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Abstract

In a virtualized environment, it is not difficult to retrieve
guest OS information from its hypervisor. However, it
is very challenging to retrieve information in the reverse
direction, i.e., retrieve the hypervisor information from
within a guest OS, which remains an open problem and
has not yet been comprehensively studied before. In this
paper, we take the initiative and study this reverse infor-
mation retrieval problem. In particular, we investigate
how to determine the host OS kernel version from within
a guest OS. We observe that modern commodity hypervi-
sors introduce new features and bug fixes in almost every
new release. Thus, by carefully analyzing the seven-year
evolution of Linux KVM development (including 3485
patches), we can identify 19 features and 20 bugs in the
hypervisor detectable from within a guest OS. Building
on our detection of these features and bugs, we present a
novel framework called Hyperprobe that for the first time
enables users in a guest OS to automatically detect the
underlying host OS kernel version in a few minutes. We
implement a prototype of Hyperprobe and evaluate its
effectiveness in five real world clouds, including Google
Compute Engine (a.k.a. Google Cloud), HP Helion Pub-
lic Cloud, ElasticHosts, Joyent Cloud, and CloudSigma,
as well as in a controlled testbed environment, all yield-
ing promising results.

1 Introduction
As virtualization technology becomes more prevalent, a
variety of security methodologies have been developed
at the hypervisor level, including intrusion and malware
detection [26, 30], honeypots [48, 31], kernel rootkit de-
fense [42, 40], and detection of covertly executing bi-
naries [36]. These security services depend on the key
factor that the hypervisor is isolated from its guest OSes.
As the hypervisor runs at a more privileged level than
its guest OSes, at this level, one can control physical re-
sources, monitor their access, and be isolated from tam-
pering against attackers from the guest OS. Monitoring

of fine-grained information of the guest OSes from the
underlying hypervisor is called virtual machine intro-
spection (VMI) [26]. However, at the guest OS level re-
trieving information about the underlying hypervisor be-
comes very challenging, if not impossible. In this paper,
we label the reverse information retrieval with the coined
term virtual machine extrospection (VME). While VMI
has been widely used for security purposes during the
past decade, the reverse direction VME—the procedure
that retrieves the hypervisor information from the guest
OS level—is a new topic and has not been comprehen-
sively studied before.

VME can be critically important for both malicious
attackers and regular users. On one hand, from the at-
tackers’ perspective, when an attacker is in control of a
virtual machine (VM), either as a legal resident or af-
ter a successful compromise of the victim’s VM, the un-
derlying hypervisor becomes its attacking target. This
threat has been demonstrated in [35, 21], where an at-
tacker is able to mount a privilege escalation attack from
within a VMware virtual machine and a KVM-based vir-
tual machine, respectively, and then gains some control
of the host machine. Although these works demonstrate
the possibility of such a threat, successful escape attacks
from the guest to the host are rare. The primary reason
is that most hypervisors are, by design, invisible to the
VMs. Therefore, even if an attacker gains full control of
a VM, a successful attempt to break out of the VM and
break into the hypervisor requires an in-depth knowledge
of the underlying hypervisor, e.g., type and version of the
hypervisor. However, there is no straightforward way for
attackers to obtain such knowledge.

On the other hand, benign cloud users may also need
to know the underlying hypervisor information. It is
commonly known that hardware and software systems
both have various bugs and vulnerabilities, and different
hardware/software may exhibit different vulnerabilities.
Cloud customers, when making decisions on the choice
of a cloud provider, may want to know more informa-

mailto:jxiao@email.wm.edu
mailto:llei@vmware.com
mailto:haih@us.ibm.com
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tion about the underlying hardware or software. This will
help customers determine whether the underlying hard-
ware/software can be trusted, and thus help them decide
whether or not to use this cloud service. However, for
security reasons, cloud providers usually do not release
such sensitive information to the public or customers.

Whereas research efforts have been made to detect the
existence of a hypervisor [25, 22, 24, 50], from a guest
OS, to the best of our knowledge, there is no literature de-
scribing how to retrieve more detailed information about
the hypervisor, e.g., the kernel version of the host OS, the
distribution of the host OS (Fedora, SuSE, or Ubuntu?),
the CPU type, the memory type, or any hardware infor-
mation. In this paper, we make an attempt to investigate
this problem. More specifically, as a first step towards
VME, we study the problem of detecting/inferring the
host OS kernel version from within a guest OS, and we
expect our work will inspire more attention on mining
the information of a hypervisor. The major research con-
tributions of our work are summarized as follows:

• We are the first to study the problem of detect-
ing/inferring the host OS kernel version from within
a VM. Exploring the evolution of Linux KVM hy-
pervisors, we analyze various features and bugs in-
troduced in the KVM hypervisor; and then we ex-
plain how these features and bugs can be used to de-
tect/infer the hypervisor kernel version.

• We design and implement a novel, practical, auto-
matic, and extensible framework, called Hyperprobe,
for conducting the reverse information retrieval. Hy-
perprobe can help users in a VM to automatically de-
tect/infer the underlying host OS kernel version in
less than five minutes with high accuracy.

• We perform our experiments in five real world
clouds, including Google Compute Engine [3], HP
Helion Public Cloud [29], ElasticHosts [20], Joyent
Cloud [8], and CloudSigma [19], and our experimen-
tal results are very promising. To further validate the
accuracy of Hyperprobe, we perform experiments in
a controlled testbed environment. For 11 of the 35
kernel versions we studied, Hyperprobe can correctly
infer the exact version number; for the rest, Hyper-
probe can narrow it down to within 2 to 5 versions.

2 Background
Hypervisor, also named as virtual machine monitor, is a
piece of software that creates and manages VMs. Tra-
ditionally, hypervisors such as VMware and Virtual PC
use the technique of binary translation to implement vir-
tualization. Recently, x86 processor vendors including
Intel and AMD released their new architecture exten-
sions to support virtualization. Those hypervisors that
use binary translation are called software-only hypervi-

sors, and recent hypervisors that take advantage of these
processor extensions are called hardware assisted hyper-
visors [12]. In this paper, we focus on a popular hard-
ware assisted commodity hypervisor, Linux KVM. We
develop our framework and perform experiments on a
physical machine with Linux OS as the host, which runs
a KVM hypervisor, and a VM is running on top of the
hypervisor. Our study covers Linux kernel versions from
2.6.20 to 3.14. While 2.6.20, released in February 2007,
is the first kernel version that includes KVM, 3.14, re-
leased in March 2014, is the latest stable kernel at the
time of this study. More specifically, we study the evo-
lution of KVM over the past seven years and make three
major observations. In this section, we briefly describe
Linux KVM and report our observations.

2.1 Linux KVM

KVM refers to kernel-based virtual machine. Since
Linux kernel version 2.6.20, KVM is merged into the
Linux mainline kernel as a couple of kernel modules: an
architecture independent module called kvm.ko, and an
architecture dependent module called either kvm-intel.ko
or kvm-amd.ko. As a hardware assisted virtualization
technology, KVM relies heavily on the support of the
underlying CPUs and requires different implementations
for different CPU vendors, such as Intel VT-x and AMD
SVM. Figure 1 illustrates the basic architecture of KVM.
KVM works inside a host kernel and turns the host kernel
into a hypervisor. On top of the hypervisor, there can be
multiple VMs. Usually KVM requires a user-level tool
called Qemu to emulate various devices, and they com-
municate using predefined ioctl commands.

Over the years, KVM has changed significantly. The
original version in 2.6.20 consists of less than 20,000
lines of code (LOC); but in the latest 3.14 version, KVM
modules consist of about 50,000 LOC. The reason of
such growth is that 3485 KVM related patches have been
released by Linux mainline kernel1. By carefully analyz-
ing these patches, we make a few important observations
about the evolution of the KVM development process.

First, while ideally hypervisors should be transparent
to guest OSes, this is not realistic. In particular, dur-
ing its development process, on the one hand, KVM ex-
poses more and more processor features to a guest OS;
on the other hand, KVM has been provided with many
paravirtualization features. These changes improve per-
formance but at the cost of less transparency.

Second, for the sake of better resource utilization,
KVM has also included several virtualization-specific
features, e.g., nested virtualization [16] and kernel same

1KVM has recently started supporting non-x86 platform, such as
ARM and PPC; however, in this study, we only consider patches for
x86 platforms, i.e., the number 3485 does not include the patches for
the non-x86 platforms.
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Figure 1: KVM Overview

page merging (KSM) [15], many of which can be de-
tected from within the guest OS.

Third, similar to all other large projects, KVM have
bugs. Among the 3485 patches, about 30% of them are
bug fixes. In particular, we notice that a common type
of bugs in KVM is related to registers. This reflects the
fact that emulating a CPU is hard. Since a modern CPU
defines hundreds of registers, emulating the behaviors of
various registers correctly is challenging. Failing to do so
usually causes various unexpected results. In fact, regis-
ter related bugs have been reported on a regular basis.

During our study, we discover that these features and
bugs can help us determine the underlying hypervisor
kernel version. A more detailed description of our de-
sign approach is presented in Section 3.

2.2 Intel VT-x Extension

As a hardware assisted hypervisor, KVM relies on the
virtualization extensions of the underlying processors.
In 2006, both Intel (VT-x) and AMD (AMD-SVM) in-
troduced hardware virtualization extensions in their x86
processors. According to their respective manuals, these
two technologies are very similar to each other. Because
our current implementation of Hyperprobe is based on
the Intel processors, we will briefly describe Intel VT-x.

The key concept of Intel VT-x is that the CPU is split
into the root mode and the non-root mode. Generally,
the hypervisor runs in the root mode and its guests run
in the non-root mode. Transitions from the root mode to
the non-root mode are called VM entries, and transitions
from the non-root mode to the root mode are called VM
exits. The hypervisor can specify which instructions and
events cause VM exits. These VM exits actually allow
the hypervisor to retain control of the underlying physi-
cal resources. An example of a VM exit is, when a guest
OS attempts to access sensitive registers, such as control
registers or debug registers, it would cause a VM exit. A
handler defined by the hypervisor will then be invoked,
and the hypervisor will try to emulate the behavior of the
registers. As mentioned above, given the large number
of registers, register emulation is hard and error-prone.

The first generation of Intel VT-x processors mainly
simplifies the design of hypervisors. But since then,
more and more features have been included in their later
processor models. To name a few, Extended Page Ta-
ble (EPT), which aims to reduce the overhead of address

translation, is introduced by Intel since Nehalem proces-
sors, and VMCS shadow, which aims to accelerate nested
virtualization, is introduced since Haswell. Once these
new hardware features are released, modern hypervisors
such as KVM and Xen, provide their support for these
new features on the software side.

3 Design
Hyperprobe framework has the following goals:

• Practical: The framework should detect the under-
lying hypervisor kernel version within a reasonable
amount of time with high accuracy and precision. As
more test cases are added to provide more vantage
points of different kernel versions, its accuracy and
precision should also be improved.

• Automatic: The framework should run test cases,
collect and analyze results automatically without
manual intervention. To this end, the test cases
should not crash the guest or host OS.2

• Extensible: The framework should be easily ex-
tended to detect/infer future Linux kernel versions
and to add more vantage points to previously released
kernel versions. To this end, the whole framework
should be modular, and adding modules to the frame-
work should be easy.3

3.1 Technical Challenges

To meet these design goals, we faced several challenges:
even though the hypervisor introduces new features fre-
quently, how many of them are detectable from within
the guest OS? Similarly, how many hypervisor bugs are
detectable from within the guest OS?

After manually analyzing the aforementioned 3485
patches, we found a sufficient number of features and
bugs that meet our requirements. Tables 1 and 2 il-
lustrate the features and bugs we have selected for our
framework. To exploit each, it would require an in-depth
knowledge of the kernel and also a good understanding
of the particular feature/bug. Due to limited space, we
are not able to explain each of the features/bugs, but we
will choose some of the more interesting ones and ex-
plain them in the next section as case studies. In this
section, we elaborate on how we use these features and
bugs to infer the underlying hypervisor kernel version.

3.2 KVM Features

KVM releases new features regularly. One may infer the
underlying hypervisor kernel version using the following

2Kernel bugs that cause guest or host OS to crash are very common,
but we purposely avoided using them in our test cases. One could uti-
lize these bugs to gain more vantage points, but they should be used
with great caution.

3We plan to make Hyperprobe an open source project so that every-
one can contribute, making it more robust and accurate.

3
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Table 1: Features We Use in Current Implementation of Hyperprobe

Kernel Major Version Features Description

2.6.20 KVM first merged into Linux mainline kernel
2.6.21 Support MSR KVM API MAGIC Custom MSR register support
2.6.23 SMP support Support multiple processors for guest OS
2.6.25 Expose KVM CPUID to guest KVM CPUID SIGNATURE
2.6.26 EPT/NPT support Extended/Nested Page Table
2.6.27 MTRR support Support the memory type range registers for guest OS
2.6.30 Debug register virtualization Add support for guest debug
2.6.31 POPCNT support Support POPCNT instruction in guest OS
2.6.32 KSM support Kernel Same Page Merging
2.6.34 RDTSCP support, Microsoft Enlightenment Support RDTSCP instruction and Microsoft Enlightenment
2.6.35 New kvmclock interface Support paravirtualized clock for the guest
2.6.38 Support MSR KVM ASYNC PF EN Enable asynchronous page faults delivery

3.1 Add ”steal time” guest/host interface Enable steal time
3.2 Support HV X64 MSR APIC ASSIST PAGE Support for Hyper-V lazy EOI processing
3.3 PMU v2 support Expose a version 2 of Performance Monitor Units to guest
3.6 Support MSR KVM PV EOI EN Support End of Interrupt Paravirtualization
3.10 Support preemption timer for guest Support preemption timer for guest
3.12 Nested EPT Expose Nested Extended Page Table to guest OS
3.13 Support Nested EPT 2MB pages Expose 2MB EPT page to guest
3.14 Support HV X64 MSR TIME REF COUNT Support for Hyper-V reference time counter

Table 2: Bugs We Use in Current Implementation of Hyper-
probe

Fixed Bug Description Intro’ed

2.6.22 MSR IA32 MCG STATUS not writable 2.6.20

2.6.23 MSR IA32 EBL CR POWERON 2.6.20not readable
2.6.25 MSR IA32 MCG CTL not readable 2.6.20

2.6.26 MSR IA32 PERF STATUS 2.6.20wrong return value upon read
2.6.28 MSR IA32 MC0 MISC+20 not readable 2.6.20
2.6.30 MSR VM HSAVE PA not readable 2.6.20
2.6.31 MSR K7 EVNTSEL0 not readable 2.6.20
2.6.32 DR register unchecked access 2.6.20

2.6.34 No support for clear bit 10 of 2.6.20msr register MSR IA32 MC0 CTL

2.6.35 No support for write 2.6.200x100 to MSR K7 HWCR
2.6.37 MSR EBC FREQUENCY ID not readable 2.6.20
2.6.39 MSR IA32 BBL CR CTL3 not readable 2.6.20

3.2 MSR IA32 UCODE REV 2.6.20returns invalid value upon read
3.4 Write 0x8 to MSR K7 HWCR is buggy 2.6.20

3.5 CPUID returns incorrect value 2.6.25for KVM leaf 0x4000000
3.8 MSR IA32 TSC ADJUST not readable 2.6.20
3.9 MSR AMD64 BU CFG2 not readable 2.6.20

3.10 MSR IA32 VMX ENTRY CTLS 3.1is not set properly as per spec

3.12 MSR IA32 FEATURE CONTROL 3.1behave weirdly

3.14 MSR IA32 APICBASE 2.6.20reserve bit is writable

5.1.2014 12.30.2014
6.1.20147.1.20148.1.20149.1.201410.1.201411.1.201412.1.20142.6.30 2.6.31 2.6.32 2.6.33 2.6.34 2.6.35 2.6.36... ...

6/2/2014 - 10/2/2014

Detect feature A and bug B
11/1/2014

Bug B is fixed in 2.6.35

6/2/2014 - 10/2/2014
Interval Description

6/1/2014
Feature A is introduced in 2.6.30

Figure 2: An Inferring Example of The Hyperprobe

logic: if feature A is introduced in 2.6.30 and feature B
is introduced in 2.6.35, then if one can detect feature A
but not B, one may infer that the underlying host kernel

version is between 2.6.30 and 2.6.34. However, this may
lead to inaccuracies. Since even if feature B is introduced
into the Linux mainline kernel on a particular release,
the feature could be disabled by system administrators.
Therefore, even if feature B is not detected, it does not
mean the underlying hypervisor kernel version is older
than 2.6.35. Such customizations could impact precision.

To avoid such inaccuracies, Hyperprobe uses the fol-
lowing strategy to handle the existence or non-existence
of a kernel feature: if we detect a feature exists, we as-
sert that the underlying hypervisor kernel version is no
older than the version in which this feature was first in-
troduced. By designing test cases that detect these fea-
tures, we report a minimum version number. This num-
ber can be viewed as the lower bound of the underlying
hypervisor kernel version.

3.3 KVM Bugs and Bug Fixes

KVM has bugs and bug fixes like any other software. If
bugs can be detected from within the guest OS, then one
may infer the underlying hypervisor kernel version us-
ing the following logic: assuming bug A is fixed in ker-
nel version 2.6.30, and bug B is fixed in kernel version
2.6.35. If one detects that bug A does not exist but bug B
does, one may infer that the underlying hypervisor kernel
is between 2.6.30 and 2.6.34. Similarly, this may lead to
inaccuracies, as a bug could be manually fixed in an older
kernel without updating the entire kernel. Therefore, the
non-existence of a bug does not necessarily mean the ker-
nel is newer than a particular version.

To avoid such inaccuracies, Hyperprobe uses the fol-
lowing strategy to handle the existence or non-existence
of a kernel bug: if a bug is detected, we assert that the
underlying kernel version is older than the kernel ver-
sion where this bug is fixed. By creating test cases that
detect kernel bugs, we report a maximum version num-

4
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ber. This number can be viewed as the upper bound of
the underlying hypervisor kernel version. Along with the
test cases that detect kernel features, which can report a
lower bound, we can then narrow down the hypervisor
kernel to a range of versions. Figure 2 illustrates an ex-
ample: upon the detection of feature A and bug B, we
report that the hypervisor has kernel version 2.6.30 as
the lower bound and 2.6.34 as the upper bound.

4 Implementation
Our framework implementation consists of 3530 lines of
C code (including comments). To meet the extensible
goal, we implement the framework of Hyperprobe in a
very modular fashion. More specifically, we design 19
test cases for feature detection and 20 test cases for bug
detection. Each test case is designed for detecting a spe-
cific feature or bug, and is therefore independent of any
other test cases. On average, each test case consists of 80
lines of C code. Such a design model makes Hyperprobe
fairly extensible. If we identify any other detectable fea-
tures or bugs later, they can be easily added.

We define two linked lists, named kvm feature testers
and kvm bug testers. The former includes all the feature
test cases, and the latter includes all the bug test cases.
Each feature test case corresponds to a kernel version
number, which represents the kernel in which the feature
is introduced. The feature test cases are sorted using this
number and the bug test cases are organized similarly.

Hyperprobe executes as follows. The detection algo-
rithm involves two steps. First, we call the feature test
cases in a descending order. As soon as a feature test
case returns true, which suggests the feature exists, we
stop the loop and report the corresponding number as the
lower bound. Second, we call the bug test cases in an
ascending order. As soon as a bug test case returns true,
which suggests the bug exists, we stop the loop and re-
port the corresponding number as the upper bound.

Most hypervisor kernel features and bugs that we have
chosen in this study can be easily detected within the
guest OS. In what follows, we describe some of the more
interesting ones as case studies.

