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Message from the General Chair

Welcome to the 2017 Workshop on Learning from Authoritative Security Experiment Results (LASER).

Each year, LASER focuses on an aspect of experimentation in cyber security. The 2017 workshop focus was on
improving the rigor and quality of security experimentation through experimental methods and research that
exemplifies sound scientific practice.

The event was structured as a workshop with invited talks and a variety of guided group discussions in order to best
meet the overall workshop goals.

LASER 2017 sought research papers exemplifying the practice of science in cyber security, whether the results were
positive or negative. Papers documenting experiments with a well-reasoned hypothesis, a rigorous experimental meth-
odology for testing that hypothesis, and results that proved, disproved, or failed to prove the hypothesis were sought.

This year, many of the papers and talks for the 2017 LASER Workshop included aspects of measurement and analy-
sis of experimental approaches. This theme was highlighted in the invited talk “The Advancement of Science in
Cyber Security” by Dr. Laurie Williams from North Carolina State University, who gave a report on the NSA Lablet
program efforts designed to more aggressively advance the science of cyber security. A key motivation of this work
is to catalyze a shift in relevant areas towards a more organized and cohesive scientific community for a science of
cyber security.

Invited speaker Dr. Josiah Dykstra’s talk “She Blinded Me with Science: Understanding Misleading, Manipulative,
and Deceptive Cybersecurity” described how people are often misled, manipulated, or deceived by real and bogus
science, wild claims, and marketing trickery. Dykstra’s work explores the dangers of vendor-sponsored studies,
surveys, and spurious (false) correlations. Drawing on his book Essential Cybersecurity Science, Dykstra discussed
how researchers can improve communication with security practitioners and the dangers of manipulative graphics
and visualizations that work through mental shortcomings and perception or because of the data they omit.

The workshop received 15 submissions, which were each reviewed by at least 3 members of the Program Committee.
The Program Committee accepted 8 full papers, which they believed embodied the workshop spirit and focus of
LASER 2017.

This year, the LASER Workshop returned to its roots and was held in October and was hosted by SRI International
at their Arlington, VA facility.

LASER recognizes that the future of cyber security lies with the next generation of researchers. As such, LASER
sponsors students who are working to become researchers to attend and participate in the workshop. In 2017, four
students received full sponsorship.

On behalf of LASER 2017, I wish to thank the many people who made this workshop possible:

e QOur program chairs, who worked diligently to put together a strong technical program that would benefit the
community

e The authors, who submitted papers to this workshop

e The members of the Program Committee, who carefully reviewed the submissions and participated in paper
discussions

e Qur organizing committee, who provided guidance and donated their time to handle everything from publicity
to logistics

e The National Science Foundation, ACSA, SRI and USENIX , who provided the funding and facilities neces-
sary to make the workshop a reality

e The attendees, without whom there would be no workshop at all. We look forward to meeting everyone at
LASER 2018!

Terry Benzel, USC Information Sciences Institute
LASER 2017 General Chair
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Understanding Malware’s Network Behaviors using Fantasm

Xiyue Deng
xiyueden@isi.edu
Information Sciences Institute

Hao Shi
shihao@isi.edu
Information Sciences Institute

Jelena Mirkovic
mirkovic @isi.edu
Information Sciences Institute

Abstract

Background: There is very little data about how often
contemporary malware communicates with the Internet
and how essential this communication is for malware’s
functionality.

Aim: We aim to quantify what fraction of contempo-
rary malware samples are environment-sensitive and will
exhibit very few behaviors when analyzed under full con-
tainment. We then seek to understand the purpose of the
malware’s use of communication channel and if malware
communication patterns could be used to understand its
purpose.

Method. We analyze malware communication be-
havior by running contemporary malware samples on
bare-metal machines in the DeterLab testbed, either in
full containment or with some limited connectivity, and
recording and analyzing all their network traffic. We
carefully choose which communication to allow, and we
monitor all connections that are let into the Internet. This
way we can guarantee safety to Internet hosts, while ex-
posing interesting malware behaviors that do not show
under full containment.

Results. We find that 58% of samples exhibit some
network activity within the first five minutes of run-
ning. We further find that 78% of these samples exhibit
more network behaviors when ran under our limited con-
tainment, than when ran under full containment, which
means that 78% of samples are environment-sensitive.
Most common communication patterns involve DNS,
ICMP ECHO and HTTP traffic toward mostly non-
public destinations. Likely purpose of this traffic is bot-
net command and control. We further show that mal-
ware’s network behaviors can be used to determine its
purpose with 85-89% accuracy.

Conclusions. Ability to communicate with outside
hosts seems to be essential to contemporary malware.
This calls for better design of malware analysis environ-
ments, which enable safe and controlled communication
to expose more interesting malware behaviors.

1 Introduction

Malware today evolves at an amazing pace. Kaspersky
lab [1] reports that more than 300,000 new malware sam-
ples are found each day. While many have analyzed
malware binaries to understand its purpose [7, 9], little
has been done on analyzing and understanding malware
communication patterns [17,22]. Specifically, we do not
know how much malware needs outside connectivity and
what impact limited connectivity has on malware’s func-
tionality. We further do not understand which application
and transport protocols are used by contemporary mal-
ware, and what is the purpose of this communication.
Understanding these issues is necessary for two reasons.
First, much malware analysis occurs in full containment
due to legal and ethical reasons. If communication is
essential to malware, then analyzing it in full contain-
ment makes what defenders observe very different from
how malware behaves in the wild. Second, understand-
ing malware communication patterns may be useful to
understand its functionality, even when malware code is
obfuscated or encrypted.

We hypothesize that communication may be essen-
tial to malware for multiple reasons. First, contem-
porary malware is becoming environment-sensitive and
may test its environment before it reveals its functional-
ity [7, 14]. If constrained environment is detected, mal-
ware may modify or abort its behavior. Second, much
of malware functionality today relies on a functional net-
work [13,24]. Malware often downloads binaries needed
for its functionality from the Internet, or connects into
command and control channel to receive instructions on
its next activity [25]. Without network access such mal-
ware is an empty shell, containing no useful code. Third,
malware functionality itself may require network access.
Advanced persistent threats [15] and keyloggers collect
sensitive information on users’ computers, but need net-
work access to transfer it to the attacker. DDoS attack
tools, scanners, spam and phishing malware require net-
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work access to send malicious traffic to their targets.
Without connectivity, such malware will become dor-
mant.

We test our hypothesis by analyzing 2,994 contempo-
rary malware samples, chosen to represent a wide variety
of functional behaviors (e.g., key loggers, ransomware,
bots, etc.). We analyze each sample under full and un-
der partial containment, for five minutes, and record all
network traffic. Our partial containment is designed to
carefully allow select malware communication attempts
into the Internet, when we believe this is necessary to re-
veal more interesting behaviors. All traffic is monitored
for signs of malicious intent (e.g., DDoS or scanning)
and quickly aborted if these are detected. This way we
can guarantee safety to the Internet from our experimen-
tation.

We find that 58% of samples exhibit some network be-
havior, and that 78% of these samples exhibit more net-
work behaviors when ran under our partial containment,
than when ran under full containment, which means they
are environment-sensitive. Most malware samples send
DNS, ICMP ECHO and HTTP traffic, and contact ob-
scure destinations rather than popular servers. Likely
purpose of these malware communication attempts is
command and control communication, and new binary
download. We further show that malware’s network be-
haviors can be used to determine its purpose with 85—
89% accuracy. We also show that our partial containment
is safe for the Internet. In twelve weeks of running, we
have received no abuse complaints and our IP addresses
have not been blacklisted.

All the code developed in our work and the materials
used in our evaluation are available at our project web-
site: https://steel.isi.edu/Projects/fantasm/

2 Related Work

In this section, we summarize related work on under-
standing malware behaviors.

Most malware analysis works focus on analyzing sys-
tem traces and malware binaries [20,21]. There are
fewer efforts on analyzing the semantics of malware’s
network behavior. The Sandnet article [22] provides a
detailed, statistical analysis of malware’s network traffic.
The authors give an overview of the popularity of each
protocol that malware employs. However, they do not
attempt to understand the high-level semantics of mal-
ware’s network conversations, and this is the contribu-
tion we make. Our work also updates results from [22]
with communication patterns of contemporary malware.
For example, we observe that ICMP ECHO has be-
come the second most popular protocol used by mal-
ware. Morales et al. [17] define seven network activities
based on heuristics and analyze malware for prevalence

of these behaviors. Yet this work does not provide insight
into a malware sample’s purpose (e.g., worm, scanner,
etc.) and it may miss behaviors other than those seven
select ones. Our work complements this work and cov-
ers a richer set of behaviors, composed out of some basic
communication patterns discussed in Section 5.3.

3 Fantasm

In this section, we describe the goals for our Fantasm
system, our partial containment rules and how we ensure
safety to the Internet from our experimentation.

3.1 Goals

Our goal in designing the Fantasm system was to sup-
port safe and productive malware experimentation. Safe
means that we wanted to ensure that we do no harm to
other Internet hosts with our experiments. Productive
means that we wanted to ensure that as many as possi-
ble outgoing communication requests, launched by mal-
ware, receive a reply to that malware may move on to its
next activity.

3.2 Partial Containment

One could achieve safety in full containment, without
letting any traffic out of the environment. But because
malware is environment-sensitive this would not lead to
productive experimentation. One could also experiment
in an open environment, where all the traffic is let out.
But this would not be safe since the analysis environment
could become a source of harmful scans, DDoS attacks
and worm infections, which harm other Internet hosts.
Due to ethical consideration, no organization would sup-
port such analysis for long.

To meet our goals we decided to experiment with mal-
ware in partial containment, where we selectively de-
cide which malware flows to allow to reach into the In-
ternet based on our assessment of their potential risk to
the Internet, which is conformant to the ethical princi-
ples for information and communication technology re-
search [11]. We also attempt to handle each outgoing
flow in full containment first, by impersonating remote
servers and crafting generic replies. This further reduces
the amount of traffic we must let out and improves ex-
perimentation safety. We now explain how we assessed
this risk and how we enforced the containment rules.

Based on a malware flow’s purpose we distinguish be-
tween the following flow categories: benign (e.g., well-
formed requests to public servers at a low rate), e-mail
(spam or phishing), scan, denial of service, exploit and
C&C (command and control). Potential harm to Inter-
net hosts depends on the flow’s category. Spam, scans

2 LASER 2017 ¢ Learning from Authoritative Security Experiment Results
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Flow

Impersonator

Figure 1: Flow handling: how we decide if an outgoing
flow will be let out, redirected to our impersonators or
dropped.

and denial of service are harmful only in large quantities
— letting a few such packets out will usually not cause
severe damages to their targets, but it may generate com-
plaints from their administrators. On the other hand, bi-
nary and text-based exploits are destructive, even in a
single flow. The C&C and benign communications are
not harmful and usually must be let out to achieve pro-
ductive malware experimentation.

The challenge of handling the outside communication
with a fixed set of rules lies in the fact that the flow’s
purpose is usually not known a priori. For example a
SYN packet to port 80 could be the start of a benign
flow (e.g., a Web page download to check connectiv-
ity), a C&C flow (to report infection and receive com-
mands for future activities), an exploit against a vulner-
able Web server, a scan or a part of denial-of-service at-
tack. We thus have to make a decision how to handle
a flow based on incomplete information, and revise this
decision when more information is available. Our initial
decision depends on how essential we believe the flow
is to the malware’s continued operation, how easy it is
for us to fabricate responses without letting the flow out
of our analysis environment, and how risky it may be
to let the flow out into the Internet. For essential flows
whose replies are predictable, we develop generic ser-
vices that provide these predictable responses and do not
allow these flows into the Internet. We call these ser-
vices “impersonators”. Essential flows whose replies are
not predictable, and which are not risky, are let out into
the Internet, and closely observed lest they exhibit risky
behavior in the future. Non-essential flows and essential
but risky flows are dropped. Figure 1 illustrates our flow
handling.

Traffic that we let out could be misused for scanning or
DDoS if we let it out in any quantity. We actively monitor
for these activities and enforce limits on the number of
suspicious flows that a sample can initiate. We define a
suspicious flow as a flow, which receives no replies from
the Internet. For example, a TCP SYN to port 80 that

does not receive a TCP SYN-ACK would be a part of
a suspicious flow. Similarly a DNS query that receives
no reply is a suspicious flow. Suspicious flows will be
present if a sample participates in DDoS attacks or if it
scans Internet hosts. If the sample exceeds its allowance
of suspicious flows, we abort this sample’s analysis.

We summarize our initial decisions and revision rules
in Table 1. We consider DNS, HTTP and HTTPS flows
as essential and non-risky, whose replies we cannot fake.
We make this determination because many benign and
C&C flows use these services to obtain additional mal-
ware executables, report data to the bot master and re-
ceive commands. Among our samples, DNS is used by
62%, HTTP by 35%, and HTTPS by 10% of samples
(Section 4).

We consider FTP, SMTP and ICMP flows as essen-
tial flows with predictable replies. We forward these to
our corresponding impersonators (Figure 1). These are
machines in our analysis environment that run the given
service, and are configured to provide generic replies to
service requests. We redirect ICMP ECHO requests to
our service impersonators and fake positive replies. We
drop other ICMP traffic.

Our FTP service impersonator is a customized, per-
missive FTP service that positively authenticates when
any user name and password are supplied. This setting
can handle all potential connection requests from mal-
ware. If malware tries to download a file, we will create
one with the same extension name, such as .exe, .doc,
. jpg, and others. We save uploaded files for further anal-
ysis. For SMTP service, we set up an Email server that
can reply with a “250 OK” message to any request. Our
ICMP impersonator sends positive replies to any ICMP
ECHO request.

4 Experimentation Goals Environment

and Design

In this section, we discuss our experimentation goals, en-
vironment and experiment design.

4.1 Experimentation Goals

We wanted to observe and analyze communication pat-
terns of malware. This necessitated identification of a
relatively recent, representative set of malware binaries
and running them in partial containment, while record-
ing their communication. We further needed a way to
quickly and automatically restore “clean state” of ma-
chines between malware samples

USENIX Association
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Goal Action | Targeted Services
Forward | DNS, HTTP, HTTPS
Elicit malware behavior | Redirect | FTP, SMTP, ICMP ECHO
Restrict forwarded flows Drop Other services —
Limit | Number of suspicious flows

Table 1: Flow policies for partial containment

4.2 Experimentation Environment

We experiment with malware samples in the DeterLab
testbed [8]. DeterLab [8] enables remote remote exper-
imentation and automated setup. An experimenter gains
exclusive access and sudoer privileges to a set of physical
machines and may connect them into custom topologies.
The machines run an operating system and applications
of a user’s choice. Experimental traffic is usually fully
contained, and does not affect other experiments on the
testbed, nor can it get out into the Internet. In our ex-
periments, we leverage a special functionality in the De-
terLab testbed, called “risky experiment management”,
which allows exchange of some user-specified traffic be-
tween an experiment and the Internet. We specify that all
DNS, HTTP and HTTPS traffic should be let out.

We run malware samples on several machines in a De-
terLab experiment, which we will call Inmates. We hi-
jack default route on Inmates and make all their traffic
to the Internet pass through a special machine in our ex-
periment, called Gateway. This Gateway implements our
partial containment rules. We implement all of the ser-
vice impersonators on a single physical machine. Each
machine has a 3GHz Intel processor, 2GB of RAM, one
36Gb disk, and 5 Gigabit network interface cards.

To hide the fact that our machines reside within De-
terLab from environment-sensitive malware we modify
the system strings shown in Table 2. For example, we
replace the default value (“Netbed User”) of “Registered
User” with a random name, e.g., — “Jack Linch”. There-
fore, malware will not detect the existence of DeterLab
by searching for such strings.

4.3 Experiment Design

‘We run each malware sample under a given containment
strategy (full or partial) for five minutes and record all
network traffic at the Gateway. After analyzing each mal-
ware sample, we must restore Inmates to a clean state.
We take advantage of the OS setup functionality pro-
vided by DeterLab to implement this function. We first
perform certain OS optimization to reduce the size of OS
image and thus shorten the time needed to load the image
when restoring clean state. This modified OS is saved
into a snapshot using the disk imaging function of Deter-
Lab. This step takes a few minutes but is carried out only

once for our experimentation. Later, whenever we need
to restore the system after analyzing a malware sample,
we reload the OS image using DeterLab’s os_load com-
mand.

Our environment could also be used to study behavior
of benign code, but this is outside of the scope of this
research.

4.4 Malware Dataset

We obtained a recent set of malware samples by down-
loading 29,319 malware samples between March 4th and
March 17th, 2017 from OpenMalware [2]. In order to ob-
tain a balanced dataset we establish ground truth about
the purposes of these samples by submitting their mdS
hashes to VirusTotal [5]. We retrieve 28,495 valid re-
ports. Each report contains the analysis results of about
50~60 anti-virus (AV) products for a given sample. We
keep the samples that were labeled as malicious by more
than 50% AV products. This leaves us with 19,007 sam-
ples.

Concise Tagging. Each AV product tags a bi-
nary with vendor-specific label, for example,
“worm.win32.allaple.e.”, “trojan.waski.a”, “mali-
cious_confidence_100% (d)”, or just “benign”. As
demonstrated in [6], AV vendors disagree not only on
which tag to assign to a binary, but also how many
unique tags exist. To overcome this limitation, we devise
a translation service that translates vendor-specific tags
into a nine concise, generic tags, such as: worm, trojan,
virus, etc. We learn the translation rules by first taking
a union of all the tags assigned by the AV products
(74,443 in total), and then manually extracting common
keywords out of them that signify a given concise
category. Finally, we tag the sample with the concise
category that is assigned by the majority of the AV
products. Table 3 shows the breakdown of our samples
over our concise tags.

We then randomly select 2,994 out of the 19,007 sam-
ples, trying to select equal number of samples from each
category, to achieve diversity and form a representative
malware set. We continue working with this malware
set.

4 LASER 2017 ¢ Learning from Authoritative Security Experiment Results
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Key Name Default in DeterLab Our Modification
Registered User “Netbed User” Random name, e.g., “Jack Linch”
Computer Name | “pc.isi.deterlab.net” Random name, e.g., “Jack’s PC”

Workgroup “EMULAB” “WORKGROUP”

Table 2: Minimizing artifacts of DeterLab.

Table 3: Concise Tagging of Malware Samples

Categories | Samples || Categories | Samples
Virus 6,126/32% Riskware 409/2%
Trojan 6,040/32% Backdoor 197/1%
Worm 4,227/22% Bot 45/<1%
Downloader 984/5% Ransomware | 17/<1%
Adware 962/5% Total 19,007
5 Results

In our evaluation, out of 2,994 malware samples in our
malware set 1,737 samples exhibited some network ac-
tivity during a run. The remaining samples may be dor-
mant, waiting for some trigger or may simply exhibit too
small communication frequency, which we cannot ob-
serve given our experiment duration (5 minutes).

