epsilon
Coverage
Weighted

(a) Conference Room

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error Distance (m)

Epsilon
Coverage
Weighted

(b) Cubicle Area

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error Distance (m)

Epsilon
Coverage
Weighted

(c) Corridor

Figure 13: Localization accuracy with multiple LEDs under the three experimental environments.

90th percentile accuracy by 1× (than Weighted Average)
or 2× (than Coverage). Nevertheless, the accuracy of the
latter two methods is still high. The 90th percentile accu-
racy is always smaller than 2 meters. Given their simple
designs, these results clearly demonstrate the advantage
of using visible light.

8.2 Localization with a Single LED

We evaluate our single LED based localization method
using one LED in the corridor case. Each measurement
follows the process described in §6.2. Note that the key is
to measure the angles using the IMU sensors, which are
the main error source. We first examine the sensor errors
shown in Figure 14. All the data is measured in our of-
fice building at various locations. The left figure shows
the distribution of compass sensing errors, while the right
one shows the distribution of the errors between the mea-
sured incidence angles versus the groundtruth. Figure 14
reveals that both errors distribute normally within a cer-
tain range: the compass errors fall in ±26◦ while the gyro
errors in ±7◦ in 95% credible interval.

Figure 15 shows the resulting location error of both
Epsilon and Coverage. We can see that Epsilon signifi-
cantly outperforms Coverage: the accuracy is improved
by 5×. In most cases (∼ 95%), the errors of Epsilon fall
below one meter. It demonstrates that with simple user
involvement, we are able to achieve quite high localiza-
tion accuracy even with only one light source.

The experiment above demonstrates the advantage of
using perceptible signals under the user’s help for local-
ization. Note that, in practice, the user often walks under
a LED lamp, which naturally imports the user involve-
ment into Epsilon.

8.3 Model based Simulation

We perform model-based simulation for two reasons.
First, our results on the real testbed results have demon-
strated that the optical channel model fits our measure-
ments quite well. Hence, using model based simulation
does make sense. Second, our testbed with only 5 LED
lamps limits us to explore robustness and performance
of Epsilon under more light sources or with imperfect
incidence angles. In fact, abundant light sources raise an
interesting question: does Epsilon perform better as it us-
es all the measurements from more sources? If not, how
should it smartly use the observed light sources for lo-
calization? To answer these questions, we propose a new
scheme called Epsilon-s, which performs a light source
selection procedure before localization. Specifically, we
select the top four sources with the highest RSSs among
all observed light sources. The heuristics is that light
sources with higher RSSs tend to be closer and with s-
maller incidence/irradiation angles.

Regarding the error of the incidence angle ∆θ , we
want to evaluate its impact on the localization accuracy.
In Epsilon, the LED-receiver distance depends on three

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 341

 0
 2
 4
 6
 8

 10
 12

-15 -10 -5 0 5 10 15

Fr
eq

ue
nc

y(
%

)

Incident Angle Error(Degree)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

-50 -40 -30 -20 -10 0 10 20 30 40

Fr
eq

ue
nc

y(
%

)

Compass Error(Degree)

1

Figure 14: Histograms of the mea-
surement errors caused by compass
and gyroscope sensors.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error Distance (m)

Epsilon
Coverage

Figure 15: Evaluations of localiza-
tion with a single LED.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error Distance (m)

Coverage
Weighted
Epsilon
Epsilon-s

Figure 16: Impact of imperfect inci-
dence angles.

parameters, namely the RSS, irradiation angle φ of LED,
and the incidence angle θ of the light sensor. The RSS
is directly measured by the device, and φ is determined
by the relative position of the receiver to the LED. The
only uncertain variable is θ , as we ask the user to hold
the phone horizontally, which is error prone due to var-
ious reasons. Therefore, it is necessary to evaluate the
impact of imperfect incidence angles to the localization
accuracy.

The simulation is done in a 20m× 20m× 3m space.
We place light sources uniformly on the ceiling (height
= 3m), each at 〈4i,4 j,3〉 where i, j ∈ [1,4], and thus we
have a total of 16 light sources. We put receiver at 〈x,y,0〉
where x,y∈ [0,20]. For each receiver location, we set the
error of the incidence angle, denoted as ∆θ , to an angle
randomly within ±20◦. We then measure the localization
error under different schemes.

Figure 16 plots the simulation results. It shows that
Epsilon outperforms both the Coverage and Weighted
Average. The Coverage method performs comparably
to the Weighted Average. In contrast, Epsilon-s per-
forms significantly better than the other three. Recall
that the incidence angle θ relates to the distance via a
cosine function, which changes slowly at small angles
but very quickly at large angles. Epsilon uses all sensed
light sources, which would include faraway ones. Their
θs (and φs as well) are usually large. Thus small ∆θ
can make a big impact to the distance estimation, which
impairs the localization accuracy. In contrast, Epsilon-
s uses only high RSSs lights that have small θs, and is
thus more tolerant to ∆θ . Note that, the tolerance of Ep-
silon to small ∆θ implies less restriction to the actual use,
which allows the user to place their phone more casually.

8.4 Comparison with WiFi-based Methods

Current mainstream indoor localization systems are
WiFi-based, which basically achieve meter level accu-
racy. Recently, ArrayTrack [21] achieves sub-meter ac-

curacy using multi-antenna technique. However, it relies
on multiple APs to work collaboratively to measure the
angle of arrival (AoA), which is non-trivial. In practice,
the APs are typically deployed by different parties. Al-
so, the main purpose of APs is for networking, and thus
the number of antennas is less than required (16 anten-
nas for each AP) in [21]. We thus only summarize the
basic properties of representative WiFi localization sys-
tems. Note that it is difficult to fairly compare them with
Epsilon due to the impact of infrastructure deploymen-
t and database density. We therefore only excerpt their
performances from the original paper. We see that Ep-
silon yields the best accuracy. Even with simple Cover-
age method, visible light based localization is already as
good as the best WiFi localization system.

Name EZ [6] Radar [3] Horus [23] Coverage Epsilon
Accuracy 2 - 7m 3 - 5m ∼ 1m ∼1m ∼0.4m
Method Model FP FP FP Model

Database Yes Yes Yes No No
Overhead Minimum WD WD DC DC

Table 1: Comparisons with representative WiFi-based lo-
calization systems and coverage-based lighting localiza-
tion. In the table, FP, WD and DC mean fingerprinting,
war-driving and device configuration, respectively.

9 Discussions

Epsilon is still in its infancy. In this section, we briefly
discuss potential issues and open questions in real usage.

Applicability: To leverage the visible light, the device
needs to be exposed to the light. This may limit its appli-
cability, e.g., it is not possible with the phone in pocket.
Thus, Epsilon targets at localization with explicit needs
(user awareness), rather than passive tracking scenarios.
The light has to stay on, which might be an issue for the
sake of energy efficiency. Favourably, for most indoor
environments (e.g., offices or shopping malls) where lo-
calization is desired, lights (at least a small portion) are
mostly, if not always on.

11

342 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Device Diversity: Different LEDs and light sensors
may have different emission power and receiving sen-
sitivity, which would directly affect the distance mea-
surement. Fortunately, as solid-state devices, the intrin-
sic characteristics of LEDs and light sensors are highly
stable over time [14]. Therefore, for each LED and each
light sensor, one time calibration is enough. Considering
their long lifetime (say 5 years), this cost is still reason-
ably small. For practical use, we may reduce calibra-
tion efforts, for example by automatically calculating the
LED parameters as done for WiFi in [6].

Shadow and Reflection: Similar to the multipath is-
sue in WiFi-based localization, using visible light for lo-
calization may suffer from shadowing and reflection of
the light. For instance, when holding a phone in fron-
t of body, body reflection, especially in white shirt, will
bring noise to localization. Sometimes, his/her body is a
big obstacle, blocking the phone from lighting. For these
issues, Epsilon counts on the user’s involvement. We ad-
mit that involving the user’s help is burdensome. Howev-
er, on the other side, we argue this is also an opportunity.
The light is visible which naturally offers a feedback to
the user and makes the case to easily obtain the user’s
help to improve the localization accuracy, unlike other
invisible RF signals.

Modeling vs. Fingerprinting: The model-based ap-
proach in Epsilon achieves good results only when the
LED and the light sensor are within each other’s FoV.
This limits the application scope and we may have to fall
back to coverage-based coarse-grained localization. Fin-
gerprinting method will not have such constraints. How-
ever, a fingerprint is highly affected by a variety of fac-
tors such as the device attitude, body blocking of light,
and etc.. In addition, similar to any fingerprinting-based
system, it requires to construct a database, which is a
challenging task.

10 Related Work

Most existing localization work leverages signals such
as WiFi [3, 6, 20, 21, 23], FM [5], magnetism [7]. WiFi
based approaches [3, 23] leveraging existing infrastruc-
ture typically achieves meter level accuracy. Recen-
t work [21] exploiting multi-antenna achieves sub-meter
accuracy with non-trivial modifications to the hardware.
Our work is a radical deviation from these efforts. Here,
we only review the closely related work, i.e., those deal-
ing with visible lights.

Visible Light based Indoor localization: A few recen-
t works also explore the idea of using visible light for
localization [13, 15, 22, 24], all purely based on simula-
tion. In [15,22], image sensors are used to locate the sur-

rounding light sources based on the ray projection model.
In [24] distances to multiple light sources are estimated
by varying the transmitting power, which leads to unsta-
ble illumination. In [13], the authors infer TDOA from
the peak-to-peak value of the interference signals from
two LED lights. In contrast, in Epsilon, we build ac-
curate optical channel model applicable to localization
with practical considerations like dimming and flicker-
ing avoidance, and working with multiple light sources.
Compared with our previous work [10], we address more
practical challenges, such as enabling reliable commu-
nication and robust localization even with insufficien-
t sources or imperfect orientation. To our best knowl-
edge, ByteLight [1] is the only existing commercial LED
based solution for indoor localization. However, there is
no publicly available information on how their system
works.

Visible Light Communication: VLC aims to leverage
visible lights as communication carriers. The recent stan-
dard IEEE 802.15.7 specifies the hardware, modulation,
channel coding, and the MAC protocol for various appli-
cations [16]. A number of studies discuss optical chan-
nels for VLC such as [9, 11, 12]. While VLC research
mainly focus on wideband high-speed communication,
we aim at low system complexity and robust broadcast
for localization purpose.

11 Conclusion

In this paper, we present the design, implementation and
evaluation of Epsilon, a visible light based localization
system that exploit LED lamps. The system has no de-
pendency on network access and can be used immediate-
ly after proper configuring and calibrating the LED bulb-
s. We have identified and overcome key technical chal-
lenges for accurate distance measurement using light, re-
liable location beaconing, and robust localization where
the number of light sources can be excessive or insuffi-
cient. Our evaluation in typical office environment con-
firmed the effectiveness of the system, which achieve
sub-meter accuracy. Our work confirms the potential of
visual light for high accuracy indoor localization. In ad-
dition, our work also reveals several insights that deserve
further exploration.

12 Acknowledgements

We thank all the anonymous reviewers and the shepherd
Nikolaos Laoutaris for the valuable constructive com-
ments to help enhancing the quality of this paper.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 343

References

[1] ByteLight. http://www.bytelight.com/.

[2] AVID. M-AUDIO C600. http://www.m-audio.
com/.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An In-
Building RF-Based User Location and Tracking System.
In IEEE INFOCOM, 2000.

[4] J. R. Barry. Wireless infrared communications, volume
280. Springer, 1994.

[5] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha.
FM-based indoor localization. In ACM MobiSys, 2012.

[6] K. Chintalapudi, A. P. Iyer, and V. N. Padmanabhan. In-
door localization without the pain. In ACM MOBICOM,
2010.

[7] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim,
P. Razavai, and M. Wiseman. Indoor location sensing us-
ing geo-magnetism. In ACM MobiSys, 2011.

[8] CREE. cree R© Xlamp R© Xm-l leds. http://www.
cree.com/.

[9] D. Giustiniano, N. O. Tippenhauer, and S. Mangold.
Low-complexity visible light networking with led-to-led
communication. In Wireless Days (WD), 2012 IFIP,
pages 1–8. IEEE, 2012.

[10] P. Hu, L. Li, C. Peng, G. Shen, and F. Zhao. Pharos: En-
able physical analytics through visible light based indoor
localization. In to appear at HotNets-XII, 2013.

[11] T. Komine and M. Nakagawa. Fundamental analysis
for visible-light communication system using led lights.
Consumer Electronics, IEEE Transactions on, 50(1):100–
107, 2004.

[12] D. C. O’Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W.
Walewski, and S. Randel. Visible light communications:
Challenges and possibilities. In PIMRC 2008, pages 1–5.
IEEE, 2008.

[13] K. Panta and J. Armstrong. Indoor localisation using
white leds. Electronics letters, 48(4):228–230, 2012.

[14] PHILIPS. A Long Lifespan I LED. http:
//www.lumec.com/newsletter/architect_
06-08/led.htm.

[15] M. Rahman, M. Haque, and K.-D. Kim. High precision
indoor positioning using lighting led and image sensor. In
ICCIT, pages 309–314. IEEE, 2011.

[16] S. Rajagopal, R. D. Roberts, and S.-K. Lim. IEEE 802.15.
7 visible light communication: modulation schemes and
dimming support. Communications Magazine, IEEE,
50(3):72–82, 2012.

[17] E. Star. Energy star R©. Program Requirements for Resi-
dential, 2010.

[18] E. Süli and D. F. Mayers. An introduction to numerical
analysis. Cambridge University Press, 2003.

[19] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and
D. Culler. Exploiting the capture effect for collision de-
tection and recovery. IEEE EmNetS-II, pages 45–52,
2005.

[20] J. Xiong and K. Jamieson. Towards fine-grained radio-
based indoor location. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications,
page 13. ACM, 2012.

[21] J. Xiong and K. Jamieson. Arraytrack: a fine-grained
indoor location system. In USENIX NSDI, page 71.
USENIX, 2013.

[22] M. Yoshino, S. Haruyama, and M. Nakagawa. High-
accuracy positioning system using visible led lights and
image sensor. In Radio and Wireless Symposium, 2008
IEEE, pages 439–442. IEEE, 2008.

[23] M. Youssef and A. K. Agrawala. The Horus WLAN lo-
cation determination system. In ACM MobiSys, 2005.

[24] W. Zhang and M. Kavehrad. A 2-d indoor localization
system based on visible light led. In Photonics Society
Summer Topical Meeting Series, 2012 IEEE, pages 80–
81. IEEE, 2012.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 345

Enabling Bit-by-Bit Backscatter Communication in Severe Energy
Harvesting Environments

Pengyu Zhang, Deepak Ganesan
{pyzhang, dganesan}@cs.umass.edu
University of Massachusetts Amherst

Abstract
Micro-powered wireless sensors present new challenges due to
the severe harvesting conditions under which they need to op-
erate and their tiny energy reservoirs. However, existing low-
power network stacks make a slew of design choices that limit
the ability to scale down to such environments. We address
these issues with QuarkNet, a backscatter-based network stack
that is designed to enable continuous communication even if
there is only enough harvested energy to transmit a few bits
at a time while simultaneously optimizing throughput across
a network of micro-powered devices. We design and imple-
ment QuarkNet on a software radio based RFID reader and
the UMass Moo platform, and show that QuarkNet increases
the communication distance by 3.5× over Dewdrop, 9× over
Buzz, and is within 96% of the upper bound of achievable
range. QuarkNet also improves the communication through-
put by 10.5× over EPC Gen 2, 5.8× over Dewdrop, and 3.3×
over Flit for tag-to-reader communication and by 1.5× over
EPC Gen 2 for reader-to-tag communication.

1 Introduction

The idea of networks of perpetual self-powered sens-
ing, communication and actuation devices that can fly
in swarms, swim through the bloodstream, and navigate
through pipes and debris has propelled the imagination
of science fiction writers for decades, but reality is fi-
nally catching up. While practical instantiations of self-
powered devices have largely been limited to RFID tags,
a new generation of micro-powered devices promises
to go beyond simple identification towards computation,
sensing, and actuation. Among the key technology trends
enabling this vision are advances in micro-harvesters that
scavenge energy from light, electro-magnetic waves, vi-
brations, temperature, and other sources [7]. Such micro-
harvesters enable platforms to cut their reliance on stored
energy in batteries, thereby enabling true miniaturization
and perpetual operation [24, 25].

While micro-powered devices present an exciting op-
portunity, they present tremendous challenges due to the
amount of energy they harvest and the sizes of their en-
ergy reservoirs. The amount of harvested power using a
micro-energy harvester is of the order of nanoWatts to
µWatts, which is three to six orders of magnitude lower
than the average power draw of a Mote. At first glance,
this seems to suggest that if we wait long enough, the
device can trickle charge to accumulate sufficient energy
to operate similar to a battery-powered device. But there
are three problems. First, long delays before performing
useful work are often unacceptable, particularly for con-
tinuous sensing and communication. Second, the voltage
from the incoming energy source is often low, therefore
accumulating energy into an energy reservoir requires
boosting voltage which is wasteful compared to incom-
ing energy (imagine pumping water up a hill to store for
future use). Third, micro-powered platforms often have
small energy reservoirs to reduce form-factor. For exam-
ple, the Intel WISP [5] and Michigan Micro Mote (M3)
[15] have energy reservoirs that are 4 – 6 orders of mag-
nitude smaller than a coin cell respectively.

The dual limitations of low harvesting rates and tiny
energy reservoirs have profound implications on the de-
sign of a network stack for micro-powered devices. Ev-
ery communication task needs to be small enough to fit
within the available energy in the reservoir. Enabling
communication despite such minuscule energy budgets
is akin to working on a micro-sculpture — optimizations
at the granularity of individual instructions, bits, on-off
transitions, and analog-to-digital conversions are needed.
To compound matters, small short-term variations in har-
vesting conditions that typically would be smoothed out
by a larger energy reservoir begin to impact system op-
eration, and can cause an order of magnitude variation in
available energy for a task.

These challenges are not addressed by existing pro-
tocols such as EPC Gen 2. RFID tags operate solely
on continuous harvested power without buffering energy,

1

346 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

therefore EPC Gen 2 assumes a regime where the tag ei-
ther has enough power to operate continuously, or not at
all. In contrast, micro-powered devices can buffer en-
ergy, thereby enabling operation in regimes where there
is insufficient power to operate continuously, but enough
power to operate intermittently.

Recent systems such as MementOS [18] and Dewdrop
[8] tackle this problem in different ways. Both these sys-
tems use backscatter similar to RFIDs, but the challenge
is fitting the communication stack within the energy bud-
get. MementOS introduces checkpoints within computa-
tion tasks such that it can recover from outages and con-
tinue execution. Dewdrop continually adapts task execu-
tion to harvesting conditions such that the efficiency of
execution is optimized. To evaluate the ability of these
systems to scale down, we consider two harvesting con-
ditions — strong light (2000 lux) and natural indoor light
(200 lux), both of which should, in principle, provide
enough energy to operate a micro-powered sensor. But
while both Mementos and Dewdrop operate under strong
light, they are inoperable under natural light.

The inability of current systems to scale-down illus-
trates the central challenge in designing a network stack
for micro-powered devices. A wireless network stack in-
volves a variety of tasks that are simply too large to fit
into the extreme energy constraints of this regime. Even
the core primitive of a network stack — packet transfer
— can involve hundreds of instructions and bits. In this
work we ask the following question — what are the gen-
eral principles that we, as systems designers, should use
to enable these micro-powered platforms to communi-
cate continuously despite trickles of energy, tiny energy
reservoirs, and dynamic harvesting conditions?

We present QuarkNet, a network stack that embodies
a simple but powerful abstraction — by fragmenting a
backscatter network stack into its smallest atomic units,
we can enable the system to scale down to resource-
impoverished regimes. The fundamental building block
of QuarkNet is the ability to dynamically fragment a
larger packet transfer into µframes that can be as small
as a single bit under severe energy constraints, and as
large as the whole packet when sufficient energy is avail-
able. On top of this abstraction, we design a variety of
innovative techniques to handle dynamic frames that can
be abruptly terminated in low energy settings, maximize
throughput by tracking harvesting dynamics in a low-
overhead manner, interleave µframes across nodes to
maximize throughput despite different harvesting rates,
and minimize overhead across the entire stack.

Our results on a USRP reader and Moo nodes show
that:
� The maximum communication distance achieved by

QuarkNet is 21 feet, 3.5× longer than Dewdrop
and 4.2× longer than EPC ID transfer. QuarkNet

TX antenna
current

RX antenna
current

reader-->tag
PIE encoding

backscattered
signal

reader<--tag
Miler encoding

transistor close

Reader Tag

transistor open

0 01 1

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0 5 10 15 20 25 30

Thr
oug

hpu
t (kb

ps)

Time (seconds)

Figure 1: Backscatter signaling at PHY.

achieves close to the maximum achievable range,
beyond which decoding even a single bit fails.

� The minimum illuminance required for QuarkNet
to operate is 150 lux, which is 13× lower than the
2000 lux requirement of 12 byte EPC ID transfer.
This suggests that µframe can operate when a de-
vice is powered by natural indoor illuminance, dra-
matically increasing utility of micro-powered de-
vices for practical deployments.

� The throughput of QuarkNet for node to reader
transfer is 18 kbps, 10.5× higher than EPC Gen 2,
5.8× higher than Dewdrop, and 3.3× higher than
Flit. For reader to node transfer, we obtain through-
put of 1.5 kbps, 2× higher than a battery-assisted
device which uses the EPC Gen 2 write command.

� When ten nodes transmit simultaneously to a reader,
we achieve a throughput of 16.5 kbps as a result
of variability-aware scheduling and interleaving of
µframes, which is 5.4× higher than the throughput
when devices are inventoried individually. Flit and
EPC Gen 2 obtain zero throughput in this case.

2 Case for µframes

A backscatter radio is designed to both provide power
to a passive device as well as to enable communica-
tion. As shown in Figure 1, the reader provides a car-
rier wave, which can be reflected by a passive device
back to the reader with its own information bits. This
makes backscatter a considerably more energy-efficient
communication mechanism compared to active radios,
and ideally suited to the constraints of micro-powered
devices. The Intel WISP [5] and UMass Moo [27] are
examples of backscatter-enabled sensor platforms.

Despite the energy benefits of backscatter radios, ex-
isting network stacks achieve only short communication
range and low throughput. We make an empiric argu-
ment these limitations are, in part, due to the design of
the network stack. To do this, we compare the range and
throughput of existing network stacks versus achievable
performance. Our experiment uses a UMass Moo [27]

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 347

Table 1: EPC Gen 2 vs Achievable Performance.
Range(ft) Throughput(kbps) SNR(dB)

Gen 2 3.6±0.8 3.6±0.3 9.6±1
Optimal 18.6±3.3 21.7±3.7 6.9±0.9

and a USRP reader [9]. Since combining multiple micro-
power sources can enable higher performance, broader
operating conditions, and enable wider range of appli-
cations, we augment the Moo with a small solar panel
[11, 7, 10]. We vary the distance from the reader by small
steps, and at each step, we vary RF power from 17dBm
to 26dBm, while not changing the light levels (normal
indoor light).

To measure the achievable range, we look at the raw
backscattered signal at the reader, and find the distance
at which the reader is unable to decode even a single bit.
This would be the edge of the communication range for
our hardware platform.

Measuring the maximum achievable throughput is
harder since it is influenced by several system parame-
ters including voltage at the energy reservoir when com-
munication starts, the length of each transmission unit,
and control overheads associated with the protocol. We
brute-force search across all possible voltages and packet
lengths to find the setting that results in the maximum
number of transistor flips at the node. We then con-
vert the transistor flips to a maximum number of bits
transmitted using the default Miller-4 encoding scheme,
and assume zero control overhead for each packet, which
gives us an estimate of the maximum throughput.

Table 1 shows the range and throughput while execut-
ing the EPC Gen 2 stack (used in Mementos [18], Dew-
drop [8], and Blink [30]) versus achievable limits. We
see that the achievable range is 18.6 feet, which is over
5× longer than the communication range of EPC Gen 2.
Surprisingly, we find that EPC Gen 2 ceases to operate
even when its SNR is 9.6dB, 1.4× higher than the opti-
mal case. Similarly, we see that the achievable through-
put is 21.7 kbps, whereas EPC Gen 2 achieves barely 1.7
kbps, an order of magnitude difference.

We now investigate the fundamental factors underly-
ing this performance gap, and outline the core challenges
that need to be addressed to bridge the gap.

Challenge 1: Variable energy per transmission A
key challenge in designing a backscatter network stack is
handling variability in the amount of energy accumulated
in the energy reservoir. To understand the reasons, let us
look at how micro-powered devices work. As shown in
Figure 2, micro-powered devices operate in a sequence
of charge-discharge cycles since there is too little energy
to continually operate the device. The device sleeps for a
short period during which it harvests energy and charges
a small energy reservoir, and then wakes up and transmits

voltage

charging

discharging

packet TX

failed packet TX
due to power outage

uframe

packet

uframe

Figure 2: Energy harvesting systems.

a packet during which the reservoir discharges.
There are several reasons why it is difficult to antici-

pate how much energy will be available in each discharge
cycle. First, if harvesting conditions are too low, it is of-
ten too expensive to push more energy into a reservoir
due to the inefficiencies of stepping up the voltage. As a
result, the maximum amount of energy that can be accu-
mulated depends on current harvesting conditions. Sec-
ond, RF energy harvested by a node depends on how
much energy is output by the reader. When a reader
is doing nothing, the RF output power is roughly con-
stant. However when a reader is communicating, this
RF carrier wave is being modulated which changes the
amount of harvested energy. In a multi-node network, the
reader is communicating with different nodes, therefore
harvesting rates continually vary at each node. Third,
even if the node were to wait until it has a certain amount
of energy prior to communication, this requires measure-
ment of energy levels using analog-to-digital conversions
(ADC). Each ADC operation consumes 327 uJ on the
Moo platform [27], which is equal to the energy budget
for transferring 27 bits of data. Such overhead is far too
substantial on a micro-powered platform.

While choosing a smaller transmission unit might
seem like a straightforward solution to this problem, this
over-simplifies the design challenge. As the distance be-
tween the node and reader increases to the limit of the
achievable range in Table 1, the number of bits that can
be successfully transmitted reduces. Thus, we need to
use frames that may be as small as one or a few bits
in size when the energy levels are low, which requires
a network stack that can scale down to unprecedented
levels. But such scale down often comes at the expense
of throughput, which suffers due to the overheads associ-
ated with each transmission, including preambles, head-
ers, and hardware transition overheads. To simultane-
ously optimize throughput, it is important to transmit as
large a transmission as is possible given available energy.
Thus, the problem faced by a node is that it needs to scale
down its transmission unit to the bare minimum under
poor harvesting conditions, while scaling up to improve
throughput when the conditions allow.

Challenge 2: Variable harvesting rate
The energy harvesting rate has significant impact on

the communication throughput, since higher harvesting
rate means that more energy can be used for data transfer.

3

348 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

En
er

gy
 H

ar
ve

st
in

g
R

at
e

(u
W

)

Sleep Time (seconds)

Empirical Curve
Theoretical Curve

(a) Energy harvesting rate curve.

-0.4

-0.2

 0

 0.2

 0.4

 0 2 4 6 8 10

Si
gn

al
 S

tr
en

gt
h

Transmission Time (ms)

transmitted
signal decoding

fails

(b) Decreasing SNR over time.

antenna

matching
circuit

system

energy buffer

reflection

power the system

C

transistor

(c) RF matching circuit.

Figure 3: Factors that impact communication throughput.

While energy harvesting rate might seem like a charac-
teristic of the harvesting source, system parameters have
a surprisingly high impact. Figure 3(a) shows the empir-
ically measured harvesting rate as we vary the amount of
time for which the node replenishes energy between two
transmissions. The results are counter-intuitive — while
one might expect more energy to be harvested over time,
the harvesting rate drops to zero for longer sleep dura-
tions.

This observation can be explained analytically by
looking at how capacitors buffer energy. The charg-
ing process of a capacitor follows its charging equation
V = Vmax(1− e−ts/τ), where ts is the sleep time, τ is the
RC circuit time constant, and Vmax is the maximum volt-
age to which the capacitor can be charged under the cur-
rent harvesting conditions. Its energy harvesting rate fol-
lows the equation: H =C×V 2

max×τ−1(1−e−ts/τ)e−ts/τ .
When the harvesting conditions are constant (i.e. Vmax
and τ are fixed), H is a concave function of ts, which is
shown both analytically and empirically in Figure 3(a).
When harvesting conditions change, both Vmax and τ
change, therefore the maximum operating point changes
as well. Thus, to optimize throughput, it is important to
adapt to current harvesting conditions, and continually
track the maximum harvesting point.

One factor that should not be overlooked is keeping
the overhead of adaptation low. Most methods to track
the charging rate of batteries and capacitors use analog-
to-digital conversions to obtain the voltage at the energy
reservoir. This overhead is minuscule for most platforms,
but a significant part of the harvested energy in our case.
Thus, it is important to minimize such overheads while
adapting to harvesting conditions.

Challenge 3: Time-decaying SNR A peculiar aspect
of backscatter communication is that the signal to noise
ratio (SNR) of the received signal at the reader degrades
steadily as the size of the transmission unit increases.
Figure 3(b) shows that the signal strength of a node re-
sponse decreases gradually from 0.18 at 1.5ms to 0.05
at 8ms during the transmission process. While decoding
the initial part of the transmission is straightforward due

to high SNR, it becomes much more challenging after
about 8ms since the SNR is too low for reliable decod-
ing, resulting in packet losses.

In order to understand why this happens, let us look
at how a backscatter radio works. A backscatter radio
provides power to a passive device and enables commu-
nication. The reader provides a carrier wave, which can
be reflected by a passive device back to the reader with
its own information bits. The modulation is achieved by
toggling the state of the transistor of a backscatter device
shown in Figure 3(c). Since the same RF power source is
shared by different system components, some fraction of
the incoming power is used to operate the micro-powered
device while the rest is reflected back to the reader for
communication. The exact fraction depends on the state
of the energy reservoir C and the state of the matching
circuit, which is designed to charge the energy reservoir
C when the voltage is low. Therefore, when the transmis-
sion begins, C is fully charged, the antenna resistance is
mismatched with the resistance of other hardware com-
ponents of the system. As a result, most of the incoming
power will be reflected back to the reader, which receives
a strong signal that can be easily decoded. As the transfer
progresses, C slowly discharges, and the antenna resis-
tance matches the resistance of the system load. There-
fore, most of the incoming power is harvested to operate
the system, and less RF power is reflected. This leads to
decreased backscatter signal strength at the reader, and
consequently, packet losses. Thus, to ensure that packets
are received successfully, the tag needs to adapt the size
of each packet such that the SNR at the tail of the packet
is higher than the minimum decoding requirement.

Challenge 4: Energy-induced reader to node losses
While time-decaying SNR only presents a problem when
a node communicates with a reader, reader to node com-
munication presents other challenges. The central issue
is that that the energy level on the receiving node might
dip below the low watermark at any point during the re-
ception, at which point the node has to shut off its RF
circuit and go to sleep to recharge. The reader, however,
does not know that the node has gone to sleep, and only

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 349

realizes this fact after a timeout.
While such losses can be attributed to small energy

harvesting variations at longer ranges, we observed to
our surprise that such losses occur even when a tag is
placed relatively close to the reader — 40% losses at 2
ft. The reason for this behavior is that data transfer from
the reader to tag comes at the expense of RF power be-
ing transmitted to the tag. Since the reader is actively
transmitting to the tag, the carrier wave from the reader
to tag is intermittent, causing substantial variations in RF
energy harvesting and consequently variations in energy
levels at the tag.

The energy dynamics at the tag makes it difficult to
use reader-side estimation to identify the best transmis-
sion unit to communicate with a tag. In addition, explic-
itly providing information to the reader about the current
energy level has considerable overhead while not being
robust to dynamics. Thus, the challenge we face is that
the reader needs to have a way of knowing the instanta-
neous energy state at the tag, and detecting its shut-off
point without using cumbersome protocol-level mecha-
nisms to enable this information exchange.

3 Fragmenting packets into µframes

At the heart of QuarkNet is a simple hypothesis —
by breaking down packet transmission into its smallest
atomic units, which we refer to as µframes, we can en-
able the system to scale down to severely limited har-
vesting regimes. We address the challenges in enabling
such extreme fragmentation both for node-to-reader and
reader-to-node communication.

3.1 Fragmentation at bit boundaries
The first question we ask is: what are the practical con-
siderations that determine how we can dynamically frag-
ment a logical transmission unit (packet) into µframes?
Ideally, we would want to insert fragment boundaries at
arbitrary positions within a packet so that we can make
µframes as small or large as needed, however, this makes
decoding extremely error-prone.

To understand where to place fragmentation bound-
aries, we need to give some more detail about how
backscatter modulation works. Figure 4 shows a se-
quence of backscatter pulses that compose bits in a
packet. Backscatter modulation uses On-Off-Keying
(OOK), therefore each bit is composed of a sequence of
on and off pulses. As can be seen, the template for a
’0’ pulse and ’1’ pulse differ only slightly in the phase
information of the pulses within the bit.

The key observation is that placing boundaries at cer-
tain points in a packet can be done without disrupting the
phase information required for decoding, whereas other

0 01 1

positions that can be inserted with sleep gaps

Figure 4: Sleep gaps can be inserted into backscatter pulses at
various position (lines with dots).

boundaries would disrupt decoding. For example, sup-
pose that a fragment boundary is inserted between two
adjacent bits, the phase information of each bit is main-
tained, thereby not impacting the ability to match the
template to the bit. On the other hand, suppose that a
fragment boundary is inserted within a single bit, the
phase information within the bit is disrupted, thereby
causing a mismatch at the decoder between received bit
pulses and its template.

This leads us to a general principle for fragmenting
a packet into µframes — µframe boundaries can be in-
serted between bits but not within a bit. The ability to
fragment at any bit boundary gives us the requisite com-
bination of fine-grained fragmentation as well as low de-
coding error.

3.2 Tuning inter-µframe gap

We now have a method for fine-grained fragmentation of
larger packets, but how do we use this to dynamically
fragment packets? How do we decide the length of each
µframe and the sleep gap between µframes where the
node replenishes energy?

We first answer this question for node-to-reader com-
munication. In this case, we need to address two of the
challenges discussed in §2: a) how to optimize through-
put by operating at the optimal harvesting rate, and b)
how to ensure the tail of each µframe transmitted from
a node has sufficiently high SNR to be decoded at the
reader.

Gradient descent algorithm As can be seen in Fig-
ure 3(a), the harvesting rate curve is a concave function
of the gap between µframes (under constant harvesting
conditions). A fast and effective method for converging
to the optimum of a concave function is to use gradi-
ent descent [2]. The gradient descent algorithm works as
follows: first, we start with an initial guess about the op-
timal sleep gap. Second, we compute the gradient at this
point, and look for the direction of the positive gradient.
Third, we take a step along the direction of the positive
gradient with step size proportional to the gradient. We
repeat this process until convergence (i.e. step is smaller
than a threshold). The algorithm takes large steps when
the gradient is steep (i.e. point is far from optimal), and
small as the gradient reduces (i.e. point is near optimal).

5

350 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

What if the harvesting conditions change and the curve
itself shifts to create a new optimal harvesting point? Our
gradient descent-based sleep gap adaptation algorithm
operates continually — once it converges to the optimal,
it periodically probes the gradient at the current optimal,
and moves along the positive gradient if the optimal har-
vesting rate changes. In this manner, the algorithm seam-
lessly adapts to such dynamics.

Handling time-varying SNR We need to add another
constraint to to the gradient descent algorithm — the
SNR at the tail of the frame should be higher than the
decoding threshold at the reader, otherwise the frame
cannot be decoded. This constraint is easy to add since
it simply translates to a bound on the maximum length
of the inter-µframe gap. Since the length of the gap
directly impacts the length of the µframe, capping the
inter-µframe gap ensures that the length of each µframe
is lower than the decoding threshold. The only change
to the gradient descent algorithm is that a step cannot
exceed the maximum inter-µframe as determined by the
SNR constraint.

Duty-cycling the radio One important aspect of the
inter-µframe gap is that we shut off the node’s RF cir-
cuit for this length of time. In a multi-node environment,
the reader is constantly talking to other nodes, so leaving
the RF circuit on results in substantial reception over-
head since backscatter is a broadcast-based protocol, and
wakes up every node that has its radio circuit turned on.
To avoid these costs, we turn off the RF circuit during the
recharge cycle. Once the node has slept for the intended
duration, it switches on its RF circuit. One side-effect
of our decision to turn off the RF circuit during gaps is
that the reader now has to be more careful to avoid trans-
mitting to a node or scheduling a node for transmission
while it is inactive. We return to this question in §4.2.

3.3 Remote interrupts
We now turn to µframe adaptation for communication
from a reader to a node. As described in §2, the key
challenge is that the reader cannot detect when a node’s
energy level drops below a low watermark, and it should
stop transmitting. Similarly, once a node has gone to
sleep, a reader does not know when it will wake up for
the next µframe. Given these constraints, how can we
enable reader-to-node communication?

Estimating µframe length Our idea is to use a re-
mote interruption mechanism, where a node issues an in-
band interrupt during reader transmission, and informs
the reader that it has reached a low-energy state. This
remote interrupt is generated by toggling its transistor
while receiving the current frame. In other words, the
remote interrupt is a signal that is overlaid on the same

reader's messages

remote interruptions

Figure 5: In-band remote interruptions from nodes.

time-slot and frequency signal as the message from the
reader to node.

How can the reader decode an in-band interrupt from
the node? The key insight is that the reader modulates
the carrier by toggling the carrier wave whereas the node
communicates back to the reader by changing the ampli-
tude of the backscattered signal. In other words, both can
occur simultaneously! Thus, when the reader is sending
an ON pulse, the amplitude of the backscattered signal
that it receives depends on whether the state of the tran-
sistor at the node is ON or OFF — the amplitude is higher
when the node’s transistor is ON and lower when it is
OFF. When the carrier is OFF at the reader, then the state
of the node’s transistor does not matter since there is no
backscattered signal. The reader can detect the remote
interrupt by looking for a large signal variance in the car-
rier wave when the reader has the carrier wave turned on.

Figure 5 shows an example signal where toggling the
transistor causes a large variance on the carrier wave,
which is monitored by a reader and can be identified by
tracking the signal variance within a reader pulse. How-
ever, the signal variance is detected only when the carrier
wave is on. As shown in the figure, a reader cannot ob-
serve the large signal variance when the carrier wave is
off. Fortunately, the carrier wave is on for 50% of the
time when the reader transmits 0s and 75% for 1s. Thus,
as long as a remote interrupt is longer than 50% of the
length of a ’0’ bit from a reader, it can reliably detect the
interrupt and pause its transfer.

Finally, an auxiliary benefit of the remote interrupt is
that it acts as an inexpensive µframe ACK from the node,
which obviates the need for more explicit protocol-level
mechanisms and reduces our overhead.

One limitation of our current design is that it is not
robust to noise spikes in the frequency band. Such
spikes can occur because of multiple readers transmitting
to nodes since backscatter is a broadcast medium and
reader-to-node communication has to be serialized. Ro-
bustness against external interference could be improved
by making the remote interrupt longer and encoding the
signal, but we do not do this in our current implementa-
tion.

Estimating inter-µframe gap We now have a way for
the node to interrupt a reader when it needs to replenish

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 351

energy, but how long should the reader wait before ini-
tiating the next µframe transfer? Clearly, this duration
should be at least as long as the inter-µframe gap that
the node is using, otherwise the reader might be trying
to communicate to a node that has its RF circuit turned
off. We address this by using a simple probing-based
approach at the reader — for each µframe gap that the
reader selects, it knows whether the frame was received
or not by checking the presence of a remote interrupt.
If no remote interrupt is received, the reader knows the
node does not receive the frame properly. The reader
continually adjusts the gap to minimize missed frames at
the node.

4 QuarkNet for multi-node networks

So far, we have focused on communication between a
single node and reader. We now turn to the case where
there are several nodes in the vicinity of a reader. The
key difference between a single node and multi-node
setting is that in the former, the reader stays idle dur-
ing times when the node is asleep to replenish energy,
whereas in the latter, these inter-µframe intervals present
an opportunity to schedule another node’s µframe trans-
fer, thereby ensuring that throughput is maximized.

4.1 Design Options
Before launching into the details of our design, lets step
back and look at the design options. Co-ordination
mechanisms for backscatter networks are more restric-
tive than typical active radio-based networks for two rea-
sons: a) nodes cannot overhear each other’s transfer,
hence carrier sense-based approaches are infeasible, and
b) the stringent resource constraints of nodes render ap-
proaches that require complex coding and synchroniza-
tion infeasible. As a result, existing proposals have fo-
cused on two classes of techniques — EPC Gen 2 and
variants which use a sequence of random-access slots,
and rateless transfer where nodes transfer concurrently,
and the reader simultaneously and successively decodes
all transmissions.

While the deficiencies of EPC Gen 2 for severely en-
ergy constrained regimes have been detailed earlier in
this paper, other alternatives and enhancements are sur-
prisingly poor in dealing with this regime as well. In par-
ticular, consider two prominent recent techniques — Flit
[12] and Buzz [23]. Our earlier work, Flit, re-purposes
EPC Gen 2 slots for bulk transfer, thereby amortizing
overhead, but it assumes that nodes are able to sustain a
long stream of transfer, which we realized was not the
case in severe harvesting conditions. Buzz uses rateless
codes, but in-order to get these codes to work, it has
to use synchronous single-bit slots across nodes. Each

single-bit slot incurs substantial overhead due to slot in-
dicators, and turning on and off the radio, which dra-
matically impacts performance. Given that existing ap-
proaches are not well-suited to our nodes, the question is
what protocol to use for co-ordinating nodes.

4.2 Variability-aware node scheduling

Our scheduler is designed to interleave µframes from
different nodes, thereby fully utilizing the inter-µframe
gaps. The reader divides time into variable-sized µslots,
during which it explicitly schedules a single node to
transmit its µframe. The length of each µslot depends
on the size of the µframe — a node-to-reader µframe
terminates when the node reaches its low watermark en-
ergy level and the reader ACK is received, and a reader-
to-node µframe terminates when the node issues a re-
mote interrupt. In both cases, there is a maximum bound
on the µframe size to deal with nodes that have plentiful
energy.

While the µslot mechanism appears relatively
straightforward, the main challenge is handling the fact
that nodes turn off their RF circuit when they are asleep.
As a result, if a node is scheduled too early by the reader,
then it may not be awake to utilize the slot, but if it is
scheduled too late, then it is not operating at its maximal
harvesting rate.

To handle this, we use a token-based scheduler to deal
with the stochastic nature of harvesting conditions, while
optimizing throughput. For each node, the scheduler
maintains a running estimate of the gap between µslots
assigned to a specific node, and whether the µslot re-
sulted in a successful transfer. It uses the estimate to se-
lect the inter-µframe gap that ensures a high likelihood
of obtaining a node response.

The reader’s estimate of the inter-µframe gap is used
as input to a token bucket scheduler, which assigns to-
kens to nodes at a rate inversely proportional to its inter-
µframe gap. Once a node has accumulated sufficient to-
kens, it is likely to have woken up after sleep, therefore
the reader places the node into a ready queue since it is
ready to be scheduled. The ready nodes can be sched-
uled based on a suitable metric — for example, the high-
est throughput node may be selected from the queue to
maximize throughput, or the node that has received least
slots may be selected for fairness.

5 Implementation

In this section, we describe key implementation details
not covered in earlier sections. We use the USRP reader
and UMass Moo for our instantiation of QuarkNet. The
source code of QuarkNet is available at [3].

7

352 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.1 Platforms

USRP Reader QuarkNet is built based on the USRP
software radio reader developed by Buettner [9] with
a ANT-NA-2CO antenna [4]. We modify the signal
processing pipeline to enable variable sized µframe de-
coding, harvesting-aware tag scheduling, and detection
of in-band remote interrupts. The RFX900 USRP RF
daughterboard on our platform is only able to transmit
200mW of power, which is 5× smaller than the 1W of
power issued by a commercial reader. Therefore, we at-
tach a 3cm×3cm solar panel to each Moo to increase the
amount of harvested energy. The use of hybrid power
(RF + ambient) is known to increase range from a reader,
which enhances the regimes where backscatter can be
used [11].

Backscatter node The UMass Moo is a passive com-
putational RFID that operates in the 902MHz ∼ 928MHz
band. Perhaps the most challenging aspect of our imple-
mentation is debugging under extreme low energy con-
ditions. Traditional methods for debugging embedded
systems, such as using JTAG, supply power to the node
and change its behavior. Instead, we instrument the Moo
to toggle GPIO pins at key points during its execution,
and a logic analyzer to record the toggle events. In many
cases, however, it is difficult to insert sufficient instru-
mentation to have visibility while still working with tiny
energy harvesting levels. Thus, intuition and experience
is particularly important in designing systems for these
regimes.

5.2 Trimming Overheads
One important aspect of our system is careful measure-
ment and tuning of all overheads, which impacts our abil-
ity to scale-down to severe harvesting conditions.

Radio transition overhead: An important source of
overhead is transition times for turning on or off the ra-
dio. Fortunately, since hardware timers are responsible
for generating the pulses on the backscatter radio, sleep
gaps can be inserted by clearing the hardware timers and
turning the micro-controller into its low power mode.
These operations are inexpensive energy-wise, and con-
sume roughly the same amount of energy as a data frame
of size 3 bits. Note that this observation does not hold
for more complex active radios — for example, a WiFi
radio takes 79.1ms to be on, and 238.1ms to be turned
off [13], which is five orders of magnitude higher than
the corresponding numbers for a backscatter radio.

Pilot tone: Each backscatter frame can potentially in-
clude a pilot tone in addition to the payload. A pilot tone
is used when a tag changes its baud rate [19]. We fo-
cus on a minimalist protocol that uses a fixed baud rate,

therefore we remove the pilot tone. The total overhead
per µframe is 6 bits of preamble, in contrast to the 22
bits overhead of EPC Gen 2 (and variants such as Flit
[12]).

Probing energy state: As mentioned earlier, analog-
to-digital conversions are expensive, and should be
avoided while tracking the maximum energy harvesting
rate. Our key insight is that rather than measure the volt-
age on the node, we can leverage the existing low water-
mark threshold detector that is already present on such
nodes. Such a detector is common on harvesting-based
sensor platforms for two reasons: a) the platform needs
to know when to save state and go to sleep to avoid an
outage, and b) the platform needs to know when to wake
up after sleep to continue operation. Thus, QuarkNet
gets an interrupt both when the voltage crosses above the
threshold, as well as when it drops below the threshold,
and uses this information as a one-bit proxy for the ac-
tual voltage. The voltage threshold is chosen to be 2V
which is slightly higher than 1.8V, the minimum voltage
required for operating a micro controller. This informa-
tion is input to a sleep time tracker, which determines
how long to wait after crossing the threshold in the up-
ward direction before initiating transfer. Our approach is
100× less expensive energy-wise than an ADC conver-
sion.

5.3 Protocols and Algorithms
While we do not describe the complete protocol in the
interest of space, more details as well as pseudocode for
our algorithms can be found in our technical report [28].

6 Evaluation

The evaluation consists of three parts: 1) demonstrating
the range and throughput benefit of µframe transmission,
2) benchmarking the performance of our reader-to-node
communication, and 3) evaluating the benefit of inter-
leaving µframes from multiple nodes.

6.1 Benefit of µframes
In this section, we validate our claim that the ability to
breakdown packets into µframes that can be as small as
a single bit can allow us to operate under lower energy
conditions and achieve higher operating range. To focus
on the effect of the choice of frame size, we strip off over-
heads (slot indicators, handshakes, etc) for all protocols
that we compare.

Minimum operating conditions We look at two har-
vesters — RF and solar — and ask what is the minimum
power requirements for different approaches. We find

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 353

that the minimum illuminance required for a 1 bit µframe
is 150 lux, which is 13× lower than the 2000 lux bud-
get of 12 byte packet transmission (the same packet size
used by EPC Gen 2, Dewdrop, Flit, etc). We choose 12
byte packet size for EPC Gen 2-based protocols because
the 12 byte EPC identifier needs to be transmitted in a
singulation phase prior to executing Read or Write com-
mands. Thus, this packet is the bottleneck for operation.
To translate from lux to the typical energy available from
indoor energy sources, we measure the natural indoor il-
luminance in 30 positions in an office room. We find that
92% the measured illuminance value is between 150 lux
and 1000 lux. This suggests that µframes can operate
in most of natural indoor illuminance conditions while a
canonical 12 byte transfer scheme can almost never op-
erate under natural indoor light.

The minimum RF power required for a 1 bit µframe
is 13dBm, which is 20× smaller than the 26dBm bud-
get of a 12 byte packet transmission that is the minimum
needed for EPC Gen 2 and its variants to operate. Both
experiments illustrate the benefits of using tiny µframes.

Increased operational range Our second claim is that
we can improve operational range by using µframes.
Figure 6 shows the maximum range that is achieved by
QuarkNet with 1 bit µframes, EPC Gen 2 with fixed
12 byte packets, Dewdrop with fixed 12 byte packets,
Buzz with two slot choices, and a battery-assisted node
which represents the best-case scenario. We adjust the
RF power of the USRP RFID reader from 17dBm to
25.7dBm, which represents the range of RF power that
can be generated by the USRP RFX900 daughterboard.

The results show that the communication range of
QuarkNet is longer than other schemes across all RF
power levels. At the lowest power level (17.5dBm),
µframes do not improve range since the node is not able
to decode the reader signal beyond 5ft. But as the RF
level increases, the operational range increases dramat-
ically, and is about 4× longer than EPC Gen 2 at the
highest power. In fact, the performance of 1 bit µframe
transfer while using harvested energy almost matches the
performance of a battery-assisted node, which shows that
we are able to reach the ceiling of operational range de-
spite operating on micro-power.

Figure 6 also shows that Buzz [23] performs poorly
compared to other schemes. This can be attributed to the
fact that each one-bit slot in Buzz has substantial over-
head — the reader sends a pulse, followed by one bit
from the node, random number generation for deciding
whether to transfer in the next slot, and a recharge pe-
riod. Thus, while Buzz has high range in some settings,
the overhead is too high to scale gracefully.

 0

 5

 10

 15

 20

 25

 30

 17 18 19 20 21 22 23 24 25 26

D
is

ta
nc

e
(fe

et
)

RF Power (dBm)

EPC Gen 2
Dewdrop

Buzz (0.3kbps)
Buzz (0.1kbps)

QuarkNet
Battery

Figure 6: The maximum range achieved by EPC Gen 2, Dew-
drop, Buzz, QuarkNet, and a battery assisted node. QuarkNet
operates at ranges close to the battery assisted node.

6.2 Benefits of µframe adaptation
We now turn to the benefits of adapting the inter-µframe
gap to maximize throughput.

Convergence of gradient descent How well does the
gradient-descent algorithm learn the optimal harvesting
rate? Figure 7 shows the results for a node placed in three
RF+light harvesting combinations that include short and
medium range, and low and medium light. In all cases,
we see convergence to close to the optimal point — the
best inter-µframe gap ranges from 0ms for 350lux at 1
foot since there is enough power to continuously operate
the node, 4ms when the node is moved to 6ft, to 12ms
when the light conditions dip further. In all cases, our
tracking algorithm converges in very few steps (≤ 4).

Throughput benefits We now know that QuarkNet
picks close to the optimal harvesting rate, but what are
the benefits in terms of throughput? To understand this,
we place a node 3 feet from a reader, vary RF power from
17dBm to 26dBm in small steps of 0.3dBm, and inven-
tory the node 2000 times for each scheme. Figure 10(a)
shows the throughput achieved by EPC Gen 2, Dewdrop,
Flit, and QuarkNet. We find that the throughput achieved
by QuarkNet is higher than EPC Gen 2, Dewdrop and Flit
across all RF power levels. The average communication
throughput of QuarkNet is 18kbps, 10.5× higher than
EPC Gen 2, 5.8× higher than Dewdrop, and 3.3× higher
than Flit. While the figure does not show Buzz’s through-
put, note that Figure 6 already showed that this number
is low since the per-slot overhead dominates. The lowest
slot size we achieved in our implementation of Buzz is
3ms, which means about 0.3kbps throughput.

The previous experiments were done by varying the
RF power level. To be sure that these results translate to
the case where nodes are placed at different locations in
front of a reader, we measure the throughput achieved by
EPC Gen 2, Dewdrop, Flit, and QuarkNet at 30 different
randomly chosen locations between 2 to 13 ft in front of
a reader. Figure 8 shows that the throughput achieved by

9

354 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Sleep Time (log(ms))

350lux at 1ft
350lux at 6ft
150lux at 6ft

Figure 7: Throughput achieved for dif-
ferent sleep times (inter-µframe gaps).
The sleep time chosen by QuarkNet is
within 98% of the optimal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Throughput (kbps)

EPC Gen 2
Dewdrop

Flit
QuarkNet

Figure 8: Throughput achieved by EPC
Gen 2, Dewdrop, Flit, and QuarkNet
across 30 locations. QuarkNet has at
least 4.4× higher throughput than other
schemes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (k

bp
s)

Distance (feet)

QuarkNet
100 bits packet

Write CMD+battery

Figure 9: Throughput of reader-to-node
communication. QuarkNet has 2× higher
throughput than battery-assisted EPC Gen
2 Writes.

 0

 5

 10

 15

 20

EPC
 Gen 2

Dewdrop Flit QuarkNet

Th
ro

ug
hp

ut
 (k

bp
s)

Scheme

(a) QuarkNet vs micro-powered nodes.

 0

 5

 10

 15

 20

Dewdrop +adaptive
 uframe

+adaptive
 SNR

QuarkNet

Th
ro

ug
hp

ut
 (k

bp
s)

Scheme

(b) QuarkNet vs Dewdrop.

 0

 5

 10

 15

 20

 25

 30

EPC Gen 2
 + battery

Flit
 +battery

QuarkNet
 +battery

QuarkNet

Th
ro

ug
hp

ut
 (k

bp
s)

Scheme

(c) QuarkNet vs battery assisted nodes.

Figure 10: For micro-powered devices, QuarkNet improves throughput by at least 3.3× over all other schemes, and even performs
better than battery assisted nodes. The benefit comes from reducing overhead, and adapting µframe sizes to energy and SNR.

QuarkNet is higher than the other three schemes across
all locations. The average throughput of QuarkNet is
7.8× higher than EPC Gen 2, 6.4× higher than Dewdrop,
and 4.4× higher than Flit. In particular, QuarkNet con-
tinues to operate in many locations where other schemes
cease to operate.

Breaking down the benefits QuarkNet has a variety
of optimizations including reduced overheads, variable-
sized µframes, and SNR adaptation. To understand the
contributions of these techniques to throughput, we start
with the default implementation of Dewdrop, and add
one optimization at a time: a) Dewdrop + adaptive frame,
which includes variable-length µframes, and b) Dew-
drop + SNR adaptation which includes the SNR adapta-
tion. Figure 10(b) shows the throughput achieved by the
three variants of Dewdrop vs QuarkNet. Clearly, each
of the optimizations plays a major role in the through-
put improvements observed by QuarkNet. The average
communication throughput of µframe is 18kbps, 5.79×
higher than Dewdrop, 1.37× higher than Dewdrop with
adaptive µframes, and 1.14× higher than the case when
SNR adaptation is included. In the final step, we re-
place Dewdrop’s adaptation algorithm with our version
that eliminates ADC conversions to get QuarkNet.

QuarkNet vs battery-assisted alternatives Another
interesting question is how QuarkNet performs when

compared to battery-assisted versions of the other proto-
cols (excluding Dewdrop + battery, which is identical to
EPC Gen 2 + battery). Some protocols, such as Flit [12],
improve in performance when there is more energy since
there is more opportunity for bulk transfer. Would these
outperform QuarkNet in battery-assisted scenarios? Fig-
ure 10(c) shows that throughput achieved by QuarkNet is
consistently better. The average throughput of QuarkNet
is 18kbps, 3.75× higher than EPC Gen 2 + battery, and
1.87× higher than Flit + battery. This result shows the
benefit of reducing per-frame overheads in QuarkNet.

6.3 Reader-to-node communication

We now turn to an evaluation of reader-to-node commu-
nication. We begin by looking at the effectiveness of re-
mote interrupts. We find that remote interrupts are ex-
tremely reliable — the reader detects remote interrupts
with 100% accuracy across all distances where the node
can communicate with the reader, and detection rate di-
rectly drops to 0% at roughly 19 – 20 feet where the node
cannot detect the signal sent by the reader. While the ac-
curacy will degrade under external interference, we plan
to extend remote interruption to include encoded bits to
improve robustness.

Next, we look at the throughput of reader-to-node

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 355

communication when a node is placed at different dis-
tances from the reader. Figure 9 shows that the through-
put achieved by QuarkNet is always higher than fixed
100 bit transfer across all distances. (We chose 100 bits
instead of 12 bytes because of the slower baud rate of the
reader-to-node link, as a result of which 12 byte transfer
ceases to operate even when the node is deployed 1 feet
from the reader.) The throughput of QuarkNet is higher
than even a battery-assisted EPC Gen 2 node. This shows
that the benefit of variable sized µframes is substantial
even for reader-to-node communication.

One trend in the graph that requires a bit more expla-
nation is the fact that throughput decreases rapidly when
the node is close to the reader (less than 4 feet), and
plateaus until about 18 ft after which it quickly drops
to zero. This is because RF-harvesting only works un-
til 4ft (because of the limitations of the USRP reader),
and beyond this distance, indoor light harvesting plays
the dominant role.

6.4 Evaluating the QuarkNet MAC layer
We now turn to the evaluation of our MAC layer
that includes all components of the protocol includ-
ing various co-ordination overheads, frame interleaving,
and scheduling. Figure 11 shows the communication
throughput when we deploy 10 nodes in front of the
reader and adjust the RF power from 17dBm to 26dBm.
We use a throughput-maximizing scheduling policy in
this experiment. For each RF power level, we plot the
averaged throughput across the ten nodes and the confi-
dence interval when they are scheduled in an interleaved
manner and when they are inventoried individually. The
throughput achieved by other MAC layer designs — EPC
Gen 2 and Flit — are close to zero, so we do not plot
them.

We find that even at the lowest RF power level, almost
all nodes get to transmit data to the reader, and the aver-
age throughput steadily increases with higher RF power.
In addition, the throughput achieved by interleaving the
10 nodes is 5.4× higher than the throughput when those
10 nodes are inventoried individually. These results show
that our algorithm scales well across a wide dynamic
range of harvesting conditions, and uses gaps between
µframes efficiently.

6.5 Microbenchmarks
Table 2 shows the overhead incurred by different compo-
nents of QuarkNet. The biggest system overhead is the
switch from inactive mode to transmission mode (47.5
us), to configure several registers associated with trans-
mission, such as the hardware timer register and data reg-
ister. The overhead of the entire µframe size and inter-

 0

 5

 10

 15

 20

 25

 30

 17 18 19 20 21 22 23 24 25 26

Th
ro

ug
hp

ut
 (k

bp
s)

RF Power (dBm)

Individual
Interleaving

Figure 11: Throughput of 10 nodes is 5.4× higher when in-
terleaved than when individually inventoried.

Table 2: Overhead of µframe transmission.
System overhead (us) µframe overhead (us)
TX to inactive 9.9 interrupt config 10.58
inactive to TX 47.5 handle interrupt 9.3

RX to TX 4.08 µframe adaptation 24.3
sleep to wakeup 9.83 voltage detection 3

µframe gap adaptation algorithm (47.2us), is compara-
ble to the total system overhead, and 10× smaller than
the cost of an ADC conversion. Overall, the results show
that our performance tuning measures have substantial
benefits — the sum total of these overheads is smaller
than the cost of transmitting 7 bits.

7 Discussion

Interoperability with other PHY mechanisms While
our work does not explicitly address co-existence of
QuarkNet with other physical layer and upper layer
mechanisms, many of these can be easily layered above
the methods described in this paper. For example,
rate adaptation is widely used to adapt to wireless
channel conditions, thereby maximizing communication
throughput. This method operates at the bit-level, where
each bit is composed of several symbols. Such an ap-
proach can be layered above QuarkNet, with gaps intro-
duced between bits. Similarly, error correction codes or
other encoding mechanisms that reduce bit error rate can
be implemented above QuarkNet.

QuarkNets role with evolving technology As micro-
harvesters continue to improve in efficiency, one ques-
tion is whether QuarkNet will continue to remain rele-
vant. We argue that QuarkNet’s relevance will increase
for two reasons. First, the maximum harvesting rates are
fundamentally limited by the physics of the harvesting
source and form-factor. For example, RF energy harvest-
ing is limited by the antenna size and the amount power
issued by antennas, solar energy harvesting is limited by
the panel size and the intensity of illuminance, and ther-
mal energy harvesting is limited by the surface area and

11

356 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the temperature differential. Even if micro-harvesters be-
come extremely efficient (say upwards of 80%), there is
still a small amount of energy available, and systems op-
timizations similar to QuarkNet are critical to using the
energy in an efficient manner. Second, trends in nano-
electronics and low-power embedded systems are result-
ing in sensing and computing platforms that consume
only tens of micro-watts of power [1]. These trends will
make it possible to design many more micro-power based
applications such as implantables and on-body sensors,
enhancing the relevance of QuarkNet.

Fragmenting other tasks While our focus in this pa-
per is on fragmenting the network stack, the abstraction
of task fragmentation presented by QuarkNet can be po-
tentially used for breaking down other components of a
task such as sensing and computation into smaller atomic
units. In our position paper [29], we presented prelimi-
nary results that demonstrated the ability to fragment an
image sensing task such that the entire sensor can op-
erate with a 3cm×3cm solar panel under natural indoor
illuminance. However, many questions remain to fully
enable such fragmentation, requiring a combination of
architectural modifications to the sensing and computing
blocks to facilitate fine-grained fragmentation, systems
techniques similar to QuarkNet that can take advantage
of the fragmentation capability, as well as data process-
ing techniques to enable useful applications over a layer
that dynamically fragments sensing tasks.

8 Related Work

We have already discussed Dewdrop, Flit, Buzz, and
EPC Gen 2, so we focus on other approaches.

Computational RFIDs (CRFIDs) There has been in-
creasing emphasis on CRFIDs in recent years given
its potential for battery-less perpetual sensing. Ambi-
ent Backscatter [16] uses the backscatter of FM signals
for short-range communication between tags. This is
a severely energy limited platform, and could leverage
QuarkNet when harvested energy is low. BLINK [30]
is a bit-rate and channel adaptation protocol to maxi-
mize communication throughput, which can also lever-
age QuarkNet for performance. [20] introduces a power-
optimized waveform which is a new type of multiple-
tone carrier and modulation scheme that is designed to
improve the read range and power efficiency of charge
pump-based passive RFIDs. [21] presents a system ar-
chitecture for backscatter communication which reaches
100m communication distance at the cost of slow bit rate
(10 bits per second). Such techniques are complemen-
tary to QuarkNet — each bit transmitted at slow bit rate
can be fragmented into several segments where the in-
formation within each bit is still preserved. Also of note

is MementOS [18], which uses non-volatile flash storage
for checkpoints within a task such that the it can continue
execution after an outage. Flash checkpointing is useful
for outage tolerance but is more than the cost of trans-
mitting an entire EPC Gen 2 packet, hence it has limited
utility in our case.

EPC Gen 2 optimizations Much of the work on
backscatter communication is specific to EPC Gen 2
tags, for example, better tag density estimation [22], bet-
ter search protocols to reduce inventorying time [14],
better tag collision avoidance [17], more accurate tag
identification [26], better recovery from tag collisions
[6], and more efficient bit-rate adaptation [30]. None
of these tackle the problem of maximizing range and
throughput from RFID-scale sensors, which have the
ability to offload sensing data back to a reader.

EPC Gen 2 supports tag user memory operations in
addition to simple EPC queries including the Read and
Write command, however they are second-class citizens
in the protocol since the main goal is to inventory tags.
As a result, both are inefficient primitives for data trans-
fer from tag to reader or vice-versa. In our experiments,
we found that the Read and Write commands simply do
not work at all under low energy conditions.

9 Conclusion

In this paper, we present a powerful network stack,
QuarkNet, that can enable systems to seamlessly scale
down to severe harvesting conditions as well as substan-
tial harvesting dynamics. At the core, our approach de-
constructs every packet into µframes, handles dynamics
with variable-sized µframes, and maximizes throughput
via low-cost adaptation algorithms and interleaving of
µframes. Results show that QuarkNet provides substan-
tial benefits in pushing the limits of micro-powered de-
vices, and allow them to perform useful work under more
extreme environments than previously imagined possi-
ble. Our network stack tolerates such conditions, thus
makes it valuable to a wide range of emerging micro-
powered embedded systems and applications.

Acknowledgements

This research was partially funded by NSF grants CNS-
1218586, CNS-1217606, and CNS-1239341. We thank
our shepherd Shyam Gollakota for providing guidance
in preparing our final draft and the anonymous reviewers
for their insightful comments. We also thank Michael
Buettner for extensive and insightful comments, Jeremy
Gummeson for help in Flit implementation, and Jue
Wang for assistance with Buzz.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 357

References
[1] Advanced Self-Powered Systems of Integrated Sensors and Tech-

nologies. http://assist.ncsu.edu.

[2] Gradient descent. http://en.wikipedia.org/wiki/

Gradient_descent.

[3] Source code of QuarkNet. https://github.com/

pengyuzhang/QuarkNet.

[4] ThingMagic Bistatic Antenna. http://buyrfid.com/.

[5] WISP: Wireless Identification and Sensing Platform. http://

seattle.intel-research.net/wisp/.

[6] C. Angerer, R. Langwieser, and M. Rupp. Rfid reader receivers
for physical layer collision recovery. IEEE Transactions on Com-
munications, 2010.

[7] S. Bandyopadhyay and A. Chandrakasan. Platform architecture
for solar, thermal and vibration energy combining with mppt and
single inductor. In VLSI Circuits (VLSIC), 2011 Symposium on,
pages 238–239. IEEE, 2011.

[8] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: an
energy-aware runtime for computational rfid. In USENIX NSDI,
2011.

[9] M. Buettner and D. Wetherall. A software radio-based uhf rfid
reader for phy/mac experimentation. In RFID (RFID), 2011 IEEE
International Conference on, pages 134–141. IEEE, 2011.

[10] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang,
and G. Zussman. Challenge: ultra-low-power energy-harvesting
active networked tags (enhants). In Proceedings of the 15th an-
nual international conference on Mobile computing and network-
ing, pages 253–260. ACM, 2009.

[11] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the limits
of effective hybrid micro-energy harvesting on mobile crfid sen-
sors. In Proceedings of the 8th international conference on Mo-
bile systems, applications, and services, pages 195–208. ACM,
2010.

[12] J. Gummeson, P. Zhang, and D. Ganesan. Flit: A bulk trans-
mission protocol for rfid-scale sensors. In Proceedings of the
10th international conference on Mobile systems, applications,
and services, pages 71–84. ACM, 2012.

[13] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance and power
characteristics of 4g lte networks. In Proceedings of the 10th in-
ternational conference on Mobile systems, applications, and ser-
vices, pages 225–238. ACM, 2012.

[14] C. Law, K. Lee, and K. Siu. Efficient memoryless protocol for tag
identification. In Proceedings of the 4th international workshop
on Discrete algorithms and methods for mobile computing and
communications, pages 75–84. ACM, 2000.

[15] Y. Lee, G. Kim, S. Bang, Y. Kim, I. Lee, P. Dutta, D. Sylvester,
and D. Blaauw. A modular 1mm¡ sup¿ 3¡/sup¿ die-stacked sens-
ing platform with optical communication and multi-modal energy
harvesting. In Solid-State Circuits Conference Digest of Techni-
cal Papers (ISSCC), 2012 IEEE International, pages 402–404.
IEEE, 2012.

[16] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R.
Smith. Ambient backscatter: wireless communication out of thin
air. In Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 39–50. ACM, 2013.

[17] V. Namboodiri and L. Gao. Energy-aware tag anticollision proto-
cols for rfid systems. Mobile Computing, IEEE Transactions on,
9(1):44–59, 2010.

[18] B. Ransford, J. Sorber, and K. Fu. Mementos: System support for
long-running computation on rfid-scale devices. ACM SIGPLAN
Notices, 47(4):159–170, 2012.

[19] K. E. Sundstrom, S. A. Cooper, A. Sarajedini, A. Esterberg, T. E.
Humes, and C. J. Diorio. Rfid reader systems detecting pilot tone,
Jan. 8 2013. US Patent 8,350,665.

[20] M. S. Trotter, J. D. Griffin, and G. D. Durgin. Power-optimized
waveforms for improving the range and reliability of rfid systems.
In RFID, 2009 IEEE International Conference on, pages 80–87.
IEEE, 2009.

[21] G. Vannucci, A. Bletsas, and D. Leigh. A software-defined radio
system for backscatter sensor networks. Wireless Communica-
tions, IEEE Transactions on, 7(6):2170–2179, 2008.

[22] H. Vogt. Efficient object identification with passive rfid tags. Per-
vasive Computing, pages 98–113, 2002.

[23] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and
reliable low-power backscatter networks. ACM SIGCOMM Com-
puter Communication Review, 42(4):61–72, 2012.

[24] A. Yakovlev, S. Kim, and A. Poon. Implantable biomedical de-
vices: wireless powering and communication. Communications
Magazine, IEEE, 50(4):152–159, 2012.

[25] D. Yeager, J. Holleman, R. Prasad, J. Smith, and B. Otis.
Neuralwisp: A wirelessly powered neural interface with 1-m
range. Biomedical Circuits and Systems, IEEE Transactions on,
3(6):379–387, 2009.

[26] D. Zanetti et al. Physical-layer identification of uhf rfid tags. In
ACM MobiCom, 2010.

[27] H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A bat-
teryless computational rfid and sensing platform. Technical re-
port, Tech. Rep. UM-CS-2011-020, UMass Amherst Department
of Computer Science, 2011.

[28] P. Zhang and D. Ganesan. Enabling bit-by-bit backscat-
ter communication in severe energy harvesting environ-
ments. Technical report, School of Computer Science, UMass
Amherst. URL: http://cs.umass.edu/~pyzhang/papers/
QuarkNet-tech-report.pdf, 2014.

[29] P. Zhang, D. Ganesan, and B. Lu. Quarkos: Pushing the operat-
ing limits of micro-powered sensors. In Proceedings of the 14th
USENIX conference on Hot Topics in Operating Systems, pages
7–7. USENIX Association, 2013.

[30] P. Zhang, J. Gummeson, and D. Ganesan. Blink: A high through-
put link layer for backscatter communication. In Proceedings
of the 10th international conference on Mobile systems, applica-
tions, and services, pages 99–112. ACM, 2012.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 359

Full Duplex MIMO Radios

Dinesh Bharadia
dineshb@stanford.edu

Stanford University

Sachin Katti
skatti@stanford.edu
Stanford University

Abstract
This paper presents the design and implementation of
the first in-band full duplex WiFi-PHY based MIMO ra-
dios that practically achieve the theoretical doubling of
throughput. Our design solves two fundamental chal-
lenges associated with MIMO full duplex: complexity
and performance. Our design achieves full duplex with a
cancellation design whose complexity scales almost lin-
early with the number of antennas, this complexity is
close to the optimal possible. Further we also design
novel digital estimation and cancellation algorithms that
eliminate almost all interference and achieves the same
performance as a single antenna full duplex SISO sys-
tem, which is again the best possible performance. We
prototype our design by building our own analog circuit
boards and integrating them with a WiFi-PHY compati-
ble standard WARP software radio implementation. We
show experimentally that our design works robustly in
noisy indoor environments, and provides close to the ex-
pected theoretical doubling of throughput in practice.

1 Introduction

Full duplex radios have garnered significant attention re-
cently in academia and industry [17, 11, 23, 22, 16, 19,
18, 15, 29, 20, 26, 24]. Several efforts are now under-
way to include full duplex technology in future cellular
5G standards [3], as well as explore applications of the
technology in current wireless infrastructure. However
these efforts are hampered by the fact that there aren’t
viable and efficient full duplex designs that can work in
conjunction with MIMO. Specifically, no current practi-
cal designs are known which can enable one to build a
M antenna full duplex MIMO radio that can transmit and
receive from all antennas at the same time and double
the throughput. The best known prior MIMO full duplex
system, MIDU [11] requires 4M antennas for building a
full duplex M antenna MIMO radio, and even then fails
to provide the needed self-interference cancellation for
WiFi systems (20 MHz bandwidth) to achieve the ex-
pected doubling of throughput.

Recent work has however demonstrated that a single
antenna (SISO) full duplex system is practically possi-
ble [14]. Specifically, it demonstrates the design and
implementation of a cancellation system for a SISO sys-
tem that completely cancels self-interference to the noise
floor and consequently achieves the theoretical doubling

A1 A2

3 Antenna Full Duplex MIMO Radio

A3

Self talk Self talk Self talk

Cross talks

Cross talks Cross talks

Figure 1: Shows a 3 Antenna MIMO Full Duplex node,
with different interference’s referred as talk. Every chain
sees 2 other cross-talks other than the self-talk.

of throughput. A natural question therefore is why not
just replicate the same design M times to build a MIMO
M full duplex radio? After all, a MIMO radio can be
conceptually and physically viewed as a collection of M
single antenna SISO full duplex radios.

The challenge is cross-talk interference as seen in
Fig. 1. When a full duplex MIMO radio transmits, the
transmission from any one of the M antennas (inter-
changeably referred to as transceiver chains) propagates
to the other antenna (chains) and causes a large amount
of interference. For the sake of clarity, in this paper
we will refer to the self-interference at a receive chain
caused by a transmission from the TX-chain with which
the receive chain shares an antenna as “self-talk”, and
the interference from a neighboring TX chain’s transmis-
sion as “cross-talk”. Since MIMO antennas are closely
spaced due to size constraints, this cross-talk is ex-
tremely strong, almost 75-80dB stronger than the de-
sired signal that is being received on that chain. Con-
sequently, even if we have cancellation circuits and al-
gorithms that cancel every chain’s self-talk, there is an
extremely strong cross-talk interference that can saturate
the receive chain.

A naive solution is to introduce a separate copy of the
cancellation circuit and DSP algorithm for each pair of
chains that experiences cross-talk. If there are M anten-
nas, then it would imply a total of M2 circuits and DSP
algorithms. In other words complexity grows quadrati-
cally with the number of antennas, which is untenable as
MIMO systems go towards 4 to 8 antennas. Supporting
16 cancellation circuits and DSP implementations (for 4
antenna MIMO) on even a WiFi AP based form-factor
is untenable (our analysis suggested that with the current
SISO design we would need 400sq.cm of analog circuit
area and a high-end Virtex FPGA that consumes 80W
of power to accommodate the DSP computations). Com-

360 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

plexity impacts more than space and power consumption,
cancellation systems (both analog and digital) need to be
tuned continuously to adapt to environmental changes.
The time for tuning scales linearly with the complex-
ity, hence it would take M2 time longer to tune such
a design’s MIMO self-interference cancellation system.
The best known prior algorithm for tuning [14] requires
around a millisecond to tune, so we would need 16 ms
to tune for a 4 antenna MIMO system which would be
untenable even in a slowly changing environment like
indoor WiFi (coherence times are on the order of tens
of milliseconds), let alone mobile environments such as
LTE.

A second problem is performance itself. The key met-
ric is the residual interference left after cancellation at
each receive chain, the residual directly translates to de-
crease in SNR for the desired received signal. As we
will show in Sec. 3, even if one could accommodate a
quadratic number of circuits and DSP cancellation im-
plementations, the performance degrades linearly with
the number of MIMO chains. In other words, the resid-
ual interference after cancellation at each receive chain
increases linearly with M. This is due to the accumu-
lation of the residual interference from all the cross-talk
and self talk cancellation systems. Once again, as MIMO
systems scale to support many antennas, this essentially
limits the performance gains of full duplex.

This paper presents the design and implementation of
a MIMO WiFi full duplex radio. Our M antenna full
duplex MIMO radio uses each antenna for simultaneous
transmit and receive, i.e., it uses the same number of an-
tennas as a standard half duplex M-antenna MIMO radio
unlike prior designs. The design uses slightly more than
M× cancellation circuits and DSP algorithms (w.r.t to
SISO full duplex design) to cancel all the self and cross
talks. In other words, complexity scales linearly with
the number of chains, which is the best performance one
could expect. Further, the performance does not degrade
linearly with the number of MIMO chains, i.e., the resid-
ual interference is the same as the SISO design and does
not increase linearly with the number of chains. We pro-
totype our design and integrate it with the off-the-shelf
WARP software radios [6] running a stock WiFi base-
band and demonstrate experimentally that it achieves
close to the theoretical doubling of throughput.

Our design solves the key challenge of efficiently and
effectively achieving the MIMO full duplex using two
major ideas as follows.
• First, a key insight is that MIMO chains are co-located,

i.e., “they share a similar environment”. Intuitively, the
signals transmitted by two neighboring antennas (sep-
arated by a few cm) go through a similar set of reflec-
tors and attenuations in the environment [21]. Can-
cellation systems are essentially trying to model these

distortions, so when we want to model cross-talk, we
can reuse the work that has been done for modeling
the chain’s own self-talk interference. This results in
a novel “cascaded” filter structure for cancellation that
results in an overall design that has near-linear com-
plexity scaling with the number of MIMO antennas.

• Second, the reason performance degrades linearly with
the SISO replication based design is that each of the M
independent cancellation algorithms for self-talk and
cross-talk at a receive chain produce their own estima-
tion error which add up to the linear degradation. Our
key insight here is to leverage the fact that we have M
transmitters available that can concurrently send train-
ing symbols. Specifically, we design a training pream-
ble for WiFi that allows each receive chain to estimate
each of the self-talk and cross-talk channels with an
error that is M times lower than the SISO design by
combining information from all M training symbols.
Consequently, in our design when the estimation errors
add up for the self-talk and cross-talk cancellations, the
overall error or residue is the same as a SISO system
would have achieved, which is the best one can hope
for. Further the algorithms are modular and structured
in a way that, if in the future the SISO full duplex de-
sign manages to improve its performance even further,
the MIMO design in this paper immediately benefits.

We prototype our design using our own custom de-
signed analog cancellation circuits, and integrate them
with novel implementation of our digital cancellation al-
gorithms using off-the-shelf WARP radios [6]. Our ex-
periments demonstrate that in a 3× 3 configuration, our
system achieves a performance that leaves a negligible
1dB of self-interference after cancellation. We also show
that our system achieves a 95% throughput gain over half
duplex radios using a standard WiFi compliant OFDM
PHY of 20MHz for 802.11n for all different modulations
(BPSK, QPSK, 16QAM and 64 QAM) and coding rates
of (1/2,2/3,3/4,5/6), supporting three streams for 3 × 3
MIMO.

2 The Problem

In this section, we describe the nature of interference in
a MIMO full duplex radio and then discuss the architec-
tural challenges in designing a cancellation system.

Self-talk or cross talk (or for that matter any trans-
mitted signal) is made up of three major components
[7, 12, 4]:

• Linear Signal: This is the signal that the baseband mo-
dem wanted to transmit and is then distorted by chan-
nel reflections. It’s linear because it can be represented
as a linear combination of delayed and summed copies
of the same signal that arise from environmental multi-
path reflections.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 361

Power level in dBm Cancellation needed in dB

Total TX signal 20 105

Linear component 20 105

Non-linear component -10 75

Transmitter Noise -20 65

Power and Interference relative to noise floor of -85 dBm

(a) The different components of the transmitted signal (self-talk) for a
typical WiFi radio. The second column tabulates the amount of self-
talk cancellation needs to eliminate the corresponding self-talk com-
ponent to the noise floor.

MIMO FD, Receiver 1 Power in dBm Cancellation needed (dB)

Self-
talk

Cross
talk 1

Cross
talk 2

Self
talk

Cross
talk 1

Cross
talk 2

Overall signal at antenna 1 15 -9 -15 100 76 70

Linear component 15 -9 -15 100 76 70

Non-linear component -15 -39 -45 70 46 40

Transmitter noise -25 -49 -55 60 36 30

Power and Interference relative to noise floor of -85 dBm

MIMO FD, Receiver 1 Self-talk Cross Talk 1 Cross Talk 2
Analog cancellation 65 dB 41 dB 35 dB
Digital cancellation 35 dB 35 dB 35 dB

Cancellation Requirement

(b) Interference components and cancellation requirements for 3 an-
tenna MIMO full duplex. The first table describes the levels of differ-
ent interference components (linear, non-linear and transmit noise) that
make up self-talk and cross-talks at one receiver in a 3 antenna MIMO
radio. Cross-talk 1 is from the neighboring antenna and cross-talk 2 is
from the farther neighboring antenna. The second table lists the overall
cancellation needed, here the values are bumped up by 5dB relative to
the first table to ensure that even when the residues left from the self-
talk and the two cross-talk cancellations are added up, the overall noise
floor does not go up (else it would go up by 5dB if the cancellation
requirement for each component did not have a 5dB margin).

Figure 2: Requirement tables

• Non-linear Signal: This is the signal that is generated
due to non-linear transformations that the linear signal
goes through when it is passed through analog radio
components such as mixers, power amplifiers in the
transmit chain [28].

• Transmit Noise: This is the noise that is generated by
active components in the TX chain such as power am-
plifiers and local oscillators (we club things such as
broadband noise and phase noise into this term for the
sake of brevity).

The relative strengths of these components depends on
the quality of the radio. Fig. 2a tabulates the strengths of
the different components we empirically measured for a
commodity 20dBm WiFi SISO radio, and the amount of
cancellation needed to eliminate them in a full duplex
system. Note that this is a cheap radio widely used in
many commercial WiFi devices [4, 6], so we believe this
is representative of the WiFi radios in general.

The above analysis is of course true even for a sin-
gle antenna radio without MIMO, and recent work [14]
describes cancellation techniques that eliminate all self-
talk. However, what is unique with MIMO is cross-

������
�������

�����������������������

�������
����������

��

RX RF
Frontend

TX RF
Frontend

Digital
Cancellation

Eliminates all Linear and
Non-Linear Distortion

��

T

R+aT
��

R+iT

R

�����������

TX RX

RX
������������

��������

T

��

�����������

R

TX

���

���
���

���

��

��

��

���

Figure 3: Prior best performing SISO full duplex design.
The figure on the right shows an equivalent conceptual
filter based view of self-talk cancellation. The filter is
parameterized by its complexity, the number of taps. The
filter subsumes both analog and digital cancellation.

talk. In other words, the interference that results at a re-
ceive chain due to a transmission from a neighboring co-
located MIMO antenna/chain. In a 3 antenna full duplex
MIMO radio, each receiver chain would see two cross-
talk signals from the other two antennas as seen in Fig.
1.

Cross-talk is slightly weaker than the self-talk gener-
ated by the chain’s own transmission, but is still quite
strong and has all the above three enumerated compo-
nents. Like the earlier SISO design [14] (as shown in
Fig. 3), the transmit noise component of the cross-talk
signal has to be canceled in the analog domain, whereas
the non-linear and linear components could be canceled
in both analog and digital domains. Fig. 2b tabulates
the strengths of the various components that make up
a cross-talk and self-talk signal in a typical 3-antenna
MIMO WiFi radio with 20dBm1 transmit power (note
that the power is divided equally among all three trans-
mitters, so the power out of each antenna is 15dBm).

2.1 Why can’t we reuse the SISO full du-
plex design by replicating it?

At first glance, the MIMO interference cancellation
problem looks quite similar to a SISO full duplex prob-
lem, only replicated a few times. After all the cross-talk
signal that needs to be canceled looks like an attenuated
version of a chain’s own self-talk signal that the SISO
design manages to cancel completely. So why couldn’t
we replicate the SISO design M2 −M times for each of
the cross-talk signals in a M antenna MIMO radio and be
done with it (as shown in Fig. 4)?

To understand the reason this might not work, it will

1The FCC specifies that the peak power can be 30 dBm [2]. How-
ever OFDM signals have a high PAPR, i.e. the peak power of the output
signal is significantly higher than the average power. For WiFi we find
that the PAPR is 10dB, so the average power we can use is actually
20dBm.

362 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cross Talk 1

T

Σ

Circulator

TX1

RX1

N taps

N taps

N taps

T

Σ

Circulator

TX2

RX2

N taps

N taps

N taps

T

Σ

Circulator

TX3

RX3

N taps

N taps

N taps

Total 9N Taps, for M=3
General Complexity M2.N

Cross Talk 2
Self Talk

Figure 4: SISO Replication Based Design: Shows a 3
antenna full duplex MIMO radio, using nine SISO can-
cellation circuits (SISO replication design). This design
uses in total 9N taps for M=3 assuming each circuit re-
quires N filter taps. In the general case this design would
require M2Ṅ for a M antenna full duplex MIMO system.

help to have a conceptual understanding of what a SISO
self-talk cancellation system accomplishes. At its core,
the self-talk cancellation technique can be thought of as
shown in Fig. 3. The input is the baseband signal that is
being transmitted, to which transmit noise is added and
the combined signal is passed through a linear and non-
linear unknown transfer function that captures the distor-
tions introduced by the analog components and the wire-
less channel and is denoted by H. The cancellation cir-
cuits and algorithms are trying to calculate an estimate –
Ĥ – of this unknown transfer function H as accurately as
possible (to the tune of 105dB resolution), and then pass
a copy of the input baseband transmitted signal and noise
through this estimated transfer function Ĥ to recreate the
self-talk and cancel it (shown in Fig. 3). The estimated
transfer functions are created using tunable analog and
digital FIR filters, for example the prior SISO design’s
analog cancellation circuit requires 12 delay-attenuation
taps that each represent a single analog FIR filter tap (re-
fer Fig. 3), and what is being controlled is the weight on
each tap (practically this translates to controlling the at-
tenuator on that delay-attenuation analog line). A similar
FIR filter structure is used for digital cancellation and the
challenge is calculating the weights to use on each of the
taps. So the key challenge the SISO self-talk cancellation
system is solving is calculating a set of FIR filter weights
that can accurately model this unknown and time-varying
transfer function.

Consequently, there are two metrics that characterize
these estimation circuits and algorithms.
• Complexity: can be quantified by the number of filter

taps that are used in the implementations that represent
the estimated Ĥ. The more taps we need, the more
analog circuitry is needed as well as DSP resources in
FPGA to implement them. Keeping the number of taps
low is important so as to reduce the space and power

Cascaded Filter

Taps: N >> C > D

T

Σ

Circulator

TX1

RX1

Σ

T

Σ

Circulator

TX2

RX2

Σ

T

Σ

Circulator

TX3

RX3

Σ

Total Taps: 3N+ 4C + 2D, for M=3
General Complexity: ~ M.N << M2.N

C taps C tapsC taps
Σ

D taps

Cross Talk 1

Cross Talk 2
Self Talk

N taps N taps N taps

C taps
Σ

D taps
Σ

Figure 5: Cascaded Cancellation Design: Shows a 3
antenna full duplex MIMO radio design with cascaded
filter structure for cancellation. The structure is shown
for receiver chain 1 only, but the same structure is re-
peated for the other chains. For, self-talk cancellation we
have N filter taps on every chain. Further we have C and
D taps feeding in a cascading fashion at the input of the
N tap self-talk cancellation circuit. Notice cross talk 1
is stronger so we need more taps (C > D) as compared
to cross talk 2. However both C and D are significantly
smaller than N.

consumed by analog circuits [10] and DSP logic for
FIR implementations (the baseline is the SISO design
that requires 12 analog taps and 132 digital FIR taps).
To get a sense of the impact, 12 analog taps consume
roughly 24sq.cm of board area. A second consequence
of complexity is the amount of time it takes us to re-
tune the cancellation when the environment changes
(including things such as temperature). The larger the
number of taps, the longer it will take to tune since
there are more variables to estimated. When cancella-
tion is being tuned, the radio cannot be operated in full
duplex mode. Hence tuning time is pure overhead, and
needs to be minimized.

• Estimation error: A second key metric is estimation
error which manifests as residual interference left af-
ter cancellation and directly reduces the SNR of the
desired received signal. A perfectly accurate cancella-
tion system would leave no residue. The baseline for
this metric is the best performing prior SISO self-talk
cancellation design that leaves 1dB of residue over the
noise floor. In other words, the receiver noise floor
is increased by 1dB and therefore the SNR of the re-
ceived signal is also decreased by 1dB. To put this
number in context, this is extremely accurate since at
most normal receive link SNRs, a 1dB decrease will
have negligible impact. The reason for this residue is
estimation and quantization error in the algorithms that
calculate the weights for the filter taps used in analog

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 363

and digital cancellation. Estimation error is inevitable
and cannot be avoided, but its important to keep it as
small as possible.
How well would the SISO replication based design for

MIMO perform on these two metrics? The optimal sce-
nario is that the complexity of a M antenna full duplex
MIMO radio would be M× the complexity of the SISO
design, and it would have the same estimation error as
the SISO design. We cannot do better than a linear in-
crease in complexity and no increase in estimation error.
However, the SISO replication based design has a com-
plexity of M2× the complexity of the SISO design. This
is because it requires us to replicate the SISO design for
each cross-talk factor, and therefore we need a total of
M2 versions of the SISO design. In terms of taps this im-
plies 12×M2 taps in analog circuits alone, along with the
corresponding increase in digital cancellation FIR taps.

Second, this design’s estimation error turns out to be
worse compared to SISO design. At each receiver chain,
we show in Sec. 3.2 that the residual interference scales
linearly with the number of MIMO chains M. Intuitively
the reason is that each replica of the SISO design is run-
ning an independent estimation algorithm for determin-
ing the values of the filter taps to use for cancellation.
Since at each receiver chain we have M versions of the
SISO design running, we will have a M× increase in esti-
mation error and consequently the interference residue.

3 Design

We present a new cross talk cancellation technique for
full duplex MIMO which is scalable and efficient. The
key technique behind our MIMO cancellation design is
a cascaded filter structure. Specifically, we exploit the
fact that in MIMO, cross-talk and self-talk share a sim-
ilar environment (or similar set of multi-path reflection
and attenuation profiles in the channel). Further, cross-
talk across chains is naturally reduced compared to the
chain’s own self-talk because of physical antenna sepa-
ration. We exploit these insights to design a low com-
plexity and highly accurate cross-talk cancellation sys-
tem. For canceling the chain’s own self-talk we use the
design from prior work [14].

3.1 Reducing Complexity: The Cascade
Our design builds on a key insight: co-located MIMO
antennas share a similar environment. In other words,
the transfer function (i.e., the channel response across
the frequency) that transforms the cross-talk signal from
a neighboring transmit chain at the receive chain has
a close relationship with the transfer function that the
chain’s own self-talk undergoes. Intuitively, this is be-
cause the environment around a radio looks essentially
the same to neighboring antennas since they share the
same reflectors in the environment, and the distances to

these reflectors are almost the same from the closely-
spaced antennas. The difference however is that any
cross-talk signal experiences an additional delay before it
arrives at a receive chain as compared to the chain’s own
self-talk signal [21, Sec. 2]. Technically this means that
the phases of self-talk and cross- talks at a given receive
chain might become different due to the delay, but can
still be determined by a fixed relationship depending on
antenna location and the environment. 2 What’s impor-
tant for MIMO full duplex design however is that cross
talk and self talk transfer functions can be expressed as
a function of each other, with a modifying factor to ac-
count for the antenna separation.

The above insight can be mathematically modeled as
a cascade of transfer functions. Let Hi(f) and Hct(f)
be the transfer functions of the chain’s own self-talk and
cross-talk respectively, which are due to environment
only, these cannot be directly measured. The overall rela-
tionship between these functions can be modeled as fol-
lows:

Hct(f) = Hc(f).Hi(f) (1)

where Hc(f) is the cascade transfer function. The key
observation is that Hc(f) which cascaded with Hi(f) re-
sults in the cross-talk transfer function, is an extremely
simple transfer function. Typically Hc(f) is a simple de-
lay that corresponds to the fact that the two antennas are
separated and the cross-talk signal experiences slightly
higher delay compared to the self-talk.

How might we exploit this insight? The idea is to
mimic the cancellation design in a cascade similar to the
equation above as seen in Fig.5. Specifically, we could
design simple low-complexity analog cancellation cir-
cuits and digital cancellation filters that model the cas-
cade function Hc(f). These circuits and filters would
then feed into the cancellation circuits and digital can-
cellation filters for the chain’s own self-talk cancellation
and thus reuse all that circuitry to model the cross-talk
channel. Remember that the circuits and digital filters
for the chain’s own self-talk are modeling Hi(f), hence
the cascaded structure is essentially recreating the above
Eqn. 1. So the only additional complexity compared to
the optimal MIMO design would be from the circuits and
filters that model the cascade transfer function Hc(f).

2Note that having a deterministic relationship between the self-talk
and cross-talk channel responses does not contradict the assumption in
MIMO channels that they form spatially independent streams as long
as the antennas are separately by half a wavelength. The phase differ-
ence typically results in spatially independent streams [25]. Second,
note that what we are exploiting is the fact that both the self-talk and
cross-talk channels are correlated in their changes across frequency, i.e.
the way the self-talk channel and cross-talk channels change across fre-
quency are related and is a function of the environment. This fact has
been studied in prior work, for example, a typical point to point LOS in-
door MIMO channel can have a specific relationship across frequency
across the different MIMO paths and still form spatially independent
streams [21, 31, 25].

364 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The natural question is how to design the cascade cir-
cuits itself? The intuition behind the design is to consider
what the cascade circuits are exactly canceling compared
to the self-talk cancellation circuits. The interference in
the self-talk comes from two major factors. The first are
the reflections from the antenna (impedance mismatch)
and other components such as circulators. The second
are the reflections from the environment. The reflections
from the antenna are only part of the self-talk and are not
part of the cross-talk, whereas the reflections from the
environment are part of both self and cross-talk. Hence,
the cascade cancellation circuit’s job is to only cancel the
environmental reflections.

The second insight is that the environmental reflec-
tions of the cross-talk are related to the environmental
reflections the chain’s own self-talk cancellation circuit
is trying to cancel. To discover this relationship, we con-
duct the following experiment in a wide variety of loca-
tions in indoor scenarios. We first transmit a signal from
a single antenna and measure the environmental channel
response of the reflections at the same antenna [1]. We
then measure the environmental reflection response at the
neighboring MIMO antennas. Measuring the responses
is possible because we know what we are transmitting,
and we can use classic channel estimation techniques to
measure the channel impulse response3. We then calcu-
late the cascade transfer functions as described in Eqn. 1.
We collect these calculated transfer functions and then
check what is the complexity of the cascade cancellation
circuit that can approximate these responses. This is an
optimization problem, where the parameter is the num-
ber of taps that we are allowed to use in the cascade cir-
cuit, and the calculated responses are what we are trying
to fit for. The goal is to minimize the number of taps in
the cascade circuit, while fitting the cascade responses to
a level of 40dB of cancellation (assuming we get 30dB
of interference reduction from antenna separation in the
cross-talk). The details of the technique are described
in [1].

The number of analog taps required to realize the re-
quired performance for MIMO using the cascaded de-
sign calculated via the optimization above is tabulated in
Fig. 6b. For a typical 3 antenna MIMO WiFi radio with
12cm separation between antennas (typical of APs), the
antenna separation itself provides about 24dB of isola-
tion, so we need another 41dB of cross-talk cancellation
in analog (see Table. 2b for requirements). As we can see
we need only four analog taps with the cascaded struc-
ture compared to the 12 taps required by the naive design
for canceling cross-talk at an adjacent antenna and only
two taps, when canceling to the farther out antenna as
shown in Fig. 5. The cascaded design therefore requires

3This experiment is done via WARP software radios as discussed in
evaluation.

2.44 2.445 2.45 2.455 2.46
-80

-60

-40

-20

0

Transmitted
cross talk
Cross talk at RX1

SISO replication
cancellation using 4 taps
Cascade cancellation
using 4 taps

Po
w

er
 in

 d
Bm

Frequency in Ghz

Spectrum plot

67 dB

18 dB

(a) Cancellation performance in the frequency domain for the cas-
caded design and the replication based design with the same complex-
ity for a 3 antenna MIMO full duplex radio operating a WiFi PHY in
a 20MHz band at 0dBm TX power(WARP radios [6]).

SISO replication design Our design

Analog Cancellation taps (3X3) 108 (12*9) 56 (reduced by 1.92x)

Digital Cancellation taps (3X3) 1188 (132*9) 485 (reduced by 2.45x)

Tuning time (3X3) 9 ms (1ms*9) .024 ms (reduced by 375x)

Analog Cancellation taps (mXm) O(M2N) O(MN)

Digital Cancellation taps (mXm) O(M2R) O(MR)

Tuning time (mXm) O(M2) O(M)

Resource Comparison between SISO replication and Our design

(b) Table showing the reduction in complexity and tuning time with
the cascaded design compared to the replication based design for both
a 3 antenna full duplex MIMO radio as well as the general case of a
M antenna full duplex MIMO radio.

Figure 6: Cascade Design Evaluation.

1.92× lower number of taps compared to the SISO repli-
cation design for a 3 antenna full duplex MIMO radio
as seen in Fig. 6b. The reduction factor approaches the
optimal 3× number as the number of antennas increases.

To verify the improvement for digital cascading (seen
in Fig. 7), we conduct a similar experiment with the same
setup (but with 20 dBm of total TX power). However, we
provide the SISO replication design the required number
of taps to meet the requirement on analog cancellation so
we can specifically evaluate the benefits for digital can-
cellation with cascading. As seen in Fig. 6b, we need
a total of 485 taps to cancel self-talk and cross-talk to
the noise floor for a 3 antenna MIMO radio. Further, for
the SISO replication based design using the same num-
ber of taps (485), the residual interference is still an ad-
ditional 7dB. To achieve the same performance as our
cascaded design with the SISO replication based design,
we would need 1188 or 2.45× more taps as tabulated
in Fig. 6b. Once again the reduction factor approaches
the optimal number M and the number of antennas (M)
grows. Finally in terms of cancellation performance, a
7dB increase in noise floor or reduction in desired sig-
nal’s SNR is quite high by itself, and when we take into
account the reduction in cancellation for analog of 18dB,
we are looking at a 25dB reduction in overall cancella-
tion for the SISO replication based design with the same
complexity as our cascaded structure.
There are two main benefits to reducing complexity:
Reduction in size, cost and tuning time: Each addi-

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 365

Σ

TX1

A1

TX2

RX2

A2

Cascaded Analog Cancellation

TX3

RX3

A3
Cross talk 1

Cross talk 2Self talk

TX1

TX2

TX3

Shared FIR

Cross talk 2 NL-FIR

Cross talk 1 NL-FIR

Σ

Self talk NL-FIR

Σ

Σ

Cascaded Digital Cancellation

Residual

Total Digital Taps: MR + constant, for M=3
General Complexity: ~ M.R << M2.R

RX1

RX RF
Frontend

TX RF
Frontend

TX RF
Frontend

TX RF
Frontend

Figure 7: Shows the cascaded digital cancellation ar-
chitecture for receiver chain RX1. Similar cascaded dig-
ital cancellation is applied to every receiver i.e., RX2 and
RX3, not shown in this figure. The cascaded analog can-
cellation is implemented as shown in Fig. 5. The shared
FIR brings significant saving of taps for overall MIMO
cancellation. The NL-FIR’s are the non-linear finite im-
pulse response filter, recreating the digital copy of the
unique component for the self-talk and cross-talks to be
canceled at a receive chain.

tional filter tap increases the size of cancellation boards
in analog and FPGA resource consumption in digital can-
cellation. For analog cancellation, our circuits consumed
110sq.cm of board area compared to nearly 216sq.cm
for the SISO replication based design for a 3-antenna
MIMO full duplex system. For example, we found ex-
perimentally that reducing the number of digital filter
taps from 1185 to 485 for a 3 antenna MIMO radio
means that a lower class Xilinx Kintex series FPGA has
sufficient DSP resources to implement the cancellation,
whereas the SISO replication based design would require
the higher end Virtex FPGA [8]. This translates to enor-
mous power savings, a Virtex FPGA consumes nearly
80W of power whereas a Kintex consumes only 40W on
twice as less [9]. Power reduction translates to less heat
and consequently simpler AP designs. Also to ultimately
realize the design in compact boards, reducing the num-
ber of taps as much as possible is a must. A final con-
sequence is the tuning time to compute the weights for
each of these taps also reduces linearly with lesser num-
ber of taps (tuning time is pure overhead since during
tuning the radio cannot be used for communication).

Reduction in Tx power waste: The amount of power
that needs to be coupled off from the transmit paths to
powering cancellation circuits depends linearly on the
number of taps in the cancellation circuits. This is be-
cause each tap is of course only useful if some copy of
the transmitted signal is passed through it, and in addition

each tap has loss associated with it that adds up. Thus re-
ducing number of taps helps reduce TX power waste.
3.2 Reducing Residue: Joint Training
The goal of digital cancellation is to clean out any re-
maining residual self-interference. Once again, a natu-
ral question is why not reuse the digital cancellation al-
gorithms designed for SISO? In other words, for each
receive chain in a M antenna full duplex MIMO radio,
run M separate digital cancellation algorithms that esti-
mate the chain’s own self-talk and the other M−1 cross-
talk interference components. These algorithms work by
estimating the distortion experienced by each of the in-
terference (both for linear and non-linear components).
They then apply the estimated distortion functions to the
known baseband copy of the transmitted signal and sub-
tract it from the received signal.

The above approach doesn’t work because every ad-
ditional and independent digital cancellation algorithm
we use in the receive chain linearly increases the resid-
ual interference after cancellation. In other words, per-
formance worsens linearly with the number of MIMO
chains. To see why, we start with describing why even a
simplified SISO digital self-interference cancellation al-
gorithm will have some residual interference that cannot
be canceled.

Digital cancellation works in two stages, first there is a
training phase and then cancellation phase. The training
phase uses training symbols (e.g. the WiFi preamble),
and the assumption is that there is no desired received
signal from the other full duplex node. The training sym-
bols are used to estimate the self-interference. Let’s say
the training self-interference symbol is s as seen in Fig.
8.a. The self- interference symbol is being received after
transmission from the same radio (for simplicity assume
there is no distortion from the channel), and the receiver
adds its own noise n1 (variance σ2) to the received signal
(this noise comes from effects such as quantization in the
ADC). Hence the received signal y1 can be written as,

y1 = s+n1

The best estimate of the self-interference s in this case
is simply y1 However this estimate ŝ has some estima-
tion error, which in this case is simply the power of the
receiver noise as show below:

ŝ = y1, E((s− ŝ)2) = E(n2
1) = σ2

How can we use this estimate to cancel subsequent self-
interference? For simplifying the description, let’s as-
sume the packet that is being transmitted and is acting
as self-interference is simply the same training symbol
repeated throughout the packet (real world packets are
of course not trivial like this, but this assumption does
not change the basic insight below). To cancel this self-
interference throughout the packet, the algorithm will

366 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Transmitted and Received packets

b) SISO replication based 2X2 MIMO Full Duplex

TX2

s1 Data1= s1

Data2 = s2s2

TX1

RX1

Training

y=x + s + n3y1= s1 +n1 y2= s2 +n2

a) SISO Full Duplex

TX Data= s s

RX y1=s + n1

Training

y=x + s + n2y1= s +n1

x x

c) Our Design based 2X2 MIMO Full Duplex

TX2

s1

s2

TX1

-s2

s1

RX1 y1=s1-s2+n1 y2=s1+s2+n2 y = x + s1+ s2+n3

Data1= s1

Data2 = s2

Training

x

Figure 8: This figure shows the transmitted and received packets for a SISO full duplex, 2 antenna MIMO full duplex
with the traditional training technique, and our design with the novel training technique. Notice the training sym-
bol structure in the last figure, this allows us to reduce the estimation error by half for the self-talk and cross-talk
components for a 2 antenna MIMO radio.

simply subtract the above estimate from the overall re-
ceived signal. Lets say x is the actual desired received
signal, the overall signal received is y, and the signal af-
ter cancellation, are given by:

y = x+ s+n3

y− ŝ︸︷︷︸
cancellation

= x+ s− ŝ︸︷︷︸
estimation error =σ2

+ n3︸︷︷︸
RX noise

As we can see, the estimation error shows up as residual
interference with variance of σ2. As the best known prior
design has shown this is on the order of 1dB over the
half-duplex noise floor.
SISO Replication based MIMO design: It’s now easy
to see why a design for MIMO that simply uses M repli-
cas of the digital cancellation algorithm at each receive
chain for the self-talk and the M − 1 cross-talk interfer-
ence signals increases the estimation error roughly by a
factor of M. The training symbol structure for a 2× 2
MIMO transmission is shown in the Fig. 8.b. above, es-
sentially there are two training symbols s1 and s2 sent
over two slots from the two different transmit chains.
The algorithms at a particular receive chain use these
symbols like in the SISO case to estimate the self-talk
and the cross-talk, and each of them will have their own
estimation error. When these estimates are used for can-
cellation, the estimation errors add up, and the overall
estimation error (or residual self-interference) at each re-
ceive chain is theoretically two times the SISO case. The
math below shows the above intuition formally. First,
the estimates for the self-talk and cross-talk symbols are
given by:

ŝ1 = y1, E((s1 − ŝ1)
2) = σ2

ŝ2 = y2, E((s2 − ŝ2)
2) = σ2

When canceling to attempt to recover the desired re-
ceived signal x, we can calculate the estimation error as
follows: y = x+ s1 + s2 +n3

y− ŝ1 − ŝ2︸ ︷︷ ︸
cancellation

= x+ s1 − ŝ1︸ ︷︷ ︸
σ2

+s2 − ŝ2︸ ︷︷ ︸
σ2

+ n3︸︷︷︸
RX noise

As we can see, the estimation error shows up as resid-
ual interference with variance of 2σ2, both self-talk and

cross-talk estimation introduce σ2 error. We can re-
cursively show that for a general M antenna full du-
plex MIMO radio, the estimation error and consequently
residual interference on each receive chain goes to Mσ2.
Our Design: Our key contribution is a novel training
symbol structure and estimation algorithm that reduces
the estimation error for each interference component at
each receiver chain (self-talk or cross-talk) to σ2/M for
a full duplex M ×M MIMO radio. The key insight is to
re-design the training symbols to reduce the estimation
error. Specifically instead of sending training symbols
from each of the transmit chains separately in consec-
utive time slots, we send a combination of all of them
from each transmitter in parallel. The idea is to actually
leverage the fact that there are two transmitters that could
be leveraged to transmit training information jointly and
thereby improve accuracy, there is no need to treat each
of them separately. Doing so requires an intelligent joint
training symbol design so that each symbol can be esti-
mated as a linear combination of the received transmis-
sions. Fig. 8.c. shows the main idea. We use a similar set
of equations as before to show formally why this works.
As seen in Fig. 8.c., the training symbols are transmit-
ted by chain 1 and chain 2 simultaneously. In time slot
1, transmitter 1 and 2 transmit s1 and −s2, respectively.
And in time slot 2, transmitter 1 and 2 transmit s1 and s2
respectively. Receiver 1, receives the combined symbols
in time-slot 1 and time-slot 2, y1 and y2. Thus:

y1 = s1 + s2 +n1, y2 = s1 − s2 +n2

Lets assume the rest of the transmissions from the two
chains are just repetitions of the same symbols s1 and s2
respectively (again this is for description simplicity and
suffices to explain the insight). We need to get estimates
for the data symbols s1 and s2 using the two received
training symbols y1 and y2. The best estimates are given
by:

ŝ1 =
y1 + y2

2
, E(s1 − ŝ1)

2 = E(
(n1 +n2

2
)2) =

σ2

2

ŝ2 =
y1 − y2

2
, E(s2 − ŝ2)

2 = E(
(n1 −n2

2
)2) =

σ2

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 367

As we can see, the error in each of these estimates (self-
talk and cross-talk) is σ2/2. Now when these estimates
are used for cancellation, the following equation results:

y = x+ s1 + s2 +n3

y− ŝ1 − ŝ2︸ ︷︷ ︸
cancellation

= x+ s1 − ŝ1︸ ︷︷ ︸
σ2
2

+s2 − ŝ2︸ ︷︷ ︸
σ2
2

+ n3︸︷︷︸
RX noise

As we can see the residual interference is only σ2, rather
than the 2σ2 that would have resulted from the SISO
replication based design. Further, we can show by re-
cursion that this residual is the same as the SISO design,
i.e. there is no linear increase with the number of MIMO
chains as the number of antennas increases. Implemen-
tation of this technique for wide-band OFDM systems is
detailed in [1] based on [27].
Training in presence of another signal: While describ-
ing our algorithm above, we implicitly assumed that
there is no other signal during the training phase, al-
though in practice that might not be the case. This as-
sumption however is not necessary. That is, even if
there is a signal x as in the case of data, the algorithm
would still work; the only change would be that the ef-
fective noise would now be x+n j instead of n j at a given
RX chain j and we use regularized least-squares estima-
tion [14]. The downside is that the additional signal in-
creases the interference during the training, thereby also
increasing the number of samples or time required for
convergence. Specifically, if interference to noise ratio
after projecting the received signal on to the Tx signal
space in least-squares is z, then it would take z times
more samples to converge to the optimal point.