4.1 Case Studies: Kernel Features

4.1.1 Kernel Samepage Merging

Kernel samepage merging (KSM) [15], introduced in
Linux kernel 2.6.32, is a mechanism to save memory,
allowing memory overcommitment. This is a crucial
feature in a virtualized environment, where there could
be a large number of similar VMs running on top of
one hypervisor. Other popular hypervisors, such as Xen
and VMware, have also implemented similar features
[49, 27]. Consequently, if we can detect KSM is enabled
we can ascertain that the underlying hypervisor kernel is
newer than or equal to version 2.6.32.

Memory Page 1
(non shared page)

Memory Page 2
(non shared page)

Memory Page 1
(shared page)Identical? If yes, merge Memory Page 1

(shared page)

Memory Page 1
(non shared page)

Memory Page 2
(non shared page)

copy on write

(a) (b)

Figure 3: Kernel Same Page Merging
(a) merging identical pages (b) a copy-on-write

technique is used when a shared page is modified

KSM scans memory pages and merges those that are
identical. Merged pages are set to be copy-on-write, il-
lustrated in Figure 3. This technique is widely used,
and it has been proven to be effective in saving mem-
ory. However, due to copy-on-write, a write to a shared
page incurs more time than a write to a non-shared page.
Existing research [46, 50] has shown that this timing dif-
ference is large enough to tell if KSM is enabled.

Algorithm 1 describes the procedure of testing KSM.
The basic idea of this algorithm is as follows. We first
load a random file into memory and write to each page
of this file (in memory), then we record the accumulated
write access time and call this time t1. Next, we load this
file again into two separate memory regions, and wait
for some time. If KSM is enabled, the identical pages
between these two files will be merged. We then write
into each page of this file (in memory), and record the
accumulated write access time as t2. If t2 is significantly
larger than t1, namely, the ratio t2/t1 is greater than a pre-
defined threshold, we assume KSM is enabled; other-
wise, we assume it is not enabled. In fact, in our testbed,
we observe that t2 is as much as 10 times larger than t1.
Even in five real cloud environments, we observe that t2
is still 2 to 5 times larger than t1. Thus, we choose 2 as
the threshold to detect if KSM is enabled or not.

4.1.2 Extended Page Table (EPT)

Traditionally, commercial hypervisors including KVM,
Xen, and VMware, all use the shadow page table tech-
nique to manage VM memory. The shadow page table
is maintained by the hypervisor and stores the mapping
between guest virtual address and machine address. This
mechanism requires a serious synchronization effort to
make the shadow page table consistent with the guest
page table. In particular, when a workload in the guest
OS requires frequent updates to the guest page tables,
this synchronization overhead can cause very poor per-
formance. To address this problem, recent architecture
evolution in x86 processors presents the extended/nested
page table technology (Intel EPT and AMD NPT). With
this new technology, hypervisors do not need to main-

5
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Algorithm 1: Detecting KSM
Global Var: file

1 Procedure test ksm()
2 load file once into memory (file);

// record the clock time before we write

to each page of the file
3 time1 ← clock gettime();
4 foreach page of file in memory do
5 write to that page;

// record the clock time before we write

to each page of the file
6 time2 ← clock gettime();
7 t1 ← diff(time1, time2);
8 load file twice into memory (file);

// sleep and hope the two copies will be

merged
9 sleep (NUM OF SECONDS);

// record the clock time before we write

to each page of the file
10 time1 ← clock gettime();
11 foreach page of file in memory do
12 write to that page;

// record the clock time after we write

to each page of the file
13 time2 ← clock gettime();
14 t2 ← diff(time1, time2);
15 ratio ← t2/t1;
16 if ratio > KSM THRESHOLD then
17 return 1;
18 else
19 return 0;

tain shadow page tables for the VMs, and hence avoid
the synchronization costs of the shadow page table sce-
nario. The difference between shadow page table and
extended page table is illustrated in Figure 4.

Before kernel 2.6.26, KVM uses shadow page table to
virtualize memory. Since kernel 2.6.26, KVM starts to
support Intel EPT and enable it by default. Therefore, if
we can detect the existence of EPT from within the guest
OS, we can assume the underlying hypervisor kernel is
newer than or equal to version 2.6.26. Algorithm 2 de-
scribes the EPT detection mechanism, and we derive this
algorithm from the following observations:

• On a specific VM, no matter whether the underlying
hypervisor is using shadow page table or EPT, the
average time to access one byte in memory is very
stable. We have measured this across 30 virtual ma-
chines (with different hardware and software config-
urations). Note that although the time cost may vary
across different machines, it remains nearly the same
when we switch from EPT to shadow page table, or
from shadow page table to EPT.

• When running a benchmark that requires frequent
memory mapping changes, EPT offers significant
performance improvements over shadow page ta-
ble. Particularly, we choose the classic forkwait mi-
crobenchmark, which has been widely employed [12,
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Figure 4: Shadow Page Table and Extended Page Table
(a) shadow page table (b) extended page table

13, 17],to evaluate virtualization performance. The
main part of this benchmark repeats the operation of
process creation and destruction very aggressively.
Similar to [17], we have tested the forkwait mi-
crobenchmark across 30 VMs (with different hard-
ware and software configurations), and have consis-
tently observed that EPT offers approximately 600%
performance gains over shadow page table.

Therefore, our algorithm can be elaborated as follows.
First we allocate a memory page, compute the average
time to access one byte of the memory page, and use this
average time as a baseline. Next, we run the forkwait
microbenchmark, compute the average time to fork-wait
one process, and record the ratio between these two aver-
age times (average time to fork-wait one process divided
by average time to access one byte of memory page). On
all VMs we have tested, this ratio is larger than 100,000
when the hypervisor is using shadow page table, and it is
usually between 10,000 to 20,000 when the hypervisor is
using EPT. Therefore, we can choose a threshold, and if
the ratio is less than that threshold, we assume the under-
lying hypervisor is using EPT; otherwise, we assume it
is using shadow page table. Our current implementation
uses 30,000 as the threshold.

4.1.3 Emulating Hyper-V and Support Microsoft
Enlightenment

Microsoft Enlightenment is an optimization made by Mi-
crosoft to Windows systems when running in a virtual-
ized environment. The key idea is to let the guest OS be
aware of the virtualized environment, and therefore tune
its behavior for performance improvement. Recent Win-
dows systems, such as Windows Server 2008, and Win-
dows Vista, are fully enlightened [45, 43], which means

6



USENIX Association  29th Large Installation System Administration Conference (LISA15) 7

Algorithm 2: Detecting EPT
Global Var: forkwait one process avg, access one byte avg

1 Procedure forkwait one process ()
// read time stamp counter before we run

the forkwait benchmark
2 counter1 ← rdtsc();
3 for i ← 0 to NUM OF PROCESS do
4 pid ← fork();
5 if pid = 0 then // child process
6 exit (0);
7 else

// parent process, wait until

child process exits
8 wait (&status);

// read time stamp counter when the

forkwait benchmark is finished
9 counter2 ← rdtsc();

10 cycles ← counter2− counter1;
// compute average time for fork-waiting

one process
11 f orkwait one process avg ← cycles/NUM OF PROCESS;

12 Procedure access one byte (iterations)
13 o f f set ← 0;
14 page ← malloc(sizeof(PAGE SIZE));

// read time stamp counter before we

access memory bytes
15 counter1 ← rdtsc();
16 for i ← 0 to iterations do
17 page[o f f set]← (page[o f f set]+1) mod 256;
18 o f f set ← (o f f set +1) mod PAGE SIZE;

// read time stamp counter after we

access memory bytes
19 counter2 ← rdtsc();
20 cycles ← counter2− counter1;

// compute average time for accessing

one byte
21 access one byte avg ← cycles/iterations;

22 Procedure one time run()
23 access one byte(num o f iterations);
24 forkwait one process();
25 ratio ← f orkwait one process avg/access one byte avg;
26 if ratio < EPT THRESHOLD then
27 return 1;
28 else
29 return 0;

30 Procedure test ept()
31 for i ← 0 to LOOP NUMBER do
32 if one time run() = 1 then
33 return 1 ;

34 return 0;

they take full advantage of the possible enlightenments.
Microsoft Enlightenment was originally designed for

Hyper-V, but Microsoft provides APIs for other hy-
pervisors to utilize this optimization. Since kernel
2.6.34, KVM has started utilizing these APIs and sup-
porting Microsoft Enlightenment. According to the
Hyper-V specification [6, 7], several synthetic regis-
ters are defined, including HV X64 GUEST OS ID,
HV X64 HYPERCALL, HV X64 VP INDEX, as well
as the EOI/TPR/ICR APIC registers. Details of these
registers are shown in Table 3. Before kernel 2.6.34,

accessing these registers would generate a general pro-
tection fault, but since kernel 2.6.34, they should be ac-
cessible whether accessing from a Windows or Linux
guest OS. Thus, we attempt to access these registers.
If they are accessible, we assume the kernel version is
newer than or equal to version 2.6.34; otherwise, the fea-
ture may not be present, but we do not make any asser-
tion regarding the underlying kernel version. In addi-
tion, in some later kernel versions, more Hyper-V de-
fined synthetic registers are emulated by KVM. For ex-
ample, HV X64 MSR TIME REF COUNT is emulated
in kernel 3.14. Thus, successful access to the register
suggests that the underlying hypervisor kernel should be
as new as 3.14.

4.2 Case Studies: Kernel Bugs

4.2.1 Debug Register Unchecked Access

Debug registers are protected registers. They should only
be accessed by ring 0 code, namely kernel code. How-
ever, before kernel 2.6.32, KVM does not check the priv-
ilege of the guest code that accesses the debug registers.
Therefore, any process, regardless of its current privilege
level (CPL), is able to read from and write to debug reg-
isters. This leads to a security issue in the guest OS, as
attackers might be able to implement the infamous DR
rootkit [14, 28] without installing a kernel module, thus
making the rootkit more difficult to detect even from the
hypervisor level.

On kernel 2.6.32, KVM maintainer, Avi Kivity, sub-
mitted a patch that fixed this bug. The patch would check
the CPL before accessing debug registers, and would
generate a fault if the CPL is greater than zero. We built
a simple test case based on this bug. The basic idea is
to use the fork system call to create a child process, and
let the child process try to access a debug register. If the
bug is fixed, the child process should be terminated by a
segmentation fault signal. But if the bug has not yet been
fixed, the child process will continue to run and eventu-
ally exit normally. Therefore, we let the parent process
wait until the child process exits, and check the exit sta-
tus of the child process. If it exits normally, we report the
bug still exists; otherwise, we report the bug is fixed.

4.2.2 Model Specific Register (MSR) Bugs

CPU vendors such as Intel and AMD define hundreds
of model specific registers on their processors. Some of
these registers are common across different types of pro-
cessors, while others might only exist in a specific pro-
cessor. Due to the large variety of such registers, over
the years, emulating the behavior of these registers has
always been a painful task in modern hypervisors. Be-
cause of this, Andi Kleen, a key maintainer of Linux ker-
nels, who used to be in charge of the x86 64 and i386
architectures, believes that it is impossible to emulate a

7
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Table 3: Hyper-V Defined Synthetic Registers

Register Name Address Description Supported in Linux Kernel Since

HV X64 MSR GUEST OS ID 0x40000000 Used to identify guest OS 2.6.34
HV X64 MSR HYPERCALL 0x40000001 Used to enable/disable Hypercall 2.6.34

HV X64 MSR VP INDEX 0x40000002 Used to identify virtual processor 2.6.34
HV X64 MSR EOI 0x40000070 Fast access to APIC EOI register 2.6.34
HV X64 MSR ICR 0x40000071 Fast access to APIC ICR register 2.6.34
HV X64 MSR TPR 0x40000072 Fast access to APIC TPR register 2.6.34

HV X64 MSR APIC ASSIST PAGE 0x40000073 Used to enable/disable lazy EOI processing 3.2
HV X64 MSR TIME REF COUNT 0x40000020 Time reference counter 3.14

particular CPU 100% correctly [33].

However, incorrect emulation of these registers could
cause problems in the guest OS. For example, to fix their
hardware defects, Intel defines a capability in its Pen-
tium 4, Intel Xeon, and P6 family processors called mi-
crocode update facility. This allows microcode to be up-
dated if needed to fix critical defects. After microcode
is updated, its revision number is also updated. BIOS or
OS can extract this revision number via reading the MSR
register IA32 UCODE REV, whose address is 0x8BH.
Previously, in Linux kernel, when the guest tries to read
this register, KVM would return an invalid value, which
is 0, and this would cause Microsoft Windows 2008 SP2
server to exhibit the blue screen of death (BSOD). To fix
this problem, since kernel 3.2, KVM reports a non-zero
value when reading from IA32 UCODE REV. Details of
this bug fix can be found in [47].

Our detection is also straightforward: Linux kernel
provides a kernel module called msr that exports an in-
terface through file /dev/cpu/cpuN/msr, where N refers
to the CPU number. This interface allows a user level
program to access MSR registers. Therefore, we can
detect the bug by accessing this file with the address of
IA32 UCDOE REV, which is 0x0000008b according to
Intel’s manual. If a read to this register returns 0, we can
assert that the bug exists.

5 Evaluation

To demonstrate how Hyperprobe performs in the wild,
we ran its test suite on VMs provisioned from different
public cloud providers to detect their hypervisor kernel
versions. In most cases, we were able to narrow the sus-
pected hypervisor kernel versions down to a few; in one
case, we even had an exact match. However, as pub-
lic cloud providers do not disclose detailed information
about the hypervisors they are using (for obvious security
reasons), we had to find other means to confirm these re-
sults, such as user forums and white papers. Our results
do coincide with what are being reported via these side
channels. To more rigorously verify the accuracy of Hy-
perprobe, we also evaluated it in a controlled testbed en-
vironment across 35 different kernel versions with very
encouraging results.

5.1 Results in Real World Clouds

The public cloud providers we selected in this study in-
clude Google Compute Engine, HP Helion Public Cloud,
ElasticHosts, Joyent Cloud, and CloudSigma. (all KVM-
based) In our experiments, we intentionally created VMs
with different configurations to test the detection robust-
ness and accuracy of our framework. The results are
shown in Tables 4, 5, 6, 7, and 8. Running the test suite
and analyzing the collected results take less than 5 min-
utes to complete, which is fairly reasonable from a prac-
tical point of view. In fact, we observe that the running
time is mainly dominated by those test cases that require
sleeping or running some microbenchmarks. In what fol-
lows, we detail our findings for each cloud provider.

5.1.1 Google Compute Engine

Google Compute Engine is hosted in data centers located
in Asia, Europe, and America. One can choose the num-
ber of VCPUs per VM ranging from 1 to 16. Hyper-
probe shows that Google is using a kernel version be-
tween 3.2 and 3.3 in its hypervisors. According to a re-
cent work [37] and some online communications written
by Google engineers [32, 1], Debian 7 is most likely used
in its hypervisors as this Linux distribution is widely used
in its production environments. The default kernel of De-
bian 7 is 3.2.0-4, agreeing with our findings.

5.1.2 HP Helion Public Cloud

HP Helion Public Cloud is hosted in data centers in U.S.
East and West regions. One can choose the number of
VCPUs per VM ranging from 1 to 4. Hyperprobe de-
tected that the HP cloud is using a kernel version between
3.2 and 3.7 in its hypervisors. According to some unoffi-
cial online documents and web pages [4, 5], HP is most
likely using Ubuntu 12.04 LTS server as its host OS. The
default kernel of Ubuntu 12.04 LTS is 3.2, falling within
the range reported by our framework.

5.1.3 ElasticHosts

ElasticHosts is the first public cloud service provider to
use Linux-KVM as its hypervisors [2]. Its data centers
are located in Los Angeles, CA and San Antonio, TX.
For free trial users, a VM with only 1 VCPU and 1GB
of memory is given. Hyperprobe reported that the un-
derlying hypervisor kernel version should be 3.6 to 3.8.
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Table 4: Inferring Host Kernel Version in Google Compute Engine

VM Name Zone Machine Type Image VCPU VCPU Frequency RAM Disk Min Max
gg-test1 asia-east1-a n1-standard-1 SUSE SLES 11 SP3 1 2.50GHZ 3.8GB 10G 3.2 3.3
gg-test2 asia-east1-b n1-highcpu-16 SUSE SLES 11 SP3 16 2.50GHZ 14.4GB 10G 3.2 3.3
gg-test3 us-central1-a n1-highmem-16 Debian 7 wheezy 16 2.60GHZ 8GB 104G 3.2 3.3
gg-test4 us-central1-b f1-micro backports Debian 7 wheezy 1 2.60GHZ 4GB 0.6G 3.2 3.3
gg-test5 europe-west1-a n1-highmem-4 backports Debian 7 wheezy 4 2.60GHZ 26GB 10G 3.2 3.3
gg-test6 europe-west1-b n1-standard-4 Debian 7 wheezy 4 2.60GHZ 15GB 10G 3.2 3.3

Table 5: Inferring Host Kernel Version in HP Helion Cloud (3 Month Free Trial)

VM Name Region Zone Size Image VCPU VCPU Frequency RAM Disk Min Max
hp-test1 US East az2 standard xsmall SUSE SLES 11 SP3 1 2.4GHZ 1GB 20G 3.2 3.7
hp-test2 US East az2 standard xlarge SUSE SLES 11 SP3 4 2.4GHZ 15GB 300G 3.2 3.7
hp-test3 US East az3 standard large SUSE SLES 11 SP3 4 2.4GHZ 8GB 160G 3.2 3.7
hp-test4 US East az1 standard medium SUSE SLES 11 SP3 2 2.4GHZ 4GB 80G 3.2 3.7
hp-test5 US West az1 standard medium Ubuntu 10.04 2 2.4GHZ 4GB 80G 3.2 3.7
hp-test6 US West az3 standard xlarge Debian Wheezy 7 4 2.4GHZ 15GB 300G 3.2 3.7

Table 6: Inferring Host Kernel Version in ElasticHosts Cloud (5 Day Free Trial)

VM Name Location Image VCPU (Only 1 allowed for free trial) RAM Disk Min Max
eh-test1 Los Angeles Ubuntu 13.10 2.8GHz 1GB 10GB 3.6 3.8
eh-test2 Los Angeles Cent OS Linux 6.5 2.8GHz 512MB 5GB SSD 3.6 3.8
eh-test3 Los Angeles Debian Linux 7.4 2.8GHz 512MB 5GB 3.6 3.8
eh-test4 Los Angeles Ubuntu 14.04 LTS 2.8GHz 1GB 10GB 3.6 3.8
eh-test5 San Antonio Ubuntu 12.04.1 LTS 2.5GHz 1GB 5GB 3.6 3.8
eh-test6 San Antonio CentOS Linux 6.5 2.5GHz 512MB 10GB 3.6 3.8

For this provider, we were not able to find information to
confirm if our finding is correct.

5.1.4 Joyent Cloud

Joyent Cloud is yet another IaaS cloud service provider
that uses KVM as its hypervisors [11]. Its data centers
are located in U.S. East, West, and Southwest regions, as
well as in Amsterdam, Netherlands. It provides a one-
year free trial with very limited resources (i.e., 0.125
VCPU and 256MB of memory). Hyperprobe reported
that the hypervisors hosting the free trial machines are
using a rather old 2.6.34 kernel (an exact match).

Further investigation showed that Joyent runs a custom
kernel called SmartOS in its hypervisors. It was created
based on Open Solaris and Linux KVM, and we con-
firmed that Linux 2.6.34 is the version that Joyent engi-
neers have ported into SmartOS [18].