5.1 Partial Containment Exposes More
Malware Behavior

We measure the quantity of observable malware behavior
by counting the number of network flows recorded dur-
ing experimentation. Out of 1,737 samples that exhibit
any network behavior, 1,354 (78%) generate more flows
under partial containment than under full containment.
This supports our hypothesis that network connectivity
is essential for malware functionality, and that most mal-
ware samples are environment-sensitive. Out of 1,737
that exhibit network behavior there were 9,304,083 out-
going flows generated during our 5 minute experimen-
tation interval. Out of these 9,304,083 flows, our im-
personators could fake replies to 9,270,831 (99.64%) of
them. We had to let 2,295 flows (0.02%) out into the in-
ternet because we could not fake their replies and they
were deemed essential. Finally 30,957 flows (0.33%)
were dropped because we did not have an impersonator
for their protocol, but they were deemed too risky to be
let out. We hope to develop more impersonators in the
future, and thus further reduce risk to the Internet.

As a proof of how safe our experimentation was, dur-
ing twelve weeks that we ran, we received no abuse com-
plaints. We also analyzed 203 IP blacklists from 56 well-
known maintainers (e.g., [3]), which contain 178 million
IPs and 34,618 /16 prefixes for our experimentation pe-
riod. Our external IP was not in any of the blacklists,

Protocols | Samples [| Protocols | Samples
DNS 1081/62% 1042 65/4%
ICMP echo | 818/47% 799 33/2%
HTTP 600/35% 6892 25/1%
65520 237/14% 11110 17/1%
HTTPS 173/10% 11180 17/1%
SMTP 75/4% FTP 12/1%

Table 4: Top 12 application protocols used by malware,
and the number and percentage of samples that use them.

which further supports our claim that no harmful traffic
was let out.

5.2 Malware Communication Patterns

Table 4 shows the top 12 application protocols used by
our malware dataset. DNS is used by 62% of samples
and its primary use seemed to resolve the IPs of the do-
mains that malware wishes to contact. ICMP was used
by 47% of samples, likely to test reachability, either to
detect if malware is running in a contained environment
or to identify live hosts that may later be infected, if vul-
nerable. HTTP (35% of samples) and HTTPS (10% of
samples) are likely used to retrieve new binaries, as we
find many of these connections going out to file-hosting
services. Port 65520 is mostly used by a virus that infects
executable files and opens a back door on the compro-
mised computers. The SMTP protocol is used to spread
spam.

Samples in our malware dataset queried a total of
5,548 different domains, among which zief.pl (14%)
and google.com (11%) are the most popular domains.
We query these domains from alexa.com' , which has
the records for 341 (6%) domains, as shown in Figure 2.
We find that only 1% of the domains have ranks lower
than 10,000, 5% have higher ranks and 94% of domains
are not recorded by alexa. For the domains whose
rank is lower than 10,000, most are web portals, such as
YouTube and many are file storage services, like Drop-
box. We manually check 20 domains that have no record
in alexa, and none had a valid DNS record. This sug-
gests that malware may use portal websites either test

!In our future work we will look to use a more robust representation
of popular domains, like proposed by Metcalf et al in [16]

USENIX Association
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Figure 3: Popularity of top-level domains in our ob-
served malware communications.

network reachability or for file transfer, and it may use
private servers for file transfer or for C&C communica-
tion.

We classify the queried names based on their top-level
domain, e.g., .com or .net. We find a total of 72 dis-
tinct top-level domains, as shown in Figure 3. The Top
3 of these domains are shown in Table 5. The .com is
the most popular top-level domain, which is queried by
540 (31%) samples. The third column in Table 5 shows
the top 3 queried domains in each top-level category.
These domains contain 53 country codes, with Poland,
Germany, and Netherlands being the top three countries.
This means that malware in our dataset predominantly
targeted European victims.

5.3 Summarizing Malware Communica-
tion

We now explore how to summarize malware communi-
cation so we can further investigate common patterns in
how malware uses the Internet. Our goal was to create
a concise and human-readable digest of malware’s com-
munication starting from recorded tcpdump logs. We call
this representation NetDigest.

We start by splitting a malware’s traffic into flows

Top-level | Samples Second-level Samples
google.com 187/35%
.com 540/31% msrl.com 73/14%
ide.com 73/14%
zief.pl 244/83%
.pl 293/17% brenz.pl 26/9%
ircgalaxy.pl 22/8%
secureserver.net | 73/31%
.net 235/14% surf.net 68/29%
aol.net 65/28%

Table 5: Popularity of domains in malware DNS queries.

Protocol [ [Attribute: Value]

[LocalPort: integer]} [NumPktSent: integer]?
All [NumPktRecv: in‘ceger]3t [PktSentTS:
float_1list]} [PktRecvTS: float_list]} [Pay-
loadSize: integer_list]T

[Server: IP_address]f[QueryType: string]t
[CNAME: string]} [ResponseType: IP_address
list]t

DNS

[Server: IP_address]¥[Proactive: boolean]t
[GotResponse: boolean]}[Code: integer]f,
[Download: file_type]f[Upload: file_type]

HTTP/FTP

[Server: IP_address]? [EmailTitle: string];
[Recipients: string]f[BodyLength: integer];
[ContainAttachment: boolean]; [AttachmentType:
string]*

SMTP

ICMP [RequestIP: IP_address][NumRequests, integer]*

¥ Occur exactly once
f May have zero or more occurrences
* Have at least one occurrence

Table 6: NetDigest of a session.

based on the communicating IP address and port number
pairs, and the transport protocol. We call each such flow
a “session”. Then, for each session, we extract the appli-
cation protocol employed and devise a list of {attribute:
value} pairs for this protocol, as shown in Table 6.

The first row of Table 6 shows the information that we
will extract for all types of application protocols. For
example, “LocalPort” denotes the local IP port used by
malware, which is an integer. This attribute appears only
once for a single session, and is derived from the defi-
nition of a session. The “NumPktSent” means the total
number of packets sent by malware in an individual ses-
sion. The “PktSentTS” is a list of Unix epoch time of all
the packets sent by malware. Finally, we also maintain a
list of each packet’s payload size.

The DNS protocol has one attribute “Server”, which
has the value of IP_address that the query is sent to.
For the domain queried by malware, the QueryType can
be address record (4), mail exchange record (MX), pointer
record (PTR), or others. For the response sent back by
DNS server, we first save its canonical name, if any, in
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a CNAME field. Then, we extract the response type and
corresponding values and assign them to the Response-
Type field.

For an HTTP or FTP session, we first take note of the
server’s IP address in the ServerIP field. Then, we use
boolean values to denote if this session is initiated by
malware (“Proactive”) and if malware receives any re-
sponse from Internet host (“GotResponse”). If the out-
side server replies to malware, we classify the following
packets as “Download” or “Upload” based on the direc-
tion of the bulk volume of data. We also extract the file
type being transferred.

For an SMTP message, we extract the server IP ad-
dress, Email title, recipients, and body length. We also
use a boolean value to note whether the message has an
attachment and save the attachment’s file type in a string.

For the ICMP protocol, we extract the destination IP
address into the RequestIP field. We also save the num-
ber of requests in NumRequests field.

After we build the lists of attribute-value pairs for all
the sessions produced by a malware sample, we sort the
lists based on their first timestamps. The final, sorted list
of session abstractions is called the NetDigest.

One sample NetDigest is shown in Figure 4
for the sample tagged as Trojan by AV products.
At the beginning, this sample queries a domain
(ic-dc.deliverydlcenter.com) using the default
DNS server that is part of our impersonator set. Our
DNS server acts as a recursive resolver and obtains and
returns the actual mapping. Then, this sample down-
loads a picture and blob files from the first IP address
returned. However, for the remaining Internet hosts,
this sample just establishes connections with them but
does not download or upload any information. For ex-
ample, the second domain (www.1l-ads.com) suggests
that it is an advertising website, but no payload is
downloaded from this website (session starting at times-
tamp 1488068896.977464). In addition, some IPs
are unreachable at the time of our execution, such as
52.85.83.112.

5.4 Classifying Malware by Its Network
Behavior

We now explore if unknown malware could be classified
based on its communication patterns. Current malware
classification relies on binary analysis. Yet, this approach
has a few challenges. First, malware may use packing
or encryption to obfuscate its code, thus defeating bi-
nary analysis. Second, malware may be environment-
sensitive and may not exhibit interesting behavior and
code if ran in a virtual machine or debugger, which are
usually used for binary analysis. We thus explore mal-
ware classification based on its communication behav-

ior, reasoning that malware may obfuscate its code but
it must exhibit certain key behaviors to achieve its basic
functionality. For example, a scanner must scan its tar-
gets and cannot significantly change this behavior with-
out jeopardizing its functionality.

In our classification we divide our malware set into a
training and a testing set. We then apply machine learn-
ing to learn associations on the training set between some
features of malware communication, which we describe
next, and our concise labels denoting malware purpose.
Finally, we attempt to classify the malware in the testing
set and report our success rate.

Extracting Features. We start with 83 select features,
extracted out of the malware’s NetDigest, as shown in
Table 7.

We abstract malware’s network traffic into four broad
categories: Packet, Session, Protocol, and Content. For
the Packet category, we divide it into three subgroups:
Header, Payload, and Statistics. In the Header subgroup,
we count the number of distinct IPs that a sample’s pack-
ets have been sent to. In addition, we also look up the
geographical locations of the IPs from the GeoLite [4]
database, including the countries and continent they re-
side in. We chose these features because it is known that
certain classes of malware target Internet hosts in differ-
ent countries. In the Payload subgroup, we calculate the
total size of payload in bytes. Furthermore, we compute
the following statistics for both sent and received vol-
ume, the packet counts and the packet timing: minimum,
maximum, mean, and standard deviation.

For the Session category, we consider all packets that
are exchanged between malware and a single IP address.
For these packets, we divide them into different sessions
according to the local ports used by malware. For each
session, we determine if its direction is proactive or pas-
sive, depending on whether the malware initiates the ses-
sion or not. We say the Result of a session is successful if
malware initiates the session and receives any responses
from the host. We further calculate the number of TCP
SYN packets, which can be used to detect SYN flood
attacks. We also record the number of sessions per IP,
which can be useful to further establish communication
purpose. For example, in our evaluation, we find that
one sample launches one short session with the first IP
and then initiates multiple sessions with the second one
for download. This network behavior indicates that the
first IP serves as a master, directing the malware sample
to the second, which acts as a file server.

For the Protocol category, we extract features for dif-
ferent types of application protocols. For example, for
the DNS we summarize the number of distinct domains
queried by malware in their DNS query and response
packets. For HTTP, we count the number of pack-
ets carrying specific HTTP status codes, such as 200

USENIX Association

LASER 2017 ¢ Learning from Authoritative Security Experiment Results 7



1488068895.

1488068895.

1488068895.
1488068896.

1488068896.
1488069110.

1488069110.

1488069110.
1488069110.
1488069131.
1488069131.
1488069152.
1488069152.
1488069173.

1488069173.

1488069173.
1488069173.

052901:

154335:

948346:
767094 :

977464 :
044756:

049507

338822:
342816:
273458
277206:
304031:
308025:
334854:

338605:

381571:
383566:

DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com],
[CNAME: N/A], [A: 52.85.83.81, 52.85.83.112,
52.85.83.132, 52.85.83.4, 52.85.83.96, 52.85.83.56,
52.85.83.32, 52.85.83.37]

HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: True]l,
[Download: blob], [Download: .png], [Download: blob]

HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: True]

DNS - [Server: 10.1.1.3], [A: www.l-lads.com], [CNAME: nl35adserv.com],
[A: 212.124.124.178]

HTTP - [Server: 212.124.124.178], [Proactive: True], [GotResponse: True]

DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A]J,
[A: 52.85.83.56, 52.85.83.112, 52.85.83.96, 52.85.83.37,
52.85.83.81, 52.85.83.4, 52.85.83.132, 52.85.83.32]

DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A],
[A: 52.85.83.32, 52.85.83.37, 52.85.83.56, 52.85.83.112,
52.85.83.96, 52.85.83.132, 52.85.83.4, 52.85.83.81]

HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: False]

HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: False]

HTTP - [Server: 52.85.83.112], [Proactive: True], [GotResponse: False]

HTTP - [Server: 52.85.83.112], [Proactive: True], [GotResponse: False]

HTTP - [Server: 52.85.83.132], [Proactive: True], [GotResponse: False]

HTTP - [Server: 52.85.83.132], [Proactive: True], [GotResponse: False]

DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A],
[A: 52.85.83.32, 52.85.83.132, 52.85.83.96, 52.85.83.81,
52.85.83.4, 52.85.83.56, 52.85.83.112, 52.85.83.37]

DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A],
[A:52.85.83.32, 52.85.83.132, 52.85.83.112, 52.85.83.56,
52.85.83.81, 52.85.83.4, 52.85.83.37, 52.85.83.96]

HTTP - [Server: 52.85.83.4], [Proactive: True], [GotResponse: False]

HTTP - [Server: 52.85.83.4], [Proactive: True], [GotResponse: False]

Figure 4: Example NetDigest (md5: 01556ddfa6feb24c018581084f4a499a8).

Categories \ Subgroups

Features (83 in total)

Header Distinct number of: IPs, countries, continent, and local ports
Payload Total size' in bytes; . . .
Packet Sent/received: total number, minimum, maximum, mean, and standard vari-
ance
.. Sent/received packets: total number, rate;
Statistics . .. . .
Sent/received time interval: min, max, mean, and standard variance
Direction | Proactive (initiated by malware) or passive (initiated by Internet servers)
Session Result Succeeded or failed
Statistics Total number 01:” SYNs sent; . . .
Number of sessions per IP: minimum, maximum, mean, and standard variance
DNS Number of distinct domains queried by malware
Number of replies received per reply code: 200, 201, 204, 301, 302, 304, 307,
HTTP 400, 401, 403, 404, 405, 409, 500, 501, 503;
Protocol Method: GET, POST, HEAD
ICMP Total number of packets;
Number per IP: min, max, mean, and standard variance
Other Ports: total number of distinct ports, top three used
Files php, htm, exe, zip, gzip, ini, gif, jpg, png, js, swf, xls, xIsx, doc, docx, ppt,
tx, blob
Content Host info l()'_)pS id, build number, system language, NICs
Registry Startup entries, hardware/software configuration, group policy
Keyword Number of: “mailto”, “ads”, “install”, “download”, “email”

Table 7: Features extracted from a malware’s NetDigest for classification purpose.
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Algorithms Rank 1 Rank 2 Rank 3
Decision Tree 242/89% | 257/94% | 259/95%
Support Vector 231/85% | 259/95% | 265/97%

Multi-layer Perception | 231/85% | 257/94% | 262/96%

Table 8: Classification results: Rank 1 — our label was
the top label assigned by AV products, Rank 2 — our top
label was in the top 2 labels assigned by AV products,
Rank 3 — our top label was among top 3 assigned by AV
products.

(OK). Some malware samples behave differently based
on the returned status code. For ICMP, we calculate
minimum, maximum, average and standard deviation of
packet counts. For non-standard IP ports, we maintain
a set of distinct port numbers and calculate the top three
ports targeted by each malware sample.

For the Content category, we investigate the payload
content carried in HTTP packets, because this is the
top application protocol used by malware in our exper-
iments. We then use regular expressions to extract files
from hyperlinks in HTTP content, and interpret their ex-
tensions. Sometimes the content is binary, and we tag it
as blob. We also attempt to identify, using regular expres-
sions, if payload contains host information and Windows
registries that are typically reported to bot masters. Fi-
nally, we collect the frequencies of select keywords that
are may indicate a malware purpose, such as “ads”.

Classification Results. We investigate three popular
classification methods in machine learning area — deci-
sion trees [10], support vector machines [12], and multi-
layer perception [23]. We implement these algorithms
and standard data pre-processing (data scaling and fea-
ture selection) through a Python package Scikit [18].

We use 80% of this data set for training and the re-
maining 20% of samples for testing. The results are
shown in Table 8. Since malware today has very ver-
satile functionality, it may be possible that a sample ex-
hibits behavior that matches multiple labels. We denote
as “Rank 17 the case when our chosen label matches the
top one concise label chosen by the majority of AV prod-
ucts. When it matches one of top two labels, we denote
this as “Rank 2” and if it matches one of top three la-
bels, we denote it as “Rank 3”. Our Rank 1 success
rate ranged from 85 % (support vectors and multi-layer
perception) to 89% (decision trees), which is very good
performance. When we allow for a match between top
two labels (Rank 2), our success rate climbs to 94-95%.
And if we count match with any of the top three labels
as a success (Rank 3), our rate climbs to 95-97%. Based
on the typical performance of applying machine learning
techniques in malware analysis [19], we conclude that
our NetDigest representation can lead to very accurate
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Figure 5: Classification precision as number of sessions
SrOws.

malware classification, based only on observed commu-
nication patterns.

We further investigated the root causes of our misclas-
sifications in Rank 1 that later became a success under
Rank 2 or Rank 3 criteria. Toward this goal, we manually
examined pcap traces of related samples. We find that all
these samples exhibit limited network behavior that was
not sufficient for classification. For example, one sample
queries a domain and then establishes a connection with
the HTTP server. However, no payload is downloaded or
uploaded, and thus this behavior may match any malware
category.

To investigate the relationship between classification
accuracy and the number of sessions observed in mal-
ware communication we perform several iterations of the
classification experiment. In each iteration filter out sam-
ples that launched fewer than N sessions. We then di-
vide the remaining samples into training and testing set
in 80%/20% ratio, train on the training set, perform the
classification on the testing set, and report the success
rate. We vary N from 1 to 25. The evaluation results
are shown in Figure 5. The x-axis of Figure 5 denotes
our limit on the number of sessions in a given run — N
and the y-axis shows the classification success rate for
each algorithm, corresponding to our Rank 1 criterion,
on the testing set. Figure 6 shows the number of samples
that generated N or fewer sessions in the training and the
testing set together. Overall, all three of the classifica-
tion methods performed well and were stable, except for
multi-layer perception when session quantity is between
5 to 8. After investigating these sessions, we found that
they do not have enough distinguishing feature values for
multi-layer perception algorithm. The small variance of
the input are further reduced by the intermediate calcu-
lation (hidden layers) of the algorithm [18]. The clas-
sification success rate increased slightly as the limit on
number of sessions increased, from 88% at 1 session to
93% at 25 sessions. Thus longer observations increase
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sessions grows.

classification accuracy but not by a lot.

6 Conclusions

In this work, we investigate how essential Internet con-
nectivity is for malware functionality. We find that 58%
of diverse malware samples initiate network connections
within the first five minutes and that 78% of these sam-
ples will become dormant in full containment. We fur-
ther provide breakdown of popular communication pat-
terns and some evidence as to the purpose of these com-
munications. Finally we show that malware communi-
cation behaviors ca be used for relatively accurate (85—
89%) inference of a sample’s purpose.