4 Robust MIMO Interference Cancellation

Interference cancellation needs to be robust to enable
consistent full duplex operation in the face of frequent
channel changes. To accomplish this, both analog and
digital cancellation need to continuously tune their fil-
ter taps to maintain cancellation. The main bottleneck
is tuning analog cancellation, since digital cancellation
can be tuned on a per-packet basis in software as prior
work has shown [30, 23, 14]. Tuning analog circuits re-
quires measuring the residue in digital and then send-
ing control signals to analog components, which is rela-
tively slow. Minimizing the amount of time required to
tune here is therefore critical, since during the time spent
tuning packets likely cannot be received. We focus on
this problem in this paper and re-use the algorithms from
prior work for tuning digital cancellation.

The prior SISO full duplex design demonstrated a
technique to tune a single analog cancellation in around
a millisecond. However, as before if we were to naively
replicate the same algorithm for all the self-interference
components, we would need M2ms for a M antenna full

duplex MIMO radio (e.g. 9ms for a 3 antenna full du-
plex). Such a high overhead is untenable for moderately
mobile environments where the channel changes on av-
erage every 60ms (e.g. WiFi hotspots).

In this paper we propose a novel technique that re-
duces tuning time by three orders of magnitude, i.e. an
algorithm that tunes the circuit in 8μs. Note that this al-
gorithm also applies to the SISO case, and therefore im-
proves on the best known prior SISO design too. Our in-
sight is to model the cancellation circuit as a filter whose
response we are tuning to match as closely as possible
the frequency response of the self-interference channel.
Like prior work, we estimate the frequency response of
the cancellation circuit for different combinations of fil-
ter tap values. The pre-calculated response is represented
in a matrix A, whose each column is the frequency re-
sponse of the analog cancellation circuit for a particular
value of the filter tap at K different frequencies in the
band of interest (e.g. K=128 for a 20MHz bandwidth in
our current prototype for WiFi). Now assuming H(f)
is the frequency response of the self-talk channel in the
frequency domain (i.e. the channel introduced by the
antenna, circulator and any strong environmental reflec-
tions), the analog cancellation tuning problem reduces
to:

min
x

||H −Ax||2

Where, H is the column consisting of H(f) at different
frequencies, and x, represents a binary indicator vector
for selecting the corresponding filter tap values as in [14].

The efficacy of the tuning that results from the above
problem depends on the accuracy in the measurement
of H(f). We can measure H(f) using the preamble of
the received interference signal y(t) (e.g. the first two
OFDM symbols of a transmitted WiFi packet which are
known preamble symbols). The challenge is measuring
the frequency response of the interference channel ac-
curately. The accuracy is limited by the linearity of the
transmit-receive chain, which is 30dB, By this we mean
that any initial measurement can only have an accuracy
of 30dB. The main reason is that the transceiver produces
non-linearities which act as noise to the channel estima-
tion algorithm. In other words the received interference
signal y(t) has non-linearities that are only 30dB below
the main linear signal component. Our key contribution
in this paper is a technique to accurately measure this
channel quickly in the presence of non-linearities and
tune analog cancellation.
Source of error and its magnitude: The transmitter
produces non-linearities 30 dB lower than the transmitted
signal. To show mathematically, say x(t) is the baseband
signal that is being transmitted after up-conversion and
amplification, we can write

xtx(t) = x(t)+a3x(t)3 +a5x(t)5 +a7x(t)7 + . . .+w(t)

368 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This transmitted signal xtx(t) is somewhat known to us
because we know x(t), however its non-linear compo-
nents and the transmit noise w(t) are unknown . This sig-
nal further undergoes the circulator and antenna channel
H(f) (which we wish to estimate), so when its received
at the receiver the frequency domain representation of
the received signal is given by:

Y (f) = H(f)∗F (x(t)+a3x(t)3 + . . .)+ transmit noise

Here, a3 is around 10(−30/20), i.e., its 30 dB lower. Fur-
ther transmit noise distortion is 40 dB lower than the sig-
nal level of x(t). The challenge is that our channel esti-
mation algorithm is only going to use its knowledge of
x(t) to estimate the channel H(f), and the other terms in
the received interference signal limit the accuracy of the
estimation to 30dB (the estimation noise is 30dB lower).
Accurate, Iterative method: The key idea is to run the
estimation algorithm in an iterative fashion. Remember
that the WiFi preamble has two OFDM symbols, each of
length 4μs. After the first OFDM symbol, we solve the
above equation to produce an inaccurate estimate of the
interference channel Ha and tune the cancellation circuit
to achieve (at best) 30dB of cancellation (we cannot can-
cel more than our estimation accuracy). Now when we
obtain the second preamble symbol, we know that the
non-linearities and the transmit noise components that
were producing the error are reduced by 30dB. We can
exploit this fact by the following trick:
We transmit one OFDM symbol to estimate the inaccu-
rate Ha, which can be written as a function of accurate H
as, Ha = H +e1 . Note e1 is 30 dB lower than H. We use
the same algorithm as [14] to optimize the following,

min
x

||Ha −Ax||2

which produces the solution as x̂, which gives us the val-
ues to use in the filter taps. We program the cancellation
circuit using these values and achieve a 30 dB cancella-
tion. Next, when we transmit second OFDM symbol and
measure the channel response we get:

Hb = (H −Ax̂)+ e2

Notice that e2 is 30 dB lower then H −Ax̂ and H −Ax̂
is 30 dB lower than H. So in essence e2 is 60 dB lower
than H. Define,

H̃ = Hb +Ax̂

H̃ = H + e2

Thus, we can this new estimate H̃ with an error that is
60 dB lower. We use this estimate to re-tune the op-
timization algorithm and find a solution x̃ that tells us
what values to use for the analog filter taps. This new
solution provides 60 dB cancellation. Further, we only
needed two OFDM symbols of 4μs each to get to this
cancellation.

Extension to Cascaded Filter Structure: The above
description is for a single cancellation circuit, but our
MIMO design has a cascaded structure of multiple cir-
cuits. This leads to a combinatorial explosion in the pa-
rameter space that makes the problem NP hard to solve if
we use the above approach. In this subsection we present
a trick to approximate the overall combinatorial prob-
lem via two reduced complexity problems which can be
solved using the same technique as the SISO one pre-
sented above.

We describe the algorithm in the context of tuning the
cancellation circuits at receiver 1 for self and cross-talk
in a 2 antenna MIMO radio. Lets say H11 is the self-
talk channel response and H12 is the cross-talk channel
response. The general tuning problem can be stated as:

minimize
x1,x2

t (2)

subject to norm(H11 −A1x1)≤ t (3)
norm(H12 − (A1x1)� (A2x2))≤ t (4)

Where, � represents the element wise multiplication
of the column, and t represents the analog cancellation
achieved, and A1 is the response of the self-talk cancel-
lation board with N taps in Fig.5 and A2 is the response
of the cascade cancellation board with C taps. The sec-
ond constraint Eq. 4 renders the problem irreducible
to a convex solvable form, and in fact the columnwise
multiplication of the indicator variable vectors explodes
the problem space and makes it a NP hard combinatorial
problem.

We use a novel trick to approximate and help solve this
problem practically. Since the first constraint in Eq. 3 is
trying to find A1x1 = H11, we can approximate A1x1 in
the next constraint, Eq.4 with H11 which is known (since
we measured H11). This is of course an approximation,
but it suffices to solve for x2 using this substitution since
we are after all trying to emulate the same cascaded chan-
nel response structure using our circuits as described in
Sec. 3. Thus instead of a cascade of unknown variables,
the new problem to solve is

minimize
x1,x2

t (5)

subject to norm(H11 −A1x1)≤ t (6)
norm(H12 −H11 � (A2x2))≤ t (7)

This new problem is no longer a combinatorial prob-
lem. This can be reduced to an integer program, which
can be solved using randomized rounding in fraction of
micro seconds practically [14]. Thus in effect the sub-
stitution trick reduces the non-tractable combinatorial
problem into a tractable problem, whose solution can be
found using the techniques described above. The tuning
time for each MIMO chain is still two OFDM symbols,
and the overall tuning time for the MIMO radio therefore
scales linearly with M, the number of chains.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 369

5 Evaluation

In this section, we experimentally demonstrate that our
MIMO full duplex design almost completely cancels all
self-talk and cross-talk interference to the noise floor
with a low-complexity design. We also show that this
translates to a doubling of throughput for the link perfor-
mance.

We implement our design using four WARP v2 boards
for building a 3 × 3 MIMO full duplex link. We de-
sign our own boards for analog cancellation and integrate
them with the WARP boards. At each receive chain, we
have analog circuits with 12 taps for the self-talk cancel-
lation, 4 taps for the first cross talk and 2 taps for the far-
thest transceiver. In total we have 56 taps in the analog
cancellation circuits for a 3 antenna full duplex MIMO
radio, and total of 485 filter taps in digital cancellation.
Since the WARP cannot generate 20dBm transmit power,
we use an external off-the-shelf power amplifier [5].

We compare against the SISO replication based design
primarily. This is the straightforward replication of the
recently published SISO full duplex design as discussed
at the start of Sec. 3. We compare against two variants of
this design. One is a design that fully replicates the ana-
log and digital cancellation implementations for all self-
talk and cross-talk cancellations. As discussed before the
complexity of this design is a factor of two higher for
analog and 2.5× higher for digital compared to our de-
sign. We call this design SISO Replication. However to
make an apples to apples comparison with our design we
also implement a SISO replication design with the same
complexity as our design. The difference compared to
our design is that, it neither use the cascaded structure
nor the novel estimation algorithm, but simply replicates
the SISO design with lower number of taps. We ex-
periment with the tap distribution between self-talk and
cross-talk to obtain the best overall cancellation. We call
this compared approach SISO Low Complexity Repli-
cation.

The best recent work that we could compare for
MIMO full duplex is MIDUs [11]. However this de-
sign only works for small bandwidths (i.e. 500KHz).
Further, it relies on obtaining 50dB of cancellation us-
ing antenna cancellation (which itself requires more an-
tennas per MIMO chain and is problematic), and then
complements it with another 30dB of digital cancella-
tion. However when we go to normal bandwidths of
20MHz found in WiFi signals, then the antenna cancel-
lation reduces to 40dB at best, and hence we are limited
to a total of 70dB of cancellation. This is significantly
worse than SISO replication, and hence we omit com-
parisons against MIDU. SISO replication is in fact the
best comparable technique that we can compare our de-
sign to.

2.43 2.44 2.45 2.46 2.47

-80

-60

-40

-20

0

20

����������������

������������������������������

������������������������

�������������������������

��������������������

������
����

��
�
��
���
��
��

�

����������������

Figure 9: Spectrum plot after cancellation of various self-
talk and cross-talk components for RX1 of a 3× 3 full
duplex system using our design.

Unless stated otherwise, all experiments are conducted
by placing the two full duplex nodes at various locations
in our department building. At each location, we repeat
the experiment ten times and calculate the average per-
formance.
5.1 Can we cancel all the interference for 3

antenna full duplex MIMO ?
The first claim made in this paper is capability of can-
celing all of the interference for the 3 × 3 MIMO. To
prove this, we experimentally test if we can fully can-
cel a WiFi 802.11n 20MHz signal upto a max transmit
power of 20dBm for a 3×3 MIMO. To demonstrate we
first pick one instance of this experiment, and show the
spectrum plot of the received self-interference after var-
ious stages of cancellation in Fig. 9. Remember, that in
analog we first cancel the chain’s own self-talk leaking
through the circulator, and then the cross-talk from the
other two antennas. Finally, we apply our digital cancel-
lation step to clean up the residual. We see that overall in
analog we achieve 68-70dB of self-interference cancella-
tion after all three stages. This satisfies the requirements
outlined in Sec. 2.

We now place the node at several different locations
in the testbed. At each location we vary the overall TX
power from 16dBm to 20dBm and plot the average can-
cellation for each power across all locations. At each lo-
cation and for each power, we conduct 40 runs. The goal
is to show that we can consistently cancel to the noise
floor for a variety of transmit powers up to and including
the max average TX power of 20dBm. In each instance
of the above experiment, we also measure the increase
in noise floor due to any residual self-interference that is
not canceled. Note that the increase in noise floor rep-
resents the SNR loss the received signal will experience
when the node is used in full duplex mode. Fig. 10 plots
the average cancellation and the increase in noise floor
as a function of TX power.
Fig. 10 shows that our 3-antenna MIMO full duplex de-
sign cancels the entire self interference almost to the

370 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

16 17 18 19 200

5

10

15

20

25

30

TX power

In
cr

ea
se

 in
 N

oi
se

 fl
oo

r i
n

dB

Lower is
better

Our Design SISO Replication

16 17 18 19 2075

80

85

90

95

100

105

Higher is
better

SISO Low
Complexity Replication

Ca
nc

el
la

tio
n

in
 d

B

TX power

Figure 10: Increase in noise floor vs TX power on the left
side and Cancellation vs TX power on the right side. For
different MIMO cancellation designs, we present the per-
formance of a full duplex 3 antenna full duplex MIMO
system.

noise floor. In case of max average transmit power of
20dBm [14], the noise floor is increased by 1.6dB over
each receive chain’s noise floor. The SISO replication
design increases the noise floor by 4dB per receive chain,
while the SISO low complexity replication approach in-
creases the noise floor by 25dB. Finally, the performance
of our design and the SISO replication design scales with
increasing TX power, while the other replication based
design is limited due to its inability to cancel the increas-
ing transmit noise and non-linearities due to the reduced
number of taps available to it.

5.2 Scaling with the number of MIMO an-
tennas

A question with MIMO is how does full duplex perfor-
mance scale with increasing number of transmit chains.
The ideal case would be to maintain the same level of
cancellation at each RX chain as the number of transmit
antennas increase, starting from one antenna. In other
words, even with increasing number of transmit anten-
nas and cross-talk components that need to be canceled,
we retain the same performance as if there was a single
transmit antenna and a single self-interference signal to
deal with. Fig. 11 plots the increase in the noise floor
at one receive chain as we go from one transmit chain
to three transmit chains for a MIMO radio for both our
design as well as the SISO replication technique. The
overall TX power is fixed to be 20dBm (additional 10 dB
of PAPR for WiFi [14], i.e., total 30 dBm) to adhere to
ISM band EIRP requirements. Hence if we use a single
transmit chain, then all the 20dBm is used for a single an-
tenna. If we use two chains, then each antenna produces
a 17dBm signal and so on.

As we can see from the figure, our design maintains
a near-constant performance even as we go from one to
three transmit chains. In other words, the performance is
roughly the same regardless of the number of cross-talk
components (We do wish to note that we could not go be-
yond three transmit chains due to hardware limitations,

1 2 3
1

1.5

2

2.5

3

3.5

4

�����������

��
��

��
��

���
��
��
��

��
��

���
��

��
�

��������������������������

����
���	��
�����������������

��������
������������

Figure 11: Increase in noise floor at a RX chain as the
number of MIMO chains and consequently the number
of cross-talk components increase from 1 to 3. With
our design we observe a 2.5 dB improvement for 3× 3
MIMO per RX chain compared to the SISO replication
design.

verifying the above claim for higher number of transmit
chains is future work). On the other hand, the SISO repli-
cation design shows the noise floor increasing linearly
with increasing number of transmit chains, a fact we pro-
vided theoretical intuition for in Sec. 3.2. Thus this de-
sign will look worse as we scale to higher MIMO config-
urations. We omit the SISO low complexity replication
approach because its results are significantly worse.

5.3 Dynamic Adaptation

An important metric for analog cancellation is how
quickly can it be tuned, and how often do we need
to tune? The best know prior technique [14] required
around 1 millisecond to tune a single SISO analog can-
cellation circuit. So for a 3 × 3 MIMO, applying the
same algorithm will take at least 9ms for the SISO repli-
cation based design. In this section we show the effi-
cacy of our new tuning algorithm which cuts the tuning
time to 8μs per receive chain. Fig. 12 shows the tuning
time as a function of the amount of analog cancellation.
To achieve the 70dB analog cancellation, our algorithm
takes 8μs per chain, for a total of 24μs for the full ra-
dio. The prior work as we can see take a millisecond
per chain. The interesting takeaway is that both schemes
achieve 40dB of analog cancellation fairly quickly (with
one preamble symbol, i.e. 4μs), but our scheme cov-
ers the final 30dB in one more step of 4μs, while the
prior scheme takes an exponential number of symbols
to achieve that. The reason for this improvement is pre-
cisely our ability to get a precise measurement of the self-
interference channel using the trick described in Sec. 4.

A second question is how often one needs to tune?
This depends on the environment and the amount of ana-
log cancellation that needs to be maintained. In this pa-
per, we tune for challenging indoor environments which
have strong multi-path (this is the main source of analog
cancellation degradation). We define a near-field coher-
ence time which depends on the amount of analog can-

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 371

0 1 10 100 1,000
10

20

30

40

50

60

70

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Sample Run of Algorithms Near field coherence time

Time in milli seconds Time in micro-seconds

An
al

og
 c

an
ce

lla
tio

n
in

 d
B

Prior Algorithm
Our Algorithm

AC of 60 dB
AC of 65 dB
AC of 70 dB

Exponential
Improvement

CD
F

Figure 12: Tuning time for analog cancellation. The first
figure shows the three orders of magnitude improvement
in tuning time with our algorithm compared to the best
known prior approach. The second figure shows how of-
ten this tuning algorithm needs to be run for an indoor
environment.

cellation and is essentially the time for which that analog
cancellation can be maintained on average before the cir-
cuits need to be retuned. Fig. 12 plots the near-field co-
herence time for three different analog cancellation tar-
gets. As we can see, to maintain an analog cancellation
of 70dB, we need to retune roughly every 60ms. Our
tuning overhead is 24μs, which is negligible.

5.4 Does Full Duplex Double Throughput?

A final question is whether all this cancellation per-
formance translates to a the desired doubling of over-
all throughput. We show experimentally the throughput
gains of our 3× 3 MIMO full duplex design compared
to the SISO replication based design. Two full duplex
3-antenna MIMO nodes are placed at different locations
and we send 1000 packets in full duplex mode between
them, and then send 1000 packets for each direction of
the half duplex mode. We repeat this experiment for each
bitrate that is available in WiFi. We pick the bitrate which
maximizes the overall throughput for all of the compared
full duplex designs and half duplex respectively. We re-
peat this experiment for 50 different locations. We found
the received power of the links varied uniformly between
−45 to −80dBm, across locations as found in typical in-
door deployments. To put these numbers in perspective,
this implies that the SNR of the links in half duplex mode
ranges from 5dB to 40dB. We plot the throughput for half
duplex and full duplex designs in Fig. 13. Note that all
of these throughput numbers account for the overhead in-
troduced by the periodic analog cancellation tuning. As
we can see, our full duplex system achieves a median
throughput gain of 1.95× over the half duplex mode, but
the SISO replication based design with full complexity
only achieves a 1.36× gain. The reason is the higher in-
crease in noise floor from the SISO replication based de-
sign. For example, if the link SNR in half duplex mode is
10dB, a 4dB increase in noise floor will result in worse
overall throughput for full duplex compared to running

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Throughput Gain for 3X3 MIMO

Our Design

SISO
Replication

Gain relative to Half Duplex 3X3 MIMO

CD
F 1.95x1.36x

SISO Low
Complexity
Replication

Figure 13: CDF of throughput gain relative to half duplex
3× 3 WiFi MIMO. Our 3× 3 MIMO system provides a
median gain of 95% relative to half duplex, whereas the
SISO replication design only provides a 1.36× relative
gain.

the link in half duplex mode. Our ability to keep the
noise floor constant results in a performance close to the
theoretical optimum.

The SISO replication based design with lower com-
plexity is quite poor, in fact in 70% of the scenarios, the
throughput was zero. This is because it increases the
noise floor by at least 25dB which acts as noise and if
the SNR is below 30dB no signal is decoded (WiFi re-
quires a minimum of 4−5dB SNR to decode the lowest
rate packet). As the half-duplex link SNR increases, the
performance improves but is still not sufficient to beat
the system throughput achieved by half duplex. The rea-
son is that even if the link half-duplex SNR is 35dB, it
implies that we only have two 10dB links for full duplex.
The throughput achieved with a single 35dB half duplex
link is still higher than two 10dB links. Consequently
the only region where we could find improvements for
full duplex over half duplex with this design was when
the link SNR was greater than 38dB.

6 Conclusion

This paper brings towards completion a line of work on
PHY layer of full duplex radios, and shows that practical
full duplex is achievable for the most common wireless
protocols and for MIMO while using commodity radios.
The cancellation techniques developed in this paper
are fundamental and apply to a wide variety of prob-
lems [20, 13, 18] where self-interference cancellation
is needed. While this work wraps up work on board
level realizations of full duplex, much work remains
in realizing these designs in a chip. Tackling these
problems is future work.

Acknowledgments: We would like to thank Aruna Bala-
subramanian, Rakesh Misra, Kiran Joshi, the anonymous
reviewer’s and the Stanford Networked Systems Group
members for their insightful comments.

372 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Decoupling of Static Channel. http://snsg.stanford.edu/

fullduplexmimo.pdf.

[2] FCC Part 15.247 Rules Systems Using Digital Modulation.
http://www.semtech.com/images/datasheet/fcc_digital_
modulation_systems_semtech.pdf.

[3] Huawei Sets Out Its 5G Stall. http://www.lightreading.com/
document.asp?doc_id=703466&init_gateway=true.

[4] Power Amplifier Data-sheet. http://datasheets.maximintegrated.
com/en/ds/MAX2828-MAX2829.pdf.

[5] Power Amplifier Data-sheet. http://www.minicircuits.com/pages/
npa/PGA-105+_NPA.pdf.

[6] WARP Project. http://warpproject.org.

[7] White paper by NI on Understanding Dynamic Hardware Specifications.
http://www.ni.com/white-paper/5529/en.

[8] Xilinx 7 Series FPGA Overview. http://www.xilinx.com/support/
documentation/data_sheets/ds180_7Series_Overview.pdf.

[9] Xilinx Power Estimator Tool. http://www.xilinx.com/products/
design_tools/logic_design/xpe.htm.

[10] E. B. And. An analog cmos high-speed continuous-time fir filter, 2000.

[11] E. Aryafar, M. A. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Chi-
ang. Midu: enabling mimo full duplex. In Proceedings of the 18th annual
international conference on Mobile computing and networking, Mobicom
’12, pages 257–268, New York, NY, USA, 2012. ACM.

[12] J. Bardwell. Tech Report. http://www.connect802.com/download/
techpubs/2005/commercial_radios_E0523-15.pdf.

[13] D. Bharadia, K. R. Joshi, and S. Katti. Full duplex backscatter. In Pro-
ceedings of the Twelfth ACM Workshop on Hot Topics in Networks, page 4.
ACM, 2013.

[14] D. Bharadia, E. McMilin, and S. Katti. Full duplex radios. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, SIGCOMM ’13,
pages 375–386, New York, NY, USA, 2013. ACM.

[15] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving sin-
gle channel, full duplex wireless communication. In Proceedings of the
sixteenth annual international conference on Mobile computing and net-
working, MobiCom ’10, pages 1–12, New York, NY, USA, 2010. ACM.

[16] M. Duarte, C. Dick, and A. Sabharwal. Experiment-driven characterization
of full-duplex wireless systems. CoRR, abs/1107.1276, 2011.

[17] E. Everett, A. Sahai, and A. Sabharwal. Passive self-interference suppres-
sion for full-duplex infrastructure nodes. CoRR, abs/1302.2185, 2013.

[18] E. Fear, S. Hagness, P. Meaney, M. Okoniewski, and M. Stuchly. Enhanc-
ing breast tumor detection with near-field imaging. Microwave Magazine,
IEEE, 3(1):48–56, 2002.

[19] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu. They
can hear your heartbeats: non-invasive security for implantable medical
devices. SIGCOMM Comput. Commun. Rev., 41(4), Aug. 2011.

[20] S. S. Hong, J. Mehlman, and S. Katti. Picasso: flexible rf and spectrum
slicing. In Proceedings of the ACM SIGCOMM 2012 conference on Appli-
cations, technologies, architectures, and protocols for computer communi-
cation, SIGCOMM ’12, pages 37–48, New York, NY, USA, 2012. ACM.

[21] X. Hong, C.-X. Wang, J. Thompson, B. Allen, W. Malik, and X. Ge. On
space-frequency correlation of uwb mimo channels. Vehicular Technology,
IEEE Transactions on, 59(9):4201–4213, Nov 2010.

[22] Y. Hua, P. Liang, Y. Ma, A. Cirik, and Q. Gao. A method for broadband
full-duplex mimo radio. Signal Processing Letters, IEEE, 19(12):793 –796,
dec. 2012.

[23] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis,
S. Katti, and P. Sinha. Practical, real-time, full duplex wireless. MobiCom
’11, pages 301–312, New York, NY, USA, 2011. ACM.

[24] S.-C. Jung, M.-S. Kim, and Y. Yang. A reconfigurable carrier leakage can-
celer for uhf rfid reader front-ends. Circuits and Systems I: Regular Papers,
IEEE Transactions on, 58(1):70 –76, jan. 2011.

[25] J. Kermoal, L. Schumacher, K. Pedersen, P. Mogensen, and F. Frederiksen.
A stochastic mimo radio channel model with experimental validation. Se-
lected Areas in Communications, IEEE Journal on, 20(6):1211–1226, Aug
2002.

[26] M. Knox. Single antenna full duplex communications using a common
carrier. In Wireless and Microwave Technology Conference (WAMICON),
2012 IEEE 13th Annual, pages 1–6, 2012.

[27] X. D. Lin and K. H. Chang. Optimal pn sequence design for quasisyn-
chronous cdma communication systems. Communications, IEEE Transac-
tions on, 45(2):221–226, 1997.

[28] D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan. A generalized mem-
ory polynomial model for digital predistortion of rf power amplifiers. Sig-
nal Processing, IEEE Transactions on, 54(10):3852–3860, Oct 2006.

[29] B. Radunovic, D. Gunawardena, P. Key, A. Proutiere, N. Singh, V. Balan,
and G. Dejean. Rethinking indoor wireless mesh design: Low power, low
frequency, full-duplex. In Wireless Mesh Networks (WIMESH 2010), 2010
Fifth IEEE Workshop on, pages 1 –6, 2010.

[30] B. Radunovic, D. Gunawardena, A. Proutiere, N. Singh, V. Balan, and
P. Key. Efficiency and fairness in distributed wireless networks through
self-interference cancellation and scheduling. Technical Report MSR-TR-
2009-27, Microsoft Research, 2009.

[31] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and
M. Beach. Modeling of wide-band mimo radio channels based on nlos
indoor measurements. Vehicular Technology, IEEE Transactions on,
53(3):655–665, May 2004.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 373

Recursively Cautious Congestion Control

Radhika Mittal∗ Justine Sherry∗ Sylvia Ratnasamy∗ Scott Shenker∗†

∗UC Berkeley †ICSI

Abstract
TCP’s congestion control is deliberately cautious, avoid-
ing network overloads by starting with a small initial
window and then iteratively ramping up. As a result,
it often takes flows several round-trip times to fully uti-
lize the available bandwidth. In this paper we propose
RC3, a technique to quickly take advantage of available
capacity from the very first RTT. RC3 uses several lev-
els of lower priority service and a modified TCP behav-
ior to achieve near-optimal throughputs while preserving
TCP-friendliness and fairness. We implement RC3 in the
Linux kernel and in NS-3. In common wide-area scenar-
ios, RC3 results in over 40% reduction in average flow
completion times, with strongest improvements – more
than 70% reduction in flow completion time – seen in
medium to large sized (100KB - 3MB) flows.

1 Introduction
We begin this paper by noting two facts about networks.
First, modern ISPs run their networks at a relatively low
utilization [18, 21, 26]. This is not because ISPs are in-
capable of achieving higher utilization, but because their
networks must be prepared for link failures which could,
at any time, reduce their available capacity by a signif-
icant fraction. Thus, most ISP networks are engineered
with substantial headroom, so that ISPs can continue to
deliver high-quality service even after failures.

Second, TCP congestion control is designed to be cau-
tious, starting from a small window size and then in-
creasing every round-trip time until the flow starts ex-
periencing packet drops. The need for fairness requires
that all flows follow the same congestion-control behav-
ior, rather than letting some be cautious and others ag-
gressive. Caution, rather than aggression, is the bet-
ter choice for a uniform behavior because it can more
easily cope with a heavily overloaded network; if ev-
ery flow started out aggressively, the network could eas-
ily reach a congestion-collapsed state with a persistently
high packet-drop rate.

These decisions – underloaded networks and cau-
tious congestion control – were arrived at independently,
but interact counter-productively. When the network is
underloaded, flows will rarely hit congestion at lower
speeds. However, the caution of today’s congestion con-
trol algorithms requires that flows spend significant time
ramping up rather than aggressively assuming that more
bandwidth is available. In recent years there have been
calls to increase TCP’s initial window size to alleviate

this problem but, as we shall see later in the paper, this
approach brings only limited benefits.

In this paper we propose a new approach called re-
cursively cautious congestion control (RC3) that retains
the advantages of caution while enabling it to efficiently
utilize the available bandwidth. The idea builds on a
perverse notion of quality-of-service, called WQoS, in
which we assume ISPs are willing to offer worse service
if certain ToS bits are set in the packet header (and the
mechanisms for doing so – priority queues, are present
in almost all currently deployed routers). While tradi-
tional calls for QoS – in which better service is available
at a higher price – have foundered on worries about eq-
uity (should good Internet service only be available to
those who can pay the price?), pricing mechanisms (how
do you extract payments for the better service?), and
peering (how do peering arrangements cope with these
higher-priced classes of service?), in our proposal we are
only asking ISPs to make several worse classes of ser-
vice available that would be treated as regular traffic for
the purposes of charging and peering. Thus, we see fewer
institutional barriers to deploying WQoS. Upgrading an
operational network is a significant undertaking, and we
do not make this proposal lightly, but our point is that
many of the fundamental sources of resistance to tradi-
tional QoS do not apply to WQoS.

The RC3 approach is quite simple. RC3 runs, at the
highest priority, the same basic congestion control algo-
rithm as normal TCP. However, it also runs congestion
control algorithms at each of the k worse levels of ser-
vice; each of these levels sends only a fixed number of
packets, with exponentially larger numbers at lower pri-
ority levels. As a result, all RC3 flows compete fairly at
every priority level, and the fact that the highest prior-
ity level uses the traditional TCP algorithms ensures that
RC3 does not increase the chances of congestion col-
lapse. Moreover, RC3 can immediately “fill the pipe”
with packets (assuming there are enough priority levels),
so it can leverage the bandwidth available in underuti-
lized networks.

We implemented RC3 in the Linux kernel and in the
NS-3 network simulator. We find through experiments
on both real and simulated networks that RC3 provides
strong gains over traditional TCP, averaging 40% re-
duction in flow completion times over all flows, with
strongest gains – of over 70% – seen in medium to large
sized flows.

1

374 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 32 N…..... N-40….N-440

Priority 1Priority 0 Priority 2Priority 3

����������������� �����������������

Fig. 1: Packet priority assignments.

2 Design
2.1 RC3 Overview

RC3 runs two parallel control loops: one transmitting
at normal priority and obeying the cautious transmission
rate of traditional TCP, and a second “recursive low pri-
ority” (RLP) control loop keeping the link saturated with
low priority packets.

In the primary control loop, TCP proceeds as normal,
sending packets in order from index 0 in the byte stream,
starting with slow-start and then progressing to normal
congestion-avoidance behavior after the first packet loss.
The packets sent by this default TCP are transmitted at
‘normal’ priority – priority 0 (with lower priorities de-
noted by higher numbers).

In the RLP control loop, the sender transmits addi-
tional traffic from the same buffer as TCP to the NIC.1

To minimize the overlap between the data sent by the
two control loops, the RLP sender starts from the very
last byte in the buffer rather than the first, and works its
way towards the beginning of the buffer, as illustrated in
Figure 1. RLP packets are sent at low priorities (priority
1 or greater): the first 40 packets (from right) are sent
at priority 1; the next 400 are sent at priority 2; the next
4000 at priority 3, and so on.2 The RLP traffic can only
be transmitted when the TCP loop is not transmitting, so
its transmission rate is the NIC capacity minus the nor-
mal TCP transmission rate.

RC3 enables TCP selective ACK (SACK) to keep
track of which of low priority (and normal priority) pack-
ets have been accepted at the receiver. When ACKs are
received for low priority packets, no new traffic is sent
and no windows are adjusted. The RLP control loop
transmits each low priority packet once and once only;
there are no retransmissions. The RLP loop starts send-
ing packets to the NIC as soon as the TCP send buffer
is populated with new packets, terminating when its ‘last
byte sent’ crosses with the TCP loop’s ‘last byte sent’.
Performance gains from RC3 are seen only during the
slow-start phase; for long flows where TCP enters con-
gestion avoidance, TCP will keep the network maximally
utilized with priority 0 traffic, assuming appropriately
sized buffers [8]. If the bottleneck link is the edge link,

1As end-hosts support priority queueing discipline, this traffic will
never pre-empt the primary TCP traffic.

2RC3 requires the packets to be exponentially divided across the
priority levels to accommodate large flows within feasible number of
priority bits. The exact number of packets in each priority level has
little significance, as we shall see in § 5.1.2.

Rate decreases as TCP
claims more bandwidth

TCP achieves 100%
bottleneck link util. in
congestion avoidance

Line Rate

BW

If bottleneck = edge, RLP traffic
is blocked once TCP reaches

congestion avoidance.

Fig. 2: Congestion window and throughput with RC3.

���� ���� ���� ���� ���� ��� �� ��� �

���� ���� ���� ���� ���� ���� ���� ��

���� ��

�

�������

��������

��������

�������	����������

���� �� ��

Fig. 3: Example RC3 transmission from §2.2.

high priority packets will pre-empt any packets sourced
by the RLP directly at the end host NIC; otherwise the
low priority packets will be dropped elsewhere in the net-
work.

Figure 2 illustrates how the two loops interact: as the
TCP sender ramps up, the RLP traffic has less and less
‘free’ bandwidth to take advantage of, until it eventually
is fully blocked by the TCP traffic. Since the RLP loop
does not perform retransmissions, it can leave behind
‘holes’ of packets which have been transmitted (at low
priority) but never ACKed. Because RC3 enables SACK,
the sender knows exactly which segments are missing
and the primary control loop retransmits only those seg-
ments.3 Once the TCP ‘last byte sent’ crosses into traf-
fic that has already been transmitted by the RLP loop, it
uses this information to retransmit the missing segments
and ensure that all packets have been received. We walk
through transmission of a flow with such a ‘hole’ in the
following subsection.

2.2 Example

We now walk through a toy example of a flow with
66 packets transmitted over a link with an edge-limited
delay-bandwidth product of 50 packets. Figure 3 illus-
trates our example.

In the first RTT, TCP sends the first 4 packets at pri-
ority 0 (from left); after these high priority packets are
transmitted, the RLP loop sends the remaining 62 pack-
ets to the NIC – 40 packets at priority 1 and 22 packets
at priority 2 (from right), of which 46 packets are trans-
mitted by the NIC (filling up the entire delay-bandwidth
product of 50 packets per RTT).

The 21st and 22nd packets from the left (marked as

3Enabling SACK allows selective retransmission for dropped low
priority packets. However, RC3 still provides significant performance
gains when SACK is disabled, despite some redundant retransmissions.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 375

Xs), sent out at priority 2, are dropped. Thus, in the sec-
ond RTT, ACKs are received for all packets transmitted
at priority 0 and for all but packets 21 and 22 sent at lower
priorities. The TCP control loop doubles its window and
transmits an additional 8 packets; the RLP sender ignores
the lost packets and the remaining packets are transmit-
ted by the NIC at priority 2.

In the third RTT, the sender receives ACKs for all
packets transmitted in the second RTT and TCP con-
tinues to expand its window to 16 under slow start. At
this point, the TCP loop sees that all packets except 21st
and 22nd have been ACKed. It, therefore, transmits only
these two packets.

Finally, in the fourth RTT the sender receives ACKs
for the 21st and 22nd packets as well. As all data ac-
knowledgements have now been received by the sender,
the connection completes.

3 Performance Model
Having described RC3 in §2, we now model our expected
reduction in Flow Completion Time (FCT) for a TCP
flow using RC3 as compared to a basic TCP implementa-
tion. We quantify gains as ((FCT with TCP) - (FCT with
RC3)) / (FCT with TCP) – i.e. the percentage reduction
in FCT [11]. Our model is very loose and ignores is-
sues of queuing, packet drops, or the interaction between
flows. Nonetheless, this model helps us understand some
of the basic trends in performance gains. We extensively
validate these expected gains in §5 and see the effects of
interaction with other flows.
Basic Model: Let BW be the capacity of the bottleneck
link a flow traverses, and u be the utilization level of that
link. We define A, the available capacity remaining in the
bottleneck link as A = (1−u)×BW . Since RC3 utilizes
all of the available capacity, a simplified expectation for
FCTs under RC3 is RT T + N

A , where RT T is the round
trip time and N is the flow size.

TCP does not utilize all available capacity during its
slow start phase; it is only once the congestion window
grows to A×RT T , that the link is fully utilized. The slow
start phase, during which TCP leaves the link partially
idle, lasts log(min(N,A× RT T)/i) RTTs, with i being
the initial congestion window of TCP. This is the interval
during which RC3 can benefit TCP.

In Figure 4, the solid line shows our expected gains
according to our model. Recall that i denotes the initial
congestion window under TCP. For flow sizes N < i, RC3
provides no gains over a baseline TCP implementation,
as in both scenarios the flow would complete in RT T +
N
A . For flow sizes i<N <A×RT T , the flow completes in
1 RTT with RC3, and log(N/i) RTTs with basic TCP in
slow start. Consequently, the reduction in FCT increases
with N over this interval.

Once flow sizes reach N > A × RT T , basic TCP

Flow Size (N)
i A×RTT

%
 F

C
T

 R
e

d
u

ct
io

n

i A×RTT i'

RC3

High InitCwnd

Fig. 4: Performance gains as predicted by a simple model for
RC3 and an increased initial congestion window.

reaches a state where it can ensure 100% link utilization
after log(A × RT T/i) RTTs. Therefore, the improve-
ments from RC3 become a smaller fraction of overall
FCT with increasingly large flows; this reduction roughly
follows log(A×RT T/i)×RT T×A

N (ignoring a few constants in
the denominator).
Parameter Sensitivity: The above model illustrates that
improvements in FCTs due to RC3 are dependent pri-
marily on three parameters: the flow size (N), the effec-
tive bandwidth-delay product (A×RT T), and the choice
of the initial congestion window (i). Peak improvements
are observed when N is close to A×RT T , because un-
der these conditions the flow completes in 1 RTT with
RC3 and spends its entire life time in slow start without
RC3. When the delay-bandwidth product increases, both
the optimal flow size (for performance improvement) in-
creases, and the maximum improvement increases.
Adjusting i: There are several proposals [7, 12] to ad-
just the default initial congestion window in TCP to 10
or even more packets. Assume we adjusted a basic TCP
implementation to use a new value, some i� as its ini-
tial congestion window. The dotted line in Figure 4 il-
lustrates the gains from such an i�. When i� increases,
the amount of time spent in slow start decreases to
log(min(N,A×RT T)/i�)×RT T . Flows of up to i� pack-
ets complete in a single RTT, but unless i� = A×RT T
(hundreds of packets for today’s WAN connections), ad-
justing the initial congestion window will always under-
perform when compared to RC3. However, there is good
reason not to adjust i� to A×RT T : without the use of low
priorities, as in RC3, sending a large amount of traffic
without cautious probing can lead to an increase in con-
gestion and overall worse performance. Our model does
not capture the impact of queueing and drops, however,
in §5.1.4 we show via simulation how increasing the ini-
tial congestion window to 10 and 50 packets penalizes
small flows in the network.

4 Linux Implementation
We implemented RC3 as an extension to the Linux 3.2
kernel on a server with Intel 82599EB 10Gbps NICs.

3

376 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sendAPPLICATION

tcp_sendmsg

tcp_transmit_skb

TCP
Control
Looppp

TCP

P0
transmitted as
per allowed

window

RLP
Control
Loop Low

Priority
transmitted
all at once

ip_queue_xmit

Insert Priority in DSCPIP

DEVICE prio_enqueue
P0 P1 P2

prio_dequeue

NIC Tx Ring Buffer

recvAPPLICATION

tcp_rcv_established

TCP

ip_rcv

Read Priority from DSCP
IP

DEVICE net_rx_action

NIC Rx Ring Buffer

tcp_data_queue

tcp_ack*tcp_ack_rc3

In-sequence
P0 packets

Fast Path
Slow Path

Out-of-order P0
and RC3
packets

Low Priority ACK
Update SACK

Process P0 ACK
 Advance snd_nxt
on “ACK Bump”

(a) Sending Data (b) Receiving Data and Acks
Fig. 5: Modifications to Linux kernel TCP stack.

Our implementation cleanly sits within the TCP and IP
layers and requires minimal modifications to the kernel
source code. Because our implementation does not touch
the core TCP congestion control code, different conges-
tion control implementations can easily be ‘swapped out’
while still retaining compatibility with RC3. After de-
scribing our implementation in §4.1, we discuss how
RC3 interacts with other components of the networking
stack in §4.2, including application buffering, QoS sup-
port, hardware performance optimizations, and SACK
extensions.

4.1 TCP/IP in the Linux Kernel

We briefly provide high-level context for our implemen-
tation, describing the TCP/IP stack under the Linux 3.2
kernel. We expect that RC3 can be easily ported to other
implementations and operating systems as well, but leave
this task to future work.

Figure 5 illustrates the kernel TCP/IP architecture at a
very high level, along with our RC3 extensions shaded
in gray. The Linux kernel is as follows. When an appli-
cation calls send(), the tcp sendmsg function is invoked;
this function segments the send buffer in to ‘packets’ rep-
resented by the socket buffer (skb) datastructure. By de-
fault, each skb represents one packet to be sent on the
wire. After the data to be transmitted has been segmented
in to skbs, it is passed to the core TCP logic, and then
forwarded for transmission through the network device
queue to the NIC.

On the receiver side, packets arrive at the NIC and are
forwarded up to a receive buffer at the application layer.
As packets are read in, they are represented once again as
skb datatypes. Once packets are copied to skbs, they are
passed up the stack through the TCP layer. Data arriving
in-order is sent along the ‘fast-path’, directly to the appli-
cation layer receive buffer. Data arriving out of order is
sent along a ‘slow path’ to an out of order receive queue,
where it waits for the missing packets to arrive, before
being forwarded up in-order to the application layer.

We now describe how we extend these functions to
support RC3.

4.1.1 Sending Data Packets

RC3 extends the send-side code in the networking stack
with two simple changes, inserting only 72LOC in the
TCP stack and 2LOC in the IP stack. The first change,
in the TCP stack, is to invoke the RLP control loop once
the data has been segmented in the tcp sendmsg function.
We leave all of the segmentation and core TCP logic un-
touched – we merely add a function call in tcp sendmsg
to invoke the RLP loop, as shown in Fig. 5.

The RLP loop then reads the TCP write queue itera-
tively from the tail end, reading in the packets one by
one, marking the appropriate priority in the packet buffer,
and then sending out the packet. The field skb→priority
is assigned according to the sequence number of the
packet: the RLP loop subtracts the packet’s sequence
number from the tail sequence number and then divides
this value by the MSS. If this value is ≤ 40, the packet
is assigned priority 1, if the value is ≤ 400 it is assigned
priority 2, and so on. After the priority assignment, the
skb packets are forwarded out via the tcp transmit skb
function.

Our second change comes in the IP layer as pack-
ets are attached to an IP header; where we ensure that
skb→priority is not overwritten by the fixed priority as-
signed to the socket, as in the default case. Instead, the
value of skb→priority is copied to the DSCP priority bits
in the IP header.

Overall, our changes are lightweight and do not in-
terfere with core congestion control logic. Indeed, be-
cause the TCP logic is isolated from the RC3 code, we
can easily enable TCP CUBIC, TCP New Reno, or any
other TCP congestion control algorithms to run along-
side RC3.

4.1.2 Receiving Data Packets and ACKs

Extending the receive-side code with RC3 is similarly
lightweight and avoids modifications to the core TCP
control flow. Our changes here comprise only of 46 LOC
in the TCP stack and 1 LOC in the IP stack.

Starting from bottom to top in Figure 5, our first
change comes as packets are read in off the wire and
converted to skbs – here we ensure that the DSCP pri-
ority field in the IP header is copied to the skb priority
field; this change is a simple 1 LOC edit.

Our second set of changes which lie up the stack
within TCP. These changes separate out low priority
packets from high priority in order to ensure that the
high priority ACKing mechanism (and therefore the
sender’s congestion window) and other TCP variables
remain unaffected by the low priority packets. We
identify the low priority packets and pass them to the

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 377

out of order ‘slow path’ queue, using the unmodified
function tcp data queue. We then call a new func-
tion, tcp send ack rc3, which sends an ACK packet for
the new data at the same priority the data arrived on,
with the cumulative ACK as per the high priority traf-
fic, but SACK tags indicating the additional low priority
packets received. The priority is assigned in the field
skb→priority, and the packets are sent out by calling
tcp transmit skb, as explained in § 4.1.1.

The other modifications within the TCP receive
code interpose on the handling of ACKs. We invoke
tcp ack rc3 on receiving a low priority ACK packet,
which simply calls the function to update the SACK
scoreboard (which records the packets that have been
SACKed), as per the SACK tags carried by the ACK
packet. We also relax the SACK validation criteria to up-
date the SACK “scoreboard” to accept SACKed packets
beyond snd nxt, the sequence number up to which data
has been sent out by the TCP control loop.

Typically when a new ACK is received, the stack
double-checks that the received ACK is at a value less
than snd nxt, discarding the ACKs that do not satisfy this
constraint. We instead tweak the ACK processing to up-
date the snd nxt value when a high-priority ACK is re-
ceived for a sequence number that is greater than snd nxt:
such an ACK signals that the TCP sender has “crossed
paths” with traffic transmitted by the RLP and is enter-
ing the cleanup phase. We advance the send queue’s head
and update snd nxt to the new ACKed value and then al-
low TCP to continue as usual; we call this jump an “ACK
bump.”

While these changes dig shallowly in to the core TCP
code, they do not impact our compatibility with various
congestion control schemes.

4.2 Specific Implementation Features

We now discuss how RC3 interacts with some key fea-
tures at all layers of the networking stack, from software
to NIC hardware to routers and switches.

4.2.1 Socket Buffer Sizes

The default send and receive buffer sizes in Linux are
very small - 16KB and 85KB respectively. Performance
gains from RC3 are maximized when the entire flow is
sent out in the first RTT itself. This requires us to make
the send and receive buffers as big as the maximum flow
size (up to a few MBs in most cases). Window scaling
is turned on by default in Linux, and hence we are not
limited by the 64KB receive window carried by the TCP
header.

RC3 is nonetheless compatible with smaller send
buffer sizes: every call to tcp sendmsg passes a chunk
of data to the RLP control loop, which treats that chunk,
logically, as a new flow as far as priority assignment is

TCP Send Buffer

RLP Control Loop

P1

NIC

Send buffer contains
large packet sizes of
multiple MSS.

RLP Loop assigns same
priorities to large packets
based on start sequence

Packets partitioned into
MSS-sized packets, each
with same priority,
before transmission.

9 8 7 6 5 4 3 2 1

9 8 7

987

Fig. 6: RC3 combined with TSO.

concerned. We include a check to break the RLP con-
trol loop to ensure that the same packet is not trans-
mitted twice by subsequent calls to tcp sendmsg. In-
deed, this behavior can help flows which resume from
an application-layer imposed idle period.

4.2.2 Using QoS Support

RC3 is only effective if priority queueing is supported at
both endhosts and the routers in the network.
Endhosts: We increase the Tx queue length at the soft-
ware interface, to ensure that it can store all the packets
forwarded by the TCP stack. The in-built traffic con-
trol functionality of Linux is used to set the queuing dis-
cipline (qdisc) as prio and map the packet priorities to
queue ‘bands’. The prio qdisc maintains priority queues
in software, writing to a single NIC ring buffer as shown
in Figure 5. Thus, when the NIC is free to transmit, a
packet from band N is dequeued only if all bands from 0
to N−1 are empty. Up to 16 such bands are supported by
the Linux kernel, which are more than enough for RC3.4

Routers: All modern routers today support QoS, where
flow classes can be created and assigned to a particular
priority level. Incoming packets can then be mapped to
one of these classes based on the DSCP field. The exact
mechanism of doing so may vary across different ven-
dors. Although the ISPs may use the DSCP field for
some internal prioritization, all we require them to do
is to read the DSCP field of an incoming packet, assign
a priority tag to the packet which can be recognized by
their routers, and then rewrite the priority in the DSCP
field when the packet leaves their network.

4.2.3 Compatibility with TSO/LRO

TCP Segmentation Offload (TSO) and Large Receiver
Offload (LRO) are two performance extensions within
the Linux kernel that improve throughput through batch-
ing. TSO allows the TCP/IP stack to send packets com-
prising of multiple MSSes to the NIC, which then di-
vides them into MSS sized segments before transmitting
them on the link. LRO is the receiver counterpart which
amasses the incoming segments into larger packets at
the driver, before sending them higher up in the stack.
TSO and LRO both improve performance by amortizing

416 priority levels is sufficient to support RC3 flow sizes on the
order of a petabyte!

5

378 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the cost of packet processing across packets in batches.
Batched packets reduce the average per-packet process-
ing CPU overhead, consequently improving throughput.

Figure 6 illustrates how RC3 behaves when TSO is
enabled at the sender and a larger packet, comprising of
multiple MSSes is seen by the RLP control loop. At first
glance, TSO stands in the way of RC3: RC3 requires
fine-grained control over individual packets to assign pri-
orities, and the over sized packets passing through under
TSO hinder RC3’s ability to assign priorities correctly
when it includes data from packets that should be as-
signed different priority classes. Rather than partition-
ing data within these extra large packets, we simply al-
low RC3 to label them according to the lowest priority
of any data in the segment. This means that we might
not strictly follow the RC3 design in §2 while assigning
priorities for some large packets. However, such a situ-
ation can arise only when the MSSes in a large packet
overlap with the border at which priority levels switch.
Since the traffic is partitioned across priority level expo-
nentially, such cases are infrequent. Further, the largest
TSO packet is comprised of at most 64KB. Therefore, no
more than 43 packets would be improperly labeled at the
border between priority levels.

TSO batching leads to a second deviation from the
RC3 specification, in that segments within a large packet
are sent in sequence, rather than in reverse order. For ex-
ample, in Figure 6, the segments in the packet are sent
in order (7,8,9) instead of (9,8,7). Hence, although RC3
still processes skb packets from tail to front, the physical
packets sent on the wire will be sent in short in-order
bursts, each burst with a decreasing starting sequence
number. Allowing the forward sequencing of packets
within a TSO batch turns out to be useful when LRO is
enabled at the receiver, where batching at the driver hap-
pens only if the packets arrive in order. As we’ll show
in §5.2, combining RC3 with TSO/LRO reduces the OS
overhead of processing RC3 packets by almost 50%, and
consequently leads to net gains in FCTs.

4.2.4 SACK Enhancements

Although RC3 benefits when SACK is enabled, it is in-
compatible with some SACK enhancements. Forward
Acknowledgment (FACK) [24], is turned on by default
in Linux. It estimates the number of outstanding packets
by looking at the SACKed bytes. RC3 SACKed packets
may lead the FACK control loop to falsely believe that all
packets between the highest cumulative ACK received
and the lowest SACK received are in flight. We therefore
disable FACK to avoid the RC3 SACKed bytes from af-
fecting the default congestion control behavior. Doing so
does not penalize the performance in most cases, as the
Fast Recovery mechanism continues transmitting unsent
data after a loss event has occurred and partial ACKs are

received, allowing lost packets to be efficiently detected
by duplicate ACKs. DSACK [17] is also disabled, to
avoid the TCP control loop from inferring incorrect in-
formation about the ordering of packets arriving at the
receiver based on RC3 SACKs.

5 Experimental Evaluation
We now evaluate RC3 across several dimensions. In
§5.1, we evaluate RC3 extensively using NS-3 simu-
lations - §5.1.1, compares RC3’s FCT reductions with
the model we described in §3; §5.1.2 and §5.1.3 evalu-
ate RC3’s robustness and fairness, and §5.1.4 compares
RC3’s FCT reductions relative to other designs. We eval-
uate our Linux RC3 implementation in §5.2.

5.1 Simulation Based Evaluation

We evaluate RC3 using a wide range of simulation set-
tings. Our primary simulation topology models the
Internet-2 network consisting of ten routers, each at-
tached to ten end hosts, with 1Gbps bottleneck band-
width and 40ms RTT. It runs at 30% average link utiliza-
tion [18, 21, 26]. The queue buffer size is equal to the
delay-bandwidth product (RTT×BW) in all cases, which
is 5MB for our baseline. The queues do priority drop-
ping and priority scheduling. All senders transmit using
RC3 unless otherwise noted. Flow sizes are drawn from
an empirical traffic distribution [6]; with Poisson inter-
arrivals.

For most experiments we present RC3’s performance
relative to a baseline TCP implementation. Our baseline
TCP implementation is TCP New Reno [16] with SACK
enabled [9, 25] and an initial congestion window of 4 [7];
maximum segment size is set to 1460 bytes while slow
start threshold and advertised received window are set to
infinity.

5.1.1 Baseline Simulation

We first investigate the baseline improvements using
RC3 and compare them to our modeled results from §3.
Validating the Model: Figure 7 compares the gains pre-
dicted by our model (§3) with the gains observed in our
simulation. The data displayed is for 1Gbps bottleneck
capacity, 40ms average RTT, and 30% load. Error bars
plotting the standard deviation across 10 runs are shown;
they sit very close to the average. For large flows, the
simulated gains are slightly lower than predicted; this is
the result of queueing delay which is not included in our
model. For small flows – four packets or fewer – we actu-
ally see better results than predicted by the model. This
is due to large flows completing sooner than with reg-
ular TCP, leaving the network queues more frequently
vacant and thus decreasing average queueing delay for
short flows. Despite these variations, the simulated and
modeled results track each other quite closely: for all but
the smallest flows, we see gains of 40–75%.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 379

Fig. 7: Reduction in FCT as predicted by model vs simulations.
(RTT×BW = 5MB, 30% average link utilization)

Average
Over
Flows

Average
Over
Bytes

10% Load
Regular FCT (s) 0.125 0.423

RC3 FCT (s) 0.068 0.091
% Reduction 45.56 78.36

30% Load
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

50% Load
Regular FCT (s) 0.15 0.498

RC3 FCT (s) 0.088 0.176
% Reduction 41.44 64.88

Fig. 8: Reduction in FCT with load variation, with RTT×BW
fixed at 5MB

Link Load: Figure 8 shows FCT performance gains
comparing RC3 to the base TCP under uniform link
load of 10%, 30%, or 50%. RTT×BW is fixed at 5MB
across all experiments. As expected, performance im-
provements decrease for higher average link utilization.
For large flows, this follows from the fact that the avail-
able capacity (A = (1− u)×BW) reduces with increase
in utilization u. Thus, there is less spare capacity to be
taken advantage of in scenarios with higher link load.
However, for smaller flows, we actually see the opposite
trend. This is once again due to reduced average queue-
ing delays, as large flows complete sooner with most
packets having lower priorities than the packets from the
smaller flows.
RTT×BW: Figure 9 shows the FCT reduction
due to RC3 at varying RTT×BW. In this experi-
ment we adjusted RTTs and bandwidth capacities
to achieve RTT×BW of 500KB (40ms×100Mbps),
5MB (40ms×1Gbps and 400ms×100Mbps) and
50MB(400ms×1Gbps). As discussed in §3, the
performance improvement increases with increasing
RTT×BW, as the peak of the curve in Figure 4 shifts
towards the right. The opposite trend for very short

Average
Over
Flows

Average
Over
Bytes

100Mbps Bottleneck
40ms avg. RTT

Regular FCT (s) 0.167 0.691
RC3 FCT (s) 0.11 0.442
% Reduction 33.98 36.05

100Mbps Bottleneck
400ms avg. RTT

Regular FCT (s) 0.948 3.501
RC3 FCT (s) 0.567 0.783
% Reduction 40.29 77.62

1 Gbps Bottleneck
40ms avg. RTT

Regular FCT (s) 0.135 0.443
RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

1 Gbps Bottleneck
400ms avg. RTT

Regular FCT (s) 0.971 3.59
RC3 FCT (s) 0.558 0.569
% Reduction 42.45 84.17

Fig. 9: Reduction in average FCT with variation in RTT×BW
with 30% average link utilization

(a) Flow size 7.3KB (b) Flow size 1.7MB

Fig. 10: Cumulative Distribution of FCTs. (RTT×BW = 5MB,
30% average link utilization)

flows is repeated here as well.
Summary: Overall, RC3 provides strong gains, reduc-
ing flow completion times by as much as 80% depending
on simulation parameters. These results closely track the
results predicted by the model presented in §3.

5.1.2 Robustness

In the prior section, we evaluated RC3 within a single
context. We now demonstrate that these results are ro-
bust, inspecting RC3 in numerous contexts and under
different metrics. Many of the results in this section are
summarized in Table 1.
Performance at the Tails: Our previous figures plot the
average and standard deviation of flow completion times;
in Figures 10(a) and (b) we plot the full cumulative dis-
tribution of FCTs from our Internet-2 experiments for
two representative flow sizes, 7.3KB and 1.7MB.5 We

5The ‘jumps’ or ‘banding’ in the CDF are due to the uniform link
latencies in the simulation topologies. Paths of two hops had an RTT
of 40, paths of three hops had an RTT of 60, and so on. A flow which
completes in some k RTTs while still under slow start thus completes

7

380 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Average
Over
Flows

Average
Over
Bytes

Default: Internet-2
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

Telstra Topology
Regular FCT (s) 0.159 0.510

RC3 FCT (s) 0.084 0.111
% Reduction 47.07 78.13

RedClara Topology
Regular FCT (s) 0.17 0.429

RC3 FCT (s) 0.097 0.098
% Reduction 42.78 77.16

ESNet Topology
Regular FCT (s) 0.207 0.478

RC3 FCT (s) 0.137 0.0976
% Reduction 33.91 79.58

2000 Workload
Regular FCT (s) 0.0871 0.238

RC3 FCT (s) 0.0704 0.079
% Reduction 13.83 66.73

Link Heterogeneity
Regular FCT (s) 0.159 0.541

RC3 FCT (s) 0.087 0.141
% Reduction 45.35 73.89

Table 1: RC3 performance in robustness experiments.

see in these results that performance improvements are
provided across the board at all percentiles; even the 1st

and 99th percentiles improve by using RC3.
Topology: We performed most of our experiments on
a simulation topology based off a simplified model of
the Internet-2 network. To verify that our results were
not somehow biased by this topology, we repeated the
experiment using simulation topologies derived from the
Telstra network, the Red Clara academic network, and
the complete ESNet [1, 4], keeping the average delay as
40ms and the bottleneck bandwidth as 1Gbps. All three
topologies provided results similar to our initial Internet-
2 experiments: average FCTs for Telstra improved by
47.07%, for Red Clara, by 42.78%, and for ESNet by
33.91%.
Varying Workload Distribution: Our baseline experi-
ments use an empirical flow size distribution [6]. A no-
ticeable property of the flow size distribution in our ex-
periments is the presence of of very large flows (up to
a few MBs) in the tail of the distribution. We repeated
the Internet-2 experiment with an empirical distribution
from a 2000 [2] study, an era when average flow sizes
were smaller than today. Here we saw that the average
FCT improved by only 13.83% when averaged over all
flows. When averaging FCT gains weighted by bytes,
however, we still observe strong gains for large flows re-
sulting in a reduction of 66.73%.
Link Heterogeneity: We now break the assumption of
uniform link utilization and capacity: in this experiment
we assigned core link bandwidths in the Internet-2 topol-
ogy to a random value between 500Mbps and 2Gbps.
We observed that FCTs in the heterogenous experiment
were higher than in the uniform experiment, for both
TCP and RC3. Nevertheless, the penalty to TCP was
worse, resulting in a stronger reduction in flow comple-

in approximately k ∗RT T time. This created fixed steps in the CDF, as
per the RTTs

Fig. 11: Average FCTs with increasing arbitrary loss rate.
(RTT×BW = 5MB, 30% average link utilization)

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.167 0.691

1 RC3 Priority Level FCT 0.126 0.496
% 24.55 28.22

3 RC3 Priority Levels FCT 0.11 0.442
(40, 400, 4000) % 33.98 36.05

4 RC3 Priority Levels FCT 0.112 0.434
(10, 100, 1000, 10000) % 32.94 37.19

Fig. 12: Reduction in FCT with varying priority levels.
(RTT×BW = 500KB, 30% average link utilization)

tion times, when averaged across flows.
Loss Rate: Until now all loss has been the result of
queue overflows; we now introduce random arbitrary
loss and investigate the impact on RC3. Figure 11 shows
flow completion times for TCP and RC3 when arbitrary
loss is introduced for 0.02-0.1% of packets. We see that
loss strongly penalizes TCP flows, but that RC3 flows
do not suffer nearly so much as TCP. RC3 provides even
stronger gains in such high loss scenarios because each
packet essentially has two chances at transmission. Fur-
ther, since the RLP loop ignores ACKs and losses, low
priority losses do not slow the sending rate.
Priority Assignment: Our design assigns packets across
multiple priorities, bucketed exponentially with 40 pack-
ets at priority 1, 400 at priority 2, and so on. We per-
formed an experiment to investigate the impact of these
design choices by experimenting with an RC3 deploy-
ment when 1, 3, or 4 additional priority levels were en-
abled; the results of these experiments are plotted in
Fig. 12. We see that dividing traffic over multiple pri-
ority levels provides stronger gains than with only one
level of low priority traffic. The flows which benefit the
most from extra priorities are the medium-sized flows
which, without RC3, require more than one RTT to com-
plete during slow start. A very slight difference is seen in

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 381

performance gains when bucketing packets as (10, 100,
1000, 10000) instead of (40, 400, 4000).
Application Pacing: Until now, our model application
has been a file transfer where the entire contents of the
transfer are available for transmission from the begin-
ning of the connection. However, many modern ap-
plications ‘pace’ or ‘chunk’ their transfers. For exam-
ple, after an initial buffering phase YouTube paces video
transfers at the application layer, transmitting only a few
KB of data at a time proportional to the rate that the
video data is consumed. To see the effect of RC3 on
these type of flows, we emulated a YouTube transfer [30]
with a 1.5MB buffer followed by 64KB chunks sent ev-
ery 100ms. Ultimately, RC3 helped these video connec-
tions by decreasing the amount of time spent in buffer-
ing by slightly over 70% in our experimental topology.
This means that the time between when a user loads the
page and can begin video playback decreases while us-
ing RC3. However, in the long run, large videos did not
complete transferring the entire file any faster with RC3
because their transfer rate is dominated by the 64KB pac-
ing.
Summary: In this section, we examined RC3 in numer-
ous contexts, changing our experimental setup, looking
at alternative application models, and investigating the
tail distribution of FCTs under RC3 and TCP. In all con-
texts, RC3 provides benefits over TCP, typically in the
range of 30-75%. Even in the worst case context we
evaluated, when downlink rather than uplink capacities
bottlenecked transmission, RC3 still outperformed base-
line TCP by 10%.

5.1.3 RC3 and Fairness

In this subsection we ask, is RC3 fair? We evaluate two
forms of fairness: how RC3 flows of different sizes in-
teract with each other, and how RC3 interacts with con-
current TCP flows.
RC3 with RC3: It is well-known that TCP in the long
run is biased in that its bandwidth allocations benefit
longer flows over short ones. We calculated the ef-
fective throughput for flows using TCP or RC3 in our
baseline experiments (Figure 13). TCP achieves near-
optimal throughput for flow sizes less than 4 packets, but
throughput is very low for medium-sized flows and only
slightly increases for the largest (multiple-MB) flows.
RC3 maintains substantially high throughput for all flow
sizes, having a slight relative bias towards medium sized
flows.
RC3 with TCP: To evaluate how RC3 behaves with con-
current TCP flows, we performed an experiment with
mixed RC3 and TCP flows running concurrently. We
allowed 50% of end-hosts attached to each core router
in our simulations (say in set A) to use RC3, while the
remaining 50% (set B) used regular TCP. Overall, FCTs

Fig. 13: Median Flow Throughput

for both RC3 and TCP were lower than in the same setup
where all flows used regular TCP. Thus, RC3 is not only
fair to TCP, but in fact improves TCP FCTs by allowing
RC3 flows to complete quickly and ‘get out of the way’
of the TCP flows.

5.1.4 RC3 In Comparison

We now compare the performance gains of RC3 against
some other proposals to reduce TCP flow completion
times.
Increasing Initial Congestion Window: Figure 14(a)
compares the performance gains obtained from RC3
with the performance gains from increasing the baseline
TCP’s initial congestion window (InitCwnd) to 10 and
50. For most flow sizes, especially larger flows, RC3
provides stronger improvements than simply increasing
the initial congestion window. When averaging across
all flows, RC3 provides a 44% reduction in FCT whereas
increasing the InitCwnd to 10 reduces the FCT by only
13% and 50 reduces it by just 24%. Further, for small
flow sizes (≤ 4 packets), increasing the InitCwnd actu-
ally introduces a penalty due to increased queueing de-
lays. RC3 never makes flows do worse than they would
have under traditional TCP. These results confirm our ex-
pectations from §3.
Traditional QoS: An alternate technique to improve
FCTs is to designate certain flows as ‘critical’ and send
those flows using unmodified TCP, but at higher priority.
We annotated 10% of flows as ‘critical’; performance re-
sults for the critical flows alone are showed in Fig. 14(b).
When the ‘critical’ 10% of flows simply used higher pri-
ority, their average FCT reduces from 0.126 seconds to
0.119 seconds; while the non-critical flows suffered a
very slight (<2%) penalty. When we repeated the ex-
periment, but used RC3 for the critical flows (leaving the
rest to use TCP), the average FCT reduced from 0.126
seconds to 0.078 seconds, as shown in Figure 14(b) .
Furthermore, non-critical flows showed a slight (<1%)
improvement. This suggests that it is better to be able to
send an unrestricted amount of traffic, albeit at low pri-
ority, than to send at high priority at a rate limited by
TCP.
RCP: Finally, we compare against RCP, an alternative
transport protocol to TCP. With RCP, routers calculate
average fair rate and signal this to flows; this allows flows

9

382 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

i = 10 FCT 0.117 0.362
% 13.21 17.87

i = 50 FCT 0.102 0.272
% 24.33 38.24

RC3 FCT 0.076 0.114
% 43.54 74.35

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.126 0.435

QoS FCT 0.119 0.411
% 5.33 5.64

RC3 FCT 0.078 0.12
% 38.31 72.43

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

RCP FCT 0.088 0.117
% 33.86 73.58

RC3 FCT 0.076 0.114
% 43.54 74.35

(a) Increased InitCwnd (b) Traditional QoS (c) RCP

Fig. 14: RC3 as compared to three alternatives. All FCTs are reported in seconds; % shows percent reduction from baseline.
(RTT×BW = 5MB, 30% average link utilization)

to start transmitting at an explicitly allocated rate from
the first (post-handshake) RTT, overcoming TCP’s slow
start penalty. We show the performance improvement
for RCP and RC3 in Fig. 14(c). While for large flows,
the two schemes are roughly neck-to-neck, RCP actu-
ally imposes a penalty for the very smallest (1-4 packet)
flows, in part because RCP’s explicit rate allocation en-
forces pacing of packets according to the assigned rate,
whereas with traditional TCP (and RC3), all packets are
transmitted back to back. These results show that RC3
can provide FCTs which are usually comparable or even
better than those with RCP. Further, as RC3 can be de-
ployed on legacy hardware and is friendly with existing
TCP flows, it is a more deployable path to comparable
performance improvements.
Summary: RC3 outperforms traditional QoS and in-
creasing the initial congestion windows; performance
with RC3 is on par with RCP without requiring substan-
tial changes to routers.

5.2 Evaluating RC3 Linux Implementation

We now evaluate RC3 using our implementation in the
Linux kernel. We extended the Linux 3.2 kernel as de-
scribed in §4. We did our baseline experiments using
both New Reno and CUBIC congestion control mecha-
nisms. We set the send and receive buffer sizes to 2GB,
to ensure that an entire flow fits in a single window. We
keep the default initial congestion window of 10 [12] in
the kernel unchanged.

Our testbed consists of two servers each with two
10Gbps NICs connected to a 10Gbps Arista datacen-
ter switch. As the hosts were physically adjacent, we
used netem to increase the observed link latency to 10ms,
which reflects a short WAN latency.
Baseline: Flows with varying sizes were sent from one
machine to another. Figure 15(a) shows FCTs with RC3
and baseline TCP implementation in Linux compared to

RC3 and baseline TCP NS-3 simulations (with the ini-
tial congestion windows set to 10), both running with
10Gbps bandwidth and 20ms RTT. The figure reflects av-
erages over 100 samples.

Overall, RC3 continues to provide strong gains over
the baseline TCP design, however, our results in im-
plementation do not tightly match our simulated results
from NS. The baseline TCP implementation in Linux
performs worse than in simulation because of delayed
ACK behavior in Linux: when more than two segments
are ACKed together, it still only generates an increase
in congestion window proportional to two packets be-
ing ACKed. This slows down the rate at which the con-
gestion window can increase. The RC3 FCT is slightly
higher in Linux than in simulation for large flows be-
cause of the extra per-packet overhead in receiving RC3
packets: recall from §4 that RC3 packets are carried over
the Linux ‘slow path’ and thus have slightly higher per-
packet overhead.

In Figure 15(b), we repeat the same experiment with
only 1Gbps bandwidth set by the token bucket fil-
ter queueing discipline (retaining 10ms latency through
netem). In this experiment, results track our simulations
more closely. TCP deviates little from the baseline be-
cause the arrival rate of the packets ensures that at most
two segments are ACKed by the receiver via delayed
ACK, and thus the congestion window increases at the
correct rate. Overall, we observe that RC3 in implemen-
tation continues to provide gains proportional to what we
expect from simulation.

While these graphs show the result for New Reno, we
repeated these experiments using TCP CUBIC and the
FCTs matched very closely to New Reno, since both
have the same slow start behavior.
Endhost Correctness: Priority queueing is widely de-
ployed in the OS networking stack, NICs, and routers,

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 383

(a) 20ms×10Gbps

(b) 20ms×1Gbps
Fig. 15: FCTs for implementation vs. simulation

(a) Low Priority Starts
after High Priority

(b) High Priority Starts
after Low Priority

Fig. 16: Correctness of Priority Queuing in Linux

but is often unused. We now verify the correctness of
the prio queueing discipline in Linux. We performed our
experiments with iPerf [3] using the default NIC buffer
size of 512 packets and with segment offload enabled to
achieve a high throughput of 9.5Gbps. All packets in an
iPerf flow were assigned the same priority level – this ex-
periment does not use RC3 itself. All flows being sent to
a particular destination port were marked as priority 1 by
changing the DSCP field in the IP header. We connected
two endhosts directly, with one acting as the iPerf client
sending simultaneous flows to the connected iPerf server
(a) with a low priority flow beginning after a high priority
flow has begun, and (b) with a high priority flow begin-
ning after a low priority flow has begun. Figure 16 shows
that the priority queueing discipline behaves as expected.
Switch Correctness: We extended our topology to con-
nect three endhosts to the switch, two of which acted as
iPerf clients, sending simultaneous flows as explained
above to the third endhost acting as the iPerf server.
Since the two senders were on different machines, pri-
oritization was done by the router. Figure 17 shows that
priority queueing at the switch behaves as expected.
Segment and Receiver Offload: In §4.2.3 we discussed

(a) Low Priority Starts
after High Priority

(b) High Priority Starts
after Low Priority

Fig. 17: Correctness of the Priority Queuing in the Switch

(a) Comparing FCTs for Regular TCP with RC3

(b) Zooming in to observe trends for RC3 FCT
Fig. 18: FCTs for Regular TCP and RC3 with TSO/LRO
(20ms×10Gbps)

how RC3 interacts with segment and receiver offload;
we now evaluate the performance of RC3 when com-
bined with these optimizations. For this experiment, we
used the same set up, as our baseline and sent a 1000
packet flow without TSO/LRO, with each enabled inde-
pendently, and with both TSO and LRO enabled. Fig-
ure 18 plots the corresponding FCTs excluding the con-
nection set-up time.

For baseline TCP, we see that TSO and LRO each
cause a performance penalty in our test scenario. TSO
hurts TCP because the increased throughput also in-
creases the number of segments being ACKed with one
single delayed ACK, thus slowing the rate at which the
congestion window increases. LRO aggravates the same
problem by coalescing packets in the receive queue, once
again leading them to be ACKed as a batch.

In contrast, RC3’s FCTs improve when RC3 is com-
bined with TSO and LRO. TSO and LRO do little to
change the performance of RC3, when enabled indepen-
dently, but when combined they allow chunks of pack-
ets to be processed together in batches at the receiver.
This reduces the overhead of packet processing by al-
most 50%, resulting in better overall FCTs.

11

384 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Discussion
Deployment Incentives: For RC3 to be widely used re-
quires ISPs to opt-in by enabling the priority queueing
that already exists in their routers. As discussed in the
introduction, we believe that giving worse service, rather
than better service, for these low priority packets allevi-
ates some of the concerns that has made QoS so hard
to offer (in the wide area) today. WQoS is safe and
backwards compatible because regular traffic will never
be penalized and pricing remains unaffected. Moreover,
since RC3 makes more efficient use of bandwidth, it al-
lows providers to run their networks at higher utiliza-
tion, while still providing good performance, resulting in
higher return in investment for their network provision-
ing.
Partial Support: Our simulations assume that all routers
support multiple priorities. If RC3 is to be deployed, it
must be usable even when the network is in a state of par-
tial deployment, where some providers but not all sup-
port WQoS. When traffic crosses from a network which
supports WQoS to a network which does not, a provider
has two options: either drop all low priority packets
before they cross in to the single-priority domain (ob-
viating the benefits of RC3), or allow the low priority
packets to pass through (allowing the packets to subse-
quently compete with normal TCP traffic at high prior-
ity). Simulating this latter scenario, we saw that average
FCTs still improved for all flows, from using RC3 when
20% of routers did not support priorities; when 50% of
routers did not support priorities small flows experienced
a 6-7% FCT penalty, medium-sized flows saw slightly
weaker FCT reductions (around 36%), and large flows
saw slightly stronger FCT reductions (76-70%).
Middleboxes: Middleboxes which keep tight account of
in-flight packets and TCP state are a rare but growing at-
tribute of today’s networks. These devices directly chal-
lenge the deployment of new protocols; resolving this
challenge for proposals like RC3 and others remains an
open area of research [13, 20, 27, 29, 31].
Datacenters and Elsewhere: As we’ve shown via
model (§3) and simulation (§5), the benefits of RC3 are
strongest in networks with large RTT×BW. Today’s dat-
acenter networks typically do not fit this description:
with microsecond latencies, RTT×BW is small and thus
flows today can very quickly reach 100% link utilization.
Nevertheless, given increasing bandwidth, RTT×BW
may not remain small forever. In simulations on a fat-
tree datacenter topology with (futuristic) 100Gbps links,
we observed average FCT improvements of 45% when
averaged over flows, and 66% when averaged over bytes.
Thus, while RC3 is not a good fit for datacenters today,
it may be in the future.
Future: Outside of the datacenter, RTT×BW is already
large – and increasing. While increasing TCP’s ini-

tial congestion window may mitigate the problem in the
short term, given the inevitable expansion of available
bandwidth, the problem will return again and again with
any new choice of new initial congestion window. Our
solution, while posing some deployment hurdles, has the
advantage of being able to handle future speeds without
further modifications.

7 Related Work

Router-assisted Congestion Control: Observing TCP’s
sometimes poor ability to ensure high link utilization,
some have moved away from TCP entirely, designing
protocols which use explicit signaling for bandwidth al-
location. RCP [11] and XCP [22] are effective protocols
in this space. Along similar lines, TCP QuickStart [15]
uses an alternate slow-start behavior, which actively re-
quests available capacity from the routers using a new
IP Option during the TCP handshake. Using these ex-
plicitly supplied rates, a connection can skip slow start
entirely and begin sending at its allocated rate immedi-
ately following the TCP handshake. Unlike RC3, these
algorithms require new router capabilities.
Alternate TCP Designs: There are numerous TCP de-
signs that use alternative congestion avoidance algo-
rithms to TCP New Reno [10, 14, 19, 32, 35]. TCP
CUBIC [19] and Compound TCP [32] are deployed
in Linux and Windows respectively. Nevertheless, their
slow-start behaviors still leave substantial wasted capac-
ity during the first few RTTs – consequently, they could
just as easily be used in RC3’s primary control loop as
TCP New Reno. Indeed, in our implementation we also
evaluated TCP CUBIC in combination with RC3.

TCP FastStart [28] targets back-to-back connections,
allowing a second connection to re-use cached Cwnd and
RTT data from a prior connection. TCP Remy [34] uses
machine learning to generate the congestion control al-
gorithm to optimize a given objective function, based on
prior knowledge or assumptions about the network. RC3
improves flow completion time even from cold start and
without requiring any prior information about the net-
work delay, bandwidth or other parameters.

TCP-Nice [33] and TCP-LP [23] try to utilize the ex-
cess bandwidth in the network by using more aggressive
back-off algorithms for the low-priority background traf-
fic. RC3 also makes use of the excess bandwidth, but by
explicitly using priority queues, with a very different aim
of reducing the flow completion time for all flows.
Use of Low Priorities: PFabric [5] is a recent pro-
posal for datacenters that also uses many layers of prior-
ities and ensures high utilization. However, unlike RC3,
PFabric’s flow scheduling algorithm is targeted exclu-
sively at the datacenter environment, and would not work
in the wide-area case.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 385

8 Acknowledgements
We would like to thank all our colleagues in UC Berke-
ley, for their help and feedback - in particular Sangjin
Han, Jon Kuroda, David Zats, Aurojit Panda and Gau-
tam Kumar. We are also very thankful to our anonymous
Hotnets 2013 and NSDI 2014 reviewers for their helpful
comments and to our shepherd Prof. Srinivasan Seshan
for his guidance in shaping the final version of the pa-
per. This material is based upon work supported by the
National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-1106400.

References
[1] CAIDA Internet Topology Data Kit. http://goo.gl/

QAbecc.
[2] Internet Traffic Flow Size Analysis. http://net.doit.

wisc.edu/data/flow/size/.
[3] iPerf. http://iperf.sourceforge.net/.
[4] Measuring ISP Topologies with Rocketfuel. In Proc. ACM SIG-

COMM, 2002.
[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. Deconstructing Datacenter Packet Transport. In Proc.
ACM Workshop on Hot Topics in Networks (HotNets), 2012.

[6] M. Allman. Comments on bufferbloat. ACM SIGCOMM Com-
puter Communication Review, 2013.

[7] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial
Window. RFC 3390.

[8] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In Proc. ACM SIGCOMM, 2004.

[9] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative
Selective Acknowledgment (SACK)-based Loss Recovery Algo-
rithm for TCP. RFC 3517.

[10] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:
New Techniques for Congestion Detection and Avoidance. ACM
SIGCOMM Computer Communication Review, 1994.

[11] N. Dukkipati and N. McKeown. Why Flow-Completion Time
is the Right Metric for Congestion Control. ACM SIGCOMM
Computer Communication Review, 2006.

[12] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agar-
wal, A. Jain, and N. Sutin. An Argument for Increasing TCP’s
Initial Congestion Window. ACM SIGCOMM Computer Commu-
nication Review, 2010.

[13] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan. Re-
ducing Web Latency: the Virtue of Gentle Aggression. In Proc.
SIGCOMM, 2013.

[14] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC
3649.

[15] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for
TCP and IP. RFC 4782.

[16] S. Floyd and T. Henderson. The NewReno Modification to TCP’s
Fast Recovery Algorithm. RFC 2582.

[17] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension
to the Selective Acknowledgement (SACK) Option for TCP. RFC
2883.

[18] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and C. Diot. Packet-Level Traffic Measure-
ments from the Sprint IP Backbone. IEEE Network, 2003.

[19] S. Ha, I. Rhee, and L. Xu. CUBIC: a New TCP-friendly High-
Speed TCP Variant. ACM SIGOPS Operating System Review,
2008.

[20] M. Honda, Y. Nishida, C. Raiciu, A. Greengalgh, M. Handley,

and H. Tokuda. Is it still possible to extend TCP? In Proc. IMC,
2011.

[21] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An Approach
to Alleviate Link Overload as Observed on an IP Backbone. In
Proc. IEEE INFOCOM, 2003.

[22] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for
High Bandwidth-Delay Product Networks. In Proc. ACM SIG-
COMM, 2002.

[23] A. Kuzmanovic and E. W. Knightly. TCP-LP: Low-priority ser-
vice via end-Point congestion Control. In IEEE/ACM ToN, 2006.

[24] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining
tcp congestion control. ACM SIGCOMM Computer Communica-
tion Review, 1996.

[25] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selec-
tive Acknowledgment Options. RFC 2018.

[26] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall. Reducing network energy consumption via sleep-
ing and rate-adaptation. In Proc. USENIX NSDI, 2008.

[27] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Aminy, and B. Fordy.
Fitting Square Pegs Through Round Pipes: Unordered Delivery
Wire-compatible with TCP and TLS. In Proc. USENIX NSDI,
2012.

[28] V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Technique
for Speeding Up Web Transfers. In Proc. IEEE Global Internet
Conference (GLOBECOM), 1998.

[29] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How Hard Can It Be? De-
signing and Implementing a Deployable Multipath TCP. In Proc.
USENIX NSDI, 2012.

[30] A. Rao, A. Legout, Y. sup Lim, D. Towlsley, C. Barakat, and
W. Dabbous. Network Characteristics of Video Streaming Traf-
fic. In Proc. ACM CoNeXT, 2011.

[31] C. Rotsos, H. Howard, D. Sheets, R. Mortier, A. Madhavapeddy,
A. Chaudhry, and J. Crowcroft. Lost In the Edge: Finding Your
Way With Signposts. In Proc. USENIX FOCI, 2013.

[32] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP
Approach for High-Speed and Long Distance Networks. In Proc.
IEEE INFOCOM, 2006.

[33] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp nice: A mech-
anism for background transfers. In Proc. USENIX OSDI, 2002.

[34] K. Winstein and H. Balakrishnan. TCP Ex Machina: Computer-
generated Congestion Control. In Proc. ACM SIGCOMM, 2013.

[35] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion
Control (BIC) for Fast Long-Distance Networks. In INFOCOM
2004.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 387

How speedy is SPDY?

Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wetherall
University of Washington

Abstract
SPDY is increasingly being used as an enhancement

to HTTP/1.1. To understand its impact on performance,
we conduct a systematic study of Web page load time
(PLT) under SPDY and compare it to HTTP. To identify
the factors that affect PLT, we proceed from simple, syn-
thetic pages to complete page loads based on the top 200
Alexa sites. We find that SPDY provides a significant im-
provement over HTTP when we ignore dependencies in
the page load process and the effects of browser compu-
tation. Most SPDY benefits stem from the use of a single
TCP connection, but the same feature is also detrimen-
tal under high packet loss. Unfortunately, the benefits
can be easily overwhelmed by dependencies and com-
putation, reducing the improvements with SPDY to 7%
for our lower bandwidth and higher RTT scenarios. We
also find that request prioritization is of little help, while
server push has good potential; we present a push pol-
icy based on dependencies that gives comparable perfor-
mance to mod spdy while sending much less data.

1 Introduction
HTTP/1.1 has been used to deliver Web pages using mul-
tiple, persistent TCP connections for at least the past
decade. Yet as the Web has evolved, it has been criti-
cized for opening too many connections in some settings
and too few connections in other settings, not providing
sufficient control over the transfer of Web objects, and
not supporting various types of compression.

To make the Web faster, Google proposed and de-
ployed a new transport for HTTP messages, called
SPDY, starting in 2009. SPDY adds a framing layer for
multiplexing concurrent application-level transfers over
a single TCP connection, support for prioritization and
unsolicited push of Web objects, and a number of other
features. SPDY is fast becoming one of the most im-
portant protocols for the Web; it is already deployed by
many popular websites such as Google, Facebook, and
Twitter, and supported by browsers including Chrome,
Firefox, and IE 11. Further, IETF is standardizing a
HTTP/2.0 proposal that is heavily based on SPDY [10].

Given the central role that SPDY is likely to play in
the Web, it is important to understand how SPDY per-
forms relative to HTTP. Unfortunately, the performance
of SPDY is not well understood. There have been sev-
eral studies, predominantly white papers, but the find-
ings often conflict. Some studies show that SPDY im-
proves performance [20, 14], while others show that it

provides only a modest improvement [13, 19]. In our
own study [25] of page load time (PLT) for the top 200
Web pages from Alexa [1], we found either SPDY or
HTTP could provide better performance by a significant
margin, with SPDY performing only slightly better than
HTTP in the median case.

As we have looked more deeply into the performance
of SPDY, we have come to appreciate why it is chal-
lenging to understand. Both SPDY and HTTP perfor-
mance depend on many factors external to the protocols
themselves, including network parameters, TCP settings,
and Web page characteristics. Any of these factors can
have a large impact on performance, and to understand
their interplay it is necessary to sweep a large portion of
the parameter space. A second challenge is that there
is much variability in page load time (PLT). The vari-
ability comes not only from random events like network
loss, but from browser computation (i.e., JavaScript eval-
uation and HTML parsing). A third challenge is that de-
pendencies between network activities and browser com-
putation can have a significant impact on PLT [25].

In this work, we present what we believe to be the
most in-depth study of page load time under SPDY to
date. To make it possible to reproduce experiments, we
develop a tool called Epload that controls the variabil-
ity by recording and replaying the process of a page load
at fine granularity, complete with browser dependencies
and deterministic computational delays; in addition we
use a controlled network environment. The other key to
our approach is to isolate the different factors that affect
PLT with reproducible experiments that progress from
simple but unrealistic transfers to full page loads. By
looking at results across this progression, we can sys-
tematically isolate the impact of the contributing factors
and identify when SPDY helps significantly and when it
performs poorly compared to HTTP.

Our experiments progress as follows. We first com-
pare SPDY and HTTP simply as a transport protocol
(with no browser dependencies or computation) that
transfers Web objects from both artificial and real pages
(from the top 200 Alexa sites). We use a decision tree
analysis to identify the situations in which SPDY out-
performs HTTP and vice versa. We find that SPDY im-
proves PLT significantly in a large number of scenarios
that track the benefits of using a single TCP connection.
Specifically, SPDY helps for small object sizes and un-
der low loss rates by: batching several small objects in a
TCP segment; reducing congestion-induced retransmis-

1

388 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sions; and reducing the time when the TCP pipe is idle.
Conversely, SPDY significantly hurts performance under
high packet loss for large objects. This is because a set
of TCP connections tends to perform better under high
packet loss; it is necessary to tune TCP behavior to boost
performance.

Next, we examine the complete Web page load pro-
cess by incorporating dependencies and computational
delays. With these factors, the benefits of SPDY are re-
duced, and can even be negated. This is because: i) there
are fewer outstanding objects at a given time; ii) traffic is
less bursty; and iii) the impact of the network is degraded
by computation. Overall, we find SPDY benefits to be
larger when there is less bandwidth and longer RTTs. For
these cases SPDY reduces the PLT for 70–80% of Web
pages, and for shorter, faster links it has little effect, but
it can also increase PLT: the worst 20% of pages see an
increase of at least 6% for long RTT networks.

In search of greater benefits, we explore SPDY mech-
anisms for prioritization and server push. Prioritiza-
tion helps little because it is limited by load dependen-
cies, but server push has the potential for significant im-
provements. How to obtain this benefit depends on the
server push policy, which is a non-trivial issue because of
caching. This leads us to develop a policy based on de-
pendency levels that performs comparably to mod spdy’s
policy [11] while pushing 80% less data.

Our contributions are as follows:
• A systematic measurement study using synthetic

pages and real pages from 200 popular sites that iden-
tifies the combinations of factors for which SPDY
improves (and sometimes reduces) PLT compared to
HTTP.

• A page load tool, Epload, that emulates the detailed
page load process of a target page, including its depen-
dencies, while eliminating variability due to browser
computation. With a controlled network environment,
Epload enables reproducible but authentic page load
experiments for the first time.

• A SPDY server push policy based on dependency
information that provides comparable benefits to
mod spdy while sending much less data over the net-
work.
In the rest of this paper, we first review SPDY back-

ground (§2) and then briefly describe our challenge and
approach (§3). Next, we extensively study TCP’s im-
pact on SPDY (§4) and extend to Web page’s impact on
SPDY (§5). We discuss in §6, review related work in §7,
and conclude in §8.

2 Background
In this section, we review issues with HTTP perfor-
mance and describe how the new SPDY protocol ad-
dresses them.

2.1 Limitations of HTTP/1.1

When HTTP/1.1, or simply HTTP, was designed in the
late 1990’s, Web applications were fairly simple and
rudimentary. Since then, Web pages have become more
complex and dynamic, making it difficult for HTTP to
meet the increasingly demanding user experience. Be-
low, we identify some of the limitations of HTTP:

i) Browsers open too many TCP connections to load
a page. HTTP improves performance by using parallel
TCP connections. But if the number of connections is
too large, the aggregate flow may cause network conges-
tion, high packet loss, and reduced performance [9]. Fur-
ther, services often deliver Web objects from multiple do-
mains, which results in even more TCP connections and
the possibility of high packet loss.

ii) Web transfers are strictly initiated from the client.
Consider the loading of embedded objects. Theoreti-
cally, the server can send embedded objects along with
the parent object when it receives a request for the par-
ent object. In HTTP, because an object can be sent only
in response to a client request, the server has to wait for
an explicit request which is sent only after the client has
received and processed the parent page.

iii) A TCP segment cannot carry more than one HTTP
request or response. HTTP, TCP and other headers could
account for a significant portion of a packet when HTTP
requests or responses are small. So if there are a large
number of small embedded objects in a page, the over-
head associated with these headers is substantial.

2.2 SPDY

SPDY addresses several of the issues described above.
We now review the key ideas in SPDY’s design and im-
plementation and its deployment status.

Design: There are four key SPDY features.
i) Single TCP connection. SPDY opens a single

TCP connection to a domain and multiplexes multiple
HTTP requests and responses (a.k.a., SPDY streams)
over the connection. The multiplexing here is similar to
HTTP/1.1 pipelining but is finer-grained. A single con-
nection also helps reduce SSL overhead. Besides client-
side benefits, using a single connection helps reduce the
number of TCP connections opened at servers.

ii) Request prioritization. Some Web objects, such as
JavaScript code modules, are more important than others
and thus should be loaded earlier. SPDY allows the client
to specify a priority level for each object, which is then
used by the server in scheduling the transfer of the object.

iii) Server push. SPDY allows the server to push em-
bedded objects before the client requests for them. This
improves latency but could also increase transmitted data
if the objects are already cached at the client.

iv) Header compression. SPDY supports HTTP

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 389

header compression since experiments suggest that
HTTP headers for a single session contain duplicate
copies of the same information (e.g., User-Agent).

Implementation: SPDY is implemented by adding a
framing layer to the network stack between HTTP and
the transport layer. Unlike HTTP, SPDY splits HTTP
headers and data payloads into two kinds of frames.
SYN_STREAM frames carry request headers and SYN_
REPLY frames carry response headers. When a header
exceeds the frame size, one or more HEADERS frames
will follow. HTTP data payloads are sliced into DATA
frames. There is no standardized value for the frame size,
and we find that mod spdy caps frame size to 4KB [11].
Because frame size is the granularity of multiplexing, too
large a frame decreases the ability to multiplex while too
small a frame increases overhead. SPDY frames are en-
capsulated in one or more consecutive TCP segments. A
TCP segment can carry multiple SPDY frames, making it
possible to batch up small HTTP requests and responses.

Deployment: SPDY is deployed over SSL and TCP. On
the client side, SPDY is enabled in Chrome, Firefox,
and IE 11. On the server side, popular websites such
as Google, Facebook, and Twitter have deployed SPDY.
Another popular use of SPDY is between a proxy and a
client, such as the Amazon Silk browser [16] and An-
droid Chrome Beta [2]. SPDY version 3 is the most re-
cent specification and is widely deployed [21].

3 Pinning SPDY down
We would like to experimentally evaluate how SPDY
performs relative to HTTP because SPDY is likely to
play a key role in the Web. But, understanding SPDY
performance is hard. Below, we identify three challenges
in studying the performance of SPDY and then provide
an overview of our approach.

3.1 Challenges

We identify the challenges on the basis of previous stud-
ies and our own initial experimentation. As a first step,
we extensively load two Web pages for a thousand times
using a measurement node at the University of Washing-
ton. One page displays fifty world flags [12], which
is advertised by mod spdy [11] to demonstrate the per-
formance benefits of SPDY, and the other is the Twitter
home page. The results are depicted in Figure 1.

First, we observe that SPDY helps the flag page but
not the Twitter page, and it is not immediately apparent
as to why that is the case. Further experimentation in em-
ulated settings also revealed that both the magnitude and
the direction of the performance differences vary signif-
icantly with network conditions. Taken together, this in-
dicates that SPDY’s performance depends on many fac-
tors such as Web page characteristics, network parame-
ters, and TCP settings, and that measurement studies will

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Page load time (seconds)

HTTP

SPDY

(a) The flag page

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Page load time (seconds)

HTTP

SPDY

(b) Twitter home page

Figure 1: Distributions of PLTs of SPDY and HTTP. Per-
formed a thousand runs for each curve without caching.

likely yield different, even conflicting, results, if they use
different experimental settings. Therefore, a comprehen-
sive sweep of the parameter space is necessary to eval-
uate under what conditions SPDY helps, what kinds of
Web pages benefit most from SPDY, and what parame-
ters best support SPDY.

Second, we observed in our experiments that the mea-
sured page load times have high variances, and this often
overwhelms the differences between SPDY and HTTP.
For example, in Figure 1(b), the variance of the PLT for
the Twitter page is 0.5 second but the PLT difference be-
tween HTTP and SPDY is only 0.02 second. We observe
high variance even when we load the two pages in a fully
controlled network. This indicates that the variability
likely stems from browser computation (i.e., JavaScript
evaluation and HTML parsing). Controlling this vari-
ability is key to reproducing experiments so as to obtain
meaningful comparisons.

Third, prior work has shown that the dependencies be-
tween network operations and computation has a signif-
icant impact on PLT [25]. Interestingly, page dependen-
cies also influence the scheduling of network traffic and
affects how much SPDY helps or hurts performance (§4
and §5). Thus, on one hand, ignoring browser computa-
tions can reduce PLT variability, but on the other hand,
dependencies need to be preserved in order to obtain ac-
curate measurements under realistic offered loads.

3.2 Approach

Our approach is to separate the various factors that affect
SPDY and study them in isolation. This allows us to con-
trol and identify the extent to which these factors affect
SPDY.

First, we extensively sweep the parameter space of all
the factors that affect SPDY including RTT, bandwidth,
loss rate, TCP initial window, number of objects on a
page, and object sizes. We initially ignore page load
dependencies and computation in order to simplify our
analysis. This systematic study allows us to identify
when SPDY helps or hurts and characterize the impor-
tance of the contributing factors. Based on further anal-
ysis of why SPDY sometimes hurts, we propose some

3

390 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

simple modifications to TCP.
Second, before we perform experiments with page

load dependencies, we address the variability caused by
computation. We develop a tool called Epload that em-
ulates the process of a page load. Instead of performing
real browser computation, Epload records the process
of a sample page load, identifies when computations hap-
pen, and replays the page load by introducing the appro-
priate delays associated with the recorded computations.
After emulating a computation activity, Epload per-
forms real network requests to dependent Web objects.
This allows us to control the variability of computation
while also modeling page load dependencies. In con-
trast to the methodology that statistically reduces vari-
ability by obtaining a large amount of data (usually from
production), our methodology mitigates the root cause
of variability and thus largely reduces the amount of re-
quired experiments.

Third, we study the effects of dependencies and com-
putation by performing page loads with Epload. We are
then able to identify how much dependencies and com-
putation affect SPDY, and to identify the relative impor-
tance of other contributing factors. To mitigate the neg-
ative impact of dependencies and computation, we ex-
plore the use of prioritization and server push that enable
the client and the server to coordinate the transfers. Here,
we are able to evaluate the extent to which these mech-
anisms can improve performance when used appropri-
ately.

4 TCP and SPDY
In this section, we extensively study the performance of
SPDY as a transfer protocol on both synthetic and real
pages by ignoring page load dependencies and computa-
tion. This allows us to measure SPDY performance with-
out other confounding factors such as browser computa-
tion and page load dependencies. Here, SPDY is only
different from HTTP in the use of a single TCP connec-
tion, header compression, and a framing layer.

4.1 Experimental setup

We conduct the experiments by setting up a client and a
server that can communicate over both HTTP and SPDY.
Both the server and the client are connected to the cam-
pus LAN at the University of Washington. We use Dum-
mynet [6] to vary network parameters. Below details the
experimental setup.

Server: Our server is a 64-bit machine with 2.4GHz 16
core CPU and 16GB memory. It runs Ubuntu 12.04 with
Linux kernel 3.7.5 using the default TCP variant Cubic.
We use a TCP initial window size of ten as the default
setting, as suggested by SPDY best practices [18]. HTTP
and SPDY are enabled on Apache 2.2.2 with the SPDY
module, mod spdy 0.9.3.3-386, installed. We use SPDY

Categ Factor Range High

Net
rtt 20ms, 100ms, 200ms ≥100ms
bw 1Mbps, 10Mbps ≥10Mbps
pkt loss 0, 0.005, 0.01, 0.02 ≥ 0.01

TCP iw 3, 10, 21, 32 ≥ 21

Page
obj size 100B, 1K, 10K, 100K, 1M ≥ 1K
of obj 2, 8, 16, 32, 64, 128, 512 ≥ 64

Table 1: Contributing factors to SPDY performance. We
define a threshold for each factor, so that we can classify
a setting as being high or low in our analysis.

3 without SSL which allows us to decode the SPDY
frames in TCP payloads. To control the exact size of
Web objects, we turn off gzip encoding.

Client: Because we issue requests at the granularity
of Web objects and not pages, we do not work with
browsers, and instead develop our own SPDY client by
following the SPDY/3 specification [21]. Unlike other
wget-like SPDY clients such as spdylay [22] that open
a TCP connection per request, our SPDY client allows us
to reuse TCP connections. Similarly, we also develop an
HTTP client for comparison. We set the maximum num-
ber of parallel TCP connections for HTTP to six, as used
by all major browsers. As the receive window is auto-
tuned, it is not a bottleneck in our experiments.

Web pages: To experiment with synthetic pages, we cre-
ate objects with pre-specified sizes and numbers. To
experiment with real pages, we download the home
pages of the Alexa top 200 websites to our own server.
To avoid the negative impact of domain sharding on
SPDY [18], we serve all embedded objects from the same
server including those that are dynamically generated by
JavaScript.

We run the experiments presented in the entire paper
from June to September, 2013. We repeat our experi-
ments five times and present the median to exclude the
effects of random loss. We collect network traces at both
the client and the server. We define page load time (PLT)
as the elapsed time between when the first object is re-
quested and when the last object is received. Because we
do not experiment within a browser, we do not use the
W3C load event [24].

4.2 Experimenting with synthetic pages

In experimenting with synthetic pages, we consider a
broad range of parameter settings for the various factors
that affect performance. Table 1 summarizes the param-
eter space used in our experiments. The RTT values in-
clude 20ms (intra-coast), 100ms (inter-coast), and 200ms
(3G link or cross-continent). The bandwidths emulate
a broadband link with 10Mbps [4] and a 3G link with
1Mbps [3]. We inject random packet loss rates from zero
to 2% since studies suggest that Google servers experi-
ence a loss rate between 1% and 2% [5]. At the server,

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 391

obj size

loss

RTT

small

large

low high

highlow

highlow lowhigh

SPDY

SPDY

SPDY

EQUALSPDY

SPDY

icwnd
low high

EQUAL

low high
loss

large

small large

RTT

highlow

high
low

SPDY

low high

EQUAL

RTT
low

large

low high

HTTP

HTTPEQUAL

small

SPDY

EQUAL

EQUAL

high

EQUAL

RTT

low high

HTTP

small

SPDY better or equal to HTTP HTTP better

of obj# of obj # of obj

icwnd

BWBW BW BW

Figure 2: The decision tree that tells when SPDY or
HTTP helps. A leaf pointing to SPDY (HTTP) means
SPDY (HTTP) helps; a leaf pointing to EQUAL means
SPDY and HTTP are comparable. Table 1 shows how we
define a factor being high or low.

we vary TCP initial window size from 3 (used by earlier
Linux kernel versions) to 32 (used by Google servers).
We also consider a wide range of Web object sizes (100B
to 1M) and object numbers (2 to 512). For simplicity, we
choose one value for each factor which means that there
is no cross traffic.

When we sweep this large parameter space, we find
that SPDY improves performance under certain condi-
tions, but degrades performance under other conditions.

4.2.1 When does SPDY help or hurt

There have been many hypotheses as to whether SPDY
helps or hurts based on analytical inference about par-
allel versus single TCP connections. For example, one
hypothesis is that SPDY hurts because a single TCP con-
nection increases congestion window slower than multi-
ple connections; another hypothesis is that SPDY helps
stragglers because HTTP has to balance its commu-
nications across parallel TCP. However, it is unclear
how much hypotheses contribute to SPDY performance.
Here, we sort out the most important findings, meaning
that hypotheses that are shown here contribute more to
SPDY performance than those that are not shown.

Methodology: To understand the conditions under
which SPDY helps or hurts, we build a predictive model
based on decision tree analysis. In the analysis, each con-
figuration is a combination of values for all factors listed
in Table 1. For each configuration, we add an additional
variable s, which is the PLT of SPDY divided by that of
HTTP. We run the decision tree to predict the configura-

 0

 1

 2

 3

 4

 5

 6

 7

0 0.5% 1% 2%

P
L
T

 (
s
e
c
o
n
d
s
)

HTTP

SPDY

(a) Packet loss rate

 0

 1

 2

 3

 4

 5

2 8 16 32 64 128

P
L
T

 (
s
e
c
o
n
d
s
)

HTTP

SPDY

(b) Object number

 0

 2

 4

 6

 8

 10

 12

100Byte 1KB 10KB 100KB

P
L
T

 (
s
e
c
o
n
d
s
)

HTTP

SPDY

(c) Object size
Figure 3: Performance trends for three factors with a
default setting: rtt=200ms, bw=10Mbps, loss=0, iw=10,
obj size=10K, obj number=64.

tions under which SPDY outperforms HTTP (s < 0.9)
and under which HTTP outperforms SPDY (s > 1.1).
The decision tree analysis generates the likelihood that
a configuration works better under SPDY (or HTTP). If
this likelihood is over 0.75, we mark the branch as SPDY
(or HTTP); otherwise, we say that SPDY and HTTP per-
form equally.

