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HotRestore: A Fast Restore System for Virtual Machine Cluster

Lei Cui, Jianxin Li, Tianyu Wo, Bo Li, Renyu Yang, Yingjie Cao, Jinpeng Huai
State Key Laboratory of Software Development Environment

Beihang University, China
{cuilei, lijx, woty, libo, yangry, caoyj}@act.buaa.edu.cn {huaijp}@buaa.edu.cn

Abstract

A common way for virtual machine cluster (VMC) to
tolerate failures is to create distributed snapshot and then
restore from the snapshot upon failure. However, restor-
ing the whole VMC suffers from long restore latency due
to large snapshot files. Besides, different latencies would
lead to discrepancies in start time among the virtual ma-
chines. The prior started virtual machine (VM) thus can-
not communicate with the VM that is still restoring, con-
sequently leading to the TCP backoff problem.

In this paper, we present a novel restore approach
called HotRestore, which restores the VMC rapidly with-
out compromising performance. Firstly, HotRestore re-
stores a single VM through an elastic working set which
prefetches the working set in a scalable window size,
thereby reducing the restore latency. Second, HotRe-
store constructs the communication-induced restore de-
pendency graph, and then schedules the restore line to
mitigate the TCP backoff problem. Lastly, a restore
protocol is proposed to minimize the backoff duration.
In addition, a prototype has been implemented on QE-
MU/KVM. The experimental results demonstrate that
HotRestore can restore the VMC within a few second-
s whilst reducing the TCP backoff duration to merely
dozens of milliseconds.

1 Introduction

Machine virtualization is now widely used in datacenters
and this has led to lots of changes to distributed applica-
tions within virtualized environments. In particular, the
distributed applications are now encapsulated into vir-
tual machine cluster (VMC) which provides an isolat-
ed and scaled computing paradigm [1, 24, 22]. How-
ever, failures increasingly become the norm rather than
the exception in large scale data centers [17, 35]. The
variety of unpredictable failures might cause VM crash
or network interruption, and further lead to the unavail-

ability of applications running inside the VMC. There
are many approaches for reliability enhancement in vir-
tualized environment. Snapshot/restore [25, 39, 40, 37]
is the most widely used one among them. It saves the
running state of the applications periodically during the
failure-free execution. Upon a failure, the system can re-
store the computation from a recorded intermediate state
rather than the initial state, thereby significantly reducing
the amount of lost computation. This feature enables the
system administrators to recover the system and imme-
diately regain the full capacity in the face of failures.

In the past decades, several methods have been pro-
posed to create distributed snapshot of VMC, and most
of them aim to guarantee the global consistency whilst
reducing the overhead such as downtime, snapshot size,
duration, etc [11, 25, 14]. However, restoring the VM-
C has received less attention probably because restora-
tion is only required upon failures. As a matter of fact,
due to the frequently occurring failures in large scale data
centers, restoration becomes frequent events accordingly
[35]. Worse still, just one VM crash would lead to the
entire VMC’s restoration with the consistency guarantee
taken into account. The frequent restoration of multiple
virtual machines cause non-negligible overheads such as
restore latency and performance penalty. Here, restore
latency is referred to the time to load saved states from
the persistent storage until the VM execution is resumed.

There are a few well-studied works on improving VM
restoration. Working set restore [39, 40] is one solu-
tion proposed recently, and it restores a single VM by
prefetching the working set. Since the working set re-
flects the access locality, this method reduces the restore
latency without compromising performance. It seems
that the VMC restore could be simply accomplished by
restoring the VMs individually with working set restore
[19]. Unfortunately, several practical drawbacks are still
far from settled.

First, the restore latency with working set restore is
still long. In fact, the latency is proportional to the work-
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Figure 1: A TCP transmission case during restoration.
VM1 after start sends packet1 to VM2, and this packet
will be lost because VM2 which is restoring is currently
suspended. VM1 would resend this packet once retrans-
mission timeout (RTO) is reached. Packets 2, 3, 4 are
retransmitted items of packet1. If packet1 is a SYN to
connect VM2, the TCP handshake would fail if the re-
transmission duration exceeds TCP connection timeout.
If packet1 is a heartbeat packet, the timeout may cause
VM2 be falsely reported as fail which would result in
misbehaviour.

ing set size which is directly related to the workload ac-
tivity. For memory intensive tasks, the working set might
be the entire memory, so that the working set restore de-
grades to eager restore[37] which starts the VM after all
state is loaded.

Second, due to the heterogeneity of virtual machines
cooperated in the VMC as well as the variety of work-
loads, the working set sizes of various VMs may be d-
ifferent. This difference results in diverse restore laten-
cies and hence causes VMs being launched at different
times. As a result, if the prior started VM sends a pack-
et to a restoring one, it will not receive any reply within
a while. This might lead to temporary backoff of active
TCP connections as illustrated in Figure 1.

Therefore, in the cluster, the practical VM disruption
time not only involves the restore latency but is deter-
mined by the TCP backoff duration as well. The backoff
duration directly depends on the degree of discrepancy
among VMs’ restore completion times, i.e., start times.
What’s more, due to the complexity of workloads, these
VMs may differ greatly in working set sizes, making
TCP backoff duration the dominant factor in disruption.

In this paper, we propose HotRestore, which is capa-
ble of restoring the saved state of VMC swiftly and ef-
ficiently. Unlike prior VMC restore tools, HotRestore
could resume the applications’ execution within a few
seconds and the applications can regain their full capac-
ity rapidly. Moreover, the distributed applications only
suffer transient network interruption during the restora-
tion. Consequently, HotRestore can be naturally adopt-
ed in scenarios with high availability requirement, where
fast recovery is essentially critical to provide reliable ser-

vices to end users.
HotRestore proposes two key ideas to achieve these

objectives. On one hand, it traces the memory access
during post-snapshot, and records the traced pages in a
first-access-first-load (FAFL) queue, which finally con-
stitutes an elastic working set. The motivation behind
is that when a VM is restored, it will be roll-backed
to the snapshot point. If the execution is deterministic,
the VM will re-execute in the same way as that of post-
snapshot. As a result, the traced memory pages during
post-snapshot will be touched again and thus can be re-
garded as working set pages. By only loading the work-
ing set pages upon restoration, the restore latency de-
creases with a lot.

On the other hand, restore line which depicts the s-
tart times of VMs is designed in order to reduce the TCP
backoff duration. The basic idea is that for a packet sent
from one VM, the associated destination VM must have
been started to receive the packet for preventing potential
backoff. The restore line derives from defacto restore
order and causal restore order. The former one is re-
vealed by the calculated working set sizes of VMs while
the latter is communication-induced. Since the seman-
tics of the two orders might conflict, HotRestore revises
the working set sizes to make defacto order be consisten-
t with causal order, and thereafter computes the restore
line. Moreover, a restore protocol is designed to guaran-
tee that the VMs can start as indicated by the restore line,
thereby significantly minimizing the backoff duration.

Our contribution is three-fold. First, we introduce e-
lastic working set, which is a subset of active memory
pages in any desired size, in order to restore a single VM
rapidly. Second, we propose restore line for virtual ma-
chines that cooperate into a cluster, schedule the VMs’
start times to minimize the TCP backoff duration. Third,
we have implemented HotRestore on our previous work
called HotSnap [14] which creates distributed snapshots
of the VMC, and conducted several experiments to justi-
fy its effectiveness.

The rest of the paper is organized as follows. The next
section gives a brief overview of previous work on Hot-
Snap. Section 3 presents the concepts and implemen-
tation of elastic working set. Section 4 introduces the
algorithm to compute the restore line and describes the
restore protocol. Section 5 introduces several implemen-
tation details on QEMU/KVM platform followed by the
experimental results in Section 6. Finally we present the
previous work related to HotRestore in section 7 and con-
clude our work in Section 8 and 9.

2 A Brief Overview of HotSnap

HotSnap creates a global consistent state among the VM-
s’ snapshots. It proposes a two stage VM snapshot cre-
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ation approach consisting of transient snapshot and full
snapshot. In transient snapshot, HotSnap suspends the
VM, records the CPU and devices’ state, sets guest mem-
ory pages to be write-protected, and then starts the VM.
After that, full snapshot starts up. HotSnap will save the
guest pages in a copy-on-write manner. Specifically, up-
on a page fault triggered by touching the write-protected
page, HotSnap will save the page into snapshot file, re-
move the write-protect flag and then resume the VM. The
recorded snapshot is actually the instantaneous state in
transient snapshot; therefore full snapshot is actually a
part of post-snapshot stage.

In HotSnap, we tailor the classical message coloring
method to suit to virtualized platforms. In the coloring
method, the packet color is divided into pre-snapshot and
post-snapshot, so is the VM color. HotSnap intercepts
the packet sent and received by the simulated tap device
on QEMU/KVM. For a packet to be sent, HotSnap pig-
gybacks the packet with the immediate VM color. For
a received packet, if the packet color is post-snapshot
while the VM color is pre-snapshot, the packet will be
temporarily dropped to avoid inconsistency; otherwise,
the packet will be forwarded to the virtual machine and
be finally handled.

The consistency of global state is guaranteed during
snapshot creation by HotSnap. Therefore, HotRestore
makes no attempt to ensure consistency upon restoration,
which is different to previous works that focus on consis-
tency as well as avoiding domino effect [16, 34, 36].

3 Elastic Working Set

This section first presents the estimation method of elas-
tic working set, and then describes how to create snap-
shot and restore the VM when working set is employed.

3.1 Working Set Estimation

An elastic working set should satisfy three requirements.
Firstly, the restore latency is as short as possible with-
out comprising application performance. Secondly, high
hit rate and high accuracy are achieved after VM starts.
High hit rate implies most of the accessed pages hit in
the working set, while high accuracy means most of the
working set pages will be touched within a short while
after VM starts. Thirdly, the working set size could scale
up or scale down without the decrement of hit rate, ac-
curacy and performance. In this manner, the size can be
revised on-demand upon VMC restoration. To estimate
one such working set, we need to determine: i) which
pages should be filled into the working set, and ii) how
many pages should be loaded on restoration (or namely
the working set size).

scale upscale down

… …

… …A B C D E F

A B C D E F

G

access

Enqueue

FAFL queue

Memory tracing

Dequeue

Working set

Figure 2: Elastic working set with the FAFL queue.

3.1.1 Working Set Pages

Upon restoration, the VM will be roll-backed to the
saved snapshot point and continue to execute. Ideally,
if the execution is deterministic, the VM after restora-
tion will re-execute the same instructions and touch the
same memory area as that of post-snapshot. This in-
sight inspires us to trace these memory access during
post-snapshot and regard the traced pages as candidate
working set pages for producing the final working set.

Optimal selection from the candidate pages has been
well studied. LRU and CLOCK are two classical
and widely-used page replacement algorithms [23, 41].
However, we argue that the FIFO manner could be bet-
ter in the mentioned scenario within the paper. The rea-
son is as follows. If the execution is deterministic, the
page access order after restoration remains the same as
that of post-snapshot. This implies that the first accessed
page during post-snapshot will be firstly accessed after
restoration. As a result, HotRestore adopts a first-access-
first-load (FAFL) manner to determine the working set
pages. Specifically, HotRestore saves the traced pages
in the FAFL queue during post-snapshot, and loads the
pages dequeued from the queue upon restoration. Figure
2 illustrates the overview of the FAFL queue. The traced
pages, i.e., A-F, have been stored in the queue in access
order, and the working set can be simply produced by
dequeuing the pages from the queue.

Elasticity is another crucial feature of the FAFL queue.
The queue depicts the order of pages which are touched
by guest kernel or applications during post-snapshot. On
tone hand, given that the VM execution is determinis-
tic, loading more or fewer pages into the working set
upon restoration will not influence the hit rate or accu-
racy seriously. Consequently, it enables the working set
to scale up/down efficiently. On the other hand, the back-
ground load thread after VM is launched could still fetch
the pages in the FAFL manner rather than loading the
pages blindly. In this way, the probability of page fault

3
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could be effectively reduced. This is essentially impor-
tant to maintain the application performance without se-
vere degradation when the working set size decreases.

The external inputs events or time change make the
VM execution be non-deterministic invariably in real
world scenarios. Despite this, our experimental result-
s1 show that elastic working set could achieve high hit
rate and accuracy. Meanwhile, it could scale up and s-
cale down without compromising performance.

3.1.2 Working Set Size

The working set size plays an important role when
rolling back. Although a small size reduces the restore
latency, it incurs numerous page faults, and thus aggra-
vating the decreased performance after restoration. On
the other hand, a large size could avoid severe perfor-
mance penalty incurred by more loaded memory pages,
but at the cost of long latency.

Statistical sampling approach described in ESX Serv-
er [38] is frequently used to predict the working set size.
However, it lacks the ability to respond to the phase
changes of workload in real time which is critical in
restoration. Since the working set size upon restoration
should capture the size of workload activity in a timely
manner, we propose a hybrid working set size estimation
method. First, we adopt a statistical sampling approach
to calculate the working set size during normal execu-
tion. The size depicts the average workload activity in a
long period, and is referred to as WSSsample. Secondly,
we count the touched pages during post-snapshot. The
page count reflects timely workload activity in part, and
is referred to as WSSsnapshot . The expected working set
size is the weighted sum of these two sizes and is deter-
mined by: WSS = α ∗WSSsample +β ∗WSSsnapshot

In most programs, WSS remains nearly constant with-
in a phase and then changes alternately. Since the work-
load always keeps steady for quite a while [41], we em-
pirically set α to be larger in HotRestore, i.e., α is 0.7
and β is 0.3. In addition, due to the well scalability of
the FAFL queue, we adopt WSS/2 rather than WSS as the
actual working set size upon restoration. The remain-
ing pages will be loaded by the background thread from
the FAFL queue or by demand-paging. The experimen-
tal results in §6.1.3 demonstrate that the size shrink only
incurs negligible performance overhead.

3.2 Snapshot and Restore
This section describes the VM snapshot and restore when
elastic working set is employed.

Snapshot. Unlike HotSnap which only traces the
memory write operations, HotRestore traces all access-

1§6.1 will explain the results.

es and records them in the FAFL queue to estimate the
working set. Therefore, HotRestore adopts a snapshot
approach that consists of copy-on-write and record-on-
access. In detail, HotRestore sets the guest memory
pages to be non-present to trace all accesses. For write
operation, HotRestore records the page frame number in-
to the FAFL queue, saves the page content into persistent
storage, and then removes the non-present flag to allow
the page to be read or written without fault later on. For
read operation, HotRestore only records the page frame
number but does not save the page content. This is be-
cause read operations occur much more frequently than
write operations, and saving the page content would lead
to serious performance degradation. Therefore, HotRe-
store removes the read-protect flag but reserves the write-
protect flag. The page content will be saved either in
copy-on-write manner once it is required to be written or
by the background copy thread.

Restore. Upon restoration, HotRestore firstly load-
s the CPU state and devices’ state, and then fetches the
working set pages into the guest memory. Afterwards, it
sets the page table entries of unrestored pages to be non-
present before starting the VM. The unrestored pages
will be loaded by i) on-demand paging due to touching
the non-present page after VM starts, or ii) background
load thread running concurrently which ensures that re-
store finishes in a reasonable period of time.

4 Restore of Virtual Machine Cluster

The key of VMC restore is to mitigate the TCP backoff
problem. In TCP, after sending a packet, the sender will
wait for the ack from the receiver. It would resend the
packet once timeout occurs to ensure that the packet is
successfully received. Motivated by this, the basic idea
to avoid TCP backoff is to ensure the receiver start before
the sender.

This section presents our solution to VMC restore. We
start by describing the communication-induced restore
dependency graph (RDG). Based on RDG, we compute
the causal restore order2 of VMs, and then schedule the
restore line by revising the working set sizes of VMs.
Finally, we introduce the restore protocol which ensures
the VMs start as indicated by the restore line.

4.1 Restore Dependency Graph
We define ”V Mi depends on V Mj” or V Mi→V Mj if V Mi
sends a packet to V Mj. If V Mi sends a packet to V Mj dur-
ing snapshot, it will resend the packet after it is restored
to the saved snapshot point. Therefore, the dependency

2The restore order here describes the order of completion times of
the working set restore, or namely VM start times, rather than restore
start times.
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Figure 3: Communication-induced RDG.

can be reserved upon restoration (we guarantee the de-
pendency by deterministic communication in §5.1). This
motivates us to construct the RDG via the dependency
among VMs. In RDG, each node represents one VM,
and a directed edge is drawn from V Mi to V Mj if V Mi
depends on V Mj. The name ”restore dependency graph”
comes from the observation that if there is an edge from
V Mi to V Mj and V Mi is to be restored, then V Mj must
be restored no later than V Mi to be ready to receive the
packet and make the reply. Restore here means the ”re-
store end” or ”VM start”, rather than ”restore start”. The
dependency in RDG is transitive, i.e., if V Mi→V Mj and
V Mj→V Mk, then V Mi→V Mk.

Figure 3(b) demonstrates a RDG yielded by the time-
space diagram in Figure 3(a). RDG only depicts the
dependency between different VMs, i.e., space, but has
no concept of time whether it is physical time or glob-
al virtual time. This is because the packet order and
send/receive time may change after restoration due to
non-deterministic execution. The lack of time seman-
tics allows the existence of dependency ring, e.g., VM1,
VM2 and VM3 in Figure 3(b) form a ring. We define
V Mi ↔ V Mj if V Mi and V Mj are in a ring. VM5 is an
orphan node; it neither depends on any VM, nor is de-
pended by other VMs. The orphan node reflects the case
that there is no packet sent or received associated with
the node.

4.2 Restore Line Calculation

Restore line depicts the desired start times of VMs while
guaranteeing the causal restore order of VMs. The causal
restore order can be calculated from the restore depen-
dency graph: if V Mi → V Mj in RDG, then V Mj should
be ahead of V Mi in causal restore order. Moreover, the
VM start time (or restore latency) is related to the work-
ing set size. The different working set sizes of VMs form
the defacto restore order. This motivates us to compute
the restore line by the causal restore order as well as the
defacto restore order.

4.2.1 Causal Restore Order

The causal restore order is the semantics of logical s-
tart time; each dependency edge represents one elapsed
clock. It is insufficient to obtain a unique causal restore
order solely on RDG. First, the RDG is not necessarily a
complete graph, e.g., there is no path between VM2 and
VM4, implying VM2 and VM4 can be restored indepen-
dently after VM3. Second, the existence of the depen-
dency ring and orphan node make a lot of choices on the
order. As a result, rather than compute a unique order, we
instead give the following rules to construct one feasible
causal restore order through RDG.

Rule 1. The VM, which doesn’t depend on other VMs
but is depended, is prioritized in causal restore order.

Rule 2. V Mi should restore after V Mj, if V Mi depends
on V Mj while V Mj does not depend on V Mi.

Rule 3. The VM that depends on several VMs will not
restore until all the depended VMs are restored.

Rule 4. The VMs can restore independently if no de-
pendency exists between them.

Rule 5. The VMs in the ring restore at the same time,
i.e., they are placed together in causal restore order.

Rule 6. An orphan node may execute independently
and therefore will be free in causal restore order.

Rule 1 seeks the VMs that should be restored first.
Once found, the VMs that depend on prior restored VM-
s will join in the causal restore order by Rules 2 and 3.
Rule 4 implies that the VMs can restore independently if
there is neither direct nor transitive dependency between
them. Based on these rules, we can reach two conclu-
sions. First, after the completion of loading the working
set, the VM can start if it satisfies any one of Rules 1, 4,
5, and 6. Second, after one VM is started, the VM can
start accordingly if it depends on this started VM and
satisfies Rule 2 or Rule 3 as well.

4.2.2 Defacto Restore Order

The previously calculated working set sizes of VMs are
always different due to the phase changes of workload,
varieties of workloads or VM heterogeneity. These dif-
ferent sizes lead to different restore latencies and further
form the defacto restore order which can be regarded as
the semantics of physical start time.

The problem here is that the VM that is prior in causal
restore order may have a larger working set size and thus
starts later than the latter VM, making the defacto restore
order inconsistent with the causal restore order. The in-
consistency results in the TCP backoff problem as men-
tioned above. As a result, revising the working set sizes
to match the two semantics becomes one crux of the
problem in restoring the VMC. First, the defacto restore
order after revision should be consistent with the causal
restore order, to avoid TCP backoff. Second, the revised
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(c) Consistent semantics after revision

(b) Inconsistent semantics 
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Figure 4: The revision of working set sizes. (a) is derived
from Figure 3, while the dependency between VM1 and
VM3 is removed.

working set size should not impose significant effects on
latency or performance for a single VM, i.e., minimum
change on previous working set size.

4.2.3 Working Set Size Revision

The basic idea of revision is simple. Given that a case
that V Mi→V Mj, but the working set size of V Mj, i.e.,
S j, is larger than Si, we can decrease S j or increase Si, or
change the two both to achieve the matching.

System Model. We consider network intensive appli-
cations which is common in nowadays large scale data
centers, such as distributed database, scientific comput-
ing, web services [1], etc. Their characteristic lies in that
the communicating VMs send and receive packets fre-
quently. We transfer the RDG to weighted RDG with the
assignment to node value and edge weight, as shown in
Figure 4(a).

In weighted RDG, the node value Si is referred to as
the previous calculated working set size (WSS) of V Mi.
The edge weight Wi, j denotes the number of the captured
packets sent from V Mi to V Mj during snapshot. Here,
Wi, j has no practical meaning, it is just used to ensure
that the revised Si, i.e., S∗i , be larger than S∗j if V Mi de-
pends on V Mj. We denote this relation by S∗i � S∗j +Wi, j.
Moreover, this inequation implies that if V Mi → V Mj
and V Mj → V Mk, then S∗i � S∗k +Wi, j +Wj,k. Wi, j is
minor compared to S∗i or S∗j , hence it causes no signif-
icant effect on the revised size. The dependency ring
is particular, because the virtual machines in the ring
should be provided with equivalent size to start at the
same time. Therefore, for V Mi ↔ V Mj, we determine
the sizes by:S∗i −S∗j = 0.

Figure 4(b) demonstrates an inconsistent graph yield-
ed by the weighted RDG in Figure 4(a). The horizontal
line shows the defacto restore order, and the arrow de-
picts the causal restore order. The defacto restore order
is [VM2, VM4, VM3, VM5, VM1], while there exist
several candidates for causal restore order, e.g., [VM3,
VM4, VM2, VM1, VM5], or [VM3, VM2, VM4, VM5,
VM1]. Our goal is to reorder the nodes in the horizontal
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Load
working set
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START_FIN

LOAD

LOAD_FIN

HOTRESTORE
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RESTORE

Coordinator Cohort A Cohort BUser

C
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Background load &
on-demand paging

RESTORE
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Figure 5: Restore protocol. We assume that B depends
on A, so that B starts later.

line with the least movement, to guarantee consistency
between the causal order and the revised defacto order,
such as the example shown in Figure 4(c).

Problem Formulation. We assume that the previous
calculated working set size is optimal. This is reasonable
since the previous size achieves well tradeoff between
restore latency and performance loss for a single VM, as
demonstrated in the experimental results in §6.1.3. Giv-
en n VMs, let S = {S1,S2, ...,Sn} be the previous work-
ing set sizes of VMs and W = {Wi, j|V Mi → V Mj} be
the set of edge weight of each two communicating VMs.
We aim to find a minimum revised working set size S∗

to guarantee the consistency between the revised defacto
restore order and causal restore order. The formulation is
denoted by:

min ∑n
i=0 | S∗i −Si |

s.t. S∗i −S∗j �Wi, j (Wi, j ∈W )

S∗i −S∗j = 0 (V Mi ↔V Mj)

We use the classical Linear Programming approach [26]
to solve this optimization problem. Consequently, the
desired restore line is computed through arranging the
VMs in ascending order of the revised working set sizes.

4.3 Restore Protocol
The purpose of restore protocol is to ensure that the vir-
tual machines start as indicated by the restore line. The
restore protocol is entirely software based and does not
depend on any specialized hardware. We make the fol-
lowing assumptions about the distributed VMC system.
First, the VMs, the underlying physical servers as well
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as the network devices are failure-free during restoring.
This is reasonable since the restoration procedure last-
s for a short time compared to the mean time to failure
(MTTF) of hardware or software. Second, the network
latency is minor, i.e., the messages can be received with-
in a relatively short period. Otherwise, the restore laten-
cy would be directly related to the network latency on
waiting for the messages of protocol. This assumption is
satisfied in nowadays data center networks which always
utilize 1Gbps or even 10Gbps Ethernet.

There exist two roles in restore protocol, Coordina-
tor and Cohort, as shown in Figure 5. Each virtual ma-
chine is associated with one Cohort, and only one VM
is regarded as the Coordinator. The roles of Coordina-
tor consist of constructing the restore dependency graph,
scheduling the restore line, broadcasting the working set
sizes of VMs and notifying Cohorts to load the work-
ing set or start to execute. Besides, the Coordinator em-
ploys Checker to determine whether the associated VM
can start after receiving the LOAD FIN reply from the
Cohort, and which VMs can start correspondingly once
receiving the START FIN reply from one Cohort, as de-
scribed in §4.2.1. The Cohort restores the VM through
three steps: i) load the working set pages after receiv-
ing the LOAD command and then reply LOAD FIN, ii)
load the pages in background until receiving the START
command, and iii) start the VM after receiving the S-
TART command, reply the START FIN command, and
then load the remaining pages through on-demand pag-
ing along with background loading.

Disruption will disappear after all the VMs are started,
meanwhile the hot restoration is completed. The whole
restoration procedure will not finish until all the VMs
reply RESTORE FIN after completion of loading the re-
maining memory pages from the snapshot file.

5 Implementation Issues

HotRestore is implemented on qemu-kvm-0.12.5 [28]
in Linux kernel 2.6.32.5-amd64, it does not require the
modification of guest OS. HotRestore utilizes HotSnap
to guarantee global consistency of snapshot state. Some
optimizations such as compression of zero pages are
provided by HotSnap and are also employed in HotRe-
store. Since the page saved in background belongs to the
working set if it is accessed during snapshot procedure,
HotRestore stores the working set pages in the snapshot
file instead of a separate file. Besides, it creates a FAFL
file to store the guest frame number for indexing these
pages. The FAFL file makes it convenient to fetch work-
ing set pages in any desired size. The rest of this section
describes the sub-level parts and optimizations in detail.

5.1 Packets Used to Construct RDG

In reliable communication, the receiver will reply ack to
the sender. The capture of data/ack packets makes sender
and receiver depend on each other and further form a ring
in RDG. The dependency from receiver to sender is com-
pelled, therefore it should be removed when constructing
the RDG. One possible approach is to identify the roles
by analyzing the packets, however it is extremely com-
plicated and is impractical. Therefore, we resort to the
on-the-fly packets, which cannot be received by the des-
tination VM during transient snapshot. It cannot be re-
ceived due to two reasons: i) the receiver VM is suspend-
ed to create transient snapshot or ii) the packet violates
the global consistency, i.e., it is sent from a post-snapshot
VM to a pre-snapshot VM. HotRestore logs on-the-fly
packets on the receiver side, and constructs the RDG
through these packets. Logging these packets brings two
benefits. First, the on-the-fly packet will not be received
or handled, and hence avoiding two-way dependency for
one transmission. Second, replaying these packets after
restoration can ensure deterministic communication, and
hence the dependency is preserved.

UDP packets are also preserved. Although UDP is
unreliable, the applications may support the reliability
themselves through retransmission. This reliability guar-
antee would lead to the interruption of network commu-
nication if UDP packets are lost upon restoration. In con-
clusion, on constructing the RDG, we employ TCP as
well as UDP packets whose source and destination are
both the VMs within the VMC.

5.2 Optimizations on Restore

HotRestore adopts several optimizations to reduce the re-
store latency as well as performance overhead.

Sequential loading of working set pages. In HotRe-
store, the working set pages scatter here and there in
the snapshot file and are mixed with the pages saved in
background. Upon restoration, HotRestore dequeues the
guest frame number (gfn) from the FAFL queue to in-
dex the working set page. However, the gfn order in the
FAFL queue is not consistent with that in the snapshot
file. For example, page A is firstly saved in background,
and then page B is saved and recorded due to memo-
ry write operation, finally A is recorded due to memory
read. In this case, A is stored in front of B in the snap-
shot file, but is behind B in the FAFL queue. Fetching the
working set pages in FAFL order would seek the pages
back and forth in the disk file, thereby incurring longer
latency. To solve this problem, we rearrange the work-
ing set pages by their file offset once the revised size S∗ is
known, so that the pages can be loaded sequentially from
the snapshot file. Besides, the pages that are neighboring
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in the snapshot file can be loaded together to further re-
duce the amount of file read operations.

DMA cluster. DMA pages are touched frequently for
IO intensive workloads, e.g., we observe about 280,000
DMA access in 30 seconds execution under Gzip for a
VM configured with 2GB RAM. DMA page access ex-
hibits two characteristics: First, the page will be accessed
repeatedly (may be hundreds or even thousands times),
therefore the amount of touched pages is actually only a
few hundreds or thousands. Second, the accessed pages
are always neighboring. These observations inspire us
to load multiple neighboring pages (HotResotre loads 4
pages) for each on-demand DMA paging to reduce the
occurrence of demand-loading, thereby avoiding signifi-
cant performance degradation incurred by page faults.

5.3 Real World I/O Bandwidth

In real world scenarios, the restore latency is related to
not only the working set size, but also the available I/O
bandwidth. The snapshot procedures may contend for
I/O bandwidth, making the latencies various even if the
file sizes are identical. As a result, the practical start
times may be not as indicated in the restore line. In
our test environments, the working set size is small while
the bandwidth is sufficient, so that the restore latency is
less affected. However, we believe that this problem will
get worse for memory intensive workloads, especially in
I/O intensive data centers. VM placement [30] and I/O
schedule layer [32] are alternative approaches to mitigate
this problem, and we leave this as our future work.

5.4 Non-deterministic Events

There exist many events that lead to non-deterministic
system execution, they fall into two categories: external
input and time [13]. The external input involves the da-
ta sent from another entity, such as the network packets
from the web server, or user operations (e.g., booting a
new application). Time refers to the point in the exe-
cution stream where the internal or external event takes
place, for example, the receiving time of network pack-
ets. The combination of the two influences the results
of several strategies resides in CPU scheduler, IO sched-
uler, and TCP/IP stack, so that the system execution is
diverged even the system is restored from the same s-
napshot point. Fortunately, compared to the individual
desktop which involves multiple tasks and continual in-
teractive operations, the distributed applications running
in the virtual machine cluster are always monotonous and
involves less user interaction, making the execution of
the virtual machine be always deterministic.

6 Evaluation

We conduct the experiments on eight physical server-
s, each configured with 8-way quad-core Intel Xeon
2.4GHz processors, 48GB DDR memory and Intel 82576
Gbps Ethernet card. The servers are connected via
switched Gbps Ethernet. We configure 2GB memory for
the VMs. The operating system on physical server and
virtual machine is debian6.0 with 2.6.32-5-amd64 ker-
nel. We save the snapshot files in local disk, and then
restore the virtual machines from snapshot files to evalu-
ate HotRestore.

6.1 Elastic Working Set

We evaluate the elastic working set in terms of hit rate,
accuracy, working set size and scalability, under several
applications. The applications include: 1) Compilation, a
development workload which involves memory and disk
I/O operations. We compile the Linux 2.6.32-5 kernel.
2) Gzip is a compression utility, we compress the /home
directory whose size is 1.4GB. 3) Mummer is a bioinfor-
matics program for sequence alignment, it is CPU and
memory intensive [5]. We align two genome fragments
obtained from NCBI [2]. 4) Pi calculation, a CPU in-
tensive scientific program. 5) MPlayer is a movie play-
er. It prefetches a large fraction of movie file into buffer
for performance requirements. 6) MySQL is a database
management system [6], we employ SysBench tool [9]
to read (write) data from (to) the database. We conduct
the experiments ten times and report the average as well
as the standard deviation.

6.1.1 Hit Rate and Accuracy

We first measure the hit rate and accuracy under differ-
ent working set sizes. We start the VM after the working
set in the specified size is loaded, and disable the back-
ground load thread to trace all memory accesses. If the
traced page is in the working set, then a hit occurs, and
the hit count increases by 1. The traced page will not be
traced again, since multiple hits on the same page would
increase the hit rate and accuracy. Once the count of the
traced pages reaches the given size, we calculate the hit
rate by the ratio of hit count to the given size. The ac-
curacy calculation is a little different. We observe that
most of the untouched working set pages will be touched
within a short period. Therefore, we trace an extra 1/5
size, and calculate the accuracy by the ratio of hit count
to 1.2 times given size.

Table 1 demonstrates the hit rate and accuracy of
FAFL compared to LRU and CLOCK under Linux kernel
compilation. It can be seen that the hit rate with FAFL
is higher, e.g., for a 15K size, the hit rate with FAFL
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Hit Rate Accuracy

Size FAFL LRU CLOCK FAFL LRU CLOCK

5K 0.816 0.778 0.814 0.859 0.817 0.838
10K 0.845 0.875 0.749 0.945 0.918 0.926
15K 0.944 0.857 0.868 0.952 0.954 0.952
17K 0.912 0.918 0.822 0.958 0.955 0.955
20K 0.889 0.888 0.828 0.963 0.962 0.923
25K 0.870 0.861 0.869 0.962 0.963 0.970

Table 1: Hit rate and accuracy for working set with various sizes. Here, the size refers to page count, the calculated
WSS is 17K. STDEV is minor and thus is removed.

Hit Rate Accuracy

Workloads FAFL LRU CLOCK FAFL LRU CLOCK

Gzip 0.806 0.768 0.883 0.974 0.979 0.966
MySQL 0.947 0.655 0.912 1 0.998 1
Mummer 0.931 0.835 0.812 1 0.971 0.909
Pi 0.628 0.562 0.589 0.702 0.682 0.793
MPlayer 0.890 0.825 0.862 0.926 0.923 0.892

Table 2: Hit rate and accuracy under various workloads. STDEV is minor and thus is removed.

is 94.4% while it is 85.7% with LRU and 86.8% with
CLOCK. The improvement is mainly contributed to the
FAFL queue which captures the access order of VM ex-
ecution more accurately. An interesting result is that the
hit rate decreases as the size grows, e.g., the hit rate with
FAFL decreases from 94.4% to 88.9% while the size in-
creases from 15K to 20K. We suspect that this is because
the execution suffers from larger deviation after longer
execution time. Despite this, the hit rate is still high. Be-
sides, the accuracy of the three manners exceeds 95%
in most cases. This fact proves that the memory tracing
method during post-snapshot could capture the memory
accesses accurately.

We also measure the hit rate and accuracy under oth-
er workloads. Table 2 illustrates the results when the
calculated working set size is applied upon restoration.
We can see that the hit rate under Gzip workload is low,
this is because Gzip is I/O intensive and involves large
amounts of DMA operations which always diverge after
the VM is restored. For MySQL, Mummer and MPlayer
workloads, the hit rate and accuracy is high due to two
reasons: i) these workloads consist of a large amount of
pages that hit the buffer cache which facilitate working
set estimation and ii) their executions are almost deter-
ministic. The high rate under Pi workload is poor, e.g., it
is 62.8% with FAFL, this is due to the dynamic memory
allocation during execution. Fortunately, the associated
working set size is small, it is less than 1K pages, so
that the performance loss is insignificant after the VM is
restored. These three methods all achieve high accuracy,

this means that most of the loaded working set pages will
be touched by the applications after the VM is restored.
The accuracy under Pi workload is low, we guess that
this is due to the non-deterministic execution of Pi. On
average, FAFL increases the hit rate by 15.3% and 4.92%
respectively compared to LRU and CLOCK.

6.1.2 Working Set Size

Here, the working set size is referred to as the total
amount of loaded state including the CPU state, devices’
state, page content and extra information such as page
address. Zero page compression used in most snap-
shot technologies may achieve 50% reduction of snap-
shot size [21]; however, the reduction is specific to work-
load and relates to application execution time. As a re-
sult, this optimization is disabled in this experiment. Ta-
ble 3 compares HotRestore with working set restore [39]
which calculates the working set size through the statis-
tical sampling approach.

As expected, HotRestore loads less pages upon
restoration. Compared to working set restore, HotRe-
store reduces the working set size by 50.95% on average,
therefore the restore latency is supposed to be halved ac-
cordingly. Although restoring a VM requires extra time
to sort the working set pages and set protection flags,
the extra time is minor. Compared to the default restore
method in QEMU/KVM which takes about 60 second-
s to load a 2G snapshot file, HotRestore can restore the
VM within 3 seconds for most workloads.
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Modes Compilation Gzip Mummer Pi MPlayer MySQL

HotRestore 72.0(2.88) 60.9(15.3) 347.5(30.7) 1.5(0.09) 37.2(6.4) 42.4(8.9)
Working Set Restore 153.0(7.92) 113.5(21.2) 836.3(117.9) 2.76(0.17) 75.3(9.4) 87.8(11.4)

Reduction 52.94% 46.34% 58.45% 45.65% 50.6% 51.71%

Table 3: Comparison of working set sizes (MB). STDEV is also reported

6.1.3 Scalability

The results in Table 1 have shown that the hit rate and
accuracy remain high regardless of the working set sizes,
they therefore prove that the elastic working set can scale
up or scale down without compromising the hit rate or
accuracy.

On the other hand, however, scaling down the size
would bring more page faults due to demand-paging and
thus imposes performance overhead. Therefore, the per-
formance loss or the count of page faults should be mea-
sured and reported. We trace the page faults after restora-
tion and record the count in 100ms interval. Figure 6
shows the count on different working set sizes: the cal-
culated WSS and its two variants, 0.5WSS and 0.7WSS.
WSS is 18327 pages in this experiment. As we can see,
the decrease of the working set size indeed incurs more
page faults. Specifically, the numbers are 2046, 3539 and
5690 for WSS, 0.7WSS and 0.5WSS respectively during
the 7 seconds tracing period. Intuitively, the increased
count of page faults should be equivalent to or approxi-
mate the saved page count upon restoration. However,
our results show that it is not. For example, 0.7WSS
loads 5498 less pages upon restoration but incurs only
1493 more page faults compared to WSS. This is mainly
because the pages stored in the FAFL queue depict the
page access order. If the WSS applied upon restoration
is less than the calculated WSS, the remaining working
set pages tend to be dequeued and loaded by the back-
ground load thread. The FAFL method effectively re-
duces the count of page faults compared to the approach
which loads pages blindly.

The result for 2WSS is also given, as shown in Fig-
ure 6(d). It can be seen that the count of page faults can
be further reduced due to the increase of WSS, specifi-
cally, it decreases to 958. However, we believe that the
reduction is insignificant. This is because that one page
fault incurs about 200us interruption which involves the
time to exit to VMM, load the page from local disk, re-
move protection flag and resume the VM. Therefore, the
overall overhead for handling thousands of page faults is
negligible compared to the gain of 50% reduction on the
working set size or namely the restore latency.

These results show that the working set can scale
up/down without significant performance loss. This
gives us a hint that slight working set size revision is al-
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Figure 6: Comparison of page fault count after restore.

lowable when restoring the VMC. The results under oth-
er workloads are similar, so that they are ignored due to
space constraints.

6.2 Restoration of VMC
In this section, we evaluate HotRestore in the VMC and
discuss the restore latency as well as the TCP backof-
f duration. The native restore method of QEMU/KVM
incurs dozens of seconds disruption, so the result is ne-
glected here. We conduct the experiments with three re-
store mechanisms:

Working Set Restore. It reduces the restore latency
by prefetching the working set for a single VM.

HotRestore without Restore Line (HotRestore w/o
RL). It reduces the restore latency through elastic work-
ing set, but does no further work on VMC restore.

HotRestore with Restore Line (HotRestore w/ RL).
It exploits the elastic working set and utilizes restore line
to reduce the TCP backoff duration.

6.2.1 Detailed View of Disruption

We first illustrate the disruption duration consisting of
restore latency and TCP backoff duration in detail. We
setup the VMC with 8 VMs, and apply two representa-
tive network applications: i) Distcc [3] which is a com-
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Figure 7: Comparison of disruption time in the VMC.

pilation tool that adopts client/server architecture to dis-
tribute the tasks across the nodes, and ii) Elasticsearch
[4] which is a distributed, de-centralized search server
used to search documents. The nodes play equivalen-
t role in Elasticsearch. The practical TCP backoff du-
ration is hard to depict unless modifying the guest OS,
therefore, we approximate the value by the difference be-
tween start times of communicating VMs. If the VM is
communicating with multiple VMs, the maximum time
difference will be adopted as the duration. We use NTP
to synchronize the times of physical server, so that the d-
ifference among physical times of servers is within only
a few milliseconds.

Figure 7 compares the detailed disruption duration of
VMs of HotRestore to that of Working Set Restore. The
gray bar illustrates the restore latency, while the red bar
depicts the TCP backoff duration. It can be seen that the
restore latencies of VMs are various and thus cause the
backoff problem. Take Distcc as an example, the laten-
cies of VM2 and VM6 are 5.21 seconds and 6.13 sec-
onds respectively. Since VM2 depends on VM6, hence

the backoff duration of VM2 is 0.92 seconds. It can be
seen that the restore latencies of VMs with Working Set
Restore are much longer than that with HotRestore meth-
ods. The HotRestore w/o RL method reduces the restore
latency by employing a smaller working set size, so that
the backoff duration decreases accordingly. The results
in Figure 7(a) show that the HotRestore w/o RL reduces
the disruption by 54.1% on average compared to Work-
ing Set Restore. The HotRestore w/ RL method reduces
the disruption further. Although there is no significant
decrease on restore latency compared to HotRestore w/o
RL, the backoff is eliminated as a result of the restore
line. Generally, it achieves a 56.7% reduction on dis-
ruption duration compared to Working Set Restore under
Distcc workload.

The disruption under Elasticsearch workload shows
similar results. Compared to Working Set Restore,
HotRestore w/o RL reduces the average disruption du-
ration by 48.6%. It is worth noting that the TCP backoff
appears in HotRestore w/ RL, e.g., the backoff duration
of VM5 and VM7 are 0.1 and 0.12 seconds respectively.
This is because VM4, VM5 and VM7 form a dependency
ring and are given identical working set size to be started
simultaneously. However, due to the fluctuation of disk
IO speed, the practical start times of VMs are differen-
t. In this experiment, VM5 and VM7 start earlier than
VM4, as a result, they suffer from TCP backoff problem.
On average, HotRestore w/ RL reduces the disruption by
53.6% compared to Working Set Restore.

6.2.2 Details on TCP Backoff Duration

The above experiments present an overview of backoff
duration. We can see that some VMs do not experience
TCP backoff, while others suffer from long backoff dura-
tion, e.g., the duration of VM5 is 4.49 seconds under E-
lasticsearch. In this section, we will exhibit the details on
backoff duration, especially for the complicated network
topology as the VMC scales out. We evaluate HotRestore
for a VMC configured with 8, 12, 16 VMs under Elastic-
search workload, and reports the details on VMC backoff
duration. There is no direct metric to measure the back-
off duration for the whole VMC, therefore, we calculate
all the backoff duration between each two communicat-
ing VMs, and report the maximum, minimum, average
and median value.

Figure 8 demonstrates the results on backoff duration.
As expected, HotRestore w/ RL achieves the least du-
ration. Compared to Working Set Restore which incurs
2.66 seconds backoff duration on average, HotRestore w/
RL reduces the average duration to less than 0.07 second-
s. As explained earlier, the duration with HotRestore is
mainly due to the existence of dependency ring as well
as the difference of VMs’ start times. Besides, we can
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Figure 8: Comparison of TCP backoff duration.

see that the maximum backoff duration with Working Set
Restore exceeds 10.1 seconds in Figure 8(b). The long
duration may make the application inside the VM expe-
rience a long freeze stage even if the VM actually has
already started. HotRestore solves the problem through
the restore line. As we can see, even the maximum dura-
tion is less than 0.14 seconds in HotRestore. As a result,
the VM after restoration is able to execute without per-
ceivable interruption.

These results demonstrate that HotRestore w/ RL re-
duces the TCP backoff duration to milliseconds and s-
cales well for larger scale VMC. Besides, for low latency
network where the proposed restore protocol is not suit-
able, the HotRestore w/o RL approach can still work and
bound the duration in a few seconds.

It is worth noting that the TCP backoff duration here
is simply calculated by the difference between the s-
tart times of communicating VMs. In practice, however,
the backoff duration increases twofold for each timeout,
making the practical backoff duration of the Working Set
Restore be much larger than the value shown in Figure 8.
In other words, HotResotre would performs much better
than Working Set Restore in practical scenarios.

6.3 Performance Overhead
This part will measure the incurred performance over-
head of HotRestore. The overhead mainly comes from
two aspects. One is the overhead on snapshot. Com-
pared to traditional snapshot that only traces write oper-
ations, HotRestore traces both read and write operations,
so that it incurs extra overhead. Another one is the over-
head after restoration. The demand-paging will trigger
page faults, making the VM exit to VMM for loading the
desired page from disk file.

6.3.1 Overhead during Snapshot

We measure the overhead in terms of the count of traced
pages during snapshot. Table 4 compares the results of
HotSnap (as the baseline shows) and HotRestore. It can

be seen that the increase incurred by HotRestore ranges
from 11.3% to 124%.

Upon a page fault triggered by access tracing, the VM-
M suspends the VM and handles the page fault. The
overhead to handle the fault mainly consists of two part-
s. First, the VM exits to VMM which removes the
read/write protect flag and then resumes the VM. The
exit and entry of VM to VMM takes 38us in our platfor-
m. Second, the VMM saves the traced page into storage
for memory write operation. Saving one page (4K) takes
about 150us on average. Fortunately, tracing the memo-
ry read operations in HotRestore does not require saving
the page. As a result, the extra time during snapshot cre-
ation incurred by tracing read operations is minor. Ta-
ble 5 compares the snapshot creation time under various
workloads. As an example, the total time to save the VM
state in HotRestore increases by 1.3 seconds compared
to that of Baseline under Compilation workload.

Modes Compile Gzip Pi MPlayer MySQL

Baseline 25933 53447 1523 21510 12825
HotRestore 34348 59466 3413 30217 17598

Increase 32.4% 11.3% 124% 40.4% 37.2%

Table 4: Comparison of traced page count.

Modes Compile Gzip Pi MPlayer MySQL

Baseline 85.3 79.5 54.2 72.5 77.3
HotRestore 86.6 81.1 54.4 74.2 78.2

Increase 1.3 1.6 0.2 1.7 0.9

Table 5: Comparison of snapshot duration (seconds).

6.3.2 Overhead after Restoration

We setup Elasticsearch in the VMC configured with 8
VMs. We measure the performance loss in terms of the
response time. Specifically, we fill Elasticsearch with 1
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million micro-blogs and launch ten threads to query con-
currently. Each query requests different keywords and
acquires 40 micro-blogs. The average response time for
each query is about 0.192s during normal execution.

Figure 9 demonstrates the average response time of
ten threads for continuous queries. As we can see, the
response time with Working Set Restore is long after
restoration. Specifically, the latency of the first query is
0.36 seconds, which is about twice the latency of normal
execution. The reason is as follows: The Elasticsearch
node will handle the query after the associated VM s-
tarts. However, some other nodes are still suspended to
load the working set, thereby causing the backoff among
these nodes. As a result, the requested node cannot re-
ply as fast as that in normal execution with fewer peers,
especially for concurrent queries from ten threads. The
response time decreases for the subsequent queries, due
to the coordination with peers that are resumed recently.
HotRestore shows no significant performance loss. The
requested node can coordinate with peers within a short
period after restoration due to the short backoff duration.
In practice, the average response time with HotRestore is
0.215 seconds for the first six queries, only a little higher
than that of normal execution.

The response time with HotRestore returns to the nor-
mal value from the 7th cycle, while it keeps high until
the 16th cycle with the Working Set Restore approach.
This implies that HotRestore halves the time for Elastic-
search to regain the full capacity. Although the working
set sizes of some certain VMs are revised to be smaller
and thus degrade the performance for the single VM, the
overall performance of entire VMC is improved due to
the elimination of the network interruption.

7 Related Work

7.1 VM Restoration

The idea of fast restore is not new, several approaches
have been proposed to fast restore (or start) the processes
and the operating systems. Recovery Oriented Comput-
ing (ROC) [33] achieves fast recovery of process upon
failures by fine grained partitioning and recursive restart.
Li et al. [29] track the pages touched by applications
during post-checkpoint, and use these touched pages to
restart the processes fast. Windows adopts SuperFetch
[8] and ReadyBoost [7] to accelerate the application and
OS launch times respectively by monitoring and adapting
the usage patterns and prefetching the frequently used
files and data into memory so that they can be accessed
quickly when needed. HotRestore is fundamentally dif-
ferent from these works in that it focuses on the restore
latency of virtual machines, rather than processes or op-
erating systems.

There is not much work on improving VM restore.
The most simple approach is eager restore, which start-
s the virtual machine after all the state including device
state and memory state are loaded [37]. This approach,
obviously, incurs long latency for VMs equipped with
large size memory. Lazy restore [18] reduces the latency
to milliseconds through starting the VM after CPU state
and device state are loaded and loading the memory state
in an on-demand way. It however incurs serious perfor-
mance loss due to large amounts of demand-paging after
restore, especially in the beginning execution after the
VM is rollbacked. Working set restore [39] addresses the
performance issue by prefetching the working set upon
restore, at the cost of only a few seconds downtime. Our
work on a single VM restore shares a similar philology to
working set restore. The difference is, their method em-
ploys working set to reduce the time-to-responsiveness
metric, yet we propose an elastic working set for restor-
ing the virtual machine cluster.

7.2 VMC Restoration

There have been amounts of work about restoring a dis-
tributed system, and the key of them is to guarantee
the consistency of the saved state. Several work create
the global consistent state through coordinated snapshot-
ting approach, so that the system can be rolled back di-
rectly from the saved state [27, 20, 12]. Another field
assumes that the nodes create snapshots independently,
therefore they focus on guaranteeing the global consis-
tency among snapshots upon restore and avoiding domi-
no effect [16, 36, 34]. Several recently proposed snap-
shot systems for virtual machine cluster create the con-
sistent global state [25, 11, 19] when snapshotting, but
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make no improvement on restoration. We guarantee the
consistency while the snapshots are being created by our
prior work called HotSnap [14], and our concern within
the paper is to reduce the restore latency as well as the
TCP backoff duration.

Besides, the TCP backoff problem incurred during s-
napshot has received attention recently. VNSnap [25]
saves the memory state in a temporary memory region
and then flushes into disk asynchronously, thereby re-
ducing the discrepancy of snapshot completion times to
reduce the backoff duration. Emulab [11] addresses this
issue by synchronizing clocks across the nodes to sus-
pend all nodes for snapshot simultaneously. Our work
emphasizes on backoff duration upon restoration. By ex-
ploiting the network causal order, we propose a restore
line method to minimize the backoff duration.

7.3 Working Set

Working set captures the notion about memory access
locality. Denning describes which pages should be
swapped in and out of the working set [15]. LRU [31],
CLOCK [23] and CAR [10] are improved methods to i-
dentify which pages should be replaced into the working
set. HotRestore adopts the FAFL queue to record the
traced pages as candidate working set pages, and then
produces the working set according to the desired size.
Besides, several systems adopt the working set to achieve
fast restoration of process [29] or VM [39]. They em-
ploy memory tracing to capture the working set pages
and leverage the sampling approach [38] to estimate the
working set size. HotRestore is different in that it fig-
ures out a hybrid size based on sampling during normal
execution as well as statistic during snapshot, and then
halves the size as the expected working set size. The size
shrink does not impose significant performance loss due
to the well scalability of the elastic working set.

8 Limitations and Future Work

There still exist several limitations in HotRestore. First,
the proposed elastic working set would perform poor for
non-deterministic applications, especially for applica-
tions in SMP virtual machines due to the variable vCPU
scheduling. Other non-deterministic events, as described
in §5.4, will also lead to the divergence of VM execu-
tion after restoration. As a result, the on-demand paging
would occur frequently, and further imposes significant
performance loss. Second, for some applications, e.g.,
long running scientific programs, where fast restore is i-
nessential, HotRestore may incur unnecessary overhead
due to extra read traces during snapshot, given that the
VMC snapshot is frequently created.

Therefore, our ongoing work contain two direction-
s. The first is to analyze the memory traces for non-
deterministic applications in SMP (Symmetric Multi-
Processing) VM for seeking a suitable page replacement
algorithm to build an accurate working set, with the aim
to reduce the amount of page faults as well as eliminating
performance degradation. What’s more, given that snap-
shot is required more frequently than restore, we plan
to make a holistic study on performance overhead with
multiple snapshots along with one restore operations in
real world scenarios, with the aim to find an adaptive s-
napshot/restore policy to minimize the overall overhead
for long running applications.

9 Conclusions

In this paper, we present HotRestore, a restore system
which enables fast restore of the virtual machine cluster
without perceivable disruption. HotRestore employs an
elastic working set to reduce the restore latency without
compromising the application performance, and propos-
es restore line to reduce the TCP backoff duration. The
key insight in restore line is that the start times of VMs
can be revised to match the network causal order of VMs.
We have implemented HotRestore on QEMU/KVM plat-
form. Our evaluation results show that the whole VM-
C can be restored within a few seconds, what’s more,
the applications can regain the full capacity rapidly af-
ter restoration benefiting from the elimination of TCP
backoff. We believe that HotRestore will help improve
system reliability and performance after failure recovery,
especially in the scenarios where failures and restoration
are requied frequently.