As future work, we will extend our framework to in-
clude analysis system-level activities for better under-
standing of a malware’s purpose, and will seek to im-
prove our generic impersonators to further reduce the
cases when traffic must be let outside of the analysis en-
vironment.
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Abstract

Background: Fast-flux is a technique malicious ac-
tors use for resilient malware communications. In
this paper, domain parking is the practice of assign-
ing a nonsense location to an unused fully-qualified
domain name (FQDN) to keep it ready for “live”
use. Many papers use “parking” to mean typosquat-
ting for ad revenue. However, we use the original
meaning, which was relevant because it is a poten-
tially confounding behavior for detection of fast-flux.
Internet-wide fast-flux networks and the extent to
which domain parking confounds fast-flux detection
have not been publicly measured at scale.

Aim: Demonstrate a repeatable method for open-
source measurement of fast-flux and domain park-
ing, and measure representative trends over 5 years.
Method: Our data source is a large passive-DNS col-
lection. We use an open-source implementation that
identifies suspicious associations between FQDNs,
IP addresses, and ASNs as graphs. We detect park-
ing via a simple time-series of whether a FQDN ad-
vertises itself on IETF-reserved private IP space and
public IP space alternately. Whitelisting domains
that use private IP space for encoding non-DNS re-
sponses (e.g. blacklist distributors) is necessary.
Results: Fast-flux is common; usual daily values
are 10M IP addresses and 20M FQDNs. Domain
parking, in our sense, is uncommon (94,000 unique
FQDNs total) and does not interfere with fast-
flux detection. Our open-source tool works well at
internet-scale.

Discussion: Real-time detection of fast-flux net-
works could help defenders better interrupt them.
With our implementation, a resolver could poten-
tially block name resolutions that would add to a
known flux network if completed, preventing even
the first connection. Parking is a poor indicator of
malicious activity.

1 Introduction

Fast-flux service networks were first reported in
2007, identified as “a network of compromised com-
puter systems with public DNS records that are con-
stantly changing, in some cases every few minutes”
[25, §1]. Criminals use the technique to “evade iden-
tification and to frustrate law enforcement and anti-
crime efforts aimed at locating and shutting down
web sites” that are used for abuse or illegal purposes
13, p. 2].

Despite this long history, and a variety of pub-
lications on detecting fast flux, there is no main-
tained, open-source tool that can detect it at
scale. The Honeynet Project’s own tool for the
purpose, Tracker (http://honeynet.org/project/
Tracker), has a defunct homepage. Tools from the
time, such as ATLAS [20] and FluXOR [21], han-
dle on the order of 400 domains. Our tool, Analysis
Pipeline, handles networks on the order of 1 million
fully-qualified domain names (FQDN, hereafter sim-
ply “domain” if the usage is unambiguous). Pipeline
simultaneously tracks other network behavior, such
as network flow records. Therefore Pipeline can de-
tect when a host connects to an IP address in the
fast-flux network in near-real time, for example.

We also measure a phenomenon mentioned but
not measured in some older fast-flux detection pa-
pers: domain name parking. When a domain is
parked on an IP address, the IP address to which
the domain resolves is inactive or otherwise not
controlled by the domain owner. Parking is com-
mon practice when a user first registers an effective
second-level domain (eSLD) — the registrar supplies
a nonsense IP address to prevents DNS errors. How-
ever, this parking pattern is distinctive and simple.
We look for other, suspicious patterns.

There are multiple distinct senses of the term “do-
main parking,” and our topic is not synonymous
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with any other study of which we are aware. Domain
parking on private IP address space is, however, a
relatively old phenomenon; it is mentioned in some
fast-flux identification algorithm studies as an obsta-
cle [35, 14]. This older usage of “domain parking” is
our topic of study We use domain parking on private
IP address space to differentiate it from the newer
usage [2, 34] that more accurately is domain parking
on routeable IP addresses for advertisement revenue
generation.

Two of the first studies on parking domains for il-
licit ad revenue find large-scale use of 4 million to 8
million domains [2, 34]. However, from the authors’
description this appears to be more like typosquat-
ting (as described in Szurdi et. al. [31]) than res-
olution error suppression. We are not studying ty-
posquatting or skimming ad revenue off user typos.
Domain parking of the sort we study is a strategy for
suppressing domain resolution errors, likely used to
keep command and control infrastructure stealthy.

The domain name system permits a variety of dif-
ferent resiliency mechanisms for distributed archi-
tectures. Often these have legitimate uses, but ma-
licious actors are equally able to adopt successful
techniques. Fast-flux and domain parking of private
IP space are both candidates for such abuse. ICANN
responded to the security concerns from fast-flux
networks in 2009 by stating there would be no policy
response [15, p. 10]. Thus, of the six mitigation op-
tions outlined in the original Honeynet analysis, five
are unlikely or inconsistently applied because they
can only be enacted by ISPs or Registrars. The last,
“passive DNS harvesting/monitoring to identify A
or NS records advertised” as part of fast-flux net-
works [25, §10], is the approach we implement with
Analysis Pipeline. Our detection method is inspired
by the Mannheim score [12].

We find a mixture of positive and negative results.
On one hand, our measurement of fast-flux networks
confirms our hypothesis that this behavior remained
prevalent. As one negative example, domain park-
ing on private IP address space is not worth much
concern, for fast-flux network detection or otherwise.
Negative results are important and useful in shap-
ing future work. Publication bias has been a docu-
mented concern in medical literature for 30 years [8].
Despite this attention, publication of negative re-
sults has generally dwindled across disciplines. The
relative publication frequency of positive results over
negative results grew by 22% from 1990 to 2007 [9].
We expect such publication bias away from negative
results is a contributing factor to why there seems
to be no public measurement of this phenomenon.

Section 2 discusses the common elements of the

method between our parking and fast flux measure-
ments, which primarily is the passive DNS data
source and our open-source tool Analysis Pipeline.
We present our measurement method for FQDNs
that exhibit parking on private IP address space
in Section 2.1. Section 2.2 describes our fast-flux
measurement methods. Section 3 presents the full
results. Section 4 interprets and discusses these re-
sults.

2 Method

Our measurements of domain parking of private IP
address space and fast-flux networks use different
algorithms over the same data set and implemented
using the same open-source tool. We describe the
common measurement period, data, and tool here.
The methods specific to each parking and fast-flux
measurement are described in the following subsec-
tions.

We measure activity during over five years of pas-
sive DNS data, from January 1, 2012 to June 30,
2017. The data source, the Security Information
Exchange (SIE), has been demonstrated to be rea-
sonably representative of the global Internet with
a small North American collection bias [29]. This
is high-volume passive DNS data, as well as be-
ing representative. Each month, the unique FQDNs
observed range between 550 million and 1 billion.
With the relatively small and stable zone .edu, the
data source is sufficiently represetative to recon-
struct 93% of the zone in five weeks [27].

We use our own data filtering and packing tools,
independent from the SIE database. About 35-40
GB of data is ingested daily in compressed nmsgtool
format [10], including source DNS server and pre-
cise time range the response was valid. Unique re-
source record sets (RRsets) are extracted for each
24-hour day, with a cutoff of 0000 UTC. We store
just the fields for rname, TTL, type, and rdata.
The nmsg data canonicalizes rdata, so this field
is sorted set of all rdata in a single DNS message
for a rname,type,class triple. The rname field is
label-wise reversed, so www.example.com becomes
com.example.www; this makes sorting and lookup
easier, as the TLD is usually a more important
key. The RRsets are then simply sorted and unique
RRsets stored per day. When compressed with stan-
dard tools such as bzip or gzip, this ASCII storage
format takes about 5 GB per day.

The rationale for this storage method is similar
to that for why SiLK, a netflow analysis tool suite,
stores flow in time-sorted, partitioned flat files via
the file system rather than in a database [32]. We are
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interested in long trends, or retrospective analysis of
poorly understood past events. This is different from
the use case of many passive DNS users, who are
looking for keywords indicating abuse of particular
brand names. Our storage format provides details on
what domains resolved to on particular days. This
allows us to see interleaving changes in domain-IP
mappings and large gaps of inactivity that are not
possible in a database that only stores first- and last-
seen times. Our parking measurement, in particular,
requires such granularity.

A final benefit of this time-partitioned storage for-
mat is that it is highly parallelizable. Using an
HDFS cluster, queries parallelize naturally with each
node processing a day. We find that using a database
can speed our analysis, especially of fast-flux. How-
ever, we parallelize even the database, loading each
daily RRset file and then operating over it indepen-
dently. The overhead of managing a database for all
five years of data is superfluous.

Both parking and fast-flux measurements make
use of context data to enrich IP addresses. Most
importantly, we associate IP addresses with the au-
tonomous system which is advertising it on the rel-
evant day. Autonomous System Number (ASN) at-
tribution is derived from the RouteViews [23] and
RIPE NCC RIS [22] data. All ASN data are freely
available online [3] under folders for the respective
dates. The baseline mapping of ASNs across all IP
space uses the open-source SiLK [5] tools for pre-
fix maps and IP sets [32]. Strictly, we count unique
routing profiles, not unique ASNs. If an TP address
is dual-homed or the global BGP otherwise has con-
sensus that two last-hop ASNs are viable, we mark
that TP address with both ASNs. Since our goal is
to identify when IP addresses are routed differently
to identify stewardship changes, this interpretation
is sensible. The geolocation data we use is the public
MaxMind GeoLite2 [18].

We relate our analysis algorithms as Analysis
Pipeline [24] configuration files. Pipeline is one of
the open-source tools associated with SiLK [5]. It
is a real-time traffic analyzer that works on IPFIX
and network flow records. Pipeline is a Network Be-
havior Analyzer subtype of an Intrusion Detection
System in NIST terminology [26]. As a sort of IDS,
Pipeline can run in real time on a network to dy-
namically detect fast-flux or parking domains and
then dynamically add them to a list to watch or
block. Thus, with the configurations here and the
published SiLK tools, our measurements are readily
reproducible in the sense of Feitelson [11], where to
reproduce means in a different setting with similar
artifacts.

Algorithm 1 Analysis Pipeline command-line

/usr/local/sbin/pipeline \

--site-config-file=/usr/local/share/
silk/silk.conf \

--alert-log-file=~/Alertlog.txt \
--aux-alert-file=~/AuxLog.txt \
--ipfix \
--time-is-clock \
--configuration=~/parking.conf \
--name-files input_files_list

Algorithm 1 is an example of how to execute
Pipeline. Specifically it calls our parking measure-
ment configuration, listed later in Algorithm 2. It
reads DNS records encoded in the standard ITPFIX
format [6]. A sample python script to convert DNS
records from CSV format to IPFIX is available in the
pyfixbuf documentation [4]. Passive DNS data can
also be converted to CSV or IPFIX directly using
the nmsg python bindings [10].

In addition to rote results, we perform some sim-
ple summary and context operations. The main
summary is based on the effective second level do-
main (eSLD) of the parked domains. The eSLD of
www . example.com is simply the SLD example.com;
however, the eSLD of www.example.co.uk includes
a third label: example.co.uk. To identify eS-
LDs we use the Mozilla public suffix list (effec-
tive_tld_names.dat).

The main context-enrichment operation is to in-
tersect parked domains and their publicly-routable
IP addresses with fast-flux domains and IP ad-
dresses. The intersection is simple set intersection
on the domain names. We do not report time slices
of the intersection, simply the intersection between
the union of all domains exhibiting parking behav-
ior and the union of all fast-flux domains. We also
summarize to eSLD and repeat the intersection.

For some context about malicious intent of park-
ing and fast flux, we associate each set of domains
with lists of malicious domains. While we have ex-
pressed our doubts about the soundness of evaluat-
ing an approach by comparing it to blacklists [19], we
have mitigated this error by including as many lists
as possible (over 100) and limiting our assumptions
of the information provided by this comparison.

We perform blacklist comparisons within 6-month
blocks. All blacklist entries over the whole timespan
are unioned, and that set is intersected with all do-
mains exhibiting the behavior of interset at any time
during the timespan. This mitigates the possibility
that it takes some time to identify and blacklist a
malicious domain. It has proven logistically imprac-
tical to provide a sliding window for blacklist de-
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tection. But 6-month windows are pretty broad, as
many malicious behaviors are consistently detected
and vendors list names within a few hours. At this
wide window, we already risk false-positives due to
IP-address churn or other exogenous factors over-
whelming true blacklist associations. We happen to
have more IP-address based blacklists than domain-
based ones; it is unclear whether this overestimates
IP-address participation in blacklists or underesti-
mates domain names, if either.

2.1 Parking Detection

We measure domain parking on private IP address
space straightforwardly. The algorithm is summa-
rized as follows; we expand the description through
the rest of the section. First, we find all DNS IPv4-
answer RRsets that refer to private address space
to acquire a set of possible domains. We remove
whitelisted domains that we have found to use pri-
vate address space as an information carrier for other
services. For all domains that remain after this sub-
traction, we find all their DNS RRsets for that day
and a window three weeks into the future. These
three-week time series are examined for transitions
from public to private IP-space. We repeat this al-
gorithm for each day in the five-year measurement
period, evaluating 1807 three-week windows.

Our first step is to extract or mark all RRsets that
contain a private IP address in the rdata. Private
IP address space is exactly those addresses listed
in Table 1. These blocks are selected because they
are special-purpose assignments that RFC 6890 lists
as either not forwardable by routers or not global,
meaning only forwardable in specified administrative
zones [7].

This provides a set of rname data that have been
associated with a private IP address. Most are
not parking. Private IP space used to encode var-
ious kinds of non-location data, such as responses
to lookups on DNSBLs [17]. SURBL provides a
good example of how and why their service does
this [30]. Seeded by lists of threat intelligence and
blacklist providers such as intel.criticalstack.
com, and refined through human expert analysis, we
whitelist 165 DNS zones that consistently encode
non-location data.

The process so far yields a list of RRsets with
rdata in private IP space whose rname zones do
not have a whitelisted, known use. We next find
all RRsets with the same rname values and pub-
licly routeable IP addresses within 21 days. These
domains transitioned between private and routeable
IP address space some time in the 3-week window.

CIDR block Justification
0.0.0.0/8 RFC 1122
10.0.0.0/8 RFC 1918
100.64.0.0/10 RFC 6598
127.0.0.0/8 RFC 1700
169.254.0.0/16 RFC 3927
172.16.0.0/12 RFC 1918
192.0.0.0/24 RFC 6890
192.0.2.0/24 RFC 5737
192.168.0.0/16 RFC 1918
198.18.0.0/15 RFC 2544
198.51.100.0/24 | RFC 5737
203.0.113.0/24 RFC 5737
224.0.0.0/3 RFC 1112

Table 1: Private IP address space

We define FQDNs that exhibit such a transition as
demonstrating parking behavior on private IP ad-
dress space during our observation period.

In order to cover the 5-year time period, we com-
pute this rather simple algorithm over 1800 times.
For each day’s set of unique RRsets, we extract the
domains mapping to private IP address space, re-
move whitelisted zones, and expand to those also
mapping to a public address at some time within
three weeks.

For each FQDN that has exhibited parking behav-
ior, we can generate a course-grained time series of
the behavior to categorize what occurred. Table 2
demonstrates some sample behavioral groupings. P
indicates a day where the only rdata was in private
IP address space, G indicates a day where the only
rdata was in globally routeable IP address space,
and X indicates a day where both address types were
observed, indicating a day a change between parking
and active occurred.

The configuration listed in Algorithm 2 runs our
method in Pipeline. The SiLK IPset “priv.set” con-
tains exactly the address blocks listed in Table 1.

2.2 Method: Fast-flux

Our fast-flux detection algorithm implements prior
work, such as the Mannheim score [12]. The main
novelty of our work is the scale and duration of our
measurement and the use of open-source tools. De-
tection algorithms were sufficiently well-studied in
2010, and the same concept holds for detection of
fast-flux today.

The basis of our fast-flux detection algorithm is
that a legitimate administrator owns or rents their
infrastructure in a relatively small number of places.
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January: 1-8 9-16 17-24 25-31
Activation on Jan 19 PPPPPPPP | PPPPPPPP | PPXGGGGG | GGGGGGG
Deactivation on Jan 19 | GGGGGGGG | GGGGGGGG | GGXPPPPP | PPPPPPP
alextringham.com GGGGGGGG | GGGGGGGG | GGGGXPPX | PXPXPPP
proxyie.cn GGXXXXXX | GGGXGXGG | GGPGGXGX | XGGGXGX
bnlv.homeip.net GGGGGPGG | GGGGGGGG | PGPPGGGG | GGGGPGG

Table 2: Example parking behavior patterns per domain, January 2014. G := only globally routeable IPs
observed that day. P := only privately reserved IPs observed. X := both observed on same day.

Algorithm 2 Parking detection in Pipeline

Algorithm 3 Fast-flux detection in Pipeline

FILTER emptyDomainNames
dnsRRIPv4Address IN LIST "priv.set"
END FILTER

INTERNAL FILTER emptyDomains
FILTER emptyDomainNames
dnsQName domainsWithNoIP 1 DAY

END INTERNAL FILTER

FILTER unparked
dnsQName IN LIST domainsWithNoIP
dnsRRIPv4Address NOT IN LIST "priv.set"
END FILTER

EVALUATION unparkedRecords
FILTER unparked
CHECK EVERYTHING PASSES
END CHECK
ALERT ALWAYS
ALERT EVERYTHING

END EVALUATION

We perform some pilot studies on January 2016 to
get a sense of what counts as small. We represent
fast-flux networks as graphs of each of three kinds of
resource: IP addresses, ASN, and FQDN. The intu-
ition is that shared hosting may have 10,000 domains
on a single IP, and if changes to another IP address it
is likely one the hosting provider owns. The network
identifiers cluster when one or another resource is ad-
vertised on a new resource. If two domains both map
to 192.168.0.1, and then one is changed to 10.0.1.1,
then our algorithm considers both IP addresses as
well as both domains to be part of a cluster. The
information cluster would also include any domains
that had previously mapped to 10.0.1.1 within the
time frame, and any IP addresses they had been
mapped to, and so on. For our example, imagine
this linking brings in 20 more domains, all on the
16 IP addresses in 172.16.0.32/28. However, the AS
for all 18 IP addresses is AS112. We do not consider
this a fast-flux network, because all the resources are
only related to one AS. They are probably related
because of a the AS owner doing regular mainte-

PMAP asn "$today.ip2asn.pmap"
FILTER fluxwhitelist
sourceIPv4Address NOT IN_LIST "priv.set"
DNS_SLD+TLD(DNS_INVERT (dnsQName)) NOT
IN_LIST "$today.whitelist"
END FILTER

EVALUATION ipfixFastFluxExample
FILTER fluxwhitelist
CHECK FAST FLUX
IP_FIELD sourcelPv4Address 500
ASN asn 23
DNS dnsQName 667 TO myFastFluxDNSs
NODE MAXIMUM 100000000
VERBOSE ALERTS
END CHECK
CLEAR ALWAYS
END EVALUATION

nance or load balancing, not fast flux. This example
helps show why ASN is needed, rather than relying
on CIDR block.

Our results are run with the conservative thresh-
olds that a graph must contain 500 unique IPs, 23
ASNSs, and 667 FQDNs to be marked fast flux. We
also whitelist any IP addresses in our private IP ad-
dress space (Table 1) and a FQDN whitelist that
created from the Alexa most popular domains list.
Resources on these whitelists will not be added to a
graph, and so can never be marked fast flux.