We obtain the decision tree in Figure 2 as follows.
First, we produce a decision tree based on all the factors.
To populate the branches, we also generate supplemental
decision trees based on subsets of factors. Each supple-
mental decision tree has a prediction accuracy of 84% or
higher. Last, we merge the branches from supplemental
decision trees into the original decision tree.

Results: The decision tree shows that SPDY hurts when
packet loss is high. However, SPDY helps under a num-
ber of conditions, for example, when there are:
• Many small objects, or small objects under low loss.
• Many large objects under low loss.
• Few objects under good network conditions and a

large TCP initial window.
The decision tree also depicts the relative importance

of contributing factors. Intuitively, factors close to the
root of the decision tree affect SPDY performance more
than those near the leaves. This is because the decision
tree places the important factors near the root to reduce
the number of branches. We find that object size and loss
rate are the most important factors in predicting SPDY
performance. However, RTT, bandwidth, and TCP initial
window play a less important role.

5

392 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200

C
D

F

of retransmits

HTTP

SPDY w/ TCP

Figure 4: SPDY reduces the number of retransmissions.

How much SPDY helps or hurts: We present three
trending graphs in Figure 3. Figure 3(a) shows that
HTTP outperforms SPDY by half when loss rate in-
creases to 2%, Figure 3(b) shows the trend that SPDY
performs better as the number of objects increases, and
Figure 3(c) shows the trend that SPDY performs worse
as the object size increases. We publish the results,
trends, and network traces at http://wprof.cs.
washington.edu/spdy/.

4.2.2 Why does SPDY help or hurt

While the decision tree informs the conditions under
which SPDY helps or hurts, it does not explain why. To
this end, we analyze the network traces we collected to
explain SPDY performance. We discuss below our find-
ings.

SPDY helps on small objects. Our traces suggest that
TCP implements congestion control by counting out-
standing packets not bytes. Thus, sending a few small
objects with HTTP will promptly use up the conges-
tion window, though outstanding bytes are far below the
window limit. In contrast, SPDY batches small objects
and thus eliminates this problem. This explains why the
flag page [12], which mod spdy advertised, benefits from
SPDY.

SPDY benefits from having a single connection. We
find several reasons as to why SPDY benefits from a sin-
gle TCP connection. First, a single connection results in
fewer retransmissions. Figure 4 shows the retransmis-
sions in SPDY and HTTP across all configurations ex-
cept those with zero injected loss. SPDY helps because
packet loss occurs more often when concurrent TCP con-
nections are competing with each other. There are addi-
tional explanations for why SPDY benefits from using a
single connection. In our previous study [25], our exper-
iments showed that SPDY significantly reduced the con-
tribution of the TCP connection setup time to the critical
path of a page download. Further, our experiments in §5
will show that a single pipe reduces the amount of time
the pipe is idle due to delayed client requests.

SPDY degrades under high loss due to the use of a
single pipe. We discussed above that a single TCP con-
nection helps under several conditions. However, a sin-
gle connection hurts under high packet loss because it

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

objects

(a) # of objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

objects

(b) # of objects < 1.5KB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Page size (KB)

(c) Page size (KB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Average object size (KB)

(d) Mean object size (KB)

Figure 5: Characteristics of top 200 Alexa Web pages.

aggressively reduces the congestion window compared
to HTTP which reduces the congestion window on only
one of its parallel connections.

4.3 Experimenting with real pages

In this section, we study the effects of varying object
sizes and number of objects based on the distributions
observed in real Web pages. We continue to vary other
factors such as network conditions and TCP settings
based on the parameter space described in Table 1. Due
to space limit, we only show results under a 10Mbps
bandwidth.

First, we examine the page characteristics of real
pages because they can explain why SPDY helps or hurts
when we relate them to the decision tree. Figure 5 shows
the characteristics of the top 200 Alexa Web pages [1].
The median number of objects is 30 and the median page
size is 750KB. We find high variability in the size of ob-
jects within a page. The standard deviation of the object
size within a page is 31KB (median), even more than the
average object size 17KB (median).

Figure 6 shows PLT of SPDY divided by that of HTTP
across the 200 Web pages. It suggests that SPDY helps
on 70% of the pages consistently across network con-
ditions. Interestingly, SPDY shows a 2x speedup over
half of the pages, likely due to the following reasons.
First, SPDY almost eliminates retransmissions (as indi-
cated in Figure 7). Compared to a similar analysis for ar-
tificial pages (see Figure 4), SPDY’s retransmission rate
is even lower. Second, we find in Figure 5(b) that 80% of
the pages have small objects, and that half of the pages
have more than ten small objects. Since SPDY helps
with small objects (based on the decision tree analysis),
it is not surprising that SPDY has lower PLT for this set
of experiments. In addition, we hypothesize that SPDY
could help with stragglers since it multiplexes all objects
on to a single connection and thus reduces the dynam-
ics of congestion windows. To check this hypothesis, we
ran a set of experiments with overall page size and the

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 393

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

0 loss;TCP

2% loss;TCP

(a) rtt=20ms, bw=10Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

0 loss;TCP

2% loss;TCP

(b) rtt=200ms, bw=10Mbps

Figure 6: SPDY performance across 200 pages with ob-
ject sizes and numbers of objects drawn from real pages.
SPDY helps more under a 1Mbps bandwidth.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

C
D

F

of retransmits

HTTP

SPDY w/ TCP

Figure 7: SPDY helps reduce retransmissions.

number of objects drawn from the real pages, but with
equal object sizes embedded inside the pages. When we
perform this experiment, HTTP’s performance improves
only marginally indicating that there is very little strag-
gler effect.

4.4 TCP modifications

Previously, we found that SPDY hurts mainly under high
packet loss because a single TCP connection reduces the
congestion window more aggressively than HTTP’s par-
allel connections. Here, we demonstrate that the negative
impact can be mitigated by simple TCP modifications.

Our modification (a.k.a., TCP+) mimics behaviors of
concurrent connections with a single connection. Let the
number of parallel TCP connections be n. First, we pro-
pose to multiply the initial window by n to reduce the ef-
fect of slow start. Second, we suggest scaling the receive
window by n to ensure that the SPDY connection has the
same amount of receive buffer as HTTP’s parallel con-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

2% loss;TCP

2% loss;TCP+

Figure 8: TCP+ helps SPDY across the 200 pages.
RTT=20ms, BW=10Mbps. Results on other network set-
tings are similar.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

C
D

F

of retransmits

HTTP

SPDY w/ TCP

SPDY w/ TCP+

Figure 9: With TCP+, SPDY still produces few retrans-
missions.

nections. Third, when packet loss occurs, the congestion
window (cwnd) backs off with a rate β′ = 1− (1−β)/n
where β is the original backoff rate. In practice, the num-
ber of concurrent connections changes over time. Be-
cause we are unable to pass this value to the Linux kernel
in real time, we assume that HTTP uses six connections
and set n = 6. We use six here because it is found opti-
mal and used by major browsers [17].

We perform the same set of SPDY experiments with
both synthetic and real pages using TCP+. Figure 8
shows that SPDY performs better with TCP+, and the de-
cision tree analysis for TCP+ suggests that loss rate is no
longer a key factor that determines SPDY performance.

To evaluate the potential side effects of TCP+, we look
at the number of retransmissions produced by TCP+.
Figure 9 shows that SPDY still produces much fewer
retransmissions with TCP+ than with HTTP, meaning
that TCP+ does not abuse the congestion window un-
der the conditions that we experimented with. Here, we
aim to demonstrate that SPDY’s negative impact under
high random loss can be mitigated by tuning the conges-
tion window. Because the loss patterns in real networks
are likely more complex, a solution for real networks
requires further consideration and extensive evaluations
and is out of the scope of this paper.

5 Web pages and SPDY
This section examines how SPDY performs for real Web
pages. Real page loads incur dependencies and compu-
tation that may affect SPDY’s performance. To incor-
porate dependencies and computation while controlling
variability, we develop a page load emulator Epload

7

394 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Network activity Computation activity Dependency

Parse css tag Parse js tag Parse img tag

De

HTML

Elapsed Time Start Page load

CSS

JS1

Image

JS2

Parse js tag g g

Figure 10: A dependency graph obtained from WProf.

that hides the complexity and variations in browser com-
putation while performing authentic network requests
(§5.1). We use Epload to identify the effect of page
load dependencies and computation on SPDY’s perfor-
mance (§5.2). We further study SPDY’s potential by ex-
amining prioritization and server push (§5.3).

5.1 Epload: emulating page loads

Web objects in a page are usually not loaded at the same
time, because loading an object can depend on loading
or evaluating other objects. Therefore, not only network
conditions, but also page load dependencies and browser
computation, affect page load times. To study how much
SPDY helps the overall page load time, we need to evalu-
ate SPDY’s performance by preserving dependencies and
computation of real page loads.

Dependencies and computation are naturally pre-
served by loading pages in real browsers. However, this
procedure incurs high variances in page load times that
stem from both network conditions and browser com-
putation. We have conducted controlled experiments to
control the variability of network, and here introduce the
Epload emulator to control the variability of computa-
tion.

Design: The key idea of Epload is to decouple network
operations and computation in page loads. This allows
Epload to simplify computation while scheduling net-
work requests at the appropriate points during the page
load.
Epload records the process of a page load by cap-

turing the dependency graph using our previous work,
WProf [25]. WProf captures the dependency and timing
information of a page load. Figure 10 shows an example
of a dependency graph obtained from WProf where ac-
tivities depend on each other. This Web page embeds a
CSS, a JavaScript, an image, and another JavaScript. A
bar represents an activity (i.e., loading objects, evaluat-
ing CSS and JavaScript, parsing HTML) while an arrow
represents that one activity depends on another. For ex-
ample, evaluating JS1 depends on both loading JS1 and
evaluating CSS. Therefore, evaluating JS1 can only start
after the other two activities complete. There are other
dependencies such as layout and painting. Because they

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Page load time (seconds)

Chrome

Epload

Figure 11: Page loads using Chrome v.s. Epload.

do not occur deterministically and significantly, we ex-
clude them here.

Using the recorded dependency graph, Epload re-
plays the page load process as follows. First, Epload
starts the activity that loads the root HTML. When the
activity is finished, Epload checks whether it should
trigger a dependent activity based on whether all activi-
ties that the dependent activity depends on are finished.
For example in Figure 10, the dependent activity is pars-
ing the HTML, and it should be triggered. Next, it starts
the activity that parses the HTML. Instead of performing
HTML parsing, it waits for the same amount of time that
parsing takes (based on the recorded information) and
checks dependent activities upon completion. This pro-
ceeds until all activities are finished. The actual replay
process is more complex because a dependent activity
can start before an activity is fully completed. For exam-
ple, parsing an HTML starts after the first chunk of the
HTTP response is received; and loading the CSS starts
after the first chunk of HTML is fully parsed. Epload
models all of these aspects of a page load.

Implementation: Epload recorder is implemented
based on WProf to generate a dependency graph that
specifies activities and their dependencies. Epload
records the computational delays while performing the
page load in the browser, whereas the network delays are
realized independently for each replay run. We imple-
ment Epload replayer using node.js. The output from
Epload replayer is a series of throttled HTTP or SPDY
requests to perform a page load. The Epload code
is available at http://wprof.cs.washington.
edu/spdy/.

Evaluation: We validate that Epload controls the vari-
ability of computation. We compare the differences of
two runs across 200 pages loaded by Epload and by
Chrome. The network is tuned to a 20ms RTT, a 10Mbps
bandwidth, and zero loss. Figure 11 shows that Epload
produces at most 5% differences for over 80% of pages
which is a 90% reduction compared to Chrome.

5.2 Effects of dependencies and computation

We use Epload to measure the impact of dependencies
and computation. We set up experiments as follows. The
Epload recorder uses a WProf-instrumented Chrome to

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 395

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

0 loss;TCP

0 loss;TCP+

2% loss;TCP

2% loss;TCP+

(a) rtt=20ms, bw=1Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

0 loss;TCP

0 loss;TCP+

2% loss;TCP

2% loss;TCP+

(b) rtt=200ms, bw=1Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

0 loss;TCP

0 loss;TCP+

2% loss;TCP

2% loss;TCP+

(c) rtt=20ms, bw=10Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

0 loss;TCP

0 loss;TCP+

2% loss;TCP

2% loss;TCP+

(d) rtt=200ms, bw=10Mbps

Figure 12: SPDY performance using emulated page loads. Compared to Figure 6, it suggests that dependencies and
computation reduce the impact of SPDY and that RTT and bandwidth become more important.

obtain the dependency graphs of the top 200 Alexa Web
pages [1]. Epload runs on a Mac with 2GHz dual core
CPU and 4GB memory. We vary other factors based on
the parameter space described in Table 1. Due to space
limit, we only show figures under a 10Mbps bandwidth.

Figure 12 shows the performance of SPDY versus
HTTP after incorporating dependencies and computa-
tion. Compared to Figure 6, dependencies and com-
putation largely reduce the amount that SPDY helps or
hurts. We make the following observations along with
supporting evidence. First, computation and dependen-
cies increase PLTs of both HTTP and SPDY, reducing
the network load. Second, SPDY reduces the amount of
time a connection is idle, lowering the possibility of slow
start (see Figure 13). Third, dependencies help HTTP by
making traffic less bursty, resulting in fewer retransmis-
sions (see Figure 14). Fourth, having fewer outstanding
objects diminishes SPDY’s gains, because SPDY helps
more when there are a large number of outstanding ob-
jects (as suggested by the decision tree in Figure 2).
Here, we see that dependencies and computation reduce
and can easily nullify the benefits of SPDY, implying
that speeding up computation or breaking dependencies
might be necessary to improve the PLT using SPDY.

Interestingly, we find that RTT and bandwidth now
play a more important role in the performance of SPDY.
For example, Figure 12 shows that SPDY helps up to
80% of the pages under low bandwidths, but only 55%
of the pages under high bandwidths. This is because RTT
and bandwidth determine the amount of time page loads
spend in network relative to computation, and further the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

% of idle RTTs

HTTP

SPDY

Figure 13: Fractions of RTTs when a TCP connection is
idle. Experimented under 2% loss rate.

amount of impact that computation has on SPDY. This
explains why SPDY provides minimal improvements un-
der good network conditions (see Figure 12(c)).

To identify the impact of computation, we scale the
time spent in each computation activity by factors of 0,
0.5, and 2. Figure 15 shows the performance of SPDY
versus HTTP, both with scaled computation and under
high bandwidths, suggesting that speeding up computa-
tion increases the impact of SPDY. Surprisingly, speed-
ing up computation to the extreme is sometimes no better
than a x2 speedup. This is because computation delays
the requesting of dependent objects which allows for pre-
viously requested objects to be loaded faster, and there-
fore possibly lowers the PLT.

5.3 Advancing SPDY

SPDY provides two mechanisms, i) prioritization and ii)
server push, to mitigate the negative effects of dependen-
cies and computation of real page loads. However, little
is known about how to better use the mechanisms. In this
section, we explore advanced policies to speed up page

9

396 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

C
D

F

of retransmits

w/o dep. & comp.

w/ dep. & comp.

Figure 14: SPDY helps reduce retransmissions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

x 0

x 0.5

x 1

x 2

Figure 15: Results by varying computation when
bw=10Mbps, rtt=200ms.

loads using these mechanisms.

5.3.1 Basis of advancing

To better schedule objects, both prioritization and server
push provide mechanisms to specify the importance for
each object. Thus, the key issue is to identify the im-
portance of objects in an automatic manner. To highlight
the benefits, we leverage the dependency information ob-
tained from a previous load of the same page. This infor-
mation gives us ground truth as to which objects are crit-
ical for reducing PLT. For example, in Figure 10, all the
activities depend on loading the HTML, making HTML
the most important object; but no activity depends on
loading the image, suggesting that the image is not an
important object.

To quantify the importance of an object, we first look
at the time required to finish the page load starting from
the load of this object. We denote this as time to finish
(TTF). In Figure 10, TTF of the image is simply the time
to load the image alone, while TTF of JS2 is the time
to both load and evaluate it. Because TTF of the image
is longer than TTF of JS2, this image is more important
than JS2. Unfortunately in practice, it is not clear as to
how long it would take to load an object, before we make
the decision to prioritize or push it.

Therefore, we simplify the definition of importance.
First, we convert the activity-based dependency graph to
an object-based graph by eliminating computation while
preserving dependencies (Figure 16). Second, we calcu-
late the longest path from each object to the leaf objects;
this process is equivalent to calculating node depths of a
directed acyclic graph. Figure 16 (right) shows an exam-
ple of assigned depths. Note that the depth here equals

Network activity Computation activity

H

Elapsed Time

J1

C

I1

J2

H

C J1

I1 J2

J1

H

C

d:1

d:3

d:4

d:2

d:3

WProf dependency graph Object dependency graph

Elapsed Time

I2 I2

J2

d:1

J1C

Dependency De

Figure 16: Converting WProf dependency graph to an
object-based graph. Calculating a depth to each object in
the object-based graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10th 50th 90th

P
L

T
_

w
/_

p
ri
o

ri
ty

 /
 P

L
T

_
w

/o
_

p
ri
o

ri
ty

chrome-priority

dependendy-priority

(a) rtt=20ms, bw=10Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10th 50th 90th

P
L

T
_

w
/_

p
ri
o

ri
ty

 /
 P

L
T

_
w

/o
_

p
ri
o

ri
ty

chrome-priority

dependendy-priority

(b) rtt=200ms, bw=10Mbps

Figure 17: Results of priority (zero packet loss) when
bw=10Mbps. bw=1Mbps results are similar to (b).

TTF if we ignore computation and suppose that the load
of each object takes the same amount of time.

We use this depth information to prioritize and push
objects. This implies that the browser or the server
should know this beforehand. We provide a tool to let
Web developers measure the depth information for ob-
jects transported by their pages.

5.3.2 Prioritization

SPDY/3 allows eight priority levels for clients to
use when requesting objects. SPDY best practices
website [18] recommends prioritizing HTML over
CSS/JavaScript and CSS/JS over the rest (chrome-
priority). Our priority levels are obtained by lin-
early mapping the depth information computed above
(dependency-priority).

We compare the two prioritization policies to baseline
SPDY in Figure 17. Interestingly, we find that there is
almost no benefit by using chrome-priority while
dependency-policymarginally helps under a 20ms
RTT. The impact of explicit prioritization is minimal be-
cause the dependency graph has already implicitly priori-
tized objects. Implicit prioritization results from browser
policies, independent of Web pages themselves. For ex-
ample in Figure 10, all other objects cannot be loaded
before HTML; Image and JS2 cannot be loaded before
CSS and JS1. As dependencies limit the impact of SPDY,
prioritization cannot break dependencies, and thus is un-
likely to improve SPDY’s PLT.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 397

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

% of pushed bytes

Push all

By embedding

By dependency

(a) Pushed bytes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT w/ server push divided by SPDY PLT

By dependency

By embedding

Push all

(b) rtt=20ms, bw=10Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT w/ server push divided by SPDY PLT

By dependency

By embedding

Push all

(c) rtt=200ms, bw=10Mbps

Figure 18: Results of server push when bw=10Mbps.

5.3.3 Server push

SPDY allows servers to push objects to save round trips.
However, server push is non-trivial because there is a ten-
sion between making page loads faster and wasting band-
width. Particularly, one should not overuse server push
if pushed objects are already cached. Thus, the key goal
is to speed up page loads while keeping the cost low.

We find no standard or best practices guidance from
Google on how to do server push. Mod spdy can be con-
figured to push up to an embedding level, which is de-
fined as follows: the root HTML page is at embedding
level 0; objects at embedding level i are those whose
URLs are embedded in objects at embedding level i− 1.
An alternative policy is to push based on the depth infor-
mation.

Figure 18 shows server push performance (i.e., push
all objects, one embedding level, and one dependency
level) compared to baseline SPDY. We find that server
push helps, especially under high RTT. We also find that
pushing by dependency incurs comparable speedups to
pushing by embedding, while benefiting from a 80% re-
duction in pushed bytes (Figure 18(a)). Note that server
push does not always help because pushed objects share
bandwidth with more important objects. In contrast to
prioritization, server push can help because it breaks de-
pendencies which limits the performance gains of SPDY.

5.4 Putting it all together

We now pool together the various enhancements (i.e.,
TCP+ and server push by one dependency level). Fig-
ure 19 shows that this improves SPDY by 30% under
high RTTs. But this improvement largely diminishes un-
der low RTTs where computation dominates page load
times.

6 Discussions

SPDY in the wild: To evaluate SPDY in the wild,
we place clients at Virginia (US-East), North Califor-
nia (US-West), and Ireland (Europe) using Amazon EC2
micro-instances. We add explanatory power by period-
ically probing network parameters between clients and
the server, and find that RTTs are consistent: 22ms
(US-East), 71ms (US-West), and 168ms (Europe). For
all vantage points, bandwidths are high (10Mbps to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

None

TCP+

TCP+; push

(a) rtt=20ms, bw=10Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

None

TCP+

TCP+; push

(b) rtt=200ms, bw=10Mbps

Figure 19: Put all together when bw=10Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

PLT of SPDY divided by PLT of HTTP

No sharding

By domain

By TLD

Figure 20: Results of domain shading when bw=10Mbps
and rtt=20ms.

143Mbps) and loss rates are extremely low. These net-
work parameters well explain our SPDY evaluations in
the wild (not shown due to space limit) that are simi-
lar to synthetic ones under high bandwidths and low loss
rates. The evaluations here are preliminary and covering
a complete set of scenarios would be future work.

Domain sharding: As suggested by SPDY best prac-
tices [18], we used a single connection to fetch all the
objects of a page to eliminate the negative impact of do-
main sharing. In practice, migrating objects to one do-
main suffers from deployment issues given popular uses
of third parties (e.g., CDNs, Ads, and Analytics). To this

11

398 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

end, we evaluate situations when objects are distributed
to multiple servers that cooperatively use SPDY. We dis-
tribute objects by full domain to represent the state-of-
the-art of domain sharding. We also distribute objects by
top-level domain (TLD). This demonstrates the situation
when websites have eliminated domain sharding but still
use third-party services. Figure 20 compares SPDY per-
formance under these object distributions. We find that
domain sharding hurts as expected but hosting objects by
TLD is comparable to using one connection, suggesting
that SPDY’s performance does not degrade much when
some portions of the page are provided by third-party ser-
vices.

SSL: SSL adds overhead to page loads which can de-
grade the impact of SPDY, but it keeps the handshake
overhead low by using a single connection. We conduct
our experiments using SSL and find that the overhead of
SSL is too small to affect SPDY’s performance.

Mobile: We perform a small set of SPDY measurements
under mobile environments. We assume large RTTs, low
bandwidths, high losses, and large computational delays,
as suggested by related literature [3, 26]. Results with
simulated slow networks suggest that SPDY helps more
but also hurts more. It also shows that prioritization and
server push by dependency help less (not shown due to
space limit). However, large computational delays on
mobile devices reduce the benefits provided by SPDY.
This means that the benefits of SPDY under mobile sce-
narios depends on the relative changes in performance
of the network and computation. Further studies on real
mobile devices and networks would advance the under-
standing in this space.

Limitations: Our work does not consider a number of
aspects. First, we did not evaluate the effects of header
compression because it is not expected to provide sig-
nificant benefits. Second, we did not evaluate dynamic
pages which take more time in server processing. Simi-
lar to browser computation, server processing will likely
reduce the impact of SPDY. Last, we are unable to eval-
uate SPDY under production servers where network is
heavily used.

7 Related Work

SPDY studies: Erman et al. [7] studied SPDY in the
wild on 20 Web pages by using cellular connections and
SPDY proxies. They found that SPDY performed poorly
while interacting with radios due to a large body of un-
necessary retransmissions. We used more reliable con-
nections, enabled SPDY on servers, and swept a more
complete parameter space. Other SPDY studies include
the SPDY white paper [20] and measurements by Mi-
crosoft [14], Akamai [13], and Cable Labs [19]. The
SPDY white paper shows a 27% to 60% speedup for

SPDY, but the other studies show that SPDY helps only
marginally. While providing invaluable measurements,
these studies look at a limited parameter space. Studies
by Microsoft [14] and Cable Labs [19] only measured
single Web pages and the other studies consider only a
limited set of network conditions. Our study extensively
swept the parameter space including network parame-
ters, TCP settings, and Web page characteristics. We are
the first to isolate the effect of dependencies, which are
found to limit the impact of SPDY.

TCP enhancements for the Web: Google have pro-
posed and deployed several TCP enhancements to make
the Web faster. TCP fast open eliminates the TCP con-
nection setup time by sending application data in the
SYN packet [15]. Proportional rate reduction smoothly
backs off congestion window to transmit more data un-
der packet loss [5]. Tail loss probe [23] and other
measurement-driven enhancements described in [8] miti-
gated or eliminated loss recovery by retransmission time-
out. Our TCP modifications are specific to SPDY and are
orthogonal to Google’s proposals.

Advanced SPDY mechanisms: There are no recom-
mended policies on how to use the server push mech-
anism. We find that mod spdy [11] implements server
push by embedding levels. However, we find that this
push policy wastes bandwidths. We provide a server
push policy based on dependency levels that performs
comparably to mod spdy’s while pushing 80% less data.

8 Conclusion
Our experiments and prior work show that SPDY can ei-
ther help or sometimes hurt the load times of real Web
pages by browsers compared to using HTTP. To learn
which factors lead to performance improvements, we
start with simple, synthetic page loads and progressively
add key features of the real page load process. We find
that most of the performance impact of SPDY comes
from its use of a single TCP connection: when there is
little network loss a single connection tends to perform
well, but when there is high loss a set of connections tend
to perform better. However, the benefits from a single
TCP connection can be easily overwhelmed by depen-
dencies in real Web pages and browser computation. We
conclude that further benefits in PLT will require changes
to restructure the page load process, such as the server
push feature of SPDY, as well as careful configuration at
the TCP level to ensure good network performance.

Acknowledgements
We thank Will Chan, Yu-Chung Cheng, and Roberto
Peon from Google, our shepherd, Sanjay Rao, and the
anonymous reviewers for their feedback. We thank
Ruhui Yan for helping analyze packet traces.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 399

References
[1] Alexa - The Web Information Company.

http://www.alexa.com/topsites/
countries/US.

[2] Data compression in chrome beta for android.
http://blog.chromium.org/2013/03/
data-compression-in-chrome-beta-
for.html.

[3] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting Mobile 3G
Using WiFi. In Proc. of the international confer-
ence on Mobile systems, applications, and services
(Mobisys), 2010.

[4] National Broadband Map. http://www.
broadbandmap.gov/.

[5] N. Dukkipati, M. Mathis, Y. Cheng, and
M. Ghobadi. Proportional Rate Reduction for TCP.
In Proc. of the SIGCOMM conference on Internet
Measurement Conference (IMC), 2011.

[6] Dummynet. http://info.iet.unipi.it/

˜luigi/dummynet/.

[7] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ra-
makrishnan. Towards a SPDYier Mobile Web? In
Proc. of the International Conference on emerg-
ing Networking EXperiments and Technologies
(CoNEXT), 2013.

[8] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-
Bassett, and R. Govindan. Reducing Web Latency:
the Virtue of Gentle Aggression. In Proc. of the
ACM Sigcomm, 2013.

[9] T. J. Hacker, B. D. Noble, and B. D. Athey. The
Effects of Systemic Packet Loss on Aggregate TCP
Flows . In Proc. of IEEE Iternational Parallel and
Distributed Processing Symposium (IPDPS), 2002.

[10] HTTP/2.0 Draft Specifications. https://
github.com/http2/http2-spec.

[11] mod spdy. https://code.google.com/p/
mod-spdy/.

[12] World Flags mod spdy Demo. https://www.
modspdy.com/world-flags/.

[13] Not as SPDY as you thought. http:
//www.guypo.com/technical/not-
as-spdy-as-you-thought/.

[14] J. Padhye and H. F. Nielsen. A comparison of
SPDY and HTTP performance. In MSR-TR-2012-
102.

[15] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proc. of the Inter-
national Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2011.

[16] Amazon silk browser. http://amazonsilk.
wordpress.com/.

[17] Chapter 11. HTTP 1.X. http://
chimera.labs.oreilly.com/books/
1230000000545/ch11.html.

[18] SPDY best practices. http://dev.
chromium.org/spdy/spdy-best-
practices.

[19] Analysis of SPDY and TCP Initcwnd.
http://tools.ietf.org/html/draft-
white-httpbis-spdy-analysis-00.

[20] SPDY whitepaper. http://www.chromium.
org/spdy/spdy-whitepaper.

[21] SPDY protocol–Draft 3. http://www.
chromium.org/spdy/spdy-protocol/
spdy-protocol-draft3.

[22] Spdylay - SPDY C Library. https://github.
com/tatsuhiro-t/spdylay.

[23] Tail Loss Probe (TLP): An Algorithm for
Fast Recovery of Tail Losses. http:
//tools.ietf.org/html/draft-
dukkipati-tcpm-tcp-loss-probe-01.

[24] W3C DOM Level 3 Events Specification.
http://www.w3.org/TR/DOM-Level-
3-Events/.

[25] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystifying page load
performance with WProf. In Proc. of the USENIX
conference on Networked Systems Design and Im-
plementation (NSDI), 2013.

[26] X. S. Wang, H. Shen, and D. Wetherall. Accelerat-
ing the Mobile Web with Selective Offloading. In
Proc. of the ACM Sigcomm Workshop on Mobile
Cloud Computing (MCC), 2013.

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 401

FaRM: Fast Remote Memory

Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, Miguel Castro

Microsoft Research

Abstract

We describe the design and implementation of FaRM, a
new main memory distributed computing platform that
exploits RDMA to improve both latency and through-
put by an order of magnitude relative to state of the art
main memory systems that use TCP/IP. FaRM exposes
the memory of machines in the cluster as a shared ad-
dress space. Applications can use transactions to allo-
cate, read, write, and free objects in the address space
with location transparency. We expect this simple pro-
gramming model to be sufficient for most application
code. FaRM provides two mechanisms to improve per-
formance where required: lock-free reads over RDMA,
and support for collocating objects and function shipping
to enable the use of efficient single machine transactions.
FaRM uses RDMA both to directly access data in the
shared address space and for fast messaging and is care-
fully tuned for the best RDMA performance. We used
FaRM to build a key-value store and a graph store simi-
lar to Facebook’s. They both perform well, for example,
a 20-machine cluster can perform 167 million key-value
lookups per second with a latency of 31µs.

1 Introduction

Decreasing DRAM prices have made it cost effective to
build commodity servers with hundreds of gigabytes of
DRAM. A cluster with one hundred machines can hold
tens of terabytes of main memory, which is sufficient to
store all the data for many applications or at least to cache
the applications’ working sets [11, 38, 39]. This has the
potential to enable applications that perform small ran-
dom data accesses, because it removes the overhead of
disk or flash, but network communication remains a bot-
tleneck. Emerging fast networks are not going to solve
this problem while systems continue to use traditional
TCP/IP networking. For example, the results in [16]
show a state-of-the-art key-value store performing 7x

worse in a client-server setup using TCP/IP than in a
single-machine setup despite extensive request batching.

RDMA provides reliable user-level reads and writes
of remote memory. It achieves low latency and high
throughput because it bypasses the kernel, avoids the
overheads of complex protocol stacks, and performs re-
mote memory accesses using only the remote NIC with-
out involving the remote CPU. RDMA has long been
supported by Infiniband but it has not seen widespread
use in data centers because Infiniband has traditionally
been expensive and it is not compatible with Ethernet.
Today, RoCE [27] supports RDMA over Ethernet with
data center bridging [25, 26] at competitive prices.

FaRM uses RDMA writes to implement a fast message
passing primitive that achieves an order-of-magnitude
improvement in message rate and latency relative to
TCP/IP on the same Ethernet network (Figure 2). It
also uses one-sided RDMA reads to achieve an addi-
tional two-fold improvement for read-only operations
that dominate most workloads [9, 11]. We did not get
this performance out of the box. We improved perfor-
mance by up to a factor of eight with careful tuning and
changes to the operating system and the NIC driver.

FaRM machines store data in main memory and also
execute application threads. This enables locality-aware
optimizations which are important because accessing lo-
cal memory is still up to 23x faster than RDMA.

FaRM exposes the memory of all machines in the clus-
ter as a shared address space. Threads can use ACID
transactions with strict serializability to allocate, read,
write, and free objects in the address space without wor-
rying about the location of objects. FaRM provides
an efficient implementation of this simple programming
model that offers sufficient performance for most appli-
cation code. Transactions use optimistic concurrency
control with an optimized two-phase commit protocol
that takes advantage of RDMA. FaRM achieves avail-
ability and durability using replicated logging [39] to
SSDs, but it can also be deployed as a cache [11, 38].

402 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FaRM offers two mechanisms to improve performance
where required with only localized changes to the code:
lock-free reads that can be performed with a single
RDMA and are strictly serializable with transactions,
and support for collocating objects and function shipping
to allow applications to replace distributed transactions
by optimized single machine transactions.

We designed and implemented a new hashtable algo-
rithm on top of FaRM that combines hopscotch hash-
ing [21] with chaining and associativity to achieve high
space efficiency while requiring a small number of
RDMA reads for lookups: small object reads are per-
formed with only 1.04 RDMA reads at 90% occupancy.
We optimize inserts, updates, and removes by taking ad-
vantage of FaRM’s support for collocating related ob-
jects and shipping transactions.

We used YCSB [15] to evaluate the performance of
FaRM’s hashtable. We compared FaRM with a baseline
system that uses TCP/IP for messaging and performs bet-
ter than MemC3 [16] (which is the best main-memory
key-value store in the literature). Our evaluation on a
cluster of 20 servers connected by 40 Gbps Ethernet
demonstrates good scalability and performance: FaRM
provides an order-of-magnitude better throughput and la-
tency than the baseline across a wide range of settings.

We also implemented a version of Facebook’s Tao
graph store [11] using FaRM. Once more FaRM achieves
an order of magnitude better throughput and latency than
the numbers reported in [11].

2 Background on RDMA

RDMA requests are sent over reliable connections (also
called queue pairs) and network failures are exposed as
a terminated connection. Requests are sent directly to
the NIC without involving the kernel and are serviced by
the remote NIC without interrupting the CPU. A mem-
ory region must be registered with the NIC before it can
be made available for remote access. During registra-
tion the NIC driver pins the pages in physical memory,
stores the virtual to physical page mappings in a page ta-
ble in the NIC, and returns a region capability that the
clients can use to access the region. When the NIC re-
ceives an RDMA request, it obtains the page table for
the target region, maps the target offset and size into the
corresponding physical pages, and uses DMA to access
the memory. Many NICs (including the ones we are us-
ing) guarantee that RDMA writes (but not reads) are per-
formed in increasing address order. DMA operations are
cache coherent on our hardware platform.

NICs have limited memory for page tables and con-
nection data. Therefore, many NICs (including ours)
store this information in system memory and use NIC
memory as a cache. Accessing information that is not

cached requires issuing a DMA to fetch it from system
memory across the PCI bus. This is a common limitation
of offload technology and requires careful use of avail-
able memory to achieve good performance.

RDMA has long been supported by Infiniband net-
works which are widely used by the HPC community.
There have been deployments with thousands of nodes
and full bisection bandwidth (e.g., [45]). Today, Infini-
band has become cost competitive with Ethernet [37], but
Ethernet remains prevalent in data centers.

RoCE (RDMA over Converged Ethernet) hardware
supports RDMA over Ethernet with data center bridg-
ing extensions, which are already available in many
switches. These extensions add priority based flow con-
trol [26] and congestion notification [25]. They elimi-
nate losses due to congestion and allow segregation of
RDMA from other traffic. The hardware manages con-
nection state and acknowledgments eliminating the need
for a protocol stack like TCP to ensure reliable delivery.

RoCE is price competitive at the rack level: $19/Gbps
for 40 Gbps RoCE compared to $60/Gbps for 10 Gbps
Ethernet1, but there are some concerns about the scal-
ability of RoCE. We expect it to scale to hundreds of
nodes and there is ongoing work to improve scalability
to thousands of nodes. This paper presents results on
a 20-machine cluster using 40 Gbps RoCE but we have
also run FaRM on a 78-machine Infiniband cluster.

3 FaRM

This section describes the design and implementation of
FaRM. It starts by discussing FaRM’s communication
primitives and how their implementation is optimized
for RDMA. Then it describes how FaRM implements a
shared address space and how it ensures consistent ac-
cesses to the address space with good performance.

3.1 Communication primitives
FaRM uses one-sided RDMA reads to access data di-
rectly and it uses RDMA writes to implement a fast
message passing primitive. This primitive uses a circu-
lar buffer, as in Figure 1, to implement a unidirectional
channel. The buffer is stored on the receiver, and there is
one buffer for each sender/receiver pair. The unused por-
tions of the buffer (marked as “Processed” and “Free”)
are kept zeroed to allow the receiver to detect new mes-
sages. The receiver periodically polls the word at the
“Head” position to detect new messages. Any non-zero
value L in the head indicates a new message, of length
L. The receiver then polls the message trailer; when it

1Prices include NICs and switches as of October 2013. Ether-
net prices are for Intel X520-T2 NICs and Juniper EX4550 switches.
RoCE prices are for Mellanox ConnectX 3 NICs and SX1036 switches.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 403

Tail (sender
writes here)

Head
(receiver

polls here)

Sender s copy of
head

Msg 1

Msg 2

Free
Buffer

direction

Figure 1: Circular buffer for RDMA messaging

becomes non-zero, the entire message has been received
because RDMA writes are performed in increasing ad-
dress order. The message is delivered to the application
layer, and once it has been processed the receiver zeroes
the message buffer and advances the head pointer.

The sender uses RDMA to write messages to the
buffer tail and it advances the tail pointer on every send.
It maintains a local copy of the receiver’s head pointer
and never writes messages beyond that point. The re-
ceiver makes processed space available to the sender
lazily by writing the current value of the head to the
sender’s copy using RDMA. To reduce overhead, the re-
ceiver only updates the sender’s copy after processing at
least half of the buffer. The sender’s copy of the head al-
ways lags the receiver’s head pointer and thus the sender
is guaranteed never to overwrite unprocessed messages.

Polling overhead increases linearly with the number of
channels, so we establish a single channel from a thread
to a remote machine. We observed negligible polling
overhead with 78 machines. We also found that, at this
scale, RDMA writes and polling significantly outperform
the more complex Infiniband send and receive verbs. In
large clusters, it may be better to use RDMA write with
immediate and a shared receive queue [35], which would
make polling overhead constant.

FaRM messaging is similar to the one described
in [35] but our implementation uses a contiguous ring
buffer as opposed to a ring of buffers to provide better
memory utilization with variable-sized messages. Addi-
tionally, the receiver in [35] piggybacks updates to the
sender’s head pointer in messages.

We ran a micro-benchmark to compare the per-
formance of FaRM’s communication primitives with
TCP/IP on a cluster with 20 machines connected by a 40
Gbps RoCE network (more details in Section 4). Each
machine ran a number of threads that issued requests to
read a random block of memory from a random remote
machine in an all-to-all communication pattern. Figure 2
shows the average request rate per machine in a config-
uration optimized for peak throughput. Towards the left
of the graph, FaRM’s communication primitives are bot-

0
1
2
3
4
5
6
7
8
9

10

16 32 64 128 256 512 1024 2048

Re
qu

es
ts

 /
µs

Transfer bytes (log)

RDMA RDMA msg TCP

Figure 2: Random reads: request rate per machine

1

10

100

1000

10000

100000

16 32 64 128 256 512 1024 2048

La
te

nc
y

µs
 (l

og
)

Transfer bytes (log)

RDMA high RDMA msg high TCP high
RDMA low RDMA msg low TCP low

Figure 3: Random reads: latency with high and low load

tlenecked on packet rate and, towards the right, on bit
rate. One-sided RDMA reads achieve a bit rate of nearly
33 Gbps with 2 KB request sizes and the bit rate saturates
around 35 Gbps for request sizes greater than 8 KB.

FaRM’s RDMA-based messaging achieves a request
rate between 11x and 9x higher than TCP/IP for request
sizes between 16 and 512 bytes, which are typical of data
center applications (e.g., [9]). One-sided RDMA reads
achieve an additional 2x improvement for sizes up to
256 bytes because they require half the network packets.
We expect this performance gap to increase with the next
generation of NICs that support 4x the message rate [36];
one-sided RDMA reads do not involve the remote CPU
and RDMA-based messaging will be CPU bound.

We also measured UDP throughput and observed it
is less than half the throughput of TCP configured for
maximum throughput (with Nagle on). So we decided to
compare against TCP in the rest of the paper.

Figure 3 shows average request latency both at peak
request rate and using only 2 machines configured for
minimum latency. The latency of TCP/IP at peak re-
quest rate is at least 145x higher than that of RDMA-
based messaging across all request sizes. Using one-
sided RDMA reads reduces latency by an extra factor of
two for sizes up to 256 bytes. In an unloaded system, the
latency of RDMA reads is at least 12x lower than TCP/IP

404 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

256k 1M 4M 16M 64M 256M 1G 4G 8G
0

2

4

6

8

10

Re
qu

es
ts

 /
µs

Region bytes (log)

PhyCoAlloc VirtualAlloc

Figure 4: Impact of physically contiguous regions

and 3x lower than RDMA-based messaging across all re-
quest sizes. The micro-benchmark shows that FaRM’s
communication primitives can achieve both low latency
and high message rates at the same time.

Achieving this level of performance for the two com-
munication primitives was non-trivial and it required
solving several problems. The first problem we ob-
served was that the performance of RDMA operations
decreased significantly as we increased the amount of
memory registered for remote access. The reason was
that the NIC was running out of space to cache all the
page tables. So it kept fetching page table entries from
system memory across the PCI bus.

We fixed this problem by using larger pages to reduce
the number of entries in NIC page tables. Unfortunately,
existing large page support in Windows and Linux was
not sufficient to eliminate all the fetches because of the
large amount of memory registered by FaRM. So we im-
plemented PhyCo, a kernel driver that allocates a large
number of physically-contiguous and naturally-aligned
2 GB memory regions at boot time (2 GB is the max-
imum page size supported by our NICs). PhyCo maps
the regions into the virtual address space of the FaRM
process aligned on a 2 GB boundary. This allowed us to
modify the NIC driver to use 2 GB pages, which reduced
the number of page table entries per region from more
than half a million to one.

We ran the random read benchmark to compare the
request rate of 64-byte RDMA reads when regions are
allocated with VirtualAlloc and with PhyCo. Figure 4
shows that with VirtualAlloc the request rate drops by a
factor of 4 when more than 16 MBs of memory is regis-
tered with the NIC. With PhyCo, the request rate remains
constant even when registering 100 GB of memory.

We also observed a significant decrease in request rate
when the cluster size increased because the NIC ran out
of space to cache queue pair data. Using a queue pair
between every pair of threads requires 2×m× t2 queue
pairs per machine (where m is the number of machines
and t is the number of threads per machine). We reduced

2 3 4 5 8 12 16 20
0

2

4

6

8

10

12

Re
qu

es
ts

 /
µs

Servers

q=1 q=2 q=4 q=8 q=16

Figure 5: Impact of connection multiplexing

this to 2 × m × t using a single connection between a
thread and each remote machine. In addition, we intro-
duced queue pair sharing among q threads in a NUMA-
aware way, resulting in a total of 2×m× t/q queue pairs
per machine. This trades off parallelism for a reduction
in the amount of queue pair data on the NIC.

We ran the random read benchmark with 64-byte
transfers while varying the cluster size and the value of q.
Figure 5 shows that the optimal value of q depends on the
size of the cluster. Small values provide more parallelism
and lower sharing overhead, which results in better per-
formance in small clusters, but they also require more
queue pair data, which results in degraded performance
with larger clusters. In the remainder of the paper, we use
these results to select the best value of q for each cluster
size. We expect to solve this problem in the future by
using Dynamically Connected Transport [36], which im-
proves scalability by setting up connections on demand.

Early experiments showed that using interrupts and
blocking could increase RDMA latency by a factor of
four. Therefore, we use an event-based programming
model. Each FaRM machine runs a user-level process
and pins threads to hardware threads. Threads run an
event loop which executes application work items and
polls for the arrival of RDMA-based messages and the
completion of RDMA requests. This polling is done at
the user level without involving the OS.

3.2 Architecture and programming model
FaRM’s architecture is motivated by the performance re-
sults presented in the previous section. FaRM’s commu-
nication primitives are fast but accesses to main memory
still achieve up to 23x higher request rate. Therefore, we
designed FaRM to enable applications to improve perfor-
mance by collocating data and computation on the same
machine. FaRM machines store data in main memory
and they also execute application threads. The mem-
ory of all machines in the cluster is exposed as a shared
address space that can be read using one-sided RDMA.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 405

Tx* txCreate();
void txAlloc(Tx *t, int size, Addr a, Cont *c);
void txFree(Tx *t, Addr a, Cont *c);
void txRead(Tx *t, Addr a, int size, Cont *c);
void txWrite(Tx *t, ObjBuf *old, ObjBuf *new);
void txCommit(Tx *t, Cont *c);

Lf* lockFreeStart();
void lockFreeRead(Lf* op,Addr a,int size,Cont *c);
void lockFreeEnd(Lf *op);
Incarnation objGetIncarnation(ObjBuf *o);
void objIncrementIncarnation(ObjBuf *o);

void msgRegisterHandler(MsgId i, Cont *c);
void msgSend(Addr a, MsgId i, Msg *m, Cont *c);

Figure 6: FaRM’s API

Currently, we support a single FaRM protection domain
across the cluster.

Figure 6 shows the main operations in FaRM’s in-
terface. FaRM provides an event-based programming
model. Operations that require polling to complete take a
continuation argument, which consists of a continuation
function and a context pointer. The continuation function
is invoked when the operation completes and it is passed
the result of the operation and the context pointer. The
continuation is always invoked on the thread that initi-
ated the operation.

FaRM provides strictly serializable ACID transactions
as a general mechanism to ensure consistency. Applica-
tions start a transaction by creating a transaction context.
They can allocate and free objects using txAlloc and
txFree inside transactions. Allocations return opaque
64-bit pointers that can be used to access objects or
stored in object fields to build pointer linked data struc-
tures. Applications can request that the new object is
allocated close to an existing object by supplying the ex-
isting object’s address to txAlloc. FaRM attempts to
store the two objects in the same machine and keep them
on the same machine even after recovering from failures
or adding new machines. This allows applications to col-
locate data that is commonly accessed together.

The txRead operation can be used to read an object
given its address and size. It allocates an object buffer
and uses RDMA to read the object’s data and meta-data
into the buffer. When it completes, it passes the object
buffer to the continuation. To update an object, a trans-
action must first read the object and then call txWrite to
create a writable copy of the object buffer. Applications
commit transactions by calling txCommit, which returns
the outcome and frees any allocated buffers. Transac-
tions can abort due to conflicts or failures; otherwise, the
writes are committed.

General distributed transactions provide a simple pro-
gramming model but can be too expensive to imple-
ment performance critical operations. FaRM’s API al-
lows applications to implement efficient lock-free read-
only operations that are serializable with transactions.

lockFreeStart and lockFreeEnd are used to bracket
lock-free operations. lockFreeRead is similar to
txRead but any object buffers it allocates are freed by
lockFreeEnd. FaRM also exposes object incarnations,
which can be used to combine several lock-free reads
into more complex operations. Transactions and lock-
free operations are described in Sections 3.4 and 3.5.

The last two API operations are used to send RDMA-
based messages to a thread in the machine that stores an
object, which allows shipping transactions to the server
that stores the object. Together with the ability to collo-
cate related data on the same machine, this enables re-
placing distributed transactions by single machine trans-
actions, which are significantly less expensive.

FaRM also offers functions to allocate, read, and free
arrays of objects. This allows efficient reads of consecu-
tive elements in an array with a single RDMA.

FaRM uses replicated logging to provide ACID trans-
actions with strict serializability and high availability un-
der the following assumptions: crash failures, a bound
on the maximum number of failures per replica group, a
bound on clock drift in an otherwise asynchronous sys-
tem for safety, and eventual synchrony for liveness. We
do not describe or evaluate recovery from failures in this
paper but the common-case (non failure) performance re-
ported in this paper includes all the overheads of replica-
tion and logging.

We used this interface to implement a distributed
hashtable (Section 3.6) and a graph store similar to Face-
book’s Tao [11] (Section 4.4).

3.3 Distributed memory management

FaRM’s shared address space consists of many 2 GB
shared memory regions that are the unit of address map-
ping, the unit of recovery, and the unit of registration for
RDMA with the NIC. The address of an object in the
shared address space consists of the 32-bit region iden-
tifier and the 32-bit offset relative to the start of the re-
gion. To access an object, FaRM uses a form of con-
sistent hashing [31] to map the region identifier to the
machine that stores the object. If the region is stored lo-
cally, FaRM obtains the base address for the region and
uses local memory accesses. Otherwise, FaRM contacts
the remote machine to obtain a capability for the region,
and then uses the capability, the offset in the address and
the object size to build an RDMA request. Capabilities
for remote regions are cached to improve performance.

Consistent hashing is implemented using a one-hop
distributed hashtable [6]. Each machine is mapped into k
virtual rings by hashing its IP address with k hash func-
tions. FaRM uses multiple rings to allow multiple re-
gions to be recovered in parallel as in RAMCloud [39]
and also to improve load balancing [44]. We currently

406 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S3

ABC812345
Position

Offset (32 bits)

RingID

Ring 1 Replica 2

Primary

Region ID (32 bits)

Address

S4

S1Replica 1

S5

S2

S6

Ring 0

S3
S5

S4

S6

S2

S1

Ring 2

S5
S4

S2 S6

S1

S3

Figure 7: Resolving an address

use k = 100. The 32-bit shared region identifier identi-
fies both a ring and a position in the ring. The primary
copy and replicas of the region are then stored at the r
machines immediately following the region’s position in
the ring. Figure 7 shows a simple example with k = 3
and r = 3. The mapping of the region to the machine
can be performed locally given the set of machines in the
cluster. Cluster membership can be maintained reliably
using Zookeeper [24].

Memory allocators are organized into a three-level hi-
erarchy — slabs, blocks, and regions — to reduce syn-
chronization overheads (as in parallel allocators [10]). At
the lowest level, threads have private slab allocators that
allocate small objects from large blocks. Each block is
used to allocate objects of the same size. FaRM supports
256 distinct sizes from 64 bytes to 1 MB. The sizes are
selected so the average fragmentation is 1.8% and the
maximum is 3.6%. An object is allocated in the smallest
size class that can fit it. Slab allocators use a single bit in
the header of each object to mark it allocated. This state
is replicated when a transaction that allocates or frees ob-
jects commits and it is scanned during recovery to recon-
struct allocator data structures.

The blocks are obtained from a machine-wide block
allocator that allocates blocks from shared memory re-
gions. It splits the regions into blocks whose size is a
multiple of 1 MB. Each region has a table with an 8-byte
allocation state per block. The regions are obtained from
a cluster-wide region allocator. The region allocator uses
PhyCo to allocate memory for the region and then it reg-
isters the region with the NIC to allow remote access (as
described in Section 2). It picks an identifier for the re-
gion by selecting a ring at random and a position in the
ring that ensures the local node stores the primary copy.
Information about region and block allocations is repli-
cated at allocation time.

FaRM allows applications to supply a location hint,
which is the address of an existing object, when allocat-
ing an object. FaRM attempts to allocate the object in

the following order: in the same block as the hint, in the
same region, or in a region with a nearby position in the
same virtual ring. This ensures that the allocated object
and the hint remain collocated both on the primary and
on the replicas with high probability even after failures
and reconfigurations. If the hint is an address stored at
another server, the allocation is performed using an RPC
to the remote server.

3.4 Transactions

FaRM supports distributed transactions as a general
mechanism to ensure consistency. Our implementation
uses optimistic concurrency control [32] and two-phase
commit [18] to ensure strict serializability [41]. A trans-
action context records the version numbers of objects
read by the transaction (the read set), the version num-
bers of objects written by the transaction (the write set),
and it buffers writes. At commit time, the machine run-
ning the transaction acts as the coordinator. It starts by
sending prepare messages to all participants, which are
the primaries and replicas of objects in the write set. The
primaries lock the modified objects and both primaries
and replicas log the message before sending replies back.
After receiving replies from all participants, the coordi-
nator sends validate messages to the primaries of objects
in the read set to check if the versions read by the trans-
action are up to date. If read set validation succeeds, the
coordinator sends commit messages first to the partici-
pant replicas and then to the participant primaries. The
primaries update the modified objects and unlock them,
and both primaries and replicas log the commit message.
The transaction aborts if any modified object is locked,
if read set validation fails, or if the coordinator fails to
receive replies for all the prepare and validate messages.

FaRM replicas keep the log on SSDs. To improve
logging performance, they use a few megabytes of non-
volatile RAM [2] to hold the circular message buffers
and to buffer log entries [39]. The entries are flushed
when the buffers fill up and log cleaning is invoked when
the log is half full. These logs are used to implement a
parallel recovery mechanism similar to RAMCloud [39].

The two-phase commit protocol is implemented using
RDMA-based messaging, which was shown to have very
low latency. This reduces conflicts and improves perfor-
mance by reducing the amount of time locks are held.
Despite these optimizations, two-phase commit may be
too expensive to implement common case operations.

FaRM provides two mechanisms to achieve good per-
formance in the common case: single machine transac-
tions and lock-free read-only operations. Applications
can use single machine transactions by collocating the
objects accessed by a transaction on the same primary
and on the same replicas, and by shipping the transaction

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 407

Cache line

Object

Cache line Cache line
Vobj Vc1 Vc2L I

Figure 8: Versioning for lock-free reads. A read is con-
sistent if the lock field L is zero and Vc1 and Vc2 match the
low-order bits of Vob j. The incarnation I is used to detect
if the object was freed concurrently with being read.

to the primary. In this case, write set locking and read
set validation are local. Therefore, the prepare and vali-
date messages are not needed and the primary only needs
to send a commit message with the buffered writes to
the replicas before unlocking the modified objects. Ad-
ditionally, we use two locking modes: objects are first
locked in a mode that allows lock-free reads and the pri-
mary locks objects in exclusive mode just before updat-
ing them (after the commit messages are delivered to the
replicas). Single machine transactions improve perfor-
mance by reducing the number of messages and by fur-
ther reducing delays due to locks.

3.5 Lock-free operations

FaRM provides lock-free reads that are serializable with
transactions and are performed using a single RDMA
read without involving the remote CPU. The application
is guaranteed to observe a consistent object state even if
it is concurrent with writes to the same object. FaRM re-
lies on cache coherent DMA: it stores an object’s version
number both in the first word of the object header and
at the start of each cache line (except the first). These
versions are not visible to the application; FaRM auto-
matically converts the object layout on reads and writes.

A lockFreeRead reads the object with RDMA and
checks if the header version is unlocked and matches all
the cache line versions. If the check succeeds, the read
is strictly serializable with transactions. Otherwise, the
RDMA is retried after a randomized backoff. Figure 8
shows the version fields for an object that spans three
cache lines.

An object is written during transaction commit using
local memory accesses. The header version is locked
with a compare-and-swap during the prepare phase. We
use the two least significant bits in the header version to
encode the lock mode. During the commit phase, an ob-
ject is updated by first writing a special lock value to the
cache line versions, then updating the data in each cache
line, and finally updating the cache line versions and the
header version. These steps are separated by memory
barriers. On x86 processors, compiler barriers are suf-
ficient to ensure the required ordering. Since DMA is
cache-coherent on x86, any RDMA read observes mem-
ory writes within each cache line in the order enforced

by the memory barriers. Therefore, matching versions
across all cache lines spanned by an object ensures strict
serializability for lock-free reads.

We use 64-bit header versions to prevent wrapping
around but cache line versions only keep the least signif-
icant l bits of the version to save space. We can do this
because there is a lower bound on the time it takes to per-
form a write and we abort RDMA reads that take longer
than an upper bound to ensure that a read can never over-
lap two successive writes that produce versions with the
same least significant l bits. This relies on a weak bound
on clock drift that we already required to maintain leases
with ZooKeeper. The results in this paper were obtained
with l = 16, but our measurements show that l = 8 is
sufficient in configurations with replication.

To provide consistency, FaRM must ensure that lock-
free reads do not access objects that have been freed by
concurrent transactions. FaRM uses type stability [19] to
ensure that object meta-data remains valid and incarna-
tion checks [46] to detect when objects are freed. Object
headers have a 64-bit incarnation that is initially zero and
is incremented when the object is freed. FaRM provides
128-bit fat pointers that include the object address, size,
and expected incarnation. Applications check that the in-
carnation in the object buffer returned by a lock-free read
matches the incarnation in the pointer, which guarantees
that the object has not been freed.

FaRM can reuse freed memory to allocate another ob-
ject of the same size because the incarnation in the ob-
ject header remains valid. Reusing memory for differ-
ent object sizes requires more work because the object
header may be overwritten with arbitrary data. FaRM
implements a distributed version of an epoch-based al-
locator [17] to do this. It sends an end of epoch request
to the threads on all machines (we aggregate messages
to/from the same machine). When a thread receives
this request, it clears any cached pointers, starts a new
epoch, and continues processing operations in the new
epoch. Once all transactions and read-only operations
that started in previous epochs complete, the thread sends
a reply to the request. FaRM’s API provides primitives
that bracket operations to enable detecting when ongoing
operations complete. Memory can be reused after receiv-
ing responses from all machines in the current config-
uration. This mechanism does not impact performance
significantly because it runs in the background and only
when available memory drops below a threshold.

3.6 Hashtable

FaRM also provides a general key-value store interface
that is implemented as a hashtable on top of the shared
address space. One important use of this interface is as a
root to obtain pointers to shared objects given keys.

408 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Designing a hashtable that performs well using
RDMA is similar to other forms of memory hierar-
chy aware data structure design: it is important to bal-
ance achieving good space efficiency with minimizing
the number and size of RDMAs required to perform
common operations. Ideally, we would like to perform
lookups, which are the most common operation, using
a single RDMA read. We identified hopscotch hash-
ing [21] as a promising approach to achieve this goal
because it guarantees that a key-value pair is located in
a small contiguous region of memory that may be read
with a single RDMA. This contrasts with popular ap-
proaches based on cuckoo hashing [40] where a key-
value pair is in one of several disjoint regions.

Each bucket in a hopscotch hashtable has a neighbour-
hood that includes the bucket and the H −1 buckets that
follow. Hopscotch hashing maintains the invariant that a
key-value pair is stored in the neighbourhood of the key’s
bucket (i.e., the bucket the key hashes to). To insert a
key-value pair, the algorithm looks for an empty bucket
close to the key’s bucket by doing a linear probe forward.
If the empty bucket is in the neighbourhood of the key’s
bucket, the key-value pair is stored there. Otherwise, the
algorithm attempts to move the empty bucket towards the
neighbourhood by repeatedly displacing key-value pairs
while preserving the invariant. If the algorithm does not
find an empty bucket or is unable to preserve the invari-
ant, the hashtable is resized.

The original algorithm outperforms chaining and
cuckoo hashtables at high occupancy using H = 32 [21]
(where occupancy is the ratio between the number of
key-value pairs inserted and the number of slots in the
table). Unfortunately, large neighbourhoods perform
poorly with RDMA because they result in large reads.
For example, using H = 32 with 64-byte key-value pairs
requires RDMA reads of at least 2 KB, which perform
significantly worse than smaller RDMAs (Figure 2).
Simply using small neighbourhoods does not work well
as it requires frequent resizes and results in poor space
efficiency. For example, the original algorithm achieves
an average occupancy of only 37% with H = 8.

We designed a new algorithm, chained associative
hopscotch hashing, that achieves a good balance between
space efficiency and the size and number of RDMAs
used to perform lookups by combining hopscotch hash-
ing with chaining and associativity. For example, on av-
erage it requires only 1.04 RDMA reads per lookup with
H = 8 at 90% occupancy. This is better than techniques
based on cuckoo hashing [40] that require 3.2 RDMA
reads at 75% occupancy (or 1.6 if key-value pairs were
inlined in the table) [37].

The new algorithm uses an overflow chain per bucket.
If an insert fails to move an empty bucket into the right
neighbourhood, it adds the key-value pair to the over-

bvb fvb bvb+1 fvb+1
Ob Ob+1

Figure 9: Joint versions for lock-free reads of adjacent
buckets. The two objects are consistent with each other
if they are individually consistent and f vb = bvb+1.

flow chain of the key’s bucket instead of resizing the ta-
ble. This also lets us limit the length of linear probing
during inserts. The algorithm uses associativity to amor-
tize the space overhead of chaining and of FaRM’s object
meta-data across several key-value pairs. Each bucket is
a FaRM object with H/2 slots to store key-value pairs.
The algorithm guarantees that a key-value pair is stored
in the key’s bucket or the next one. Overflow blocks also
store several key-value pairs (currently two) to improve
performance and space efficiency.

We implemented the new algorithm using FaRM’s
API. The hashtable is sharded across the machines in the
cluster. Each machine allocates shards, which are FaRM
arrays of buckets, and exchanges pointers to the shards
with the other machines. We use consistent hashing to
partition hash values across shards to enable elasticity.

Lookups are performed using lock-free read-only op-
erations. A lookup for a key k starts by issuing a sin-
gle RDMA to read both k’s bucket b and the next bucket
b+ 1. The lookup completes if it finds k in b or b+ 1.
Otherwise, it uses lock-free reads to search for k in b’s
chain of overflow blocks. The chain uses fat pointers to
link blocks and lookups check if the incarnation numbers
in a fat pointer and the next block match. If they do not,
the lookup is restarted. It is inefficient to store large key-
value pairs inline in buckets because it results in large
RDMAs. FaRM stores large or variable-sized key-value
pairs as separate objects and it stores a key (or a hash for
large keys) and a fat pointer to the object in the bucket. If
the incarnation numbers in the fat pointer and the object
do not match, the lookup is restarted.

The version checks in Section 3.5 guarantee that each
bucket is individually consistent when read. For hash ta-
ble lookups, however, we must also ensure that the two
buckets in the neighbourhood are consistent with each
other. To do this we add joint versions for adjacent pair
of buckets, meaning that each object bucket stores a for-
ward and a backward joint version (Figure 9). If the cor-
responding joint versions do not have the same value, the
read is restarted. Transactions that update adjacent buck-
ets increment the corresponding joint versions. We re-
duce the space overhead of joint versions using the same
technique we used to reduce the size of cache line ver-
sions for lock-free reads. The results in this paper use
16-bit joint versions.

We optimize inserts, updates, and removes by ship-

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 409

0
20
40
60
80

100
120
140
160
180

16 32 64 128 256 512 1024

Lo
ok

up
s /

 µ
s

Value bytes (log)

Out of table H=2 H=4 H=6 H=8

Figure 10: Hashtable: throughput with varying value size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

16 32 64 128 256 512 1024

Sp
ac

e
ut

ili
za

tio
n

Value bytes (log)

Out of table H=2 H=4 H=6 H=8

Figure 11: Hashtable: utilization with varying value size

ping transactions to the machine that store the relevant
shard. Using transactions simplifies the implementation,
which is significantly more complex than for lookups.
We use FaRM’s API to ensure that shards are collocated
with their overflow blocks so we can use more efficient
single machine transactions.

We implement inserts as described above. We use a
technique inspired by flat combining [20] to combine
concurrent inserts and updates to the same key into a sin-
gle transaction. This improves throughput by more than
4x in our experiments with skewed YCSB workload by
reducing the overheads of concurrency control and repli-
cation for hot keys. Removes attempt to collapse over-
flow chains to reduce the number of RDMAs for lookups.
They always move the last key-value pair in the chain to
the newly freed slot and free the last overflow block if it
becomes empty. Otherwise, they increment its incarna-
tion number to ensure lookups observe a consistent view.

FaRM’s hashtable guarantees linearizability and it per-
forms well. Figure 10 shows lookup throughput on a 20-
machine cluster (see Section 4) at 90% occupancy with
8-byte keys and different value sizes when keys are cho-
sen uniformly at random. It shows results when values
are inlined with different neighbourhood sizes and when
values are stored outside of the buckets (using H = 8).
Figure 11 shows the space utilization in the same exper-

iment: this is the ratio between the total number of bytes
in key-value pairs and the total amount of memory used
by the hashtable. The results show that inlining values
with H = 8 or H = 6 provides a good balance between
throughput and space utilization for objects up to 128
bytes. Applications that can tolerate low space utiliza-
tion to achieve better throughput can inline objects up
to 320 bytes with H = 2. Objects larger than 320 bytes
should be stored outside the table.

4 Evaluation

We evaluate FaRM’s performance and its ability to sup-
port applications with different data structures and access
patterns. We first compare the performance of FaRM’s
key-value store with a state-of-the art implementation
that uses TCP/IP. Then we evaluate FaRM’s ability to
serve a workload based on Facebook’s Tao [8, 11].

4.1 Experimental setup
We ran the experiments on an isolated cluster with 20
machines. Each machine had a 40 Gbps Mellanox
ConnectX-3 RoCE NIC connected to a single port of a
Mellanox SX-1036 switch. The machines ran Windows
Server 2012 R2 on two 2.4 GHz Intel Xeon E5-2665
CPUs with 8 cores and two hyper-threads per core (32
hardware threads per machine). Each machine had a 240
GB Intel 520 SSD for logging and 128 GBs of DRAM
(2.5 TB of DRAM across the cluster). We configured
machines with 28 GB of private memory and 100 GB of
shared memory. We used the results in Figure 5 to select
the best connection multiplexing factor q for the num-
ber of nodes in each experiment. We report the average
of three runs for each experiment. The standard devia-
tion was below 1% of the average except for a very small
number of points where it was below 10%.

To evaluate the performance of FaRM’s key-value
store, we compare it to a distributed hashtable that uses
the same chained associative hopscotch hashing algo-
rithm and most of the optimizations in MemC3 [16].
This hashtable uses a neighbourhood size of 12 with six
key-value pair slots per bucket. Each key-value pair slot
has a 1-byte hash tag [16] and a pointer to the key and
value (which are stored outside the table). Remote op-
erations are implemented over TCP/IP running natively
in the same RoCE network. We tuned TCP/IP carefully
for maximum performance, e.g., we enabled header pro-
cessing in the NIC and used 16 receiver side queues. We
labeled this baseline TCP in the experiments.

The key-value store experiments ran with 16-byte
keys and 32-byte values as in [16] to facilitate compar-
isons and because these are representative of real work-
loads [16, 38]. Our baseline achieves 40 million lookups

410 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 8 12 16 20
0

20
40
60
80

100
120
140
160

Lo
ok

up
s /

 µ
s

Servers

Farm Uni Farm YCSB TCP TCP 1ms

2 3 4 5 8 12 16 20
1

10

100

1000

10000

La
te

nc
y

µs
 (l

og
)

Servers

Farm Uni Farm YCSB TCP TCP 1ms

Figure 12: Key-value store: lookup scalability

per second on a single machine which is comparable with
the 35 million reported by MemC3 [16] last year.

We loaded FaRM’s key-value store and the baseline
with 120 million key-value pairs per machine before tak-
ing measurements. We configured both stores for 90%
occupancy and used a neighbourhood of 6 for FaRM be-
cause it provides good throughput and 62% space uti-
lization (see Section 3.6). We used only 120 million key-
value pairs to keep experiment running times low but we
ran a control experiment with 20 machines and 1.3 bil-
lion key-value pairs per machine (58 GB of user data, 94
GB total per machine and 1.8 TB overall) and obtained
the same lookup performance.

Except where noted, we measured performance for
one minute after a 20 second warm-up. Keys were cho-
sen randomly either with a uniform distribution or with
the Zipf distribution prescribed by YCSB [15], which has
θ = 0.99. When using the Zipf distribution, the most
popular key is accessed by 4% of the operations.

4.2 Key-value store lookups

Figure 12 shows throughput and latency for key-value
store lookups as the number of machines increases. We
show lines for FaRM with the uniform and YCSB distri-
butions but only show baseline (TCP) performance with

2 3 4 5 8 12 16 20
0

50

100

150

Lo
ok

up
s /

 µ
s

Servers

Farm TCP m=1 TCP m=24
TCP m=50 TCP m=100

Figure 13: Key-value store: multi-get scalability

the uniform distribution because it is not impacted by the
access distribution.

FaRM achieves 146 million lookups per second with a
latency of only 35µs with 20 machines and the uniform
distribution. This throughput is an order of magnitude
higher than the baseline and the latency is two orders of
magnitude lower. In fact, the latency of the baseline at
peak throughput is more than 8ms, which is unacceptable
for several applications (e.g., [38]). We decreased the
number of concurrent requests to achieve a latency of
1ms for the baseline which degraded throughput by 3.6x
as shown in Figure 12. Trading throughput for latency
was not necessary for FaRM as it can achieve both high
throughput and low latency at the same time.

The results also show that FaRM’s performance scales
well with the cluster size. The skew in the YCSB dis-
tribution impacts performance with more than 8 servers
because it overloads the NICs on the machines that hold
the hottest keys, but FaRM is able to achieve more than
100 million lookups per second with latency of 51µs.

Figure 12 also shows single-machine performance
for both systems: the baseline can achieve 40 million
lookups per second and FaRM achieves 26 million. This
is because the baseline uses lock-free reads that are care-
fully tuned for this particular application whereas FaRM
uses general support for lock-free reads, which involves
an extra object copy even for local objects. But FaRM
achieves 146 million lookups per second while provid-
ing 20 times more memory with 20 machines.

In the experiments so far, each lookup retrieves a sin-
gle item. Main memory key-value stores like Mem-
cached [1] provide a multi-get interface that allows appli-
cations to look up several keys. For example, Facebook
reports that their applications issue multi-gets for 24 keys
on average [38] to amortize communication overheads.
We implemented a multi-get interface in our baseline
key-value store but not in FaRM because current NICs
do not support batching of RDMA. We could implement
multi-get batching using FaRM’s RDMA-based messag-
ing but we have not yet done this.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 411

Figure 13 compares FaRM’s lookup throughput with
the baseline key-value store (TCP) using different multi-
get batch sizes. Multi-gets can improve the performance
of the baseline significantly but FaRM still achieves 8x
better throughput relative to multi-gets of 24 keys and 3x
better relative to multi-gets of 100 (which are larger than
the 95th percentile reported in [38]). However, multi-
gets increase the latency of the baseline, which was al-
ready high. With multi-gets of 100 and 20 machines,
lookup latency increases to 25ms. If we reduce the num-
ber of concurrent requests to achieve 10x lower latency,
the throughput drops to 10x lower than FaRM’s. An-
other limitation is that for a fixed multi-get size (which is
determined by available client parallelism), the benefits
of batching decrease with increasing cluster size because
the batch must be broken into a message for each ma-
chine. For example, multi-gets of 24 improve throughput
by 5.7x with 2 servers but only by 2x with 20.

The different mechanisms we discussed in the pa-
per all contribute to the good performance we observed.
The low level optimizations discussed in Section 2 im-
prove lookup throughput by 8x. Using lock-free one-
sided reads instead of RDMA-based messaging doubles
throughput, and our hashtable design reduces the number
of RDMAs per lookup by a factor of three when com-
pared to the RDMA-aware design in Pilaf [37].

4.3 Key-value store updates

We also ran experiments with a mix of lookups and up-
dates. We show results without replication (NoRep), with
logging to SSDs in two replicas (SSD), and with logging
to memory in two replicas (Mem). The first configuration
corresponds to using FaRM as a cache and the last allows
us to evaluate the overhead of the SSDs. We only show
baseline (TCP) results without replication and with the
uniform distribution. We set the log size to 32 GB and
ran the experiment for 5 minutes with a longer warm-up
period of 1 minute to allow the logger to reach a steady
state mix of foreground logging and cleaning.

Figure 14 shows scalability with 5% updates (which
corresponds to YCSB-B). This update rate is higher than
those reported recently for main-memory systems [9, 11,
37, 38]. FaRM scales and performs well: it has an order
of magnitude higher throughput than the non-replicated
baseline key-value store even when logging to SSDs in
two replicas. The throughput when logging to SSDs is
30% lower than without replication mostly due to the ad-
ditional replication messages. We use a small amount
of non-volatile RAM to remove the SSD latency from
the critical path and the SSDs have enough bandwidth to
cope with logging and cleaning with 5% updates.

The skewed access distribution in YCSB affects scala-
bility as it did with read-only workloads. We omit the

3 4 5 8 12 16 20
0

20
40
60
80

100
120
140
160

O
pe

ra
tio

ns
 /

µs

Servers

NoRep NoRep YCSB Mem SSD TCP

Figure 14: Key-value store: scalability with updates

0.2 0.5 1 2 5 10 20 50
0

20
40
60
80

100
120
140
160

O
pe

ra
tio

ns
 /

µs

Update percentage (log)

NoRep Unif Mem Unif SSD Unif
NoRep YCSB Mem YCSB SSD YCSB

(a) Throughput (YCSB and uniform)

0.2 0.5 1 2 5 10 20 50
0

100
200
300
400
500
600
700
800
900

La
te

nc
y

µs

Update percentage (log)

NoRep Update Mem Update SSD Update
NoRep Read Mem Read SSD Read

(b) Latency for lookups and updates (uniform)

Figure 15: Key-value store: varying update rates

lines for the replicated configurations with YCSB be-
cause they are similar to the non-replicated configura-
tion. Our measurements show that the update combin-
ing optimization in Section 3.6 improves throughput with
skew by roughly 4x. Similarly, the dual-mode locking
described in Section 3.4 improves the overall throughput
by around 25% because it reduces the restart rate of lock-
free reads. Both these optimizations have an even larger
impact with higher update rates.

We evaluate the performance of FaRM with higher up-

412 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

date rates in Figure 15. The overhead of replication is
visible with more than 2% updates and SSDs become
the bottleneck with more than 5% because we saturate
the available I/O bandwidth. With 5% updates, there are
215 MB/s of log writes and 215 MB/s of log reads for
cleaning. Roughly half of the writes log new updates
and the other half are cleaning writes. The performance
with YCSB is slightly better than with the uniform dis-
tribution with high update rates because the update com-
bining optimization is able to combine more operations.

Figure 15(b) shows that FaRM’s lookup latency is in-
dependent of the update rate. Since lookups are imple-
mented using RDMA reads, they are not impacted (as up-
dates are) by increased CPU utilization and queuing de-
lays in FaRM’s messaging layer. With low update rates,
update operations have a latency of 60µs without repli-
cation and 120µs with replication. The latency increases
with the update rate because of longer queuing delays.

4.4 Tao

Facebook’s Tao [11] is an in-memory graph store. It
stores both nodes (e.g., users, comments) and edges (e.g.,
friend, author of). Both nodes and edges have types and
application-specific data. Tao’s workload is read domi-
nated (99.8%) with four main operation types. Clients
can read a node and its data (obj get), read the most
recent outbound edges of a given type from a given node
(assoc range), count the number of outbound edges of
a given type from a given node (assoc count), or find
all outbound edges of a given type from a given node to
a set of other nodes (assoc get).

We have implemented a version of Tao. Nodes are
FaRM objects with application data inlined and they are
uniquely named using fat pointers. Edges are stored as a
linked list per edge type in reverse timestamp order and
they are collocated with the source node. Each linked list
node stores multiple edges. The head pointers and counts
of the linked lists are stored in the source node.
obj get and assoc count are implemented with a

lock-free read of the node object. assoc range is im-
plemented with a lock-free read of the linked list head us-
ing a fat pointer cached by the client. When a new head
is inserted, the old head’s incarnation is incremented to
ensure that clients can detect this and re-fetch the head
pointer. These three operations account for 85% of the
Tao workload and they require a single RDMA read in
the common case. assoc get requires a scan of the edge
list. So it is implemented by function-shipping the opera-
tion to the machine storing the source node (and the edge
list). Update operations use distributed transactions but
they account for only 0.2% of the workload.

We evaluated the graph store using Facebook’s
LinkBench [8] with its default parameters for degree

and data size distributions. We used the recommended
“full” scale for LinkBench: a graph with 1 billion
nodes for which LinkBench generated 4.35 billion edges.
The workload was parametrized using the operation mix
in [11]. We measured a throughput of 126 million opera-
tions per second on our 20-machine cluster. FaRM’s per-
machine throughput of 6.3 million operations per second
is 10x that reported for Tao. FaRM’s average latency at
peak throughput was 41µs which is 40–50x lower than
reported Tao latencies. The three operation types that
use lock-free reads required only 1.02 RDMA reads per
operation on average. Note that our results were ob-
tained on hardware different from Facebook’s and using
LinkBench rather than the real workload. Nevertheless,
the order-of-magnitude improvements in throughput and
latency show that FaRM can implement graph stores ef-
ficiently when the graph fits in the cluster’s memory.

5 Related work

RDMA has been primarily used to improve message
passing performance, e.g., several MPI implementa-
tions [34, 35, 42] use RDMA. FaRM’s RDMA-based
messaging improves on the implementation in [35].

Several libraries (e.g., [22, 49]) and programming lan-
guages (e.g., [4, 13, 14, 47, 50]) provide a Partitioned
Global Address Space (PGAS) abstraction where pro-
cesses have both private memory and memory that can
be accessed remotely using one-sided operations. Some
of them use RDMA to implement one-sided operations
but unlike FaRM they do not support efficient lock-free
RDMA reads. Instead, they ensure consistency using
locks, barriers or messages. Additionally, they were de-
signed for batch computation and are not well suited to
building interactive online services, e.g., they lack sup-
port for persistence and either provide no fault tolerance
or create periodic checkpoints. Distributed shared mem-
ory systems (e.g., [5, 12, 43]) are similar to PGAS but
lack support for user controlled data placement. FaRM
provides a PGAS with ACID transactions.

Several projects have used Infiniband messaging prim-
itives and RDMA to improve the performance of dis-
tributed file systems [28, 33, 48], HBase [23], and Mem-
cached [7, 29, 30, 37]. These projects use RDMA to im-
prove performance of a specific service whereas FaRM
provides a general distributed computing platform. Ad-
ditionally, they use RDMA to optimize message passing
and do not support one-sided RDMA reads with the ex-
ception of [7, 37]. The work in [7] supports one-sided
RDMA reads but provides no consistency guarantees.

Pilaf [37] implements a key-value store that uses
send/receive verbs to ship update operations to the server
and one-sided RDMA reads to implement lookups. It
provides linearizability using 64-bit CRCs to detect in-

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 413

consistent reads. FaRM’s technique to detect inconsis-
tent reads is more general. It provides serializability with
respect to general transactions. Additionally, FaRM’s
RDMA-aware hashtable design performs better because
it requires fewer RDMAs to perform lookups with higher
space utilization. It is hard to perform a direct perfor-
mance comparison because the evaluation in [37] uses a
single core in a single server and does not address the
scalability problems that we discuss in Section 2.

RAMCloud [39] describes techniques for logging and
recovery in a main memory key-value store but provides
little information about normal case operation. We use
similar techniques for logging and recovery but extend
them to deal with transactions on general data structures
in a shared address space. Unlike [39], we focus on tech-
niques to achieve good performance in the normal case.

Like FaRM, Sinfonia [3] offers a shared address space
with transactions. It introduces “mini-transactions” that
improve performance by piggybacking execution onto
the 2-phase commit protocol. FaRM offers general
distributed transactions optimized to take advantage of
RDMA together with lock-free reads that require a sin-
gle RDMA and locality optimizations that enable single
machine transactions.

6 Conclusion

We described the design and implementation of FaRM,
a new distributed computing platform that stores appli-
cation data in main memory and exploits RDMA com-
munication to achieve high throughput and low latency
at the same time. FaRM provides a shared address space
and general distributed transactions to simplify program-
ming. Since distributed transactions can be too expen-
sive for performance critical operations, FaRM also pro-
vides two mechanisms to improve performance where
needed: lock-free read-only operations and locality op-
timizations that enable single machine transactions. We
demonstrated the effectiveness of these techniques by
building RDMA-aware key value and graph stores. Our
results show that FaRM performs well: it consistently
achieves an order of magnitude better throughput and la-
tency than main memory systems that use TCP/IP on the
same physical network.

References
[1] Memcached. http://memcached.org.
[2] Viking Technology. http://www.vikingtechnology.

com/.
[3] AGUILERA, M. K., MERCHANT, A., SHAH, M., VEITCH,

A., AND KARAMANOLIS, C. Sinfonia: A New Paradigm for
Building Scalable Distributed Systems. In Proceedings of the
21st ACM SIGOPS Symposium on Operating Systems Principles
(2007), SOSP ’07.

[4] ALLEN, E., CHASE, D., HALLETT, J., LUCHANGCO, V.,
MAESSEN, J.-W., RYU, S., STEELE JR, G. L., TOBIN-
HOCHSTADT, S., DIAS, J., EASTLUND, C., ET AL. The Fortress
language specification. Sun Microsystems 139 (2005), 140.

[5] AMZA, C., COX, A. L., DWARKADAS, S., KELEHER, P. J., LU,
H., RAJAMONY, R., YU, W., AND ZWAENEPOEL, W. Tread-
marks: Shared memory computing on networks of workstations.
IEEE Computer 29, 2 (1996), 18–28.

[6] ANJALI, G., BARBARA, L., AND RODRIGO, R. Efficient routing
for peer-to-peer overlays. In Proceedings of the 1st Symposium
on Networked Systems Design and Implementation (2004), NSDI
’04.

[7] APPAVOO, J., WATERLAND, A., DA SILVA, D., UHLIG, V.,
ROSENBURG, B., VAN HENSBERGEN, E., STOESS, J., WIS-
NIEWSKI, R., AND STEINBERG, U. Providing a cloud network
infrastructure on a supercomputer. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed
Computing (2010), HPDC ’10.

[8] ARMSTRONG, T. G., PONNEKANTI, V., BORTHAKUR, D., AND
CALLAGHAN, M. LinkBench: a database benchmark based on
the Facebook social graph. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (2013),
SIGMOD ’13.

[9] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload Analysis of a Large-scale Key-value
Store. In Proceedings of the 12th ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Measurement and
Modeling of Computer Systems (2012), SIGMETRICS ’12.

[10] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND
WILSON, P. R. Hoard: A scalable memory allocator for mul-
tithreaded applications. In Proceedings of the 9th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (2000), ASPLOS-IX.

[11] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-
MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKA-
RNI, S., LI, H., MARCHUKOV, M., PETROV, D., PUZAR, L.,
SONG, Y. J., AND VENKATARAMANI, V. TAO: Facebook’s dis-
tributed data store for the social graph. In Proceedings of the
2013 USENIX Annual Technical Conference (2013), USENIX
ATC’13.

[12] CARTER, J. B., BENNETT, J. K., AND ZWAENEPOEL, W. Im-
plementation and performance of Munin. In ACM SIGOPS Op-
erating Systems Review (1991), vol. 25, ACM.

[13] CHAMBERLAIN, B. L., CALLAHAN, D., AND ZIMA, H. P.
Parallel programmability and the Chapel language. Interna-
tional Journal of High Performance Computing Applications 21,
3 (2007), 291–312.

[14] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA,
C., KIELSTRA, A., EBCIOGLU, K., VON PRAUN, C., AND
SARKAR, V. X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (2005), OOPSLA ’05.

[15] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud
computing (2010), SoCC ’10.

[16] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. MemC3:
Compact and concurrent MemCache with dumber caching and
smarter hashing. In Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation (2013),
NSDI’13.

414 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[17] FRASER, K. Practical Lock Freedom. PhD thesis, Cambridge
University Computer Laboratory, 2003. Also available as Tech-
nical Report UCAM-CL-TR-579.

[18] GRAY, J., AND REUTER, A. Transaction Processing: Concepts
and Techniques. 1992.

[19] GREENWALD, M., AND CHERITON, D. The synergy between
non-blocking synchronization and operating system structure. In
Proceedings of the 2nd USENIX Symposium on Operating Sys-
tems Design and Implementation (1996), OSDI ’96.

[20] HENDLER, D., INCZE, I., SHAVIT, N., AND TZAFRIR, M. Flat
combining and the synchronization-parallelism tradeoff. In Pro-
ceedings of the 22nd ACM Symposium on Parallelism in Algo-
rithms and Architectures (2010), SPAA ’10.

[21] HERLIHY, M., SHAVIT, N., AND TZAFRIR, M. Hopscotch hash-
ing. In Proceedings of the 22nd International Symposium on Dis-
tributed Computing (2008), DISC ’08.

[22] HOEFLER, T., DINAN, J., THAKUR, R., BARRETT, B., BAL-
AJI, P., GROPP, W., AND UNDERWOOD, K. Remote memory
access programming in MPI-3. ACM Trans. Parallel Comput.
(Mar. 2013).

[23] HUANG, J., OUYANG, X., JOSE, J., W.-U. R. M., WANG, H.,
LUO, M., SUBRAMONI, H., MURTHY, C., AND PANDA, D. K.
High-performance design of HBase with RDMA over Infiniband.
In Parallel and Distributed Processing Symposium (2012).

[24] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: wait-free coordination for internet-scale systems. In
Proceedings of the 2010 USENIX Annual Technical Conference
(2010), USENIX’10.

[25] IEEE. 802.1Qau - Congestion Notification, 2010.

[26] IEEE. 802.1Qbb - Priority-based Flow Control, 2011.

[27] INFINIBAND TRADE ASSOCIATION. Supplement to InfiniBand
Architecture Specification Volume 1 Release 1.2.2 Annex A16:
RDMA over Converged Ethernet (RoCE), 2010.

[28] ISLAM, N. S., RAHMAN, M., JOSE, J., RAJACHANDRASEKAR,
R., WANG, H., SUBRAMONI, H., MURTHY, C., AND PANDA,
D. K. High performance RDMA-based design of HDFS over
InfiniBand. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis
(2012), IEEE Computer Society Press, p. 35.

[29] JOSE, J., SUBRAMONI, H., KANDALLA, K., WASI-UR RAH-
MAN, M., WANG, H., NARRAVULA, S., AND PANDA, D. K.
Scalable Memcached design for Infiniband clusters using hybrid
transports. In Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (2012).

[30] JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J.,
WASI-UR RAHMAN, M., ISLAM, N. S., OUYANG, X., WANG,
H., SUR, S., AND PANDA, D. K. Memcached design on high
performance RDMA capable interconnects. In Proceedings of the
2011 International Conference on Parallel Processing (2011).

[31] KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY, R.,
LEVINE, M., AND LEWIN, D. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing (1997), STOC ’97.

[32] KUNG, H. T., AND ROBINSON, J. T. On optimistic methods for
concurrency control. ACM Transactions on Database Systems
(1981).

[33] LI, B., ZHANG, P., HUO, Z., AND MENG, D. Early experiences
with write-write design of NFS over RDMA. In Networking,
Architecture, and Storage, 2009. NAS 2009. IEEE International
Conference on (2009), IEEE, pp. 303–308.

[34] LIU, J., JIANG, W., WYCOFF, P., PANDA, D., ASHTON, D.,
BUNTINAS, D., GROPP, W., AND TOONEN, B. Design and im-
plementation of MPICH2 over Infiniband with RDMA support.
In Parallel and Distributed Processing Symposium (2004).

[35] LIU, J., WU, J., AND PANDA, D. K. High performance RDMA-
based MPI implementation over InfiniBand. International Jour-
nal of Parallel Programming 32, 3 (June 2004).

[36] MELLANOX TECHNOLOGIES. Connect-IB: Architecture for
Scalable High Performance Computing, 2013.

[37] MITCHELL, C., YIFENG, G., AND JINYANG, L. Using one-
sided RDMA reads to build a fast, CPU-efficient key-value store.
In Proceedings of the 2013 USENIX Annual Technical Confer-
ence (2013), USENIX ATC’13.

[38] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling Memcache at Facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (2013), NSDI’13.

[39] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J., AND ROSENBLUM, M. Fast crash recovery in RAM-
Cloud. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (2011), SOSP ’11.

[40] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Journal of
Algorithms (2004).

[41] SETHI, R. Useless actions make a difference: Strict serializabil-
ity of database updates. Journal of the ACM (1982).

[42] SHIPMAN, G., WOODALL, T., GRAHAM, R., MACCABE, A.,
AND BRIDGES, P. Infiniband scalability in Open MPI. In Parallel
and Distributed Processing Symposium (2006).

[43] STETS, R., DWARKADAS, S., HARDAVELLAS, N., HUNT, G.,
KONTOTHANASSIS, L., PARTHASARATHY, S., AND SCOTT, M.
Cashmere-2L: Software coherent shared memory on a clustered
remote-write network. In ACM SIGOPS Operating Systems Re-
view (1997), vol. 31, ACM, pp. 170–183.

[44] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings of
the 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (2001), SIG-
COMM ’01.

[45] SUBRAMONI, H., POTLURI, S., KANDALLA, K., BARTH, B.,
VIENNE, J., KEASLER, J., TOMKO, K., SCHULZ, K., MOODY,
A., AND PANDA, D. K. Design of a scalable InfiniBand
topology service to enable network-topology-aware placement of
processes. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analy-
sis (2012).

[46] TREIBER, R. K. Systems programming: Coping with paral-
lelism. Tech. Rep. RJ 5118 (53162), IBM, Thomas J. Watson
Research Center, 1986.

[47] UPC CONSORTIUM. UPC Language Specifications, v1.2., Tech-
nical Report. Lawrence Berkeley National Laboratory LBNL-
59208, 2005.

[48] WU, J., WYCKOFF, P., AND PANDA, D. PVFS over Infini-
Band: Design and performance evaluation. In Parallel Pro-
cessing, 2003. Proceedings. 2003 International Conference on
(2003), IEEE, pp. 125–132.

[49] WWW.OPENSHMEM.ORG. OpenSHMEM Application Program-
ming Interface, 2012.

[50] YELICK, K., SEMENZATO, L., PIKE, G., MIYAMOTO, C., LIB-
LIT, B., KRISHNAMURTHY, A., HILFINGER, P., GRAHAM, S.,
GAY, D., COLELLA, P., ET AL. Titanium: A high-performance
Java dialect. Concurrency Practice and Experience 10, 11-13
(1998), 825–836.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 415

Easy Freshness with Pequod Cache Joins

Bryan Kate, Eddie Kohler, Michael S. Kester, Neha Narula∗, Yandong Mao∗, Robert Morris∗

Harvard University and ∗MIT CSAIL

Abstract
Pequod is a distributed application-level key-value

cache that supports declaratively defined, incremen-
tally maintained, dynamic, partially-materialized views.
These views, which we call cache joins, can simplify
application development by shifting the burden of view
maintenance onto the cache. Cache joins define relation-
ships among key ranges; using cache joins, Pequod cal-
culates views on demand, incrementally updates them
as required, and in many cases improves performance
by reducing client communication. To build Pequod, we
had to design a view abstraction for volatile, relationless
key-value caches and make it work across servers in a
distributed system. Pequod performs as well as other in-
memory key-value caches and, like those caches, outper-
forms databases with view support.

1 Introduction
Web developers use application-level key-value caches
such as memcached [2] to improve the performance of
database-backed sites. Caches can store base data, mean-
ing copies of database records; this improves perfor-
mance by offloading reads from a bottleneck persistent
store. More benefit can be gained by caching compu-
ted data, which derives from base data but is organized
more conveniently for readers. Unfortunately, neither ap-
proach is easy to program. Twitter and Facebook, for in-
stance, organize their persistent stores by posting user
and time [12, 20], but their primary read operations com-
bine and filter many users’ data streams into “timelines”
based on user subscriptions. A base-data cache for this
access pattern would make reads difficult: the applica-
tion would basically design and execute a query plan on
the cache. A computed-data cache that stored the results
of complex timeline queries would simplify reads, but
complicate writes: developers would have to invalidate
or update cached computed results as necessary to main-
tain freshness. Developers have even responded to these
challenges by building application-specific caching sys-
tems [12].

Pequod is a general-purpose distributed key-value
cache that transparently keeps computed results up to
date. Its central idea is the cache join abstraction, which
compactly expresses the transformations required to turn
input cached data into computed results. The developer
installs cache joins in advance. Pequod uses cache joins

both to compute data requested by clients, and to update
cached results in response to updates. Pequod handles
the complex task of updating cached computed data with
little developer effort.

A cache join is a materialized view [22] implemented
in a distributed key-value cache rather than a relational
database. It declaratively defines computed data in terms
of simple transformations of base data. We show that ma-
terialization, where the cache stores computed data and
keeps it up to date, is important for performance. Since
cached data is by definition partial, Pequod’s material-
ized views must be both partial and dynamic [28, 30].
Cache joins also offer control over data freshness, sup-
porting both periodic snapshots and incremental updates
that keep computed data fully up to date [19]. Pequod
thus combines many advanced features, supporting in
one system distributed, incrementally maintained, both
eager and lazy, dynamic, partially-materialized views.
Although Pequod builds on implementation strategies
from database materialized views, the non-relational,
distributed, key-value-cache context required changes
both to the cache join abstraction and to its implemen-
tation.

Cache joins help Pequod improve application perfor-
mance. Computing a result often involves reading extra
data; executing this computation in servers, rather than
clients, reduces network traffic. Pequod also uses depen-
dency records and hints to efficiently maintain its cache
in response to updates.

Our work offers several contributions. We observe that
simple joins, filters, and aggregations can express rela-
tionships among cached data for many applications, and
that can be applied to a distributed, ordered key-value
cache. We describe the cache join abstraction for key-
value materialized-view-like queries and query execu-
tion plans. We provide efficient policies for computing
these cache joins based on application queries. We de-
sign a distributed system that supports cache joins us-
ing cross-server data subscriptions and update notifica-
tions. Finally, we evaluate Pequod on two example ap-
plications inspired by popular websites, a Twitter-like
microblogging service and a Hacker News-like news ag-
gregator with user karma. We compare our system with
existing technologies and find that Pequod preserves key-
value cache performance, despite the addition of cache
join execution. We show that moving computation into

416 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cache servers can improve overall system performance,
and demonstrate that a deployment of Pequod can be
scaled to handle Web-class workloads.

2 Design
Pequod is an ordered key-value cache with string keys
and values. It supports four basic operations: get(k) re-
turns a value; put(k, v) updates a value; remove(k) re-
moves a value; and the ordered scan(first, last) opera-
tion returns a lexicographically-ordered list of those key-
value pairs with keys in the given range. Pequod is not a
database and, as is usual for key-value caches, it doesn’t
support multi-key transactions.

To support freshness, base data in a Pequod cache
must be kept up to date relative to the persistent backing
store (typically a database). A convenient way to do this
is to connect Pequod with a database shard, instructing
Pequod that some keys can be found in the database and
instructing the database that updates to relevant tables
should be forwarded to Pequod (e.g., using Postgres’s
notify statement). If a request is made for a database-
sourced key, Pequod will query the database and cache
the result, and the database will keep Pequod abreast of
any changes. Pequod thus acts as a write-around cache:
application writes go directly to the database, and appli-
cations access Pequod only for reads. We describe the de-
sign of Pequod using a write-around deployment, though
other deployments are possible (such as write-through or
lookaside caching).

We describe Pequod with reference to Twip, an appli-
cation that models the core of Twitter, but its ideas apply
to many applications that use materialized views.

2.1 Caching Twip

A Twip user can post tweets, follow other users (sub-
scribe to their tweets), and check her timeline. This last
operation is the most complex: when user ann checks
her timeline, Twip returns, in a time-sorted list, all recent
posts made by any user ann follows.

A Twip database store might use two tables, p for posts
and s for subscriptions. p’s columns would be poster
(the user ID of the posting user), time, and tweet; s’s
columns would be user (the ID of the subscribing user)
and poster (the ID of the followed user). This query
satisfies a timeline check by user ann for all interesting
tweets posted after time 100:

select p.time, p.poster, p.tweet from s, p

where s.user=’ann’ and s.poster=p.poster

and p.time>=100 order by p.time;

Timeline checks are frequent, routinely outnumbering
new posts by a factor of 100 [20]. They are also ex-
pensive. As the query makes clear, a single timeline

check must collect information from all a user’s subscrip-
tions, and Twitter users average more than 100 subscrip-
tions each [9]. Executing frequent, expensive, latency-
sensitive queries on a persistent database is inadvisable.
Timeline checks must be cached.

The cache could simply hold base data. For example,
the key-value pair p|bob|100 �→ Himight represent user
bob’s tweet of Hi at time 100, and the pair s|ann|bob �→
1 might represent ann’s subscription to bob. However,
a base-data-only cache shifts the query planning burden
onto the application. To check ann’s timeline, Twip must
read her subscriptions with a scan on the s|ann| range,
and then, for each subscription, scan the corresponding
p| range for tweets. This involves at least two rounds
of RPCs (and, for typical users who follow many others,
hundreds of RPCs total).

To simplify timeline checks, the cache could store
computed data. Keys starting with t|ann| could store
ann’s timeline, with copies of tweets by the users ann
follows. For instance, the bob tweet above would corre-
spond to the key-value pair t|ann|100|bob �→ Hi. The
order of components in this key is semantically impor-
tant and follows from the lexicographic order of the scan
operation. Since each user has their own timeline and
tweets are sorted by time, the user and post time must
follow the t| prefix in that order. We assume multi-
ple followed users might post tweets at the same time,
so the key includes the poster to disambiguate them.
Ann’s timeline check at time 100 would be implemented
by a single scan on the half-open range [t|ann|100|,
t|ann|+).1 This resembles Redis’s demonstration Twit-
ter [4] and to some extent the actual Twitter [20], though
these services store user timelines as Redis list values
(since Redis is not an ordered store) and Twitter stores
tweet IDs rather than texts.

Timeline checks are certainly simpler when compu-
ted data is cached, but posts and subscriptions are more
complicated. Any post must update all relevant timelines.
Performance will be good—shifting overhead from read
operations to writes is often useful—but implementation
remains complex. Furthermore, since the cache might
evict a timeline, the application must still contain code
to construct timelines from posts.

2.2 Basic cache joins

Pequod aims to help applications avoid this complexity.
A Twip application using Pequod can write posts to the
database and read timelines directly from the cache with-
out worrying about subscriptions, and with performance
as high as that of a typical application cache. The key

1The notation t|ann|+ represents the upper bound of the t|ann|
range: [t|ann|, t|ann|+) contains exactly those keys starting with
t|ann|. In the Pequod implementation, this upper bound is imple-
mented by the unsightly string t|ann}.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 417

idea is Pequod’s declarative cache join specifications,
which relate computed data (such as timelines) to base
data (such as posts and subscriptions). The Twip time-
line cache join

t|user|time|poster = check s|user|poster
copy p|poster|time;

defines the value of t|user|time|poster as a copy of the
value of p|poster|time whenever s|user|poster exists.
Cache join semantics are that of a simple SPJ database
query; the syntax is inspired by Datalog [14] “t(user,
time, poster, tweet) :- s(user, poster), p(poster, time,
tweet).” However, where Datalog and database queries
treat all columns alike, cache joins distinguish keys and
values. The poster’s tweet, which is the tweet column in
Datalog and SQL, is implicitly referenced in Pequod by
the cache join’s copy operator.

Pequod computes cache joins using strategies effec-
tive for application caches. When the timeline cache join
is installed, Pequod contains no t| keys. Instead, Pe-
quod dynamically materializes the required results in re-
sponse to scans of the t| range. A timeline scan on
[t|ann|100,t|ann|+) would (in a write-around deploy-
ment) ensure that the s|ann subscriptions and all rele-
vant p| posts were cached, then join those keys to pro-
duce the relevant timeline. In addition to returning to
the client, Pequod caches the computed timeline and in-
stalls updaters that keeps it up to date. If bob tweets
again at time 120, the database will notify Pequod, which
will put the new tweet into key p|bob|120. This put
triggers a process that automatically copies the tweet to
key t|ann|120|bob. Since Pequod is eagerly and incre-
mentally maintaining ann’s timeline, her later timeline
checks can execute without additional computation. Pe-
quod also handles subscription changes: modifications to
the s|ann| range cause incremental recomputation.

2.3 Advanced cache joins

Cache joins can specify query plans and types of main-
tenance as required by the application. For example,
Twitter celebrities can have tens of millions of follow-
ers. Copying their posts into so many timelines will use
a lot of memory. Since there are relatively few such
celebrities and relatively few celebrity posts, it can be
more memory-efficient to handle their posts in a differ-
ent way [26]. For instance:

ct|time|poster = copy cp|poster|time;
t|user|time|poster = check s|user|poster
copy p|poster|time; // (1) non-celeb, same as above

t|user|time|poster = pull copy ct|time|poster
check s|user|poster; // (2) celebrity

Here each user’s timeline is calculated from two cache
joins with different execution strategies. The first, for

non-celebrities, is eagerly maintained. The second, for
celebrities, is not: the pull annotation tells Pequod to
recompute the join on each request without caching the
results. Celebrity users store their posts under cp| keys,
rather than the usual p|; a helper range, ct|, combines
all celebrity posts in time-primary order. To compute the
celebrity portion of a timeline, Pequod checks the ct
range for celebrity posts, then filters the results through
the user’s subscriptions. If no celebrities have posted in
a time range (a common case), Pequod will complete
the celebrity join with a single fast scan. In our tests,
celebrity timelines don’t offer performance advantages,
but they do save memory.

Cache joins can also colocate different classes of val-
ues into the same range of keys. This powerful use case
doesn’t fit easily into a relational model. For instance,
consider a Hacker News-like news application with user
karma [1]; we call our version Newp. Users can author
new articles, comment and vote on articles, and read arti-
cle pages. An article page shows the article’s vote count,
its comments, and the “karma” for each user who com-
mented on the article, where a user’s karma is the count
of votes on the articles that user authored. A cache for
Newp might store articles in one key range, comments
in another, and votes in another. Karma, which involves
an expensive sum over all of a user’s votes, should be
precalculated and cached as well. Thus, the data neces-
sary to render an article would be spread over many key
ranges. But in Pequod, separate cache joins can bring
these disparate objects into a single page| scan range,
as shown in Figure 1. As a result, Newp can issue one
scan on [page|bob|101,page|bob|101|+) to retrieve
all of the disparate data needed to render an article page.
We call cache joins like this interleaved since they inter-
leave results from logically different computations in a
single output range.

Newp also shows that Pequod cache joins can aggre-
gate input data. The karma join uses a count operator
to reduce a range of inputs (all keys starting with vote|
author) into a single value, namely the count of the num-
ber of inputs. Pequod supports several simple aggrega-
tion functions, including sum, count, min, and max. Ag-
gregated data is kept up to date just like copied data, and
aggregations are easy to add.

2.4 Distributed Pequod

Distributed Pequod supports workloads too large, or too
compute-intensive, for a single server to handle. Base
data is replicated across servers as necessary to support
the maintenance of computed data (cache join outputs).
Each base key has a home server to which updates are
directed (a partition function maps key ranges to home
servers). When a base key k is read from a server S
other than its home server H, S requests k’s value from

3

418 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

karma|author = count vote|author|id|voter;
rank|author|id = count vote|author|id|voter;
page|author|id|a = copy article|author|id;
page|author|id|r = copy rank|author|id;
page|author|id|c|cid|commenter =
copy comment|author|id|cid|commenter;

page|author|id|k|cid|commenter =
check comment|author|id|cid|commenter
copy karma|commenter

Figure 1: Interleaved cache joins bring the data necessary to
render a Newp article into one contiguous range. Key tags like
|a and |r help the application distinguish types of data.

H. In addition to returning the value, H installs a sub-
scription for S to k. When H receives an update to k’s
value, it will send the new value to S . Pequod thus main-
tains eventually-consistent replicas of base data. Compu-
ted data is distributed across servers according to client
requests. To compute a cache join, a server first fetches
all relevant base data into memory (possibly accessing
home servers or the backing store, and possibly work-
ing through intermediate cache joins), then runs without
further communication.

Since cache joins can execute anywhere, adding
servers to a Pequod deployment increases its compu-
tational capacity. Base data subscriptions also make
replication-based load balancing possible: directing
reads for popular data ranges to multiple Pequod servers
establishes incrementally-maintained replicas that can
distribute query load. Adding more servers to a deploy-
ment also increases the system’s storage capacity, but due
to the data duplication and subscription overhead inher-
ent in our design, a Pequod cache’s storage capacity does
not necessarily rise linearly with the number of servers.
Data duplication is reduced when clients send their re-
quests to appropriate servers. Twip clients avoid redun-
dant timeline storage by sending all timeline checks for
user u to a specific server S (u). This is especially impor-
tant since timelines make up the large majority of system
data (each tweet is stored once in the poster’s p| range
and many, many times in followers’ t| ranges). But
some duplication is unavoidable—for instance, a popular
user’s tweets are copied to all servers, inducing network
overhead—and other applications might be unpartition-
able.

Our initial design goal for distributed Pequod has been
simplicity rather than completeness, and we do not focus
on consistency or resilience to failure. Pequod is eventu-
ally consistent: every update to base data eventually be-
comes visible to all interested servers, but since update
propagation is asynchronous, different servers might see
updates at different times. The maximum update delay
depends on network properties, and is relatively low for
our expected deployments (several servers within a sin-

gle data center). Many Web applications are tolerant of
this kind of inconsistency. For some applications, the cur-
rent Pequod prototype can also support “read-your-own-
writes” consistency, where writes made by a client are al-
ways visible to later reads by the same client. To achieve
this level of consistency, clients must read from and write
to a single Pequod cache server (base data are written
directly to Pequod to avoid the asynchrony of database
notification).

2.5 Eviction

Pequod can evict data under memory pressure. Three
types of data can be evicted: data computed by a cache
join, remote data copied from another Pequod server via
subscription, and cached base data, which in our ex-
pected deployment is loaded on demand from a database.
Eviction requires modifying the store and invalidating
all dependent computed data (which can have transi-
tive effects). At present, an overloaded Pequod server
simply evicts the least recently used data ranges. This
could be improved by considering the expected costs of
reloading a range (the latency of fetching base data from
the database, the CPU cost of recomputing dependent
ranges, and so forth).

2.6 Discussion

Pequod simplifies application design by adding intelli-
gence to the caching layer. But databases already sup-
port that intelligence; why not just use one? Applica-
tions couldn’t afford to use the main persistent database,
but perhaps, as in DBProxy [7, 8], another relational
database could be used as a cache. This kind of deploy-
ment would be an excellent choice if it performed well.
Since Web applications already rely on key-value cache
performance, and since some of that performance derives
from the key-value model, we chose instead to add intel-
ligence to a key-value cache.