Acknowledgements

We would like to thank our shepherd Theophilus
Benson and the anonymous reviewers for their valu-
able comments and help in improving this paper.
This work is supported by China 973 Program under
Grant No. 2011CB302602, China 863 Program un-
der Grant No. 2011AA01A202 and 2013AA01A213,
HGJ Program under Grant No. 2010ZX01045-001-002-
4 and 2013ZX01039-002-001-001, NSFC Program un-
der Grant No. 61202424, 91118008, and 61170294, and
Fundamental Research Funds for the Central Universi-
ties under Grant No.YWF-14-JSJXY-017. Jianxin Li and
Tianyu Wo are the corresponding authors of this paper.

References

[1] Amazon ec2. Http:// aws.amazon.com/ec2/.

14



USENIX Association  28th Large Installation System Administration Conference (LISA14) 15

[2] National center for biotechnology information.
ftp://ftp.ncbi.nih.gov/.

[3] Distcc. http://code.google.com/p/distcc/.
[4] Elasticsearch. http://www.elasticsearch.org/.
[5] Mummer. http://mummer.sourceforge.net/.
[6] Mysql. http://www.mysql.com/.
[7] Readyboost. http://en.wikipedia.org/wiki/

ReadyBoost.
[8] Superfetch. http://en.wikipedia.org/wiki/

Windows Vista I/O technologies.
[9] Sysbench. http://sysbench.sourceforge.net/.

[10] S. Bansal and D. S. Modha. Car: Clock with adap-
tive replacement. In Proceedings of USENIX FAST,
pages 187–200, 2004.

[11] A. Burtsev, P. Radhakrishnan, M. Hibler, and
J. Lepreau. Transparent checkpoints of closed dis-
tributed systems in emulab. In Proceedings of Eu-
roSys, pages 173–186, 2009.

[12] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems, 3
(1):63–75, 1985.

[13] P. M. Chen and B. D. Noble. When virtual is bet-
ter than real [operating system relocation to virtu-
al machines]. In Proceedings of the HotOS, pages
133–138, 2001.

[14] L. Cui, B. Li, Y. Zhang, and J. Li. Hotsnap: A
hot distributed snapshot system for virtual machine
cluster. In Proceedings of USENIX LISA, pages 59–
73, 2013.

[15] P. J. Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323–
333, 1968.

[16] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[17] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-
A. Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in globally distributed storage systems.
In Proceedings of OSDI, pages 1–14, 2010.

[18] R. Garg, K. Sodha, and G. Cooperman. A generic
checkpoint-restart mechanism for virtual machines.
In CoRR abs/1212.1787, 2012.

[19] R. Garg, K. Sodha, Z. Jin, and G. Cooperman.
Checkpoint-restart for a network of virtual ma-
chines. In IEEE International Conference on Clus-
ter Computing, pages 1–8, 2013.

[20] A. P. Goldberg, A. Gopal, A. Lowry, and R. Strom.
Restoring consistent global states of distributed
computations. In ACM/ONR workshop on Paral-
lel and distributed debugging (PADD), pages 144–
154, 1991.

[21] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Sno-

eren, G. Varghese, G. M. Voelker, and A. Vahdat.
Difference engine: harnessing memory redundancy
in virtual machines. Communications of ACM, 53
(10):85–93, 2010.

[22] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Gu-
ruprasad, T. Stack, K. Webb, and J. Lepreau. Large-
scale virtualization in the emulab network testbed.
In USENIX Annual Technical Conference, pages
113–128, 2008.

[23] S. Jiang, F. Chen, and X. Zhang. Clock-pro: An
effective improvement of the clock replacement. In
Proceedings of ATC, pages 323–336, 2005.

[24] X. Jiang and D. Xu. Violin: Virtual internetwork-
ing on overlay infrastructure. In Parallel and Dis-
tributed Processing and Applications, pages 937–
946, 2005.

[25] A. Kangarlou, P. Eugster, and D. Xu. Vnsnap: Tak-
ing snapshots of virtual networked environments
with minimmal downtime. In Proceedings of DSN,
pages 87–98, 2011.

[26] N. Karmarkar. A new polynomial-time algorithm
for linear programming. In Proceedings of STOC,
pages 302–311, 1984.

[27] J. Kim and T. Park. An efficient protocol for check-
pointing recovery in distributed systems. IEEE
Transactions on Parallel and Distributed Systems,
4(8):955–960, 1993.

[28] A. Kivity, Y. Kamay, D. Laor, and U. Lublin. Kvm:
the linux virtual machine monitor. Computer and
Information Science, 1:225–230, 2007.

[29] Y. Li and Z. Lan. A fast restart mechanism for
checkpoint/recovery protocols in networked envi-
ronments. In Proceedings of DSN, pages 217–226,
2008.

[30] X. Meng, V. Pappas, and L. Zhang. Improving
the scalability of data center networks with traffic-
aware virtual machine placement. In Proceedings
of INFOCOM, pages 1–9, 2010.

[31] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
lru-k page replacement algorithm for database disk
buffering. In Proceedings of the ACM SIGMOD,
pages 297–306, 1993.

[32] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling
io in virtual machine monitors. In Proceedings of
VEE, pages 1–10, 2008.

[33] D. Patterson, A. Brown, P. Broadwell, and et al.
Recovery-oriented computing (roc): Motivation,
definition, techniques, and case studies. In Techni-
cal Report UCB//CSD-02-1175, UC Berkeley Com-
puter Science, 2002.

[34] D. L. Russell. State restoration in systems of com-
municating processes. IEEE Transactions on Soft-
ware Engineering, 6(2):183–194, 1980.

[35] B. Schroeder and G. A. Gibson. Understanding fail-

15



16 28th Large Installation System Administration Conference (LISA14) USENIX Association

ures in petascale computers. Journal of Physics, 78:
1–11, 2007.

[36] R. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transations on Comput-
er Systems, 3(3):204–226, 1985.

[37] G. Vallee, T. Naughton, H. Ong, and S. L. Scot-
t. Checkpoint/restart of virtual machines based on
xen. In Proceedings of HAPCW, 2006.

[38] C. A. Waldspurger. Memory resource management
in vmware esx server. In Proceedings of USENIX
OSDI, pages 181–194, 2002.

[39] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C.
Barr. Fast restore of checkpointed memory using
working set estimation. In Proceedings of VEE,
pages 534–533, 2009.

[40] I. Zhang, T. Denniston, Y. Baskakov, and A. Garth-
waite. Optimizing vm checkpointing for restore
performance in vmware esxi. In Proceedings of
USENIX ATC, pages 1–12, 2013.

[41] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and
X. Li. Low cost working set size tracking. In Pro-
ceedings of USENIX ATC, pages 17–22, 2011.

16



USENIX Association  28th Large Installation System Administration Conference (LISA14) 17

Compiling Abstract Specifications into Concrete Systems
– Bringing Order to the Cloud

Ian Unruh
Kansas State University

iunruh@ksu.edu

Alexandru G. Bardas
Kansas State University

bardasag@ksu.edu

Rui Zhuang
Kansas State University

zrui@ksu.edu

Xinming Ou
Kansas State University

xou@ksu.edu

Scott A. DeLoach
Kansas State University

sdeloach@ksu.edu

Abstract

Currently, there are important limitations in the ab-
stractions that support creating and managing services
in a cloud-based IT system. As a result, cloud users
must choose between managing the low-level details
of their cloud services directly (as in IaaS), which
is time-consuming and error-prone, and turning over
significant parts of this management to their cloud
provider (in SaaS or PaaS), which is less flexible and
more difficult to tailor to user needs. To alleviate this
situation we propose a high-level abstraction called the
requirement model for defining cloud-based IT systems.
It captures important aspects of a system’s structure,
such as service dependencies, without introducing low-
level details such as operating systems or application
configurations. The requirement model separates the
cloud customer’s concern of what the system does, from
the system engineer’s concern of how to implement it. In
addition, we present a “compilation” process that auto-
matically translates a requirement model into a concrete
system based on pre-defined and reusable knowledge
units. When combined, the requirement model and the
compilation process enable repeatable deployment of
cloud-based systems, more reliable system management,
and the ability to implement the same requirement in
different ways and on multiple cloud platforms. We
demonstrate the practicality of this approach in the
ANCOR (Automated eNterprise network COmpileR)
framework, which generates concrete, cloud-based
systems based on a specific requirement model. Our
current implementation1 targets OpenStack and uses
Puppet to configure the cloud instances, although the
framework will also support other cloud platforms and
configuration management solutions.

1Current ANCOR implementation is available and is distributed
under the GNU (version 3) General Public License terms on: https:
//arguslab.github.io/ancor/

Tags: cloud, modeling networking configuration, config-
uration management, deployment automation

1 Introduction
Cloud computing is revolutionizing industry and reshap-
ing the way IT systems are designed, deployed and uti-
lized [3]. However, every revolution has its own chal-
lenges. Already, companies that have moved resources
into the cloud are using terms like “virtual sprawl” to
describe the mess they have created [38]. Cloud ser-
vices are currently offered in several models: Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). While these options
allow customers to decide how much management they
want to perform for their cloud-based systems, they do
not provide good abstractions for effectively managing
those systems or addressing diverse user needs.

IaaS solutions such as Amazon Web Services (AWS)
and OpenStack allow cloud users to access the raw re-
sources (compute, storage, bandwidth, etc.); however,
it forces users to manage the software stack in their
cloud instances at a low level. While this approach
gives users tremendous flexibility, it also allows the users
to create badly configured or misconfigured systems,
raising significant concerns (especially related to secu-
rity) [5, 7]. Moreover, offering automatic scalability and
failover is challenging for cloud providers because repli-
cation and state management procedures are application-
dependent [3]. On the other hand, SaaS (also known
as “on-demand software”) provides pre-configured ap-
plications to cloud users (e.g., SalesForce and Google
Apps). Users typically choose from a set of predefined
templates, which makes it difficult to adequately address
the range of user needs. PaaS (e.g., Google App En-
gine, Heroku, and Windows Azure) is somewhere in the
middle, offering computing platforms with various pre-
installed operating systems as well as services and al-
lowing users to deploy their own applications as well.

1
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As PaaS is a compromise between IaaS and SaaS, it also
inherits the limitations of both to various degrees. For
example, users can be easily “locked in” to a PaaS ven-
dor, like in SaaS, and the configuration of applications is
still on the users’ shoulders, like in IaaS.

We observe that existing cloud service models suf-
fer from the lack of an appropriate higher-level abstrac-
tion capable of capturing objectives and functionality
of the complete IT system. Such an abstraction, if de-
signed well, can help both the creation and the long-
term maintenance of the system. While there have been
attempts at providing abstractions at various levels of
cloud-based services, none have provided an abstrac-
tion that both separates user requirements from low-level
platform/system details and provides a global view of the
system. This has limited the usefulness of those solutions
when it comes to long-term maintenance, multi-platform
support, and migration from one cloud provider to an-
other. We believe to be effective, the abstraction should
exhibit the following properties.

1. It must be capable of representing what a user needs
instead of low-level details on how to implement
those needs. A major motivation for using cloud
infrastructures is to outsource IT management to
a more specialized workforce (called system engi-
neers hereafter). Communicating needs from users
to engineers is better served using higher-level ab-
stractions as opposed to low-level system details.

2. It must support automatic compilation into valid
concrete systems on different cloud infrastructures.
Such compilation should use well-defined knowl-
edge units built by the system engineers and be ca-
pable of translating a specification based on the ab-
straction (i.e., an abstract specification) into differ-
ent concrete systems based on low-level implemen-
tation/platform choices.

3. It should facilitate the long-term maintenance of the
system, including scaling the system up/down, au-
tomatic fail over, application update, and other gen-
eral changes to the system. It should also support
orchestrating those changes in a secure and reliable
manner and aid in fault analysis and diagnosis.

We believe such an abstraction will benefit all three
existing cloud service models. For IaaS, an abstract
specification will act as a common language for cloud
users and system engineers to define the system, while
the compilation/maintenance process becomes a tool that
enables system engineers to be more efficient in their
jobs. Re-using the compilation knowledge units will also
spread the labor costs of creating those units across a
large number of customers. In the SaaS model the sys-
tem engineers will belong to the cloud provider so the

abstract specification and the compilation/maintenance
process will help them provide better service at a lower
cost. In the PaaS model we foresee using the abstrac-
tion and compilation process to stand up a PaaS more
quickly than can be done today. This could even foster
the convergence to a common set of PaaS APIs across
PaaS vendors to support easier maintenance and migra-
tion between PaaS clouds.

There are multiple challenges in achieving this vision.
The most critical is whether it is feasible to design the
abstraction so that it can capture appropriate system at-
tributes in a way that is meaningful to users and system
engineers while being amenable to an automated compi-
lation process that generates valid concrete systems.

The contributions of our work are:

• We design an abstract specification for cloud-
based IT systems that separates user requirements
from system implementation details, is platform-
independent, and can capture the important aspects
of a system’s structure at a high level.

• We design a compilation process that (1) translates
the high-level specification into the low-level details
required for a particular choice of cloud platform
and set of applications, and (2) leverages a mature
configuration management solution to deploy the
resulting system to a cloud.

• We show that maintaining an abstract specification
at an appropriate level enables users to address au-
tomatic scaling and failover even though these pro-
cesses are highly application-dependent, and sup-
ports a more reliable and error-free orchestration of
changes in the system’s long-term maintenance.

To demonstrate the efficacy of our approach, we im-
plemented and evaluated a fully-functional prototype of
our system, called ANCOR (Automated eNterprise net-
work COmpileR). The current implementation of AN-
COR targets OpenStack [45] and uses Puppet [20] as
the configuration management tool (CMT); however, the
framework can also be targeted at other cloud platforms
such as AWS, and use other CMT solutions such as
Chef [34].

The rest of the paper is organized as follows. Sec-
tion 2 explains the limitations of current solutions as well
as the enabling technologies used in this work. Sec-
tion 3 presents an overview of the framework, including
the proposed abstraction and the compilation workflow.
Section 4 describes the implementation of the ANCOR
framework and its evaluation. We discuss some other
relevant features of the approach and future work in Sec-
tion 5, followed by related work and conclusion.

2
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2 Background

2.1 Limitations of Available Automation
and Abstraction Technologies

Recent years have seen a proliferation of cloud manage-
ment automation technologies. Some of these solutions
(e.g., AWS OpsWorks) tend to focus on automation as
opposed to abstraction. They include scripts that auto-
matically create virtual machines, install software ap-
plications, and manage the machine/software lifecycle.
Some are even able to dynamically scale the computing
capacity [36, 38, 39]. Unfortunately, none of these so-
lutions provide a way to explicitly document the depen-
dencies between the deployed applications. Instead, de-
pendencies are inferred using solution-specific methods
for provider-specific platforms. Not only is this unre-
liable (e.g., applications may have non-standard depen-
dencies in some deployments), but it lacks the capability
to maintain the dependency after the system is generated.
Ubuntu Juju [41] is a special case that is described and
discussed in Section 6 (Related Work).

Recent years have also seen a general movement
towards more abstractions at various levels of cloud
services, especially in PaaS. Examples include Win-
dows Azure Service Definition Schema (.csdef) [57] and
Google AppEngine (GAE) YAML-based specification
language [16]. These abstractions are focused on a par-
ticular PaaS, thus they have no need to separate the plat-
form from user requirements. Rather, they simply ab-
stract away some details to make it easier for users to use
the particular platform to deploy their apps. The abstrac-
tions only capture applications under the users’ control
and do not include platform service structures. As a re-
sult the abstractions cannot support compiling abstract
specifications to different cloud platforms2.

Systems like Maestro [22], Maestro-NG [23],
Deis [9], and Flynn [15] are based on the Linux Contain-
ers [21] virtualization approach (specifically the Docker
open-source engine [10]). Some of the description lan-
guages in these systems (specifically Maestro and Mae-
stroNG) can capture dependencies among the containers
(applications) through named channels. However, these
specifications abstract instances (virtual machines), as
opposed to the whole system. There is no formal model
to define a globally consistent view of the system, and
as a result once a system is deployed it is challenging to
perform reliable configuration updates. Current Docker-
based solutions are primarily focused on the initial con-
figuration/deployment; maintenance is usually not ad-
dressed or they resort to a re-deployment process.

The lack of a consistent high-level abstraction describ-

2Indeed, it appears that these abstractions will likely make it harder
for users to move to other cloud providers as they are platform-specific.

ing the complete IT system creates a number of chal-
lenges in configuring cloud-based systems: network de-
ployments and changes cannot be automatically vali-
dated, automated solutions are error-prone, incremental
changes are challenging (if not impossible) to automate,
and configuration definitions are unique to specific cloud
providers and are not easily ported to other providers.

2.2 Enabling Technologies
Several new technologies have facilitated the develop-
ment of our current prototype. In particular, there have
been several advancements in the configuration manage-
ment tools (CMT) that help streamline the configuration
management process. This is especially beneficial to our
work, since those technologies are the perfect building
blocks for our compilation process. To help the reader
better understand our approach, we present a basic back-
ground on the state-of-the-art CMTs.

Two popular configuration management solutions are
Chef [34] and Puppet [20]. We use Puppet but sim-
ilar concepts exist in Chef as well. Puppet works by
installing an agent on the host to be managed, which
communicates with a controller (called the master) to
receive configuration directives. Directives are written
in a declarative language called Puppet manifests, which
define the desired configuration state of the host (e.g.,
installed packages, configuration files, running services,
etc.). If the host’s current state is different than the man-
ifest received by the Puppet agent, the agent will issue
appropriate commands to bring the system into the spec-
ified state.

In Puppet, manifests can be reused by extracting the
directives and placing them in classes. Puppet classes
use parameters to separate the configuration data (e.g., IP
addresses, port numbers, version numbers, etc.) from the
configuration logic. Classes can be packaged together in
a Puppet module for reuse. Typically, classes are bound
to nodes in a master manifest known as the site mani-
fest. Puppet can also be configured to use an external
program such as External Node Classifier (ENC) [18] or
Hiera [35] to provide specific configuration data to the
classes that will be assigned to a node.

In the current prototype we use Hiera [35], which is
a key/value look-up tool for configuration data. Hiera
stores site-specific data and acts as a site-wide configu-
ration file, thus separating the specific configuration in-
formation from the Puppet modules. Puppet classes can
be populated with configuration data directly from Hiera,
which makes it easier to re-use public Puppet modules
“as is” by simply customizing the data in Hiera. More-
over, users can publish their own modules without wor-
rying about exposing sensitive environment-specific data
or clashing variable names. Hiera also supports module

3
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class role::work_queue::default {

$exports = hiera("exports")

class { "profile::redis":

port => $exports["redis"]["port"]

}

}

Figure 1: Puppet Worker Queue Class
classes:

- role::work_queue::default

exports:

redis: { port: 6379 }

Figure 2: Hiera Configuration Data

customization by enabling the configuration of default
data with multiple levels of overrides.

Figure 1 is an example of a Puppet class for a
worker queue based on Redis [47]. Puppet classes can
be reused in different scenarios without hard-coding pa-
rameters: in this particular example there is only one
parameter, port. The concrete value of this parameter
($exports["redis"]["port"]) is derived from Hiera
(Figure 2), which is shown as 6379 but can be computed
automatically by a program at runtime. This allows us
to calculate parameters based on the up-to-date system
model, as opposed to hardcoding them. We use this tech-
nology in the compilation process described later.

We should also emphasize that while our current pro-
totype uses Puppet, ANCOR can work with many mature
CMT solutions such as Chef, SaltStack [49], Bcfg2 [43],
or CFEngine [44]. Two important properties are required
for a CMT to be useable by ANCOR. First, the directives
an agent receives dictates a desired state as opposed to
commands for state changes, which allows configuration
changes to be handled in the same way as the initial con-
figuration. Second, there is a mechanism for reusable
configuration modules (e.g., Puppet classes) that become
the building blocks, or the “instruction set,” into which
ANCOR can compile the abstract requirement model.
Depending on the specific CMT features, an orchestra-
tor component might also be needed (especially in case
the CMT employs only a pull-configuration model). An
orchestrator component can be used on the CMT mas-
ter node to trigger different actions on the CMT agents
(achieve a push-configuration model).

3 The ANCOR Framework
Figure 3 shows the three major components of the AN-
COR framework: the Operations Model, the Compiler,
and the Conductor. The arrows denote information flow.

The key idea behind our approach is to abstract the
functionality and structure of IT services into a model
that is used to generate and manage concrete systems.

   Conductor

   Operations Model

Compiler

Cloud Platform 
(OpenStack)

Configuring Provisioning

Requirements 
Model

System 
Model

OpenStack API 
Library (Fog)

Orchestrator 
(Mcollective)

CMT 
(Puppet)

Figure 3: ANCOR Framework

We call this abstraction the requirement model. We also
maintain the details of the concrete system in the sys-
tem model. The two constitute the Operations Model.
When ANCOR compiles a requirement model into a con-
crete, cloud-based system, the system model is populated
with the details of the cloud instances and their corre-
spondence to the requirement model. When the system
changes, the system model is updated to ensure it has
a consistent and accurate view of the deployment. Fig-
ure 14, part of the Appendix, shows the complete entity-
relation diagram for the operations model.

The Compiler references the requirement model to
make implementation decisions necessary to satisfy the
abstract requirements and to instruct the conductor to or-
chestrate the provisioning and configuration of the in-
stances. It can also instruct the conductor to perform
user-requested configuration changes while ensuring the
concrete system always satisfies the requirement model.

The Conductor consists of two sub-components, Pro-
visioning and Configuring, which are responsible for in-
teracting with the cloud-provider API, the CMT and or-
chestration tools (shown below the dashed line).

The ANCOR framework manages the relationships
and dependencies between instances as well as instance
clustering. Such management involves creating and
deleting instances, adding/removing instances to/from
clusters, and keeping dependent instances/clusters aware
of configuration updates. The ANCOR framework sim-
plifies network management as system dependencies are
formalized and automatically maintained. Moreover, tra-
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1. goals:
2.  ecommerce:
3.     name: eCommerce frontend
4.     roles:
5.       - weblb
6.       - webapp
7.       - worker
8.       - work_queue
9.       - db_master
10.      - db_slave

11. roles:
12.  weblb:
13.    name: Web application load balancer
14.    min: 2
15.    is_public: true
16.    implementations: 
17.      default: 
18.        profile: role::weblb::default
19.    exports:
20.      http:{ type: single_port, protocol: tcp, number:80 }
21.    imports:
22.      webapp: http

23.  webapp:
24.    name: Web application
25.    min: 3
26.    implementations: 
27.      default: 
28.        profile: role::webapp::default
29.    exports:
30.      http: { type: single_port, protocol: tcp }
31.    imports:
32.      db_master: querying
33.      db_slave: querying
34.      work_queue: redis

  35. worker:
  36.  name: Sidekiq worker application
  37.  min: 2
  38.  implementations: 
  39.    default:
  40.      profile: role::worker::default
  41.  imports:
  42.    db_master: querying
  43.    db_slave: querying
  44.    work_queue: redis

  45. work_queue:
  46.  name: Redis work queue
  47.  implementations: 
  48.    default:
  49.      profile: role::work_queue::default
  50.  exports:
  51.    redis: { type: single_port, protocol: tcp }

  52. db_master:
  53.  name: MySQL master
  54.  implementations: 
  55.    default:
  56.      profile: role::db_master::default
  57.  exports:
  58.    querying: { type: single_port, protocol: tcp }

  59. db_slave:
  60.  name: MySQL slave
  61.  implementations: 
  62.    default: 
  63.      profile: role::db_slave::default
  64.  min: 2
  65.  exports:
  66.    querying: { type: single_port, protocol: tcp }
  67.  imports:
  68.    db_master: querying

Figure 4: eCommerce Website Requirements Specification

ditional failures can also be addressed, thus increasing
network resiliency. Next, we explain the requirement
model, the way it is compiled into a concrete system,
and how it is used to better manage that system.

3.1 Requirement Model
3.1.1 The ARML language

We specify the requirement model in a domain-specific
language called the ANCOR Requirement Modeling
Language (ARML). ARML’s concrete syntax is based
on YAML [12], which is a language that supports spec-
ification of arbitrary key-value pairs. The abstract syn-
tax of ARML is described in the Appendix (Figure 13).
Figure 4 shows an example ARML specification for an
eCommerce website in Figure 5.

The example is a scalable and highly available eCom-
merce website on a cloud infrastructure, which adopts a
multiple-layer architecture with the various clusters of
services shown in Figure 5: web load balancer (Var-
nish [55]), web application (Ruby on Rails [48] ) with
Unicorn [30], HAProxy [17] and Nginx [29]), database
(MySQL [26]), worker application (Sidekiq [40]), and
messaging queue (Redis [47]). Arrows indicate depen-
dency between the clusters. Each cluster consists of mul-

Web ApplicationWeb ApplicationWeb ApplicationWeb ApplicationWeb ApplicationMySQL Slaves

MySQL Master

Web ApplicationWeb ApplicationWeb ApplicationWeb ApplicationWeb ApplicationSidekiq Worker 
Application

Web ApplicationWeb ApplicationWeb ApplicationVarnish Load 
Balancer

Redis Server

Platform Components

shared 
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workers
unicorn 
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unicorn 
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unicorn 
workers
unicorn 
workers

unicorn 
workers
unicorn 
workers
unicorn 
workers
unicorn 
workers
unicorn 
workers

Web ApplicationWeb ApplicationWeb ApplicationWeb ApplicationWeb ApplicationRails Web 
Application

Requests

Figure 5: eCommerce Website

tiple instances that offer the same services. Clustering
supports scaling via cluster expansion (adding more in-
stances to the cluster) or contraction (removing instances
from the cluster). The clustering strategies employed by
these applications fall into two main categories: homo-
geneous and master-slave. In a homogeneous cluster all

5
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cluster members have the same configuration. If one
of the instances stops working, another instance takes
over. In master-slave, the master and slave instances have
different configurations and perform different functions
(e.g., write versus read). If the master fails, a slave is
promoted to be the master. In this example system, the
web load balancer, web application, and the worker ap-
plication employ the homogeneous clustering while the
database employs master-slave (thus MySQL master and
MySQL slaves form one cluster). Redis is used as a mes-
saging queue. The clustering approach, mainly replica-
tion, supported by Redis is not suited for high-throughput
queues.

A requirement model contains the specifications of
system goals and roles. A goal is a high-level busi-
ness goal (e.g., blog website, eCommerce website, etc.)
whose purpose is to organize the IT capabilities (roles)
around business objectives. In Figure 4 there is a single
system goal ecommerce that is supported by six roles.

A role defines a logical unit of configuration. Exam-
ples include a database role, a web application role, a
message broker role, and so on. In essence, a role repre-
sents a group of similarly configured instances that pro-
vide the same functionality. In our model we use a single
role to represent all the instances that achieve that func-
tionality. For example, the web application instances in
Figure 5 are configured identically (except for network
addresses) and multiple load balancers dispatch incom-
ing web requests to the instances in the web application
cluster. We have a single role webapp for all the web ap-
plication instances, and a weblb role for all the load bal-
ancer instances. The role-to-instance mapping is main-
tained in the system model.

A role may depend on other roles. A role uses a chan-
nel to interact with other roles. A channel is an inter-
face exported (provided) by a role and possibly imported
(consumed) by other roles. Channels could include a sin-
gle network port or a range of ports. For instance, the
webapp role exports an http channel, which is a TCP
port (e.g., 80). The weblb role imports the http chan-
nel from the webapp role. A role is a “black box” to
other roles, and only the exported channels are visible
interfaces. Using these interfaces the requirement model
captures the dependencies between the roles.

The webapp role also imports three channels from
various other roles: querying from db master,
querying from db slave, and redis from
work queue. This means the webapp role de-
pends upon three other roles: db master, db slave,
and work queue. The min field indicates the minimum
number of instances that should be deployed to play the
role. If min is not specified it’s default value is 1. In
the current prototype implementation the count of the
instances will be equal to min. The requirement model

addresses instance clustering naturally by requiring
multiple instances to play a role. For homogeneous
clusters this is easy to understand. For master-slave
clusters, at least two roles are involved in the cluster,
the master and the slave. The dependency information
captured in the export/import relationship is sufficient
to support calculating configuration changes when, for
example, the master is removed from the cluster and
a new node is promoted to be the master. So far we
have not found any real-world clustering strategies that
require explicitly modeling the cluster structure beyond
the dependency relationship between the roles that
form the cluster. If more general clustering strategies
are needed, we will extend our requirement model to
support this.

3.1.2 Role Implementation

Role names are system-specific and are chosen by the
user or system engineers to convey a notion of the role’s
purpose in the system; there are no pre-defined role
names in ARML. However, to automatically compile and
maintain concrete systems, system engineers must pro-
vide the semantics of each role, which is specified in the
role specification’s implementation field. The implemen-
tation field defines how each instance must be configured
to play the role. The conductor then uses this implemen-
tation information to properly configure and deploy the
concrete instances. The value of the implementation field
is thus dependent on the CMT being used. This process
is similar to traditional programming language compilers
where abstract code constructs are compiled down to ma-
chine code. The compiler must contain the semantics of
each code construct in terms of machine instructions for
a specific architecture. The analogy between our AN-
COR compiler and a programming language compiler
naturally begs the question: “what is the architecture-
equivalent of a cloud-based IT system?” In other words,
is there an interface to a “cloud runtime” into which we
can compile an abstract specification?

It turns out that a well-defined interface between
the requirement model and the “cloud runtime” is well
within reach if we leverage existing CMT technologies.
As explained in Section 2.2, there has been a general
movement in CMT towards encapsulating commonly-
used configuration directives into reusable, parameter-
ized modules. Thus, one can use both community and
custom modules to implement roles and populate those
reusable knowledge units with parameters derived from
our high-level requirement model. Potential role imple-
mentations must be specified in a role’s “implementa-
tions” field (see Figure 4). A role may have multiple
implementations since there could be more than one way
to achieve its functionality. The compiler then selects an
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class role::weblb::default {

$exports = hiera("exports")

$imports = hiera("imports")

---

class { "profile::varnish":

listen_port => $exports["http"]["port"] }

$backends = $imports["webapp"]

file { "default.vcl":

ensure => file,

content =>

template("role/weblb-varnish/default.vcl.erb"),

path => "/etc/varnish/default.vcl",

owner => root,

group => root,

mode => 644,

require => Package["varnish"],

notify => Exec["reload-varnish"], }

}

Figure 6: Web Load Balancer Role Implementation

appropriate role implementation from those that satisfy
all constraints levied by existing role implementations
in the system. (The current prototype simply selects the
first role implementation in the “implementations” field;
we leave the constraint specification and implementation
selection problems for future work.)

An important challenge was structuring the knowledge
units so that they could be easily reused in different re-
quirement models. Failing to have a proper role imple-
mentation design model would lead to rewriting every
single role implementation from scratch. We adopted an
approach similar to that used by Dunn [11]. We name
role implementations based on their functionality and/or
properties (e.g., weblb) and use “profiles” to integrate in-
dividual components to embody a logical software stack.
The software stack is constructed using community and
custom modules as lower-level components3.

For instance, in case of the load balancer: The weblb
role is assigned the default implementation in the
ARML specification (see Figure 4). Figure 6 is a Pup-
pet class that shows the implementation that was de-
fined as default for the weblb. Figure 7 pictures
a sample of possible parameters that Puppet is getting
through Hiera from the compiler for configuring one
of the weblb instances. There are two parts in each
role implementation (see Figure 6). The code before
“---” imports operations model values from Hiera (e.g.,
see Figure 7). The statements hiera("exports") and
hiera("imports") query Hiera to find all the chan-
nels the web balancer will consume (imports) and the
channels that it will make available to other roles (ex-
ports). These channels will be stored in two variables,

3 All default role implementations used with ANCOR are
available on GitHub: https://github.com/arguslab/ancor-puppet

{

"exports": {

"http": {

"port": 80,

"protocol": "tcp"

}

},

"imports": {

"webapp": {

"webapp-ce66a264": {

"ip_address": "10.118.117.16",

"stage": "undefined",

"planned_stage": "deploy",

"http": {

"port": 42683,

"protocol": "tcp"

}

},

"webapp-84407edd": {

"ip_address": "10.118.117.19",

"stage": "undefined",

"planned_stage": "deploy",

"http": {

"port": 23311,

"protocol": "tcp"

}

},

"webapp-1ce1ce46": {

"ip_address": "10.118.117.22",

"stage": "undefined",

"planned_stage": "deploy",

"http": {

"port": 10894,

"protocol": "tcp"

}

}

}

},

"classes": [

"role::weblb::default"

]

}

Figure 7: Specific weblb Paramaters Sample Exposed to
Hiera by ANCOR

"exports" and "imports". The web balancer will be
instructed to expose an http channel on the particular
port (in this case port 80, see “exports” in Figure 7), and
will be configured to use all instances that are assigned
to play the role webapp, from which it imports the http
channel.

The default weblb implementation is based on the
reusable Puppet “Varnish profile” (profile::varnish
- see Figure 8). The profile::varnish Pup-
pet class uses the necessary specified parameters to
customize the Varnish installation. The parame-
ters in profile::varnish (e.g., $listen address,
$listen port, etc.) are initialized with default val-
ues. These values will be overwritten in case they
are specified in role::weblb::default. In the cur-
rent example, $listen port is the only parame-
ter that will be overwritten (see Figure 6), the other
parameters will keep their default values defined in
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class profile::varnish(

$listen_address = "0.0.0.0",

# $listen_port’s default value "6081" will be

# OVERWRITTEN with the value passed

# from role::weblb::default

$listen_port = 6081,

$admin_listen_address = "127.0.0.1",

$admin_listen_port = 6082) {

apt::source { "varnish":

location =>

"http://repo.varnish-cache.org/ubuntu/",

release => "precise",

repos => "varnish-3.0",

key => "C4DEFFEB",

key_source =>

"http://repo.varnish-cache.org/debian/GPG-key.txt",

}

package { "varnish":

ensure => installed,

require => Apt::Source["varnish"], }

service { "varnish":

ensure => running,

require => Package["varnish"], }

Exec {

path => ["/bin", "/sbin", "/usr/bin", "/usr/sbin"]

}

exec { "reload-varnish":

command => "service varnish reload",

refreshonly => true,

require => Package["varnish"] }

file { "/etc/default/varnish":

ensure => file,

content =>

template("profile/varnish/default.erb"),

owner => root,

group => root,

mode => 644,

notify => Service["varnish"],

require => Package["varnish"], }

}

Figure 8: Web Load Balancer Role Profile

# Configuration file for varnish

START=yes

NFILES=131072

MEMLOCK=82000

VARNISH_VCL_CONF=/etc/varnish/default.vcl

VARNISH_LISTEN_ADDRESS=<%= @listen_address %>

VARNISH_LISTEN_PORT=<%= @listen_port %>

VARNISH_ADMIN_LISTEN_ADDR=<%= @admin_listen_address %>

VARNISH_ADMIN_LISTEN_PORT=<%= @admin_listen_port %>

VARNISH_MIN_THREADS=1

VARNISH_MAX_THREADS=1000

. . .

Figure 9: Web Load Balancer, Varnish, Initialization
Script: default.erb (used in profile::varnish)

<% @backends.each do |name, backend| %>

backend be_<%= name.sub("-", "_") %> {

.host = "<%= backend["ip_address"] %>";

.port = "<%= backend["http"]["port"] %>";

.probe = {

.url = "/";

.interval = 5s;

.timeout = 1s;

.window = 5;

.threshold = 3;

}

}

<% end %>

director webapp round-robin {

<% @backends.each_key do |name| %>

{

.backend = be_<%= name.sub("-", "_") %>;

}

<% end %>

}

sub vcl_recv {

set req.backend = webapp;

}

Figure 10: Web Load Balancer, Varnish, Configuration
File: default.vcl.erb (used in role::weblb::default)

profile::varnish. The parameters values (initialized
in role::weblb::default or in profile::varnish)
are passed to Figure 9 and Figure 10 to generate the cus-
tomized Varnish configuration files, and this is all done
by Puppet automatically at runtime.

Thus, a role implementation definition specifies a con-
crete way to implement the intended functionality em-
bodied by a role by describing the invocation of pre-
defined configuration modules with concrete parameters
computed from the operations model. These role imple-
mentations are not only useful when generating the sys-
tem, but also for modifying the system as it changes over
time. For example, if a new instance is deployed to play
the webapp role, the dependency structure in the opera-
tions model allows ANCOR to automatically find all the
other roles that may be impacted (those depending on the
webapp role) and use their role implementation to direct
the CMT to reconfigure them so that they are consistent
with the updated operations model.

ANCOR leverages existing CMT to define the role im-
plementations, to minimize additional work that has to be
done by the system engineers. For example, only infor-
mation in Figure 6 is what one needs to write for AN-
COR; Figure 7 is generated automatically by ANCOR;
Figure 8, 9, and 10 are what one would have to specify
anyway using Puppet.
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3.2 The ANCOR Workflow
There are four main phases involved in creating and
managing cloud-based systems using ANCOR.

1. Requirements model specification
2. Compilation choices specification
3. Compilation/Deployment
4. Maintenance

The first two phases result in the creation of the require-
ment model while the next two phases perform the actual
deployment and maintenance of the cloud-based system.

3.2.1 Requirement Model Specification

In this phase, the user and system engineers work to-
gether to define the goals of the system, which may re-
quire significant input from various stakeholders. Next,
they determine the roles required to achieve each goal
and the dependencies among the roles. This task could
be handled by the system engineers alone or in consulta-
tion with the user. The high-level requirement language
ARML provides an abstract, common language for this
communication.

3.2.2 Compilation Choices Specification

In this phase, system engineers define role semantics us-
ing pre-defined CMT modules. In our current proto-
type this is accomplished by defining the role implemen-
tations that invoke Puppet classes as described in Sec-
tion 3.1.2. If no appropriate CMT modules exist, sys-
tem engineers must define new profiles and place them
into the repository for future use. In general, system en-
gineers could specify multiple implementation choices
for each role to provide the ANCOR compiler flexibil-
ity in choosing the appropriate implementation at run-
time. One of the options available to system engineers
is the specification of the desired operating system for
each instance. Here again, different operating systems
may be used for each implementation of a role. With a
wide variety of choices available to systems engineers, a
constraint language is needed to specify the compatibil-
ity among the various implementation choices; we leave
this for future research.

3.2.3 Compilation/Deployment

Once the requirement model has been defined, the frame-
work can automatically compile the requirements into a
working system on the cloud provider’s infrastructure.
This process has seven key steps:

1. The framework signals the compiler to deploy a spe-
cific requirement model.

2. The compiler makes several implementation deci-
sions including the number of instances used for
each role and the flavors, operating systems, and
role implementations used.

3. The compiler signals the conductor component to
begin deployment.

4. The conductor interacts with the OpenStack API to
provision instances and create the necessary secu-
rity rules (configure the cloud’s internal firewall).
The provisioning module uses a package such as
cloud-init to initialize each cloud instance, includ-
ing installing the CMT and orchestration tool agents
(e.g., the Puppet agent and MCollective [19] agent).

5. Once an instance is live, the message orchestrator
(e.g., MCollective) prepares the instance for config-
uration by distributing its authentication key to the
CMT master (e.g., Puppet master).

6. The configuration is pushed to the authenticated in-
stances using the CMT agent and, if needed, the or-
chestrator (e.g., Puppet agent and MCollective).

7. System engineers may check deployed services
by using system monitoring applications such as
Sensu [50] or Opsview [46] , or by directly access-
ing the instances.

In step 6, configuration is carried out via the Hiera
component while configuration directives (node mani-
fests) are computed on the fly using ANCOR’s opera-
tions model. This ensures that the parameters used to
instantiate the Puppet modules always reflect the up-to-
date system dependency information.

3.2.4 Maintenance

Once the system is deployed in the cloud, system en-
gineers can modify the system. If the change does
not affect the high-level requirement model, the main-
tenance is straightforward. The compiler will track the
impacted instances using the operations model and re-
configure them using the up-to-date system information.
A good example for this type of change is cluster expan-
sion/contraction.

Cluster expansion is used to increase the number of
instances in a cluster (e.g., to serve more requests or for
high-availability purposes).

1. System engineers instruct the compiler to add in-
stances to a specific role. In future work we also
would like to allow monitoring modules to make ex-
pansion decisions as well.

2. The compiler triggers the conductor component to
create new instances, which automatically updates
the ANCOR system model.
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3. The compiler calculates the instances that depend
on the role and instructs the configuration manager
to re-configure the dependent instances based on the
up-to-date ANCOR system model.

Cluster contraction is the opposite of cluster expan-
sion. The main goal of cluster contraction is to reduce
the number of instances in a cluster (e.g., to lower cost).

1. System engineers instruct the compiler to mark a
portion of a role’s instances for removal.

2. The compiler calculates the instances that depend
on the role and instructs the configuration manager
to re-configure the dependent instances based on the
up-to-date ANCOR system model.

3. The compiler triggers the conductor component to
remove the marked instances.

If the change involves major modifications in the require-
ment model (e.g., adding/removing a role), ANCOR will
need to re-compile the requirement model. How to
perform “incremental recompilation” that involve ma-
jor structural changes without undue disruption will be
a topic for future research.

4 Prototype Implementation

We built a prototype (Figure 3) in Ruby (using Rails,
Sidekiq and Redis) to implement the ANCOR framework
using OpenStack as the target cloud platform. The op-
erations model is stored in MongoDB collections using
Rails. ANCOR employs straight-forward type-checking
to ensure that the requirement model is well-formed (e.g.,
allowing a role to import a channel from another role
only if the channel is exported by that role). The com-
piler references the MongoDB document collections that
store the operations model and interacts with the conduc-
tor using a Redis messaging queue and Sidekiq, a worker
application used for background processing. The con-
ductor interacts with the OpenStack API through Fog (a
cloud services library for Ruby) to provision the network,
subnets and instances indicated by the compiler. Once
an instance is live, the configuration module uses Puppet
and MCollective to configure it using the manifest com-
puted on the fly based on the operations model. The con-
ductor also interacts with the system model and updates
the provided system model database every time it per-
forms a task (provisioning or configuration). Therefore,
the system model stored in the MongoDB datastore will
always have an updated picture of the system. Obviously,
the different role implementation choices (e.g., Sidekiq,
Redis or Rails) used to build the eCommerce website ex-
ample scenario (Figure 5) are independent from the com-
ponents that leverage Sidekiq, Redis and Ruby on Rails
in the ANCOR framework prototype (Figure 3)

In the current implementation we are using a workflow
model that is based on chained and parallel tasks pro-
cessing. Once the ARML specification is entered by the
user, the specification will be parsed and the requirement
model will be encountered. Next, the compiler steps in
and based on the requirement model it chooses the num-
ber of instances that play a role, the role implementa-
tions, the IP addresses, the channels (port number and/or
sockets that will be consumed or exposed), etc. Then the
compiler populates the system model and creates various
tasks that it passes to the worker queue. A task can be
viewed as an assignment that is passed to a background
(worker) process. In ANCOR, Sidekiq is used for back-
ground processing. Tasks are stored in the database and
have several attributes (e.g., type, arguments, state, con-
text) A task can be related to provisioning (e.g., using
Fog) or to configuring an instance (e.g., push configura-
tion from Puppet master to Puppet agent). In case other
tasks (e.g., deploy instance) depend on the execution of
the current task (e.g., create network) a wait handle is
created. Wait handles can be viewed as the mechanism
used by the tasks to signal dependent tasks when they
finished execution. A task creates a wait handle object
that stores the ids of the tasks that wait for it to execute.
Once the task finished the wait handle triggers all the
dependent tasks to execute. The purpose of a wait han-
dle is to start, resume or suspend the dependent tasks.
Using this approach we can resume or suspend a task
several times including tasks related to the orchestration
tool (MCollective) and the CMT (Puppet). Independent
tasks (e.g., two different deploy instance tasks) will be
executed in parallel employing locks on certain shared
resources. The ANCOR prototype code, detailed instruc-
tions on how to deploy/run it and a detailed document
containing specific implementation details are available
online at https://github.com/arguslab/ancor.

4.1 Using ANCOR
The current framework implementation exposes a REST
API [14] to it’s clients. The current clients include a
Command-Line Interface (CLI), a web-browser dash-
board and also the Puppet master (specifically the Hi-
era module). Through the REST API, Hiera is obtaining
the specific configuration details (e.g., imported and ex-
ported channels - $exports and $imports arrays, see
Figure 1) from the compiler in order to customize the
Puppet modules that are part of the chosen role imple-
mentation (e.g., see Figure 2). The CLI and the dash-
board are used to deploy, manage, visualize (in case of
the dashboard) and delete ANCOR deployments.

One can use the CLI to deploy, manage and delete
the eCommerce website example using several key com-
mands:
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1. ancor environment plan eCommerce.yaml –
plans the deployment (eCommerce.yaml is shown
in Figure 4)

2. ancor role list – lists the current set of roles
3. ancor instance list – lists the current set of in-

stances
4. ancor environment commit – deploys the envi-

ronment on the cloud infrastructure
5. ancor task list – displays the current progress

of the deployment
6. ancor instance add webapp – used to add an-

other instance for the webapp role after all tasks
are completed

7. ancor environment list – used to unlock the
environment after all tasks are completed

8. ancor environment remove production –
deletes the current deployment

More options and instructions on using the ANCOR
CLI and the dashboard are available on the framework
website.

4.2 Prototype Evaluation
The objective of our evaluation is to measure the dynam-
ics of change management. This implies measuring how
much the performance of a deployed IT system is influ-
enced when adding and removing instances using AN-
COR. Throughput and latency values are highly depen-
dent on the applications’ configurations and on the un-
derlying cloud infrastructure. Thus, we are not focused
on the throughput and latency themselves but on the dif-
ference between the baseline measurements and the mea-
surements during system changes. We evaluated our pro-
totype using two IT system setups: a basic blogging web-
site (Figure 11) and the eCommerce website scenario
(Figure 5). These scenarios are also available online. As
we add other scenarios into the repository and integrate
ANCOR with different cloud infrastructures (AWS will
likely be the next infrastructure supported), we plan to
expand this evaluation.

The current testing scenarios were deployed on a pri-
vate cloud testbed in the Argus CyberSecurity Labo-
ratory at Kansas State University. The cloud testbed
consists of fifteen Dell PowerEdge R620 servers, each
of which is equipped with 2 x Intel Xeon E-2660 v2
Processor@2.20GHz, 128GB of RAM, 4 x 1TB 7.2K
HDD running in RAID0 (Stripe) and an Intel dual port
10GbE DA/SFP+ network card. Moreover, each server
is connected to the main switch (Dell Force10 - S4810P
switch) using two bounded 10GbE ports.

We deployed an OpenStack Havana infrastructure on
these machines using Mirantis’ open-source framework
Fuel [24]. The infrastructure consists of one controller
node and fourteen compute nodes.

MySQL Database

Web ApplicationWeb ApplicationWeb ApplicationWordPress Web 
Application

Requests

Varnish Load 
Balancer

Figure 11: Blogging Website

4 threads and 40 connections
Avg Stdev Max +/- Stdev

Latency 1.03ms 1.28ms 305.05ms 99.73%
5999.68 requests/sec, 1800296 requests in 5 min

Timeouts: 5052
Errors (non-2xx or 3xx HTTP responses): 0

Table 1: Benchmarking - Blogging Website Scenario
(baseline) with Caching

wrk [58], an HTTP benchmarking tool, was used
to test the system’s availability and performance while
managing various clusters (i.e., adding/removing in-
stances to/from a cluster). We ran the benchmarking
tool on the initially deployed scenarios and established a
baseline for every component in our measurements. wrk
was launched from client machines that are able to access
the websites (i.e., connect to the load balancer). We tar-
geted various links that ran operations we implemented
to specifically test the various system components (e.g.,
read/write from/to the database ). After establishing the
baseline, we started adding and removing instances to
and from different clusters while targeting operations
that involve the deepest cluster in the stack (database
slave for the eCommerce setup). In case of the blog-
ging website scenario we focused on the web application.
The performance in the three cases are very close since
we only added and removed one instance in the experi-
ments. All caching features at the application level were
disabled in both scenarios. Having caching features en-
abled would have prevented us from consistently reach-
ing the targeted components; however the performance
would be greatly improved. For instance, Table 1 ex-
poses the baseline results for accessing a WordPress [56]
posts from the blogging website setup (Figure 12) with
caching enabled.
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1. goals:
2.  wordpress:
3.    name: Wordpress blog
4.    roles:
5.      - db
6.      - webapp
7.      - weblb

8. roles:
9.  weblb:
10.    name: Web application load balance
11.    is_public: true
12.    implementations: 
13.      default: 
14.        profile: role::weblb::default
15.    exports:
16.      http: { type: single_port, protocol: tcp, number: 80 }
17.    imports:
18.      webapp: http

19.  webapp:
20.    name: Web application
21.    min: 2
22.    implementations: 
23.      default: 
24.        profile: role::weblb::default
25.    exports:
26.      http: { type: single_port, protocol: tcp }
27.    imports:
28.      db: querying

29.  db:
30.    name: MySQL database
31.    implementations: 
32.      default: 
33.        profile: role::weblb::default
34.    exports:
35.      querying: { type: single_port, protocol: tcp }

Figure 12: Blogging Website Requirements Model

4 threads and 40 connections
Avg Stdev Max +/- Stdev

Latency 458.89ms 292.65ms 1.30s 73.86%
86.18 requests/sec, 25855 requests in 5 min

Timeouts: 0
Errors (non-2xx or 3xx HTTP responses): 0

Table 2: Benchmarking - Blogging Website Scenario -
webapp cluster (baseline)

4 threads and 40 connections
Avg Stdev Max +/- Stdev

Latency 418.76ms 268.63ms 1.88s 78.65%
96.63 requests/sec, 28989 requests in 5 min

Timeouts: 0
Errors (non-2xx or 3xx HTTP responses): 0

Table 3: Benchmarking - Blogging Website Scenario -
webapp cluster (adding one instance)

4 threads and 40 connections
Avg Stdev Max +/- Stdev

Latency 456.13ms 325.94ms 1.34s 73.53%
89.49 requests/sec, 26849 requests in 5 min

Timeouts: 0
Errors (non-2xx or 3xx HTTP responses): 0

Table 4: Benchmarking - Blogging Website Scenario -
webapp cluster (removing an instance)

4 threads and 40 connections
Avg Stdev Max +/- Stdev

Latency 16.75ms 18.92ms 333.76ms 91.12%
601.21 requests/sec, 180412 requests in 5 min

Timeouts: 4728
Errors (non-2xx or 3xx HTTP responses): 0

Table 5: Benchmarking - db slave cluster (baseline)

4 threads and 40 connections
Avg Stdev Max +/-Stdev

Latency 17.21ms 20.22ms 161.34ms 93.13%
771.71 requests/sec, 231563 requests in 5 min

Timeouts: 4292
Errors (non-2xx or 3xx HTTP responses): 0

Table 6: Benchmarking - db slave cluster (adding one
instance)

4.2.1 Blogging Website Scenario
The basic blogging website is pictured in Figure 11.
When adding instances to the WordPress web application
cluster, latency and throughput improve (Table 3), which
is as expected. When instances are removed from the
cluster the performance is slightly worse than the add-
instance case, due to the decreased number of instances
in the cluster. But it is still slightly better than the base-
line, which has the less number of instances.

4.2.2 eCommerce Website Scenario
When adding instances to the MySQL slaves cluster, la-
tency slightly increases but throughput is improved (Ta-
ble 6). When instances are removed from the cluster both
performance metrics were negatively affected (Table 7).

These results show that 1) the ANCOR system is reli-
able in generating a concrete IT system in the cloud from
a high-level requirement model specification; and 2) the
formal models in ANCOR help facilitate orchestrating
changes in the cloud-based IT system such as scaling.

It is important not to disregard the fact that all bench-
marking results were influenced by the way applications
were configured (e.g., disabled caching functionality and
“hot-swap” feature). The “hot-swap” feature loads an
updated configuration without restarting a service (e.g.,
Unicorn), which could further improve performance if
one further tunes these applications.

4 threads and 40 connections
Avg Stdev Max +/-Stdev

Latency 15.91ms 23.18ms 417.68s 93.95%
500.59 requests/sec, 150202 requests in 5 min

Timeouts: 4903
Errors (non-2xx or 3xx HTTP responses): 0

Table 7: Benchmarking - db slave cluster (removing
one instance)
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5 Discussion and Future Work
Our requirements specification approach and the imple-
mented ANCOR framework offer system engineers the
same flexibility as in a typical IaaS model. This means
that engineers can keep their workflow using their pre-
ferred configuration management tools (e.g., Puppet and
Chef) and orchestration tools (e.g., MCollective). They
have the option to do everything in their preferred ways
up to the point where they connect the components (ser-
vices) together. For example, system engineers have the
option of using predefined configuration modules and of
leveraging the contributions from the CMT community.
Or they can write their own manifests or class definitions
to customize the system in their own ways. ANCOR
can leverage all of these and does not force the system
engineers to use particular low-level tools or languages;
rather it provides the ability to manage the whole system
based on a high-level abstraction.