The FQDN whitelist captures more stability than
naively using the Alexa top X. For a given day, we
find all names in the Alexa top 24,000 on 330 of the
past 365 days. The whitelist functions as a wild-
card, not as an FQDN perfect match. So if exam-
ple.com is on the whitelist, *.example.com will not
be watched for fast flux. For this reason, we remove
any effective TLDs on the Mozilla public suffix list
(version on June 15, 2017), of which there are rou-
tinely between 50-100 on the Alexa list. We also re-
move any well-known dynamic DNS providers from
the whitelist. Finally, we make sure that no domains
have subdomains on the list; this interferes with the
wildcard function of pipeline whitelists. The aver-

[Distribution Statement A] Approved for public release and unlimited distribution.

USENIX Association

LASER 2017 e Learning from Authoritative Security Experiment Results 17



Composite Alexa changes: Days between lists

Z 5760
=
o
S 4320
D median
e
> 2880 IQR
%0 ® whiskers
= 1440 ® outliers
&)

0

0 150 300 450 600 750 900 1050 1200 1350 1500

Figure 1: Statistics on changes between Alexa-based whitelists, calculated on the pairwise differences between
lists. Changes includes additions and removals. Each value on the X-axis is a color-based box-and-whisker
plot representing the distribution of changes for all pairwise sets of lists that many days apart.

age size of the whitelist is 14,847. The minimum is
13,780 (March 7, 2017); the maximum size is 15,946
(April 4, 2013). Even with this algorithm designed
for some stability, there significant change, which
warrants using a new list each day. Figure 1 dis-
plays the distribution of whitelist-entry changes cal-
culated pairwise between all 1492 lists. The first day
we have Alexa data available is April 1, 2012, so the
first day a composite whitelist is possible is April
1, 2013. We use this April 1, 2013 list for any flux
measurements before that date.

We selected a relatively high threshold (500-23-
667) after exploratory analysis demonstrated some
clearly legitimate uses that exceeded our initial 5-5-5
threshold. Before implementing the Alexa whitelist,
we also found Tumblr, as 616 IPs, 10 ASNs, and
10,658,458 FQDNs. But not every large network
like this is handled by a whitelist. For example,
the network signature 216 IPs, 19 ASNs, 2,341,876
FQDNs is not in fact a fast-flux network, but Tek-
blue, an ad tracking company. But, because Tek-
blue is an ad tracker, it does not appear on our
Alexa whitelist, on any day. Ampproject.net also
consistently produced huge fast-flux-like clusters—
such as 755 IPs, 15 ASNs, 533,082 FQDNs and 671
IPs, 12 ASNs, 534,956 FQDNS—but is never on
our whitelist. These are evidence for increasing our
ASNs threshold. We also find evidence to increase
our FQDN threshold. The graph 9,051 IPs, 102
ASNs, 63 FQDNs is Akamai. NTP device pools also
produce quite strange signatures, such as 2100 IPs,
845 ASNs, 122 FQDNs and 2,507 IPs, 910 ASNs,
267 FQDNs.

We did a sample run at 500-23-667 to check re-
sults. The graph with the fewest ASNs passing
these thresholds was 27; its domains often have a
suspicious pattern that appears machine-generated.
There are some names that look human-generated;
however, they may be compromised. At the least,
it is not something to obviously exclude by increas-
ing the thresholds. The test run reduced the re-
sults from 513 (with 5-5-5 thresholds) to 196 dis-
tinct, non-overlapping flux networks. But these 196
still capture almost all of the IP addresses from the
513; 99.7% of the unique IP addresses across flux
networks remain in the results with the increased
threshold. Therefore, while our thresholds are con-
servatively high, we still find significant malicious
activity while reducing obvious false positives.

One may wonder if publishing such a detec-
tion threshold would benefit adversaries more than
defenders. However, forcing adversaries to keep
smaller, disjoint networks would reduce their relia-
bility and increase their management effort. Adver-
saries would no longer be able to use any resource
if its FQDN or IP is associated with a known, live
flux network. Pipeline can issue such alerts in real
time, as new resources are seen and added to known
networks. Potentially, this means many communica-
tions can be blocked at the first instance, preventing
even one use of the FQDN or IP if it is added to a
known flux network. Such before-first-use blocking
is recommended by Spring [28] as necessary to keep
adversaries from profiting.

Analysis Pipeline (version 5.0 and later) includes
a primitive data element for fast-flux networks [24].
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FQDNs | intersection of flux of park
2012-1 14609 0.0008  0.2069
2012-2 12103 0.0009  0.0286
2013-1 10930  0.0006  0.1990
2013-2 11662 0.0006  0.1126
2014-1 11106  0.0006  0.1362
2014-2 30346 0.0007 0.0714
2015-1 61259 0.0010 0.1756
2015-2 40824 0.0008  0.0800
2016-1 32687 0.0004  0.0934
2016-2 46291 0.0004 0.1125
2017-1 56758 0.0006  0.0458

Table 4: Half-yearly intersections of domains ex-
hibiting parking and fast-flux networks. Values
range [0,1].

IPs | intersection of flux of park

2012-1 523056 0.0147  0.9127
2012-2 2565808 0.0717  0.8847
2013-1 220651 0.0052  0.8934
2013-2 257741 0.0083  0.8644
2014-1 364870 0.0127  0.9415
2014-2 730484 0.0149  0.9421
2015-1 478327 0.0086  0.9100
2015-2 557457 0.0109  0.8911
2016-1 1567197 0.0268  0.9039
2016-2 1562149 0.0169  0.7736
2017-1 837599 0.0141  0.7640

Table 5: Half-yearly intersections of IP addresses

exhibiting parking and fast-flux networks. Values

range [0,1].

Pipeline builds a connected graph of ASN, FQDN,
IP address tuples. If the connected graph passes a
threshold for all three resources, that graph is con-
sidered to be a fast flux network. Algorithm 3 is
the Pipeline configuration that implements our de-
tection algorithm. The alerts can be configured to
report the whole connected graph, or just lists of do-
mains or IP addresses. Algorithm 4 shows how to
use such output lists.

3 Results

Fast-flux networks do not overlap much with re-
sources exhibiting parking. Neither fast-flux nor
parking overlap much with blacklisted resources.
Parking behavior is present, but small in the scheme
of the global internet. Fast-flux networks, on the

other hand, appear to make use of a large number
of internet resources.

Figure 2 plots the number of unique FQDNs and
effective SLDs used each day for parking. Our park-
ing algorithm uses a 3-week window to detect park-
ing, which has an effect of smoothing out the day-
to-day changes. The median FQDNs parking on a
given day is 13,300, in a median of 4,750 eSLDs.

Figure 3 captures the fact that fast-flux networks
have a much bigger footprint. Many days have over
10,000,000 IPs and 20,000,000 FQDNs involved in
fast-flux.

Table 4 reports the overlap between fast-flux and
parking FQDNs detected in each half-year. Ta-
ble 5 reports the analogous overlap for IP addresses.
Since there are fewer resources that evidence park-
ing, these intersections make up a larger share of
parking than of fast flux.

Given the conservative (i.e., large) definition of
flux network size we set, it is unlikely these collec-
tions of internet resources have a benign purpose.
Our initial pilot study (using 5-5-5 as a threshold)
contained common internet services such as ad net-
works, content distribution networks, and the NTP
servers. The threshold of 500-23-667 excludes such
benign services, based on our expert analysis of the
results.

Despite the fact we do not have a benign explana-
tion for this behaviour, as Figure 4 and Figure 5
demonstrate, few IP addresses that have partici-
pated in a fast-flux network are on any blacklists.
The median monthly blacklist intersections range
between 100,000 and 400,000; roughly 4-8% of the
flux networks. The exception seems to be overlap
during 2017 between flux networks and FQDN black-
lists.

Parking, likewise, is uncommonly blacklisted. Ta-
ble 3 displays the results for both FQDNs and live IP
addresses associated with parking behavior. Because
so few domains park, the contribution of parking to
blacklists is negligible. However, parking is also not
a reliable indicator of blacklist membership. Fewer
than 2% of domains and between 5-10% of IPs that
exhibit parking end up on blacklists.

Our results for January 2014 are available
for download (see http://www.cert.org/downloads/
name—parking—patterns—certcc—2014—57.txt) in the
format of a domain name followed by the behavior
pattern encoded as in Table 2.

FQDNSs from the Alexa top 100 occasionally were
found on our parking list [1]. We manually removed
about 30 Alexa top 100 domains from the results
each period. The root cause for these anomalous
DNS responses is not known.
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FQDNs % lists % parking IPs % lists % parking
2012-1 3033  0.0469 4.2959 87069  0.2079 14.1214
2012-2 2513 0.0272 0.5929 85853  0.2525 2.5345
2013-1 1746 0.0139 3.1782 26479  0.0941 10.1526
2013-2 4439  0.0883 4.2842 13300 0.1473 4.1119
2014-1 2005 0.0723 2.4587 33654  0.1342 8.4516
2014-2 6596 0.0631 1.5530 51061  0.1702 5.7200
2015-1 5616  0.0459 1.6101 47535 0.1565 8.6189
2015-2 8339 0.0639 1.6332 49728  0.2010 7.3737
2016-1 6802 0.0279 1.9426 91716  0.2647 4.9624
2016-2 4295 0.0164 1.0442 | 100620 0.3417 4.5519
2017-1 5315 0.0136 0.4292 64859  0.1462 10.332

Table 3: Half-yearly intersections of resources exhibiting parking and blacklists. Percentages range [0,100]

Domains exhibiting parking behavior: 2012 to 2017
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Figure 2: Three-week rolling window of unique domains and eSLDs exhibiting parking behavior from begin-

ning of 2012 to April 2017.

Some parking domains used dynamic DNS ser-
vices; however, usage is minimal. We compared the
results to a list of 71 known dynamic DNS providers.
The bulk were hosted on two providers: dyndns.org
or on some name affiliated with no-ip. These are
the two biggest providers, so this distribution is ex-
pected based on market share.

4 Conclusions

We shall discuss our fast-flux results first, and then
our parking results.

Fast-flux networks remain remarkably common 10
years after first reported use by malicious actors.
The lack of intersection with blacklists despite the
obviously suspicious nature of this behavior is es-
pecially noteworthy. We suspect that fast-flux net-
works are used for intermediary malicious behavior,
such as providing clandestine communication to al-
ready infected hosts. It is also possible that blacklist
vendors do not bother to list something that they

know will change within a very short interval. We
also have not ruled out all possible alternative in-
terpretations; for example, peer-to-peer networks.
However, if this were the case, we would still expect
our flux results to be a superset of malicious flux
networks. Excessive poor detection precision would
decrease the number of flux resources on blacklists,
but it does not explain why so few of our blacklist
entries are in flux networks.

We have designed our method to capture non-
benign fast-flux networks. Our first attempt at set-
ting thresholds captured many recognizable, legit-
imate internet services. However, as described in
Section 2.2, we eliminated all obvious and large false
positives. Our observation is limited by the data
source. However, again, this has a known bias, and
it is known to be comprehensive. We do not make
any claims that we can project our observations onto
the parts of the internet we do not observed. How-
ever, the absolute numbers of resources participating
in fast-flux we detect are quite large. We do not need
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Resources associated with fast—flux networks
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Figure 3: Total unique network resources of different types associated with fast-flux networks every day.

Gap in July 2016 is a collection error.
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Figure 4: Summary statistics fast-flux—blacklist intersection. Each day’s flux from January through June

2013 is intersected with all 1H2013 blacklist data, for example, and the daily intersections are summarized
in monthly box plots. The whisker length is 1.5 times the inter-quartile range (IQR).

to project onto a target population. The measure-
ment as-is finds over 100 million IPs and FQDNs
some days in 2017. We have high confidence that
few of these resources are participating for benign
reasons. Even in the unlikely event that the rest of
the internet sees no other unique resources partici-
pating in fast-flux, these values are worrisome.

As demonstrated repeatedly, the contents of in-
dividual blacklists rarely overlap [19, 16, 33]. One
plausible explanation for this disjointedness is that
blacklists track a lot of ephemeral TP addresses.
However, if fast-flux would have a statistical impact
on this disjointedness, it would need to represent
more than 1% of blacklist identifiers: as we found in
this study.

Our leading interpretation of the fact that our
fast-flux results are mutually disjoint with the black-
lists we have access to is the following. None of the

blacklists are tracking fast-flux. This interpretation
is consistent with prior interpretation of the black-
list disjointedness generally, which is that each list is
good, but very precise about what it is following and
from what sensor vantage [19]. This interpretation
is strengthened by the long observation time, over
many years, and the consistency of both the size of
the fast-flux networks and the lack of blacklist over-
lap during that time.

Algorithm 4 is an example of how the results from
fast-flux measurement can be applied to continuous
network situational awareness. We do not report an
evaluation on a live network due to data access and
publication issues; however, we provide the configu-
ration so that network operators can apply it consis-
tently as a test and compare results privately. The
result would be that once enough domain-IP pairs
are looked up to form a fast-flux network, one alerts
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Figure 5: Summary statistics fast-flux—blacklist intersection. Plot follows the same conventions as Figure 4.

Algorithm 4 Sample fast-flux watch-list usage in
Pipeline

FILTER watchlistFromFastFlux
sourceIPv4Address IN LIST ipList
END FILTER
EVALUATION alertWatchlist
FILTER watchlistFromFastFlux
ALERT EVERYTHING
CHECK EVERYTHING PASSES
END CHECK
END EVALUATION

on new connections if, at the time of the first connec-
tion attempt, they would add to a known fast-flux
network. Defenders can effectively cap the viable
size of fast-flux networks, reducing their usefulness
to adversaries.

We can confirm that domains exhibiting parking
on private IP addresses does not likely confound fast-
flux network detection. We can also help explain
why the recent literature uses ‘parking’ to mean
typo-squatting for revenue generation: the older us-
age we study is much less common. Although park-
ing on private IP addresses is rare, it is still an odd
behavior. Further analysis may evidence what these
resources are used for. However, given how long
it takes to detect such parking, it is likely not the
best use of defender resources. This assessment may
change domains parked on private IP address space
are used for high-impact attacks; however, our ob-
servations do not evaluate this concern. Future work
should occasionally re-validate this assessment.

There are possible alternative interpretations of
our parking results. Perhaps adversarial capability
in utilizing parked domains in this way is still in

an early phase of development. Alternatively, the
domains exhibiting this kind of parking may be ma-
licious, but simply are not found by any detection
method used by the blacklists we compare against.

We have presented a combination of surprising re-
sults, on fast-flux, and unsurprising results, on park-
ing. More notable is the importance of the method of
long-term internet measurement in detecting trends
and making conclusions. Passive DNS remains a use-
ful tool, because it supports such long time scales
while still keeping wide coverage feasible. However,
our results also rely on archiving many years of con-
textual data, for routing, blacklists, and Alexa’s top
domains. The providers of these data do not have
much incentive to store and archive long spans of
data. Routeviews and RIPE RIS do a good job col-
lecting this routing information. Similar initiatives
for other internet metadata would improve the com-
munity’s ability to pursue research.
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Abstract

Background. The tension between security and con-
venience, when creating passwords, is well established.
It is a tension that often leads users to create poor pass-
words. For security designers, three mitigation strategies
exist: issuing passwords, mandating minimum strength
levels or encouraging better passwords. The first strategy
prompts recording, the second reuse, but the third mer-
its further investigation. It seemed promising to explore
whether users could be subtly nudged towards stronger
passwords.

Aim. The aim of the study was to investigate the in-
fluence of visual nudges on self-chosen password length
and/or strength.

Method. A university application, enabling students
to check course dates and review grades, was used to sup-
port two consecutive empirical studies over the course
of two academic years. In total, 497 and 776 partici-
pants, respectively, were randomly assigned either to a
control or an experimental group. Whereas the control
group received no intervention, the experimental groups
were presented with different visual nudges on the reg-
istration page of the web application whenever pass-
words were created. The experimental groups’ password
strengths and lengths were then compared that of the
control group.

Results. No impact of the visual nudges could be de-
tected, neither in terms of password strength nor length.
The ordinal score metric used to calculate password
strength led to a decrease in variance and test power, so
that the inability to detect an effect size does not defini-
tively indicate that such an effect does not exist.

Conclusion. We cannot conclude that the nudges had
no effect on password strength. It might well be that an
actual effect was not detected due to the experimental de-
sign choices. Another possible explanation for our result
is that password choice is influenced by the user’s task,
cognitive budget, goals and pre-existing routines. A sim-

ple visual nudge might not have the power to overcome
these forces. Our lessons learned therefore recommend
the use of a richer password strength quantification mea-
sure, and the acknowledgement of the user’s context, in
future studies.

1 Introduction

The first encounter with a new system or service, for
many individuals, requires the creation of a password.
This authentication approach is based on the possession
of some secret shared knowledge, known only to the user
and this one system.

People are asked to provide passwords so frequently,
and inconveniently, that they end up choosing weak pass-
words, leaving themselves vulnerable to attack [30]. In
effect, password choice becomes something of an ob-
stacle to be hurdled in order to be able to satisfy legit-
imate goals. The primary problem is the fact that mem-
ory limitations tug people towards memorable and pre-
dictable secrets, whereas strong security mandates more
effort. Strength can be achieved either by using a hard-
to-remember and hard-to-guess nonsense string, or by
using a long pass phrase. Both are personally more costly
than a weak password.

Some believe that we should simply enforce strong
passwords [15] or expire passwords regularly [18]. The
problem is that neither the former nor the latter guaran-
tee increase resistance to attack [53, 57]. Moreover, re-
strictive, complex password policies aimed at mandating
strong passwords can conflict with users’ needs, increase
effort and ultimately compromise productivity and secu-
rity [24, 48, 52].

The other option is to replace the password with
something like a biometric or token-based authentication
[5, 38]. Neither of these is perfect either. No biometric
is ubiquitous and infallible [32] and tokens are expensive
and easily lost or stolen.
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Other alternatives are graphical passwords, mnemonic
passwords or passphrases [1, 51, 28] but these have
not really gained widespread acceptance and even
passphrases have their flaws [29, 39].

While many focus on the password’s deficiencies, it
must be acknowledged that passwords also have advan-
tages. They are easy to deploy, accessible to those with
disabilities, cost-effective, preserve privacy and are eas-
ily replaced [6].

Instead of focusing myopically on the password
choice event, we should contemplate password creation
as one component of an entire authentication eco-system,
and consider that the end user needs more support
throughout the process. Horcher and Tejay [23] claim
that users are poorly scaffolded during the password cre-
ation process, and that this contributes to poor password
choice. Solutions that scaffold by offering dynamic feed-
back on password quality are designed to encourage de-
liberation and reflection during password creation [17].
However, such approaches have, thus far, not signifi-
cantly improved the quality of passwords [12, 17, 45].

There is increasing evidence that behaviour can be in-
fluenced through surprisingly small and inexpensive in-
terventions called “nudges” [21].

Transferring successful nudges from other areas to the
authentication context was something we wanted to test
to find out whether these would encourage users to create
stronger passwords. The hypothesis we tested was:

H1: The presence of a visual nudge will lead
to longer and stronger passwords.