3 Cache joins
A cache join declares how to calculate some output key-
value pairs from input key-value pairs, which we call
sources. Since cache joins are expressed in terms of key-
value pairs, which have a single meaningful index or-
dering (namely, lexicographic key ordering), cache joins
also expose meaningful server performance properties,
making them resemble both database views and query
plans.

A cache join specification has four parts. (1) An output
pattern, such as t|user|time|poster, defines the format
of output keys. (2) One or more source patterns, such as
copy p|poster|time, select keys whose values are used
to compute results, and define the operators applied to
these keys. (3) Optional performance annotations (in-
cluding the order of source patterns) guide query exe-

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 419

<cachejoin> ::= <key> "=" ["push" | "pull" |

"snapshot <T>"] <sources>;

<sources> ::= <source> | <sources> <source>;

<source> ::= <operator> <key>;

<operator> ::= "copy" | "min" | "max" | "count"

| "sum" | "check";

Figure 2: Cache join grammar.

cution; see §3.4. (4) Slot definitions tell Pequod how to
unpack a key into its component slots—for example, by
looking for vertical bars, or by taking fixed numbers of
bytes. We don’t explain slot definitions further.

Pequod supports several source operators. Copy tells
Pequod to copy the corresponding source’s value to the
output key. Checkmarks sources whose values aren’t in-
teresting. (For example, in the timeline join, subscrip-
tions like s|user|poster are used only for the con-
tents of their keys.) There are also several aggregate
functions; like SQL’s aggregate functions, they combine
many source values into a single output.

Unlike a database query, a cache join exposes the
performance properties of key ordering (in relational
databases index structure is specified elsewhere), and ex-
poses more performance properties through annotations,
but has less flexibility. For instance, cache joins must not
be recursive (a cache join’s output cannot be used as one
of its sources), and relationships between “tables” must
be expressed entirely through keys.

Users define cache joins in textual form (Figure 2 sum-
marizes the grammar) and install them using an “add-
join” RPC. Multiple cache joins may be installed over the
same range of keys. One cache join can act as a source for
another; this can be useful, for example to permute keys
into a more convenient order, but risks cascading inval-
idations. Performance annotations such as snapshot T
(§3.4) can mitigate this problem somewhat. Users should
not install circular cache joins.

Pequod checks for errors (such as recursive queries) at
cache join installation time, but some errors are difficult
to identify in advance. For instance, consider the time-
line join variant t|user|time = check s|user|poster
copy p|poster|time. Since this lacks the “|poster” suf-
fix for timeline keys, it produces undefined results when
two or more posters post tweets at the same time. (A
corresponding database query would produce one tuple
per relevant tweet, but Pequod values are strings, not tu-
ples, and the copy operator doesn’t know how to com-
bine multiple values into a single string.) But it’s not
necessarily appropriate to reject such joins out of hand;
perhaps the application ensures that no two tweets have
the same time. Thus Pequod’s users are left responsible
for avoiding ambiguous cache joins, either by prevent-
ing output collisions or by using aggregate functions with

well-defined behavior.
We currently impose additional technical require-

ments on cache joins. For instance, in a join with n
sources, exactly n−1 of the operators must equal check,
and we constrain the use of count and sum operators to
simple cases.

3.1 Cache join query execution

When Pequod receives a scan(first, last) or get(key) re-
quest that overlaps with one or more cache joins, it must
execute the queries they represent. This section describes
the semantics and implementation of cache join query
execution. We focus on forward query execution, which
starts from base data. The algorithm used by Pequod is
a key-value variant of the classical nested-loop imple-
mentation for database join queries. The next section de-
scribes how incremental maintenance works.

Cache join execution logically enumerates all tuples
of source keys and selects those that match the join’s
constraints. The selection step ensures that there’s one
key per source, that the key formats match the source
patterns, and that slots common to multiple source keys
have consistent values. Pequod then combines the se-
lected values according to the join’s operators and in-
stalls the results.

For the timeline join t|user|time|poster =
check s|user|poster copy p|poster|time, the keys
〈s|ann|bob,p|bob|100〉 match the source patterns:
the first key matches the first source, the second key
matches the second source, and the shared poster slot
has a consistent value in both keys (bob). An output key
can be derived from the output pattern and the source
keys; here, that key would be t|ann|100|bob. The
join’s operators (check for the s source and copy for
the p source) indicate that p|bob|100’s value should be
copied to t|ann|100|bob.

The main optimization strategy for nested-loop
queries moves selection operators as early as possible,
since this avoids enumerating irrelevant tuples. In re-
lational databases, selection operators are functions on
columns. In Pequod, selection operators are functions on
ranges, especially as they map to the “columns” defined
by pattern slots. For example, when given a scan query
over the timeline range [t|ann|100,t|ann|200), Pe-
quod can limit its examination of subscriptions to the
range [s|ann|,s|ann|+); and for each resulting sub-
scription s|ann|poster, it can examine the limited post
range [p|poster|100,p|poster|200).

Figure 3 outlines our query execution algorithm;
though our implementation is generic, the pseudocode
uses the timeline join for concreteness. Two related con-
cepts, slot sets and containing ranges, help move selec-
tion early. A slot set is a set of slot assignments derived
from a cache join and a key or key range. For example, in

5

420 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compute timeline(first, last):
ss := timelinejoin.slotset(t, first, last)
[ks−,ks+) := ss.containingrange(s, first, last)
for each ks �→ vs where ks ∈ [ks−,ks+)

and ks matches s|user|poster:
ss′ := ss.addslots(s, ks)
[kp−,kp+) := ss′.containingrange(p, first, last)
for each kp �→ vp where kp ∈ [kp−,kp+)

and kp matches p|poster|time:
yield t|user|time|poster �→ vp

Figure 3: Query execution for the timeline cache join.

the timeline join, the key s|ann|bob corresponds to the
slot set {user �→ ann,poster �→ bob}. Query execution be-
gins by deriving a slot set from the requested output key
range; for example, given scan(t|ann|100, t|ann|+),
Pequod creates the slot set {user �→ ann}. Slot sets are
augmented with additional slot assignments as Pequod
works through source keys. A containing range is effec-
tively the inverse of a slot set. Given a slot set, a source
pattern, and the requested output key range, Pequod can
calculate a minimal range of source keys that might af-
fect the scan’s results. For example, given the scan re-
quest above and the slot set {user �→ ann,poster �→ bob},
the minimal containing range for the p source would be
[p|bob|100,p|bob|+). Any post outside that contain-
ing range would either not match the required poster, or
not map to an output key in the requested output key
range. But even with containing ranges, the algorithm
must compare the source range keys with their patterns.
As a schema-free key-value store, Pequod might have
keys in the range that don’t match the source patterns.
Figure 4 shows a sample execution of this algorithm for
the timeline join.

Since Pequod should support any application and pro-
vide general key-value cache semantics, we took care
to handle any range query. Thus, for example, we cor-
rectly implement queries like [t|ann|100,t|bob|200)
and [t|a,t|b) that cross multiple timelines. Correct and
minimal containing ranges are generated in each case.

3.2 Incremental maintenance

Pequod can keep computed data up to date as sources
change. Eager incremental maintenance transfers work
from read queries to writes and saves computation on
exact re-requests. The view selection problem [22] is
easy in Pequod: since all queries are range scans, pre-
computed ranges naturally benefit queries that partially
or completely overlap.

Pequod implements incremental maintenance through
two auxiliary data structures. A join status range indi-
cates whether a range of keys is up to date with respect
to the cache joins whose outputs overlap that range. Join

s|bob|+

s|bob|ann
s|bob|jim

s|bob|liz
p|liz|124
p|liz|177

p|liz|245

"hello,
 world!"

"i'm
 hungry"

"going to
 bed"

""

""

""

p|liz|+

p|liz|100
[p|jim|100, p|jim|+)100
[p|ann|100, p|ann|+)100

"hello,
 world!"

"i'm
 hungry"

"going to
 bed"

t|bob|+

t|bob|124|liz
t|bob|177|liz

t|bob|245|liz

t|bob|100

Checked Source

Copied Source Output Range

Scanned Range:

s|bob|

[t|bob|100, t|bob|+)

Figure 4: Example query execution of the timeline join. The
scanned range provides context used when scanning source
ranges. The keys and values in the output key range comprise
elements of the original scan range and both source ranges.

compute timeline(first, last):
for each subrange [x−, x+) ⊂ [first, last) where

joinstatus([x−, x+)) � valid:
ss := timelinejoin.slotset(t, x−, x+)
[ks−,ks+) := ss.containingrange(s, x−, x+)
js := new join status range for [x−, x+)
add updater from [ks−,ks+) to js
for each ks �→ vs where ks ∈ [ks−,ks+)

and ks matches s|user|poster:
ss′ := ss.addslots(s, ks)
[kp−,kp+) := ss′.containingrange(p, x−, x+)
add updater from [kp−,kp+) to js
for each kp �→ vp where kp ∈ [kp−,kp+)

and kp matches p|poster|time:
yield t|user|time|poster �→ vp

install js as valid

Figure 5: Query execution for the timeline cache join, includ-
ing installation of data structures for later incremental mainte-
nance. Changes from Figure 3 are in black.

status ranges are logically attached to output ranges and
form a disjoint cover of key space (every key is asso-
ciated with exactly one join status range). Updaters, in
contrast, logically attach to source ranges. An updater
links a range of source keys with a context—a cache join,
a slot set, and a join status range. The context provides
the information required to maintain its join status range.
For instance, a range of posts [p|bob|100,p|bob|+)
might have an updater for the timeline join with slot set
{user �→ ann}; this user value lets Pequod map source
key p|bob|200 to output key t|ann|200|bob. Many
updaters can apply to a given key, so we store updaters
in an interval tree. Whenever Pequod modifies its store, it
finds all updaters applicable to the modified key and runs
the indicated incremental maintenance for each. Figure 5
outlines how join status ranges and updaters are installed
during forward query execution.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 421

The notification provided to an updater includes the
modified source key, the new value, the old value, and
the type of change (insert new key, update existing key,
or remove existing key). The updater reacts by modify-
ing either the attached join status or the cache’s value for
some key. The form of this modification depends on the
relevant operator; for example, the updater for copy op-
erators calculates the appropriate output key and inserts
the value there.

Pequod also supports invalidations, which provide a
form of lazy view maintenance [29]. Unlike an eager up-
dater, which updates the cache upon notification, an in-
validating updater just marks its join status range as in-
valid. The invalidity will be detected and corrected when
the output range is queried. There are two kinds of invali-
dation. Complete invalidation removes installed updaters
and requires that a range be recomputed from scratch.
Partial invalidation instead logs the source modification
into an entry on the relevant join status range. The logged
modification—or a subset of it—will be applied later,
when the output range is queried [29]. Lazy mainte-
nance, and especially partial invalidation, shifts some of
the burden of view maintenance back onto read oper-
ations from write operations. Our prototype uses lazy
maintenance (invalidations) for check sources and ea-
ger maintenance for all other sources, a choice that per-
forms well for our applications. For example, Twip sub-
scription changes logically shift many tweets into or out
of a timeline. Thanks to lazy maintenance, however, Pe-
quod shifts only those tweets strictly required by queries.
Since most timeline checks are updates, rather than loads
of past tweets, this can perform much less work than
eager maintenance would. Our policy would not work
equally well for all applications, however, and we would
like to offer users more control over maintenance type.

Several important optimizations improved Pequod’s
performance by large factors. Updaters frequently over-
lap; for example, a Twip user’s posts have one updater
per subscriber. It was especially important to combine
such updaters whenever possible. If a new updater is in-
stalled for the same source range as an existing updater—
or for an overlapping range—Pequod reduces memory
usage and the size of the updater tree by appending in-
formation about the new updater to the existing one.
Other important performance improvements were ob-
tained by compressing or eliminating the context infor-
mation stored with updaters, since in many cases Pequod
can derive an output key completely from the source key
and the relevant join status range. (Consider a timeline-
join updater on source range [p|ren|200,p|ren|+) as-
sociated with join status range [t|ann|100|,t|ann|+).
The join status range uniquely determines the user slot,
and the source key uniquely determines the poster and
time slots.)

3.3 Resolving missing data

The join query execution algorithm in Figure 5 assumes
that all required source data is present in the cache.
However, this assumption need not hold. A source range
might overlap with the output of another cache join; the
source range might exist in the persistent backing store,
but have expired from the cache; and in distributed Pe-
quod, the source range might be stored on a different
server. Pequod detects these cases and loads the data as
required before executing the join query. The first case
can be handled with a recursive query execution. In the
second and third cases, the data is loaded and metadata
is installed to indicate its presence.

Pequod reduces query latency by loading missing base
data in parallel. When base data is missing, Pequod ini-
tiates an asynchronous fetch request (to the database or
to a home server) and attaches a restart context to the
current join status range. It then continues to execute the
query using any cache-resident data. When all required
fetches complete, the restart contexts are used to restart
the query. The restarted query behaves as if executed
from scratch, so every server query produces results con-
sistent with a snapshot of that server’s state. However,
Pequod doesn’t recompute any parts of the query that
were already completed and haven’t been invalidated
since. In general, a query execution is iteratively eval-
uated until there are no outstanding restart contexts and
the join status range is marked valid; in most cases, this
requires at most one round of fetches and a cleanup ex-
ecution that fills in gaps. The resulting output range is
scanned to construct a client response.

We always resolve missing base data by loading it into
server memory. This allows us to execute cache joins lo-
cally. Other strategies, such as executing cache joins in
partitioned fashion and aggregating the results [5], could
benefit some applications by reducing data movement.

3.4 Performance annotations

Cache joins contain annotations that affect evaluation
performance. First, the maintenance type defines whether
and how a join is kept up to date. The default push
type asks for the incremental maintenance described in
§3.2. A pull join, in contrast, is calculated from scratch
on each query using the procedure in §3.1. As we saw
for Twitter celebrities (§2.3), this can save memory for
some applications and data patterns. Finally, a snapshot
T join implements deferred view maintenance. Pequod
calculates the join from scratch, but caches the result—
without further updates—for T seconds. Snapshot joins
induce less maintenance overhead than push joins and
less computation overhead than pull joins. Second, the
order of sources is a performance annotation. Pequod
examines the source descriptions in a cache join in or-
der, and different source orders can perform quite differ-

7

422 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Hash index

Hash index
tsp

t|bobt|ann

t|bob|009|ali

t|bob|030|tim

p|ali p|tim

p|ali|001 p|ali|009

Updaters

Output ranges

Store

Store

p|ali, p|ali|+

t|bob|001, t|bob|+

Hash index

Figure 6: Pequod internal data structure for Twip. The logical
store divides into tables (the rectangle layer) and, when appro-
priate, subtables (the lowest layer).

ently. Joins are generally more efficient when the small-
est ranges are examined first, since this reduces the data
to be examined later. It’s usually best to arrange sources
so that slots are encountered in the same order as in the
output key, since this leads to small containing ranges.
The user may be able choose an even better order using
their knowledge of key counts and update frequencies.

4 Implementation
Pequod is a single-threaded, event-driven C++ program.
Pequod uses red-black trees to store key-value pairs
and bookkeeping information, such as updaters and join
status ranges. Several optimizations use auxiliary data
structures such as hash tables to reduce tree lookups, im-
proving performance significantly for some workloads.
This section describes Pequod’s implementation, focus-
ing on these optimizations and when they are useful. Fig-
ure 6 shows the overall arrangement of Pequod’s internal
data structures as configured for Twip.

4.1 Structure

Pequod stores data in several layers of tree visible to
clients as a single ordered key-value store. The first tree
layer separates logical tables, such as p| and t|, into
separate subtrees. Each table stores the relevant key-
value pairs and bookkeeping structures (an interval tree
of updaters and a tree of join status ranges). By sepa-
rating concerns for different ranges, this design sped up
Pequod significantly relative to a one-level store.

Tables can themselves be subdivided. Many applica-
tions have natural key boundaries across which scans are
rare; for example, Twip scans mostly lie within a time-
line range. If developers mark these boundaries, Pequod
will use them to break the store into subtables. Thanks
to a hash table that indexes the subtables, operations that
lie entirely within a subtable can jump to that subtable

in O(1) time (rather than O(log N)). However, the entire
key-value store is still ordered, and operations that cross
subtable boundaries will execute as expected. The use of
subtables improves the runtime of our Twip benchmark
by a factor of 1.55x, but increases memory consumption
by a factor of 1.17x, a consequence of additional book-
keeping.

4.2 Output hints

In many of our applications, each update to a join status
range either modifies the same key as the previous update
(as is common for the count operator) or inserts a new
key immediately after the previous update (as when in-
serting a fresh post into a Twip timeline). Both types of
modification can be performed in O(1) amortized time
given a pointer to the last-updated key. Each join status
range therefore maintains a pointer to its last updated
key. We call this pointer the output hint. A reference
counting scheme ensures that the hint stays valid even if
the underlying key-value pair is removed from the tree.
This optimization avoids tree lookups in our Twip bench-
mark, and improves its performance by a factor of 1.11x.

4.3 Value sharing

The copy operator often requires Pequod to install multi-
ple copies of a value into multiple output ranges. For ex-
ample, Twip inserts a copy of each tweet into each of the
interested followers’ timelines. To reduce memory over-
head, Pequod allows multiple output ranges to share the
source’s value. This optimization fits in naturally with
server computation and might not work as naturally if
sharing was entirely directed by application clients. This
optimization reduces memory consumption by a factor
of 1.14x on our Twip benchmark. Value sharing is only
useful for copy joins, but it introduces no overhead on
other joins.

5 Evaluation
This section evaluates Pequod’s performance. Pequod
performs well compared with related systems, its ma-
terialization strategy works well on our workloads, and
unconventional features of its data model (interleaved
cache joins) can benefit real applications. Furthermore,
distributed Pequod can scale across multiple servers to
handle large workloads.

5.1 Experimental setup

We evaluate Pequod using two hardware configurations,
a multiprocessor and a cluster of Amazon EC2 vir-
tual machines. The multiprocessor is an Amazon EC2
cr1.8xlarge instance with 32 logical processors and
244GB of RAM running Ubuntu Linux 13.04. The Ama-
zon EC2 cluster, used to evaluate scalability, consists

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 423

of cc2.8xlarge and cr1.8xlarge VM instances con-
nected by a 10Gbps network. Each VM has 32 cores,
60-244GB of RAM, and runs Amazon Linux 2013.09.2.

Application clients communicate with Pequod servers
using RPC. Experiments on the multicore machine use
TCP over the loopback interface for RPC invocation.
Clients are event-driven processes that keep many RPCs
outstanding. We run enough clients to saturate the Pe-
quod servers.

In most of our experiments, Pequod is configured to
run Twip. The underlying data is derived from a Twit-
ter social graph obtained in 2009 [21]. The full graph,
which contains 40 million users and 1.4 billion relation-
ships, is used in the scalability experiment (§5.5). All
other Twip experiments use a sampled subgraph contain-
ing 1.8M users and 72M relationships.

Our clients model the actions of individual Twip users.
Each modeled user (1) “logs in,” obtaining a list of many
recent tweets; (2) repeatedly checks for new tweets, sub-
scribes to other users, and posts tweets of their own; and
(3) logs out (though they may log in again later). The in-
cremental timeline updates in step (2) return many fewer
tweets than the initial scans at login time. These events
occur in the rough ratio 5% initial timeline scans, 9%
new subscriptions, 85% incremental timeline updates,
and 1% posts, which we derived using information on the
real Twitter [20]. Users post with different likelihoods.
The probability that a user posts a message is propor-
tional to the log of their follower count, so more popular
users tweet more often. In one common workload, 70%
of users are active (the remainder never check their time-
lines) and each active user checks their timeline 50 times.
This results in approximately 62M timeline checks, 6.2M
new relationships, and 620K new posts over the course of
the experiment.

We do not evaluate database interaction or eviction.
Pequod is deployed as a look-aside cache: applications
send it updates directly. Notification bottlenecks in the
database made the performance of our write-around de-
ployment uninteresting. Although we enable eviction, it
never triggers in our experiments.

We ran most experiments several times and observed
little to no performance variability. Confidence intervals
would not be visible on our graphs.

5.2 System comparison

Pequod aims to improve the programmability of
application-level caches by offering developers more in-
teresting semantics. These semantics do not compromise
performance: Pequod performs no worse than compara-
ble caches.

We evaluate two Twip implementations. The first, “Pe-
quod,” is the Twip application described above; time-
lines are fetched via the timeline join. In the second,

System Runtime

Pequod 197.06 s (1.00x)
Redis 262.62 s (1.33x)
Client Pequod 323.29 s (1.64x)
memcached 784.43 s (3.98x)
PostgreSQL 1882.78 s (9.55x)

Figure 7: Time to process a Twip experiment to completion
using Pequod and related systems. Smaller numbers are better.

“client Pequod,” application clients are responsible for
maintaining timelines. There are no cache joins. After
making a post, the posting client sends a timeline update
for every subscribed user. Client Pequod lets us evaluate
the performance impact of server-managed computation
in isolation. We also evaluate the Redis (version 2.8.5)
and memcached (version 1.4.16) key-value caches and
a traditional database, PostgreSQL (version 9.1). Each
system runs the same workload to completion as fast
as possible. Redis and memcached don’t support server-
side computation, so as in client Pequod, their clients ac-
tively manage user timelines; Redis stores timelines as
sorted sets of tweets, memcached as a string to which
tweets are appended. PostgreSQL, in contrast, does sup-
port server-side computation. Although our test version
lacks automatically-updated materialized views, we use
triggers to get a similar effect. Each system is given six
cores in our multicore machine. PostgreSQL runs a sin-
gle process with multiple threads, while the other sys-
tems partition the store and use one process per core. The
machine’s remaining cores run client processes; for each
system, we used the number of client processes that pro-
duced the best system runtime. We configure all systems
so that data is stored in memory and consistency is re-
laxed as much as possible.2

Figure 7 shows the results. Pequod, which uses mate-
rialized views, runs a factor of 1.64x faster than client
Pequod, which doesn’t. The penalty is roughly equally
divided between RPC overhead (client Pequod makes
many more RPCs) and insertion overhead (client Pequod
doesn’t benefit from output hints or value sharing). Al-
though a more optimized client-managed caching system
could beat Pequod (perhaps by implementing Pequod-
like functionality specialized for the application), RPC
overhead and program complexity remain as challenges
for any client-managed or special-purpose system. Pe-
quod runs a factor of 1.33x faster than Redis: join support
does not sacrifice the performance advantages of key-

2We disable Redis disk checkpoints and avoid triggering eviction
in memcached by configuring the amount of available memory. For
PostgreSQL, we allocate a shared memory buffer large enough to hold
our entire data set, place the data store in an in-memory file system,
and tune for performance: we disable fsync, synchronous commit, and
full page writes and set bgwriter lru maxpages to zero.

9

424 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

R
u
n
ti
m

e
 (

s
)

% active users (and check:post ratio)

No materialization
Full materialization

Dynamic materialization

Figure 8: Pequod’s dynamically materialized views generally
outperform other strategies on the Twip benchmark.

value caches. Redis runs a factor of 1.23x faster than
client Pequod, however. This difference is due to Re-
dis’s hash table data structure, which offers O(1) lookups.
Though tree optimizations could speed up client Pe-
quod somewhat, unordered stores offer fundamental per-
formance advantages over ordered stores. memcached
runs a factor of 3x slower than Redis: the Twip work-
load has more writes than memcached prefers. The tra-
ditional database, despite running in memory with re-
laxed ACID guarantees, is not a suitable replacement
for an application-level cache. Pequod outperforms Post-
greSQL by nearly an order of magnitude (9.55x).3

To summarize, Pequod performs no worse than widely
available key-value caches; for this workload, it even of-
fers a small performance improvement. The additional
semantics provided by Pequod simplify application de-
velopment without compromising performance.

5.3 Materialization strategy

Pequod implements cache joins using a dynamic mate-
rialization strategy: queries are computed on demand,
but recently-accessed ranges are eagerly and incremen-
tally updated. We compare this strategy with the obvi-
ous alternatives, namely no materialization (where no
ranges are cached) and full materialization (where all
ranges are cached and kept up to date). We create a Twip
workload comprising only timeline check and post op-
erations. 1 million posts are distributed among all 1.8M
users as described above (proportionally to the log of the
follower count). We then vary p, the percentage of “ac-
tive” users, between 1 and 100. Each workload performs
p million timeline checks spread uniformly across the
1.8M× p/100 active users, resulting in a check:post ra-
tio between 1:1 and 100:1. We use five clients and one
server, run the workload to completion as fast as possi-
ble, and measure the elapsed time.

Figure 8 shows the results. As expected, the no-
materialization strategy performs relatively well with

3Widely-available databases with true materialized view support
were also evaluated; they performed similarly to PostgreSQL.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

R
u
n
ti
m

e
 (

s
)

Vote rate (%)

Non-interleaved
Interleaved

Figure 9: Newp interleaved cache joins perform better than
fetching article data in separate RPCs, except when writes are
very common.

few active users, but as timeline scans increase, material-
ization quickly becomes important for performance. Be-
cause it avoids materializing data in which no one is in-
terested, Pequod’s dynamic materialization outperforms
full materialization up to approximately 90% active
users. After that, full materialization performs slightly
better (a factor of 1.08x better at 100% active users).
This performance difference is due to the join computa-
tion dynamic materialization must perform when a user
first logs in. Full materialization keeps all timelines up to
date at all times; though this avoids login overhead, it in-
evitably uses more memory when users can be inactive.

5.4 Cache join choice

Pequod leaves view selection and query planning to the
application developer; this flexibility, and the design flex-
ibility offered by the key-value context, can improve ap-
plication performance.

We evaluate two versions of the Hacker News-like
Newp application that use different joins. The first uses
separate ranges for aggregate data (karma and vote
counts); constructing an article requires many RPCs in
two round trips. The second uses the interleaved cache
join from §2.3 to colocate this data. Reading an article
requires a single scan, but more server computation and
storage overhead is incurred (upon each vote aggregate
values are copied into each page| range). The shared
workload has three types of operation: reading an arti-
cle, commenting, and voting. The Pequod data store is
pre-populated with 100K articles, 50K users, 1M com-
ments, and 2M votes. We simulate 20M user sessions;
each user reads a random article; with a varying chance
votes on the article; and independently with a 1% chance
comments on the article. The experiment is run using a
single server and multiple clients. We expect the inter-
leaved approach to perform well when article reads far
outnumber votes and comments.

The results, shown in Figure 9, indicate that inter-
leaved cache joins are superior for most vote rates tested.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 425

The non-interleaved implementation issues many gets
per article (e.g., for karma), each of which incurs over-
heads including an O(log N) lookup. The interleaved join
improves overall performance until the cost of precom-
putation outweighs the cost of processing many gets
(90% vote rate). Storing votes and karma in a hash ta-
ble might shift the crossover to the left, but the inter-
leaved join would preserve its main advantage, namely
code simplicity.

5.5 Scalability

Our evaluation of distributed Pequod focuses on a prob-
lem inherent in cache joins, namely the CPU overhead of
cache join execution. Pequod can do more work per re-
quest than would a simpler cache, putting pressure on
server CPUs. We show that distributed Pequod scales
well enough that adding servers reduces this pressure.

Our experimental setup involves a large backing store,
which holds the full 2009 Twitter social graph, and a
variable number of Pequod compute servers, which ex-
ecute the timeline join in response to client timeline
checks. Both backing store and compute servers are Pe-
quod processes, but the backing store absorbs all writes
while the compute servers absorb all reads. Each exper-
iment runs the same Twip workload: 28M active users
issue 1.4B timeline checks, make 140M new subscrip-
tions, and generate 14M new posts. We run the work-
load as fast as possible to ensure that the bottleneck is
within Pequod. Measurements indicate that for the server
setups measured, in each case, the bottleneck is Pequod
compute server CPU. All of a user’s compute requests
are directed to the same compute server, minimizing un-
necessary data duplication. To warm the cache servers,
each active user is logged into the system prior to the
experiment, ensuring that a join status range exists, base
data are present, updaters are installed, and subscriptions
are established between the compute and base servers.
We use up to 30 virtual machines on the Amazon EC2
testbed. 6 VMs run 32 Pequod servers for the backing
store and up to 48 client processes, while the remaining
24 VMs run between 12 and 48 Pequod compute servers.

Figure 10 shows the result. Throughput increases by
3x (from 1.42M to 4.27M qps) as the number of com-
pute servers increases from 12 to 48. Perfect scalabil-
ity would increase throughput by 4x; unfortunately, some
Pequod overheads (such as base data required per com-
pute server) do not drop linearly with the number of com-
pute servers. Total memory consumption increased from
290GB to 297GB at the base servers, a consequence of
storing duplicate subscription information. The compute
servers stored more total data thanks to base data duplica-
tion; total memory used by all compute servers increased
from 1.2TB to 1.5TB. Likewise, a larger fraction of the
consumed network bandwidth is dedicated to inter-server

 0

 1

 2

 3

 4

 5

 12 24 36 48

Q
P

S
 (

m
ill

io
n
s
 /
 s

)

Compute servers

Figure 10: Adding computational capacity results in a speedup
for a fixed Twip workload.

subscription maintenance, increasing from roughly 10%
to 16% between 12 and 48 compute servers (the rest is
client communication). Though these overheads are po-
tential bottlenecks to system scalability, Pequod still per-
forms and scales well overall.

6 Related work
Application caches Pequod’s key-value design was in-
spired by existing application-level caches [2, 3].

Pequod is an ordered store. This helped make cache
joins simple and useful, but unordered hash table
stores, such as Redis and memcached, offer faster O(1)
operations. Several of our implementation tricks and
optimizations—some of them enabled by the cache join
abstraction—reduce the cost of tree walking. To speed
up Pequod further, we could replace its binary trees with
more cache-efficient structures [24] or, better, investi-
gate cache join variants for unordered stores. (This would
probably require structured values à la Redis.)

Previous work has tracked dependencies among
cached data in application-level caches [15, 31]. The ap-
plication developer specifies these dependencies explic-
itly, either by item or by item class; the systems re-
spond to updates by invalidating dependent objects. In
TxCache [25], dependency tracking is automatic, rather
than explicit. TxCache provides transactional consis-
tency, which Pequod does not, and can invalidate cached
objects that are computed by arbitrary pure functions,
rather than SPJ queries. Compared to these systems, Pe-
quod’s cache joins define dependencies in a particularly
natural way, and Pequod can update dependent objects,
which we found faster than invalidating them.

DBProxy [7, 8] is a distributed database cache that
can store partial query results in edge cache nodes and
service later queries from those caches. The caches are
incrementally maintained by a master backend database;
new results are produced by re-executing queries (with
an exception for some aggregates, which are also stored
as exact-match results). Pequod, in contrast, uses eager
view maintenance to avoid costly computation on the

11

426 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

read path. DBProxy transparently populates its cache by
inspecting queries. Pequod is not transparent: developers
decide what data is cached and describe how to maintain
that data.

Materialized views Pequod borrows joins and mate-
rialized views [11, 16] from relational databases. Many
production databases offer materialized views for data
warehousing, replication, and storing results of expen-
sive computations. Most views are meant to be transac-
tionally consistent with the underlying data, and are kept
up to date either by synchronous updates when base data
changes (eager update) or by refreshing the view when
it is read (lazy update). We borrow from work on effi-
ciently maintaining views with incremental updates and
batch processing [10, 13, 18, 27–29, 32].

Materialized views in Pequod are eventually consis-
tent with respect to base data and are maintained through
asynchronous, incremental updates. Views in Pequod can
also be partially and dynamically materialized [28, 30],
a relatively advanced feature.

Several research systems have applied one or more
of these techniques. Agrawal et al. [5] added material-
ized views to PNUTS [17], a distributed key-value store.
Like Pequod, views are implemented as partitioned ta-
bles, are eventually consistent, and are maintained with
asynchronous, incremental computation. However, this
work did not support partial materialization or some of
Pequod’s performance annotations. Interestingly, the au-
thors use a different execution strategy for aggregate
joins, which use a distributed query to reduce data move-
ment. Pequod might benefit from a similar strategy.

Dynamic materialized views (DMV) [30] can partially
materialize a view based on data access patterns. In
DMV, the selection of rows to materialize can be spec-
ified manually or handled at runtime by a feedback loop
with policies for admission and eviction. Pequod’s dy-
namic materialized views borrow from DMV, but imple-
ment a simple selection policy based on access time.

DBToaster [6] presents a method for deriving incre-
mental update triggers from relational view queries, but
only works on aggregate queries and does not partially
materialize views.

Luo’s partial materialized views (PMVs) cache por-
tions of frequently-executed queries with the goal of al-
lowing early access to partial query results [23]. PMVs
are restricted—for instance, they do not support inser-
tions on base data—but a similar feature might be useful
for some Pequod applications.

Applications The real Twitter service actively updates
the timelines of logged-in users as tweets arrive [20]; this
was one inspiration for Pequod’s hybrid pull/push archi-
tecture. The load on Twitter’s service is high: Twitter has

more than 150M active users that generate 300K time-
line reads per second on average. On a typical day Twit-
ter handles 4-6K new tweets per second (340M per day),
resulting in 300K deliveries per second (2.6B per day)
to user timelines [20]. Twitter scales its timeline service
by partitioning its users amongst an expandable set of
cache servers. Our Twip application uses the same strat-
egy. Twip does not support other Twitter features, such as
search; we have not investigated whether these features
would benefit from Pequod.

Silberstein et al. [26] describe the importance of bal-
ancing “pull” and “push” strategies in social networking
services, an insight we borrow for celebrity join. Given a
Twitter-like application, their system determines at run-
time which tweets should be materialized into followers’
timelines and which should not. A more complex join
operator could conceivably support their algorithm in Pe-
quod.

7 Conclusion
Pequod is a distributed key-value cache that uses a new
abstraction, the cache join, to automatically rearrange
and transform cached data in ways useful for applica-
tions. By understanding how cached data is computed,
Pequod is able to keep cached data fresh and provide
performance benefits while presenting a simple API to
users. As future work, we hope to improve Pequod fur-
ther by optimizing its data structure design and explor-
ing options for configuration changes and recovery from
server failure.

Acknowledgements
We thank the SOSP and NSDI reviewers and our shep-
herd, Ali Ghodsi, for many helpful comments. This work
was partially supported by a Microsoft Research New
Faculty Fellowship, by the National Science Foundation
(awards 0834415 and 0915164), and by Quanta Com-
puter.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 427

References
[1] Hacker News FAQ. http://ycombinator.com/

newsfaq.html.

[2] memcached. http://memcached.org.

[3] Redis. http://redis.io.

[4] Retwis. http://redis.io/topics/twitter-clone.

[5] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava,
and R. Ramakrishnan. Asynchronous view maintenance
for VLSD databases. In Proc. SIGMOD 2009, ACM SIG-
MOD Int’l Conf. on Management of Data, pages 179–
192. ACM, June 2009.

[6] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic.
DBToaster: Higher-order delta processing for dynamic,
frequently fresh views. Proc. VLDB Endowment, 5(10):
968–979, June 2012.

[7] K. Amiri, S. Park, and R. Tewari. A self-managing data
cache for edge-of-network web applications. In Proc.
CIKM’02, 11th Int’l Conf. on Information and Knowledge
Management, pages 177–185. ACM, Nov. 2002.

[8] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
Dbproxy: a dynamic data cache for web applications. In
Proc. ICDE 2003, 19rd Int’l Conf. on Data Engineering,
pages 821–831. IEEE Computer Society, Mar. 2003.

[9] Beevolve, Inc. An exhaustive study of Twitter
users across the world. http://www.beevolve.com/
twitter-statistics/#b2, Oct. 2012.

[10] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently
updating materialized views. In Proc. SIGMOD’86, 1986
ACM SIGMOD Int’l Conf. on Management of Data, pages
61–71. ACM, May 1986.

[11] R. F. Boyce, D. D. Chamberlin, M. M. Hammer, and W. F.
King. Specifying queries as relational expressions. In
Proc. 1973 Meeting on Programming Languages and In-
formation Retrieval, pages 31–47. ACM, 1973.

[12] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In Proc. 2013 USENIX Annual Tech-
nical Conf., pages 49–60. USENIX, June 2013.

[13] M. W. Cain. Creating and using materialized query tables
(MQT) in IBM DB2 for i5/OS (version 2.0). Technical re-
port, IBM, Sept. 2006. http://public.dhe.ibm.com/
partnerworld/pub/pdf/courses/438a.pdf.

[14] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about Datalog (and never dared to ask).
IEEE Trans. Knowledge and Data Engineering, 1(1):
146–166, Mar. 1989.

[15] J. Challenger, A. Iyengar, and P. Dantzig. A scalable sys-
tem for consistently caching dynamic web data. In Proc.
INFOCOM’99, 18th Joint Conf. of the IEEE Computer
and Communications Societies, volume 1, pages 294–
303, Mar. 1999.

[16] E. F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377–387,
June 1970.

[17] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endowment, 1(2):1277–1288, Au-
gust 2008.

[18] A. Gupta and I. S. Mumick. Maintenance of material-
ized views: Problems, techniques, and applications. In
A. Gupta and I. S. Mumick, editors, Materialized Views,
pages 145–157. MIT Press, Cambridge, MA, USA, 1999.

[19] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In Proc. SIGMOD’93, 1993
ACM SIGMOD Int’l Conf. on Management of Data, pages
157–166. ACM, May 1993.

[20] R. Krikorian. Real-time delivery architecture at Twitter.
Talk at QCon New York. http://www.infoq.com/
presentations/Real-Time-Delivery-Twitter,
Oct. 2012.

[21] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter,
a social network or a news media? In Proc. WWW 2010,
19th Int’l World Wide Web Conf., pages 591–600. ACM,
Apr. 2010.

[22] P.-Å. Larson and H. Yang. Computing queries from de-
rived relations. In Proc. VLDB’85, 11th Int’l Conf. on
Very Large Data Bases, pages 259–269. VLDB Endow-
ment, Aug. 1985.

[23] G. Luo. Partial materialized views. In Proc. ICDE’07,
23rd Int’l Conf. on Data Engineering, pages 756–765.
IEEE Computer Society, Apr. 2007.

[24] Y. Mao, E. Kohler, and R. Morris. Cache craftiness for
fast multicore key-value storage. In Proc. EuroSys’12,
7th ACM European Conf. on Computer Systems, pages
183–196. ACM, 2012.

[25] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and
B. Liskov. Transactional consistency and automatic man-
agement in an application data cache. In Proc. OSDI’10,
9th USENIX Conf. on Operating Systems Design and Im-
plementation, pages 1–15. USENIX, Oct. 2010.

[26] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakr-
ishnan. Feeding frenzy: selectively materializing users’
event feeds. In Proc. SIGMOD 2010, ACM SIGMOD Int’l
Conf. on Management of Data, pages 831–842. ACM,
June 2010.

13

428 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[27] F. W. Tompa and J. A. Blakeley. Maintaining materialized
views without accessing base data. Information Systems,
13(4):393–406, October 1988. URL http://dx.doi.
org/10.1016/0306-4379(88)90005-1.

[28] J. Zhou, P.-Å. Larson, and J. Goldstein. Partially mate-
rialized views. Technical Report MSR-TR-2005-77, Mi-
crosoft Research.

[29] J. Zhou, P.-Å. Larson, and H. G. Elmongui. Lazy mainte-
nance of materialized views. In Proc. VLDB’07, 33rd Int’l
Conf. on Very Large Data Bases, pages 231–242. VLDB
Endowment, Sept. 2007.

[30] J. Zhou, P.-Å. Larson, J. Goldstein, and L. Ding. Dynamic
materialized views. In Proc. ICDE’07, 23rd Int’l Conf. on
Data Engineering, pages 526–535. IEEE Computer Soci-
ety, Apr. 2007.

[31] H. Zhu and T. Yang. Class-based cache management for
dynamic Web content. In Proc. INFOCOM’01, 20th Joint
Conf. of the IEEE Computer and Communications Soci-
eties, volume 3, pages 1215–1224, 2001.

[32] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom.
View maintenance in a warehousing environment. In
Proc. SIGMOD’95, 1995 ACM SIGMOD Int’l Conf. on
Management of Data, pages 316–327. ACM, May 1995.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 429

MICA: A Holistic Approach to Fast In-Memory Key-Value Storage

Hyeontaek Lim,1 Dongsu Han,2 David G. Andersen,1 Michael Kaminsky3

1Carnegie Mellon University, 2KAIST, 3Intel Labs

Abstract
MICA is a scalable in-memory key-value store that han-
dles 65.6 to 76.9 million key-value operations per second
using a single general-purpose multi-core system. MICA
is over 4–13.5x faster than current state-of-the-art sys-
tems, while providing consistently high throughput over
a variety of mixed read and write workloads.

MICA takes a holistic approach that encompasses all
aspects of request handling, including parallel data access,
network request handling, and data structure design, but
makes unconventional choices in each of the three do-
mains. First, MICA optimizes for multi-core architectures
by enabling parallel access to partitioned data. Second,
for efficient parallel data access, MICA maps client re-
quests directly to specific CPU cores at the server NIC
level by using client-supplied information and adopts a
light-weight networking stack that bypasses the kernel.
Finally, MICA’s new data structures—circular logs, lossy
concurrent hash indexes, and bulk chaining—handle both
read- and write-intensive workloads at low overhead.

1 Introduction
In-memory key-value storage is a crucial building block
for many systems, including popular social networking
sites (e.g., Facebook) [36]. These storage systems must
provide high performance when serving many small ob-
jects, whose total volume can grow to TBs and more [5].

While much prior work focuses on high performance
for read-mostly workloads [15, 30, 32, 37], in-memory
key-value storage today must also handle write-intensive
workloads, e.g., to store frequently-changing objects [2,
5, 36]. Systems optimized only for reads often waste re-
sources when faced with significant write traffic; their
inefficiencies include lock contention [32], expensive up-
dates to data structures [15, 30], and complex memory
management [15, 32, 36].

In-memory key-value storage also requires low-
overhead network communication between clients and
servers. Key-value workloads often include a large num-
ber of small key-value items [5] that require key-value
storage to handle short messages efficiently. Systems us-
ing standard socket I/O, optimized for bulk communica-
tion, incur high network stack overhead at both kernel-
and user-level. Current systems attempt to batch requests

at the client to amortize this overhead, but batching in-
creases latency, and large batches are unrealistic in large
cluster key-value stores because it is more difficult to ac-
cumulate multiple requests being sent to the same server
from a single client [36].

MICA (Memory-store with Intelligent Concurrent Ac-
cess) is an in-memory key-value store that achieves high
throughput across a wide range of workloads. MICA can
provide either store semantics (no existing items can be
removed without an explicit client request) or cache se-
mantics (existing items may be removed to reclaim space
for new items). Under write-intensive workloads with a
skewed key popularity, a single MICA node serves 70.4
million small key-value items per second (Mops), which
is 10.8x faster than the next fastest system. For skewed,
read-intensive workloads, MICA’s 65.6 Mops is at least
4x faster than other systems even after modifying them to
use our kernel bypass. MICA achieves 75.5–76.9 Mops
under workloads with a uniform key popularity. MICA
achieves this through the following techniques:
Fast and scalable parallel data access: MICA’s data
access is fast and scalable, using data partitioning and
exploiting CPU parallelism within and between cores.
Its EREW mode (Exclusive Read Exclusive Write) min-
imizes costly inter-core communication, and its CREW
mode (Concurrent Read Exclusive Write) allows multiple
cores to serve popular data. MICA’s techniques achieve
consistently high throughput even under skewed work-
loads, one weakness of prior partitioned stores.
Network stack for efficient request processing: MICA
interfaces with NICs directly, bypassing the kernel, and
uses client software and server hardware to direct remote
key-value requests to appropriate cores where the requests
can be processed most efficiently. The network stack
achieves zero-copy packet I/O and request processing.
New data structures for key-value storage: New mem-
ory allocation and indexing in MICA, optimized for store
and cache separately, exploit properties of key-value work-
loads to accelerate write performance with simplified
memory management.

2 System Goals
In this section, we first clarify the non-goals and then
discuss the goals of MICA.

1

430 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Non-Goals: We do not change the cluster architecture. It
can still shard data and balance load across nodes, and
perform replication and failure recovery.

We do not aim to handle large items that span multiple
packets. Most key-value items will fit comfortably in a
single packet [5]. Clients can store a large item in a tradi-
tional key-value system and put a pointer to that system
in MICA. This only marginally increases total latency;
one extra round-trip time for indirection is smaller than
the transfer time of a large item sending multiple packets.

We do not strive for durability: All data is stored in
DRAM. If needed, log-based mechanisms such as those
from RAMCloud [37] would be needed to allow data to
persist across power failures or reboots.

MICA instead strives to achieve the following goals:
High single-node throughput: Sites such as Facebook
replicate some key-value nodes purely to handle load [36].
Faster nodes may reduce cost by requiring fewer of them
overall, reducing the cost and overhead of replication
and invalidation. High-speed nodes are also more able to
handle load spikes and popularity hot spots. Importantly,
using fewer nodes can also reduce job latency by reduc-
ing the number of servers touched by client requests. A
single user request can create more than 500 key-value
requests [36], and when these requests go to many nodes,
the time until all replies arrive increases, delaying comple-
tion of the user request [10]. Having fewer nodes reduces
fan-out, and thus, can improve job completion time.
Low end-to-end latency: The end-to-end latency of a re-
mote key-value request greatly affects performance when
a client must send back-to-back requests (e.g., when sub-
sequent requests are dependent). The system should min-
imize both local key-value processing latency and the
number of round-trips between the client and server.
Consistent performance across workloads: Real work-
loads often have a Zipf-distributed key popularity [5],
and it is crucial to provide fast key-value operations re-
gardless of skew. Recent uses of in-memory key-value
storage also demand fast processing for write-intensive
workloads [2, 36].
Handle small, variable-length key-value items: Most
key-value items are small [5]. Thus, it is important
to process requests for them efficiently. Ideally, key-
value request processing over the network should be
as fast as packet processing in software routers—40 to
80 Gbps [12, 19]. Variable-length items require careful
memory management to reduce fragmentation that can
waste substantial space [5].
Key-value storage interface and semantics: The
system must support standard single-key requests (e.g.,
GET(key), PUT(key,value), DELETE(key))
that are common in systems such as Memcached. In cache
mode, the system performs automatic cache management
that may evict stored items at its discretion (e.g., LRU); in

store mode, the system must not remove any stored items
without clients’ permission while striving to achieve good
memory utilization.
Commodity hardware: Using general-purpose hardware
reduces the cost of development, equipment, and oper-
ation. Today’s server hardware can provide high-speed
I/O [12, 22], comparable to that of specialized hardware
such as FPGAs and RDMA-enabled NICs.

Although recent studies tried to achieve some of these
goals, none of their solutions comprehensively address
them. Some systems achieve high throughput by support-
ing only small fixed-length keys [33]. Many rely on client-
based request batching [15, 30, 33, 36] to amortize high
network I/O overhead, which is less effective in a large
installation of key-value stores [14]; use specialized hard-
ware, often with multiple client-server round-trips and/or
no support for item eviction (e.g., FPGAs [7, 29], RDMA-
enabled NICs [35]); or do not specifically address remote
request processing [45]. Many focus on uniform and/or
read-intensive workloads; several systems lack evalua-
tion for skewed workloads [7, 33, 35], and some systems
have lower throughput for write-intensive workloads than
read-intensive workloads [30]. Several systems attempt
to handle memory fragmentation explicitly [36], but there
are scenarios where the system never reclaims fragmented
free memory, as we describe in the next section. The fast
packet processing achieved by software routers and low-
overhead network stacks [12, 19, 20, 41, 43] set a bar for
how fast a key-value system might operate on general-
purpose hardware, but do not teach how their techniques
apply to the higher-level processing of key-value requests.

3 Key Design Choices
Achieving our goals requires rethinking how we design
parallel data access, the network stack, and key-value
data structures. We make an unconventional choice for
each; we discuss how we overcome its potential draw-
backs to achieve our goals. Figure 1 depicts how these
components fit together.

3.1 Parallel Data Access
Exploiting the parallelism of modern multi-core systems
is crucial for high performance. The most common access
models are concurrent access and exclusive access:
Concurrent access is used by most key-value sys-
tems [15, 30, 36]. As in Figure 2 (a), multiple CPU cores
can access the shared data. The integrity of the data struc-
ture must be maintained using mutexes [36], optimistic
locking [15, 30], or lock-free data structures [34].

Unfortunately, concurrent writes scale poorly: they in-
cur frequent cache line transfer between cores, because
only one core can hold the cache line of the same memory
location for writing at the same time.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 431

Server

Network
stack

(§3.2/§4.2)

CPU core

CPU core

CPU core

CPU core

Parallel
data

access
(§3.1/§4.1)

Memory

Client

Client

Client

Client

Key-value
data

structures
(§3.3/§4.3)

NIC

Figure 1: Components of in-memory key-value stores. MICA’s key design choices in §3 and their details in §4.

(a) Concurrent access (b) Exclusive access

Partition

Partition

Partition

Partition

Shared
data

CPU core

CPU core

CPU core

CPU core

CPU core

CPU core

CPU core

CPU core

Figure 2: Parallel data access models.

Exclusive access has been explored less often for key-
value storage [6, 25, 33]. Only one core can access part
of the data, as in Figure 2 (b). By partitioning the data
(“sharding”), each core exclusively accesses its own parti-
tion in parallel without inter-core communication.

Prior work observed that partitioning can have the best
throughput and scalability [30, 45], but cautions that it
lowers performance when the load between partitions is
imbalanced, as happens under skewed key popularity [15,
30, 45]. Furthermore, because each core can access only
data within its own partition, request direction is needed
to forward requests to the appropriate CPU core.
MICA’s parallel data access: MICA partitions data and
mainly uses exclusive access to the partitions. MICA ex-
ploits CPU caches and packet burst I/O to disproportion-
ately speed more loaded partitions, nearly eliminating
the penalty from skewed workloads. MICA can fall back
to concurrent reads if the load is extremely skewed, but
avoids concurrent writes, which are always slower than
exclusive writes. Section 4.1 describes our data access
models and partitioning scheme.

3.2 Network Stack
This section discusses how MICA avoids network stack
overhead and directs packets to individual cores.

3.2.1 Network I/O

Network I/O is one of the most expensive processing
steps for in-memory key-value storage. TCP processing
alone may consume 70% of CPU time on a many-core
optimized key-value store [33].
The socket I/O used by most in-memory key-value
stores [15, 30, 33, 45] provides portability and ease of
development. However, it underperforms in packets per
second because it has high per-read() overhead. Many
systems therefore often have clients include a batch of re-
quests in a single larger packet to amortize I/O overhead.

Direct NIC access is common in software routers to
achieve line-rate packet processing [12, 19]. This raw
access to NIC hardware bypasses the kernel to minimize
the packet I/O overhead. It delivers packets in bursts to
efficiently use CPU cycles and the PCIe bus connecting
NICs and CPUs. Direct access, however, precludes useful
TCP features such as retransmission, flow control, and
congestion control.
MICA’s network I/O uses direct NIC access. By target-
ing only small key-value items, it needs fewer transport-
layer features. Clients are responsible for retransmitting
packets if needed. Section 4.2 describes such issues and
our design in more detail.

3.2.2 Request Direction

Request direction delivers client requests to CPU cores for
processing.1 Modern NICs can deliver packets to specific
cores for load balancing or core affinity using hardware-
based packet classification and multi-queue support.

Server
Client

A

Client
B

KEY0

KEY1

(a) Flow-level core affinity (b) Object-level core affinity

CPU core

CPU core
KEY0

KEY1

KEY0

KEY1
KEY0

KEY1

Client
A

Client
B

CPU core

CPU core

Server

Figure 3: Request direction mechanisms.

Flow-level core affinity is available using two methods:
Receive-Side Scaling (RSS) [12, 19] sends packets to
cores based by hashing the packet header 5-tuple to iden-
tify which RX queue to target. Flow Director (FDir) [41]
can more flexibly use different parts of the packet header
plus a user-supplied table to map header values to RX
queues. Efficient network stacks use affinity to reduce
inter-core contention for TCP control blocks [20, 41].

Flow affinity reduces only transport layer contention,
not application-level contention [20], because a single
transport flow can contain requests for any objects (Fig-
ure 3 (a)). Even for datagrams, the benefit of flow affinity
is small due to a lack of locality across datagrams [36].
Object-level core affinity distributes requests to cores
based upon the application’s partitioning. For example,
requests sharing the same key would all go to the core
handling that key’s partition (Figure 3 (b)).

1Because we target small key-value requests, we will use requests
and packets interchangeably.

432 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Systems using exclusive access require object-level
core affinity, but commodity NIC hardware cannot di-
rectly parse and understand application-level semantics.
Software request redirection (e.g., message passing [33])
incurs inter-core communication, which the exclusive ac-
cess model is designed to avoid.
MICA’s request direction uses Flow Director [23, 31].
Its clients then encode object-level affinity information
in a way Flow Director can understand. Servers, in turn,
inform clients about the object-to-partition mapping. Sec-
tion 4.2 describes how this mechanism works.

3.3 Key-Value Data Structures
This section describes MICA’s choice for two main data
structures: allocators that manage memory space for stor-
ing key-value items and indexes to find items quickly.

3.3.1 Memory Allocator

(a) Dynamic object allocator (b) Append-only log structure

New item New item

free

free

Figure 4: Memory allocators.

A dynamic object allocator is a common choice for stor-
ing variable-length key-value items (Figure 4 (a)). Sys-
tems such as Memcached typically use a slab approach:
they divide object sizes into classes (e.g., 48-byte, 56-byte,
..., 1-MiB2) and maintain separate (“segregated”) memory
pools for these classes [15, 36]. Because the amount of
space that each class uses typically varies over time, the
systems use a global memory manager that allocates large
memory blocks (e.g., 1 MiB) to the pools and dynamically
rebalances allocations between classes.

The major challenge for dynamic allocation is the mem-
ory fragmentation caused when blocks are not fully filled.
There may be no free blocks or free objects for some size
classes while blocks from other classes are partly empty
after deletions. Defragmentation packs objects of each ob-
ject tightly to make free blocks, which involves expensive
memory copy. This process is even more complex if the
memory manager performs rebalancing concurrently with
threads accessing the memory for other reads and writes.
Append-only log structures are write-friendly, placing
new data items at the end of a linear data structure called
a “log” (Figure 4 (b)). To update an item, it simply in-
serts a new item to the log that overrides the previous
value. Inserts and updates thus access memory sequen-
tially, incurring fewer cache and TLB misses, making logs

2Binary prefixes (powers of 2) end with an “i” suffix, whereas SI
prefixes (powers of 10) have no “i” suffix.

particularly suited for bulk data writes. This approach is
common in flash memory stores due to the high cost of
random flash writes [3, 4, 28], but has been used in only
a few in-memory key-value systems [37].

Garbage collection is crucial to space efficiency. It re-
claims space occupied by overwritten and deleted objects
by moving live objects to a new log and removing the old
log. Unfortunately, garbage collection is costly and often
reduces performance because of the large amount of data
it must copy, trading memory efficiency against request
processing speed.

MICA’s memory allocator: MICA uses separate mem-
ory allocators for cache and store semantics. Its cache
mode uses a log structure with inexpensive garbage collec-
tion and in-place update support (Section 4.3.1). MICA’s
allocator provides fast inserts and updates, and exploits
cache semantics to eliminate log garbage collection and
drastically simplify free space defragmentation. Its store
mode uses segregated fits [42, 47] that share the unified
memory space to avoid rebalancing size classes (Sec-
tion 4.3.3).

3.3.2 Indexing: Read-oriented vs. Write-friendly

Read-oriented index: Common choices for indexing are
hash tables [15, 33, 36] or tree-like structures [30]. How-
ever, conventional data structures are much slower for
writes compared to reads; hash tables examine many slots
to find a space for the new item [15], and trees may require
multiple operations to maintain structural invariants [30].

Write-friendly index: Hash tables using chaining [33,
36] can insert new items without accessing many memory
locations, but they suffer a time-space tradeoff: by hav-
ing long chains (few hash buckets), an item lookup must
follow a long chain of items, this requiring multiple ran-
dom dependent memory accesses; when chains are short
(many hash buckets), memory overhead to store chain-
ing pointers increases. Lossy data structures are rather
unusual in in-memory key-value storage and studied only
in limited contexts [7], but it is the standard design in
hardware indexes such as CPU caches [21].

MICA’s index: MICA uses new index data structures
to offer both high-speed read and write. In cache mode,
MICA’s lossy index also leverages the cache semantics
to achieve high insertion speed; it evicts an old item in
the hash table when a hash collision occurs instead of
spending system resources to resolve the collision. By
using the memory allocator’s eviction support, the MICA
lossy index can avoid evicting recently-used items (Sec-
tion 4.3.2). The MICA lossless index uses bulk chaining,
which allocates cache line-aligned space to a bucket for
each chain segment. This keeps the chain length short and
space efficiency high (Section 4.3.3).

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 433

4 MICA Design
This section describes each component in MICA and
discusses how they operate together to achieve its goals.

4.1 Parallel Data Access
This section explains how CPU cores access data in
MICA, but assumes that cores process only the requests
for which they are responsible. Later in Section 4.2, we
discuss how MICA assigns remote requests to CPU cores.

4.1.1 Keyhash-Based Partitioning

MICA creates one or more partitions per CPU core and
stores key-value items in a partition determined by their
key. Such horizontal partitioning is often used to shard
across nodes [4, 11], but some key-value storage systems
also use it across cores within a node [6, 25, 33].

MICA uses a keyhash to determine each item’s partition.
A keyhash is the 64-bit hash of an item’s key calculated
by the client and used throughout key-value processing
in MICA. MICA uses the first few high order bits of the
keyhash to obtain the partition index for the item.

Keyhash partitioning uniformly maps keys to partitions,
reducing the request distribution imbalance. For example,
in a Zipf-distributed population of size 192× 220 (192
Mi) with skewness 0.99 as used by YCSB [9],3 the most
popular key is 9.3×106 times more frequently accessed
than the average; after partitioning keys into 16 partitions,
however, the most popular partition is only 53% more
frequently requested than the average.

MICA retains high throughput under this remaining
partition-level skew because it can process requests in
“hot” partitions more efficiently, for two reasons. First, a
partition is popular because it contains “hot” items; these
hot items naturally create locality in data access. With
high locality, MICA experiences fewer CPU cache misses
when accessing items. Second, the skew causes packet
I/O to be more efficient for popular partitions (described
in Section 4.2.1). As a result, throughput for the Zipf-
distributed workload is 86% of the uniformly-distributed
workload, making MICA’s partitioned design practical
even under skewed workloads.

4.1.2 Operation Modes

MICA can operate in EREW (Exclusive Read Exclusive
Write) or CREW (Concurrent Read Exclusive Write).
EREW assigns a single CPU core to each partition for all
operations. No concurrent access to partitions eliminates
synchronization and inter-core communication, making
MICA scale linearly with CPU cores. CREW allows any
core to read partitions, but only a single core can write.
This combines the benefit of concurrent read and exclu-
sive write; the former allows all cores to process read re-

3i-th key constitutes 1/(i0.99Hn,0.99) of total requests, where
Hn,0.99 = ∑n

i=1 (1/i0.99) and n is the total number of keys.

quests, while the latter still reduces expensive cache line
transfer. CREW handles reads efficiently under highly
skewed load, at the cost of managing read-write conflicts.
MICA minimizes the synchronization cost with efficient
optimistic locking [48] (Section 4.3.2).

Supporting cache semantics in CREW, however, raises
a challenge for read (GET) requests: During a GET, the
cache may need to update cache management informa-
tion. For example, policies such as LRU use bookkeeping
to remember recently used items, which can cause con-
flicts and cache-line bouncing among cores. This, in turn,
defeats the purpose of using exclusive writes.

To address this problem, we choose an approximate ap-
proach: MICA counts reads only from the exclusive-write
core. Clients round-robin CREW reads across all cores
in a NUMA domain, so this is effectively a sampling-
based approximation to, e.g., LRU replacement as used
in MICA’s item eviction support (Section 4.3.1).

To show performance benefits of EREW and CREW,
our MICA prototype also provides the CRCW (Concur-
rent Read Concurrent Write) mode, in which MICA al-
lows multiple cores to read and write any partition. This
effectively models concurrent access to the shared data in
non-partitioned key-value systems.

4.2 Network Stack
The network stack in MICA provides network I/O to trans-
fer packet data between NICs and the server software, and
request direction to route requests to an appropriate CPU
core to make subsequent key-value processing efficient.

Exploiting the small key-value items that MICA tar-
gets, request and response packets use UDP. Despite
clients not benefiting from TCP’s packet loss recovery
and flow/congestion control, UDP has been used widely
for read requests (e.g., GET) in large-scale deployments
of in-memory key-value storage systems [36] for low la-
tency and low overhead. Our protocol includes sequence
numbers in packets, and our application relies on the
idempotency of GET and PUT operations for simple and
stateless application-driven loss recovery, if needed: some
queries may not be useful past a deadline, and in many
cases, the network is provisioned well, making retrans-
mission rare and congestion control less crucial [36].

4.2.1 Direct NIC Access

MICA uses Intel’s DPDK [22] instead of standard socket
I/O. This allows our user-level server software to control
NICs and transfer packet data with minimal overhead.
MICA differs from general network processing [12, 19,
41] that has used direct NIC access in that MICA is an
application that processes high-level key-value requests.

In NUMA (non-uniform memory access) systems with
multiple CPUs, NICs may have different affinities to
CPUs. For example, our evaluation hardware has two

434 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPUs, each connected to two NICs via a direct PCIe bus.
MICA uses NUMA-aware memory allocation so that each
CPU and NIC only accesses packet buffers stored in their
respective NUMA domains.

MICA uses NIC multi-queue support to allocate a ded-
icated RX and TX queue to each core. Cores exclusively
access their own queues without synchronization in a sim-
ilar way to EREW data access. By directing a packet to
an RX queue, the packet can be processed by a specific
core, as we discuss in Section 4.2.2.
Burst packet I/O: MICA uses the DPDK’s burst packet
I/O to transfer multiple packets (up to 32 in our imple-
mentation) each time it requests packets from RX queues
or transmits them to TX queues. Burst I/O reduces the per-
packet cost of accessing and modifying the queue, while
adding only trivial delay to request processing because
the burst size is small compared to the packet processing
rate.

Importantly, burst I/O helps handle skewed workloads.
A core processing popular partitions spends more time
processing requests, and therefore performs packet I/O
less frequently. The lower I/O frequency increases the
burst size, reducing the per-packet I/O cost (Section 5.2).
Therefore, popular partitions have more CPU available for
key-value processing. An unpopular partition’s core has
higher per-packet I/O cost, but handles fewer requests.
Zero-copy processing: MICA avoids packet data copy
throughout RX/TX and request processing. MICA uses
MTU-sized packet buffers for RX even if incoming re-
quests are small. Upon receiving a request, MICA avoids
memory allocation and copying by reusing the request
packet to construct a response: it flips the source and des-
tination addresses and ports in the header and updates
only the part of the packet payload that differs between
the request and response.

4.2.2 Client-Assisted Hardware Request Direction

Modern NICs help scale packet processing by directing
packets to different RX queues using hardware features
such as Receiver-Side Scaling (RSS) and Flow Director
(FDir) [12, 19, 41] based on the packet header.

Because each MICA key-value request is an individual
packet, we wish to use hardware packet direction to di-
rectly send packets to the appropriate queue based upon
the key. Doing so is much more efficient than redirecting
packets in software. Unfortunately, the NIC alone cannot
provide key-based request direction: RSS and FDir cannot
classify based on the packet payload, and cannot examine
variable length fields such as request keys.
Client assistance: We instead take advantage of the op-
portunity to co-design the client and server. The client
caches information from a server directory about the
operation mode (EREW or CREW), number of cores,
NUMA domains, and NICs, and number of partitions.

Circular log

Key/value lengthInitial size Keyhash
Key

Value

Expire time

Head (old items are evicted) Tail (new items are inserted)

Log entry

Figure 5: Design of a circular log.

The client then embeds the request direction information
in the packet header: If the request uses exclusive data
access (read/write on EREW and write on CREW), the
client calculates the partition index from the keyhash of
the request. If the request can be handled by any core (a
CREW read), it picks a server core index in a round-robin
way (across requests, but in the same NUMA domain
(Section 4.2.1)). Finally, the client encodes the partition
or core index as the UDP destination port.4 The server
programs FDir to use the UDP destination port, without
hashing, (“perfect match filter” [23]), as an index into
a table mapping UDP port numbers to a destination RX
queue. Key hashing only slightly burdens clients. Using
fast string hash functions such as CityHash [8], a sin-
gle client machine equipped with dual 6-core CPUs on
our testbed can generate over 40 M requests/second with
client-side key hashing. Clients include the keyhash in
requests, and servers reuse the embedded keyhash when
they need a keyhash during the request processing to ben-
efit from offloaded hash computation.

Client-assisted request direction using NIC hardware
allows efficient request processing. Our results in Sec-
tion 5.5 show that an optimized software-based request
direction that receives packets from any core and dis-
tributes them to appropriate cores is significantly slower
than MICA’s hardware-based approach.

4.3 Data Structure
MICA, in cache mode, uses circular logs to manage mem-
ory for key-value items and lossy concurrent hash indexes
to index the stored items. Both data structures exploit
cache semantics to provide fast writes and simple memory
management. Each MICA partition consists of a single
circular log and lossy concurrent hash index.

MICA provides a store mode with straightforward ex-
tensions using segregated fits to allocate memory for key-
value items and bulk chaining to convert the lossy concur-
rent hash indexes into lossless ones.

4.3.1 Circular Log

MICA stores items in its circular log by appending them
to the tail of the log (Figure 5). This results in a space-
efficient packing. It updates items in-place as long as the

4To avoid confusion between partition indices and the core indices,
we use different ranges of UDP ports; a partition may be mapped to a
core whose index differs from the partition index.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 435

new size of the key+value does not exceed the size of the
item when it was first inserted. The size of the circular
log is bounded and does not change, so to add a new item
to a full log, MICA evicts the oldest item(s) at the head
of the log to make space.

Each entry includes the key and value length, key, and
value. To locate the next item in the log and support item
resizing, the entry contains the initial item size, and for
fast lookup, it stores the keyhash of the item. The entry
has an expire time set by the client to ignore stale data.
Garbage collection and defragmentation: The circular
log eliminates the expensive garbage collection and free
space defragmentation that are required in conventional
log structures and dynamic memory allocators. Previously
deleted items in the log are automatically collected and
removed when new items enter the log. Almost all free
space remains contiguously between the tail and head.
Exploiting the eviction of live items: Items evicted at
the head are not reinserted to the log even if they have
not yet expired. In other words, the log may delete items
without clients knowing it. This behavior is valid in cache
workloads; a key-value store must evict items when it
becomes full. For example, Memcached [32] uses LRU
to remove items and reserve space for new items.

MICA uses this item eviction to implement common
eviction schemes at low cost. Its “natural” eviction is
FIFO. MICA can provide LRU by reinserting any re-
quested items at the tail because only the least recently
used items are evicted at the head. MICA can approxi-
mate LRU by reinserting requested items selectively—by
ignoring items recently (re)inserted and close to the tail;
this approximation offers eviction similar to LRU with-
out frequent reinserts, because recently accessed items
remain close to the tail and far from the head.

A second challenge for conventional logs is that any
reference to an evicted item becomes dangling. MICA
does not store back pointers in the log entry to discover all
references to the entry; instead, it provides detection, and
removes dangling pointers incrementally (Section 4.3.2).
Low-level memory management: MICA uses
hugepages and NUMA-aware allocation. Hugepages
(2 MiB in x86-64) use fewer TLB entries for the same
amount of memory, which significantly reduces TLB
misses during request processing. Like the network stack,
MICA allocates memory for circular logs such that cores
access only local memory.

Without explicit range checking, accessing an entry
near the end of the log (e.g., at 234 − 8 in the example
below) could cause an invalid read or segmentation fault
by reading off the end of the range. To avoid such errors
without range checking, MICA manually maps the virtual
memory addresses right after the end of the log to the
same physical page as the first page of the log, making
the entire log appear locally contiguous:

Version

Bucket 1

Bucket 2
...

Bucket 0

Lossy concurrent
hash index Index entries

Item offsetTag

...

Figure 6: Design of a lossy concurrent hash index.

Physical address space

Virtual address space

first page mapped twice

2340

Our MICA prototype implements this scheme in
userspace by mapping a pool of hugepages to virtual
addresses using the mmap() system call.

4.3.2 Lossy Concurrent Hash Index

MICA’s hash index locates key-value items in the log
using a set-associative cache similar to that used in CPU
caches. As shown in Figure 6, a hash index consists of
multiple buckets (configurable for the workload), and
each bucket has a fixed number of index entries (config-
urable in the source code; 15 in our prototype to occupy
exactly two cache lines). MICA uses a portion of the key-
hashes to determine an item’s bucket; the item can occupy
any index entry of the bucket unless there is a duplicate.

Each index entry contains partial information for the
item: a tag and the item offset within the log. A tag is
another portion of the indexed item’s keyhash used for
filtering lookup keys that do not match: it can tell whether
the indexed item will never match against the lookup key
by comparing the stored tag and the tag from the lookup
keyhash. We avoid using a zero tag value by making it
one because we use the zero value to indicate an empty
index entry. Items are deleted by writing zero values to
the index entry; the entry in the log will be automatically
garbage collected.

Note that the parts of keyhashes used for the partition
index, the bucket number, and the tag do not overlap. Our
prototype uses 64-bit keyhashes to provide sufficient bits.
Lossiness: The hash index is lossy. When indexing a new
key-value item into a full bucket of the hash index, the
index evicts an index entry to accommodate the new item.
The item evicted is determined by its age; if the item
offset is most behind the tail of the log, the item is the
oldest (or least recently used if the log is using LRU), and
the associated index entry of the item is reclaimed.

This lossy property allows fast insertion. It avoids ex-
pensive resolution of hash collisions that lossless indexes
of other key-value stores require [15, 33]. As a result,

436 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Circular log

Item offset

Offset space

Item offset

dangling pointer valid pointer 2480

Figure 7: Offset space for dangling pointer detection.

MICA’s insert speed is comparable to lookup speed.
Handling dangling pointers: When an item is evicted
from the log, MICA does not delete its index entry. Al-
though it is possible to store back pointers in the log entry,
updating the hash index requires a random memory write
and is complicated due to locking if the index is being
accessed concurrently, so MICA does not. As a result,
index pointers can “dangle,” pointing to invalid entries.

To address this problem, MICA uses large pointers
for head/tail and item offsets. As depicted in Figure 7,
MICA’s index stores log offsets that are wider than needed
to address the full size of the log (e.g., 48-bit offsets vs 34
bits for a 16 GiB log). MICA detects a dangling pointer
before using it by checking if the difference between the
log tail and the item offset is larger than the actual log
size.5 If the tail wraps around the 48-bit size, however, a
dangling pointer may appear valid again, so MICA scans
the index incrementally to remove stale pointers.

This scanning must merely complete a full cycle before
the tail wraps around in its wide offset space. The speed
at which it wraps is determined by the increment rate of
the tail and the width of the item offset. In practice, full
scanning is infrequent even if writes occur very frequently.
For example, with 48-bit offsets and writes occurring at
230 bytes/second (millions of operations/second), the tail
wraps every 248−30 seconds. If the index has 224 buckets,
MICA must scan only 26 buckets per second, which adds
negligible overhead.
Supporting concurrent access: MICA’s hash index
must behave correctly if the system permits concurrent
operations (e.g., CREW). For this, each bucket contains
a 32-bit version number. It performs reads optimistically
using this version counter to avoid generating memory
writes while satisfying GET requests [15, 30, 48]. When
accessing an item, MICA checks if the initial state of the
version number of the bucket is even-numbered, and upon
completion of data fetch from the index and log, it reads
the version number again to check if the final version
number is equal to the initial version number. If either
check fails, it repeats the read request processing from
the beginning. For writes, MICA increments the version
number by one before beginning, and increments the ver-
sion number by one again after finishing all writes. In

5(Tail− ItemOffset+248) mod 248 > LogSize.

Free space that can fit

Free space that can fit

Free space that can fit

Figure 8: Segregated free lists for a unified space.

CRCW mode, which allows multiple writers to access the
same bucket, a writer also spins until the initial version
number is even (i.e., no other writers to this bucket) using
a compare-swap operation instruction.

Our MICA prototype uses different code to optimize
locking. It uses conventional instructions to manipulate
version numbers to exploit memory access ordering on the
x86 architecture [48] in CREW mode where there is only
one writer. EREW mode does not require synchroniza-
tion between cores, so MICA ignores version numbers.
Because of such a hard-coded optimization, the current
prototype lacks support for runtime switching between
the operation modes.
Multi-stage prefetching: To retrieve or update an item,
MICA must perform request parsing, hash index lookup,
and log entry retrieval. These stages cause random mem-
ory access that can significantly lower system perfor-
mance if cores stall due to CPU cache and TLB misses.

MICA uses multi-stage prefetching to interleave com-
putation and memory access. MICA applies memory
prefetching for random memory access done at each pro-
cessing stage in sequence. For example, when a burst
of 8 RX packets arrives, MICA fetches packets 0 and 1
and prefetches packets 2 and 3. It decodes the requests in
packets 0 and 1, and prefetches buckets of the hash index
that these requests will access. MICA continues packet
payload prefetching for packets 4 and 5. It then prefetches
log entries that may be accessed by the requests of pack-
ets 0 and 1 while prefetching the hash index buckets for
packets 2 and 3, and the payload of packet 6 and 7. MICA
continues this pipeline until all requests are processed.

4.3.3 Store Mode

The store mode of MICA uses segregated fits [42, 47]
similar to fast malloc implementations [27], instead of the
circular log. Figure 8 depicts this approach. MICA defines
multiple size classes incrementing by 8 bytes covering
all supported item sizes, and maintains a freelist for each
size class (a linked list of pointers referencing unoccupied
memory regions that are at least as large as the size class).
When a new item is inserted, MICA chooses the smallest
size class that is at least as large as the item size and has
any free space. It stores the item in the free space, and
inserts any unused region of the free space into a freelist
that matches that region’s size. When an item is deleted,
MICA coalesces any adjacent free regions using boundary

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 437

Version

Main bucket 1

Main bucket 2
...

Main bucket 0

Lossless concurrent
hash index Index entries

...

Spare bucket j

Spare bucket k
...

Spare bucket i Version ...

Figure 9: Bulk chaining in MICA’s lossless hash index.

tags [26] to recreate a large free region.

MICA’s segregated fits differ from the simple segre-
gated storage used in Memcached [15, 32]. MICA main-
tains a unified space for all size classes; on the contrary,
Memcached’s SLAB allocator dynamically assigns mem-
ory blocks to size classes, which effectively partitions the
memory space according to size classes. The unified space
of MICA eliminates the need to rebalance size classes un-
like the simple segregated storage. Using segregated fits
also makes better use of memory because MICA already
has partitioning done with keyhashes; a SLAB alloca-
tor introducing another partitioning would likely waste
memory by allocating a whole block for only a few items,
resulting in low memory occupancy.

MICA converts its lossy concurrent hash index into a
lossless hash index by using bulk chaining. Bulk chaining
is similar to the traditional chaining method in hash tables;
it adds more memory space to the buckets that contain an
excessive number of items.

Figure 9 shows the design of the lossless hash index.
MICA uses the lossy concurrent hash index as the main
buckets and allocates space for separate spare buckets
that are fewer than the main buckets. When a bucket
experiences an overflow, whether it is a main bucket or
spare bucket, MICA adds an unused spare bucket to the
full bucket to form a bucket chain. If there are no more
spare buckets available, MICA rejects the new item and
returns an out-of-space error to the client.

This data structure is friendly to memory access. The
main buckets store most of items (about 95%), keeping
the number of random memory read for an index lookup
close to 1; as a comparison, cuckoo hashing [39] used
in improved Memcached systems [15] would require 1.5
random memory accesses per index lookup in expecta-
tion. MICA also allows good memory efficiency; because
the spare buckets only store overflow items, making the
number of spare buckets 10% of the main buckets allows
the system to store the entire dataset of 192 Mi items in
our experiments (Section 5).

5 Evaluation
We answer four questions about MICA in this section:

• Does it perform well under diverse workloads?
• Does it provide good latency?
• How does it scale with more cores and NIC ports?
• How does each component affect performance?
Our results show that MICA has consistently high

throughput and low latency under a variety of workloads.
It scales nearly linearly, using CPU cores and NIC ports
efficiently. Each component of MICA is needed. MICA
achieves 65.6–76.9 million operations/second (Mops),
which is over 4–13.5x faster than the next fastest system;
the gap widens as the fraction of write requests increases.

MICA is written in 12 K lines of C and runs on x86-64
GNU/Linux. Packet I/O uses the Intel DPDK 1.4.1 [22].
Compared systems: We use custom versions of open-
source Memcached [32], MemC3 [15], Masstree [30],
and RAMCloud [37]. The revisions of the original code
we used are: Memcached: 87e2f36; MemC3: an internal
version; Masstree: 4ffb946; RAMCloud: a0f6889.

Note that the compared systems often offer additional
capabilities compared to others. For example, Masstree
can handle range queries, and RAMCloud offers low la-
tency processing on InfiniBand; on the other hand, these
key-value stores do not support automatic item eviction
as Memcached systems do. Our evaluation focuses on
the performance of the standard features (e.g., single key
queries) common to all the compared systems, rather than
highlighting the potential performance impact from these
semantic differences.
Modifications to compared systems: We modify the
compared systems to use our lightweight network stack to
avoid using expensive socket I/O or special hardware (e.g.,
InfiniBand). When measuring Memcached’s baseline la-
tency, we use its original network stack using the kernel to
obtain the latency distribution that typical Memcached de-
ployments would experience. Our experiments do not use
any client-side request batching. We also modified these
systems to invoke memory allocation functions though
our framework if they use hugepages, because the DPDK
requests all hugepages from the OS at initialization and
would make the unmodified systems inoperable if they
request hugepages from the OS; we kept other memory
allocations using no hugepages as-is. Finally, while run-
ning experiments, we found that statistics collection in
RAMCloud caused lock contention, so we disabled it for
better multi-core performance.

5.1 Evaluation Setup
Server/client configuration: MICA server runs on a ma-
chine equipped with dual 8-core CPUs (Intel Xeon E5-
2680 @2.70 GHz), 64 GiB of total system memory, and
eight 10-Gb Ethernet ports (four Intel X520-T2’s). Each

438 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU has 20 MiB of L3 cache. We disabled logical pro-
cessor support (“Hyper-Threading”). Each CPU accesses
the 32 GiB of the system memory that resides in its local
NUMA domain over a quad-channel DDR3-1600 bus.
Each CPU socket is directly connected to two NICs using
PCIe gen2. Access to hardware resources in the remote
NUMA domain uses an interconnect between two CPUs
(Intel QuickPath).

We reserved the half of the memory (16 GiB in each
NUMA domain) for hugepages regardless of how MICA
and the compared systems use hugepages.

MICA allocates 16 partitions in the server, and these
partitions are assigned to different cores. We configured
the cache version of MICA to use approximate LRU to
evict items; MICA reinserts any recently accessed item at
the tail if the item is closer to the head than to the tail of
the circular log.

Two client machines with dual 6-core CPUs (Intel Xeon
L5640 @2.27 GHz) and two Intel X520-T2’s generate
workloads. The server and clients are directly connected
without a switch. Each client is connected to the NICs
from both NUMA domains of the server, allowing a client
to send a request to any server CPU.
Workloads: We explore different aspects of the systems
by varying the item size, skew, and read-write ratio.

We use three datasets as shown in the following table:

Dataset Key Size (B) Value Size (B) Count

Tiny 8 8 192 Mi
Small 16 64 128 Mi
Large 128 1024 8 Mi

We use two workload types: uniform and skewed. Uni-
form workloads use the same key popularity for all re-
quests; skewed workloads use a non-uniform key popu-
larity that follows a Zipf distribution of skewness 0.99,
which is the same as YCSB’s [9].

Workloads have a varied ratio between GET and PUT.
50% GET (50% PUT) workloads are write-intensive, and
95% GET (5% PUT) workloads are read-intensive. They
correspond to YCSB’s A and B workloads, respectively.
Workload generation: We use our custom key-value
request generator that uses similar techniques to our
lightweight network stack to send more than 40 Mops
of key-value requests per machine to saturate the link.6 It
uses approximation techniques of Zipf distribution gener-
ation [17, 38] for fast skewed workload generation.

To find the maximum meaningful throughput of a sys-
tem, we adjust the workload generation rate to allow only
marginal packet losses (< 1% at any NIC port). We could
generate requests at the highest rate to cause best-effort

6MICA clients are still allowed to use standard socket I/O in cases
where the socket overhead on the client machines is acceptable because
the MICA server and clients use the plain UDP protocol.

request processing (which can boost measured through-
put more than 10%), as is commonly done in throughput
measurement of software routers [12, 19], but we avoid
this method because we expect that real deployments of
in-memory key-value stores would not tolerate excessive
packet losses, and such flooding can distort the intended
skew in the workload by causing biased packet losses at
different cores.

The workload generator does not receive every re-
sponse from the server. On our client machines, receiving
packets whose size is not a multiple of 64 bytes is sub-
stantially slower due to an issue in the PCIe bus [18].

The workload generator works around this slow RX
by sampling responses to perform fewer packet RX from
NIC to CPU. It uses its real source MAC addresses for
only a fraction of requests, causing its NIC to drop the
responses to the other requests. By looking at the sampled
responses, the workload generator can validate that the
server has correctly processed the requests. Our server is
unaffected from this issue and performs full packet RX.

5.2 System Throughput
We first compare the full-system throughput. MICA uses
EREW with all 16 cores. However, we use a different
number of cores for the other systems to obtain their best
throughput because some of them (Memcached, MemC3,
and RAMCloud) achieve higher throughput with fewer
cores (Section 5.4). The throughput numbers are calcu-
lated from the actual number of responses sent to the
clients after processing the requests at the server. We de-
note the cache version of MICA by MICA-c and the store
version of MICA by MICA-s.

Figure 10 (top) plots the experiment result using tiny
key-value items. MICA performs best, regardless of the
skew or the GET ratio. MICA’s throughput reaches 75.5–
76.9 Mops for uniform workloads and 65.6–70.5 Mops
for skewed ones; its parallel data access does not incur
more than a 14% penalty for skewed workloads. MICA
uses 54.9–66.4 Gbps of network bandwidth at this pro-
cessing speed—this speed is very close to 66.6 Gbps that
our network stack can handle when doing packet I/O only.
The next best system is Masstree at 16.5 Mops, while
others are below 6.1 Mops. All systems except MICA
suffer noticeably under write-intensive 50% GET.

Small key-value items show similar results in Figure 10
(middle). However, the gap between MICA and the other
systems shrinks because MICA becomes network bottle-
necked while the other systems never saturate the network
bandwidth in our experiments.

Large key-value items, shown in Figure 10 (bottom),
exacerbates the network bandwidth bottleneck, further
limiting MICA’s throughput. MICA achieves 12.6–14.6
Mops for 50% GET and 8.6–9.4 Mops for 95% GET; note
that MICA shows high throughput with lower GET ratios,

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 439

Memcached MemC3 RAMCloud Masstree MICA-c MICA-s
0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
(M

op
s)

Tiny key-value items

Uniform, 50% GET
Uniform, 95% GET
Skewed, 50% GET
Skewed, 95% GET

0.7 0.9 0.9

5.7

76.9 76.9

1.3

5.4 6.1

12.2

76.3 75.5

0.7 0.9 1.0

6.5

70.4 70.5

1.3

5.7 5.8

16.5

65.6 65.6

Memcached MemC3 RAMCloud Masstree MICA-c MICA-s
0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
(M

op
s)

Small key-value items

Uniform, 50% GET
Uniform, 95% GET
Skewed, 50% GET
Skewed, 95% GET

0.7 0.9 0.5

5.7

64.1 64.1

1.3

5.3
3.1

10.8

64.4

59.9

0.7 0.9 0.5

6.5

59.7 59.7

1.3

5.6 5.7

17.7

55.6 55.6

Memcached MemC3 RAMCloud Masstree MICA-c MICA-s
0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
(M

op
s)

Large key-value items

Uniform, 50% GET
Uniform, 95% GET
Skewed, 50% GET
Skewed, 95% GET

0.7 0.8
0.3

3.1

12.6

13.2

1.2

5.2

2.3

4.9

9.4 9.4

0.7 0.9
0.4

3.5

14.6 14.6

1.4

5.5

2.9

8.0

8.6 8.6

Figure 10: End-to-end throughput of in-memory key-
value systems. All systems use our lightweight network
stack that does not require request batching. The bottom
graph (large key-value items) uses a different Y scale
from the first two graphs’.

which require less network bandwidth as the server can
omit the key and value from the responses. Unlike MICA,
however, all other systems achieve higher throughput un-
der 95% GET than under 50% GET because these systems
are bottleneck locally, not by the network bandwidth.

In those measurements, MICA’s cache and store modes
show only minor differences in the performance. We will
refer to the cache version of MICA as MICA in the rest
of the evaluation for simplicity.
Skew resistance: Figure 11 compares the per-core
throughput under uniform and skewed workloads of 50%
GET with tiny items. MICA uses EREW. Several cores
process more requests under the skewed workload than
under the uniform workload because they process requests
more efficiently. The skew in the workload increases the
RX burst size of the most loaded core from 10.2 packets
per I/O to 17.3 packets per I/O, reducing its per-packet I/O
cost, and the higher data locality caused by the workload
skew improves the average cache hit ratio of all cores from

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
(M

op
s)

Skewed
Uniform

Figure 11: Per-core breakdown of end-to-end throughput.

EREW CREW
0

50

100

150

200

Th
ro

ug
hp

ut
(M

op
s)

Uniform, 50% GET
Uniform, 95% GET

Skewed, 50% GET
Skewed, 95% GET

147.3
136.5

149.6
138.4

148.4 149.1151.7

174.8

Figure 12: Local throughput of key-value data structures.

67.8% to 77.8%. A local benchmark in Figure 12 (without
network processing) also shows that skewed workloads
grant good throughput for local key-value processing due
to the data locality. These results further justify the parti-
tioned design of MICA and explains why MICA retains
high throughput under skewed workloads.
Summary: MICA’s throughput reaches 76.9 Mops, at
least 4x faster than the next best system. MICA delivers
consistent performance across different skewness, write-
intensiveness, and key-value sizes.

5.3 Latency
To show that MICA achieves comparably low latency
while providing high throughput, we compare MICA’s
latency with that of the original Memcached implemen-
tation that uses the kernel network stack. To measure the
end-to-end latency, clients tag each request packet with
the current timestamp. When receiving responses, clients
compare the current timestamp and the previous times-
tamp echoed back in the responses. We use uniform 50%

0.0 0.1 0.2 0.3
0
10
20
30
40
50
60
70
80
90
100

A
ve

ra
ge

la
te

nc
y

(μ
s)

0 10 20 30 40 50 60 70 80

Throughput (Mops)

Original Memcached
MICA

Figure 13: End-to-end latency of the original Memcached
and MICA as a function of throughput.

440 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 8 16
Number of cores

10−1

100

101

102
Th

ro
ug

hp
ut

(M
op

s) 50% GET

MICA
Masstree

MemC3
Memcached

RAMCloud

2 4 8 16
Number of cores

10−1

100

101

102

Th
ro

ug
hp

ut
(M

op
s) 95% GET

Figure 14: End-to-end throughput of in-memory key-
value systems using a varying number of cores. All sys-
tems use our lightweight network stack.

GET workloads on tiny items. MICA uses EREW. The
client varies the request rate to observe the relationship
between throughput and latency.

Figure 13 plots the end-to-end latency as a function
of throughput; the error bars indicate 5th- and 95th-
percentile latency. The original Memcached exhibits al-
most flat latency up to certain throughput, whereas MICA
shows varied latency depending on the throughput it
serves. MICA’s latency lies between 24–52 μs. At the sim-
ilar latency level of 40 μs, MICA shows 69 Mops—more
than two orders of magnitude faster than Memcached.

Because MICA uses a single round-trip per request
unlike RDMA-based systems [35], we believe that MICA
provides best-in-class low-latency key-value operations.
Summary: MICA achieves both high throughput and
latency near the network minimum.

5.4 Scalability
CPU scalability: We vary now the number of CPU cores
and compare the end-to-end throughput. We allocate cores
evenly to both NUMA domains so that cores can effi-
ciently access NICs connected to their CPU socket. We
use skewed workloads on tiny items because it is gener-
ally more difficult for partitioned stores to handle skewed
workloads. MICA uses EREW.

Figure 14 (upper) compares core scalability of systems
with 50% GET. Only MICA and Masstree perform better
with more cores. Memcached, MemC3, and RAMCloud
scale poorly, achieving their best throughput at 2 cores.

The trend continues for 95% GET requests in Figure 14

2 4 8
Number of NIC ports

10−1

100

101

102

Th
ro

ug
hp

ut
(M

op
s)

50% GET

MICA
Masstree

MemC3
Memcached

RAMCloud

2 4 8
Number of NIC ports

10−1

100

101

102

Th
ro

ug
hp

ut
(M

op
s)

95% GET

Figure 15: End-to-end throughput of in-memory key-
value systems using a varying number of NIC ports. All
systems use our lightweight network stack.

(lower); MICA and Masstree scale well as before. The
rest also achieve higher throughput, but still do not scale.
Note that some systems scale differently from their origi-
nal papers. For example, MemC3 achieves 5.7 Mops at
4 cores, while the original paper shows 4.4 Mops at 16
cores [15]. This is because using our network stack in-
stead of their network stack reduces I/O cost, which may
expose a different bottleneck (e.g., key-value data struc-
tures) that can change the optimal number of cores for the
best throughput.
Network scalability: We also change the available net-
work bandwidth by varying the number of NIC ports we
use for request processing. Figure 15 shows that MICA
again scales well with high network bandwidth, because
MICA can use almost all available network bandwidth
for request processing. The GET ratio does not affect
the result for MICA significantly. This result suggests
that MICA can possibly scale further with higher net-
work bandwidth (e.g., multiple 40 Gbps NICs). MICA
and Masstree achieve similar performance under the 95%
GET workload when using 2 ports, but Masstree and other
systems do not scale well with more ports.
Summary: MICA scales well with more CPU cores
and more network bandwidth, even under write-intensive
workloads where other systems tend to scale worse.

5.5 Necessity of the Holistic Approach
In this section, we demonstrate how each component of
MICA contributes to its performance. Because MICA is
a coherent system that exploits the synergy between its

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 441

EREW CREW CRCW
0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
(M

op
s)

Uniform, 50% GET
Uniform, 95% GET

Skewed, 50% GET
Skewed, 95% GET

76.9 76.8

35.1

76.3 76.5 69.370.4

58.1

21.6

65.6
72.4 69.4

Figure 16: End-to-end performance using MICA’s
EREW, CREW, and CRCW.

Method Workload Throughput

Software-only
Uniform 33.9 Mops
Skewed 28.1 Mops

Client-assisted Uniform 76.9 Mops
hardware-based Skewed 70.4 Mops

Table 1: End-to-end throughput of different request direc-
tion methods.

components, we compare different approaches for one
component while keeping the other components the same.
Parallel data access: We use end-to-end experiments to
measure how different data access modes affect the sys-
tem performance. We use tiny items only. Figure 16 shows
the end-to-end results. EREW shows consistently good
performance. CREW achieves slightly higher through-
put with high GET ratios on skewed workloads com-
pared to EREW (white bars at 95% GET) because de-
spite the overheads from bucket version management,
CREW can use multiple cores to read popular items with-
out incurring excessive inter-core communication. While
CRCW performs better than any other compared systems
(Section 5.2), CRCW offers no benefit over EREW and
CREW; this suggests that we should avoid CRCW.
Network stack: As shown in Section 5.2, switching
Masstree to our network stack resulted in much higher
throughput (16.5 Mops without request batching) than
the throughput from the original paper (8.9 Mops with re-
quest batching [30]); this indicates that our network stack
provides efficient I/O for key-value processing.

The next question is how important it is to use hard-
ware to direct requests for exclusive access in MICA. To
compare with MICA’s client-assisted hardware request di-
rection, we implemented software-only request direction:
clients send requests to any server core in a round-robin
way, and the server cores direct the received requests to
the appropriate cores for EREW data access. We use Intel
DPDK’s queue to implement message queues between
cores. We use 50% GET on tiny items.

Table 1 shows that software request direction achieves
only 40.0–44.1% of MICA’s throughput. This is due to the
inter-core communication overhead of software request

Method Workload Throughput

Partitioned 50% GET 5.8 Mops
Masstree 95% GET 17.9 Mops

MICA 50% GET 70.4 Mops
95% GET 65.6 Mops

Table 2: End-to-end throughput comparison between par-
titioned Masstree and MICA using skewed workloads.

direction. Thus, MICA’s request direction is crucial for
realizing the benefit of exclusive access.
Key-value data structures: MICA’s circular logs, lossy
concurrent hash indexes, and bulk chaining permit high-
speed read and write operations with simple memory
management. Even CRCW, the slowest data access mode
of MICA, outperforms the second best system, Masstree
(Section 5.2).

We also demonstrate that partitioning existing data
structures does not simply grant MICA’s high perfor-
mance. For this, we compare MICA with “partitioned”
Masstree, which uses one Masstree instance per core, with
its support for concurrent access disabled in the source
code. This is similar to MICA’s EREW. We also use the
same partitioning and request direction scheme.

Table 2 shows the result with skewed workloads on tiny
items. Partitioned Masstree achieves only 8.2–27.3% of
MICA’s performance, with the throughput for 50% GET
even lower than non-partitioned Masstree (Section 5.2).
This indicates that to make best use of MICA’s parallel
data access and network stack, it is important to use key-
value data structures that perform high-speed writes and
to provide high efficiency with data partitioning.
In conclusion, the holistic approach is essential; any
missing component significantly degrades performance.

6 Related Work
Most DRAM stores are not partitioned: Memcached [32],
RAMCloud [37], MemC3 [15], Masstree [30], and
Silo [45] all have a single partition for each server node.
Masstree and Silo show that partitioning can be efficient
under some workloads but is slow under workloads with
a skewed key popularity and many cross-partition trans-
actions. MICA exploits burst I/O and locality so that even
in its exclusive EREW mode, loaded partitions run faster.
It can do so because the simple key-value requests that it
targets do not cross partitions.

Partitioned systems are fast with well-partitioned data.
Memcached on Tilera [6], CPHash [33], and Chronos [25]
are partitioned in-memory key-value systems that exclu-
sively access partitioned hash tables to minimize lock con-
tention and cache movement, similar to MICA’s EREW
partitions. These systems lack support for other parti-
tioning such as MICA’s CREW that can provide higher
throughput under read-intensive skewed workloads.

442 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

H-Store [44] and VoltDB [46] use single-threaded exe-
cution engines that access their own partition exclusively,
avoiding expensive concurrency control. Because work-
load skew can reduce system throughput, they require
careful data partitioning, even using machine learning
methods [40], and dynamic load balancing [25]. MICA
achieves similar throughput under both uniform and
skewed workloads without extensive partitioning and load
balancing effort because MICA’s keyhash-based partition-
ing mitigates the skew using and its request processing
for popular partitions exploits burst packet I/O and cache-
friendly memory access.

Several in-memory key-value systems focus on low
latency request processing. RAMCloud achieves 4.9–
15.3 μs end-to-end latency for small objects [1], and
Chronos exhibits average latency of 10 μs and a 99th-
percentile latency of 30 μs, on low latency networks such
as InfiniBand and Myrinet. Pilaf [35] serves read requests
using one-sided RDMA reads on a low-latency network.
Our MICA prototype currently runs on 10-Gb Ethernet
NIC whose base latency is much higher [16]; we plan to
evaluate MICA on a low-latency network such.

Prior work studies providing a high performance re-
liable transport service using low-level unreliable data-
gram services. The Memcached UDP protocol relies on
application-level packet loss recovery [36]. Low-overhead
user-level implementations for TCP such as mTCP [24]
can offer reliable communication to Memcached applica-
tions without incurring high performance penalties. Low-
latency networks such as InfiniBand often implement
hardware-level reliable datagrams [35].

Affinity-Accept [41] uses Flow Director on the com-
modity NIC hardware to load balance TCP connections
across multiple CPU cores. Chronos [25] directs remote
requests to server cores using client-supplied informa-
tion, similar to MICA; however, Chronos uses software-
based packet classification whose throughput for small
key-value requests is significantly lower than MICA’s
hardware-based classification.

Strict or complex item eviction schemes in key-
value stores can be so costly that it can reduce system
throughput significantly. MemC3 [15] replaces Mem-
cached [32]’s original LRU with a CLOCK-based ap-
proximation to avoid contention caused by LRU list man-
agement. MICA’s circular log and lossy concurrent hash
index use its lossy property to support common eviction
schemes at low cost; the lossy concurrent hash index is
easily extended to support lossless operations by using
bulk chaining.

A worthwhile area of future work is applying MICA’s
techniques to semantically richer systems, such as those
that are durable [37], or provide range queries [13, 30]
or multi-key transactions [45]. Our results show that ex-
isting systems such as Masstree can benefit considerably

simply by moving to a lightweight network stack; never-
theless, operations in these systems may cross partitions,
it remains to be seen how to best harness the speed of
exclusively accessed partitions.

7 Conclusion
MICA is an in-memory key-value store that provides high-
performance, scalable key-value storage. It provides con-
sistently high throughput and low latency for read/write-
intensive workloads with a uniform/skewed key popular-
ity. We demonstrate high-speed request processing with
MICA’s parallel data access to partitioned data, efficient
network stack that delivers remote requests to appropriate
CPU cores, and new lossy and lossless data structures
that exploit properties of key-value workloads to provide
high-speed write operations without complicating mem-
ory management.

Acknowledgments
This work was supported by funding from the National
Science Foundation under awards CCF-0964474 and
CNS-1040801, Intel via the Intel Science and Technol-
ogy Center for Cloud Computing (ISTC-CC), and Ba-
sic Science Research Program through the National Re-
search Foundation of Korea funded by MSIP (NRF-
2013R1A1A1076024). Hyeontaek Lim was supported
in part by the Facebook Fellowship. We would like to
thank Nick Feamster, John Ousterhout, Dong Zhou, Yan-
dong Mao, Wyatt Lloyd, and our NSDI reviewers for their
valuable feedback, and Prabal Dutta for shepherding this
paper.

References
[1] Ramcloud project wiki: clusterperf November 12, 2012,

2012. https://ramcloud.stanford.edu/wi
ki/display/ramcloud/clusterperf+Novemb
er+12%2C+2012.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and
A. J. Smola. Scalable inference in latent variable models.
In Proceedings of the fifth ACM international conference
on Web search and data mining, Feb. 2012.

[3] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and
S. Nath. Cheap and large CAMs for high performance
data-intensive networked systems. In Proc. 7th USENIX
NSDI, Apr. 2010.

[4] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A fast ar-
ray of wimpy nodes. In Proc. 22nd ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2009.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In Proceedings of the SIGMETRICS’12, June 2012.

[6] M. Berezecki, E. Frachtenberg, M. Paleczny,
and K. Steele. Many-core key-value store.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 443

http://gigaom2.files.wordpress.com/20
11/07/facebook-tilera-whitepaper.pdf,
2011.

[7] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István.
Achieving 10Gbps line-rate key-value stores with FPGAs.
In Proceedings of the 5th USENIX Workshop on Hot Topics
in Cloud Computing, June 2013.

[8] CityHash. http://code.google.com/p/cityha
sh/, 2014.

[9] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with
YCSB. In Proc. 1st ACM Symposium on Cloud Computing
(SOCC), June 2010.

[10] J. Dean and L. A. Barroso. The tail at scale. Communica-
tions of the ACM, 56(2):74–80, Feb. 2013.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. 21st ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2007.

[12] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting parallelism to scale software
routers. In Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2009.

[13] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A dis-
tributed, searchable key-value store. In Proc. ACM SIG-
COMM, Aug. 2012.

[14] Facebook’s memcached multiget hole: More machines
!= more capacity. http://highscalability.co
m/blog/2009/10/26/facebooks-memcached-
multiget-hole-more-machines-more-cap
acit.html, 2009.

[15] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber caching
and smarter hashing. In Proc. 10th USENIX NSDI, Apr.
2013.

[16] M. Flajslik and M. Rosenblum. Network interface design
for low latency request-response protocols. In Proceedings
of the 2013 USENIX Conference on Annual Technical
Conference, June 2013.

[17] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. In Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, May
1994.

[18] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan, and P. Steenkiste. XIA: Efficient support
for evolvable internetworking. In Proc. 9th USENIX NSDI,
Apr. 2012.

[19] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
a GPU-accelerated software router. In Proc. ACM SIG-
COMM, Aug. 2010.

[20] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: a new programming interface for scalable net-

work I/O. In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation, Oct.
2012.

[21] M. D. Hill and A. J. Smith. Evaluating associativity in
CPU caches. IEEE Transactions on Computers, 38(12):
1612–1630, Dec. 1989.

[22] Intel. Intel Data Plane Development Kit (Intel DPDK).
http://www.intel.com/go/dpdk, 2014.

[23] Intel 82599 10 Gigabit Ethernet Controller: Datasheet.
http://www.intel.com/content/www/us/e
n/ethernet-controllers/82599-10-gbe-
controller-datasheet.html, 2014.

[24] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mTCP: a highly scalable user-level TCP stack
for multicore systems. In Proc. 11th USENIX NSDI, Apr.
2014.

[25] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable low latency for data
center applications. In Proceedings of the Third ACM
Symposium on Cloud Computing, Oct. 2012.

[26] D. E. Knuth. The Art of Computer Programming, Volume
1: Fundamental Algorithms. Addison Wesley Longman
Publishing Co., Inc., 1997. First edition published in 1968.

[27] D. Lea. A memory allocator. http://g.oswego.e
du/dl/html/malloc.html, 2000.

[28] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT:
A memory-efficient, high-performance key-value store.
In Proc. 23rd ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2011.

[29] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and
T. F. Wenisch. Thin servers with Smart Pipes: Design-
ing SoC accelerators for Memcached. In Proceedings of
the 40th Annual International Symposium on Computer
Architecture, June 2013.

[30] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proc. 7th ACM
European Conference on Computer Systems (EuroSys),
Apr. 2012.

[31] Mellanox ConnectX-3 product brief. http:
//www.mellanox.com/related-docs/prod
_adapter_cards/ConnectX3_EN_Card.pdf,
2013.

[32] A distributed memory object caching system. http://
memcached.org/, 2014.

[33] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHash:
a cache-partitioned hash table. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Feb. 2012.

[34] M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In Proceedings of the
fourteenth annual ACM symposium on Parallel algorithms
and architectures, July 2002.

[35] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA
reads to build a fast, CPU-efficient key-value store. In
Proceedings of the 2013 conference on USENIX Annual
technical conference, June 2013.

444 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[36] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling Mem-
cache at Facebook. In Proc. 10th USENIX NSDI, Apr.
2013.

[37] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast crash recovery in RAMCloud.
In Proc. 23rd ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2011.

[38] Optimized approximative pow() in C / C++. http:
//martin.ankerl.com/2012/01/25/optim
ized-approximative-pow-in-c-and-cpp/,
2012.

[39] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algo-
rithms, 51(2):122–144, May 2004.

[40] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP sys-
tems. In SIGMOD ’12: Proceedings of the 2012 interna-
tional conference on Management of Data, May 2012.

[41] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Im-
proving network connection locality on multicore systems.
In Proceedings of the 7th ACM european conference on
Computer Systems, Apr. 2012.

[42] P. Purdom, S. Stigler, and T.-O. Cheam. Statistical in-
vestigation of three storage allocation algorithms. BIT
Numerical Mathematics, 11(2), 1971.

[43] L. Rizzo. netmap: a novel framework for fast packet I/O.
In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, June 2012.

[44] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era (it’s time for a complete rewrite). In Proc. VLDB, Sept.
2007.

[45] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
Proc. 24th ACM Symposium on Operating Systems Princi-
ples (SOSP), Nov. 2013.

[46] VoltDB, the NewSQL database for high velocity applica-
tions. http://voltdb.com/, 2014.

[47] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. Lecture
Notes in Computer Science, 1995.

[48] D. Zhou, B. Fan, H. Lim, D. G. Andersen, and M. Kamin-
sky. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In Proc. 9th International Conference
on emerging Networking EXperiments and Technologies
(CoNEXT), Dec. 2013.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 445

NetVM: High Performance and Flexible Networking
using Virtualization on Commodity Platforms
Jinho Hwang† K. K. Ramakrishnan∗ Timothy Wood†

†The George Washington University ∗WINLAB, Rutgers University

Abstract
NetVM brings virtualization to the Network by enabling
high bandwidth network functions to operate at near
line speed, while taking advantage of the flexibility and
customization of low cost commodity servers. NetVM
allows customizable data plane processing capabilities
such as firewalls, proxies, and routers to be embed-
ded within virtual machines, complementing the con-
trol plane capabilities of Software Defined Networking.
NetVM makes it easy to dynamically scale, deploy, and
reprogram network functions. This provides far greater
flexibility than existing purpose-built, sometimes propri-
etary hardware, while still allowing complex policies and
full packet inspection to determine subsequent process-
ing. It does so with dramatically higher throughput than
existing software router platforms.

NetVM is built on top of the KVM platform and In-
tel DPDK library. We detail many of the challenges
we have solved such as adding support for high-speed
inter-VM communication through shared huge pages
and enhancing the CPU scheduler to prevent overheads
caused by inter-core communication and context switch-
ing. NetVM allows true zero-copy delivery of data to
VMs both for packet processing and messaging among
VMs within a trust boundary. Our evaluation shows
how NetVM can compose complex network functional-
ity from multiple pipelined VMs and still obtain through-
puts up to 10 Gbps, an improvement of more than 250%
compared to existing techniques that use SR-IOV for vir-
tualized networking.

1 Introduction
Virtualization has revolutionized how data center servers
are managed by allowing greater flexibility, easier de-
ployment, and improved resource multiplexing. A simi-
lar change is beginning to happen within communication
networks with the development of virtualization of net-
work functions, in conjunction with the use of software
defined networking (SDN). While the migration of net-
work functions to a more software based infrastructure is
likely to begin with edge platforms that are more “con-
trol plane” focused, the flexibility and cost-effectiveness
obtained by using common off-the-shelf hardware and
systems will make migration of other network functions
attractive. One main deterrent is the achievable per-
formance and scalability of such virtualized platforms

compared to purpose-built (often proprietary) network-
ing hardware or middleboxes based on custom ASICs.