5.1.5 CloudSigma

CloudSigma is an IaaS cloud service provider based in
Zurich, Switzerland. However, its data centers are lo-
cated in Washington, D.C. and Las Vegas, NV. For free
trial users, only one VCPU with 2GB of memory can be
obtained. Hyperprobe reported that the underlying hy-
pervisor kernel version should be between 3.6 and 3.13.

The main reason that CloudSigma’s result spans a
wider range than others is its usage of AMD processors
in its data centers. Our current implementation of Hy-
perprobe is optimized only for Intel processors. KVM
includes an architecture dependent module, namely kvm-
intel.ko and kvm-amd.ko, for Intel and AMD, respec-
tively. Although some features and bugs are common
in both architectures, others may not be. And these

architecture-specific features and bugs can further im-
prove the accuracy of Hyperprobe’s reported results. The
result for CloudSigma was mainly based on the common
features and bugs, and thus, Hyperprobe was not able to
narrow down the kernel versions as much as it could for
the Intel-based cloud providers.

5.1.6 Summarizing Findings in Public Clouds

We found several interesting facts about these clouds:

• Even if a cloud provider has multiple data centers
spread across various geographic locations, it is very
likely that they are using the same kernel version and
distribution. This confirms the conventional wisdom
that standardization and automation are critical to
the maintainability of an IT environment as it grows
more complex. Modern cloud providers’ data centers
are as complicated as they can get.

• Cloud providers usually do not use the latest kernel.
At the time of our study, the latest stable Linux kernel
is version 3.14, which was released in March 2014,
and our experiments were performed in June 2014.
However, we can see cloud providers like HP and
ElasticHosts are still using kernels older than version
3.8, which was released in February 2013. Google
and Joyent Cloud are using even older kernels. This
is understandable as newer kernels might not have
been extensively tested, and therefore, it could be
risky to use them for production workloads.

5.2 Results in a Controlled Testbed

To better observe if what Hyperprobe detects is really
what is deployed, we ran the same test suite in a con-
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Table 7: Inferring Host Kernel Version in Joyent Cloud (1 Year Free Trial)

VM Name Location Image VCPU (Only 1 allowed for free trial) RAM Disk Min Max
jy-test1 US-East CentOS 6.5 3.07GHz 250MB 16GB 2.6.34 2.6.34
jy-test2 US-SouthWest Ubuntu Certified 14.04 2.40GHz 250MB 16GB 2.6.34 2.6.34
jy-test3 US-West CentOS 6.5 2.40GHz 250MB 16GB 2.6.34 2.6.34
jy-test4 EU-Amsterdam Ubuntu Certified 14.04 2.40GHz 250MB 16GB 2.6.34 2.6.34

Table 8: Inferring Host Kernel Version in CloudSigma (7 Day Free Trial)

VM Name Location Image VCPU (Only 1 allowed for free trial) RAM Disk Min Max
cs-test1 Washington DC CentOS 6.5 Server 2.5GHz 2GB 10GB SSD 3.6 3.13
cs-test2 Washington DC Fedora 20 Desktop 2.5GHz 1GB 10GB SSD 3.6 3.13
cs-test3 Washington DC Debian 7.3 Server 2.5GHz 512MB 10GB SSD 3.6 3.13
cs-test4 Washington DC SUSE SLES 11 SP3 2.5GHz 2GB 10GB SSD 3.6 3.13

trolled testbed environment across all the 35 major Linux
kernel releases (2.6.20 to 3.14) since KVM was first in-
troduced. The testbed is a Dell Desktop (with Intel Xeon
2.93GHz Quad-Core CPU and 2GB memory) running
OpenSuSE 11.4. We used OpenSuSE 11.4 as the guest
OS running a 3.14 Linux kernel. We manually compiled
each of the 35 kernels and deployed it as the kernel used
in our hypervisor. After each set of experiments, we shut
down the guest OS and rebooted the host OS.

The results are listed in Table 9. To sum up, from Ta-
ble 9, it can be seen that, among the 35 host OS kernel
versions, we can find an exact match for 11 of them; for
15 of them, we can narrow down to 2 versions; for 4 of
them, we can narrow down to 3 versions; for 4 of them,
we can narrow down to 4 versions; and for 1 of them, we
can narrow down to 5 versions.

6 Discussion
In this section, we discuss some potential enhancements.

6.1 Other Hypervisors

Our current framework is developed for KVM, but the
approach we propose should certainly work for other
popular hypervisors such as Xen. In fact, we notice that
KVM and Xen share many of the same features and bugs.
For instance, They both support the Microsoft enlighten-
ment feature, and we also notice that some MSR register
bugs exist in both KVM and Xen. Therefore, we plan
to include the support for Xen hypervisors in our frame-
work.

Meanwhile, we are also trying to enhance our frame-
work for closed-source hypervisors, such as VMware
and Hyper-V. Even though their source codes are not
available, the vendors provide a release note for each ma-
jor release, which clearly states their new features. And
the bugs of these hypervisors are also publicly available.

6.2 Open Source

We have implemented Hyperprobe as a framework,
which includes different test cases, but each test case is
totally separated from all the other test cases. In other
words, each test case can be developed separately. Such

Table 9: Inferring Results in a Controlled Testbed

Kernel Reported Min Reported Max Accuracy

2.6.20 2.6.20 2.6.21 2 versions
2.6.21 2.6.21 2.6.21 exact match
2.6.22 2.6.21 2.6.22 2 versions
2.6.23 2.6.23 2.6.24 2 versions
2.6.24 2.6.23 2.6.24 2 versions
2.6.25 2.6.25 2.6.25 exact match
2.6.26 2.6.25 2.6.27 3 versions
2.6.27 2.6.27 2.6.27 exact match
2.6.28 2.6.27 2.6.29 3 versions
2.6.29 2.6.27 2.6.29 3 versions
2.6.30 2.6.30 2.6.30 exact match
2.6.31 2.6.31 2.6.31 exact match
2.6.32 2.6.32 2.6.33 2 versions
2.6.33 2.6.32 2.6.33 2 versions
2.6.34 2.6.34 2.6.34 exact match
2.6.35 2.6.35 2.6.36 2 versions
2.6.36 2.6.35 2.6.36 2 versions
2.6.37 2.6.35 2.6.38 4 versions
2.6.38 2.6.38 2.6.38 exact match
2.6.39 2.6.38 3.1 4 versions

3.0 2.6.38 3.1 4 versions
3.1 3.1 3.1 exact match
3.2 3.2 3.3 2 versions
3.3 3.3 3.3 exact match
3.4 3.3 3.4 2 versions
3.5 3.3 3.7 5 versions
3.6 3.6 3.7 2 versions
3.7 3.6 3.7 2 versions
3.8 3.6 3.8 3 versions
3.9 3.6 3.9 4 versions

3.10 3.10 3.11 2 versions
3.11 3.10 3.11 2 versions
3.12 3.12 3.13 2 versions
3.13 3.13 3.13 exact match
3.14 3.14 3.14 exact match

a key property allows it to meet one of our design goals:
extensible. In fact, we plan to make it open source, so
that we can rely on a community of users to use it and
contribute additional test cases. The more vantage points
(i.e., test cases) we have, the better precision our detec-
tion result can achieve. And this will certainly accelerate
our development process and our support for the other
hypervisors.

7 Related Work

We survey related work in two categories: detection of a
specific hypervisor and attacks against hypervisors.
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7.1 Detection of Hypervisors

Since virtualization has been widely used for deploying
defensive solutions, it is critical for attackers to be able
to detect virtualization, i.e., detect the existence of a hy-
pervisor. To this end, several approaches have been pro-
posed for detecting the underlying hypervisors and are
briefly described as follows.

RedPill [44] and Scooby Doo [34] are two techniques
proposed to detect VMware, and they both work be-
cause VMware relocates some sensitive data structures
such as Interrupt Descriptor Table (IDT), Global De-
scriptor Table (GDT), and Local Descriptor Table (LDT).
Therefore, one can examine the value of the IDT base,
if it exceeds a certain value or equals a specific hard-
coded value, then one assumes that VMware is being
used. However, these two techniques are both limited
to VMware detection and are not reliable on machines
with multi-cores [41]. By contrast, the detection tech-
nique proposed in [41] is more reliable but only works on
Windows guest OSes. Their key observation is that be-
cause LDT is not used by Windows, the LDT base would
be zero in a conventional Windows system but non-zero
in a virtual machine environment. Therefore, one can
simply check for a non-zero LDT base on Windows and
determine if it is running in VMware environment.

A variety of detection techniques based on timing
analysis have also been proposed in [25, 23].The basic
idea is that some instructions (e.g., RDMSR) are inter-
cepted by hypervisors and hence their execution time is
longer than that on a real machine. One can detect the
existence of a hypervisor by measuring the time taken
to execute these instructions. Note that all these previ-
ous works can only detect the presence of a hypervisor
and/or its type, but none are able to retrieve more de-
tailed information about the underlying hypervisor, such
as its kernel version.

7.2 Attacks against Hypervisors

Modern hypervisors often have a large code base, and
thus, are also prone to bugs and vulnerabilities. Con-
sidering a hypervisor’s critical role in virtualized en-
vironments, it has been a particularly attractive tar-
get for attackers. Vulnerabilities in hypervisors have
been exploited by attackers, as demonstrated in prior
work [35, 21]. Perez-Botero et al. [39] characterized var-
ious hypervisor vulnerabilities by analyzing vulnerabil-
ity databases, including SecurityFocus [10] and NIST’s
Vulnerability Database [9]. Their observation is that al-
most every part of a hypervisor could have vulnerabili-
ties. Ormandy [38] classified the security threats against
hypervisors into three categories: total compromise, par-
tial compromise, and abnormal termination. A total com-
promise means a privilege escalation attack from a guest
OS to the hypervisor/host. A partial compromise refers

to information leakage. An abnormal termination de-
notes the shut down of a hypervisor caused by attackers.
According to the definition above, gaining hypervisor in-
formation by Hyperprobe belongs to a partial compro-
mise.

8 Conclusion
In this paper, we investigated the reverse information
retrieval problem in a virtualized environment. More
specifically, we coined the term virtual machine extro-
spection (VME) to describe the procedure of retrieving
the hypervisor information from within a guest OS. As
a first step towards VME, we presented the design and
development of the Hyperprobe framework. After an-
alyzing the seven-year evolution of Linux KVM devel-
opment, including 35 kernel versions and approximately
3485 KVM related patches, we implemented test cases
based on 19 hypervisor features and 20 bugs. Hyper-
probe is able to detect the underlying hypervisor kernel
version in less than five minutes with a high accuracy. To
the best of our knowledge, we are the first to study the
problem of detecting host OS kernel version from within
a VM. Our framework generates promising results in five
real clouds, as well as in our own testbed.
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Abstract

Due to lack of generic, accurate, dynamic
and comprehensive models for performance es-
timation, customers typically tend to under-
provision or over-provision storage systems to-
day. With multi-tenancy, virtualization, scale
and unified storage becoming norms in the in-
dustry, it is highly desirable to strike an op-
timum balance between utilization and perfor-
mance. However, performance prediction for en-
terprise storage systems is a tricky problem, con-
sidering that there are multiple hardware and
software layers cascaded in complex ways that
affect behavior of the system. Configuration fac-
tors such as CPU, cache size, RAM size, capacity,
storage backend (HDD/Flash) and network cards
etc. are known to have significant effect on the
number of IOPS that can be pushed to the sys-
tem. However, apart from system characteristics
as these, storage workloads vary reasonably and
therefore, IOPS numbers depend heavily on types
of workloads provisioned on storage systems. In
this work, we treat storage system as a hybrid of
black-box and white-box models, and propose a
solution that will enable administrators to make
decisions in the presence of multiple workloads
dynamically. Our worst-case prediction is within
15% error margin.

1 Introduction

There is immense pressure on storage
providers to increase utilization of their resources
while maintaining performance guarantees. A
storage resource can be operated at ’knee of the
curve’ - e.g. 70% of resource utilization, as a
thumb rule. However, identifying the ‘knee of
the curve’ dynamically is a challenge. The sit-
uation becomes more complicated for a mix of
different workloads as response times are sensi-
tive to workload characteristics. Moreover, any
aggressive provisioning of storage resources can
result in performance impact hitting bottom-line
for the resource provider. To avoid such situa-
tions, storage providers often over-provision stor-

age resources and system remains under-utilized.

Optimum resource utilization is also crucial
in cloud provider environment. Usually, cloud
providers thin provision resources. They need to
be able to seamlessly provision containers, mi-
grate VMs, and redistribute the resource pool
among client applications [6, 8, 11, 13, 19, 21, 23,
24]. So it is extremely important to dynamically
estimate the actual maximum throughput that
can be delivered for these application environ-
ments. For example, with white-box like static
provisioning, the system is utilized 40 − 50%
whereas the aim is to dynamically provision the
workloads such that 70% utilization becomes a
realistic goal.

Performance headroom modeling is typi-
cally done via two approaches – white-box and
black-box. In white-box models [5], each com-
ponent like CPU, disk, network, and memory is
modeled using queueing theory. For each com-
ponent, queueing delay for a certain IO request
is computed and individual models are aggre-
gated to obtain overall response time. Black-
box models [7, 9, 12, 25, 26], on the contrary,
model the entire system as a black-box and use
machine learning techniques to predict the rela-
tionship between IO pattern and response time.
White-box models are usually static in nature;
but are highly tunable in terms of system pa-
rameters. On the other hand, black-box models
can predict well in the dynamic environments but
usually have less control on tuning of system pa-
rameters.

In this paper, we take a hybrid approach
where we learn the system behavior in terms of
characterizing the dependency of response time
(latency) with IOPS. We also use concepts from
queueing theory to model mixture of workloads
on multiple volumes (logical containers) in an ag-
gregate (physical container or set of disks). We
leverage the advantages of black-box models for
dynamic provisioning and that of white-box mod-
els for handling multiple workloads. We predict
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the maximum IOPS possible per volume basis in
an aggregate on a node. Our aim is to achieve
a worst-case error margin of 15% for this predic-
tion. The prediction of maximum IOPS is further
extended for many interesting use cases such as:

• What is the maximum number IOPS that
can be pushed for an existing workload?

• What would be maximum number of IOPS
for a new workload, given its characteristics?

• What is the effect on existing workloads if a
new workload is provisioned/migrated?

• In a storage cluster, what would be the best
place to provision a workload?

• Can we redistribute workloads in the cluster
for optimum utilization and performance?

The rest of the paper is organized as fol-
lows. Section 2 surveys the literature around
white-box and black-box models for performance
of storage systems. Section 3 describes motiva-
tions and challenges for a comprehensive storage
provisioning solution. Section 4 gives details of
techniques we came up with for storage provision-
ing. Section 5 presents experimental design and
results. Finally, Section 6 summarizes and con-
cludes the paper giving a glimpse in the possible
future work.

2 Related Work

In this section, we provide a brief survey of
the existing literature that is related to our work.
White-box approaches for storage system model-
ing [5, 10] have existed for over three decades and
are still being actively investigated in modern day
mass storage systems [14]. White box approaches
usually model individual components like CPU,
memory, disk, and network are and compute IO
requests delay as the queuing delay. The indi-
vidual queuing delays are then aggregated to ob-
tain the overall response time. In computing the
overall response time, the workload characteris-
tics are embedded in the sequence of read-write
of operations of the IO pattern.

In black-box modeling, various machine
learning techniques are applied to model stor-
age system behavior such as the dependency of
response time (latency) with IOPS. BASIL [7]
and Pesto [9], Relative Fitness [12] and CMU-
CART [25, 26] are three black-box techniques

that have been proposed for modeling storage
systems. BASIL provides predictions in the in-
terpolation (trained) region. Pesto can extrapo-
late in the unseen region under the assumption
that latency has a linear relationship with the
outstanding IO. Both in relative fitness [12] and
CMUCART [26], the performance of the storage
system is predicted based on observed samples
from the past. On a similar line, CART [4] has
been used in black-box modeling of the storage
performance in [28]. In these approaches, certain
counters are considered, and a CART model is
built to model latency and throughput. Very re-
cently, bagging [3] of the CART models has been
used for better prediction of the storage system
performance [29].

In machine learning literature [22, 2], func-
tion approximation refers to predicting the func-
tional value for an unobserved sample. In sup-
port vector regression (SVR) [22, 17] with RBF
kernels, the prediction is usually good for the
interpolation region. Support vector regression
with polynomial kernels can be used for extrap-
olation. From the storage provisioning perspec-
tive, it is essential to associate a confidence level
with the prediction to suggest to the user if the
prediction is reliable or not. Kriging [27, 16]
is able to associate a confidence level with each
prediction. With a modification in computation
of model variogram from the experimental vari-
ogram, Gaussian Process (GP) model has been
developed [15] which also associates confidence
level with prediction, although GP is suitable for
interpolation only. In a recently developed black-
box model called M-LISP [1], kriging has been
used to successfully extrapolate the storage sys-
tem performance for unseen amount of workload,
and it is able to associate confidence interval with
the prediction.

3 Motivation and Problem Statement

In a Latency (response time) vs IOPS curve
for a storage system, the response time remains
almost constant in low IOPS region even if more
IOPS are pushed to the storage system. After
the number of IOPS reaches a ‘knee’ , latency
suddenly increases within a short range of IOPS.
If IOPS are increased even further, after a point,
no more IOPS can be pushed to the system and
the latency shoots up drastically. It is desirable
to operate at the knee for reasonable balance be-
tween performance and utilization. However, it
is extremely difficult to theoretically quantify the

2
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‘knee’ of the curve for a storage system. As a rule
of thumb, industry practitioners use 70% of the
maximum IOPS as the ‘knee of the curve’.

Most of black-box modeling techniques in
the literature predict the response time (la-
tency) for certain IOPS based on the interpola-
tion mechanism. Extrapolation techniques pre-
dict the response time for certain IOPS in an un-
seen region..Pesto [9] and M-LISP [1] perform ex-
trapolation to predict the storage system perfor-
mance. However, it is very difficult to apply them
for mixed workload situation. For example, dif-
ferent workloads are typically deployed in differ-
ent volumes and having 10− 20 volumes is quite
common in industrial scenario 1. For such cases,
prediction for a new volume in absence of existing
volumes is not applicable in their presence. Sec-
ondly, it is important to provision new volumes
so that they don’t affect performance of existing
volumes. So, it’s crucial for a customer to know
the maximum possible IOPS that the system may
provide for the new volume/workload even before
it is actually provisioned. Existing black-box ap-
proaches estimate the maximum IOPS per vol-
ume on a running system and do not estimate
that for a new volume. Also existing black-box
approaches are not equipped to model multiple
workloads due to their interference. It is possi-
ble to apply white-box models to appropriately
capture the resource constraints but they are not
generic and dynamic.

In this paper, we use a black-box model to
capture the dependency of the response time with
IOPS and predict the maximum IOPS per vol-
ume in an aggregate. We correlate the response
characteristics with parameters of workloads. We
then model the entire black-box server as a multi-
queue single-server model to take into account
of the multiple workloads running on multiple
volumes in the same aggregate. For new work-
loads, we compute the maximum possible IOPS,
given a system configuration, for various differ-
ent workload characteristics in the laboratory en-
vironment before commissioning the system and
construct look-up tables for the same. We ob-
served that for a given configuration, the maxi-
mum possible IOPS depends on workload charac-
teristics. The maximum IOPS for a given config-
uration and a given workload type may change
due to system upgrade, file-system aging and
fragmentation. We designed a provisioning sys-

1As observed from customer systems

tem that takes feedback from the environment
and dynamically updates the tables to adapt to
these changes. Details are provided in Sections 4
and 5.