We carried out a longitudinal study to investigate the
potential of eight different user interface nudges, dis-
played during password creation, calculated to influence
password choice. The contributions of this paper are:

e Details of how nudges were tested in the wild, and
the ethical constraints we encountered.

e Empirical evidence that the tested nudge conditions
did not significantly impact password quality.

e Reflection on the results and suggested explanations
for the negative finding reported by the study.

The paper concludes with a discussion of lessons
learned and recommendations for future studies of this
kind.

2 Background

A nudge can be considered a mechanism that guides indi-
viduals to make wiser choices without their necessarily
being aware of its influence [34]. An intervention can
only be considered a nudge if individuals are able easily

497
Participants
Choose Nudges Control &
Based on Five .
Literature Nudges Rgflect{on &
Related to Control & DISClFSSIOT] of
Nudge Five Implications
Deployment Nudges
776
Participants

Figure 1: Results Reported in this Paper

to resist its influence [43]. A good example of a nudge is
the house-fly painted on urinals in an Amsterdam airport.
This nudge had the desired effect of reducing spillage,
but could equally have been ignored by urinal users.

The subtle nudge approach has proved popular with
western governments [44, 22], who have adopted nudges
in key areas such as tax and public health [50]. A small
alteration in letter text sent to individuals significantly
improved tax payment rates [21]. However, such use has
been criticized with the suggestion that nudges do not
promote long-term behaviour change [36]. Nevertheless,
this may not be an issue for use in authentication if the
motivation is to promote optimal decisions at the moment
of password creation.

There is an argument that people sometimes create
passwords unthinkingly, basically operating using their
autopilot (System 1) thinking, rather than deliberately
engaging (System 2) level thinking to choose a good
password [43]. Sunstein [41] explains that nudges can
work in tandem with educational efforts by impacting
System 1 thinking, with educational efforts targeting
System 2 thinking, thus complementing each other.

Jeske et al.. [26] demonstrated such an approach when
it came to nudging users to select the most secure wire-
less networks. They found that nudges could be effec-
tive, but that personal differences also played a role in
the security decisions. Similarly, Yevseyeva et al. [56]
experimented with nudging people towards secure wire-
less network selection using different variations of a pro-
totype application. The found a combination of colour
coding and the order in which the Wi-Fi networks were
listed to be most effective.

Nudges have also been deployed to improve deci-
sions surrounding privacy. Choe et al. [10] investi-
gated positive and negative framing of privacy ratings to
nudge individuals away from privacy-invading applica-
tions. They demonstrated that framing, as well as user
ratings, had the potential to nudge individuals towards
privacy-respecting applications. Similarly, Balebako et
al. [3] suggest that nudges can support users in making
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more optimal decisions in privacy when it comes to lo-
cation sharing. They argue that individuals, left unaided,
might well make regrettable privacy decisions due to the
cognitive load caused by having to consider all possible
ramifications of a single privacy decision. Similarly, Al-
muhimedi et al. [2] investigated user awareness of pri-
vacy invasion by making usually invisible data sharing,
visible . Almuhimedi ef al. demonstrated that the ma-
jority were nudged to reassess their privacy permissions
when data was presented.

Authentication nudge studies have delivered disap-
pointing results so far [12, 17]. One study attempted
to exploit the Decoy Effect [27]. This design involves
giving users three choices: one inferior, one very expen-
sive, and a middle-of-the-road option that designers want
people to choose. The decoy study [45] offered users
their own password choice, a complex hard-to-remember
password and the alternative they really wanted users to
choose: a long and memorable password. The relative
strengths of the three passwords was displayed to influ-
ence choice. The results were disappointing [45].

Another nudge effort that has enjoyed much research
attention is the password strength meter. These mecha-
nisms provide strength feedback, either post-entry or dy-
namically. Mechanisms can provide colour indicators,
strength indicator bars, or informative text [8].

Ur et al. [47] compared a number of different pass-
word strength meters and discovered that meters im-
pacted password strength. However, they tested their me-
ters using a Mechanical Turk survey. The fact that the
created passwords carried no cost might have led to re-
spondents formulating somewhat unrealistic passwords.
Ur et al.’s study was an essential first step in exploring
these kinds of interventions, giving us hope that nudges
could be designed to work in the wild too.

Sotirakopoulos [40] attempted to influence password
choice by providing dynamic feedback. No difference
between a horizontal strength meter and the compari-
son to peer passwords emerged. Vance et al. [49] also
reported that password strength meters only impacted
password strength in conjunction with an interactive fear
appeal treatment condition that included a message on
the seriousness of the threat. An interactive password
strength meter and a static fear appeal did not impact
password strength.

Egelman et al. [17] did test the impact of providing
password meters in the wild. They found that the meters
made no observable difference to password choice, un-
less users perceived the account to be important. If peo-
ple do not attribute value, then it is understandable that
the password meter makes no difference to their choice.

Privacy nudges have been more successful than au-
thentication nudges so far. Privacy choices, however, en-
tail people having a choice between two fairly equiva-

lent options [10, 26]. Nudging in authentication does not
match this pattern of use and, in fact, initial studies on
nudges in authentication have delivered mixed results, as
described above. Still, nudges have been successfully de-
ployed in other application areas, and at least two expla-
nations for the lack of success in authentication. It might
be the case that authentication is unsuited to nudging in-
fluence. On the other hand, it could be that a success
authentication nudge is yet to be discovered discovered.

Much nudging in authentication has focused on pass-
word strength meters. We thus carried out a study to
extend the evidence base by testing a number of visual
authentication nudges. We tested nudges which focus on
cognitive effects (e.g. social norms and expectation) that
have rarely been tested in the authentication context.

We displayed different visual nudges during password
creation events, in order to determine whether they ex-
erted any influence over users during password creation.

3 Method

Current efforts to improve password choice focus primar-
ily on the individual. However, situational and contextual
influences could minimise the impact of individually-
focused interventions [31]. Furthermore, social influ-
ence is a strong driver of compliance [11, 35]. Inter-
ventions could conceivably exploit the power of social
norms to influence individual behaviours [4]. Since our
target users in this study were students this context in-
cludes the University and their School. Visual nudge fig-
ures were created beforehand and displayed statically to
ensure that all students saw exactly the same image. A
dynamically-updated image might have confounded re-
sults because participants would then have seen differ-
ent images, confounding our results. We designed one
nudge for each cognitive effect we tested and that has led
to positive results in other research areas.

Due to the exploratory and “in the wild” nature of this
study, we decided to evaluate a range of cognitive effects
with one nudge each, instead of focusing on one effect
and creating several variations of nudges to exert influ-
ence in that one area. If a positive impact resulted, fur-
ther exploration of the effect and variations of the nudge
would be a direction for future research.

3.1 The Nudges

We conducted two studies with a similar experimental
design: In each of the two studies the nudges served as an
independent variable with six levels, a control group that
did not receive any intervention and five different nudge
conditions. From the nudges described below, nudges
N1 to N5 were tested in study 1. Nudges N6 to N8
were tested in study 2 along with a replication of N2 and
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N3. The dependent variables were (1) password strength
measured with the strength estimator zxcvbn. js [54]
and (2) password length (for further information see the
Apparatus section). All nudges were presented to the
participants on the registration page of a web-based uni-
versity application that is described in the Apparatus Sec-
tion below.

e NO: Control. The control group was presented with
the standard registration page which asked users to
“Choose a Password”.

e N1: Subconscious Mind. T7esting the Priming
Effect. In authentication people are almost al-
ways prompted to provide a new password with
the words: “Choose a Password”. It is possible
that this phrase could be partly responsible for one
of the most common passwords being “password”.
If this admittedly subtle prime is a causative we
ought to be able to influence choice by changing
the word to “secret”, and then see how many par-
ticipants choose the password ‘secret’. Thus, in our
first experimental condition the phrase “Choose a
Password” was replaced with “Choose a Secret’”.

e N2: University Context. Testing the Expectation
Effect. Instead of mandating password strength re-
quirements, the participants were shown the static
graphic (Figure 2) that suggests that their password
ought to be stronger than the average password cho-
sen by other students.

All Students
After They
reset their
passwords

Recommended
Password
Strength Profile

Beginning
of the Year

y

Ll
Weak Password Strength strong

Figure 2: Expectation Effect Nudge Graph [37]

e N3: School Context. Testing the Strength of In-
Group Effect. We suggested that participants iden-
tify themselves with students within their school, re-
ferred to as SoCS (Figure 3) in the graphic that was
shown to them.

Some people argue that people do not know how
strong their passwords are. To determine whether dy-
namic feedback reflecting the strength of their passwords

All Students
After They
reset their
passwords

SoCS Student
Passwords

Beginning
of the Year

~
Strong -

Weak Password Strength

Figure 3: The In-Group Nudge Graph [9]

would make a difference, we superimposed the arrow
shown in Figure 4 over the images in Figures 2 and 3,
giving us conditions N4 and N5. The strength feedback
was based on the same strength estimator zxcvbn. js
[54] that was used to calculate password strength in all
experimental conditions (see section Apparatus for fur-
ther details).

Your e\'

Password

Figure 4: Strength Indicator

e N4: University Context & Feedback. Testing
the combination of the Expectation Effect graph,
with an interactive password strength meter super-
imposed over it. This would theoretically allow the
user to see where on the x-axis their password is
located, in terms of strength, as they entered it.

e N5: School Context & Feedback. Testing the
combination of the In-Group Effect graph, with
same dynamic strength feedback indicator as N4.

e N6: Social Norm. An image of eyes on a wall,
appearing to “watch”, makes people more likely to
pay into an honesty box and also has the potential to
reduce littering [4]. Given the impact of displayed
eyes in other fields we considered it worthwhile to
test whether the perception of being watched would
encourage stronger passwords we displayed a pair
of eyes above the password entry field.

For the final two conditions we asked the participants
to reflect on the strength of their passwords to make them
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pause and think about the password. Due to the con-
straints imposed by the ethics committee, no self-report
free-form text was available. Instead, the participants
were asked to rate the perceived strength of their pass-
word on a scale below the Figures as shown in 2 and 3
respectively, giving us conditions seven and eight.

This was intended to drive processing up to the System
2, deliberate level, of processing, to offset the automatic-
ity they might be subject to while choosing passwords.

e N7: University Environment & Reflection. This
treatment displayed the same image as N2, and
asked the user to rate the strength of the password
he or she had just entered. The instruction referred
to them as ‘a student’ in order to highlight their Uni-
versity affiliation;

e N8: School Environment & Reflection. This
group displayed the same image as N3, in addition
to asking the user to rate the strength of their pass-
word. The instruction referred to them as ‘a com-
puting science student’, once again to emphasise
their in-group affiliation.

Apparatus. The nudges were tested using a web-
based university application where students were pro-
vided with coursework deadlines, timetable information
and project allocations. The authentication scheme was
based on standard alphanumeric authentication, i.e. a
username and a password.

We did not enforce a password policy nor a time limit
for password creation as we wanted to test the sole im-
pact of the nudges on password creation. However, the
university where the study took place generally suggests
that passwords should be at least eight characters long
(passphrases are recommended), include at least one
non-letter and should be changed at least once a year).
Access to the system was only possible with a student ID
and from within the campus network. As it was not pos-
sible to install password managers on the lab machines
and the use of personal laptops was not allowed, the use
of password managers was largely avoided. If partici-
pants used a password manager on another device they
would have to enter the stored password manually.

The website was used from October 2014 to April
2015 for Study 1 and from October 2015 to April 2016
for Study 2, thus for two consecutive academic years.

Password strength was calculated with the help of
zxcvbn. js [54]. This in an open-source and JavaScript
strength calculator that uses pattern matching and min-
imum entropy calculation. For this research, the score
metric was used. It delivers a strength value between
0 and 4 that indicates whether the number of guesses
required to break the password is less than 107 (score
0), 10* (score 1), 10° (score 2), 10® (score 3), or above

(score 4) !. For example, the password “password” gets a
rating of 0, where a password like “bootlegdrench42” is
issued a rating of 4. Hence, the scores are not evenly
spaced, the scale is exponential and the resulting data
therefore ordinal. Password length was measured as the
number of characters used for a password. For privacy
and security reasons the participants’ passwords were
never transmitted unhashed: strength was calculated lo-
cally and the hashed password transmitted to the server.

Sample. All participants were students enrolled in
technical courses, mainly specialising in Computer Sci-
ence that used the web application for their studies. In
Study 1, a total of 587 individuals registered to use the
web application. Some students exercised their right to
opt out, leaving 497 participants taking part in the study.
In Study 2, 816 individuals registered to use the web ap-
plication and created a password, of those 776 partici-
pants took part in the study.

Ethics. The study was conducted in agreement with
the university’s Ethics board. Participants were able to
opt out of the experiment at enrolment, and about 15%
did so. The school management would not allow us to
contact the students to ask any questions because of the
sensitivity and secrecy of passwords, and the fear that
the students would interpret any communication as an
indication that their passwords had been compromised.
For privacy reasons we were not permitted to report any
demographic information. We ensured that we used only
public domain images during the course of this study.

Procedure. The participants were randomly assigned
to the control condition or one of the experimental con-
ditions by a script embedded in the enrolment web page.

They were informed that their actions were being
logged and could be used for research purposes. They
were presented with a consent form, allowing them to
opt out of the experiment, but still benefit from use of
the website. In all experimental conditions, the nudges
were presented above the password entry field during en-
rolment and also during subsequent password creation
events.

4 Results

4.1 Study1

The data were first analyzed in terms of preconditions
for statistical procedures such as sampling distribution
and missing values. The descriptive statistics of Study 1
are listed in Table 2. The mean is reported as p, the stan-
dard deviation as o, the median as X and the interquar-
tile range as IQR. Overall, the average password strength

Thttps://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-
password-strength-estimation/ (accessed 28th September 2017)
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Expectation
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Expectation & Dynamic Strength
In-Group & Dynamic Strength

Social Norms

Expectation & Reflection

In-Group & Reflection

”Choose a Password”
”Choose a Secret”

Graph in Figure 2

Graph in Figure 3

Graph in Figure 2 + Figure 4
Graph in Figure 3 + Figure 4

P

W

Graph in Figure 2 + Reflection
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how strong do you think this password is?

() Very Weak
) Weak

) OK

() Strong

() Very Strong

() Unsure

Graph in Figure 3 + Reflection

As a computing science student,
how strong do you think this password is?

() Very Weak
) Weak

NO
NI
N2

N3
N4

N5

N6
N7

N8

) 0K
(_) Strong

() Unsure

() Very Strong

Table 1: Tested Nudges (N = Nudge Condition)

was rated with x = 1 and IQR1 = 0, IQR3 = 3. The dis-
tribution of the password strength scores is depicted in
Figure 5. The average password length was u = 9.59 (o
=3.25) and x = 9. The shortest password comprised 3,
the longest 32 characters.

.

Password strength
" s

o

T T T T T T
0 1 2 3 4 5

Nudge condition

Figure 5: Password strength Study 1

Due to a non-normal sampling distribution and the
password strength being measured on an ordinal scale,
Mann-Whitney-U tests were conducted to compare each
of the five nudge conditions with the control group. The
tests were run for both password strength and length us-
ing the Benjamini-Hochberg procedure for the correction
of p-values. The effect size was calculated using Cliff’s
Delta [13, 14] which does not make assumptions about
the underlying data distribution.

Password strength in the Priming group (N1, x = 1)
did not differ significantly from the control group (NO, x
= 1), U =3419.00, z = -.351, p = .726, Cliff’s Delta =
.03 [-.14, .2]. We counted two uses of the word “‘secret”
as password in this group. However, none of the other
participants, who were primed with the prompt “Provide
a password” used the word ‘password’, so there is no
evidence of a strong priming effect.

Likewise, there was no significant difference between
the control group and the conditions In-Group Effect
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Strength Estimation Length
Subjects | x | IQRI | IQR3 | min | max u c X | min | max
NO 82 1 0 3 0 4 9.46 | 383 | 8.00 | 4 32
N1 86 1 0 2 0 4 891 | 272 | 850 | 3 17
N2 83 1 0 3 0 4 995 | 351 (9.00| 6 24
N3 81 1 1 3 0 4 1033 | 3.57 | 9.00 | 6 22
N4 82 2 1 3 0 4 9.76 | 253 1 9.00 | 6 17
N5 83 1 0 2 0 4 9.17 | 3.01 | 800 | 6 21

Table 2: Descriptive Statistics of user-generated passwords in Study 1 (14 = mean, ¢ = standard deviation, X = median,

IQR = Interquartile range).

(N3,x=1),U=2955.5,z=-1.251, p= 211, Cliff’s Delta
=-.11[-.28, .06], and In-Group effect with feedback (N5,
x=1),U=232725, z=-439, p = .661, Cliff’s Delta =
-.04 [-.21, .13]. Finally, also the comparison between the
password strength of the control group and the Expecta-
tion Effect with feedback group (N4, x = 2) yielded an in-
significant result due to the Benjamini-Hochberg adapted
p-value threshold, U = 2708.00, z = -2.207, p = .027,
Cliff’s Delta = -.19 [-.36, -.02]. The same was true for
the similar condition N2 without feedback (x = 1), U =
3080.00, z =-1.084, p = .278, Cliff’s Delta = -.09 [-.26,
.08]. The effect sizes are graphically depicted in Figure
6.

0,5

05

Effect Size Cliff's Delta

NO-N1 NO-N3 NO-N4 NO-N5

oCliffs Delta =95% Cl Upper =95% Cl Lower

NO-N2

Figure 6: Effect sizes of the password strength compar-
isons

Password length, among others (such as use of differ-
ent types of characters or of upper and lower cases), can
be one factor contributing to stronger passwords. How-
ever, in line with the findings on password strength no
significant effect on password length could be proven.

4.2 Study 2

The data analysis for Study 2 followed a similar approach
to the one for Study 1. The descriptive statistics of Study
2 can be found in Table 3. Overall, the average pass-
word strength was rated with X = 2, IQR1 = 0 and IQR3
= 3. The distribution of the password strength scores is
shown in Figure 7. The average password length was u =
10.02 (6 =2.57) and x = 9. The shortest password com-
prised 4, the longest 25 characters. Similar to Study 1,
Kolmogorow-Smirnow tests and a visual inspection re-
vealed deviations from a normal distribution leading to
the use of nonparametric Mann-Whitney-U tests. From
the original N=776 data sets, 39 had to be excluded due
to technical problems with the java script strength esti-
mator.

4

Password strength
N 9

o

T T T T T T

Nudge condition

Figure 7: Password strength Study 1

Again, the control group was tested against the five
experimental groups N2, N3, N6, N7 and N8 in pair-
wise comparisons using nonparametric Mann-Whitney-
U tests and the Benjamini-Hochberg procedure for p-
value correction. However, the experimental groups did
not differ significantly from the control group, neither in
terms of password strength nor length.