Middleboxes are typically hardware-software pack-
ages that come together on a special-purpose appliance,
often at high cost. In contrast, a high throughput platform
based on virtual machines (VMs) would allow network
functions to be deployed dynamically at nodes in the net-
work with low cost. Further, the shift to VMs would let
businesses run network services on existing cloud plat-
forms, bringing multiplexing and economy of scale ben-
efits to network functionality. Once data can be moved
to, from and between VMs at line rate for all packet sizes,
we approach the long-term vision where the line between
data centers and network resident “boxes” begins to blur:
both software and network infrastructure could be devel-
oped, managed, and deployed in the same fashion.

Progress has been made by network virtualization
standards and SDN to provide greater configurability in
the network [1–4]. SDN improves flexibility by allowing
software to manage the network control plane, while the
performance-critical data plane is still implemented with
proprietary network hardware. SDN allows for new flex-
ibility in how data is forwarded, but the focus on the con-
trol plane prevents dynamic management of many types
of network functionality that rely on the data plane, for
example the information carried in the packet payload.

This limits the types of network functionality that can
be “virtualized” into software, leaving networks to con-
tinue to be reliant on relatively expensive network appli-
ances that are based on purpose-built hardware.

Recent advances in network interface cards (NICs) al-
low high throughput, low-latency packet processing us-
ing technologies like Intel’s Data Plane Development Kit
(DPDK) [5]. This software framework allows end-host
applications to receive data directly from the NIC, elim-
inating overheads inherent in traditional interrupt driven
OS-level packet processing. Unfortunately, the DPDK
framework has a somewhat restricted set of options for
support of virtualization, and on its own cannot support
the type of flexible, high performance functionality that
network and data center administrators desire.

To improve this situation, we have developed NetVM,
a platform for running complex network functional-
ity at line-speed (10Gbps) using commodity hardware.
NetVM takes advantage of DPDK’s high throughput
packet processing capabilities, and adds to it abstractions
that enable in-network services to be flexibly created,

446 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

chained, and load balanced. Since these “virtual bumps”
can inspect the full packet data, a much wider range of
packet processing functionality can be supported than
in frameworks utilizing existing SDN-based controllers
manipulating hardware switches. As a result, NetVM
makes the following innovations:

1. A virtualization-based platform for flexible network
service deployment that can meet the performance of
customized hardware, especially those involving com-
plex packet processing.

2. A shared-memory framework that truly exploits the
DPDK library to provide zero-copy delivery to VMs
and between VMs.

3. A hypervisor-based switch that can dynamically ad-
just a flow’s destination in a state-dependent (e.g.,
for intelligent load balancing) and/or data-dependent
manner (e.g., through deep packet inspection).

4. An architecture that supports high speed inter-VM
communication, enabling complex network services
to be spread across multiple VMs.

5. Security domains that restrict packet data access to
only trusted VMs.

We have implemented NetVM using the KVM and
DPDK platforms−all the aforementioned innovations
are built on the top of DPDK. Our results show how
NetVM can compose complex network functionality
from multiple pipelined VMs and still obtain line rate
throughputs of 10Gbps, an improvement of more than
250% compared to existing SR-IOV based techniques.
We believe NetVM will scale to even higher throughputs
on machines with additional NICs and processing cores.

2 Background and Motivation
This section provides background on the challenges of
providing flexible network services on virtualized com-
modity servers.

2.1 Highspeed COTS Networking
Software routers, SDN, and hypervisor based switching
technologies have sought to reduce the cost of deploy-
ment and increase flexibility compared to traditional net-
work hardware. However, these approaches have been
stymied by the performance achievable with commodity
servers [6–8]. These limitations on throughput and la-
tency have prevented software routers from supplanting
custom designed hardware [9–11].

There are two main challenges that prevent commer-
cial off-the-shelf (COTS) servers from being able to pro-
cess network flows at line speed. First, network pack-
ets arrive at unpredictable times, so interrupts are gen-
erally used to notify an operating system that data is
ready for processing. However, interrupt handling can
be expensive because modern superscalar processors use

Linux
Environmental Abstraction Layer

Buffer
Management

Ring
Management
Packet Flow
Classification

Poll Mode
Drivers

User Applications

D
at

a
Pl

an
e

Li
br

ar
ie

s

H/W Platform

Figure 1: DPDK’s run-time environment over Linux.

long pipelines, out-of-order and speculative execution,
and multi-level memory systems, all of which tend to
increase the penalty paid by an interrupt in terms of cy-
cles [12, 13]. When the packet reception rate increases
further, the achieved (receive) throughput can drop dra-
matically in such systems [14]. Second, existing operat-
ing systems typically read incoming packets into kernel
space and then copy the data to user space for the applica-
tion interested in it. These extra copies can incur an even
greater overhead in virtualized settings, where it may be
necessary to copy an additional time between the hyper-
visor and the guest operating system. These two sources
of overhead limit the the ability to run network services
on commodity servers, particularly ones employing vir-
tualization [15, 16].

The Intel DPDK platform tries to reduce these over-
heads by allowing user space applications to directly poll
the NIC for data. This model uses Linux’s huge pages
to pre-allocate large regions of memory, and then allows
applications to DMA data directly into these pages. Fig-
ure 1 shows the DPDK architecture that runs in the ap-
plication layer. The poll mode driver allows applications
to access the NIC card directly without involving ker-
nel processing, while the buffer and ring management
systems resemble the memory management systems typ-
ically employed within the kernel for holding sk buffs.

While DPDK enables high throughput user space ap-
plications, it does not yet offer a complete framework for
constructing and interconnecting complex network ser-
vices. Further, DPDK’s passthrough mode that provides
direct DMA to and from a VM can have significantly
lower performance than native IO1. For example, DPDK
supports Single Root I/O Virtualization (SR-IOV2) to al-
low multiple VMs to access the NIC, but packet “switch-
ing” (i.e., demultiplexing or load balancing) can only be
performed based on the L2 address. As depicted in Fig-
ure 2(a), when using SR-IOV, packets are switched on

1 Until Sandy-bridge, the performance was close to half of native per-
formance, but with the next generation Ivy-bridge processor, the
claim has been that performance has improved due to IOTLB (I/O
Translation Lookaside Buffer) super page support [17]. But no per-
formance results have been released.

2 SR-IOV makes it possible to logically partition a NIC and expose to
each VM a separate PCI-based NIC called a “Virtual Function” [18].

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 447

L2 Switch L2 Switch
VF VF VF VF

VM VM VM VM

PF PF

VM VM VM

NetVM

VM

(a) SR-IOV (b) NetVM

Ho
st

NI
C

Figure 2: DPDK uses per-port switching with SR-IOV,
whereas NetVM provides a global switch in the hypervi-
sor and shared-memory packet transfer (dashed lines).

a per-port basis in the NIC, which means a second data
copy is required if packets are forwarded between VMs
on a shared port. Even worse, packets must go out of the
host and come back via an external switch to be trans-
mitted to a VM that is connected to another port’s virtual
function. Similar overheads appear for other VM switch-
ing platforms, e.g., Open vSwitch [19] and VMware’s
vNetwork distributed switch [20]. We seek to overcome
this limitation in NetVM by providing a flexible switch-
ing capability without copying packets as shown in Fig-
ure 2(b). This improves performance of communica-
tion between VMs, which plays an important role when
chained services are deployed.

Intel recently released an integration of DPDK and
Open vSwitch [21] to reduce the limitations of SR-IOV
switching. However, the DPDK vSwitch still requires
copying packets between the hypervisor and the VM’s
memory, and does not support directly-chained VM com-
munication. NetVM’s enhancements go beyond DPDK
vSwitch by providing a framework for flexible state- or
data-dependent switching, efficient VM communication,
and security domains to isolate VM groups.

2.2 Flexible Network Services
While platforms like DPDK allow for much faster pro-
cessing, they still have limits on the kind of flexibility
they can provide, particularly for virtual environments.
The NIC based switching supported by DPDK + SR-IOV
is not only expensive, but is limited because the NIC only
has visibility into Layer 2 headers. With current tech-
niques, each packet with a distinct destination MAC can
be delivered to a different destination VM. However, in
a network resident box (such as a middlebox acting as a
firewall, a proxy, or even if the COTS platform is acting
as a router), the destination MAC of incoming packets is
the same. While advances in NIC design could reduce
these limitations, a hardware based solution will never
match the flexibility of a software-based approach.

By having the hypervisor perform the initial packet
switching, NetVM can support more complex and dy-
namic functionality. For example, each application that

NIC
Host OS
vSwitch

vNIC
Guest OS

Guest User
Space

NIC

Guest User
Space

(DPDK)

NIC

Guest User
Space

Host User
Space

(DPDK)

Packet M
ovem

ent

(a) Generic (b) SR-IOV (c) NetVM
Figure 3: Architectural Differences for Packet Delivery
in Virtualized Platform.

supports a distinct function may reside in a separate VM,
and it may be necessary to exploit flow classification
to properly route packets through VMs based on mech-
anisms such as shallow (header-based) or deep (data-
based) packet analysis. At the same time, NetVM’s
switch may use state-dependent information such as VM
load levels, time of day, or dynamically configured poli-
cies to control the switching algorithm. Delivery of pack-
ets based on such rules is simply not feasible with current
platforms.

2.3 Virtual Machine Based Networking
Network providers construct overall network function-
ality by combining middleboxes and network hardware
that typically have been built by a diverse set of vendors.
While NetVM can enable fast packet processing in soft-
ware, it is the use of virtualization that will permit this
diverse set of services to “play nice” with each other—
virtualization makes it trivial to encapsulate a piece of
software and its OS dependencies, dramatically simplify-
ing deployment compared to running multiple processes
on one bare-metal server. Running these services within
VMs also could permit user-controlled network func-
tions to be deployed into new environments such as cloud
computing platforms where VMs are the norm and isola-
tion between different network services would be crucial.

The consolidation and resource management benefits
of virtualization are also well known. Unlike hardware
middleboxes, VMs can be instantiated on demand when
and where they are needed. This allows NetVM to mul-
tiplex one server for several related network functions,
or to dynamically spawn VMs where new services are
needed. Compared to network software running on bare
metal, using a VM for each service simplifies resource
allocation and improves performance isolation. These
characteristics are crucial for network services that often
have strict performance requirements.

3 System Design
Figure 3 compares two existing, commonly implemented
network virtualization techniques against NetVM. In
the first case, representing traditional virtualization plat-

448 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Trusted VMs
QEMU VM

Non-Trusted
VMs

QEMU VM

 Linux / KVM

 Hypervisor User Space

VM
VM VMU

serKernel

Shared
Mem

 Huge
Pages

App

Trusted VMs

Generic
Net. Path

NIC

App

Packet

NetVM
(DPDK)

T

R

VM

 Huge
Pages

App

T

R

Packet

T R

Figure 4: NetVM only requires a simple descriptor to
be copied via shared memory (solid arrows), which then
gives the VM direct access to packet data stored in huge
pages (dashed arrow).

forms, packets arrive at the NIC and are copied into the
hypervisor. A virtual switch then performs L2 (or a
more complex function, based on the full 5-tuple packet
header) switching to determine which VM is the recip-
ient of the packet and notifies the appropriate virtual
NIC. The memory page containing the packet is then ei-
ther copied or granted to the Guest OS, and finally the
data is copied to the user space application. Not surpris-
ingly, this process involves significant overhead, prevent-
ing line-speed throughput.

In the second case (Figure 3(b)), SR-IOV is used to
perform L2 switching on the NIC itself, and data can be
copied directly into User Space of the appropriate VM.
While this minimizes data movement, it does come at the
cost of limited flexibility in how packets are routed to
the VM, since the NIC must be configured with a static
mapping and packet header information other than the
MAC address cannot be used for routing.

The architecture of NetVM is shown in Figure 3(c). It
does not rely on SR-IOV, instead allowing a user space
application in the hypervisor to analyze packets and de-
cide how to forward them. However, rather than copy
data to the Guest, we use a shared memory mechanism to
directly allow the Guest user space application to read the
packet data it needs. This provides both flexible switch-
ing and high performance.

3.1 Zero-Copy Packet Delivery
Network providers are increasingly deploying complex
services composed of routers, proxies, video transcoders,
etc., which NetVM could consolidate onto a single host.
To support fast communication between these compo-
nents, NetVM employs two communication channels to
quickly move data as shown in Figure 4. The first is a
small, shared memory region (shared between the hyper-
visor and each individual VM) that is used to transmit
packet descriptors. The second is a huge page region
shared with a group of trusted VMs that allows chained
applications to directly read or write packet data. Mem-
ory sharing through a “grant” mechanism is commonly

used to transfer control of pages between the hypervi-
sor and guest; by expanding this to a region of memory
accessible by all trusted guest VMs, NetVM can enable
efficient processing of flows traversing multiple VMs.

NetVM Core, running as a DPDK enabled user ap-
plication, polls the NIC to read packets directly into the
huge page area using DMA. It decides where to send
each packet based on information such as the packet
headers, possibly content, and/or VM load statistics.
NetVM inserts a descriptor of the packet in the ring
buffer that is setup between the individual destination
VM and hypervisor. Each individual VM is identified
by a “role number”−a representation of each network
function, that is assigned by the VM manager. The de-
scriptor includes a mbuf location (equivalent to a sk buff
in the Linux kernel) and huge page offset for packet re-
ception. When transmitting or forwarding packets, the
descriptor also specifies the action (transmit through the
NIC, discard, or forward to another VM) and role num-
ber (i.e., the destination VM role number when forward-
ing). While this descriptor data must be copied between
the hypervisor and guest, it allows the guest application
to then directly access the packet data stored in the shared
huge pages.

After the guest application (typically implementing
some form of network functionality like a router or fire-
wall) analyzes the packet, it can ask NetVM to forward
the packet to a different VM or transmit it over the net-
work. Forwarding simply repeats the above process—
NetVM copies the descriptor into the ring buffer of a dif-
ferent VM so that it can be processed again; the packet
data remains in place in the huge page area and never
needs to be copied (although it can be independently
modified by the guest applications if desired).

3.2 Lockless Design
Shared memory is typically managed with locks, but
locks inevitably degrade performance by serializing data
accesses and increasing communication overheads. This
is particularly problematic for high-speed networking: to
maintain full 10 Gbps throughput independent of packet
size, a packet must be processed within 67.2 ns [22], yet
context switching for a contested lock takes on the order
of micro-seconds [23, 24], and even an uncontested lock
operation may take tens of nanoseconds [25]. Thus a sin-
gle context switch could cause the system to fall behind,
and thus may result in tens of packets being dropped.

We avoid these issues by having parallelized queues
with dedicated cores that service them. When work-
ing with NICs that have multiple queues and Receive
Side Scaling (RSS) capability1, the NIC receives pack-

1 Modern NICs support RSS, a network driver technology to allow
packet receive processing to be load balanced across multiple pro-
cessors or cores [26].

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 449

Hyper
visor

VM

R R T T

R R T T

(a) Single VM

Hypervisor

VM#1 VM#2

R R T T

R R F F T T F F R R F F T T F F

(b) Multiple VMs (Inter-VM)

Figure 5: Lockless and NUMA-Aware Queue/Thread
Management (R = Receive Queue, T = Transmit Queue,
and F = Forward Queue).

ets from the link and places them into one of several
flow queues based on a configurable (usually an n-tuple)
hash [27]. NetVM allows only two threads to manipulate
this shared circular queue—the (producer) DPDK thread
run by a core in the hypervisor and the (consumer) thread
in the guest VM that performs processing on the packet.
There is only a single producer and a single consumer, so
synchronization is not required since neither will read or
write simultaneously to the same region.

Our approach eliminates the overhead of locking by
dedicating cores to each queue. This still permits scal-
ability, because we can simply create additional queues
(each managed by a pair of threads/cores). This works
with the NIC’s support for RSS, since incoming flows
can automatically be load balanced across the available
queues. Note that synchronization is not required to
manage the huge page area either, since only one appli-
cation will ever have control of the descriptor containing
a packet’s address.

Figure 5(a) depicts how two threads in a VM de-
liver packets without interrupting each other. Each core
(marked as a circle) in the hypervisor receives packets
from the NIC and adds descriptors to the tail of its own
queue. The guest OS also has two dedicated cores, each
of which reads from the head of its queue, performs pro-
cessing, and then adds the packet to a transmit queue.
The hypervisor reads descriptors from the tail of these
queues and causes the NIC to transmit the associated
packets. This thread/queue separation guarantees that
only a single entity accesses the data at a time.

3.3 NUMA-Aware Design
Multi-processor systems exhibit NUMA characteristics,
where memory access time depends on the memory lo-
cation relative to a processor. Having cores on different
sockets access memory that maps to the same cache line
should be avoided, since this will cause expensive cache
invalidation messages to ping pong back and forth be-
tween the two cores. As a result, ignoring the NUMA
aspects of modern servers can cause significant perfor-
mance degradation for latency sensitive tasks like net-

work processing [28, 29].
Quantitatively, a last-level-cache (L3) hit on a 3GHz

Intel Xeon 5500 processor takes up to 40 cycles, but the
miss penalty is up to 201 cycles [30]. Thus if two sepa-
rate sockets in NetVM end up processing data stored in
nearby memory locations, the performance degradation
can potentially be up to five times, since cache lines will
end up constantly being invalidated.

Fortunately, NetVM can avoid this issue by carefully
allocating and using huge pages in a NUMA-aware fash-
ion. When a region of huge pages is requested, the mem-
ory region is divided uniformly across all sockets, thus
each socket allocates a total of (total huge page size /
number of sockets) bytes of memory from DIMMs that
are local to the socket. In the hypervisor, NetVM then
creates the same number of receive/transmit threads as
there are sockets, and each is used only to process data
in the huge pages local to that socket. The threads inside
the guest VMs are created and pinned to the appropriate
socket in a similar way. This ensures that as a packet is
processed by either the host or the guest, it always stays
in a local memory bank, and cache lines will never need
to be passed between sockets.

Figure 5 illustrates how two sockets (gray and white)
are managed. That is, a packet handled by gray threads
is never moved to white threads, thus ensuring fast mem-
ory accesses and preventing cache coherency overheads.
This also shows how NetVM pipelines packet process-
ing across multiple cores—the initial work of handling
the DMAed data from the NIC is performed by cores in
the hypervisor, then cores in the guest perform packet
processing. In a multi-VM deployment where complex
network functionality is being built by chaining together
VMs, the pipeline extends to an additional pair of cores
in the hypervisor that can forward packets to cores in the
next VM. Our evaluation shows that this pipeline can be
extended as long as there are additional cores to perform
processing (up to three separate VMs in our testbed).

3.4 Huge Page Virtual Address Mapping
While each individual huge page represents a large con-
tiguous memory area, the full huge page region is spread
across the physical memory both because of the per-
socket allocations described in Section 3.3, and because
it may be necessary to perform multiple huge page allo-
cations to reach the desired total size if it is bigger than
the default unit of huge page size−the default unit size
can be found under /proc/meminfo. This poses a prob-
lem since the address space layout in the hypervisor is
not known by the guest, yet guests must be able to find
packets in the shared huge page region based on the ad-
dress in the descriptor. Thus the address where a packet
is placed by the NIC is only meaningful to the hypervi-
sor; the address must be translated so that the guest will

450 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HP#3 HP#4 HP#1 HP#2

HP#1 HP#2 HP#3 HP#4

Host Huge Page VA Mapping

VM Huge Page PCI Mapping

Packet

PacketOffset

Figure 6: The huge pages spread across the host’s mem-
ory must be contiguously aligned within the VM. NetVM
must be able to quickly translate the address of a new
packet from the host’s virtual address space to an offset
within the VM’s address space.

be able to access it in the shared memory region. Further,
looking up these addresses must be as fast as possible in
order to perform line-speed packet processing.

NetVM overcomes the first challenge by mapping the
huge pages into the guest in a contiguous region, as
shown in Figure 6. NetVM exposes these huge pages
to guest VMs using an emulated PCI device. The guest
VM runs a driver that polls the device and maps its mem-
ory into user space, as described in Section 4.3. In effect,
this shares the entire huge page region among all trusted
guest VMs and the hypervisor. Any other untrusted VMs
use a regular network interface through the hypervisor,
which means they are not able to see the packets received
from NetVM.

Even with the huge pages appearing as a contiguous
region in the guest’s memory space, it is non-trivial to
compute where a packet is stored. When NetVM DMAs
a packet into the huge page area, it receives a descrip-
tor with an address in the hypservisor’s virtual address
space, which is meaningless to the guest application that
must process the packet. While it would be possible to
scan through the list of allocated huge pages to deter-
mine where the packet is stored, that kind of process-
ing is simply too expensive for high-speed packet rates
because every packet needs to go through this process.
To resolve this problem, NetVM uses only bit operations
and precomputed lookup tables; our experiments show
that this improves throughput by up to 10% (with 8 huge
pages) and 15% (with 16 huge pages) in the worst case
compared to a naive lookup.

When a packet is received, we need to know which
huge page it belongs to. Firstly, we build up an index
map that converts a packet address to a huge page index.
The index is taken from the upper 8 bits of its address
(31st bit to 38th bit). The first 30 bits are the offset in the
corresponding huge page, and the rest of the bits (left of
the 38th bit) can be ignored. We denote this function as
IDMAP(h) = (h >> 30)&0xFF , where h is a memory
address. This value is then used as an index into an array
HMAP[i] to determine the huge page number.

To get the address base (i.e., a starting address of

each huge page in the ordered and aligned region) of
the huge page where the packet belongs to, we need to
establish an accumulated address base. If all the huge
pages have the same size, we do not need this address
base−instead, just multiplying is enough, but since there
can be different huge page sizes, we need to keep track
of an accumulated address base. A function HIGH(i)
keeps a starting address of each huge page index i.
Lastly, the residual address is taken from last 30 bits of
a packet address using LOW (a) = a&0x3FFFFFFF .
OFFSET (p) = HIGH(HMAP[IDMAP(p)]) | LOW (p)
returns an address offset of contiguous huge pages in the
emulated PCI.

3.5 Trusted and Untrusted VMs
Security is a key concern in virtualized cloud platforms.
Since NetVM aims to provide zero-copy packet trans-
mission while also having the flexibility to steer flows
between cooperating VMs, it shares huge pages assigned
in the hypervisor with multiple guest VMs. A malicious
VM may be able to guess where the packets are in this
shared region to eavesdrop or manipulate traffic for other
VMs. Therefore, there must be a clear separation be-
tween trusted VMs and non-trusted VMs. NetVM pro-
vides a group separation to achieve the necessary secu-
rity guarantees. When a VM is created, it is assigned to
a trust group, which determines what range of memory
(and thus which packets) it will have access to.

While our current implementation supports only
trusted or untrusted VMs, it is possible to subdivide
this further. Prior to DMAing packet data into a huge
page, DPDK’s classification engine can perform a shal-
low analysis of the packet and decide which huge page
memory pool to copy it to. This would, for example, al-
low traffic flows destined for one cloud customer to be
handled by one trust group, while flows for a different
customer are handled by a second NetVM trust group
on the same host. In this way, NetVM enables not only
greater flexibility in network function virtualization, but
also greater security when multiplexing resources on a
shared host.

Figure 4 shows a separation between trusted VM
groups and a non-trusted VM. Each trusted VM group
gets its own memory region, and each VM gets a ring
buffer for communication with NetVM. In constrast,
non-trusted VMs only can use generic network paths
such as those in Figure 3 (a) or (b).

4 Implementation Details
NetVM’s implementation includes the NetVM Core En-
gine (the DPDK application running in the hypervisor),
a NetVM manager, drivers for an emulated PCI device,
modifications to KVM’s CPU allocation policies, and
NetLib (our library for building in-network functional-

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 451

ity in VM’s userspace). Our implementation is built on
QEMU 1.5.0 (KVM included), and DPDK 1.4.1.

KVM and QEMU allow a regular Linux host to run
one or more VMs. Our functionality is split between
code in the guest VM, and code running in user space of
the host operating system. We use the terms host oper-
ating system and hypervisor interchangeably in this dis-
cussion.

4.1 NetVM Manager
The NetVM manager runs in the hypervisor and provides
a communication channel so that QEMU can pass infor-
mation to the NetVM core engine about the creation and
destruction of VMs, as well as their trust level. When
the NetVM manager starts, it creates a server socket to
communicate with QEMU. Whenever QEMU starts a
new VM, it connects to the socket to ask the NetVM
Core to initialize the data structures and shared mem-
ory regions for the new VM. The connection is im-
plemented with a socket-type chardev with “-chardev
socket,path=<path>,id=<id>” in the VM configura-
tion. This is a common approach to create a communica-
tion channel between a VM and an application running
in the KVM host, rather than relying on hypervisor-based
messaging [31].

NetVM manager is also responsible for storing the
configuration information that determines VM trust
groups (i.e., which VMs should be able to connect to
NetVM Core) and the switching rules. These rules are
passed to the NetVM Core Engine, which implements
these policies.

4.2 NetVM Core Engine
The NetVM Core Engine is a DPDK userspace applica-
tion running in the hypervisor. NetVM Core is initialized
with user settings such as the processor core mapping,
NIC port settings, and the configuration of the queues.
These settings determine how many queues are created
for receiving and transmitting packets, and which cores
are allocated to each VM for these tasks. NetVM Core
then allocates the Huge Page region and initializes the
NIC so it will DMA packets into that area when polled.

The NetVM core engine has two roles: the first role is
to receive packets and deliver/switch them to VMs (us-
ing zero-copy) following the specified policies, and the
other role is to communicate with the NetVM manager to
synchronize information about new VMs. The main con-
trol loop first polls the NIC and DMAs packets to huge
pages in a burst (batch), then for each packet, NetVM de-
cides which VM to notify. Instead of copying a packet,
NetVM creates a tiny packet descriptor that contains the
huge page address, and puts that into the private shared
ring buffer (shared between the VM and NetVM Core).
The actual packet data is accessible to the VM via shared

Linux / KVM

User Space

User

Kernel

NIC

NetVM UIO

PCI Device

Rings
Bar#0 Bar#1

Huge Pages

User Apps
NetLib

Huge Pages

chardev

(socket)

NetVM
Manager

NetVM Core
(DPDK)

Q
EM

U VM

Figure 7: NetVM’s architecture spans the guest and host
systems; an emulated PCI device is used to share mem-
ory between them.

memory, accessible over the emulated PCI device de-
scribed below.

4.3 Emulated PCI
QEMU and KVM do not directly allow memory to be
shared between the hypervisor and VMs. To overcome
this limitation, we use an emulated PCI device that al-
lows a VM to map the device’s memory—since the de-
vice is written in software, this memory can be redi-
rected to any memory location owned by the hypervisor.
NetVM needs two seperate memory regions: a private
shared memory (the address of which is stored in the de-
vice’s BAR#0 register) and huge page shared memory
(BAR#1). The private shared memory is used as ring
buffers to deliver the status of user applications (VM →
hypervisor) and packet descriptors (bidirectional). Each
VM has this individual private shared memory. The huge
page area, while not contiguous in the hypervisor, must
be mapped as one contiguous chunk using the mem-
ory region add subregion function. We illustrated how
the huge pages map to virtual addresses, earlier in Sec-
tion 3.4. In our current implementation, all VMs access
the same shared huge page region, although this could be
relaxed as discussed in 3.5.

Inside a guest VM that wishes to use NetVM’s high-
speed IO, we run a front-end driver that accesses this em-
ulated PCI device using Linux’s Userspace I/O frame-
work (UIO). UIO was introduced in Linux 2.6.23 and
allows device drivers to be written almost entirely in
userspace. This driver maps the two memory regions
from the PCI device into the guest’s memory, allowing
a NetVM user application, such as a router or firewall, to
directly work with the incoming packet data.

4.4 NetLib and User Applications
Application developers do not need to know anything
about DPDK or NetVM’s PCI device based communica-
tion channels. Instead, our NetLib framework provides
an interface between PCI and user applications. User
applications only need to provide a structure containing

452 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetVM
Core

(DPDK)

NetVM UIO
(PCI)

NetLib User Application
(multi-threads)

callback

Thread #1

Thread #2

RX

RX

TX

TX

Figure 8: NetLib provides a bridge between PCI device
and user applications.

configuration settings such as the number of cores, and
a callback function. The callback function works similar
to NetFilter in the linux kernel [32], a popular frame-
work for packet filtering and manipulation. The callback
function is called when a packet is received. User appli-
cations can read and write into packets, and decide what
to do next. Actions include discard, send out to NIC,
and forward to another VM. As explained in Section 4.1,
user applications know the role numbers of other VMs.
Therefore, when forwarding packets to another VM, user
applications can specify the role number, not network ad-
dresses. This abstraction provides an easy way to imple-
ment communication channels between VMs.

Figure 8 illustrates a packet flow. When a packet is re-
ceived from the hypervisor, a thread in NetLib fetches it
and calls back a user application with the packet data.
Then the user application processes the packet (read
or/and write), and returns with an action. NetLib puts the
action in the packet descriptor and sends it out to a trans-
mit queue. NetLib supports multi-threading by provid-
ing each user thread with its own pair of input and output
queues. There are no data exchanges between threads
since NetLib provides a lockless model as NetVM does.

5 Evaluation
NetVM enables high speed packet delivery in-and-out of
VMs and between VMs, and provides flexibility to steer
traffic between function components that reside in dis-
tinct VMs on the NetVM platform. In this section, we
evaluate NetVM with the following goals:

• Demonstrate NetVM’s ability to provide high speed
packet delivery with typical applications such as:
Layer 3 forwarding, a userspace software router, and
a firewall (§ 5.2),

• Show that the added latency with NetVM functioning
as a middlebox is minimal (§ 5.3),

• Analyze the CPU time based on the task segment (§
5.4), and

• Demonstrate NetVM’s ability to steer traffic flexibly
between VMs(§ 5.5).

In our experimental setup, we use two Xeon CPU
X5650 @ 2.67GHz (2x6 cores) servers—one for the
system under test and the other acting as a traffic

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.2 0.4 0.6 0.8 1 2 3 4 5 6 7 8

F
o
rw

ar
d
in

g
 R

at
e

(K
p
ac

k
et

s/
s)

Huge Page Size (GB)

10Gbps Line

Figure 9: Huge page size can degrade throughput up to
26% (64-byte packets). NetVM needs 6GB to achieve
the line rate speed.

generator—each of which has an Intel 82599EB 10G
Dual Port NIC (with one port used for our performance
experiments) and 48GB memory. We use 8GB for huge
pages because Figure 9 shows that at least 6GB is needed
to achieve the full line-rate (we have seen in Intel’s per-
formance reports setting 8GB as a default huge page
size). The host OS is Red Hat 6.2 (kernel 2.6.32), and the
guest OS is Ubuntu 12.10 (kernel 3.5). DPDK-1.4.1 and
QEMU-1.5.0 are used. We use PktGen from WindRiver
to generate traffic [33]. The base core assignment other-
wise mentioned differently follows 2 cores to receive, 4
cores to transmit/forward, and 2 cores per VM.

We also compare NetVM with SR-IOV, the high per-
formance IO pass-through system popularly used. SR-
IOV allows the NIC to be logically partitioned into “vir-
tual functions”, each of which can be mapped to a differ-
ent VM. We measure and compare the performance and
flexibility provided by these architectures.

5.1 Applications
L3 Forwarder [34]: We use a simple layer-3 router. The
forwarding function uses a hash map for the flow classi-
fication stage. Hashing is used in combination with a
flow table to map each input packet to its flow at run-
time. The hash lookup key is represented by a 5-tuple.
The ID of the output interface for the input packet is read
from the identified flow table entry. The set of flows used
by the application is statically configured and loaded into
the hash at initialization time (this simple layer-3 router
is similar to the sample L3 forwarder provided in the
DPDK library).
Click Userspace Router [10]: We also use Click, a more
advanced userspace router toolkit to measure the perfor-
mance that may be achieved by ‘plugging in’ an existing
router implementation as-is into a VM, treating it as a
‘container’. Click supports the composition of elements
that each performs simple computations, but together can
provide more advanced functionality such as IP routing.
We have slightly modified Click by adding new receive
and transmit elments that use Netlib for faster network
IO. In total our changes comprise approximately 1000

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 453

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2000 4000 6000 8000 10000 12000 14000

F
o
rw

ar
d
in

g
 R

at
e

(K
p
ac

k
et

s/
s)

Input Rate (Kpackets/s)

NetVM
Click-NetVM
SR-IOV-VM

Click-Native-Linux

Figure 10: Forwarding rate as a function of input rate for
NetVM, Click using NetVM, SR-IOV (DPDK in VM),
and Native Linux Click-NetVM router (64-byte packets).

lines of code. We test both a standard version of Click
using Linux IO and our Netlib zero-copy version.
Firewall [35]: Firewalls control the flow of network traf-
fic based on security policies. We use Netlib to build
the foundational feature for firewalls—the packet filter.
Firewalls with packet filters operate at layer 3, the net-
work layer. This provides network access control based
on several pieces of information in a packet, including
the usual 5-tuple: the packet’s source and destination IP
address, network or transport protocol id, source and des-
tination port; in addition its decision rules would also
factor in the interface being traversed by the packet, and
its direction (inbound or outbound).

5.2 High Speed Packet Delivery
Packet Forwarding Performance: NetVM’s goal is to
provide line rate throughput, despite running on a virtu-
alized platform. To show that NetVM can indeed achieve
this, we show the L3 packet forwarding rate vs. the input
traffic rate. The theoretical value for the nominal 64-byte
IP packet for a 10G Ethernet interface−with preamble
size of 8 bytes, a minimum inter-frame gap 12 bytes−is
14,880,952 packets.

Figure 10 shows the input rate and the forwarded rate
in packets/sec for three cases: NetVM’s simple L3 for-
warder, the Click router using NetVM (Click-NetVM),
and Click router using native Linux (Click-Native-
Linux). NetVM achieves the full line-rate, whereas
Click-NetVM has a maximum rate of around 6Gbps.
This is because Click has added overheads for scheduling
elements (confirmed by the latency analysis we present
subsequently in Table 1). Notice that increasing the input
rate results in either a slight drop-off in the forwarding
rate (as a result of wasted processing of packets that are
ultimately dropped), or plateaus at that maximum rate.
We believe Click-NetVM’s performance could be further
improved by either adding multi-threading support or us-
ing a faster processor, but SR-IOV can not achieve better
performance this way. Not surprisingly, Click-Native-
Linux performance is extremely poor (max 327Mbps),
illustrating the dramatic improvement provided simply

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

64 128 200 256 300 512 750 1024 1456 1518

F
o
rw

ar
d
in

g
 R

at
e

(K
p
ac

k
et

s/
s)

Packet Size (Bytes)

NetVM
Click-NetVM

Theoretical Line (10Gbps)

Figure 11: NetVM provides a line-rate speed regardless
of packet sizes. Due to large application overhead, Click-
NetVM achieves 6.8Gbps with 64-byte packet size.

by zero-copy IO. [10].
With SR-IOV, the VM has two virtual functions as-

sociated with it and runs DPDK with two ports using
two cores. SR-IOV achieves a maximum throughput of
5Gbps. We have observed that increasing the number of
virtual functions or cores does not improve the maximum
throughput. We speculate this limitation comes from the
speed limitation on hardware switching.

Figure 11 now shows the forwarding rate as the packet
size is varied. Since NetVM does not have further over-
heads as a consequence of the increased packet size (data
is delivered by DMA), it easily achieves the full line-rate.
Also, Click-NetVM also can provide the full line-rate for
128-byte and larger packet sizes.
Inter-VM Packet Delivery: NetVM’s goal is to build
complex network functionality by composing chains of
VMs. To evaluate how pipelining VM processing el-
ements affects throughput, we measure the achieved
throughput when varying the number of VMs through
which a packet must flow. We compare NetVM to a set
of SR-IOV VMs, the state-of-the-art for virtualized net-
working.

Figure 12 shows that NetVM achieves a significantly
higher base throughput for one VM, and that it is able
to maintain nearly the line rate for chains of up to three
VMs. After this point, our 12-core system does not have
enough cores to dedicate to each VM, so there begins
to be a processing bottleneck (e.g., four VMs require
a total of 14 cores: 2 cores−one from each processor
for NUMA-awareness−to receive packets in the host, 4
cores to transmit/forward between VMs, and 2 cores per
VM for application-level processing). We believe that
more powerful systems should easily be able to support
longer chains using our architecture.

For a more realistic scenario, we consider a chain
where 40% of incoming traffic is processed only by the
first VM (an L2 switch) before being transmitted out the
wire, while the remaining 60% is sent from the L2 switch
VM through a Firewall VM, and then an L3 switch VM
(e.g., a load balancer). In this case, our test machine
has sufficient CPU capacity to achieve the line-rate for

454 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 VM 2 VMs 3 VMs 4 VMs 5 VMs

C
h
ai

n
ed

 F
o
rw

ar
d
in

g
 R

at
e

(K
p
ac

k
et

s/
s)

Number of Chained VMs

10Gbps Line

NetVM
NetVM (60% Partial Chaining)

SR-IOV

Figure 12: Inter-VM communication using NetVM can
achieve a line-rate speed when VMs are well scheduled
in different CPU cores (here, up to 3 VMs).

the three VM chain, and sees only a small decrease if
additional L3 switch VMs are added to the end of the
chain. In contrast, SR-IOV performance is affected by
the negative impact of IOTLB cache-misses, as well as a
high data copy cost to move between VMs. Input/output
memory management units (IOMMUs) use an IOTLB to
speed up address resolution, but still each IOTLB cache-
miss renders a substantial increase in DMA latency and
performance degradation of DMA-intensive packet pro-
cessing [36, 37].

5.3 Latency
While maintaining line-rate throughput is critical for in-
network services, it is also important for the latency
added by the processing elements to be minimized. We
quantify this by measuring the average roundtrip la-
tency for L3 forwarding in each platform. The mea-
surement is performed at the traffic generator by looping
back 64-byte packets sent through the platform. We in-
clude a timestamp on the packet transmitted. Figure 13
shows the roundtrip latency for the three cases: NetVM,
Click-NetVM, and SR-IOV using identical L3 Forward-
ing function. Latency for Click-NetVM and SR-IOV in-
creases especially at higher loads when there are addi-
tional packet processing delays under overload. We spec-
ulate that at very low input rates, none of the systems are
able to make full benefit of batched DMAs and pipelin-
ing between cores, explaining the initially slightly worse
performance for all approaches. After the offered load
exceeds 5Gbps, SR-IOV and Click are unable to keep up,
causing a significant portion of packets to be dropped. In
this experiment, the queue lengths are relatively small,
preventing the latency from rising significantly. The drop
rate of SR-IOV rises to 60% at 10Gbps, while NetVM
drops zero pockets.

5.4 CPU Time Breakdown
Table 1 breaks down the CPU cost of forwarding a packet
through NetVM. Costs were converted to nanoseconds
from the Xeon’s cycle counters [38]. Each measurement
is the average over a 10 second test. These measurements

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

R
o
u
n
d
tr

ip
 L

at
en

cy
 (

µ
s)

Offered Load (Gbps)

SR-IOV
Click-NetVM

NetVM

Figure 13: Average roundtrip latency for L3 forwarding.

are larger than the true values because using Xeon cycle
counters has significant overhead (the achieved through-
put drops from 10Gbps to 8.7Gbps). Most of the tasks
performed by a NetVM’s CPU are included in the table.

“NIC → Hypervisor” measures the time it takes
DPDK to read a packet from the NIC’s receive DMA
ring. Then NetVM decides which VM to send the packet
to and puts a small packet descriptor in the VM’s re-
ceive ring (“Hypervisor → VM”). Both of these actions
are performed by a single core. “VM → APP” is the
time NetVM needs to get a packet from a ring buffer and
delivers it to the user application; the application then
spends “APP (L3 Forwarding)” time; the forwarding ap-
plication (NetVM or Click) sends the packet back to the
VM (“APP → VM”) and NetVM puts it into the VM’s
transmit ring buffer (“VM → Hypervisor”). Finally, the
hypervisor spends “Hypervisor → NIC” time to send out
a packet to the NIC’s transmit DMA ring.

The Core# column demonstrates how packet descrip-
tors are pipelined through different cores for different
tasks. As was explained in Section 3.3, packet process-
ing is restricted to the same socket to prevent NUMA
overheads. In this case, only “APP (L3 Forwarding)”
reads/writes the packet content.

5.5 Flexibility
NetVM allows for flexible switching capabilities, which
can also help improve performance. Whereas Intel SR-
IOV can only switch packets based on the L2 address,
NetVM can steer traffic (per-packet or per-flow) to a spe-

Time (ns/packet)
Core# Task Simple Click

0 NIC → Hypervisor 27.8 27.8
0 Hypervisor → VM 16.7 16.7
1 VM → APP 1.8 29.4
1 APP (L3 Forwarding) 37.7 41.5
1 APP → VM 1.8 129.0
1 VM → Hypervisor 1.8 1.8
2 Hypervisor → NIC 0.6 0.6

Total 88.3 246.8

Table 1: CPU Time Cost Breakdown for NetLib’s Sim-
ple L3 router and Click L3 router.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 455

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 3 4 5

F
o
rw

ar
d
in

g
 R

at
e

(K
p
ac

k
et

s/
s)

Number of VMs

10Gbps Line

NetVM
Click-NetVM

SR-IOV

Figure 14: State-dependent (or data-dependent) load-
balancing enables flexible steering of traffic. The graph
shows a uniformly distributed load-balancing.

cific VM depending on system load (e.g., using the oc-
cupancy of the packet descriptor ring as an indication),
shallow packet inspection (header checking), or deep
packet inspection (header + payload checking) in the face
of performance degradation. Figure 14 illustrates the for-
warding rate when load-balancing is based on load of
packets queued−the queue with the smallest number of
packets has the highest priority. The stacked bars show
how much traffic each VM receives and the total. NetVM
is able to evenly balance load across VMs. Click-NetVM
shows a significant performance improvement with mul-
tiple VMs (up to 20%) since additional cores are able to
load balance the more expensive application-level pro-
cessing. The SR-IOV system is simply unable to make
use of multiple VMs in this way since the MAC ad-
dresses coming from the packet generator are all same.
Adding more cores to the single SR-IOV VM does also
not improve performance. We believe this will be a real-
istic scenario in the network (not just in our testbed) as
the MAC addresses of incoming packets at a middlebox
or a router will likely be the same across all packets.

We also have observed the same performance graph
for NetVM’s shallow packet inspection that load-
balances based on the protocol type; deep-packet inspec-
tion overhead will depend on the amount of computation
required while analyzing the packet. With many different
network functions deployed, more dynamic workloads
with SDN capability are left for the future works.

6 Discussion
We have shown NetVM’s zero-copy packet delivery
framework can effectively bring high performance for
network traffic moving through a virtualized network
platform. Here we discuss related issues, limitations, and
future directions.
Scale to next generation machines: In this work, we
have used the first CPU version (Nehalem architecture)
that supports Intel’s DPDK. Subsequent generations of
processors from Intel, the Sandy-bridge and Ivy-bridge
processors have significant additional hardware capabil-
ities (i.e., cores), so we expect that this will allow both

greater total throughput (by connecting to multiple NIC
ports in parallel), and deeper VM chains. Reports in the
commercial press and vendor claims indicate that there is
almost a linear performance improvement with the num-
ber of cores for native Linux (i.e., non-virtualized). Since
NetVM eliminates the overheads of other virtual IO tech-
niques like SR-IOV, we also expect to see the same linear
improvement by adding more cores and NICs.

Building Edge Routers with NetVM: We recognize
that the capabilities of NetVM to act as a network ele-
ment, such as an edge router in an ISP context, depends
on having a large number of interfaces, albeit at lower
speeds. While a COTS platform may have a limited
number of NICs, each at 10Gbps, a judicious combina-
tion of a low cost Layer 2 (Ethernet) switch and NetVM
will likely serve as an alternative to (what are generally
high cost) current edge router platforms. Since the fea-
tures and capabilities (in terms of policy and QoS) re-
quired on an edge router platform are often more com-
plex, the cost of ASIC implementations tend to rise
steeply. This is precisely where the additional process-
ing power of the recent processors combined with the
NetVM architecture can be an extremely attractive alter-
native. The use of the low cost L2 switch provides the
necessary multiplexing/demultiplexing required to com-
plement NetVM’s ability to absorb complex functions,
potentially with dynamic composition of those functions.

Open vSwitch and SDN integration: SDN allows
greater flexibility for control plane management. How-
ever, the constraints of the hardware implementations of
switches and routers often prevent SDN rules from being
based on anything but simple packet header information.
Open vSwitch has enabled greater network automation
and reconfigurability, but its performance is limited be-
cause of the need to copy data. Our goal in NetVM is
to build a base platform that can offer greater flexibil-
ity while providing high speed data movement under-
neath. We aim to integrate Open vSwitch capabilities
into our NetVM Manager. In this way, the inputs that
come from a SDN Controller using OpenFlow could be
used to guide NetVM’s management and switching be-
havior. NetVM’s flexibility in demultiplexing can ac-
commodate more complex rule sets, potentially allowing
SDN control primitives to evolve.

Other Hypervisors: Our implementation uses KVM,
but we believe the NetVM architecture could be applied
to other virtualization platforms. For example, a sim-
ilar setup could be applied to Xen; the NetVM Core
would run in Domain-0, and Xen’s grant table function-
ality would be used to directly share the memory regions
used to store packet data. However, Xen’s limited sup-
port for huge pages would have to be enhanced.

456 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Related Work
The introduction of multi-core and multi-processor sys-
tems has led to significant advances in the capabilities of
software based routers. The RouteBricks project sought
to increase the speed of software routers by exploiting
parallelism at both the CPU and server level [39]. Sim-
ilarly, Kim et. al. [11] demonstrate how batching I/O
and CPU operations can improve routing performance
on multi-core systems. Rather than using regular CPU
cores, PacketShader [28] utilizes the power of general
purpose graphic processing units (GPGPU) to accelerate
packet processing. Hyper-switch [40] on the other hand
uses a low-overhead mechanism that takes into account
CPU cache locality, especially in NUMA systems. All
of these approaches demonstrate that the memory access
time bottlenecks that prevented software routers such as
Click [10] from performing line-rate processing are be-
ginning to shift. However, none of these existing ap-
proaches support deployment of network services in vir-
tual environments, a requirement that we believe is cru-
cial for lower cost COTS platforms to replace purpose-
built hardware and provide automated, flexible network
function management.

The desire to implement network functions in soft-
ware, to enable both flexibility and reduced cost because
of running on COTS hardware, has recently taken con-
crete shape with a multitude of network operators and
vendors beginning to work together in various industry
forums. In particular, the work spearheaded by Euro-
pean Telecommunications Standards Institute (ETSI) on
network function virtualization (NFV) has outlined the
concept recently [41, 42]. While the benefits of NFV
in reducing equipment cost and power consumption, im-
proving flexibility, reduced time to deploy functional-
ity and enabling multiple applications on a single plat-
form (rather than having multiple purpose-specific net-
work appliances in the network) are clear, there is still
the outstanding problem of achieving high-performance.
To achieve a fully capable NFV, high-speed packet de-
livery and low latency is required. NetVM provides the
fundamental underlying platform to achieve this.

Improving I/O speeds in virtualized environments has
long been a challenge. Santos et al. narrow the perfor-
mance gap by optimzing Xen’s driver domain model to
reduce execution costs for gigabit Ethernet NICs [43].
vBalance dynamically and adaptively migrates the in-
terrupts from a preempted vCPU to a running one, and
hence avoids interrupt processing delays to improve the
I/O performance for SMP-VMs [44]. vTurbo accelerates
I/O processing for VMs by offloading that task to a des-
ignated core called a turbo core that runs with a much
smaller time slice than the cores shared by production
VMs [45]. VPE improves the performance of I/O de-
vice virtualization by using dedicated CPU cores [46].

However, none of these achieve full line-rate packet for-
warding (and processing) for network links operating at
10Gbps or higher speeds. While we base our platform on
DPDK, other approaches such as netmap [47] also pro-
vide highspeed NIC to userspace I/O.

Researchers have looked into middlebox virtualization
on commodity servers. Split/Merge [48] describes a new
abstraction (Split/Merge), and a system (FreeFlow), that
enables transparent, balanced elasticity for stateful vir-
tual middleboxes to have the ability to migrate flows dy-
namically. xOMB [6] provides flexible, programmable,
and incrementally scalable middleboxes based on com-
modity servers and operating systems to achieve high
scalability and dynamic flow management. CoMb [8]
addresses key resource management and implementation
challenges that arise in exploiting the benefits of consol-
idation in middlebox deployments. These systems pro-
vide flexible management of networks and are comple-
mentary to the the high-speed packet forwarding and pro-
cessing capability of NetVM.

8 Conclusion
We have described a high-speed network packet pro-
cessing platform, NetVM, built from commodity servers
that use virtualization. By utilizing Intel’s DPDK li-
brary, NetVM provides a flexible traffic steering capabil-
ity under the hypervisor’s control, overcoming the per-
formance limitations of the existing, popular SR-IOV
hardware switching techniques. NetVM provides the ca-
pability to chain network functions on the platform to
provide a flexible, high-performance network element
incorporating multiple functions. At the same time,
NetVM allows VMs to be grouped into multiple trust do-
mains, allowing one server to be safely multiplexed for
network functionality from competing users.

We have demonstrated how we solve NetVM’s design
and implementation challenges. Our evaluation shows
NetVM outperforms the current SR-IOV based system
for forwarding functions and for functions spanning mul-
tiple VMs, both in terms of high throughput and reduced
packet processing latency. NetVM provides greater flexi-
bility in packet switching/demultiplexing, including sup-
port for state-dependent load-balancing. NetVM demon-
strates that recent advances in multi-core processors and
NIC hardware have shifted the bottleneck away from
software-based network processing, even for virtual plat-
forms that typically have much greater IO overheads.

Acknowledgments
We thank our shepherd, KyoungSoo Park, and review-
ers for their help improving this paper. This work was
supported in part by NSF grant CNS-1253575.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 457

References

[1] Minlan Yu, Lavanya Jose, and Rui Miao. Soft-
ware defined traffic measurement with opensketch.
In Proceedings of the 10th USENIX conference
on Networked Systems Design and Implementation,
nsdi’13, pages 29–42, Berkeley, CA, USA, 2013.
USENIX Association.

[2] Christopher Monsanto, Joshua Reich, Nate Foster,
Jennifer Rexford, and David Walker. Composing
software-defined networks. In Proceedings of the
10th USENIX conference on Networked Systems
Design and Implementation, nsdi’13, pages 1–14,
Berkeley, CA, USA, 2013. USENIX Association.

[3] Ahmed Khurshid, Wenxuan Zhou, Matthew Cae-
sar, and P. Brighten Godfrey. Veriflow: verifying
network-wide invariants in real time. In Proceed-
ings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 49–54, New
York, NY, USA, 2012. ACM.

[4] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith
Amidon, Martin Casado, and Scott Shenker. Ex-
tending networking into the virtualization layer.
In 8th ACM Workshop on Hot Topics inNetworks
(HotNets-VIII).New YorkCity,NY(October 2009).

[5] Intel Corporation. Intel data plane development kit:
Getting started guide. 2013.

[6] James W. Anderson, Ryan Braud, Rishi Kapoor,
George Porter, and Amin Vahdat. xomb: extensi-
ble open middleboxes with commodity servers. In
Proceedings of the eighth ACM/IEEE symposium
on Architectures for networking and communica-
tions systems, ANCS ’12, pages 49–60, New York,
NY, USA, 2012. ACM.

[7] Adam Greenhalgh, Felipe Huici, Mickael Hoerdt,
Panagiotis Papadimitriou, Mark Handley, and Lau-
rent Mathy. Flow processing and the rise of com-
modity network hardware. SIGCOMM Comput.
Commun. Rev., 39(2):20–26, March 2009.

[8] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy,
Michael K. Reiter, and Guangyu Shi. Design and
implementation of a consolidated middlebox archi-
tecture. In Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implemen-
tation, NSDI’12, pages 24–24, Berkeley, CA, USA,
2012. USENIX Association.

[9] Raffaele Bolla and Roberto Bruschi. Pc-based soft-
ware routers: high performance and application ser-
vice support. In Proceedings of the ACM workshop
on Programmable routers for extensible services of
tomorrow, PRESTO ’08, pages 27–32, New York,
NY, USA, 2008. ACM.

[10] Eddie Kohler. The click modular router. PhD The-
sis, 2000.

[11] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo
Park, and Sue Moon. The power of batching in the
click modular router. In Proceedings of the Asia-
Pacific Workshop on Systems, APSYS ’12, pages
14:1–14:6, New York, NY, USA, 2012. ACM.

[12] Constantinos Dovrolis, Brad Thayer, and
Parameswaran Ramanathan. Hip: Hybrid
interrupt-polling for the network interface. ACM
Operating Systems Reviews, 35:50–60, 2001.

[13] Jisoo Yang, Dave B. Minturn, and Frank Hady.
When poll is better than interrupt. In Proceedings
of the 10th USENIX conference on File and Storage
Technologies, FAST’12, pages 3–3, Berkeley, CA,
USA, 2012. USENIX Association.

[14] Jeffrey C. Mogul and K. K. Ramakrishnan. Elim-
inating receive livelock in an interrupt-driven ker-
nel. ACM Transactions on Computer Systems,
15:217–252, 1997.

[15] Wenji Wu, Matt Crawford, and Mark Bowden. The
performance analysis of linux networking - packet
receiving. Comput. Commun., 30(5):1044–1057,
March 2007.

[16] Younggyun Koh, Calton Pu, Sapan Bhatia, and
Charles Consel. Efficient packet processing in user-
level os: A study of uml. In in Proceedings of
the 31th IEEE Conference on Local Computer Net-
works (LCN06), 2006.

[17] Intel Corporation. Intel virtualization technology
for directed i/o. 2007.

[18] Intel Corp. Intel data plane development kit: Pro-
grammer’s guide. 2013.

[19] Open vSwitch. http://www.openvswitch.org.
[20] VMWare White Paper. Vmware vnetwork dis-

tributed switch. 2013.
[21] Intel Open Source Technology Center.

https://01.org/packet-processing.
[22] Intel Corp. Intel data plane development kit: Get-

ting started guide. 2013.
[23] Francis M. David, Jeffrey C. Carlyle, and Roy H.

Campbell. Context switch overheads for linux on
arm platforms. In Proceedings of the 2007 work-
shop on Experimental computer science, ExpCS
’07, New York, NY, USA, 2007. ACM.

[24] Chuanpeng Li, Chen Ding, and Kai Shen. Quan-
tifying the cost of context switch. In Proceedings
of the 2007 workshop on Experimental computer
science, ExpCS ’07, New York, NY, USA, 2007.
ACM.

[25] Jeff Dean. Designs, Lessons and Advice from
Building Large Distributed Systems. LADIS
Keynote, 2009.

[26] Srihari Makineni, Ravi Iyer, Partha Sarangam,
Donald Newell, Li Zhao, Ramesh Illikkal, and
Jaideep Moses. Receive side coalescing for ac-

458 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

celerating tcp/ip processing. In Proceedings of
the 13th International Conference on High Per-
formance Computing, HiPC’06, pages 289–300,
Berlin, Heidelberg, 2006. Springer-Verlag.

[27] Wind River White Paper. High-performance multi-
core networking software design options. 2013.

[28] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue
Moon. Packetshader: a gpu-accelerated software
router. In Proceedings of the ACM SIGCOMM
2010 conference, SIGCOMM ’10, pages 195–206,
New York, NY, USA, 2010. ACM.

[29] Yinan Li, Ippokratis Pandis, Rene Mueller, Vi-
jayshankar Raman, and Guy Lohman. Numa-aware
algorithms: the case of data shuffling. The biennial
Conference on Innovative Data Systems Research
(CIDR), 2013.

[30] David Levinthal. Performance analysis guide for
intel core i7 processor and intel xeon 5500. 2013.

[31] A. Cameron Macdonell. Shared-memory optimiza-
tions for virtual machines. PhD Thesis.

[32] Rusty Russell and Harald Welte.
Linux netfilter hacking howto.
http://www.netfilter.org/documentation/HOWTO
/netfilter-hacking-HOWTO.html.

[33] Wind River Technical Report. Wind river applica-
tion acceleration engine. 2013.

[34] Intel Corp. Intel data plane development kit: Sam-
ple application user guide. 2013.

[35] Karen Scarfone and Paul Hoffman. Guidelines on
firewalls and firewall policy. National Institute of
Standards and Technology, 2009.

[36] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami
Yassour. Iommu: strategies for mitigating the
iotlb bottleneck. In Proceedings of the 2010
international conference on Computer Architec-
ture, ISCA’10, pages 256–274, Berlin, Heidelberg,
2012. Springer-Verlag.

[37] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski,
Karl Rister, Alexis Bruemmer, and Leendert Van
Doorn. The price of safety: Evaluating iommu per-
formance. In In Proceedings of the 2007 Linux
Symposium, 2007.

[38] Intel Corporation. Intel 64 and ia-32 architectures
software developer’s manual. 2013.

[39] Mihai Dobrescu, Norbert Egi, Katerina Argyraki,
Byung-Gon Chun, Kevin Fall, Gianluca Iannac-
cone, Allan Knies, Maziar Manesh, and Sylvia Rat-
nasamy. RouteBricks: exploiting parallelism to
scale software routers. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, page 1528, New York, NY,
USA, 2009. ACM.

[40] Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha,
and Scott Rixner. Hyper-switch: A scalable soft-

ware virtual switching architecture. USENIX An-
nual Technical Conference (USENIX ATC), 2013.

[41] SDN and OpenFlow World Congress Introduc-
tory White Paper. Network functions virtualisation.
http://portal.etsi.org/NFV/NFV White Paper.pdf,
2012.

[42] Frank Yue. Network functions virtual-
ization - everything old is new again.
http://www.f5.com/pdf/white-papers/service-
provider-nfv-white-paper.pdf, 2013.

[43] Jose Renato Santos, Yoshio Turner, G. Janakira-
man, and Ian Pratt. Bridging the gap between soft-
ware and hardware techniques for i/o virtualization.
In USENIX 2008 Annual Technical Conference on
Annual Technical Conference, ATC’08, pages 29–
42, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

[44] Luwei Cheng and Cho-Li Wang. vbalance: us-
ing interrupt load balance to improve i/o perfor-
mance for smp virtual machines. In Proceedings of
the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 2:1–2:14, New York, NY, USA,
2012. ACM.

[45] Cong Xu, Sahan Gamage, Hui Lu, Ramana Kom-
pella, and Dongyan Xu. vturbo: Accelerating vir-
tual machine i/o processing using designated turbo-
sliced core. USENIX Annual Technical Conference,
2013.

[46] Jiuxing Liu and Bulent Abali. Virtualization
polling engine (vpe): using dedicated cpu cores
to accelerate i/o virtualization. In Proceedings of
the 23rd international conference on Supercomput-
ing, ICS ’09, pages 225–234, New York, NY, USA,
2009. ACM.

[47] Luigi Rizzo. netmap: A novel framework for
fast packet I/O. In USENIX Annual Technical
Conference, pages 101–112, Berkeley, CA, 2012.
USENIX.

[48] Shriram Rajagopalan, Dan Williams, Hani
Jamjoom, and Andrew Warfield. Split/merge:
system support for elastic execution in virtual
middleboxes. In Proceedings of the 10th USENIX
conference on Networked Systems Design and Im-
plementation, nsdi’13, pages 227–240, Berkeley,
CA, USA, 2013. USENIX Association.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 459

ClickOS and the Art of Network Function Virtualization
Joao Martins†, Mohamed Ahmed†, Costin Raiciu‡, Vladimir Olteanu‡, Michio Honda†, Roberto

Bifulco†, Felipe Huici†
† NEC Europe Ltd. ‡ University Politehnica of Bucharest

Abstract
Over the years middleboxes have become a fundamen-
tal part of today’s networks. Despite their usefulness,
they come with a number of problems, many of which
arise from the fact that they are hardware-based: they are
costly, difficult to manage, and their functionality is hard
or impossible to change, to name a few.

To address these issues, there is a recent trend to-
wards network function virtualization (NFV), in essence
proposing to turn these middleboxes into software-based,
virtualized entities. Towards this goal we introduce
ClickOS, a high-performance, virtualized software mid-
dlebox platform. ClickOS virtual machines are small
(5MB), boot quickly (about 30 milliseconds), add little
delay (45 microseconds) and over one hundred of them
can be concurrently run while saturating a 10Gb pipe on
a commodity server. We further implement a wide range
of middleboxes including a firewall, a carrier-grade NAT
and a load balancer and show that ClickOS can handle
packets in the millions per second.

1 Introduction

The presence of hardware-based network appliances
(also known as middleboxes) has exploded, to the point
where they are now an intrinsic and fundamental part
of today’s operational networks. They are essential to
network operators, supporting a diverse set of functions
ranging from security (firewalls, IDSes, traffic scrub-
bers), traffic shaping (rate limiters, load balancers), deal-
ing with address space exhaustion (NATs) or improv-
ing performance (traffic accelerators, caches, proxies), to
name a few. Middleboxes are ubiquitous: a third of ac-
cess networks show symptoms of stateful middlebox pro-
cessing [12] and in enterprise networks there are as many
middleboxes deployed as routers and switches [37].

Despite their usefulness, recent reports and operator
feedback reveal that such proprietary middleboxes come
with a number of significant drawbacks [9]: middleboxes
are expensive to buy and manage [37], and introduc-
ing new features means having to deploy new hardware
at the next purchase cycle, a process which on average
takes four years. Hardware middleboxes cannot easily
be scaled up and down with shifting demand, and so
must provisioned to cope with peak demand, which is

This work was partly funded by the EU FP7 CHANGE (257422)
project.

wasteful. Finally, a considerable level of investment is
needed to develop new hardware-based devices, which
leaves potential small players out of the market and so
raises innovation barriers.

To address these issues, Network Function Virtual-
ization (NFV) has been recently proposed to shift mid-
dlebox processing from hardware appliances to software
running on inexpensive, commodity hardware (e.g., x86
servers with 10Gb NICs). NFV has already gained a con-
siderable momentum: seven of the world’s leading tele-
coms network operators, along with 52 other operators,
IT and equipment vendors and technology providers,
have initiated a new standards group for the virtualiza-
tion of network functions [8].

NFV platforms must support multi-tenancy, since they
are intended to concurrently run software belonging to
the operator and (potentially untrusted) third parties: co-
located middleboxes should be isolated not only from a
security but also a performance point of view [10]. Fur-
ther, as middleboxes implement a large range of func-
tionality, platforms should accommodate a wide range of
OSes, APIs and software packages.

Is it possible to build a software-based virtual-
ized middlebox platform that fits these requirements?
Hypervisor-based technologies such as Xen or KVM are
well established candidates and offer security and perfor-
mance isolation out-of-the-box. However, they only sup-
port small numbers of tenants and their networking per-
formance is unsatisfactory1. At a high-level, the reason
for the poor performance is simple: neither the hyper-
visors (Xen or KVM), nor the guest OSes (e.g., Linux)
have been optimized for middlebox processing.

In this paper we present the design, implementation
and evaluation of ClickOS, a Xen-based software plat-
form optimized for middlebox processing. To achieve
high performance, ClickOS implements an extensive
overhaul of Xen’s I/O subsystem, including changes to
the back-end switch, virtual net devices and back and
front-end drivers. These changes enable ClickOS to sig-
nificantly speed up networking in middleboxes running
in Linux virtual machines: for simple packet generation,
Linux throughput increases from 6.46 Gb/s to 9.68 Gb/s
for 1500B packets and from 0.42 Gb/s to 5.73 Gb/s for
minimum-sized packets.

1In our tests, a Xen guest domain running Linux can only reach
rates of 6.5 Gb/s on a 10Gb card for 1500-byte packets out-of-the-box;
KVM reaches 7.5 Gb/s.

1

460 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A key observation is that developing middleboxes as
applications running over Linux (and other commodity
OSes) is a complex task and uses few of the OS services
beyond network connectivity. To allow ease of develop-
ment, a much better choice is to use specialized frame-
works to program middleboxes. Click [17] is a stand-out
example as it allows users to build complex middlebox
processing configurations by using simple, well known
processing elements. Click is great for middlebox pro-
cessing, but it currently needs Linux to function and so it
inherits the overheads of commodity OSes.

To support fast, easily programmable middleboxes,
ClickOS implements a minimalistic guest virtual ma-
chine that is optimized from the ground up to run Click
processing at rates of millions of packets per second.
ClickOS images are small (5MB), making it possible
to run a large number of them (up to 400 in our tests).
ClickOS virtual machines can boot and instantiate mid-
dlebox processing in under 30 milliseconds, and can sat-
urate a 10Gb/s link for almost all packets sizes while con-
currently running as many as 100 ClickOS virtual ma-
chines on a single CPU core.

2 Problem Statement

Our goal is to build a versatile, high performance soft-
ware middlebox platform on commodity hardware. Such
a platform must satisfy a number of performance and se-
curity requirements:
Flexibility to run different types of software middle-
boxes, relying on different operating systems or frame-
works, coming from different vendors, and requested by
the operator itself or potentially untrusted third-parties.
Isolation of memory, CPU, device access and perfor-
mance to support multiple tenants on common hardware.
High Throughput and Low Delay: Middleboxes are
typically deployed in operator environments so that it is
common for them to have to handle large traffic rates
(e.g., multiple 10Gb/s ports); the platform should be
able to handle such rates, while adding only negligible
delay to end-to-end RTTs.
Scalability: Running middleboxes for third-parties
must be very efficient if it is to catch on. Ideally, the
platform should ideally support a large number of mid-
dleboxes belonging to different third-parties, as long as
only a small subset of them are seeing traffic at the same
time. This implies that platforms must be able to quickly
scale out processing with demand to make better use of
additional resources on a server or additional servers, and
to quickly scale down when demand diminishes.

How should middleboxes be programmed? The de-
fault today is to code them as applications or kernel
changes on top of commodity OSes. This allows much
flexibility in choosing the development tools and lan-

guages, at the cost of having to run one commodity OS
to support a middlebox.

In addition, a large fraction of functionality is com-
mon across different middleboxes, making it important
to support code re-use to reduce prototyping effort, and
processing re-use to reduce overhead [36].

3 Related Work

There is plenty of related work we could leverage to build
NFV platforms. Given that the goal is to isolate different
middleboxes running on the same hardware, the choice
is either containers (chroot, FreeBSD Jails, Solaris
Zones, OpenVZ [44, 45, 27]) or hypervisors (VMWare
Server, Hyper-V, KVM, Xen [40, 21, 16, 3]).
Containers are lightweight but inflexible, forcing all
middleboxes to run on the same operating system. This
is a limitation even in the context of an operator wanting
to run software middleboxes from different vendors.
Hypervisors provide the flexibility needed for multi-
tenant middleboxes (i.e., different guest operating sys-
tems are able to run on the same platform), but this is at
the cost of high performance, especially in networking.
For high-performance networking with hypervisors, the
typical approach today is to utilize device pass-through,
whereby virtual machines are given direct access to a de-
vice (NIC). Pass-through has a few downsides: it compli-
cates live migration, and it reduces scalability since the
device is monopolized by a given virtual machine. The
latter issue is mitigated by modern NICs supporting tech-
nologies such as hardware multi-queuing, VMDq and
SR-IOV [14], however the number of VMs is still lim-
ited by the number of queues offered by the device. In
this work we will show that it is possible to maintain per-
formance scalability even without device pass-through.
Minimalistic OSes and VMs: Minimalistic OSes or
micro kernels are attractive because, unlike traditional
OSes, they aim provide just the required functionality for
the job. While many minimalist OSes have been built
[22, 23, 1, 42, 43], they typically lack driver support
for a wide range of devices (especially NICs), and most
do not run in virtualized environments. With respect to
ClickOS, Mirage [19] is also a Xen VM built on top of
MiniOS, but the focus is to create Ocaml, type-safe virtu-
alized applications and, as such, its network performance
is not fully optimized (e.g., 1.7 Gb/s for TCP traffic). Er-
lang on Xen, LuaJIT and HalVM also leverage MiniOS
to provide Erlang, Lua, and Haskell programming envi-
ronments; none target middlebox processing nor are op-
timized for network I/O.
Network I/O Optimization: Routebricks [7] looked
into creating fast software routers by scaling out to a
number of servers. PacketShader [11] took advantage
of low cost GPUs to speed up certain types of network

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 461

processing. More recently, PFQ, PF RING, Intel DPDK
and netmap [25, 6, 13, 29] focused on accelerating net-
working by directly mapping NIC buffers into user-space
memory; in this work we leverage the last of these to pro-
vide a more direct pipe between NIC and VMs.

Regarding virtualization, work in the literature has
looked at improving the performance of Xen network-
ing [28, 35], and we make use of some of the tech-
niques suggested, such as grant re-use. The works
in [47, 24] look into modifying scheduling in the hyper-
visor in order to improve I/O performance; however, the
results reported are considerably lower than ClickOS. Fi-
nally, Hyper-Switch [15] proposes placing the software
switch used to mux/demux packets between NICs and
VMs inside the hypervisor. Unfortunately, the switch’s
data plane relies on open vSwitch code [26], resulting
in sub-optimal performance. More recently, two sepa-
rate efforts have looked into optimizing network I/O for
KVM [4] [32]; neither of these has focused on virtual-
izing middlebox processing, and the rates reported are
lower than those in this paper.
Software Middleboxes: Comb [36] introduces an archi-
tecture for middlebox deployments targeted at consoli-
dation. However, it does not support multi-tenancy nor
isolation, and the performance figures reported (about
4.5Gb/s for two CPU cores assuming maximum-sized
packets) are lower than the line-rate results we present
in Section 9. The work in [37] uses Vyatta software (see
below) to run software middleboxes on Amazon EC2 in-
stances. Finally, while a number of commercial offer-
ings exist (Cisco [5], Vyatta [41]), there are no publicly-
available detailed evaluations.

It is worth noting that a preliminary version of this paper
has appeared as [20]. This version includes a detailed
account of our solution and design decisions, extensive
benchmarking as well as implementation and evaluation
of a range of ClickOS middleboxes.

4 ClickOS Design

To achieve flexibility, isolation and multi-tenancy, we
rely on hypervisor virtualization, which adds an extra
software layer between the hardware and the middlebox
software which could hurt throughput or increase delay.
To minimize these effects, para-virtualization is prefer-
able to full virtualization: para-virtualization makes mi-
nor changes to the guest OSes, greatly reducing the over-
heads inherent in full virtualization such as VM exits [2]
or the need for instruction emulation [3].

Consequently, we base ClickOS on Xen [3] since its
support for para-virtualized VMs provides the possibility
to build a low-delay, high-throughput platform, though
its potential is not fulfilled out of the box (Section 6).

Middlebox Key Click Elements
Load balancer RatedSplitter, HashSwitch
Firewall IPFilter
NAT [IP|UDP|TCP]Rewriter
DPI Classifier, IPClassifier
Traffic shaper BandwidthShaper, DelayShaper
Tunnel IPEncap, IPsecESPEncap
Multicast IPMulticastEtherEncap, IGMP
BRAS PPPControlProtocol, GREEncap
Monitoring IPRateMonitor, TCPCollector
DDoS prevention IPFilter
IDS Classifier, IPClassifier
IPS IPClassifier, IPFilter
Congestion control RED, SetECN
IPv6/IPv4 proxy ProtocolTranslator46

Table 1: Key Click elements that allow developing a
wide range of middleboxes.
KVM also supports driver para-virtualization through
virtio [33], but yields lower performance (Section 6).

Programming Abstractions. Today’s software middle-
boxes are written either as user-space applications on
top of commodity OSes (e.g., Snort or Bro) or as kernel
changes (e.g., iptables, etc). Either way, C is the de-facto
programming language as it offers high performance.

Our platform aims to allow today’s middleboxes to run
efficiently in the context of virtualization. However, we
believe that there are much better ways to develop fast
middleboxes. C offers great flexibility but has high de-
velopment and debugging costs, especially in the kernel.
In addition, there is not much software one can reuse
when programming a new type of middlebox.

Finding the best programming abstraction for middle-
boxes is an interesting research topic, but we do not set
out to tackle it in this paper. Instead, we want to prag-
matically choose the best tool out of the ones we have
available today. As a result, we leverage the Click mod-
ular router software. Previous work [36] showed that a
significant amount of functionality is common across a
wide range of middleboxes; Click makes it easy to reuse
such functionality, abstracting it into a set of re-usable
elements. Click comes with over 300+ stock elements
which make it possible to construct middleboxes with
minimal effort (Table 1). Finally, Click is extensible, so
we are not limited to the functionality provided by the
stock elements. Click is of course no panacea: it does
not cover all types of middlebox processing, for instance
middleboxes that need a full-fledged TCP stack. In such
cases it is better to use a standard Linux VM.
Running Click Efficiently: By default, Click runs on
top of Linux either as a userland process (with poor per-
formance, see [30]) or as a kernel module. To get domain
isolation, we would have to run each Click middlebox
inside a Linux virtual machine. This, however, violates
our scalability requirement: even stripped down Linux
VMs are memory-hungry (128MB or more) and take 5s
to boot.

3

462 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�
��

���

������������

�
��
��
�

�
��
�

�������
��	 �������
��� �������
���

���
������

�������
���
���

���
�������������� �

���
�

�
������

�
� �

��������
���
���

��������
���
���

��������
���
���

������
��

�� ����

����
�

����� �

���
������

���������
������

���������������

� ������

� �

������
���

���

Figure 1: ClickOS architecture.

Instead, we take a step back and ask: what support
does Click need from the operating system to be able to
enable a wide range of middlebox processing? The an-
swer is, surprisingly, not much:
• Driver support to be able to handle different types of

network interfaces.
• Basic memory management to allocate different data

structures, packets, etc.
• A simple scheduler that can switch between running

Click element code and servicing interrupts (mostly
from the NICs). Even a cooperative scheduler is
enough - there is no need for pre-emptive scheduling,
or multi-threading.
The first requirement seems problematic, given the

large number of interface vendors and variety of mod-
els. Xen elegantly solves this issue through paravirtual-
ization: the guest accesses all NIC types through a single,
hardware-agnostic driver connected to the driver domain,
and the driver domain (a full-blown Linux machine with
the customary driver support) talks to the hardware itself.

Almost all operating systems meet the other two re-
quirements, so there is no need to build one from scratch:
we just need an OS that is minimalistic and is able to
boot quickly. Xen comes with MiniOS, a tiny operating
system that fits the bill and allows us to build efficient,
virtualized middleboxes without all of the unnecessary
functionality included in a conventional operating sys-
tem. MiniOS is the basis for our ClickOS VMs.

In short, our ClickOS virtualized middlebox platform
consists of (1) a number of optimizations to Xen’s net-
work I/O sub-system that allow fast networking for tra-
ditional VMs (Section 7); (2) tailor-made middlebox vir-
tual machines based on Click; and (3) tools to build and
manage the ClickOS VMs, including inserting, deleting,
and inspecting middlebox state (Figure 1).

5 ClickOS Virtual Machines

Before describing what a ClickOS virtual machine is, it
is useful to give a brief Xen background. Xen is split into
a privileged virtual machine or domain called dom0 (typ-

ically running Linux), and a set of guest or user domains
comprising the users’ virtual machines (also known as
domUs). In addition, Xen includes the notion of a driver
domain VM which hosts the device drivers, though in
most cases dom0 acts as the driver domain. Further,
Xen has a split-driver model, where the back half of a
driver runs in a driver domain, the front-end in the guest
VM, and communications between the two happen us-
ing shared memory and a common, ring-based API. Xen
networking follows this model, with dom0 containing
a netback driver and the guest VM implementing a
netfront one. Finally, event channels are essentially
Xen inter-VM interrupts, and are used to notify VMs
about the availability of packets.

MiniOS implements all of the basic functionality
needed to run as a Xen VM. MiniOS has a single ad-
dress space, so no kernel/user space separation, and a co-
operative scheduler, reducing context switch costs. Min-
iOS does not have SMP support, though this could be
added. We have not done so because a single core is suf-
ficient to support 10 Gbps line-rate real middlebox pro-
cessing, as we show later. Additionally, we scale up by
running many tiny ClickOS VMs rather than a few large
VMs using several CPU cores each.

Each ClickOS VM consists of the Click modular
router software running on top of MiniOS, but building
such a VM image is not trivial. MiniOS is intended to be
built with standard GCC and as such we can in principle
link any standard C library to it. However, Click is writ-
ten in c++, and so it requires special precautions. The
most important of these is that standard g++ depends on
(among others) ctypes.h (via glibc) which contains
Linux specific dependencies that break the standard Min-
iOS iostream libraries. To resolve this we developed
a new build tool which creates a Linux-independent c++
cross-compiler using newlibc [38].

In addition, our build tool re-designs the standard Min-
iOS toolchain so that it is possible to quickly and eas-
ily build arbitrary, MiniOS-based VMs by simply link-
ing an application’s entry point so that it starts on VM
boot; this is useful for supporting middleboxes that can-
not be easily supported by Click. Regarding libraries,
we have been conservative in the number of them we
link, and have been driven by need rather than experi-
mentation. In addition to the standard libraries provided
with the out-of-the-box MiniOS build (lwip, zlib,
libpci) we add support for libpcre, libpcap
and libssl, libraries that certain Click elements de-
pend on. The result is a ClickOS image with 216/282
Click elements, with many of the remaining ones requir-
ing a filesystem to run, which we plan to add.

Once built, booting a ClickOS image start by creat-
ing the virtual machine itself, which involves reading its
configuration, the image file, and writing a set of entries

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 463

to the Xen store, a proc-like database residing in dom0
that is used to share control information with the guest
domains. Next, we attach the VM to the back-end switch,
connecting it to physical NICs.

MiniOS boots, after which a special control thread is
created. At this point, the control thread creates an install
entry in the Xen store to allow users to install Click con-
figurations in the ClickOS VM. Since Click is designed
to run on conventional OSes such as Linux or FreeBSD
which, among other things, provide a console through
which configurations can be controlled and, given that
MiniOS does not provide these facilities, we leverage the
Xen store to emulate such functionality.

Once the install entry is created, the control thread sets
up a watch on it that monitors changes to it. When writ-
ten to, the thread launches a second MiniOS thread which
runs a Click instance, allowing several Click configura-
tions to run within a single ClickOS VM. To remove the
config we write an empty string to the Xen store entry.

We also need to support Click element handlers,
which are used to set and retrieve state in elements (e.g,
the AverageCounter element has a read counter to
get the current packet count and a write one to reset
the count); to do so, we once again leverage the Xen
store. For each VM, we create additional entries for
each of the elements in a configuration and their han-
dlers. We further develop a new Click element called
ClickOSControl which gets transparently inserted
into all configurations. This element takes care of in-
teracting, on one end, with the read and write operations
happening on the Xen store, and communicating those to
the corresponding element handlers within Click.

In order to control these mechanisms which are not
standard to all Xen VMs, ClickOS comes with its own
dom0 CLI called Cosmos (as opposed to the standard,
Xen-provided xl tool). Cosmos is built directly on top
of the Xen UI libraries (Figure 1) and therefore does not
incur any extraneous costs when processing requests. To
simplify development and user interaction, Cosmos im-
plements a SWIG [39] wrapper enabling users to auto-
matically generate Cosmos bindings for any of the SWIG
supported languages. For convenience, we have also im-
plemented a Python-based ClickOS CLI.

Finally, it is worth mentioning that while MiniOS rep-
resents a low-level development environment, program-
ming for ClickOS is relatively painless: development,
building and testing can take place in user-space Click,
and the resulting code/elements simply imported into the
ClickOS build process when ready.

6 Xen Networking Analysis

In this section we investigate where the Xen network-
ing bottlenecks are. Figure 1 illustrates the Xen network

NF-MiniOS NF-MiniOS-opt NB-vale
0

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t

(K
pp

s)

225 23
7

1200

3

32
8

250 25
0

612

8

34
4

64-byte (tx)
64-byte (rx)
1500-byte (tx)
1500-byte (rx)

Figure 2: Xen performance bottlenecks using a differ-
ent back-end switch and netfront (NF) and netback (NB)
drivers (“opt” stands for optimized).

I/O sub-system: the network driver, software switch, vir-
tual interface and netback driver in dom0 and the netfront
driver (either the Linux or MiniOS one) in the guest do-
mains, any of which could be bottlenecks.

In order to get some baseline numbers, we begin by
performing a simple throughput test. For this test we
used a server with an Intel Xeon E3-1220 3.1GHz 4-core
CPU, 16GB memory and an Intel x520-T2 dual Ether-
net port 10Gb/s card (about $1,500 including the NIC).
The server had Xen 4.2, Open vSwitch as its back-end
switch and a single ClickOS virtual machine. The VM
was assigned a single CPU core, the remainder given to
dom0.

The first result (labeled “NF-MiniOS” in Figure 2)
shows the performance of the MiniOS netfront driver
when sending (Tx, in which case we measure rates at the
netback driver in dom0) and receiving (Rx) packets. Out
of the box, the MiniOS netfront driver yields poor rates,
especially for Rx, where it can barely handle 8 Kp/s.

To improve this receive rate, we modified the net-
front driver to re-use memory grants. Memory grants are
Xen’s mechanism to share memory between two virtual
machines, in this case the packet buffers between dom0
and the ClickOS VM. By default, the driver requests a
grant for each packet, requiring an expensive hypercall
to the hypervisor (essentially the equivalent of a system
call for an OS); we changed the driver so that it receives
the grants for packet buffers at initialization time, and to
re-use these buffers for all packets handled. The driver
now also uses polling, further boosting performance.

The results are labeled “NF-MiniOS-opt” in Figure 2.
We see important improvements in Rx rates, from 8 Kp/s
to 344 Kp/s for maximum-sized packets. Still, this is far
from the 10Gb/s line rate figure of 822 Kp/s, and quite far
from the 14.8 Mp/s figure for minimum-sized packets,
meaning that other significant bottlenecks remain.

Next, we took a look at the software switch. By de-
fault, Xen uses Open vSwitch, which previous work re-
ports as capping out at 300 Kp/s [30]. As a result, we
decided to replace it with the VALE switch [31]. Be-
cause VALE ports communicate using the netmap API,

5

464 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

description function ns
get vif poll net schedule list 119
handle frags if any netbk count requests 53
alloc skb alloc skb

reserve skb
384

alloc page
for packet data

xen netbk alloc page 293

build grant op struct fills gnttab copy 96
extends the skb

with the expected size
skb put 96

build grant op struct
(for frags)

xen netbk get requests 61

add the skb
to the Tx queue

skb queue tail 53

checks for
packets received

check rx xenvif 206

packet grant copy HYPERCALL 24708

dequeue packet
from Tx queue

skb dequeue 94

copy pkt data to skb memcpy 90
put a response

in the ring
fills xen netif tx response
notify via remote irq

52

copy frag data xen netbk fill frags 179
calc checksum checksum setup 78
forward pkt to bridge xenvif receive skb 3446

Table 2: Per-function netback driver costs when sending
a batch of 32 packets. Small or negligible costs are not
listed for readability. Timings are in nanoseconds.

we modified the netback driver to implement that API,
and removed the Xen virtual interface (vif) in the pro-
cess. These changes (“NB-vale”) gave a noticeable boost
of up to 1.2 Mp/s for 64B packets, confirming that the
switch was at least partly to blame 2.

Despite the improvement, the figures were still far
from line rate speeds. Sub-optimal performance in the
presence of a fast software switch, no vif and an opti-
mized netfront driver seem to point to issues in the net-
back driver, or possibly in the communication between
netback and netfront drivers. To dig in deeper, we car-
ried out a per-function analysis of the netback driver to
determine where the major costs were coming from.

The results in Table 2 report the main costs in the
code path when transmitting a batch of 32 packets. We
obtain timings via the getnstimeofday() function,
and record them using the trace_printk function
from the lightweight FTrace tracing utility.

The main cost, as expected, comes from the hypercall,
essentially a system call between the VM and the hyper-
visor. Clearly this is required, though its cost can be sig-
nificantly amortized by techniques such as batching. The
next important overhead comes from transmitting pack-
ets from the netback driver through the vif and onto the
switch. The vif, basically a tap device, is not fundamen-
tal to having a VM communicate with the netback driver

2We did not implement Rx on this modified netback driver as the
objective was to see if the only remaining major bottleneck was the
software switch.

������������
���������
������

����������

��������������

����
�������

���

�
���
��

�
��
���

������
�

�
�����

�
�

���

�������������

������������
���������
������

����������

��������������

�������
���������

��������
������

�����������

�
���
��

������
�

�
�����

�
�

�������������

�������

Figure 3: Standard Xen network I/O pipe (top) and
our optimized, ClickOS one with packet buffers directly
mapped into the VM’s memory space.

and switch, but as shown adds non-negligible costs aris-
ing from extra queuing and packet copies. Other further
penalties come from using the Xen ring API, which for
instance requires responses to all packets transmitted in
either direction. Finally, a number of overheads are due
to sk buff management, not essential to having a VM
transmit packets to the network back-end – especially a
non-Linux VM such as ClickOS.

In the next section we discuss how we revamped the
Xen I/O network pipe in order to remove or alleviate
most of these costs.

7 Network I/O Re-Design

The Xen network I/O pipe has a number of components
and mechanisms that add overhead but that are not funda-
mental to the task of getting packets in and out of VMs.
In order to optimize this, it would be ideal if we could
have a more direct path between the back-end NIC and
switch and the actual VMs. Conceptually, we would like
to directly map ring packet buffers from the device driver
or back-end switch all the way into the VMs’ memory
space, much like certain fast packet I/O frameworks do
between kernel and user-space in non-virtualized envi-
ronments [29, 25, 6].

To achieve this, and to boost overall performance, we
take three main steps. First, we replace the standard but
sub-optimal Open vSwitch back-end switch with a high-
speed, ClickOS switch; this switch exposes per-port ring
packet buffers which are able to we map into a VM’s
memory space. Second, we observe that since in our
model the ClickOS switch and netfront driver transfer
packets between one another directly, the netback driver
becomes redundant. As a result, we remove it from the
pipe, but keep it as a control plane driver to perform
actions such as communicating ring buffer addresses
(grants) to the netfront driver. Finally, we changed the
VM netfront driver to map the ring buffers into its mem-
ory space.

These changes are illustrated in Figure 3, which con-
trasts the standard Xen network pipe (top diagram) with
ours (bottom). We dedicate the rest of this section to
providing a more detailed explanation of our optimized

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 465

switch, netback and netfront drivers (both MiniOS’ and
the Linux one) and finally a few modifications to Click.

ClickOS Switch. Given the throughput limitations of
Xen’s standard Open vSwitch back-end switch, we de-
cided to replace it with the VALE high-speed switch [18],
and to extend its functionality in a number of ways. First,
VALE only supports virtual ports, so we add the ability
to connect NICs directly to the switch. Second, we in-
crease the maximum number of ports on the switch from
64 to 256 so as to accommodate a larger number of VMs.

In addition, we add support for each individual VM to
configure the number of slots in the packet buffer ring, up
to a maximum of 2048 slots. As we will see in the evalu-
ation section, larger ring sizes can improve performance
at the cost of larger memory requirements.

Finally, we modify the switch so that its switching
logic is modular, and replace the standard learning bridge
behavior with static MAC address-to-port mappings to
boost performance (since in our environment we are in
charge of assigning MAC addresses to the VMs this
change does not in any way limit our platform’s function-
ality). All of these changes have been now upstreamed
into VALE’s main code base.

Netback Driver. We redesign the netback driver to
turn it (mostly) into a control-plane only driver. Our
modified driver is in charge of allocating memory for the
receive and transmit packet rings and their buffers and to
set-up memory grants for these so that the VM’s netfront
driver can map them into its memory space. We use the
Xen store to communicate the rings’ memory grants to
the VMs, and use the rings themselves to tell the VM
about the ring buffers’ grants; doing so ensures that the
numerous grants do not overload the Xen store.

On the data plane side, the driver is only in charge
of (1) setting up the kthreads that will handle packet
transfers between switch and netfront driver; and (2)
proxy event channel notifications between the netfront
driver and switch to signal the availability of packets.

We also make a few other optimizations to the netback
driver. Since the driver is no longer involved with ac-
tual packet transfer, we no longer use vifs nor OS-specific
data structures such as sk buffs for packet processing.
Further, as suggested in [46], we adopt a 1:1 model for
mapping kernel threads to CPU cores: this avoids unfair-
ness issues. Finally, the standard netback uses a single
event channel (a Xen interrupt) for notifying the avail-
ability of packets for both transmit and receive. Instead,
we implement separate Tx and Rx event channels that
can be serviced by different cores.

Netfront Driver. We modify MiniOS’ netfront driver
to be able to map the ring packet buffers exposed by the
ClickOS switch into its memory space. Further, since
the switch uses the netmap API [29], we implement a

netmap module for MiniOS. This module uses the stan-
dard netmap data structures and provides the same ab-
stractions as user-space netmap: open, mmap, close
and finally poll to transmit/receive packets.

Beyond these mechanisms, our netfront driver in-
cludes a few other changes
• Asynchronous Transmit: In order to speed up trans-

mit throughput, we modify the transmit function to run
asynchronously.

• Grant Re-Use: Unlike the standard MiniOS netfront
driver, we set-up grants once, and re-use them for
the lifetime of the VM. This is a well-known tech-
nique for improving the performance of Xen’s network
drivers [35].

• Linux Support: While our modifications result in im-
portant performance increases, the departure from the
standard Xen network I/O model means that we break
support for other, non-MiniOS guests. To remedy this,
we implemented a new Linux netfront driver suited
to our optimized network pipe. Using this new net-
front results in 10 Gb/s rates for most packet sizes (see
Section 8) and allows us to run, at speed, any remain-
ing middleboxes that cannot be easily implemented in
Click or on top of MiniOS.

Click Modifications. Finally, we have made a few
small changes to Click (version 2.0.1, less than 50 lines
of code), including adding new elements to send and re-
ceive packets via the netfront driver, and optimizations
to the InfiniteSource element to allow it to reach
high packet rates.

ClickOS Prototype. The ClickOS prototype is open-
source software. It includes changes to the XEN back-
end (around 1000 LoC) and the frontend (1200 LoC). We
are beginning to upstream these changes to Xen, but this
process is lengthy; in the meantime, we plan to make the
code available so that prospective users can just down-
load our patches and recompile the netback and netfront
modules (or recompile the dom0 kernel altogether).

8 Base Evaluation

Having presented the ClickOS architecture, its compo-
nents and their optimization, we now provide a thorough
base evaluation of the system. After this, in Section 9, we
will describe the implementation of several middleboxes
as well as performance results for them.

Experimental Set-up. The ClickOS tests in this sec-
tion were conducted using either (1) a low-end, single-
CPU Intel Xeon E3-1220 server with 4 cores at 3.1 GHz
and 16 GB of DDR3-ECC RAM (most tests); or (2) a
mid-range, single-CPU Intel Xeon E5-1650 server with
6 cores at 3.2 GHz and 16 GB of DDR3-ECC RAM
(switch and scalability tests). In all cases we used Linux

7

466 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 25

64 128 256 512 1024

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Packet size (bytes)

1 10Gb port

10 Gb/s

2 10Gb ports

20 Gb/s

Figure 4: ClickOS switch perfor-
mance using one and two 10 Gb/s
NIC ports.

0 50 100 150 200 250 300 350 400

VM ID

0

50

100

150

200

T
im

e
(m

s)

VM boot
MBOX boot

Figure 5: Time to create and boot
400 ClickOS virtual machines in se-
quence and to boot a Click configura-
tion within each of them.

Xen dom0
ClickOS

KVM virtio
Linux domU

KVM e1000
0

20

40

60

80

100

120

D
el

ay
(μ

s)

41 45

69

106 107avg
min

Figure 6: Idle VM ping delays for
ClickOS, a Linux Xen VM, dom0,
and KVM using the e1000 or virtio
drivers.

3.6.10 for dom0 and domU, Xen 4.2.0, Click 2.0.1 and
netmap’s pkt-gen application for packet generation
and rate measurements. All packet generation and rate
measurements on an external box are conducted using
one or more of the low-end servers, and all NICs are
connected through direct cables. For reference, 10Gb/s
equates to about 14.8 Mp/s for minimum-sized packets
and 822 Kp/s for maximum-sized packets.

ClickOS Switch. The goal is to ensure that the switch-
ing capacity is high so that it does not become a bottle-
neck as more ClickOS VMs, cores and NICs are added
to the system.

For this test we rely on a Linux (i.e., non-Xen) system.
We use a user-space process running pkt-gen to gen-
erate packets towards the switch, and from there onto a
single 10 Gb/s Ethernet port; a separate, low-end server
then uses pkt-gen once again to receive the packets
and to measure rates. We then add another pkt-gen
user-process and 10Gb/s Ethernet port to test scalability.
Each pkt-gen/port pair uses a single CPU core (so two
in total for the 20Gb/s test).

For the single port pair case, the switch saturated the
10Gb/s pipe for all packet sizes (Figure 4). For the two
port pairs case, the switch fills up the entire cumulative
20Gb/s pipe for all packet sizes except minimum-sized
ones, for which it achieves 70% of line rate. Finally, we
also conducted receive experiments (where packets are
sent from an external box towards the system hosting the
switch) which resulted in roughly similar rates.

Memory Footprint. As stated previously, the basic
memory footprint of a ClickOS image is 5MB (includ-
ing all the supported Click elements). In addition to this,
a certain amount of memory is needed to allocate the
netmap ring packet buffers. How much memory depends
on the size of the rings (i.e., how many slots or packets
the ring can hold at a time), which can be configured on
a per-ClickOS VM basis.

To get an idea of how much memory might be re-
quired, Table 3 reports the memory requirements for dif-

Ring size Required memory (KB) # of grants
64 264 65

128 516 129
256 1032 258
512 2064 516

1024 4128 1032
2048 8260 2065

Table 3: Memory requirements for different ring sizes.

ferent ring sizes, ranging from kilobytes for small rings
all the way up to 8MB for a 2048-slot ring. As we will
see later on in this section, this is a trade-off between the
higher throughput that can be achieved with larger rings
and the larger number of VMs that can be concurrently
run when using small ring sizes. Ultimately, it might be
unlikely that a single ClickOS VM will need to handle
very large packet rates, so in practice a small ring size
might suffice. It is also worth pointing out that larger
rings require more memory grants; while there is a max-
imum number of grants per VM that a Xen system can
have, this limit is configurable at boot time.

What about the state that certain middleboxes might
contain? To get a feel for this, we inserted 1,000 for-
warding rules into an IP router, 1,000 rules into a firewall
and 400 into an IDS (see Section 9 for a description of
these middleboxes); the memory consumption from this
was 20KB, 87KB and 30KB, respectively, rather small
amounts. All in all, even if we use large ring sizes, a
ClickOS VM requires approximately 15MB of memory.

Boot Times. In this set of tests we use the Cosmos tool
to create ClickOS VMs and measure how long it takes
for them to boot. A detailed breakdown of the ClickOS
boot process may be found in [20]; for brevity, here we
provide a summary. During boot up most of the time is
spent issuing and carrying out the hypercall to create the
VM (5.2 milliseconds), building the image (7.1 msecs)
and creating the console (4.4 msecs), for a total of about
20.8 msecs. Adding roughly 1.4 msecs to attach the VM
to the back-end switch and about 6.6 msecs to install a
Click configuration brings the total to about 28.8 msecs

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 467

from when the command to create the ClickOS VM is
issued until the middlebox is up and running.

Next we measured how booting large numbers of
ClickOS VMs on the same system affects boot times.
For this test we boot an increasing number of VMs in
sequence and measure how long it takes for each of them
to boot and install a Click configuration (Figure 5). Both
the boot and startup times increase with the number of
VMs, up to a maximum of 219 msecs boot and 20.0
msecs startup for the 400th VM. This increase is due to
contention on the Xen store and could be improved upon.

Delay. Most middleboxes are meant to work transpar-
ently with respect to end users, and as such, should in-
troduce little delay when processing packets. Virtualiza-
tion technologies are infamous for introducing extra lay-
ers and with them additional delay, so we wanted to see
how ClickOS’ streamlined network I/O pipe would fare.

To set-up the experiment, we create a ClickOS VM
running an ICMP responder configuration based on the
ICMPPingResponder element. We use an external
server to ping the ClickOS VM and measure RTT. Fur-
ther, we run up to 11 other ClickOS VMs that are either
idle, performing a CPU-intensive task (essentially an in-
finite loop) or a memory-intensive-one (repeatedly allo-
cating and deallocating several MBs of memory).

The results show low delays of roughly 45 μsecs for
the test with idle VMs, a number that stays fairly con-
stant as more VMs are added. For the memory intensive
task test the delay is only slightly worse, starting again at
45 μsecs and ramping up to 64 μsecs when running 12
VMs. Finally, the CPU intensive task test results in the
largest delays (RTTs of up to 300 μsecs), though these
are still small compared to Internet end-to-end delays.

Next, we compared ClickOS’ idle delay to that of
other systems such as KVM and other Xen domains
(Figure 6). Unsurprisingly, dom0 has a small delay of
41 μsecs since it does not incur the overhead of going
through the netback and netfront drivers. This overhead
does exist when measuring delay for the standard, un-
optimized netback/netfront drivers of a Xen Linux VM
(106 μsecs). KVM, in comparison, clocks in at 69 μsecs
when using its para-virtualized virtio drivers and 107
μsecs for its virtualized e1000 driver.

Throughput. In the next batch of tests we perform a
number of baseline measurements to get an understand-
ing of what packet rates ClickOS can handle. All of these
tests are done on the low-end servers, with one CPU core
dedicated to the VM and the remaining three to dom0.

Before testing a ClickOS VM we would like to bench-
mark the underlying network I/O pipe, from the NIC
through to the back-end switch, netback driver and the
netfront one. To do so, we employ our build tool to create
a special VM consisting of only MiniOS and pkt-gen

on top of it. After MiniOS boots, pkt-gen begins to
immediately generate packets (for Tx tests) or measure
rates (Rx). We conduct the experiment for different ring
sizes (set using a sysctl command to the netmap ker-
nel module) and for different packet sizes (for Tx tests
this is set via Cosmos before the VM is created).

Figure 7 reports the results of the measurements. On
transmit, the first thing to notice is that our optimized
I/O pipe achieves close to line rate for minimum-sized
packets (14.2 Mp/s using 2048-slot rings out of a max of
14.8 Mp/s) and line rate for all other sizes. Further, ring
size matters, but mostly for minimum-sized packets. The
receive performance is also high but somewhat lower due
to extra queuing overheads at the netfront driver.

With these rates in mind, we proceed to deriv-
ing baseline numbers for ClickOS itself. In this
case, we use a simple Click configuration based
on the AverageCounter element to measure re-
ceive rates and another one based on our modified
InfiniteSource to generate packets. Figure 7(c)
shows ClickOS’ transmit performance, which is com-
parable to that produced by the pkt-gen VM, meaning
that at least for simple configurations ClickOS adds lit-
tle overhead. The same is true for receive, except for
minimum-sized packets, where the rate drops from about
12.0 Mp/s to 9.0 Mp/s.

For the last set of throughput tests we took a look at
the performance of our optimized Linux domU netfront
driver, comparing it to that of a standard netfront/Linux
domU and KVM. For the latter, we used Linux version
3.6.10, the emulated e1000 driver, Vhost enabled, the
standard Linux bridge, and pkt-gen once again to gen-
erate and measure rates. As seen in Figure 8 the Tx
and Rx rates for KVM and the standard Linux domU
are fairly similar, reaching only a fraction of line rate for
small packet sizes and up to 7.88 Gb/s (KVM) and 6.46
Gb/s (Xen) for maximum-sized ones. The optimized net-
front/Linux domU, on the other hand, hits 8.53 Mp/s for
Tx and 7.26 Mp/s for Rx for 64-byte frames, and practi-
cally line rate for 256-byte packets and larger.

State Insertion. In order for our middlebox platform to
be viable, it has to allow the middleboxes running on it
to be quickly configured. For instance, this could involve
inserting rules into a firewall or IDS, or adding extra ex-
ternal IP addresses to a carrier-grade NAT. In essence, we
would like to test the performance of ClickOS element
handlers and their use of the Xen store to communicate
state changes. In this test we use Cosmos to perform a
large number of reads and writes to a dummy ClickOS
element with handlers, and measure how long these take
for different transaction sizes (i.e., the number of bytes
in question for each read and write operation).

Figure 9 reports read times of roughly 9.4 msecs and
writes of about 0.1 msecs, numbers that fluctuate little

9

468 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 128 256 512 1024 1472
Packet size (Bytes)

0

2

4

6

8

10

12

14
T

hr
ou

gh
pu

t
(M

pp
s) 64 ring

128 ring
256 ring
512 ring
1024 ring
2048 ring
64 ring
128 ring
256 ring
512 ring
1024 ring
2048 ring

0

1024 ring 2

g 4

g 6

8

10

T
hr

ou
gh

pu
t

(G
b/

s)

(a) Transmit performance (MiniOS +pkt-gen).

64 128 256 512 1024 1472
Packet size (Bytes)

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t

(M
pp

s)

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(G
b/

s)

(b) Receive performance (MiniOS +pkt-gen).

64 128 256 512 1024 1472
Packet size (Bytes)

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t

(M
pp

s)

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(G
b/

s)

(c) Transmit performance (ClickOS).

64 128 256 512 1024 1472
Packet size (Bytes)

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t

(M
pp

s)

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(G
b/

s)

(d) Receive performance (ClickOS).

Figure 7: Performance of a single VM pkt-gen running on top of MiniOS/ ClickOS on a single CPU core, when
varying the number of ring slots. The line graphs correspond to the right-hand y-axis.

across different transaction sizes. Note that read takes
longer since it basically involves doing a write, wait-
ing for the result, and then reading it. However, the
more critical operation for middleboxes should be write,
since it allows state insertion and deletion. For complete-
ness, we also include measurements when using the XEN
python API; in this case, the read and write operations
jump to 10.1 and 0.3 msecs, respectively.

Chaining. Is it quite common for middleboxes to be
chained one after the other in operator networks (e.g.,
a firewall followed by an IDS). Given that ClickOS has
the potential to host large numbers of middleboxes on
the same server, we wanted to measure the system’s per-
formance when chaining different numbers of middle-
boxes back-to-back. In greater detail, we instantiate one
ClickOS VM to generate packets as fast as possible, an-
other one to measure them, and an increasing number of
intermediate ClickOS VMs to simply forward them. As
with other tests, we use a single CPU core to handle the
VMs and assign the rest to dom0.

As expected, longer chains result in lower rates, from
21.7 Gb/s for a chain of length 2 (just a generator VM
and the VM measuring the rate) all the way down to 3.1
Gb/s for a chain with 9 VMs (Figure 10). Most of the

decrease is due to the single CPU running the VMs being
overloaded, but also because of the extra copy operations
in the back-end switch and the load on dom0. The former
could be alleviated with additional CPU cores; the latter
by having multiple switch instances (which our switch
supports) or driver domains (which Xen does).

Scaling Out. In the final part of our platform’s base
evaluation we use our mid-range server to test how well
ClickOS scales out with additional VMs, CPU cores and
10 Gb/s NICs. For the first of these, we instantiate an in-
creasing number of ClickOS VMs, up to 100 of them. All
of them run on a single CPU core and generate packets as
fast as possible towards an outside box which measures
the cumulative throughput. In addition, we measure the
individual contribution of each VM towards the cumu-
lative rate in order to ensure that the platform is fairly
scheduling the VMs: all of VMs contribute equally to
the rate and that none are starved.

Figure 11 plots the results. Regardless of the number
of VMs, we get a cumulative throughput equivalent to
line rate for 512-byte packets and larger and a rate of 4.85
Mp/s for minimum-sized ones. The values on top of the
bars represent the standard deviation for all the individual

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 469

64 128 256 512 1024 1472
Packet size (Bytes)

0

1

2

3

4

5

6

7

8
T

hr
ou

gh
pu

t
(M

pp
s)

Rx KVM
Tx KVM
Rx Xen
Tx Xen
Rx opt Xen
Tx opt Xen

Figure 8: Linux domU performance
with an optimized (opt) netmap-
based netfront driver versus the per-
formance of out-of-the-box Xen and
KVM Linux virtual machines.

100 300 500 700 900

Transaction size (Bytes)

10−1

100

101

T
im

e
(m

s) Python read
Cosmos read
Python write
Cosmos write

Figure 9: ClickOS middlebox state
insertion (write) and retrieval (read)
for different transaction sizes (log
scale).

2 3 4 5 6 7 8 9
Chain length

0.0

0.5

1.0

1.5

T
hr

ou
gh

pu
t

(M
pp

s)

64-byte pkts
1472-byte pkts

64-byte pkts
1472-byte pkts

0

5

10

15

1472 byte pkts1472 byte pkts 20

T
hr

ou
gh

pu
t

(G
b/

s)

Figure 10: Performance when chaining
ClickOS VMs back-to-back. The first
VM generates packets, the ones in the
middle forward them and the last one
measures rates. Ring size is set to 64
slots.

20 40 60 80 100
Number of VMs

0
1
2
3
4
5
6

T
hr

ou
gh

pu
t

(M
pp

s)

±0
.0

15

±0
.0

29

±0
.0

31

±0
.0

27

±0
.0

24

±0
.0

17

±0
.0

19

±0
.0

25

±0
.0

23

±0
.0

41

±0
.1

43

±0
.0

25

±0
.0

72

±0
.0

19

±0
.0

27

±0
.3

11

±0
.1

93

±0
.1

36

±0
.1

52

±0
.0

47

±0
.0

05

±0
.0

08

±0
.0

08

±0
.0

08

±0
.0

15

±0
.0

02

±0
.0

02

±0
.0

03

±0
.0

03

±0
.0

05
64-byte
128-byte

256-byte
512-byte

1024-byte
1472-byte

Figure 11: Running many ClickOS packet generator
VMs on one core and a 10 Gb/s port. Fairness is shown
by the low standard deviations above the the bars.

rates contributed by each VM; the fact that these values
are rather low confirms fairness among the VMs.