4 Details of the Approach

4.1 Maximum IOPS for a Single Work-
load

We have considered the entire storage sys-
tem as a simple black-box server serving a queue
of IO requests. Outstanding IOs (OIO) is a mea-
sure of the queue length (depth). From Little’s
Law2, (OIO) can be expressed as

OIO = Latency × IOPS (1)

For higher IOPS, Latency is directly proportional
to OIO to be served [9]. Therefore, we have

Latency = a×OIO + b (2)

where a and b are constants. From Equations (1)
and (2), we have

Latency =
b

1− a× IOPS
(3)

This derivation is also depicted in Figure 1.

As the storage system gets saturated, i.e.,
the denominator of Equation (3) becomes close
to zero, latency value tends infinity (as shown in
Figure 1). Substituting in Equation (8), we have

Maximum IOPS = 1/a (4)

Note that, Equation(2) is true asymptotically.
For small number of IOPS, the relationship may
not hold true; however, we model the system in
high IOPS region.

Figure 1: Fundamental Technique

As is evident from the Equation (4), maxi-
mum IOPS is the inverse of slope of the line rep-
resenting the linear relationship between Latency

2URL:http://web.mit.edu/sgraves/www/
papers/Little’s%20Law-Published.pdf

3
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vs OIO. Note that, this value 1/a could also be
considered as a service rate of the system for a
given workload. This terminology will be revis-
ited later in Section 4.4.

We gathered periodic measurements (La-
tency, IOPS) from the system and did robust re-
gression between latency and OIO to come up
with a prediction for single workload scenario.

4.2 Dependency of Maximum IOPS on
Workload Characteristics

Latency vs OIO relationship as described in
Section 4.1 depends on a number of system and
workload factors. However, our study showed
that workload characteristics dictate this line be-
tween Latency vs OIO when system configura-
tion does not change. Our experience with cus-
tomer systems shows that the majority of work-
loads show variation of intensity (over a week or
during holidays and peak hours etc) but there is
generally no change in characteristics (read/write
sizes, read/write ratio, sequential/random ratio),
we did come across some real life workloads (Ex-
change, Financial) that exhibit large variations
in the characteristics causing wide and divergent
Latency vs OIO behavior as seen in Figure 4.2.

As is evident from Figure 4.2, observations
in different IO size buckets are clearly segregated
in separate regions. For such cases, we give differ-
ent estimates based on currently observed work-
load characteristics. We bin workload param-
eters in different buckets and we estimate the
maximum possible IOPS for each bucket sepa-
rately. When a workload has several such buck-
ets of characteristics, we advise a set of maximum
possible IOPS that are governed by each bucket
of workload characteristics.

4.3 Provisioning New Workloads

We show in Section 5.3 that a few workload
characteristics (read/write sizes, read%, rand%)
were enough to capture the essence of the work-
load and these characteristics would effectively
dictate system performance in terms of max-
imum possible IOPS. This led us to believe
that when workloads are abstracted as a set of
characteristics, we could relate estimates across
different workloads within an error margin of
15%. We used internal micro-benchmark SIO
(Simple Input/Output) for creating tables across
these finite characteristics dimensions. We then
compared observed maximum when system was

(a) (b)

(c) (d)

Figure 2: Dependency of the Latency with IOPS
and outstanding IO: a) Latency vs IOPS for Ex-
change workload (b) Latency vs OIO for Ex-
change workload (c) Latency vs IOPS for Finan-
cial workload (d) Latency vs OIO for Financial
workload.

driven to saturation with the predicted maxi-
mum, and validated the fact that the maximum
IOPS is dependent on the workload characteris-
tics for a given system.

We thus extended the workload character-
istics table approach to be able to provide max-
imum possible IOPS estimates before provision-
ing a new workload. One of the major drawbacks
of approach in Section 4.1 is that we need peri-
odic measurements of certain metrics from the
system. In other words, we need the workload
to be deployed before an estimate can be given.
However, because workload characteristics could
abstract the workload as seen by the system (Sec-
tion 4.2), we could give an estimate prior to pro-
visioning the workload if the workload character-
istics ( read/write sizes, read%, random% etc.)
are known.

4.4 Interference of Multiple Workloads

For mixed workload modeling, we view the
storage system channel as a black-box serving IOs
consisting of the controller, disks, CPU, mem-
ory, cache and other architectural components.

4



USENIX Association  29th Large Installation System Administration Conference (LISA15) 17

We model the black-box as a single server multi-
queue where different queues represent different
workloads running on different volumes. Service
rates for different queues are different depending
on the respective workload characteristics.

Let λ be arrival rate of requests and µ be
the service rate of the system for a certain work-
load. Effectively, λ is current IOPS being served
for that workload and µ is the maximum possi-
ble IOPS if the workload is run on the system in
stand-alone mode. In other words, we can con-
sider that no more than µ IOPS of this workload
can be pushed in the black-box because it is be-
ing utilized 100% by this workload. This is the
same as parameter 1/a in Section 4.1. Current
utilization (ρ) of the black box for this workload
is given as

Utlization = ρ =
λ

µ
(5)

In Equation (5), λ = current IOPS and µ =
Maximum IOPS.

Given a system with n different workloads
provisioned, total utilization is

ρ =

n∑
i=1

ρi where ρi =
λi

µi
(6)

Applying this for new workload provision-
ing, if the current utilization for the system
(ρ) and service rate for new workload (µnew)are
known, we have

Maximum IOPS = (1− ρ)× µnew (7)

Maximum IOPS possible for a workload
then essentially depends on how much the stor-
age system is already utilized. For example, if
current utilization is 50% then we can have only
50% of the maximum IOPS that were possible
in stand-alone mode. Equation(7) is agnostic of
the workload type that is running on the storage
system. It only requires service rates for different
workloads, and service rates depend on workload
characteristics. We, therefore, compute service
rates for different workload types and then com-
pute resultant utilization of the storage system.
Once the total utilization is known, the residual
utilization governs the maximum possible IOPS
for a new workload depending on the respective
service rate.

Figure 3: A schematic view of the deployment
architecture for dynamic provisioning system

4.5 Deployment and Workflow

The deployment architecture takes care of
adaptively adjusting service rate estimates by in-
corporating feedback from environment. It has
two modules as shown in Figure 3. One mod-
ule (Reviser) stores the workload characteristics
based service rate tables as the master tables
and a set of active tables. Active tables are de-
rived from running workloads by mining them
in workload parameters. At any point of time,
this module derives the utilization of the stor-
age system viewing it as a black-box and then
predicts the maximum possible IOPS for a work-
load. The other module (Estimator) stores per-
formance metrics measured from the system. Ac-
tive tables are dynamically updated to take care
of factors like aging, configuration change, sys-
tem upgrades etc.

When a system is commissioned, master
performance-tables are created (in-house pilot
run) and populated in the Reviser module.

When workloads start running, perfor-
mance counters are captured and recent snap-
shots of performance counters are populated in
Estimator module. In Estimator module, work-
loads are bucketed in various buckets according
to workload characteristics. Each bucket has
several samples of performance counter measure-
ments. (Workloads may not consist of buckets of
several characteristics and therefore several buck-
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ets may be empty.) Once performance counters
are collected over a period of time, Latency vs
OIO curves are estimated for non-empty buck-
ets in Estimator module. From these curves,
the maximum IOPS is estimated for the non-
empty buckets for the running workload. Estima-
tor module sends values of estimated maximum
IOPS for non-empty buckets to Reviser module.
Reviser module then compares estimates with
those in active tables and incrementally modifies
active tables. In summary, dynamic estimates
for new or existing workloads are provided based
on active tables and current black-box utilization
along with knowledge of workload characteristics.

5 Experimental Results

We experimented and validated the effec-
tiveness of proposed provisioning solution for var-
ious workloads on two different enterprise storage
clusters. We used linux client to send IO traffic
to storage servers.

5.1 Workloads

We used a well-cited collection of storage
traces released by Microsoft Research (MSR) in
Cambridge [18, 20] in 2007 for most of our eval-
uation. MSR traces record disk activity (cap-
tured beneath the file-system cache) of 13 servers
with a combined total of 36 volumes for a week.
We worked with 4 MSR workloads, namely,
TPCE, Exchange, Financial, and a web server
(Web). TPCE 3is a On-Line Transaction Pro-
cessing(OLTP) Workload developed by Transac-
tion Processing Performance Council(TPC). Ex-
change workload captures activity of Microsoft
Exchange application. Web workload records ac-
tivity of web servers. Financial transactions are
recoded in Financial workload. Raw traces com-
prise of 10-50 million records and consume just
over 150 − 500 MB in compressed CSV format
each. Figure 4 shows extracted workload charac-
teristics (read/write sizes, read/random percent-
age) for these workloads. We replay these traces
using a trace replayer that runs on a host. It
takes disk number, byte offset, IO size, elapsed
time, timestamp and the type of operation (read
or write) as input parameters and generates re-
spective workloads.

Apart from these real life workloads, we also
used an internal micro-benchmark (derived from

3URL:http://www.tpc.org/tpce/

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Workload characteristics for different
workloads: (a) TPCE IO size (b) TPCE read %
and random % (c) Web IO size (d) Web read %
and random % (e) Exchange IO size (f) Exchange
read % and random % (g) Financial IO size (h)
Financial read % and random %

FIO) named SIO 4 (Simple Input/Output). SIO,
a synthetic tool available from host, takes read%,
random%, IO size, offsets as input custom tun-

4URL: http://web.stanford.edu/group/storage
/netapp/sio ntap/siontap.htm
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able parameters to send traffic with desired work-
load characteristics.

As mentioned before, we aimed for an error
margin of less than 20%. For all cases, we sat-
urated the system with workload(s) in question
and observed the maximum. Prediction error was
calculated as below:

Prediction Error% =
OM − PM

OM
× 100 (8)

where OM=Observed Maximum and PM= Pre-
dicted Maximum.

5.2 Maximum IOPS for a Single Work-
load

(a) (b)

(c) (d)

Figure 5: Latency vs OIO (a) TPCE (b)Web (c)
Exchange (d)Financial

As seen from workload characteristics in
Figure 4, workload parameters like read%, ran-
dom% and read/write size do not show much
variation for TPCE and Web workloads. For
these well-behaving workloads, we see linear La-
tency vs OIO behavior as expected (Figure 5).
Error between predicted and observed maximum
reduced as we considered more and more sam-
ple points to finally stabilize at less than 15%, as
seen in Figure 6.

For Exchange and Financial workloads,
workload parameters show large variation (Fig-
ure 4) that causes scattered and wide-spread La-
tency vs OIO behavior as seen from the Figure 5.

However, recalling from Section 4.2 when these
characteristics were further bucketed in various
workloads bins and our technique was applied on
a region by region basis, we found that the error
between the observed and predicted maximum
IOPS was less than 15%.

Dependency of maximum IOPS to workload
characteristics led us into exploring this model-
ing further using SIO custom workload genera-
tor. We observed that the maximum IOPS on
a given storage system is agnostic of the work-
load type (e.g., Exchange, Web, or Financial)
and highly depends on the workload character-
istics for a given system. We used an internal
micro-benchmark SIO to generate combinations
of workload parameters and saturate the system
in each case. We collected the performance coun-
ters to measure the workload characteristics for
each case to do robust regression as per the tech-
nique. Table 1 shows the observed maximum val-
ues for all buckets. We divided read % range in 6
buckets and IO size range in 5 buckets as shown
in Table 1. Table 2 shows predicted maximum
(from Latency-OIO regression) values. As seen
from Table 3, when workloads are characterized
in bins, errors are within acceptable limits. (We
have presented the worst error case in tables 1, 2,
3 i.e. SIO random%=0.) This also proved that a
workload-aware approach works well for perfor-
mance prediction.

5.3 New Workload Provisioning

In this section, we extend the results to give
predictions for workloads without having to de-
ploy them. This is illustrated with Figure 6.

Workload characteristics for TPCE are read
%=80 , random%=100 and IO size = 8k, as seen
from Figure 4, If that particular bin from Table 4
is looked up, we get an estimate of 14877 , which
is within 5% error margin of what we observed
for TPCE when the system was saturated.

We performed with 10% error margin for
web workload as well. As the exact web
characteristics (Read%=90, Random%=100, IO
size=16k) are not available in the table, we av-
erage estimates for two bins. So, the maximum
IOPS estimate from Table 4 is (8603+7123)/2 =
7863. This predicted maximum is within 5% er-
ror margin to the observed maximum when the
workload is actually provisioned (Figure 6(b)).
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(a) (b)

Figure 6: Observed and predicted maximum IOPS for (a)TPCE and (b)Web.

Read %
IO size 0% 20% 40% 60% 80% 100%

4k 20656 20096 20325 20658 20679 21367
8k 13931 15354 15341 15045 14684 12698
16k 7155 8794 10608 9833 8476 7123
32k 3593 4479 5804 5715 4398 3583
64k 1802 2258 2867 2820 2228 1804

Table 1: Observed maximum IOPS for different buckets of workload characteristics.

Read %
/IO size 0% 20% 40% 60% 80% 100%

4k 16575 16430 14301 17625 17997 18688
8k 12405 13016 11714 13006 14179 11752
16k 7130 8456 9684 9847 8121 6985
32k 3620 4422 5445 5684 4400 3605
64k 1783 2229 2760 2851 2183 1758

Table 2: Predicted maximum IOPS for different buckets of workload characteristics.

Read %
IO size 0% 20% 40% 60% 80% 100%

4k 13.07 18.46 28.12 11.76 13.58 12.97
8k 11.41 15.23 21.77 12.53 4.70 7.94
16k 0.24 4.61 8.64 1.56 5.60 1.93
32k -0.42 0.85 6.96 1.60 2.46 -0.28
64k 1.17 1.15 4.37 -0.64 3.99 2.74

Table 3: Error % in prediction of the maximum IOPS for different workload characteristics.

Read %
IO size 0% 20% 40% 60% 80% 100%

4k 19068 20150 19896 19975 20825 21473
8k 14002 15355 14974 14869 14877 12765
16k 7147 8864 10600 10003 8603 7123
32k 3605 4460 5852 5776 4511 3595
64k 1805 2255 2886 2833 2274 1808

Table 4: New Workload Provisioning: Master Table (SIO Random% = 100)

8
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Run Details TPCE1 TPCE2 Web1 Web2 SIO Utilization
Service Rate 14k 14k 8k 8k 8k 1

F=TPCE, B=Web 4k 4k 1.2k 1.2k 1.2k 1.02
F=Web, B=TPCE 1k 1k 3k 3k 1k 1.03
F=TPCE+Web 2.3k 2.3k 2.3k 2.3k 0.6k 0.98

Table 5: Multiple Workloads Scenarios(F= Foreground, B=Background)

(a) (b) (c)

Figure 7: Multiple Workloads Scenarios: (a) Foreground=TPCE, Background=Web (b) Fore-
ground=Web,Background=TPCE (c)Foreground=TPCE+Web

Volume WL1 WL2 WL3 WL4 WL5
Service Rate 19975 14869 10003 5776 2833
Current IOPS 3200 1700 800 200 1730 (estimated maximum)

Table 6: Estimated maximum IOPS for a new workload (WL5) in presence of four other workloads.

(a) (b)

Figure 8: Effect of a new workload(WL5) on existing workloads

5.4 Interference of Multiple Workloads

For studying the interference of multiple
workloads based on black-box utilization model,

we created five volumes on the same storage ag-
gregate and used pre-determined (using earlier
techniques) service rates in order to calculate to-

9
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tal system utilization for each of the three sce-
narios as listed in Table 5. F denotes workloads
in the foreground which were increased in inten-
sity continuously and B denotes workloads in the
background that were kept constant in intensity.

In all scenarios, we saturated the system
with foreground workloads. Figure 7 shows how
IOPS changed for all workloads. In Table 5,
we have IOPS in saturated condition for each
of them. The last column denotes total system
utilization calculated according to Equation (6).
As expected, the total utilization number hovers
around 1 because the system was saturated with
foreground workloads.

We then created real life scenario 5 by
deploying four volumes with four different SIO
workloads WL1-WL4. On these volumes, we sent
traffic of constant intensity (IOPS were kept con-
stant). On fifth volume, we started increasing in-
tensity of WL5. Figure 8 shows how IOPS and
latency changed for all 5 workloads. From Ta-
ble 6, service rate row contains values for service
rate as obtained from SIO micro-benchmark ta-
ble. Our aim is to calculate the maximum num-
ber of IOPS possible for WL5 given the current
mix of other workloads WL1-WL4.

According to Equation (6), we can obtain
the current utilization of the black-box using Ta-
ble 6. So, current utilization = 3200/19975 +
1700/14869 + 800/10003 + 200/5776 = 0.39.
Therefore, the predicted maximum IOPS accord-
ing to Equation (7) for WL5 is = (1- 0.39) * 2833
= 1730. This is evident from Figure 8 (a). As
IOPS for WL5 (purple) increased beyond the es-
timated maximum IOPS 1730 (this is approxi-
mately at point around 120 minutes on X-axis),
IOPS for other workloads WL1-WL4 started de-
creasing gradually (10% in 10 minutes) and laten-
cies abruptly shot up (50% in 10 minutes) after
120 minutes mark (Figure 8 (b))

5.5 Feedback Mechanism

File system fragmentation is known to af-
fect the performance of a storage system 6. We
periodically fragmented the file-system in eight
rounds using a synthetic tool. We set fragmen-
tation parameters to most severe levels to sim-
ulate rapid aging of file-system. Each workload
was increased in intensity during each round. We

5As observed from customer systems
6URL:https://en.wikipedia.org/wiki/

File system fragmentation

observed number of IOPS decreasing due to the
effect of fragmentation. We periodically collected
counters and predicted maximum IOPS for each
workload using Equation (4). We then used a
simple lazy update heuristic to update our esti-
mates considering predicted maximum IOPS dur-
ing consecutive iterations. Table 7 shows the
baseline estimates before file-system aging and
observed maximum at the end of eight rounds.
There is a large difference between these num-
bers because of fragmentation. However, closed
loop update mechanism updated estimate is a lot
closer (around 10% error) to observed end maxi-
mum.

6 Summary and Future Work

In this paper, we present a mechanism for
combining a queuing model with machine learn-
ing for dynamic provisioning of storage work-
loads. We estimate the maximum possible IOPS
for a running workload using robust regression
viewing the storage system as a black-box. For
new workloads, we devise a method based on
study of workload characteristics . We account
for interference of existing workloads using the
utilization of the storage server viewing the en-
tire system as a multi-queue-single-server model
where the queues are independent of each other.
We have also developed a feedback mechanism to
adapt estimates for change in factors like config-
uration change and aging etc. In all above cases,
we were able to provide estimates within a rea-
sonable error margin of 15-20%.

The techniques developed as part of this
work are extensible to provide more comprehen-
sive solutions for storage provisioning.

• Optimal Provisioning: Standard optimiza-
tion techniques in literature can be used
to formulate optimization objectives around
performance and utilization. That would
mean we could come up with the best pos-
sible arrangement and redistribution recom-
mendations for workloads in or across stor-
age clusters.

• Service Rate Normalization: For mixed
workload modeling, we have used already
estimated service rates. These can also
be looked up in service rate tables if the
workload characteristics are known. If the
workload characteristics are unknown, ser-
vice rates can be normalized dynamically to
be able to apply the technique for migration.
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Volume Baseline Updated End Prediction Observed End Maximum Error %
WL1 3244 2678 2433 10.07
WL2 2992 1496 1340 11.66
WL3 2793 790 718 10.04
WL4 2373 402 424 4.96
WL5 1766 209 216 2.90

Table 7: Feedback update for file-system fragmentation
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Abstract

Application-level network traffic analysis and sophisti-
cated analysis techniques such as machine learning and
stream data processing for network traffic require consid-
erable computational resources. In addition, developing
an application protocol analyzer is a tedious and time-
consuming task. Therefore, we propose a scalable and
flexible traffic analysis platform (SF-TAP) that provides
an efficient and flexible application-level stream analy-
sis of high-bandwidth network traffic. Our platform’s
flexibility and modularity allow developers to easily im-
plement multicore scalable application-level stream an-
alyzers. Furthermore, SF-TAP is horizontally scalable
and can therefore manage high-bandwidth network traf-
fic. We achieve this scalability by separating network
traffic based on traffic flows, forwarding the separated
flows to multiple SF-TAP cells, each of which consists
of a traffic capturer and application-level analyzers. In
this study, we discuss the design and implementation of
SF-TAP and provide details of its evaluation.