USENIX Association

LASER 2017 ¢ Learning from Authoritative Security Experiment Results 31



Strength Estimation Length

Subjects | x | IQR1 | IQR3 | min | max u c X min | max
NO 124 2] 0.25 3 0 4 10.13 | 2.70 | 10.00 | 6 24
N2 124 2 1 4 0 4 10.23 | 2.56 | 10.00 | 6 19
N3 120 1 1 3 0 4 10.06 | 2.73 | 9.00 4 25
N6 124 2 0 3 0 4 9.80 | 2.42 | 9.00 6 16
N7 121 1 0 3 0 4 9.88 | 2.24 | 9.00 6 15
N8 124 1 0 3 0 4 10.02 | 2.77 | 9.00 5 17

Table 3: Descriptive Statistics of user-generated passwords in Study 2 (14 = mean, ¢ = standard deviation, X = median,

IQR = Interquartile range).

4.3 Hypothesis

Based on our findings we conclude that H1 is not sup-
ported. The presence of the visual nudges we tested did
not lead to longer and stronger passwords.

5 Discussion & Reflection

Research designs strive to maximize three criteria when
collecting evidence: generalizability, precision, and re-
alism. Since it is impossible to maximize all of these, all
research designs exhibit deficiencies in one or more of
these dimensions [33].

For example, survey research is generalizable whereas
lab experiments are more precise, and field experiments
(and case studies) are realistic while being less precise
due to low controllability of confounding factors. Re-
searchers who utilize laboratory experiments to study se-
curity behaviors can control the environment and fix a
number of research variables, but realism suffers because
this setting only mimics reality. Field experiments are far
more realistic, but are undeniably less precise. Surveys
perform poorly in terms of realism and precision.

The best research projects will probably combine the
findings of surveys, lab experiments and field studies in
order to offset the deficiencies of individual methods. A
number of surveys have been carried out in this area [47],
giving us a measure of generalizability. We contribute
to the field by carrying out and reporting on our nudge-
related field study, adding realism to previous findings.

After the unexpected outcome of our studies we re-
flected on reasons for the eight nudges seemingly making
no significant impact on users’ password choices. The
possible explanations we considered fall into two broad
categories. The first concerns potential methodological
and statistical issues. The second concerns the partici-
pants: their task, aims and perceptions.

(1) Methodological considerations
The strength metric

For the purpose of our study, we decided to measure
password strength with the password strength meter
zxcvbn. js. We made this decision based on the fact that
it was open-source, uses pattern matching and searches
for minimum entropy. However, the score rating pro-
vided by zxcvbn. js, and used in our study, measures
password strength on an ordinal scale with ‘0’ indicating
the number of guesses required to break the password be-
ing less than 10% and ‘4 assigned to a password requiring
over 10% guesses. The clustering of data into 5 artificial
categories, however, suppressed data variance. For ex-
ample, if the number of guesses to crack a password in
the control group was 1100 and that of a password in one
of the experimental conditions was 9900, both passwords
would be assigned a score of 2 indicating between 10°
and 10* guesses required to break the password. Thus,
the difference in the data would not be reflected in the
score.

Although we were not aware of any alternatives when
we commenced our study, there are now wrappers to
run zxcvbn. js completely offsite. We used the open-
source version of the client. To protect the participants’
passwords, we did not transmit unhashed passwords —
strength was calculated locally and the hashed password,
together with its strength rating, transmitted to the server.
The unavailability of the raw data later prevented us from
calculating alternative strength estimations that might
have provided a greater variance and a categorization
closer to the real distribution.

The loss of information negatively affected the anal-
ysis so that it is possible that existing effects were not
detected. We would therefore recommend the use of a
richer classification mechanism for further studies of this
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type.

Non-parametric tests

Another issue is that the ordinal password strength scale
required the use of a non-parametric test. In our study,
the Mann-Whitney-U test was conducted for the pairwise
comparisons of the experimental and control groups.
(Non-parametric tests make no assumptions about the
probability distributions of the measured variables, as
compared to parametric tests that require normality.
Non-parametric tests are indicated where the normality
requirement is violated: they are more robust against out-
liers and use characteristics such as the median and the
central tendency to describe a distribution.)

However, if the requirements of parametric tests are
met, the test power of such parametric tests is, gener-
ally speaking, higher than that of non-parametric tests.
Tests with a higher test power are more likely cor-
rectly to reject a null hypothesis (no difference between
groups) when the alternative hypothesis (difference be-
tween groups) is true. In our case, that means that a
test with a higher test power might well have detected
an existing difference between the experimental and the
control groups, which the non-parametric test did not re-
veal. To quantify that potential impact we conducted a
G*Power analysis [19] to compare the test power of an
non-parametric Mann-Whitney-U test to an independent
t-test. We fixed a = .05 and sample size on 80 people
per group similar to the sample sizes in study 1. We
then manipulated the effect size Cohen’s d required by
G*Power to compare the results. We found the changes
in test power to be below 2% (see Table 4).

Thus, the use of non-parametric tests might have con-
tributed to our negative findings. Still, the analysis shows
that the influence of the non-parametric vs. parametric
test is rather small, whereas the influence of the effect
size is much bigger. In our study 1 the effect sizes were
only between .03 and .19. For future studies, it would
therefore be beneficial to use a study design and pass-
word strength metric that offers greater variance and sup-
ports the deployment of parametric tests.

(2) Participant Considerations
Authentication is Complex

The focus of the experiment was solely on the password
choice task. The user’s specific goals and needs, in the
context of the task, might not have been considered suf-
ficiently. This is especially relevant in that security tasks
are often secondary rather than primary goals [55]. De-
pending on the context, users aim to read mails, book
a hotel or check their course details and grades. Many
users might consider authentication a necessary evil that

has to be overcome to reach a primary goal. It is just
one among many elements in the choice-making ecosys-
tem. Thus, it might be that the nudges tested in this
study are not ineffective per se but that they were not
powerful enough in the authentication context. For fu-
ture work it would therefore be important to analyse the
users’ choice-making ecosystem holistically before de-
signing a simple user interface display “intervention” to
nudge users towards a change in behaviour.

Password Strength Perceptions

Studies by Ur ef al. [48, 46] found that users’ percep-
tions of what makes a strong password differs from the
actual password security. Users succumb to several mis-
conceptions. For example, many overestimated the secu-
rity benefit of including a digit compared to other charac-
ters and underestimated the decrease in security that re-
sulted from their use of common keyboard patterns. This
might be an indication that users lack the understand-
ing of what specifically contributes to a strong password.
In the context of our results this means that the nudges
might not have sufficiently enhanced the users’ under-
standing of what makes a password stronger. Thus, feed-
back on password strength might be promising direction
for future research.

However, the success of feedback meters in the liter-
ature, that dynamically display password strength to the
user and thus constitute one form of feedback, is mixed.
Studies in which users were not actively prompted to
consider their password reported only marginal effects,
whereas in others the meters weren’t even noticed by
users [7]. This confirms our earlier recommendation that
future studies should engage in analyzing the targeted
users, their tasks and mental models in a holistic way
before designing nudges. Apart from that, one could as-
sume that nudges which not only transport the message
that passwords should be secure but also offer guidance
on how to achieve this, might be more effective. This
assumption, however, needs to be tested.

Password Reuse

People reuse passwords across sites [16, 25], a fact re-
lied on by hackers globally. In a recent study by Wash
and Rader [52] password re-use behaviour was investi-
gated. The authors showed that for important accounts,
such as university accounts, people re-used stronger and
more complex passwords as compared to less important
accounts. Thus, the difference between strong, re-used
passwords (in the control group), and strong “nudged”
passwords (in the experimental groups) might have been
too small to detect. Apart from that, our nudges were
designed to target the password creation process. If par-
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Test power
Cohen’s d | Sample size o independent t-test | Mann-Whitney-U test
0.1 80 0.05 0.1550283 0.1516025
0.2 80 0.05 0.3499859 0.3393193
0.3 80 0.05 0.5965318 0.5796253
0.4 80 0.05 0.8089716 0.7928030
0.5 80 0.05 0.9336887 0.9238465

Table 4: Comparative analysis of test power using the G*Power software [19].

ticipants were reusing passwords they might well have
ignored the nudges altogether, rendering them impotent.

Nudges & Complex Behaviours

Nudges are targeted at at making users change a default
rule or behaviour. This, however, isn’t an easy task. Sun-
stein [42] explains that there are a number of reasons for
users clinging to their default password behaviours de-
spite the presence of nudges.

1. First, changing default behaviour requires active
choice and effort, and the option towards which the
person is being nudged might be more effortful than
the default option. Nudges might be more effective
where people have to choose between two options
that are similar in terms of effort. In authentication,
however, options are seldom similar. A stronger
password increases the cost for the user in terms of
time and memory load. Reusing a password is much
less effortful than coming up with a new one.

2. Second, departing from the default way might be
perceived to be risky and only become a realistic
option if people are convinced that they should in-
deed change their default behaviour.

3. Third, people are loss averse. If the default is
viewed as a reference point, a change might be con-
sidered a loss of routine or long-memorized pass-
words.

4. Fourth, password choice is cognitively expensive
[20], not a simple activity. If people are already
depleted for some reason they are even less likely
to choose a stronger password and a visual nudge is
hardly going to have the power to mitigate this.

In future studies, it would be interesting to test nudges
that offers a benefit in return for the extra perceived ef-
fort. One idea suggested by Seitz, Von Zezschwitz and

Hussmann [45] is to reward users with a stronger pass-
word by allowing them to keep the password longer than
a weak password: applying a strength-dependent aging
policy. Thus, weak passwords would be easier to type
and memorise but would have to be changed more fre-
quently whereas stronger passwords are harder to type
and memorise but could be kept longer.

Limitations

As described above, this study was conducted in the field
with a high degree of realism. However, field studies
lack the controllability of laboratory experiments, even
more so in our case where the requirements of the ethics
committee constrained us in terms of collecting demo-
graphic and additional information to preserve partici-
pant privacy and anonymity.

Furthermore, the use of the password strength scores
that are not evenly distributed resulted in a loss of
variance and a decrease in test power. Future studies
should therefore consider and compare other possibilities
to quantify password strength (also see Methodological
Considerations and Lessons Learned sections).

Another limitation is the limited generalisability of
the sample that predominantly consisted of Computing
Science students. It can therefore be expected that the
sample was somewhat biased towards technically-adept,
young and male participants. Another limitation con-
cerns the design of the Figures that were presented to
the participants in the experimental conditions N2 Uni-
versity Context, N3 School Context and the related con-
ditions N4, N5, N7 and N8. Participants received dy-
namic feedback on their password strength in relation to
the graph in N4 and N5. In N7 and N8 they were asked
to rate the perceived strength of their passwords in rela-
tion to the graph. However, the participants in N2 and
N3 did not receive feedback on their passwords. There,
the nudge was intended merely to create the impression
that the participants’ peer group passwords ought to be
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stronger than the average. In retrospect, it seems that
this, on its own, did not have the power to impact pass-
word strength.

Lessons learned

A number of lessons were learned during the course of
this research. We suggest the following implications that
might be useful to security researchers conducting future
studies:

1. First, the categorization of the password strength
based on the zxcvbn. js metric used in our study
resulted in a loss of information and variance of
password strength. It also required the use of non-
parametric tests that, generally speaking, have a
lower test power than parametric tests. It is there-
fore possible that existing small effects were not de-
tected. For future studies, it would be advisable to
explore and compare other metrics, e.g., the exact
number of guesses required to break a password.

2. Second, based on the literature, nudges seem to be
more effective where choices are equal in terms of
effort. Stronger passwords will undeniably require
more effort both in terms of memory load and typ-
ing time and complexity.

3. Third, authentication nudges might not come into
effect when users re-use passwords. Therefore, it
would be interesting either to assess password re-
use as a control variable, or to prevent users from re-
using passwords, e.g. by applying an idiosyncratic
password policy. In this case, the increased memory
load would have to be acknowledged and compen-
sated for in some way and such a policy might well
introduce unanticipated and unwanted side effects.

4. Fourth, to better comprehend participants’ under-
standing of secure password creation, we ought to
conduct further studies exploring their mental mod-
els. It could also be useful to compare different user
groups, such as laypersons and experts, who possess
different levels of knowledge and perhaps engage
in different decision-making strategies. Depending
on the outcome of those studies, nudges that not
only increase awareness, but also offer guidance on
how to create stronger passwords, might be a more
promising approach.

6 Conclusion

The research reported in this paper investigated the via-
bility of a number of nudges in the authentication con-
text. We manipulated the choice architecture to encour-
age the choice of stronger passwords. We discovered

that password strength was not impacted by the visual
nudges.

Having reflected on our findings, we were reminded
of the complexity of the password creation event. It is
influenced by so many more factors than the mere ap-
pearance of the surrounding user interface. We learned
some valuable lessons during the course of this research
and we conclude the paper by presenting a list of these
to assist other researchers wishing to work in this area.
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Abstract

Background. User fatigue or overwhelm in current se-
curity tasks has been called security fatigue by the re-
search community [11, 24]. However, security fatigue
can also impact subsequent tasks. For example, while the
CAPTCHA is a widespread security measure that aims
to separate humans from bots [26], it is also known to be
difficult for humans [2]. Yet, to-date it is not known how
solving a CAPTCHA influences other subsequent tasks.
Aim. We investigate users’ password choice after a
CAPTCHA challenge.

Method. We conduct a between-subject lab experiment.
Three groups of 66 participants were each asked to gen-
erate a password. Two groups were given a CAPTCHA
to solve prior to password choice, the third group was
not. Password strength was measured and compared
across groups.

Results. We found a significant difference in password
strength across conditions, with p = .002, corresponding
to a large effect size of f = .42. We found that solv-
ing a text- or picture-CAPTCHA results in significantly
poorer password choice than not solving a CAPTCHA.
Conclusions. We contribute a first known empirical
study investigating the impact of a CAPTCHA on pass-
word choice and of designing security tasks in a se-
quence. It raises questions on the usability, security fa-
tigue and overall system security achieved when pass-
word choice follows another effortful task or is paired
with a security task.

1 Introduction

The CAPTCHA (Completely Automated Public Turing
Test to Tell Computers and Humans Apart [26]) is an im-
portant web security measure that differentiates humans
from bots. It is widely used across the web [20], includ-
ing at websites with a high traffic flow such as Facebook,
Twitter, LinkedIn, Reddit and various email providers.

Thomas Grof3
Newcastle University
thomas.gross @ncl.ac.uk

M. Faizal R. Pratama
University of Derby

Balancing both security and usability of CAPTCHAs
continues to be a challenge [30, 7]. CAPTCHAs are
known to be difficult for humans [2] and to pose usability
issues [29].

Security research shows that on the one hand, users
are fatigued and frustrated with security [11]. Literature
quotes a compliance budget where employees comply ei-
ther when there is no extra effort or after weighing the
cost and benefits of extra effort [1]. In addition, a thresh-
old exists beyond which it gets too hard and burdensome
for users to maintain security [11]. Fatigue impacts cur-
rent tasks with users being desensitized to security or re-
jecting security [24].

On the other hand, there is a suspicion that priming
moderate effort can enhance security decisions such as
for password choice. For example, Grof} et al. [12] found
that while password strength is weakest when users are
cognitively depleted, moderate effort exertion is benefi-
cial for password strength.

When registering an account, users are often asked
to solve a CAPTCHA and to choose a password. Al-
though online account registration forms often present
the CAPTCHA challenge after password choice, un-
clear guidance into the data entry sequence or form re-
fresh when an incorrect CAPTCHA is entered lead to
a situation where the password is chosen after solving
the CAPTCHA. In addition, when the Tor Anonymizer
is detected, users are systematically asked to solve a
CAPTCHA before they can register. Therefore the
question arises whether the effort required to solve a
CAPTCHA impacts password choice. While a handful
of research have studied a link between cognitive effort
and password choice or password management [12, 17,
10], for empirical investigation of the impact of effort
previously spent on password choice, we are only aware
of GroB et al. [12].

Research Question. We investigate the main RQ
”How does solving a CAPTCHA before creating a pass-
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word influence password choice?” We reproduce exper-
imental design components of Grof3 et al. [12] and use
validated methods from cognitive psychology to measure
effort [25], stress[22, 23] and cognitive load [13].

Contribution. This paper contributes the first empir-
ical investigation of the impact of security fatigue (ex-
perienced in a first task) on a subsequent security task.
Our findings indicate that engaging in a CAPTCHA in-
fluences password choice. Solving a text- or picture-
CAPTCHA lead to weaker password than not solving a
CAPTCHA with a large effect size of 0.42.

QOutline. In the rest of the paper, we first provide back-
ground research, followed with the study aims. We
describe a pre-study. We then follow the main study
methodology and provide the results before the discus-
sion, limitations and conclusion.

2 Background

2.1 Security Fatigue

Previous research suggests that users often perceive se-
curity as a barrier that interferes with their productiv-
ity [11]. Subsequently, the term security fatigue was
coined to describe the threshold of acceptance beyond
which it gets too burdensome for users to maintain se-
curity [11]. In this sense, security fatigue describes an
interference to current tasks and an additional step to be
taken. Security fatigue has also been used to describe
users’ weariness or reluctance to experience anymore of
something [24]. In particular, they reported that partici-
pants are tired, turned off and overwhelmed by security.
The term has been used to describe user behavior both in
the workplace [11] and for the general public [24].

2.2 CAPTCHA

A CAPTCHA is a program that can generate and grade
tests that most humans can pass, but that current com-
puter programs cannot [26]. By differentiating humans
from bots, they are used for security applications such
as preventing bots from continuous auto-voting in online
polls, -registering to email accounts or preventing dictio-
nary attacks [26]. Text-based CAPTCHAs require users
to type alphanumeric characters from a distorted image,
where popular ones include reCAPTCHA [27, 21] and
BaffleText [5] whereas image-recognition CAPTCHASs
are based on image problems, where examples include
ASIRRA [8] and reCAPTCHA [21].

2.2.1 Usability & Security

While research propose that good CAPTCHASs ought to
be both usable by humans and strong in resisting adver-
sarial attacks [29, 7], CAPTCHAs are often difficult for
humans [2, 4, 29, 9]. User reports on the perception,
preferences and use of CAPTCHA [9] show that only ev-
ery other user solves a CAPTCHA at first try, with char-
acter distortion named as the main obstacle.

Early CAPTCHAs have been broken by object recog-
nition algorithms [18, 4] and segmentation [30, 7]. Yan
and El Ahmad [30] exploited flaws in a word-image
scheme via simple attacks and found that it was easy
to separate foreground text from the background and
that the scheme was vulnerable to segmentation attacks
and dictionary attacks when English words was used.
Bursztein et al. [3] provided an enhancement to the pro-
cess of attacking text CAPTCHAs and they proposed
randomizing the CAPTCHA length and individual char-
acter size, creating a wave shape and collapsing or over-
laid lines, for improved protection against attacks. There
are also claims of breaking the latest of Google’s image
reCAPTCHA [21].

2.3 Text Password

Text passwords are the cheapest and most commonly
used method of computer authentication. However, a
large proportion of users are frustrated when forced to
comply to password policies such as monthly reset [15].
Effort and tiredness to a state of cognitive depletion
causes users to choose weaker passwords [12], provid-
ing an indication that effort is necessary for the creation
of strong passwords.