The high-level requirement model we developed could
also facilitate tasks like failure diagnosis and system
analysis to identify design weaknesses such as single
point of failures or performance bottlenecks. The sys-
tem dependency information specified in the require-
ment model and maintained in the operations model al-
lows for more reliable and streamlined system updates
such as service patching. It also allows for more fine-
grained firewall setup (i.e., only allows network access
that is consistent with the system dependency), and en-
ables porting systems to different cloud providers in a
more organized manner (e.g., one can take the up-to-date
requirement model and compile it to a different cloud
provider’s infrastructure, and then synchronize data from
the old one to the new one).

One of our future work directions is to construct a
proactive change mechanism as part of the compiler.
This mechanism would randomly select specific aspects
of the configuration to change (e.g., replacing a portion
of the instances with freshly created ones with different
IP addresses, application ports, software versions, etc.);
the changes would be automatically carried out by the
conductor component. Moreover, changes can be sched-
uled based on security monitoring tools (e.g., Snort [51],
Suricata [52], SnIPS [59], etc.) or on component be-
havior and interaction reports (using an approach similar
to [1]). Our goal in this is to analyze the possible secu-
rity benefits as well as to measure and analyze the per-
formance, robustness, and resilience of the system un-
der such disturbance. We are also considering adding
SLA (Service Level Agreement) related primitives to the
requirement model. Furthermore, we are looking into
adding other CMT modules to support the use of multiple
configuration management tools such as Chef. In addi-
tion, we are planning on developing built-in Docker sup-
port modules and switching to the OpenStack AWS com-

patible API that will enable us to use the same provider
module on different cloud platforms.

6 Related Work
There has been a general trend towards creating more
abstractions at various levels of cloud service offerings.
Some of the solutions even use similar terminologies
and features as those in ANCOR. For example, some
solutions also use the term “role” in a similar way to
ours [11, 57], and others have adopted named channels to
describe dependencies in configuration files [22, 23, 57].
Thus it is important to describe the fundamental differ-
ences between the abstraction used in ANCOR and those
in the other solutions, so that one does not get confused
by the superficial similarities between them.

Abstractions used in the various PaaS solutions such
as the Windows Azure service definition schema [57] and
Google AppEngine YAML-based specifications [16] al-
low users to define their cloud-based applications. These
abstractions, while useful for helping users to use the
specific PaaS platform more easily, do not serve the
same purpose as ARML. In particular, they only define
user-provided applications and not the complete IT sys-
tem in the cloud, since the important platform compo-
nents are not modeled. Thus these abstractions cannot
be used to compile into different implementation choices
or platforms. They are tied to the specific PaaS platform
and thus will never separate the user requirements from
the platform details. Using these abstractions will lock
the users in to the specific PaaS vendor, while ANCOR
will give users complete flexibility as to implementation
choices at all levels, including platforms.

Docker container-based solutions such as Mae-
stro [22], Maestro-NG [23], Deis [9], and Flynn [15] pro-
vide management aid for deploying cloud instances us-
ing the Linux Containers virtualization approach. Some
of them (Maestro and Maestro-NG) also have environ-
ment descriptions (in YAML) for the Docker instances
that include named channels to capture dependencies.
These solutions can automate initial deployment of cloud
instances and make it easier to stand up a PaaS, but again
they take a different approach and do not provide the
same level of abstraction that supports the vision outlined
in Section 1. Specifically, the abstractions provided by
their environment descriptions are focused on instances
as opposed to the complete IT system, the container is the
unit of configuration, and maintenance tasks are done by
progressing through containers. It is not clear how much
the container-based solutions can help alleviate the long-
term maintenance problem of cloud-based IT systems.
Moreover, the container-based solutions are tied to Linux
environments and Docker, which is still under heavy de-
velopment and not ready for production use. We also
summarized a few other features to differentiate ANCOR
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from the other solutions in Table 8. ANCOR can be used
to deploy systems using other orchestration tools such
as Flynn and Deis in conjunction with traditional IT sys-
tems. As shown in Table 8, ANCOR is currently the most
general and flexible management solution available.

Several companies are developing cloud migration
technologies. While some appear to internally use ab-
stractions to support migration [8, 13], no details are
available for independent evaluation. Our approach is
more fundamental in the sense that we build systems us-
ing the abstraction and, smoother and more reliable mi-
gration could be a future product of our approach. Rather
than creating technology specifically to replicate exist-
ing systems, we aim to fundamentally change the way
cloud-based systems are built and managed, which in-
cludes enabling dynamic and adaptive system changes,
reducing human errors, and supporting more holistic se-
curity control and analysis.

Often, solutions like AWS CloudFormation [4], Open-
Stack Heat [31] or Terraform [53] may be, mistakenly,
viewed as being at the same level of abstraction with AN-
COR. These solutions are primarily focused on building
and managing the infrastructure (cloud resources) by al-
lowing the details of an infrastructure to be captured into
a configuration file. CloudFormation and Heat manage
AWS/OpenStack resources using templates (e.g., Word-
press template [33], MySQL template [32], etc.), and
they do not separate user requirements from system im-
plementation details. The templates have the potential to
integrate well with configuration management tools but
there is no model of the structure and dependencies of
the system. Thus, it cannot achieve one main objective
of ANCOR which is to use the operations model to main-
tain the system, e.g., updating dependencies automati-
cally while replacing instances. Terraform similarly uses
configuration files to describe the infrastructure setup,
but it goes even further by being cloud-agnostic and by
enabling multiple providers and services to be combined
and composed [54].

Juju [41] is a system for managing services and works
at a similar level as ANCOR. It resides above the CMT
technologies and has a way of capturing the dependen-
cies between software applications (services). It can also
interact with a wide choice of cloud services or bare
metal servers. The Juju client works on multiple oper-
ating systems (Ubuntu, OS X, and Windows) but Juju-
managed services run primarily on Ubuntu servers, al-
though support for CentOS and a number of Windows-
based systems will be available in the near future [42].
While we were aware of the existence of Juju at the time
of this paper’s writing, the lack of formal documentation
on how Juju actually works, the services running only on
Ubuntu, and the major changes in the Juju project (e.g.,
code base was completely rewritten in Go) kept us away

from this project. We recently reevaluated Juju and dis-
covered fundamental similarities between ANCOR and
Juju. Even so, there are subtle differences that make the
two approaches work better in different environments.
For instance, the ANCOR approach adopts a more “cen-
tralized” management scheme in terms of deciding the
configuration parameters of dependent services, while
Juju adopts a negotiation scheme between dependent ser-
vices (called relations in Juju) to reach a consistent con-
figuration state across those services. Depending on the
need for change in the system, the ANCOR approach
may be more advantageous when it comes to a highly
dynamic system with proactive changing (e.g., in a mov-
ing target defense system).

Our approach has benefited from the recent develop-
ment in the CMT technologies that have provided the
building blocks (or “instruction sets”) for our compiler.
The general good practice in defining reusable configu-
ration modules such as those advocated by Dunn [11] is
aligned very well with the way we structure the require-
ment model. Thus our approach can be easily integrated
with those CMT technologies.

Sapuntzakis et al. [37] proposed the configuration lan-
guage CVL and the Collective system to support the cre-
ation, publication, execution, and update of virtual appli-
ances. CVL allows for defining a network with multi-
ple appliances and passing configuration parameters to
each appliance instance through key-value pairs. The
decade since the paper was published has seen dramatic
improvement in configuration management tools such
as Puppet [20] and Chef [34], which has taken care of
specifying/managing the configuration of individual ma-
chines. Our work leverages these mature CMTs and uses
an abstraction on a higher level. In particular, ARML
specifies the dependency among roles through explicit
“import” and “export” statements with the channel pa-
rameters, which are translated automatically to concrete
protocol and port numbers by the integration of oper-
ations model and the CMT. While CVL does specify
dependency among appliances through the “provides”
and “requires” variables, they are string identifiers and
not tied to configuration variables of the relevant ap-
pliances (e.g., the “DNS host” configuration parameter
of an LDAP server). In the CVL specification of the
virtual appliance network, the programmer would need
to take care in passing the correct configuration param-
eters (consistent with the dependency) to the relevant
appliances. In ANCOR this is done automatically by
the coordination between the CMT and the operations
model (compiled from the high-level ARML specifica-
tion). This also allows for easy adaptation of the system
(e.g., cluster expansion and contraction).

Begnum [6] proposed MLN (Manage Large Net-
works) that uses a light-weight language to describe a
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Offering Focus Platform Multiple Cloud
Infrastructures CMTs or other similar structures

OpenShift Private PaaS RHEL Yes None
Flynn Private PaaS Linux Yes Heroku Buildpacks, Docker
Deis Private PaaS Linux Yes Heroku Buildpacks, Chef, Docker

OpsWorks AWS General Ubuntu No Chef
Maestro Single-host Linux Yes Docker (based on LXC)

Maestro-NG General Linux Yes Docker (based on LXC)
Google AppEngine PaaS Linux No None

Heroku PaaS Linux No Heroku Buildpacks
Windows Azure PaaS Windows No None

Ubuntu Juju General Ubuntu, CentOS, Windows Yes Charms
ANCOR General Any Yes Puppet

Table 8: Current Solutions Comparison

virtual machine network. Like ANCOR, MLN uses off-
the-shelf configuration management solutions instead of
reinventing the wheel. A major difference between AN-
COR and MLN is that ANCOR captures the instance de-
pendency in the requirement model, which facilitates au-
tomating configuration of a complete IT system and its
dynamic adaptation. ANCOR achieves this by compiling
the abstract specification to the operations model, which
is integrated with the CMT used to deploy/manage the
instances.

Plush [2] is an application management infrastructure
that provides a set of abstractions for specifying, deploy-
ing, and monitoring distributed applications (e.g., peer-
to-peer services, web search engines, social sites, etc.).
While Plush’s architecture is flexible, it is not targeted
towards cloud-based enterprise systems and it is unclear
whether system dependencies can be specified and main-
tained throughout the system lifecycle.

Narain pioneered the idea of using high-level specifi-
cations for network infrastructure configuration manage-
ment in the ConfigAssure [27, 28] project. ConfigAs-
sure takes formally specified network configuration con-
straints and automatically finds acceptable concrete con-
figuration parameter values using a Boolean satisfiability
(SAT) solver. While we adopt Narain’s philosophy of us-
ing formal models to facilitate system management, the
cloud problem domain is different from that of network
infrastructure, thus requiring new models and method-
ologies.

Use of higher-level abstractions to improve system
management has also been investigated in the context of
Software-Defined Networking (SDN). Monsanto et al.
introduced abstractions for building applications from in-
dependent modules that jointly manage network traffic
[25]. Their Pyretic language and system supports speci-
fication of abstract network policies, policy composition,
and execution on abstract network topologies. Our AN-
COR language and system adopts a similar philosophy
for cloud-based deployment and management.

7 Conclusion
Separating user requirements from the implementation
details has the potential of changing the way IT sys-
tems are deployed and managed in the cloud. To capture
user requirements, we developed a high-level abstraction
called the requirement model for defining cloud-based
IT systems. Once users define their desired system in
the specification, it is automatically compiled into a con-
crete cloud-based system that meets the specified user
requirements. We demonstrate the practicality of this ap-
proach in the ANCOR framework. Preliminary bench-
marking results show that ANCOR can improve man-
ageability and maintainability of a cloud-based system
and enable dynamic configuration changes of a deployed
system with negligible performance overhead.
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A Appendix
The abstract syntax of ARML is shown in Figure 13. We
use A ⇒ B to represent the key-value pairs (written as
“A : B.” in YAML). Upper-case identifiers represent non-
terminal symbols, lower-case identifiers represent termi-
nal symbols, and ARML keywords are distinguished by
bold font.

Figure 14 shows the complete entity-relation diagram
for the operations model. The arrows indicate the di-
rection of references in the implementation (one-way or
two-way references) and the associated multiplicity (1-
to-1, 1-to-n, or n-to-n ). For instance, one role may sup-
port multiple goals, and multiple roles could support one
goal. Thus the multiplicity between goal and role is n-to-
n.
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ReqModel ::= goals ⇒ GoalSpec+

roles ⇒ RoleSpec+

GoalSpec ::= goalID ⇒
[name ⇒ string]
roles ⇒ roleID+

RoleSpec ::= roleID ⇒
[name ⇒ string]
[min ⇒ integer]
[exports ⇒ ChannelSpec+]
[imports ⇒ ImportSpec+]
implementations ⇒ ImplementationSpec+

ChannelSpec ::= chanelID ⇒
(type ⇒ channelTypeID, ChannelAttr∗)

ChannelAttr ::= attributeID ⇒ value

ImportSpec ::= roleID ⇒ channelID+

ImplementationSpec ::= implementationID ⇒ value

goalID, roleID, channelID, attributeID, channelTypeID, strategyID,
implementationID, clusterID, tag are symbols. integer and string are
defined in the usual way.

Figure 13: ARML Grammar

The system model is a local reflection of the cloud-
based IT system and, as previously mentioned, it is used
for bookkeeping. This enables the user to track instances
in terms of roles. Furthermore, the system model bridges
the gap between the more abstract requirement model
and the many different concrete systems that can imple-
ment it. The requirement model is considered read-only
by the rest of the framework. On the other hand, the sys-
tem model can be updated by every component in the
framework.

An instance is a virtual machine that is assigned to
play a role. A role can be played by more than one in-
stance but an instance currently can play only one role.
A role can have one or more ways of being implemented.
This aspect is captured in RoleImplementation. RoleIm-
plementation is equivalent to Scenario in the current pro-
totype code. A NIC stores the MAC address(es) that be-
long to an instance and a Network stores the network(s)
that an instance is connected to. Moreover, an instance
has access to the ports that a role consumes or exposes
(channels) through ChannelSelection. A Channel can be
a single port or a range of ports. The cloud provider fire-
wall configuration (known as “security groups” in Open-
Stack) is captured in SecurityGroup. One SecurityGroup
can have multiple configuration entries, SecurityRules.
ProviderEndpoint captures the cloud platform specific
API. This component makes it easier to integrate AN-
COR with different cloud providers.

Figure 14: Operations Model
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Abstract. The research literature on passwords is rich
but little of it directly aids those charged with securing
web-facing services or setting policies. With a view to
improving this situation we examine questions of im-
plementation choices, policy and administration using a
combination of literature survey and first-principles rea-
soning to identify what works, what does not work, and
what remains unknown. Some of our results are surpris-
ing. We find that offline attacks, the justification for great
demands of user effort, occur in much more limited cir-
cumstances than is generally believed (and in only a mi-
nority of recently-reported breaches). We find that an
enormous gap exists between the effort needed to with-
stand online and offline attacks, with probable safety
occurring when a password can survive 106 and 1014

guesses respectively. In this gap, eight orders of mag-
nitude wide, there is little return on user effort: exceed-
ing the online threshold but falling short of the offline
one represents wasted effort. We find that guessing re-
sistance above the online threshold is also wasted at sites
that store passwords in plaintext or reversibly encrypted:
there is no attack scenario where the extra effort protects
the account.

1 Introduction

Despite the ubiquity of password-protected web sites, re-
search guidance on the subject of running them is slight.
Much of the password literature has become specialized,
fragmented, or theoretical, and in places confusing and
contradictory. Those who administer and set policies can
hardly be blamed for being unenthusiastic about publi-
cations which document constantly improving attacks on
password sites but are largely silent on the question of
how they can be defended. Disappointingly little of the
accumulating volume of password research directly ad-
dresses key everyday issues—what to do to protect web-

∗Proceedings of USENIX LISA’14, Nov. 9-14, 2014, Seattle, WA.

services, given the realities of finite-resources, imperfect
understanding of the threats, and considerable pushback
from users.

Do password composition policies work? Does forced
password expiration improve security? Do lockouts help
protect a service? What do password meters accomplish?
The most comprehensive document on these and other
questions dates to 1985 [13]. The problem is not that no
recent guidance is available; OWASP offers several doc-
uments [39, 45, 56]; blogs, trade magazines and industry
analyst reports are full of tips, best practices and opin-
ions. Discussions in online fora reliably generate pas-
sionate arguments, if little progress. However, much of
the available guidance lacks supporting evidence.

We seek to establish what is supported by clear ev-
idence and solid justification. Using a combination of
literature survey and ground-up, first-principles reason-
ing, we identify what is known to work, what is known
not to work, and what remains unknown. The end goal
is a more useful view of what is known about the imple-
mentation, effectiveness, and impacts of choices made
in deploying password-related mechanisms for access
to services over the web. The target audience is those
interested in the intersection of research literature, and
the operation, administration and setting of policies for
password-protected web-sites.

On the positive side, considerable progress in the last
few years has followed from analysis of leaked plaintext
datasets. This has provided new evidence challenging
many long-held beliefs. Most current password practices
reflect historical origins [18]. Some have evolved over
time; others should have, but have not. Environments of
use, platforms, and user bases have changed immensely.
We summarize the literature useful to answer practical
questions on the efficacy of policies governing password
composition, expiration and account locking.

Some of our findings are surprising. Experts now
recognize that traditional measures of strength bear lit-
tle relation to how passwords withstand guessing, and

1
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can no longer be considered useful; current password
policies have not reflected this. We characterize cir-
cumstances allowing advanced offline guessing attacks
to occur, and find them more limited than is generally
realized. We identify an enormous gap between the
guessing-resistance needed to withstand online and of-
fline attacks, and note that it is growing. We high-
light that strength above that needed to withstand online
guessing is effectively wasted at sites that store pass-
words in plaintext or reversibly encrypted: there is no
attack scenario where the extra strength protects the ac-
count from an intelligent adversary.

To dispense with a preliminary question: despite long-
known shortcomings in both security and usability, pass-
words are highly unlikely to disappear. The many rea-
sons include the difficulty of finding something bet-
ter, user familiarity as an authentication front-end (pass-
words will likely persist as one factor within multi-
dimensional frameworks), and the inertia of ubiquitous
deployment [9, 30]. Thus the challenges of administer-
ing passwords will not fade quietly either, to the disap-
pointment of those hoping that a replacement technology
will remove the need to address hard issues.

2 Classifying accounts into categories

A common tactic to allegedly improve the security of
password-protected sites is to ask users to expend more
effort—choose “stronger” passwords, don’t re-use pass-
words across sites, deploy and administer anti-malware
tools, ensure all software on user devices is patched up-
to-date, and so on.

If we assume that users have a fixed time-effort budget
for “password security” [4], then it is unwise to spend
equally on all accounts: some are far more important
than others, correspondingly implying greater impact
upon account compromise. This motivates determining
how to categorize accounts—a subject of surprisingly lit-
tle focus in the literature. Different categories call for
different levels of (password and other) security. Those
who decide and administer policies should be aware of
what category not only they see their site falling into, but
what categories subsets of their users would see it falling
into. Note also that some password-protected sites pro-
vide no direct security benefit to end-users, e.g., services
used to collect data, or which compel email-address user-
names to later contact users for marketing-related pur-
poses. Thus views on account and password importance
may differ between users and systems administrators or
site operators (e.g., see [10]).1

Criteria for categorizing accounts: A first attempt to

1Realistic systems administrators might self-categorize their site,
asking: Do users see me as a “bugmenot.com” site? (cf. Table 1)

categorize password-based accounts might be based on
communication technology—e.g., grouping email pass-
words as one category. We find this unsuitable to our
goals, as some email accounts are throw-aways from a
“consequences” point of view, while others are critically
important. Accounts may be categorized in many ways,
based on different criteria. Our categorization (below) is
based largely on potential consequences of account com-
promise, which we expect to be important characteristics
in any such categorization:

• (personal) time loss/inconvenience

• (personal) privacy

• (personal) physical security

• (personal/business) financial implications

• (personal/business) reputational damage

• (personal/business) legal implications

• confidentiality of third-party data

• damage to resources (physical or electronic)

The above time loss/inconvenience may result from loss
of invested effort or accumulated information, such as
contact lists in email or social networking accounts. One
lens to view this through is to ask: Would a user invest 10
minutes in trying to recover a lost account, or simply cre-
ate a new such account from scratch? Another account-
differentiating question is: Do users make any effort at
all to remember the account password? Note also that
the consequences of compromise of an account X may
extend to accounts Y and Z (e.g., due to password re-
use, email-based password recovery for other accounts,
accounts used as single-sign-on gateways).

For use in what follows, and of independent interest,
we categorize accounts as follows:

• don’t-care accounts (unlocked doors).

• low-consequence accounts (latched garden doors).

• medium-consequence accounts.

• high-consequence accounts (essential/critical).

• ultra-sensitive accounts (beyond passwords).

Details and examples of these categories are given in Ta-
ble 1; we say little more in this paper about the book-
end categories in this spectrum: don’t-care accounts are
suitably named, and ultra-sensitive accounts are beyond
scope. Within this paper, that leaves us to explore what
password policies, user advice, implementation details,
and security levels are suitable for accounts in three main

2
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Category of account Description Comments
0: Don’t-care Accounts whose compromise has

no impact on users. A compromise
of the account at any time would
not bother users. Often one-use
accounts with trivially weak pass-
words, or recreated from scratch
if needed subsequently. Perhaps
the site compels passwords, despite
user not seeing any value therein.

The security community and users should recognize that for such
accounts, there would be no technical objection to using password
password, knowing that it provides no security. Such accounts should
be isolated from other categories to avoid cross-contamination, e.g.,
due to password re-use. Users should minimize security-related invest-
ments of time and effort—resources are better spent elsewhere. Possible
strategies: re-using a single weak password for all such accounts, using
distinct passwords written down on one sheet for easy access, and using
publicly shared passwords (see: bugmenot.com).

Generic examples: One-time email accounts (e.g., used for one-off signup, then abandoned). Nuisance
accounts for access to “free” news articles or other content.

1: Low-consequence Accounts whose compromise has
non-severe implications (minimal
or easily repaired). Often infre-
quently used accounts, relatively
low-impact if compromised.

Administrators and operators should be realistic in expectations of user
commitment to such accounts. Some users may rely almost entirely
on a password recovery feature, vs. remembering such account pass-
words. Users should recognize the place of these between Don’t-care
and Medium-consequence accounts.

Generic examples: Social network accounts (infrequent users). Discussion group accounts (infrequent
users). Online newspapers, streaming media accounts (credit card details not stored onsite).

2: Medium-consequence Non-trivial consequences but lim-
ited, e.g., loss of little-used reputa-
tion account, or credit card details
stored at online U.S. merchant (di-
rect financial losses limited to $50).

User losses are more in time and effort, than large financial loss or con-
fidentiality breached by document or data loss. User effort directed
towards resisting online guessing attacks is well-spent. Unclear if the
same holds true re: resisting determined offline guessing attacks. Note:
many attack vectors are beyond user control (e.g., browser-based flaws,
server compromises).

Generic examples: Email accounts (secondary). Online shopping sites (credit card details stored onsite).
Social network accounts (casual users). Voice or text communication services accounts (e.g., Skype, MSN).
Charge-up sites for stored value cards (credit card details stored onsite). Human resources sites giving
employees semi-public information.

3: High-consequence Critical or essential accounts re-
lated to primary employment, fi-
nance, or documents requiring high
confidentiality. Compromises are
not easily repaired or have major
consequences/side effects.

Most important password discussion, attention and effort of both sysad-
mins and users should focus here. Often password protection for such
accounts is best augmented by second-factor mechanisms (involving ex-
plicit user action) or other dimensions (invisible to user). Stakeholder
priorities may differ: an account viewed lower consequence by a user
may be categorized essential by their employer (e.g., remote access to a
corporate database via a password).

Generic examples: Email accounts (primary, professional, recovery of other accounts). Major social net-
work/reputational accounts (heavy users and celebrities). Online banking and financial accounts. SSH
and VPN passwords for access to corporate networks. Access to corporate databases, including employee
personal details.

∞: Ultra-sensitive Account compromise may cause
major, life-altering, irreversible
damage. (Many individual users
will have no such accounts.)

It is entirely unsuitable to rely on passwords alone for securing such
accounts Passwords if used should be augmented by (possibly multi-
ple) additional mechanisms. The passwords themselves should not be
expected to be tangibly different from those for high-consequence ac-
counts (one might argue that weaker passwords suffice, given stronger
supplementary authentication mechanisms).

Generic examples: Multi-million dollar irreversible banking transactions. Authorization to launch military
weapons. Encryption of nation-state secrets.

Table 1: Categories of password-protected accounts, comments and examples. Accounts in the same category ideally
have passwords of similar strength relative to guessing attacks. Ultra-sensitive accounts require that passwords be
augmented by much more robust mechanisms.

3
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categories of interest: low-consequence, medium conse-
quence, and high-consequence accounts.2

Use of single term “password” over-loaded? Our
discussion of categories highlights that using the unqual-
ified term password for protection that runs the gamut
from don’t-care to high-consequence sites may mislead
users. We should not be quick to express outrage on
learning that password1 and 123456 are common
on publicly-disclosed password lists from compromised
sites, if these are don’t-care accounts in users’ eyes. Nor
should it be surprising to find passwords stored cleartext
on fantasy football sites. The use of the same term pass-
word across all account categories, together with a jum-
ble of unscoped password advice to users, and an absence
of discussion of different categories of accounts (and cor-
responding password requirements), likely contributes to
lower overall security, including through cross-category
re-use of passwords. We believe finer-grained terminol-
ogy would better serve users here.

3 Guessing attacks and password storage

The enormous effort that has been spent on password
strength and guessing-attacks might lead us to believe
that the questions there are largely settled and things are
well-understood. Unfortunately, we find that this is not
the case. For a number of reasons, realistic studies of
password behaviors are hard to conduct [21].

Until recently, published knowledge on in-the-wild
password habits [7, 10, 57] was derived from a few
small-scale sets of plaintext passwords [38], or stud-
ies without access to plaintext passwords [22]. Re-
cent large-scale breaches have provided significant col-
lections of plaintext passwords, allowing study of ac-
tual user choices. Tellingly, they reveal that many time-
honored assumptions are false. Password “strength”
measures both long-used by academics and deeply em-
bedded in criteria used by IT security auditors, are now
known to correlate poorly with guessing resistance; poli-
cies currently enforced push users toward predictable
strategies rather than randomness—e.g., evidence, as dis-
cussed below, shows password aging (forced expiration)
achieves very little of its hoped-for improvement [63].

Here we explore what is known on measuring pass-
word strength, fundamentals of storing passwords, and
suitable target thresholds for how many guesses a pass-
word should withstand.

Leaked datasets. Table 2 lists several recent leaks
from prominent web-sites. These datasets reveal much
about user password habits. The ethics of doing analysis

2An alternate account categorization by Grosse and Upadhyay [28],
based on value, has categories: throw-away, routine, spokesperson,
sensitive and very-high-value transactions.

on what is, in effect, stolen property generated some dis-
cussion when the Rockyou dataset became available in
2009. While none of the 32 million users gave permis-
sion for their passwords to be used, rough consensus now
appears to be that use of these datasets imposes little or
no additional harm, and their use to improve password
security is acceptable; the datasets are also of course
available to attackers.

Note that among Table 2 incidents, passwords were
stored “properly” (see Section 3.4) salted and hashed in
just two cases—Evernote and Gawker. Rockyou, Tianya
and Cupid Media stored plaintext passwords; LinkedIn
and eHarmony stored them hashed but unsalted; Adobe
stored them reversibly encrypted. Section 3.2 and Fig-
ure 1 explain why offline guessing attacks (beyond rain-
bow table lookups) are a relevant threat only when the
password file is properly salted and hashed.

3.1 Password strength: ideal vs. actual

Security analysis and evaluation would be much simpler
if users chose passwords as random collections of char-
acters. For example, if passwords were constrained to
be L characters long, and drawn from an alphabet of C
characters, then each of CL passwords would be equally
likely. An attacker would have no better strategy than
to guess at random and would have probability C−L of
being correct on each guess. Even with relatively mod-
est choices for L and C we can reduce the probability
of success (per password guess) to 10−16 or so—putting
it beyond reach of a year’s worth of effort at 10 million
guess verifications per second.

Unfortunately, the reality is nowhere close to this.
Datasets such as the 32 million plaintext Rockyou pass-
words [64] have revealed that user behavior still forms
obvious clusters three decades after attention was first
drawn to the problem [38]. Left to themselves users
choose common words (e.g., password, monkey,
princess), proper nouns (e.g., julie, snoopy),
and predictable sequences (e.g., abcdefg, asdfgh,
123456; the latter by about 1% of Rockyou accounts).

This has greatly complicated the task of estimating
passwords’ resistance to guessing. Simple estimation
techniques work well for the ideal case of random collec-
tions of characters, but are completely unsuited for user-
chosen passwords. For example, a misguided approach
models the “entropy” of the password as log2 C

L =
L · log2 C where L is the length, and C is the size
of the alphabet from which the characters are drawn
(e.g., lowercase only would have C = 26, lowercase
and digits would have C = 36, lower-, uppercase and
digits would have C = 62 etc). The problems with
this approach becomes obvious when we factor in user
behavior: P@ssw0rd occurs 218 times in the Rock-
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Site Year # Accounts Hashed Salted
Reversibly
Encrypted

Offline guessing attack
beyond rainbow tables
needed and possible

Rockyou [64] 2009 32m N
Gawker 2010 1.3m � � Y
Tianya 2011 35m N
eHarmony 2012 1.5m � N
LinkedIn 2012 6.5m � N
Evernote 2013 50m � � Y
Adobe 2013 150m � N
Cupid Media 2013 42m N

Table 2: Recent incidents of leaked password data files. For only two listed incidents (Evernote and Gawker) would an offline guessing attack
be the simplest plausible way to exploit the leak. For each other incident, passwords were stored in such a way that either an easier attack would
suffice, or offline guessing was impossible, as explained in Figure 1.

you dataset but has a score of 52.6 under this measure,
while gunpyo occurs only once and has score 28.2.
Thus, a password that is far more common (thus more
likely to be guessed) scores much higher than one that is
unique—the opposite of what a useful metric would de-
liver. These are by no means exceptions; a test of how
passwords hold up to guessing attacks using the John-
theRipper cracking tool [44] shows that L · log2 C corre-
lates very poorly with guessing resistance [32, 60]. Sim-
ilarly for NIST’s crude entropy approximation [13, 60]:
many “high-entropy” passwords by its measure turn out
to be easily guessed, and many scoring lower withstand
attack quite well. Such naive measures dangerously and
unreliably estimate how well passwords can resist attack.

The failure of traditional measures to predict guess-
ability has led researchers to alternatives aiming to more
closely reflect how well passwords withstand attack. One
approach uses a cracking tool to estimate the number of
guesses a password will survive. Tools widely used for
this purpose include JohntheRipper [44], Hashcat, and
its GPU-accelerated sister oclHashcat [42]; others are
based on context-free grammars [60, 61]. These tools
combine “dictionaries” with mangling rules intended to
mimic common user strategies: replacing ‘s’ with ‘$’,
‘a’ with ‘@’, assume a capital first letter and trailing digit
where policy forces uppercase and digits, etc. Thus sim-
ple choices like P@ssw0rd are guessed very quickly.

Another approach models an optimal attacker with
access to the actual password distribution χ (e.g., the
Rockyou dataset), making guesses in likelihood order.
This motivates partial guessing metrics [6] addressing
the question: how much work must an optimal attacker
do to break a fraction α of user accounts?

Bonneau’s α-guesswork gives the expected number
of guesses per-account to achieve a success rate of α
[7]. Optimal guessing gives dramatic improvements in
skewed distributions arising from user-chosen secrets,
but none in uniform distributions. For example, for
the distribution UL6 of random (equi-probable) length-
6 lowercase passwords, all can be found in 266 ≈ 309

million guesses per account, and 10% in 30.9 million
guesses. In contrast, guessing in optimal order on the
Rockyou distribution of 32 million passwords, an aver-
age of only 7, 131 guesses per account breaks 10% of ac-
counts. Thus, successfully guessing 10% of the Rockyou
accounts is a factor of 30, 900, 000/7131 ≈ 4300 easier
than for a length-6 lowercase random distribution (even
though the latter is weaker using the L · log2 C measure).

Thus, oversimplified “entropy-based” measures
should not be relied upon to draw conclusions about
guessing resistance; rather, their use should be strongly
discouraged. The terms password strength and complex-
ity are also confusing, encouraging optimization of such
inappropriate metrics, or inclusion of certain character
classes whether or not they help a password withstand
attack. We will use instead the term guessing resistance
for the attribute that we seek in a password.

3.2 Online and offline guessing
Determining how well a password withstands attack re-
quires some bound on how many guesses the attacker can
make and some estimate of the order in which he makes
them. The most conservative assumption on guessing or-
der is that the attacker knows the actual password dis-
tribution (see α-guesswork above); another approach as-
sumes that he proceeds in the order dictated by an ef-
ficient cracker (see also above). We now review how
the number of guesses an attacker can make depends on
both: (a) the point at which he attacks; and (b) server-
side details of how passwords are stored.

The main points to attack a password are: on the
client, in the network, at a web-server’s public-facing
part, and at the server backend. Attacks at the client
(e.g., malware, phishing) or in the network (e.g., sniff-
ing) do not generally involve guessing—the password is
simply stolen; guess-resistance is irrelevant. Attacks in-
volving guessing are thus at the server’s public-face and
backend.

Attacks on the server’s public-face (generally called
online attacks) are hard to avoid for a public site—by
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design the server responds to authentication requests,
checking (username, password) pairs, granting access
when they match. An attacker guesses credential pairs
and lets the server to do the checking. Anyone with a
browser can mount basic online guessing attacks on the
publicly facing server—but of course the process is usu-
ally automated using scripts and guessing dictionaries.

Attacks on the backend are harder. Recommended
practice has backends store not passwords but their salted
hashes; recalculating these from user-entered passwords,
the backend avoids storing plaintext passwords. (Sec-
tions 3.4 and 3.5 discuss password storage details.)

For an offline attack to improve an attacker’s lot over
guessing online, three conditions must hold.

i) He must gain access to the system (or a backup) to
get to the stored password file. Since the backend is
designed to respond only one-at-a-time to requests
from the public-facing server, this requires evading
all backend defences. An attacker able to do this,
and export the file of salted-hashes, can test guesses
at the rate his hardware supports.

ii) He must go undetected in gaining password file ac-
cess: if breach detection is timely, then in well-
designed systems the administrator should be able
to force system-wide password resets, greatly lim-
iting attacker time to guess against the file. (Note:
ability to quickly reset passwords requires nontriv-
ial planning and resources which are beyond scope
to discuss.)

iii) The file must be properly both salted and hashed.
Otherwise, an offline attack is either not the best at-
tack, or is not possible (as we explain next).

If the password file is accessed, and the access goes un-
detected, then four main possibilities exist in common
practice (see Figure 1):

1) the file is plaintext. In this case, offline guessing
is clearly unnecessary: the attacker simply reads all
passwords, with nothing to guess [64].

2) the file is hashed but unsalted. Here the passwords
cannot be directly read, but rainbow tables (see be-
low) allow fast hash reversal for passwords within a
fixed set for which a one-time pre-computation was
done. For example, 90% of LinkedIn’s (hashed but
unsalted) passwords were guessed in six days [26].

3) the file is both salted and hashed. Here an offline at-
tack is both possible and necessary. For each guess
against a user account the attacker must compute the
salted hash and compare to the stored value. The
fate of each password now depends on how many
guesses it will withstand.

Position Password
Per-guess

success probability
100 123456 9.1× 10−3

101 abc123 5.2× 10−4

102 princesa 1.9× 10−4

103 cassandra 4.2× 10−5

104 sandara 5.3× 10−6

105 yahoo.co 7.2× 10−7

106 musica17 9.4× 10−8

107 tilynn06 3.1× 10−8

Table 3: Passwords from the Rockyou dataset in position 10m

for m = 0, 1, 2, · · · , 7. Observe that an online attacker who guesses
in optimal order sees his per-guess success rate fall by five orders of
magnitude if he persists to 106 guesses.

4) the file has been reversibly encrypted. This case has
two paths: the attacker either gets the decryption
key (Case 4A), or he does not (Case 4B).

In Case 4A, offline attack is again unneeded: decryp-
tion provides all passwords. In Case 4B, there is no ef-
fective offline attack: even if the password is 123456,
the attacker has no way of verifying this from the en-
crypted file without the key (we assume that encryption
uses a suitable algorithm, randomly chosen key of suffi-
cient length, and standard cryptographic techniques, e.g.,
initialization, modes of operation, or random padding, to
ensure different instances of the same plaintext password
do not produce identical ciphertext [36]). Even having
stolen the password file and exported it without detec-
tion, the attacker’s best option remains online guessing at
the public-facing server; properly encrypted data should
not be reversible, even for underlying plaintext (pass-
words here) that is far from random.

In summary, Figure 1 shows that offline guessing is a
primary concern only in the narrow circumstance when
all of the following apply: a leak occurs, goes unde-
tected,3 and the passwords are suitably hashed and salted
(cf. [8, 64]). In all other common cases, offline attack is
either impossible (guessing at the public-facing server is
better) or unneeded (the attacker gets passwords directly,
with no guessing needed).

Revisiting Table 2 in light of this breakdown, note that
of the breaches listed, Evernote and Gawker were the
only examples where an offline guessing attack was nec-
essary; in all other cases a simpler attack sufficed, and
thus guessing resistance (above that necessary to resist
online attack) was largely irrelevant due to how pass-
words were stored.

Rainbow tables. To understand the importance of
salting as well as hashing stored passwords, consider
the attacker wishing to reverse a given hashed pass-
word. Starting with a list (dictionary) of N candidate
passwords, pre-computing the hash of each, and stor-

3Or similarly, password reset capability is absent or unexercised.
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Does not leak Does leak

Password file

Leak undetected Leak detected

Plaintext
Reversibly 
encrypted

Salted,
hashed

Unsalted,
hashed

Decryption key
doesn’t leak

Decryption
key leaks

No offline attack

Offline attack
not possible

Offline attack unneeded
(plaintext available)

Offline attack ineffective
(if system resets passwords)

Rainbow table
lookup (gets most)

Offline guessing
attack

Offline attack unneeded
(plaintext available)

Figure 1: Decision tree for guessing-related threats in common practice based on password file details. Offline guessing is a threat when the
password file leaks, that fact goes undetected, and the passwords have been properly salted and hashed. In other cases, offline guessing is either
unnecessary, not possible, or addressable by resetting system passwords. Absent a hardware security module (HSM), we expect that the “Decryption
key doesn’t leak” branch is rarely populated; failure to prevent theft of a password file gives little confidence in ability to protect the decryption key.

Length Character set Full cardinality
12 lower 2612 = 256.4

10 lower, upper 5210 = 257.0

9 any 959 = 259.1

10 lower, upper, digit 6210 = 259.5

Table 4: Number of elements targeted by various rainbow tables.

ing each pair sorted by hash, allows per-instance rever-
sal by simple table lookup after one-time order-N pre-
computation—and order-N storage. To reduce storage,
rainbow tables [43] use a series of functions to pre-
compute repeatable sequences of password hashes called
chains, storing only each chain’s first and last plaintext.
Per-instance computation later identifies hashes from the
original fixed password list to a chain, allowing reversal
in greater, but still reasonable, time than had all hashes
been stored. Numerous rainbow table implementations
and services are available.4 For rainbow tables target-
ing selected passwords compositions, Table 4 lists as ref-
erence points the targeted number of passwords, which
give a lower bound on pre-computation time (resolving
expected “collisions” increases computation time).

Modifications [40] may allow tables for any efficiently
enumerable password space, e.g., based on regular ex-

4For example, see http://project-rainbowcrack.com
or sourceforge.net/projects/ophcrack among others.

pressions for defined patterns of lower, upper, digits and
special characters; this would extend attacks from (naive)
brute-force spaces to “smart dictionaries” of similar size
but containing higher-likelihood user passwords. We em-
phasize that offline attacks using pre-computations over
fixed dictionaries, including rainbow tables, are defeated
by proper salting, and require leaked password hashes.

3.3 How many guesses must a password
withstand?

Recall that the online attacker’s guesses are checked by
the backend server, while an offline attacker tests guesses
on hardware that he controls. This constrains online at-
tacks to far fewer guesses than is possible offline.

Online guessing (breadth-first). Consider the on-
line attacker. For concreteness, assume a guessing cam-
paign over a four-month period, sending a guess every
1s at a sustained rate, yielding about 107 guesses; we
use this as a very loose upper bound on the number of
online guesses any password might have to withstand.
An attacker sending guesses at this rate against all ac-
counts (a breadth-first attack) would likely simply over-
whelm servers: e.g., it is unlikely that Facebook’s servers
could handle simultaneous authentication requests from
all users. (In practice, but a tiny fraction authenticate
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in any 1s period.) Second, if we assume that the aver-
age user attempts authentication k times/day and fails
5% of the time (due to typos, cached credentials after
a password change, etc.) then a single attacker sending
one guess per-account per-second would send 86, 000/k
times more traffic and 1.73×107/k more fail events than
the entire legitimate user population combined. Even if
k = 100 (e.g., automated clients re-authenticating every
15 minutes) our single attacker would be sending a fac-
tor of 860 more requests and 1.73 × 105 more fails than
the whole legitimate population. Malicious traffic at this
volume against any server is hard to hide. A more re-
alistic average of k = 1 makes the imbalance between
malicious and benign traffic even more extreme. Thus
107 guesses per account seems entirely infeasible in a
breadth-first online guessing campaign; 104 is more re-
alistic.

Online guessing (depth-first). What about depth-first
guessing—is 107 guesses against a single targeted ac-
count feasible? First, note that most individual accounts
are not worthy of targeted effort. Using the Section 2 cat-
egories, low- and medium-consequence sites may have
very few such accounts, while at high-consequence sites
a majority might be worthy. Second, 107 guesses would
imply neither a lockout policy (see Section 4.4) nor any-
thing limiting the rate at which the server accepts login
requests for an account. Third, as evident from Table 3
which tabulates the passwords in position 10m from the
Rockyou distribution for m = 0, 1, 2, · · · , 7, an online
attacker making guesses in optimal order and persist-
ing to 106 guesses will experience five orders of mag-
nitude reduction from his initial success rate. Finally,
IP address blacklisting strategies may make sending 107

guesses to a single account infeasible (albeit public IP
addresses fronting large numbers of client devices com-
plicate this). Thus, the assumptions that would allow 107

online guesses against a single account are extreme—
effectively requiring an absence of defensive effort. 106

seems a more realistic upper bound on how many online
guesses a password must withstand in a depth-first attack
(e.g., over 4 months). This view is corroborated by a
2010 study of password policies, which found that Ama-
zon.com, Facebook, and Fidelity Investments (among
many others) allow 6-digit PIN’s for authentication [23].
That these sites allow passwords which will not (in ex-
pectation) survive 106 guesses suggests that passwords
that will survive this many guesses can be protected from
online attacks (possibly aided by backend defenses). Fig-
ure 2 depicts our view: we gauge the online guessing risk
to a password that will withstand only 102 guesses as ex-
treme, one that will withstand 103 guesses as moderate,
and one that will withstand 106 guesses as negligible.
The left curve does not change as hardware improves.

Offline guessing. Now consider the offline attacker:

using hardware under his control, he can test guesses
at a rate far exceeding online attacks. Improvements
in processing power over time make it possible that his
new hardware computes guesses orders of magnitude
faster than, say, 10-year-old authentication servers which
process (online) login attempts. The task is also dis-
tributable, and can be done using a botnet or stolen cloud
computing resources. An attacker might use thousands
of machines each computing hashes thousands of times
faster than a target site’s backend server. Using a GPU
able to compute 10 billion raw hashes/s or more [18, 26],
a 4-month effort yields 1017 guesses; 1,000 such ma-
chines allows 1014 guesses on each of a million accounts,
or 1020 on a single account—all assuming no defensive
iterated hashing, which Section 3.4 explores as a means
to reduce such enormous offline guess numbers.

Given the lack of constraints, it is harder to bound the
number of guesses, but it is safe to say that offline attacks
can test many orders of magnitude more guesses than on-
line attacks. Weir et al. [60] pursue cracking up to 1011

guesses; a series of papers from CMU researchers inves-
tigate as far as 1014 guesses [32, 35]. To be safe from
offline guessing, we must assume a lower bound of at
least 1014, and more as hardware5 and cracking methods
improve. This is illustrated in Figure 2.

Online-offline gap. To summarize, a huge chasm sep-
arates online and offline guessing. Either an attacker
sends guesses to a publicly-facing server (online) or
guesses on hardware he controls (offline)—there is no
continuum of possibilities in between. The number of
guesses that a password must withstand to expect to sur-
vive each attack differs enormously. A threshold of at
most 106 guesses suffices for high probability of surviv-
ing online attacks, whereas at least 1014 seems necessary
for any confidence against a determined, well-resourced
offline attack (though due to the uncertainty about the
attacker’s resources, the offline threshold is harder to es-
timate). These thresholds for probable safety differ by
8 orders of magnitude. The gap increases if the offline
attack brings more distributed machines to bear, and as
offline attacks and hardware improve; it decreases with
hash iteration. Figure 2 conceptualizes the situation and
Table 5 summarizes.

Next, consider the incremental benefit received in im-
proving a password as a function of the number of
guesses it can withstand (10m). Improvement delivers
enormous gain when m ≤ 3: the risk of online attack
is falling sharply in this region, and safety (from online
guessing) can be reached at about m = 6. By the time
m = 6, this effect is gone; the risk of online attack is now
minimal, but further password improvement buys little
protection against offline attacks until m = 14 (where

5Hardware advances can be partially counteracted by increased
hash iteration counts per Section 3.4.
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Figure 2: Conceptualized risk from online and offline guessing as
a function of the number of guesses a password will withstand over a
4-month campaign. In the region from 106 to about 1014, improved
guessing-resistance has little effect on outcome (online or offline).

the probability of offline guessing success starts to de-
cline). Note the large gap or chasm where online guess-
ing is a negligible threat but surviving offline guessing
is still far off. In this gap, incrementally increasing the
number of guesses the password will survive delivers lit-
tle or no security benefit.

For example, consider two passwords which withstand
106 and 1012 guesses respectively. Unless we assume the
offline attacker lacks motivation or resources (and gives
up early), there is no apparent scenario in which the ex-
tra guess-resistance of the second password helps. For
example, a password like tincan24 (which will sur-
vive more than a million guesses derived from the Rock-
you distribution) and one like 7Qr&2M (which lives in a
space that can be exhausted in (26 + 26 + 10 + 30)6 =
926 < 1012 guesses) fare the same: both will survive
online guessing, but neither will survive offline attack.
Equally, a 7-digit and a 13-digit random PIN have simi-
lar security properties for the same reason. If we assume
additional guess-resistance comes at the cost of user ef-
fort [4, 25, 29], then the effort in the second case ap-
pears entirely wasted. In this case, an effort-conserving
approach is to aim to withstand online attacks, but not
put in the extra effort to withstand offline attacks. In
fact there is evidence that many sites abandon the idea
of relying on user effort as the defence against offline at-
tacks; i.e., they appear to make little effort to force users
to reach the higher threshold [23]. Sections 4.1 and 4.2
consider the efficacy of password composition policies
and blacklists.

Frequency of online vs. offline attacks. Authorita-
tive statistics on the relative frequency of online attacks
compared to offline attacks do not exist. However it is
clear that online attacks can be mounted immediately
against public web sites (such attacks are more efficient
when known-valid userids are obtained a priori [24]),
while offline attacks require that the password hashes be

available to the attacker (e.g., leaked file).

3.4 Storage and stretching of passwords

As Section 3.2 stated, storing salted hashes [48] of pass-
words beats most alternatives. In all other common stor-
age options, advanced offline guessing attacks are ei-
ther unnecessary (simpler attacks prevail) or impossible.
Use of site-wide (global) salt defeats generic rainbow ta-
bles; per-account salts (even userid) and iteration counts,
storable with hashes, provide further protection. Unfor-
tunately, for various reasons, hashing is far from univer-
sal (e.g., perhaps 40% of sites do not hash [10]).

Guessing is resource-intensive—an offline attack may
involve billions of guesses per-account, whereas a web-
server verifies login attempts only on-demand as users
seek to log in. Since early UNIX, this has been lever-
aged defensively by hash functions designed to be slow,
by iteration: repeatedly computing the hash of the hash
of the salted password. Such key stretching was formally
studied by Kelsey et al. [33]; we reserve the term key
strengthening for the idea, with related effect, of using a
random suffix salt that verifiers must brute-force. Iterat-
ing 10n times slows offline attack by n orders of magni-
tude; this configurable factor should be engineered to add
negligible delay to users, while greatly increasing an of-
fline attacker’s work. Factors of 4,000–16,000 iterations
already appear in practice. Our estimates for the number
of guesses an offline attacker can send assumed no itera-
tion; hash iteration narrows the online-offline chasm.

Salting also removes one form of “parallel attack”: if
two users have the same password, this will not be appar-
ent and cannot be exploited to simplify attacks (assuming
proper salting and hashing, e.g., salts of sufficient length,
and passwords not truncated before hashing).

Practical instantiations [18] of key stretching (via
so-called adaptive key derivation functions) include
bcrypt [48], supported first in OpenBSD with 128-bit
salt and configurable iteration count to acceptably adjust
delay and server load on given platforms, and allow for
hardware processing advances; the widely used standard
PBKDF2 (part of PKCS #5 v2.0 and RFC 2898); and the
newer scrypt [46] designed to protect against custom-
hardware attacks (e.g., ASIC, FPGA, GPU).

Keyed hashing. Reversible encryption is one of the
worst options for storing passwords if the decryption key
leaks, but is among the best if a site can guarantee that it
never leaks (even if the password file itself does). Justifi-
cation for sites to store passwords reversibly encrypted is
a need to support legacy protocols (see Section 3.5). Ab-
sent such legacy requirements, the best solution is salt-
ing and iterated hashing with a message authentication
code (MAC) [37, 56] stored instead of a hash; password
verification (and testing of guesses) is then impossible
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without crypto key access. The difficulty of managing
keys should not be understated—too often keys stored in
software or a configuration file are found by attackers,
explaining the common use of a one-way hash over re-
versible encryption. However, if the MAC of a salted,
iterated password hash is all that is stored, then even if
the MAC key leaks, security is equal to a salted iterated
hash; and that risk falls away if a hardware security mod-
ule (HSM) is used for MAC generation and verification.

3.5 Availability of passwords at the server
So salted hashes are a preferred means to store pass-
words, and (cf. Figure 1) an attacker who has access to
the password file, and exports it undetected, still faces a
computationally expensive offline attack. A site suffer-
ing this severe, undetected breach fares far better than
one with plaintext or hashed-unsalted passwords, or re-
versibly encrypted passwords and a leaked decryption
key. Nonetheless, many sites use a non-preferred means
of storing passwords, e.g., there is a “Hall of Shame” of
sites6 which mail forgotten passwords back to users and
thus store them either plaintext or reversibly encrypted.
While the practice is inadvisable for high-consequence
sites, as Section 2 notes, one size clearly does not fit all.

In addition to sites which mail-back passwords, recent
breaches clearly signal that storing plaintext passwords
is not uncommon. In Table 2’s list of recent server leaks,
only two used salted hashes. Failure to store passwords
as salted hashes may be due to confusion, failure to un-
derstand the advantages, or a conscious decision or soft-
ware default related to legacy applications or protocols
as we explain next.

RADIUS (Remote Authentication Dial In User Ser-
vice) is a networking protocol widely used to pro-
vide dial-in access to corporate and university net-
works. Early protocols that allowed client machines to
authenticate such as Password Authentication Protocol
(PAP) and Challenge-Handshake Authentication Proto-
col (CHAP) over RADIUS require passwords be avail-
able (to the server) in-the-clear or reversibly encrypted.
Thus, sites that supported such clients must store pass-
words plaintext or reversibly encrypted. Support for pro-
tocols that supercede PAP and CHAP in commodity OS’s
began only circa 2000. Thus, many sites may have had
to support such clients at least until a decade or so later.

Universities provide interesting examples. Recent pa-
pers by groups researching passwords make clear that
several universities were, at least until recently, storing
passwords reversibly encrypted or as unsalted hashes.
Mazurek et al. (CMU) state [35]: “The university was us-
ing a legacy credential management system (since aban-
doned), which, to meet certain functional requirements,

6See http://plaintextoffenders.com.

reversibly encrypted user passwords, rather than using
salted, hashed records.” Fahl et al. (Leibniz University)
state [21]: “The IDM system stored up to five unique
passwords per user using asymmetric cryptography, so it
would be possible to decrypt the passwords to do a se-
curity analysis.” Zhang et al. (UNC) state [63]: “The
dataset we acquired contains 51,141 unsalted MD5 pass-
word hashes from 10,374 defunct ONYENs (used be-
tween 2004 and 2009), with 4 to 15 password hashes per
ONYEN, i.e., the hashes of the passwords chosen for that
ONYEN sequentially in time.”7

Figure 1 makes clear that if the password is to be avail-
able at the backend (i.e., stored plaintext or reversibly
encrypted) then an offline attack is either unnecessary or
impossible. Thus, any resistance to guessing above and
beyond that needed to withstand online attacks is wasted
(in no scenario does the extra guessing resistance protect
the account from competent attackers). Thus sites that
impose restrictive password policies on their users while
storing passwords plaintext or reversibly encrypted are
squandering effort. An example appears to be a docu-
mented CMU policy [35]: passwords had to be greater
than length 8 and include lower, upper, special characters
and digits. This policy appears designed to withstand an
offline guessing attack which (since passwords were re-
versibly encrypted) had no possibility of occurring, and
thus imposes usability cost without security benefit.