1 Introduction

Network traffic engineering, intrusion detection systems
(IDSs), intrusion prevention systems (IPSs), and the like
perform application-level network traffic analysis; how-
ever, this analysis is generally complicated, requiring
considerable computational resources. Therefore, in this
paper, we propose a scalable and flexible traffic analy-
sis platform (SF-TAP) that runs on commodity hardware.
SF-TAP is an application-level traffic analysis platform
for IDSs, IPSs, traffic engineering, traffic visualization,
network forensics, and so on.

Overall, two problems arise in application-level net-
work traffic analysis. The first is the difficulty in man-
aging various protocols. There are numerous application
protocols, with new protocols being defined and imple-
mented every year. However, the implementation of ap-

plication protocol parsers and analyzing such programs
is a tedious and time-consuming task. Thus, a straight-
forward implementation of a parser and analyzer is cru-
cial for application-level network traffic analysis. To en-
able such a straightforward implementation, approaches
using domain-specific languages (DSLs) have been pre-
viously proposed. For example, BinPAC [24] is a parser
for application protocols that are built into Bro IDS soft-
ware. Wireshark [38] and Suricata [34] are binding Lua
languages, with analyzers that can be implemented in
Lua. Unfortunately, DSLs are typically not sufficiently
flexible because there is often the requirement that re-
searchers and developers want to use specific program-
ming languages for specific purposes such as machine
learning.

The second problem with application-level network
traffic analysis is the low scalability of conventional soft-
ware. Traditional network traffic analysis applications
such as tcpdump [35], Wireshark, and Snort [33] are
single threaded and therefore cannot take advantage of
multiple CPU cores when performing traffic analysis.
With the objective of improving the utilization of CPU
cores, several studies have been conducted and software
solutions have been proposed. For example, for high-
bandwidth and flow-based traffic analysis, GASPP [36]
exploits GPUs and SCAP [25], which utilizes multiple
CPU cores, implements a Linux kernel module. Al-
though it is important to reconstruct TCP flows effi-
ciently, the efficiency of a parser or analyzing programs
is more critical because they require more computational
resources for performing such deep analysis as pattern
matching or machine learning. Therefore, multicore
scaling is required for both TCP flow reconstruction and
traffic-analyzing components to enable the analysis of
high-bandwidth traffic. In addition to multicore scalabil-
ity, horizontal scalability is important for the same rea-
son. To support the deep analysis of high-bandwidth
network traffic to be performed easily and cost effec-
tively, the corresponding application-level analysis plat-
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Figure 1: High-level Architecture of SF-TAP

form must have horizontal scalability.
Given the abovementioned issues, in this study, we

discuss the design and implementation of SF-TAP for
high-bandwidth application-level traffic analysis. SF-
TAP adopts a flow abstraction mechanism that abstracts
network flows by files, much like Plan 9 [28], UNIX’s
/dev, or the BSD packet filter (BPF) [19]. Using the inter-
faces, analyzing logic developers can rapidly and flexibly
implement application-level analyzers in any language.
Furthermore, L3/L4-level controlling and application-
level analyzing components are separate given the mod-
ularity of the architecture. As a result of this design, ana-
lyzing components can be flexibly implemented, dynam-
ically updated, and multicore scalable.

Note that our proof-of-concept implementation is dis-
tributed on the Web (see [32]) under BSD licensing for
scientific reproducibility, and thus, it is freely available
for use and modification.

2 Design Principles
In this section, we discuss the design principles of SF-
TAP, i.e., the abstraction of network flows, multicore
scalability, horizontal scalability, and modularity.

First, we describe the high-level architecture of SF-
TAP, which is shown in Figure 1. SF-TAP has two main
components: the cell incubator and flow abstractor. We
call a group that consists of a flow abstractor and analyz-
ers a cell. The cell incubator provides horizontal scala-
bility; thus, it captures network traffic, separates it on the
basis of the flows, and forwards separated flows to spe-
cific target cells. Conventional approaches using pcap or
other methods cannot manage high-bandwidth network
traffic, but our approach has successfully managed 10
Gbps network traffic using netmap [30], multiple threads,
and lightweight locks.

Furthermore, by separating network traffic, we can
manage and analyze high-bandwidth network traffic us-
ing multiple computers. By providing multicore scalabil-
ity, the flow abstractor receives flows from the cell incu-
bator, reconstructs TCP flows, and forwards the flows to
multiple application-level analyzers. The multicore and
horizontally scalable architectures enable application-
level traffic analysis, which requires considerable com-
putational resources, to be performed efficiently.

2.1 Flow Abstraction

DSL-based approaches have been adopted in several ex-
isting applications, including the aforementioned Wire-
shark, Bro, and Suricata. However, these approaches are
not always appropriate because different programming
languages are suitable for different requirements. As
an example, programming languages suitable for string
manipulation, such as Perl and Python, should be used
for text-based protocols. Conversely, programming lan-
guages suitable for binary manipulation, such as C and
C++, should be used for binary-based protocols. Fur-
thermore, programming languages equipped with ma-
chine learning libraries should be used for machine learn-
ing.

Therefore, we propose an approach that abstracts net-
work flows into files using abstraction interfaces, much
like Plan 9; UNIX’s /dev; and BPF, to provide a flexible
method for analyzing application-level network traffic.
Using these abstraction interfaces, various analysts such
as IDS/IPS developers or traffic engineers can implement
analyzers using their preferred languages. Flexibility is
of particular importance in the research and development
phase of traffic analysis technologies.

2
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2.2 Multicore Scalability
To analyze high-bandwidth network traffic efficiently,
many CPU cores should be utilized for the operation of
both TCP/IP handlers and analyzers. We achieve mul-
ticore scalability through our modular architecture and
threads. More specifically, the flow abstractor is mul-
tithreaded with modularity that allows analyzers to be
CPU core scalable.

2.3 Horizontal Scalability
Application-level analyzers require substantial computa-
tional resources. For example, string parsing is used to
analyze HTTP messages, pattern matching via regular
expressions is used to filter URLs in real time, and ma-
chine learning techniques are applied to extract specific
features of network traffic. In general, these processes
consume a considerable amount of CPU time.

Accordingly, we propose a horizontally scalable archi-
tecture for high-bandwidth application-level traffic anal-
ysis. The horizontal scalability allows the analyzers,
which consume considerable computational resources, to
be operated on multiple computers.

2.4 Modular Architecture
The modularity of our architecture is an important factor
in providing multicore scalability and flexibility. In ad-
dition, it offers some advantages. In the research and de-
velopment phase, analyzing components are frequently
updated. However, if an update is required, traditional
network traffic analysis applications, which are mono-
lithic, such as Snort or Bro, must halt operation of all
components, including the traffic capturer.

We therefore propose a modular architecture for net-
work traffic analysis that allows network traffic capturing
and analyzing components to be separate. Thus, mod-
ularity allows traffic analysis components to be easily
updated without impacting other components. Further-
more, bugs in applications still under development do not
negatively affect other applications.

2.5 Commodity Hardware
Martins et al. [18] indicated that hardware appliances are
relatively inflexible and the addition of new functions is
not easily accomplished. Furthermore, hardware appli-
ances are very expensive and not easily scaled horizon-
tally. To address these problems, software-based alter-
natives running on commodity hardware, including net-
work function virtualization (NFV) [22], are now being
developed. We propose a software-based approach that
runs in commodity hardware environments to achieve
flexibility and scalability similar to those of NFV.

3 Design
In this section, we describe the design of SF-TAP.
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Figure 2: Architecture of SF-TAP

3.1 Design Overview
Figure 2 shows the architecture of SF-TAP. SF-TAP con-
sists of four planes: the capturer, separator, abstractor,
and analyzer planes. Each is described below. The cap-
turer plane is a plane for capturing network traffic. More
specifically, this plane consists of a port-mirroring mech-
anism of L2/L3 switches, an SSL proxy to sniff plain
text, and so on. The separator plane is a plane that pro-
vides horizontal scalability for high-bandwidth network
traffic analysis. This plane separates network traffic into
L3/L4 levels, forwarding flows to multiple cells, each of
which consists of the abstractor and analyzer planes.

The abstractor plane is a plane for network flow ab-
straction. This plane defragments IP fragmentations,
identifies flows at the L3/L4 level, reconstructs TCP
streams, detects the application protocol using regular
expressions, and outputs flows to the appropriate abstrac-
tion interfaces. Traffic analyzer developers can develop
analyzers by accessing the interfaces provided by this
plane. Finally, the analyzer plane is a plane for analyz-
ers developed by SF-TAP users. Users can implement
analyzers in any programming language.

In this study, we focus on the separator and abstractor
planes because the components of the capturer plane are
well known and analyzers of the analyzer plane are de-
veloped by SF-TAP users. In the subsections that follow,

3
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1 http:
2 up: ’ˆ[-a-zA-Z]+ .+ HTTP/1\.(0\r?\n|1\r?\n([-a-zA-
Z]+: .+\r?\n)+)’

3 down: ’ˆHTTP/1\.[01] [1-9][0-9]{2} .+\r?\n’
4 proto: TCP # TCP or UDP
5 if: http # path to UNIX domain socket
6 nice: 100 # priority
7 balance: 4 # balanced by 4 IFs
8
9 torrent_tracker: # BitTorrent Tracker

10 up: ’ˆGET .*(announce|scrape).*\?.*info_hash=.+&.+
HTTP/1\.(0\r?\n|1\r?\n([-a-zA-Z]+: .+\r?\n)+)’

11 down: ’ˆHTTP/1\.[01] [1-9][0-9]{2} .+\r?\n’
12 proto: TCP
13 if: torrent_tracker
14 nice: 90 # priority
15
16 dns_udp:
17 proto: UDP
18 if: dns
19 port: 53
20 nice: 200

Figure 3: Configuration Example for Flow Abstractor

we describe the design of the flow abstractor and cell in-
cubator and show an example of an analyzer for HTTP.

3.2 Flow Abstractor Design
In this section, we describe the design of the flow ab-
stractor, as shown in Figure 2, and explain its key mech-
anisms using the example configuration file shown in
Figure 3. For human readability, the flow abstractor
adopts YAML [39] to describe its configuration. Using a
top–down approach, the flow abstractor consists of four
components: the IP packet defragmenter; flow identifier;
TCP and UDP handler; and flow classifier.

3.2.1 Flow Reconstruction
The flow abstractor defragments fragmented IP packets
and reconstructs TCP streams. Thus, analyzer develop-
ers need not implement the complicated reconstruction
logic required for application-level analysis.

The IP packet defragmenter shown in Figure 2 is
a component that performs IP packet defragmentation.
Defragmented IP packets are forwarded to the flow iden-
tifier, which identifies the flow as being at the L3/L4
level. We identify flows using 5-tuples consisting of the
source and destination IP addresses, source and destina-
tion port numbers, and a hop count, which is described
in Section 3.2.2. After the flows have been identified,
the TCP streams are reconstructed by the TCP and UDP
handler, and then, the flows are forwarded to the flow
classifier.

3.2.2 Flow Abstraction Interface
The flow abstractor provides interfaces that abstract
flows at the application level. For example, Figure 2
shows the TLS and HTTP interfaces. Furthermore, in
Figure 3, the HTTP, BitTorrent tracker [2], and DNS in-
terfaces are defined.

1 $ ls -R /tmp/sf-tap
2 loopback7= tcp/ udp/
3
4 /tmp/sf-tap/tcp:
5 default= http2= ssh=
6 dns= http3= ssl=
7 ftp= http_proxy= torrent_tracker=
8 http0= irc= websocket=
9 http1= smtp=

10
11 /tmp/sf-tap/udp:
12 default= dns= torrent_dht=

Figure 4: Directory Structure of Flow Abstraction Inter-
face

The flow classifier classifies flows of various appli-
cation protocols, forwarding them to flow abstraction
interfaces, which are implemented using a UNIX do-
main socket, as shown in Figure 4. The file names of
the interfaces are defined by items of if; for example,
on lines 5, 13, and 18 in Figure 3, the interfaces of
HTTP, BitTorrent tracker, and DNS are defined as http,
torrent tracker, and dns, respectively. By providing
independent interfaces for each application protocol, any
programming language can be used to implement ana-
lyzers.

Further, we designed a special interface for flow in-
jection called the L7 loopback interface, i.e., L7 Loop-
back I/F in Figure 2. This interface is convenient for en-
capsulated protocols such as HTTP proxy. As an exam-
ple, HTTP proxy can encapsulate other protocols within
HTTP, but the encapsulated traffic should also be ana-
lyzed at the application level. In this situation, a further
analysis of encapsulated traffic can easily be achieved by
re-injecting encapsulated traffic into the flow abstractor
via the L7 loopback interface. The flow abstractor man-
ages re-injected traffic in the same manner. Therefore,
the implementation of the application-level analysis of
encapsulated traffic can be simplified, although, in gen-
eral, it tends to remain rather complex.

Note that the L7 loopback interface may cause infinite
re-injections. To avoid this problem, we introduce a hop
count and corresponding hop limitation. The flow ab-
stractor drops injected traffic when its hop count exceeds
the hop limitation, thus avoiding infinite re-injection.

In addition to the flow abstraction and L7 loopback
interface, the flow abstractor provides default interfaces
for unclassified network traffic. Using these default in-
terfaces, unknown or unclassified network traffic can be
captured.

3.2.3 TCP Session Abstraction
An example output is shown in Figure 5, with the flow
abstractor first outputting a header, which includes infor-
mation on the flow identifier and abstracted TCP event;
the flow abstractor then outputs the body, if it exists.
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1 ip1=192.168.0.1,ip2=192.168.0.2,port1=62918,port2=80,hop=0,l3=ipv4,l4=tcp,event=CREATED
2 ip1=192.168.0.1,ip2=192.168.0.2,port1=62918,port2=80,hop=0,l3=ipv4,l4=tcp,event=DATA,from=2,match=down,len=1398
3
4 1398[bytes] Binary Data
5
6 ip1=192.168.0.1,ip2=192.168.0.2,port1=62918,port2=80,hop=0,l3=ipv4,l4=tcp,event=DESTROYED

Figure 5: Example Output of Flow Abstraction Interface

Line 1 of Figure 5 indicates that a TCP ses-
sion was established between 192.168.0.1:62918 and
192.168.0.2:80. Line 2 indicates that 1398 bytes of data
were sent to 192.168.0.1:62918 from 192.168.0.2:80.
The source and destination addresses can be distin-
guished by the value of from, and the data length is de-
noted by the value of len. Lines 3–5 indicate that trans-
mitted binary data are outputted. Finally, line 6 indicates
that the TCP session was disconnected.

In the figure, match denotes the pattern, i.e., up or
down, shown in Figure 3, that is used for protocol de-
tection.

Managing a TCP session is quite complex; thus, the
flow abstractor abstracts TCP states as three events, i.e.,
CREATED, DATA, and DESTROYED, to reduce com-
plexity. Accordingly, analyzer developers can easily
manage TCP sessions and keep their efforts focused on
application-level analysis.

3.2.4 Application-level Protocol Detection

The flow classifier shown in Figure 2 is an application-
level protocol classifier, which detects protocols using
regular expressions and a port number. Items up and
down, shown in Figure 3, are regular expressions for
application-level protocol detection, and when upstream
and downstream flows are matched by these regular ex-
pressions, flows are outputted to a specified interface.
There are several methods for detecting application-level
protocols, including Aho–Corasick, Bayesian filtering,
and regular expressions. However, we adopt regular ex-
pressions because of its generality and high expressive
power. In addition, a port number can be used to clas-
sify flows as application-level flows. As an example, line
19 of Figure 3 indicates that DNS is classified by port
number 53.

Values of nice, which is introduced to remove ambigu-
ity in Figure 3, are used for priority rules; here, the lower
the given value, the higher the priority. For example, be-
cause BitTorrent tracker adopts HTTP for its communi-
cation, there is no difference in terms of protocol formats
between HTTP and BitTorrent tracker. Accordingly, am-
biguity occurs if rules for HTTP and BitTorrent tracker
have the same priority; however, this ambiguity is re-
moved by introducing priorities. In Figure 3, the priority
of BitTorrent tracker is configured as being higher than
that of HTTP.

3.3 Load Balancing using the Flow Ab-
straction Interface

In general, the number of occurrences of each applica-
tion protocol in a network is biased. As such, if only
one analyzer process is executed for one application pro-
tocol, the computational load will be concentrated in a
particular analyzer process. Therefore, we introduce a
load-balancing mechanism into the flow abstraction in-
terfaces.

The configuration of the load-balancing mechanism is
shown on line 7 of Figure 3. Here, the value of balance
is specified as 4, indicating that HTTP flows are sepa-
rated and outputted to four balancing interfaces. Inter-
faces http0=, http1=, http2=, and http3= in Figure 4 are
the balancing interfaces. By introducing one-to-many in-
terfaces, analyzers that are not multithreaded are easily
scalable to CPU cores.

3.4 Cell Incubator Design
The cell incubator shown in Figure 2 is a software-based
network traffic balancer that mirrors and separates net-
work traffic based on the flows, thus working as an L2
bridge. The cell incubator consists of a packet forwarder,
an IP fragment handler, and a flow separator.

The packet forwarder receives L2 frames and forwards
them to the IP fragment handler. Furthermore, it for-
wards frames to other NICs, such as the L2 bridge, if
required. Consequently, SF-TAP can be applied without
hardware-based network traffic mirroring.

An IP fragment handler is required for the flow separa-
tion of fragmented packets because these packets do not
always include an L4 header. This component identifies
packets based on the given flows even if the packets are
fragmented, forwarding the packets to the flow separator.

The flow separator forwards the packets to multiple
SF-TAP cells using flow information that consists of the
source and destination IP addresses and port numbers.
The destination SF-TAP cell is determined by the hash
value of the flow identifier.

3.5 HTTP Analyzer Design
In this subsection, we describe the design of an HTTP
analyzer, which is an example of an application-level an-
alyzer. The HTTP analyzer reads flows from the abstrac-
tion interface of HTTP provided by the flow abstractor
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1 {
2 "client": {
3 "port": "61906",
4 "ip":"192.168.11.12",
5 "header": {
6 "host": "www.nsa.gov",
7 "user-agent":"Mozilla\/5.0 (Macintosh; Intel Mac OS

X 10.9; rv:31.0) Gecko\/20100101 Firefox\/31.0",
8 "connection": "keep-alive",
9 "pragma": "no-cache",

10 "accept": "text\/html,application\/xhtml+xml,
application\/xml;q=0.9,*\/*;q=0.8",

11 "accept-language": "ja,en-us;q=0.7,en;q=0.3", 11 "
accept-encoding": "gzip, deflate",

12 "cache-control": "no-cache"
13 },
14 "method": {
15 "method": "GET",
16 "uri": "\/",
17 "ver": "HTTP\/1.1"
18 },
19 "trailer": {}
20 },
21 "server": {
22 "port": "80",
23 "ip": "23.6.116.226",
24 "header": {
25 "connection": "keep-alive",
26 "content-length":"6268",
27 "date": "Sat, 16 Aug 2014 11:38:25 GMT",
28 "content-encoding": "gzip",
29 "vary": "Accept-Encoding",
30 "x-powered-by": "ASP.NET",
31 "server": "Microsoft-IIS\/7.5",
32 "content-type": "text\/html"
33 },
34 "response": {
35 "ver": "HTTP\/1.1",
36 "code": "200",
37 "msg": "OK"
38 },
39 "trailer": {}
40 }
41 }

Figure 6: Example Output of HTTP Analyzer

and then serializes the results into JSON format to pro-
vide a standard output. Figure 6 shows an example out-
put of the HTTP analyzer. The HTTP analyzer reads
flows and outputs the results as streams.