Next, we test ClickOS’ scalability with respect to ad-
ditional CPU cores and 10 Gb/s ports. We use one packet
generator ClickOS VM per port, up to a maximum of
six ports. In addition, we assign two cores to dom0 and
the remaining four to the ClickOS VMs in a round-robin
fashion. Each pair of ports is connected via direct ca-
bles to one of our low-end servers and we calculate the
cumulative rate measured at them; ring size is 1024.

For maximum-sized packets we see a steady, line-rate
increase as we add ports, VMs and CPU cores, up to 4
ports (Figure 12). After this point, VMs start sharing
cores (our system has six of them, with four of them as-
signed to the VMs) and the performance no longer scales
linearly. For the final experiment we change the config-
uration that the ClickOS VMs are running from a packet
generator to one that bounces packets back onto the same
interface that they came on (line graphs in Figure 12). In
this configuration, ClickOS rates go up to 27.5 Gb/s.

Scaling these experiments further requires a CPU with
more cores than in our system, or adding NUMA sup-
port to ClickOS so that performance scales linearly with
additional CPU packages; the latter is our future work.

64 128 256 512 1024 1472
Packet size (Bytes)

0
5
10
15
20
25
30
35
40

T
hr

ou
gh

pu
t

(G
b/

s)

2 port tx
3 port tx
4 port tx

5 port tx
6 port tx
1 port fwd

2 port fwd
3 port fwd
4 port fwd

Figure 12: Cumulative throughput when using multiple
10 Gb/s ports and one ClickOS VM per port to (1) send
out traffic (tx) or (2) forward traffic (fwd).

9 Middlebox Implementations

Having evaluated the baseline performance of ClickOS,
we now turn our attention to evaluating its performance
when running actual middleboxes. Clearly, since the
term middleboxes covers a wide range of processing, ex-
haustively testing them all is impossible. We therefore
evaluate the performance of ClickOS on a set candidate
middleboxes which vary in the type of workload they
generate.

For these set of tests we use two of our low-end servers
connected via two direct cables, one per pair of Ethernet
ports. One of the servers generates packets towards the
other server, which runs them through a ClickOS mid-
dlebox and forwards them back towards the first server
where their rate is measured. The ClickOS VM is as-
signed a single CPU core, with the remaining three given
to dom0. We test each of the following middleboxes:
Wire (WR): A simple “middlebox” which sends pack-
ets from its input to its output interface. This configura-
tion serves to give a performance baseline.
EtherMirror (EM): Like wire, but also swap the Eth-
ernet source and destination fields.
IP Router (IR): A standards-compliant IPv4 router
configured with a single rule.

11

470 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WR EM IR FW CN BR LB FM IDS
0

1

2

3

4

5

6
T

hr
ou

gh
pu

t
(M

pp
s)

64-byte
128-byte

256-byte
512-byte

1024-byte
1500-byte

Figure 13: Performance for different ClickOS middle-
boxes and packet sizes using a single CPU core.

Firewall (FW): Based on the IPFilter element and
configured with ten rules, none matching any packets.
Carrier Grade NAT (CN): An almost standards-
compliant carrier-grade NAT. To stress the NAT, each
packet has a different set of source and destination port
numbers. Using a single flow/set of ports results in a
higher rate of 5.1 Mp/s for minimum-sized packets.
Software BRAS (BR): An implementation of a Broad-
band Remote Access Server (BRAS), including PPPoE
session handling. The data plane checks session num-
bers and PPPoE/PPP message types, strips tunnel head-
ers, and performs IP lookup and MAC header re-writing.
Intrusion Detection System (IDS): A simple Intrusion
Detection System based on regular expression matching.
The reported results are for a single rule that matches the
incoming packets.
Load Balancer (LB): This re-writes packet source
MAC addresses in a round-robin fashion based on the
IP src/dst, port src/dst and type 5-tuple in order to split
packets to different physical ports.
Flow Monitor (FM) retains per flow (5-tuple) statistics.

Figure 13 reports throughput results for the various
middleboxes. Overall, ClickOS performs well, achiev-
ing almost line rate for all configurations for 512-byte
and larger packets (the BRAS and CG-NAT middleboxes
have rates slightly below the 2.3 Mp/s line rate figure).
For smaller packet sizes the percentage of line rate drops,
but ClickOS is still able to process packets in the mil-
lions/second.

To get and idea of how this relates to a real-world traf-
fic matrix, compare this to an average packet size of 744
bytes reported by a recent study done on a tier-1 OC192
(about 10Gb/s) backbone link [34]: if we take our target
to be packets of around this size, all middleboxes shown
can sustain line rate.

Naturally, some of these middleboxes fall short of be-
ing fully functional, and different configurations (e.g., a
large number of firewall rules) would cause their perfor-
mance to drop from what we present here. Still, we be-

lieve these figures to be high enough to provide a sound
basis upon which to build production middleboxes. The
carrier-grade NAT, for instance, is proof of this: it is fully
functional, and in stress tests it is still able to handle
packets in the millions/second.

10 Conclusions

This paper has presented ClickOS, a Xen-based vir-
tualized platform optimized for middlebox processing.
ClickOS can turn Network Function Virtualization into
reality: it runs hundreds of middleboxes on commod-
ity hardware, offers millions of packets per second pro-
cessing speeds and yields low packet delays. Our ex-
periments have shown that a low-end server can forward
packets at around 30Gb/s.

ClickOS is proof that software solutions alone are
enough to significantly speed up virtual machine pro-
cessing, to the point where the remaining overheads are
dwarfed by the ability to safely consolidate heteroge-
neous middlebox processing onto the same hardware.
ClickOS speeds up networking for all Xen virtual ma-
chines by applying well known optimizations including
reducing the number of hypercalls, use of batching, and
removing unnecessary software layers and data paths.

The major contribution of ClickOS is adopting Click
as the main programming abstraction for middleboxes
and creating a tailor-made guest operating system
to run Click configurations. Such specialization al-
lows us to optimize the runtime of middleboxes to the
point where they boot in milliseconds, while allowing
us to support a wide range of functionality. Our im-
plementations of a software BRAS and a Carrier-Grade
NAT show that ClickOS delivers production-level perfor-
mance when running real middlebox functionality.

In the end, we believe that ClickOS goes beyond re-
placing hardware middleboxes with the software equiva-
lent. Small, quick-to-boot VMs make it possible to offer
personalized processing (e.g., firewalls) to a large num-
ber of users with comparatively little hardware. Boot
times in the order of milliseconds allow fast scaling
of processing dynamically (e.g., in response to a flash
crowd) as well as migration with negligible down-time.
Finally, ClickOS could help with testing and deployment
of new features by directing subsets of flows to VMs run-
ning experimental code; issues with the features would
then only affect a small part of the traffic, and even VMs
crashing would not represent a major problem since they
could be re-instantiated in milliseconds.

Acknowledgments
The authors are in debt to Adam Greenhalgh for initial
ideas and work towards ClickOS. The research leading to
these results was partly funded by the EU FP7 CHANGE
project (257322).

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 471

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for unix development. In
USENIX Conference, pages 93–112, 1986.

[2] O. Agesen, J. Mattson, R. Rugina, and J. Shel-
don. Software techniques for avoiding hardware
virtualization exits. In Proceedings of the 2012
USENIX conference on Annual Technical Confer-
ence, USENIX ATC’12, pages 35–35, Berkeley,
CA, USA, 2012. USENIX Association.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the Art of Virtualization. In Proc. ACM
SOSP, 2003, New York, NY, USA, 2003. ACM.

[4] A. Cardigliano, L. Deri, J. Gasparakis, and
F. Fusco. vpf ring: towards wire-speed network
monitoring using virtual machines. In Proceedings
of the 2011 ACM SIGCOMM conference on Inter-
net measurement conference, IMC ’11, pages 533–
548, New York, NY, USA, 2011. ACM.

[5] Cisco. Cisco Cloud Services Router 1000v Data
Sheet. http://www.cisco.com/en/US/
prod/collateral/routers/ps12558/
ps12559/data_sheet_c78-705395.
html, July 2012.

[6] L. Deri. Direct NIC Access. http://www.
ntop.org/products/pf_ring/dna/, De-
cember 2011.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy. Routebricks: exploiting paral-
lelism to scale software routers. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 15–28, New
York, NY, USA, 2009. ACM.

[8] ETSI. Leading operators create ETSI stan-
dards group for network functions virtu-
alization. http://www.etsi.org/
index.php/news-events/news/
644-2013-01-isg-nfv-created, Septem-
ber 2013.

[9] ETSI Portal. Network Functions Virtualisation: An
Introduction, Benefits, Enablers, Challenges and
Call for Action. http://portal.etsi.org/
NFV/NFV_White_Paper.pdf, October 2012.

[10] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet process-
ing. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architec-
tures, and protocols for computer communication,
SIGCOMM ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[11] S. Han, K. Jang, K. Park, and S. Moon. Packet-
shader: a gpu-accelerated software router. In Pro-
ceedings of the ACM SIGCOMM 2010 conference,
SIGCOMM ’10, pages 195–206, New York, NY,
USA, 2010. ACM.

[12] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to
extend tcp? In Proc. ACM IMC, 2011.

[13] Intel. Intel DPDK: Data Plane Development Kit.
http://dpdk.org, September 2013.

[14] Intel. Intel Virtualization Technology for Connec-
tivity. http://www.intel.com/content/
www/us/en/network-adapters/
virtualization.html, September 2013.

[15] M. C. Kaushik Kumar Ram, Alan L. Cox and
S. Rixner. Hyper-switch: A scalable software vir-
tual switching architecture. In Proc. of USENIX An-
nual Technical Conference, 2013.

[16] A. Kivity, Y. Kamay, K. Laor, U. Lublin, and
A. Liguori. Kvm: The linux virtual machine moni-
tor. In Proc. of the Linux Symposium, 2007.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans-
actions on Computer Systems, August 2000, 2000.

[18] Luigi Rizzo. VALE, a Virtual Local Ethernet.
http://info.iet.unipi.it/˜luigi/
vale/, July 2012.

[19] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating sys-
tems for the cloud. SIGPLAN Not., 48(4):461–472,
Mar. 2013.

[20] J. Martins, M. Ahmed, C. Raiciu, and F. Huici.
Enabling fast, dynamic network processing with
clickos. In HotSDN, pages 67–72, 2013.

[21] Microsoft Corporation. Microsoft
Hyper-V Server 2012. http://www.
microsoft.com/en-us/server-cloud/
hyper-v-server/default.aspx, Septem-
ber 2013.

13

472 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[22] Minix3. Minix3. http://www.minix3.org/,
July 2012.

[23] MIT Parallel and Distributed Operating Sys-
tems Group. MIT Exokernel Operating Sys-
tem. http://pdos.csail.mit.edu/exo.
html, March 2013.

[24] Nadav HarEl and Abel Gordon and Alex Landau
and Muli Ben-Yehuda and Avishay Traeger and
Razya Ladelsky. Efcient and Scalable Paravirtual
I/O System. In Proc. of USENIX Annual Technical
Conference, 2013.

[25] N.Bonelli, A. D. Pietro, S. Giordano, and G. Pro-
cissi. On multi–gigabit packet capturing with
multi–core commodity hardware. In Passive and
Active Measurement conference (PAM), 2012.

[26] Open vSwitch. Production Quality, Multilayer
Open Virtual Switch. http://openvswitch.
org/, March 2013.

[27] Openvz.org. OpenVZ Linux Containers. http:
//openvz.org/Main_Page, September 2013.

[28] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox,
and S. Rixner. Achieving 10 gb/s using safe and
transparent network interface virtualization. In Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution envi-
ronments, VEE ’09, pages 61–70, New York, NY,
USA, 2009. ACM.

[29] L. Rizzo. netmap: A novel framework for fast
packet i/o. In Proc. USENIX Annual Technical
Conference, 2012.

[30] L. Rizzo, M. Carbone, and G. Catalli. Transparent
acceleration of software packet forwarding using
netmap. In A. G. Greenberg and K. Sohraby, ed-
itors, INFOCOM, pages 2471–2479. IEEE, 2012.

[31] L. Rizzo and G. Lettieri. Vale, a switched ether-
net for virtual machines. In Proceedings of the 8th
international conference on Emerging networking
experiments and technologies, CoNEXT ’12, pages
61–72, New York, NY, USA, 2012. ACM.

[32] L. Rizzo, G. Lettieri, and V. Maffione. Speeding up
packet i/o in virtual machines. In Proc. ACM/IEEE
ANCS, 2013.

[33] R. Russell. virtio: towards a de-facto standard
for virtual i/o devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103, July 2008.

[34] P. M. Santiago del Rio, D. Rossi, F. Gringoli,
L. Nava, L. Salgarelli, and J. Aracil. Wire-speed
statistical classification of network traffic on com-
modity hardware. In Proceedings of the 2012 ACM
conference on Internet measurement conference,
IMC ’12, pages 65–72, New York, NY, USA, 2012.
ACM.

[35] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt.
Bridging the gap between software and hardware
techniques for i/o virtualization. In USENIX 2008
Annual Technical Conference on Annual Technical
Conference, ATC’08, pages 29–42, Berkeley, CA,
USA, 2008. USENIX Association.

[36] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and implementation of a consoli-
dated middlebox architecture. In Proceedings of the
9th USENIX conference on Networked Systems De-
sign and Implementation, NSDI’12, pages 24–24,
Berkeley, CA, USA, 2012. USENIX Association.

[37] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratsanamy, and V. Sekarl. Making middleboxes
someone else’s problem: Network processing as a
cloud service. In Proc. ACM SIGCOMM, 2012.

[38] Sourceware.org. The Newlib Homepage.
http://sourceware.org/newlib/,
September 2013.

[39] Swig.org. Simplified Wrapper and Interface Gen-
erator. http://swig.org, September 2013.

[40] VMware. VMware Virtualization Software for
Desktops, Servers and Virtual Machines for Pub-
lic and Private Cloud Solutions. http://www.
vmware.com, July 2012.

[41] Vyatta. The Open Source Networking Community.
http://www.vyatta.org/, July 2012.

[42] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the denali isolation kernel. SIGOPS
Oper. Syst. Rev., 36(SI):195–209, Dec. 2002.

[43] Wikipedia. L4 microkernel family.
http://en.wikipedia.org/wiki/L4_
microkernel_family, July 2012.

[44] Wikipedia. FreeBSD Jail. http://en.
wikipedia.org/wiki/FreeBSD_jail,
September 2013.

[45] Wikipedia. Solaris Containers. http:
//en.wikipedia.org/wiki/Solaris_
Containers, September 2013.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 473

[46] Xen Blog. Xen Network: The Future Plan. http:
//blog.xen.org/index.php/2013/06/
28/xen-network-the-future-plan/,
September 2013.

[47] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu.
vturbo: Accelerating virtual machine i/o process-
ing using designated turbo-sliced core. In Proc. of
USENIX Annual Technical Conference, 2013.

15

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 475

SENIC: Scalable NIC for End-Host Rate Limiting
Sivasankar Radhakrishnan∗, Yilong Geng+, Vimalkumar Jeyakumar+,

Abdul Kabbani†, George Porter∗, Amin Vahdat†∗
∗ University of California, San Diego + Stanford University † Google Inc.

{sivasankar, gmporter, vahdat}@cs.ucsd.edu {gengyl08, jvimal}@stanford.edu akabbani@google.com

Abstract
Rate limiting is an important primitive for managing
server network resources. Unfortunately, software-based
rate limiting suffers from limited accuracy and high CPU
overhead, and modern NICs only support a handful of
rate limiters. We present SENIC, a NIC design that can
natively support 10s of thousands of rate limiters—100x
to 1000x the number available in NICs today. The key
idea is that the host CPU only classifies packets, en-
queues them in per-class queues in host memory, and
specifies rate limits for each traffic class. On the NIC,
SENIC maintains class metadata, computes the transmit
schedule, and only pulls packets from host memory when
they are ready to be transmitted (on a real time basis). We
implemented SENIC on NetFPGA, with 1000 rate lim-
iters requiring just 30KB SRAM, and it was able to accu-
rately pace packets. Further, in a memcached benchmark
against software rate limiters, SENIC is able to sustain
up to 250% higher load, while simultaneously keeping
tail latency under 4ms at 90% network utilization.

1 Introduction

Today’s trend towards consolidating servers in dense
data centers necessitates careful resource management.
It is hence unsurprising that there have been several re-
cent proposals to manage and allocate network band-
width to different services, tenants and traffic flows in
data centers. This can be a challenge given the bursty
and unpredictable nature of data center traffic, which has
necessitated new designs for congestion control [29].

Many of these recent proposals can be realized on
top of a simple substrate of programmable rate limiters.
For example, Seawall [38], Oktopus [4], EyeQ [12] and
Gatekeeper [35] use rate limiters between pairs of com-
municating virtual machines to provide tenant rate guar-
antees. QCN [1] and D3 [40] use explicit network feed-
back to rate limit traffic sources. Such systems need to
support thousands of rate limited flows or traffic classes,
especially in virtual machine deployments.

Unfortunately these new ideas have been hamstrung
by the inability of current NIC hardware to support more
than a handful of rate limiters (e.g., 8–128) [11, 18]. This
has resulted in delegating packet scheduling function-
ality to software, which is unable to keep up with line
rates, while diverting CPU resources away from appli-

Property Hardware Software
Scales to many classes × �

Works at high link speeds � ×
Low CPU overhead � ×

Precise rate enforcement � ×
Supports hypervisor bypass � ×

Table 1: Pros and cons of current hardware and software based
approaches to rate limiting.

cation processing. As networks get faster, this problem
will only get worse since the capabilities of individual
cores will likely not increase. We are left with a com-
promise between precise hardware rate limiters that are
few in number [14, 38] and software rate limiters that
support more flows but suffer from high CPU overhead
and burstiness (see Table 1). Software rate limiters also
preclude VMs from bypassing the hypervisor for better
performance [20, 24].

The NIC is an ideal place to offload common case or
repetitive network functions. Features such as segmen-
tation offload (TSO), and checksum offload are widely
used to improve CPU performance as we scale commu-
nication rates. However, a key missing functionality is
scalable rate limiting.

In this work, we present SENIC, a NIC architecture
that combines the scalability of software rate limiters
with the precision and low overhead of hardware rate
limiters. Specifically, in hardware, SENIC supports 10s
of thousands of rate limiters, 100–1000x the number
available in today’s NICs. The key insight in SENIC is
to invert the current duties of the host and the NIC: the
OS stores packet queues in host memory, and classifies
packets into them. The NIC handles packet scheduling
and proactively pulls packets via host memory DMA for
transmission. This late-binding enables SENIC to main-
tain transmit queues for many classes in host memory,
while the NIC enforces precise rate limits in real-time.

This paper’s contributions are: (1) identifying the lim-
itations of current operating system and NIC capabilities,
(2) the SENIC design that provides scalable rate lim-
iting with low CPU overhead, and supports hypervisor
bypass, (3) a unified scheduling algorithm that enforces
strict rate limits and gracefully falls back to weighted
sharing if the link is oversubscribed, and (4) evaluating
SENIC through implementation of a software prototype
and a hardware 10G-NetFPGA prototype. Our evalua-

1

476 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion shows that SENIC can pull packets on-demand and
achieve (nearly) perfect packet pacing. SENIC sustains
43–250% higher memcached load than current software
rate limiters, and achieves low tail latency under 4ms
even at high loads. SENIC isolates memcached from
bandwidth intensive tenants, and sustains the configured
rate limits for all tenants even at high loads (9Gb/s), un-
like current approaches.

2 Motivation

We motivate SENIC by describing two capabilities
which rely on scalable rate limiting, then describe the
limitations of current NICs which prevent these capabil-
ities from being realized.1

2.1 The Need For Scalable Rate Limiting
Scalable rate limiting is required for network virtualiza-
tion as well as new approaches for data center congestion
control, as we now describe.

Network Virtualization: Sharing network bandwidth
often relies on hierarchical rate limiting and weighted
bandwidth sharing. For example, Gatekeeper [35], and
EyeQ [12] both rate limit traffic between every com-
municating source-destination VM pair, as well as use
weighted sharing across source VMs on a single ma-
chine. With greater server consolidation and increasing
number of cores per server, the number of rate limiters
needed is only expected to increase.

To quantify the number of rate limiters required
for network virtualization, we observe that Moshref et
al. [22] cite the need for 10s of thousands of flow rules
per server to support VM-to-VM rules in a cluster with
10s of thousands of servers. Extending these to support
rate limits would thus necessitate an equal number of
rate limiters. For example, if there are 50 VMs/server,
each communicating with a modest 50 other VMs, we
need 2500 rate limiters to provide bandwidth isolation.
Furthermore, supporting native hardware rate limiting is
necessary, since VMs with latency sensitive applications
may want to bypass the hypervisor entirely [20, 24].

Data Center Congestion Control: Congestion con-
trol has typically been an end-host responsibility, as
exemplified by TCP. Bursty correlated traffic at high
link speeds, coupled with small buffers in commodity
switches can result in poor application performance [29].
This has led to the development of QCN [1], DCTCP [2],
HULL [3], and D3 [40] to demonstrate how explicit net-
work feedback can be used to pace or rate limit traffic
sources and reduce congestion. In the limit, each flow
(potentially thousands [7]) needs its own rate limiter.

1The motivation for this work appeared in an earlier workshop pa-
per [30].

2.2 Limitations of Current Systems
Today, rate limiting is performed either (1) in hardware
in the NIC, or (2) in software in the OS or VM hypervi-
sor. We consider these alternatives in detail.

2.2.1 Hardware Rate Limiting

Modern NICs support a few hardware transmit queues
(8-128) that can be rate limited. When the OS transmits a
packet, it sends a doorbell request2 to the NIC notifying it
of the packet and the NIC Tx ring buffer to use. The NIC
DMA’s the packet descriptor from host RAM to its inter-
nal SRAM memory. The NIC uses an arbiter to compute
the order in which to fetch packets from different Tx ring
buffers. It looks up the physical address of the packet in
the descriptor, and initiates a DMA transfer of the packet
contents to its internal packet buffer. Eventually a sched-
uler decides when different packets are transmitted.

A straightforward approach of storing per-class packet
queues on the NIC does not scale well. For instance, even
storing 15KB packet data per queue for 10,000 queues
requires around 150MB of SRAM, which is too expen-
sive for commodity NICs. Likewise, storing large packet
descriptor ring buffers for each queue is also expensive.

2.2.2 Software Rate Limiting

Operating systems and VM hypervisors support rate lim-
iting and per-class prioritization; for example, Linux of-
fers a configurable queueing discipline (QDisc) layer for
enforcing packet transmission policies. The QDisc can
be configured with traffic classes from which packets are
transmitted by the operating system.

In general, handling individual packets in software im-
poses high CPU overhead due to lock contention and fre-
quent interrupts for computing and enforcing the sched-
ule. To reduce CPU load, the OS transfers packets to the
NIC in batches, leveraging features like TSO. Once these
batches of packets are in the NIC, the operating system
loses control over packet schedules; packets may end up
being transmitted at unpredictable times on the wire, fre-
quently in large bursts (e.g., 64KB with 10Gb/s NICs) of
back-to-back MTU-sized packets transmitted at the full
line rate.

Quantifying Software Overheads: Accurate rate
limiting is challenging at 10Gb/s and higher. For in-
stance, at 40Gb/s, accurately pacing 1500B packets
means sending a packet approximately every 300ns.
Such accuracy is difficult to achieve even with Linux’s
high resolution timers, as servicing an interrupt can eas-
ily cost thousands of nanoseconds. To quantify the over-
head of software rate limiting, we benchmarked Linux’s

2A doorbell request is a mechanism whereby the network driver
notifies the NIC that packet(s) are ready to be transmitted.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 477

Figure 1: Comparison of CPU overhead and accuracy of software (Linux htb) and hardware (hwrl, hwrl+) rate limiting. At
high rates (5Gb/s and 9Gb/s), hwrl ensures low CPU overhead and high accuracy, while htb is unable to drive more than 6.5Gb/s
of aggregate throughput. Accuracy is measured as the ratio between the standard deviation of successive packet departure time
differences, to the ideal. For instance, at 0.5Gb/s, 1500B packets should depart at times roughly 24us apart, but a “normalized
stddev” of 0.2 means the observed deviation from 24us was as much as ∼4.8us.

Hierarchical Token Bucket (htb), and compared it to
the hardware rate limiter (hwrl) on an Intel 82599 NIC.
The tests were conducted on a dual 4-core, 2-way hy-
perthreaded Intel Xeon E5520 2.27GHz server running
Linux 3.6.6.

We use userspace UDP traffic generators to send
1500B packets, and compare htb and hwrl on two
metrics—OS overhead and accuracy—for varying num-
ber of classes. Each class is allocated an equal rate (total
rate is 1Gb/s, 5Gb/s, or 9Gb/s). When the number of
classes exceeds the available hardware rate limiters (16
in our setup), we assign classes to them in a round robin
fashion (shown as hwrl+). OS overhead is the total frac-
tion of CPU time spent in the kernel across all cores, and
includes overheads in the network stack, packet schedul-
ing, and servicing interrupts. To measure how well traffic
is paced, we use a hardware packet sniffer at the receiver,
which records timestamps with a 500ns precision. These
metrics are plotted in Figure 1; the shaded bars indicate
that many classes are mapped to one hardware rate lim-
iter (hwrl+).

These experiments show that implementations of rate
limiting in hardware are promising and deliver accurate
rate limiting at low CPU overheads. However, they only
offer few rate limiters, in part due to limited buffering

on the NIC. Figure 1 shows that htb, while scalable in
terms of the number of queues supported, is unable to
pace packets at 9Gb/s, resulting in inaccurate rates.

3 Design

In the previous section, we described limitations of to-
day’s software and hardware approaches to rate limiting.
The primary limitation in hardware today is scalability
on the transmit path; we do not modify the receive path.
In light of this, we now describe the design of the basic
features in SENIC, and defer more advanced NIC fea-
tures to §5. We begin with the service model abstraction.

3.1 Service Model

SENIC has a simple service model. The NIC exposes
multiple transmit queues (classes), each with an associ-
ated rate limit. When the sum of rate limits of active
classes does not exceed link capacity, each class is re-
stricted to its rate limit. When it exceeds link capac-
ity (i.e., the link is oversubscribed), SENIC gracefully
shares the capacity in the ratio of class rate limits.

3

478 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Entry Bytes Description
Queue management

ring buffer 4 Aligned address of the head
of the ring buffer

buffer size 2 Size of ring buffer (entries)
head index 2 Index of first packet
tail index 2 Index of last packet

Head packet descriptor
head paddr 8 Address of the first packet
head plen 2 Length of the first packet (B)
pkt offset 2 Next segment offset into the

packet (for TSO)
Scheduler state (say for token bucket scheduler)

rate mbps 2 Rate limit for the queue
tokens bytes 2 Number of bytes that can be

sent from the queue without
violating rate limit

timestamp 4 Last timestamp at which to-
kens were refreshed

Table 2: Per-class metadata in NIC SRAM. Total size=30B

3.2 CPU and NIC Responsibilities
To enforce a service model, we need a packet scheduler,
and must store state for all classes. The state and func-
tionality are spread across the CPU/host and the NIC.

State: Memory on the NIC (typically SRAM) is ex-
pensive, and we therefore use it to only store metadata
about the classes. To store packet queues, SENIC lever-
ages the large amount of host memory. Table 2 shows an
example class metadata structure; the total size for stor-
ing 10,000 classes is about 300kB of SRAM. Note that
the Myricom 10Gb/s NIC has 2MB SRAM [23].

Functionality: At a high level, the CPU classifies and
enqueues packets in transmit queues, while the NIC com-
putes a schedule that obeys the rate limits, pulls pack-
ets from queues in host memory using DMA, and trans-
mits them on to the wire. The NIC handles all real time
per-packet operations and transmit scheduling of pack-
ets from different classes based on their rate limits. This
frees up the CPU to batch network processing, which re-
duces overall CPU utilization. This architecture is illus-
trated in Figure 2, which we now describe in detail.

3.2.1 CPU Functionality

As in current systems, the OS manages the NIC and ini-
tializes the device, creates/deletes classes, and configures
rate limits. The OS is also in charge of classifying and
enqueueing packets in appropriate queues. In both cases,
the OS communicates with the NIC through memory-
mapped IO. For instance, when the OS enqueues a packet
(or a burst of packets) into a queue, it notifies the NIC
through a special doorbell request that it writes to a
device-specific memory address.

Host RAM

NIC

Wire

. . . FIFO queues
(or ring buffers)

Packet
Scheduler

Arbitrarily
many

Wire

Packe

ma

et

y
ny

e

a

1

2

3

��  ���
	�
��  �	
��������������������������������������
��  ���������������

Figure 2: SENIC — “Schedule and Pull” model.

3.2.2 NIC Functionality

The NIC is responsible for all per-packet real time op-
erations on transmit queues. Since it has limited hard-
ware buffer resources, the NIC first computes the trans-
mit schedule based on the rate limits. It then chooses
the next packet that should be transmitted, and DMAs
the packet from the per-class queue in host memory to a
small internal NIC buffer for transmitting on to the wire.
Figure 3 shows a schematic of the SENIC hardware and
related interfaces from software.

CPU

CPU

PCIe x16

Doorbell FIFO
DbDb

Completion FIFO
CmplCmpl

Class table

Packet
Scheduler

PC
Ie

 c
on

tro
lle

r

SENIC

D
M

A
En

gi
ne

DMA-able
Host DRAM

Memory
Mapped IO

Doorbell
FIFO

Completion
FIFO

PktPktPkt

Ring
Buffer

Figure 3: SENIC hardware design. Once the NIC DMAs
a packet from host memory, there is further processing (e.g.
checksum offloads) before the packet is transmitted on the wire.
This paper focuses on the scheduler and the NIC interaction
with the software stack.

Metadata: The NIC maintains state about traffic
classes to enforce rate limits. In the case of a token
bucket scheduler, each class maintains metadata on the
number of tokens, and the global state is a list of active
classes with enough tokens to transmit the next packet.
The memory footprint is small, easily supporting 10,000
or more traffic classes with a few 100kB of metadata.

Scheduling: The NIC schedules and pulls packets
from host memory on demand at link speed. Packets
are not pulled faster, even though PCIe bandwidth be-
tween the NIC and CPU is much higher. This late bind-

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 479

ing reduces the size of NIC hardware buffers required for
storing packets. It also avoids head-of-line blocking, and
allows the NIC to quickly schedule newly active classes
or use updated rate limits. This offloading of scheduling
and real time work to the NIC is what enables SENIC to
accurately enforce rate limits even at high link speeds.

Other Functionality: The NIC does more tasks than
just state management and rate limiting. After the packet
is DMA’d onto NIC memory, there is a standard pipeline
of operations that we leave unmodified. For instance,
NICs support TCP and IP checksum offloading, VLAN
encapsulation, and send completions to notify the CPU
when it can reclaim packet memory.

4 Packet Scheduling in SENIC

SENIC employs an internal scheduler to rate limit traffic
classes. The task of packet scheduling can be realized us-
ing a number of algorithms such as Deficit Round Robin
(DRR) [39], Weighted Fair Queueing (WFQ) [9], Worst-
case Fair weighted Fair Queueing (WF2Q) [5], or simple
token buckets. The choice of algorithm impacts the shar-
ing model, and packet delay bounds. For instance, token
buckets support rate limits, but DRR is work-conserving;
simply arbitrating across token buckets in a DRR-like
fashion can result in bursty transmissions [6].

In this section, we start with our main requirements
to pick the appropriate scheduling algorithm. We desire
hierarchical rate limits, so the above work-conserving
algorithms (DRR, WFQ, etc.) do not directly suit our
needs. We now describe a unified scheduling algorithm
that supports hierarchies and rate limits.

4.1 SENIC Packet Scheduling Algorithm

Recall that the service model exposed by SENIC is rate
limits on classes, with fallback to weighted sharing pro-
portional to the class rates. We begin by describing
a scheduling algorithm which can enforce this service
model. We leverage a virtual time based weighted shar-
ing algorithm, WF2Q+ [6], and modify its system virtual
time (V) computation to support strict rate limiting with a
fallback to weighted sharing. The algorithm computes a
start (S) and finish (F) time for every packet based on the
class rate wi. Packets with S ≤V are considered eligible,
and the algorithm transmits eligible packets in increasing
order of their finish times.

Computing Start and Finish Time: Since each class
is a FIFO, the start and finish times are maintained only
for the packets at the head of each transmit queue. The
start time Si of a class Ci is only updated when a packet
is dequeued from that class or a packet is enqueued into
a previously empty class. The finish time Fi is updated

whenever Si is updated. Si and Fi for each flow Ci are
computed in the same way as in WF2Q+, as follows:

Si =

{
max(Fi,Venq) on enqueue into empty queue
Fi on dequeue

Fi = Si +
L
wi

where Venq is the system time V (described below) when
the packet is enqueued, and L is the head packet’s length.

System Time Computation: WF2Q+ computes a
work-conserving schedule where at least one class is al-
ways eligible to transmit data. To enforce strict rate lim-
its, SENIC incorporates the notions of real time and the
link drain rate (R) to compute the transmit schedule. The
system time is increased by 1 unit (bytetime), in the time
it takes to transmit 1B of data at link speed, and thus in-
corporates the link’s known drain rate R (e.g. 10Gb/s).

SENIC supports graceful fallback to weighted sharing
when the link is oversubscribed. When the link is over-
subscribed, we slow the system time V down to reflect
the marginal rate at which the active flows are serviced.
Without loss of generality, let the rate limits of flows Ci
be represented as fractions wi of the link speed R. We
define the rate oversubscription factor φ to be the sum
of rate limits (weights) of currently backlogged classes
or flows in the system; φ = 0 when no flows are active.
The scheduler modifies the system time V to slow down
by the rate oversubscription factor and proceed at most
as fast as the link speed. V is computed as:

V (0) = 0
V (t + τ) =V (t)+Rτ ×max(1,φ)

where τ is a single packet transmission period, or con-
tiguous link idle period, or the period between successive
updates to φ . Given the system time, the start and finish
times of all classes, we schedule packets in the same or-
der as WF2Q+, i.e. in order of increasing finish times
among all eligible classes at the time of dequeueing.

Example: We now look at an example transmit sched-
ule computed using these time functions. Assume a
10Gb/s link with two continuously backlogged classes
C1 and C2 (with rate limits 4Gb/s and 2Gb/s respec-
tively). The transmit schedule is shown in Figure 4. The
values of Si and Fi are computed using rate limits as a
fraction of link speed (so w1 = 0.4 and w2 = 0.2). All
packets are 1500B in length.

If we consider a single iteration (7500 bytetimes), C1
transmits 3000B, C2 transmits 1500B, and the link is idle
for (750 + 2250 = 3000 bytetimes). Thus C1 achieves
3000 / 7500 = 0.4 of link capacity and C2 achieves 1500
/ 7500 = 0.2 of link capacity. The link remains idle for
40% of the time in each iteration, thereby enforcing strict
rate limits. Notice also that the packets are appropriately
interleaved and accurately paced.

5

480 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Transmit schedule example. Link is not oversub-
scribed. The interval between the vertical dashed lines indi-
cates repeating sequence in the transmit schedule (only 1 repe-
tition shown for clarity). S, F , L as defined in the text. Tx is the
time when a particular packet transmission or idle period starts.

Delay Guarantees: The advantage of using virtual
time based scheduling algorithms is that they offer strong
per-packet delay guarantees. Specifically, WF2Q+ guar-
antees that the finish time of a packet in the discretized
system is no more than a bounded delay from an ideal
fluid model system. SENIC’s unified scheduling algo-
rithm offers similar strong guarantees. Algorithms such
as DRR do not have such strong guarantees [6].

4.2 Hierarchical bandwidth sharing

So far we discussed a flat rate limiting scheme. In prac-
tice, it may be desirable to group classes and enforce an-
other rate limit on the group. For example, an approach
useful in multi-tenant environments is a two level hier-
archy where the first level implements strict rate limits
for each VM on the server, and the second level pro-
vides weighted sharing between the flows originating
from each VM.

It is possible to enforce any hierarchical allocation by
modulating the rate limits of hardware traffic classes.
Control logic in the hypervisor can measure demands and
hardware counters, and adjust the rates based on precon-
figured limits. We instead now describe an extension to
the virtual time based scheduler described above to sup-
port a simple two level hierarchy.

Sharing Model: We define an L1 (level 1) class as one
which is directly attached to the root of the hierarchy. An
L2 (level 2) class is attached to an L1 class. Each class
is configured with a rate limit. The L1 classes only sup-
port strict rate limits, i.e. sum of rate limits of active L1
classes should not exceed link capacity. L2 classes sup-
port strict rate limiting, but fallback to weighted sharing
in the ratio of their rate limits when the active L2 classes
within an L1 class oversubscribe the rate limit of that L1

class. An L1 class might be a leaf or an internal class
while L2 classes can only be leaves.

Start and Finish Time Computation: SENIC only
computes time variables for leaf classes as packets are
“enqueued” and “dequeued” only at the leaves. For L1
leaf classes, the scheduler computes start and finish times
as usual, using the rate limits of the respective classes.
For each L1 class, it maintains a rate oversubscription
factor φL1 , of active L2 classes within the L1 class. For L2
classes, to compute finish time, the scheduler scales the
rate limits and uses the minimum of (1) the configured
rate limit wi of the L2 class, and (2) the scaled rate limit
of the parent L1 class based on L2’s share, given as:

wiscaled = min
(

wi,wL1 ×
wi

φL1

)

System Time Computation: System time is purely
based on real time and link drain rate R, as the L1 classes
are configured such that they never oversubscribe the
link. This condition can be easily met even if weighted
sharing is required at level 1 of the hierarchy, by simply
having the host driver periodically measure demand and
adjust the rate limits of the L1 classes.

Summary: Driven by requirements to support rate
limits, we described a scheduling algorithm incorporat-
ing both weighted sharing and rate limiting into one co-
herent algorithm. We also extended the algorithm to sup-
port two-level rate limits across classes and groups of
classes. We realized the unified scheduling algorithm
on top of QFQ [8], which in turn implements WF2Q+
efficiently. The metadata structure for this QFQ based
scheduler is around 40B per class, and it needs only 10kB
of global state, thereby scaling easily to 10,000 classes.

5 Advanced NIC features

This section touches upon advanced features in today’s
NICs that are impacted by SENIC’s design, and how we
achieve similar functionality with SENIC.

5.1 OS and Hypervisor Bypass
Many applications benefit from bypassing the OS net-
work stack to meet their stringent latency and perfor-
mance requirements [13, 25]. Further, high-performance
virtualized workloads benefit from bypassing the hyper-
visor entirely, and directly access the NIC [20, 24]. To
support such requirements, modern NICs expose queues
directly to user-space, and include features that virtualize
the device state (ring buffers, etc.) through technologies
like Single-Root IO Virtualization (SR-IOV [28]). We
now describe how SENIC provides these features.

Configurable SR-IOV Slices or VNICs: SENIC
leverages SR-IOV to expose multiple VNICs. Each

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 481

Guest 1 Driver (Data Plane)

Host Driver
(Control Plane)

QueueFlow
TCP
/IP

SENIC
Hardware

Guest 2 Driver (Data Plane)

Guest 1
VNIC

Guest 2
VNIC

Figure 5: The SENIC architecture, with each guest given a vir-
tualized slice of the NIC (VNIC) using SR-IOV.

VNIC is allocated a configurable number of queues, and
guest VMs directly transmit and receive packets through
the VNICs, as shown in Figure 5. Guest VMs are only
aware of queues for their respective VNICs (which is
standard SR-IOV functionality), thereby ensuring isola-
tion between transmit queues of different guest VMs. A
simple lookup table on the NIC translates VNIC queue
IDs to actual queue IDs. A host SENIC driver provides
the interface for the hypervisor to configure VNICs, al-
locate queues, and configure rate limits. A guest driver
running in the VM provides a standard interface to en-
queue packets into different queues on the VNIC.

Classifying Packets: SENIC relies on the operating
system to classify and enqueue packets in the right traffic
classes or queues. The host driver residing in the hyper-
visor maintains the packet classification table. It exports
an OpenFlow [26] like API to configure traffic classes
and rate limits. When SR-IOV is enabled, the hypervisor
is bypassed in the datapath. SENIC therefore relies on
the guest VM to perform packet classification.

The guest driver maintains a cached copy of the packet
classification table. When the guest driver receives a
packet from the network stack for transmission, it looks
up its guest packet classification table for a match. If no
match is found, it makes a hypercall to the hypervisor for
a lookup and caches the matching rule. The actual map-
ping to the appropriate queue is also cached in the socket
data structure to avoid repeated lookups for each packet
of a flow. The hypervisor can also proactively setup rules
in guest classification tables. Once the rules are cached
in the guest, the hypervisor is completely bypassed dur-
ing packet transmission.

Untrusted Guests: It may be unwise to trust guests to
classify packets correctly. However, we argue this is not
an issue. Even though SR-IOV ensures that a VM can
only place packets in queues for its own VNIC, the guest
may ignore the hypervisor-specified classification among
its queues. We adopt a trust-but-verify approach to en-
sure that guest VMs do not cheat by directing packets to

queues with higher rate limits. The key idea is that the
hypervisor need not look at every packet to ensure rate
limits are not violated, but instead only look at a sampled
subset of packets. Since classification is used to provide
QoS, sampling packet headers and verifying their classi-
fication is sufficient to identify violations. The adminis-
trator can be alerted to misbehaving guests, or they can
be halted, or forced to give up SR-IOV, and rely on the
hypervisor for future packet transmissions.

5.2 Other features

Below we describe few other features that are affected by
SENIC’s design.

Segmentation Offload: TCP Segmentation Offload
(TSO) is a widely available NIC feature to reduce CPU
load by transferring large (upto 64KB) TCP segments
to the NIC, which are then divided into MTU sized
segments and transmitted with appropriately updated
checksums and sequence numbers. SENIC only pulls
MTU sized portions of the packet on demand from host
memory queues before transmission. This avoids long
bursts from a single class, and enables better interleav-
ing and pacing. SENIC augments per-queue metadata
with a TSO-offset field that indicates which portion of the
packet at the head of the queue remains to be transmit-
ted. When interleaving packets, SENIC does not cache
packet headers for each class on the NIC, thereby keep-
ing NIC SRAM requirements low. When transmitting
TSO packets, SENIC issues two DMA requests: one for
the packet header, and another for the MTU sized pay-
load based on TSO-offset.

Scatter-Gather: A related optimization is scatter-
gather, where the NIC can fetch packet data spread across
multiple memory regions, e.g., the header separately
from the payload. In such cases, SENIC stores the loca-
tion of the next segment to be transmitted for each queue
and fetches descriptors and data on demand.

Handling Concurrency: The design assumed each
transmit queue corresponds to one traffic class. To al-
low multiple CPU cores to concurrently enqueue packets
to a class, the SENIC design is extended to support some
number of queues (say 8) for each class. Round robin or-
dering is used among queues within a class, whenever the
class gets its turn to transmit. This is easily accomplished
by separately storing head and tail indices for each queue
in the class metadata table, an active queue bitmap and
round robin counter for each class.

Priority Scheduling: SENIC can easily also support
strict priority scheduling between transmit queues of a
class instead of round-robin scheduling. In this case, a
priority encoder picks the highest priority active class.
One use case is for applications to prioritize their traffic
within a given rate limit.

7

482 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Implementation

We have implemented two SENIC prototypes:

1. A software prototype using a dedicated CPU core to
perform custom NIC processing. This implements the
unified QFQ-based rate limiting and weighted sharing
scheduler described in §4.1.

2. A NetFPGA-based hardware prototype designed to
run microbenchmarks and evaluate the feasibility of
pulling packets on demand from host memory for
transmission. For engineering expediency, this proto-
type relies on a simpler, token bucket scheduler (with-
out hierarchies).

We now describe both prototypes in detail. Both
prototypes are available for download at http://

sivasankar.me/senic/.

6.1 Software Prototype
The software prototype is implemented as a Linux kernel
module with modest changes to the kernel. The sched-
uler is implemented in a new Linux queueing discipline
(QDisc) kernel module. We also modified the Linux tc

utility to enable us to configure the new QDisc module.
As described in §4, SENIC’s packet scheduling algo-
rithm is implemented on top of the Quick Fair Queueing
(QFQ) scheduler available in Linux.

Transmit Queues and Rate Limits: The SENIC
QDisc maintains per-class FIFO transmit queues in host
memory as linked lists. We configure classification rules
via tc, and also set a rate limit for each class.

Enqueueing Packets: In Linux, when the transport
layer wants to transmit a packet, it hands it down to the
IP layer, which in turn hands it to the QDisc layer. When
the QDisc receives a packet from IP, it first classifies
the packet, then enqueues it in the corresponding queue,
marking the class as active.

Dedicated CPU Core for Packet Scheduling: In to-
day’s kernel, the dequeue operation starts right after en-
queue. However, to mimic NIC functionality, we mod-
ified the kernel so the enqueue call immediately returns
to the caller, and dedicate a CPU core to perform all NIC
scheduling (i.e. dequeueing). The dedicated CPU core
runs a kernel thread that computes the schedule based on
configured rate limits, and pulls packets from the active
transmit queues when they should be transmitted. Pack-
ets are transferred to the physical NIC using the stan-
dard NIC driver. We disabled TSO to control the transmit
schedule at a fine granularity and avoid traffic bursts.

6.2 NetFPGA Prototype
We now describe our SENIC hardware implementation
on a NetFPGA [16]. The primary hardware components

of SENIC are (a) the packet scheduler with the class ta-
ble, (b) doorbell FIFOs to process notifications from the
host, and (c) completion FIFOs to send notifications to
the host. Each component maintains its own indepen-
dent state machine and executes in parallel. Figure 6 be-
low zooms into the operation of the packet scheduler. We
now describe each component in detail.

Class table
Token
Bucket
Sched

CF
Packet buffers

(SRAM) to receive
DMA responses

DMA Controller

1
2

Doorbell FIFO

3PCIe x16
to host memory

Further processing
(e.g. TSO, checksum

offloads, etc.)

4

Figure 6: The 4 stages of scheduling a packet: (1) pick a
class for dequeueing, (2) submit work-request to the class-fetch
(CF) module, (3) DMA descriptors and packet payload from
the class, (4) handoff packet payload for further processing.

6.2.1 Packet Scheduler

The scheduler operates on the class metadata table
(SRAM block), and performs the following operations:

• It cycles through all active classes (i.e., classes with at
least one enqueued packet), and determines if a class
has enough tokens to transmit a packet (i.e., whether it
is eligible). If not, the scheduler refreshes the class’s
tokens and continues with other classes.

• If the class is eligible, the scheduler submits a work-
request to a ‘class-fetch’ (CF) module and disables the
class. Each CF module has a small FIFO to accept
requests from the scheduler.

• If the CF module’s FIFO is full, the scheduler stalls
and waits for feedback from the CF module.

• In parallel, the scheduler processes any pending door-
bell requests that modify the class metadata table. For
instance, if the doorbell request is an enqueue opera-
tion, the scheduler parses the class ID in the request
and updates the class table.

6.2.2 Class-Fetch Module

The class-fetch (CF) module is given a class entry, and
its task is to dequeue as many packets as possible until
limited by (a) the tokens available for the class, or (b)
the burst size of the class. The class entry only stores
the descriptor for the first packet. Therefore the CF dis-
patches DMA requests to (a) fetch the descriptor of the
next packet in the ring buffer, and (b) fetch the packet
payload of the first descriptor stored in the class entry.
The module then synchronously waits for the first DMA

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 483

to complete, and repeats the process until it exhausts the
class tokens, or burst size. Finally, it issues (a) feedback
to the scheduler with the new class entry state (updated
tokens, tail pointer, and the first packet descriptor), and
(b) a completion notification for the class.

The latency to make a scheduling decision, and the
DMA fetch latency determine the maximum achievable
throughput. We evaluate this in detail in §7.1.3.

6.2.3 Host Notifications

SENIC uses standard notification mechanisms to syn-
chronize state between the NIC and the host: doorbell re-
quests and completions. Doorbells update class state on
the NIC (e.g., new packets and new rates), and comple-
tions notify the host about transmitted packets and pro-
cessed doorbells. Doorbells and completions are stored
in FIFO ring buffers, on the NIC and host respectively.

Doorbells: The doorbell is a 16B message written by
the host to the memory mapped doorbell FIFO on the
NIC. The FIFO is a circular buffer—the host enqueues at
the tail while the NIC dequeues at the head. The host
synchronizes the head index when it receives comple-
tions from the NIC, thereby freeing FIFO entries.

Completions: The NIC issues completions by
DMA’ing an entry into the completion FIFO in host
memory and interrupting the CPU. Each entry indicates
(1) the class and number of packets transmitted from the
class, or (2) the number of doorbell requests processed.
This information is used by the host to reclaim packet
memory, and doorbell FIFO entries. These event notifi-
cations are similar to BSD’s kqueue mechanism [15].

Avoiding Write Conflicts: Note that the CF module’s
feedback, and host notifications both modify the class
entry state. However, the feedback only modifies tokens,
the first packet’s length and address; the host notification
only modifies the tail index. If the class’s rate changes
while it is being serviced, the new rate takes effect only
the next iteration when the scheduler refreshes tokens.

7 Evaluation

This section dissects SENIC to answer the following as-
pects of the system:

• How scalable and accurate are the hardware rate lim-
iters? We synthesized our hardware prototype with
1000 rate limiters. At 1Gb/s, we found the mean inter-
packet timing was within 10ns of ideal, and the stan-
dard deviation was 191ns (less than 1.6% of the mean).

• How many packets should be pipelined for achieving
line rate at various link speeds? This value depends on
the scheduling and DMA latency, and the dominant
factor is the DMA latency across the PCIe bus.

• How effective is SENIC at supporting high loads and
delivering low latency compared to state of the art soft-
ware rate limiters? We compare SENIC against Linux
HTB and a Parallel Token Bucket (PTB) implementa-
tion in software (used in EyeQ [12]). We found that
at very low load, all approaches have comparable la-
tencies. But SENIC sustains 55% higher load com-
pared to PTB, and 250% higher than HTB while keep-
ing memcached 99.9th percentile latency under 3ms.

• How effectively can SENIC isolate different tenants—
memcached latency sensitive tenants and a back-
ground bandwidth intensive UDP tenant? We found
that SENIC could comfortably sustain the configured
3Gb/s of UDP traffic and nearly 6Gb/s of memcached
traffic with tail latency under 4ms. However, HTB and
PTB had trouble sustaining more than 1.4Gb/s of UDP
traffic. SENIC sustains 233% higher memcached load
compared to HTB and 43% higher than PTB.

7.1 Hardware Microbenchmarks
7.1.1 Scalability and Accuracy

Due to limitations on the number of outstanding DMA
requests3, and pipeline datawidth, we were unable to sus-
tain more than 3Gb/s packet transmission rate, and we
restrict our tests to rates less than 3Gb/s.

N Rate μ ±σ Rel. error in μ
500 1Mb/s 12ms ± 7.1us 3.1×10−6

1 10Mb/s 1.2ms ± 233ns 1.5×10−6

10 1.2ms ± 240ns 1.5×10−6

100 1.2ms ± 1.3μs 2.3×10−5

1 100Mb/s 120μs ± 87ns 1.7×10−7

10 120μs ± 173ns 1.6×10−6

1 1Gb/s 11.25μs† ± 161ns 3.5×10−4

3 11.25μs† ± 191ns 3.8×10−4

Table 3: Rate limit accuracy as we vary the number of rate
limiters N, and the rate per class. We see that SENIC is within
10−2% of ideal even as we approach the maximum throughput
we could push through the NetFPGA (3Gb/s).

Table 3 shows the rate limiting accuracy of one of
the classes, as we vary the number of eligible classes
on the NIC. We measure accuracy by timestamping ev-
ery packet with a clock resolution of 10ns, and retriev-
ing the inter-packet timestamp difference for packets of
that one class. We compute the mean (μ) and stan-
dard deviation (σ), and also the relative error in μ as
|μempirical −μideal|/μideal. We see that SENIC very accu-
rately enforces the configured rate even with 500 classes
each operating at 1Mb/s.

3Our NetFPGA stalls the processor if it has more than 2 outstanding
DMA requests. Others have reported a similar issue with the Virtex5
FPGA [41].

9

484 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

†Note: NetFPGA supports rates that are of form
12.8Gb/s/K, where K is an integer. Therefore, though we
set the rate limit to 1Gb/s, the output will 12.8/12 Gb/s
(1.067Gb/s), for which the inter-packet time is 11.25μs.

7.1.2 Scheduler Latency

We dig deeper into how long it takes for a scheduling op-
eration in hardware. On the NetFPGA, the SRAM has a
datawidth of 512 bits (64B), an access latency of 1 cycle,
and enough bandwidth to support one operation (either
a read or a write) every cycle. In the worst case, each
scheduler iteration takes at most 5 cycles:

• 1 for reading the class metadata from SRAM.
• 1 for refreshing the tokens and CF-enqueue.
• 1 SRAM write for processing CF-feedback.
• 2 for processing a doorbell: 1 for reading the class

metadata from SRAM, and 1 for updating class meta-
data and writing it back.

We synthesized our NetFPGA prototype at 100MHz
(10ns per clock cycle), and therefore, it takes no more
than 50ns to make a scheduling decision. We expect
a production-quality NIC to have a higher clock rate,
and thus a faster scheduler. For instance, the ASIC in
Myricom 10Gb/s Ethernet NIC runs at a clock rate of
364.6MHz [23]. The QFQ based scheduler takes about
twice as many cycles as simple token buckets [8], so with
a higher clock rate, it can still complete in 50ns.

7.1.3 Maximum Per-Class Throughput

In this experiment, we first analyze the DMA latency
which affects the achievable throughput per-class. We
measure the time interval between sending a DMA re-
quest from the CF-module to fetch 16B from host mem-
ory, and receiving the response. We find that the aver-
age latency is L = 1.25μs (σ = 40ns) with the NetFPGA
platform (using a second generation PCIe x8 bus). How-
ever, the number is often better with a production-quality
NIC. For instance, the DMA latency on an Intel NIC was
found to be close to 200ns [31].

Recall that the CF-module processes each class by
issuing a DMA request for the class’s second packet
descriptor, followed by the request for the class’s first
packet payload. With a burst size of 1 packet per class,
the maximum achievable throughput per class depends
on the sum of DMA latency and scheduler latency. For
instance, if the scheduler takes 50ns to dispatch a class
to the CF module, the DMA latency to fetch a packet de-
scriptor is 1250ns, and burst size is 1 packet, the max-
imum achievable throughput per-class is about 1500B
(MTU) every 1300ns. Therefore, to achieve line rate

Figure 7: Maximum throughput per class as a function of
the packet size, and the number N of CF modules operating
in parallel, and the DMA latency L. We see that the achiev-
able throughput on the NetFPGA (L = 1.25μs) with N = 1 is
9.23Gb/s with 1500B packets (if not for the DMA request con-
straints described earlier).

we can instantiate multiple CF modules, and the sched-
uler dispatches classes to them in parallel. Further, us-
ing TSO, or multiple queues per class enables higher
throughput per class. Figure 7 shows the trend.

7.2 Software Macrobenchmarks

We ran experiments with our software based SENIC
prototype to evaluate the application level performance
when SENIC is used for rate limiting traffic.

7.2.1 Memcached

We conducted an experiment with several memcached
tenants sharing a cluster—10 tenants on each machine
in an 8 node cluster. Each node is a dual 4-core, 2-way
hyperthreaded Intel Xeon E5520 2.27GHz server, with
24GB of RAM, a 10Gb/s NIC (Intel or Myricom), and
running Linux 3.9.0. Each tenant was allocated 1 CPU
hyperthread on each machine, and 2GB of RAM. One
machine (Msrv) had 10 memcached server instances—1
for each tenant. We pre-populated them with 12B-key,
2KB-value pairs. Each of the other 7 machines (Mcli) ran
10 memcached client processes that sent GET requests to
the respective tenant’s memcached server instance.

Rate limits were configured for each memcached
client-server pair. The total rate limit was 9.5Gb/s on
Msrv, and 6Gb/s on Mcli machines. Each tenant got an
equal share of the total rate, divided equally among its
own destinations. These limits were chosen to be large
enough that memcached would not be bandwidth limited.
We ran experiments using HTB, PTB, and the SENIC
software prototype.

We define the unit rpstc, requests per second per tenant
per client, to denote the load on the system. For instance,
2,000 rpstc means each of the 7 client instances of each
tenant generates a load of 2,000 req/s, resulting in a total
load on Msrv of 140,000 req/s.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 485

Figure 9: Memcached response latency at different loads. We see that SENIC easily sustains 7,000 rpstc (which was also the
maximum load the cluster sustained without any rate limiting). However HTB and PTB latencies spike up at much lower loads.

Figure 8: CDF of memcached response latency at different
loads. SENIC, HTB and PTB have similar latency at 2,000 rp-
stc, but HTB latency shoots up at 3,000 rpstc.

Latency: We varied the client load (2000, 3000 rp-
stc) and observed the latency distribution of memcached
responses (Figure 8). The total egress bandwidth utiliza-
tion on Msrv is quite low at 2.3Gb/s and 2.9Gb/s respec-
tively at the two loads. At 2,000 rpstc, we observed that
HTB, PTB and SENIC perform similarly. But at 3,000
rpstc, HTB’s latency suffers a drastic hit, whereas PTB
and SENIC are able to keep up. With HTB, requests keep
getting backlogged as the scheduler is the bottleneck and
is unable to push packets out of the server fast enough.
At the fairly low load of 3,000 rpstc, PTB has marginally
lower latency than the SENIC software prototype due to
the cache misses incurred for pulling and transmitting all
packets from a single CPU core. A hardware SENIC im-
plementation would not have this penalty.

Throughput: We varied the memcached load and
measured the average, 99th, and 99.9th percentile la-
tency in each case. Figure 9 shows that SENIC could
comfortably handle 7,000 rpstc, sustaining 55% higher
load compared to PTB, and 250% higher than HTB. We
stopped at 7,000 rpstc as that was the maximum load the
cluster could sustain even without any rate limiters (with
the default Linux multi queue QDisc).

While the SENIC software prototype is much better
than HTB and PTB, a hardware SENIC implementation
would perform even better as there would not be cache
misses for each transmit operation. Further, if hypervi-
sor bypass is used by VMs to communicate directly with

SENIC hardware, the relative latency and throughput
benefits of the hardware solution would be even more.

7.2.2 Memcached and UDP Tenant Isolation

To evaluate how effectively SENIC can isolate different
tenants, we repeated the above experiments with 1 co-
located UDP tenant on each machine, that generates all-
to-all UDP traffic as fast as it can. The total rate limit was
set at 3Gb/s for UDP traffic, and 6Gb/s for memcached
on each machine—divided equally among respective ten-
ants and destinations. The maximum memcached band-
width utilization we tested was around 5.75Gb/s on Msrv,
so memcached was again not bandwidth limited.

Memcached Latency and Throughput: As shown in
Figure 10, SENIC was able to sustain 5,000 rpstc mem-
cached throughput (5.75Gb/s) with 99.9th percentile la-
tency around 4ms while simultaneously delivering very
close to the configured 3Gb/s of total UDP tenant traffic
on the memcached server machine. On the other hand,
HTB was only able to sustain 1,500 rpstc, while PTB
sustained 3,500 rpstc.

Figure 11: Throughput achieved by UDP background traffic.
The configured rate limit was 3Gb/s. We found that SENIC
could sustain very close to the configured 3Gb/s throughput,
but HTB and PTB had trouble delivering more than 1.3Gb/s.

UDP Tenant Throughput: We measured the total
throughput the UDP tenant achieved on Msrv as it was
the primary machine under heavy overall load. Figure 11
shows that while SENIC sustained the configured 3Gb/s
of throughput for the bandwidth intensive UDP tenant,

11

486 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Memcached latency at different loads, with configured background all-to-all UDP traffic of 3Gb/s from each server. We
see that SENIC could sustain 5,000 rpstc (network throughput was roughly equal to the configured limit of 6Gb/s). HTB and PTB
on the other hand, fell over at lower loads.

HTB and PTB had difficulty keeping up. Even at lower
memcached loads, HTB and PTB had trouble deliver-
ing more than 1.3Gb/s UDP throughput. Measurements
showed that the CPU cores allocated to the UDP tenant
were highly loaded, indicating that current software ap-
proaches suffer when CPU load increases and the tenants
with high CPU load might notice degraded performance
as the rate limiter is unable to keep up.

8 Practical Considerations

SENIC’s design goals expose a tension in its imple-
mentation. Its on-board packet scheduler must be able
to transfer sequences of individual packets from a po-
tentially large number of traffic classes for fine-grained
rate control. Yet, to drive high line rates, it must sup-
port a high overall DMA transfer rate to transfer packets
from host memory to the wire. Thus, the performance
of SENIC is upper-bounded by the performance of the
host’s underlying DMA subsystem.

Today’s NICs rely on a number of optimizations to
drive high link rates, while lowering their impact on
the DMA subsystem. For example, when TSO is en-
abled, they can transfer the packet header just once from
memory and cache it on the NIC. The NIC can then
pull in the rest of the payload (issuing the appropriate
DMA operations), combine it with the cached header and
transmit MTU-sized segments. SENIC’s design supports
interleaving MTU-sized segments from different traffic
classes, depending on their configured rates and burst
sizes. Because the number of such classes can be quite
large, SENIC does not cache packet headers on the NIC
for each class. Thus, SENIC’s impact on the underlying
DMA subsystem is going to be greater than a traditional
NIC with TSO. We now briefly examine this impact.

In the absence of TSO, SENIC requires the same
number of DMA transfers from host memory as current
NICs—one for each packet, in addition to the packet de-
scriptors. However when TSO is active, SENIC issues a
DMA operation for the header in addition to one for the
payload, for each MTU-sized segment. Note that NICs

today are capable of processing many more DMA trans-
fers per second than required for handling MTU-sized
frames at line rate. This headroom allows SENIC to drive
high line rates even when TSO is enabled, despite the
larger number of DMA transfers it requires.

To ground this claim experimentally, we examined
the DMA subsystem performance of both 10Gb/s and
40Gb/s commercial NICs. Using a Myricom 10Gb/s
NIC, we were able to sustain 13–14 million 64 byte
packets per second (pps). Since packets were randomly
spread across host memory, each packet required at least
one DMA transfer, and thus the NIC can sustain roughly
the same number of DMA transfers per second.

For 40Gb/s, we used a Mellanox Connect-X3
NIC [18] to transmit 64 byte packets. We observed that
it could only support about 13.1 Mpps, which is less than
the rate required to sustain 40Gb/s with 64 byte packets.
However, using MTU-sized frames, and TSO disabled,
it was able to drive 3.25 Mpps, which was sufficient to
sustain 40Gb/s.

The above reference points allow us to gauge the per-
formance of SENIC at both 10Gb/s and 40Gb/s. For
instance, at 40Gb/s, SENIC would require 3.25 × 2 =
6.5 million DMA transfers per second (to DMA both
payloads and headers) to achieve line rate. This is well
under the 13.1 million transfers per second we were
able to sustain on the same NIC. Hence, we believe
that SENIC should be able to support line rate per-
formance with TSO enabled for MTU-sized segments.
Since SENIC does not introduce additional DMA re-
quests for non-TSO packets, it should perform compa-
rably to today’s commercial NICs.

9 Related Work

We classify related work into two parts: (1) hardware
improvements, and (2) software improvements, some of
which try to work around limited hardware capabilities.
The NIC hardware datapath has only recently received
attention from the research community in light of the re-
quirements listed in §2.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 487

Hardware Efforts: Commercial NICs support trans-
port offloading to support millions of connection end-
points, such as ‘queue pairs’ in InfiniBand [32], or TCP
sockets in case of TCP offload engines [19]. The SENIC
design is simpler as we only offload rate limiting, and
leave the task of reliable delivery to software.

Recent work [20, 36] calls for changes in the NIC
architecture in light of low-latency applications (e.g.
RAMCloud [10]), and virtualized environments (e.g.
public clouds). Such efforts are complementary to
SENIC, which focuses only on scaling transmit schedul-
ing. ServerSwitch [17] presented a programmable NIC
to support packet classification and configurable con-
gestion management. ServerSwitch can directly benefit
from the large number of rate limiters in SENIC.

A number of efforts have focused on scalable packet
schedulers in switches [21, 33]. A NIC is conceptu-
ally no different from a switch; however, switch sched-
ulers have to deal with additional complexity due to
limited on-chip SRAM, and the fact that they cannot
control the exogenous traffic arrival rate. Thus, com-
mercial switches often resort to simpler approaches like
AFD [27] which can scale to 1000s of policers, but can
only drop packets (instead of accurate pacing). On the
other hand, the NIC being the first hop is in a unique
position—its design can be made considerably simpler
by leveraging host DRAM to store all packets. This ap-
proach enables SENIC to simultaneously scale to, and
accurately pace, a large number of traffic classes.

Software Efforts: An alternate approach to deal
with limited NIC rate limiters is to share them in some
fashion, which has been explored by approaches like
vShaper [14] and FasTrak [24]. SENIC eases the bur-
den on such approaches, as we believe the NIC is par-
ticularly amenable to large-scale rate limiting by taking
advantage of host DRAM. However, if unforeseen appli-
cations require more rate limiters than SENIC can offer,
such techniques come in handy.

IsoStack [37] proposed offloading the entire TCP/IP
network stack to dedicated cores. Our SENIC soft-
ware prototype mimics this approach (offloading only the
scheduler to a dedicated core), which explains the perfor-
mance benefits in our evaluation. Architectures for fast
packet IO such as Netmap [34] are orthogonal to SENIC,
and they only stand to benefit from scalable rate limiting
in the NIC.

10 Conclusion

Historically, the NIC has been an ideal place to offload
common network tasks such as packet segmentation,
VLAN encapsulation, checksumming, and rate limiting
is no exception. Today’s NICs offer only a handful of rate
limiters, however new requirements such as performance

isolation and OS-bypass for low-latency transport de-
mand more rate limiters. We argued why it makes sense
to pursue a hardware offload approach to rate limiting:
at data center scale, a custom ASIC is cheaper than ded-
icating CPU resources for a task that requires real time
packet processing. We implemented a proof-of-concept
NIC on the NetFPGA to demonstrate the feasibility of
scaling hardware rate limiters to thousands of queues.
We believe the NIC hardware is the cost-effective place
to implement rate limiting, especially as we scale the
bandwidth per-server to 40Gb/s and beyond.

Acknowledgments

This research was supported in part by the NSF through
grants CNS-1314921 and CNS-1040190. Additional
funding was provided by a Google Focused Research
Award. We would like to thank our shepherd Saikat Guha
and the anonymous NSDI reviewers.

References

[1] ALIZADEH, M., ATIKOGLU, B., KABBANI, A., LAK-
SHMIKANTHA, A., PAN, R., PRABHAKAR, B., AND

SEAMAN, M. Data Center Transport Mechanisms: Con-
gestion Control Theory and IEEE Standardization. In
46th Annual Allerton Conference on Communication,
Control, and Computing (2008).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In SIGCOMM (2010).

[3] ALIZADEH, M., KABBANI, A., EDSALL, T., PRAB-
HAKAR, B., VAHDAT, A., AND YASUDA, M. Less Is
More: Trading a Little Bandwidth for Ultra-Low Latency
in the Data Center. In NSDI (2012).

[4] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND

ROWSTRON, A. Towards Predictable Datacenter Net-
works. In SIGCOMM (2011).

[5] BENNETT, J. C., AND ZHANG, H. WF2Q : Worst-case
Fair Weighted Fair Queueing. In INFOCOM (1996).

[6] BENNETT, J. C. R., AND ZHANG, H. Hierarchical
Packet Fair Queueing Algorithms. In SIGCOMM (1996).

[7] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work Traffic Characteristics of Data Centers in the Wild.
In IMC (2010).

[8] CHECCONI, F., RIZZO, L., AND VALENTE, P. QFQ:
Efficient Packet Scheduling With Tight Guarantees. In
IEEE/ACM Transactions on Networking (June 2013).

[9] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis
and Simulation of a Fair Queueing Algorithm. In SIG-
COMM (1989).

13

488 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[10] FLAJSLIK, M., AND ROSENBLUM, M. Network Inter-
face Design for Low Latency Request-Response Proto-
cols. In USENIX ATC (2013).

[11] Intel 82599 10GbE Controller. http://www.intel.

com/content/dam/doc/datasheet/82599-10-gbe-

controller-datasheet.pdf.

[12] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D.,
PRABHAKAR, B., KIM, C., AND GREENBERG, A.
EyeQ: Practical Network Performance Isolation at the
Edge. In NSDI (2013).

[13] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER,
G. M., AND VAHDAT, A. Chronos: Predictable Low
Latency for Data Center Applications. In SOCC (2012).

[14] KUMAR, G., KANDULA, S., BODIK, P., AND MEN-
ACHE, I. Virtualizing Traffic Shapers for Practical Re-
source Allocation. In HotCloud (2013).

[15] LEMON, J. Kqueue - A Generic and Scalable Event No-
tification Facility. In USENIX ATC (2001).

[16] LOCKWOOD, J. W., MCKEOWN, N., WATSON, G.,
GIBB, G., HARTKE, P., NAOUS, J., RAGHURAMAN, R.,
AND LUO, J. NetFPGA - An Open Platform for Gigabit-
rate Network Switching and Routing. In IEEE Interna-
tional Conference on Microelectronic Systems Education
(2007).

[17] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. ServerSwitch: A
Programmable and High Performance Platform for Data
Center Networks. In NSDI (2011).

[18] Mellanox Connect-X3. http://www.mellanox.com/

related-docs/prod_adapter_cards/ConnectX3_

EN_Card.pdf.

[19] MOGUL, J. C. TCP Offload Is a Dumb Idea Whose Time
Has Come. In HotOS (2003).

[20] MOGUL, J. C., MUDIGONDA, J., SANTOS, J. R., AND

TURNER, Y. The NIC Is the Hypervisor: Bare-Metal
Guests in IaaS Clouds. In HotOS (2013).

[21] MOON, S., REXFORD, J., AND SHIN, K. G. Scalable
Hardware Priority Queue Architectures for High-Speed
Packet Switches. IEEE Transactions on Computers (Nov.
2000).

[22] MOSHREF, M., YU, M., SHARMA, A., AND GOVIN-
DAN, R. Scalable Rule Management for Data Centers. In
NSDI (2013).

[23] Myri-10G PCI Express Network Adapter.
https://www.myricom.com/products/network-

adapters/10g-pcie-8b-2s.html, Retrieved 25
September 2013.

[24] MYSORE, R. N., PORTER, G., AND VAHDAT, A. Fas-
Trak: Enabling Express Lanes in Multi-Tenant Data Cen-
ters. In CoNEXT (2013).

[25] ONGARO, D., RUMBLE, S. M., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast Crash
Recovery in RAMCloud. In SOSP (2011).

[26] OpenFlow Consortium. http:://www.openflow.org.

[27] PAN, R., BRESLAU, L., PRABHAKAR, B., AND

SHENKER, S. Approximate Fairness Through Differen-
tial Dropping. SIGCOMM CCR (Apr. 2003).

[28] PCI-SIG SR-IOV Primer: An Introduction to SR-IOV
Technology. http://www.intel.com/content/www/

us/en/pci-express/pci-sig-sr-iov-primer-

sr-iov-technology-paper.html, Retrieved 25
September 2013.

[29] PHANISHAYEE, A., KREVAT, E., VASUDEVAN, V., AN-
DERSEN, D. G., GANGER, G. R., GIBSON, G. A.,
AND SESHAN, S. Measurement and Analysis of TCP
Throughput Collapse in Cluster-based Storage Systems.
In USENIX FAST (2008).

[30] RADHAKRISHNAN, S., JEYAKUMAR, V., KABBANI,
A., PORTER, G., AND VAHDAT, A. NicPic: Scalable and
Accurate End-Host Rate Limiting. In HotCloud (2013).

[31] RAMCloud RPC Performance Numbers. https:

//ramcloud.stanford.edu/wiki/display/

ramcloud/RPC+Performance+Numbers, Retrieved
25 September 2013.

[32] RDMA Aware Networks Programming User Man-
ual. http://www.mellanox.com/related-docs/

prod_software/RDMA_Aware_Programming_user_

manual.pdf, Retrieved 25 September 2013.

[33] REXFORD, J., BONOMI, F., GREENBERG, A., AND

WONG, A. A Scalable Architecture for Fair Leaky-
Bucket Shaping. In INFOCOM (1997).

[34] RIZZO, L. netmap: a novel framework for fast packet
I/O. In USENIX ATC (2012).

[35] RODRIGUES, H., SANTOS, J. R., TURNER, Y.,
SOARES, P., AND GUEDES, D. Gatekeeper: Supporting
Bandwidth Guarantees for Multi-tenant Datacenter Net-
works. In WIOV (2011).

[36] RUMBLE, S. M., ONGARO, D., STUTSMAN, R.,
ROSENBLUM, M., AND OUSTERHOUT, J. K. It’s Time
for Low Latency. In HotOS (2011).

[37] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-
YEHUDA, M. IsoStack: Highly Efficient Network Pro-
cessing on Dedicated Cores. In USENIX ATC (2010).

[38] SHIEH, A., KANDULA, S., GREENBERG, A., AND KIM,
C. Seawall: Performance Isolation for Cloud Datacenter
Networks. In HotCloud (2010).

[39] SHREEDHAR, M., AND VARGHESE, G. Efficient Fair
Queueing Using Deficit Round Robin. In SIGCOMM
(1995).

[40] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND

ROWTRON, A. Better Never than Late: Meeting Dead-
lines in Datacenter Networks. In SIGCOMM (2011).

[41] Xilinx User Community Forums: ML506 board: Why
my DMA IP hangs OS? http://forums.xilinx.com/

t5/PCI-Express/ML506-board-Why-my-DMA-IP-

hangs-OS/td-p/94298, Retrieved 25 September 2013.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 489

mTCP: A Highly Scalable User-level TCP Stack for Multicore Systems

EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong
Sunghwan Ihm*, Dongsu Han, and KyoungSoo Park

KAIST *Princeton University

Abstract

Scaling the performance of short TCP connections on
multicore systems is fundamentally challenging. Although
many proposals have attempted to address various short-
comings, inefficiency of the kernel implementation still
persists. For example, even state-of-the-art designs spend
70% to 80% of CPU cycles in handling TCP connections
in the kernel, leaving only small room for innovation in
the user-level program.

This work presents mTCP, a high-performance user-
level TCP stack for multicore systems. mTCP addresses
the inefficiencies from the ground up—from packet I/O
and TCP connection management to the application inter-
face. In addition to adopting well-known techniques, our
design (1) translates multiple expensive system calls into a
single shared memory reference, (2) allows efficient flow-
level event aggregation, and (3) performs batched packet
I/O for high I/O efficiency. Our evaluations on an 8-core
machine showed that mTCP improves the performance of
small message transactions by a factor of 25 compared to
the latest Linux TCP stack and a factor of 3 compared to
the best-performing research system known so far. It also
improves the performance of various popular applications
by 33% to 320% compared to those on the Linux stack.

1 Introduction
Short TCP connections are becoming widespread. While
large content transfers (e.g., high-resolution videos) con-
sume the most bandwidth, short “transactions” 1 dominate
the number of TCP flows. In a large cellular network, for
example, over 90% of TCP flows are smaller than 32 KB
and more than half are less than 4 KB [45].

Scaling the processing speed of these short connec-
tions is important not only for popular user-facing on-
line services [1, 2, 18] that process small messages. It is

1We refer to a request-response pair as a transaction. These transac-
tions are typically small in size.

also critical for backend systems (e.g., memcached clus-
ters [36]) and middleboxes (e.g., SSL proxies [32] and
redundancy elimination [31]) that must process TCP con-
nections at high speed. Despite recent advances in soft-
ware packet processing [4, 7, 21, 27, 39], supporting high
TCP transaction rates remains very challenging. For exam-
ple, Linux TCP transaction rates peak at about 0.3 million
transactions per second (shown in Section 5), whereas
packet I/O can scale up to tens of millions packets per
second [4, 27, 39].

Prior studies attribute the inefficiency to either the high
system call overhead of the operating system [28, 40, 43]
or inefficient implementations that cause resource con-
tention on multicore systems [37]. The former approach
drastically changes the I/O abstraction (e.g., socket API)
to amortize the cost of system calls. The practical lim-
itation of such an approach, however, is that it requires
significant modifications within the kernel and forces ex-
isting applications to be re-written. The latter one typically
makes incremental changes in existing implementations
and, thus, falls short in fully addressing the inefficiencies.

In this paper, we explore an alternative approach that de-
livers high performance without requiring drastic changes
to the existing code base. In particular, we take a clean-
slate approach to assess the performance of an untethered
design that divorces the limitation of the kernel implemen-
tation. To this end, we build a user-level TCP stack from
the ground up by leveraging high-performance packet
I/O libraries that allow applications to directly access the
packets. Our user-level stack, mTCP, is designed for three
explicit goals:

1. Multicore scalability of the TCP stack.
2. Ease of use (i.e., application portability to mTCP).
3. Ease of deployment (i.e., no kernel modifications).

Implementing TCP in the user level provides many
opportunities. In particular, it can eliminate the expen-
sive system call overhead by translating syscalls into
inter-process communication (IPC). However, it also in-

1

490 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Accept queue Conn. Locality Socket API Event Handling Packet I/O
Application Mod-
ification

Kernel
Modification

PSIO [12],

No TCP stack BatchedDPDK [4], No interface for No
PF RING [7], transport layer (NIC driver)
netmap [21]

Linux-2.6 Shared None BSD socket Syscalls Per packet Transparent No

Linux-3.9 Per-core None BSD socket Syscalls Per packet
Add option No
SO REUSEPORT

Affinity-
Accept [37] Per-core Yes BSD socket Syscalls Per packet Transparent Yes

MegaPipe [28] Per-core Yes lwsocket Batched syscalls Per packet
Event model to Yes
completion I/O

FlexSC [40],
Shared None BSD socket Batched syscalls Per packet

Change to use Yes
VOS [43] new API

mTCP Per-core Yes User-level socket Batched function calls Batched Socket API to
mTCP API

No
(NIC driver)

Table 1: Comparison of the benefits of previous work and mTCP.

troduces fundamental challenges that must be addressed—
processing IPC messages, including shared memory mes-
sages, involve context-switches that are typically much
more expensive than the system calls themselves [3, 29].

Our key approach is to amortize the context-switch
overhead over a batch of packet-level and socket-level
events. While packet-level batching [27] and system-call
batching [28, 40, 43] (including socket-level events) have
been explored individually, integrating the two requires
a careful design of the networking stack that translates
packet-level events to socket-level events and vice-versa.

This paper makes two key contributions:
First, we demonstrate that significant performance

gain can be obtained by integrating packet- and socket-
level batching. In addition, we incorporate all known
optimizations, such as per-core listen sockets and load
balancing of concurrent flows on multicore CPUs with
receive-side scaling (RSS). The resulting TCP stack out-
performs Linux and MegaPipe [28] by up to 25x (w/o
SO_REUSEPORT) and 3x, respectively, in handling TCP
transactions. This directly translates to application per-
formance; mTCP increases existing applications’ perfor-
mance by 33% (SSLShader) to 320% (lighttpd).

Second, unlike other designs [23,30], we show that such
integration can be done purely at the user level in a way
that ensures ease of porting without requiring significant
modifications to the kernel. mTCP provides BSD-like
socket and epoll-like event-driven interfaces. Migrating
existing event-driven applications is easy since one simply
needs to replace the socket calls to their counterparts in
mTCP (e.g., accept() becomes mtcp_accept()) and
use the per-core listen socket.

2 Background and Motivation
We first review the major inefficiencies in existing TCP
implementations and proposed solutions. We then discuss
our motivation towards a user-level TCP stack.

2.1 Limitations of the Kernel’s TCP Stack
Recent studies proposed various solutions to address four
major inefficiencies in the Linux TCP stack: lack of con-
nection locality, shared file descriptor space, inefficient
packet processing, and heavy system call overhead [28].
Lack of connection locality: Many applications are
multi-threaded to scale their performance on multicore
systems. However, they typically share a listen socket
that accepts incoming connections on a well-known port.
As a result, multiple threads contend for a lock to access
the socket’s accept queue, resulting in a significant perfor-
mance degradation. Also, the core that executes the kernel
code for handling a TCP connection may be different from
the one that runs the application code that actually sends
and receives data. Such lack of connection locality intro-
duces additional overhead due to increased CPU cache
misses and cache-line sharing [37].

Affinity-Accept [37] and MegaPipe [28] address this
issue by providing a local accept queue in each CPU core
and ensuring flow-level core affinity across the kernel and
application thread. Recent Linux kernel (3.9.4) also partly
addresses this by introducing the SO_REUSEPORT [14] op-
tion, which allows multiple threads/processes to bind to
the same port number.
Shared file descriptor space: In POSIX-compliant op-
erating systems, the file descriptor (fd) space is shared
within a process. For example, Linux searches for the min-
imum available fd number when allocating a new socket.
In a busy server that handles a large number of concurrent
connections, this incurs significant overhead due to lock
contention between multiple threads [20]. The use of file
descriptors for sockets, in turn, creates extra overhead
of going through the Linux Virtual File System (VFS), a
pseudo-filesystem layer for supporting common file op-
erations. MegaPipe eliminates this layer for sockets by
explicitly partitioning the fd space for sockets and regular
files [28].

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 491

0%

20%

40%

60%

80%

100%

Linux-2.6 Linux-3.10 MegaPipe mTCP

C
PU

 U
til

iz
at

io
n

Kernel Packet I/O TCP/IP Application

1.00 0.96
1.77

4.37

0

1

2

3

4

5

0

1

2

3

4

5

Linux-2.6 Linux-3.10 MegaPipe mTCP
Tr

an
sa

ct
io

ns
/s

ec
 (x

 1
05)

R
el

at
iv

e
Sc

al
e

Relative Scale
Transaction Rate

Figure 1: CPU usage breakdown when running lighttpd serv-
ing a 64B file per connection.

Inefficient per-packet processing: Previous studies in-
dicate per-packet memory (de)allocation and DMA over-
head, NUMA-unaware memory access, and heavy data
structures (e.g., sk_buff) as the main bottlenecks in
processing small packets [27, 39]. To reduce the per-
packet overhead, it is essential to batch process multi-
ple packets. While many recent user-level packet I/O
libraries [4, 7, 27, 39] address these problems, these li-
braries do not provide a full-fledged TCP stack, and not
all optimizations are incorporated into the kernel.
System call overhead: The BSD socket API requires
frequent user/kernel mode switching when there are
many short-lived concurrent connections. As shown in
FlexSC [40] and VOS [43], frequent system calls can
result in processor state (e.g., top-level caches, branch
prediction table, etc.) pollution that causes performance
penalties. Previous solutions propose system call batch-
ing [28, 43] or efficient system call scheduling [40] to
amortize the cost. However, it is difficult to readily apply
either approach to existing applications since they often
require user and/or kernel code modification due to the
changes to the system call interface and/or its semantics.

Table 1 summarizes the benefits provided by previous
work compared to a vanilla Linux kernel. Note that there
is not a single system that provides all of the benefits.

2.2 Why User-level TCP?
While many previous designs have tried to scale the per-
formance of TCP in multicore systems, few of them truly
overcame the aforementioned inefficiencies of the kernel.
This is evidenced by the fact that even the best-performing
system, MegaPipe, spends a dominant portion of CPU
cycles (∼80%) inside the kernel. Even more alarming is
the fact that these CPU cycles are not utilized efficiently;
according to our own measurements, Linux spends more
than 4x the cycles (in the kernel and the TCP stack com-
bined) than mTCP does while handling the same number
of TCP transactions.

To reveal the significance of this problem, we profile the
server’s CPU usage when it is handling a large number of
concurrent TCP transactions (8K to 48K concurrent TCP
connections). For this experiment, we use a simple web
server (lighttpd v1.4.32 [8]) running on an 8-core Intel

0%

20%

40%

60%

80%

100%

Linux-2.6 Linux-3.10 MegaPipe mTCP

C
PU

 U
til

iz
at

io
n

Kernel Packet I/O TCP/IP Application

1.00 0.96
1.77

4.37

0

1

2

3

4

5

0

1

2

3

4

5

Linux-2.6 Linux-3.10 MegaPipe mTCP

Tr
an

sa
ct

io
ns

/s
ec

 (x
 1

05)

R
el

at
iv

e
Sc

al
e

Relative Scale
Transaction Rate

Figure 2: Relative scale of # transactions processed per CPU
cycle in the kernel (including TCP/IP and I/O) across four
lighttpd versions.

Xeon CPU (2.90 GHz, E5-2690) with 32 GB of memory
and a 10 Gbps NIC (Intel 82599 chipsets). Our clients
use ab v2.3 [15] to repeatedly download a 64B file per
connection. Multiple clients are used in our experiment to
saturate the CPU utilization of the server. Figure 1 shows
the breakdown of CPU usage comparing four versions of
the lighttpd server: a multithreaded version that harnesses
all 8 CPU cores on Linux 2.6.32 and 3.10.12 2 (Linux), a
version ported to MegaPipe 3 (MegaPipe), and a version
using mTCP, our user-level TCP stack, on Linux 2.6.32
(mTCP). Note that MegaPipe adopts all recent optimiza-
tions such as per-core accept queues and file descriptor
space, as well as user-level system call batching, but reuses
the existing kernel for packet I/O and TCP/IP processing.

Our results indicate that Linux and MegaPipe spend
80% to 83% of CPU cycles in the kernel which leaves
only a small portion of the CPU to user-level applications.
Upon further investigation, we find that lock contention
for shared in-kernel data structures, buffer management,
and frequent mode switch are the main culprits. This
implies that the kernel, including its stack, is the major
bottleneck. Furthermore, the results in Figure 2 show
that the CPU cycles are not spent efficiently in Linux
and MegaPipe. The bars indicate the relative number
of transactions processed per each CPU cycle inside the
kernel and the TCP stack (e.g., outside the application),
normalized by the performance of Linux 2.6.32. We find
that mTCP uses the CPU cycles 4.3 times more effectively
than Linux. As a result, mTCP achieves 3.1x and 1.8x
the performance of Linux 2.6 and MegaPipe, respectively,
while using fewer CPU cycles in the kernel and the TCP
stack.

Now, the motivation of our work is clear. Can we de-
sign a user-level TCP stack that incorporates all existing
optimizations into a single system and achieve all benefits
that individual systems have provided in the past? How
much of a performance improvement can we get if we
build such a system? Can we bring the performance of
existing packet I/O libraries to the TCP stack?

2This is the latest Linux kernel version as of this writing.
3We use Linux 3.1.3 for MegaPipe due to its patch availability.

3

492 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Kernel

User
Space

Thread 0

ixgbe driver

Application process

Kernel TCP stack

Thread 1 …

accept() epoll_wait()

BSD socket Linux epoll

Linux

User-level packet I/O library

Application process

mTCP
thread 0

mTCP
thread 1 …

Thread 0 Thread 1 …

User-level TCP stack

mtcp_accept()

mTCP socket mTCP epoll

mtcp_epoll_wait()

mTCP’s approach

Figure 3: mTCP Design Overview.

To answer these questions, we build a TCP stack in
the user level. User-level TCP is attractive for many rea-
sons. First, it allows us to easily depart from the kernel’s
complexity. In particular, due to shared data structures
and various semantics that the kernel has to support (e.g.,
POSIX and VFS), it is often difficult to separate the TCP
stack from the rest of the kernel. Furthermore, it allows
us to directly take advantage of the existing optimiza-
tions in the high-performance packet I/O library, such as
netmap [39] and Intel DPDK [4]. Second, it allows us to
apply batch processing as the first principle, harnessing
the ideas in FlexSC [40] and VOS [43] without extensive
kernel modifications. In addition to performing batched
packet I/O, the user-level TCP naturally collects multiple
flow-level events to and from the user application (e.g.,
connect()/accept() and read()/write() for differ-
ent connections) without the overhead of frequent mode
switching in system calls. Finally, it allows us to easily
preserve the existing application programming interface.
Our TCP stack is backward-compatible in that we provide
a BSD-like socket interface.

3 Design

The goal of mTCP is to achieve high scalability on mul-
ticore systems while maintaining backward compatibil-
ity to existing multi-threaded, event-driven applications.
Figure 3 presents an overview of our system. At the high-
est level, applications link to the mTCP library, which
provides a socket API and an event-driven programming
interface for backward compatibility. The two underlying
components, user-level TCP stack and packet I/O library,
are responsible for achieving high scalability. Our user-
level TCP implementation runs as a thread on each CPU
core within the same application process. The mTCP
thread directly transmits and receives packets to and from
the NIC using our custom packet I/O library. Existing
user-level packet libraries only allow one application to
access an NIC port. Thus, mTCP can only support one
application per NIC port. However, we believe this can
be addressed in the future using virtualized network inter-
faces (more details in Section 3.3). Applications can still

choose to work with the existing TCP stack, provided that
they only use NICs that are not used by mTCP.

In this section, we first present the design of mTCP’s
highly scalable lower-level components in Sections 3.1
and 3.2. We then discuss the API and semantics that
mTCP provides to support applications in Section 3.3.

3.1 User-level Packet I/O Library
Several packet I/O systems allow high-speed packet I/O
(∼100M packets/sec) from a user-level application [4, 7,
12]. However, they are not suitable for implementing a
transport layer since their interface is mainly based on
polling. Polling can significantly waste precious CPU cy-
cles that can potentially benefit the applications. Further-
more, our system requires efficient multiplexing between
TX and RX queues from multiple NICs. For example, we
do not want to block a TX queue while sending a data
packet when a control packet is waiting to be received.
This is because if we block the TX queue, important con-
trol packets, such as SYN or ACK, may be dropped, re-
sulting in a significant performance degradation due to
retransmissions.

To address these challenges, mTCP extends the Pack-
etShader I/O engine (PSIO) [27] to support an efficient
event-driven packet I/O interface. PSIO offers high-speed
packet I/O by utilizing RSS that distributes incoming pack-
ets from multiple RX queues by their flows, and provides
flow-level core affinity to minimize the contention among
the CPU cores. On top of PSIO’s high-speed packet I/O,
the new event-driven interface allows an mTCP thread to
efficiently wait for events from RX and TX queues from
multiple NIC ports at a time.

The new event-driven interface, ps_select(), works
similarly to select() except that it operates on TX/RX
queues of interested NIC ports for packet I/O. For exam-
ple, mTCP specifies the interested NIC interfaces for RX
and/or TX events with a timeout in microseconds, and
ps_select() returns immediately if any event of interest
is available. If such an event is not detected, it enables
the interrupts for the RX and/or TX queues and yields
the thread context. Eventually, the interrupt handler in
the driver wakes up the thread if an I/O event becomes
available or the timeout expires. ps_select() is also
similar to the select()/poll() interface supported by
netmap [39]. However, unlike netmap, we do not integrate
this with the general-purpose event system in Linux to
avoid its overhead.

The use of PSIO brings the opportunity to amortize the
overhead of system calls and context switches throughout
the entire system, in addition to eliminating the per-packet
memory allocation and DMA overhead. In PSIO, packets
are received and transmitted in batches [27], amortizing
the cost of expensive PCIe operations, such as DMA ad-
dress mapping and IOMMU lookups.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 493

Application

mTCP

User-level socket

Event queue

mTCP 1

App. 1

…

App. buffer

Job queues
(e.g. write queue)

Shared TCP buffers

App.
Thread 0

mTCP
Thread 0

Figure 4: Thread model of mTCP.

3.2 User-level TCP Stack
A user-level TCP stack naturally eliminates many system
calls (e.g., socket I/O), which can potentially reduce a
significant part of the Linux TCP overhead. One approach
to a user-level TCP stack is to implement it completely
as a library that runs as part of the application’s main
thread. This “zero-thread TCP” could potentially provide
the best performance since this translates costly system
calls into light-weight user-level function calls. However,
the fundamental limitation of this approach is that the
correctness of internal TCP processing depends on the
timely invocation of TCP functions from the application.

In mTCP, we choose to create a separate TCP thread to
avoid such an issue and to minimize the porting effort for
existing applications. Figure 4 shows how mTCP interacts
with the application thread. The application uses mTCP
library functions that communicate with the mTCP thread
via shared buffers. The access to the shared buffers is
granted only through the library functions, which allows
safe sharing of the internal TCP data. When a library
function needs to modify the shared data, it simply places
a request (e.g., write() request) to a job queue. This way,
multiple requests from different flows can be piled to the
job queue at each loop, which are processed in batch when
the mTCP thread regains the CPU. Flow events from the
mTCP thread (e.g., new the CPU core. Flow events from
the mTCP thread (e.g., new connections, new data arrival,
etc.) are delivered in a similar way

This, however, requires additional overhead of manag-
ing concurrent data structures and context switch between
the application and the mTCP thread. Such cost is un-
fortunately not negligible, typically much larger than the
system call overhead [29]. One measurement on a recent
Intel CPU shows that a thread context switch takes 19
times the duration of a null system call [3].

In this section, we describe how mTCP addresses these
challenges and achieves high scalability with the user-
level TCP stack. We first start from how mTCP processes
TCP packets in Section 3.2.1, then present a set of key
optimizations we employ to enhance its performance in
Sections 3.2.2, 3.2.3, and 3.2.4.

3.2.1 Basic TCP Processing
When the mTCP thread reads a batch of packets from the
NIC’s RX queue, mTCP passes them to the TCP packet

Accept
queue

S S/A F/A

Data list

ACK list

Control list

TX manager

Connect
queue

Application

Data

S A F/A

Data list

Write
queue

Close
queue

write()

Packet handler

Payload handler

Socket API

Internal event queue

Event
queue

ACK list

Control list

TX manager

S A

connect() close()epoll_wait()accept()

tcb

(1)

(2)

(3)

(4)

(5) (6)

(7)

(8)

Figure 5: An example of TCP processing in mTCP.

processing logic which follows the standard TCP specifi-
cation. For each packet, mTCP first searches (or creates) a
TCP control block (tcb) of the corresponding flow in the
flow hash table. As in Figure 5, if a server side receives
an ACK for its SYN/ACK packet (1), the tcb for the new
connection will be enqueued to an accept queue (2), and
a read event is generated for the listening socket (3). If
a new data packet arrives, mTCP copies the payload to
the socket’s read buffer and enqueues a read event to an
internal event queue. mTCP also generates an ACK packet
and keeps it in the ACK list of a TX manager until it is
written to a local TX queue.

After processing a batch of received packets, mTCP
flushes the queued events to the application event queue
(4) and wakes up the application by signaling it. When
the application wakes up, it processes multiple events in a
single event loop (5), and writes responses from multiple
flows without a context switch. Each socket’s write()
call writes data to its send buffer (6), and enqueues its
tcb to the write queue (7). Later, mTCP collects the tcbs
that have data to send, and puts them into a send list (8).
Finally, a batch of outgoing packets from the list will be
sent by a packet I/O system call, transmitting them to the
NIC’s TX queue.

3.2.2 Lock-free, Per-core Data Structures
To minimize inter-core contention between the mTCP
threads, we localize all resources (e.g., flow pool, socket
buffers, etc.) in each core, in addition to using RSS for
flow-level core affinity. Moreover, we completely elimi-
nate locks by using lock-free data structures between the
application and mTCP. On top of that, we also devise an
efficient way of managing TCP timer operations.

Thread mapping and flow-level core affinity: We pre-
serve flow-level core affinity in two stages. First, the
packet I/O layer ensures to evenly distribute TCP con-
nection workloads across available CPU cores with RSS.
This essentially reduces the TCP scalability problem to
each core. Second, mTCP spawns one TCP thread for
each application thread and co-locates them in the same
physical CPU core. This preserves the core affinity of

5

494 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

packet and flow processing, while allowing them to use
the same CPU cache without cache-line sharing.

Multi-core and cache-friendly data structures: We
keep most data structures, such as the flow hash table,
socket id manager, and the pool of tcb and socket buffers,
local to each TCP thread. This significantly reduces any
sharing across threads and CPU cores, and achieves high
parallelism. When a data structure must be shared across
threads (e.g., between mTCP and the application thread),
we keep all data structures local to each core and use
lock-free data structures by using a single-producer and
single-consumer queue. We maintain write, connect, and
close queues, whose requests go from the application to
mTCP, and an accept queue where new connections are
delivered from mTCP to the application.

In addition, we keep the size of frequently accessed
data structures small to maximize the benefit of the CPU
cache, and make them aligned with the size of a CPU
cache line to prevent any false sharing. For example, we
divide tcb into two parts where the first-level structure
holds 64 bytes of the most frequently-accessed fields and
two pointers to next-level structures that have 128 and 192
bytes of receive/send-related variables, respectively.

Lastly, to minimize the overhead of frequent memory
allocation/deallocation, we allocate a per-core memory
pool for tcbs and socket buffers. We also utilize huge
pages to reduce the TLB misses when accessing the tcbs.
Because their access pattern is essentially random, it often
causes a large number of TLB misses. Putting the memory
pool of tcbs and a hash table that indexes them into huge
pages reduces the number of TLB misses.

Efficient TCP timer management: TCP requires timer
operations for retransmission timeouts, connections in
the TIME WAIT state, and connection keep-alive checks.
mTCP provides two types of timers: one managed by
a sorted list and another built with a hash table. For
coarse-grained timers, such as managing connections in
the TIME WAIT state and connection keep-alive check,
we keep a list of tcbs sorted by their timeout values. Ev-
ery second, we check the list and handle any tcbs whose
timers have expired. Note that keeping the list sorted is
trivial since a newly-added entry should have a strictly
larger timeout than any of those that are already in the
list. For fine-grained retransmission timers, we use the
remaining time (in milliseconds) as the hash table index,
and process all tcbs in the same bucket when a timeout ex-
pires for the bucket. Since retransmission timers are used
by virtually all tcbs whenever a data (or SYN/FIN) packet
is sent, keeping a sorted list would consume a significant
amount of CPU cycles. Such fine-grained event batch
processing with millisecond granularity greatly reduces
the overhead.

RX buffer TX buffer

NIC

mTCP

Receive socket buffer Send socket buffer

Event
queue

Accept
queue

Job
queue

Application

read() write()

Figure 6: Batch processing of events and jobs.

3.2.3 Batched Event Handling

mTCP transparently enables batch processing of multi-
ple flow events, which effectively amortizes the context
switch cost over multiple events. After receiving pack-
ets in batch, mTCP processes them to generate a batch
of flow-level events. These events are then passed up to
the application, as illustrated in Figure 6. The TX direc-
tion works similarly, as the mTCP library transparently
batches the write events into a write queue. While the
idea of amortizing the system call overhead using batches
is not new [28, 43], we demonstrate that benefits similar
to that of batched syscalls can be effectively achieved in
user-level TCP.

In our experiments with 8 RX/TX queues per 10 Gbps
port, the average number of events that an mTCP thread
generates in a single scheduling period is about 2,170
for both TX and RX directions (see Section 5.1). This
ensures that the cost of a context switch is amortized
over a large number of events. Note the fact that the use
of multiple queues does not decrease the number of the
events processed in a batch.

3.2.4 Optimizing for Short-lived Connections

We employ two optimizations for supporting many short-
lived concurrent connections.

Priority-based packet queueing: For short TCP con-
nections, the control packets (e.g., SYN and FIN) have a
critical impact on the performance. Since the control pack-
ets are mostly small-sized, they can often be delayed for a
while when they contend for an output port with a large
number of data packets. We prioritize control packets by
keeping them in a separate list. We maintain three kinds
of lists for TX as shown in Figure 5. First, a control list
contains the packets that are directly related to the state of
a connection such as SYN, SYN/ACK, and ACK, or FIN
and FIN/ACK. We then manage ACKs for incoming data
packets in an ACK list. Finally, we keep a data list to send
data in the socket buffers of TCP flows. When we put
actual packets in a TX queue, we first fill the packets from
a control list and an ACK list, and later queue the data
packets. By doing this, we prioritize important packets

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 495

to prevent short connections from being delayed by other
long connections. 4

Lightweight connection setup: In addition, we find
that a large portion of connection setup cost is from allo-
cating memory space for TCP control blocks and socket
buffers. When many threads concurrently call malloc()
or free(), the memory manager in the kernel can be eas-
ily contended. To avoid this problem, we pre-allocate
large memory pools and manage them at user level to sat-
isfy memory (de)allocation requests locally in the same
thread.

3.3 Application Programming Interface
One of our primary design goals is to minimize the port-
ing effort of existing applications so that they can easily
benefit from our user-level TCP stack. Therefore, our
programming interface must preserve the most commonly
used semantics and application interfaces as much as pos-
sible. To this end, mTCP provides a socket API and an
event-driven programming interface.

User-level socket API: We provide a BSD-like socket
interface; for each BSD socket function, we have a
corresponding function call (e.g., accept() becomes
mtcp_accept()). In addition, we provide functionali-
ties that are frequently used with sockets, e.g., fcntl and
ioctl, for setting the socket as nonblocking or getting/set-
ting the socket buffer size. To support various applications
that require inter-process communication using pipe(),
we also provide mtcp_pipe().

The socket descriptor space in mTCP (including the fds
of pipe() and epoll()) is local to each mTCP thread;
each mTCP socket is associated with a thread context.
This allows parallel socket creation from multiple threads
by removing lock contention on the socket descriptor
space. We also relax the semantics of socket() such
that it returns any available socket descriptor instead of
the minimum available fd. This reduces the overhead of
finding the minimum available fd.

User-level event system: We provide an epoll()-
like event system. While our event system aggre-
gates the events from multiple flows for batching ef-
fects, we do not require any modification in the event
handling logic. Applications can fetch the events
through mtcp_epoll_wait() and register events through
mtcp_epoll_ctl(), which correspond to epoll_wait()
and epoll_ctl() in Linux. Our current mtcp_epoll()
implementation supports events from mTCP sockets (in-
cluding listening sockets) and pipes. We plan to integrate
other types of events (e.g., timers) in the future.

4This optimization can potentially make the system more vulnerable
to attacks, such as SYN flooding. However, existing solutions, such as
SYN cookies, can be used to mitigate the problem.

Applications: mTCP integrates all techniques known
at the time of this writing without requiring substantial
kernel modification while preserving the application inter-
face. Thus, it allows applications to easily scale their
performance without modifying their logic. We have
ported many applications, including lighttpd, ab, and
SSLShader to use mTCP. For most applications we ported,
the number of lines changed were less than 100 (more de-
tails in Section 4). We also demonstrate in Section 5 that a
variety of applications can directly enjoy the performance
benefit by using mTCP.

However, this comes with a few trade-offs that appli-
cations must consider. First, the use of shared memory
space offers limited protection between the TCP stack and
the application. While the application cannot directly ac-
cess the shared buffers, bugs in the application can corrupt
the TCP stack, which may result in an incorrect behavior.
Although this may make debugging more difficult, we
believe this form of fate-sharing is acceptable since users
face a similar issue in using other shared libraries such as
dynamic memory allocation/deallocation. Second, appli-
cations that rely on the existing socket fd semantics must
change their logic. However, most applications rarely de-
pend on the minimum available fd at socket(), and even if
so, porting them will not require significant code change.
Third, moving the TCP stack will also bypass all existing
kernel services, such as the firewall and packet schedul-
ing. However, these services can also be moved into the
user-level and provided as application modules. Finally,
our prototype currently only supports a single application
due to the limitation of the user-level packet I/O system.
We believe, however, that this is not a fundamental limita-
tion of our approach; hardware-based isolation techniques
such as VMDq [5] and SR-IOV [13] support multiple
virtual guest stacks inside the same host using multiple
RX/TX queues and hardware-based packet classification.
We believe such techniques can be leveraged to support
multiple applications that share a NIC port.

4 Implementation
We implement 11,473 lines of C code (LoC), including
packet I/O, TCP flow management, user-level socket API
and event system, and 552 lines of code to patch the PSIO
library.5 For threading and thread synchronization, we use
pthread, the standard POSIX thread library [11].

Our TCP implementation follows RFC793 [17]. It sup-
ports basic TCP features such as connection management,
reliable data transfer, flow control, and congestion control.
For reliable transfer, it implements cumulative acknowl-
edgment, retransmission timeout, and fast retransmission.
mTCP also implements popular options such as timestamp,
Maximum Segment Size (MSS), and window scaling. For

5The number is counted by SLOCCount 2.26.

7

496 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

congestion control, mTCP implements NewReno [10],
but it can easily support other mechanisms like TCP CU-
BIC [26]. For correctness, we have extensively tested our
mTCP stack against various versions of Linux TCP stack,
and have it pass stress tests, including cases where a large
number of packets are lost or reordered.

4.1 mTCP Socket API
Our BSD-like socket API takes on per-thread semantics.
Each mTCP socket function is required to have a context,
mctx_t, which identifies the corresponding mTCP thread.
Our event notification function, mtcp_epoll, also enables
easy migration of existing event-driven applications. List-
ing 1 shows an example mTCP application.

mctx_t mctx = mtcp_create_context();
ep_id = mtcp_epoll_create(mctx , N);
mtcp_listen(mctx , listen_id , 4096);
while (1) {

n=mtcp_epoll_wait(mctx ,ep_id ,events ,N,-1);
for (i = 0; i < n; i++) {

sockid = events[i].data.sockid;
if (sockid == listen_id) {

c = mtcp_accept(mctx , listen_id , NULL);
mtcp_setsock_nonblock(mctx , c);
ev.events = EPOLLIN | EPOLLOUT;
ev.data.sockid = c;
mtcp_epoll_ctl(mctx , ep_id ,

EPOLL_CTL_ADD , c, &ev);
} else if (events[i].events == EPOLLIN) {

r = mtcp_read(mctx , sockid , buf , LEN);
if (r == 0)

mtcp_close(mctx , sockid);
} else if (events[i].events == EPOLLOUT){

mtcp_write(mctx , sockid , buf, len);
}

}
}

Listing 1: Sample mTCP application.

mTCP supports mtcp_getsockopt() and
mtcp_setsockopt() for socket options, and
mtcp_readv() and mtcp_writev() for scatter-gather
I/O as well.