We do not know how common it is for sites to
store passwords plaintext or reversibly encrypted. Large
breaches, such as in Table 2, continue to make clear
that plaintext is common among low- and medium-
consequence sites. The data from CMU and Leibniz hint
that far from being rare exceptions, reversible encryp-
tion of passwords may also be quite common. If true,
this would imply that many sites with strict composition
policies are engaged in a large-scale waste of user effort
based on confused thinking about guessing resistance.

3.6 Other means to address offline attacks
Online guessing attacks seem an unavoidable reality for
Internet assets protected by passwords, while offline at-
tacks occur only in a limited set of circumstances. The
guessing resistance needed to withstand these two types
of attacks differs enormously (recall Section 3.3). Sig-
nificant effort has been devoted to getting users to choose
better passwords. If an online attacker can send at most
106 guesses per account, then it is relatively easy (e.g.,
password blacklists) to resist online guessing. Thus, get-
ting users to choose passwords that will withstand over
106 guesses is an effort to withstand offline attacks, not
online.

7An “ONYEN” is a userid (“Only Name You’ll Ever Need”) in the
single-sign-on system studied.
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There are ways to address offline attacks that do not in-
volve persuading users to choose better passwords. Fig-
ure 1 makes clear that if the file doesn’t leak, or the
leak is detected and existing passwords are immediately
disabled, things are very different. Thus alternate ap-
proaches include those that protect the password file, or
allow detection of leaks—neither requiring changes in
user behaviour.

Crescenzco et al. [15] give a method to preclude an
offline attack, even if an attacker gains unrestricted ac-
cess to the backend server. It hinges on the fact that an
offline attacker must guess at a rate far exceeding the nor-
mal authentication requests from the user population (cf.
Section 3.3). They introduce a novel hashing algorithm
that requires randomly indexing into a large collection
of random bits (e.g., 1 TByte). Ensuring that the only
physical connection to the server with the random bits is
matched to the expected rate of authentication requests
from the user population guarantees that the information
needed to compute the hashes can never be stolen. While
the scheme is not standard, it illustrates that ingenious
approaches to prevent password file leaks are possible
(thereby eliminating the possibility of offline attacks).

Leaked password files can also be detected by spiking
password files with honeywords—false passwords which
are salted, hashed and indistinguishable from actual user
passwords [31]. An offline attack which attempts authen-
tication with a “successfully” guessed honeyword alerts
administrators of a breached password file, signalling
that in-place recovery plans should commence.

4 Password policies and system defences

4.1 Composition and length policies
Many approaches have been tried to force users to choose
better passwords. The most common are policies with
length and character-group composition requirements.
Many sites require passwords of length at least 8, with
at least three of four character types (lower- and upper-
case, digits, special characters) so that each password
meets a lower bound by the measure L·log2 C. However,
as Section 3.1 explains, this naive entropy-motivated
metric very poorly models password guessing-resistance
[32, 60]. Users respond to composition policies with
minimally compliant choices such as Pa$$w0rd and
Snoopy2. Passwords scoring better by this metric are
not guaranteed to fare better under guessing attacks. On
examining this, Weir et al. [60] conclude “the entropy
value doesn’t tell the defender any useful information
about how secure their password creation policy is.”

Recent gains in understanding guess-resistance come
largely from analysis of leaked datasets [7, 60]. Since
it appears (including by examining the actual cleartext

passwords) that none of Table 2’s listed sites imposed
strict composition policies on users, we cannot directly
compare collections of passwords created with and with-
out composition polices to see if the policy has a signifi-
cant effect. However, Weir et al. [60] compare how sub-
sets of the Rockyou dataset that comply with different
composition policies fare on guessing resistance. (The
exercise is instructive, but we must beware that a sub-
set of passwords that comply with a policy are not nec-
essarily representative of passwords created under that
policy; cf. [32].) They found that passwords containing
an uppercase character are little better at withstanding
guessing than unrestricted passwords: 89% of the alpha
strings containing uppercase were either all uppercase, or
simply had the first character capitalized (cf. [35]). They
conclude that forcing an uppercase character merely dou-
bles the number of guesses an intelligent attacker would
need. Fully, 14% of passwords with uppercase charac-
ters did not survive 50,000 guesses—thus providing in-
adequate protection even against online attackers.

Including special characters helped more: of pass-
words incorporating one, the number that did not sur-
vive 50,000 guesses dropped to 7%. But common pat-
terns revealed by their analysis (e.g., 28.5% had a single
special character at the end) were not fully exploited by
the guessing algorithm, so this survival rate is optimistic.
Thus including special characters likewise does not pro-
tect robustly even against online attacks.

Kelley et al. [32] examine passwords created by
12,000 participants in a Mechanical Turk study under 8
different composition policies including: basic-length-8,
basic-length-16, and length-8 mandating all of lower, up-
per, digits and special characters. They use a variety
of cracking algorithms to evaluate guessing resistance
of various passwords. Interestingly, while there is enor-
mous variation between the fate of passwords created un-
der different policies at high guess numbers (e.g., 58%
of basic-length-8, but only 13% of basic-length-16 pass-
words were found after 1013 guesses) there was less vari-
ation for numbers of guesses below 106. Also, in each
of the policies tested, fewer than 10% of passwords fell
within the first 106 guesses (our online threshold).

Mazurek et al. [35] examine 25,000 passwords (from
a university single sign-on system) created under a pol-
icy requiring at least length-8 and mandating inclusion
of lower, upper, special characters and digits, and checks
against a dictionary. The cracking algorithms tested
achieved minimal success until 107 guesses, but suc-
ceeded against about 48% of accounts by 1014 guesses.
Depending as they do on a single cracking algorithm,
these must be considered the worst-case success rates for
an attacker; it is quite possible that better tuning would
greatly improve attack performance. In particular, it is
not safe to assume that this policy ensures good survival
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Attack Guesses Recommended defenses
Online guessing Breadth-first 104 Password blacklist; rate-limiting; account lock-out; recognition of

Depth-first 106 known devices (e.g., by browser cookies, IP address recognition)
Offline guessing Breadth-first 1014 Iterated hashing; prevent leak of hashed-password file; keyed hash

Depth-first 1020 functions with Hardware Security Module support (Sections 3.4, 3.6)
Rainbow table lookup (using extensive pre-computation) n/a Salting; prevent leak of hashed-password file
Non-guessing (phishing, keylogging, network sniffing) n/a Beyond scope of this paper

Table 5: Selected attack types, number of per-account guesses expected in moderate attacks, and recommended defenses. We assume a 4-month
guessing campaign, and for offline guessing that the password file is salted and hashed (see Section 3.4). Rate-limiting includes delays and various
other techniques limiting login attempts over fixed time periods (see Section 4.4). Rainbow tables are explained in Section 3.2.

up to 107 guesses, since most cracking algorithms opti-
mize performance at high rather than low guess numbers.

In answering whether password policies work, we
must first decide what it is we want of them. We use
Section 3.3 which argued that safety from depth-first on-
line guessing requires withstanding 106 guesses, while
safety from offline guessing requires 1014 or more. There
are many tools that increase resistance to online guess-
ing; some offer a simple way to protect against online
guessing with lower usability impact than composition
policies—e.g., password blacklists (see Section 4.2).

The above and further evidence suggest that compo-
sition policies are mediocre at protecting against offline
guessing. For example, over 20% of CMU passwords
were found in fewer than 1011 guesses, and 48% af-
ter 1014 [35]. While the stringent policy (minimum
length eight and inclusion of all four character classes)
has forced half of the population to cross the online-
offline chasm, for practical purposes this is still failure:
we expect most administrators would regard a site where
half of the passwords are in an attacker’s hands as being
100% compromised. Of policies studied by Kelley et al.
[32] only one that required 16 characters gave over 80%
survival rate at 1014 guesses.

Thus, the ubiquity of composition policies (which we
expect stems from historical use, zero direct system cost,
and the ease of giving advice) is at odds with a rela-
tively modest delivery: they help protect against online
attacks, but alternatives seem better. Some policies in-
crease guess-resistance more than others, but none deliv-
ers robust resistance against the level of guessing modern
offline attacks can bring to bear. Given that no aspect of
password security seems to incite comparable user an-
imosity [1, 14, 41], and that this is exacerbated by the
rise of mobile devices with soft keyboards, composition
policies appear to offer very poor return on user effort.

4.2 Blacklists and proactive checking

Another method to avoid weak passwords is to use a
blacklist of known bad choices which are forbidden,
sometimes called proactive password checking [5, 55].
This can be complementary or an alternative to a com-

position policy. Microsoft banned common choices for
hotmail in 2011. In 2009, Twitter banned a list of 370
passwords, which account for (case insensitive) 5.2% of
Rockyou accounts; simply blocking these popular pass-
words helps a significant fraction of users who would
otherwise be at extreme risk of online guessing.

Also examining efficacy, using a blacklist of 50,000
words Weir et al. [60] found that over 99% of passwords
withstood 4,000 guesses; 94% withstood 50,000. Thus,
a simple blacklist apparently offers excellent protection
against breadth-first online attacks and good improve-
ment for depth-first online attacks.

Blacklists of a few thousand, even one million pass-
words, can be built by taking the commonest choices
from leaked distributions. At 106 they may offer ex-
cellent protection against all online attacks. However,
they do not offer much protection against offline attacks.
Blacklists of size 1014 appear impractical. A significant
annoyance issue also increases with list size [35]: users
may understand if a few thousand or even 106 of the most
common choices are forbidden, but a list of 1014 appears
capricious and (in contrast to composition policies) it is
not possible to give clear instructions on how to comply.

As an advantage of blacklists, they inconvenience only
those most at risk. 100% of users using one of Twitter’s
370 black-words is highly vulnerable to online guessing.
By contrast, forcing compliance with a composition pol-
icy inconveniences all users (including those with long
lowercase passwords that resist offline guessing quite
well [35]) and apparently delivers little.

There is a risk that a static blacklist lacks cur-
rency; band names and song lyrics can cause popular-
ity surges that go unrepresented—e.g., the 16 times that
justinbieber appears in the 2009 Rockyou dataset
would likely be higher in 2014. Also, even if the top 106

passwords are banned, something else becomes the new
most common password. The assumption is that ban-
ning the current most popular choices results in a distri-
bution that is less skewed; this assumption does not seem
strong, but has not been empirically verified. In one pro-
posed password storage scheme that limits the popularity
of any password [54], no more than T users of a site are
allowed to have the same password (for a configurable
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threshold T ); this eliminates the currency problem and
reduces the head-end password distribution skew.

4.3 Expiration policies (password aging)

Forced password change at regular intervals is another
well-known recommendation, endorsed by NIST [13]
and relatively common among enterprises and universi-
ties, albeit rarer among general web-sites. Of 75 sites
examined in one study [23], 10 of 23 universities forced
such a policy, while 4 of 10 government sites, 0 of 10
banks, and 0 of 27 general purpose sites did so.

The original justification for password aging was ap-
parently to reduce the time an attacker had to guess a
password. Expiration also limits the time that an attacker
has to exploit an account. Ancillary benefits might be
that it forces users into a different password selection
strategy, e.g., if passwords expire every 90 days, it is less
likely that users choose very popular problematic choices
like password and abcdefg and more likely that
they develop strategies for passwords that are more com-
plex but which can be modified easily (e.g., increment-
ing a numeric substring). As a further potential benefit,
it makes re-use between accounts less likely—whereas
reusing a static password across accounts is easy and
common [22], forced expiration imposes co-ordination
overhead for passwords re-used across sites.

Reducing guessing time is relevant for offline attacks
(an online guesser, as noted, gets far fewer attempts). So
any benefit against guessing attacks is limited to cases
where offline guessing is a factor, which Section 3.2 ar-
gues are far less common.

Reducing the time an attacker has to exploit an ac-
count is useful only if the original avenue of exploitation
is closed, and no alternate (backdoor) access means has
been installed. When the NIST guidelines were written,
guessing was a principal means of getting a password.
An attacker who had successfully guessed a password
would be locked out by a password change; he would
have to start guessing anew. Several factors suggest
that this benefit is now diminished. First, offline pass-
word guessing is now only one avenue of attack; if the
password is gained by keylogging-malware, a password
change has little effect if the malware remains in place.
Second, even if the attack is offline guessing, expiration
turns out to be less effective than believed. Zhang et
al. [63] recently found many new passwords very closely
related to old after a forced reset; they were given access
to expired passwords at UNC and allowed (under care-
fully controlled circumstances) to submit guesses for the
new passwords. The results are startling: they guessed
17% of passwords in 5 tries or fewer, and 41% of ac-
counts in under 3 seconds of offline attacking.

Thus, with forced expiration, new passwords appear

to be highly predictable from old, and the gain is slight,
for a policy competing with composition rules as most-
hated by users. The benefits of forcing users to differ-
ent strategies of choosing passwords, and making re-use
harder may be more important. Given the severe us-
ability burden, and associated support costs, expiration
should probably be considered only for the top end of
the high-consequence category.

4.4 Rate-limiting and lockout policies

A well-known approach to limiting the number of on-
line attack guesses is to impose some kind of lockout
policy—e.g., locking an account after three failed login
attempts (or 10, for a more user-friendly tradeoff [12]).
It might be locked for a certain period of time, or until
the user takes an unlocking action (e.g., by phoning, or
answering challenge questions). Locking for an hour af-
ter three failed attempts reduces the number of guesses
an online attacker can make in a 4-month campaign to
3 × 24 × 365/3 = 8, 760 (cf. Section 3.3). A related
approach increasingly delays the system response after
a small number of failed logins—to 1s, 2s, 4s and so
on. Bonneau and Preibusch [10] found that in practice,
very few sites block logins even after 100 failed logins
(though the sites they studied were predominantly in the
low and medium consequence categories). Secret ques-
tions (Section 4.6), if used, must similarly be throttled.

The two main problems with lockout policies are the
resulting usability burden, and the denial of service vul-
nerability created. Usability is clearly an issue given that
users forget passwords a great deal. The denial of ser-
vice vulnerability is that a fixed lockout policy allows an
attacker to lock selected users out of the site. Incentives
may mean that this represents a greater problem for some
categories of sites than others. An online auction user
might lockout a rival as a deadline approaches; someone
interested in mayhem might lock all users of an online
brokerage out during trading hours.

Throttling online guessing while avoiding intentional
service lockouts, was explored by Pinkas and Sander [47]
and extended by others [2, 59]. Login attempts can
be restricted to devices a server has previously associ-
ated with successful logins for a given username, e.g.,
by browser cookies or IP address; login attempts from
other devices (assumed to be potential online guess-
ing machines) require both a password and a correctly-
answered CAPTCHA. Through a clever protocol, legiti-
mate users logging in from new devices see only a tiny
fraction of CAPTCHAs (e.g., 5% of logins from a first-
time device). The burden on online guessers is much
larger, due to a vastly larger number of login attempts.
The downside of this approach is CAPTCHA usability.
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4.5 Password meter effectiveness

In addition to offering tips or advice on creating good
passwords, many large sites employ password meters,
purportedly measuring password strength, in an attempt
to nudge users toward better passwords. They are gen-
erally implemented in Javascript in the browser, severely
limiting the complexity of the strength-estimation algo-
rithm implemented—e.g., downloading a very large dic-
tionary to check against is problematic. Thus many me-
ters use flawed measures (see Section 3.1) which cor-
relate poorly with guessing resistance. This also pro-
duces many incongruities, e.g., classifying Pa$$w0rd
as “very strong” and gunpyo as “weak”. Of course, de-
ficiencies in currently deployed meters do not necessarily
imply that the general idea is flawed.

Among recent studies of the efficacy of meters, Ur et
al. [58] examined the effect of various meters on 2,931
Mechanical Turk users, finding that significant increases
in guessing-resistance were only achieved by very strin-
gent meters. The presence of any meter did however pro-
vide some improvement even in resistance to online at-
tacks (i.e., below 106 guesses). De Carnavelet and Man-
nan [17] compare several password meters in common
use and find enormous inconsistencies: passwords be-
ing classified as strong by one are termed weak by an-
other. Egelman et al. [20] explore whether telling users
how their password fares relative to others might have
a greater effect than giving an absolute measure. Those
who saw a meter tended to choose stronger passwords
than those who didn’t, but the type of meter did not make
a significant difference. In a post-test survey 64% of par-
ticipants admitted reusing a password from elsewhere—
such users may have been influenced to re-use a different
old password, but every old password is obviously be-
yond the reach of subsequent influences.

4.6 Backup questions & reset mechanisms

Reset mechanisms are essential at almost every
password-protected site to handle forgotten passwords.
For most cases, it can be assumed the user still has access
to a secondary communication channel (e.g., an e-mail
account or phone number on record)—and the assumed
security of that channel can be leveraged to provide the
reset mechanism. A common practice is to e-mail back
to the user either a reset link or temporary password.

Sites that store passwords cleartext or reversibly en-
crypted can e-mail back that password itself if forgotten,
but this exposes the password to third parties. Mannan
et al. [34] propose to allow forgotten passwords to be re-
stored securely; the server stores an encrypted copy of
the password, with the decryption key known to a user
recovery device (e.g., smartphone) but not the server.

Many sites use backup authentication questions (se-
cret questions) instead of, or in conjunction with, email-
ing a reset link. The advantage of doing both is that an
attacker gaining access to a user’s e-mail account could
gain access to any sites that e-mail reset links. Different
categories of accounts (see Section 2) must approach this
question differently. For high-consequence accounts, it
seems that backup questions should be asked to further
authenticate the user; for lower consequence accounts,
the effort of setting up and typing backup questions must
be taken into account.

When a secondary communication channel is unavail-
able (e.g., the site in question is the webmail provider
itself, or a secondary communication channel was never
set up, or is no longer available) backup questions are
widely used. Unfortunately, plentiful evidence [49, 53]
shows that typically in practice, the guessing-space of
backup question answers is obviously too small, or in-
volves questions whose answers can be looked up on
the Internet for targeted or popular personalities. Several
high-profile break-ins have exploited this fact.

Proposed authentication alternatives exist (e.g., [52]),
but require more study. In summary, the implementation
of password reset mechanisms is sensitive, fraught with
dangers, and may require case-specific decisions.

4.7 Phishing

Guessing is but one means to get a password. Phishing
rose to prominence around 2005 as a simple way to so-
cially engineer users into divulging secrets. There are
two varieties. Generic or scattershot attempts are gen-
erally delivered in large spam campaigns; spear phish-
ing aims at specific individuals or organizations, possibly
with target-specific lures to increase effectiveness.

Scattershot phishing generally exploits user confusion
as to how to distinguish a legitimate web-site from a
spoofed version [19]. The literature suggests many ap-
proaches to combat the problem, e.g., toolbars, tokens,
two-factor schemes, user training. Few of these have en-
joyed large-scale deployment. One that did, the SiteKey
image to allow a user to verify a site, was found not to
meet its design goals [51]: most users entered their pass-
word at a spoofed site even in the absence of the trust
indicator. A toolbar indicator study reached a similarly
pessimistic conclusion [62]. Equally, no evidence sug-
gests any success from efforts to train users to tell good
sites from bad simply by parsing the URL; the task it-
self is ill-defined [29]. In fact, much of the progress
against scattershot phishing in recent years appears to
have been by browser vendors, through better identifi-
cation and blocking of phishing sites.

Spear phishing continues to be a major concern, es-
pecially for high-consequence sites. The March 2011
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breach on RSA Security’s SecurID hardware tokens was
reportedly8 such an attack. It is too early to say if ap-
proaches wherein administrators send periodic (defen-
sive training) phishing emails to their own users leads
to improved outcomes.

4.8 Re-using email address as username

Many sites (over 90% by one study [10]) encourage or
force users to use an email address as username. This
provides a point of contact (e.g., for password resets—
or marketing), ensures unique usernames, and is memo-
rable. However it also brings several security issues.

It encourages users (subconsciously or otherwise) to
re-use the email password, thereby increasing the threats
based on password re-use [16]. It can facilitate forms
of phishing if users become habituated to entering their
email passwords at low-value sites that users email ad-
dresses as usernames.

Re-using email addresses as usernames across sites
also facilitates leaking information regarding registered
users of those sites [50], although whether a given string
is a valid username at a site can be extracted for non-
email address usernames also [10, 11]. Preventing such
leaks may be as much a privacy issue, as a security issue.

5 Discussion and implications

5.1 System-side vs. client-side defences

Some password-related defences involve implementa-
tion choices between system-side and client-side mecha-
nisms; some attacks can be addressed at either the server
(at cost of engineering effort) or the client (often at cost
of user effort). Table 6 summarizes costs and benefits of
several measures that we have discussed, noting security
benefit and usability cost.

We have seen little discussion in the literature of the
available trade-offs—and implications on cost, security,
usability, and system-wide efficiency with respect to to-
tal user effort—between implementing password-related
functionality client-side vs. server-side. Ideally, all de-
cisions on where to impose costs would be made ex-
plicitly and acknowledged. A danger is that costs of-
floaded to the user are often hard to measure, and there-
fore unmeasured—this does not make the cost zero, but
makes it hard to distinguish from zero. It is a natural con-
sequence that system-side costs, which are more directly
visible and more easily measured, are under-utilized, at
the expense of client-side mechanisms which download
(less visible, harder to measure) cognitive effort to end-
users. For example, forcing users to choose passwords

8http://www.wired.com/2011/08/how-rsa-got-hacked/

that will resist many guesses is a way of addressing the
threat of offline attacks, and relies almost exclusively
on user effort. Investing engineering time to better pro-
tect the password file, to ensure that leaks are likely to
be detected, and to ensure that passwords are properly
salted and hashed (or protected using an offline-resistant
scheme such as discussed in Section 3.6) are alterna-
tives dealing with the same problem that rely on server-
side effort (engineering effort and/or operational time).
Florêncio and Herley [23] found that sites where users
do not have a choice (such as government and university
sites) were more likely to address the offline threat with
user effort, while sites that compete for users and traf-
fic (such as retailers) were more likely to allow password
policies that addressed the online threat only.

Scale is important in deciding how costs should be di-
vided between the server and client sides; what is reason-
able at one scale may be unacceptable at another. For ex-
ample, many web-sites today have many more accounts
than the largest systems of 30 years ago. A trade-off in-
conveniencing 200 users to save one systems adminis-
trator effort might be perfectly reasonable; however, the
same trade-off involving 100 million users and 10 ad-
ministrators is a very different proposition: the factor of
50, 000 increase in the ratio of users to administrators
means that decisions should be approached differently,
especially in any environment where user time, energy,
and effort is a limited resource. There is evidence that
the larger web-sites take greater care than smaller ones
to reduce the burden placed on users [23].

5.2 Take-away points
We now summarize some of the key findings, and make
recommendations based on the analysis above.

Many different types of sites impose passwords on
users; asset values related to these sites and associated
accounts range widely, including different valuations be-
tween users of the same sites. Thus, despite little atten-
tion to date in the literature, recognizing different cate-
gories of accounts is important (cf. Table 1). User ef-
fort available for managing password portfolios is fi-
nite [3, 25, 27, 57]. Users should spend less effort on
password management issues (e.g., choosing complex
passwords) for don’t-care and lower consequence ac-
counts, allowing more effort on higher consequence ac-
counts. Password re-use across accounts in different cat-
egories is dangerous; a major concern is lower conse-
quence sites compromising passwords re-used for high-
consequence sites. While this seems an obvious concern,
a first step is greater formal recognition of different cate-
gories of sites. We summarize this take-away point as:

T1: Recognizing different categories of web-sites is es-
sential to responsibly allocating user password
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IMPLEMENTATION ASPECT ATTACKS STOPPED OR SLOWED USER IMPACT REMARKS

Password stored non-plaintext Full compromise on server breakin alone None Recommended
Salting (global and per-account) Pre-computation attacks (table lookup) None Recommended
Iterated hashing Slows offline guessing proportionally None Recommended
MAC of iterated, salted hash Precludes offline guessing (requires key) None Best option (key management)
Rate-limiting & lockout policies Hugely reduces online guessing Possible user lockout Recommended
Blacklisting (proactive checking) Eliminates most-probable passwords Minor for small lists Recommended
Length rules Slows down naive brute force attacks Cognitive burden Recommended: length ≥ 8
Password meters Nudges users to “less guessable” passwords Depends on user choice Marginal gain

Password aging (expiration)
Limits ongoing attacker access;

indirectly ameliorates password re-use
Significant;
annoying Possibly more harm than good

Character-set rules May slow down naive brute-force attacks
Cognitive burden. Slows
entry on mobile devices Often bad return on user effort

Table 6: Password-related implementation options. The majority of Remarks are relevant to medium-consequence accounts (see Table 1). It is
strongly recommended that password storage details (e.g., salting, iterated hashing, MAC if used) are implemented by standard library tools.

management effort across sites. Users are best
served by effort spent on higher consequence sites,
and avoiding cross-category password re-use.

While naive “password strength” measures are widely
used, simple to calculate, and have formed the basis for
much of the analysis around passwords, simplistic met-
rics [13] based on Shannon entropy are poor measures of
guessing-resistance (recall Section 3.1). Reasoning that
uses naive metrics as a proxy for security is unsound and
leads to unreliable conclusions. Policies, requirements
and advice that seek to improve password security by
“increasing entropy” should be disregarded.

T2: Crude entropy-based estimates are unsuitable for
measuring password resistance to guessing attacks;
their use should be discouraged.

While choosing passwords that will resist (online and/or
offline) guessing has dominated the advice directed at
users, it is worth emphasizing that the success rate of
several attacks are unaffected by password choice.

T3: The success of threats such as client-side malware,
phishing, and sniffing unencrypted wireless links
are entirely unaffected by password choice.

Password policies and advice aim to have users choose
passwords that will withstand guessing attacks. The
threshold number of guesses to survive online and of-
fline attacks differ enormously. The first threshold does
not grow as hardware and cracking algorithms improve;
the second gradually increases with time, only partially
offset by adaptive password hashing functions (if used).

T4: Password guessing attacks are either online or of-
fline. The guessing-resistance needed to survive the
two differs enormously. Withstanding 106 guesses
probably suffices for online; withstanding 1014 or
more guesses may be needed to resist determined,
well-resourced offline attacks.

There is no continuum of guessing attack types—it is ei-
ther online or offline, with nothing in between. There is a
chasm between the threshold to withstand these two dif-
ferent types. There is little security benefit in exceeding
the online threshold while failing to reach the offline one.
Passwords that fail to completely cross this chasm waste
effort since they do more than is necessary to withstand
online attacks, but still succumb to offline attacks.

T5: Between the thresholds to resist online and of-
fline attacks, incremental improvement in guess-
resistance has little benefit.

Recall that rainbow table attacks are one form of offline
attack, and require access to leaked password hashes.

T6: Rainbow table attacks can be effectively stopped by
well-known salting methods, or by preventing the
leakage of hashed password files.

Analysis of Fig.1 shows that offline attacks are possible
and necessary in only very limited circumstances which
occur far less often than suggested from the attention
given by the research literature. If the password file has
not been properly salted and hashed, then user effort to
withstand beyond 106 guesses is better spent elsewhere.

T7: Offline guessing attacks are a major concern only
if the password file leaks, the leak goes undetected,
and the file was properly salted and hashed (other-
wise simpler attacks work, e.g., rainbow tables).

It follows that sites that store passwords in plaintext or
reversibly encrypted, and impose strict password com-
position policies unnecessarily burden users—the poli-
cies offer zero benefit against intelligent attackers, as any
increased guessing-resistance is irrelevant. The attacker
either has direct access to a plaintext password, or if the
key encrypting the hashed password does not also leak
then the (plaintext) password hashes needed for the of-
fline guessing attack are unavailable.
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T8: For implementations with stored passwords avail-
able at the server (plaintext or reversibly en-
crypted), composition policies aiming to force resis-
tance to offline guessing attacks are unjustifiable—
no risk of offline guessing exists.

The threat of offline guessing attacks can essentially be
eliminated if it can be ensured that password files do not
leak, e.g., by keyed hash functions with HSM (hardware
security) support. Guessing attack risks then reduce to
online guessing, which is addressable by known mecha-
nisms such as throttling, recognizing known devices, and
proactive checking to disallow too-popular passwords—
all burdening users less than composition policies.

T9: Online attacks are a fact of life for public-facing
servers. Offline attacks, by contrast, can be entirely
avoided by ensuring the password file does not leak,
or mitigated by detecting if it does leak and having a
disaster-recovery plan to force a system-wide pass-
word reset in that case.

6 Concluding remarks

In concluding we summarize the case against consuming
user effort in attempts to resist offline guessing attacks.

1. Honesty demands a clear acknowledgement that we
don’t know how to do so: attempts to get users to
choose passwords that will resist offline guessing,
e.g., by composition policies, advice and strength
meters, must largely be judged failures. Such mea-
sures may get some users across the online-offline
chasm, but this helps little unless it is a critical
mass; we assume most administrators would con-
sider a site with half its passwords in an attacker’s
hands to be fully rather than half compromised.

2. Failed attempts ensure a large-scale waste of user
effort, since exceeding the online while falling short
of the offline threshold delivers no security benefit.

3. The task gets harder every year—hardware ad-
vances help attackers more than defenders, increas-
ing the number of guesses in offline attacks.

4. Zero-user-burden mechanisms largely or entirely
eliminating offline attacks exist, but are little-used.

5. Demanding passwords that will withstand offline at-
tack is a defense-in-depth approach necessary only
when a site has failed both to protect the password
file, and to detect the leak and respond suitably.

6. That large providers (e.g., Facebook, Fidelity, Ama-
zon) allow 6-digit PINs demonstrates that it is pos-
sible to run first-tier properties without placing the
burden of resisting offline attacks on users.

Preventing, detecting and recovering from offline at-
tacks must be administrative priorities, if the burden is
not to be met with user effort. It is of prime impor-
tance to ensure that password files do not leak (or have
content such that leaks are harmless), that any leak can
be quickly detected, and that an incident response plan
allows system-wide forced password resets if and when
needed. Next, and of arguably equal importance, is pro-
tecting against online attacks by limiting the number of
online guesses that can be made (e.g., by throttling or
lockouts) and precluding the most common passwords
(e.g., by password blacklists). Salting and iterated hash-
ing are of course expected, using standardized adaptive
password hashing functions or related MACs.
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Abstract

We present an in-depth study of over 200K log analysis
queries from Splunk, a platform for data analytics. Using
these queries, we quantitatively describe log analysis be-
havior to inform the design of analysis tools. This study
includes state machine based descriptions of typical log
analysis pipelines, cluster analysis of the most common
transformation types, and survey data about Splunk user
roles, use cases, and skill sets. We find that log anal-
ysis primarily involves filtering, reformatting, and sum-
marizing data and that non-technical users increasingly
need data from logs to drive their decision making. We
conclude with a number of suggestions for future re-
search.
Tags: log analysis, query logs, user modeling, Splunk,
user surveys

1 Introduction

Log analysis is the process of transforming raw log data
into information for solving problems. The market for
log analysis software is huge and growing as more busi-
ness insights are obtained from logs. Stakeholders in
this industry need detailed, quantitative data about the
log analysis process to identify inefficiencies, stream-
line workflows, automate tasks, design high-level anal-
ysis languages, and spot outstanding challenges. For
these purposes, it is important to understand log anal-
ysis in terms of discrete tasks and data transformations
that can be measured, quantified, correlated, and auto-
mated, rather than qualitative descriptions and experi-
ence alone.
This paper helps meet this need using over 200K queries

∗This author was an employee of Splunk Inc. when this paper was
written.

recorded from a commercial data analytics system called
Splunk. One challenge is that logged system events are
not an ideal representation of human log analysis activ-
ity [3]. Logging code is typically not designed to capture
human behavior at the most efficacious level of granu-
larity. Even if it were, recorded events may not reflect
internal mental activities. To help address this gap, we
supplement the reported data with results of a survey of
Splunk sales engineers regarding how Splunk is used in
practice.
In our analysis, we examine questions such as: What
transformations do users apply to log data in order to
analyze it? What are common analysis workflows, as
described by sequences of such transformations? What
do such workflows tell us, qualitatively, about the nature
of log analysis? Who performs log analysis and to what
end? What improvements do we need to make to analysis
tools, as well as to the infrastructure that logs activities
from such tools, in order to improve our understanding
of the analysis process and make it easier for users to
extract insights from their data?
The answers to these questions support a picture of log
analysis primarily as a task of filtering, reformatting, and
summarizing. Much of this activity appears to be data
munging, supporting other reports in the literature [28].
In addition, we learn from our survey results that users
outside of IT departments, including marketers and ex-
ecutives, are starting to turn to log analysis to gain busi-
ness insights. Together, our experience analyzing these
queries and the results of our analysis suggest several
important avenues for future research: improving data
transformation representation in analytics tools, imple-
menting integrated provenance collection for user activ-
ity record, improving data analytics interfaces and cre-
ating intelligent predictive assistants, and further analyz-
ing other data analysis activities from other systems and
other types of data besides logs.



54 28th Large Installation System Administration Conference (LISA14) USENIX Association

Figure 1: The default Splunk GUI view displays the first several events indexed, with extracted fields highlighted on
the side, and a histogram of the number of events over time displayed along the top. The user types their query into
the search bar at the top of this view.

2 Related Work

We discuss (1) systems for log analysis, (2) techniques
for log analysis, and (3) results of log analysis, so that
those log analysis activities can be compared to our ob-
servations. We also discuss (4) user studies of system ad-
ministrators – one of the primary classes of log analysts –
and (5) of search engine users – where query logs are the
main source of data on user behavior and needs.
Systems for log analysis: The purpose of this section
is not to compare Splunk to other analysis systems, but
to describe the uses these systems support, to provide a
sense of how our observations fit within the larger con-
text. Dapper, Google’s system tracing infrastructure,
is used by engineers to track request latency, guaran-
tee data correctness, assess data access costs, and find
bugs [34]. From their detailed descriptions, we can in-
fer that engineers use transformations similar to those
used by Splunk users. Other systems, such as Sawzall
and PigLatin, include query languages that extract data
from logs with heavy use of these same types of trans-
formations [30, 26]. These points suggest that the activ-
ity records we have collected may represent typical log
analysis usage, despite being gathered from only one sys-
tem.
Techniques for log analysis: Published techniques for
log analysis center around the main challenges in work-
ing with logs, such as dealing with messy formats,
and solving event-based problems [23]. This includes
event and host clustering [20, 21], root failure diagno-
sis [8, 17], anomaly detection [18], dependency infer-

ence [25, 19], and data extraction [16, 39]. Although
their motivating use cases overlap with Splunk use cases,
in our observations, the use of such techniques appears to
be relatively rare (even though Splunk does provide, e.g.,
clustering and anomaly detection functionality).
Results of log analysis: Log analysis is also used in re-
search as a means to an end rather than as the subject
itself. Logs have been used to explain system behav-
ior [7, 6], understand failures [31, 24], identify design
flaws [11], spot security vulnerabilities [15], highlight
new phenomena [29], and drive system simulations [12].
To the extent that such research involves heavy applica-
tion of human inference rather than “automatic” statisti-
cal inference techniques, like many of those mentioned
in the previous section, it appears to more closely align
with our observations of log analysis behavior. However,
the problems addressed are naturally of an academic na-
ture, whereas Splunk users of often looking for timely
business insights specific to their situation.
System administrator user studies: As system admin-
istrators are one of the primary classes of log analysts,
studies of their behavior are relevant to our study of log
analysis. Researchers have studied system administra-
tors to characterize their work environments and prob-
lems commonly faced [4], as well as the mental mod-
els they form [13]. One study surveying 125 system
administrators discovered that accuracy, reliability, and
credibility are considered the most important features in
tools [38]. Other researchers have called for more stan-
dardization in system administration activities – such ef-
forts will benefit from the data we present [9].
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Term Definition
event a raw, timestamped item of data indexed by Splunk, similar to a tuple or row in databases
field a key corresponding to a value in an event, similar to the concept of a column name
value part of an event corresponding to a certain field, similar to a particular column entry in a particular row
query a small program written in the Splunk query language, consisting of pipelined stages
stage a portion of a query syntactically between pipes; conceptually a single transformation
transformation an abstract category of similar commands e.g., filter or aggregate; each stage is a transformation
command the part of a stage that indicates what operation to apply to the data
argument the parts of a stage that indicate what fields, values, or option values to use with a command
interactive a query that is run when it is entered by the user into the search bar
scheduled a query that has been saved by a user and scheduled to run periodically like a cron job

Table 1: Terminology describing Splunk data.

Search engine query log studies: While we are unaware
of prior work that uses query logs to study analysis be-
havior, query logs are often used to study search engine
user behavior. People have used search engine query
logs to model semantic relationships [22], track user
preferences [35], and identify information needs [32].
Techniques involve examining query terms and analyz-
ing user sessions [14, 33]. Due to data quality issues dis-
cussed in Section 4, we could not analyze user sessions,
but other aspects of our current and previous work paral-
lel these techniques [2]. Employing some of these tech-
niques to examine data analysis activity logs is a promis-
ing avenue of future research. Going forward we ex-
pect that the study of human information seeking behav-
ior will be enriched through the study of analysis query
logs.

3 Splunk Logs and Queries

We collected queries from Splunk1, a platform for index-
ing and analyzing large quantities of data from heteroge-
neous data sources, especially machine-generated logs.
Splunk is used for a variety of data analysis needs, in-
cluding root cause failure detection, web analytics, A/B
testing and product usage statistics. Consequently, the
types of data sets indexed in Splunk also span a wide
range, such as system event logs, web access logs, cus-
tomer records, call detail records, and product usage
logs. This section describes the Splunk data collection
and query language in more detail; Table 1 lists the ter-
minology introduced in this section.

3.1 Overview

Data collection To use Splunk, the user indicates the
data that Splunk must index, such as a log directory on
a file system. Splunk organizes this data into temporal
events by using timestamps as delineators, and processes
these events using a MapReduce-like architecture [5].

1www.splunk.com

Splunk does not require the user to specify a schema for
the data, because much log data is semi-structured or un-
structured, and there is often no notion of a schema that
can be imposed on the data a priori. Rather, fields and
values are extracted from events at run time based on
the source type. Specifically, when a user defines a new
source type, Splunk guides the user in constructing reg-
ular expressions to extract fields and values from each
incoming raw event.
Query llanguage Splunk includes a query language for
searching and manipulating data and a graphical user in-
terface (GUI) with tools for visualizing query results.
The query consists of a set of stages separated by the
pipe character, and each stage in turn consists of a com-
mand and arguments. Splunk passes events through each
stage of a query. Each stage filters, transforms or en-
riches data it receives from the previous stage, and pipes
it to the subsequent stage, updating the displayed results
as they are processed. A simple example of a query is
a plain text search for specific strings or matching field-
value pairs. A more complex example can perform more
advanced transformations, such as clustering the data us-
ing k-means. Users can save certain queries and schedule
them to be run on a given schedule, much like a cron job.
We call these queries scheduled queries.
Graphical user interface Users almost always com-
pose Splunk queries in the GUI. The default GUI view
displays the first several events indexed, with extracted
fields highlighted on the left hand side, and a histogram
of the number of events over time displayed along the
top. A screen shot of this default view is shown in Fig-
ure 1. The user types their query into the search bar at
the top of this view. When the user composes their query
in the GUI, we call it an interactive query.
When the user enters a query that performs a filter, the
GUI updates to display events which pass through the
filter. When the user uses a query to add or transform
a field, the GUI displays events in updated form. Most
queries result in visualizations such as tables, time series,
and histograms, some of which appear in the GUI when
the query is executed, in the “Visualization” tab (Fig-
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ure 1). Users can also create “apps,” which are custom
views that display the results of pre-specified queries,
possibly in real time, which is useful for things like mon-
itoring and reporting. Although the set of visualizations
Splunk offers does not represent the full breadth of all
possible visualizations, they still capture a large set of
standard, commonly used ones.

3.2 An Example Splunk Query

The Splunk query language is modeled after the Unix
grep command and pipe operator. Below is an example
query that provides a count of errors by detailed status
code:

search error | stats count by status | lookup

statuscodes status OUTPUT statusdesc
This example has three stages: search, stats, and
lookup are the commands in each stage, count by

and OUTPUT are functions and option flags passed to
these commands, and “error”, “status”, “statuscodes”,
and “statusdesc” are arguments. In particular, “status”
and “statusdesc” are fields.
To see how this query operates, consider the following
toy data set:

0.0	   -‐ error	   404	  

0.5	   -‐ OK	   200	  

0.7	   -‐ error	   500	  

1.5	   -‐ OK	   200	  

The first stage of the query (search error) filters out all
events not containing the word “error”. After this stage,
the data looks like:

0.0	   -‐ error	   404	  

0.7	   -‐ error	   500	  

The second stage (stats count by status) aggregates
events by applying the count function over events
grouped according to the “status” field, to produce the
number of events in each “status” group.

count	   status	  

1	   404	  

1	   500	  

The final stage (lookup status codes status OUTPUT sta-
tusdesc) performs a join on the “status” field between
the data and an outside table that contains descriptions of

Total queries 203691
Interactive queries 18872
Scheduled queries 184819
Distinct scheduled queries 17085

Table 2: Characteristics of the set of queries analyzed
from the Splunk logs.

each of the codes in the “status” field, and puts the corre-
sponding descriptions into the “statusdesc” field.

count	   status	   statusdesc	  

1	   404	   Not	  Found	  

1	   500	   Internal	  Server	  Error	  

4 Study Data

We collected over 200K Splunk queries. The data set
consists of a list of timestamped query strings. Table 2
summarizes some basic information about this query
set.
We wrote a parser for this query language; the parser
is freely available 2. This parser is capable of parsing
over 90% of all queries in the data set, some of which
may be valid failures, as the queries may be malformed.
(This limitation only affects the cluster analysis in Sec-
tion 6.)
It is important to note that we do not have access to any
information about the data over which the queries were
issued because these data sets are proprietary and thus
unavailable. Having access only to query logs is a com-
mon occurrence for data analysis, and methodologies
that can work under these circumstances are therefore
important to develop. Further, by manually inspecting
the queries and using them to partially reconstruct some
data sets using the fields and values mentioned in the
queries, we are fairly certain that these queries were is-
sued over many different sources of data (e.g., web server
logs, security logs, retail transaction logs, etc.), suggest-
ing the results presented here will generalize across dif-
ferent datasets.
It is also important to note that some of the queries la-
beled as interactive in our data set turned out to be pro-
grammatically issued from sources external to Splunk,
such as a user-written script. It is difficult to sepa-
rate these mislabeled queries from the true interactive
queries, so we leave their analysis to future work, and
instead focus our analysis in this paper on scheduled
queries.

2https://github.com/salspaugh/splparser
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5 Transformation Analysis

The Splunk query language is complex and supports a
wide range of functionality, including but not limited
to: reformatting, grouping and aggregating, filtering, re-
ordering, converting numerical values, and applying data
mining techniques like clustering, anomaly detection,
and prediction. It has 134 distinct core commands at the
time of this writing, and commands are often added with
each new release. In addition, users and Splunk app de-
velopers can define their own commands.
We originally attempted to analyze the logs in terms of
command frequencies, but it was difficult to general-
ize from these in a way that is meaningful outside of
Splunk [1]. So, to allow for comparisons to other log
analysis workflows and abstract our observations beyond
the Splunk search language, we manually classified these
134 commands into 17 categories representing the types
of transformations encoded, such as filtering, aggregat-
ing, and reordering (Table 3).
Note that because some Splunk commands are over-
loaded with functionality, several commands actually
perform multiple types of transformations, such as ag-
gregation followed by renaming. In these cases, we cat-
egorized the command according to its dominant use
case.
We use this categorization scheme to answer the follow-
ing questions about log analysis activity:
• How are the individual data transformations statisti-

cally distributed? What are the most common transfor-
mations users perform? What are the least common?

• How are sequences of transformations statistically dis-
tributed? What type of transformations do queries usu-
ally start with? What do they end with? What transfor-
mations typically follow a given other transformation?

• How many transformations do users typically apply in
a given query? What are the longest common subse-
quences of transformations?

5.1 Transformation Frequencies

We first counted the number of times that each trans-
formation was used (Figure 2). The most common are
Cache (27% of stages), Filter (26% of stages), Aggre-
gate (10% of stages), Macro (10% of stages),and Aug-
ment (9% of stages). Scheduled queries are crafted and
set up to run periodically, so the heavy use of caching and
macros is unsurprising: Splunk adds caching to sched-
uled queries to speed their execution, and macros capture
common workflows, which are likely to be discovered by
users after the iterative, ad hoc querying that results in
a “production-ready” scheduled query. Although we do
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Figure 2: The distribution of data transformations that
are used in log analysis. The top graph shows, for
each transformation, the percent of stages that apply that
transformation. The bottom graph shows, for each trans-
formation, the percent of queries that contain that trans-
formation at least once (so the percents do not add to
100).

not report directly on them here due to data quality is-
sues (Section 4), anecdotally, it appears that interactive
queries have a similar distribution except that the use of
Cache and Macro is less frequent, and the use of Input
is more frequent.
For each transformation type, we also computed the
number of queries that used that transformation (Fig-
ure 2). This gives us some idea of how many of the
queries would be expressible in a restricted subset of the
language, which is interesting because it tells us the rel-
ative importance of various transformations.
From this we see that Filter transformations are ex-
tremely important – 99% of scheduled queries use such
transformations. Without Aggregate transformations,
42% of scheduled queries would not be possible. Around
a quarter of queries use Augment, Rename, and Project
transformations, and 17% use commands that Trans-
form columns.
In contrast, Joins are only used in 6% of scheduled
queries. This possible difference from database work-
loads could be because log data is not usually relational
and generally has no schema, so it may often not have in-
formation that would satisfy key constraints needed for
join, or it may already be sufficiently denormalized for
most uses. It could also be because these are scheduled
queries, and expensive Join operations have been opti-
mized away, although again anecdotally the interactive
queries do not suggest this. Reorder transformations
are also used only 6% of the time – log events are al-
ready ordered by time by Splunk, and this is probably
often the desired order. Input and Output transforma-
tions are used in only 2% of scheduled queries – these

5
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Transformation Description Top Commands % Queries Examples

Aggregate
coalesce values of a given field or
fields (columns) into one summary
value

stats 86.0 stats sum(size kb)

timechart 9.0 timechart count by region

top 3.0 top hostname

Augment add a field (column) to each event,
usually a function of other fields

eval 57.0 eval pct=count/total*100

appendcols 19.0 spath input=json

rex 15.0 rex "To: (?<to>.*)"

Cache write to or read from cache for fast
processing

summaryindex 98.0 summaryindex namespace=foo

sitimechart 30.0 sitimechart count by city

Filter remove events (rows) not meeting
the given criteria

search 100.0 search name="alspaugh"

where 7.0 where count > 10

dedup 4.0 dedup session id

Input input events into the system from
elsewhere

inputlookup 88.0 inputlookup data.csv

Join join two sets of events based on
matching criteria

join 82.0 join type=outer ID

lookup 16.0 lookup

Macro apply user-defined sequence of
Splunk commands

‘sourcetype metrics‘ 50.0 ‘sourcetype metrics‘

‘forwarder metrics‘ 13.0 ‘forwarder metrics‘

Meta configure execution environment localop 83.0 localop

Miscellaneous commands that do not fit into other
categories

noop 39.0 noop

Output write results to external storage or
send over network

outputlookup outputlookup results.csv

Project remove all columns except those se-
lected

table 80.0 table region total

fields 22.0 fields count

Rename rename fields rename 100.0 rename cnt AS Count

Reorder reorder events based on some crite-
ria

sort 100.0 sort - count

Set perform set operations on data append 66.0 append [...]

set 40.0 set intersect [...] [...]

Transform mutate the value of a given field for
each event

fillnull 96.0 fillnull status

convert 2.0 convert num(run time)

Transpose swap events (rows) with fields
(columns)

transpose 100.0 transpose

Window
add fields that are windowing func-
tions of other data

streamstats 90.0 streamstats first(edge)

Table 3: Manual classification of commands in the Splunk Processing Language into abstract transformations cate-
gories. For each transformation category, the Top Commands column shows the most-used commands in that category.
The % Queries column shows, for all queries containing a given transformation, what percent of queries contained
that command.
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again could have been optimized away, or possibly cap-
tured in Macros. Lastly, the other transformations are
used in nearly zero queries. In the case of Windowing
transformations, this could be because windowed opera-
tions are accomplished “manually” through sequences of
Augment transformations or via overloaded commands
that were classified as other transformation types. We
were surprised such operations were not more common.
In the case of the others, such as Transpose, it is more
likely because log data is rarely of the type for which
such operations are needed.

5.2 Transformation Pipelines

Next, for each pair of transformation types, we counted
the number of times within a query that the first trans-
formation of the pair was followed by the second trans-
formation of the pair. We used these counts to compute,
for each transformation, how frequently each of the other
transformation types followed it in a query.
We used these frequencies to create a state machine
graph, as shown in Figure 3. Each node is a type of
transformation, and each edge from transformation A to
a transformation B indicates the number of times B was
used after A as a fraction of the number of times A was
used. Also included as nodes are states representing the
start of a query, before any command has been issued,
and the end of a query, when no further commands are
issued. The edges between these nodes can be thought of
as transition probabilities that describe how likely a user
is to issue transformation B after having issued transfor-
mation A.
Using these graphs, we can discover typical log analysis
pipelines employed by Splunk users. We exclude from
presentation sequences with Cache transformations, as
those have in most cases been automatically added to
scheduled queries by Splunk to optimize them, as well
as Macros, because these can represent any transfor-
mation, so we do not learn much by including them.
The remaining top transformation pipelines by weight
(where the weight of a path is the product of its edges)
are:
• Filter
• Filter | Aggregate
• Filter | Filter 3

• Filter | Augment | Aggregate
• Filter | Reorder
• Filter | Augment
The preponderance of Filter transformations in typical
pipelines is not surprising given that it is the most fre-

3These can be thought of as one Filter that happened to be applied
in separate consecutive stages.

quently applied transformation. It also makes sense in
the context of log analysis – logging collects a great deal
of information over the course of operation of a system,
only a fraction of which is likely to be relevant to a given
situation. Thus it is almost always necessary to get rid of
this extraneous information. We investigate Filter, Ag-
gregate, and Augment transformations in more detail in
Section 6 to explain why these also appear in common
pipelines.
These transformations sequences may seem simple com-
pared to some log analysis techniques published in con-
ferences like KDD or DSN [20, 25]. These pipelines
more closely correspond to the simpler use cases de-
scribed in the Dapper or Sawzall papers [34, 30]. There
are many possible explanations for this: Most of the
problems faced by log analysts may not be data mining
or machine learning problems, and when they are, they
may be difficult to map to published data mining and
machine learning algorithms. Human intuition and do-
main expertise may be extremely competitive with state
of the art machine learning and other techniques for a
wide variety of problems – simple filters, aggregations
and transformations coupled with visualizations are pow-
erful tools in the hands of experts. Other reasons are
suggested by user studies and first-hand industry expe-
rience [23, 38]. Users may prefer interpretable, eas-
ily adaptable approaches over black-boxes that require
lots of mathematical expertise. It is worth further in-
vestigating the types of analysis techniques currently in
widespread use and assess how the research on analysis
techniques can better address practitioner needs.
We hypothesize that one important variable determining
what transformation sequences are most often needed is
the data type. Thus, we created more focused state ma-
chine graphs for two commonly analyzed source types by
pulling out all queries that explicitly specified that source
type4: Figure 4 shows the analysis applied to server ac-
cess logs, used for web analytics (measuring traffic, re-
ferrals, and clicks). Figure 5 shows the results on operat-
ing system event logs (analyzing processes, memory and
CPU usage). These figures suggest that indeed, query
patterns can be expected to differ significantly depend-
ing on the type of data being analyzed. This could be
due to the domain of the data, which could cause the
types of questions asked to vary, or it could be due to
the format of the data. For example web logs may have
a more regular format, allowing users to avoid the con-
voluted processing required to normalize less structured
data sources.
Other important factors likely include who the user is and
what problems they are trying to solve. For example, in

4Source type can be specified in Filter transformations – this is
what we looked for.
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Figure 3: State machine diagram describing, for all distinct scheduled queries, the pairwise transition frequency
between the command categories described in the text. Only edges with weight greater or equal to .05 are shown,
for clarity.
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Figure 4: The pairwise transition frequency between transformations for web access log queries.
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Figure 5: The pairwise transition frequency between transformations for OS event log queries.

the case of web access log data, an operations user will
want to know, “Where are the 404s?5 Are there any hosts
that are down? Is there a spike in traffic that I should add
capacity for?” A marketer will want to know, “What key-
words are people searching today after my recent press
release? What are the popular webinars viewed on my
website?” A salesperson may ask, “Of the visitors today,
how many are new versus returning, and how can I figure
out whom to engage in a sales deal next based on what
they’re looking for on the web site?” Capturing this sup-
plemental information from data analysis tools to include
in the analysis would be useful for later tailoring tools to
particular use cases. We have gathered some informa-
tion about this (Section 7) but unfortunately we could
not cross-reference this data with query data.