4 Implementation
In this section, we describe our proof-of-concept imple-
mentation of SF-TAP.

4.1 Implementation of the Flow Abstractor
We implemented the flow abstractor in C++; it depends
on Boost [3], libpcap [35], libevent [14], RE2 [29], and
yamp-cpp [40] and is available on Linux, *BSD, and Ma-
cOS X. The flow abstractor is multithreaded, with traffic
capture, flow reconstruction, and application protocol de-
tection executed by different threads. For simplicity and
clarity, we applied a producer–consumer pattern for data
transfer among threads.

The flow abstractor implements a garbage collector for
zombie TCP connections. More specifically, TCP con-

nections may disconnect without an FIN or RST packet
because of PC or network troubles. The garbage collec-
tor collects this garbage on the basis of timers, adopting a
partial garbage collection algorithm to avoid locking for
a long time period.

In general, synchronization among threads requires
much CPU loads. Thus, in the flow abstractor, we imple-
mented bulk data transfers among threads. More specifi-
cally, bulk data transfers are performed among threads if
the specified amount of data is in the producer’s queue or
the specified time has elapsed.

The performances of netmap [30] and DPDK [8] are
better than libpcap; however, we did not adopt them be-
cause of their higher CPU resource consumption and less
flexibility. Note that netmap 1 and DPDK require sig-
nificant CPU resources because they access network de-
vices via polling to increase throughput. Accordingly,
they take away CPU resources from application-level an-
alyzers, which require a substantial amount of CPU re-
sources. Furthermore, netmap and DPDK exclusively
attach to NICs; thus, other programs such as tcpdump
cannot attach to the same NICs. This is an annoyance
for network operations and for developing or debugging
network software. High throughput, if required, can be
accomplished with the help of netmap–libpcap [21].

4.2 Implementation of the Cell Incubator
The cell incubator must be able to manage high-
bandwidth network traffic, but conventional methods
such as pcap cannot manage high bandwidth. There-
fore, we took advantage of netmap for our cell incuba-
tor implementation to provide packet capturing and for-
warding. Consequently, we could implement a software-
based high-performance network traffic balancer, i.e., the
cell incubator.

The cell incubator is implemented in C++ and is avail-
able on FreeBSD and Linux. It has an inline mode and a
mirroring mode. The inline mode is a mode in which the
cell incubator works as an L2 bridge. On the other hand,
the mirroring mode is a mode in which the cell incubator
only receives and separates L2 frames, i.e., it does not
bridge among NICs (unlike the L2 bridge). Users can se-
lect either the inline or mirroring mode when deploying
the cell incubator.

The separation of network traffic is performed using
hash values of each flow’s source and destination IP ad-
dresses and port numbers. Thus, an NIC to which a flow
is forwarded is uniquely decided.

Because we adopted netmap, we require that the NICs
used by the cell incubator are netmap-available. In gen-
eral, receive-side scaling (RSS) is enabled on NICs that
are netmap-available, and there are multiple receiving

1netmap can manage packets by blocking and waiting, but this in-
creases latency.
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and sending queues on the NICs. Thus, the cell incu-
bator generates a thread for each queue to balance the
CPU load and achieve high-throughput packet manag-
ing. However, sending queues are shared among threads;
thus, exclusive controls, which typically require a heavy
CPU load, are needed. Therefore, to reduce the CPU load
for exclusive controls, we adopted a lock mechanism that
takes advantage of the compare-and-swap instruction.

4.3 Implementation of the HTTP Analyzer
For demonstration and evaluation, we implemented an
HTTP analyzer, comprising only 469 lines, in Python.
In our implementation, TCP sessions are managed using
Python’s dictionary data structure. The HTTP analyzer
can also be easily implemented in other lightweight lan-
guages. Note that the Python implementation was used
for performance evaluations presented in Section 5.

5 Experimental Evaluation
In this section, we discuss our experimental evaluations
of SF-TAP.

5.1 HTTP Analyzer and Load Balancing
A key feature of the flow abstractor is its multicore scal-
ability of application protocol analyzers. In this section,
we show the effectiveness of the load-balancing mecha-
nism of the flow abstractor through various experiments.
In our experiments, the HTTP analyzer was used as a
heavy application-level analyzer. Experiments were exe-
cuted using a PC with DDR3 1.5 TB memory and an Intel
Xeon E7-4830v2 processor (10 cores, 2.2 GHz, 20 MB
cache) × 4 and the Ubuntu 14.10 (Linux Kernel 3.16)
operating system.

The CPU loads of the HTTP analyzer and flow ab-
stractor when generating HTTP requests are shown in
Figure 7. In the figure, 50 HTTP clients were gener-
ated per second, with a maximum of 1,000 clients; on
average, 2,500 HTTP requests were generated per sec-
ond. Figures 7(a), (b), and (c) show CPU loads when
load balancing was executed using one, two, and four
HTTP analyzer processes, respectively.

When only one HTTP analyzer process was used, it
could manage approximately 2,500 requests per second
because of CPU saturation. However, when two pro-
cesses were used, each process consumed only approxi-
mately 50% of CPU resources (i.e., it was not saturated).
Moreover, when four processes were used, only approx-
imately 25% of CPU resources were consumed. Con-
sequently, we conclude that the load-balancing mecha-
nism is remarkably efficient for multicore scalability. In
our experiments, although the HTTP analyzer was im-
plemented in Python (a relatively slow interpreted lan-
guage), we could completely manage C10K using four
HTTP analyzer processes.

Total memory usage of the HTTP analyzer is shown
in Figure 8. When executing one, two, and four pro-
cesses, approximately 12, 23, and 43 MB memory were
allocated to them, respectively. Consequently, we con-
clude that memory usage proportionally increases with
the number of processes; however, it is probably suffi-
ciently small to allow application in the real world.

5.2 Performance Evaluation of the Flow
Abstractor

In this subsection, we show our experimental results for
the flow abstractor. These experiments were conducted
using the same PC described in Section 5.1.

Figure 9, in which CPS implies connections per sec-
ond, shows packet-dropping rates when many TCP con-
nections were generated. Here, one TCP session con-
sisted of five packets: a 3-way handshake and two 1400-
byte data packets. For comparison, we also determined
the performances of tcpdump and Snort. We specified
a 1 GB buffer for the flow abstractor and tcpdump; fur-
thermore, we specified the maximum values possible for
the elements of Snort’s configuration, such as the lim-
itation of memory usage and the number of TCP ses-
sions. Experimental results showed that tcpdump, Snort,
and the flow abstractor can manage approximately 3,200,
10,000, and 50,000 CPS, respectively. We achieved
these performances because of multithreading and bulk
data transfers described in Section 4.1. The flow abstrac-
tor completely separates capturing and parsing functions
into different threads. Furthermore, bulk data transfers
mitigated the performance overhead caused by spin lock
and thread scheduling.

Figures 10(a), (b), and (c) show CPU loads when gen-
erating 1K, 5K, and 10K TCP CPS for up to 10 M
connections, respectively. Because our implementation
maintains TCP sessions by std::map of C++, the number
of TCP connections affects the CPU load of the flow ab-
stractor. For 10K CPS, the average CPU load exceeded
100%. This shows that the flow abstractor scales up to
multiple CPU cores because of multithreading.

In Figure 10(c), after approximately 400 s, the CPU
load slightly decreased from approximately 150% to
120%. This was probably caused by our garbage col-
lection algorithm for TCP sessions. In our implementa-
tion, when the number of TCP sessions maintained by the
flow abstractor is sufficiently small, the garbage collec-
tor scans all TCP sessions; on the other hand, when the
number of TCP sessions is large, it partially scans TCP
sessions to avoid a lock being caused by the garbage col-
lector over a long time period.

Figure 11 shows CPU loads for traffic volumes of 1,
3, 5, and 7 Gbps. Here, we generated only one flow
per measurement. Given these results, we conclude that
the flow abstractor can manage high-bandwidth network
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(a) HTTP Analyzer x 1 (b) HTTP Analyzer x 2 (c) HTTP Analyzer x 4

generate 50 clients / sec, 1000 clients maximum, 2500 requests / sec on average

Figure 7: CPU Load of HTTP Analyzer and Flow Abstractor

Figure 8: Total Memory Usage of HTTP Analyzer

Figure 9: Packet Drop against CPS

traffic when the number of flows is small.
Figure 12 shows physical memory usage of the flow

abstractor when generating 10K TCP CPS. The amount
of memory usage of the flow abstractor primarily de-
pends on the number of TCP sessions. More specifically,
the amount of memory usage increases proportionally
with the number of TCP sessions.

5.3 Performance Evaluation of the Cell In-
cubator

In the experiments involving the cell incubator, we used
a PC with DDR3 16 GB Memory and an Intel Xeon E5-

2470 v2 processor (10 cores, 2.4 GHz, 25 MB cache)
and FreeBSD 10.1. The computer was equipped with
four Intel quad-port 1 GbE NICs and an Intel dual-port
10 GbE NIC. We generated network traffic consisting of
short packets (i.e., 64-byte L2 frames) on the 10 GbE
lines for our evaluations. The cell incubator separated
traffic based on the flows, with the separated flows for-
warded to the twelve 1 GbE lines. Figure 13 shows our
experimental network.

We conducted our experiments using three patterns:
(1) the cell incubator worked in the mirroring mode us-
ing port mirroring on the L2 switch; in other words, it
captured packets at α and forwarded packets to γ; (2) the
cell incubator worked in the inline mode but did not for-
ward packets to 1 GbE NICs, instead only α to β; and (3)
the cell incubator worked in the inline mode, capturing
packets at α and forwarding to both β and γ.

Table 14 shows the performance of the cell incubator.
For pattern (1), i.e., the mirroring mode, the cell incuba-
tor could manage packets up to 12.49 Mpps. For pattern
(2), i.e., the cell incubator working as an L2 bridge, it
could forward packets up to 11.60 Mpps. For pattern
(3), i.e., forwarding packets to β and γ, the cell incubator
could forward packets to β and γ up to 11.44 Mpps. The
performance of the inline mode was poorer than that of
the mirroring mode because packets were forwarded to
two NICs when using the inline mode. However, the in-
line mode is more suitable for specific purposes such as
IDS/IPS because the same packets are dropped at β and
γ. In other words, all transmitted packets can be captured
when using the inline mode.

Table 15 shows the CPU load averages of the cell
incubator when in the inline mode and forwarding
64-byte frames. At 5.95 and 10.42 Mpps, packets
were not dropped when forwarding. At approximately
10.42 Mpps, the upper limit of dropless forwarding was
reached. This indicates that several CPUs were used
for forwarding, but the 15th CPU’s resources were es-
pecially consumed.
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Figure 10: CPU Loads of Flow Abstractor versus CPS

Figure 11: CPU Load of Flow Abstractor versus Traffic
Volume

Figure 16 shows the CPU loads of the 15th CPU. At
5.95 Mpps, the load average was approximately 50%, but
at 10.42 Mpps, the loads were close to 100%. More-
over, at 14.88 Mpps, CPU resources were completely
consumed. This limitation in forwarding performance
was probably caused by the bias, which in turn was due
to the flow director [10] of Intel’s NIC and its driver. The
flow director cannot currently be controlled by user pro-
grams on FreeBSD; thus, it causes bias depending on net-
work flows. Note that the fairness regarding RSS queues
is simply an implementation issue and is benchmarked
for future work.

Finally, the memory utilization of the cell incubator
depends on the memory allocation strategy of netmap.
The current implementation of the cell incubator requires
approximately 700 MB of memory to conduct the exper-
iments.

6 Discussion and Future Work

In this section, we discuss performance improvements
and pervasive monitoring.

Figure 12: Physical Memory Usage of Flow Abstractor
(10K CPS)

1 GbE x 12
10 GbE x 2

α β

γ

cell incubator

Figure 13: Experimental Network of Cell Incubator

6.1 Performance Improvements
We plan to improve the performance of the flow abstrac-
tor in three aspects.

(1) The UNIX domain socket can be replaced by an-
other mechanism such as a memory-mapped file or cross-
memory attach [6]; however, these mechanisms are not
suitable for our approach, which abstracts flows as files.
Thus, new mechanisms for high-performance message
passing, such as the zero-copy UNIX domain socket or
zero-copy pipe, should be studied.

(2) The flow abstractor currently uses the malloc func-
tion for memory allocation, which has some overhead.
Here, malloc can be replaced by another lightweight

9
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mechanism such as a slab allocator. The replacement of
malloc by a slab allocator therefore constitutes an aspect
of our future work.

(3) The flow abstractor adopts regular expressions for
application protocol detection. We profiled the flow ab-
stractor, but at present, this is not critical. Nonethe-
less, it potentially requires high computational resources.
Thus, high-performance regular expressions should be
studied in the future. Some studies have taken advan-
tage of GPGPUs for high-performance regular expres-
sions [5, 37, 41]. The implementation of regular expres-
sions using GPGPUs is therefore another aspect of our
future work.

6.2 Pervasive Monitoring and Counter-
measures

Pervasive monitoring [9] is an important issue on the
Internet. Countermeasures against pervasive monitor-
ing include using cryptographic protocols such as SS-
L/TLS instead of traditional protocols such as HTTP and
FTP, which are insecure. However, cryptographic proto-
cols invalidate IDS/IPS, and consequently, other security

risks are incurred.
Host-based IDS/IPS is a solution to the problem, but

it is not suitable for mobile devices, which are widely
used in today’s society, because of the lack of machine
power. Therefore, new approaches such as IDS/IPS co-
operating with an SSL/TLS proxy should be studied to
support the future of the Internet. The L7 loopback inter-
face of the flow abstractor may also help future IDS/IPS
implementations to be more robust against cryptographic
protocols.

7 Related Work
Wireshark [38] and tcpdump [35] are widely used tradi-
tional packet-capturing applications, and libnids [15] is
a network traffic-capturing application that reassembles
TCP streams. The execution of these applications is es-
sentially single threaded. Thus, they do not take advan-
tage of multiple CPU cores and are therefore not suitable
for high-bandwidth network traffic analysis.

SCAP [25] and GASPP [36] were proposed for
flow-level and high-bandwidth network traffic analyses.
SCAP is implemented within a Linux kernel, taking
advantage of the zero-copy mechanism and allocating
threads for NIC’s RX and TX queues to achieve high
throughput. In addition, SCAP adopts a mechanism
called subzero-copy packet transfer using analyzers that
can selectively analyze required network traffic. GASPP
is a GPGPU-based flow-level analysis engine that uses
netmap [30]; thus, GASPP achieves high-throughput
data transfers between the NIC and CPU memory.

DPDK [8], netmap [30], and PF RING [27] were pro-
posed for high-bandwidth packet-capture implementa-
tions. In traditional methods, many data transfers and
software interrupts occur among the NIC, kernel, and
user, thus making it difficult to capture 10 Gbps network
traffic using traditional methods. Our proposed method
achieved wire-speed traffic capture by effectively reduc-
ing the frequency of memory copies and software inter-
rupts.

L7 filter [13], nDPI [20], libprotoident [16], and
PEAFLOW [7] have been proposed for application-level
network traffic classification implementations. These
methods use Aho–Corasick or regular expressions to de-
tect application protocols. PEAFLOW uses a parallel
programming language called FastFlow to achieve high-
performance classification.

IDS applications such as Snort [33], Bro [4], and Suri-
cata [34] reconstruct TCP flows and application-level
analysis. BinPAC [24] is a DSL used by Bro for proto-
col parsing; however, Snort and Bro are single threaded
and cannot manage high-bandwidth network traffic. On
the other hand, Suricata is multithreaded and manages
high-bandwidth network traffic.

Schneider et al. [31] proposed a horizontally scalable

10
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Figure 16: 15th CPU’s Load of Cell Incubator (64-byte frames)

architecture that separates 10 Gbps based on the flows,
much like SF-TAP. They verified their architecture using
only 1 Gbps network traffic and are yet to verify it using
10 Gbps network traffic.

Open vSwitch [23] is a software switch that can con-
trol network traffic based on the flows, much like our cell
incubator does in our system, but its OVF CTRL cannot
manage IP fragmentation. Some filtering mechanisms
such as iptables [11] and pf [26] can also control network
traffic based on the flows, but these mechanisms cannot
manage IP fragmentation. Furthermore, these methods
are less scalable and characterized by performance is-
sues.

In Click [12], SwitchBlade [1], and ServerSwitch [17],
modular architectures were adopted to provide flexi-
ble and programmable network functions for network
switches. In SF-TAP, we adopted these ideas and pro-
posed a modular architecture for network traffic analysis.

BPF [19] is a well-known mechanism for packet cap-
turing that abstracts network traffic as files, much like
UNIX’s/dev. In SF-TAP, we adopted this idea, abstract-
ing network flows as files to achieve modularity and mul-
ticore scaling.

8 Conclusion
Application-level network traffic analysis and sophisti-
cated analysis techniques such as machine learning and
stream data processing for network traffic require consid-
erable computational resources. Therefore, in this paper,
we proposed a scalable and flexible traffic analysis plat-
form called SF-TAP for sophisticated high-bandwidth
real-time application-level network traffic analysis.

SF-TAP consists of four planes: the separator plane,
abstractor plane, capturer plane, and analyzer plane.
First, network traffic is captured at the capturer plane,
and then, captured network traffic is separated based on
the flows at the separator plane, thus achieving horizon-
tal scalability. Separated network traffic is forwarded to
multiple SF-TAP cells, which consist of the abstractor
and analyzer planes.

We provided cell incubator and flow abstractor imple-
mentations for the separator and abstractor planes, re-
spectively. Furthermore, we implemented an HTTP ana-
lyzer as an example analyzer at the analyzer plane. The
capturer plane adopts well-known technologies, such as
port mirroring of L2 switches, for traffic capturing.

The flow abstractor abstracts network traffic into files,
much like Plan9, UNIX’s /dev, and BPF; the architec-
ture of the flow abstractor is modular. The abstraction
and modularity allow application-level analyzers to be
easily developed in many programming languages and
be multicore scalable. We showed experimentally that
the HTTP analyzer we implemented as an example using
Python can be easily scaled to multiple CPU cores.

The flow abstractor takes advantage of multithreading
and bulk data transfers among threads. Thus, from our
experiments, we found that the flow abstractor can man-
age up to 50K connections per second without dropping
packets; tcpdump and Snort can manage only up to 4K
and 10K connections per second, respectively.

In addition, we showed that the flow abstraction inter-
faces can help scale the HTTP analyzer to multiple CPU
cores. Our experiments showed that our HTTP analyzer
written in Python as a single process consumed 100%
of CPU resources, but with four processes, each process
only consumed 25% of CPU resources.