3 Aim

We investigate the main RQ “How does solving a
CAPTCHA before creating a password influence pass-
word choice?”.

3.1 Impact on Password Strength

Password strength varies according to cognitive state,
that is whether the user is depleted or fresh [12].

Research Question 1 (RQEP). How does the strength
of a password chosen after solving a CAPTCHA differ
from not solving a CAPTCHA?

Hpo: Solving a CAPTCHA does not impact password
strength

Hp11/p 12" Solving a [text-CAPTCHA/picture-
CAPTCHA] causes weaker passwords than in the
CONT condition.
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3.2 Effort Exerted

In Section 2.2, we reviewed literature exposing the diffi-
culties of solving CAPTCHAs. These difficulties entail
user effort.

Research Question 2 (RQFE). How does the overall
effort of solving a CAPTCHA and choosing a password
differ from only choosing a password?

He11/E1.2° Solving a [text-CAPTCHA/picture-
CAPTCHA] causes exertion of more effort than not
solving any CAPTCHA.

He13: Solving a text-CAPTCHA causes exertion of
more effort than solving a picture-CAPTCHA.

3.3 Performance

The text and picture-CAPTCHAs can pose difficulties
that affect performance differently, for example while
the distortions of text-CAPTCHAs are problematic for
the user, recognition or picture quality might do so for
picture-CAPTCHA.

Research Question 3 (RQFF). How does the type of
CAPTCHA impact the time spent, success rate and re-
sults checking rate?

Hr.1: Solving a text-CAPTCHA requires more time.

Hs 1: Solving a text-CAPTCHA has lower success rate.
Hr1: Solving a text-CAPTCHA has a higher results
checking rate.

4 Pre-Study

Before the main study reported in this paper, we designed
a pre-study to compare password strength across two ef-
fort inducing conditions.

4.1 Aim

Research Question 4. How does password choice dif-
fer between different conditions of effort, in particular
across control, text-CAPTCHA and 2-digit multiplica-
tion?

4.2 Method
4.2.1 Participants

Participants were recruited on the university campus via
adverts and flyers. They were paid a time compensation
of $6.5. Sample size was N = 40, with 17 women, mean
age 26.75 years (SD = 7.540). 9 participants were from
a computer science background.

CAPTCHA
Condition

Figure 1: Confidence Intervals of the means of password
strength score by condition. (Pre-Study)

4.2.2 Procedure

The procedure consisted of (a) a pre-task questionnaire
for demographics, (b) a mood questionnaire, (c) a puzzle
manipulation, (d) a password entry for a mock-up GMail
registration, (e) a mood questionnaire and (f) a debriefing
questionnaire.

We choose two puzzles: an example of the widely
used text-CAPTCHA and a 2-digit multiplication. We
choose a 2-digit multiplication because it is known in
cognitive psychology to consume effort [16]. Solving
mental multiplication problems has been shown to en-
gage cognitive effort in particular 2-digit multiplication
[14]. In this task we asked participants to solve 48 x
97 (ensuring that one of the numbers was a prime num-
ber, since prime numbers ensure shortcuts are not being
used). We provide more details of the text-CAPTCHA
in Section 5.2.2, which is also used for the main study.

We designed a between-subject study where partici-
pants were randomly assigned to one of the three groups.
We ended up with 12 participants in the CONT, 14 in the
text-CAPTCHA condition and 14 in the 2-digit multipli-
cation condition.

4.3 Results and Discussion

Similar to GroB3 et al. [12], we measure password
strength via password meter with NIST amendments. We
computed a one-way ANOVA with the password strength
score as dependent variable. There was no statistically
significant effect of the experiment condition on the pass-
word strength score, p = .074 > .05.

Considering the intervals plot of Figure 1, we observe
that the confidence intervals of the conditions CONT and
CAPTCHA barely overlap, asking for further investiga-
tion. In terms of effect size, we see an effect size of
Hedges” ¢ =0.99 [0.17,1.81].
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S Main Study Method

5.1 Participants

Participants were recruited on campus via adverts and
flyers, and the experiment was run in a dedicated quiet
zone. Participants were paid a time compensation of $6.5
for completing the experiment, which lasted between 10-
15 minutes. The sample consisted of university students,
N = 66, of which 30 were women. The mean age was
21.79 years (SD = 3.223). Participants were not from a
computer science background, 38 were local nationals,
and 63 reported undergraduate education.

5.2 Procedure

We designed a between-subject experiment, via exper-
imental design guidelines [6]. We induce the indepen-
dent variable (IV) effort, with three levels: CONT, text-
CAPTCHA and picture-CAPTCHA, further described in
Section 5.2.2.

The procedure consisted of (a) a pre-task question-
naire for demographics, (b) a combined short stress
and mood questionnaire, (c) a CAPTCHA manipulation,
(d) a password entry for a mock-up GMail registration
(a reproduction of [12]), (e) a combined full stress and
mood questionnaire, (f) a questionnaire for task load and
(g) a debriefing questionnaire. Figure 2 depicts the ex-
periment design.

5.2.1 Block Randomization

We ensured that each condition had equal number of
participants and that participants are randomly assigned
across groups. We automated a random block assign-
ment method and we ended up with an equal number of
22 participants in each condition.

5.2.2 Manipulation Tasks

Following the review in Section 2.2, we selected
the character/text-CAPTCHA and image recogni-
tion/picture-CAPTCHA as the experimental condi-
tions. We chose these two schemes because the text-
CAPTCHA has been most popular and is still used by
high traffic sites such as Facebook' while the picture-
CAPTCHA is an option for the reCAPTCHA, which
is the most used CAPTCHA according to online sur-
veys [20]. In terms of security, both schemes are also
known to suffer from security flaws and have been been
broken by segmentation and machine learning attacks as
seen in Section 2.2.

"https://www.facebook.com

Text-CAPTCHA We generated a CAPTCHA image
using Securimage PHP CAPTCHA?, as shown in Fig-
ure 3. Securimage distorts the code and draws random
lines over the image. We used a level of perturbation of
1.75 to induce effort. 1.75 is readable yet require some
effort. The number of lines on the image was set to the
default 5. This CAPTCHA was also used in the pre-study
provided in the Appendix.

Picture-CAPTCHA The image reCAPTCHA chal-
lenge provides a sample image and 9 candidate images.
It asks the user to select images similar to the sam-
ple [21], where the correct number of images vary be-
tween 2 to 4. In our picture-CAPTCHA condition, we
tweaked the image reCAPTCHA process and asked par-
ticipants to count the number of times a particular image
appear, here the number of cats as shown in Figure 4.
We estimated that the effort spent in clicking on all oc-
currences would be similar as counting the number of
occurrences. Participants still have to recognize partic-
ular images, yet we maintain a similar user input (text
entry) as in the text-CAPTCHA condition.

5.3 Measures
5.3.1 Password Strength

Similar to [12], we use password meter Web site® with
NIST adjustments. In addition, we evaluated the zxcvbn
password strength estimator [28]. Zxcvbn provides the
number of guesses, logig guesses and a zxcvbn score
from O to 4.

5.3.2 Password Strategy and Re-Use

At the debrief, we asked participants if they re-used one
of their existing passwords to register to the GMail ac-
count. We also queried for password strategy employed.
We report these in the Appendix.

5.3.3 Brief Mood Inventory

As [12], we use a short form of a brief mood inventory
(BMI). Because we merged the stress and BMI question-
naire, instead of a 5-point Likert-type items between 1
Disagree strongly and 5 Agree strongly, we used a the 4-
point Likert of the stress questionnaire with items 1 Not
at all, 2 Somewhat, 3 Moderately and 4 Very much.

5.3.4 Stress and Workload

The Spielberger State Trait Anxiety Inventory is one of
the most used measures of anxiety and stress in psychol-

*https://www.phpcaptcha.org
3http://wuw.passwordmeter.com
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Figure 2: Overview of the experiment procedure. The experimental groups solved a CAPTCHA. The control group
did not.

ogy [22, 23]. We chose the Y-1 questionnaire as measure
of stress, with items towards how the participant felt in
the experiment. In the post-task questionnaire, we in-
cluded the full STAIL

NASA Task Load Index (NASA TLX) assesses mental
workload via the dimensions of mental demand, physical
demand, temporal demand, performance, effort and frus-
tration [13].

Figure 3: The text-CAPTCHA
5.3.5 Performance

Previous research recorded the time required [19] as well
as the number of attempts required by participants to
solve CAPTCHASs [9]. We also recorded the time taken
in seconds to solve the CAPTCHAs, the final result en-
tered by the participant and the number of times partici-
pants checked their results.

6 Results

All inferential statistics are computed at a significance
level o of 5%. We estimate population parameters, such
as standardized effect sizes of differences between con-
ditions with 95% confidence intervals. A confidence in-
terval is an interval estimate of a population parameter.
The confidence level determines the frequency such con-
fidence intervals would contain the population parameter
if an infinite number of independent experiments were
conducted.

6.1 Manipulation Check

6.1.1 Effort Exerted

Figure 4: The picture-CAPTCHA

We evaluate the null hypothesis Hgo: Solving a
CAPTCHA does not impact the effort exerted. We cal-
culate Diff _Tiredness (from the BMI in Section 5.3.3) as
the difference in self-reported tiredness before the start
of the CAPTCHA and after the registration.
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A Kruskal-Wallis test showed that there was a statis-
tically significant difference in Diff_Tiredness between
the different conditions x2(2) = 12.736, p = .002 < .05,
with a mean rank Diff_Tiredness 26.64 for CONT, 44.00
for text-CAPTCHA and 29.86 for picture-CAPTCHA.
We reject the null hypothesis He o.

We run 3 Mann-Whitney tests, with a Bonferroni-
corrected significance level of o = .0167:
(a) Diff_Tiredness was statistically significantly greater
in the text-CAPTCHA condition than in the control
condition, U = 112.50, Z = —3.432, p = .001 < .0167,
r = —.42. This constitute a large effect size; (b) There
was no significant difference in Diff_Tiredness be-
tween the picture-CAPTCHA condition and the control
condition, p = .556 > .0167; (c) Diff_Tiredness was
statistically significantly greater in the text-CAPTCHA
condition than in the picture-CAPTCHA condition,
U =140.50,Z = —-2.577, p=.0100 < .0167, r = —.32.
We observe a medium to large effect size.

From these results, we conclude that the manipulation
was successful in leading participants to exert more ef-
fort in the text-CAPT CHA condition than in the picture-
CAPTCHA and CONT conditions.

6.1.2 Performance

We evaluate the null hypotheses Ht o/ Hs o/ Hro: A type
of CAPTCHA does not impact the [time spent/success
rate/results checking rate]. These DVs indicate partic-
ipants’ engagement and enable further evaluation of the
success of the manipulation.

Time to solve CAPTCHA. We note that Levene’s test
for equality of variances across conditions is not signifi-
cant with p = .640 > .05. With a two-tailed independent
samples ¢ — test, we find that participants in the text-
based CAPTCHA condition (M = 128.94, SD = 22.18)
have taken statistically significantly more completion
time than participants in the picture-CAPTCHA condi-
tion (M = 32.57, SD = 19.60), t(42) = 15.271, p < .001.
This gives an effect size of Hedges’ g =4.52 [3.38,5.64],
a very large effect. We reject the null hypothesis Ht g.

Success at completing CAPTCHA. Although partic-
ipants seem to have tried longer for the text-CAPTCHA,
only five of them obtained a correct result; 20 did so
for the picture-CAPTCHA. We run a x2 test, where
we find a significant difference in correct results across
the CAPTCHA conditions with y*(1, N = 44) = 2321,
p < .001. The odds of having a correct result in the
picture-CAPTCHA were 68 times higher than in the
text-CAPTCHA. We reject the null hypothesis Hs o.

Checking Results. We counted the number of times
participants checked their results. Since the number of
checks failed Levene’s test for equality of variance across
the CAPTCHA conditions, with p = .002 < .05, we opt

for the non-parametric Mann-Whitney test. The number
of checks was significantly larger in the text-CAPTCHA
condition than in the picture condition, U = 19.5, Z =
—5.365, p = .000 < .005, r = —.66. This refers to a
large effect size. We reject the null hypothesis Hg g.

6.2 Stress and Workload

We investigate the overall STAI score and the difference
between the five pre/post STAI items and find no signif-
icant difference across the experimental conditions. We
investigate NASA-TLX’s across the dimensions of men-
tal demand, physical demand, temporal Demand, per-
formance, effort, frustration and the overall TLX_Score.
We find no significant difference across conditions. We
believe participants rated the last task only, that is the
GMAIL registration.

6.3 Impact on Password Strength

We evaluate the null hypothesis Hpg: Solving a
CAPTCHA does not impact password strength across
both password strength measures.

6.3.1 Passwordmeter

The distribution of the Passwordmeter password strength
score is measured on interval level and is not signifi-
cantly different from a normal distribution for each con-
dition. Saphiro-Wilk for (a) CONT, D(22) = .976,
p = .848 > .05, (b) text-CAPTCHA, D(22) = .967,
p = .641 > .05, (c) picture-CAPTCHA, D(22) = .962,
p = .534 > .05. Levene’s test for the homogeneity of
variances show that the variances were not significantly
unequal across conditions, F(2,63) = 0.638, p = .532 >
.05.

We computed an one-way ANOVA with the pass-
word strength score as dependent variable. There was
a statistically significant effect of the experiment condi-
tion on the password strength score, F(2,63) = 6.716,
p = .002 < .05. We measure the effect size in Cohen’s
f = .42 from (n? = .176 [0.043,0.296]) and Cohen’s
®> = 0.148. This constitutes a large effect. We provide
the descriptive statistics in Table 1 and the means/interval
plot in Figure 5. We reject the null hypothesis Hp .

As post-hoc test, we conducted a Tukey HSD report-
ing that the password strength was statistically signif-
icantly lower in the text-CAPTCHA condition (M =
31.05, SD = 29.16) than in the control condition (M =
67.68, SD = 37.02) with p = .002 < .05. We have an
effect size in Hedges’ g = 1.08 [0.44,1.71].

Furthermore, the password strength in the picture-
CAPTCHA condition (M = 42.36, SD = 35.18) was sta-
tistically significantly lower than in the control condi-
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tion, p = .042 < .05. That is at an effect size in Hedges’
g=0.69 [0.08,1.29].

Mean

CONT text-CAPTCHA picture-CAPTCHA

Condition

Figure 5: Passwordmeter

Figure 6: 95% Confidence Intervals on means of pass-
word strength scores by condition. (Main Experiment)

6.3.2 Zxcvbn

The distribution of the zxcvbn logyo guesses is measured
on interval level and is not significantly different from
a normal distribution for each condition. Saphiro-Wilk
for (a) CONT: D(22) = .184, p = .053 > .05, (b) text-
CAPTCHA: D(22) = .148, p = .148 > .05, (c) picture-
CAPTCHA: D(22) = .121, p = .538 > .05. We also
computed Levene’s test for the homogeneity of vari-
ances. For the zxcvbn logyo, the variances were not
significantly unequal: for CAPTCHA and control con-
ditions, F(2,63) = 1.072, p = .349 > .05.

We computed a one-way ANOVA with the zxcvbn
log1o guesses as dependent variable. There was a statisti-
cally significant effect of the experiment condition on the
zxcvbn logyg guesses, F(2,63) = 4.665, p = .013 < .05.
We measure the effect size in Cohen’s f = .36 from
(n? = .130 [0.016,0.244]) and Cohen’s @?> = 0.1. This
constitutes a medium to large effect size. We provide the
descriptive statistics in Table 2. Based on zxcvbn, we
would equally reject the null hypothesis Hp g.

As a post-hoc test, we computed Tukey HSD, report-
ing that password strength was statistically significantly
lower in the text-CAPTCHA condition (M = 6.38, SD =
2.84) than in the control condition (M = 8.66, SD =
2.11), p = .010 < .05. We have an effect size measured
in Hedges g = 0.89 [0.27,1.51]. There was no significant
difference between the picture-based CAPTCHA condi-
tion and the control condition.

Because the normality of the data was borderline,
we computed a Kruskal-Wallis test on the zxcvbn logig
guesses as well, which showed that there was a statisti-
cally significant difference in the zxcvbn logig guesses
between the different conditions x2(2) = 10.340, p =
.006 < .05, with a mean rank zxcvbn score of 42.55 for
CONT, of 23.95 for text-CAPTCHA and of 34.00 for
picture-CAPTCHA.

In addition, zxcvbn also provides an ordinal score
ranging from O to 4. We computed a Kruskal-Wallis
test which showed that there was a statistically signifi-
cant difference in the zxcvbn score between the different
conditions ¥2(2) = 9.251, p = .010 < .05, with a mean
rank zxcvbn score of 40.86 for CONT, of 24.27 for text-
CAPTCHA and of 35.36 for picture-CAPTCHA.

7 Discussion

Our findings that solving a CAPTCHA prior to choosing
a password impacts the password strength, has wide im-
plications because of the impact on authentication secu-
rity. We note that the more effortful text-CAPTCHA led
to weaker passwords. However although the effort spent
(via Diff_Tiredness) was not significantly different be-
tween the picture-CAPTCHA and the control, there was
still a difference in password strength between the two
conditions.

While Gro8 et al.’s [12] showed that a combination of
tasks specifically designed in psychology to cognitively
deplete users (the white bear, an impulse control and the
Stroop test), resulted in users choosing weak passwords,
this research shows that even common security measures
such as the CAPTCHA challenge has a detrimental effect
on password strength.

In addition, while system designers often create ac-
count registration forms (such as Facebook, Reddit,
Wikipedia) with a CAPTCHA challenge after password
choice rather than before, our research informs future de-
sign decisions of the positioning of CAPTCHAs. Our
findings indicate that we should clearly guide the se-
quence of user input for usability and not to put the pass-
word strength at risk. Design recommendations such
as positioning the CAPTCHA on a separate page after
password choice is likely to be beneficial for security.
We also observe that CAPTCHAs are often deployed as
a gateway to access Web sites at all, either when fre-
quent requests from the originating IP address were ob-
served or when the use of the TOR Anonymizer was de-
tected. Consequently, in these cases users are systemat-
ically exposed to CAPTCHAs before they could register
and choose a password.

Furthermore, apart from considering individual and
subsequent effects on a security task, it is also im-
portant to consider the overall, combined cognitive ef-
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Table 1: Descriptive statistics of password strength via password meter by condition.

Condition N Mean Std. Dev. Std. Error 95% CI Min Max
LL UL

CONT 22 67.68 37.02 7.89 51.27 84.09 -8 151

text-CAPTCHA 22 31.05 29.16 6.21 18.12 4397 -16 103

picture-CAPTCHA 22 42.36 35.18 7.50 2676 5796 -17 102

Total 66 47.03 36.82 4.50 3798 56.08 -17 151

Table 2: Descriptive statistics of password strength via zxcvbn logyg guesses by condition.