5.3 Longest Subsequences

To investigate what longer, possibly more complex,
queries look like, we looked at the longest common sub-
sequences of transformations (Table 4). Again, we ex-
cluded Cache and Macro transformations from presen-
tation. We again see the preponderance of Filter, Ag-
gregate, and Augment transformations. Beyond that,
the most striking feature is the preponderance of Aug-
ment transformations, particularly in the longer subse-
quences. To gain more insight into exactly what such
sequences of Augment transformations are doing, we
look more closely at such transformations in the follow-

5404 is an HTTP standard response code indicating the requested
resource was not found.

ing section.

6 Cluster Analysis

Recall from Section 5 that three of the most common
transformation types in log analysis are Filter, Aggre-
gate and Augment. To find out more details about why
and how such transformations are used, we clustered
query stages containing these types of transformations,
and then examined the distribution of transformations
across these clusters. Clustering provides an alterna-
tive to manually looking through thousands of examples
to find patterns. Similar conclusions would likely have
been arrived at using manual coding techniques (i.e.,
content analysis), but this would have been more time-
consuming.
In clustering these transformations, we investigate the
following sets of questions:
• What are the different ways in which Filter, Aggre-

gate, and Augment transformations are applied, and
how are these different ways distributed?

• Can we identify higher-level tasks and activities by
identifying related clusters of transformations? Do
these clusters allow us to identify common workflow
patterns? What can we infer about the user’s informa-
tion needs from these groups?

• How well do the commands in the Splunk query lan-
guage map to the tasks users are trying to perform?
What implications do the clusters we find have on data
transformation language design?

9
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Length Count % Queries Subsequence
2 2866 16.77 Transform | Aggregate
2 2675 6.13 Augment | Augment
2 2446 14.06 Filter | Aggregate
2 2170 12.70 Aggregate | Rename
2 1724 8.42 Filter | Augment
3 2134 12.49 Transform | Aggregate | Rename
3 1430 4.00 Augment | Augment | Augment
3 746 4.24 Aggregate | Augment | Filter
3 718 4.20 Aggregate | Join | Filter
3 717 4.20 Aggregate | Project | Filter
4 710 4.16 Aggregate | Project | Filter | Rename
4 710 4.16 Transform | Aggregate | Augment | Filter
4 694 2.71 Augment | Augment | Augment | Augment
4 472 2.73 Filter | Augment | Augment | Augment
4 234 1.37 Augment | Augment | Augment | Project
5 280 1.62 Filter | Augment | Augment | Augment | Augment
5 222 1.30 Augment | Augment | Augment | Augment | Project
5 200 0.61 Augment | Augment | Augment | Augment | Augment
5 171 1.00 Augment | Augment | Augment | Augment | Filter
5 167 0.98 Filter | Augment | Augment | Augment | Aggregate
6 161 0.94 Augment | Augment | Augment | Augment | Filter | Filter
6 160 0.94 Augment | Augment | Filter | Filter | Filter | Augment
6 160 0.94 Augment | Augment | Augment | Filter | Filter | Filter
6 148 0.87 Filter | Augment | Augment | Augment | Augment | Filter
6 102 0.60 Augment | Aggregate | Augment | Augment | Augment | Augment

Table 4: Longest common subsequences of transformations along with count of how many times such sequences
appeared, and the percent of queries they appeared in.

To cluster each set of transformations, we:
(1) parsed each query (see: Section 4)
(2) extracted the stages consisting of the given transfor-

mation type,
(3) converted the stages into feature vectors,
(4) projected these feature vectors down to a lower di-

mensional space using PCA,
(5) projected these features further down into two dimen-

sions, to allow visualization of the clusters, using t-
SNE [37], and lastly

(6) manually identified and labeled clusters in the data.
Then, to count the number of transformations in each
cluster, we use a random sample of 300 labeled exam-
ples from the clustering step to estimate the true propor-
tion of stages in each cluster within 95% confidence in-
tervals. 6

6.1 Types of Filters

Filter stages primarily consist of the use of the search

command, which almost all Splunk queries begin with,
and which allows users to both select events from a
source and filter them in a variety of ways. We clustered

6Assuming cluster distribution is multinomial with k parameters

pi we use the formula n = k−1(1−k−1)

(.05/1.96)2 (which assumes each cluster is
equally likely) to estimate the sample size required to estimate the true
parameters with a 95% confidence interval. The maximum required
size was 246.

all distinct Filter stages and discovered 11 cluster types
using 26 features7 (Figure 6). Some of the clusters over-
lap, in that some examples could belong to more than one
group. We discuss how we resolve this below.
The most common application of Filter is to use
multi-predicate logical conditions to refine an event
set, where these predicates are themselves filters of
the other types, such as those that look for matches
of a given field (e.g., search status=404), or
those that look for any event containing a specified
string (e.g., search "Authentication failure for

user: alspaugh"). When a Filter could go into mul-
tiple categories, it was placed into this one, which also
contains Filters with many predicates of the same type in
a statement with many disjunctions and negations. Thus,
it is the largest category. Considering each filter pred-
icate individually might be more informative; we leave
that to future work.
Another common Filter pulls data from a given source,
index, or host (like a SELECT clause in SQL). These re-
semble Filters that look for a match on a given field, but
return all events from a given source rather than all events
with a specific value in a specific field.
Other types of filters include those that deduplicate
events, and those that filter based on time range, index,
regular expression match, or the result of a function eval-

7See Section 11 for more information about the features used.
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Figure 6: Distribution of different types of Filter trans-
formations.

uation on the fields of each event. Lastly, some Filter
transformations include the use of macros, others, the
use of subsearches, the results of which are used as ar-
guments to further constrain the current filter.
These use cases reveal several things:
• It is helpful to be able to simultaneously treat log data

both as structured (field-value filters, similar to SQL
WHERE clauses) and as unstructured (string-contains
searches, similar to grep).

• Some commands in Splunk, like search, are heavily
overloaded. A redesign of the language could make it
easier to identify what users are doing, by bringing the
task performed and the command invoked to perform
it more in line with one another. For example, there
could be a distinct command for each task identified
above. This might also form a more intuitive basis on
which to organize a data transformation language or
interface, but would need to be evaluated for usability.

• Though it may appear that time range searches are not
as prevalent as might have be suspected given the im-
portance of the time dimension in log data, this is be-
cause the time range is most often encoded in other pa-
rameters that are passed along with the query. So time
is still one of the most important filter dimensions for
log analysis, but this is not reflected in these results.

6.2 Types of Aggregates

We discovered five Aggregate cluster types using 46 fea-
tures (Figure 7). The most common Aggregate com-
mand is stats, which applies a specific aggregation
function to any number of fields grouped by any number
of other fields and returns the result. Most often, com-
monplace aggregation functions like count, avg, and
max are used. Almost 75% of Aggregates are of this
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Figure 7: Distribution of different types of Aggregate
transformations.

type. Another 10% of Aggregates do this, but then also
prepare the output for visualization in a a chart rather
than simply return the results (see the “Visualization” tab
discussed in Section 3). Another common type of Ag-
gregate is similar to these, but first buckets events tem-
porally, aggregates each bucket, and displays the aggre-
gated value over time in a histogram. Another type first
aggregates, then sorts, then returns the top N results (e.g.,
top user). The last type groups by time, but not neces-
sarily into uniformly sized buckets (e.g., when forming
user sessions).
The takeaways from this are:
• Visualizing the results of aggregations is reasonably

popular, though much of the time, simply viewing a
table of the results suffices. Aggregations lead to the
types of relational graphics that many people are fa-
miliar with, such as bar and line graphs [36]. Users
might also appreciate having the ability to more easily
visualize the result of Filter transformations as well;
for example, using brushing and linking. 8

• For log analysis, when visualization is used, it is more
likely to visualize an aggregate value over buckets of
time than aggregated over all time.

6.3 Types of Augments

Augments add or transform a field for each event. The
most commonly used such command is eval, which is
another example of a heavily overloaded command. We
discovered eight classes of Augment use by clustering
over 127 features (Figure 8). These classes shed light
onto the results of Section 5 and reveal what some of

8Brushing and linking is an interactive visualization technique
wherein multiple views of data are linked and data highlighted in one
view (i.e., a filter) appears also highlighted in the other view (i.e., a bar
graph or heat map).
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Figure 8: Distribution of different types of Augment
transformations.

the long pipelines full of Augment transformations were
likely doing.
The most common ways users transform their
data are by manipulating strings (e.g., eval

name=concat(first, " ", last)), conditionally
updating fields (e.g., eval type=if(status>=400,

"failure", "success")), performing arithmetic
(e.g., eval pct=cnt/total*100), calculating date-
time information (e.g., eval ago=now()- time),
applying multi-valued operations (e.g., eval

nitems=mvcount(items)), or simple value as-
signments (e.g., eval thresh=5). Other Augment

operations add a field that indicates which group an
event belongs to and still others use the results of a
subsearch to update a field.
These tasks reveal that:
• Aside from filtering and aggregation, much of log

analysis consists of data munging (i.e., translating
data from one format into another, such as convert-
ing units, and reformatting strings). This is supported
by other studies of data analysis in general [28]. Such
data munging transformations could be mined to cre-
ate more intelligent logging infrastructure that outputs
data in form already more palatable to end-users, or
could be incorporated into an automated system that
converts raw logs into nicely structured information.
The more complicated transformations should be eval-
uated to identify whether the tool could be made more
expressive.

• Just as with Filter transformations, here we observe
heavily overloaded commands (i.e., eval). Refac-
toring functionality to clean up the mapping between
tasks and commands would help here for the same rea-
sons.

7 Usage Survey

The analytic results open many questions about usage
goals that can best be answered by talking to the peo-
ple who use the system. To this end, we administered a
survey to Splunk sales engineers and obtained responses
that describe the use cases, data sources, roles, and skill
sets of 39 customer organizations. Note: these are not
responses directly from customers, rather each sales en-
gineer answered each question once for each of three
customers, based on their firsthand knowledge and ex-
perience working with those customers. Figure 9 sum-
marizes the results visually.

7.1 Survey Results

The main results are:
User roles: The bulk of Splunk users are in IT and en-
gineering departments, but there is an important emerg-
ing class of users in management, marketing, sales, and
finance. This may be because more business divisions
are interleaving one or more machine generated log data
sources for business insights.
Programming experience: Although most Splunk users
are technically savvy, most only have limited to moderate
amounts of programming experience.
Splunk experience: Surprisingly, many of the cus-
tomers reported on did not consistently have expertise
with Splunk, in fact, some users had no Splunk experi-
ence. This may be an artifact of the fact that the survey
respondents were sales engineers, who may have opted
to reply about more recent or growing customer deploy-
ments.
Use cases: Along with the main user roles, the main use
cases are also IT-oriented, but, consistent with the other
responses, Splunk is sometimes used to analyze business
data.
Data sources: Correspondingly, the main type of data
explored with Splunk is typical IT data: logs from web
servers, firewalls, network devices, and so on. However,
customers also used Splunk to explore sales, customer,
and manufacturing data.
Transformations applied: Customers primarily use
Splunk to extract strings from data, perform simple arith-
metic, and manipulate date and time information. In
some cases, customers perform more complex operations
such as outlier removal and interpolation.
Statistical sophistication: Customers generally do not
use Splunk to perform very complicated statistical analy-
sis, limiting themselves to operations like computing de-
scriptive statistics and looking for correlations. In one
instance, a customer reported having a team of “math

12
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Figure 9: Summary of survey answers. Each vertical line represents a customer. Each colored grouping represents a
different question and each row in the group represents one possible response to that question. A dot is present along
a given column and row if the option corresponding to that row was selected for the question in that group, for the
customer in that column.

13
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junkies” that exported data out of Splunk, ran “very so-
phisticated batch analytics,” and then imported those re-
sults back into Splunk for reporting.
Data mash ups: The degree to which customers com-
bine data sources in their analysis varies across individ-
ual users and organizations. Some organizations almost
always combine data sources for their analysis while
a nearly equal number almost never do. This could
be in part due to diversity in Splunk expertise and use
cases.
Other tools: To better understand the ecosystem in
which Splunk exists, we asked what other data analysis
tools customers used. In keeping with their IT-oriented
roles and use cases, command line tools are frequently
used by most Splunk users, in addition to databases,
scripting languages, and desktop visualization tools like
Tableau. A significant number of customers used custom
in-house applications for analyzing their data. A rela-
tively small number used cluster computing frameworks
or analysis languages like MATLAB.
Based on these results, we make the following predic-
tions.
• IT and engineering professionals will be increasingly

called upon to use their expertise working with ma-
chine data to aid other business divisions in their
information-seeking needs, and will gain some exper-
tise in these other domains as a result (deduced from
user role and use case data).

• Classic tools of the trade for system administrators and
engineers will be increasingly picked up by less tech-
nical users with other types of training, causing an
evolution in both the features offered by the tools of
the trade as well as the skills typically held by these
other users (deduced from user role data). Although
it is likely that more people in a growing variety of
professions will learn how to program over the com-
ing years, the market for log and data analysis tools
that do not require programming experience will likely
grow even faster (deduced from programming experi-
ence data).

• There is still no “one stop shop” for data analysis and
exploration needs – customers rely on a variety of
tools depending on their needs and individual exper-
tise (based on the other tools data). This may be due
to the existence of a well-established toolchain where
different components are integrated into a holistic ap-
proach, not used disparately. Better understanding of
which parts of different tools draw users would help
both researchers and businesses that make data analy-
sis products understand where to focus their energies.

8 Conclusion

In this paper we presented detailed, quantitative data de-
scribing the process of log analysis. While there have
been a number of system administrator user studies, there
have been few if any quantitative reports on traces of user
behavior from an actual log analysis system at the level
of detail we provide. In addition, we provide qualitative
survey data for high-level context. Together these are
important sources of information that can be used to to
inform product design, guide user testing, construct sta-
tistical user models, and even create smart interfaces that
make recommendations to users to enhance their analysis
capabilities. We first summarize our main observations,
then follow with a call to action for current tool builders
and future researchers.
Filtering: In our observations, a large portion of log
analysis activity in Splunk consists of filtering. One pos-
sible explanation is that log analysis is often used to solve
problems that involve hunting down a few particular
pieces of data – a handful of abnormal events or a partic-
ular record. This could include account troubleshooting,
performance debugging, intrusion detection, and other
security-related problems. Another possible explanation
is that much of the information collected in logs, e.g.,
for debugging during development, is not useful for end-
users of the system. In other words, logs include many
different types of data logged for many different reasons,
and the difference between signal and noise may depend
on perspective.
Reformatting: Our analysis of Augment transforma-
tions suggested that most of these transformations were
for the purpose of data munging, or reformatting and
cleaning data. The prevalence of reformatting as a por-
tion of log analysis activity is likely reflective of the fact
that much log data is structured in an inconsistent, ad
hoc manner. Taken together, the prevalence of filter-
ing and reformatting activity in Splunk suggest that it
may be useful for system developers to collaborate with
the end users of such systems to ensure that data use-
ful for the day-to-day management of such systems is
collected. Alternatively, another possible explanation is
that the Splunk interface is not as useful for other types
of analysis. However, other reports indicate that indeed,
much of data analysis in general does involve a lot of data
munging [28].
Summarization: We observed that it is common in
Splunk to Aggregate log data, which is a way of summa-
rizing it. Summarization is a frequently-used technique
in data analysis in general, and is used to create some
of the more common graph types, such as bar charts
and line graphs [36]. This suggests it may be useful
to automatically create certain types of summarization
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to present to the user to save time. In log analysis with
Splunk, summarizing with respect to the time dimension
is an important use case.
The complexity of log analysis activity: We were not
able to determine whether Splunk users make use of
some of the more advanced data mining techniques pro-
posed in the literature, such as techniques for event clus-
tering and failure diagnosis [20, 25]. One possible ex-
planation for this is that due to the complexity and vari-
ability of real world problems, as well as of logged in-
formation, designing one-size-fits-all tools for these sit-
uations is not feasible. Alternatively, such analyses may
occur using custom code outside of Splunk or other an-
alytics products as part of a large toolchain, into which
we have little visibility. This idea is supported by some
of the Splunk survey results (Section 7). Other possi-
ble explanations include lack of problems that require
complicated solutions, lack of expertise, or requirements
that solutions be transparent, which may not be the case
for statistical techniques. It could also be the case that
such techniques are used, but are drowned out by the
volume of data munging activity. Finally, it may be that
we simply were not able to find more complex analyt-
ics pipelines because programmatically identifying such
higher-level activities from sequences of smaller, lower-
level steps is a difficult problem.
Log analysis outside of IT departments: Our sur-
vey results also suggest that log analysis is not just for
IT managers any longer; increasing numbers of non-
technical users need to extract business insights from
logs to drive their decision making.

9 Future Work

Need for integrated provenance collection: Under-
standably, most data that is logged is done so for the pur-
pose of debugging systems, not building detailed models
of user behavior [3]. This means that much of the con-
textual information that is highly relevant to understand-
ing user behavior is not easily available, and even basic
information must be inferred through elaborate or unreli-
able means [10]. We hope to draw attention to this issue
to encourage solutions to this problem.
Improving transformation representation: In the pro-
cess of analyzing the query data, we encountered diffi-
culties relating to the fact that many commands in the
Splunk language are heavily overloaded and can do many
different things. For example, stats can both aggregate
and rename data. When this is the case, we are more
likely to have to rely on error-prone data mining tech-
niques like clustering and classification to resolve ambi-
guities involved in automatically labeling user activities.

If the mapping between analysis tasks and analysis repre-
sentation (i.e., the analysis language) were less muddied,
it would alleviate some of the difficulties of analyzing
this activity data and pave the way for easier modeling of
user behavior.
Opportunities for predictive interfaces: Thinking for-
ward, detailed data on user behavior can be fed into ad-
vanced statistical models that return predictions about
user actions. Studies such as the one we present are im-
portant for designing such models, including identifying
what variables to model and the possible values they can
take on. Other important variables to model could in-
clude who the user is, where their data came from, and
what problems they are trying to solve. These could be
used to provide suggestions to the user about what they
might like to try, similar to how other recently successful
tools operate [27].
Further analyses of data analysis activity: Finally, in
this paper, we only presented data analysis activity from
one system. It would be informative to compare this to
data analysis activity from other systems, and on other
types of data besides log data. Thus, we make our anal-
ysis code public so others can more easily adapt and
apply our analysis to more data sets and compare re-
sults.
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11 Availability
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Abstract	

Monitoring network traffic has become increasingly 
challenging in terms of number of hosts, protocol pro-
liferation and probe placement topologies. Virtualised 
environments and cloud services shifted the focus from 
dedicated hardware monitoring devices to virtual ma-
chine based, software traffic monitoring applications. 
This paper covers the design and implementation of 
ntopng, an open-source traffic monitoring application 
designed for high-speed networks. ntopng’s key fea-
tures are large networks real-time analytics and the abil-
ity to characterise application protocols and user traffic 
behaviour. ntopng was extensively validated in various 
monitoring environments ranging from small networks 
to .it ccTLD traffic analysis.	
!
1. Introduction	

Network traffic monitoring standards such as sFlow [1] 
and NetFlow/IPFIX [2, 3] have been conceived at the 
beginning of the last decade. Both protocols have been 
designed for being embedded into physical network 
devices such as routers and switches where the network 
traffic is flowing. In order to keep up with the increas-
ing network speeds, sFlow natively implements packet 
sampling in order to reduce the load on the monitoring 
probe. While both flow and packet sampling is support-
ed in NetFlow/IPFIX, network administrators try to 
avoid these mechanisms in order to have accurate traffic 
measurement. Many routers have not upgraded their 
monitoring capabilities to support the increasing num-
bers of 1/10G ports. Unless special probes are used, 
traffic analysis based on partial data results in inaccu-
rate measurements.	


Physical devices cannot monitor virtualised environ-
ments because inter-VM traffic is not visible to the 
physical network interface. Over the years however, 
virtualisation software developers have created virtual 
network switches with the ability to mirror network 
traffic from virtual environments into physical Ethernet 
ports where monitoring probes can be attached. Recent-
ly, virtual switches such as VMware vSphere Dis-
tributed Switch or Open vSwitch natively support Net-
Flow/sFlow for inter-VM communications [4], thus 

facilitating the monitoring of virtual environments. 
These are only partial solutions because either v5 Net-
Flow (or v9 with basic information elements only) or 
inaccurate, sample-based sFlow are supported. Network 
managers need traffic monitoring tools that are able to 
spot bottlenecks and security issues while providing 
accurate information for troubleshooting the cause. This 
means that while NetFlow/sFlow can prove a quantita-
tive analysis in terms of traffic volume and TCP/UDP 
ports being used, they are unable to report the cause of 
the problems. For instance, NetFlow/IPFIX can be used 
to monitor the bandwidth used by the HTTP protocol 
but embedded NetFlow probes are unable to report that 
specific URLs are affected by large service time.	


Today a single application may be based on complex 
cloud-based services comprised of several processes 
distributed across a LAN. Until a few years ago web 
applications were constructed using a combination of 
web servers, Java-based business logic and a database 
servers. The adoption of cache servers (e.g. memcache 
and redis) and mapReduce-based databases [5] (e.g. 
Apache Cassandra and MongoDB) increased the appli-
cations’ architectural complexity. The distributed nature 
of this environment needs application level information 
to support effective network monitoring. For example, 
it is not sufficient to report which specific TCP connec-
tion has been affected by a long service time without 
reporting the nature of the transaction (e.g. the URL for 
HTTP, or the SQL query for a database server) that 
caused the bottleneck. Because modern services use 
dynamic TCP/UDP ports the network administrator 
needs to know what ports map to what application. The 
result is that traditional device-based traffic monitoring 
devices need to move towards software-based monitor-
ing probes that increase network visibility at the user 
and application level. As this activity cannot be per-
formed at network level (i.e. by observing traffic at a 
monitoring point that sees all traffic), software probes 
are installed on the physical/virtual servers where ser-
vices are provided. This enables probes to observe the 
system internals and collect information (e.g. what user/
process is responsible for a specific network connec-
tion) that would be otherwise difficult to analyse out-
side the system’s context just by looking at packets.	
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Network administrators can then view virtual and cloud 
environments in real-time. The flow-based monitoring 
paradigm is by nature unable to produce real-time in-
formation [17]. Flows statistics such as throughput can 
be computed in flow collectors only for the duration of 
the flow, which is usually between 30 and 120 seconds 
(if not more). This means that using the flow paradigm, 
network administrators cannot have a real-time traffic 
view due to the latency intrinsic to this monitoring ar-
chitecture (i.e. flows are first stored into the flow cache, 
then in the export cache, and finally sent to the collec-
tor) and also because flows can only report average 
values (i.e. the flow throughout can be computed by 
dividing the flow data volume for its duration) thus hid-
ing, for instance, traffic spikes.	


The creation of ntopng, an open-source web-based 
monitoring console, was motivated by the challenges of 
monitoring modern network topologies and the limita-
tions of current traffic monitoring protocols. The main 
goal of ntopng is the ability to provide a real-time view 
of network traffic flowing in large networks (i.e. a few 
hundred thousand hosts exchanging traffic on a multi-
Gbit link) while providing dynamic analytics able to 
show key performance indicators and bottleneck root 
cause analysis. The rest of the paper is structured as 
follow. Section 2 describes the ntopng design goals. 
Section 3 covers the ntopng architecture and its major 
software components. Section 4 evaluates the ntopng 
implementation using both real and synthetic traffic. 
Section 5 covers the open issues and future work items. 
Section 6 lists applications similar to ntopng, and final-
ly section 7 concludes the paper.	
!
2. ntopng Design Goals	

ntopng’s design is based on the experience gained from 
creating its predecessor, named ntop (and thus the name 
ntop next generation or ntopng) and first introduced in 
1998. When the original ntop was designed, networks 
were significantly different. ntopng’s design reflects 
new realities:	


• Today’s protocols are all IP-based, whereas 15 years 
ago many others existed (e.g. NetBIOS, AppleTalk, 
and IPX). Whereas only limited non-IP protocol sup-
port is needed, v4/v6 needs additional, and more ac-
curate, metrics including packet loss, retransmissions, 
and network latency.	


• In the past decade the number of computers connect-
ed to the Internet has risen significantly. Modern 
monitoring probes need to support hundreds of thou-
sand of active hosts. 	


• While computer processing power increased in the 

last decade according to the Moore’s law, system ar-
chitecture support for increasing network interface 
speeds (10/10 Mbps to 10/40 today) has not always 
been proportional. As it will be later explained it is 
necessary to keep up with current network speeds 
without dropping packets.	


• While non-IP protocols basically disappeared, appli-
cation protocols have significantly increased and they 
still change rapidly as new popular applications ap-
pear (e.g. Skype). The association UDP/TCP port 
with an application protocol is no longer static, so 
unless other techniques, such as DPI (Deep Packet 
Inspection) [6] are in place, identifying applications 
based on ports is not reliable.	


• As TLS (Transport Layer Security) [7] is becoming 
pervasive and no longer limited to secure HTTP, net-
work administrators need partial visibility of encrypt-
ed communications. 	


• The HTTP protocol has greatly changed, as it is no 
longer used to carry, as originally designed, hypertext 
only. Instead, it is now used for many other purposes 
including audio/video streaming, firewall trespassing 
and in many peer-to-peer protocols. This means that 
today HTTP no longer identifies only web-related 
activities, and thus monitoring systems need to char-
acterise HTTP traffic in detail.	


In addition to the above requirements, ntopng has been 
designed to satisfy the following goals:	


• Created as open-source software in order to let users 
study, improve, and modify it. Code availability is not 
a minor feature in networking as it enables users to 
compile and run the code on heterogeneous platforms 
and network environments. Furthermore, the adoption 
of this license allows existing open-source libraries 
and frameworks to be used by ntopng instead of cod-
ing everything from scratch as it often happens with 
closed-source applications.	


• Operate at 10 Gbit without packet loss on a network 
backbone where user traffic is flowing (i.e. average 
packet size is 512 bytes or more), and support at least 
3 Mpps (Million Packets/sec) per core on a commodi-
ty system, so that a low-end quad-core server may 
monitor a 10 Gbit link with minimal size packets (64 
bytes).	


• All monitoring data must be immediately available, 
with traffic counters updated in real-time without 
measurement latency and average counters that are 
otherwise typical of probe/collector architectures.	


• Traffic monitoring must be fully implemented in 
software with no specific hardware acceleration re-
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quirements. While many applications are now ex-
ploiting GPUs [8] or accelerated network adapters 
[9], monitoring virtual and cloud environments re-
quires pure software-based applications that have no 
dependency on specific hardware and that can be mi-
grated, as needed, across VMs.	


• In addition to raw packet capture, ntopng must sup-
port the collection of sFlow/NetFlow/IPFIX flows, so 
that legacy monitoring protocols can also be support-
ed.	


• Ability to detect and characterise the most popular 
network protocols including (but not limited to) 
Skype, BitTorrent, multimedia (VoIP and streaming), 
social (FaceBook, Twitter), and business (Citrix, We-
bex). As it will be explained below, this goal has been 
achieved by developing a specific framework instead 
of including this logic within ntopng. This avoids the 
need of modifying ntopng when new protocols are 
added to the framework.	


• Embedded web-based GUI based on HTML5 and 
dynamic web pages so that real-time monitoring data 
can be displayed using a modern, vector-based graph-
ical user interface. These requirements are the foun-
dation for the creation of rich traffic analytics.	


• Scriptable and multi-threaded monitor engine so that 
dynamic web pages can be created and accessed by 
multiple clients simultaneously.	


• Efficient monitoring engine not only in terms of 
packet processing capacity, but in its ability to operate 
on a wide range of computers, including low-power 
embedded systems as well as multi-core high-end 
servers. Support of low-end systems is necessary in 
order to embed ntopng into existing network devices 
such as Linux-based routers. This feature is to pro-
vide a low-cost solution for monitoring distributed 
and SOHO (Small Office Home Office) networks.	


• Ability to generate alerts based on traffic conditions. 
In particular the alert definition should be config-
urable my means of a script, so that users can define 
their own conditions for triggering alerts.	


• Integration with the system where traffic is observed, 
so that on selected servers, it is possible to correlate 
network events with system processes.	


The following section covers in detail the ntopng soft-
ware architecture and describes the various components 
on which the application is layered. !
3. ntopng Software Architecture	

ntopng is coded in C++ which enables source code 

portability across systems (e.g. X86, MIPS and ARM) 
and clean class-based design, while granting high exe-
cution speed.	


1. ntopng Architecture	


ntopng is divided in four software layers:	


• Ingress data layer: monitoring data can be raw pack-
ets captured from one or more network interfaces, or 
collected NetFlow/IPFIX/sFlow flows after having 
been preprocessed.	


• Monitoring engine: the ntopng core responsible for 
processing ingress data and consolidating traffic 
counters into memory.	


• Scripting engine: a thin C++ software layer that ex-
ports monitoring data to Lua-based scripts.	


• Egress data layer: interface towards external applica-
tion that can access real-time monitoring data.	


3.1.  Ingress Data Layer	

The ingress layer is responsible for receiving monitor-
ing data. Currently three network interfaces are imple-
mented:	


• libpcap Interface: capture raw packets by means of 
the popular libpcap library.	


• PF_RING Interface: capture raw packets using the 
open-source PF_RING framework for Linux systems 
[10] developed by ntop for enhancing both packet 
capture and transmission speed. PF_RING is divided 
in two parts: a kernel module that efficiently interacts 
with the operating system and network drivers, and a 
user-space library that interacts with the kernel mod-
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NetFlow/IPFIX, sFlow
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ule, and implements an API used by PF_RING-based 
applications. The main difference between libpcap 
and PF_RING, is that when using the latter it is pos-
sible to capture/receive minimum size packets at 10 
Gbit with little CPU usage using commodity network 
adapters. PF_RING features these performance fig-
ures both on physical hosts and on Linux KVM-based 
virtual machines, thus paving the way to line-rate 
VM-based traffic monitoring.	


• ØMQ Interface. The ØMQ library [12] is an open-
source portable messaging library coded in C++ that 
can be used to implement efficient distributed appli-
cations. Each application is independent, runs on its 
own memory space, and it can be deployed on the 
same host where ntopng is running, or on remote 
hosts. In ntopng it has been used to receive traffic-
related data from distributed systems. ntopng creates 
a ØMQ socket and waits for events formatted as 
JSON (JavaScript Object Notation) [16] strings en-
coded as “<element id>”: “<value>”, where <element 
id> is a numeric identifier as defined in the NetFlow/
IPFIX RFCs. The advantages of this approach with 
respect of integrating a native flow collector, are 
manyfold :	


• The complexities of flow standards are not propa-
gated to ntopng, because open-source applications 
such as nProbe [13] act as a proxy by converting 
flows into JSON strings delivered to ntopng via 
ØMQ. 

• Any non-flow network event can be collected using 
this mechanism. For instance, Linux firewall logs 
generated by netfilter, can be parsed and sent to 
ntopng just like in commercial products such as 
Cisco ASA. 

Contrary to what happens with flow-based tools where 
the probe delivers flows to the collector, when used 
over ØMQ ntopng acts as a consumer. As depicted in 
Fig 1., ntopng (as flow consumer) connects to nProbe 
(that acts as flow producer) that acts as flow probe or 
proxy (i.e. nProbe collects flows sent by a probe and 
forwards them to ntopng). Flows are converted into 
JSON messages that are read by ntopng via ØMQ.	


{“IPV4_SRC_ADDR”:”10.10.20.15","IPV4_D-
ST_ADDR":"192.168.0.200","IPV4_NEXT_HOP":
"0.0.0.0","INPUT_SNMP":0,"OUTPUT_SNMP":
0,"IN_PKTS":12,"IN_BYTES":
11693,"FIRST_SWITCHED":
1397725262,"LAST_SWITCHED":
1397725262,"L4_SRC_PORT":
80,"L4_DST_PORT":50142,"TCP_FLAGS":

27,"PROTOCOL":6,"SRC_TOS":0,"SRC_AS":
3561,"DST_AS":0,"TOTAL_FLOWS_EXP":8} 

2. NetFlow/IPFIX flow converted in JSON by nProbe 

The JSON message uses as field key the string values 
defined in the NetFlow RFC [2], so in essence this is a 
one-to-one format translation from NetFlow to JSON. 
The combination of ØMQ with redis can also be used to 
employ ntopng as a visualisation console for non-pack-
et related events. For instance at the .it ccTLD, ntopng 
receives JSON messages via ØMQ from domain name 
registration system that are accessed via the Whois 
[35], DAS (Domain Availability Service) [36] and EPP 
(Extensible Provisioning Protocol) [37] protocols. Such 
protocol messages are formatted in JSON using the 
standard field key names defined in the NetFlow RFC, 
and add extra fields for specifying custom information 
not defined in the RFC (e.g. the DNS domain name 
under registration). In essence the idea is that ntopng 
can be used to visualise any type of network related 
information, by feeding into it (via ZMQ) data format-
ted in JSON. In case the JSON stream carries unknown 
fields, ntopng will just be able to display the field on the 
web interface but the data processing will not be affect-
ed (i.e. messages with unknown field names will not be 
discarded).	


The use of JSON not only allows application complexi-
ty to be reduced but it also promotes the creation of 
arbitrary application hierarchies. In fact each ntopng 
instance can act both as a data consumer or producer.	


3. Cluster of ntopng and nProbe applications.	


When a flow is expired, ntopng propagates the JSON-
formatted flow information to the configured instance 
up one hierarchy. Each ntopng instance can collect traf-
fic information from multiple producers, and each pro-
ducer can send traffic information to multiple con-
sumers. In essence using this technique it is possible to 
create a (semi-) centralised view of a distributed moni-
toring environment simply using ntopng without any 
third party tool or process that might make the overall 
architecture more complex. 

ntopng

nProbe

ntopng
ntopng

nProbe

JSON over ZMQ
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The overhead introduced by JSON is minor, as ntopng 
can collect more than 20k flows/sec per interface. In 
case more flows need to be collected, ntopng can be 
configured to collect flows over multiple interfaces. 
Each ingress interface is self-contained with no cross-
dependencies. When an interface is configured at start-
up, ntopng creates a data polling thread bound to it. All 
the data structures, used to store monitoring data are 
defined per-interface and are not global to ntopng. This 
has the advantage that each network interface can oper-
ate independently, likely on a different CPU core, to 
create a scalable system. This design choice is one of 
the reasons for ntopng’s superior data processing per-
formance as will be shown in the following section. 

3.2. Monitoring Engine	

Data is consolidated in ntopng’s monitoring engine. 
This component is implemented as a single C++ class 
that is instantiated, one per ingress interface, in order to 
avoid performance bottlenecks due to locking when 
multiple interfaces are in use. Monitoring data is organ-
ised in flows and hosts, where by flow we mean a set of 
packets having the same 6-tuple (VLAN, Protocol, IP/
Port Source/Destination) and not as defined in flow-
based monitoring paradigms where flows have addi-
tional properties (e.g. flow duration and export). In 
ntopng a flow starts when the first packet of the flow 
arrives, and it ends when no new data belonging to the 
flow is observed for some time. Regardless of the 
ingress interface type, monitoring data is classified in 
flows. Each ntopng flow instance references two host 
instances (one for flow source and the other for flow 
destination) that are used to keep statistics about the 
two peers. This is the flow lifecycle: 

• When a packet belonging to a new flow is received, 
the monitoring engine decodes the packet and search-
es a flow instance matching the packet. If not found, a 
flow instance is created along with the two flow host 
instances if not existing. 

• The flow and host counters (e.g. bytes and packets) 
are updated according to the received packets. 

• Periodically ntopng purges flows that have been idle 
for a while (e.g. 2 minutes with no new traffic re-
ceived). Hosts with no active flows that have also 
been idle for some time are also purged from memo-
ry. 

Purging data from memory is necessary to avoid ex-
hausting all available resources and discard information 
no longer relevant. However this does not mean that 
host information is lost after data purge but that it has 
been moved to a secondary cache. Fig. 1 shows that 
monitoring engine connects with Redis [14], a key-val-

ue in-memory data store. ntopng uses redis as data 
cache where it stores: 

• JSON-serialised representation of hosts that have 
been recently purged from memory, along with their 
traffic counters. This allows hosts to be restored in 
memory whenever they receive fresh traffic while 
saving ntopng memory. 

• In case ntopng has been configured to resolve IP ad-
dress into symbolic names, redis stores the associa-
tion numeric-to-symbolic address. 

• ntopng configuration information. 

• Pending activities, such as the queue of numeric IPs, 
waiting to be resolved by ntopng.  

Redis has been selected over other popular databases 
(e.g. MySQL and memcached) for various reasons: 

• It is possible to specify whether stored data is persis-
tent or temporary. For instance, numeric-to-symbolic 
data is set to be volatile so that it is automatically 
purged from redis memory after the specified dura-
tion with no action from ntopng. Other information 
such as configuration data is saved persistently as it 
happens with most databases. 

• Redis instances can be federated. As described in [15] 
ntopng and nProbe instances can collaborate and cre-
ate a microcloud based on redis. This microcloud 
consolidates the monitoring information reported by 
instances of ntopng/nProbe in order to share traffic 
information, and effectively monitor distributed net-
works. 

• ntopng can exploit the publish/subscribe mechanisms 
offered by redis in order to be notified when a specif-
ic event happens (e.g. a host is added to the cache) 
and thus easily create applications that execute spe-
cific actions based on triggers. This mechanism is 
exploited by ntopng to distribute traffic alerts to mul-
tiple consumers using the microcloud architecture 
described later on this section. 

In ntopng all the objects can be serialised in JSON. This 
design choice allows them to be easily stored/retrieved 
from redis, exported to third party applications (e.g. 
web apps), dumped on log files, and immediately used 
in web pages though Javascript. Through JSON object 
serialisation it is possible to migrate/replicate host/flow 
objects across ntopng instances. As mentioned above, 
JSON serialisation is also used to collect flows from 
nProbe via ØMQ and import network traffic informa-
tion from other sources of data. 

In addition to the 6-tuple, ntopng attempts to detect the 
real application protocol carried by the flow. For col-
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lected flows, unless specified into the flow itself, the 
application protocol is inferred by inspecting the IP/
ports used by the flows. For instance, if there is a flow 
from a local PC to a host belonging to the Dropbox Inc 
network on a non-known port, we assume that the flow 
uses the dropbox protocol. When network interfaces 
operate on raw packets, we need to inspect the packets’ 
payload. ntopng does application protocol discovery 
using nDPI [18], a home-grown GPLv3 C library for 
deep packet inspection. To date nDPI recognises over 
170 protocols including popular ones such as BitTor-
rent, Skype, FaceBook, Twitter , Citrix and Webex. 1

nDPI is based on an a protocol-independent engine that 
implements services common to all protocols, and pro-
tocol-specific dissectors that analyse all the supported 
protocols. If nDPI is unable to identify a protocol based 
on the packet payload it can try to infer the protocol 
based on the IP/port used (e.g. TCP on port 80 is likely 
to be HTTP). nDPI can handle both plain and encrypted 
traffic: in the case of SSL (Secure Socket Layers) nDPI 
decodes the SSL certificate and it attempts to match the 
server certificate name with a service. For instance en-
crypted traffic with server certificate *.amazon.com is 
traffic for the popular Amazon web site, and *.viber.-
com identifies the traffic produced by the mobile Viber 
application. The library is designed to be used both in 
user-space inside applications like ntopng and nProbe, 
and in the kernel inside the Linux firewall. The advan-
tage of having a clean separation between nDPI and 
ntopng is that it is possible to extend/modify these two 
components independently without polluting ntopng 
with protocol-related code. As described in [19], nDPI 
accuracy and speed is comparable to similar commer-
cial products and often better than other open-source 
DPI toolkits. 
 

!
4. Application Protocol Classification vs. Traffic Char-
acterisation  

In addition to DPI, ntopng is able to characterise traffic 
based on its nature. An application’s protocol describes 

how data is transported on the wire, but it tells nothing 
about the nature of the traffic. To that end ntopng na-
tively integrates Internet domain categorisation services 
freely provided to ntopng users by http://block.si. For 
instance, traffic for cnn.com is tagged as “News and 
Media”, whereas traffic for FaceBook is tagged as 
“Social”. It is thus possible to characterise host be-
haviour with respect to traffic type, and thus tag hosts 
that perform potentially dangerous traffic (e.g. access to 
sites whose content is controversial or potentially inse-
cure) that is more likely to create security issues. This 
information may also be used to create host traffic pat-
terns that can be used to detect potential issues, such as 
when a host changes its traffic pattern profile over time; 
this might indicate the presence of viruses or unwanted 
applications. Domain categorisation services are pro-
vided as a cloud-service and accessed by ntopng via 
HTTP. In order to reduce the number of requests and 
thus minimise the network traffic necessary for this 
service, categorisation responses are cached in redis 
similar to the IP/host DNS mapping explained earlier in 
this section. 

In addition to domain classification, ntopng can also 
identify hosts that are previously marked as malicious. 
When specified at startup, ntopng can query public ser-
vices in order to track harvesters, content spammers, 
and other suspicious activities. As soon as ntopng de-
tects traffic for a new host not yet observed, it issues a 
DNS query to the Project Honeypot [34] that can report 
information about such host. Similar to what happens 
with domain categorisation, ntopng uses redis to cache 
responses (the default cache duration is 12 hours) in 
order to reduce the number of DNS queries. In case a 
host has been detected as malicious, ntopng triggers an 
alert and reports in the web interface the response re-
turned that includes threat score and type. 

3.3. Scripting Engine	

The scripting engine sits on top of the monitoring en-
gine, and it implements a Lua-based API for scripts that 
need to access monitoring data. ntopng embeds the Lua 
JIT (Just In Time) interpreter, and implements two Lua 
classes able to access ntopng internals.	


• interface: access to interface-related data, and to flow 
and host traffic statistics. 	


• ntop: it allows scripts to interact with ntopng configu-
ration and the redis cache.	


The scripting engine decouples data access from traffic 
processing through a simple Lua API. Scripts are exe-

 Please note that technically FaceBook is HTTP(S) traffic from/to FaceBook Inc. servers. This also applies to Twitter traffic. However nDPI assigns them a specific 1

application protocol Id in order to distinguish them from plain HTTP(S) traffic.
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cuted when they are requested though the embedded 
web server, or based on periodic events. ntopng imple-
ments a small cron daemon that runs scripts periodical-
ly with one second granularity. Such scripts are used to 
perform periodic activities (e.g. dump the top hosts that 
sent/received traffic in the last minute) as well data 
housekeeping. For instance every night at midnight, 
ntopng runs a script that dumps on a SQLite database 
all the hosts monitored during the last 24 hours; this 
way ntopng implements a persistent historical view of 
the recent traffic activities.	


The clear separation of traffic processing from applica-
tion logic has been a deliberate choice in ntopng. The 
processing engine (coded in C++) has been designed to 
do simple traffic-related tasks that have to be performed 
quickly (e.g. receive a packet, parse it, update traffic 
statistics and move to the next packet). The application 
logic instead can change according to user needs and 
preferences and thus it has been coded with scripts that 
access the ntopng core by means of the Lua API. Given 
that the Lua JIT is very efficient in terms of processing 
speed, this solution allows users to modify the ntopng 
business logic by simply changing scripts instead of 
modifying the C++ engine.	


dirs = ntop.getDirs() 

package.path = dirs.installdir .. "/
scripts/lua/modules/?.lua;" .. package.-
path 

require "lua_utils" 

sendHTTPHeader('text/html') 

print('<html><head><title>ntop</title></
head><body>Hello ' .. os.date(“%d.%m.
%Y”)) 

print('<li>Default ifname = ' .. inter-
face.getDefaultIfName() 

5. Simple ntopng Lua Script	


When a script accesses an ntopng object, the result is 
returned to the Lua script as a Lua table object. In no 
case Lua references C++ object instances directly, thus 
avoiding costly/error-prone object locks across lan-
guages. All ntopng data structures are lockless, and Lua 
scripts lock C++ data structures only if they scan the 
hosts or flows hash. Multiple scripts can be executed 
simultaneously, as the embedded Lua engine is multi-
threaded and reentrant.	


It is worth to remark that the scripting engine is used 
only to report information produced by the monitoring 
engine and for other periodic activities such alert trig-
gering, and not to process monitoring information. The 

design choice of having a C++-based monitoring engine 
with Lua scripts for reporting data, is a good compro-
mise in terms of performance and flexibility. This be-
cause it allows to preserve the engine efficiency while 
enabling users to customise the GUI without having to 
modify the monitoring engine.	


3.4.  Egress Data Layer	

ntopng exports monitoring data through the embedded 
HTTP server that can trigger the execution of Lua 
scripts. The web GUI is based on the Twitter Bootstrap 
JavaScript framework [20] that enables the creation of 
dynamic web pages with limited coding. All charts are 
based on the D3.JS [25] that features a rich set of 
HTML5 components that can be used to represent mon-
itoring data in an effective way.	


!
6. ntopng HTML5 Web Interface	


The embedded web server serves static pages contain-
ing JavaScript code that triggers the execution of Lua 
scripts. Such scripts access ntopng monitoring data and 
return their results to the web browser in JSON format. 
Web pages are dynamically updated every second by 
the JavaScript code present in the web pages, that re-
quests the execution of Lua scripts.	


As stated earlier in this section, ntopng can manipulate 
JSON objects natively, thus enabling non-HTML appli-
cations to use ntopng as a server for network traffic data 
as well. Through Lua scripts, it is possible to create 
REST-compliant (Representational State Transfer) [21] 
Web services on top of ntopng.	


Another way to export monitoring data from ntopng, is 
by means of log files. With the advent of high-capacity 
log processing applications such as Splunk and Elastic-
Search/Logstash, ntopng can complement traditional 
service application logs with traffic logs. This allows 
network administrators to correlate network traffic in-
formation to service status. Export in log files is per-
formed through Lua scripts that can access the monitor-
ing engine and dump data into log files or send it via the 
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syslog protocol [22], a standard for remote message 
logging.	


3.5.  System Integration	

Monitoring network traffic is not enough to have a 
complete picture of the system. Often it is necessary to 
correlate traffic with system information. For this rea-
son ntopng has been integrated (on Linux only for the 
time being) with a nProbe plugin named sprobe. Such 
plugin is based on sysdig [38], a Linux kernel module 
and library that allows system events to be captured 
from user-space, similar to what happens with libpcap. 
The plugin listens to system events such as creation/
deletion of a network connection by intercepting system 
calls such as accept() and connect(). When such events 
happen, nProbe exports process information provides 
via ØMQ this event information formatted in JSON to 
ntopng or via NetFlow/IPFIX to standard flow collec-
tors. This way ntopng, for those systems where nProbe 
is active, can associate a communication flow with a 
process name.	


7. ntopng Report on Process Information received from 
sProbe	


8. ntopng Processes Interaction Report	


In addition to network information, sProbe reports in-
formation about the process itself by looking at the /
proc filesystem.	


In particular it reports information about the memory 
being used (current and max memory), the number of 
VM page faults, and process CPU usage.	


If multiple sProbe instances feed ntopng, it is possible 
to correlate the information across system. For instance 
it is possible to see that Google Chrome on host 
192.168.2.13 is connected to ntopng running on system 
10.10.12.18. As flow information is periodically export-
ed by sProbe and not just at the beginning/end of the 
flow, ntopng can also report process activities over time 
thus combing network with system monitoring.	
!
4. Evaluation	

ntopng has been extensively tested by its users in vari-
ous heterogeneous environments. This section reports 
the results of some validation tests performed on a lab 
using both synthetic and real traffic captured on a net-
work.	


9. Tests Using Real Traffic (Average Packet Size 700 
bytes)	


The tests have been performed using ntopng v.1.1.1 
(r7100) on a system based on a low-end Intel Xeon E3-
1230 running at 3.30 GHz. ntopng monitors a 10 Gbit 
Intel network interface using PF_RING DNA v.5.6.1. 
The traffic generator and replay is pfsend, an open-
source tool part of the PF_RING toolset. In case of real 
traffic, pfsend has reproduced in loop at line rate the 
pcap file captured on a real network. In the case of syn-
thetic traffic, pfsend has generated the specified number 
of packets by forging packets with the specified hosts 
number. Please note that increasing the number of ac-
tive hosts also increases the number of active flows 
handled by ntopng. 	


The previous table reports the test with traffic captured 
on a real network and reproduced by pfsend at line rate. 
The result shows that ntopng is able to monitor a fully 
loaded 10 Gbit link without loss and with limited mem-
ory usage. Considered that the test system is a low-end 
server, this is a great result, which demonstrates that it 

Hosts 
Number PPS Gbit CPU 

Load
Packet	

Drops

Memory	

Usage

350 1’735’000 10 80% 0% 27 MB

600 1’760’000 10 80% 0% 29 MB
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is possible to monitor a fully loaded link with real traf-
fic using commodity hardware and efficient software. 
Using synthetic traffic we have studied how the number 
of monitored hosts affects the ntopng performance. In-
creasing the cardinality of hosts and flows, ntopng has 
to perform heavier operations during data structure 
lookup and periodic data housekeeping.	
!

!
10. Synthetic Traffic: Packet Size/Hosts Number vs. 
Processed Packets (PPS)	


The above figure shows how the number of hosts and 
packet size influence the number of processes packets. 
Packet capture is not a bottleneck due to the use of 
PF_RING DNA. However, ntopng’s processing engine 
performance is reduced in proportion with the number 
of active hosts and flows. Although networks usually 
have no more than a few thousand active hosts, we test-
ed ntopng’s performance across many conditions rang-
ing from a small LAN (100 hosts), a medium ISP (10k 
hosts) and large ISP (100k hosts) to a backbone (1M 
hosts). The setup we used was worst case, because, in 
practice it is not a good choice to send traffic from a 
million hosts to the same ntopng monitoring interface.	


 The PF_RING library named libzero has the ability 
to dispatch packets in zero-copy to applications, threads 
and KVM-based VMs. 

!  
11. pfdnacluster_master: PF_RING Zero Copy Traffic 
Balancing	


The open-source application pfdnacluster_master  2

can read packets from multiple devices and implement 
zero-copy traffic fan-out (i.e. the same ingress packet is 
replicated to various packet consumers) and/or traffic 
balancing. Balancing respects the flow-tuple, meaning 
that all packets of flow X will always be sent to the 
egress virtual interface Y; this mechanisms works also 
with encapsulated traffic such as GTP traffic used to 
encapsulate user traffic in mobile networks [23]. This 
application can create many egress virtual interfaces not 
limited by the number and type of physical interfaces 
from which packets are received. 

!  
12. Synthetic Traffic: Hosts Number vs. Processed 
Packets (PPS) 	


Thanks to PF_RING it is possible to balance ingress 
traffic to many virtual egress interfaces, all monitored 
by the same ntopng process that binds each packet pro-
cessing thread to a different CPU core. This practice 
enables concurrent traffic processing, as it also reduces 
the number of hosts/flows handled per interface, thus 
increasing the overall performance. In our tests we have 
decided to measure the maximum processing capability 
per interface so that we can estimate the maximum 
ntopng processing capability according to the number 
of cores available on the system. Using the results re-
ported in the previous figures, using real traffic bal-
anced across multiple virtual interfaces, ntopng could 
easily monitor multi-10 Gbit links, bringing real-time 
traffic monitoring to a new performance level.	


The previous chart above depicts the data in Fig. 10 by 
positioning the processing speed with respect to the 
number of hosts. As reported in Fig. 9 using real traffic 
on a full 10 Gbit link we have approximately 1.7 Mpps. 
At that ingress rate, ntopng can successfully handle 
more than 100K active hosts per interface, thus making 
it suitable for a large ISP. The following figure shows 
the same information as Fig. 12 in terms of Gbit instead 
of Pps (Packet/sec).	


Packet Size 64 bytes 128 bytes 512 bytes 1500 bytes
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Processed 
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Processed 
PPS

Processed 
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100 8’100’000 8’130’000 2’332’090 2’332’090

1’000 7’200’000 6’580’000 2’332’090 820’210

10’000 5’091’000 4’000’000 2’332’090 819’000

100’000 2’080’000 2’000’000 1’680’000 819’000

1’000’000 17’800 17’000 17’000 17’000
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 Source code available at https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples_libzero/pfdnacluster_master.c2
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!

!  
13. Synthetic Traffic: Hosts Number vs. Processed 
Packets (Gbit)	


Similar to processing performance, ntopng’s memory 
usage is greatly affected by the number of active hosts 
and flows. As the traffic is reproduced in loop, hosts and 
flows are never purged from memory as they receive 
continuously fresh new data.	