The cell incubator is a component that provides hor-
izontal scalability. To manage high-bandwidth network
traffic, the cell incubator separates network traffic based
on the flows, forwarding separated flows to cells that
consist of a flow abstractor and application-level analyz-
ers. We experimentally showed that the cell incubator
can manage approximately 12.49 Mpps and 11.44 Mpps
when in the mirroring and inline modes, respectively.
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Abstract

System administrators are required to access the privi-
leged, or “super-user,” interfaces of computing, network-
ing, and storage resources they support. This low-level
infrastructure underpins most of the security tools and
features common today and is assumed to be secure. A
malicious system administrator or malware on the sys-
tem administrator’s client system can silently subvert this
computing infrastructure. In the case of cloud system ad-
ministrators, unauthorized privileged access has the po-
tential to cause grave damage to the cloud provider and
their customers. In this paper, we describe Spyglass, a
tool for managing, securing, and auditing administrator
access to private or sensitive infrastructure networks by
creating on-demand bastion hosts inside of Linux con-
tainers. These on-demand bastion containers differ from
regular bastion hosts in that they are nonpersistent and
last only for the duration of the administrator’s access.
Spyglass also captures command input and screen output
of all administrator activities from outside the container,
allowing monitoring of sensitive infrastructure and un-
derstanding of the actions of an adversary in the event
of a compromise. Through our evaluation of Spyglass
for remote network access, we show that it is more dif-
ficult to penetrate than existing solutions, does not intro-
duce delays or major workflow changes, and increases
the amount of tamper-resistant auditing information that
is captured about a system administrator’s access.

1 Introduction

System administrators have super-user access to the low-
level infrastructure of the systems and networks they

This work is sponsored by the Assistant Secretary of Defense for Re-
search & Engineering under Air Force Contract #FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those
of the author and are not necessarily endorsed by the United States
Government.

maintain. To effectively do their job, they need to ac-
cess the sensitive interfaces of switches, routers, operat-
ing systems, firmware, virtualization platforms, security
appliances, etc. We rely increasingly on this infrastruc-
ture for tasks, from ordering food to controlling complex
mechanical systems like the electric grid. Given the typ-
ical administrator’s breadth of access to this infrastruc-
ture, administrators or the client devices they use are a
prime target for compromise by a motivated adversary.
Alternatively, if the administrator and the adversary are
the same (i.e., a rogue administrator or insider), then this
administrator often has unchecked access to disable and
evade the security controls of the network.

To protect the sensitive interfaces an administrator
must use, the system architect can place these inter-
faces on a private network or VLAN that is not broadly
accessible to either the Internet or even and organi-
zational LAN. This practice is also commonplace in
Infrastructure-as-a-Service cloud environments at both
the tenant layer (e.g., the user of virtual machines) and
the provider layer (e.g., the operator of the virtual ma-
chine hosting environment) [27]. Firewalls, virtual pri-
vate networks (VPNs), and bastion hosts allow remote
access for the administrator into the sensitive network.
Firewalls and VPNs open new security vulnerabilities by
directly connecting a potentially untrusted client system
directly to the sensitive network, and the do not directly
offer an audit log of the administrator’s activities. Bas-
tion hosts explicitly isolate the client system from the
network and offer a centralized place to audit activities.
However, bastion hosts themselves can be compromised,
leading to a catastrophic security collapse where the ad-
versary can impersonate any administrator and wreak
havoc across the network.

To address the security shortcomings of bastion hosts,
while retaining good network isolation and audit capa-
bilities, we created Spyglass. Spyglass is a tool that pro-
vides on-demand nonpersistent bastion hosts to each ad-
ministrator to facilitate access to sensitive networks. The
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system creates a Linux container using Docker for each
user’s session and destroys it after the user disconnects.
Through a least-privilege system design, Spyglass lowers
the risk of compromise to the bastion server itself. While
Spyglass does not prevent insiders with valid credentials
from accessing the sensitive network, it does provide a
tamper-resistant audit record of their activities. This ca-
pability allows an organization to forensically track the
moves of adversaries and assists in recovery and cleanup.

This paper’s primary contributions are:

• Design for securely isolating and monitoring the ac-
tions of system administrators while reducing the
threat posed by insiders and phishing attacks

• Implementation of the Spyglass prototype and best
practices for deployment

• Security and performance evaluation showing that
Spyglass is more difficult to penetrate than previ-
ous solutions and that it can be implemented with-
out considerable delay or workflow changes.

The rest of this paper is structured as follows: Section
2 describes the the problem, threat model, and existing
solutions. Section 3 discusses the design of the system.
In Section 4, we describe the components of the system
and their implementations. We evaluate both the perfor-
mance and security in Section 5. Section 6 reviews re-
lated work. We discuss the current status of Spyglass and
opportunities for future work in Section 7, and conclude
in Section 8.

2 Background

A system administrator often connects to a variety of in-
terfaces to perform their work. These interfaces may be
used to configure switching or routing logic, or to access
hardware in the event of a system crash. The adminis-
trator may connect to the host running a virtualization
platform, or a machine instance operating a cloud plat-
form. Given the success and prevalence of DevOps en-
vironments, the administrator may also be making code
changes to the software that actually runs the provider’s
self-service platform.

It is easy to see why administrator credentials are so
sought by adversaries, either those looking to compro-
mise an administrator for an organization, or a software-
as-a-service customer of that organization. Credential
theft can be crippling: in June 2014, an adversary com-
promised the Amazon Web Services (AWS) credentials
of CodeSpaces, a company that provided cloud-based
source code repository hosting. The adversary then
asked the company for a sum of money by a certain
time. When the money was not paid, the adversary then

deleted all of CodeSpaces’ AWS instances and disk stor-
age, along with all of their backups. The company folded
shortly thereafter [10].

One of the most popular ways to obtain credentials
is by phishing. In the most damaging phishing attacks,
an adversary convinces an administrator to install mal-
ware on their computer, steals their credentials, and then
spreads across the network that the administrator main-
tains. Some of the most serious breaches of 2014, in-
cluding those on Sony Pictures [3] and JP Morgan Chase
Bank [2], involved the theft and misuse of administrative
credentials. Indeed, these attacks were most damaging
precisely because of this fact.

Given that our infrastructure can be compromised by
either an inside or outside adversary, we need a solution
to limit the impact of these attacks. As part of security
best practices, the networks on which the most sensitive
of these interfaces are hosted are often separated from
public-facing or even internal LANs. This limits the ac-
cessibility of these sensitive interfaces and protects the
credentials for accessing them from eavesdropping.

Since administrators must invariably access these iso-
lated networks to do their work, we need ways to facil-
itate remote access. The goals of an ideal remote ac-
cess solution should provide security for remote access,
strong authentication, and audit logging of all actions
that take place across the trust boundary. In the follow-
ing sections, we describe the existing remote access so-
lutions and their strengths and weaknesses with respect
to this set of goals.

2.1 Firewalls

When a sensitive network is firewalled off from an un-
trusted network, the firewall allows or denies traffic
based on policy rules. This provides a layer of security
to the protected network. Hosts exposed to external net-
works need to contend with malicious traffic, many of
which attempt to brute-force common passwords or at-
tempt known attacks en masse to any host that will listen.
The firewall allows for a central focus point for security
decisions, and enforcement of security policy [37]. In-
deed, “firewalls are an important tool that can minimize
the danger, while providing most – but not necessarily all
– of the benefits of a network connection” [1].

The downside of firewalling traffic is that it only al-
lows network-based filtering of traffic. Firewalls do not
establish authorization of a user to connect. They do not
protect against IP spoofing attacks. Multiple users could
be behind an IP address that is chosen as an appropriate
host from which to receive traffic. This leaves the au-
thorization decision to the remote device. Firewalls also
do not protect against a trusted insider. Similarly, they
do not do anything for the remote host in the sensitive

2
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Figure 1: A state diagram showing steps required to compro-
mise a sensitive network protected with Firewalls and VPNs.

network:

Given that the target of the attackers is the
hosts on the network, should they not be suit-
ably configured and armored to resist attack?
The answer is that they should be, but prob-
ably cannot. Such attempts are probably fu-
tile. There will be bugs, either in the network
programs or in the administration of the sys-
tem. [1]

Indeed, there are bugs. For example, many administra-
tors use the Intelligent Platform Management Interface
(IPMI) to perform remote administration functions. This
protocol and the hardware that implements it are both
critical to the ability to remotely debug system failures
and problems. Yet, one independent researcher found
that close to 90% of implementations that were publicly
accessible had a security issue that would allow unautho-
rized access to the hardware [7]. Some of these expose
their password by querying a device using Telnet [34].

We show a state diagram in Figure 1 that illustrates
what an attacker would have to do to compromise the
sensitive network. A firewalled network may always be
connected to the host. This reduces the amount of time an
adversary may have to wait to compromise the sensitive
network.

2.2 Virtual Private Networks
A popular methodology for separating sensitive and un-
trusted networks is to place a host between two networks.
In the VPN methodology, the host runs software such as
OpenVPN that facilitates a remote host “joining” the net-
work as if it were there locally [25]. Many organizations
use this to facilitate remote workers: the worker can be
anywhere, and the traffic between the company and the
end user’s laptop is encrypted to prevent the data from
interception or eavesdropping.

The ubiquity of the VPN is due in part to its ease of
use. A user installs a client application configured by
their organization, and is able to connect to the network
and access the network in its entirety. Applications don’t

need to be redesigned to deal with external access, and
an organization can rest assured that most of their data
stays on the internal network.

However, in the era of the “French-bread model” of
network security, this has meant that an external lap-
top has unfettered access to the soft inside of the net-
work [13]. This makes the administrator’s laptop a per-
fect pivot point to infiltrate a network that connects to
sensitive infrastructure. Many organizations attempt to
deal with this risk via policy. For example, policies like
“Establish a VPN connection immediately after estab-
lishing Internet connectivity” and “do not connect any
non-work-owned devices to a work-owned laptop” are
common. There are multiple reasons, intentional and un-
intentional, that may cause an employee to not follow the
rules. For example, an employee may connect to a mali-
cious wireless access point. The owner of the malicious
access point may inject advertisements that are provided
by a malware carrier, infecting the computer.

Finally, while logging and auditing of VPN connec-
tions themselves is straightforward to implement at the
VPN concentrator, correlation of a user activities through
network logs, host logs, and authentication information
is more challenging. First, the VPN connection will vir-
tually connect the remote user to a dynamically chosen
IP address within the sensitive network that may have
previously been used by another VPN user. Second, the
VPN user’s activities on the host (e.g., commands exe-
cuted or data copied) must be combined with network
logs to understand the impact of a malicious actor.

2.3 Bastion Hosts

Bastion hosts are like the lobby of a building: “Outsiders
may not be able to go up the stairs and may not be able
to get into the elevators, but they can walk freely into the
lobby and ask for what they want” [37]. Bastion hosts
provide a single point to audit traffic as an interface that
can be controlled by the organization that owns or con-
trols the private network, as opposed to just being able to
see basic network flow data (source, destination, session
duration, etc.). Firewalls and VPNs allow you direct ac-
cess to a remote network, without having to necessarily
“check in.”

Providing a controlled interactive session, as opposed
to firewalled or VPN-based access, carries benefits for
the organization that controls the sensitive network. The
organization does not have to worry as much about the
state of the administrator’s workstation. The organiza-
tion can employ software and methods used to monitor
workstations and integrate these with existing security
infrastructure. Figure 2 shows that compromise of the
sensitive network is more difficult with a bastion host
than with firewalls or VPNs.
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Figure 2: A state diagram showing steps required to compro-
mise a sensitive network protected with a traditional bastion
host.

Bastion hosts provide a centralized point at which to
enforce strong authentication and to capture detailed au-
dit logs of user activity. Their primary weakness is in the
new vulnerabilities they introduce. The act of providing
an interactive session on the bastion host to an end user
is risky. In the case of a malicious insider, the organi-
zation has given logical access to a bastion host; if any
pieces of software on the bastion host are compromised,
the insider can attribute actions to other users, get a set of
password hashes of other accounts, and/or key log to gain
access to other devices on the sensitive network. Litera-
ture going back decades covers how attackers break into
bastion hosts and create persistent environments [4].

3 Design

We believe the bastion host pattern provides the best so-
lution to achieve secure and audible remote access for
system administrators. To implement a secure bastion
host, we need to address the weaknesses in typical bas-
tion deployments like single point of failure, tamperable
audit information, and weak passwords.

Our goals in this work are to minimize the risk of the
bastion itself, while providing higher security for system
administrators and the isolated networks they use. We
want to have the ability to audit and log, in a tamper-
resistant manner, all activities that a user makes on the
sensitive network. We want to limit the spread of an ex-
ternal attacker and the impact they can have. Finally, we
want to ensure that even if they do compromise the sen-
sitive network, we can recover using the audit log.

To address these challenges and our set of goals, we
developed Spyglass. Spyglass is a network access device
that is dual homed on an untrusted network and sensitive
network where the interfaces to critical security infras-
tructure reside (see Figure 3). A user wishing to access
the sensitive network authenticates to Spyglass and re-
quests a nonpersistent, isolated session. From this ses-
sion, the user can access resources on the sensitive net-

Figure 3: Spyglass System Design

work. From a vantage point outside of the user’s ses-
sion, Spyglass monitors and records all of the user’s ac-
tivities. In the following sections we review the threat
model for Spyglass and then discuss its four key design
components: multifactor authentication, isolation, non-
persistence, and auditing.

3.1 Threat Model

We assume that the adversary is either a malicious
system administrator or that the system administrator’s
client system has been compromised. The goal of the
adversary is to compromise an isolated network the sys-
tem administrator controls. We assume that the adver-
sary may be able to compromise applications inside of
the containers that face the untrusted network. However,
we assume the adversary cannot break out of the sand-
box Spyglass creates, and cannot compromise the con-
trol process for creating and destroying containers. We
assume that valid users have used multiple factors to au-
thenticate to the system creating the containers. Finally,
we assume that SSH is properly configured (i.e., dis-
abling tunneling) along with the network bridge device
used by the OS-level virtualization provider.

3.2 Multifactor Authentication

We begin by considering how to authenticate Spyglass
users. Reusable passwords are both easily cracked and
easily stolen [21]. Indeed, with custom hardware, an
adversary can crack passwords at a rate of 350 billion
guesses per second [9]. Adding multiple factors makes it
more difficult to steal a user’s credentials to obtain unau-
thorized access. Some types of multifactor authentica-
tion require that the valid user be physically present to
initiate a session. In the case of an administrator whose
client system is compromised by an external attacker,
this slows the attacker to only be able to initiate a session
when they can subvert one initiated by the valid user.

Best practices for organizational cyber security also
agree on the importance of multifactor authentication.
For example, the SANS Institute’s Critical Security Con-
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trols recommend that multifactor authentication should
be used “for all administrative access, including domain
administrative access” [30]. Unfortunately, some assets
(e.g., networking or storage appliances) cannot take ad-
vantage of multifactor authentication natively. By intro-
ducing the Spyglass bastion in front of these systems, we
are able to better address the SANS control’s recommen-
dation.

Many government institutions implement multifactor
authentication by taking advantage of the cryptographic
functions of smart cards. For organizations that already
have the infrastructure required to operate a large smart
card infrastructure, this could be suitable for Spyglass.
However, the implementation often requires additional
hardware (both in the form of the cards and readers). It
also requires complicated integration to allow for those
capabilities to be used to authenticate with websites.

To address these scalability and adoption challenges,
we chose Yubico YubiKey to add another authentication
factor for Spyglass authentication [36]. The YubiKey
is a USB device that outputs a 44-character string of
ASCII letters that represent a 12-character identifier and
a 32-character one-time password based on the secret and
public identifier stored on the hardware device. A large
community exists around the use of the YubiKey, and an
open-source YubiKey Validation Server exists along with
cross-language libraries to interface with the server.

3.3 Isolation

While it’s certainly easier for a user to directly connect
to a sensitive network (either via firewall or via VPN),
as discussed in Sections 2.1 and 2.2, it comes at a cost to
the security posture of the sensitive network. Malware on
the users system may have unfettered access to the sensi-
tive network and may directly connect to and attack hosts
there. For this reason, Spyglass, as other bastion hosts
do, explicitly isolates and separates the administrator’s
computer and the sensitive network. Isolation is criti-
cal, since “[t]oday’s cyber incidents result directly from
connecting formerly standalone or private systems and
applications to the Internet and partner networks” [8].

We also introduce isolation between the different users
of Spyglass and the components that underpin Spyglass.
Thus, each user gets their own login environment from
which to pivot to the sensitive network and, similarly,
each component of Spyglass is in an isolated environ-
ment and only communicates to other components over
minimal well-defined interfaces. Traditionally, virtual-
ization provides an answer for system architectures that
required that two subsystems couldn’t necessarily affect
each other’s memory space in unexpected ways. How-
ever, that assurance comes at a performance cost. Creat-
ing a virtual machine for each user would pose a signifi-

cant resource overhead and delay considering that virtual
machine spin-up times (even in the cloud) exceed 30 sec-
onds regularly.

To achieve strong isolation without the performance
overhead of full system virtualization, we utilize OS-
level virtualization technologies to isolate Spyglass com-
ponents and users. This method of virtualization allows
multiple environments to share a common host kernel
and utilize underlying OS interfaces, thus incurring less
CPU, memory, and networking overload [29].

3.4 Nonpersistence

Increasing the amount of ephemerality in the system de-
sign works to the organization’s advantage in defend-
ing their systems. Goldman found the benefits that non-
persistence provides makes an attacker’s job more diffi-
cult. Specifically, consider the ability it allows organiza-
tions to stand up and tear down a particular capability (in
our case, remote access) in an on-demand fashion, and
the ability to ensure that a particular state is regularly
patched [8].

To understand the importance of nonpersistence, we
need to understand the kill chain of an attack. The Cy-
ber Kill Chain describes the steps an attacker must take
to compromise a computer system. Generally, to launch
a successful attack on a system, an attacker must collect
useful information about a target, attempt to access the
target, exploit a vulnerability for the target, launch the
attack, and then find a way to maintain access to the sys-
tem [24]. Nonpersistence interrupts an attacker’s ability
to persist by forcing session timeouts and subsequent de-
struction of their environment.

In Spyglass, new user sessions are always instantiated
inside of a fresh container that is patched regularly. Even
if an attacker can compromise the container, they will
have to repeat this process regularly and potentially raise
their profile in other monitoring and logging capabilities
of the system, leading to a higher chance that an attacker
will be detected.

3.5 Audit

The presence of some form of situational awareness
when it comes to running a server that is available on
an untrusted network like the Internet is an important as-
set. It is otherwise impossible to know whether a com-
promise has occurred if there isn’t a means to audit and
monitor accesses, user actions, and other items of in-
terest. Considering that it is not a matter ofif one gets
hacked but rather when [37], it makes sense that seeing
an attacker’s actions that allowed them to compromise
the host would aid in repair and recovery.
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While often given less importance than active security
measures like strong passwords or antivirus, best prac-
tices include the need for audit logging. The Australian
Signals Directorate recommends “centralised and time-
synchronised logging of successful and failed computer
events” and “centralised and time-synchronised logging
of allowed and blocked network activity” as part of their
Strategies to Mitigate Targeted Cyber Intrusions report.
Specifically:

Centralised and time-synchronised logging
and timely log analysis will increase an or-
ganisation’s ability to rapidly identify pat-
terns of suspicious behaviour and correlate
logged events across multiple workstations and
servers, as well as enabling easier and more ef-
fective investigation and auditing if a cyber in-
trusion occurs. [5]

Similarly, MITRE’s report Building Secure, Resilient
Architectures for Cyber Mission Assurance specifies de-
tection and monitoring as one of five objectives that help
achieve architecture resilience:

While we cannot always detect advanced ex-
ploitations, we can improve our capabilities
and continue to extend them on the basis of
after-the-fact forensic analysis. Recognizing
degradations, faults, intrusions, etc., or ob-
serving changes or compromises can become
a trigger to invoke contingency procedures and
strategies. [8]

These ideas lead to the requirement that a system be
in place that captures all commands issued and their out-
put for later retrieval and review. These logs need to be
located on a remote host to preserve their content in the
event that the bastion host machine is compromised. In
Spyglass, we further protect the logs from tampering by
capturing and transmitting the audit log information from
outside of the user’s container. Furthermore, if the at-
tacker is able to disrupt the logging process somehow,
the session is immediately terminated. This leads to a
system where a system administrator is unable to take
any actions on the sensitive network without leaving a
trail of what they did.