4.2 Porting Existing Applications
We ported four different applications to mTCP.

Web server (lighttpd-1.4.32): Lighttpd is an open-
sourced single-threaded web server that uses event-driven
I/O for servicing client requests. We enabled multi-
threading to support a per-core listen socket and ported
it to mTCP. We changed only ∼65 LoC to use mTCP-
specific event and socket function calls. For multi-
threading, a total of ∼800 lines6 were modified out of
lighttpd’s ∼40,000 LoC.

We also ported lighttpd to MegaPipe for comparison.
Because its API is based on the I/O completion model,

6Some global variables had to be localized to avoid race conditions.

the porting required more effort as it involved revamping
lighttpd’s event-based fdevent backend library; an ad-
ditional 126 LoC were required to enable MegaPipe I/O
from the multi-threaded version.

Apache benchmarking tool (ab-2.3): ab is a perfor-
mance benchmarking tool that generates HTTP requests.
It acts as a client to measure the performance of a Web
server. Scaling its performance is important because sat-
urating a 10 Gbps port with small transactions requires
multiple machines that run ab. However, with mTCP we
can reduce the number of machines by more than a factor
of 4 (see Section 5.3).

Porting ab was similar to porting lighttpd since ab is also
single-threaded. However, ab uses the Apache Portable
Runtime (APR) library [16] that encapsulates socket func-
tion calls, so we ported the APR library (version 1.4.6) to
use mTCP. We modified 29 lines of the APR library (out
of 66,493 LoC), and 503 lines out of 2,319 LoC of the ab
code for making it multi-threaded.

SSL reverse proxy (SSLShader): SSLShader is a high-
performance SSL reverse proxy that offloads crypto opera-
tions to GPUs [32]. For small-file workloads, SSLShader
reports the performance bottleneck in TCP, spending over
60% CPU cycles in the TCP stack, under-utilizing the
GPU. Porting SSLShader to mTCP was straightforward
since SSLShader was already multi-threaded and uses
epoll() for event notification. Besides porting socket
function calls, we also replace pipe() with mtcp_pipe(),
which is used to notify the completion of crypto operations
by GPU threads. Out of 6,618 lines of C++ code, only 43
lines were modified to use mTCP. It took less than a day
to port to mTCP and to finish basic testing and debugging.

Realistic HTTP replay client/server (WebReplay):
WebReplay is a pair of client and server programs that
reproduces realistic HTTP traffic based on the traffic log
collected at a 10 Gbps backhaul link in a large cellular
network [45]. Each line in the log has a request URL,
a response size, start and end timestamps, and a list of
SHA1 hashes of the 4KB content chunks of the original
response. The client generates HTTP requests on start
timestamps. Using the content hashes, the server dynami-
cally generates a response that preserves the redundancy
in the original traffic; the purpose of the system is to repro-
duce Web traffic with a similar amount of redundancy as
the original. Using this, one can test the correctness and
performance of network redundancy elimination (NRE)
systems that sit between the server and the client. To sim-
ulate the traffic at a high speed, however, the WebReplay
server must handle 100Ks of concurrent short connections,
which requires high TCP performance.

WebReplay is multi-threaded and uses the libevent
library [6] which in turn calls epoll() for event notifica-
tion. Porting it to mTCP was mostly straightforward in

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 497

1.00 0.96
00

Linux-2.6 Linux-3.10 MegaPipe mTCP

Tr
an

sa
ct

io
ns

/se
c

(x
 1

05
)

 -

 10

 20

 30

 40

1 2 4 8

Tr
an

sa
ct

io
ns

/se
c

(1
05)

Number of Messages per Connection

0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size

Linux REUSEPORT MegaPipe mTCP

 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of Messages per Connection

Link saturated

0 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of CPU Cores
1

0

 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of CPU Cores
1

0 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of Messages per Connection

Link saturated

0 0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size

Linux REUSEPORT MegaPipe mTCP

(a) Different number of cores

1.00 0.96
00

Linux-2.6 Linux-3.10 MegaPipe mTCP

Tr
an

sa
ct

io
ns

/se
c

(x
 1

05
)

 -

 10

 20

 30

 40

1 2 4 8

Tr
an

sa
ct

io
ns

/se
c

(1
05)

Number of Messages per Connection

0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size

Linux REUSEPORT MegaPipe mTCP

 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of Messages per Connection

Link saturated

0 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of CPU Cores
1

0

 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of CPU Cores
1

0 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of Messages per Connection

Link saturated

0 0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size

Linux REUSEPORT MegaPipe mTCP

(b) Different number of messages

1.00 0.96
00

Linux-2.6 Linux-3.10 MegaPipe mTCP

Tr
an

sa
ct

io
ns

/se
c

(x
 1

05
)

 -

 10

 20

 30

 40

1 2 4 8

Tr
an

sa
ct

io
ns

/se
c

(1
05)

Number of Messages per Connection

0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size

Linux REUSEPORT MegaPipe mTCP

 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
ge

s/s
ec

 (x
 1

05)
Number of Messages per Connection

Link saturated

0 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of CPU Cores
1

0

 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of CPU Cores
1

0 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
ge

s/s
ec

 (x
 1

05)

Number of Messages per Connection

Link saturated

0 0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size

Linux REUSEPORT MegaPipe mTCP

(c) Different sizes of messages

Figure 7: Performance of short TCP connections with 64B messages. (a) and (c) use one message per connection.

Linux

REUSEPORT

Multiprocess

MegaPipe

mTCP

 -
 1
 1
 2
 2
 3
 3
 4
 4

1 2 6 8

C
on

ne
ct

io
ns

/s
ec

 (x
 1

05
)

Number of CPU Cores

Linux REUSEPORT MegaPipe

 -

 5

 10

 15

 20

 25

 30

1 2 4 6 8

C
on

ne
ct

io
ns

/s
ec

 (x
 1

05)

Number of CPU Cores

Linux REUSEPORT Multiprocess mTCP

Figure 8: Comparison of connection accept throughputs.

that it only required replacing the socket and libevent calls
with the corresponding mTCP API. We modified 44/37
LoC out of 1,703/1,663 lines of server and client code,
respectively.

5 Evaluation
We answer three questions in this section:
1. Handling short TCP transactions: Does mTCP pro-

vide high-performance in handling short transactions?
In Section 5.1, we show that mTCP outperforms
MegaPipe and Linux (w/o SO_REUSEPORT) by 3x and
25x, respectively; mTCP connection establishment
alone is 13x and 5x faster than Linux and MegaPipe,
respectively.

2. Correctness: Does mTCP provide correctness with-
out introducing undesirable side-effects? Section 5.2
shows that mTCP provide fairness and does not intro-
duce long latency.

3. Application performance: Does mTCP benefit real
applications under realistic workloads? In Section 5.3,
we show that mTCP increases the performance of
various applications running realistic workload by 33%
to 320%.

Experiment Setup: We compare mTCP on Linux
2.6.32 with the TCP stack on the latest Linux kernel (ver-
sion 3.10.12, with and without SO_REUSEPORT) as well as
MegaPipe on Linux 3.1.3. We use a machine with one
8-core CPU (Intel Xeon E5-2690 @ 2.90 GHz), 32 GB
RAM, and an Intel 10 GbE NIC as a server, and use up

to 5 clients of the same type to saturate the server. While
mTCP itself does not depend on the kernel version, the
underlying PSIO library currently works on Linux 2.6.32.
For Linux, we use ixgbe-3.17.3 as the NIC driver.

5.1 Handling Short TCP Transactions
Message benchmark: We first show mTCP’s scalabil-
ity with a benchmark for a server sending a short message
as a response. All servers are multi-threaded with a single
listening port. Our workload generates a 64 byte message
per connection, unless otherwise specified. The perfor-
mance result is averaged over a one minute period in each
experiment. Figure 7 shows the performance as a function
of the number of CPU cores, the number of messages per
connection (MPC), and message size.

Figure 7(a) shows that mTCP scales almost lin-
early with the number of CPU cores. Linux without
SO_REUSEPORT (‘Linux’) shows poor scaling due to the
shared accept queue, and Linux with SO_REUSEPORT
(‘REUSEPORT’) scales but not linearly with the num-
ber of cores. At 8 cores, mTCP shows 25x, 5x, 3x higher
performance over Linux, REUSEPORT, and MegaPipe,
respectively.

Figure 7(b) shows that the mTCP’s benefit still holds
even when persistent connections are used. mTCP scales
well as the number of messages per connection (MPC)
increases, and it nearly saturates the 10G link from 64
MPC. However, the performance of the other systems
almost flattens out well below the link capacity. Even at
32 MPC, mTCP outperforms all others by a significant
margin (up to 2.7x), demonstrating mTCP’s effectiveness
in handling small packets.

Finally, Figure 7(c) shows the throughput by varying the
message size. mTCP’s performance improvement is more
noticeable with small messages, due to its fast processing
of small packets. However, both Linux servers fail to
saturate the 10 Gbps link for any message size. MegaPipe
saturates the link from 4KiB, and mTCP can saturate the
link from 1KiB messages.
Connection accept throughput: Figure 8 compares
connection throughputs of mTCP and Linux servers. The

9

498 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Min Mean Max Stdev

Connect
Linux 0 36 63,164 511.6
mTCP 0 1 500 1.1

Processing
Linux 0 87 127,323 3,217
mTCP 1 13 2,323 9.7

Total
Linux 0 124 127,323 3,258
mTCP 9 14 2,348 9.8

Table 2: Distribution of response times (ms) for 64B HTTP
messages for 10 million requests (8K concurrency).

server is in a tight loop that simply accepts and closes
new connections. We close the connection by sending a
reset (RST) to prevent the connection from lingering in
the TIME WAIT state. To remove the bottleneck from
the shared fd space, we add ‘Multiprocess’ which is a
multi-process version of the REUSEPORT server. mTCP
shows 13x, 7.5x, 5x performance improvement over Linux,
REUSEPORT, and Multiprocess, respectively. Among the
Linux servers, the multi-process version scales the best
while other versions show a sudden performance drop at
multiple cores. This is due to the contention on the shared
accept queue as well as shared fd space. However, Mul-
tiprocess shows limited scaling, due to the lack of batch
processing and other inefficiencies in the kernel.

5.2 Fairness and Latency
Fairness: To verify the throughput fairness among
mTCP connections, we use ab to generate 8K concurrent
connections, each downloading a 10 MiB file to saturate a
10 Gbps link. On the server side, we run lighttpd with
mTCP and Linux TCP. We calculate Jain’s Fairness Index
with the (average) transfer rate of each connection. As the
value gets closer to 1.0, it shows better fairness. We find
that Linux and mTCP show 0.973 and 0.999, respectively.
mTCP effectively removes the long tail in the response
time distribution, whereas Linux often drops SYN packets
and enters a long timeout.

Latency: Since mTCP relies heavily on batching, one
might think it may introduce undesirably long latency.
Table 2 shows the latency breakdown when we run ab
with 8K concurrent connections against the 64B message
server. We generate 10 million requests in total. Linux
and mTCP versions respectively achieve 45K and 428K
transactions per second on average. As shown in the table,
mTCP slightly increases the minimum (9 ms vs. 0 ms)
and the median (13 ms vs. 3 ms) response times. However,
the mean and maximum response times are 8.8x and 54.2x
smaller than those of Linux, while handling 9.5x more
transactions/sec. In addition, the standard deviation of the
response times in mTCP is much smaller, implying that
mTCP produces more predictable response times, which
is becoming increasingly important for modern datacenter
applications [33].

0
0.5
1
1.5
2
2.5
3
3.5
4

0

1

2

3

4

5

Linux REUSEPORT MegaPipe mTCP

Tr
an

sa
ct

io
ns

/s
 (x

 1
05)

T
hr

ou
gh

pu
t (

G
bp

s) Throughput (Gbps)
Transactions/sec

400000

4.5

Figure 9: Performance of four versions of lighttpd for static
file workload from SpecWeb2009.

Core 708B 64B CPU (%) 708B 64B CPU (%)

1 43,275 44,297 98 164,766 183,487 100

2 71,109 74,257 196 281,048 313,253 200

4 111,477 114,374 394 393,859 441,948 400

6 140,673 141,707 591 528,140 577,343 598

8 151,288 149,806 785 660,137 731,833 796

*both with epserver

File Size Transactions/sec Linux Linux CPU Transactions/sec mTCP mTCP CPU

64B 163,337 0.92 789 729,897 3.89 796

128B 161,898 1.00 788 721,460 4.24 796

256B 163,123 1.17 789 707,002 4.91 796

512B 160,054 1.49 788 681,813 6.13 796

1KiB 158,578 2.11 789 633,101 8.36 796

2KiB 152,625 3.42 787 453,606 10.00 626

4KiB 134,525 5.45 787 253,702 10.00 601

8KiB 109,630 8.25 787 98,999 10.00 553

16KiB 69,353 10.00 645 10.00 437

Linux mTCP

Concurrency: 1,000 cons/thread

File Size:708Byte

ab/epserver (mTCP)ab/epserver (Linux 3.10.12)

0

2

4

6

8

1 2 4 6 8

Tr
an

sa
ct

io
ns

/s
ec

 (x
 1

05)

Number of CPU Cores

Linux mTCP

0

200

400

600

800

0

2

4

6

8

10

64B 256B 1KiB 2KiB 4KiB 8KiB

C
PU

 U
sa

ge
 (%

)

T
hr

ou
gh

pu
t (

G
bp

s)

File Size

Linux mTCP Linux CPU mTCP CPU

0

2

4

6

8

10

64B 256B 1KiB 2KiB 4KiB 8KiB

T
hr

ou
gh

pu
t (

G
bp

s)

File Size

Linux mTCP

Figure 10: Performance of ab as a function of the number of
cores. The file size is 64B and 8K concurrent connections are
used.

Core 708B 64B CPU (%) 708B 64B CPU (%)

1 43,275 44,297 98 164,766 183,487 100

2 71,109 74,257 196 281,048 313,253 200

4 111,477 114,374 394 393,859 441,948 400

6 140,673 141,707 591 528,140 577,343 598

8 151,288 149,806 785 660,137 731,833 796

*both with epserver

File Size Transactions/sec Linux Linux CPU Transactions/sec mTCP mTCP CPU

64B 163,337 0.92 789 729,897 3.89 796

128B 161,898 1.00 788 721,460 4.24 796

256B 163,123 1.17 789 707,002 4.91 796

512B 160,054 1.49 788 681,813 6.13 796

1KiB 158,578 2.11 789 633,101 8.36 796

2KiB 152,625 3.42 787 453,606 10.00 626

4KiB 134,525 5.45 787 253,702 10.00 601

8KiB 109,630 8.25 787 98,999 10.00 553

16KiB 69,353 10.00 645 10.00 437

Linux mTCP

Concurrency: 1,000 cons/thread

File Size:708Byte

ab/epserver (mTCP)ab/epserver (Linux 3.10.12)

0

2

4

6

8

1 2 4 6 8

Tr
an

sa
ct

io
ns

/s
ec

 (x
 1

05)

Number of CPU Cores

Linux mTCP

0

200

400

600

800

0

2

4

6

8

10

64B 256B 1KiB 2KiB 4KiB 8KiB

C
PU

 U
sa

ge
 (%

)

T
hr

ou
gh

pu
t (

G
bp

s)

File Size

Linux mTCP Linux CPU mTCP CPU

0

2

4

6

8

10

64B 256B 1KiB 2KiB 4KiB 8KiB

T
hr

ou
gh

pu
t (

G
bp

s)

File Size

Linux mTCP

Figure 11: Performance of ab as a function of a file size. The
number of cores is set to 8 with 8K concurrent connections.

5.3 Application Performance
We now demonstrate the performance improvement for
existing applications under realistic workloads.
lighttpd and ab: To measure the performance of
lighttpd in a realistic setting, we use the static file work-
load extracted from SpecWeb2009 and compare the perfor-
mance of different lighttpd versions ported to use mTCP,
MegaPipe, and Linux with and without SO_REUSEPORT.
Figure 9 shows that mTCP improves the throughput of
lighttpd by 3.2x, 2.2x, 1.5x over Linux, REUSEPORT,
and MegaPipe, respectively. Even though the workload
fits into the memory, we find that heavy system calls for
VFS operations limit the performance.

We now show the performance of ab. Figure 10 shows
the performance of Linux-based and mTCP-based ab
when varying the number of CPU cores when fetching a
64 byte file over HTTP. The scalability of Linux is limited,
since it shares the fd space across multiple threads.

Figure 10 shows the performance of ab and the corre-
sponding CPU utilization when varying the file size from
64 bytes to 8 KiB. From 2 KiB, mTCP saturates the link.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 499

Transaction/sec Average latency (ms) 5% 95% 50% 25% 75%

mTCP Linux mTCP Linux mTCP Linux mTCP Linux mTCP Linux mTCP Linux mTCP Linux mTCP

215 4K 26762 31710 37 31.5 18.999 18.0375 51.856 44.314 35.8935 30.1045 28.8475 24.65 42.753 35.8325

36690 8K 28208 36505 70 54.5 39.922 29.4605 99.1645 75.5103 65.752 50.8228 55.2585 42.053 77.7215 66.49

1.385574 16K 27725 37739 148.75 105 50.791 45.3565 607.989 353.577 87.6945 76.7233 70.928 63.09325 116.977 93.9525

32K 26480 36690 303.5 215 56.167 58.5145 1323.484 413.6805 153.4195 204.7275 93.8535 172.174 276.873 231.9325

16.8945 12.067 15.9625 14.2095 7.046 5.4545 6.8595 5.728

25.83 21.3623 33.4125 24.6875 10.4935 8.7698 11.9695 15.6672

36.9035 31.3668 520.2945 276.8537 16.7665 13.63005 29.2825 17.2292

97.2525 146.213 1170.065 208.953 59.566 32.5535 123.4535 27.205

32K

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000

C
D

F
(%

)

latency (ms)
Linux (4K) Linux (8K) Linux (16K) Linux (32K)
mTCP (4K) mTCP (8K) mTCP (16K) mTCP (32K)

37 32

70
55

149

105

304

215

0

50

100

150

200

250

300

350

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Linux mTCP Linux mTCP Linux mTCP Linux mTCP

4K 8K 16K 32K

La
te

nc
y

(m
s)

Tr
an

sa
ct

io
ns

 /
se

c

Transactions / sec Average latency (ms)

36

52

66

99

88

608

30

44

51

76

77

354

0

20

40

60

80

100

5 50 500

C
D

F
(%

)

Response time (ms)

Linux (4K) Linux (8K) Linux (16K)
mTCP (4K) mTCP (8K) mTCP (16K)

26,762 28,208 27,725
31,710

36,505 37,739

0

10

20

30

40

4K 8K 16KSS
L

H
an

ds
ha

ke
s/s

ec
 (x

 1
03)

Concurrent Flows

Linux mTCP

0

20

40

60

80

100

120

4K 8K 16K

Linux mTCP

0

100

200

300

400

500

600

700

4K

Figure 12: SSL handshake throughputs of SSLShader with a
different levels of concurrency.

At the same time, mTCP’s event-driven system saves CPU
cycles.

When testing mTCP with long-lived connections (not
shown in the figure), we find that it consumes more CPU
cycles than Linux. mTCP shows a CPU utilization of
294% compared to 80% for Linux-3.10.12 when serv-
ing 8,000 concurrent connections, each transferring a 100
MiB file. This is because we did not fully utilize modern
NIC features, such as TCP checksum offload, large seg-
mentation offload (LSO), and large receive offload (LRO).
However, we believe that mTCP can easily incorporate
these features in the future.

SSLShader: We benchmark the performance of the
SSLShader with one NVIDIA GPU (Geforce GTX 580)
on our server. We use mTCP-based lighttpd as a server
and ab as a client. On a separate machine, we run
SSLShader as a reverse proxy to handle HTTPS trans-
actions. SSLShader receives an HTTPS request from ab
and decrypts the request. It then fetches the content from
lighttpd in plaintext, encrypts the response using SSL,
and sends it back to the client. We use 1024-bit RSA,
128bit-AES, and HMAC-SHA1 as the cipher suite, which
is widely used in practice. To measure the performance
of SSL handshakes, we have ab to fetch 1-byte objects
through SSLShader while varying the number of concur-
rent connections.

Figure 12 shows that mTCP improves the performance
over the Linux version by 18% to 33%. As the concur-
rency increases, the benefit of mTCP grows, since mTCP
scales better with a large number of concurrent connec-
tions. Figure 13 indicates that mTCP also reduces the
response times compared to the Linux version. Especially,
mTCP reduces the tail in the response time distribution
over large concurrent connections with a smaller variance,
as is also shown in Section 5.2.

WebReplay: We demonstrate that mTCP improves the
performance of a real HTTP traffic replayer. We focus on
the server’s performance improvement because it performs
more interesting work than the client. To fully utilize the
server, we use four 10 Gbps ports and connect each port
to a client. The workload (HTTP requests) generated by
the clients is determined by the log captured at a cellular

51

76

66

99

0

20

40

60

80

100

5 50

C
D

F
(%

)

Response Time (ms)

mTCP (8K)
Linux (8K)

36

66

88

30

51

77

0

20

40

60

80

100

120

4K 8K 16K

R
es

po
ns

e
Ti

m
e

(m
s)

Concurrency

Linux mTCP

Figure 13: HTTPS response time distributions of SSLShader
on Linux and mTCP stacks. We use 8K concurrent connections
in the left graph, and mark median and 95th-percentile numbers.

of copies 1 2 3 4 5 6 7

Linux (ms) 27.8 29.0 45.8 1175.1 - - -

mTCP (ms) 0.5 0.9 2.6 8.1 17.5 37.1 79.8

Table 3: Averages of extra delays (in ms) from the original
response times when replaying n copies of the log concurrently.

of concurrent # of new connections Bandwidth
connections per second (Gbps)

Mean 23,869 14,425 2.28
Min 20,608 12,755 1.79
Max 25,734 15,440 3.48

Table 4: Log statistics for WebReplay.

backhaul link [45]. We replay the log for three minutes
at a peak time (at 11 pm on July 7, 2012) during the mea-
surement period. The total number of requests within the
timeframe is 2.8 million with the median and average con-
tent size as 1.7 KB and 40 KB. Table 4 summarizes the
workload that we replay. Unfortunately, we note that the
trace we replay does not simulate the original traffic per-
fectly since a longer log is required to effectively simulate
idle connections. Actually, the original traffic had as much
as 270K concurrent connections with more than 1 million
TCP connections created per minute. To simulate such a
load, we run multiple copies of the same log concurrently
for this experiment.

Table 3 compares the averages of extra delays from the
original response times when we replay n copies of the
log concurrently with Linux and mTCP-based WebRe-
player. We find that the Linux server works fine up to
the concurrent run of three copies, but the average extra
delay goes up beyond 1 second at four copies. In contrast,
mTCP server finishes up to seven copies while keeping
the average extra delay under 100 ms. The main cause for
the delay inflation in the Linux version is the increased
number of concurrent TCP transactions, which draws the
bottleneck in the TCP stack.

6 Related Work
We briefly discuss previous work related to mTCP.
System call and I/O batching: Frequent system calls
are often the performance bottleneck in busy servers.

11

500 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FlexSC [40] identifies that CPU cache pollution can waste
more CPU cycles than the user/kernel mode switch itself.
They batch the system calls by having user and kernel
space share the syscall pages, which allows significant
performance improvement for event-driven servers [41].
MegaPipe employs socket system call batching in a sim-
ilar way, but it uses a standard system call interface to
communicate with the kernel [28].

Batching also has been applied to packet I/O to re-
duce the per-packet processing overhead. PacketShader
I/O engine [27] reads and writes packets in batches and
greatly improves the packet I/O performance, especially
for small packets. Packet I/O batching reduces the in-
terrupt, DMA, IOMMU lookup, and dynamic memory
management overheads. Similar approaches are found in
other high-performance packet I/O libraries [4, 7, 39].

In contrast, mTCP eliminates socket system calls by
running the TCP stack in the user level. Also, it enforces
batching from packet I/O and TCP processing up to user
applications. Unlike FlexSC and MegaPipe, batching in
mTCP is completely transparent without requiring kernel
or user code modification. Moreover, it performs batching
in both directions (e.g., packet TX and RX, application to
TCP and TCP to application).

Connection locality on multicore systems: TCP per-
formance can be further optimized on multiprocessors by
providing connection locality on the CPU cores [37]. By
handling all operations of same connection on the same
core, it can avoid inter-core contention and unnecessary
cache pollution. mTCP adopts the same idea, but applies
it to both flow- and packet-level processing.

User-level TCP stacks: There have been several at-
tempts to move the entire networking stack from the kernel
to the user level [22, 24, 25, 42]. These are mainly (1) to
ease the customizing and debugging of new network pro-
tocols or (2) to accelerate the performance of existing
protocols by tweaking some internal variables, such as the
TCP congestion control parameters. They focus mostly
on providing a flexible environment for user-level proto-
col development or for exposing some in-kernel variables
safely to the user level. In contrast, our focus is on build-
ing a user-level TCP stack that provides high scalability
on multicore systems.

Light-weight networking stacks: Some applications
avoid using TCP entirely for performance reasons. High
performance key-value systems, such as memcached [9],
Pilaf [35], and MICA [34], either use RDMA or UDP-
based protocols to avoid the overhead of TCP. However,
these solutions typically only apply to applications run-
ning inside a datacenter. Most user-facing applications
must still rely on TCP.

Multikernel: Many research efforts enhance operating
system scalability for multicore systems [19, 20, 44]. Bar-

relfish [19] and fos [44] separate the kernel resources for
each core by building an independent system that manages
per-core resources. For efficient inter-core communica-
tion, they use asynchronous message passing. Corey [20]
attempts to address the resource sharing problem on mul-
ticore systems by having the application explicitly declare
shared and local resources across multiple cores. It en-
forces the default policy of having private resources for a
specific core to minimize unnecessary contention. mTCP
borrows the concept of per-core resource management
from Barrelfish, but allows efficient sharing between ap-
plication and mTCP threads with lock-free data structures.

Microkernels: The microkernel approach bears simi-
larity with mTCP in that the operating system’s services
run within the user level [23, 30, 38]. Exokernel [23], for
example, provides a minimal kernel and low-level inter-
faces for accessing hardware while providing protection.
It exposes low-level hardware access directly to the user
level so that applications perform their own optimizations.
This is conceptually similar to mTCP’s packet I/O library
that directly accesses the NIC. mTCP, however, integrates
flow-level and packet-level event batch processing to amor-
tize the context switch overhead, which is often a critical
bottleneck for microkernels.

7 Conclusion
mTCP is a high-performance user-level TCP stack de-
signed for multicore systems. We find that the Linux
kernel still does not efficiently use the CPU cycles in pro-
cessing small packets despite recent improvements, and
this severely limits the scalability of handling short TCP
connections. mTCP unleashes the TCP stack from the ker-
nel and directly delivers the benefit of high-performance
packet I/O to the transport and application layer. The
key enabler is transparent and bi-directional batching of
packet- and flow-level events, which amortizes the con-
text switch overhead over a batch of events. In addition,
the use of lock-free data structures, cache-aware thread
placement, and efficient per-core resource management
contributes to mTCP’s performance. Finally, our evalu-
ation demonstrates that porting existing applications to
mTCP is trivial and mTCP improves the performance of
existing applications by up to 320%.

Acknowledgement
We would like to thank our shepherd George Porter and
anonymous reviewers from NSDI 2014 for their valu-
able comments. We also thank Sangjin Han for provid-
ing the MegaPipe source code, and Sunil Pedapudi and
Jaeheung Surh for proofreading the final version. This
research is supported by the National Research Founda-
tion of Korea (NRF) grant #2012R1A1A1015222 and
#2013R1A1A1076024.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 501

References

[1] Facebook. https://www.facebook.com/.

[2] Google. https://www.google.com/.

[3] How long does it take to make a context switch?
http://blog.tsunanet.net/2010/11/how-
long-does-it-take-to-make-context.html.

[4] Intel DPDK: Data Plane Development Kit. http:
//dpdk.org/.

[5] Intel VMDq Technology. http://www.intel.com/
content/dam/www/public/us/en/documents/
white-papers/vmdq-technology-paper.pdf.

[6] Libevent. http://libevent.org/.

[7] Libzero for DNA: Zero-copy flexible packet pro-
cessing on top of DNA. http://www.ntop.org/
products/pf_ring/libzero-for-dna/.

[8] Lighttpd. http://www.lighttpd.net/.

[9] memcached - a distributed memory object caching
system. http://memcached.org.

[10] The NewReno modification to TCP’s fast recovery
algorithm. http://www.ietf.org/rfc/rfc2582.
txt.

[11] The open group base specifications issue 6, IEEE
Std 1003.1. http://pubs.opengroup.org/
onlinepubs/007904975/basedefs/pthread.h.
html.

[12] Packet I/O Engine. http://shader.kaist.edu/
packetshader/io_engine/.

[13] PCI-SIG SR-IOV Primer: An Introduction to
SR-IOV Technology. http://www.intel.com/
content/dam/doc/application-note/pci-
sig-sr-iov-primer-sr-iov-technology-
paper.pdf.

[14] The SO REUSEPORT socket option. https://lwn.
net/Articles/542629/.

[15] The Apache HTTP Server Project. http://httpd.
apache.org/.

[16] The Apache Portable Runtime Project. http://apr.
apache.org/.

[17] Transmission control protocol. http://www.ietf.
org/rfc/rfc793.txt.

[18] Twitter. https://twitter.com/.

[19] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architec-
ture for scalable multicore systems. In Proceedings
of the ACM SIGOPS symposium on Operating sys-
tems principles (SOSP), 2009.

[20] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operat-
ing system for many cores. In Proceedings of the
USENIX conference on Operating systems design
and implementation (OSDI), 2008.

[21] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: exploiting parallelism
to scale software routers. In Proceedings of the ACM
SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), 2009.

[22] D. Ely, S. Savage, and D. Wetherall. Alpine: a user-
level infrastructure for network protocol develop-
ment. In Proceedings of the conference on USENIX
Symposium on Internet Technologies and Systems
(USIT), 2001.

[23] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: an operating system architecture for
application-level resource management. In Proceed-
ings of the ACM symposium on Operating systems
principles (SOSP), 1995.

[24] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.
Briceño, R. Hunt, and T. Pinckney. Fast and flexible
application-level networking on exokernel systems.
ACM Transactions on Computer Systems (TOCS),
20(1):49–83, Feb. 2002.

[25] H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Deploying safe user-level network
services with ictcp. In Proceedings of the confer-
ence on Symposium on Opearting Systems Design &
Implementation (OSDI), 2004.

[26] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-
friendly high-speed TCP variant. SIGOPS Oper. Syst.
Rev., 42(5):64–74, July 2008.

[27] S. Han, K. Jang, K. Park, and S. B. Moon. Pack-
etShader: a GPU-accelerated software router. In
Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2010.

[28] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: a new programming interface for scal-
able network I/O. In Proceedings of the USENIX

13

502 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

conference on Operating Systems Design and Imple-
mentation (OSDI), 2012.

[29] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg,
and J. Wolter. The performance of µ-kernel-based
systems. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 1997.

[30] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schönberg. The performance of µ-kernel-based
systems. SIGOPS Oper. Syst. Rev., 31(5):66–77, Oct.
1997.

[31] S. Ihm and V. S. Pai. Towards understanding mod-
ern web traffic. In Proceedings of the ACM SIG-
COMM conference on Internet measurement confer-
ence (IMC), 2011.

[32] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: cheap SSL acceleration with commod-
ity processors. In Proceedings of the USENIX con-
ference on Networked systems design and implemen-
tation (NSDI), 2011.

[33] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker,
and A. Vahdat. Chronos: Predictable Low Latency
for Data Center Applications. In Proceedings of
the Third ACM Symposium on Cloud Computing
(SOCC), 2012.

[34] H. Lim, D. Han, D. G. Andersen, and M. Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage. In Proceedings of the USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI), 2014.

[35] C. Mitchell, Y. Geng, and J. Li. Using one-sided
RDMA reads to build a fast, CPU-efficient key-value
store. In Proceedings of the USENIX Annual Techni-
cal Conference (ATC), 2013.

[36] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at Facebook. In Pro-
ceedings of the USENIX conference on Networked
Systems Design and Implementation (NSDI), 2013.

[37] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Mor-
ris. Improving network connection locality on multi-
core systems. In Proceedings of the ACM european
conference on Computer Systems (EuroSys), 2012.

[38] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron,
A. Forin, D. Golub, and M. Jones. Mach: A system
software kernel. In Proceedings of the Computer So-
ciety International Conference (COMPCON), 1989.

[39] L. Rizzo. netmap: a novel framework for fast packet
I/O. In Proceedings of the USENIX conference on
Annual Technical Conference (ATC), 2012.

[40] L. Soares and M. Stumm. FlexSC: flexible system
call scheduling with exception-less system calls. In
Proceedings of the USENIX conference on Operating
systems design and implementation (OSDI), 2010.

[41] L. Soares and M. Stumm. Exception-less system
calls for event-driven servers. In Proceedings of the
USENIX conference on USENIX annual technical
conference (ATC), 2011.

[42] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D.
Lazowska. Implementing network protocols at
user level. IEEE/ACM Transactions on Networking
(TON), 1(5):554–565, Oct. 1993.

[43] V. Vasudevan, D. G. Andersen, and M. Kaminsky.
The case for VOS: the vector operating system. In
Proceedings of the USENIX conference on Hot topics
in operating systems (HotOS), 2011.

[44] D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating sys-
tem for multicores. ACM SIGOPS Operating Sys-
tems Review, 43(2):76–85, Apr. 2009.

[45] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park.
Comparison of caching strategies in modern cellu-
lar backhaul networks. In Proceeding of the annual
international conference on Mobile systems, appli-
cations, and services (MobiSys), 2013.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 503

Warranties for Faster Strong Consistency

Jed Liu Tom Magrino Owen Arden Michael D. George Andrew C. Myers

Cornell University Department of Computer Science
{liujed,tmagrino,owen,mdgeorge,andru}@cs.cornell.edu

Abstract
We present a new mechanism, warranties, to enable
building distributed systems with linearizable transac-
tions. A warranty is a time-limited assertion about one or
more distributed objects. These assertions generalize op-
timistic concurrency control, improving throughput be-
cause clients holding warranties need not communicate
to verify the warranty’s assertion. Updates that might
cause an active warranty to become false are delayed un-
til the warranty expires, trading write latency for read
latency. For workloads biased toward reads, warranties
improve scalability and system throughput. Warranties
can be expressed using language-level computations, and
they integrate harmoniously into the programming model
as a form of memoization. Experiments with some non-
trivial programs demonstrate that warranties enable high
performance despite the simple programming model.

1 Introduction
Although the trend for many systems has been to
weaken consistency in order to achieve greater scalabil-
ity, strong consistency is critical when lives or money are
at stake. Examples include systems for medical informa-
tion, banking, payment processing, and the military.

Users of weakly consistent systems may be confused
by applications that appear buggy. Moreover, weak con-
sistency can significantly complicate the job of develop-
ers who try to detect and repair inconsistencies at the
application layer. Consistency failures at the bottom of
a software stack can percolate up through the stack and
affect higher layers in unpredictable ways, requiring de-
fensive programming.

The need for strong consistency and a simple program-
ming model has kept databases with ACID transactions
in business. However, transactions are often considered
to have poor performance, especially in a distributed set-
ting. In this work, we introduce warranties, a new mech-
anism that improves the performance of transactions, en-
abling them to scale better both with the number of appli-
cation clients and with the number of persistent storage
nodes. Warranties help avoid the unfortunate choice be-
tween consistency and performance.

A warranty is a limited guarantee that some (poten-
tially complex) assertion remains true regarding the state
of a distributed system. The guarantee is limited in that it
eventually expires. But during the term of the warranty,
the application can safely use it to perform computation
locally without communicating with the server that is-
sued the warranty. Warranties are like leases [21] in that
they have a duration, but differ in that they make a logical
assertion rather than conferring the right to use objects.

Warranties support implementing linearizable trans-
actions by generalizing optimistic concurrency control
(OCC) [16, 32]. OCC permits aggressive caching of
objects read by transactions, but requires communicat-
ing with storage servers to ensure objects are up to date.
Since warranties can express guarantees that objects are
up to date, communication can be reduced. Warranties
are particularly effective in the common case of high read
contention, where many clients want to share the same
popular—yet mutable—data.

More generally, warranties can contain an assertion
that the results of a language-level computation has not
changed. These computation warranties offer a form
of distributed memoization, allowing clients to share
cached computation in the manner often currently done
using distributed caches such as memcached—but with
strong consistency guarantees that are currently lacking.

Overall, warranties offer a new way to ameliorate
the tension between consistency and scalability in dis-
tributed applications.

The remainder of this paper is structured as follows.
Section 2 discusses our system model and relevant back-
ground material. Section 3 presents the warranty abstrac-
tion in more detail, and discusses its connection to leases.
Section 4 explains in more detail how optimistic trans-
actions are implemented using warranties. The mecha-
nisms needed for computation warranties are explored
in Section 5. Our implementation using the Fabric dis-
tributed object system is described in Section 6. The
evaluation in Section 7 shows that warranties signifi-
cantly improve the performance of both representative
benchmarks and a substantial real-world program. Re-
lated work is discussed more broadly in Section 8, and
we conclude in Section 9.

1

504 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Background and system model
We assume a distributed system in which each node
serves one of two main roles: client nodes perform com-
putations locally using persistent data from elsewhere,
and persistent storage nodes (stores) store the persis-
tent data. Client nodes obtain copies of persistent data
from stores, perform computations, and send updates to
the persistent data back to the stores. For example, the
lower two tiers of the traditional three-tier web applica-
tion match this description: application servers are the
clients and database servers are the stores.

Our goal is a simple programming model for appli-
cation programmers, offering strong consistency so they
do not need to reason about inconsistent or out-of-date
state. In particular, we want linearizability [25], so each
committed transaction acts as though it executes atomi-
cally and in logical isolation from the rest of the system.
Linearizability strengthens serializability [42, 8] to offer
external consistency.

A partially successful attempt at such a programming
model is the Java Persistence API (JPA) [12], which pro-
vides an object–relational mapping (ORM) that trans-
lates accesses to language-level objects into accesses to
underlying database rows. JPA implementations such as
Hibernate [27] and EclipseLink [15] are widely used to
build web applications. However, we want to improve on
both the consistency and performance of JPA.

We assume that the working set of both clients and
stores fits in the node’s memory. This assumption is rea-
sonable for many applications, though not for large-scale
data analytics applications, which we do not target.

In a distributed transaction system using OCC (e.g.,
Thor [37]) clients fetch and then cache persistent objects
across transactions. Optimistic caching allows client
transactions to largely avoid talking to stores until com-
mit time, unlike with pessimistic locking. The system is
faster because persistent data is replicated at the memo-
ries of potentially many client nodes. However, care must
be taken to avoid inconsistency among the cached copies.

Because of its performance advantages, optimism has
become increasingly popular for JPA applications, where
the best performance is usually achieved through an “op-
timistic locking” mode that appears to provide strong
consistency in some but not all implementations of JPA.1

To provide strong consistency, OCC logs reads and
writes to objects. As part of committing the transaction,
clients send the transaction log to stores involved in the
transaction. The stores then check that the state of each
object read matches that in the store (typically by check-

1The term “optimistic locking” is misleading; locking occurs only
during transaction commit. The JPA 2 specification appears to guaran-
tee that objects written by a transaction are up to date—but, unfortu-
nately, not the objects read unless explicitly locked. Implementations
differ in interpretation.

ing version numbers), and then perform updates.
To scale up a distributed computing system of this sort,

it is important to be able to add storage nodes across
which persistent data and client requests can be dis-
tributed. As long as a given client transaction accesses
data at just one store, and load is balanced across the
stores, the system scales well: each transaction can be
committed with just one round trip between the client
and the accessed store.

In general, however, transactions access information
located at multiple stores. For example, consider a web
shopping application. A transaction that updates the
user’s shopping cart may still need to read information
shared among many users of the system, such as details
of the item purchased.

Accessing multiple stores hurts scalability. To commit
such a transaction serializably, it must be known at com-
mit time that all objects read during the transaction were
up to date. A two-phase commit (2PC) is used to ensure
this is the case. In the first phase (the prepare phase), each
store checks that the transaction can be committed and if
so, readies the updates to be committed; it then reports to
the coordinator whether the transaction is serializable. If
the transaction can be committed at every store, all stores
are told to commit in the commit phase. Otherwise, the
transaction is aborted and its effects are rolled back.

If popular, persistent data is accessed by many clients,
the read contention between clients interferes with scala-
bility. Each client committing a transaction must execute
a prepare phase at the store of that data. The work done
by the prepare phase consists of write prepares done on
objects that have been updated by the transaction, and
read prepares on objects that have been read. In both
cases, the object is checked to ensure that the version
used was up to date.

Read prepares can make the nodes storing popular ob-
jects into bottlenecks even when those objects are rarely
updated. This is a fundamental limit on scalability of
OCC, so a key benefit of warranties is addressing this
performance bottleneck. An alternative strategy would
be to replicate popular objects across multiple nodes, but
keeping replicas in agreement is very costly.

3 The warranty abstraction
A warranty is a time-limited assertion about the state of
the system: it is guaranteed to remain true for some fixed
period of time. Warranties improve scalability for two
reasons: first, because they reduce or eliminate the work
needed for read prepares; second, more generally, they
enable the distributed caching of computations and en-
force a more semantic notion of consistency.

Because warranties make guarantees about the state
of the system, they allow transactions to be committed
without preparing reads against the objects covered by

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 505

warranties. When all reads to a store involved in a trans-
action are covered by warranties, that store need not be
contacted. Consequently, two-phase commit can be re-
duced to a one-phase commit in which the prepare and
commit phases are consolidated, or even to a zero-phase
commit in which no store need be contacted. The result
is significantly improved performance and scalability.

In this section, we give a more detailed overview of
how warranties work.

• Simple state warranties generalize OCC (§3.1) and
also, to some extent, leases (§3.2).

• Updates to the system are prevented from invalidat-
ing warranties (§3.3), with implications for perfor-
mance (§3.4).

• Warranty assertions can be expressive, enabling dis-
tributed caching of computed results (§3.5).

• Warranties are requested by clients (§3.6) and gen-
erated on demand by stores (§3.7).

• Warranties are distributed throughout the system to
clients that need them (§3.9).

• The term of warranties can be set automatically,
based on run-time measurements (§3.8).

3.1 State warranties
The simplest form of warranty is a state warranty, an as-
sertion that the concrete state of an object has a particular
value. A warranty is guaranteed to be true (active) during
the warranty’s term. At the end of its term, the warranty
expires and is no longer guaranteed to be true.

For example, a state warranty for an object represent-
ing a bank account might be 〈assert = {name = "John
Doe", bal = $20,345}, exp = 1364412767.1〉. Here,
the field assert specifies the state of the object, and the
field exp is the time that the warranty expires.

A warranty is issued by a store, and times appearing
in the warranties are measured by the clock of the store
that issued the warranty. We assume that clocks at nodes
are loosely synchronized; well-known methods exist to
accomplish this [40].

If a warranty expires before the transaction commits,
the warranty may continue to be valid, meaning that the
assertion it contains is still true even though clients can-
not rely on its remaining true. Clients can, however, still
use the warranty optimistically and check at commit time
that the warranty remains valid.

As can be seen, state warranties generalize optimistic
concurrency control. Ordinary OCC equates to always
receiving a zero-length warranty for the state of the ob-
ject read, and using that expired warranty optimistically.

3.2 Warranties vs. leases
Leases [21] have been used in many systems (e.g., [51,
2]) to improve performance. Warranties exploit the key
insight of leases that time-limited guarantees increase
scalability by reducing coordination overhead. As de-
fined originally by Gray and Cheriton, leases confer
time-limited rights to access objects in certain ways, and
must be held by clients in order to perform the corre-
sponding access. Conversely, warranties are time-limited
assertions about what is true in the distributed system,
and are not, therefore, held by any particular set of nodes.
Unlike with leases, an expired warranty may be used to
access an object optimistically. Gray does sketch in his
dissertation [20] how read leases might be integrated into
an optimistic transaction processing system, but we are
not aware of any detailed design or implementation.

Leases and warranties do partly overlap. Since read
leases on objects effectively prevent modifying object
state, they must enforce assertions regarding the state of
that data. Therefore, state warranties can be viewed as
read leases that are given to many clients and that cannot
be relinquished by those clients.

However, we see a fundamental difference between
these two perspectives. The value of the warranty (asser-
tion) perspective is that state warranties naturally gen-
eralize to expressive assertions over state—in particular,
warranties that specify the results of application-defined
computations over the state of potentially many objects.

3.3 Defending warranties
Transactions may try to perform updates that affect ob-
jects on which active warranties have been issued. Up-
dates cannot invalidate active warranties without poten-
tially violating transactional isolation for clients using
those warranties. Therefore, stores must defend war-
ranties against invalidating updates, a process that has no
analogue in OCC.

A warranty can be defended against an invalidating
update transaction in two ways: the transaction can ei-
ther be rejected or delayed. If rejected, the transaction
will abort and the client must retry it. If delayed, the up-
dating transaction waits until it can be safely serialized.
Rejecting the transaction does not solve the underlying
problem of warranty invalidation, so delaying is typically
the better strategy if the goal is to commit the update. To
prevent write starvation, the store stops issuing new war-
ranties until after the commit. The update also shortens
the term of subsequent warranties.

3.4 Performance tradeoffs
Using warranties improves read performance for objects
on which warranties are issued, but delays writes to these
objects. Such a tradeoff appears to be an unavoidable
with strong consistency. For example, in conventional

3

506 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

database systems that use pessimistic locking to enforce
consistency, readers are guaranteed to observe consistent
states, but update transactions must wait until all read
transactions have completed and released their locks.
With many simultaneous readers, writers can be signifi-
cantly delayed. Thus, warranties occupy a middle ground
between optimism and pessimism, using time as a way to
reduce the coordination overhead incurred with locking.

The key to good performance, then, is to issue war-
ranties that are long enough to allow readers to avoid
revalidation but not so long that they block writers more
than they otherwise would be blocked.

For applications where it is crucial to have both high
write throughput and high read throughput to the same
object, replication is essential, and the cost of keeping
object replicas in sync makes strong consistency infeasi-
ble. However, if weak consistency is acceptable, there is
a simple workaround: implement replication by explic-
itly maintaining the state in multiple objects. Writes can
go to one or more persistent objects that are read infre-
quently, and only by a process that periodically copies
them (possibly after reconciliation of divergent states)
to a frequently read object on which warranties can be
issued. This is a much easier programming task than
starting from weak consistency and trying to implement
strong consistency where it is needed. The only chal-
lenging part is reconciliation of divergent replicas, which
is typically needed in weakly consistent systems in any
case (e.g., [50, 47, 14]).

3.5 Computation warranties
Warranty assertions are not limited to specifying the con-
crete state of persistent objects. In general, a warranty as-
sertion is an expression in a language that can describe a
computation that operates on persistent objects and that
can be evaluated at the store. SQL is one query language
that fits this description, but in this work, we integrate
assertions more tightly with the programming language.
Computation warranties provide guarantees about com-
putations described in terms of method calls.

In current distributed applications, it is common to use
a distributed cache such as memcached [18] to share data
and computation across many nodes. For example, web
application servers can cache the text of commonly used
web pages or content to be included in web pages. Com-
putation warranties can be used to cache such computed
results without abandoning strong consistency.

Example: top N items. Many web applications display
the top-ranked N items among some large set (such as
advertisements, product choices, search results, poll can-
didates, or game ladder rankings).

Although the importance of having consistent rank-
ings may vary across applications, there are at least some
cases in which the right ranking is important and may

have monetary or social impact. Election outcomes mat-
ter, product rankings can have a large impact on how
money is spent, and game players care about ladder rank-
ings. But at present there is no easy and efficient way to
ensure that cached computation results are up to date.

To cache the results of such a computation, we might
define a computation top(n, i, j), which returns the
set s of the n top-ranked items whose indices in an ar-
ray of items lie between i and j. A warranty of the form
s = top(n, 0, num items) then allows clients to share
the computation of the top-ranked items within the range.

The reason why the top function has arguments i and
j is to permit top to be implemented recursively and ef-
ficiently using results from subranges, on which further
warranties are issued. We discuss later in more detail how
this approach allows computation warranties to be up-
dated and recomputed efficiently.

Example: airplane seats. Checking whether airplane
flights have open seats offers a second example of a com-
putation that can be worth caching. Because the client-
side viewer may be sorting lists of perhaps hundreds of
potential flights, flights are viewed much more often than
their seating is updated. Scalability of the system would
be hurt by read prepares.

Efficient searching over suitable flights can be sup-
ported by issuing warranties guaranteeing that at least a
certain number of seats of a specified type are available;
for a suitable constant number of seats n large enough to
make the purchase, a warranty of this form works:

flight.seats available(type) ≥ n

This warranty helps searching efficiently over the set of
flights on which a ticket might be purchased. It does not
help with the actual update when a ticket is purchased on
a flight. In this case, it becomes necessary to find and up-
date the actual number of seats available. However, this
update can be done quickly as long as the update does
not invalidate the warranty.

Like state warranties, computation warranties can be
used optimistically even if they expire during the trans-
action. In this case, the dependencies of the computation
described in the warranty must be checked at commit
time to ensure that the warranty’s assertion remains true,
just as objects whose state warranties expire before com-
mit time must be checked. A warranty that is revalidated
in this fashion can then be issued as a new warranty.

Like active state warranties, active computation war-
ranties must be defended against invalidation by updates.
This mechanism is discussed in Section 5.2.

3.6 Programming with warranties
As clients compute, they request warranties as needed.
State warranties are requested automatically when ob-
jects are newly fetched by a computation. Computation

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 507

warranties can also be generated in a natural way, relying
on simple program annotations.

Computation warranties explicitly take the form of
logical assertions, so they could be requested by using
a template for the desired logical assertion. In the air-
line seat reservation example above, a query of the form
flight.seats available(type) ≥ ? could be used
to find all available warranties matching the query, and
at the same time fill in the “?” with the actual value n
found in the warranty. In the case where multiple war-
ranties match, a warranty might be chosen whose dura-
tion and value of n are “best” according to application-
specific criteria.

We pursue a more transparent way to integrate war-
ranty queries into the language, via memoized func-
tion calls. For example, we can define a memo-
ized method with the signature memoized boolean
seats lb(type,n) that returns whether there are at
least n seats of the desired type still available on the
flight. The keyword memoized indicates that its result
is to be memoized and warranties are to be issued on its
result. To use these warranties, client code uses the mem-
oized method as if it were an ordinary method, as in the
following code:

for (Flight f : flights)

if (f.seats_lb(aisle, seats_needed))

display_flights.add(f)

When client code performs a call to a memoized
method, the client automatically checks to see if a war-
ranty for the assertion ? = seats_lb(type, n) has
either been received already or can be obtained. If so, the
result of the method call is taken directly from the war-
ranty. If no warranty can be found for the method call,
the client executes the method directly.

With appropriate language support, the implementa-
tion of such a memoized method is also straightforward:

memoized boolean seats_lb(Seat t, int n) {

return seats_available(t) >= n;

}

A language that correctly supports transparent OCC al-
ready automatically logs the reads and writes performed
on objects; this logging already computes the dependen-
cies of computation warranties.

3.7 Generating warranties
Warranties are issued by stores, because stores must
know about warranties in order to defend them against
updates that might invalidate them. However, for scala-
bility, it is important to avoid giving the store extra load.
Therefore, it only makes sense to generate warranties for
some objects and computations: those that are used much
more frequently than they are invalidated.

For state warranties, the store already has enough in-
formation to decide when to generate a warranty for an
object, because it sees both when the object is updated
and when it is necessary to check that the version of the
object read by a client is up to date. State warranties im-
prove performance by removing the need to do version
checks on read objects, but at the cost of delaying up-
dates that would invalidate active warranties. This trade-
off makes sense if the version checks are sufficiently
more numerous than the updates.

For computation warranties, the store may be able to
infer what warranties are needed from client requests, but
it makes more sense to have the client do the computa-
tional work. Recall that clients that fail to find a suitable
warranty compute the warranty assertion themselves. If
the assertion is true, it is the basis of a potential warranty
that is stored in the client’s local cache and reused as
needed during the same transaction. As part of commit-
ting the transaction, the client sends such potential war-
ranties to the store, which may issue these warranties,
both back to this client and to other clients. The decision
whether to issue a warranty properly depends on whether
issuing the warranty is expected to be profitable.

3.8 Setting warranty terms
Depending on how warranty terms are set, warranties can
either improve or hurt performance. However, it is usu-
ally possible to automatically and adaptively set warranty
terms to achieve a performance increase.

Warranties improve performance by avoiding read
prepares for objects, reducing the load on stores and on
the network. If all read and write prepares to a particular
store can be avoided, warranties eliminate the need even
to coordinate with that store.

Warranties can hurt performance primarily by delay-
ing writes to objects. The longer a warranty term is, the
longer the write is delayed. If warranty terms are set
too long, writers may experience unacceptable delays. A
good rule of thumb is that we would like writers to be
delayed no more than they would be by read locks in a
system using pessimistic locks.

Excessively long warranties may also allow readers to
starve writers, although starvation is mitigated because
new warranties are not issued while writers are blocked
waiting for a warranty to expire. Note that with pure
OCC, writers can block readers by causing all read pre-
pares to fail [43]; thus, warranties shift the balance of
power away from writers and toward readers, addressing
a fundamental problem with OCC.

To find the right balance between the good and bad
effects of warranties, we take a dynamic, adaptive ap-
proach. Warranty terms are automatically and individu-
ally set by stores that store the relevant objects. Fortu-
nately, stores observe enough to estimate whether war-

5

508 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Prepare

Read-only

Yes

End

No

Abort

FailOk

Extend

Read-write

Yes

Must
renew?

No

Abort

Fail Ok

Prepare

Commit
time

Fail

Commit

Must
renew?

Figure 1: Warranty commit protocol for read-only and
read-write transactions.

ranty terms are likely to be profitable. Stores see both
read prepares and write prepares. If the object receives
many read prepares and few or no write prepares, a state
warranty on that object is likely to be profitable. A simi-
lar observation applies to computation warranties.

To determine whether to issue a warranty for an ob-
ject, and its warranty term L in the case where a war-
ranty is issued, the system plugs measurements of object
usage into a simple system model. The system measures
the rate W of writes to each object, and when there is no
warranty issued on the object, it also measures the rate R
of reads to the object. Both rates are estimated using an
exponentially weighted moving average (EWMA) [28]
of the intervals between reads and writes. We modify
EWMA to exponentially decay historical read-prepare
data during warranty periods, when read prepares can-
not be observed. Empirically, this modification improves
the accuracy of rate estimation. To lower the overhead
of monitoring, unpopular objects are flagged and given
lower-cost monitoring as long as they remain unpopular.

To ensure that the expected number of writes delayed
by a warranty is bounded by a constant k1 < 1 that con-
trols the tradeoff between read and write transactions.
The warranty term is set to k1/W with a maximum war-
ranty Lmax used to bound write delays. Our goal is that
warranties are profitable: they should remove load from
the store, improving scalability. A warranty eliminates
roughly RL read prepares over its term L, but adds the
cost of issuing the warranty and some added cost for each
write that occurs during the term. The savings of issuing
a warranty is positive if each write to an object is ob-
served by at least k2 reads for some value k2, giving us a
condition RL ≥ k2 that must be satisfied in order to is-
sue a warranty. The value for constant k2 can be derived
analytically using measurements of the various costs, or
set empirically to optimize performance.

This way to set terms for state warranties also works

stores

prevent commits
until conflicting

warranties expire
clients

CDN

distribute
warranties

warranty
subscriptions

warranties
guarantee
consistent

observations
commit
updates

warranties

propose
warranties

Figure 2: Warranty distribution architecture.

for computation warranties, with the following interpre-
tation: uses of a computation warranty are “reads” and
updates to its dependencies are “writes”.

The tension between write latency and read through-
put can also be eased by using warranty refresh in addi-
tion to a maximum warranty term. The term L is com-
puted as above, but warranties are issued to clients with
a shorter term corresponding to the maximum acceptable
update latency. The issuing store proactively refreshes
each such warranty when it is about to expire, so the war-
ranty stays valid at clients throughout its term.

3.9 Distributing warranties
Warranties can be used regardless of how they get to
clients and can be shared among any number of clients.
Therefore, a variety of mechanisms can be used to dis-
tribute warranties to clients.

One option for warranty distribution is to have clients
directly query stores for warranties, but this makes the
system less scalable by increasing load on stores. As
shown in Figure 2, Stores will be less loaded if warranties
are distributed via a content distribution network (CDN)
that clients query to find warranties.

Going a step further, applications can subscribe to
warranties that match a given pattern, as shown in
Figure 2. Stores automatically refresh warranties with
later expiration times before the old warranties expire,
by pushing these extended warranties either directly to
clients or into the CDN. Warranty refresh makes it feasi-
ble to satisfy client requests with shorter warranty terms,
consequently reducing write latency.

This strategy for achieving high availability and high
durability differs from that used in many current dis-
tributed storage systems, which use replication to achieve
high availability, low latency, and durability. Those three
goals are handled separately here. Distributing war-
ranties through a CDN makes data objects highly avail-
able with low latency, without damaging consistency.
Because the authoritative copies of objects are located
at stores, a write to an object requires a round-trip to its
store; the latency this introduces is ameliorated by the

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 509

Stores Phases:
Stores written Unexpired? Warranties OCC

1+ 0 Y 0 1
1+ 0 N 1 1
1 1 Y/N 1 1

2+ 1 Y 1 2
2+ 1 N 2 2
2+ 2+ Y 2 2
2+ 2+ N 3 2

Table 1: Warranties require fewer phases than traditional
OCC in some cases (highlighted).

support for relatively large transactions, in which com-
munication with stores tends to happen at the end of
transactions rather than throughout.

To achieve high durability, stores should be imple-
mented using replication, so that each “store” mentioned
in this paper is actually a set of replicas. Since wide-
area replication of stores implementing strong consis-
tency will have poor performance, we assume store repli-
cas are connected with low latency.

4 Transactions and warranties
Warranties improve the performance of OCC by reduc-
ing the work needed during the prepare phase and by al-
lowing phases to be eliminated entirely.

4.1 The warranty commit protocol
When a transaction completes, the client performs a
modified two-phase commit, illustrated in Figure 1 for
both read-only and read-write transactions. In the pre-
pare phase, the client sends the write set of the transac-
tion (if any), along with any warranties in the read set
whose term has expired. If all warranties in the read set
can be renewed, the transaction may commit. Since out-
standing warranties may cause the updates to be delayed,
the store responds with a commit time indicating when
the commit may be applied successfully.

When the client receives a commit time from all stores,
it checks to ensure the terms of the warranties it holds ex-
ceed the maximum commit time. If not, it attempts to re-
new these warranties beyond the commit time in an addi-
tional extend phase. If active warranties are obtained for
all dependencies, the client sends the commit message,
and the stores commit the updates at the specified time.

4.2 Avoiding protocol phases
While a two-phase commit is required in the general
case, performance can be improved by eliminating or
combining phases when possible. For read-only transac-
tions, the commit phase is superfluous, and clients exe-
cuting transactions that involve only one store can com-
bine the prepare and commit phases into one round-trip.

The optimizations to 2PC that warranties make possible
are summarized in Table 1.

The read-only (rows 1–2) and single-store optimiza-
tions (row 3) are available with or without warranties.
However, unexpired warranties enable eliminating addi-
tional phases, shown by the two rows highlighted in gray.

Row 1 shows that read-only transactions whose read
set is covered by unexpired warranties may commit with-
out communicating with stores—a zero-phase commit.
This optimization matters because for read-biased work-
loads, most transactions will be read-only.

Row 4 shows that transactions that read from multi-
ple stores but write to only one store may commit in
a single phase if their read set is fully warrantied. This
single-phase optimization pays off if objects are stored
in such a way that writes are localized to a single store.
For example, if a user’s information is located on a single
store, transactions that update only that information will
be able to exploit this optimization.

While warranties usually help performance, they do
not strictly reduce the number of phases required to com-
mit a transaction. Transactions performing updates to
popular data may have their commits delayed. Since the
commit time may exceed the expiration time of war-
ranties used in the transaction, the additional extend
phase may be required to renew these warranties beyond
the delayed commit time, as shown in the final row.

5 Computation warranties
A computation warranty is a guarantee until time t of
the truth of a logical formula φ, where φ can mention
computational results such as the results of method calls.
We focus here on the special case of warranties gener-
ated by memoized function calls, where φ has the form
o.f(�x) =? for some object o on which method f is in-
voked using arguments �x, producing a value to be ob-
tained from the warranty. Note that the value returned by
f need not be a primitive value. In the general case, it
may be a data structure built from both new objects con-
structed by the method call and preexisting objects.

Our goal is that warranties do not complicate program-
mer reasoning about correctness and consistency. There-
fore, when f is a memoized method, a computation of the
form v = o.f(�x) occurring in a committed transaction
should behave identically whether or not a warranty is
used to obtain its value. This principle has several impli-
cations for how computation warranties work. It means
that only some computations make sense as computation
warranties, and that updates must be prevented from in-
validating active warranties.

5.1 Memoizable computations
To ensure that using a computation warranty is equiva-
lent to evaluating it directly, we impose three restrictions.

7

510 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

First, computation warranties must be deterministic:
given equivalent initial state, they must compute equiva-
lent results. Therefore, computations using a source of
nondeterminism, such as input devices or the system
clock, do not generate computation warranties.

Second, we prevent memoization of any computation
that has observable side effects. Side effects are consid-
ered to be observable only when they change the state of
objects that existed before the beginning of the memo-
ized computation.

Importantly, this definition of “observable” means that
memoized computations are allowed to create and ini-
tialize new objects as long as they do not modify pre-
existing ones. For example, the top-N example from Sec-
tion 3.5 computes a new object representing a set of
items, and it may be convenient to create the object by
appending items sequentially to the new set. Warranties
on this kind of side-effecting computation are permitted.
Enforcing this definition of the absence of side effects is
straightforward in a system that already logs which ob-
jects are read and written by transactions.

Third, a memoized function call reads from some set
of objects, so updates to those objects may change its re-
sult, and may occur even during the same transaction that
performed the function call. At commit time, the trans-
action’s write set is intersected with the read set of each
potential warranty. If the intersection is nonempty, the
potential warranty is invalidated.

5.2 Defending computation warranties
Once a computation warranty is requested by a worker
and issued by a store, the store must ensure that the value
of the call stays unchanged until the warranty expires.

Revalidation A conservative way to defend warranties
against updates would be to delay all transactions that
update objects used by the warranty. This approach is
clearly safe because of the determinism of the warranty
computation, but it would prevent too many transactions
from performing updates, hurting write availability. In-
stead, we attempt to revalidate affected warranties when
each update arrives. The store reruns the warranty com-
putation and checks whether the result is equivalent to
the result stored in the warranty.

For primitive values and references to pre-existing ob-
jects (not created by the warranty computation), the re-
sult must be unchanged. Otherwise, two results are con-
sidered equivalent if they are semantically equal per the
equals() method, which operates as in Java.

Warranty dependencies In general, a warranty com-
putation uses and thus depends on other warranties,
whether state warranties or general computation war-
ranties. For example, if the method top is implemented
recursively (see Figure 3), the warranty for a call to top

top(n,i,j)

top(n,i,k0) top(n,k0,j)

top(n,i,k1) top(n,k1,k0)

X... ...

Items

Figure 3: An update to X causes a semantic warranty to
be invalidated, but the updated value for the re-evaluated
method does not invalidate other warranties.

depends on warranties for its recursive calls. The depen-
dencies between warranties form a tree in which compu-
tation warranties higher in the tree depend on warranties
lower down, and the leaves are state warranties.

Any warranty that has not expired must be defended
against updates that could invalidate it. Defense is easy
when the term of a warranty is contained within (a subset
of) the terms of all warranties it depends on, including
state warranties on all direct references to objects, be-
cause the validity of the higher-level warranty is implied
by the defense of the lower-level warranties.

In general, however, a warranty can have a longer term
than some of its dependencies. Updates to those depen-
dencies must be prevented if they invalidate the warranty,
even if they are expired warranties. Conversely, it is pos-
sible to allow updates to warranty dependencies that do
not invalidate the warranty. The implication is that it
is often feasible to give higher-level warranties longer
terms than one might expect given the rate of updates
to their dependencies.

For example, consider the recursive call tree for the
method top(n, i, j) shown in Figure 3. If the request
to see the top n items among the entire set is very pop-
ular, we would like to issue relatively long computation
warranties for that result. Fortunately, updates to items
(shown at the leaves of the call tree) that change their
ranking might invalidate some of the warranties in the
tree, but most updates will affect only a small part of the
tree. Assuming that lower levels of the tree have short
warranties, most updates need not be delayed much.

5.3 Reusing computation warranty values
In the case where the warranty computation created new
objects, it may be crucial for correctness of the compu-
tation that the objects returned by the warranty are dis-
tinct from any existing objects. This desired semantics is
achieved when using a warranty computation result by
making a copy of all objects newly created during the
warranty computation. These objects are explicitly iden-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 511

tified in the warranty.
Computation warranties are used whenever available

to the client, to avoid performing the full computation.
If the client is holding an expired warranty, or obtains
an expired warranty from the CDN, it can use that ex-
pired warranty optimistically. At commit time, the ex-
pired warranty is revalidated during the prepare phase,
exactly like a read prepare.

5.4 Creating computation warranties
Whenever code at a client makes a call to a memoized
method, the client searches for a matching computation
warranty. If the client is not already holding such war-
ranty, it may search using a CDN, if available, or request
the warranty directly from the appropriate store.

If the client cannot find an existing computation war-
ranty, it performs the warranty computation itself. It
starts a new transaction and executes the method call. As
the call is evaluated, the transaction’s log keeps track of
all reads, writes, and object creations performed by the
call. When the call is completed, the result is recorded
and the log is checked to verify that the call does not
violate any of the restrictions outlined above. If the war-
ranty is still valid, the call, value, and transaction log are
gathered to form a complete warranty proposal.

At commit time, if the warranty proposal has not al-
ready been invalidated by an update to its read set, the
proposal is sent to the store. The store looks at the request
and, using the same mechanism as for state warranties,
sets a warranty term. For state warranties, terms are set
individually for each object, but here the warranty iden-
tity is defined by the entire set of arguments to the memo-
ized method. Finally, the computation warranty is issued
to the requesting client and the store begins to defend the
new warranty or warranties proposed by the client.

6 Implementation
To evaluate the warranty mechanism, we extended the
Fabric secure distributed object system [38]. Fabric pro-
vides a high-level programming model that, like the Java
Persistence API, presents persistent data to the program-
mer as language-level objects. Language-level objects
may be both persistent and distributed. It implements lin-
earizability using OCC.

Fabric also has many security-related features—
notably, information flow control—designed to support
secure distributed computation and also secure mobile
code [5]. The dynamic security enforcement mechanisms
of Fabric were not turned off for our evaluation, but they
are not germane to this paper.

We extended the Fabric system and language to im-
plement the mechanisms described in this paper. Our
extended version of Fabric supports both state war-
ranties and computation warranties. Computation war-

ranties were supported by extending the Fabric language
with memoized methods. Client (worker) nodes were ex-
tended to use warranties during computation and to eval-
uate and request computation warranties as needed. The
Fabric dissemination layer, a CDN, was extended to dis-
tribute warranties and to support warranty subscriptions.
Fabric workers and stores were extended to implement
the new transaction commit protocols, and stores were
extended to defend and revalidate warranties.

The previously released version of Fabric (0.2.1) con-
tains roughly 44,000 lines of (non-blank, non-comment)
code, including the Fabric compiler and the run-time sys-
tems for worker node, store nodes, and dissemination
nodes, written in either Java or the Fabric intermediate
language. In total, about 6,900 lines of code were added
or modified across these various system components to
implement warranties.

Fabric ships objects from stores to worker nodes in
object groups rather than as individual objects. State
warranties are implemented by attaching individual war-
ranties to each object in the group.

Some features of the warranties design have not been
implemented; most of these features are expected to im-
prove performance further. The single-store optimization
of the commit protocol has been implemented for base
Fabric, but rows 3–5 of Table 1 have not been imple-
mented for warranties. The warranty refresh mechanism
is also not yet implemented.

To simplify the work needed to defend computation
warranties, the current implementation only generates
warranties for computations that involve objects from a
single store. Also, our implementation does not use the
dissemination layer to distribute computation warranties.

7 Evaluation
We evaluated warranties against existing OCC mecha-
nisms, and other transactional mechanisms, primarily us-
ing three programs. First, we used the multiuser OO7
benchmark [13]. Second, we used versions of Cornell’s
deployed Course Management System [10] (CMS) to
examine how warranties perform with real systems un-
der real-world workloads. Both of these programs were
ported to Fabric in prior work [38]. Third, we developed
a new benchmark that simulates a component of a social
network in which users have subscribers.

7.1 Multiuser OO7 benchmark
The OO7 benchmark was originally designed to model a
range of applications typically run using object-oriented
databases. The database consists of several modules,
which are tree-based data structures in which each leaf
of the tree contains a randomly connected graph of
20 objects. In our experiments we used the “SMALL”
sized database. Each OO7 transaction performs 10 ran-

9

512 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dom traversals on either the shared module or a pri-
vate module specific to each client. When the traversal
reaches a leaf of the tree, it performs either a read or a
write action. These are relatively heavyweight transac-
tions compared to many current benchmarks; each trans-
action reads about 460 persistent objects and modifies
up to 200 of them. By comparison, if implemented in a
straightforward way with a key-value store, each transac-
tion would perform hundreds of get and put operations.
Transactions in the commonly used TPC-C benchmark
are also roughly an order of magnitude smaller [52], and
in the YCSB benchmarks [54], smaller still.

Because OO7 transactions are relatively large, and
because of the data’s tree structure, OO7 stresses a
database’s ability to handle read and write contention.
However, since updates only occur at the leaves of the
tree, writes are uniformly distributed in the OO7 spec-
ification. To better model updates to popular objects,
we modified traversals to make read operations at the
leaves of the tree exhibit a power-law distribution with
α = 0.7 [11]. Writes to private objects are also made
power-law distributed, but remain uniformly distributed
for public objects.

7.2 Course Management System
The CS Course Management System [10] (CMS) is a
54k-line Java web application used by the Cornell com-
puter science department to manage course assignments
and grading. The production version of the application
uses a conventional SQL database; when viewed through
the JPA, the persistent data forms an object graph not
dissimilar to that of OO7. We modified this application
to run on Fabric. To evaluate computation warranties, we
memoized a frequently used method that filters the list of
courses on an overview page.

We obtained a trace from Cornell’s production CMS
server from three weeks in 2013, a period that en-
compassed multiple submission deadlines for several
courses. To drive our performance evaluation, we took
10 common action types from the trace. Each transaction
in the trace is a complete user request including genera-
tion of an HTML web page, so most request types access
many objects. Using JMeter [30] as a workload genera-
tor, we sampled the traces, transforming query parame-
ters as necessary to map to objects in our test database
with a custom JMeter plugin.

7.3 Top-subscribers benchmark
The third benchmark program simulates a relatively ex-
pensive analytics component of a social network in
which users have subscribers. The analytics component
computes the set of 5 users with the largest number
of subscribers, using the memoized top-N function de-
scribed in Section 3.5. The number of subscribers per
user is again determined by a power-law distribution with

α = 0.7. The workload consists of a mix of two op-
erations: 98% compute the list of top subscribers, cor-
responding to viewing the home page of the service;
2% are updates that randomly either subscribe or un-
subscribe some randomly chosen user. This example ex-
plores the effectiveness of computation warranties for
caching expensive computed results.

7.4 Comparing with Hibernate/HSQLDB
To provide a credible baseline for performance compar-
isons, we also ported our implementation of CMS to the
Java Persistence API (JPA) [12]. We ran these implemen-
tations with the widely used Hibernate implementation
of JPA 2, running on top of HyperSQL (HSQLDB), a
popular in-memory database in READ COMMITTEDmode.
For brevity, we refer to Hibernate/HSQLDB as JPA. For
JPA, we present results only for a single database in-
stance. Even in this single-store setting, and even with
Hibernate running in its optimistic locking mode, which
does not enforce serializability, Fabric significantly out-
performs JPA in all of our experiments. (Note that JPA
in optimistic locking mode is in turn known to outper-
form JPA with pessimistic locking, on read-biased work-
loads [49, 17]). This performance comparison aims to
show that Fabric is a good baseline for evaluating the
performance of transactional workloads: its performance
is competitive with other storage frameworks offering a
transactional language-level abstraction.

7.5 Experimental setup
Our experiments use a semi-open system model. An
open system model is usually considered more realis-
tic [48] and a more appropriate way to evaluate system
scalability. Worker nodes execute transactions at expo-
nentially distributed intervals at a specified average re-
quest rate. Consequently, each worker is usually running
many transactions in parallel. Overall system throughput
is the total of throughput from all workers. To find the
maximum throughput, we increase the average request
rate until the target throughput cannot be achieved.

The experiments are run on a Eucalyptus cluster. Each
store runs on a virtual machine with a dual core processor
and 8 GB of memory. Worker machines are virtual ma-
chines with 4 cores and 16 GB of memory. The physical
processors are 2.9 GHz Intel Xeon E5-2690 processors.

The parameters k1 and k2 (Section 3.8) are set to 0.5
and 2.0, respectively; the maximum warranty term was
10 s. Performance is not very sensitive to k1 and k2.

7.6 Results
We evaluated scalability using the OO7 benchmark with
different numbers of stores. A “shared store” was re-
served for the assembly hierarchies of all modules. The
component parts of the modules were distributed evenly
across the remaining stores. Only shared composite parts

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 513

1 3 5 7
0

1,000

2,000

Stores

M
ax

im
um

th
ro

ug
hp

ut
(t

x/
s)

Fabric
Warranties

Figure 4: OO7 maximum throughput on a 2%-write
workload as the number of stores increases. Warranties
allow throughput to scale up with more stores.

were placed on the shared store. Results presented are
the average of three runs.

Figure 4 shows maximum throughput in total transac-
tions committed per second by 36 workers, as the number
of stores increases. Error bars show the standard devi-
ation of the measurements. As expected, adding stores
has little effect on maximum throughput in base Fab-
ric because the shared store is a bottleneck. Warranties
greatly reduce load on the shared store allowing us to
add roughly 400 tx/s per additional store. Note that the
plot only counts committed transactions; the percentage
of aborted transactions for Fabric at maximum through-
put ranges from 2% to 6% as the number of stores in-
creases from 3 to 7; with warranties, from 4% up to 15%.

Table 2 reports on the performance of the CMS appli-
cation in various configurations. The first three rows of
Table 2 show that Fabric, without or without warranties,
delivers more than an order of magnitude performance
improvement over JPA. Although the JPA implementa-
tion enforces weaker consistency, Fabric’s more precise

0 2 5 10
0

1,000

2,000

3,000

Write percentage

M
ax

im
um

th
ro

ug
hp

ut
(t

x/
s)

Fabric
Warranties

Figure 5: Effect of write percentage on OO7 maximum
throughput on 3 stores with 24 workers.

System Stores Tput (tx/s) Latency (ms)
JPA 1 72± 12 211± 44

Fabric 1 3032± 144 143± 120
Warranties 1 4142± 112 27± 27

Comp. Warranties 1 4088± 189 114± 30
Fabric 3 4090± 454 311± 175

Warranties 3 5886± 124 35± 4

Table 2: CMS throughput and latency on various sys-
tems. Both are averaged over 10 s at max throughput.

object invalidation helps performance as contention in-
creases. Warranties help improve performance further,
even in a single-store configuration.

To evaluate how the system scales for a more realistic
workload, we also ran CMS with 3 stores using Fabric
and Warranties. Two stores each held data for multiple
courses, while the third store contained metadata. As Ta-
ble 2 shows, Warranties scale better than Fabric with the
additional stores.

Increases in throughput would be less compelling if
they came at the cost of high latency. Table 2 also reports
the latency measured with the CMS workload on the var-
ious systems. Fabric has similar latency with or without
warranties. Because CMS was not designed with compu-
tation warranties in mind, the functions we designated to
be memoized turn out not to have a significant impact
on performance. They are relatively cheap to evaluate
on cached objects, and the bookkeeping for computation
warranties adds no noticeable overhead.

Figure 5 shows how the performance of warranties
is affected by the fraction of update transactions. Four
different workload mixes were measured, each having a
94:6 shared-to-private traversal ratio and a 1:10 shared-
to-private write ratio. When more than 10% of the trans-
actions are updates, the cost of maintaining and issu-
ing warranties in the current implementation is too high
to obtain a performance improvement. The latencies at
some of these throughputs are higher than Fabric’s, but
still relatively low. At 2% and 5% writes, the latency
of warranties is about 400 ms higher than Fabric’s but
nearly the same as Fabric’s at 0% and 10% writes.

Warranties can result in delaying transactions that are
attempting to write to an object that has a warranty. We
call this write delay. For all of the runs depicted in Fig-
ure 5, the median write delay is 0 ms. However, some
fraction of transactions are forced to wait until one or
more warranties expire. The more read-biased the trans-
action, the more frequently this happens. In the 2%-write
workload, 70% of read-write transactions see no write
delay. In the 10%-write workload, 82% see no write de-
lay. Among those that encounter write delay, the delay
is roughly uniformly distributed from 0 up to the max
warranty length.

11

514 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

95th pct
Median Write

Tput Latency Delay
Fabric 17± 5 568± 500 N/A

Warranties 26± 7 1239± 644 623± 387
Comp. Warranties 343± 14 12± 3 16± 5

Table 3: Top-N benchmark: maximum throughput (tx/s),
latency (ms), and 95th percentile write delay (ms).

7.7 Computation warranties
To further evaluate the impact of computation warranties,
we ran the top-N benchmark with Fabric, state war-
ranties, and with computation warranties. Because the
performance of the recursive top-N strategy on Fabric
and on state warranties was very poor, we used an al-
ternate implementation that performed better on those
configurations. Table 3 shows the average across three
runs of the maximum throughput and the corresponding
latency achieved in the system without any operations
failing to commit during a 15 minute period. Computa-
tion warranties improve throughput by more than an or-
der of magnitude. Since the computation warranty is on
the value of the top 5 accounts rather than on each in-
dividual value used in computing the result, writes are
not delayed as heavily as they are when using only state
warranties.

8 Related work
Many mechanisms for enforcing concurrency control
have been proposed in the literature: locks, timestamps,
versions, logs, leases, and many others [33, 22, 34, 46,
7, 21]. Broadly speaking, these can be divided into opti-
mistic and pessimistic mechanisms. The monograph by
Bernstein, Hadzilacos, and Goodman provides a broad
overview from the perspective of databases [8]. War-
ranties are an optimistic technique, allowing clients to
concurrently operate on shared data.

Haerder [24] divides mechanisms for validating opti-
mistic transactions into “forward” and “backward” tech-
niques. Backward validation is a better choice for the dis-
tributed setting [3], so Fabric uses backward validation:
transactions are aborted in the prepare phase if any object
in the read set has been modified.

Traditionally, most systems adopted serializability or
linearizability as the gold standard of strong consis-
tency [42, 8, 25]. But many recent systems have sacri-
ficed serializability in pursuit of scalable performance.
Vogels [53] discusses this trend and surveys various for-
mal notions of eventual consistency. Much prior work
aims to provide a consistency guarantee that is weaker
than serializability; for example, causal consistency (e.g.,
[44, 39]) and probabilistically-bounded staleness [6].
Because this paper is about strong consistency, we do not

discuss this prior work in depth.
Leveraging application-level information to guide im-

plementations of transactions was proposed by Lam-
port [33] and explored in Garcia-Molina’s work on se-
mantic types [19], as well as recent work on trans-
actional boosting [26] and coarse-grained transac-
tions [31]. Unlike warranties, these systems use mech-
anisms based on commuting operations. A related ap-
proach is red–blue consistency [36], in which red opera-
tions must be performed in the same order at each node
but blue operations may be reordered.

Like warranties, Sinfonia [4] aims to reduce client–
server round trips without hurting consistency. It does
this through mini-transactions, in which a more general
computation is piggybacked onto the prepare phase. This
optimization is orthogonal to warranties.

Warranties borrow from leases [21] the idea of us-
ing expiring guarantees, though important differences are
discussed in Section 3.2. In fact, the idea of expiring state
guarantees occurs prior to leases in Lampson’s global di-
rectory service [35]. We are not aware of any existing
system that combines optimistic transactions with leases
or lease-like mechanisms, against which we could mean-
ingfully compare performance.

A generalization of leases, promises [23, 29] is a mid-
dleware layer that allows clients to specify resource re-
quirements via logical formulas. A resource manager
considers constraints across many clients and issues
time-limited guarantees about resource availability. Scal-
ability of promises does not seem to have been evaluated.

The tracking of dependencies between computa-
tion warranties, and the incremental updates of those
warranties while avoiding unnecessary invalidation, is
close to the update propagation technique used in self-
adjusting computation [1], realized in a distributed set-
ting. Incremental update of computed results has also
been done in the setting of MapReduce [9].

The TxCache system [45] provides a simple abstrac-
tion for caching and reusing results of functions oper-
ating over persistent data from a single storage node in
a distributed system. As with the Fabric implementation
of computation warranties, functions may be marked for
memoization. TxCache does not ensure that memoized
calls have no side effects, so memoized calls may not
behave like real calls. Memoized results are not shared
across clients. Compared to Fabric, TxCache provides a
weaker consistency guarantee, transactional consistency,
requiring that all transactions operate over data that is
consistent with a prior snapshot of the system.

Escrow transactions [41] have some similarities to
computation warranties. They generalize transactions by
allowing commit when a predicate over state is satis-
fied. Certain updates (incrementing and decrementing
values) may take place even when other transactions may

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 515

be updating the same values, as long as the predicate
still holds. Compared to computation warranties, escrow
transactions support very limited predicates over state,
and their goal is different: to permit updates rather than
to allow the result of a computation to be widely reused.

9 Conclusions
Strong consistency tends to be associated with the
very real performance problems of pessimistic locking.
While optimistic concurrency control mechanisms de-
liver higher performance for typical workloads, read pre-
pares on popular objects are still a performance bot-
tleneck. Warranties generalize OCC in a way that re-
duces the read-prepare bottleneck. Warranties address
this bottleneck by allowing stores to distribute war-
ranties on popular objects, effectively replicating their
state throughout the system. Warranties can delay up-
date transactions, but our results suggest that the de-
lay is acceptable. Effectively, warranties generalize OCC
in a way that adjusts the balance of power between
readers and writers, substantially increasing overall
performance. Computation warranties improve perfor-
mance further by supporting memcached-like reuse of
computations—but without losing strong consistency.

Acknowledgments
We would especially like to thank Robert Soulé for help
setting up experiments and Nate Foster for good sugges-
tions. Chin Isradisaikul also had good ideas for presen-
tation, and we thank our shepherd Yuan Yu. We thank
Hakim Weatherspoon for the use of Fractus cloud in-
frastructure provided by an AFOSR DURIP award, grant
FA2386-12-1-3008.

This project was funded partly by the Office of Naval
Research (grant N00014-13-1-0089), by MURI grant
FA9550-12-1-0400, by a grant from the National Sci-
ence Foundation (CCF-09644909), and by an NDSEG
Fellowship. This paper does not necessarily reflect the
views of any of these sponsors.

References
[1] Umut A. Acar, Amal Ahmed, and Matthias

Blume. Imperative self-adjusting computation.
In Proc. 35th ACM Symposium on Principles of
Programming Languages (POPL), pages 309–322,
2008.

[2] Atul Adya, William J. Bolosky, Miguel Castro,
Gerald Cermak, Ronnie Chaiken, John R. Douceur,
Jon Howell, Jacob R. Lorch, Marvin Theimer,
and Roger P. Wattenhofer. FARSITE: Feder-
ated, available, and reliable storage for an incom-
pletely trusted environment. In Proc. 5th USENIX

Symp. on Operating Systems Design and Imple-
mentation (OSDI), December 2002.

[3] Atul Adya, Robert Gruber, Barbara Liskov, and
Umesh Maheshwari. Efficient optimistic concur-
rency control using loosely synchronized clocks. In
Proc. ACM SIGMOD International Conference on
Management of Data, pages 23–34, San Jose, CA,
May 1995.

[4] Marcos K. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, and Christos Karamanolis. Sin-
fonia: a new paradigm for building scalable dis-
tributed systems. In Proc. 21st ACM Symp. on Op-
erating System Principles (SOSP), pages 159–174,
October 2007.

[5] Owen Arden, Michael D. George, Jed Liu,
K. Vikram, Aslan Askarov, and Andrew C. My-
ers. Sharing mobile code securely with information
flow control. In Proc. IEEE Symp. on Security and
Privacy, pages 191–205, May 2012.

[6] Peter Bailis, Shivaram Venkataraman, Michael J.
Franklin, Joseph M. Hellerstein, and Ion Stoica.
Probabilistically bounded staleness for practical
partial quorums. PVLDB, 5(8):776–787, April
2012.

[7] Philip A. Bernstein and Nathan Goodman. Concur-
rency control in distributed database systems. ACM
CSUR, 13(2):185–221, 1981.

[8] Phillip A. Bernstein, Vassos Hadzila-
cos, and Nathan Goodman. Concurrency
Control and Recovery in Database Sys-
tems. Addison Wesley, 1987. Available at
http://research.microsoft.com/en-us/

people/philbe/ccontrol.aspx.

[9] Pramod Bhatotia, Alexander Wieder, Rodrigo Ro-
drigues, Umut A. Acar, and Rafael Pasquini. In-
coop: MapReduce for incremental computations. In
ACM Symp. Cloud Computing, October 2011.

[10] Chavdar Botev et al. Supporting workflow in a
course management system. In Proc. 36th ACM
Technical Symposium on Computer Science Educa-
tion (SIGCSE), pages 262–266, February 2005.

[11] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and
Scott Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. In INFOCOM,
1999.

[12] Heiko Böck. Java Persistence API. Springer, 2011.

13

516 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[13] Michael Carey, David J. DeWitt, Chander Kant, and
Jeffrey F. Naughton. A status report on the OO7
OODBMS benchmarking effort. In Proc. 9th ACM
SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages and Applications, pages 414–
426, 1994.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Pe-
ter Vosshall, and Werner Vogels. Dynamo: Ama-
zon’s highly available key-value store. In Proc. 21st
SOSP, 2007.

[15] EclipseLink. http://www.eclipse.org/-

eclipselink.

[16] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predicate
locks in a database system. Comm. of the ACM,
19(11):624–633, November 1976. Also published
as IBM RJ1487, December, 1974.

[17] Gavin King et al. Hibernate developer
guide. Hibernate Community Documentation.
http://docs.jboss.org/hibernate/orm/4.0/-

devguide/en-US/html/ch05.html.

[18] Brad Fitzpatrick. Distributed caching with mem-
cached. Linux Journal, August 2004.

[19] Hector Garcia-Molina. Using semantic knowledge
for transaction processing in a distributed database.
ACM TODS, 8(2):186–213, June 1983.

[20] Cary G. Gray. Performance and Fault-Tolerance in
a Cache for Distributed File Service. PhD thesis,
Stanford University, December 1990.

[21] Cary G. Gray and David R. Cheriton. Leases: An
efficient fault-tolerant mechanism for distributed
file cache consistency. In Proc. 12th ACM Symp. on
Operating System Principles (SOSP), pages 202–
210, 1989.

[22] Jim N. Gray. Notes on database operating systems.
In R. Bayer, R. M. Graham, and G. Seegmüller, ed-
itors, Operating Systems, an Advanced Course, vol-
ume 60 of LNCS, pages 393–481. Springer-Verlag,
1978.

[23] Paul Greenfield, Alan Fekete, Julian Jang, Dean
Kuo, and Surya Nepal. Isolation support for
service-based applications: A position paper. In
Proc. 3rd CIDR, pages 314–323, 2007.

[24] T. Haerder. Observations on optimistic concurrency
control schemes. Information Systems, 9(2):111–
120, June 1984.

[25] M. Herlihy and J. Wing. Linearizability: A cor-
rectness condition for concurrent objects. Technical
Report CMU-CS-88-120, Carnegie Mellon Univer-
sity, Pittsburgh, Pa., 1988.

[26] Maurice Herlihy and Eric Koskinen. Transactional
boosting: A methodology for highly-concurrent
transactional objects. In Proc. 13th PPoPP, pages
207–216, February 2008.

[27] Hibernate. http://www.hibernate.org.

[28] J. Stuart Hunter. The exponentially weighted
moving average. Journal of Quality Technology,
18:203–210, 1986.

[29] J. Jang, A. Fekete, and P. Greenfield. Delivering
promises for web services applications. In Proc.
5th ICWS, pages 599–606, July 2007.

[30] JMeter. http://jmeter.apache.org.

[31] Eric Koskinen, Matthew Parkinson, and Maurice
Herlihy. Coarse-grained transactions. In Proc. 37th
POPL, pages 19–30, January 2010.

[32] H. T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Transactions on
Database Systems, 6(2):213–226, June 1981.

[33] L. Lamport. Towards a theory of correctness for
multi-user data base systems. Report CA-7610-
0712, Mass. Computer Associates, Wakefield, MA,
October 1976.

[34] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. of the ACM,
21(7):558–565, July 1978.

[35] Butler W. Lampson. Designing a global name ser-
vice. In Proc. 5th PODC, pages 1–10, August 1986.

[36] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues.
Making geo-replicated systems fast as possible,
consistent when necessary. In Proc. 10th OSDI,
October 2012.

[37] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghe-
mawat, R. Gruber, U. Maheshwari, A. C. Myers,
and L. Shrira. Safe and efficient sharing of per-
sistent objects in Thor. In Proc. ACM SIGMOD
International Conference on Management of Data,
pages 318–329, June 1996.

[38] Jed Liu, Michael D. George, K. Vikram, Xin Qi,
Lucas Waye, and Andrew C. Myers. Fabric: A plat-
form for secure distributed computation and stor-
age. In Proc. 22nd ACM Symp. on Operating Sys-
tem Principles (SOSP), pages 321–334, 2009.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 517

[39] Wyatt Lloyd, Michael J. Freedman, Michael
Kaminsky, and David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area
storage with COPS. In Proc. 23rd ACM Symp. on
Operating System Principles (SOSP), 2011.

[40] D. L. Mills. Network time protocol (version 3)
specification, implementation and analysis. Net-
work Working Report RFC 1305, March 1992.

[41] P. O’Neil. The escrow transactional method.
ACM Transactions on Database Systems (TODS),
11(4):405–430, December 1986.

[42] Christos H. Papadimitriou. The serializability of
concurrent database updates. JACM, 26(4):631–
653, October 1979.

[43] Peter Peinl and Andreas Reuter. Empirical com-
parison of database concurrency control schemes.
In Proc. 9th Int’l Conf. on Very Large Data Bases
(VLDB), pages 97–108, 1983.

[44] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers. Flexible update
propagation for weakly consistent replication. In
Proc. 17th ACM Symp. on Operating System Prin-
ciples (SOSP), St. Malo, France, October 1997.

[45] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transac-
tional consistency and automatic management in
an application data cache. In Proc. 9th USENIX
Symp. on Operating Systems Design and Imple-
mentation (OSDI), 2010.

[46] David P. Reed. Naming and synchronization in
a decentralized computer system. Technical Re-
port MIT-LCS-TR-205, Massachusetts Institute of
Technology, 1978.

[47] Yasushi Saito and Marc Shapiro. Optimistic repli-
cation. ACM CSUR, 37(1):42–81, March 2005.

[48] Bianca Schroeder, Adam Wierman, and Mor
Harchol-Balter. Open versus closed: a cautionary
tale. In Proc. 3rd Conf. on Networked Systems
Design & Implementation (NSDI), pages 18–31,
Berkeley, CA, USA, 2006. USENIX Association.

[49] ObjectDB Software. ObjectDB 2.3 developer’s
guide. http://www.objectdb.com/java/-

jpa/persistence/lock.

[50] Douglas B. Terry, Marvin M. Theimer, Karin
Petersen, Alan J. Demers, and Mike J. Spre-
itzer. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In

Proc. 15th ACM Symp. on Operating System Prin-
ciples (SOSP), pages 172–183, December 1995.

[51] Chandramohan A. Thekkath, Timothy Mann, and
Edward K. Lee. Frangipani: a scalable distributed
file system. In Proc. 16th ACM Symp. on Operating
System Principles (SOSP), pages 224–237, 1997.

[52] TPC-C. http://www.tpc.org/tpcc/.

[53] Werner Vogels. Eventually consistent. CACM,
52(1):40–44, January 2009.

[54] Yahoo! cloud serving benchmark.
https://github.com/brianfrankcooper/YCSB.

15

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 519

Tierless Programming and Reasoning for Software-Defined Networks

Tim Nelson Andrew D. Ferguson Michael J. G. Scheer Shriram Krishnamurthi
Brown University

Abstract
We present Flowlog, a tierless language for program-

ming SDN controllers. In contrast to languages with
different abstractions for each program tier—the control-
plane, data-plane, and controller state—Flowlog provides
a unified abstraction for all three tiers. Flowlog is rem-
iniscent of both SQL and rule-based languages such as
Cisco IOS and JunOS; unlike these network configuration
languages, Flowlog supports programming with mutable
state. We intentionally limit Flowlog’s expressivity to
enable built-in verification and proactive compilation de-
spite the integration of controller state. To compensate for
its limited expressive power, Flowlog enables the reuse
of external libraries through callouts.

Flowlog proactively compiles essentially all forward-
ing behavior to switch tables. For rules that maintain
controller state or generate fresh packets, the compiler
instructs switches to send the minimum amount of neces-
sary traffic to the controller. Given that Flowlog programs
can be stateful, this process is non-trivial. We have suc-
cessfully used Flowlog to implement real network appli-
cations. We also compile Flowlog programs to Alloy, a
popular verification tool. With this we have verified sev-
eral properties, including program-correctness properties
that are topology-independent, and have found bugs in
our own programs.

1 Introduction

In a software-defined network (SDN), switches delegate
their control-plane functionality to logically centralized,
external controller applications. This split provides sev-
eral advantages including a global view of network topol-
ogy, and the use of general-purpose programming lan-
guages for implementing network polices. These general-
purpose languages require an interface to the switch hard-
ware, such as OpenFlow [20], which also provides a basic
abstraction of the switch’s flow tables.

To best use this interface, recent research has produced
domain-specific languages like NetCore [21] that can be
proactively compiled to flow tables. While this exclu-
sive focus on flow tables simplifies compilation, it hurts
expressivity. NetCore, for instance, can describe a for-
warding policy, but lacks the ability to reference (let alone
change) state on the controller.

Instead, the programmer must write a multi-tier pro-
gram: a wrapper in a general-purpose language that main-
tains control-plane state and dynamically creates new,
stateless data-plane policies to describe current forward-
ing goals. The data-plane policies must also specify
which packets the switches should send to the controller,
but—due to the multi-tier, multi-language nature of these
programs—there is no structured connection between poli-
cies that describe packets the controller receives, and the
arbitrary code in a callback function that consumes them.
This gap can lead to bugs in how switches update the
controller, resulting in incorrect controller state or net-
work policies. Moreover, if packets are delivered to the
controller needlessly, performance suffers.

To better support controller programming, we have cre-
ated Flowlog, a tierless network programming language.
As in web-programming, where a program contains mul-
tiple tiers such as client-side JavaScript, a server-side
program, and a database, an SDN system also has mul-
tiple tiers: flow rules on switches, a controller program,
and a data-store for controller state. By incorporating all
of these tiers, a single, unified Flowlog program describes
both control- and data-plane behavior.

Flowlog also provides built-in support for program
verification. Because controller programs pose a single
point of failure for the entire network, verification tools
are invaluable to SDN developers. Prior SDN controller
analysis work has often focused on the switch rules them-
selves, either statically [2, 12, 19, 26] or dynamically, as
each update is sent to the switches [25]. However, most
SDN analyses focus on trace properties: statements about
the end-to-end behavior of packets in the network (e.g.,

1

520 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a lack of routing loops). While these analyses are use-
ful, they generally must be performed with respect to a
given topology, which limits their flexibility, reusability,
and scalability. In contrast, our reasoning focuses on
properties independent of network topology.

We have limited Flowlog’s expressive power to support
both tierlessness and verification, while retaining enough
expressivity to be useful for real-world programming. A
limited language poses obvious problems for developers,
both in expressing their needs and in reusing existing code.
Flowlog therefore provides interfaces and abstractions for
interacting with external programs. Programmers are free
to invoke existing, full-featured libraries as needed, de-
pending on their analysis goals. This is in contrast to most
policy languages: in Flowlog, the restricted language it-
self forms the primary program, calling the external code
rather than being called by it. This approach has been
successful in SQL, where database queries are in the “lim-
ited” language and user-defined functions are in “full”
languages. Our work explores such a strategy for network
programming. Our contributions are:

1. We present the tierless Flowlog language (Section 3)
and demonstrate its expressive power on real-world
examples (Section 2). The language includes SQL-
like relational state. It also provides abstractions
for interaction with external code, via either asyn-
chronous events or synchronous remote tables. Sec-
tion 6 describes its implementation.

2. We show how, in spite of Flowlog’s tierless merg-
ing of data- and control-plane behavior, programs
can be proactively compiled to flow table rules (Sec-
tion 4). The compilation process extends beyond
mere packet forwarding; it also filters packets that
may trigger state updates or cause event output and
notifies the controller only as necessary.

3. We automatically compile Flowlog programs to the
Alloy [10] verifier (Section 5). We focus on analyses
that are independent of network topology, which are
especially helpful when the topology is virtual, in
flux, or unknown. We show that this process is aided
by Flowlog’s tierlessness as well as its limited ex-
pressiveness. We are able to verify properties in less
than a second with minimal developer input. This
verification support has helped us find surprising
errors in our own Flowlog programs.

2 Flowlog by Example

We introduce Flowlog with illustrative examples. These
demonstrate Flowlog’s tierless nature, along with its ex-
pressive power, concision, and ability to support real-
world development needs. We have also designed Flowlog

to be amenable to both sound (i.e., no false positives) and
complete (i.e., no bugs are missed) verification. To meet
these goals, Flowlog bans loops and recursion, and has a
logical semantics that we leverage for sound and, in many
cases, complete verification (Section 5). Moreover, no
recursion means that Flowlog programs always terminate
on each incoming event.

Stolen Laptop Detector Let us write an application to
help campus police track down stolen laptops. It must
accept signals from campus police that report a laptop
stolen or recovered, and if a stolen laptop is seen sending
packets, the program must alert the police, saying which
switch the laptop is connected to and when the packet was
seen. (For brevity, we do not demonstrate rate limiting of
alerts or restriction of alerts to edge-router traffic. Both
of these tasks can be accomplished in Flowlog.)

Without a tierless programming language, expressing
this program would require many pieces, possibly us-
ing multiple languages: a database or data structures to
manage controller state; a remote-procedure call (RPC) li-
brary, or similar solution, for handling events; and policy-
generation code that produces fresh rules on the switches
that forward traffic and check for stolen laptops on the
network. In Flowlog, all of these components share the
same abstraction. Suppose we have a table stolen that
tracks the MAC addresses of all currently stolen laptops.
Then, the heart of the program is just the following rules:

1 ON stolen_report(sto):

2 INSERT (sto.mac) INTO stolen;

3 ON stolen_cancel(rec):

4 DELETE (rec.mac) FROM stolen;

5 ON packet_in(p):

6 DO notify_police(sto) WHERE
7 sto.mac = pkt.dlSrc AND
8 sto.time = time AND
9 sto.swid = pkt.locSw AND

10 stolen(pkt.dlSrc) AND
11 get_time(time);

12 DO forward(new) WHERE
13 new.locPt != p.locPt;

The program describes several kinds behavior that appear
disparate. It: (a) adds addresses to a table when laptops
are reported stolen (lines 1–2); (b) removes addresses
when laptops are recovered (lines 3–4); (c) notifies police
when a packet appears from a stolen laptop (lines 5–11);
and (d) floods packets (lines 12–13); this trivial example
of forwarding introduces syntax which we will use later.
With Flowlog’s tierless abstraction, we express all of this
in four concise rules.

Every program has similar rules that describe how to
handle each packet; these rules are written in a syntax
reminiscent of SQL, and the semantics is correspondingly
relational. In addition, most programs will have state that
must be updated in reaction to packets and other stimuli.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 521

State
Tables

Ruleset

Events

Event
Declarations

Tables Corresponding
to Events

Figure 1: Flowlog system diagram. Events are represented by
tuples in event tables. Rules interact with the entire database.

These stimuli are external events, whose implementa-
tions can be arbitrary, and whose interfaces are explicitly
declared or built in. We now describe the program dec-
larations that support these rules. (Figure 1 shows the
different components of Flowlog.)

We have already seen stolen, the internal controller
state. We expose the current time with an external
table get_time (which always contains just one entry):
1 TABLE stolen(switchid);

2 REMOTE TABLE get_time(int);

External tables are managed by arbitrary external pro-
grams; in our examples, we used OCaml programs run-
ning on the controller machine. Each table declares its
type, which is used for error-checking and optimization.

Next, we define the shape of incoming and outgoing
events. We must handle two kinds of notifications from
the police, and send them one:

1 EVENT stolen_report {mac: macaddr };

2 EVENT stolen_cancel {mac: macaddr };

3 EVENT stolen_found {mac: macaddr, swid:

switchid, time: int};

Flowlog processes incoming events one at a time. In-
coming events are placed in an identically named table,
causing dependent rules to be re-evaluated. Outgoing
events are also represented as tables, and when the ruleset
adds a tuple to such a table, Flowlog sends an event with
the tuple’s content. These tables are therefore similar to
named pipes in Unix. We require one such named pipe to
send stolen_found events to the police server:

1 OUTGOING notify_police(stolen_found)

2 THEN SEND TO 127 .0.0.1 :5050;

If a Flowlog program inserts tuples into the notify_police

table, these tuples will be transformed into stolen_found

events and sent to a process listening on 127.0.0.1:5050.
Incoming stolen_report and stolen_cancel events are au-
tomatically inserted into their identically named tables.
For instance, the stolen_report table will contain arriving

stolen_report events, and the packet_in table will hold
incoming packets. Notice we did not declare an outgo-
ing forward table. This is because Flowlog automatically
creates outgoing tables for common packet-handling be-
havior, as detailed in Table 1.

The remote table get_time is populated by querying
127.0.0.1:9091, and should be refreshed every second:

1 REMOTE TABLE get_time

2 FROM time AT 127 .0.0.1 :9091

3 TIMEOUT 1 seconds;

The TIMEOUT field (line 3) is vital for performance and
correct proactive compilation. A numeric timeout gives a
window during which the results can be cached. Flowlog
also provides a NEVER keyword, meaning the external call-
out has no side-effects, and thus its results can be cached
indefinitely. A default, empty timeout requires updating
the remote table every time the program is evaluated.

The reader may wonder whether this program can be
compiled to stateless rules and installed in switches. After
all, it contains a rule only the controller can handle, since
it involves notifying campus police. But this rule only
fires when stolen(p.dlSrc) is true, so Flowlog’s proactive
compiler instructs switches to send packets to the con-
troller only if their source-MAC field has been registered
as stolen. Furthermore, Flowlog automatically updates
the switches every time a new theft is reported; no code
to that effect is needed.

Network Information Base Next, we show how
Flowlog can be used to compute a network information
base, or NIB [15]. We begin with topology discovery,
using Flowlog’s ability to process timer notifications and
emit new packets to run an LLDP-like protocol. First, we
react to switch registration to obtain identifiers for every
port (omitting table declarations):

1 ON switch_port_in(swpt):

2 INSERT (swpt.sw, swpt.pt)

3 INTO switch_has_port;

Thus, the switch_has_port table will hold every switch-
port pair that registers. Next, we set up a 10-second event
loop (we exclude the timer declaration):

1 ON startup(empty_event):

2 DO start_timer(10, "tNIB");

3 ON timer_expired(timer)

4 WHERE timer.id = "tNIB":

5 DO start_timer(10, "tNIB");

The first rule uses Flowlog’s built-in startup event to start
the loop, and the second rule continues it. The constraint
timer.id = "tNIB" accounts for situations where multiple
timers may be in use. The same timer also causes known
switches to issue probe packets from each port:

3

522 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

INCOMING Table Corresponding EVENT (with fields) Description
packet_in packet {locSw, locPt, dlSrc, dlDst, dlTyp, nwSrc, nwDst, nwProtocol} packet arrival
switch_port switch_port {sw, pt} switch registration
switch_down switch_down {sw} switch down
E E Any incoming event E

OUTGOING Table Corresponding EVENT Description
emit packet Emit a new packet
forward packet Forward with modifications (triggered by packets only)

Table 1: Built-in INCOMING and OUTGOING tables. The locSw and locPt fields denote the packet’s (switch and port) location.

1 ON timer_expired(timer)

2 WHERE timer.id = "tNIB":

3 DO emit(new) WHERE
4 switch_has_port(new.locSw,new.locPt)

5 AND new.dlTyp = 0x1001

6 AND new.dlSrc = new.locSw

7 AND new.dlDst = new.locPt;

We use dlTyp = 0x1001 (line 5) to mark probe packets.
The current switch and port IDs are smuggled in the MAC
address fields of the probe (lines 6-7). (We omit the rule
that initiates the same probe emission process on switch
registration.)