!  
14. Hosts Number vs. Memory Usage	


Memory usage ranges from 20 MB for 100 active hosts, 
to about 7 GB for 1 million hosts. Considered that low-
end ARM-based systems [26] such as the RaspberryPI 
and the BeagleBoard feature 512 MB of memory, their 
use enables the monitoring of ~40k simultaneous hosts 
and flows. This is an effective price-performance ratio 
given the cost ($25) and processing speed of such de-
vices. ntopng code compiles out of the box on these 
devices and also on the low-cost (99$) Ubiquity Edge-
Max router where it is able to process 1 Mpps. Both 
nProbe and ntopng run on the above mentioned plat-
forms and there are commercial companies that deploy 
such small boxes in order to complement traditional 
ping/traceroute/iperf remote monitoring with real-time 
traffic visualisation as produced by ntopng.	
!
5. Open Issues and Future Work	

While we have successfully run ntopng on systems with 
limited computation power, we are aware that in order 
to monitor a highly distributed network such as cloud 
system, it is necessary to consolidate all data in a cen-

tral location. As both VMs and small PCs have limited 
storage resources, we are working on the implementa-
tion of a cloud-based storage system that allows dis-
tributed ntopng instances to consolidate monitoring data 
onto the same data repository.	


Another future work item is the ability to further char-
acterise network traffic by assigning it a security score. 
Various companies provide something called IP reputa-
tion [24] a number which the danger potential of a giv-
en IP. We are planning to integrate cloud-based reputa-
tion services into ntopng similarly to what we have 
done for domain categorisation. This would enable spot 
monitoring of hosts that generate potentially dangerous 
network traffic.	


Finally we are planning to introduce data encryption 
and authentication in ZMQ communications. This prob-
lem was not properly addressed in ZMQ until recent 
library versions, and thus it needs also to be integrated 
into ntopng in order to guarantee secure data sharing 
across ntopng applications.	


 	


6. Related Work	

When the original ntop had been introduced in 1998 it 
was the first traffic open-source monitoring application 
embedding a web server for serving monitoring data. 
Several commercial applications that are similar to 
ntopng are available from companies such as Boundary 
[26], AppNeta FlowView [33], Lancope StealthWatch 
[31], and Riverbed Cascade [32]. However, these appli-
cations are proprietary, often available only as a SaaS 
(Software as a Service) and based on the flow-paradigm 
(thus not fully real-time nor highly accurate) These ap-
plications are difficult to integrate with other monitor-
ing systems because they are self-contained. Many open 
source network-monitoring tools are also available : 
packet analysers such as Wireshark [30], flow-based 
tools such as Vermont (VERsatile MONitoring Toolkit) 
[27] or YAF (Yet Another Flowmeter) [29]. Yet, 15 
years after its introduction, ntopng offers singular per-
formance, openness and ease of integration.	


 	


7. Final Remarks	

This paper presented ntopng, an open-source, real-time 
traffic monitoring application. ntopng is fully scriptable 
by means of an embedded Lua JIT interpreter, guaran-
teeing both flexibility and performance. Monitoring 
data is represented using HTML 5 served by the em-
bedded web server, and it can be exported to external 
monitoring applications by means of a REST API or 
through log files that can be processed by distributed 
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log processing platforms. Validations tests have demon-
strated that ntopng can effectively monitor 10 Gbit traf-
fic on commodity hardware due to its efficient process-
ing framework.	
!
8. Code Availability	

This work is distributed under the GNU GPLv3 license 
and is freely available in source format at the ntop 
home page https://svn.ntop.org/svn/ntop/trunk/ntopng/ 
for both Windows and Unix systems including Linux, 
MacOS X, and FreeBSD. The PF_RING framework 
used during the validation phase is available from 
https://svn.ntop.org/svn/ntop/trunk/PF_RING/.	
!
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Abstract
A new class of target link flooding attacks (LFA) can
cut off the Internet connections of a target area without
being detected because they employ legitimate flows to
congest selected links. Although new mechanisms for
defending against LFA have been proposed, the deploy-
ment issues limit their usages since they require modify-
ing routers. In this paper, we propose LinkScope, a novel
system that employs both the end-to-end and the hop-
by-hop network measurement techniques to capture ab-
normal path performance degradation for detecting LFA
and then correlate the performance data and traceroute
data to infer the target links or areas. Although the idea
is simple, we tackle a number of challenging issues, such
as conducting large-scale Internet measurement through
noncooperative measurement, assessing the performance
on asymmetric Internet paths, and detecting LFA. We
have implemented LinkScope with 7174 lines of C codes
and the extensive evaluation in a testbed and the Internet
show that LinkScope can quickly detect LFA with high
accuracy and low false positive rate.

Keywords: Network Security, Target Link Flooding
Attack, Noncooperative Internet Measurement

1 Introduction

DDoS attacks remain one of the major threats to the In-
ternet and recent years have witnessed a significant in-
crease in the number and the size of DDoS attacks [1,2],
not to mention the 300 Gbps direct flooding attacks on S-
pamhaus and the record-breaking 400 Gbps NTP reflec-
tion attack on CloudFlare. However, it is not difficult to
detect such bandwidth DDoS attacks, because the attack
traffic usually reaches the victim and has difference from
legitimate traffic [3].

Recent research discovered a new class of target link
flooding attacks (LFA) that can effectively cut off the In-

∗The corresponding author.

ternet connections of a target area (or guard area) without
being detected [4, 5]. More precisely, an attacker first s-
elects persistent links that connect the target area to the
Internet and have high flow density, and then instruct-
s bots to generate legitimate traffic between themselves
and public servers for congesting those links [5]. If the
paths among bots cover the target area, an attacker can al-
so send traffic among themselves to clog the network [4].

It is difficult to detect LFA because (1) the target links
are selected by an attacker. Since the target links may be
located in an AS different from that containing the target
area and the attack traffic will not reach the target area,
the victim may not even know he/she is under attack; (2)
each bot sends low-rate protocol-conforming traffic to
public servers, thus rendering signature-based detection
systems useless; (3) bots can change their traffic patterns
to evade the detection based on abnormal traffic patterns.
Although a few router-based approaches have been pro-
posed to defend against such attacks [6–8], their effec-
tiveness may be limited because they cannot be widely
deployed to the Internet immediately. Note that LFA has
been used by attackers to flood selected links of four ma-
jor Internet exchange points in Europe and Asia [6].

Therefore, it is desirable to have a practical system that
can help victims detect LFA and locate the links under
attack whenever possible so that victims may ask help
from upstream providers to mitigate the effect of LFA.
We fill this gap by proposing and implementing a system,
named LinkScope, which employs both end-to-end and
hop-by-hop network measurement techniques to achieve
this goal. The design of LinkScope exploits the nature of
LFA including (1) it causes severe congestion on persis-
tent links. Note that light congestion cannot disconnect
the target area from the Internet; (2) although the con-
gestion duration will be much shorter than that caused
by traditional bandwidth DDoS, the congestion period
caused by LFA should not be too short. Otherwise, it
cannot cause severe damage to the victim; (3) to cut of-
f the Internet connections of a target area, LFA has to

1
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continuously clog important links. Otherwise, the victim
can still access the Internet. LinkScope actively collects
samples of network path performance metrics and uses
abnormal performance degradation to detect LFA.

Although the basic idea is simple, our major contri-
butions lie in tackling a number of challenging issues to
realize a practical detection system, including:

1. Since the target links are selected by an attacker, a
user has to monitor as many paths as possible. How-
ever, the majority of existing network measuremen-
t systems have limited scalability because they re-
quire installing measurement tools on both ends of
each path [9]. We solve this issue from two aspect-
s. First, we design LinkScope as a noncooperative
measurement tool that only needs the installation on
one end of a path. Therefore it can cover much more
paths than existing systems. Second, we strategical-
ly select important paths for measurement.

2. Due to the prevalence of asymmetric routes [10], we
equip LinkScope with the capability to differentiate
the performance metrics on the forward path (i.e.,
from the host where LinkScope is running to a re-
mote host) and that on the reverse path. It empowers
a user to infer which path(s) is under attack.

3. Although network failures may also lead to abnor-
mal path metrics, they will not result in the same ef-
fect on all path metrics as that caused by LFA. For
example, LFA will cause temporal instead of per-
sistent congestion. By learning the normal profiles
of a set of path metrics, LinkScope can detect LFA,
differentiate it from network failures, and identify
different attack patterns.

4. By conducting hop-by-hop measurement,
LinkScope locates the target link or the target
area on the forward path. Although LinkScope may
not locate the target link on the reverse path in the
absence of reverse traceroute data, we will explore
possible solutions, such as reverse traceroute,
looking glass, etc, in future work.

We have implemented LinkScope with 7174 lines of
C codes and to the best of our knowledge LinkScope is
the first system that can conduct both end-to-end and
hop-by-hop noncooperative measurement. The exten-
sive evaluations in a testbed and the Internet show that
LinkScope can quickly detect LFA with high accuracy
and low false positive rate.

The rest of this paper is organized as follows. Section
2 describes LinkScope’s methodology and Section 3 de-
tails the design and implementation of LinkScope. The e-
valuation results obtained from a testbed and the Internet
are reported in Section 4. After introducing related work

in Section 5, we conclude the paper with future work in
Section 6.

2 Methodology

Topology 
Analysis

(1)

Probing
(2)

Feature 
Extraction

(3)

Detection
(4)

Localization
(5)

Additional End to End paths

Normal

AlertFeature 
vectors

Measurement 
results

End to End 
paths

Figure 1: Major steps for detecting LFA and locating tar-
get links/areas.

Fig. 1 illustrates the major steps in our methodology
for detecting LFA and locating target links/areas when-
ever possible. The first step, detailed in Section 2.1, in-
volves identifying potential target links and enumerating
a set of end-to-end paths that cover potential target links.
Depending on the available resource, we conduct non-
cooperative Internet measurement on selected paths and
Section 2.2 describes the measurement method and the
corresponding performance metrics. Section 2.3 elabo-
rates on the third and the fourth steps where the feature
extraction algorithm turns raw measurement results into
feature vectors that will be fed into the detection mod-
ule for determining the existence of LFA. If there is no
attack, the system will continue the measurement. Other-
wise, the localization mechanism, introduced in Section
2.4, will be activated for inferring the links or areas under
attack.

2.1 Topology Analysis

Adopting the noncooperative measurement approach,
LinkScope only needs to be installed on one end of an
Internet path, which is named as a prober. The curren-
t implementation of LinkScope can use almost any web
server as the other end.

There are two common strategies to deploy LinkScope.
Fig. 2(a) shows the first one, named self-initiated mea-
surement, where LinkScope runs on hosts within the
guard area. By selecting Web servers in different au-
tonomous systems (AS), a user can measure many di-
verse Internet paths for covering all possible target links.
The second scenario, as illustrated in Fig. 2(b), is the
cloud-based measurement where LinkScope runs on a
group hosts outside the guard area (e.g., virtual machines
(VM) in different data centers) and measures the paths
between themselves and hosts close to the guard area or
even hosts within the guard area. Although the latter case
is similar to the scenario of utilizing cooperative mea-
surement systems that require the control of both ends

2
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Figure 2: Deployment strategies of LinkScope.

of a path, using LinkScope can simplify the deploymen-
t, because only one end needs to install LinkScope. By
running LinkScope on hosts in diverse networks and/or s-
electing web servers in various locations, the paths under
measurement may include all possible target links.

Given a guard area, we first construct the network
topology between it and its upstream ASes by perform-
ing paris-traceroute [11] from a group of hosts (e.g., VM
in clouds or looking glasses [12] ) to web servers close
to or within the guard area, or using systems like Rock-
etfuel [13]. From the topology, we can identify potential
target links following the LFA’s strategy that selects per-
sistent links with high flow density [5]. The flow density
of a link is defined as the number of Internet paths be-
tween bots and public servers in the target area, which
include that link.

Given a set of potential target links denoted as L =
{l1, l2, ..., lM}, we select a set of paths for measurement,
which is indicated by P = {p1, p2, ..., pN}. Since there
may be more than one path traversing certain target links,
we define three rules to guide the path selection:

• For the ease of locating target links, paths that con-
tain one target link will be selected.

• The number of paths sharing the same remote host
should be minimized to avoid mutual interference.
It is desirable that each path has different remote
host.

• Similar to the second rule, the number of paths ini-
tialized by one prober should be minimized to avoid
self-induced congestion.

2.2 Measurement approaches
As LFA will congest the selected links, it will lead to
anomalies in the following path performance metrics, in-
cluding,

• Packet loss rate, which will increase because the
link is clogged;

• Round-trip time (RTT), which may also increase be-
cause of the full queue in routers under attack;

• Jitter, which may have large variations when bot-
s send intermittent bursts of packets to congest the
link [14], thus leading to variations in the queue
length;

• Number of loss pairs [15], which may increase as
a pair of probing packets may often see full queues
due to LFA;

• Available bandwidth, which will decrease because
the target link is congested;

• Packet reordering, which may increase if the router
under attack transmits packets through differen-
t routes;

• Connection failure rate, which may increase if the
target area has been isolated from the Internet due
to severe and continuous LFA.

Besides measuring the above metrics, LinkScope
should also support the following features:

• Conduct the measurements within a legitimate TCP
connection to avoid the biases or noises due to net-
work elements that process TCP/UDP packets in a
different manner and/or discard all but TCP packets
belonging to valid TCP connections.

• Perform both end-to-end and hop-by-hop measure-
ments. The former can quickly detect the anomalies
caused by LFA while the latter facilitates localizing
the target links/areas.

• Support the measurement of one-way path metrics
because of the prevalence of asymmetric routing.

To fulfill these requirements, LinkScope contains the
following three probing patterns:

3
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Figure 3: Round trip probing (RTP) pattern.

2.2.1 Round Trip Probing (RTP)

We proposed the Round Trip Probing (RTP) pattern to
measure RTT, one-way packet loss, and one-way pack-
et reordering in [16]. As shown in Fig. 3, each RTP
measurement involves sending two back-to-back prob-
ing packets (i.e., Ps(0),a(0) and Ps(1),a(1)) with customized
TCP sequence number (i.e., s(0),s(1)) and acknowledge-
ment number (i.e., a(0) and a(1)) to the remote host. The
advertising window of each probing packet is set to 2
maximal segment size (MSS) and therefore each probing
packet will elicit one response packet (i.e., Ra(1),s(1) and
Ra(2),s(2)). By analyzing the sequence numbers and the
acknowledgement numbers in the response packets, we
can decide whether there is packet loss/packet reordering
occurred on the forward path or the reverse path. If the
server supports TCP options like timestamp or SACK,
they can ease the detection of forward path packet loss
[16]. Moreover, RTT can be measured as the duration
from sending Ps(0),a(0) to receiving Ra(1),s(1).

Client

Server

Ps(0),a(0) / Ps(1),a(1)

Ra(1),s(2) / Ra(2),s(2) / Ra(3),s(2)

Figure 4: Extended two way probing (eTWP) pattern
with w = 3.

2.2.2 Extended Two Way Probing (eTWP)

We proposed the original Two Way Probing (TWP) pat-
tern for measuring one-way capacity in [17]. The extend-
ed Two Way Probing (eTWP) pattern has similar probing
packets as that of TWP. The difference is that eTWP will
induce more response packets from the remote host than
TWP does. As shown in Fig. 4, TWP(or eTWP) involves
sending two back-to-back probing packets (i.e., Ps(0),a(0)
and Ps(1),a(1)). The first probing packet uses zero adver-
tising window to prevent the server from sending back
responses on the arrival of Ps(0),a(0). In TWP, the adver-
tising window in Ps(1),a(1) is equal to 2 MSS so that it will

trigger two packets from the server [17]. Since a pack-
et train can characterize more loss patterns than a packet
pair [18], we enlarge the advertising window in Ps(1),a(1)
from 2 to w (w > 2) in eTWP. Note that increasing w
requires LinkScope to handle more patterns of response
packets.

As the server may dispatch w packets back-to-back if
its congestion window allows, we can compute the time
gap between the first and the w-th packet, denoted as Gr,
and define θr to characterize the available bandwidth on
the reverse path.

θr =
MSS× (w−1)

Gr
. (1)

Note that θr may not be equal to the real available band-
width [19] but its reduction could indicate congestion
[20].
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Figure 5: Modified recursive packet train (RPT) pattern.

2.2.3 Modified Recursive Packet Train (mRPT)

Hu et al. proposed the original recursive packet train
(RPT), which was employed in Pathneck for detecting
the location of a network path’s bottleneck [20]. The o-
riginal RPT consists of a group of load packets and a set
of TTL-limited measurement packets and Pathneck us-
es UDP packets to construct RPT. We modify RPT to
support end-to-end and hop-by-hop measurements in a
TCP connection and remove redundant packets. Fig.5
illustrates the modified RPT, denoted as mRPT, where
each rectangle is a probing packet and each parallelo-
gram indicates a response packet triggered by a probing
packet. mRPT has h pairs of small measurement pack-
ets, whose TTL values are equal to the number in those
rectangles. Since a router will send back a time exceed-
ed ICMP packet when a packet’s TTL becomes zero, a
pair of ICMP packets will be sent back after mRPT pass-
es through a router. We use GI(i) to denote the time
gap between the two ICMP packets from the i-th hop.
LinkScope does not use a fixed number of measuremen-
t packets (e.g., 30 in Pathneck [20]) because we do not
want them to reach the server and LFA usually targets on
links outside the victim’s network. Instead, LinkScope
first determines h by doing a traceroute.

4



USENIX Association  28th Large Installation System Administration Conference (LISA14) 85

The load packets are customized TCP packets that be-
long to an established TCP connection and carry an in-
valid checksum value or a TCP sequence number so that
they will be discarded by the server. There are two spe-
cial packets (i.e., R1 and R2) between the load packets
sand the measurement packets. They have the same size
as the load packets and work together to accomplish two
tasks: (1) each packet triggers the server to send back a
TCP ACK packet so that the prober can use the time gap
between these two ACK packets, denoted as GA, to esti-
mate the interval between the head and tail load packet;
(2) induce two TCP data packets from the server to start
the measurement through RTP [16]. To achieve these
goals, LinkScope prepares a long HTTP request whose
length is equal to two load packets and puts half of it to
R1 and the remaining part to R2. To force the server to
immediately send back an ACK packet on the arrival of
R1 and R2, we first send R2 and then R1, because a TCP
server will send back an ACK packet when it receives an
out-of-order TCP segment or a segment that fills a gap in
the sequence space [21].
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Figure 6: θi measured on two paths to Hong Kong.

To characterize the per-hop available bandwidth and
end-to-end available bandwidth, LinkScope defines θi

(i=1,. . . ,h) and θe as follows:

θi =
SL × (NL +2)+SM × (h− i)

GI(i)
, i = 1, . . . ,h,(2)

θe =
SL ×NL

GA
, (3)

where SL and SM denote the size of a load packet and that
of a measurement packet, respectively. NL is the number
of load packets.

Note that since the packet train structure cannot be
controlled after each hop, similar to θr, θi (or θe) may
not be an accurate estimate of per-hop available band-
width (or end-to-end available bandwidth) but their large
decrement indicates serious congestion [20]. Since LFA
will lead to severe congestion on target links, θi of the
target link or θe on the path covering the target link will
be throttled.

Fig.6 shows θi on two paths to a web server in our
campus, whose last four hops are located in the cam-
pus network. Since the last but two hops did not send
back ICMP packets, there is no θi on that hop. On the
path from Korea to Hong Kong, θi drops from around
80Mbps to around 9Mbps on the 7th hop. It is because
the bandwidth of each host in campus network is limited
to 10Mbps. On the path from Taiwan to Hong Kong, θi
is always around 9Mbps. It may be due to the fact the
first hop’s available bandwidth is around 9Mbps.

2.3 Anomaly detection

Table 1: Detail metrics measured during one probe.
Direction Metric Defination

Forward

θe Characterizing available bandwidth through mRPT.
RRFPL Packet loss rate from RTP.
RT FPL Packet loss rate from eTWP.
RRFPL2 Loss pair rate from RTP.
RT FPL2 Loss pair rate from eTWP.
RRFPR Packet reordering rate from RTP.
RT FPR Packet reordering rate from eTWP.

Reverse

θr Characterizing available bandwidth through eTWP.
RRRPL Packet loss rate from RTP.
RT RPL Packet loss rate from eTWP.
RRRPL2 Loss pair rate from RTP.
RT RPL2 Loss pair rate from eTWP.
RRRPR Packet reordering rate from RTP.
RT RPR Packet reordering rate from eTWP.

Round − trip

RT T Round-trip time.
JRT T Round-trip time variation (jitter).
FailRT P Connection failure rate in RTP.
FailTWP Connection failure rate in eTWP.

We define two metric vectors in Eqn. (4) and (5),
which cover selected performance metrics, for the for-
ward path and the reverse path, respectively. Table 1 lists
the meaning of each performance metric.
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−−−−⇀
Ff orward ={θe,RRFPL,RT FPL,RRFPL2,RT FPL2,RRFPR,

RT FPR,RT T,JRT T ,FailRT P,FailTWP}T

(4)

−−−−⇀
Freverse ={θr,RRRPL,RT RPL,RRRPL2,RT RPL2,RRRPR,

RT RPR,RT T,JRT T ,FailRT P,FailTWP}T
(5)
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Figure 7: Performance of a path from Japan to Hong
Kong over 48 hours.

LinkScope keeps collecting samples of these metrics
and builds a normal profile for each path using the data in
the absence of LFA. Since the measurement results show
a diurnal pattern, we build the normal profile for each or
several hours per day. For example, Fig. 7(a) shows the
diurnal pattern of forward path packet loss rate and θe on
a path from Japan to Hong Kong over 48 hours.

Then, LinkScope uses the Mahalanobis distance [22]
to quantify the difference between the profile and a new
round of measurement results as follows:

DM(
−⇀
F ) =

√
(
−⇀
F −

−⇀
λ )TΩ−1(

−⇀
F −

−⇀
λ )), (6)

where
−⇀
F is the metric vector from a round of measure-

ment results described in Section 3.
−⇀
λ denotes the mean

metric vector in the profile and Ω is the covariance ma-
trix .

Ω =
1

n−1

n

∑
i=1

(λi − λ̄ )(λi − λ̄ )T , (7)

where λi is the i-th metric in the profile, n is the number
of metrics and

λ̄ =
1
n

n

∑
i=1

λi. (8)

Finally, LinkScope employs the non-parametric cu-
mulative sum (CUSUM) algorithm [23] to capture the
abrupt changes in the Mahalanobis distance (i.e., DM).
The non-parametric CUSUM algorithm assumes that the
average distance is negative in normal situation and be-
comes positive when path is under attack. We use Dn
to denote the distance measured in n-th probe and turn
{Dn} into a new sequence {Xn} through

Xn = Dn −Dn, (9)
Dn = mean(Dn)+αstd(Dn), (10)

where α is an adjustable parameter, mean(Dn) is the
mean value of Dn, and std(Dn) is the standard deviation
of Dn. The non-parametric CUSUM algorithm defines a
new sequence {Yn} by Eqn. (11).

Yn =

{
(Yn−1 +Xn)

+, n > 0,
0, n = 0,

where x+ =

{
x, x > 0,
0, otherwise.

(11)
Since the Mahalanobis distance quantifies the dif-

ference between the profile and a new observation, a
measurement result showing better network performance
may also be regarded as anomalies. To remedy this prob-
lem, we only consider the alerts where the measured per-
formance metrics become worse than the normal profile
(e.g. smaller θe and larger packet loss rate) because of
the nature of LFA.

2.4 Locating the target link

P1 Pk-1

Hi Hi+1 Hi+k

Web serverProber

Hi+2

Server selected by bots

Bot Bot

Target 
link

Hi-1H1

Figure 8: Locating the target links.

When performance anomaly is detected on a forward
path, LinkScope tries to locate the target link through t-
wo steps. We use an example shown in Fig.8 to illustrate
the steps, where bots send traffic to the server selected
by bots in order to congest the link between Hi and Hi+1.

6
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First, based on the hop-by-hop measurement results from
mRPT, LinkScope knows that the path from H1 to Hi−1 is
not under attack. Second, according to the topology anal-
ysis, LinkScope will perform measurement on other path-
s that cover the hops after Hi, such as P1 going through
Hi+1 and Pk−1 covering Hi+k. If one new path (e.g. the
one covering Hi+ j) does not have poor performance like
the original path, then the target link is in the area from
Hi to Hi+ j−1. The rational behind this approach comes
from the nature of LFA that congests a selected link so
that all paths including that link will suffer from similar
performance degradation. By contrast, other paths will
not have similar patterns.

Since the paths identified in Section 2.1 may not cover
all hops on the original path, we propose the following
steps to look for new paths.

1. For a hop, Hk, we utilize high-speed scanning tool-
s such as Zmap [24] to look for web servers in
the same subnet as Hk, which can be determined
through systems like traceNET [25]. If a web server
is found, LinkScope performs traceroute to this we-
b server and checks whether the path to the server
goes through Hk.

2. We look for web servers located in the same AS as
Hk and then check whether the paths to those web
servers go through Hk.

3. We look for web servers located in the buddy prefix
[26]as Hk and then check whether the paths to those
web servers go through Hk.

4. If no such path can be found, we check next hop.

We acknowledge that this method may not be applied
to reverse paths because it is difficult to get the tracer-
oute on the reverse path (i.e., from the remote host to the
prober). In future work, we will explore two possible ap-
proaches to tackle this issue. First, the victim may com-
bine both self-initiated measurement and cloud-based
measurement using hosts under control after anomalies
are detected. Second, using reverse traceroute [27] or
looking glass [28] may be able to obtain the traceroute
on the reverse path.

3 LinkScope

In this section, we detail the design of LinkScope whose
architecture is illustrated in Fig. 9. We have implement-
ed LinkScope with 7174 lines of C codes and the exten-
sive evaluation results obtained in a testbed and the In-
ternet are reported in Section 4.

Configuration:

Anomaly detection

Raw socket

RTP Module eTWP Module

TCP connections manager

mRPT Module

NIC

Libpcap

Paths scheduler

Probes scheduler

RST packet 
filter

Probing packet size,  Response packet size,  Max TTL (i.e., h) 
for RPT,  Number of load packets (i.e., NL), Size of load 
packet(i.e., SL), Size of measurement packet(i.e., SM),      
Number of RTP probes(i.e., NRTP),  Number of TWP probes 
(i.e., NTWP),  Target URLs, ...

Measurement engine

Measurement manager

Figure 9: The architecture of LinkScope.

3.1 Measurement Manager

The original designs of RTP, TWP, and RPT are not lim-
ited to specific application layer protocol. We use HTTP
as the driving protocol because tremendous number of
web servers are publicly available for the measurement.
In future work, we will explore other protocols.

We also realize a tool named WebChecker to collect
basic information about the path and the remote server.
It runs Paris-traceroute [11] to determine the number of
hops between a prober and the server, and then sets h
so that the measurement packet in mRPT can reach the
network perimeter of the server.

WebChecker also enumerates suitable web objects in
a web server and output a set of URLs. It prefers to
fetching static web objects (e.g., figure, pdf, etc.) start-
ing from the front page of a web site and regards a web
object as a suitable one if its size is not less than 10K
bytes. Furthermore, similar to TBIT [29], WebCheck-
er will check whether the web server supports TCP op-
tions, including Timestamp, Selective Acknowledgmen-
t(SACK), and HTTP header options such as Range [30].
These options may simplify the process of LinkScope and
enhance its capability. For example, if the server sup-
ports MSS, LinkScope can control the size of response
packets. Supporting Timestamp and SACK can ease the
detection of forward path packet loss [16].

The paths scheduler in LinkScope manages a set of
probing processes, each of which conducts the measure-
ment for a path. To avoid self-induced congestion, the
path scheduler will determine when the measurement for
a certain path will be launched and how long a path will

7
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be measured. Currently, each path will be measured for
10 minutes. The probing packet size, the response pack-
et size, and the load packet size are set to 1500 bytes.
The number of load packets is 20 and the size of mea-
surement packet is 60 bytes. The number of RTP probes
and the number of TWP probes are equal to 30. All these
parameters can be configured by a user.

The collected measurement results will be sent to the
anomaly detection module for detecting LFA.

3.2 Measurement Engine

In the measurement engine, the probes scheduler man-
ages the measurements on a path. A round of measure-
ment consists of one probe based on the mRPT pattern,
NRT P probes based on the RTP pattern, and NTWP probes
based on the eTWP pattern. A probe consists of sending
the probing packets and processing the response packet-
s. After finishing a round of measurement, the probes
scheduler will deliver the parsed measurement results to
the anomaly detection module and schedule a new round
of measurement.

The mRPT, RTP, and eTWP modules are in charge
of preparing the probing packets and handling the re-
sponse packets according to the corresponding pattern-
s. Before conducting measurement based on mRPT,
LinkScope sets each measurement packet’s IPID to its T-
TL. Since each pair of measurement packets will trigger
two ICMP packets, LinkScope inspects the ICMP pack-
et’s payload, which contains the IP header and the first 8
bytes of the original packet’s data, for matching it to the
measurement packet.

It is worth noting that in each round of measuremen-
t for a path all probes are performed within one TCP
connection. Such approach can mitigate the negative ef-
fect due to firewall and instable routes, because stateful
firewall will drop packets that do not belong to any es-
tablished TCP connection and load balancer may em-
ploy the five tuple of <src IP, src Port, dst IP, dst Port,
Protocol> to select routes.

The TCP connections manager will establish and
maintain TCP connections. If the server supports TCP
options like MSS, Timestamp, and SACK, the TCP con-
nections manager will use MSS option to control the size
of response packet (i.e., the server will use the mini-
mal value between its MSS and the MSS announced by
LinkScope). It will also put the SACK-permitted option
and TCP timestamp option into the TCP SYN packet
sent from LinkScope to the server.

Since LinkScope needs to control the establishment of
TCP connections and customize probing packets (e.g.,
sequence number, acknowledgement number, advertis-
ing window), all packets are sent through raw socket.
Moreover, LinkScope uses the libpcap library to capture

all response packets and then parses them for computing
performance metrics.
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Figure 10: RST packet filter.

3.3 RST packet filter

Since LinkScope constructs all packets by itself and send-
s them out through raw socket, OS does not know how
to handle the response packets and therefore it will reply
with an RST packet to the server to close the TCP con-
nections. We employ two approaches to filter out RST
packets generated by OS.

As shown in Fig. 10(a), if the system supports netfil-
ter/iptables [31], we use it to drop all RST packets except
those generated by LinkScope. We differentiate the RST
packets from OS and that from LinkScope through the
IPID value in the IP header because LinkScope will set
the IPID value of its RST packets to a special value.

Since some hosts do not support netfilter/iptables,
such as those Planetlab nodes [32], we propose another
method as shown in Fig. 10(b). LinkScope first establish-
es a TCP connection with the web server using stream
socket (i.e., SOCK STREAM), and then uses the func-
tion setsockopt to set the TTL value in each packet gen-
erated by OS to a small value so that it will not reach the
web server. Moreover, LinkScope utilizes the libpcap li-
brary to capture the TCP three-way handshaking packets
generated by OS to record the initial sequence numbers
selected by the local host and the web server along with
other information related to the TCP connection, such as
source port, and TCP options. After that, LinkScope will
create and send probing packets through raw socket with
the help of such information.

8
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4 Evaluation

We carry out extensive experiments in a test-bed and the
Internet to evaluate LinkScope’s functionality and over-
head.

4.1 Test bed

Fig. 11 shows the topology of our test bed that connect-
s to the Internet through the campus network. All hosts
run Ubuntu system. Host 1 and Host 2 act as attacker-
s and the public server used by attackers, respectively.
D-ITG [33] is used to generate traffic for congesting the
MikroTik router in red circle. The router serves as the
bottleneck with 10Mbps bandwidth. Host 3 is a bridge
for emulating packet loss and packet reordering and Host
4 is an NAT-enable router providing port forwarding in
order to connect the web server and the LAN to the In-
ternet. In our experiment, LAN denotes the guard area
and the web server is a public server that can be accessed
by nodes in the Internet. We deploy LinkScope on Plan-
etlab nodes and Amazon EC2 instances.

Campus Network

Switch 1 Switch 2Host 3 (Switch)

Web server

D-ITG (Host 2)

LAN

Host 4 (NAT)

Prober

D-ITG (Host 1)

Router

Attack traffic 

P
ro

be
 tr

af
fic

Guard area
Testbed

Internet

Prober 1

Bottleneck

Figure 11: The topology of the testbed.

4.2 Emulated Attacks in the Test bed

To demonstrate that LinkScope can capture differen-
t kinds of LFA, we emulate four types of LFA in the
testbed and use the abnormal changes in θe to illustrate
the diverse effect due to different attacks. If the attacker
floods the bottleneck with high-volume traffic, all TCP
connections including the one for measurement are dis-
connected and θe becomes zero all the time. Therefore,
we did not show it.

Fig. 12(a) shows θe under pulsing LFA where the at-
tacker transmits high-volume bursts of traffic to congest
the bottleneck [14]. The attack traffic rate is 1600 packet-
s per second and the packet size is uniformly distributed
in the range of [600, 1400] bytes. In the absence of at-
tack, θe is close to the available bandwidth. Under the

attack, since the bottleneck is severely congested and all
connections are broken, θe becomes zero.

Fig.12(b) illustrates θe under LFA with two attack traf-
fic rates: 400 packets per second and 800 packets per
second. An attacker may change the attack traffic rate for
evading the detection. We can see that when the attack
rate decreases (or increases), θe increases (or decreases),
meaning that it can capture the changes in the attack traf-
fic rate.

Fig.12(c) represents θe under gradual LFA where the
attack traffic rate increases from zero to a value larger
than the capacity of the bottleneck. It emulates the sce-
nario of DDoS attacks in Internet where the traffic sent
from different bots may not reach the bottleneck simul-
taneously, thus showing the gradual increase in the at-
tack traffic rate. Although the TCP connection for mea-
surement was broken when the attack traffic rate almost
reached its maximal value, the decreasing trend of θe can
be employed to raise an early alarm.

Fig.12(d) demonstrates θe when a network elemen-
t randomly drops packets. It may be due to occasion-
al congestion or the use of random early drop (RED) in
routers. We can see that although θe varies its values are
still close to the available bandwidth.

Since LFA will cause severe intermittent congestion
on target links in order to cut off the Internet connec-
tions of the guard area, we can use different patterns in
performance metrics to distinguish it from other scenar-
ios, such as long-term flooding and cable cut which will
disable the Internet connection for quite a long period
of time, and even identify different types of attacks, as
demonstrated in Fig. 12.
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Figure 14: CDF of θe on path from Amsterdam to Hong
Kong.

4.3 Internet Probing

To evaluate the capability and the stability of LinkScope,
we run it on Planetlab nodes to measure paths to Hong
Kong for two days and paths to Taiwan for seven days.
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(b) LFA with variant attack traffic rates.
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Figure 12: Available bandwidth measured with different attacks from Prober 1 to testbed.
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Figure 16: CDF of θe on path from Santa Barbara to
Taipei.

Fig.13 shows the performance metrics measured on
the path from Amsterdam to Hong Kong for two days. It
demonstrates the diurnal patterns in forward path/reverse
path packet loss, RTT, and jitter. The path performance
is better and more stable in the period from 00:00 to
12:00 than that during the period from 12:00 to 24:00.
The increased loss rate may affect the measurement of
θe as some measurement results deviate during the peri-
od from 12:00 to 24:00 as shown in Fig. 13(d). Fig.14
illustrates the CDF of θe on the path from Amsterdam to
Hong Kong, where θe concentrates on 9 Mb/s.

Fig.15 demonstrates the performance metrics mea-
sured on the path from Santa Barbara (US) to Taipei for
seven days. This path has stable good performance. For
example, RTT is around 150ms and the jitter is less than
10 shown Fig. 15(a). The loss rate is less than 2% and
there is no packet reordering. The estimated end-to-end
θe is around 75Mbps as illustrated in Fig. 15(d) and
Fig.16. Since LFA will cause severe congestion during
a short duration, it will cause obvious abrupt changes in
the performance metrics and get caught by LinkScope.

4.4 Detection Performance
We first evaluate LinkScope’s false positive rate using In-
ternet measurement results on different paths, and then
assess its detection rate using emulated attacks in our test
bed.

On the paths to Hong Kong, LinkScope conducts mea-
surement once per minute for two days (48 hours). We
divide the one-day data (24 hours) into 24 sets (one set
per hour), because features are changing over time. We
use the data obtained in the first day as the training da-
ta and use the remaining data to evaluate LinkScope’s
false positive rate. Table 2 lists the false positive rates
on eight paths to Hong Kong with different α . The first
four probers are Amazon EC2 VM and the last four are

10
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Figure 13: Performance metrics measured on the path from Amsterdam to Hong Kong for two days.

Planetlab nodes. In this experiment, we divide one-day
data equally into 24 segments. The false positive rates
are all less than 10% and it decreases when α increases,
because α serves as a threshold and a larger α may cov-
er more normal scenarios. Moreover, all false positive
rates on the path from South Carolina (PL node) to Hong
Kong are 0, because the performances of all metrics are
very stable during both days. Table 2 shows that all false
positive rates are smaller than 6% when α is not less than
30.

Table 3 shows false positive rate on the paths from five
Planetlab nodes and two Amazon EC2 hosts to Taiwan.
On these paths, LinkScope conducts measurement once
per ten minutes for seven days. We also take the data in
the first day as the training data and the remaining data
for evaluation. Table 3 shows that the increases of α
can decrease the false positive rate, except the path from
US West to So-net Entertainment where no false positive
detected, as a result of the stable performances during the
two days.

By inspecting false positive cases, we find that almost
all the false positives are due to connection failure. It
may happen even without attack. Take the path from
Tokyo to Hong Kong as an example, the connection fail-
ure rate in two days is 4.06%. This rate varies over time,
such as, 0.90% during the period from 00:00 to 12:00

and 7.5% for the period from 12:00-24:00, because the
network performance is much more unstable from 12:00
to 00:00 (such as shown in Fig.13). However, in the ab-
sence of LFA, the connection failures scatters over time
while the connection failures appear continuously in the
presence of LFA.

Table 4: Detection rate.
Training data path α = 10 α = 20 α = 30

20 probes path 1 100.0% 100.0% 100.0%
20 probes path 2 100.0% 100.0% 100.0%
40 probes path 1 100.0% 100.0% 100.0%
40 probes path 2 100.0% 100.0% 100.0%

To evaluate LinkScope’s detection rate, we emulate d-
ifferent attacks between Host 1 and Host 2 as shown
Fig.11. During the pulsing LFA and gradual LFA, the
detection rate are always 100%. Because when the at-
tack traffic rate is much higher than the available band-
width, the path is congested and none response packets
can be received from the destination all the time. Ta-
ble 4 lists the detection rates when the attack traffic rate
is a little higher than the bandwidth (1.2 times of band-
width). In this case, LinkScope can still receive some
response packets and compute the measurement result-
s. Table 4 shows that the anomaly detection rates are still
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(b) Packet loss rate.
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(c) Packet reordering rate.
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Figure 15: Performance metrics measured on the path from Santa Barbara to Taipei for seven days.

Table 2: False positive rate on paths to Hong Kong.
Prober type Path α = 10 α = 20 α = 30 α = 40 α = 50

EC2 Virginia - Hong Kong 6.32% 5.99% 5.12% 4.33% 3.67%
EC2 Tokyo - Hong Kong 5.88% 4.02% 2.85% 2.07% 1.94%
EC2 Ireland - Hong Kong 8.69% 7.24 5.75% 5.23% 4.58%
EC2 Sao Paulo - Hong Kong 5.80% 2.90% 2.52% 1.55% 1.16%

PL node Tokyo - Hong Kong 2.19% 1.19% 0.60% 0.60% 0.60%
PL node Amsterdam - Hong Kong 4.18% 2.61% 1.69% 1.30% 0.91%
PL node Beijing - Hong Kong 3.54% 2.96% 2.06% 2.67% 1.28
PL node South Carolina - Hong Kong 0 0 0 0 0

Table 3: False positive rate on paths to Taiwan with different configures.
Prober type Path α = 20 α = 30 α = 40

PL node Boston - Taipei 2.17% 1.45% 0.97%
PL node Urbana - Taipei 2.18% 1.69% 1.45%
PL node Turkey - Taipei 2.20% 2.19% 1.21%
PL node Tokyo - Taipei 1.59% 3.17% 3.17%
PL node Blacksburg - Taipei 1.76% 1.25% 1.00%
PL node Tokyo - ChungHwa Telecom 2.32% 1.45% 1.01%

EC2 Sao Paulo - Taichung 6.56% 4.01% 2.15%
EC2 US West - So-net Entertainment 0 0 0

100% though the attacks cannot fully clog the bottleneck. 4.5 System load
To evaluate the system load introduced by LinkScope,
we use htop [34] to measure the client’s and web serv-

12
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Table 5: The CPU utilizations and Load average in the probing client and web server during measurement.
Probing

processes
Measurement

rate (Hz)
Probing client Web sever

Load average CPU utilization Load average CPU utilization
0 0 0.01 0.3% 0.00 0.5%
1 2 0.06 0.3% 0.00 0.5%
1 10 0.10 0.3% 0.01 0.6%
2 10 0.10 0.4% 0.01 0.6%

10 10 0.11 1.7% 0.02 0.7%
50 10 0.23 2.4% 0.08 0.8%
100 10 0.47 2.7% 0.09 0.8 %

er’s average load and average CPU utilization when
LinkScope runs with different configurations. The clien-
t, running Ubuntu 12.04 LTS system, is equipped with
Intel 3.4 GHz i7-4770 CPU, 16G memory, and 1Gbps
NIC, and the web server is equipped with Intel 2.83 GHz
Core(TM)2 Quad CPU and runs Ubuntu 12.04 LTS sys-
tem and Apache2.

Table 5 lists the results for both the client and the serv-
er. The first line represents the load and CPU utilization
without LinkScope and we ensure that no other routine
processes are executed on both machines during the mea-
surement. We can see that even when there are 100 prob-
ing process with 10Hz measurement rates, the average
loads and average CPU utilizations are still very low on
both machines, especially for the web server.

5 Related work

Network anomaly detection can be roughly divided into
two categories: performance related anomalies and se-
curity related anomalies [35]. The performance related
anomalies include transient congestion, file sever failure,
broadcast storms and so on, and security related network
anomalies are often due to DDoS attacks [36–39] that
flood the network to prevent legitimate users from ac-
cessing the services. PachScope employs various perfor-
mance metrics to detect a new class of target link flood-
ing attacks (LFA).

Anomaly detection attempts to find patterns in data,
which do not conform to expected normal behavior [40].
However, LFA can evade such detection because an at-
tacker instructs bots to generate legitimate traffic to con-
gest target links and the attack traffic will never reach the
victim’s security detection system. Instead of passively
inspecting traffic for discovering anomalies, LinkScope
conducts noncooperative active measurement to cover as
many paths as possible and captures the negative effect
of LFA on performance metrics.

Although active network measurement has been em-
ployed to detect network faults and connectivity prob-
lems [41–48], they cannot be directly used to detect and

locate LFA because of two major reasons. First, since L-
FA will cause temporal instead of persistent congestion,
existing systems that assume persistent connection prob-
lems cannot be used [41–43]. Second, since LFA avoid-
s causing BGP changes, previous techniques that rely
on route changes cannot be employed [44–47]. More-
over, the majority of active network measurement sys-
tems require installing software on both ends of a net-
work path, thus having limited scalability. To the best
of our knowledge, LinkScope is the first system that can
conduct both end-to-end and hop-by-hop noncoopera-
tive measurement, and takes into account the anomalies
caused by LFA.

Router-based approaches have been proposed to de-
fend against LFA and other smart DoS attacks [6–8, 49–
52], their effectiveness may be limited because they can-
not be widely deployed to the Internet immediately. By
contrast, LinkScope can be easily deployed because it
conducts noncooperative measurement that only requires
installation at one end of a network path. Although
LinkScope cannot defend against LFA, it can be used a-
long with traffic engineering tools to mitigate the effect
of LFA.

Existing network tomography techniques cannot be
applied to locate the target link, because they have many
impractical assumptions (e.g., multicast [53], source
routing [54]). Although binary tomography may be used
for identifying faulty network links [55], it just provides
coarse information [56] and and is not suitable for lo-
cating the link targeted by LFA, because it adopts as-
sumptions for network fault (e.g., only one highly con-
gested link in one path [57], faulty links nearest to the
source [58]). LFA can easily invalidate them. More-
over, the probers in network tomography create a mea-
surement mesh network [59,60] whereas in our scenarios
there is only one or a few probers that may not commu-
nicate with each other.

13
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6 Conclusion

In this paper, we propose a novel system, LinkScope,
to detect a new class of target link-flooding attacks (L-
FA) and locate the target link or area whenever possi-
ble. By exploiting the nature of LFA that causes severe
congestion on links that are important to the guard area,
LinkScope employs both the end-to-end and the hop-by-
hop network measurement techniques to capture abrup-
t performance degradation due to LFA. Then, it corre-
lates the measurement data and the traceroute data to in-
fer the target link or area. After addressing a number
of challenging issues, we have implemented LinkScope
with 7174 lines of C codes and conduct extensive evalu-
ation in a testbed and the Internet. The results show that
LinkScope can quickly detect LFA with high accuracy
and low false positive rate. In future work, we will con-
duct large-scale and continuous measurements to evalu-
ate LinkScope and investigate the optimal deployment of
LinkScope.
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Abstract
HTTP compression is an essential tool for web speed up
and network cost reduction. Not surprisingly, it is used
by over 95% of top websites, saving about 75% of web-
page traffic.

The currently used compression format and tools were
designed over 15 years ago, with static content in mind.
Although the web has significantly evolved since and be-
came highly dynamic, the compression solutions have
not evolved accordingly. In the current most popular
web-servers, compression effort is set as a global and
static compression-level parameter. This parameter says
little about the actual impact of compression on the re-
sulting performance. Furthermore, the parameter does
not take into account important dynamic factors at the
server. As a result, web operators often have to blindly
choose a compression level and hope for the best.

In this paper we present a novel elastic compression
framework that automatically sets the compression level
to reach a desired working point considering the instanta-
neous load on the web server and the content properties.
We deploy a fully-working implementation of dynamic
compression in a web server, and demonstrate its ben-
efits with experiments showing improved performance
and service capacity in a variety of scenarios. Additional
insights on web compression are provided by a study of
the top 500 websites with respect to their compression
properties and current practices.

1 Introduction

Controlling the performance of a web service is a chal-
lenging feat. Site load changes frequently, influenced
by variations of both access volumes and user behav-
iors. Specifically for compression, the load on the server
also depends on the properties of the user-generated con-
tent (network utilization and compression effort strongly

∗Also with Technion - Israel Institute of Technology.

depends on how compressible the data is). To maintain
good quality-of-experience, system administrators must
monitor their services and adapt their configuration to
changing conditions on a regular basis. As web-related
technologies get complex, ensuring a healthy and robust
web service requires significant expertise and constant
attention.

The increasing complexity raises the popularity of au-
tomated solutions for web configuration management [7,
25]. Ideally, an automatic configuration management
should let system administrators specify high-level de-
sired behaviors, which will then be fulfilled by the sys-
tem [32]. In this paper we add such automation function-
ality for an important server module: HTTP compres-
sion.

HTTP compression is a tool for a web-server to com-
press content before sending it to the client, thereby re-
ducing the amount of data sent over the network. In ad-
dition to typical savings of 60%-85% in bandwidth cost,
HTTP compression also improves the end-user experi-
ence by reducing the page-load latency [29]. For these
reasons, HTTP compression is considered an essential
tool in today’s web [34, 5], supported by all web-servers
and browsers, and used by over 95% of the leading web-
sites.

HTTP compression was standardized over 15 years
ago [9], and with static web pages in mind, i.e., suitable
for “compress-once, distribute-many” situations. But the
dynamic nature of Web 2.0 requires web-servers to com-
press various pages on-the-fly for each client request.
Therefore, today’s bandwidth benefits of HTTP com-
pression come with a significant processing burden.

The current most popular web-servers [28] (Apache,
nginx, IIS) have an easily-deployable support for com-
pression. Due to the significant CPU consumption of
compression, these servers provide a configurable com-
pression effort parameter, which is set as a global and
static value. The problem with this configurable param-
eter, besides its inflexibility, is that it says little about
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the actual amount of CPU cycles required to compress
the outstanding content requests. Furthermore, the pa-
rameter does not take into account important factors like
the current load on the server, response size, and content
compressibility. As a result, web operators often have
to blindly choose a compression level and hope for the
best, tending to choose a low-effort compression-level to
avoid overloading or long latencies.

Given its importance, HTTP compression has moti-
vated a number of prior studies, such as [30, 6, 15]. How-
ever, our work is unique in considering simultaneously
all aspects of compressed-web delivery: CPU, network
bandwidth, content properties and server architectures.
This combined study, and the concrete software modules
provided along with it, are crucial to address the com-
plexity of today’s web services [18].

In this paper we present a deployable elastic compres-
sion framework. This framework solves the site oper-
ator’s compression dilemma by providing the following
features: 1) setting the compression effort automatically,
2) adjusting the compression effort to meet the desired
goals, such as compression latency and CPU consump-
tion, and 3) responding to changing conditions and avail-
ability of resources in seconds. We emphasize that the
thrust of this framework is not improved compression al-
gorithms, but rather a new algorithmic wrapping layer
for optimizing the utilization of existing compression al-
gorithms.

For better understanding of the problem at hand, Sec-
tion 2 briefly surveys the key challenges of dynamic
HTTP compression in cloud platforms. Since com-
pression performance strongly depends on the content
data itself, in Section 3 we analyze HTTP content from
the top global websites, illuminating their properties
with respect to their compression size savings and re-
quired computational effort. Then we turn to describe
our solution. First we present in Section 4 a fully-
functional implementation along with its constituent al-
gorithms. Then, using a real-life workload, in Section 5
we demonstrate how the implementation operates. Sec-
tion 6 reviews background of HTTP compression and re-
lated work, and Section 7 concludes and discusses future
work.

2 Challenges

This section sketches some of the challenges of data
compression in the dynamic content era. These chal-
lenges set the ground for the study that follows in sub-
sequent sections.

2.1 Static vs. Dynamic Compression

Static content relates to files that can be served directly
from disk (images/videos/CSS/scripts etc.). Static com-
pression pre-compresses such static files and saves the
compressed forms on disk. When the static content is
requested by a decompression-enabled client (almost ev-
ery browser), the web server delivers the pre-compressed
content without needing to compress the content upon
the client’s request [27]. This mechanism enables fast
and cheap serving of content that changes infrequently.

Dynamic content, in the context of this paper, relates
to web pages that are a product of application frame-
works, such as ASP.NET, PHP, JSP, etc. Dynamic web
pages are the heart of the modern web [31]. Since dy-
namic pages can be different for each request, servers
compress them in real time. As each response must be
compressed on the fly, the dynamic compression is far
more CPU intensive than static compression. Therefore,
when a server is CPU bound it may be better not to com-
press dynamically and/or to lower the compression ef-
fort. On the other hand, at times when the application is
bound by network or database capabilities, it may be a
good idea to compress as much as possible.

2.2 CPU vs. Bandwidth Tradeoff

The focus in this paper is on compression of dynamic
content, namely unique HTML objects generated upon
client request. The uniqueness of these objects may be
the result of one or more of several causes, such as per-
sonalization, localization, randomization and others. On
the one hand, HTML compression is very rewarding in
terms of bandwidth saving, typically reducing traffic by
60-85%. On the other hand, each response needs to be
compressed on-the-fly before it is sent, consuming sig-
nificant CPU time and memory resources on the server
side.

Most server-side solutions allow choosing between
several compression algorithms and/or effort levels.
Generally speaking, algorithms and levels that compress
better also run slower and consume more resources. For
example, the popular Apache web-server offers 9 com-
pression setups with generally increasing effort levels
and decreasing output sizes.

Figure 1a presents a typical bandwidth reduction
achieved with all the 9 compression levels in an Apache
site. We intentionally postpone the full setup details to
Section 5, and just mention at this point that the average
page size in this example is 120 KB. The complemen-
tary Figure 1b shows the CPU vs. bandwidth trade-off;
the higher compression efforts of the upper levels imme-
diately translate to lower capacities of client requests.

2
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(a) Gain - bandwidth saving improves in upper levels

(b) Pain - service capacity shrinks in upper levels

(c) Pain - compression latency grows in upper levels

Figure 1: Compression gain and pain per level, of dynamic
pages with average size of 120 KB

2.3 Latency: First-Byte vs. Download-
Time Tradeoff

Web testing tools often use the Time To First Byte
(TTFB) measurement as an indication of the web server’s
efficiency and current load. The TTFB is the time from
when a browser sends an HTTP request until it gets the
first byte of the HTTP response. Some tools [12] prac-
tically grade the web-server “quality” according to the
TTFB value.

Figure 2: Compression location alternatives in the web server
side.

When compression is in use by the server, the TTFB
tends to get higher. This is because today’s dynamic
servers usually perform the following steps in a pure se-
quential manner: 1) page generation, 2) compression,
and 3) transfer. Therefore, the larger the page and the
higher the compression level, the larger the TTFB.

On the other hand, compression obviously reduces
dramatically the complete download time of a page. Al-
together, although the compression increases the TTFB,
there is no doubt that this extra delay pays itself when
considering the complete download time [14]. The open
question is how high the compression level should be to
reap download-time benefits without sacrificing latency
performance. For example, Figure 1c shows the com-
pression time of a 120 KB page, where the slowest level
takes x3 more time than the fastest level, which is a typ-
ical scenario as we show in the sequel.