4 Implementation

Spyglass consists of four components: a locally hosted
YubiKey validation server, the Spyglass web interface,
the container daemon, and the audit daemon. To main-
tain proper segmentation, the YubiKey Validation Server
and the database server should be on a separate VLAN
that is not on the sensitive network pictured above. An-
other independent host on a separate VLAN should store

audit log data. Additionally, this audit host should be
controlled/maintained by parties other than the system
administrators using Spyglass (e.g., by a security policy
or oversight rather than IT organization) to avoid the pos-
sibility of audit log tampering.

4.1 User Facing Interface
The user interface for Spyglass is required to:

• Authenticate a user

• Store a valid SSH public key for each user

• Instantiate a bastion container

• Destroy a bastion container

• Be accessible from a variety of client platforms

Figure 4 displays the Spyglass architecture, along with
numbers representing relevant communication flows.
During session initiation, a user (1) accesses the web ap-
plication. The application (2) checks the authentication
against a database and validates the other factor. Once
the user is logged in, they (3) request a container and
the web application sends a request to the container dae-
mon with information about the user and the preferred
key. The container daemon pulls this information from
the database in step (4), and sends this information to
Docker in step (5). Docker then (6) creates the container
and sends information back to the web application to in-
form the user what host their container is running on.
Finally, the user logs into their container in step (7). This
creates a set of log files, which are read by the audit dae-
mon and moved to the audit host (8). Processes that run
on the bastion host are outlined with a dotted line.

Upon initial login, Spyglass presents users with the
main interface in Figure 5. The user then adds an SSH
public key by going to the Keys menu and clicking New
Key, as seen in Figure 6. Once the key is added, the user
can now start a session by going to the Sessions menu and
clicking New Session as seen in Figure 7. Afterwards,
Spyglass presents the user with session information (Fig-
ure 8). The user can now initiate an SSH connection to
the bastion container and access the sensitive network.

4.2 Container Daemon
We need to enable the web UI to handle container man-
agement through Docker. Rather than doing this di-
rectly from the web application, we chose to imple-
ment a middleware process called the container daemon
(or containerd). The primary motivation for this de-
sign was to avoid giving the Spyglass web application
root privileges so that it could access the Docker control
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Figure 4: Spyglass infrastructure and information flows.

socket (owned by root). The separation also enables
us, in future work, to further isolate the web application
from containerd by placing the web application itself in-
side of a container and using SELinux mandatory access
controls to implement least privilege.

We wrote containerd in a strongly typed language (Go)
to prevent a variety of simple attacks on the web appli-
cation itself. Containerd supports a small, simple, and
well-defined interface for commands that further limits
its attack surface. Thus, even if the web application is
compromised, it will only able to create and delete con-
tainers and not access any other user’s session.

The container daemon provides two HTTP Endpoints:
containercreate and containerdestroy. The
conatinercreate endpoint handles the creation of a
container via an HTTP POST. It expects to receive a
JSON object that references a database that the container
request application uses.

Listing 1: A sample JSON container created notification
{

"DbKeyId ":10,
"DbUserId ":2,
"SshKey ":"ssh -rsa AAAAB3NzaC1yc2EAA <truncated >",
"SshUser ":" cable",
"SshPort ":"49154" ,
"DockerId ":" c46a32bd3347 <truncated >"

}

Upon receiving the request, containerd queries the
request application’s database to get the appropriate user-
name and SSH public key needed to insert into the con-
tainer. Once it has the appropriate metadata, containerd
instantiates a docker object with the appropriate config-
uration for the container. After Docker creates and starts

the container, containerd returns a JSON object with the
information about the container to the request application
(as Listing 1 shows).

The containerdelete endpoint handles the deletion
of a container via an HTTP DELETE. It only accepts a
container identifier, and passes it to Docker for deletion.

4.3 Audit Daemon
Initially, we evaluated SSLsnoop for use in the system
to capture activity inside the bastion containers from
a vantage point outside the container boundary [20].
SSLsnoop locates the SSH session keys in the SSH pro-
cess memory and does real-time decryption of traffic be-
tween two hosts. However, later versions of SSH have
changed the format of in-memory structures, causing
SSLsnoop to be unable to proper locate the key and en-
crypted stream. SSLsnoop also only monitored the SSH
connections originating from the bastion itself, so an at-
tacker intent on breaking the container would go unde-
tected.

To keep as much of the monitoring infrastructure out-
side of the container as possible, we settled on a hybrid
solution using SudoSH and a custom log monitor. Su-
doSH works by spawning the user’s shell inside of an en-
vironment that is transparently capturing keystrokes and
screen output [12]. We are able to look into the container
host’s file system and use Linux’s inotify functionality
to read the logs from the container host and relay them to
the audit host [23]. The Audit Daemon ensures that the
logs are sent to the audit host regularly and thus avoid any
tampering from compromise of a Spyglass container. To
further ensure the integrity of the auditing system, Spy-
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Figure 5: Initial login screen. Figure 6: Adding an SSH key.

Figure 7: Creating a session. Figure 8: Viewing active sessions.

glass monitors the process table and will immediately
terminate the user’s bastion container if the SudoSH pro-
cess stops.

5 Evaluation

We hypothesize that fast, on-demand provisioning of
Linux containers that are unique to a particular user’s
session loosens the coupling between the integrity of the
private network and the integrity of the remote client that
connects to it. This separation is easy to provide as a ser-
vice in part due to the lightweight nature of containers.

To prove this point, we analyzed the individual over-
head of five containers on the host machine. We also at-
tempt attacks on the system and attempt to connect to the
authorization and auditing networks, along with some at-
tempts to evade of the audit logging process. In Figure 9
we also created a state diagram, similar to Figures 1 and
2 to illustrate how Spyglass differs from existing firewall,
VPN, and bastion host solutions.

These experiments were performed in VMware Fusion
7 Pro running on a Macbook Pro with 16 GB of RAM
and a 2.6 GHz Intel Core i7 processor. The bastion host
virtual machine has one processor core, and 1024 MB of
memory.
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Figure 9: A state diagram showing steps required to compro-
mise a sensitive network protected with Spyglass

5.1 Bastion Container Performance

To measure the load characteristics of an individual
container, we used the Google tool cAdvisor [11] run-
ning on the bastion host. cAdvisor captures CPU and
Memory load and writes it to InfluxDB, a time series
database [17]. We monitored five invocations of the con-
tainer that the container request application would in-
stantiate. This session connected to a remote host and
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ran the top command. We used the time command
to measure the instantiation time of an individual con-
tainer. We queried InfluxDB for max(memory usage)

and last(cpu cumulative usage) values for each in-
dividual container. Table 1 shows the results.

As expected, we find overhead and instantiation la-
tency to be substantially lower than a virtual machine-
based approach, where memory, instantiation, and CPU
overhead are much larger [15]. We expect that even an
embedded system with a low amount of RAM could sup-
port 10s of users. As a control channel for a sensitive
network, we do not anticipate that Spyglass would limit
network bandwidth.

5.2 Host Denial of Service

A serious potential attack that an adversary could launch
is to deny service to other clients connecting to the Spy-
glass. To test this, we spawned a new container and ran a
command to fill the container disk (dd if=/dev/zero

of= temp). This in turn caused the host disk to fill.
The system was still able to spawn new containers af-
ter the disk was full; however, their auditing processes
were quickly killed off as the host ran out of disk space.

One solution is to use the devicemapper backend
for Docker container storage. Using the devicemapper
backend allows for finer-grained control on storage by
specifying a base size for all container images. How-
ever, this means that all containers must be the same
size; by default this value is 10 gigabytes. This effect
can be mitigated by starting the Docker daemon with
the --storage-opt dm.basesize=1G option; how-
ever, this breaks compatibility with the container creation
web interface. Work towards user namespaces and in-
dividual quotas will make it trivial to apply file system
quotas to containers; however, these features are not yet
available.

5.3 Network Protection

The container host is connected to two different networks
that are used to provide authentication and audit log stor-
age support for the system. These networks should not
be exposed to the user who is looking to access the pro-
tected network. By default, the container does not have
access to use the ping command. However, it was still
possible to use netcat to send data between two hosts
if the destination address was known. It was also possi-
ble to connect back out to the untrusted network, which
would allow an attacker to pivot to another host.

We implemented firewall rules on the Spyglass con-
tainer host to mitigate these and other network-based at-
tacks. This way, traffic to and from the container was

limited to SSH inbound and a select set of outbound pro-
tocols for the container. Finally, the host firewall explic-
itly drops and logs all connection attempts from the con-
tainer to the host. In our testing, we found no unautho-
rized network connections were allowed.

5.4 Container Escalation and Escape

A core assumption of the security of our system is that a
user cannot escalate privileges and/or “break out” of the
container itself. We accomplish this by proper configu-
ration and multilayered defensive practices.

We configure the container in such a way that a re-
mote user does not have root privileges. This is to pro-
tect against an escape attack within system, as it is easier
to jump from the container to the container host if an
attacker has root inside the container. We also suggest
regular rebuilding of the container with patched binaries.
This makes it more difficult for an attacker to take advan-
tage of a root exploit in any base packages.

The use of mandatory access control can also limit the
scope of an attacker who is able to both escalate to a root
user within the container and break out of the container
itself. Docker has SELinux rules available for use with
Red Hat Enterprise Linux 7 and derivatives, but our im-
plementation uses Ubuntu. In future work, we plan to im-
plement this addition protection that would further raise
the bar for an adversary trying to compromise Spyglass.

5.5 Audit Security

The logs created by the SudoSH process running inside
of the container are ephemeral. To address this issue, we
send the logs to another host on a separate network to
provide a record in the event of a container compromise
or other security event. rsync provides functionality to
move files over to the audit host. We discuss methods to
optimize this approach in Section 7.

6 Related Work

There is a variety of work that show early interest and
effort into implementing container-based solutions to in-
sulate a host operating system from attack. Ioannidis et
al. implement a tag that is attached to files obtained from
remote sources that allows built-in limiting what mali-
cious code can do to a user’s other files [19]. This is
interesting, in that modern operating systems have im-
plemented a variation of this idea (Apple’s Mac OS X
is able to detect files that have been downloaded and
warn before opening); however, the technology that is
more applicable to this project has gone largely unimple-
mented in major operating systems. Wagner also shows
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# Memory Use CPU Cycles Real Time User Time System Time
1 4.80 320437210 0.77 0.01 0.02
2 4.80 246014871 0.85 0.02 0.03
3 4.91 464523389 0.16 0.00 0.00
4 4.79 417975143 0.16 0.01 0.00
5 4.80 332404388 1.05 0.01 0.00

Table 1: Memory (MB), CPU (jiffies) and Time (seconds) for container instantiation.

early interest in the idea of containerization, and imple-
ments a method of attempting to “containerize” an ap-
plication in user space by monitoring system calls [33].
Wagner monitors system calls and the files they act upon
against a policy to ensure that applications are allowed
to access specific files or network devices. The approach
comes about a year before the release of SELinux, which
uses contexts rather than per-application configuration to
enforce access to resources.

Thakwani proposes a new UNIX dfork() call that in-
stantiates the child process in a virtualized machine [32].
This solution is elegant in that it provides a very low-
level means to ensure that processes start in separate
namespaces. Thakwani’s work doesn’t measure the
amount of time it takes to use dfork()with a new virtual
machine on each use. Many processes can be sandboxed
in the same virtual machine in Thakwani’s architecture,
thus saving time; however, this would not work well for
our goal of isolating users from each other.

Parno et al. demonstrates demand-based virtualized
containers that are instantiated upon user-login to a web-
site in CLAMP [26]. CLAMP goes on to actively broker
access to a particular database and ensure each container
instance only contains the appropriate data for the au-
thenticated user. While our work does not deal with spe-
cific user data, CLAMP demonstrates a model of mitigat-
ing risk by implementing nonpersistence and container-
ization.

Similarly, Huang et al. propose a framework to reduce
an adversary’s ability to have an attack persist on a par-
ticular network by refreshing to a known clean state on
a regular basis [14]. This methodology works well on
detectable and undetectable attacks thanks to the regular
refresh interval. However, it does not protect against any
lower-level (i.e., hardware) attacks that may occur [24].
It also provides some form of “highly available” architec-
ture to handle the hosts that are being actively refreshed.
Spyglass makes no guarantee of a highly available re-
source, but new containers are easy to instantiate unless
the container host has failed.

Our approach is similar to the Lightweight Portable
Security [22]. Lightweight Portable Security creates a
bootable, read-only environment that doesn’t store state.
This affords an organization reasonable assurance that
there is no persistent malware on a machine they may

not own, which addresses concerns in Section 2.2 re-
garding virtual private networks. However, the technique
has a significant amount of overhead in that it requires a
user to reboot into the environment, and it makes no as-
sumptions about attacks that would live in hardware (and
therefore, persist across reboots) [24].

Nonpersistence can have operational benefits as well.
An example of this is Ganger, a tool for instantiating con-
tainers when a network request is received [31]. The
motivation for Ganger was to create a temporary envi-
ronment that would ensure that files created under /tmp
would be cleaned up in an orderly fashion after the net-
work connection was closed. This was due to the use
of a particular application that wrote a large amount of
temporary data.

Proving that there is a market for monitoring of the
connection concentrator, Pythian’s Adminiscope imple-
ments a form of connection concentrator to a private net-
work with live auditing ability [28]. However, it is un-
clear as to what mechanisms are implemented to guard
the host against compromise and other threats to the con-
centrator itself. Similarly, another industry product exists
named Invincea [18]. Invincea brings together concepts
of non-persistence and isolation to protect a browser
against web-based malware. In our system, we aim to
protect sensitive infrastructure from a bad client.

A similar commercial offering is Dome9’s Secure Ac-
cess Leasing product [6]. Secure Access Leasing is
a mechanism by which users request access to various
cloud-hosted resources, and the Dome9 product has an
agent that configures hosts and AWS firewalls to allow
a particular user access to the host for a certain amount
of time. The solution allows administrators to see when
users are accessing which resources. This is an easy win
for many organizations with assets in the cloud. How-
ever, an organization has no visibility into what a particu-
lar administrator is doing with that resource; the auditing
is pushed off to the host that needs to be accessed.

Recently, Yelp created dockersh, a shell environment
that is able to provide nonpersistent shell environments
for users who SSH into a server [35]. This is one of
the closest matches to what the system aims to do. The
dockersh documentation does mention the issues re-
garding opening bastion hosts to the Internet. The sys-
tem described runs a SSH daemon in the container envi-
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ronment, which does allow for more separation. There
is also limited discussion of good security practice in
the event of a compromise. Users blindly implementing
dockersh against the warnings of the engineers at Yelp
will find themselves without any situational awareness in
the event of a compromise. We mitigate these concerns
by providing a “belt and suspenders” approach to secu-
rity. If our container is compromised, we do have a log
for a period of time that allows us to replay the attacker’s
movements pre-compromise.

7 Future Work

While we were able to create a system design and archi-
tecture that meets our needs and goals, there are several
considerations that could enhance the security, usability,
and performance of the system. Some of these items in-
clude:

• Centralized authentication is prevalent in many or-
ganizations, and it may be beneficial to leverage that
as an authentication backend for the container re-
quest application.

• While it is convenient that the SudoSH utility logs
all keystrokes, there are instances where this is a
problem (e.g., when a user enters a password). Cre-
ating a mechanism to ignore sensitive details would
be important to mitigate some insider risk.

• The container audit daemon executes rsync twice
for every keystroke. We plan to implement a sim-
ple streaming data service on top of an SSH tunnel
to a corresponding agent on the audit host to lower
overhead for audit information.

• Migration to a Red Hat Enterprise Linux-based sys-
tem would allow the use of SELinux for greater con-
tainer security. Later versions of Docker will also
support user namespaces, which improves the secu-
rity of containers to break out even when an adver-
sary can obtain root access inside of the container.

• A means for keeping track of the age of administra-
tor keys, and enforcing age limits on those keys.

• Providing the SSH host key signature to the web
interface (so a user could verify the key of the con-
tainer they are connecting to) would be an impor-
tant addition to ensure the security of the connection
from a man-in-the-middle attack. This is especially
relevant in Spyglass as the “trust on first use” nature
of SSH host authentication provides limited bene-
fit when the containers are re-instantiated on each
session.

8 Conclusion

Given that external attackers and malicious system ad-
ministrators could wreak havoc across an organization’s
network, it is extremely important to protect access to
networks with sensitive interfaces connected to them.
In this paper, we presented Spyglass, a system that uti-
lizes auditability, nonpersistence, isolation, and multi-
factor authentication to protect sensitive networks. This
system requires minimal change to the actual configura-
tion of the network, provides a high security bastion, and
allows an organization to securely audit their administra-
tors’ activity.

The container request application, container daemon,
and audit daemon are in the process of being open
sourced. The project will be updated as necessary, and
pull requests from the community are welcome.
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DevOps is Improv: How Improv Made Me a Better Sysadmin 
 

Brian Sebby, Argonne National Laboratory 
 

 
Abstract 
With the rise of DevOps as a prevailing software devel-
opment model, organizations are finding that teamwork 
and communication are tools that are vital to the overall 
success of their mission.  Three years ago, I took my 
first improv class, and in addition to helping me be 
more comfortable with public speaking, I have found 
that many of the techniques that help an improv team 
succeed on stage are directly applicable to helping a 
DevOps team succeed. 

1. Saying “Yes And” 
While there are many forms of improvisation, all of 
them share one major rule: saying “Yes And”.  Saying 
“Yes And” means that you are agreeing with the reality 
that is being established on stage and then adding more 
to it.  In a DevOps team, saying “Yes And” means that 
you are open to new ideas, and are adding ideas of your 
own, rather than denying the contributions of your 
teammates. Saying “Yes And” also requires you to lis-
ten carefully to what is being said so that your contribu-
tions can add to the whole performance or project. 

2. Supporting Your Team  
Almost all forms of improvisation are performed by 
teams, and for a performance to be a success, the team 
must work together and support each other.  It’s com-
mon before a performance for improvisers to tell each 
other “I’ve got your back”, and that is also needed in 
DevOps.  If there is a problem or someone needs help, a 
team should work together to solve it, rather than try to 
find a way to assign blame.  On stage, providing sup-
port to your scene partners makes them look good, and 
it ensures that when you are in the spotlight, your team 
will be there to provide the support you need to look 
good. 

3. Taking Risks 
Improv provides a heightened view of reality, and in 
order to provide humor for the audience, improvisers 
must take risks and take advantage of slips of the 
tongue and other unexpected statements or develop-
ments in the scene.  Rather than being discouraged, 
these are called “gifts”, and can take the performance in 
directions that no one expected.  In DevOps, if we be-
lieve that our team has our back, it is much easier to 
take risks - and we may find that unexpected results 
may improve a project and make it more successful 
than it may have been otherwise. 

4. Shared Success 
On any team, whether in improv or in DevOps, individ-
ual members of the team will have various skill levels.  
At the end of a performance, however, the audience is 
not applauding for one player - they are applauding for 
the team.  If a stronger player provides support for the 
other members of a team, that will help to ensure that 
the show is a success.   Likewise, in DevOps, success or 
failure is shared between the whole team, and complet-
ing a project successfully relies on the team working 
together. 
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