We obtain knowledge of the switch topology from
probe reception:

1 ON packet_in(p) WHERE p.dlTyp = 0x1001:

2 INSERT (p.dlSrc, p.dlDst,

3 p.locSw, p.locPt) INTO ucST;

The table name ucST denotes under construction switch
topology; at any point, it contains a topology based on
the probes seen so far this cycle. We empty ucST on ev-
ery cycle, and maintain a switchTopology table that stores
the value of the last complete ucST before it is deleted.
Flowlog programs routinely use this strategy of build-
ing up a helper table over an execution cycle, separating
in-progress results from the last complete result set:

1 ON timer_expired(timer)

2 WHERE timer.id = "tNIB":

3 DELETE (sw1,pt1,sw2,pt2) FROM ucST WHERE
4 ucST(sw1, pt1, sw2, pt2);

5 DELETE (sw1,pt1,sw2,pt2)

6 FROM switchTopology WHERE
7 switchTopology(sw1, pt1, sw2, pt2);

8 INSERT (sw1,pt1,sw2,pt2)

9 INTO switchTopology WHERE
10 ucST(sw1, pt1, sw2, pt2);

Though Flowlog does not allow recursion (Section 3), we
can use a similar approach to compute reachability on
the network. This program computes a fresh reachability
table (ucTC, for under-construction transitive closure) as
each probe arrives:

1 ON packet_in(p) WHERE p.dlTyp = 0x1001

2 AND dstSw = p.locSw AND srcSw = p.dlSrc:

3 INSERT (srcSw, dstSw) INTO ucTC;

4 INSERT (sw, dstSw) INTO ucTC

5 WHERE ucTC(sw, srcSw);

6 INSERT (srcSw, sw) INTO ucTC

7 WHERE ucTC(dstSw, sw);

8 INSERT (sw1, sw2) INTO ucTC

9 WHERE ucTC(sw1, srcSw)

10 AND ucTC(dstSw, sw2);

The program works as follows: for every probe packet
received, it concludes that its source switch and its arrival
switch are connected (line 3). It also extends existing
reachability in both directions (lines 4–7). Finally, it must
account for packets connecting two cliques of reachability
(lines 8–10).

It is instructive to compare this algorithm to the stan-
dard two-rule Datalog program for transitive-closure [1, p.
274]. The extra rules arise because we are not computing
transitive-closure in the usual sense. Here, we do not have
the luxury of assuming that we possess the entire con-
nection table in advance; we must compute reachability
on-the-fly as new information arrives. This difference
leads to added complexity. In fact, an initial version of
this program lacked the final rule, and so failed to faith-
fully compute reachability in some cases; we found this
bug using our verification tool (Section 5).

Once we have network reachability, we can compute a
spanning tree for the network:

1 ON packet_in(p) WHERE p.dlTyp = 0x1001

2 AND dstSw = p.locSw AND dstPt = p.locPt

3 AND srcSw = p.dlSrc AND srcPt = p.dlDst:

4 INSERT (srcSw, srcPt) INTO ucTree

5 WHERE NOT ucTC(srcSw, dstSw)

6 AND NOT ucTC(dstSw, srcSw);

7 INSERT (dstSw, dstPt) INTO ucTree

8 WHERE NOT ucTC(srcSw, dstSw)

9 AND NOT ucTC(dstSw, srcSw);

Again, we see unsurprising parallels to distributed proto-
cols. Ordinary spanning tree algorithms have the luxury
of working with the entire graph at once, and thus are
often able to build a connected tree at every step. We do
not have that luxury here: probes may arrive in any order,
and we must build a forest of trees that, should links go
down, may not even be connected. We also must add a
pair of rules, one for each direction of the branch.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 523

block ::= ON <id> (<id>) [WHERE rformula]

: rules

rules ::= rule | rule rules

rule ::= do_act | ins_act | del_act

do_act ::= DO <id> (termlist)

[WHERE rformula] ;

ins_act ::= INSERT (termlist)

INTO <id> [WHERE rformula] ;

del_act ::= DELETE (termlist)

FROM <id> [WHERE rformula] ;

term ::= <num> | <string> | <id> | <id>.<id> | ANY

termlist ::= term | term , termlist

rformula ::= <id> (termlist) | term = term |

NOT rformula | rformula AND rformula |

rformula OR rformula | (rformula)

Figure 2: Syntax of Flowlog rulesets. A program is a succes-
sion of ON blocks. Optional arguments are in square brackets.
Capitalized tokens and punctuation are reserved constants.

Of course, this spanning tree is not necessarily the
best possible one; we only compute the first such tree
to be exposed by probe packets. Better tree-generation
algorithms can be written or accessed via external code.
Numerous other data, such as the location of connected
hosts, can also be gathered, but are omitted for space.

Given a spanning tree for the network—whether it is
computed in Flowlog or obtained from external code—
we can construct a “smart” learning switch application in
Flowlog that does not suffer from the usual issues with
cyclic topologies.

Other Examples We have implemented additional ap-
plications in Flowlog, which are available in our reposi-
tory.1 These examples include an ARP proxy, a stateful
firewall, and an application (which we use in-house) to
facilitate access to Apple TV devices across subnets.

3 The Flowlog Language

As seen in Section 2, every Flowlog program contains a
declarative ruleset that governs controller behavior and
a set of declarations for the program’s state tables and
incoming/outgoing interface. Figure 2 gives the concrete
syntax of Flowlog rulesets.

Declarations A program declares EVENTs, state
TABLEs, and interfaces for INCOMING and OUTGOING ta-
bles. Most INCOMING and some OUTGOING declarations
are made automatically when events are declared. Declar-
ing a table as REMOTE informs Flowlog that the table rep-
resents a callout to external code, and that the ruleset will
not maintain that table’s state. Every event declaration
is equipped with a set of field names for that event type.

1http://cs.brown.edu/research/plt/dl/flowlog/

Every internal table and interface table is equipped with a
type, given as a vector of type names (e.g., “switchid”)—
one for each column in the table. REMOTE TABLE and
OUTGOING declarations must also be provided with addi-
tional information, as we saw in Section 2.

Rulesets A ruleset contains a set of ON blocks of rules.
While we allow multiple rules within the same ON block
for conciseness, without loss of generality we will pretend
that every rule has its own ON block. Each rule indicates
an action to be taken when the ON-specified trigger is seen:
either to INSERT or DELETE a tuple from the controller
state, or to DO an action such as forwarding a packet.
Finally, rules and triggers have an optional WHERE clause,
which adds additional constraints; these are always an
expression involving only the tables declared in TABLEs,
never those declared as INCOMING or OUTGOING. These
rules determine a function that maps controller state and
incoming events to a new state and set of outgoing events.

Each rule defines a logical implication stating that,
should its body be satisfied, its action should be as well.
Figure 3 shows how we arrive at this rule clause for each
rule. If the rule’s action is DO, then the resulting clause in-
serts tuples into the outgoing table directly. If the rule’s ac-
tion modifies an n-ary table R via the INSERT or DELETE

keywords, the clause uses n-ary helper tables Radd or Rdel,
which hold the tuples to be added to and removed from
the controller state after an event is processed.

If S is a controller state, let S↑ represent the unique
least expansion of S that satisfies all rule clauses. That is,
while S contains a table for each TABLE, S↑ also contains
ephemeral Radd and Rdel tables for each TABLE as well as
tables for each OUTGOING declaration. These OUTGOING

tables are consumed by Flowlog and dictate which outgo-
ing events it should send. The ephemeral tables for each
state table R dictate its value in the next state as follows:

Rnext = (RS \ RS↑
del) ∪ RS↑

add

In other words, INSERT overrides DELETE in Flowlog—
the next state’s R contains the pre-state’s R, minus Rdel,
plus Radd.

4 Proactive Compilation for Flowlog

While Flowlog programs receive many kinds of input—
both packets and external notifications—packets remain
the most common and time-sensitive stimuli. No software-
defined network can scale to the level required by large
networks if it sends every arriving packet to the controller
for instructions. This complicates the implementation
of a tierless SDN language; rather than simply have all
packets be processed by the controller in accordance with
the program, the Flowlog runtime is forced to solve three
related, but distinct, challenges:

5

524 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ON IN(in) DO OUT(o1, ..., ok) WHERE rf ∀in,o1, ...ok ∃e1, ...,ek OUT (o1, ...ok)← IN(in)∧Tfmla(rf)
ON IN(in) INSERT (o1, ..., ok) INTO R WHERE rf ∀in,o1, ...ok ∃e1, ...,ek Radd(o1, ...ok)← IN(in)∧Tfmla(rf)
ON IN(in) DELETE (o1, ..., ok) FROM R WHERE rf ∀in,o1, ...ok ∃e1, ...,ek Rdel(o1, ...ok)← IN(in)∧Tfmla(rf)

(All rules existentially quantify variable occurrences that are free and not in {in,out1, ...,outk}; hence the eis.)
Tfmla(NOT f) = ¬Tfmla(f)
Tfmla(f1 AND f2) = Tfmla(f1)∧Tfmla(f2)
Tfmla(t1 = t2) = Tterm(t1) = Tterm(t2)
Tfmla(P(t1, ..., tk)) = ∃x1, ...,xk P(Tterm(t1), ...,Tterm(tk))

x1, ..., xk are the fresh variables introduced
by ANYs in the original formula.

Tterm(c) = c
Tterm(x) = x
Tterm(x.fld) = f ld(x)
Tterm(ANY) = x f resh

Figure 3: Rule-formula to formula (Tfmla) and Rule-term to term (Tterm) transformation functions. Without loss of generality, we
provide every rule with its own ON trigger and assume that disjunction in rule bodies has been removed, resulting in multiple rules.
x f resh denotes a fresh variable.

1. It must compile a program’s forwarding behavior to
equivalent OpenFlow [20] rules whenever possible,
including references to both local and remote state;

2. it must discern which packets can trigger non-
forwarding behavior, such as emission of an event
or a state change, and produce OpenFlow rules that
send those packets—and only those packets—to the
controller; and,

3. if a rule uses features that are not supported by switch
tables (we detail these cases later), the compiler de-
termines the class of packets that must be sent to the
controller for correct handling. This situation applies
to both forwarding and non-forwarding rules.

As Section 3 demonstrated, Flowlog rules can involve
equality between packet fields, negation, database state,
and numerous other features not supported by OpenFlow.
Moreover, rules can contain existentially quantified vari-
ables that, at first glance, require searching and backtrack-
ing in the state to properly handle. Simply put, Flowlog
rules are strictly more powerful than OpenFlow 1.0 flow
rules. It is therefore reasonable to wonder: can a non-
trivial amount of Flowlog really be compiled faithfully?
This section will show it can be. Figure 4 shows the
compilation dataflow.

Our proactive ruleset compiler has three stages:

1. First (Section 4.1), it simplifies each rule and iden-
tifies the compilable forwarding rules. Both non-
forwarding rules (state updates, emission of fresh
packets, etc.) and non-compilable forwarding rules
require switches to send packets to the controller;
fortunately, these notifications can be extensively
filtered based on the program’s structure.

2. Second (Section 4.2), it partially evaluates the rule-
set at the current controller state, producing a new
ruleset that has no references to state tables. Since
the original ruleset defines a function that accepts

New NetCore Policy

Ruleset

Simplified Rules
Compilable All Others

Extract Predicate
Extract Action

Extract Predicate
Action = fwd(controller)

Preprocessing

Weakening

Partial Evaluation

Figure 4: Flowlog’s compilation process. Rules are first pre-
processed before being checked for compilability, then (if un-
compilable) weakened before being partially evaluated in the
current state. After partial evaluation, the rule is re-written as a
stateless NetCore policy.

a state and an incoming tuple and returns a set of
outgoing tuples, the resulting ruleset depends only
on the incoming tuple.

3. Finally (Section 4.3), it compiles the new ruleset
automatically to flow table rules in two steps. First,
it converts to NetCore [21], a stateless forwarding
policy language for OpenFlow. Second, it applies
NetCore’s compiler to produce flow table rules.

Example: Forwarding For intuition into the compila-
tion process, consider the following example rule.

1 ON packet_in(p):

2 DO forward(new) WHERE
3 learned(p.locSw,new.locPt,p.dlDst);

This rule says: “Forward p on a port corresponding
to its location and destination, provided the controller
has learned that correspondence”. It compiles to the

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 525

following rule clause:

∀p,new . f orward(new) ⇐=

learned(locSw(p), locPt(new),dlDst(p))

∧packet in(p)

Suppose the current state contains learned =
{〈1,2,3〉,〈1,3,2〉,〈1,4,3〉}. Then the learned ex-
pression in the above clause is equivalent to:

((locSw(p) = 1∧ locPt(new) = 2∧dlDst(p) = 3)∨
(locSw(p) = 1∧ locPt(new) = 4∧dlDst(p) = 3)∨
(locSw(p) = 1∧ locPt(new) = 3∧dlDst(p) = 2))

Re-written as a NetCore policy, this is just:

(filter (locSw = 1 and dlDst = 3);

fwd(2) | fwd(4)) +

(filter (locSw = 1 and dlDst = 2); fwd(3))

This policy can remain in place in flow tables until such
time as the learned table changes.

Example: State Change Flowlog provides a “see-
every-packet” abstraction. For instance, the following
program appears to execute entirely on the controller:

1 ON packet_in(p):

2 INSERT (p.locSw, p.locPt, p.dlSrc)

3 INTO learned WHERE
4 NOT learned(p.locSw, p.locPt,

5 p.dlSrc);

With the exception of Maple [32], existing languages
with this abstraction require the programmer to carefully
maintain separate logic for packet forwarding and con-
troller notifications. In contrast, the Flowlog runtime
handles controller notification automatically; the only
packets the controller needs are those that provably alter
the controller state. Flowlog’s compiler automatically
builds and deploys a NetCore policy that applies to all
such packets. For example, suppose the current state is
learned = {〈1,2,3〉,〈1,3,2〉}. The following NetCore
policy ensures the controller sees the packets it needs to,
and no more:

if not ((locSw = 1 and locPt = 2 and dlSrc = 3) or

(locSw = 1 and locPt = 3 and dlSrc = 2))

then fwd(controller)

4.1 Simplification and Compilability
Before compiling a ruleset, Flowlog removes un-
necessary variables. For example, if p is the in-
coming packet, the condition learned(p.locSw, y,

p.dlSrc) and x=p.locPt and y=x would be rewritten as

learned(p.locSw, p.locPt, p.dlSrc). This process elimi-
nates hidden dependencies, simplifying compilation.

Each rule is then subjected to a compilability check.
Table 2 lists the conditions under which a rule cannot be
compiled. If a rule fails one or more tests, it either trig-
gers an outright error or must be handled by the controller.
For instance, a rule that compares the incoming packet’s
layer-2 source and destination fields is easily expressed
in Flowlog as p.dlSrc = p.dlDst and can be checked reac-
tively by the controller, but is not supported by OpenFlow
1.0 forwarding tables.

Finally, to reduce the number of packets that must be
sent to the controller, Flowlog weakens the WHERE con-
dition of each uncompilable rule to obtain a compilable
overapproximation. A rule clause is a conjunction of lit-
erals (i.e., positive or negative assertions about state or
equality), and weakening removes objectionable literals
(Table 2) from the clause. Removing parts of a conjunc-
tion yields a new formula that is implied by the original,
so it is a sound overapproximation.

4.2 Partial Evaluation
Partial evaluation removes references to state tables within
each rule, replacing them with simple equalities involving
only constants and variables. Figure 5 defines the partial
evaluation function (Tpe), and other transformation func-
tions used below. Once partial evaluation is complete, the
compiler distributes out any disjunctions introduced by
partially evaluating positive literals, resulting in a new
set of clause formulas. This is done so new equalities
constraining the outgoing packet, if any, are immediately
available at the top level of the conjunction. (Disjunctions
coming from negative literals are left in place; this is safe
since outgoing packet fields that occur in negated table
references are forbidden.) Any clauses that were partially
evaluated to a contradiction are removed.

4.3 Extracting NetCore Policies
The policies that the proactive compiler produces have
two parts: a stateless filtering condition on packets (the
predicate) and the set of actions to apply when the pred-
icate matches. NetCore predicates support the essential
Boolean operators—or, and, not—as well as filters over
header fields and switch identifiers.

An equivalent NetCore policy for each clause is cre-
ated using the Tpred (extract predicate) and Tact (extract
action) functions defined in Figure 5. Predicate extrac-
tion only involves the incoming packet; other literals map
to the trivially true predicate all. Non-forwarding rule
clauses are always assigned the send-to-controller action.
For each forwarding rule clause, the compiler extracts
an action assertion such as “forward on port 3”. Since

7

526 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Condition Example Explanation
(a) Forbidden new-packet field assignment new.nwProto = 5 Not allowed in OpenFlow 1.0
(b) Different fields in old-to-new assignment new.dlSrc = old.dlDst Not allowed in OpenFlow 1.0
(c) Negatively constrained new-packet field new.dlSrc != 5 or not R(new.dlSrc) Forbid packet avalanche
(d) Reflection on incoming packet in equality old.dlSrc = old.dlDst Not allowed in OpenFlow 1.0
(e) Non-assignment condition of new packet new.locPt = new.dlSrc For compilation speed
(f) Multi-way join on state tables R(3,X) and R(X,4) For compilation speed

Table 2: Situations that cause a rule to be weakened and dealt with by the controller. In a forwarding rule, (a–b) are forbidden at
compile time. The “flood” condition, new.locPt != p.locPt, is the sole exception to (c); other forms would cause a plethora of
outgoing packets. (d–f) are allowed at compile time, but force weakening of forwarding rules. By eliminating complex join conditions
from compilation (e–f), we avoid the necessity of solving a search problem to compile rules; after preprocessing, existential variables
appear in compiled rules only as placeholders for “don’t-care” positions in rule formulas.

Partial Evaluation: States×Formulas → Formulas
Tpe(S,R(t1, ..., tn)) =

∨
〈c1,...,cn〉∈RS

(t1 = c1 ∧ ...∧ tn = cn)

Tpe(S, t1 = t2) = t1 = t2
Tpe(S,¬α) = ¬Tpe(S,α)

Tpe(S,β ∨ γ) = Tpe(S,β)∨Tpe(S,γ)
Tpe(S,β ∧ γ) = Tpe(S,β)∧Tpe(S,γ)

Predicate Extraction: Rule Clauses → Pred
Tpred(old pkt. f ld = c) = fld = c

Tpred(t = c) = all

Tpred(¬α) = not Tpred(α)
Tpred(β ∧ γ) = Tpred(β) and Tpred(γ)

Action Extraction: Rule Clauses → 2Action

Tact(newpkt.locPt = c) = {fwd(c)}
Tact(newpkt. f ld = c) = {set(fld, c)}

Tact(¬α) = /0
Tact(β ∧ γ) = Tact(β)∪Tact(γ)

Figure 5: Transformation functions used during compilation.

contradictions were removed (Section 4.2), only one such
assertion is made per clause. Clauses containing inequali-
ties of the form new.locPt != old.locPt are added to the
predicate in a final pass after the forwarding action is
extracted. Once a predicate and action has been obtained
for each clause, the compiler assembles the final policy
by generating a sub-policy for each action that filters on
the disjunction of all matching predicates, and then taking
the union of those sub-policies.

5 Verification

To verify Flowlog programs, we use the Alloy Ana-
lyzer [10]. Alloy has a first-order relational language,
which makes it a good match for Flowlog’s first-order
relational semantics. In addition, Alloy is automated and
generates counterexamples when properties fail to verify.

We have created a compiler from Flowlog rulesets to
Alloy specifications. The conversion is fully automated,
although users must provide types (e.g., IP address) for

constants used in the original program; this type informa-
tion is used for optimization. By default, the compiler
abstracts out the caching process and treats REMOTE

TABLEs as constant tables. If analysis goals involve re-
mote state, axioms about the behavior of remote code
(e.g., “the routing library always gives a viable path”) can
be added manually.

Because of tierlessness, Alloy models created from
Flowlog programs need not consider the eccentricities of
the OpenFlow protocol or individual switch rules, and so
reasoning benefits from the illusion that all packets are
processed by the controller. This simplifies the resulting
Alloy models (and improves analyzer performance), and
also makes it easier for users to express properties across
tiers. Ordinarily, for example, checking dependencies
between forwarding behavior and state change would
involve expressing the desired behavior for both packets
that reach the controller and packets handled by switches;
when reasoning about Flowlog, this split is unnecessary.

Inductive Properties An important class of program
properties, which we call inductive, take the form: “If P
holds of the controller state, then no matter what packet
arrives, P will continue to hold in the next state.” This
property serves to prove that P always holds in any reach-
able state, so long as it holds of the starting state. Many
desirable goals can be expressed in this way, and they are
often independent of network topology.

To illustrate the power of this class of properties, con-
sider our NIB example (Section 2). A piece of the NIB
program gradually computes the transitive closure of the
network topology. But does it really compute transitive
closure faithfully? As probe packets arrive, the ucTC table
needs to contain the transitive closure of the graph defined
by all the links seen so far. Figure 6 shows how to encode
this property in Alloy.

Running this analysis on an older version of the
NIB program revealed a missing rule: we had failed
to account for the case in which two mutually un-
reachable sub-networks become connected by an incom-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 527

all st: State, st2: State, ev: EVpacket |

transition[st, ev, st2] and

ev.dltyp = C_0x1001 and

(st.uctc = ^(st.uctc)) implies

st2.uctc =

^(st.uctc + (ev.dlsrc -> ev.locsw))

Figure 6: Example Alloy property: “For all states (st) with
ucTC transitively closed, the program only transitions to states
(st2) with a transitively closed extension of ucTC by the arriving
probe packet (ev)’s src/dst”. Recall that the source switch ID
is in the packet’s dlSrc field. The ^ operator denotes transitive
closure in Alloy. We chose C_ to prefix constant identifiers.

Property Time(ms) B
NIB

Reachability computed correctly (4sw) 40
Reachability (with bug) 35
Spanning tree never has cycles 58 �

Timer correctly updates persistent tables 23 �

Correctly capture host location changes 65 �

Stolen Laptop
Only police can un-flag a laptop 4 �

Learning Switch
≤ 1 port learned per host per switch 14 �

Only switch failure can restart flooding 14 �

Table 3: Example properties with time to verify or find a
counterexample. The B column shows whether sufficient bounds
could be established, as described in Section 5. Alloy 4.2/3.1
GHz Core i5/8 GB RAM.

ing probe packet. That is, we were missing this rule:
1 ON packet_in(p) WHERE p.dlTyp = 0x1001

2 AND dstSw = p.locSw AND srcSw = p.dlSrc:

3 INSERT (sw1, sw2) INTO ucTC

4 WHERE ucTC(sw1, srcSw)

5 AND ucTC(dstSw, sw2);

This rule is necessary due to the subtle nature of com-
puting reachability from each probe in succession, rather
than having access to the entire table and applying recur-
sion. Alloy was able to demonstrate this bug on a network
of only four switches.

Using this method, we have successfully verified prop-
erties of (or found bugs in) multiple Flowlog programs
including the NIB, the stolen laptop alert program, and a
MAC learning switch. Table 3 lists several along with the
time they took to verify: well under a second.

Completeness Alloy performs bounded verification: it
requires a size bound for each type, which it uses to
limit the search for a counterexample. For instance, for
our NIB verification we might instruct Alloy to search
up to four switches (irrespective of the wiring between

Ruleset

Tables Corresponding
to Events

State
Tables

Events

Event
Declarations

2

1 4

New State
Tables

5

3

Compiler
(Partial Evaluation)

6

Figure 7: Flowlog’s workflow for responding to events. The
boxed portion of the diagram appeared as Figure 1.

them), three distinct MAC addresses, etc. Because of
its bounded nature, Alloy is not in general complete: it
will fail to find counterexamples larger than the given
bound. Since individual properties are a result of purpose-
specific program goals, properties and their associated
bounds must be entered manually.

Fortunately, for many common types of analyses, we
can exploit prior work [23] to compute (small) size
bounds that are sufficient to find a counterexample, should
one exist. All but one of the properties we verified is
amenable to this technique; the exception is reachability,
because the technique does not support transitive-closure
(Table 3). Yet broad experience with Alloy indicates that
many bugs can be found with fairly small bounds (e.g.,
four switches for our transitive-closure bug). Moreover,
bounds on other objects (e.g., non-switches) can still be
produced for all the inductive properties that we tested.

6 Implementation and Performance

The current Flowlog implementation uses OpenFlow
1.0 [20] and Frenetic [5] for packet-handling, Thrift RPC
(thrift.apache.org) for orchestrating events and re-
mote state, and the XSB [28] Prolog engine for evaluation.
Flowlog is implemented in OCaml.

Figure 7 sketches the controller’s workflow. When an
event arrives (1) the controller converts it into a tuple
and places it in the appropriate input table via XSB’s
assert command (2). Then, for each outgoing and state-
modification table, the controller queries XSB to obtain a
set of outgoing tuples (3) which are converted to events
(4). Then each state-modification tuple is asserted or

9

528 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

retracted to result in the new state (5). Finally, proactive
compilation (6) is performed on the new state, producing
a NetCore policy.

External Events Flowlog evaluation is triggered by a
general set of events; the runtime must watch for more
than just packet arrivals. For instance, the runtime sends
an event to the controller whenever a switch registers or
goes down, and as seen in Section 2, external applications
may also interact with Flowlog through events. Our hypo-
thetical campus police-officer informs Flowlog to register
a stolen laptop by using a small application (around 100
lines, most of which is boilerplate) that uses Thrift to send
an asynchronous message to Flowlog.

Remote Tables and Caching Flowlog rules reference
a database of relational facts. As seen in Section 3, ta-
bles can be declared either as local or remote. A local
table is managed internally by the controller (via assert

and retract statements to XSB), while a remote table
is merely an abstraction over callouts to external code.
Like events, these callouts use Thrift RPC to interact with
external code. Unlike events, callouts are synchronous.
Callouts have the form of an ordinary state-referencing
formula, R(t1, ..., tn), but each ti must be either a constant
value or a variable. After Flowlog queries the correct
external application, the reply contains a set of tuples of
constants—one constant for each variable in the query.

Although the rules see no distinction between local
and remote tables, in practice it would be impractical
or impossible to obtain entire remote tables (such as an
infinitely large table that represents the addition of num-
bers). Therefore, Flowlog obtains tuples from external
code only when they are needed by a rule. A naı̈ve imple-
mentation could simply obtain remote tuples every time
they were required; however, that would mean forwarding
rules could not be compiled if they referred to external
code. Instead, we cache remote tuples for the declared
time-to-live. Since we maintain the remote cache in XSB,
when it comes time to react to an event, the controller
handles remote and local state in exactly the same way:
via XSB.

When an event arrives, we invalidate cached tuples
whose time-to-live has expired. If the expired tuples were
used in a compiled policy, we force an update of the
cache and provide switches with the new policy. Exter-
nal programs are expected to not update their internal
state or otherwise provide inconsistent results within the
TIMEOUT values of their Flowlog definitions.

Handling Overlapping Rules In some SDN applica-
tions, switches will forward a packet on the data plane
and also send it to the controller. If we kept the pre-

compilation ruleset unmodified on the controller, this
could lead to packet duplication due to the compiled for-
warding rules: packets would be forwarded once by the
switch tables, and forwarded again by the same rule’s
action on the controller.

Since the compilability of a rule is independent of con-
troller state, we can determine which rules these are at
program startup. We then leave these rules out of what
we pass to XSB, and disallow the controller from taking
duplicate actions. However, since there is a delay between
the controller’s state change and corresponding rules be-
ing installed on the switches, this is not a perfect solution:
packets may be in-transit during deployment of the new
policy. This issue is not unique to Flowlog, and has been
noted by others [26].

Performance and Scalability Flowlog is proactively
compiled to switch rules whenever possible. From the traf-
fic forwarding perspective, therefore, Flowlog is largely
dependent on what is supported in switch hardware. We
have confirmed experimentally that, as one would hope,
the controller receives no unnecessary packets. For in-
stance, a Flowlog learning switch never sends the con-
troller a packet once that packet’s source location is
learned, and eventually the controller is not burdened
at all. Packet-counts were confirmed by both ifconfig

counters and packet events seen by Flowlog. We used
ping packets and a Mininet [16]-hosted virtual network
to simulate network traffic. We tested on tree topologies
with 3 and 7 switches as well as a cyclic 3-switch topol-
ogy to test controller robustness, and have begun testing
on larger topologies as well.

Because forwarding in Flowlog is as fast as hardware
allows, one scalability question remains: since Flowlog
compiles the controller state into NetCore policies, how
does this scale as the controller’s database grows? The
size of the NetCore policy we produce depends on how
table references appear in the ruleset. The compiler pro-
duces a policy fragment for each rule, whose size is pro-
portional to the number of clauses generated by partial
evaluation (Section 4.2). Partial evaluation replaces state
table references in each rule with the disjunction of every
matching tuple in that table. The largest number of clauses
produced by a rule that references tables R1 through Rk is
|R1|× · · ·× |Rk|, which is the best achievable in the worst
case. (This ensues because we don’t need to lift negated
disjunctions, a technical detail that we lack space to de-
scribe.) We also simplify the resulting policies, which
further reduces their size in practice. To convert policies
to flow-table rules, we rely upon NetCore’s optimizing
compiler [21].

To evaluate the quality of the NetCore policies our com-
piler produces, we ran a Flowlog learning-switch program,
using dpctl dump-flows to count the maximum num-

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 529

ber of table entries it produced on per switch. We then
did the same with the OCaml learning-switch module in
the Frenetic repository. The Frenetic example produced a
maximum of 25 rules per switch for the 3-switch tree and
81 rules per switch for the 7-switch tree. Our program
initially produced 40 rules and 108 rules respectively. The
increased number of rules was because Flowlog did not
make use of OpenFlow’s built-in flood action, whereas
the OCaml program did. After adding an optimization
to our learning-switch program that forced the use of the
flood action, we saw the same number of table entries as
with the Frenetic version. This indicates that our compiler
can match the scalability of existing programs that use
NetCore.

7 Related Work

Our work here draws on a prior workshop paper [24]. The
previous version mentioned, yet did not describe or imple-
ment, external events and state. Our proactive compiler,
conversion to Alloy, topology-independent verification,
and implementation are also new. We compare other
SDN programming languages side-by-side with Flowlog
in Table 4, and discuss each in detail below.

FML [9] provides a stateful, rule-based idiom for for-
warding policies. It too disallows recursion and admits
negation. FML can read from, but not modify, the under-
lying system state. It responds to new flows reactively,
whereas Flowlog proactively compiles to switch tables
whenever possible. FML does not provide abstractions
for external code, and does not address verification.

Frenetic [5] is a functional-reactive (FRP) language
that responds to fine-grained network events. While Fre-
netic was originally reactively compiled, it has since been
extended with proactive compilation for stateless Net-
Core [21] policies. State and interaction with external
code must be managed by OCaml wrapper applications.
Frenetic also includes switch-based events and rich query
constructs; Flowlog lacks abstractions for queries, yet
provides more general events. Verification of full Frenetic
programs has not been addressed, although Gutz, et al. [8]
use model-checking to prove slice isolation properties of
NetCore policies. Our runtime is currently implemented
atop Frenetic’s OCaml library and uses NetCore’s opti-
mizing compiler. Guha et al. [7] have created a verified
compiler for a subset of NetCore; our compiler has only
been tested, not proven correct.

Pyretic [22] implements NetCore [21] in Python, and
introduced sequential composition of network programs.
Though we do not address program composition explicitly,
sequential and parallel composition are roughly analogous
to Flowlog’s relational join and union, respectively. Since
its initial publication, Pyretic has been extended with
proactive compilation. Verification of Pyretic programs

has not been discussed.
Flog [11] is stateful and rule-based. It allows recur-

sion but not explicit negation in rule bodies; negation is
implied in some cases by rule-overriding. Flog has no
notion of callouts or external events unrelated to packets,
and the paper does not address verification. Flog works
at the microflow level, whereas Flowlog is proactive.

Procera [31] is another FRP SDN language. As Procera
is embedded in Haskell, programs have access to general
state and external callouts. Procera allows programs to
react to external events, but does not directly support
issuing events or external queries. Like Frenetic, Procera
provides query functionality that Flowlog does not. To our
knowledge, Procera programs have not been verified, and
it is unclear whether the flow constraints they generate
are proactively compiled.

Nlog [14], a rule-based configuration language, is part
of a larger project on network virtualization. When system
state changes, an Nlog program dictates a new virtual
forwarding policy. Nlog’s inability to modify controller
state means that it is not “tierless”. Like Flowlog, Nlog is
also proactively compiled to flow tables, and our relational
abstraction for callouts is similar to Nlog’s. Verification
of Nlog programs has not been discussed.

Maple [32] is a controller platform that unifies control-
and data-plane logic; Flowlog goes further by also in-
tegrating controller state, creating a tireless abstraction.
Unlike in Flowlog, Maple programs are compiled reac-
tively, and have not been verified.

A number of other rule-based languages also merit
discussion, although they were not built for SDNs and
do not compile to flow tables. NDLog [17] and Over-
Log [18] are declarative, distributed programming lan-
guages. In these languages, each tuple in the relational
state resides on a particular switch. This is in contrast to
the single controller state assumed by Flowlog. These lan-
guages support recursion as in ordinary Datalog. Wang,
et al. [33] verify NDLog programs via interactive theo-
rem provers, and some of the properties they verify are
topology-independent. Our compiler to Alloy requires
far less user effort and is simplified by Flowlog’s lack of
recursion. Alvaro, et al. [3] present Dedalus, a variant
of Datalog with a notion of time. Our treatment of state
change is similar to theirs, except that theirs is compli-
cated by recursion. Active networking [30] is a forerunner
of SDN where packets carry programmatic instructions
for switches. Like SDN, active networking has inspired
language design efforts. One such is ANQL [27], a SQL-
like language for defining packet filters and triggering
external code. Flowlog echoes ANQL’s view of packets
as entries in a database, but supports more general exter-
nal stimuli. Verification of ANQL has not been discussed.

There is also a rich landscape of related SDN verifi-
cation. Canini, et al. [4] find bugs in Python controller

11

530 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Language Type State Rec? Neg? Compilation Reasoning? Callouts
Flog [11] Rule-Based � � � Reactive � �

FML [9] Rule-Based � � � Reactive � �

Frenetic [5] FRP �pol � � Reactive � �

Frenetic OCaml Environment Functional �PL �PL � via NetCore �PL �PL
NetCore [21] DSL � � � Proactive � �

Nlog [14] Rule-Based � � � Proactive � �

NOX [6] Imperative �PL �PL � Manual �PL �PL
Procera [31] FRP � � � Unclear � �

Pyretic [22] Imperative �pol �PL � Proactive � �PL

Flowlog Rule-Based � � � Proactive � �

Table 4: SDN language comparison. Rec? and Neg? mean recursion and negation, respectively. A � means that a feature is
present and a � that it is not; �PL denotes that a feature’s presence is due to embedding in a Turing-complete programming language.
In the State? column, �pol indicates that maintaining a stateful forwarding policy is possible, but that general state requires
wrappers in a Turing-complete language. In the Reasoning? column, a �PL indicates that sound reasoning is made non-trivial by
Turing-completeness, and a � means that verification has not been attempted.

programs. Their work required the creation of a purpose-
built model-checker. Although their tool successfully
finds bugs, it is limited by the undecidability of Python
code analysis. Flowlog’s expressivity is deliberately lim-
ited to avoid this concern. Skowyra et al. [29] use model-
checking to find bugs in SDN programs sketched in their
prototyping language, but focus solely on verification, not
execution. Other reasoning tools [2, 8, 13, 19, 25, 34] an-
alyze a fixed, stateless forwarding policy, either statically
or at runtime. Including transitions between states, as we
do, is necessarily more complex.

8 Discussion and Conclusion

To our knowledge, Flowlog is the first tierless SDN pro-
gramming language, the first stateful rule-based language
for SDNs that proactively compiles to flow-table rules,
and the first such language to provide rich interfaces to
external code. Tierlessness simplifies the process of SDN
programming and simultaneously enables cross-tier veri-
fication of the SDN system.

Since tierlessness precludes manual handling of flow-
table rules, automatic flow-table management is neces-
sarily a key part of any tierless SDN language. There
are other such strategies besides proactive compilation;
a prototype version of Flowlog simply sent all packets
to the controller. However, a proactive approach mini-
mizes controller interaction and thus shows that a tierless
language can be performant.

In order to support efficient, proactive compilation and
verification, we opted to limit Flowlog’s expressive power.
Even with these limitations, we have built non-trivial
applications. Moreover, events and remote tables allow
Flowlog programs to access, when necessary, external
code in languages of arbitrary power.

Future Work It is possible to strengthen Flowlog with-
out abandoning our limitations on expressive power. We
plan to migrate to a newer version of OpenFlow soon,
which removes several uncompilable constructs in Ta-
ble 2. Flowlog’s general event framework could support
a query system like that seen in Frenetic [5] and other
languages. Flowlog’s relational idiom supports the ad-
dition of new features. For instance, we have recently
added address masking (e.g., matching packets coming
from 10.0.0.0/24) to Flowlog by taking advantage of the
fact that masks are simply relations over IP addresses.

There are also several promising directions to take
verification in Flowlog. For instance, we suspect that
Flowlog’s restrictions could enable the sound and com-
plete use of techniques like symbolic execution for verify-
ing trace properties. Another important analysis, change-
impact—which describes the semantic consequences of
a program change—is undecidable for general-purpose
languages, yet is decidable for Flowlog.

Acknowledgments We thank the anonymous review-
ers for their comments. We are grateful to Daniel J.
Dougherty, Kathi Fisler, Rodrigo Fonseca, Nate Foster,
Arjun Guha, Tim Hinrichs, Jonathan Mace, Sanjai Narain
and others at Applied Communication Sciences, Joshua
Reich, and David Walker, for discussions and feedback.
We are grateful to Jennifer Rexford for several enlighten-
ing conversations, for shepherding this paper, and for her
trenchant analysis of drinking styles. We thank the Alloy,
Frenetic, and XSB teams for excellent software that we
could build upon. This work is partially supported by
the NSF. Andrew Ferguson is supported by an NDSEG
Fellowship. Michael Scheer was supported by a Brown
University Undergraduate Research Award.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 531

References
[1] ABITEBOUL, S., HULL, R., AND VIANU, V. Foundations of

Databases. Addison-Wesley, 1995.

[2] AL-SHAER, E., AND AL-HAJ, S. FlowChecker: Configuration
analysis and verification of federated OpenFlow infrastructures.
In Workshop on Assurable and Usable Security Configuration
(2010).

[3] ALVARO, P., MARCZAK, W. R., CONWAY, N., HELLERSTEIN,
J. M., MAIER, D., AND SEARS, R. Dedalus: Datalog in time
and space. In Datalog Reloaded 2010 (2010), pp. 262–281.

[4] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D., AND
REXFORD, J. A NICE way to test OpenFlow applications. In
Networked Systems Design and Implementation (2012).

[5] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic: A
network programming language. In International Conference on
Functional Programming (ICFP) (2011).

[6] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO, M.,
MCKEOWN, N., AND SHENKER, S. NOX: Towards an operating
system for networks. ACM Computer Communication Review 38,
3 (July 2008), 105–110.

[7] GUHA, A., REITBLATT, M., AND FOSTER, N. Machine-verified
network controllers. In Programming Language Design and Im-
plementation (PLDI) (2013).

[8] GUTZ, S., STORY, A., SCHLESINGER, C., AND FOSTER, N.
Splendid isolation: A slice abstraction for software-defined net-
works. In Workshop on Hot Topics in Software Defined Networking
(2012).

[9] HINRICHS, T., GUDE, N., CASADO, M., MITCHELL, J., AND
SHENKER, S. Practical declarative network management. In
Workshop: Research on Enterprise Networking (WREN) (2009).

[10] JACKSON, D. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, April 2006.

[11] KATTA, N. P., REXFORD, J., AND WALKER, D. Logic program-
ming for software-defined networks. In Workshop on Cross-Model
Design and Validation (XLDI) (2012).

[12] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
space analysis: Static checking for networks. In Networked Sys-
tems Design and Implementation (2012).

[13] KHURSHID, A., ZHOU, W., CAESAR, M., AND GODFREY, P. B.
VeriFlow: Verifying network-wide invariants in real time. In
Workshop on Hot Topics in Software Defined Networking (2012).

[14] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M.,
CHANDA, A., FULTON, B., GANICHEV, I., GROSS, J., GUDE,
N., INGRAM, P., JACKSON, E., LAMBETH, A., LENGLET, R.,
LI, S.-H., PADMANABHAN, A., PETTIT, J., PFAFF, B., RA-
MANATHAN, R., SHENKER, S., SHIEH, A., STRIBLING, J.,
THAKKAR, P., WENDLANDT, D., YIP, A., AND ZHANG, R.
Network Virtualization in Multi-tenant Datacenters. In Networked
Systems Design and Implementation (2014).

[15] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN, R., IWATA, Y.,
INOUE, H., HAMA, T., AND SHENKER, S. Onix: a distributed
control platform for large-scale production networks. In Operating
Systems Design and Implementation (2010).

[16] LANTZ, B., HELLER, B., AND MCKEOWN, N. A network in
a laptop: Rapid prototyping for software-defined networks. In
Workshop on Hot Topics in Networks (2010).

[17] LOO, B. T., CONDIE, T., GAROFALAKIS, M. N., GAY, D. E.,
HELLERSTEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R.,
ROSCOE, T., AND STOICA, I. Declarative networking. Commu-
nications of the ACM 52, 11 (2009), 87–95.

[18] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Implementing declarative overlays.
In Symposium on Operating Systems Principles (2005).

[19] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GOD-
FREY, P. B., AND KING, S. T. Debugging the data plane with
Anteater. In Conference on Communications Architectures, Proto-
cols and Applications (SIGCOMM) (2011).

[20] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling innovation in campus
networks. ACM Computer Communication Review 38, 2 (Mar.
2008), 69–74.

[21] MONSANTO, C., FOSTER, N., HARRISON, R., AND WALKER,
D. A compiler and run-time system for network programming
languages. In Principles of Programming Languages (POPL)
(2012).

[22] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing software-defined networks. In Net-
worked Systems Design and Implementation (2013).

[23] NELSON, T., DOUGHERTY, D. J., FISLER, K., AND KRISHNA-
MURTHI, S. Toward a more complete Alloy. In International
Conference on Abstract State Machines, Alloy, B, and Z (2012).

[24] NELSON, T., GUHA, A., DOUGHERTY, D. J., FISLER, K., AND
KRISHNAMURTHI, S. A balance of power: Expressive, analyzable
controller programming. In Workshop on Hot Topics in Software
Defined Networking (2013).

[25] PORRAS, P., SHIN, S., YEGNESWARAN, V., FONG, M., TYSON,
M., AND GU, G. A security enforcement kernel for OpenFlow
networks. In Workshop on Hot Topics in Software Defined Net-
working (2012).

[26] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER,
C., AND WALKER, D. Abstractions for network update. In
Conference on Communications Architectures, Protocols and Ap-
plications (SIGCOMM) (2012).

[27] ROGERS, C. M. ANQL - an active networks query language. In
International Working Conference on Active Networks (2002).

[28] SAGONAS, K., SWIFT, T., AND WARREN, D. S. XSB as an
efficient deductive database engine. In International Conference
on the Management of Data (1994).

[29] SKOWYRA, R., LAPETS, A., BESTAVROS, A., AND KFOURY,
A. Verifiably-safe software-defined networks for CPS. In High
Confidence Networked Systems (HiCons) (2013).

[30] TENNENHOUSE, D. L., SMITH, J. M., SINCOSKIE, W. D.,
WETHERALL, D. J., AND MINDEN, G. J. A survey of active
network research. IEEE Communications Magazine (1997).

[31] VOELLMY, A., KIM, H., AND FEAMSTER, N. Procera: A lan-
guage for high-level reactive network control. In Workshop on
Hot Topics in Software Defined Networking (2012).

[32] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B., AND HU-
DAK, P. Maple: Simplifying SDN Programming Using Algorith-
mic Policies. In Conference on Communications Architectures,
Protocols and Applications (SIGCOMM) (2013).

[33] WANG, A., BASU, P., LOO, B. T., AND SOKOLSKY, O. Declar-
ative network verification. In Practical Aspects of Declarative
Languages (2009).

[34] XIE, G. G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREEN-
BERG, A., HJALMTYSSON, G., AND REXFORD, J. On static
reachability analysis of IP networks. In IEEE Conference on
Computer Communications (2005).

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 533

Enforcing Network-Wide Policies in the Presence
of Dynamic Middlebox Actions using FlowTags

Seyed Kaveh Fayazbakhsh∗ Luis Chiang† Vyas Sekar∗ Minlan Yu‡ Jeffrey C. Mogul�
∗Carnegie Mellon University †Deutsche Telekom Labs ‡USC �Google

Abstract
Middleboxes provide key security and performance

guarantees in networks. Unfortunately, the dynamic traf-
fic modifications they induce make it difficult to reason
about network management tasks such as access control,
accounting, and diagnostics. This also makes it difficult
to integrate middleboxes into SDN-capable networks and
leverage the benefits that SDN can offer.

In response, we develop the FlowTags architecture.
FlowTags-enhanced middleboxes export tags to provide
the necessary causal context (e.g., source hosts or in-
ternal cache/miss state). SDN controllers can configure
the tag generation and tag consumption operations using
new FlowTags APIs. These operations help restore two
key SDN tenets: (i) bindings between packets and their
“origins,” and (ii) ensuring that packets follow policy-
mandated paths.

We develop new controller mechanisms that leverage
FlowTags. We show the feasibility of minimally extend-
ing middleboxes to support FlowTags. We also show that
FlowTags imposes low overhead over traditional SDN
mechanisms. Finally, we demonstrate the early promise
of FlowTags in enabling new verification and diagnosis
capabilities.

1 Introduction
Many network management tasks are implemented us-
ing custom middleboxes, such as firewalls, NATs, prox-
ies, intrusion detection and prevention systems, and
application-level gateways [53, 54]. Even though mid-
dleboxes offer key performance and security benefits,
they introduce new challenges: (1) it is difficult to ensure
that “service-chaining” policies (e.g., web traffic should
be processed by a proxy and then a firewall) are imple-
mented correctly [49, 50], and (2) they hinder other man-
agement functions such as performance debugging and
forensics [56]. Our conversations with enterprise opera-
tors suggest that these problems get further exacerbated
with the increasing adoption of virtualized/multi-tenant
deployments.

The root cause of this problem is that traffic is
modified by dynamic and opaque middlebox behav-
iors. Thus, the promise of software-defined network-

ing (SDN) to enforce and verify network-wide policies
(e.g., [39, 40, 44]) does not extend to networks with mid-
dleboxes. Specifically, middlebox actions violate two
key SDN tenets [24, 32]:
1. ORIGINBINDING: There should be a strong binding

between a packet and its “origin” (i.e., the network
entity that originally created the packet);

2. PATHSFOLLOWPOLICY: Explicit policies should de-
termine the paths that packets follow.1

For instance, NATs and load balancers dynamically
rewrite packet headers, thus violating ORIGINBINDING.
Similarly, dynamic middlebox actions, such as responses
served from a proxy’s cache, may violate PATHSFOL-
LOWPOLICY. (We elaborate on these examples in §2.)

Some might argue that middleboxes can be eliminated
(e.g., [26, 54]), or that their functions can be equiv-
alently provided in SDN switches (e.g., [41]), or that
we should replace proprietary boxes by open solutions
(e.g, [20, 52]). While these are valuable approaches,
practical technological and business concerns make them
untenable, at least for the foreseeable future. First, there
is no immediate roadmap for SDN switches to support
complex stateful processing. Second, enterprises already
have a significant deployed infrastructure that is unlikely
to go away. Furthermore, these solutions do not funda-
mentally address ORIGINBINDING and PATHSFOLLOW-
POLICY; they merely shift the burden elsewhere.

We take a pragmatic stance that we should attempt to
integrate middleboxes into the SDN fold as “cleanly” as
possible. Thus, our focus in this paper is to systemati-
cally (re-)enforce the ORIGINBINDING and PATHSFOL-
LOWPOLICY tenets, even in the presence of dynamic
middlebox actions. We identify flow tracking as the key
to policy enforcement.2 That is, we need to reliably asso-
ciate additional contextual information with a traffic flow
as it traverses the network, even if packet headers and

1A third SDN tenet, HIGHLEVELNAMES, states that network poli-
cies should be expressed in terms of high-level names. We do not ad-
dress it in this work, mostly to retain backwards compatibility with
current middlebox configuration APIs. We believe that HIGHLEVEL-
NAMES can naturally follow once we restore the ORIGINBINDING
property.

2We use the term “flow” in a general sense, not necessarily to refer
to an IP 5-tuple.

534 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

contents are modified. This helps determine the packet’s
true endpoints rather than rewritten versions (e.g., as with
load balancers), and to provide hints about the packet’s
provenance (e.g., a cached response).

Based on this insight, we extend the SDN paradigm
with the FlowTags architecture. Because middleboxes
are in the best (and possibly the only) position to pro-
vide the relevant contextual information, FlowTags envi-
sions simple extensions to middleboxes to add tags, car-
ried in packet headers. SDN switches use the tags as part
of their flow matching logic for their forwarding opera-
tions. Downstream middleboxes use the tags as part of
their packet processing workflows. We retain existing
SDN switch interfaces and explicitly decouple middle-
boxes and switches, allowing the respective vendors to
innovate independently.

Deploying FlowTags thus has two prerequisites: (P1)
adequate header bits with SDN switch support to match
on tags and (P2) extensions to middlebox software. We
argue that (P1) is possible in IPv4; quite straightforward
in IPv6; and will become easier with recent OpenFlow
standards that allow flexible matching [9] and new switch
hardware designs [23]. As we show in §6, (P2) requires
minor code changes to middlebox software.

Contributions and roadmap: While some of these ar-
guments appeared in an earlier position paper [28], sev-
eral practical questions remained w.r.t. (1) policy abstrac-
tions to capture the dynamic middlebox scenarios; (2)
concrete controller design; (3) the viability of extending
middleboxes to support FlowTags; and (4) the practical
performance and benefits of FlowTags.

Our specific contributions in this paper are:
• We describe controller–middlebox interfaces to con-

figure tagging capabilities (§4), and new controller
policy abstractions and rule-generation mechanisms
to explicitly configure the tagging logic (§5).

• We show that it is possible to extend five software
middleboxes to support FlowTags, each requiring less
than 75 lines of custom code in addition to a common
250-line library. (To put these numbers in context, the
middleboxes we have modified have between 2K to
over 300K lines of code.) (§6).

• We demonstrate that FlowTags enables new verifica-
tion and network diagnosis methods that are otherwise
hindered due to middlebox actions (§7).

• We show that FlowTags adds little overhead over SDN
mechanisms, and that the controller is scalable (§8).

§9 discusses related work; §10 sketches future work.

2 Background and Motivation
In this section we present a few examples that high-
light how middlebox actions violate ORIGINBINDING
and PATHSFOLLOWPOLICY, thus making it difficult to

enforce network-wide policies and affecting other man-
agement tasks such as diagnosis. We also discuss why
some seemingly natural strawman solutions fail to ad-
dress our requirements.

2.1 Motivating Scenarios

Attribution problems: Figure 1 shows two middle-
boxes: a NAT that translates private IPs to public IPs
and a firewall configured to block hosts H1 and H3 from
accessing specific public IPs. Ideally, we want adminis-
trators to configure firewall policies in terms of original
source IPs. Unfortunately, we do not know the private-
public IP mappings that the NAT chooses dynamically;
i.e., the ORIGINBINDING tenet is violated. Further, if
only traffic from H1 and H3 should be directed to the
firewall and the rest is allowed to pass through, an SDN
controller cannot install the correct forwarding rules at
switches S1/S2, as the NAT changes the packet headers;
i.e., PATHSFOLLOWPOLICY no longer holds.

��� ���

�������

���������

���

���

������������
��	�����������������������

���

Figure 1: Applying the blocking policy is challenging,
as the NAT hides the true packet sources.

Network diagnosis: In Figure 2, suppose the users of
hosts H1 and H3 complain about high network latency.
In order to debug and resolve this problem (e.g., deter-
mine if the middleboxes need to be scaled up [30]), the
network administrator may use a combination of host-
level (e.g., X-Trace [29]) and network-level (e.g., [3])
logs to break down the delay for each request into per-
segment components as shown. Because ORIGINBIND-
ING does not hold, it is difficult to correlate the logs to
track flows [50, 56].

���

����

���

���

��������

��������

��

���

���

��� ��� �������

����������
�����������������������
�
��������

���
���

�������������
�����������

�
�

�
�
�

Figure 2: Middlebox modifications make it difficult
to consistently correlate network logs for diagnosis.

Data-dependent policies: In Figure 3, the light IPS
checks simple features (e.g., headers); we want to route
suspicious packets to the heavy IPS, which runs deeper

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 535

analysis to determine if the packet is malicious. Such a
triggered architecture is quite common; e.g., rerouting
suspicious packets to dedicated packet scrubbers [12].
The problem here is that ensuring PATHSFOLLOWPOL-
ICY depends on the processing history; i.e., did the light
IPS flag a packet as suspicious? However, each switch
and middlebox can only make processing or forwarding
decisions with its link-local view.

��� ������

���
������
�����

�

�������

���������������������
��	����������������
����������������
��	�������������

������
����

Figure 3: S2 cannot decide if an incoming packet
should be sent to the heavy IPS or the server.

Policy violations due to middlebox actions: Figure 4
shows a proxy used in conjunction with an access control
device (ACL). Suppose we want to block H2’s access to
xyz.com. However, H2 may bypass the policy by ac-
cessing cached versions of xyz.com, thus evading the
ACL. The problem, therefore, is that middlebox actions
may violate PATHSFOLLOWPOLICY by introducing un-
foreseen paths. In this case, we may need to explicitly
route the cached responses to the ACL device as well.

��� ���

������

���������

���

���
����

�����������������������������������

Figure 4: Lack of visibility into the middlebox con-
text (i.e., cache hit/miss in this example) makes policy
enforcement challenging.

2.2 Strawman Solutions
Next, we highlight why some seemingly natural straw-
man solutions fail to address the above problems. Due
to space constraints, we discuss only a few salient can-
didates; Table 1 summarizes their effectiveness in the
previously-presented examples.

Placement constraints: One way to ensure ORIGIN-
BINDING/PATHSFOLLOWPOLICY is to “hardwire” the
policy into the topology. In Figure 1, we could place the
firewall before the NAT. Similarly, for Figure 3 we could
connect the light IPS and the heavy IPS to S1, and con-
figure the light IPS to emit legitimate/suspicious packets

Strawman
solution

Attribution
(Figure 1)

Diagnosis
(Figure 2)

Data-
dependent
policy
(Figure 3)

Policy
violations
(Figure 4)

Placement Yes, if we
alter
policy
chains

No If both
IPSes are
on S1 &
Light IPS
has 2 ports

Yes

Tunneling
(e.g, [38,
36])

No No Need IPS
support

No

Consoli-
dation
(e.g., [52])

Not with
separate
modules

No Maybe, if shim is aware

Correla-
tion
(e.g., [49])

Not accurate, lack of ground truth, and high overhead

Table 1: Analyzing strawman solutions vs. the moti-
vating examples in §2.1.

on different output ports. S1 can then use the incom-
ing port to determine if the packet should be sent to the
heavy IPS. This coupling between policy and topology,
however, violates the SDN philosophy of decoupling the
control logic from the data plane. Furthermore, this re-
stricts flexibility to reroute under failures, load balance
across middleboxes, or customize policies for different
workloads [50].

Tunneling: Another option to ensure PATHSFOLLOW-
POLICY is to set up tunneling rules, for example, using
MPLS or virtual circuit identifiers (VCIs). For instance,
we could tunnel packets from the “suspicious” output of
the light IPS to the heavy IPS in Figure 3. (Note that this
requires middleboxes to support tunnels.) Such topol-
ogy/tunneling solutions may work for simple examples,
but they quickly break for more complex policies; e.g., if
there are more outputs from the light IPS. Note that even
by combining placement+tunneling, we cannot solve the
diagnosis problem in Figure 2, as it does not provide
ORIGINBINDING.

Middlebox consolidation: At first glance, it may
seem that we can ensure PATHSFOLLOWPOLICY by run-
ning all middlebox functions on a consolidated plat-
form [20, 52]. While consolidation provides other ben-
efits (e.g., reduced hardware costs), it has several lim-
itations. First, it requires a significant network infras-
tructure change. Second, it merely shifts the burden of
PATHSFOLLOWPOLICY to the internal routing “shim”
that routes packets between the modules. Finally, if the
individual modules are provided by different vendors, di-
agnosis and attribution is hard, as this shim cannot ensure
ORIGINBINDING.

Flow correlation: Prior work attempts to heuristi-
cally correlate the payloads of the traffic entering and
leaving middleboxes to correlate flows [49]. However,
this approach can result in missed/false matches too of-

536 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

��� ���

�������

���������

���
������������

���
������������

���
������������

������ ����
������������ ��
������������ ��
������������ ��

���� ����������
�� ������������
�� ������������

������������������
������������������

������������������ ����������������
���������

����

�����������

���� ��������
���� ���
�� ���������

��������������

Figure 5: Figure 1 augmented to illustrate how tags
can solve the attribution problem.

ten to be useful for security applications [49]. Also,
such “reverse engineering” approaches fundamentally
lack ground truth. Finally, this process has high over-
head, as multiple packets per flow need to be processed
at the controller in a stateful manner (e.g., when reassem-
bling packet payloads).

As Table 1 shows, none of these strawman solutions
can address all of the motivating scenarios. In some
sense, each approach partially addresses some symptoms
of the violations of ORIGINBINDING and PATHSFOL-
LOWPOLICY, but does not address the cause of the prob-
lem. Thus, despite the complexity they entail in terms of
topology hacks, routing, and middlebox and controller
upgrades, they have limited applicability and have fun-
damental correctness limitations.

3 FlowTags Overview
As we saw in the previous section, violating the ORIG-
INBINDING and PATHSFOLLOWPOLICY tenets makes it
difficult to correctly implement several network manage-
ment tasks. To address this problem, we propose the
FlowTags architecture. In this section, we highlight the
main intuition behind FlowTags, and then we show how
FlowTags extends the SDN paradigm.

3.1 Intuition
FlowTags takes a first-principles approach to ensure
that ORIGINBINDING and PATHSFOLLOWPOLICY hold
even in the presence of middlebox actions. Since the
middleboxes are in the best (and sometimes the only)
position to provide the relevant context (e.g., a proxy’s
cache hit/miss state or a NAT’s public-private IP map-
pings), we argue that middleboxes need to be extended
in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing pack-
ets. These tags provide the missing bindings to en-
sure ORIGINBINDING and the necessary processing con-
text to ensure PATHSFOLLOWPOLICY. The tags are
then used in the data plane configuration of OpenFlow
switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the exam-
ple in Figure 1 and extend it with the relevant tags and ac-

�������������
���������������������������

�������������
���������������������������

����������������

�
�
�

��������

�����

����
���������

����
�	���
�
�
�

����
����
���������

������	�����

����
����

�	����

�������������
���������������������������

������

�	���
������

�������
����������

�������������

����
�

��

�	��

����
�����
�����

�������������
���������������

����
��	��

�������
����������
����

����������

Figure 6: Interfaces between different components in
the FlowTags architecture.

tions as shown in Figure 5. We have three hosts H1 −H3
in an RFC1918 private address space; the administrator
wants to block the Internet access for H1 and H3, and
allow H2’s packets to pass through without going to the
firewall. The controller (not shown) configures the NAT
to associate outgoing packets from H1, H2, and H3 with
the tags 1, 2, and 3, respectively, and adds these to pre-
specified header fields. (See §5.3). The controller con-
figures the firewall so that it can decode the tags to map
the observed IP addresses (i.e., in “public” address space
using RFC1918 terminology) to the original hosts, thus
meeting the ORIGINBINDING requirement. Similarly,
the controller configures the switches to allow packets
with tag 2 to pass through without going to the firewall,
thus meeting the PATHSFOLLOWPOLICY requirement.
As an added benefit, the administrator can configure fire-
wall rules w.r.t. the original host IP addresses, without
needing to worry about the NAT-induced modifications.

This example highlights three key aspects of Flow-
Tags. First, middleboxes (e.g., the NAT) are generators
of tags (as instructed by the controller). The packet-
processing actions of a FlowTags-enhanced middlebox
might entail adding the relevant tags into the packet
header. This is crucial for both ORIGINBINDING and
PATHSFOLLOWPOLICY, depending on the middlebox.

Second, other middleboxes (e.g., the firewall) are con-
sumers of tags, and their processing actions need to de-
code the tags. This is necessary for ORIGINBINDING.
(In this simple example, each middlebox only generates
or only consumes tags. In general, however, a given mid-
dlebox could both consume and generate tags.)

Third, SDN-capable switches in the network use the
tags as part of their forwarding actions, in order to route
packets according to the controller’s intended policy, en-
suring PATHSFOLLOWPOLICY holds.

Note that the FlowTags semantics apply in the context
of a single administrative domain. In the simple case,
we set tag bits to NULL on packets exiting the domain.3

3More generally, if we have a domain hierarchy (e.g., “CS dept”
and “Physics dept” and “Univ” at a higher level), each sub-domain’s
egress switch can rewrite the tag to only capture higher-level semantics
(e.g, “CS” rather than “CS host A”), without revealing internal details.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 537

This alleviates concerns that the tag bits may accidentally
leak proprietary topology or policy information. When
incoming packets arrive at an external interface, the gate-
way sets the tag bits appropriately (e.g., to ensure stateful
middlebox traversal) before forwarding the packet into
the domain.

3.2 Architecture and Interfaces

Next, we describe the interfaces between the controller,
middleboxes, switches, and the network administrator in
a FlowTags-enhanced SDN architecture.

Current SDN standards (e.g., OpenFlow [45]) define
the APIs between the controller and switches. As shown
in Figure 6, FlowTags adds three extensions to today’s
SDN approach:
1. FlowTags APIs between the controller and FlowTags-

enhanced middleboxes, to programmatically config-
ure their tag generation and consumption logic (§4).

2. FlowTags controller modules that configure the
tagging-related generation/consumption behavior of
the middleboxes, and the tag-related forwarding ac-
tions of SDN switches (§5).

3. FlowTags-enhanced middleboxes consume an in-
coming packet’s tags when processing the packet and
generate new tags based on the context (§6).
FlowTags requires neither new capabilities from SDN

switches, nor any direct interactions between middle-
boxes and switches. Switches continue to use traditional
SDN APIs such as OpenFlow. The only interaction be-
tween switches and middleboxes is indirect, via tags em-
bedded inside the packet headers. We take this approach
for two reasons: (1) to allow switch and middlebox de-
signs and their APIs to innovate independently; and (2)
to retain compatibility with existing SDN standards (e.g.,
OpenFlow). Embedding tags in the headers avoids the
need for each switch and middlebox to communicate
with the controller on every packet when making their
forwarding and processing decisions.

We retain existing configuration interfaces for cus-
tomizing middlebox actions; e.g., vendor-specific lan-
guages or APIs to configure firewall/IDS rules. The ad-
vantage of FlowTags is that administrators can configure
these rules without having to worry about the impact of
intermediate middleboxes. For example, in the first sce-
nario of §2.1, FlowTags allows the operator to specify
firewall rules with respect to the original source IPs. This
provides a cleaner mechanism, as the administrator does
not need to reason about the space of possible header val-
ues a middlebox may observe.4

4Going forward, we want to configure the middlebox rules to ensure
the HIGHLEVELNAMES as well [24].

������������������������ ��������������������������

����������������������������

��

��

��
��

���� ��

����

�� �� ��
���

������������ �������������
������������ �
	���������������������
������������ �������������
������� ���� �
	���������������������
� � � � �� �� � ���

Figure 7: Packet processing walkthrough for tag gen-
eration: 1. Tag Generation Query, 2. Tag Generation
Response, 3. Data Packet, 4. Packet-in Message, 5.
Modify Flow Entry Message, 6. Data Packet (to next
on-path switch).

����������������������� ��������������������������

����������������������������

��

��

������������ �������������
������������

���

�

���� ��

����

 	� ��

�����������������������
������������� �������������
�������� ��� ����������������� ������

� �� � ���

Figure 8: Packet processing walkthrough for tag con-
sumption: 1. Data Packet, 2. Packet-in Message, 3.
Modify Flow Entry Message, 4. Data Packet, 5. Tag
Consumption Query, 6. Tag Consumption.

4 FlowTags APIs and Operation
Next, we walk through how a packet is processed in
a FlowTags-enhanced network, and describe the main
FlowTags APIs. For ease of presentation, we assume
each middlebox is connected to the rest of the network
via a switch. (FlowTags also works in a topology with
middleboxes directly chained together.) We restrict our
description to a reactive controller that responds to in-
coming packets, but proactive controllers are also possi-
ble.

For brevity, we only discuss the APIs pertaining to
packet processing. Analogous to the OpenFlow config-
uration APIs, we envision functions to obtain and set
FlowTags capabilities in middleboxes; e.g., which header
fields are used to encode the tag values (§5.3).

In general, the same middlebox can be both a genera-
tor and a consumer of tags. For clarity, we focus on these
two roles separately. We assume that a packet, before it
reaches any middlebox, starts with a NULL tag.

Middlebox tag generation, Figure 7: Before the
middlebox outputs a processed (and possibly modified)
packet, it sends the FT GENERATE QRY message to the
controller requesting a tag value to be added to the packet
(Step 1). As part of this query the middlebox provides
the relevant packet processing context: e.g., a proxy tells
the controller if this is a cached response; an IPS pro-
vides the processing verdict. The controller provides a
tag value via the FT GENERATE RSP response (Step 2).
(We defer tag semantics to the next section.)

Middlebox tag consumption, Figure 8: When a mid-

538 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dlebox receives a tag-carrying packet, it needs to “de-
code” this tag; e.g., an IDS needs the original IP 5-
tuple for scan detection. The middlebox sends the
FT CONSUME QRY message (Step 5) to the controller,
which then provides the necessary decoding rule for
mapping the tag via the FT CONSUME RSP message
(Step 6).

Switch actions: In Figure 7, when the switch receives
a packet from the middlebox with a tag (Step 3), it
queries the controller with the OFPT PACKET IN mes-
sage (Step 4), and the controller provides a new flow ta-
ble entry (Step 5). This determines the forwarding ac-
tion; e.g., whether this packet should be routed toward
the heavy IPS in Figure 3. Similarly, when the switch
receives a packet in Figure 8 (Step 1), it requests a for-
warding entry and the controller uses the tag to decide if
this packet needs to be forwarded to the middlebox.

Most types of middleboxes operate at an IP flow or
session granularity, and their dynamic modifications typ-
ically use a consistent header mapping for all packets of
a flow. Thus, analogous to OpenFlow, a middlebox needs
to send FT CONSUME QRY and FT GENERATE QRY
only once per flow. The middlebox stores the per-flow
tag rules locally, and subsequent packets in the same flow
can reuse the cached tag rules.

5 FlowTags Controller
In this section, we discuss how a FlowTags-enhanced
SDN controller can assign tags and tags-related “rules”
to middleboxes and switches. We begin with a policy ab-
straction (§5.1) that informs the semantics that tags need
to express (§5.2). Then, we discuss techniques to trans-
late this solution into practical encodings (§5.3–§5.4). Fi-
nally, we outline the controller’s implementation (§5.5).

5.1 Dynamic Policy Graph
The input to the FlowTags controller is the policy that
the administrator wants to enforce w.r.t. middlebox ac-
tions (Figure 6). Prior work on middlebox policy focuses
on a static policy graph that maps a given traffic class
(e.g., as defined by network locations and flow header
fields) to a chain of middleboxes [30, 38, 49]. For in-
stance, the administrator may specify that all outgoing
web traffic from location A to location B must go, in
order, through a firewall, an IDS, and a proxy. How-
ever, this static abstraction fails to capture the ORIGIN-
BINDING and PATHSFOLLOWPOLICY requirements in
the presence of traffic-dependent and dynamic middle-
box actions. Thus, we propose the dynamic policy graph
(or DPG) abstraction.

A DPG is a directed graph with two types of nodes: (1)
In and Out nodes, and (2) logical middlebox nodes. In
and Out nodes represent network ingresses and egresses
(including “drop” nodes). Each logical middlebox rep-

������
����

������
����

�

���������

����
�����������

	���������
�

�������

���������

�������� �����������

(a) Dynamic policy routing

������ ����

���������

��������������

���

�

���

������
�

������
�

�������	��
�������	���

���������
������

�	����
�������	���

���������������	��� �����

���
����� �	��
������� �	���� �	��

����������������
 �	��

������
��	�����

�������	���

���

�����

����� ���������	���

�� �� ��

�������	��

(b) Middlebox context

Figure 9: The DPGs for the examples in Figures 3 and
4. Rectangles with solid lines denote “Ingress” nodes
and with dotted lines denote “Egress” nodes. Cir-
cles denote logical middlebox functions. Each edge is
annotated with a {Class};Context denoting the traffic
class and the processing context(s). All traffic is ini-
tialized as “{null};-”.

resents a type of middlebox function, such as “firewall.”
(For clarity, we restrict our discussion to “atomic” mid-
dlebox functions; a multi-function box will be repre-
sented using multiple nodes.) Each logical middlebox
node is given a configuration that governs its process-
ing behavior for each traffic class (e.g., firewall rulesets
or IDS signatures). As discussed earlier, administrators
specify middlebox configurations in terms of the unmod-
ified traffic entering the DPG, without worrying about
intermediate transformations.

Each edge in the DPG is annotated with the condition
m → m� under which a packet needs to be steered from
node m to node m�. This condition is defined in terms
of (1) the traffic class, and (2) the processing context of
node m, if applicable. Figure 9 shows two DPG snippets:
• Data-dependent policies: Figure 9a revisits the ex-

ample in Figure 3. Here, we want all traffic to be
first processed by the light IPS. If the light IPS flags
a packet as suspicious, then it should be sent to the
heavy IPS. In this case, the edge connecting the light
IPS to the heavy IPS is labeled “*, Alarm”, where *
denotes the class of “any traffic,” and Alarm provides
the relevant processing history from the light IPS.

• Capturing effects of middlebox actions: Figure 9b
revisits the example in Figure 4, where we want to
apply an ACL only on host H2’s web requests. For
correct policy enforcement, the ACL must be applied
to both cached and uncached responses. Thus, both
“H2, Hit” and “H2, Miss” need to be on the Proxy-to-
ACL edge. (For ease of visualization, we do not show
the policies applied to the responses coming from the
Internet.)
We currently assume that the administrator creates the

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 539

DPG based on domain knowledge. We discuss a mecha-
nism to help administrators to generate DPGs in §10.

5.2 From DPG to Tag Semantics
The DPG representation helps us reason about the se-
mantics we need to capture via tags to ensure ORIGIN-
BINDING and PATHSFOLLOWPOLICY.
Restoring ORIGINBINDING: We can ensure ORIGIN-
BINDING if we are always able to map a packet to its
original IP 5-tuple OrigHdr as it traverses a DPG. Note
that having OrigHdr is a sufficient condition for ORIG-
INBINDING: given the OrigHdr, any downstream mid-
dlebox or switch can conceptually implement the action
intended by a DPG. In some cases, such as per-flow diag-
nosis (Figure 2), mapping a packet to the OrigHdr might
be necessary. In other examples, a coarser identifier may
be enough; e.g., just srcIP in Figure 1.
Restoring PATHSFOLLOWPOLICY: To ensure
PATHSFOLLOWPOLICY, we essentially need to capture
the edge condition m → m�. Recall that this condition
depends on (1) the traffic class and (2) the middlebox
context, denoted by C, from logical middlebox m (and
possibly previous logical middleboxes). Given that the
OrigHdr for ORIGINBINDING provides the necessary
context to determine the traffic class, the only additional
required information on m → m� is the context C.

If we assume (until §5.3) no constraints on the tag
identifier space, we can think of the controller as assign-
ing a globally unique tag T to each “located packet”; i.e.,
a packet along with the edge on the DPG [51]. The con-
troller maps the tag of each located packet to the infor-
mation necessary for ORIGINBINDING and PATHSFOL-
LOWPOLICY: T → �OrigHdr,C�. Here, the OrigHdr
represents the original IP 5-tuple of this located packet
when it first enters the network (i.e., before any middle-
box modifications) and C captures the processing context
of this located packet.

In the context of tag consumption from §4,
FT CONSUME QRY and FT CONSUME RSP essentially
“dereference” tag T to obtain the OrigHdr. The middle-
box can apply its processing logic based on the OrigHdr;
i.e., satisfying ORIGINBINDING.

For tag generation at logical middlebox m,
FT GENERATE QRY provides as input to the controller:
(1) the necessary middlebox context to determine which
C will apply, and (2) the tag T of the incoming packet
that triggered this new packet to be generated. The
controller creates a new tag T � entry for this new located
packet and populates the entry T � → �OrigHdr�,C� for
this new tag as follows. First, it uses OrigHdr (for the
input tag T) to determine the value OrigHdr� for T �.
In many cases (e.g., NAT), this is a simple copy. In
some cases (e.g., proxy response), the association has
to reverse the src/dst mappings in OrigHdr. Second, it

associates the new tag T � with context C. The controller
instructs the middlebox, via FT GENERATE RSP, to
add T � to the packet header. Because T � is mapped to C,
it supports enforcement of PATHSFOLLOWPOLICY.

5.3 Encoding Tags in Headers
In practice, we need to embed the tag value in a fi-
nite number of packet-header bits. IPv6 has a 20-bit
Flow Label field, which seems ideal for this use (thus
answering the question “how should we use the flow-
label field?” [19]). For our current IPv4 prototype and
testbed, we used the 6-bit DS field (part of the 8-bit ToS),
which sufficed for our scenarios. To deploy FlowTags on
large-scale IPv4 networks, we would need to borrow bits
from fields that are not otherwise used. For example, if
VLANs are not used, we can use the 12-bit VLAN Iden-
tifier field. Or, if all traffic sets the DF (Don’t Fragment)
IP Flag, which is typical because of Path MTU Discov-
ery, the 16-bit IP ID field is available.5

Next, we discuss how to use these bits as efficiently as
possible; §8 reports on some analysis of how many bits
might be needed in practice.

As discussed earlier, tags restore ORIGINBINDING
and PATHSFOLLOWPOLICY. Conceptually, we need
to be able to distinguish every located packet—i.e.,
the combination of all flows and all possible paths in
the DPG. Thus, a simple upper bound on the number
of bits in each packet to distinguish between |Flows|
flows on |DPGPaths| processing paths is: log2 |Flows|+
log2 |DPGPaths|, where Flows is the set of IP flows (for
ORIGINBINDING), and DPGPaths is the set of possi-
ble paths a packet could traverse in DPG (for PATHS-
FOLLOWPOLICY). However, this grows log-linearly in
the number of flows over time and the number of paths
(which could be exponential w.r.t. the graph size).

This motivates optimizations to reduce the number of
header bits necessary, which could include:
• Coarser tags: For many middlebox management

tasks, it may suffice to use a tag to identify the log-
ical traffic class (e.g., “CS Dept User”) and the local
middlebox context (e.g., 1 bit for cache hit or miss or
1 bit for “suspicious”), rather than individual IP flows.

• Temporal reuse: We can reuse the tag assigned to a
flow after the flow expires; we can detect expiration
via explicit flow termination, or via timeouts [3, 45].
The controller tracks active tags and finds an unused
value for each new tag.

• Spatial reuse: To address ORIGINBINDING, we only
need to ensure that the new tag does not conflict
with tags already assigned to currently active flows at
the middlebox to which this packet is destined. For
PATHSFOLLOWPOLICY, we need to: (1) capture the
5IP ID isn’t part of the current OpenFlow spec; but it can be sup-

ported with support for flexible match options [9, 23].

540 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

most recent edge on the DPG rather than the entire
path (i.e., reducing from |DPGPaths| to the node de-
gree); and (2) ensure that the switches on the path have
no ambiguity in the forwarding decision w.r.t. other
active flows.

5.4 Putting it Together
Our current design is a reactive controller that re-
sponds to OFPT PACKET IN, FT CONSUME QRY, and
FT GENERATE QRY events from the switches and the
middleboxes.

Initialization: Given an input DPG, we generate a data
plane realization DPGImpl; i.e., for each logical middle-
box m, we need to identify candidate physical middlebox
instances, and for each edge in DPG, we find a switch-
level path between corresponding physical middleboxes.
This translation should also take into account considera-
tions such as load balancing across middleboxes and re-
source constraints (e.g., switch TCAM and link capac-
ity). While FlowTags is agnostic to the specific realiza-
tion, we currently use SIMPLE [49], mostly because of
our familiarity with the system. (This procedure only
needs to run when the DPG itself changes or in case of a
network topology change. It does not run for each flow
arrival.)

Middlebox event handlers: For each physical middle-
box instance PMi, the controller maintains two FlowTags
tables: CtrlInTagsTablei and the CtrlOutTagsTablei. The
CtrlInTagsTablei maintains the tags corresponding to all
incoming active flows into this middlebox using entries
{T → OrigHdr}. The CtrlOutTagsTablei tracks the tags
that need to be assigned to outgoing flows and maintains
a table of entries {�T,C� → T �}, where T is the tag for
the incoming packet, C captures the relevant middlebox
context for this flow (e.g., cache hit/miss), and T � is the
output tag to be added. At bootstrap time, these struc-
tures are initialized to be empty.

The HANDLE FT CONSUME QRY handler looks up
the entry for tag T in the CtrlInTagsTablei and sends
the mapping to PMi. As we will see in the next sec-
tion, middleboxes keep these entries in a FlowTable-like
structure, to avoid look ups for subsequent packets. The
HANDLE FT GENERATE QRY handler is slightly more
involved, as it needs the relevant middlebox context C.
Given C, the DPG, and the DPGImpl, the controller
identifies the next hop physical middlebox PMi� for this
packet. It also determines a non-conflicting T � using the
logic from §5.3.

Switch and flow expiry handlers: The handlers for
OFPT PACKET IN are similar to traditional OpenFlow
handlers; the only exception is that we use the incom-
ing tag to determine the forwarding entry. When a
flow expires, we trace the path this flow took and, for

each PMi, delete the entries in CtrlInTagsTablei and
CtrlOutTagsTablei, so that these tags can be repurposed.

5.5 Implementation
We implement the FlowTags controller as a POX mod-
ule [10]. The CtrlInTagsTablei and CtrlOutTagsTablei
are implemented as hash-maps. For memory efficiency
and fast look up of available tags, we maintain an auxil-
iary bitvector of the active tags for each middlebox and
switch interface; e.g., if we have 16-bit tags, we maintain
a 216 bit vector and choose the first available bit, using a
log-time algorithm [22]. We also implement simple opti-
mizations to precompute shortest paths for every pair of
physical middleboxes.

6 FlowTags-enhanced Middleboxes
As discussed in the previous sections, FlowTags requires
middlebox support. We begin by discussing two candi-
date design choices for extending a middlebox to support
FlowTags. Then, we describe the conceptual operation of
a FlowTags-enhanced middlebox. We conclude this sec-
tion by summarizing our experiences in extending five
software middleboxes.

6.1 Extending Middleboxes
We consider two possible ways to extend middlebox soft-
ware to support FlowTags:
• Module modification: The first option is to modify

specific internal functions of the middlebox to con-
sume and generate the tags. For instance, consider an
IDS with the scan detection module. Module modifi-
cation entails patching this scan detection logic with
hooks to translate the incoming packet headers+tag to
the OrigHdr and to rewrite the scan detection logic to
use OrigHdr. Similarly, for generation, we modify the
output modules to provide the relevant context as part
of the FT GENERATE QRY.

• Packet rewriting: A second option is to add a
lightweight shim module that interposes on the in-
coming and outgoing packets to rewrite the packet
headers. For consumption, this means we modify
the packet headers so that the middlebox only sees
a packet with the true OrigHdr. For generation, this
means that the middlebox proceeds as-is and then the
shim adds the tag before the packet is sent out.
In both cases, the administrator sets up the middle-

box configuration (e.g., IDS rules) as if there were no
packet modifications induced by the upstream middle-
boxes because FlowTags preserves the binding between
the packet’s modified header and the OrigHdr.

For consumption, we prefer packet rewriting because
it generalizes to the case where each middlebox has
multiple “consumer” modules; e.g., an IDS may apply
scan detection and signature-based rules. For generation,

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 541

Consumption Processing Generation
���������������
��������������

����������������
����������������������

Process packet

Rewrite Pkt
with OrigHdr

N

Y

FT_CONSUME_QRY

Match in
MBInTagsTable?

YY

ss p

Dropped?

Y

Match in
MBOutTagsTable?

FT_GENERATE_QRY

Add new Tag

RAT
N

Y

Send
packet

Receive
packet

t h

e
t

��
��	�	���
���������

N

FT

�����

�����

Figure 10: We choose a hybrid design where the
“consumption” side uses the packet rewriting and the
“generation” uses the module modification approach.

however, packet rewriting may not be sufficient, as the
shim may not have the necessary visibility into the mid-
dlebox context; e.g., in the proxy cache hit/miss case.
Thus, we use module modification in this case.

End-to-end view: Figure 10 shows a simplified view of
a FlowTags-enhanced middlebox. In general, consump-
tion precedes generation. The reason is that the packet’s
current tag can affect the specific middlebox code paths,
and thus impacts the eventual outgoing tags.

Mirroring the controller’s CtrlInTagsTablei and
CtrlOutTagsTablei, each physical middlebox i
maintains the tag rules in the MBInTagsTablei and
MBOutTagsTablei. When a packet arrives, it first checks
if the tag value in the packet already matches an existing
tag-mapping rule in MBInTagsTablei. If there is a
match, we rewrite packet headers (see above) so that
the processing modules act as if they were operating
on OrigHdr. If there is a MBInTagsTablei miss, the
middlebox sends a FT CONSUME QRY, buffers the
packet locally, and waits for the controller’s response.

Note that the tags are logically propagated through
the processing contexts (not shown for clarity). For ex-
ample, most middleboxes follow a connection-oriented
model with a data structure maintaining per-flow or per-
connection state; we augment this structure to propagate
the tag value. Thus, we can causally relate an outgo-
ing packet (e.g., a NAT-ed packet or a proxy cached re-
sponse) to an incoming packet.

When a specific middlebox function or module
is about to send a packet forward, it checks the
MBOutTagsTablei to add the outgoing tag value. If there
is a miss, it sends the FT GENERATE QRY, providing
the necessary module-specific context and the tag (from
the connection data structure) for the incoming packet
that caused this outgoing packet to be generated.

6.2 Experiences in Extending Middleboxes
Given this high-level view, next we describe our experi-
ences in modifying five software middleboxes that span
a broad spectrum of management functions. (Our choice
was admittedly constrained by the availability of the mid-

Name, Role Modified /
Total LOC

Key Modules Data
Structures

Squid [14],
Proxy

75 / 216K Client and Server
Side Connection,
Forward, Cache
Lookup

Request
Table

Snort [13],
IDS/IPS

45 / 336K Decode, Detect,
Encode

Verdict

Balance [1],
Load
Balancer

60 / 2K Client and Server
Connections

n/a

PRADS [11],
Monitoring

25 / 15K Decode n/a

iptables [6],
NAT

55 / 42K PREROUTING,
POSTROUTING

Conn Map

Table 2: Summary of the middleboxes we have added
FlowTags support to along with the number of lines
of code and the main modules to be updated. We use
a common library (≈ 250 lines) that implements rou-
tines for communicating to the controller.

dlebox source code.) Table 2 summarizes these middle-
boxes and the modifications necessary.

Our current approach to extend middleboxes is semi-
manual and involved a combination of call graph analy-
sis [7, 17] and traffic injection and logging techniques [2,
4, 5, 15]. Based on these heuristics, we identify the suit-
able “chokepoints” to add the FlowTags logic. Develop-
ing techniques to automatically extend middleboxes is an
interesting direction for future work.
• Squid: Squid [14] is a popular proxy/cache. We mod-

ified the functions in charge of communicating with
the client, remote server, and those handling cache
lookup. We used the packet modification shim for
incoming packets, and applied module modification
to handle the possible packet output cases, based on
cache hit and miss events.

• Snort: Snort [13] is an IDS/IPS that provides many
functions—logging, packet inspection, packet filter-
ing, and scan detection. Similar to Squid, we ap-
plied the packet rewriting step for tag consumption
and module modification for tag generation as fol-
lows. When a packet is processed and a “verdict”
(e.g., OK vs. alarm) is issued, the tag value is gen-
erated based on the type of the event (e.g., outcome of
a matched alert rule).

• Balance: Balance [1] is a TCP-level load balancer
that distributes incoming TCP connections over a
given a set of destinations (i.e., servers). In this case,
we simply read/write the tag bits in the header fields.

• PRADS: PRADS [11] is passive monitor that gathers
traffic information and infers what hosts and services
exist in the network. Since this is a passive device,
we only need the packet rewriting step to restore the
(modified) packet’s OrigHdr.

• NAT via iptables: We have registered appropriate
tagging functions with iptables [6] hook points, while

542 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Src / Time(s) DPG path Notes
H1 / 0 L-IPS→Internet –
H1 / 0.3 L-IPS→Internet –
H1 / 0.6 L-IPS→Internet L-IPS alarm
H1 / 0.8 L-IPS→H-IPS→Drop drop

(a) In Figure 3, we configure Snort as the light IPS (L-IPS) to flag
hosts sending more than 3 packets/sec and send them to the heavy
IPS (H-IPS).

Host / URL DPG path Notes
H1 / Dept Proxy→Internet always allow
H2 / CNN Proxy→ACL→Internet miss, allow
H2 / Dept Proxy→ACL→Drop hit, drop
H1 / CNN Proxy hit, allow

(b) In Figure 4, we use Squid as the proxy and Snort as the ACL and
block H2’s access to the Dept site.

Figure 11: Request trace snippets for validating the
example scenarios in Figure 3 and Figure 4.

it is configured as a source NAT. The goal is to main-
tain 5-tuple visibility via tagging. We added hooks
for tag consumption and tag generation into the PRE-
ROUTING and the POSTROUTING chains, which
are the input and output checkpoints, respectively.

7 Validation and Use Cases
Next, we describe how we can validate uses of FlowTags.
We also discuss how FlowTags can be an enabler for new
diagnostic and verification capabilities.

Testing: Checking if a network configuration correctly
implements the intended DPG is challenging—we need
to capture stateful middlebox semantics, reason about
timing implications (e.g., cache timeouts), and the im-
pact of dynamic modifications. (Even advanced network
testing tools do not capture these effects [39, 57].) Au-
tomating this step is outside the scope of this paper, and
we use a semi-manual approach for our examples.

Given the DPG, we start from each ingress and enu-
merate all paths to all “egress” or “drop” nodes. For each
path, we manually compose a request trace that traverses
the required branch points; e.g., will we see a cache hit?
Then, we emulate this request trace in our small testbed
using Mininet [33]. (See §8 for details.) Since there is
no other traffic, we use per-interface logs to verify that
packets follow the intended path.

Figure 11 shows an example with one set of request se-
quences for each scenario in Figures 3 and 4. To emulate
Figure 3, we use Snort as the light IPS to flag any host
sending more than 3 packets/second as suspicious, and
direct such hosts’ traffic to the heavy IPS for deep packet
inspection (also Snort). Figure 11(a) shows the request
trace and the corresponding transitions it triggers.

To emulate Figure 4, we use Squid as the proxy and
Snort as the (web)ACL device. We want to route all H2’s
web requests through ACL and configure Snort to block

��� ���

��������������������

�������������������� �������������������������������
	�����������
	��

���� ����

�

����
�������� �����������

��������
��������

����
���������

����
��������

��
��������

����
��������

��
������

����
��������

����� ����

����
��������

���

���

����
���������

Figure 12: Disconnect between header-space analysis
and the intended processing semantics in Figure 3.

H2’s access to the department website. Figure 11(b)
shows the sequence of web requests to exercise different
DPG paths.

We have validated the other possible paths in these ex-
amples, and in other scenarios from §2. We do not show
these due to space constraints.

FlowTags-enabled diagnosis: We revisit the diagnosis
example of Figure 2, with twenty user requests flowing
through the NAT and LB. We simulated a simple “red
team-blue team” test. One student (“red”) synthetically
introduced a 100ms delay inside the NAT or LB code
for half the flows. The other student (“blue”) was re-
sponsible for attributing the delays. Because of dynamic
header rewriting, the “blue” team could not diagnose de-
lays using packet logs. We repeated the experiment with
FlowTags-enhanced middleboxes. In this case, the Flow-
Tags controller assigns a globally unique tag to each re-
quest. Thus, the “blue” team could successfully track
a flow through the network and identify the bottleneck
middlebox using the packet logs at each hop.

Extending verification tools: Verification tools such
as Header Space Analysis (HSA) [39] check correctness
(e.g., reachability) by modeling a network as the compo-
sition of header-processing functions. While this works
for traditional switches/routers, it fails for middleboxes,
as they operate at higher semantic layers. While a full
discussion of such tools is outside the scope of this pa-
per, we present an example illustrating how FlowTags
addresses this issue.

Figure 12 extends the example in Figure 3 to show
both header-space annotations and DPG-based seman-
tic annotations. Here, a header-space annotation (solid
boxes) of �Src� describes a packet from Src, so �∗� mod-
els a packet from any source. A DPG annotation (dashed
boxes) of �Src,L,H� describes a packet from Src for
which Light IPS returns L and Heavy IPS returns H, so
�∗,0,∗� indicates a packet from any source that is flagged
by Light IPS as not OK; our policy wants such suspicious
packets to go via Heavy IPS, while �∗,1,∗� packets need
no further checking.

Recall from §2 that we cannot implement this policy,

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 543

in this topology, using existing mechanisms (i.e., without
FlowTags). What if we rewired the toplogy by adding
the (dashed) link Light IPS → Heavy IPS? Even with
this hardwired topology, tools like HSA incorrectly con-
clude that “all” packets exit the network (the output edge
is labeled �∗�), because HSA models middleboxes as
“wildcard”-producing blackboxes [39].

FlowTags bridges the gap between “header space,” in
which verification tools operate, and “semantic space,” in
which the policy operates. Instead of modeling middle-
boxes as blackboxes, or reverse-engineering their func-
tions, in FlowTags we treat them as functions operating
on tag bits in an (extended) header space. Then, we apply
HSA on this extended header space to reason if the net-
work implements the reachability defined by the DPG.

8 Performance Evaluation
We frame questions regarding the performance and scal-
ability of FlowTags:
• Q1: What overhead does support for FlowTags add to

middlebox processing?
• Q2: Is the FlowTags controller fast and scalable?
• Q3: What is the overhead of FlowTags over traditional

SDN?
• Q4: How many tag bits do we need in practice?

Setup: For Q1 and Q2, we run each middlebox and
POX controller in isolation on a single core in a 32-core
2.6 Ghz Xeon server with 64 GB RAM. For Q3, we use
Mininet [33] on the same server, configured to use 24
cores and 32 GB RAM to model the network switches
and hosts. We augment Mininet with middleboxes run-
ning as external virtual appliances. Each middlebox runs
as a VM configured with 2GB RAM on one core. (We
can run at most 28 middlebox instances, due to the max-
imum number of PCI interfaces that can be plugged in
using KVM [8]). We emulate the example topologies
from §2, and larger PoP-level ISP topologies from Rock-
etFuel [55]. Our default DPG has an average path length
of 3.

Q1 Middlebox overhead: We configure each middle-
box to run with the default configuration. We vary the
offered load (up to 100 Mbps) and measure the per-
packet processing latency. Overall, the overhead was low
(<1%) and independent of the offered load (not shown).
We also analyzed the additional memory and CPU usage
using atop; it was < 0.5% across all experiments (not
shown).

Q2 Controller scalability: Table 3 shows the running
time for the HANDLE FT GENERATE QRY. (This is the
most complex FlowTags processing step; other functions
take negligible time.) The time is linear as a function
of topology size with the baseline algorithms, but almost
constant using the optimization to pre-compute reacha-

Topology (#nodes) Baseline (ms) Optimized (ms)
Abilene (11) 0.037 0.024
Geant (22) 0.066 0.025
Telstra (44) 0.137 0.026
Sprint (52) 0.161 0.027
Verizon (70) 0.212 0.028
AT&T (115) 0.325 0.028

Table 3: Time to run HANDLE FT GENERATE QRY.

Figure 13: Breakdown of flow processing time in dif-
ferent topologies (annotated with #nodes).

bility information. This implies that a single-thread POX
controller can handle 1

0.028ms ≈ 35K middlebox queries
per second (more than three times larger than the peak
number of flows per second reported in [24]).

We also varied the DPG complexity along three axes:
number of nodes, node degrees, and distance between ad-
jacent DPG nodes in terms of number of switches. With
route pre-computation, the controller processing time is
independent of the DPG complexity (not shown).

Q3 End-to-end overhead: Figure 13 shows the break-
down of different components of the flow setup time in a
FlowTags-enhanced network (i.e., mirroring the steps in
Figure 7) for different Rocketfuel topologies. Since our
goal is to compare the FlowTags vs. SDN operations, we
do not show round-trip times to the controller here, as it
is deployment-specific [35].6 Since all values are close
to the average, we do not show error bars. We can see
that the FlowTags operations add negligible overhead.
In fact, the middlebox tag processing is so small that it
might be hard to see in the figure.

We also measure the reduction in TCP throughput a
flow experiences in a FlowTags-enhanced network, com-
pared to a traditional SDN network with middleboxes
(but without FlowTags). We vary two parameters: (1)
controller RTT and (2) the number of packets per flow.
As we can see in Table 4, except for very small flows (2
packets), the throughput reduction is <4%.

Q4 Number of tag bits: To analyze the benefits of
spatial and temporal reuse, we consider the worst case,
where we want to diagnose each IP flow. We use
packet traces from CAIDA (Chicago and San Jose traces,
2013 [16]) and a flow-level enterprise trace [18]. We sim-

6FlowTags adds 1 more RTT per middlebox, but this can be avoided
by pre-fetching rules for the switches and middleboxes.

544 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flow size (#packets) Reduction in throughput (%)
1ms RTT 10ms RTT 20ms RTT

2 12 16.2 22.7
8 2.1 2.8 3.8
32 1.6 2.3 3.0
64 1.5 2.1 2.9

Table 4: Reduction in TCP throughput with Flow-
Tags relative to a pure SDN network.

Configuration Number of bits
(spatial, temporal) CAIDA trace Enterprise trace
(No spatial, 30 sec) 22 22
(Spatial, 30 sec) 20 20
(Spatial, 10 sec) 18 18
(Spatial, 5 sec) 17 17
(Spatial, 1 sec) 14 14

Table 5: Effect of spatial and temporal reuse of tags.

ulate the traces across the RocketFuel topologies, using a
gravity model to map flows to ingress/egress nodes [55].

Table 5 shows the number of bits necessary with
different reuse strategies, on the AT&T topology from
RocketFuel.7 The results are similar across other topolo-
gies (not shown). We see that temporal reuse offers the
most reduction. Spatial reuse helps only a little; this is
because with a gravity-model workload, there is typically
a “hotspot” with many concurrent flows. To put this in
the context of §5.3, using the (Spatial, 1 sec) configura-
tion, tags can fit in the IPv6 FlowLabel, and would fit in
the IPv4 IP ID field.

9 Related Work
We have already discussed several candidate solutions
and tools for verification and diagnosis (e.g., [34, 39]).
Here, we focus on other classes of related work.

Middlebox policy routing: Prior work has focused on
orthogonal aspects of policy enforcement such as mid-
dlebox load balancing (e.g., [42, 49]) or compact data
plane strategies (e.g,. [27]). While these are candidates
for translating the DPG to a DPGImpl (§5), they do not
provide reliable mechanisms to address dynamic middle-
box actions.

Middlebox-SDN integration: OpenMB [31] focuses
on exposing the internal state (e.g., cache contents and
connection state) of middleboxes to enable (virtual) mid-
dlebox migration and recovery. This requires signifi-
cantly more instrumentation and vendor support com-
pared to FlowTags, which only requires externally rel-
evant mappings. Stratos [30] and Slick [21] focus on us-
ing SDN to dynamically instantiate new middlebox mod-
ules in response to workload changes. The functionality
these provide is orthogonal to FlowTags.

7Even though the number of flows varies across traces, they require
the same number of bits, as the values of ceil(log2(# f lows)) are the
same.

Tag-based solutions: Tagging is widely used to im-
plement Layer2/3 functions, such as MPLS labels or
virtual circuit identifiers (VCIs). In the SDN con-
text, tags have been used to avoid loops [49], reduce
FlowTable sizes [27], or provide virtualized network
views [46]. Tags in FlowTags capture higher-layer se-
mantics to address ORIGINBINDING and PATHSFOL-
LOWPOLICY. Unlike these Layer2/3 mechanisms where
switches are generators and consumers of tags, FlowTags
middleboxes generate and consume tags, and switches
are consumers.

Tracing and provenance: The idea of flow tracking
has parallels in the systems (e.g., tracing [29]), databases
(e.g., provenance [58]), and security (e.g., taint track-
ing [47, 48]) literature. Our specific contribution is to
use flow tracking for integrating middleboxes into SDN-
capable networks.

10 Conclusions and Future Work
The dynamic, traffic-dependent, and hidden actions of
middleboxes make it hard to systematically enforce and
verify network-wide policies, and to do network diag-
nosis. We are not alone in recognizing the significance
of this problem—others, including the recent IETF net-
work service chaining working group, mirror several of
our concerns [37, 43, 50].

The insight behind FlowTags is that the crux of these
problems lies in violation of two key SDN tenets—
ORIGINBINDING and PATHSFOLLOWPOLICY—caused
by middlebox actions. We argue that middleboxes are
in the best (and possibly the only) vantage point to re-
store these tenets, and make a case for minimally ex-
tending middleboxes to provide the necessary context,
via tags embedded inside packet headers. We design new
SDN APIs and controller modules to configure this tag-
related behavior. We showed a scalable proof-of-concept
controller, and the viability of adding FlowTags support,
with minimal changes, to five canonical middleboxes.
We also demonstrated that the overhead of FlowTags is
comparable to traditional SDN mechanisms.

We believe that there are three natural directions for
future work: automating DPG generation via model
refinement techniques (e.g., [25]); automating middle-
box extension using appropriate programming-languages
techniques; and, performing holistic testing of the net-
work while accounting for switches and middleboxes.

11 Acknowledgments
We would like to thank our shepherd Ben Zhao and the
NSDI reviewers for their feedback. This work was sup-
ported in part by grant number N00014-13-1-0048 from
the Office of Naval Research and by Intel Labs’ Univer-
sity Research Office.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 545

References
[1] Balance. http://www.inlab.de/balance.

html.

[2] Bit-Twist. http://bittwist.sourceforge.
net/.

[3] Cisco systems netflow services export version 9. RFC
3954.

[4] httperf. https://code.google.com/p/
httperf/.

[5] iperf. https://code.google.com/p/iperf/.

[6] iptables. http://www.netfilter.org/
projects/iptables/.

[7] KCachegrind. http://kcachegrind.
sourceforge.net/html/Home.html.

[8] KVM. http://www.linux-kvm.org/page/
Main_Page.

[9] Openflow switch specification. https:
//www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-
spec-v1.4.0.pdf.

[10] POX Controller. http://www.noxrepo.org/
pox/about-pox/.

[11] PRADS. http://gamelinux.github.io/
prads/.

[12] Prolexic. www.prolexic.com.

[13] Snort. http://www.snort.org/.

[14] Squid. http://www.squid-cache.org/.

[15] tcpdump. http://www.tcpdump.org/.

[16] The Cooperative Association for Internet Data Analysis
(caida). http://www.caida.org/.

[17] Valgrind. http://www.valgrind.org/.

[18] Vast Challenge. http://vacommunity.
org/VAST+Challenge+2013%3A+Mini-
Challenge+3.

[19] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme.
Ipv6 flow label update. http://rmv6tf.org/wp-
content/uploads/2012/11/rmv6tf-flow-
label11.pdf.

[20] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and
A. Vahdat. xOMB: extensible open middleboxes with
commodity servers. In Proc. ANCS, 2012.

[21] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rex-
ford. A Slick Control Plane for Network Middleboxes. In
Proc. ONS, research track, 2012.

[22] G. Banga and J. Mogul. Scalable kernel performance for
Internet servers under realistic loads. In Proc. USENIX
ATC, 1998.

[23] P. Bosshar, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-Action Pro-
cessing in Hardware for SDN. In Proc. SIGCOMM, 2013.

[24] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKe-
own, and S. Shenker. Ethane: Taking control of the enter-
prise. In Proc. SIGCOMM, 2007.

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc.
CAV, 2000.

[26] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. An-
derson, and A. Krishnamurthy. ETTM: a scalable fault
tolerant network manager. In Proc. NSDI, 2011.

[27] L. Erran Li, Z. M. Mao, and J. Rexford. CellSDN:
Software-defined cellular networks. In Techinical Report,
Princeton University.

[28] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul.
FlowTags: Enforcing network-wide policies in the pres-
ence of dynamic middlebox actions. In Proc. HotSDN,
2013.

[29] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. X-Trace: a pervasive network tracing framework. In
Proc. NSDI, 2007.

[30] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.
Stratos: A network-aware orchestration layer for middle-
boxes in the cloud. CoRR, abs/1305.0209, 2013.

[31] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. To-
ward software-defined middlebox networking. In Proc.
HotNets-XI, 2012.

[32] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: towards an oper-
ating system for networks. In CCR, 2008.

[33] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. In Proc. CoNext, 2012.

[34] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and
N. McKeown. Where is the debugger for my software-
defined network? In Proc. HotSDN, 2012.

[35] B. Heller, R. Sherwood, and N. McKeown. The Con-
troller Placement Problem. In Proc. HotSDN, 2012.

[36] X. Jin, L. Erran Li, L. Vanbever, and J. Rexford. Softcell:
Scalable and flexible cellular core network architecture.
In Proc. CoNext, 2013.

[37] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind,
A. Manzalini, F. Risso, D. Staessens, R. Steinert, and
C. Meirosu. Research directions in network service chain-
ing. In Proc. IEEE SDN4FNS, 2013.

[38] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware
switching layer for data centers. In Proc. SIGCOMM,
2008.

[39] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: static checking for networks. In Proc.
NSDI, 2012.

[40] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Ver-
iflow: verifying network-wide invariants in real time. In
Proc. NSDI, 2013.

546 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee. No More
Middlebox: Integrate Processing into Network. In Proc.
SIGCOMM posters, 2010.

[42] L. Li, V. Liaghat, H. Zhao, M. Hajiaghay, D. Li, G. Wil-
fong, Y. Yang, and C. Guo. PACE: Policy-Aware Ap-
plication Cloud Embedding. In Proc. IEEE INFOCOM,
2013.

[43] L. MacVittie. Service chaining and unintended
consequences. https://devcentral.f5.
com/articles/service-chaining-and-
unintended-consequences#.Uvbz0EJdVe9.

[44] N. McKeown. Mind the Gap: SIGCOMM’12
Keynote. http://www.youtube.com/watch?v=
Ho239zpKMwQ.

[45] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: enabling innovation in campus networks. CCR,
March 2008.

[46] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software Defined Networks. In
Proc. NSDI, 2013.

[47] Y. Mundada, A. Ramachandran, M. B. Tariq, and
N. Feamster. Practical Data-Leak Prevention for Legacy
Applications in Enterprise Networks. Technical Report
http://hdl.handle.net/1853/36612, 2011.

[48] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Genera-
tion of Exploits on Commodity Software. In Proc. NDSS,
2005.

[49] Z. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu. SIMPLE-fying Middlebox Policy Enforcement
Using SDN. In Proc. SIGCOMM, 2013.

[50] P. Quinn, J. Guichard, S. Kumar, P. Agarwal, R. Ma-
nur, A. Chauhan, N. Leyman, M. Boucadir, C. Jacquenet,
M. Smith, N. Yadav, T. Nadeau, K. Gray, B. Mcconnell,
and K. Glavin. Network service chaining problem state-
ment. http://tools.ietf.org/html/draft-
quinn-nsc-problem-statement-03.

[51] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proc.
SIGCOMM, 2012.

[52] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In Proc. NSDI, 2012.

[53] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi.
The middlebox manifesto: enabling innovation in mid-
dlebox deployment. In Proc. HotNets, 2011.

[54] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Rat-
nasamy, and V. Sekar. Making middleboxes someone
else’s problem: Network processing as a cloud service.
In Proc. SIGCOMM, 2012.

[55] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP Topologies with Rocketfuel. In Proc. of ACM SIG-
COMM, 2002.

[56] W. Wu, G. Wang, A. Akella, and A. Shaikh. Virtual net-
work diagnosis as a service. In Proc. SoCC, 2013.

[57] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In Proc. CoNext, 2012.

[58] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.
Efficient querying and maintenance of network prove-
nance at internet-scale. In Proc. SIGMOD, 2010.

	Table of Contents
	Message from the Co-Chairs
	Circuit Switching Under the Radar with REACToR
	Catch the Whole Lot in an Action: Rapid Precise Packet Loss Notification in Data Centers
	High Throughput Data Center Topology Design
	Adtributor: Revenue Debugging in Advertising Systems
	DECAF: Detecting and Characterizing Ad Fraud in Mobile Apps
	I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks
	Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks
	Software Dataplane Verification
	NetCheck: Network Diagnoses from Blackbox Traces
	Exalt: Empowering Researchers to Evaluate Large-Scale Storage Systems
	ipShield: A Framework For Enforcing Context-Aware Privacy
	Building Web Applications on Top of Encrypted Data Using Mylar
	PHY Covert Channels: Can You See the Idles?
	cTPM: A Cloud TPM for Cross-Device Trusted Applications
	Network Virtualization in Multi-tenant Datacenters
	Operational Experiences with Disk Imaging in a Multi-Tenant Datacenter
	VPN Gate: A Volunteer-Organized Public VPN Relay System with Blocking Resistance for Bypassing Government Censorship Firewalls
	Bolt: Data Management for Connected Homes
	Blizzard: Fast, Cloud-scale Block Storage for Cloud-oblivious Applications
	Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area
	GRASS: Trimming Stragglers in Approximation Analytics
	Bringing Gesture Recognition To All Devices
	3D Tracking via Body Radio Reflections
	Epsilon: A Visible Light Based Positioning System
	Enabling Bit-by-Bit Backscatter Communication in Severe Energy Harvesting Environments
	Full Duplex MIMO Radios
	Recursively Cautious Congestion Control
	How Speedy is SPDY?
	FaRM: Fast Remote Memory
	Easy Freshness with Pequod Cache Joins
	MICA: A Holistic Approach to Fast In-Memory Key-Value Storage
	NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms
	ClickOS and the Art of Network Function Virtualization
	SENIC: Scalable NIC for End-Host Rate Limiting
	mTCP: A Highly Scalable User-level TCP Stack for Multicore Systems
	Warranties for Faster Strong Consistency
	Tierless Programming and Reasoning for Software-Defined Networks
	Enforcing Network-Wide Policies in the Presence of Dynamic Middlebox Actions Using FlowTags