2.4 Where to Compress

Optimizing data compression in the web server is very
promising, but simultaneously challenging due to the
great richness and flexibility of web architectures. Even
the basic question of where in the system compression
should be performed does not have a universal answer
fitting all scenarios. Compression can be performed
in one of several different layers in the web server
side. Figure 2 illustrates a typical architecture of a web-
application server, where each layer may be a candi-
date to perform compression: 1) the application-server
itself, 2) offloaded to a reverse-proxy, or 3) offloaded
to a central load-balancer. On first glance all these op-
tions seem equivalent in performance and cost implica-
tions. However, additional considerations must be taken
into account, such as a potential difficulty to replicate
application-servers due to software licensing costs, and
the risk of running CPU-intensive tasks on central enti-
ties like the load-balancer.

3
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3 Web-Compression Study

In this work our focus is on compression of dynamic
HTTP content in web-server environments. A study of
compression has little value without examining and rea-
soning about the data incident upon the system. There-
fore, in this section we detail a study we conducted on
real-world HTTP content delivered by servers of popu-
lar web-sites. The results and conclusions of this study
have shaped the design of our implementation and algo-
rithms, and more importantly, they motivate and guide
future work on algorithmic enhancements that can fur-
ther improve performance. Another contribution of this
study is the good view it provides on current compression
practices, which reveals significant inefficiencies that can
be solved by smarter compression.

The study examines HTML pages downloaded from
top 500 global sites. The content of the pages is analyzed
in many aspects related to their compression effort and
size savings.

3.1 Setup
We fetched the list of the top 500 global sites from
Alexa [2] in October 2012. For each site, we down-
loaded its main page at least once every hour with a
gzip-enabled browser and saved it for further process-
ing. Then, we emulated possible compression operations
performed by the origin servers, by compressing the de-
compressed form of the pages using various tools and
parameters. The analysis presented here is based on 190
consecutive downloads from each site in a span of one
week.

3.2 Content Analysis
The first layer of the study is understanding the proper-
ties of popular content. Here we are interested in their
compression ratios, their dynamism, and statistics on
how website operators choose to compress them. We ran
a basic analysis of 465 sites out of the top 500 sites. The
rest are sites that return content that is too small to com-
press. A summary is presented in Table 1, where the
numbers aggregate the entire set of one week snapshots
from all the sites.

We start with examining what the supported compres-
sion formats are, by trying each of the formats main-
tained by IANA[21]. We find that the vast majority of
the sites (85%) support “gzip” only, while 9% of that
group support “gzip” and “deflate” only. (In the current
context “gzip” and “deflate” in quotation marks refer to
standard format names. The same terms are also used in
other contexts to describe compression implementations,
as explained in Section 6.) This means that our choice

Table 1: Websites analysis - basic properties

Sites supporting “gzip” format 92%
Sites supporting “deflate” format 9%
Average download size (compressed only) 22,526
Average uncompressed file 101,786
Compression ratio (best-median-worst) 11%-25%-

53%
Fully dynamic sites 66%

Table 2: Websites analysis - web-server survey.

Developer Share
Apache 40.3%
nginx 23.9%
gws 15.3%
Microsoft 6.5%
lighttpd 1.7%
YTS 0.9%
PWS 1.1%
Others 10.2%

of gzip and deflate for our implementation and exper-
iments is applicable to the vast majority of real-world
HTTP content. As far as compression-ratio statistics go,
the median compression ratio (across sites) is 25% (4:1
compression). The best compression ratio we measured
is 11% (9:1) and the worst is 53% (∼2:1).

The next measurement of interest is the dynamism of
web content, which is the variations of supplied data in
time and across requesting clients. We found that 66%
of the sites generated a unique page every time we have
downloaded a snapshot. This is not surprising consider-
ing that dynamic pages are at the heart of Web 2.0. While
this sample does not give an accurate prediction, it does
attest to the general need for on-the-fly compression pur-
sued in this paper.

An important statistic, especially for the choice of an
implementation environment for our algorithms, relates
to the server types used by popular sites. The most pop-
ular web-server turns out to be Apache, as illustrated in
Table 2. These findings match an elaborate survey con-
ducted in November 2012 [28]. This finding was the mo-
tivator to choose Apache as the platform for implemen-
tation and evaluation of our algorithms.

3.3 Performance Analysis
Beyond the analysis of the compression ratios and exist-
ing compression practices, it is useful for our framework
to study how compression performance depends on the
actual content. The results of this study hold the potential
to guide server operators toward adopting compression
practices with good balancing of effort and size savings.
For that study we used our utilities to run performance
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Table 3: Websites performance analysis.

Sites that probably use zlib 51%
Average zlib compression level 5.02
Average added traffic if used fastest level +9.93%
Average reduced traffic if used best level -4.51%
Sites using gzip’s default (average 5.9-6.1) 200 (47%)

tests on the pages we had downloaded. These tools are
available too for download from the project’s site [36].

A summary is presented in Table 3, and later expanded
in subsequent sub-sections. From the table it is learned
that the zlib library emerges as a popular compression
library in use today. We reached this conclusion by gen-
erating many different compressed forms of each down-
loaded page using different applications, and comparing
the locally generated forms to the one we had down-
loaded. When a match is found, we project that the server
is using the matching compression code and the parame-
ters we use locally. Indeed, these tests show that at least
51% of the sites use zlib somewhere in their system: in
the server, reverse-proxy, load-balancer, or at an external
offload box. That is another reason, in addition to the
popularity of Apache, for using Apache and zlib for the
web-compression analysis below.

3.3.1 Compression level

In this sub-section we estimate which compression level
is used by each site. The results are presented in Fig-
ure 3a as a CDF curve. We found that the average esti-
mated compression level in use is 5.02 and the median is
6, which is also zlib’s default level.

3.3.2 Compression effort

We compressed the contents from all the sites using all
9 levels, and examined the CPU effort induced by the
compression levels. The results in Figure 3b show sig-
nificant effort variation across sites per level. For ex-
ample, in level 1, the slowest site (the one that required
the maximal effort) required x3.5 more CPU power than
the fastest site at the same level. In addition, there is at
least one case in which level 1 in one site runs slower
than level 9 for another site. Hence we conclude that
the algorithmic effort, exposed to the user in the form of
compression levels, cannot be used as a prediction for the
CPU effort.

3.3.3 Fastest vs. slowest levels

Levels 1 and 9 are the extreme end points of the compres-
sion capabilities offered by zlib. As such, it is interesting
to study the full tradeoff window they span between the

(a) Compression levels used in practice, assuming that the sites
use zlib-based compression code

(b) CPU effort induced by each compression level (min, aver-
age, and max)

Figure 3: Top sites analysis - levels and CPU effort.

fastest compression and the best-ratio one. Specifically,
how much more effort is needed to move from level 1 to
level 9, and what the gain is. The answer to this ques-
tion is presented for all the sites in Figure 4a. The results
show, again, that effort cannot be predicted based upon
content size and compression level alone: effort can grow
by x2 to x6.5 (y locations of the points), while the gain
in traffic reduction is anything between 9% to 27% (x
locations of the points).

3.3.4 Compression speed vs. ratio

Another important finding for our framework is that the
amount of redundancy in the page is highly correlated
with low-effort compression, even at the upper levels.
When the redundancy is high, zlib is able to find and
eliminate it with little effort, thus reducing file sizes at
low processing costs. These relations are depicted in
Figure 4b, which presents the compression speed (high
speed = low effort) versus the compression ratio (low ra-
tio = strong compression) of all the sites we examined,
when compressed locally with the default level 6.

5
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(a) Comparing the costs and gains in moving from level 1 to
level 9

(b) Time/save ratio vs. page compressibility, if all sites were
using zlib level 6 (default)

Figure 4: Top sites analysis - costs, gains, and compressibility.

3.4 Considering the Cloud Pricing Plan

Continuing the study in the direction of web service over
the cloud, we are now interested to find for each com-
pression level the totality of the operational costs when
deployed over a cloud service, i.e., the combined cost of
computing and network bandwidth. For this part of the
study we assumed an Amazon EC2 deployment, with the
prices that were available at the time of the experiment.
Clearly the results depend on the instantaneous pricing,
and as such may vary considerably. Thus the results and
conclusions of this study should be taken as an illustra-
tive example. We further assume that the offered cloud
services are fully scalable, stretching to unlimited de-
mand with a linear increase in operational costs. Figure 5
shows the optimal level on a per-site basis, revealing that
level 7 is the optimal level for most sites, but also show-
ing that some sites gain more from level 6 or 8.

Figure 5: Top sites analysis - considering a momentary pricing
plan of Amazon EC2. Cost reduction is relative to
level 1 compression. The optimal level, presented as
percentage of sites where each level is the optimal

4 Implementation

Our main contribution to compression automation is
software/infrastructure implementations that endow ex-
isting web servers with the capability to monitor and con-
trol the compression effort and utility. The main idea of
the implemented compression-optimization framework
is to adapt the compression effort to quality-parameters
and the instantaneous load at the server. This adaptation
is carried out fast enough to accommodate rapid changes
in demand, occurring in short time scales of seconds.

In this section we provide the details of two alternative
implementations and discuss their properties: Both alter-
natives are found in the project’s site [36] and are offered
for free use and modification:

System-A - A modification of the deflate module of
Apache (mod deflate) that adapts the compression
level to the instantaneous CPU load at the server.

System-B - Two separate modules work in parallel to of-
fer a flexible but more complex solution: a monitor-
and-set stand-alone process and an enhancement plu-
gin for the compression entity.

4.1 System-A
System-A is a transparent solution designed for seamless
deployment and use in any working Linux-Apache envi-
ronment. It does not require any changes in the working
code and site structure, but requires a build of Apache
with a modified mod deflate.c. The modified module
contains 100+ new lines of code in C language.

Figure 6a illustrates the system’s architecture, which
is very similar to a standard Apache. The only differ-
ence between a standard Apache and System-A, is that
the mod deflate module does not use the static compres-
sion level from the configuration file. Instead, the mod-

6
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(a) System-A: Apache with a
modified mod deflate mod-
ule

(b) System-B: monitor-and-set
and a plugin

Figure 6: Implementation architectures

ule performs the following: 1) continuously checks the
system’s load, 2) remembers what was the last compres-
sion level in use, and 3) updates periodically the com-
pression level, if needed.

The effort adaptation is performed in one-step incre-
ments and decrements. Proc. 1 gives a short pseudo-code
that presents the basic idea in a straight-forward manner.

Proc. 1 Simplified pseudo-code of the level modification
phase in mod deflate.c

1. if next update > cur time then
2. if cpu > high threshold and cur level > 1 then
3. cur level ← cur level −1
4. else if cpu < low threshold and cur level < 9

then
5. cur level ← cur level +1
6. end if
7. next update ← cur time+update interval
8. end if

4.2 System-B

System-B takes a different approach – it is agnostic to
the OS and web-server type, but it requires a change in
the original site’s code. Two separate modules in our im-
plementation work in parallel to offer fast-adapting com-
pression configuration. These are:

Monitor and set – Stand-alone process that monitors
the instantaneous load incident on the machine, and
chooses a compression setup to match the current ma-
chine conditions.

Compression plugin – Enhancement plugin for the
compression entity that uses the chosen setup to com-
press the content. It operates in a fine granularity al-
lowing to mix different setups among the outstanding
requests.

Figure 6b illustrates the implementation structure.
This solution compresses the HTML before it is being
handed back from scripting to Apache. This allows the
adaptive solution to bypass the static built-in compres-
sion mechanism and add the desired flexibility.

4.2.1 Module I – Monitor and Set

The monitor-and-set module runs as a background pro-
cess on the same machine where compression is per-
formed. Its function is essentially a control loop of the
CPU load consisting of measuring the load and control-
ling it by setting the compression level. Its implementa-
tion as a separate process from the compression module
is designed to ensure its operation even at high loads by
proper prioritization.

4.2.2 Module II – Compression Plugin

The compression plugin is designed as an enhancement,
rather than replacement, of an existing compression tool.
This design allows our scheme to work with any com-
pression tool chosen by the web-server operator or target
platform. The sole assumption made about the compres-
sion tool in use is that it has multiple compression setups,
ordered in non-descending effort levels. For example,
the widely used zlib [13] compression tool offers a se-
quence of 9 setups with generally increasing effort levels
and non-increasing compressed sizes.

This plugin code should be added at the end of an ex-
isting script code (like PHP), when the content is ready
for final processing by the web-server. The plugin uses
the setup provided by the monitor-and-set process and
invokes the platform’s compression tool with the desig-
nated setup. An important novelty of this algorithm is its
ability to implement a non-integer setup number by mix-
ing two setups in parallel. The fractional part of the setup

7
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number determines the proportion of requests to com-
press in each of the integer setups. For example, when
the input setup number is 6.2, then 80% of the requests
can be compressed with setup 6, while the rest are com-
pressed with setup 7.

4.3 Practical Considerations

We now turn to discuss the details pertaining to the spe-
cific implementations we use in the evaluation. Part of
the discussion will include special considerations when
operating in a cloud environment. Fully functional ver-
sions of this code, for different environments, can be ob-
tained from the project’s web page [36].

CPU monitoring uses platform-dependent system
tools, and further needs to take into account the under-
lying virtual environment, like the Amazon EC2 we use
in the paper. Specifically, we need to make sure that the
CPU load readout is an accurate estimate [19] of the pro-
cessing power available for better compression in the vir-
tual server. From experimentation within the Amazon
EC2 environment, we conclude that Linux utilities give
accurate CPU utilization readouts up to a cap of CPU
utilization budget determined by the purchased instance
size. For example, in an m1.small instance the maximal
available CPU is about 40%, while m1.medium provides
up to 80% CPU utilization. These CPU budgets are taken
into account in the CPU threshold parameters.

When deploying in a real system, the compression
level should not be adapted too frequently. To ensure a
graceful variation in CPU load, it is advisable to choose
a minimal interval of at least 0.5 second.

5 Proof of Concept Scenarios

After detailing our implementation of elastic web com-
pression, in this section we turn to report on usage sce-
narios and our experience with the code. For the study
we choose the Amazon EC2 environment, for both its
popularity and flexibility. In the study we compare, un-
der different scenarios of interest, the performance of our
implementation of elastic compression to the static com-
pression currently employed in popular commercial web-
servers.

Our implementation is next shown to offer the follow-
ing features:

1. Protecting against sudden demand peaks and denial-
of-service (DoS) attacks.

2. Trading server’s free CPU time for bandwidth savings
at low/medium loads.

Before dispatching to these individual scenarios, we
describe the general setup of our experiments.

(a) Workload

(b) System

Figure 7: Experiment setup - the workload is divided between
a collection of standard web-servers and servers that
run our elastic compression.

5.1 General Setup

The workload and the general setup are illustrated in Fig-
ure 7. We use EC2 instances of type m1.small, each pro-
viding 1.7 GB memory and 1 EC2 Compute Unit [3].
Each instance is a single front-end web-server, with
Ubuntu Server 12.04.2 LTS 64-bit, Apache 2.2.24 (Ama-
zon) and PHP 5.3.23. For a side-by-side comparison
with standard web-servers (“Standard”), we equipped
one or more of the servers with our elastic implementa-
tion (“Elastic”). Monitoring of the instances’ resources
and billing status is performed with Amazon Cloud-
Watch.

The workload is a 24-hour recording of 27,000 dis-
tinct users who visited a specific social network site. This
workload is typical to sites of its kind, demonstrating low
demand at 5:00 AM and high peaks around 8:00 PM, as
illustrated in Figure 7a. We replay this workload by run-
ning multiple clients from multiple machines in AWS.
Each front-end web-server receives a fraction of the re-
quests in any given time, through a load-balancer. The
fractions are depicted in Figure 7b as ws for each “Stan-
dard” server, and we for each “Elastic” server. More de-
tails are provided in each scenario separately.
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5.2 Case 1: Spike/DoS Protection

In this sub-section we use the elastic compression as a
protection utility against sudden traffic peaks and/or or-
ganized DoS attacks.

The “Elastic” maximal deflate level is set to 6, which
is the default and the most popular compression setup
of Apache (gzip level 6), as we show in Section 3. All
the web-servers share the overall traffic evenly, while one
web-server is equipped with the elastic compression. To
emulate a sudden peak or attack, we run the workload
almost normally, with one exception: on 19:40-19:45 the
service experiences a sudden 5 minutes attack, equiva-
lent to 69% additional requests comparing with a normal
high time-of-day. Figure 8a gives a zoom-in to the ac-
cess pattern of a 1 hour interval containing the 5-minutes
attack.

Figure 8b illustrates the projected latency at the clients
who managed to complete a request, showing that the
static server is saturated during the attack and also long
after it. In addition (not shown in graph), almost half
the client requests timed-out during the 5-minutes peak.
Practically, all the “Standard” servers were out of order
for at least 10 minutes. In reality, these attacks usu-
ally end up worse than that, due to client retransmission
and/or servers that fail to recover. Figure 8c shows how
the elastic compression handles the attack: it lowers the
compression effort to minimum during the attack, until it
feels that the server is no longer in distress.

5.3 Case 2: Compress More

We consider a standard web-server running low-effort
compression. More specifically, the baseline is “Stan-
dard” Apache servers running compression level 1 (a.k.a
fastest).

In this experiment, all the servers receive an equal
share of the traffic throughout the day – meaning ws =
we. While a “Standard” server uses the same compres-
sion setup all day long, an “Elastic” server selectively
changes the compression level: from 1 (fastest) to 9
(slowest). It changes the compression level according to
the sensed load at the server, in order to compress more
than the standard server when the end-users’ demand is
relatively low.

The standard machine’s CPU follows the end-users’
request pattern tightly, leaving large portion of the CPU
unused most of the day. The elastic solution uses the
free CPU for higher-effort compression most of the day,
saving additional bandwidth, whenever there are enough
unused resources for it. When demand is high, the elastic
solution returns to low-effort compression, staying below
the maximal allowed CPU consumption. In the given
scenario, the adaptive compression level managed to save

(a) Requests - additional 69% in 5 minutes interval

(b) High latency in the standard server during the peak

(c) Elastic compression level, as used in practice

Figure 8: Case 3: handling a sudden peak and/or DoS attack.

10.62% of the total traffic volume during the 24-hours
experiment.

5.4 Case 3: Reducing the 95th Percentile
Latency

We now evaluate elastic compression on the real-world
workload of another big web infrastructure1. While serv-

1The source has asked to remain anonymous, keeping its systems’
structure and performance hidden from hostiles

9
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Figure 9: Reducing p95 latency: normalized compression
times at different levels as a function of CPU uti-
lization.

ing millions requests a second, its web servers strive to
reduce response generation times for providing optimal
user experience. Therefore, a compression strategy in
such an environment should be as lightweight as possi-
ble while trying to minimize the needed bandwidth.

Measuring the latency of active real-world services is
tricky, because the service provider is mostly worried
about loosing customers that experience the worst laten-
cies. Hence, it is a common practice to consider per-
centiles and not just the average. As compression times
vary heavily among different responses we consider per-
centile p95 a representative of “heavy compressions”.

In the following experiment we compare compression
times and response sizes of levels 2, 4 and 8 as a func-
tion of CPU utilization at a web server. Figure 9 demon-
strates that the differences between compression times
at different levels grow super linearly as a function of
CPU utilization2. This presents an opportunity to sac-
rifice 10% of the egress bandwidth under heavy load in
order to drastically (x2) reduce the compression time.

6 Background and Related Work

Data compression and its effect on computer systems is
an important and well studied problem in the literature.
Here we survey some background on compression tools,
and related work on compression-related studies.

It is important to first note that the popular compres-
sion term gzip stands for several different things: a soft-
ware application [16], a file format [8, 9], and an HTTP
compression scheme. Gzip uses the deflate compres-
sion algorithm, which is a combination of the LZ77 al-
gorithm [35] and Huffman coding. Gzip was officially
adopted by the web community in the HTTP/1.1 speci-
fications [11]. The standard allows a browser to declare

2The Y-axis values were normalized/anonymized on purpose, per
the source’s request.

its gzip-decompression capability by sending the server
an HTTP request field in the form of ”Accept-Encoding:
gzip”. Gzip is the most broadly supported compression
method as of today, both by browsers and by servers.
The server, if supports gzip for the requested file, sends
a compressed version of the file, prefixed by an HTTP
response header that indicates that the returned file is
compressed. All popular servers have built-in support
or external modules for gzip compression. For exam-
ple, Apache offers mod deflate (in gzip format, despite
the misleading name) and Microsoft IIS and nginx have
built-in support.

It became a standard in the major compression tools to
offer an effort-adjustment parameter that allows the user
to trade CPU for bandwidth savings. In gzip the main pa-
rameter is called compression level, which is a number in
the range of 1 (”fastest”) to 9 (”slowest”). Lower com-
pression levels result in a faster operation, but compro-
mise for size. Higher levels result in a better compres-
sion, but slower operation. The default level provides
an accepted compromise between compression ratio and
speed, and is equivalent to compression level 6.

Industrial solutions for gzip include PCI-family
boards [22, 1], and web accelerator boxes [10] that of-
fload the CPU-intensive compression from the servers.
Although these solutions work in relatively high speeds,
they induce additional costs on the website owner. These
costs make the hardware solutions inadequate for web-
sites that choose compression for cost reduction in the
first place.

There is an extensive research on compression perfor-
mance in the context of energy-awareness in both wire-
less [4] and server [23] environments. Inline compres-
sion decision [6] presents an energy-aware algorithm for
Hadoop that answers the ”to compress or to not com-
press” question per MapReduce job. Similarly, fast filter-
ing for storage systems [17] quickly evaluates the com-
pressibility of real-time data, before writing it to stor-
age. Fine-grain adaptive compression [30] mixes com-
pressed and uncompressed packets in attempt to opti-
mize throughput when the CPU is optionally the bottle-
neck in the system. A more recent paper [15] extends
the mixing idea to scale down the degree of compression
of a single document, using a novel implementation of a
parallelized compression tool. A cloud related adaptive
compression for non-web traffic [20] focuses on how to
deal with system-metric inaccuracy in virtualized envi-
ronments. We found that this inaccuracy problem, re-
ported in July 2011 [19], no longer exists in Amazon
EC2 today. To the best of our knowledge, our paper
presents the first adaptive web compression that takes a
complex cost-aware decision with multiple documents.

In this paper we use the gzip format and zlib [13]
software library to demonstrate our algorithms, because

10
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both are considered the standard for HTTP compression.
Nevertheless, the presented algorithms are not limited
to any particular compression technology or algorithm;
they can encompass many different compression algo-
rithms and formats. In particular, they can also benefit
from inline compression techniques [24, 33, 26] when
support for these formats is added to web servers and
browsers.

7 Conclusions

In this paper we had laid out a working framework for
automatic web compression configuration. The benefits
of this framework were demonstrated in several impor-
tant scenarios over real-world environments. We believe
that this initial work opens a wide space for future re-
search on compression cost optimization in various plat-
forms, including cloud-based services. Building on the
main functionality of our proposed implementation, fu-
ture implementations and algorithms can improve cost
by tailoring compression to more system architecture and
content characteristics.
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Abstract

Solid-state drives (SSDs) are increasingly being consid-
ered as a viable alternative to rotational hard-disk drives
(HDDs). In this paper, we investigate if SSDs improve
the performance of MapReduce workloads and evalu-
ate the economics of using PCIe SSDs either in place
of or in addition to HDDs. Our contributions are (1)
a method of benchmarking MapReduce performance on
SSDs and HDDs under constant-bandwidth constraints,
(2) identifying cost-per-performance as a more pertinent
metric than cost-per-capacity when evaluating SSDs ver-
sus HDDs for performance, and (3) quantifying that
SSDs can achieve up to 70% higher performance for 2.5x
higher cost-per-performance.

Keywords:. MapReduce, Analytics, SSD, flash, perfor-
mance, economics.

1 Introduction

Solid-state drives (SSDs) are increasingly used for a va-
riety of performance-critical workloads, thanks to their
low latency (lack of seek overheads) and high throughput
(bytes-per-second and IOPS). The relatively high cost-
per-capacity of SSDs has limited their use to smaller
datasets until recently. Decreasing prices [16] and low
power-consumption [13] make them a good candidate for
workloads involving large volumes of data. The lack of
seek overhead gives them a significant advantage over
traditional hard disk drives (HDDs) for random-access
workloads such as those in key-value stores.

In this paper, we investigate the economics of using
SSDs to improve the performance of MapReduce [8], a
widely-used big-data analytics platform. As MapReduce
represents an important software platform in the datacen-
ter, the performance tradeoffs between SSDs and HDDs
for MapReduce offers critical insights for designing both
future datacenter server architectures and future big-data
application architectures.

MapReduce is traditionally considered to be a se-
quential access workload. A detailed examination of
the MapReduce IO pipeline indicates that there are IO
patterns that benefits from the hardware characteristics
of SSDs. Past studies on MapReduce SSD perfor-
mance have not yet accurately quantified any perfor-

mance gains, mostly due to previous hardware limits
constraining studies to be simulation based, on unreal-
istic virtualized environments, or comparing HDD and
SSD setups of different bandwidths (Section 2).

Our MapReduce benchmarking method seeks to com-
pare HDDs and PCIe SSDs under constant bandwidth
constraints (Section 3). We selected our hardware to an-
swer the following questions: (1) when setting up a new
cluster, how do SSDs compare against HDDs of same
aggregate bandwidth, and (2) when upgrading an HDDs-
only cluster, should one add SSDs or HDDs for better
performance. We measured performance for a collec-
tion of MapReduce jobs to cover several common IO and
compute patterns.

Our results quantify the MapReduce performance ad-
vantages of SSDs and help us identify how to config-
ure SSDs for high MapReduce performance (Section 4).
Specifically, we find that

1. For a new cluster, SSDs deliver up to 70% higher
MapReduce performance compared to HDDs of
equal aggregate IO bandwidth.

2. Adding SSDs to an existing HDD cluster improves
performance if configured properly. SSDs in hybrid
SSD/HDD clusters should be divided into multiple
HDFS and shuffle local directories.

Beyond the immediate HDD versus SSD tradeoffs, a
broader implication of our study is that the choice of stor-
age media should consider cost-per-performance in ad-
dition to the more common metric of cost-per-capacity
(Section 5). As a key benefit of SSDs is performance,
one can argue that cost-per-performance is the more im-
portant metric. Our results indicate that SSDs deliver
0-70% higher MapReduce performance, depending on
workload. On average, this translates to 2.5x higher cost-
per-performance, a gap far smaller than the orders-of-
magnitude difference in cost-per-capacity.

2 Background and Related Work

2.1 SSDs vs HDDs
The biggest advantage of SSDs over HDDs is the high
IOPS. SSDs achieve this by avoiding the physical disk
rotation and seek time. The sequential IO bandwidth is
also higher: by measuring the time taken to copy a large

1
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Figure 1: MapReduce Dataflow. Source: [19]

file, we found our HDDs could each support ∼120MBps
of sequential read or write, while our SSDs were each
capable of ∼1.3GBps sequential read or write.

The performance benefits of SSD compared to HDDs
depend on the workload. For sequential I/O workloads,
one can use multiple HDDs in parallel (assuming the
application allows parallel access) to extract bandwidth
comparable to SSD. For example, one can use 10 HDDs
of 120MBps to match the 1GBps bandwidth of an SSD.
On the other hand, realizing comparable bandwidth for
random I/O workloads can be far more expensive, as one
would need many more HDDs to offset the seek latency.
For example, if an HDD delivers an effective bandwidth
of 10 MBps for random accesses of a few MBs of data
each IO, one needs to use at least 100 of them to achieve
the same 1GBps aggregate bandwidth.

2.2 MapReduce – Dataflow

MapReduce [8] is a data-parallel processing framework
designed to process large volumes of data in parallel on
clusters of machines. In Apache Hadoop [1], a widely-
used open-source MapReduce implementation, the exe-
cution is split into map, shuffle, reduce phases. Map and
reduce phases are split into multiple tasks, each task po-
tentially running on a different machine. Each map task
takes in a set of key-value pairs (< key, value >: list),
applies the map function to each pair and emits another
set of key-value pairs (< key, value >: list). The shuf-
fle phase partitions the map output from all map tasks

such that all values corresponding to a key are in the
same partition (< key, value : list >: list), each parti-
tion can be on a different node. Each reduce task picks
these partitions, applies the reduce function per key, and
writes the output to HDFS. Figure 1 captures the flow of
data in a typical MapReduce job.

The effect of storage media, particularly SSD versus
HDD, depends on the average read/write size and the
randomness of data accesses. A typical MapReduce job
exhibits two kinds of data accesses:

Large, sequential HDFS accesses. The job reads input
splits from HDFS initially, and writes output partitions
to HDFS at the end. Each task (dotted box) performs
relatively long sequential IO of 100s of MBs. When
multiple tasks are scheduled on the same machine, they
can access the disks on the machine in parallel, with
each task accessing its own input split or output parti-
tion. Thus, an HDD-only configuration of 11 disks of
120MBps each can potentially achieve HDFS read/write
bandwidth comparable to a SSD drive of 1.3GBps.

Small, random reads and writes of shuffle intermedi-
ate data. MapReduce partitions each map output across
all the reduce tasks. This leads to significantly lower
IO size. For example, suppose a job has map tasks that
each produces 1GB of output. When divided among, say,
1,000 reduce tasks, each reduce task fetches only 1MB.
Analysis of our customer traces indicate that many de-
ployments indeed have a per-reduce shuffle granularity
of just a a few MBs or even lower.

2
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Table 1: Storage configurations used

Setup Storage Capacity Sequential Price (USD)
R/W Bandwidth

HDD-6 6 HDDs 12 TB 720 MBps 2,400
HDD-11 11 HDDs 22 TB 1300 MBps 4,400

SSD 1 SSD 1.3 TB 1300 MBps 14,000
Hybrid 6 HDDs + 1 SSD 13.3 TB 2020 MBps 16,400

The number of concurrent accesses on a node deter-
mines the extent of I/O multiplexing on the disks, which
in turn depends on the stage of job execution. The num-
ber of map or reduce tasks per node determines the num-
ber of concurrent HDFS read/write accesses. During the
shuffle phase, the map-side sort IO concurrency is de-
termined by the total number of merge-sort threads used
across all map tasks on a node. The network copy con-
currency comes from the number of map-side threads
serving the map outputs and the number of reduce-side
threads remotely fetching map outputs. The reduce-side
sort IO concurrency is also determined by the number of
merge-sort threads on the node. In practice, independent
of IO concurrency, there is negligible disk I/O for inter-
mediate data that fits in memory, while a large amount of
intermediate data leads to severe load on the disks.

A further dimension to consider is compression of
HDFS and intermediate data. Compression is a common
technique to shift load from IO to CPU. Map output com-
pression is turned on by default in Cloudera’s distribu-
tion including Apache Hadoop (CDH), as most common
kinds of data (textual, structured numerical) are readily
compressible. Job output compression is disabled by de-
fault in CDH for compatibility with historical versions.
Tuning compression allows us to examine tradeoffs in
storage media under two different IO and CPU mixes.

Based on the MapReduce dataflow and storage media
characteristics, we hypothesize that:

1. SSDs improve performance of shuffle-heavy jobs.
2. SSDs and HDDs perform similarly for HDFS-read-

heavy and HDFS-write-heavy jobs.
3. For hybrid clusters (both SSDs and HDDs), using

SSDs for intermediate shuffle data leads to signifi-
cant performance gains.

4. All else equal, enabling compression decreases per-
formance differences by shifting IO load to CPU.

2.3 Prior work

A body of work on SSD performance for MapReduce
and other big data systems is still emerging. To date,
progress on this area has been limited by the cost and
(un)availability of SSDs.

An early work on HDFS SSD performance used OS
buffer cache to simulate a fast SSD [4]. The study fo-
cused on Apache HBase [2] performance, and found
various long code paths in HDFS client affected read
throughput and prevented the full potential of SSDs to
be realized. Some of the bottlenecks have since been
eliminated from HDFS.

Another study used real SSDs, but on a virtualized
cluster, i.e., multiple virtualized Hadoop workers on a
single physical machine [12]. The experiments found
that Hadoop performs up to 3x better on SSDs. It remains
unclear how the results translate to non-virtualized envi-
ronments or environments where every virtualized node
is located on a separate physical node.

A recent follow up to [4] simulated SSD performance
as a tiered cache for HBase [9]. It found that under cer-
tain cost and workload models, a small SSD cache triples
performance while increasing monetary cost by 5%.

The closest work to ours compared Hadoop perfor-
mance on actual SSDs and HDDs [14], albeit on hard-
ware with non-uniform bandwidth and cost. The study
runs the Terasort benchmark on different storage config-
urations and found that SSD can accelerate the shuffle
phase of the MapReduce pipeline, as we already hypoth-
esized based on MapReduce IO characteristics.

Working with Cloudera’s hardware partners, we de-
signed our experiments to cover gaps in prior studies.
We compare MapReduce performance on actual HDDs
and SSDs, without virtualization, using storage hardware
of comparable bandwidths, with MapReduce configura-
tions optimized via experience at Cloudera’s customers.

3 Experimental setup

Our choice of hardware and MapReduce benchmarks is
guided by the following considerations:

• We compare SSDs vs HDDs performance under
equal-bandwidth constraints. An alternative is to
compare performance for equal-costs. We selected
the equal-bandwidth setup because it reveals the in-
trinsic features of the technology without the impact
of variable economic dynamics.

• We considered both SSDs/HDDs as storage for a
new cluster, and SSDs/HDDs as additional storage

3
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Table 2: Descriptions of MapReduce jobs

Job Description
Teragen HDFS write job, with 3-fold replication that heavily uses the network.
Terasort Job with 1:1:1 HDFS read, shuffle, and HDFS write.
Teravalidate HDFS read-heavy job that also does sort order validation (mostly HDFS read),

with some small IO in shuffle and HDFS write.
Wordcount CPU-heavy job that heavily uses the map-side combiner.
Teraread HDFS read-only job, like Teravalidate, except no sort order validation and no reduce tasks.
Shuffle Shuffle-only job, modified from randomtextwriter in hadoop-examples.
HDFS Data Write HDFS write-only job, like Teragen, except with 1-fold replication.

Table 3: Data size and CPU utilization for the MapReduce jobs. Values are normalized against Terasort.

Job Input size Shuffle size Output size CPU utilization
Teragen 0 0 3 0.99
Terasort 1 1 1 1.00

Teravalidate 1 0 0 0.60
Wordcount 1 0.07 0.09 1.47

Teraread 1 0 0 1.23
Shuffle 0 1 0 1.01

HDFS Data Write 0 0 1 0.93

to enhance an existing HDD cluster. Both scenarios
are relevant and of interest to enterprise customers.

• Our benchmark includes a series of MapReduce
jobs to cover common IO and compute patterns
seen in customer workloads. We deliberately de-
ferred a more advanced method of measuring per-
formance for multi-job workloads [5, 6]. The stand-
alone, one-job-at-a-time method allows us to more
closely examine MapReduce and storage media in-
teractions without the impact of job scheduling and
task placement algorithms.

3.1 Hardware

We used PCIe SSDs with 1.3TB capacity costing
$14,000 each, and SATA HDDs with 2TB capacity cost-
ing $400 each. Each storage device is mounted with
the Linux ext4 file system, with default options and
4KB block size. The machines are Intel Xeon 2-socket,
8-cores, 16-threads, with 10Gbps Ethernet and 48GB
RAM. They are connected as a single rack cluster.

To get a sense of the user-visible storage bandwidth
without HDFS and MapReduce, we measured the du-
ration of copying a 100GB file to each storage device.
This test indicates the SSDs can do roughly 1.3GBps se-
quential read and write, while the HDDs have roughly
120MBps sequential read and write.

Table 1 describes the storage configurations we eval-
uate. The SSD and HDD-11 setups allow us to com-
pare SSDs vs HDDs on an equal-bandwidth basis. The

HDD-6 setup serves as a baseline of IO-constrained clus-
ter. The HDD-6, HDD-11, and Hybrid setups allow us to
investigate the effects of adding either HDDs or SSDs to
an existing cluster.

3.2 MapReduce jobs
Table 2 describes the MapReduce benchmark jobs that
we use. Each is either a common benchmark, or a job
constructed specifically to isolate a stage of the MapRe-
duce IO pipeline.

More details on the jobs and our measurement method:

• Each job is set to shuffle, read, write, or sort 33GB
of data per node.

• Where possible, each job runs with either a single
wave of map tasks (Teragen, Shuffle, HDFS Data
Write), or a single wave of reduce tasks (Terasort,
Wordcount, Shuffle).

• We record average and standard deviation of job du-
ration from five runs.

• We clear the OS buffer cache on all machines be-
tween each measurement.

• We used collectl to track IO size, counts, bytes,
merges to each storage device, as well as network
and CPU utilization.

Note that the jobs here are IO-heavy jobs selected and
sized specifically to compare two different storage me-
dia. In general, real-world customer workloads have a
variety of sizes and create load for multiple resources in-
cluding IO, CPU, memory, and network.
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Table 4: Performance-relevant MapReduce 2 configurations.

Configuration Value
mapreduce.task.io.sort.mb 256
mapreduce.task.io.sort.factor 64
mapreduce.task.io.sort.spill.percent 0.8
mapreduce.reduce.shuffle.parallelcopies 10
HDFS blocksize 128 MB
yarn.nodemanager.resource.memory-mb RAM size
yarn.nodemanager.resource.cpu-vcores # of CPU threads
mapreduce.map.memory.mb 1024
mapreduce.reduce.memory.mb 1024
mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.map.java.opts -Xmx1000
mapreduce.reduce.java.opts -Xmx1000
yarn.scheduler.minimum-allocation-mb 256
mapreduce.job.reduce.slowstart.completedmaps 0.8
mapreduce.map.output.compress both true and false
mapreduce.output.compress false

Table 3 shows, for each job, the data size at a given
stage of the MapReduce IO pipeline as well as the CPU
utilization for the HDD-6 setup. The data in the table
is normalized with Terasort as baseline. It quantifies the
MapReduce job descriptions in Table 2.

3.3 MapReduce configurations
Our experiments are run on MapReduce v2 on YARN,
which does not have the notion of map and reduce slots
anymore. Map and reduce tasks are run within “contain-
ers” allocated by YARN. Most of the MapReduce con-
figurations used in our tests come from the defaults in
CDH5b1. Table 4 lists performance-related configura-
tions and the values we used. These little-known pa-
rameters are often neglected in various studies, including
SSD-related prior work [12, 14] and dedicated MapRe-
duce configuration auto-tune systems [10].

Note that these configuration are intended to be per-
formance safe. For each particular customer use case and
hardware combination, we expect there is room for fur-
ther tuning using the values here as a starting point. Fur-
ther details about MapReduce performance tuning can be
found in references such as [19, 18, 17].

4 Results

We present the results of our benchmarking in the context
of these two questions: (1) for a new cluster, should one
prefer SSDs or HDDs of same aggregate bandwidth, and
(2) for an existing cluster of HDDs, should one add SSDs
or HDDs.

4.1 SSDs vs HDDs for a new cluster

Our goal here is to compare SSDs vs HDDs of the same
aggregate bandwidth. Let us look at a straight-forward
comparison between the SSD (1 SSD) and HDD-11 (11
HDDs) configurations. Figure 2 plots the job durations
for the two storage options; the SSD values are normal-
ized against the HDD-11 values for each job. The first
graph shows results with intermediate data compressed,
and the second one without.

General Trend. SSD is better than HDD-11 for all jobs,
both with and without intermediate data compression.
However, the benefits of using SSD vary across jobs. The
SSD related improvement in performance, which is the
inverse of job duration graphed in Figure 2, range from
0% for Wordcount to 7̃0% for Teravalidate and Shuffle.

Shuffle size determines the improvement due to SSDs.
SSD does benefit shuffle, as seen in Terasort and Shuf-
fle for uncompressed intermediate data. Figure 3 plots
the IO sizes of HDFS and Shuffle accesses on HDDs and
SSDs. These IO sizes depend on the workload, the op-
erating system, the filesystem and the device being used.
Shuffle read and write IO sizes are small compared to
that of HDFS and in agreement with our discussion of
MapReduce IO patterns earlier.

Map output compression masks any improvement
due to SSDs. This is evident in the data for Terasort and
Shuffle jobs in Figure 2. We believe this is due to shuf-
fle data being served from buffer cache RAM instead of
disk. The data in Terasort and Shuffle are both highly
compressible, allowing compressed intermediate data to
fit in the buffer cache. We verified that, for larger data
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Figure 2: SSD vs HDD. Normalized job durations, lower is better.
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Figure 3: SSD vs HDD read and write IO sizes for HDFS and shuffle data.

sets (10x), the SSDs give visible benefits (20% faster job
duration) even for compressed intermediate data.

SSD also benefits HDFS read and write. A surpris-
ing result was that SSD also benefits HDFS read and
write, as indicated by Teragen, Teravalidate, Teraread,
and HDFS Data Write. Turns out that our SSD is capable
of roughly 2x the sequential IO size of the hard disks (see
Figure 3). In other words, while the application level IO
size is “large”, the hardware level IO size is determined
by the different hardware characteristics. Also, note that
these jobs do not involve large amounts of shuffle data,
so compressing intermediate data has no visible effect.

CPU heavy jobs not affected by choice of storage me-
dia. Wordcount is a CPU-heavy job that involves text
parsing and arithmetic aggregation in the map-side com-
biner. The CPU utilization was higher than that for other
jobs, and at 90% regardless of storage and compression
configurations. As the IO path is not the bottleneck, the
choice of storage media has little impact.

4.2 Adding SSDs to an existing cluster

Our goal here is to compare adding an SSD or many
HDDs to an existing cluster, and to compare the various
configurations possible in a hybrid SSD-HDD cluster.

We use a baseline cluster with 6 HDDs per node
(HDD-6). Adding an SSD or 5 HDDs to this baseline
results in the Hybrid and HDD-11 setups. On an equal
bandwidth basis, adding one SSD should ideally be com-
pared to adding 11 HDDs. Our machines do not have 17
disks; however, we believe the setups we have are enough
to give us helpful insights as discussed below.

Default configurations - Hybrid cluster sees lower
than expected benefit. Figure 4 compares job durations
for the HDD-6, HDD-11, and Hybrid setups; intermedi-
ate data is compressed in the first graph and not com-
pressed in the second. HDD-11 and Hybrid both give
visible improvement over HDD-6. However, even with
its additional hardware bandwidth (add 1 SSD vs. add 5
HDDs), the Hybrid setup leads to no improvement over
HDD-11. This observation triggered further investiga-
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Figure 4: Add SSD/HDD to an existing HDD-6 cluster. Normalized job durations, lower is better.
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Figure 5: Hybrid modes. Normalized job durations, lower is better.

tions as discussed below.

Hybrid - when HDFS and shuffle use separate stor-
age media, benefits depend on workload. The default
Hybrid configuration assigns HDDs and SSD to both the
HDFS and shuffle local directories. We test whether sep-
arating the storage media gives any improvement. Doing
so requires two more cluster configurations - HDDs for
HDFS with SSD for intermediate data, and vice versa.
Figure 5 captures the results of this experiment.

From the results, we see that the shuffle-heavy jobs
(Terasort and Shuffle) benefit from assigning SSD com-
pletely to intermediate data, while the HDFS-heavy jobs
see a penalty (Teragen, Teravalidate, Teraread, HDFS
Data Write). We see the opposite when the SSD is as-
signed to only HDFS. This is expected, as the SSD has
a higher bandwidth than 6 HDDs combined. However,
one would expect the simple hybrid to perform half way

between assigning SSD to intermediate data and HDFS.
This led to the next set of tests.

Hybrid - SSD should be split into multiple local direc-
tories. A closer look at HDFS and MapReduce imple-
mentations reveals a critical point — both the DataNode
and the NodeManager pick local directories in a round-
robin fashion. A typical setup would mount each piece of
storage hardware as a separate directory, e.g., /mnt/disk-
1, /mnt/disk-2, /mnt/ssd-1. HDFS and MapReduce both
have the concept of local directories; HDFS local direc-
tories store the actual blocks and MapReduce local di-
rectories store the intermediate shuffle data. One can
configure HDFS and MapReduce to use multiple local
directories, e.g, /mnt/disk-1 through /mnt/disk-11 plus
/mnt/ssd-1 for our Hybrid setup. When writing the in-
termediate shuffle data, the NodeManager picks the 11
HDD local directories and the single SSD directory in a
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Figure 6: Hybrid with 10 data directories on SSD. Normalized job durations, lower is better.

Table 5: Cost Comparison

Setup Cost (US$) Capacity Bandwidth US$ per TB Cost per performance
Disk 400 2 TB 120 MBps 200 1x baseline
SSD 14,000 1.3 TB 1300 MBps 10,769 2.5x baseline

round-robin fashion. Hence, when the job is optimized
for a single wave of map tasks, each local directory re-
ceives the same amount of data, and faster progress on
the SSD gets held up by slower progress on the HDDs.

So, to fully utilize the SSD, we need to split the SSD
into multiple directories to maintain equal bandwidth per
local directory. In our case, SSDs should be split into 10
directories. In our single-wave map output example, the
SSDs would then receive 10x the data directed at each
HDD, written at 10x the speed, and complete in the same
amount of time. Note that splitting the SSD into multiple
local directories improves performance, but the SSD will
fill up faster than the HDDs.

Figure 6 shows the performance of the split-SSD
setup, compared against the HDD-6, HDD-11, and
Hybrid-default setups. Splitting SSD into 10 local direc-
tories invariably leads to major improvements over the
default Hybrid setup.

5 Implications and Conclusion

Choice of storage media should also consider cost-
per-performance. Our findings suggest SSD has higher
performance compared to HDD-11. However, from an
economic point of view, the choice of storage media de-
pends on the cost-per-performance for each.

This differs from the cost-per-capacity metric ($-per-
TB) that appears more frequently in HDD vs SSD com-

parisons [16, 15, 11]. Cost-per-capacity makes sense for
capacity-constrained use cases. As the primary benefit of
SSD is high performance rather than high capacity, we
believe storage vendors and customers should also track
$-per-performance for different storage media.

From our tests, SSDs have up to 70% higher perfor-
mance, for 2.5x higher $-per-performance (Table 5, aver-
age performance divided by cost for the SSD and HDD-
11 setups). This is far lower than the 50x difference in $-
per-TB. Customers can consider paying a premium cost
to obtain up to 70% higher performance.

One caveat is that our tests focus on equal aggregate
bandwidth for SSDs and HDDs. An alternate approach
is to compare setups with equal cost. That translates to
1 SSD against 35 HDDs. We do not have the necessary
hardware to test this setup. However, we suspect the per-
formance bottleneck likely shifts from IO to CPU for our
hardware. The recommended configuration is 2 contain-
ers per core for MR2, and roughly one container per local
directory. On our hardware of 8 cores, having 35 HDDs
means either there would not be not enough containers
to keep all disks occupied, or there would be too many
containers that the CPUs are over-subscribed.

Choice of storage media should also consider the tar-
geted workload. Our tests here show that SSD benefits
vary depending on the MapReduce job involved. Hence,
the choice of storage media needs to consider the ag-
gregate performance impact across the entire production
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workload. The precise improvement depends on how
compressible the data is across all datasets, and the ra-
tio of IO versus CPU load across all jobs.
Future work. MapReduce is a crucial component of En-
terprise data hubs (EDHs) that enable data to be ingested,
processed, and analyzed in many ways. To fully under-
stand the implications of SSDs for EDHs, we need to
study the tradeoffs for other components such as HBase,
SQL-on-HDFS engines such as Impala [7], and enter-
prise search platforms such as Apache Solr [3]. These
components are much more sensitive to latency and ran-
dom access. They aggressively cache data in memory,
and cache misses heavily affect performance. SSDs
could potentially act as a cost-effective cache between
memory and disk in the storage hierarchy. We need mea-
surements on real clusters to verify.

Our evaluation here relies on standalone execution
of each job on a specific kind of HDD and SDD, that
allowed tuning each individual job for optimal perfor-
mance. We would like to follow this up with an eval-
uation of multi-job workloads [5, 6] that might present
another set of challenges.

Different devices (particularly other SSDs) offer dif-
ferent cost-performance tradeoffs, and it would be in-
teresting to find out the economics there. In particular,
SATA SSDs possibly offer different cost-performance
characteristics compared with the PCIe SSDs studied
here. Researchers in academia are in a good position to
partner with different SSD vendors and conduct a broad
survey.

Overall, SSD economics involves the interplay be-
tween ever-improving software and hardware, as well as
ever-evolving customer workloads. The precise trade-off
between SSDs, HDDs, and memory deserves regular re-
examination over time.
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Abstract
Historically, traces have been used by system designers
for designing and testing their systems. However, traces
are becoming very large and difficult to store and man-
age. Thus, the area of creating models based on traces
is gaining traction. Prior art in trace modeling has pri-
marily dealt with modeling block traces, and file/NAS
traces collected from virtualized clients which are essen-
tially block I/O’s to the storage server. No prior art exists
in modeling file traces. Modeling file traces is difficult
because of the presence of meta-data operations and the
statefulness NFS operation semantics.

In this paper we present an algorithm and a unified
framework that models and replays NFS as well SAN
workloads. Typically, trace modeling is a resource in-
tensive process where multiple passes are made over the
entire trace. In this paper, in addition to being able to
model the intricacies of the NFS protocol, we provide an
algorithm that is efficient with respect to its resource con-
sumption needs by using a Bloom Filter based sampling
technique. We have verified our trace modeling algo-
rithm on real customer traces and show that our modeling
error is quite low.

1 Introduction

Historically, benchmarks and traces have been used by
system designers for designing and testing their sys-
tems. Designing new benchmarks corresponding to new
emerging workloads, and getting them approved via
standards bodies is a tedious and time consuming pro-
cess. Thus, system designers usually use workload traces
(each scoped to a particular system and application) to
validate and verify their designs. However, in order to
get a decent representation of an application, one typi-
cally needs to capture a trace for a few hours, and for
many new emerging applications, this usually leads to
the storing of multiple terabytes of data. There have been
numerous proposals [6, 13–15] where traces have been
leveraged to create workload models that can, in turn, be
used to generate I/O patterns. The benefits of modeling
traces are: 1) trace models are easier to copy and han-

dle than large trace files 2) using the trace model one can
scale the I/O patterns present in the original trace in both
temporal and spatial domains and 3) it is much easier
to simultaneously and selectively replay respective por-
tions of the trace across respective server mount points
using a trace model. It is important to note that a trace
model provides a probabilistic representation of the orig-
inal trace and is not an exact representation of the origi-
nal trace.

Prior art in trace modeling has primarily focused on
modeling block workloads (SAN workloads) [5, 7, 8, 11,
13, 15] and only one attempt had been made at model-
ing file (NAS) workloads [14] in the context of virtual-
ized environments. In the virtualized environment file
I/O workloads from the clients are served by the v-DISK
layer of the VM and the underlying NAS storage device
only receives the block based read/write requests. The
resulting workload does not present many challenges in-
herent to the file I/O traces like the metadata and the
I/O operation mixes, hierarchical file namespaces etc.
Hence, modeling these virtualized file workloads is same
as modeling SAN workloads. In this paper, we present
algorithms and a framework for modeling and replaying
NFS workloads that addresses many of the open prob-
lems that have been listed in a) the previous NAS trace
modeling [14] and replay research efforts [18] b) the lim-
itations of current file system benchmarking tools and c)
also some new challenges in trace modeling due to the
increased intensity in new types of workloads.

1.1 ParaSwift Innovations
ParaSwift makes the following contributions:
Representing Metadata operations and File System
Hierarchies: Unlike in SAN trace modeling, in NAS
trace modeling one has to accurately represent file meta-
data operations. For example, around 72% of opera-
tions in SPECsfs2008 benchmark are metadata related
operations. Preserving the order of I/O and metadata
operations matters to the application. Operations like
creation and deletion of symbolic links, renaming of
files/directories can change the underlying file system
(FS) image. Accessing file handles via hierarchical
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lookups on the file system image has not been handled
in previous file system benchmarks. As a result bench-
marks either work on a flat namespace or maintain a file
to file handle path mapping in the memory. NFS file sys-
tem benchmarking results are also quite sensitive to the
structure of the FS image, the depth and breadth of FS
tree, and the sizes of the various files and directories.
Workload Scaling: Workload scaling requires under-
standing and representing logical file access patterns so
that workload scale-up operations can increase the load
on specific files which might not be physically co-located
on the storage media. Thus, there is a need to be able
to observe the load intensity characteristics of the work-
load, and model it accordingly. Similarly, one needs to
take the spatial and temporal scaling parameters as input,
and subsequently replay using the trace model to satisfy
the scaling requirements. Most of the file system bench-
marks do not allow for this level of control with respect
to scaling operations.
Handling New Workloads : Increasingly, new types of
transaction intensive workloads are emerging where mil-
lions of transactions get executed per second (e.g. mo-
bile ad applications, stock trading, real-time supply chain
management etc). Storing file system traces at this scale
would result in extremely large trace files. There are
challenges with the amount of memory and compute re-
sources required to 1) capture the stateful nature of the
client-side protocol and 2) to learn the intricacies of a
large number of file handles encountered in the trace and
their off block boundary access size granularities. Trace
model building algorithms that have been articulated in
prior art [5,7,11,13] were not designed for handling these
challenges. For instance, there is a minimum of 50x in-
crease in workload intensity and number of clients per
trace from the Animation workload traces captured in
2007 [12] vs. the one captured by us at our customer
site in 2013. Hence, it is desirable to be able to dynami-
cally create models as traces are being captured to reduce
the resource requirements of tracing frameworks.
Lack of Similarity in Underlying File Systems: Usu-
ally, users of traces assume that traces collected in one
setup (file system) can be used on a different file system.
For example, the file mount parameters, read/write trans-
fer sizes, and age of the file system can have substantial
impact on the load being seen for the file server. Thus,
it is important to leverage file traces in conjunction with
the characteristics of the underlying file system. Apart
from overheads of storing traces for on-demand replays,
the existing trace replay tool [18] suffers from two other
shortcomings 1) Replay timing accuracies suffer as the
number of clients and NFS mount points in a single in-
tense trace runs to hundreds (E.g. 640 client/server IP
combinations in Animation trace of Table 1 on Page 9)
2) even under the same client workload, it is possible that

different file servers based on the same protocol produce
very different traces. Hence, replay of traces captured on
one setup and replayed on another without inspecting the
responses would not be useful.

In this paper we present a framework and algorithm
called ParaSwift that can model file system traces (NFS),
and it addresses the concerns that have been listed above.
At this moment ParaSwift can be used to model and re-
play both NFS v3 and v2 protocols. The modeling code
can be also used to model SAN traces but in this paper
we are specifically focusing on NFS trace modeling.

2 System Overview and Algorithms

Figure 1 (Page 4) illustrates ParaSwift’s model building
architecture. One of the key design principles behind
our thinking is that we need to be able to build mod-
els for very large traces in a resource efficient manner.
This, in turn, forced us to re-think the steps involved in
trace model building pipeline. ParaSwift’s model build-
ing process is divided into 5 distinct phases:
Phase 1: Trace parsing : trace parser extracts and
presents each NFS request and its corresponding re-
sponse in the order of the request arrival to the trace sam-
pling component.
Phase 2: Inline trace sampling : as a NFS request-
response pair is streamed through ParaSwift, correspond-
ing model building data structures have to be updated in-
memory. Over a period of time the host memory will
get exhausted and the respective data structures will spill
over to the disk. This, in turn, will throttle the inline
stream of NFS request-response processing. The inline
trace sampling component helps in reducing the proba-
bility of the data structure spill over by discarding the
redundant I/O’s.
Phase 3: Inline trace model building : as the request-
response pair is streamed through ParaSwift, in-memory
data structures representing the various aspects of the
trace are updated. The data structure allocation process
has been designed to 1) make most efficient use of the
host memory 2) eliminate the need for doing multiple
passes through the trace for model building 3) represent
the workload characteristics in a very succinct way with-
out much information loss.
Phase 4: Batch trace processing : the in-memory data
structures constructed by ParaSwift cannot be directly
fed to a load regenerator. Few optimizations need to
be done on the data structures for extracting the neces-
sary model parameters. These procedures are essentially
batch in nature.
Phase 5: Trace model translation for replay : For the
purpose of workload replay we use a commercial load
generator called Load DynamiXT M [2]. Load DynamiX
allows us to achieve a high fidelity translation of the
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ParaSwift trace model to an equivalent workload profile.
Load DynamiX also provides us with the ability to seam-
lessly scale the trace workloads to over a million clients
per NFS server mount point.

In order to understand Phase 2 of the pipeline, one
needs to understand Phases 3 and 4. Hence, below, we
discuss Phase 2 after we discuss the other phases of the
model building pipeline. We discuss each of the phases
in the modeling pipeline in the following sections respec-
tively.

2.1 NFS Trace Input and Parsing

NFS Trace : NFS protocol consists of two categories
of operations. I/O operations that directly access or ma-
nipulate the contents of a file (NFS reads and writes) and
metadata operations which read or write the file/directory
metadata like getting file/directory access permissions
(getattr), making file links (link, create link), setting di-
rectory/file ownership info (setattr) and updating filesys-
tem information (fsinfo/fsstat). NFS traces are usually
captured using OS tools like TCPDUMP in Linux and
stored with a .PCAP or a .TRC extension. Since NFS
traces tend to be bulky, efforts have been made to store
them more efficiently in a compressed format known as
the DataSeries, introduced in [4] and recommended by
the Storage Networking Industry Association (SNIA).
NFS trace stored in a DataSeries format (.ds) is essen-
tially a database with all the information about the vari-
ous operations (I/O as well as metadata) along with the
corresponding network IP/port as well as the respective
RPC packet timing information.
Trace Capture Tool : We have developed a tool within
our group to capture NFS traces over network by mirror-
ing network switch ports. This tool can handle rates of up
to 16 GBps. For storing the NFS packets, the trace cap-
ture tool leverages the DataSeries software. Each incom-
ing NFS packet representing a request or a response to
a particular NFS operation is parameterized, compressed
and stored as a separate entry in the corresponding op-
eration specific DataSeries table for which the schema
is predefined by the tool. The library stores the times-
tamp of each request/response in the order of their ar-
rivals along with the corresponding network information
in a separate DataSeries table. Trace replay is not part of
this tool.
Trace Parser : ParaSwift cannot directly work on the
compressed .ds traces. In order to extract a model, it
has to un-compresses the respective DataSeries tables,
pair the corresponding request/response operations, and
reconstruct the temporal order of the requests. As we
shall see later, pairing requests with the corresponding
response helps in trace model correction. We have writ-
ten approximately 350 LOC in DataSeries software dis-

tribution to accomplish the parsing and to generate an
equivalent comma separated file (.csv).

Each line in the .csv file represents a request and its
corresponding response along with the operation spe-
cific attribute values. The process of parsing a .ds file
is called as Merge Join in ParaSwift as it’s a join be-
tween the respective operation table and the table stor-
ing operation’s timestamp and the network details in the
DataSeries. Merge Join process is very light weight on
memory as it operates on one row of each DataSeries ta-
ble at a time and generates one request response pair at a
time.

2.2 Inline Model Extraction

Each unsampled request/response pair extracted by the
ParaSwift parser flows through all the components of the
ParaSwift’s inline processing pipeline as shown in Figure
1. We refer to these steps as inline, as they update in-
memory data structures as the I/O’s are streamed through
the system.

2.2.1 Workload Stream and Pattern Separation

Due to host and storage virtualization, a NFS trace could
contain requests coming in from multiple network clients
going to multiple NFS mount points (identified by a
host IP). Each distinct client-host IP combination is re-
ferred by ParaSwift as a stream, which is modeled sepa-
rately and replayed simultaneously. This capability is not
present in any of the benchmarks/replayers to date. Sec-
ondly, segregation of individual operation requests into
macro level patterns per stream is essential from the user
application perspective and hence the order of operations
is more important than the proportions in which the var-
ious operations land on the NFS server.

Hence, this component of ParaSwift focusses on two
aspects: 1) separate each request into a stream identi-
fier based on its client and host network IP and 2) iden-
tify and separate individual operation requests per stream
into macro level workflows called the workload patterns.

A workload pattern j belonging to a stream i (WPi, j) is
extracted based on: 1) maximum idle time between two
consecutive request arrivals 2) maximum time elapsed
between the previous response and the new request and
3) file handles involved in the two consecutive requests
within a stream. For the two operations to be a part
of the same workload pattern we do not mandate that
they have to operate on the same file handle. For ex-
ample, a physical client executing a Linux make task
would involve multiple files. Each workload pattern ex-
tracted by ParaSwift is replayed separately during regen-
eration. The length and life-time of a workload pattern is
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Figure 1: ParaSwift Architecture

recorded appropriately and exercised via specific knobs
provided by the Load DynamiX replayer.

2.2.2 Trace Correction

One another aspect of trace modeling and replay for
NFS workloads, is dealing with errors or I/O informa-
tion losses. Whether the operation was missing or was
mistakenly issued by the client can be inferred to a large
extent from the corresponding NFS response. This is
why a request and its response are presented together
to the inline processing phase by the ParaSwift parser.
In ParaSwift, we made a conscious decision to either
correct the NFS request errors or to discard the erro-
neous operations without contaminating the final work-
load model.

If ParaSwift observes two successful consecutive re-
move requests on the same file handle, then in between
the two remove requests there needs to be a create, re-
name, symbolic link, or link (hard link) request. If two
operations cannot appear consecutively, we correct by
additional operation insertion or remove the later request
(if it was a failure). For operation insertion we too fol-
low a table-driven heuristics approach similar to [18].
ParaSwift’s trace correction scope is restricted within a
workload pattern. Trace correction happens per request
and with respect to the previously parsed request. A
workload pattern is registered only post correction.

2.2.3 Load Profile Extraction

Each of the previously derived workload patterns need
to be associated with load profiles. It means that streams
which are more intense and perform operations at a faster
rate than others need to be represented appropriately.
Secondly, some workload patterns might be more bursty.
The reasons for this behavior could be that some patterns
might be script driven (e.g. Linux make task), whereas,
some others might be driven by humans (e.g. reading a
balance sheet). Based on these requirements, ParaSwift
updates the following two parameters inline: 1) request
arrival rates per stream (C) and 2) request arrival rates
per workload pattern per stream (ri, j).

Average request inter arrival time (RITi, j) in a work-
load pattern j of stream i is derived inline every 5 sec-
onds interval. Based on this the total number of NFS op-
erations that would be generated (ri, j) per interval, by a
given workload pattern, is obtained. ParaSwift also com-
putes 80th percentile value of the max number of NFS
operations seen in the storage system from a given stream
per interval, referred to as C. These computations are re-
visited and refined during the batch phase.

2.2.4 Model Constructor

In ParaSwift architecture we separate the process of
workload pattern identification from its storage. Work-
load patterns have to be registered in a memory efficient
data structure. We could have saved each pattern sepa-
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rately as identifier separated operation entries. However,
the workload patterns could be many in number and there
could be many details associated with the pattern like:
the file handles used and the attribute values of the oper-
ations they contain. Thus, a lot of memory can be needed
to represent these details.

We chose to represent each association between a pair
of operations via a shared adjacency matrix structure per
workload stream. There are about 21 different opera-
tions (including I/O and metadata) that ParaSwift recog-
nizes with a unique index based on the NFS v2/v3 stan-
dards. If an operation with index y follows an operation
with index x in the workload pattern WPi, j, the corre-
sponding entry in the adjacency matrix is incremented
by one. In order to allow us to reconstruct a workload
pattern from a matrix we also build two additional data
structures: a workload pattern start list and an end list
per stream. These lists contain operations with which
the workload patterns can begin or end respectively with
the corresponding probabilities. All these data structures
are updated inline and the normalization of probabilities
is done in the batch phase. Figure 2 describes some of
these data structures. Figure 2 also points to additional
datastructures like the f ileHandleMap used to account
for the unique file handles accessed, and how they are
linked with each other.
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Figure 2: In Memory Data Structures in ParaSwift

2.2.5 File pattern association

The values of attributes for a particular NFS operation
varies significantly even for a given file handle. For in-
stance a file may not be always read from the same off-
set and for exactly the same number of bytes. Hence, it
makes more sense to model them as distributions. The
total number of unique files accessed and the type of
operations performed on them is a huge set. Capturing

these details in-memory was yet another challenge for
ParaSwift.

Values of various attributes per NFS operation and the
per file handle is recorded by ParaSwift in a memory
resident data structure called the OPMemberList, which
records each unique value of the attribute and the number
of times such a value was reported in the trace separately.
These values are later fitted to a distribution function per
file handle and per operation, and written to the disk dur-
ing the batch phase. In order to speed up processing,
and reduce the number of compute passes over the data
structures during the batch phase. A superset of parame-
ters needed to compute the various distribution parame-
ters like distribution averages are also partially computed
inline and stored in a data structure named ParamMap as
illustrated in Figure 2.

2.2.6 File System Image Exaction

ParaSwift reconstructs the essential File System (FS) hi-
erarchy for the workload replay as-is from the trace.
Generating FS image also happens inline and is stored
in-memory. Since complete information about the exact
location of the directory or a file in the FS may not be
available till the end of parsing, we differ writing the ac-
tual FS image to the NFS server until the end.

We use a small in-memory representation called the
f stree similar to the one used in [16] which stores just
the right amount of information to create an FS image
later. fstree contains pointers to file and directory ob-
jects. Each directory object only contains a pointer to its
parent directory and its child directory/file objects and no
other information. Each file object only contains infor-
mation on its latest size in bytes obtained from the NFS
operation response packet. During FS creation, the file
size parameter is used by ParaSwift to create a file with
equivalent number of bytes filled with random data pat-
tern. We do not store directory/file i-node metadata such
as access permission, ownership info etc. So far we do
not use this information during replay.

2.3 Batch Model Processing

There are some aspects of trace model extraction which
need to have a macro picture of the overall statistics in
the trace. Such decisions cannot be made inline and have
often necessitated multiple passes through the trace in the
past [6, 11, 13]. We instead do multiple random accesses
through few of the partially processed data structures
built in-memory like the OpMemberList and ParamMap
in Figure 2. These components are listed in Figure 1 and
we discuss them in this section.
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2.3.1 Workload Pattern Pruning

During the inline model extraction phase a large num-
ber of workload patterns are mined. This could be partly
because these patterns are obtained heuristically. How-
ever, depending on the frequency of request arrivals in
the workload pattern, not all of them might be significant
enough to be regenerated.

ParaSwift defines a Path Probability T hreshold
which is the minimum expected probability of occur-
rence of a workload pattern for it to be included in
the final model. The Path probability (si, j) of a given
workload pattern is the cross product of start probability
of the first operation (in the start list) in the workload
pattern with the subsequent transition probabilities of
other operations obtained from the adjacency matrix
until an operation which also appears in the end list is
encountered.

Algorithm 1 Workload Pattern Pruning Algorithm
for all Operation index entry in the start list do

Add the entry to IncompletePathsList sorted by
the descending order of the start probability

end for
while exitcondition == f alse do

BestPath = Get highest probability path from In-
completePathsList
x = index of the last operation in the BestPath
for all y in ADi, j[x][y] do

if ADi, j[x][y].count != 0 then
BestPath.nextOp(y)
BestPath.pathProbability ∗=
ADi, j[x][y].prob
if end list i.contains(y) &
BestPath.pathProbability >
Path Probability Threshold then

completePathsList.add(BestPath)
totalProb = totalProb +
BestPath.pathProbability
M = M + 1

else if ! end listi.contains(y) &
BestPath.pathProbability >
Path Probability Threshold then

IncompletePathsList.addSorted(BestPath)
end if
if totalProb >= Coverage Threshold ||
M >= Total Paths Threshold then

exitcondition = true
end if

end if
end for

end while

Since adjacency matrix can also be realized as a di-

rected graph, ParaSwift uses a breadth first search algo-
rithm as listed in Algorithm 1 with greedy path prun-
ing for extracting the most significant workload patterns.
Every incomplete pattern is inserted into a sorted path
list. The path with the highest probability is picked
first and expanded. The algorithm terminates when ei-
ther the total number of workload patterns extracted ex-
ceeds Total Paths T hreshold (presently 25) or sum of
the path probabilities for the paths extracted exceeds
Coverage T hreshold (presently 70%). These parameters
are tunable by the user based on the expected fidelity of
the outcome.

2.3.2 Load Estimator

The two quantities, load intensity per workload pattern
(RITi, j) and intensity per stream (C) calculated in the pre-
vious phase are based on averages, and hence, there is a
possibility of under-loading the system. Secondly, work-
load pattern pruning step also eliminates some of the less
frequent workload patterns which may further reduce the
load intensity of the stream. During replay, in order to
achieve a realistic load factor, ParaSwift utilizes two ad-
ditional load related knobs provided by Load DynamiX.
These include: concurrency factor per workload pattern
(pi, j) and total number of simultaneous clients per stream
in the system (N).

With si, j representing the path probability of a work-
load pattern WPi, j and M being the total number of
significant workload patterns per stream i obtained from
the previous step, values of pi, j and N are then computed
as:

∑M
i=1 si, j ¡= 1 by the law of probability -(1)

pi, j = si, j ×N for i=1,..M - (2)
N = C

∑M
i=1(si, j×ri, j)

- (3)

All of the load profile related parameters are repre-
sented at a granularity of 5 seconds over the entire
period of observation. Any change in the values of
these parameters across intervals is expressed as a
corresponding ramp up/ramp down factor by ParaSwift
during the Phase 5 of the pipeline illustrated in Figure 1.

2.3.3 File Pattern Extraction

In this step ParaSwift performs a function fitting per NFS
operation attribute per file handle. To regenerate a value
for an attribute (e.g. offset and I/O size for a read/write),
instead of regenerating it empirically as in [14, 17] from
the OpMemberList data structure ParaSwift does a least
error function fitting of the parameters. ParaSwift is
aware of a few standard distributions like the Constant,
Gaussian, Normal/Uniform, Log normal, Exponential
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and Polynomial. The least error function is chosen and
the corresponding function parameters are extracted.

2.3.4 FS Image Creation and Hierarchical Names-
pace Lookups

ParaSwift reads the fstree created during the inline step
and generates an appropriate FS image on the NFS
server. Emulating a real client using benchmarks is a
tough problem. NFS access begins with a lookup for
the file handle in the correct FS directory path. This re-
quires the client to be aware of its present path in the
File System mount point. This could be accomplished
by maintaining a file to file handle path map during re-
play. However, this technique does not scale as the work-
ing sets expand. To address this problem, ParaSwift cre-
ates every file seen in the trace at an appropriate location
along with the corresponding soft link at the ROOT of the
mount point during the fscreate() procedure. Load regen-
erator works on the links, but this ensures that every link
read for a write operation translates into corresponding
lookups and reads/writes for the actual file in the NFS
server. However, few operations like file delete would
still leave the actual file untouched during replay.

Scaling : ParaSwift provides an option of spatial scal-
ing during the FS image creation. One can specify scal-
ing of following two types: a) uniform scaling b) pro-
portionate scaling. In uniform scaling ParaSwift simply
adds more files in every logical path by a factor pro-
vided as an input. Associated soft links are also cre-
ated accordingly. Proportionate scaling is the more in-
teresting option provided by ParaSwift. ParaSwift at
present supports few options like, ”scale up metadata
portion by x%”. In this case ParaSwift already knows
through OpMap (in Figure 2) scan processing which file
handles are accessed for metadata versus which are ac-
cessed for I/O operations. Accordingly, it scales up the
file count in the appropriate directories. For time scaling,
respective load profile parameters are proportionately in-
creased/decreased by ParaSwift

2.4 Trace Model Translation for Replay

Problem of workload regeneration is often delinked from
its modeling. However, delinking the two aspects often
results in gaps as discussed in section 1.1. We use Load
DynamiX as a workload replayer in ParaSwift at the mo-
ment. Load DynamiX allows us to 1) emulate the prob-
abilitic ordering of the various NFS operations within a
workload pattern; 2) regenerate the various attributes of
a NFS operation like NFS read size and offset etc. using
Load DynamiX offered statistical functions; 3) scale in-
finitely; 4) exposes excellent knobs with respect to con-
trolling request intensities; 5) does a time accurate re-

quest regeneration; 6) and supports i-SCSI (SAN), NFS
and CIFS protocols. We use version 30.21444 of Load
DynamiX.

Load DynamiX allows ParaSwift to specify per NFS
operation specific attribute values as either averages or
enumerations per file handle. Averages are not good
enough and enumerations would not scale for larger
traces. Load DynamiX additionally provides an ability
to specify any distribution as a function of Random dis-
tribution function. Given a max and a min value, the
Random function generates a random value within the
range.

Based on the theory [10], each realization of a Random
function would result in a different function. ParaSwift
maps various distribution functions and their parameters
to appropriate min/max values of the Random function
to regenerate the respective distribution function.

Load DynamiX provides a Perl API module for cre-
ating a NFS workload project. The APIs support func-
tionalities like 1) workload pattern creation; 2) respective
load profile specification; 3) associating individual oper-
ations within a workload pattern to appropriate file han-
dles, and operation parameters to an equivalent Random
distribution parameters. We have written additional 700
LOC in Perl to leverage the Load DynamiX Perl mod-
ule and generate an equivalent workload project by di-
rectly reading from ParaSwift workload model. Work-
load project can be directly imported via the Load Dy-
namiX client GUI and replayed on the NFS server on
which the FS image has been already created.

2.5 Inline Sampling
Our thinking behind building in-memory data structures
is to speed up the trace processing times. We already see
about 50x-100x increase in the request intensity between
animation workloads captured in the year 2007 and those
captured by our internal tool in 2013 listed in Table 1.

Workloads on the other hand may not change often.
A trace data collected for first 5 minutes might be well
representative of the later 10 minutes. If we could infer
and exploit such self similarity in the traces inline, we
can retain in-memory processing benefits at higher trace
intensities. ParaSwift implements a novel inline content
aware I/O sampling technique.

The technique is based on the concept of Bloom Fil-
ters (BF) [9]. BF is a space efficient, probabilistic data
structure used to test containment of an object in the set.
Efficiency of the implementation depends on the trace
parameters used to test the containment. Our implemen-
tation is based on the following design constraints:
1. Intensity of I/O’s needs to be retained : Sampling
may make it appear that incoming I/O stream is very
slow. ParaSwift model needs to preserve the original I/O
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intensity.
2. Preservation of operation distributions : Filtering
should not introduce a skew in the NFS operation distri-
butions.
3. Compute and Memory Footprint : Data structures
for containment have to have a low memory footprint and
allow a quick lookup.

2.5.1 The Technique and Implementation

For the purpose of establishing the need for sampling,
we merged several subtraces obtained from the IT work-
load trace capture to be discussed in section 3 as in Ta-
ble 1. It took ParaSwift 4 hours to process a trace (.ds)
worth 20 GB. We profiled this execution and learnt that
the processing times could have be slashed by reducing
the footprint of the model building data structures which
were being extended to the disk as the number of unique
files in the trace changed too often. We realized that it
was not the number of unique files but the unique char-
acteristics that matters for modeling. We sampled out
the data at 60% (discarding 60%) with our technique and
were able to complete the task in 1 hour with only 10%
loss in fidelity.

For read and write operations, it is often important to
look at the specific properties rather than just looking at
the file handle. For instance, a random small read vs. a
large sequential read, a file overwrite vs. partial write
would have completely different performance implica-
tion. Hence, we look at the offset and the size charac-
teristics of a read/write as the distinguishing factor. For
metadata operations ParaSwift does not worry about the
exact values of the attributes being set on the file or the
directory i-nodes. In some cases like the rename or the
create link operations the relative path or the location of
the target with respect to the source file handle matters
(from the file system performance point of view).

We adopt BF’s only for detecting redundant read/write
operations. BF lookup based on the containment func-
tion gives out a location index. If the corresponding bit
index is already set, this implies that the value might
already be there. BF can at times give false positives.
However, there are no false negatives. Our design con-
straint is to minimize number of false positives (fp) for
read/write operations.

We use BF fundamentals to decide: m, which is the
number of bit locations a given function would hash to;
k, which is the total number of hash functions we should
use for a set of n input values. This is analogous to num-
ber of I/O’s a trace would contain (each request-response
pair being one I/O). We fix our fp rate to 10% which also
lowers the bounds of the final model fidelity. We could
reduce fp rate further, but we are convinced that its effec-
tiveness depends on the variance of the parameters to be

hashed in the trace, which are assumed to be uniformly
distributed by the BF theory, and may not hold true for
every workload trace.

ParaSwift uses a partitioned BF [9]. Our first hash
function hashes offset and the second function hashes the
size of a read. Similar BF’s are designed for the write op-
eration as well. Both of the containment functions work
irrespective of request file handle. Semantically this im-
plies that if a request makes access to a unique offset
within a file and for a unique number of bytes, it is a
new type of I/O irrespective of its file handle. This com-
parison indirectly favors I/O’s which access files of non-
identical sizes.

When sampling is turned on, the trace parser generates
a random number per I/O to be processed. If the ran-
dom number is within the expressed sampling rate, the
request/response pair is presented to the sampling com-
ponent. Whether an I/O is to be sampled out or not is
decided by the BF for a read/write operation. For the
metadata operation, only if it has not been recorded pre-
viously in adjacency matrix it is retained, else it is dis-
carded. If it is a metadata operation to be discarded like
rename, and create operations, ParaSwift records the rel-
ative path distance, as discussed earlier, that is applied
during the replay. For all operations, the corresponding
adjacency matrix is always updated irrespective of the
verdict to avoid an operation distribution skew. Also, the
number of unique file handles per interval are recorded,
though the corresponding file handle maps as seen in Fig-
ure 2 are not updated if the I/O is to be sampled out. This
preserves the working set sizes. During model transla-
tion, appropriate number of pseudo files are created to
regenerate the original working set.

The two (read and write) partitioned BF’s each with
two partitions account for 722 KB of total memory space.
Space needed for target and source path distance ac-
counting, for the metadata operations, is negligible. Both
the hash computations and filter lookups are constant
time operations. This makes sampling strategy pretty
amicable to inline trace model building. We use a pop-
ular and a reliable Murmur hash function [1] for all the
Bloom filters.

ParaSwift, excluding the model to replayable project
translation part, has been completely written in c ++
with approximately 2500 LOC.

3 Evaluation

In this section we evaluate ParaSwift against 3 different
NFS traces. We compare the accuracy of ParaSwift in
recreating various workload patterns/characteristics ob-
served in these workloads. We verify whether ParaSwift
can: A) recreate various operations (I/O as well as meta-
data) seen in the original trace in right proportions; B)
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Table 1: NFS traces used for Validation
Label Capture Number of Total

duration unique streams capture size
IT One week 114 22 TB
Cust1 One weeks 63 17 TB
Animation 13 Hours 640 1.7GB

recreate read/writes with appropriate file offsets C) have
right I/O size distributions; D) emulate right file work-
ing set sizes with appropriate file access popularity dis-
tribution E) mimic identical read and write payloads to
the NFS mount point per stream and finally F) to retain
all of these capabilities while sampling the input trace at
variable frequencies. As the techniques used in this pa-
per are statistical in nature our goal in this section is to
be as close to the original workload statistically and not
identical. We shall refer to the above itemized list of met-
rics while presenting the experiment results (in the same
order).

3.1 The Workloads
Table 1 lists the NFS traces used to validate ParaSwift.
Traces labeled as IT and Cust1 are collected by our in-
ternal trace capture tool for a week’s duration. IT being
our internal IT workloads and Cust1 representative of a
customer running version control and scientific simula-
tion like workloads concurrently on separate NFS mount
points but as a part of the same trace. Each subtrace (a
portion of the larger trace) is less than 4 GB and depend-
ing on the I/O intensity, covers a duration anywhere be-
tween 8 to 15 minutes. There are 900 such subtraces for
IT and 495 for Cust1 trace covering a one week dura-
tion. We also regenerated a subtrace (1 out of 473) from
the Animation workload traces (Set 0) captured in 2007,
and published at the SNIA site [12], described in Table
1. Detailed information about their capture and analysis
can be found at [3].

Each of these traces had multiple clients and NFS
mount points. ParaSwift extracted each combination as
a separate stream, modeled the various streams in the
same run of the ParaSwift and regenerated them simul-
taneously via Load DynamiX. Each trace was run for the
same duration as the original trace. Having the capability
of being able to emulate multiple streams simultaneously
is an important contribution of ParaSwift. We quantify
the accuracy of regenerations on a per stream basis.

3.2 System Configuration
ParaSwift runs on a Linux based VM with 15 GB mem-
ory extensible up to 64 GB with 100 MBps network con-
necting a NFS storage server. Load regeneration was

accomplished using 1 GBps full duplex physical port
of Load DynamiX which could scale to over a million
virtual ports (streams). Since ParaSwift does not fo-
cus on reproducing the identical performance profile (la-
tency, file system fragmentation) we use a standard stor-
age server configuration with 6 GB memory, 1 TB vol-
ume with 7500 rpm disks and 1 GBps network for all
trace regenerations.

We validate ParaSwift by comparing the original
workload trace with regenerated workload trace captured
by Load DynamiX at the time of its execution.

3.3 Experiments

In this section we present evaluation results based on
three traces: IT, Cust1 and Animation as described in
Table 1. We perform per metric statistical comparison of
the original trace with the Load DynamiX collected syn-
thetic trace for all of the earlier mentioned dimensions.
We represent error as the Root Mean Square (RMS) er-
ror which is the standard deviation of the differences be-
tween regenerated values and original values of a metric
in its respective distribution buckets.

3.3.1 Choosing subtraces

Since the total number of subtraces collected for IT and
Cust1 workloads is huge, for the purpose of validation
we sampled 20 subtraces belonging to different dura-
tions of the day and week. For Animation workloads we
modeled one subtrace out of the 473 published subtraces.
We compute metric errors per stream in a subtrace sepa-
rately. In this paper we report results for the top 4 streams
in a single subtrace for all three workloads. However we
have validated that the various metric error bounds hold
true for other streams in the three traces as well as for
the other randomly chosen 19 subtraces for IT and Cust1
workloads. According to our preliminary analysis of 3
workloads in Table 1, workload patterns for these differ-
ent traces varied quite a bit. Therefore, even though we
only had 3 traces, we actually had many subtraces with
vastly different characteristics.

A) Figure 3(a) represents the RMS error for distribu-
tions of various operations for chosen streams in the each
of the three traces. Streams which 1) had the highest
request rate for chosen capture interval and 2) demon-
strated wide variation in the type of NFS operations is-
sued were chosen. For each stream (denoted as sym-
bol C in the graphs) we also compared the correspond-
ing errors when the original trace (.ds) was sampled at
50% (denoted as C-50%) of the actual trace size using
ParaSwift’s Bloom Filter (BF) technique. We see that
max RMS error for all of the streams for all the metrics
in Figure 3(a) is below 10%. Also there is not much dif-
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ference in the RMS errors between a sampled and an un-
sampled version of the trace model. Low errors in oper-
ation distribution are attributed to the Markov chain rep-
resentation (adjacency matrix) and later the smart path
pruning algorithm constituting ParaSwift’s batch model
processing phase. Also note that the the overall value of
the y axis for each bar graph is a cumulative sum of the
individual RMS values.

B) Figure 3(b) lists the RMS error for a distribution
of various write patterns regenerated by top 4 streams at
varying file offsets per a workload trace. Any read/write
which does not happen at the 4 KB block boundary is
misaligned for us. Any write which starts at offset 0
and ends at offset equal to file size prior to the opera-
tion (obtained from the response of the operation) is an
overwrite. Any write which begins at the end offset of
a file is an append. Any write not satisfying the latter
two criteria is a partial write. For this comparison to be
effective, streams which were intense as well as had a
high fraction of writes were chosen. As seen in Figure
3(b) ParaSwift is able to fairly mimic the various write
patterns restricting the RMS errors within 10%.

C) We also computed RMS errors for read/write off-
set as well as I/O size distributions (NFS attribute count).
For comparisons we chose streams which operated with
distinct I/O sizes. We associate each 4 KB offset bound-
ary as a separate bucket for all the 4 metrics. We con-
sidered buckets up to 100 MB, but in Figure 4(a) due to
space constraints in the graph we only illustrate read I/O
size distribution RMS error for request sizes of up to 1
MB. The RMS errors were bounded by 8%. More im-
portantly, the I/O sizes not occurring in the original trace
were never regenerated by the Load DynamiX streams.
The same holds true for rest of the metric results as well.
Results were bounded by similar error rates for the other
distribution buckets as well. The reason for choosing 4
KB aligned distribution boundaries is that irrespective of
whether a read is for a full block or for a few bytes within
a block, our NFS server always reads a full block.

ParaSwift’s success in Figures 3(b) and 4(a) is due to
least error distribution fitting during the model building
phase and the efficient translation of the corresponding
function into an appropriate Random function parame-
ters for Load DynamiX. ParaSwift’s sampling technique
carefully designs the BF functions to retain any variabil-
ity in I/O size and file access offsets while sampling.
Competitive RMS error values of the respective param-
eters for each stream against the 50% sampling, estab-
lishes the efficiency of our BF design.

D) Figure 4(b), illustrates the CDF of the file access
popularity per a chosen stream of each workload. RMS
errors of the total number of unique files per every 5 sec-
onds interval were limited to 5% for all the sampled trace
streams. Figure 4(b) illustrates the CDF for the top 25
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Figure 6: Animation Workload: Read and Write Re-
quests, Original and Regenerated over a 5 minutes in-
terval

files in the working set for a randomly chosen interval
in the trace. We plotted the actual CDF vs. the replay
CDF and found the errors to be less than 6%. Emulation
of exact working set is accomplished due to recording of
active file handles per operation of the adjacency matrix
in the fileHandleMap data structure illustrated in Figure
2.

E) Figures 5(a), 5(b) and 6 represent comparison of
the number of read/write requests generated for every 5
seconds interval by the most intense streams per work-
load trace. In reality, every new request issued by the
Load DynamiX appliance is synchronous and response
driven. However, the traces used by ParaSwift are from
real deployments where the response is driven by the ac-
tual state of file system buffers, on disk fragmentation,
and many other factors. In this experiment we want to as-
sert the capability of our NFS client to generate the same
intensity of read/writes when the various conditions per-
taining to FS image and its state are identical. Hence, we
turned off synchronous I/O mode and replay error notifi-
cation in Load DynamiX.

We observe that the replay request rate closely follows
the original rate for both read and write operations as
the RMS errors were lower than 8%. This is attributed
to ParaSwift’s detailed calibration of load profiles in the
form of 1) total number of workload patterns and 2) num-
ber of concurrent streams per workload pattern.

As mentioned earlier, these results hold true for other
streams in the respective traces as well as for the larger
sampled set.
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Figure 5: Read and Write Requests, Original and Regenerated over a 5 minutes interval

3.3.2 Sampling and ParaSwift Performance

F) Figures 7(a), 7(b) and 8 show the error vs. process-
ing times for the corresponding streams of each work-
load with varying sampling frequency. Due to space
constraints, we represent the error in these cases as the
maximum of the RMS errors for metrics in A, B, C, D
discussed above.

These figures show a slight drop in the accuracy (less
than 10%) for up to the sampling rates of 60% with at
least 5X boost in the processing speeds for all of the
workloads. Beyond 60% we found the errors to be un-
bounded. ParaSwift can operate in two sampling modes:
conservative and progressive. In the conservative mode,
the actual sample in size may be more than expected as
the requests could not be sampled as they were found
to be unique by the BF. In the progressive mode, if the
number of outstanding requests to be sampled exceeds a
threshold, we discard the request irrespective of its nov-
elty till the outstanding bar is pushed below the thresh-
old. The results above come from the progressive mode.
However, based on the physical characteristics of the
trace, progressive sampling may degrade to a random
sampling over time.

The same file handle can be accessed by multiple
workload patterns simultaneously. Replay errors most
likely result from such situations. The number of such
situations cannot be either theoretically estimated or
proved experimentally. Hence, we try to avoid such er-
rors by advising Load DynamiX to re-create a new file
of the same name if it does not exist in the FS image
(at the time of its access). This is an inline replay cor-
rection method that we embed during the translation of
the ParaSwift workload model to a Load DynamiX re-
playable project.

Finally, all the experiments reported in this paper were
repeated thrice and the average reading was considered.
Every replay was done with all the concurrent streams
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Figure 8: Animation Workload: RMS Error Vs. Com-
pute times for the most intense streams with varying VM
memory sizes

seen in the original trace run simultaneously as captured
by ParaSwift load profile extractor in a dynamic way. Be-
sides the RMS errors, the maximum errors in all of the
above experiments were well below 12%.

4 Future Work

Statistically significant regeneration of multi-
dimensional workload characteristics for NFS and
SAN workloads is what we have primarily achieved via
ParaSwift. However there are other aspects of workload
regeneration essential for reproducing specific perfor-
mance issue with trace replay. File system fragmentation
is an important part and parcel of this problem. Another
aspect deals with NFS file locking. While each of
these problems are important by themselves they need a
focussed investigation. ParaSwift is presently being used
in our organization for reproducing customer problems
dealing with workload characteristics alone, to validate
various caching optimizations for various workload
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Figure 7: RMS Error Vs. Compute times for the most intense streams with varying VM memory sizes

verticals and stress testing our systems with specific
workload segments. Appropriate aging of the file system
and advanced features associated with stateful versions
of NFS (V4) are a part of our future investigations.

5 Conclusion

In this paper we presented an algorithm/tool called
ParaSwift that creates workload models based on traces,
and then helps to replay them. This work addresses many
of the open problems in the trace modeling and replay
arena. ParaSwift implements a novel Bloom Filter based
inline trace sampling mechanism that helps to both re-
duce the model creation time and also reduce the amount
of memory that is consumed during the model building
process. Our intention is to open source this code and
enable the research community to build and distribute
a large library of trace models that can be used to test
future systems. Look out for the package ParaSwift on
the world wide web in the near future. Finally, we have
tested our end to end workflow using many real life traces
and our results show that our techniques in general lead
to less than 10% error in the accuracy of the trace model.
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Abstract 
System Administration is an emerging academic 
discipline, yet there remains no commonly accepted 
approach to teaching the core skill of troubleshooting 
system problems. Troubleshooting is considered by 
many in the field to be the single most important skill for 
a working professional. The lack of common teaching 
methodology for this skill has resulted in an on the job 
training approach to teaching that is not scalable or 
measurable. This research addresses this gap with an 
approach that may be developed into a reliable, 
repeatable, scalable, and, most importantly, measurable 
approach to teaching the critical system administration 
troubleshooting skill. The research produced two core 
results, a proposed Pedagogical Framework to guide the 
teaching process, and a Network Laboratory 
Management Tool that is a proof of concept and basis for 
a more general purpose, practical implementation of the 
Framework. In this thesis the Framework and Tool are 
presented in detail and future work is described. 
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Abstract* 
Organizations develop and implement Electronic 
Knowledge Repositories (EKRs) to support the 
codification, storage and reuse of knowledge. EKRs 
are seeing increased use in expert technical 
professions, such as system 
administration.  Sysadmin.nasa.gov is such an EKR, 
initiated and supported by a grass-roots group of 
security and system administrator (sysadmin) 
professionals.  The site supports several tools 
including a wiki, code repository, ticketing system, 
mailing lists and chat server to allow sysadmins to 
collaborate effectively across geographically 
distributed NASA centers.  
 
Despite the increasing popularity of EKRs, an EKR is 
only as useful as the knowledge it holds. Referencing 
self-determination theory (Deci & Ryan 2000), the 
motivation-opportunity-ability framework (MacInnis 
et al. 1991), and the theory of knowledge reuse 
(Markus 2001), we include factors in our study that 
influence knowledge contribution to the EKR and 
knowledge sourcing from the EKR, as well as the 
impacts of EKR use on perceived work efficiency 
and effectiveness. Using a cross-sectional survey of 
44 system administrators, we conducted our analysis 
of the use of an in-development EKR system in three 
steps, investigating (1) the effects of organizational 
culture and processes on sysadmin motivation to use 
the EKR; (2) the effects of motivation, costs, and 
technical factors on EKR use; and (3) the effects of 
EKR use on outcome measures, such as perceived 
performance. Overall the use of an EKR was found to 
be a net positive where, with proper support from 
management and consistent messaging, end-users 
were willing to share and use the tools and 
information.  These findings are likely to generalize 
to similar organizational knowledge systems used by 
sysadmins. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  This work supported by NASA Langley Research Center 
Information Technology Enhanced Services (LITES) under 
Task Number A111.   

 
The effects of organizational culture and processes 
on sysadmin motivation to use the EKR: 
• If organizational rewards are associated with 

EKR use, messaging and support from 
management is key. 

• Shared understanding of expertise and norms 
among sysadmins reduces the amount of 
satisfaction that comes from sharing knowledge 
through the EKR. 

• The visibility of page ratings in EKRs 
contributes to the importance of extrinsic 
rewards. 

 
The effects of motivation, costs, and technical factors 
on EKR use: 
• While feeling time pressure reduces EKR use, 

sysadmins are still willing to spend time sharing 
knowledge with the system.  

• Personal satisfaction with sharing knowledge 
contributes to EKR use; messages about sharing 
knowledge as a key aspect of being a sysadmin 
will increase EKR use. 

• Consistent messaging and support from 
management is the most effective way to 
increase EKR use. 

• System quality and usefulness positively impacts 
EKR use; any investments in EKR interface and 
search development will increase system use. 

 
The effects of EKR use on outcome measures, such as 
performance: 
• Sysadmins perceive efficiency and effectiveness 

gains from EKR use. 
• The use of knowledge from external sources 

(such as web searches or vendor documentation) 
reflects negatively on the perceived value of 
early implementation EKRs. Continued support 
for EKRs is key in early rollout stages. 

• Colleagues are seen as a complementary (not 
competing) knowledge source to EKRs. 
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Linux NFSv4.1 Performance Under a Microscope
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NFS is a highly popular method of consolidating file
resources. NFSv4.1, the latest version, has improve-
ments in security, maintainability, and performance. We
present a detail-oriented benchmarking study of NFSv4.1
to help system administrators understand its performance
and take its advantage in production systems.

Our testbed consists of six identical Dell machines.
One NFS server supports five clients via a 1GbE net-
work. We began with a random read workload, where
the five clients randomly read data from a 20GB NFS file
for 5 minutes. In Linux 2.6.32, we observed that each
client’s throughput started at around 22MB/s but gradu-
ally decreased to around 5MB/s. We found the culprit
to be the clients’ read-ahead algorithm, which is aggres-
sive and vulnerable to false-positive errors. The clients
pre-fetched unneeded data and therefore wasted around
80% of the network’s bandwidth. The read-ahead al-
gorithm in Linux 3.12.0 is more conservative, and the
clients achieved consistent 22MB/s throughput.

Switching to sequential reads, we observed a winner-
loser phenomenon where three clients (winners) achieved
a throughput of 28MB/s, while the other two (losers) got
only 14MB/s. The winners and losers differed in mul-
tiple runs of the same experiments. This is caused by
a HashCast effect on our NIC, which has eight trans-
mit queues. The Linux TCP stack hashes each TCP
flow to a particular NIC queue. The clients with col-
lided hashes share one queue, and become losers be-
cause each queue has the same throughput. We note that
multi-queue NICs are popular nowadays, and HashCast
affects multi-queue-NIC servers hosting concurrent data-
intensive TCP streams, such as file servers, video servers,
etc.

We also benchmarked NFS delegation, which trans-
fers control of a file from the server to clients. We found
delegation especially helpful for file locking operations,
which in addition to incurring multiple NFS messages,
invalidate the locked file’s entire client-side cache. Our
micro-benchmark showed that NFS delegation saved up
to 90% of network traffic and significantly boosted per-
formance. Delegations are expected to benefit perfor-
mance most of the time, since “file sharing is rarely con-
current”. But it hurts performance if concurrent and con-
flicting file sharing does happen. We found that, in Linux,
a delegation conflict incurs a delay of at least 100ms—
more than 500× the RTT of our network.
We found that writing NFS files with the O SYNC flag,

which causes more metadata to be written synchronously,
has a side effect on the journaling of ext4, and can
waste more than 50% of disk write bandwidth. We also
noted that the TCP Nagle algorithm, which trades la-
tency for bandwidth by coalescing multiple small pack-
ets, may hurt the performance of latency-sensitive NFS
workloads. However, NFS in Linux has no mechanism to
turn off the algorithm, even though the socket API sup-
ports this with the SO NODELAY option.

By showing how unexpected behaviors in memory
management, networking, and local file systems cause
counterintuitive NFS performance, we call for system ad-
ministrators’ attention to NFSv4.1’s intricate interactions
with other OS subsystems. For a more flexible NFS, we
urge the NFS developers to avoid hard-coded parameters
and policies.

http://www.fsl.cs.stonybrook.edu/docs/nfs4perf/nfs4perf-
microscope.pdf has more details.
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Demand-Provisioned Linux Containers for Private Network Access∗

Patrick T. Cable II
MIT Lincoln Laboratory

Abstract

System Administrators often need to have remote access
to restricted networks that are separated for security rea-
sons. The most common solution to this problem is to
use a virtual private network (VPN) between the system
administrator’s client host to the restricted network. This
solution exposes the restricted network directly to a po-
tentially compromised client host. To avoid this direct
network connection, an alternate solution is to config-
ure an intermediate server, often called a bastion host,
which serves as an explicit man-in-the-middle between
untrusted and trusted networks. The bridge between net-
works is often established using secure shell (SSH). This
solution reduces risk by implementing a central point of
monitoring and ingress to the trusted network. Unfortu-
nately, this also changes the bastion server’s threat sur-
face. Compromises to the intermediate server can result
in the capture of authentication data (potentially from
multiple users and for both the bastion itself or for as-
sets on the private network) and can be a launch point for
subsequent attacks.

To mitigate this risk, we have created an architecture
that supports self-service provisioning of non-persistent
bastion containers that are unique to each user. These
containers only last for the duration of the connection,
are only created after the client has authenticated with
multiple factors, and perform live auditing outside the
container to log user behavior in the private network. The
system has four primary internal components: 1) a web
based front end where users can request a session. 2) a
controller on the compute host that manages the creation
and destruction of containers, 3) the individual bastion
containers, and 4) audit capabilities for both container

∗This work is sponsored by the Assistant Secretary of Defense
for Research & Engineering under Air Force Contract #FA8721-05-
C-0002. Opinions, interpretations, conclusions and recommendations
are those of the author and are not necessarily endorsed by the United
States Government. Approved for Public Release; distribution is un-
limited.

creation and user monitoring inside of the containers.
This poster describes the system architecture and how

we apply least privilege to each internal component to
minimize risk. We also describe the implementation
of our system, present initial results of its performance
overhead, and walk through how a user would initiate a
session.
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Abstract
In recent years data center operations have evolved into 

extensive infrastructures that can support of a wide range of 
computing paradigms, from traditional application hosting 

and data storage to service oriented architectures (SOAs) and 
emerging cloud services. Offering various mixes of software, 

platform, and infrastructure as a service (SaaS, PaaS, IaaS), 
more recent advances in software defined networking (SDN), 

combined with ubiquitous computing and IP convergence 
(voice, video, data) on end-point devices such as smart 

phones and tablets, have only added complexity to the 
delivery of business services. 

   This situation is further complicated by recent waves of 
mergers and acquisitions of these services by competing 

firms. In the commercial sector this has resulted in the 
creation of hybrid infrastructure resulting from the 

combination of the many different post-merger sites. 
These conglomerations are a soup of disparate applications, 

operating systems, data storage, communications protocols 
and networking fabrics, with various service and maintenance 

arrangements.The result is that information technology 
departments are are tasked with satisfying an ever expanding 

set of requirements and diversifying technical base. 
   One of the most daunting tasks post aggregation is the 

initial discovery and remote evaluation of the newly acquired, 
unexplored, legacy data center and network computing 

resources by an IT staff. When faced with performing  
discovery tasks, IT staff can be highly constrained by factors 

such as distance, time, risk identification, and knowledge 
from both a technology and corporate IT history standpoint. 

Research is required to understand the best practices for 
initial reconnaissance, combined with ongoing monitoring 

and analytics of the newly integrated infrastructure. This 
requires innovation in both system administration methods 

and tools.
   While there have been some recent commercial advances, 

these IT vendor tool suites are expensive, complicated, and 
require significant resources to deploy. Their codebase and 

underlying methods remain proprietary. To advance the 
scientific understanding of these practices, we require 

assemblages of open source software tools and careful 
evaluation of human actors. 

   Thus, this project intends to advance the discipline by two 
major advances. The first is developing an instrumented 

evaluation testbed that provides generic infrastructure 
services, general user activity, and advanced computing 

constructs (Cloud, Software Defined Networking, etc.) in a 

simulated data center environment (SDCE). The second part 
is a Virtual, Interactive, Collaboration and Information 

Exchange Environment (VICkIEE), for performing such 
evaluations. Combined, these two components can be used 

for validating various data center configurations, evaluation 
methodologies, and tool suites for use in this task. 

   The VICkIEE is intended to be a real time, multi-tool, 
windowed UI with a shared collaborative interface to support 

multiple simultaneous system analysts. By remotely 
deploying the VICkIEE into a data center environment, 

operations can be performed with the same fidelity that local 
access provides. Future work intends to pursue user 

evaluations of the VICkIEE software suite to support 
discovery using a prototype SDCE in Fall 2014 with students 

enrolled in local cybersecurity and Information Technology 
programs. 
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Abstract
Large installations involve huge numbers of interacting
components that are subject to a multitude of hardware
failures, transient errors, software bugs, and misconfigu-
ration. Monitoring the health, utilization, security, and/or
configuration of such installations is a challenging task.
While various frameworks are available to assist with
these tasks at a high level, administrators must more of-
ten than not revert to using command line tools on indi-
vidual systems to get a low-level understanding of sys-
tem behavior. The output from such tools can be difficult
to grasp on even a single system, so when taken across
a large number of hosts, can become completely over-
whelming.

A variety visualization tools and techniques have been
proposed to increase the amount of information that can
be processed by humans at once. Existing tools, how-
ever, do not provide the flexibility, scalability, or us-
ability needed to assist with all the varied information
streams possible in large installations. In particular, these
tools often require data in a specific format and/or in a
specific location with interfaces that have little relation
to the underlying commands from which the data origi-
nates.

Savors is a new visualization framework for the Syn-
chronization And Visualization Of aRbitrary Streams.
The goal of Savors is to supercharge the command-line
tools already used by administrators with powerful vi-
sualizations that help them understand the output much
more rapidly and with far greater scalability across sys-
tems. Savors not only supports the output of existing
commands, but does so in a manner consistent with those
commands by combining the line-editing capabilities of
vi, the rapid window manipulation of GNU screen, the
power and compactness of perl expressions, and the ele-
gance of Unix pipelines. Savors was designed to support

∗This work is supported by the NASA Advanced Supercomputing
Division under Task Number ARC-013 (Contract NNA07CA29C) with
Computer Sciences Corporation

impromptu visualization, where the user can simply feed
in the commands they were already using to create alter-
nate views with optional on-the-fly aggregation of infor-
mation across many systems. In this way, visualization
becomes part of the administrator’s standard repertoire
of monitoring and analysis techniques with no need for
a priori aggregation of data at a centralized resource or
conversion of the data into a predefined format.

Savors can show any number of data streams either
consolidated in the same view or spread out across mul-
tiple views. In multi-data scenarios, data streams can
be synchronized by time allowing even distributed data
streams to be viewed in the same temporal context. In
single-data multi-view scenarios, views are updated in
lockstep fashion so they show the same data at the same
time. Together with its integrated parallelization capabil-
ities, this allows Savors to easily show meaningful results
from across even very large installations.

Savors consists of three components: a console, some
number of data servers, and some number of views.
The console is responsible for user interaction, spawning
data servers and views according to the given command
pipelines, and controlling synchronization between data
streams. The data servers are responsible for spawning
and interacting with the commands that generate data,
manipulating the data as specified, and sending the data
to the console and views. Finally, the views are respon-
sible for visualizing the data as specified on one or more
displays.

Savors is open source and available for download at
http://savors.sf.net.

1
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Formalising Configuration Languages
Why is this important in practice?
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Formalising configuration languages sounds rather
academic - why is this important in practice?
Almost all large installations - including critical systems
such as air traffic control[4] - now rely very heavily on
configuration tools, and their associated languages, to de-
fine and manage their infrastructure. This growth means
that configuration errors are becoming more serious, and
more prevalent: they were found to be the second major
cause of service-level failures in one of Google’s main
services[3], and they have been responsible for serious
outages at most of the main internet service providers.
Unlike modern programming languages, configuration
languages are usually defined by a single implementa-
tion, with no formal specification of the language - ambi-
guities and implementation errors are much more likely,
and it is hard to create alternative compilers or other
tools.

How does formalisation help with these problems?
• A precise definition enables us to create multiple im-
plementations which are truly compatible and “correct”.
• It also allows other people to experiment with compat-
ible language extensions.
• And to implement supporting tools such as IDEs,
graphical tools, analysers ...
• We can formally prove properties of the configuration
making it highly reliable.
• Crucially, the process of developing the semantics also
gives us a deeper understanding of the language and
highlights problems with the language design.

What did we do?
We used an approach known as denotational seman-
tics to develop a formal specification for the core of
the SmartFrog[1] configuration language. SmartFrog is
a declarative configuration language which is compara-
tively well-defined and has a typical structure. The de-
notational approach provides a direct mapping from the
statements of the language onto their “meaning” - i.e. the
real, resulting configuration.

What did this achieve?
• We used the semantics to prove some critical properties
of the language, such as the fact that the compiler always
terminates.
• Two people independently created three different im-
plementations of the compiler[2] using the semantics as a
specification. These were automatically compared using
auto-generated, and hand-crafted examples, and found to
be highly compatible. Two of these were extended to be
fully compatible with the production compiler.
• We identified real bugs in the production compiler
which has been in use for many years.
• We identified reasons for some “awkward” features in
the language and possible ways of avoiding these.

What did we learn from this?
• It is possible to develop a formal semantics for config-
uration languages, and this helps to alleviate many of the
practical problems mentioned above, and makes it much
easier to create clear and correct compilers.
• This process is much more natural for “declarative”
languages and further strengthens the case for their use
(this bears comparison with the growth in popularity of
functional programming languages).
• A more careful approach to the design and evolution of
production configuration languages is necessary to avoid
deep problems being caused by apparently small lan-
guage changes.
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