Condition N Mean Std. Dev. Std. Error 95% ClI Min Max
LL UL

CONT 22 8.66 2.11 0.45 772 9.59 477 1497

text-CAPTCHA 22 6.38 2.84 0.61 5.12 7.64 095 1341

picture-CAPTCHA 22 7.76 2.46 0.52 6.67 885 286 13.34

Total 66 7.60 2.62 0.32 6.95 824 095 14.97

fort of different tasks. In particular whether they lead
to the user rejecting security overall. So far past re-
search has only looked at security fatigue of the current
task [11, 24]. Therefore, our findings raise several ques-
tions (a) How does designing security tasks in sequence
impact (i) usability, (ii) rejection of security and secu-
rity fatigue, and consequently (iii) the overall security
achieved? (b) Does a sequence of security tasks induce
a weak link? (c) What combined effort can the user
bear? (d) What combination of security tasks is within
the user’s cognitive effort capacity?

7.1 Ethics

We followed the ethical guidelines at our University to
run both the pre-study and the main study. We did not
induce more effort than is reasonable in daily life. The
participants were informed of the approximate length of
the studies, were guided through a consent form and were
informed that they could cease participation at any time.
Participants were rewarded with a compensation of $6.5
for their time.

Participants’ data are kept securely under lock and key
and on machines with hard disk encryption. The personal
identifiable data of participants was separated from the
experiment data and the experiment data anonymized.

7.2 Limitations

Ecological Validity. Although requiring a more con-
trolled setup, we chose lab studies as a first step because
it is believed in password research that such studies of-
fer better data quality. We used the same GMail mockup

as previous studies [12] which is identical to the GMail
account registration page.

Our findings pertain to the chosen manipulations.
We chose the text-recognition CAPTCHA, known to
be widely used and an adapted picture-recognition
CAPTCHA, which often comes up from the widespread
reCAPTCHA. Further experiments can be conducted
on other CAPTCHA schemes and sequence in security
tasks.

Sample Size and Power The study fulfills recommen-
dations have a power of at least 1 — § = 80% against an
effect size of Cohen’s f = 0.5 in the omnibus ANOVA.
With the given sample size of N = 66, an effect of Co-
hen’s f = 0.4 could still be detected at 80% power. We
note that the ANOVA on zxcvbn slightly fell below that
mark.

Given the sample size investigated, the parameter es-
timation on the means and effect sizes in differences is
not especially tight. Further research with larger samples
could tighten the confidence intervals on the population
parameters.

Sampling Bias. Our sample was from university stu-
dent population, hence an educated sample with a mean
age of 21.79 in the main study. Although we found that
password choice was weaker in text-CAPTCHA than in
the control condition for both the pre-study and the main
study, for generalizability, this study can easily be repro-
duced on a stratified sample. A larger sample size can
also support other statistical analyses such as regressions.
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Post Questionnaires. In the post-stress and the cogni-
tive workload questionnaires, we found that participants
evaluated the GMail registration only rather than the
CAPTCHA and registration. Future experiments evalu-
ating stress and workload combined across a sequence of
tasks would benefit from making clearer to participants
about the task being evaluated. It might also be benefi-
cial to consider a small stress and workload evaluation in
between the sequential tasks.

Our findings of security fatigue are focused on the se-
curity tasks chosen and the sequence in which they were
designed. For example it might be useful to also com-
pare the impact of setting a password on performance at
solving a CAPTCHA or other security tasks.

We did not include subjective evaluation of the
CAPTCHAs. Future studies can also benefit from addi-
tional measures such as self-report/subjective participant
feedback on solving the CAPTCHA and also from the
combination of CAPTCHA and password.

8 Conclusions

We provide a first empirical study evaluating security fa-
tigue in relation to sequential security tasks. We find that
password choice following a CAPTCHA lead to poorer
passwords than without the CAPTCHA. While our find-
ings impact design practice and research on individual
security tasks together with their pairing with other tasks,
they also have wide implications for the overall security
of systems.
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A Appendix
A.1 Password Re-Use

We asked participants whether they registered the account via a pass-
word they currently use for any services. In the control condition as
well as in the picture-CAPTCHA condition, 22.7% of the participants
re-used an existing password. 36.3% of the participants re-used an ex-
isting password in the text-CAPTCHA condition. This difference is
not statistically significant. While a social media password was most
commonly used, none of the participants re-used a banking or retail
password. Table 3 provides a detailed view of password type re-used.

Table 3: Re-Use Context
Service

Count

email

social-media

education

mobile

social media/mobile/education
social media/email/mobile/education

SRS SN SR NG

A.2 Password Strategies

We coded participants’ password strategies. Figure 7 depicts the strate-
gies across conditions while Sections A.2.1 to A.2.6 provide the quali-
tative details. There was no significant difference across groups.

o -

Personal

With date or #

Manipulation I

Easy to remember

Same as. I

Condition ~ CONT | text-capTeHA [l picture-caPTCHA

Figure 7: Password strategy across conditions

A.2.1 Random

36% of the participants did not have a strategy, described it as random
or specifically said that they used a random thought.

8 participants stated that they did not have a strategy, for example,
P7 expressed “I did not have one” or P21 in “nothing really”. 9 par-
ticipants used a random password, such as expressed by P6 in “I put
random information together”, by P56 in "Trying to be funny” or by
P62 in "random words and letters”. 7 participants expressed a ran-
dom thought, such as by P20 in “Whatever comes to mind”, by P29
in “What comes to mind with different signs” or by P58 in “Randomly
Thought of [sic]”. We found that 8 participants in each condition used
arandom strategy.

A.2.2 Personal

36% of the participants chose a password related to their preference or
something personal to them.

10 participants chose a password linked with their preferences, for
example P22 expressed “Favourite Sport with mix of capslock inbe-
tween [sic]”, or P22 ”Favourite Football player” whereas 15 partic-
ipant created a password with personal meaning, such as expressed
by P26 “Daddy’s name + random letter [sic]”, P30 expressed “City
where i was born.[sic]” or P40 in "My Dog’s full name and the year
we got him”. We found that 9 participants created a password from
a preference or with personal meaning in the control, 7 in the text-
CAPTCHA and 8 picture-CAPTCHA, where 1 participant’s strategy
included both a preference and something personal.

A.2.3 Manipulation

We found that only 7 participants had a strategy involving complex-
ity combinations, changing characters to numbers or the equivalent in
another language, for example as expressed by P13 “make a strong
password with capital letters, small letters and numbers” or P48 in "a
bit creative with changing the i to 1”. 3 participants with this strategy
were from the control condition, 3 in the text-CAPTCHA condition
and 1 in the picture-CAPTCHA.

A.24 Sameas...

Only 4 participants described a re-use strategy, for example as ex-
pressed by P3 ”Same as always” or P47 ”Same as Username”. We
found that there was 2 participants employing this strategy in the con-
trol and 1 in each of the text and picture-CAPTCHA conditions.

A.2.5 Easy to remember

Only 6 participants reported that they created an easy to remember
password, for example as expressed by P4 ”just used two easy words
without spaces between which is easy to remember for me” or P15
“making the password unreal and easy to remember”. 2 participants in
the text and 4 in picture-CAPTCHA reported this strategy compared
to none in the control condition.

A.2.6

21% of participants created a password that was combined with num-
bers or dates, for example P18 reported using ”My Initials and current
year” and P27 ”Favourite colour and 100”. 5 participants employed
this strategy in both the control and text-CAPTCHA conditions and 4
in the picture-CAPTCHA condition.

With date or number
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Abstract

Background. Since Whitten and Tygar’s seminal study
of PGP 5.0 in 1999, there have been continuing efforts to
produce email encryption tools for adoption by a wider
user base, where these efforts vary in how well they con-
sider the usability and utility needs of prospective users.
Aim. We conducted a study aiming to assess the user
experience of two open-source encryption software tools
— Enigmail and Mailvelope.

Method. We carried out a three-part user study (instal-
lation, home use, and debrief) with two groups of users
using either Enigmail or Mailvelope. Users had access
to help during installation (installation guide and exper-
imenter with domain-specific knowledge), and were set
a primary task of organising a mock flash mob using en-
crypted emails in the course of a week.

Results. Participants struggled to install the tools — they
would not have been able to complete installation with-
out help. Even with help, setup time was around 40 min-
utes. Participants using Mailvelope failed to encrypt their
initial emails due to usability problems. Participants said
they were unlikely to continue using the tools after the
study, indicating that their creators must also consider
utility.

Conclusions. Through our mixed study approach, we
conclude that Mailvelope and Enigmail had too many
software quality and usability issues to be adopted by
mainstream users. Methodologically, the study made us
rethink the role of the experimenter as that of a helper
assisting novice users with setting up a demanding tech-
nology.

1 Introduction

Usability issues have been regularly cited as a barrier
to the adoption of email encryption [23] since Whit-

#The study was conducted while the author was at University Col-
lege London (UCL).

ten and Tygar’s seminal paper “Why Johnny Can’t En-
crypt” [24]. The paper received the USENIX Security
Test of Time Award in 2015, which might be interpreted
to mean that this state of affairs persists. Recent re-
search [17] reports that users are increasingly learning
about security threats from various sources, such that
they may be more receptive to adopting email encryption
tools than ever before. There has been increasing effort
to provide end-to-end encryption and eliminate barriers
to adoption, such as key distribution [24, 23, 20, 6].

The motivation behind the study described here was
to observe and analyse novice users’ first encounter with
such tools: 18 years after Johnny, how easy is it to con-
figure and use an encrypted email client?

We know that users prefer to use email encryption
tools which integrate with email systems they are already
using [19]. Thus, we chose to study two current open-
source, integrated PGP email encryption tools — Enig-
mail and Mailvelope. We observed users across three
stages of activity, within a group-based study: an instal-
lation group session, home use over a week with assigned
group communication tasks, and a debrief group session.
Ten participants completed the study, divided into two
groups of four and six participants using Enigmail and
Mailvelope respectively. The approach was validated by
findings showing that barriers were encountered across
all phases of the study for both tools, in many places re-
quiring the assistance of a knowledgeable experimenter
to complete the various stages. This raises questions
about the role of a knowledgeable expert in the process
of learning to use a complex piece of software and over-
coming barriers to effective use, where the experimenter
may need to take on this duty.

2 Background

Lack of usability has been demonstrated to hamper both
the adoption and actual security of email encryption.
Whitten and Tygar [24] explored whether PGP 5.0 could
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be used by the general public to effectively secure emails.
The authors employed two evaluation methods: (1) a hy-
brid of a cognitive walk-through and heuristic evaluation,
and (2) a lab-based user study. Problems were identi-
fied in the user interface design which introduced secu-
rity risks — most lab participants were incapable of using
the PGP software securely. It was concluded that mak-
ing security usable requires the development of domain-
specific user interface design principles and techniques.

Garfinkel and Miller [10] performed a user study of
the CoPilot email client and Key Continuity Manage-
ment (KCM), where KCM automates key generation,
key management, and message-signing. The authors
concluded that KCM and CoPilot improved usability by
managing encryption tasks on behalf of users. In con-
trast, Ruoti et al. [20] suggested that designers should
focus on manual encryption to provide transparency and
engender trust in encrypted tools. Subsequent studies
(e.g.,[11,9, 21, 23]) have followed the findings of Whit-
ten and Tygar’s original work, for instance, through stud-
ies of secure communications in two-way radios [7], and
opportunistic email encryption [8].

Recent studies of encryption have explored socio-
technical factors. Gaw et al. [12] interviewed employ-
ees in an organisation, finding alongside usability a range
of social factors influence adoption of encrypted email,
such as the perceived importance of specific messages
and the perceived line between secrecy and paranoia. Re-
naud et al. [18] explored adoption factors across several
dimensions, such as awareness of privacy risks and mo-
tivation to protect against violation of emails. User inter-
views captured mental models of email security, iden-
tifying adoption challenges, such as incomplete threat
models and lack of understanding of email architecture.
Ruoti et al. [19] conducted lab-based studies with pairs
of novices cooperating to send an encrypted email with
a range of email tools, finding that lack of transparency
impacted trust, and that the availability of effective tuto-
rials was critical.

Here, we present a novel approach to studying use
of encrypted email tools — a combination of lab-based
setup with groups of participants using their own com-
puters, home use of encrypted email to perform a shared
task, and debrief in a lab setting to measure perception
of the tools. This allows us to explore where barriers can
emerge during the process of adopting and acclimatising
to encrypted email.

3 Method

Our study aimed to compare characteristics of Enigmail
and Mailvelope, to understand the facilitators and obsta-
cles behind adoption of encrypted email solutions. We
chose Mailvelope and Enigmail as they are end-to-end

encrypted, open-source, and available free of charge.
While Enigmail is a stand-alone extension to the Thun-
derbird email client, Mailvelope is an integrated solution,
as either a Chrome extension or Firefox add-on.

3.1 Design

We conducted a three-part study with one group of par-
ticipants installing and using Enigmail alongside Thun-
derbird, while the other group using Mailvelope. Partici-
pants used their own laptops during the study, as follows:

e Lab-based setup. Participants were interviewed
about their email-related habits, and asked to install,
configure, and begin using their assigned tool.

* Home use of encrypted email. Participants were
given a task to complete outside of the lab set-
ting, organising a mock flash mob campaign via
encrypted email over one week. Participants sent
emails to each other to agree on the location and
music for the mock event, and to confirm the loca-
tion with the experimenter. They also sent emails to
a new member of the group (another researcher).

e Lab-based feedback session. Participants dis-
cussed their experience of Enigmail or Mailvelope.

Participants were asked to bring their own laptops to
the study, to preserve ecological validity [13, 14]. They
were provided with printed copies of the installation
guides for either Thunderbird and Enigmail or Mailve-
lope. Crucially, the experimenter was available to assist
participants — rather than presume to lead them — during
the setup phase, and was contactable during the home-
use phase. Participants were asked to note when they
completed specific tasks on another sheet: (1) installing
Thunderbird (only for the Enigmail group), (2) installing
the Enigmail extension for Thunderbird or the Mailve-
lope extension on Firefox or Chrome, (3) configuring
the extension (generating a private and public key pair),
(4) sharing public keys with other group members, and
(5) sending an encrypted email to the study coordinator.

At the lab-based debrief session, participants com-
pleted System Usability Scale (SUS) [5] forms for both
Enigmail and Mailvelope. The SUS questionnaire con-
sists of ten statements, where users indicate how strongly
they agree with each statement on a five-point Likert
scale. At the end of the final session, participants re-
ceived £30 for their participation.

3.2 Participants

Participants were recruited through a research participant
pool at University College London. It is a participant
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pool where members of the general public can register
and sign up for research studies. Prospective participants
completed a pre-screening questionnaire to indicate oc-
cupation, age, gender, whether they had previously used
an email client, and if they had any experience with email
encryption tools.

Overall, 52 individuals completed the pre-screening
questionnaire. Two groups were formed, with six par-
ticipants each, so as to be resilient to unanticipated no-
shows. Those with a background in computer science
were excluded to favour non-technical users. Two of the
invited Enigmail participants did not attend on the day
of the lab-based setup session. The final sample was
as follows: the Enigmail group had four participants,
two females and two males. Their mean age was 32.7
(8D = 20.2, range: 23-45). The Mailvelope group con-
sisted of four females and two males, with a mean age of
39.6 (SD = 9.1, range: 24-76).

3.3 Procedure

Upon arrival, participants were asked to read the infor-
mation sheet and sign a consent form. The first group
was tasked with installing Mozilla Thunderbird and the
encryption extension Enigmail. The second group was
assigned the browser extension Mailvelope that works
with Firefox or Chrome web browsers. An explanation
of the tasks to be completed was given, but users were
not briefed on the specific goal of the study until the end
of the final session one week later.

3.4 Role of the experimenter

We initially conceived the role of the experimenter to
be that of a session facilitator, asking participants about
their experiences with the tools, and eliciting their men-
tal models of how encryption works. As Enigmail and
Mailvelope are targeted towards mainstream users, we
provided participants with official setup guides published
by the developers of the tools.

At the design stage of the study, we did not envisage
the role of the experimenter to be an instructor telling
participants how to set up the tools. However, the pi-
lot session we conducted before the main study sessions
made us change this element of the study design. In
the pilot study, we used a convenience sample consist-
ing of colleagues who mostly had a computer science
background. They were asked to perform the exact same
tasks as our participants. The pilot session of the setup
lab-session took in excess of 1.5 hours, where despite
the sessions being full of discussion about the instruc-
tions, the pilot participants struggled with the installa-
tion process to such a degree that it was necessary for the
experimenter, a domain-knowledge expert, to guide them

through the process to successful installation and use. As
aresult, the experimenter was briefed to not actively lead
participants through the setup steps, but to respond to re-
quests for help from participants if they arose during the
session(s).

3.5 Research ethics

The study was conducted after having been approved
by UCL’s Research Ethics Committee (approval number:
9423/001). The research was also registered with the UK
Data Protection Act 1998 (Z6364106/2016/07/11). We
did not collect any personally identifiable information.
We temporarily stored demographics and contact detail
information to be able to select participants and invite
them to the study. This information and the recordings
made during the group sessions were securely disposed
of at the end of the study.

4 Results

4.1 Task completion and times

The average task completion times are shown in Figure 1.
The average completion time for all tasks was 48.1 min-
utes for the Enigmail group, and 40.4 minutes for the
Mailvelope group. Task times are self-reported, so val-
ues may not be precisely accurate, but are indicative of
the time it took for each group to complete the tasks
assigned to them. The majority of participants in both
groups reached and completed the final task. However, it
can be seen that even with (minimal) assistance from the
knowledgeable experimenter it can take novices in the
region of half an hour to set up and test encrypted email.
Average task times for Enigmail are shown alongside no-
table participant quotes in Figure 3, and for Mailvelope
in Figure 4 (see Appendix).

All Enigmail participants completed the four mock
campaign tasks successfully. In the Mailvelope group,
one out of six participants was unable to complete the
third and fourth setup task (e.g., importing a new public
key from a new participant and sending encrypted email
to this person). This participant, P4-M,! downloaded the
attachment correctly but imported an incomplete block
of text as part of the public key. Participant P2-M was
unable to complete task four due to a broken laptop.

4.1.1 SUS

A SUS score can range from 0 (poor) to 100 (excellent).
The average score for Enigmail was 63.1 (range: 57.5—
77.5, SD = 9.7), and for Mailvelope was 50.8 (range:

!Participants are referred to as PX-E for those in the Enigmail
group, and PX-M in the Mailvelope group.
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Figure 1: Task times in minutes for Enigmail and Mailvelope.

27.5-70, SD = 19.4). This result means that Enig-
mail achieved “Good Usability”, whereas Mailvelope
achieved “OK Usability”. An unpaired t-test showed
that these differences were not statistically significant
(p = 0.28), possibly due to a small sample size.

4.2 Qualitative results

The audio-recordings of the sessions were transcribed,
and the transcripts were analysed using thematic analy-
sis [4]. The analysis identified the following themes.

4.2.1 Sharing sensitive information

Participants generally considered personally identifying
information to be sensitive (e.g., when shopping online
or entering passport details for flights). They felt that
disclosure of this information could expose them to the
risk of identity theft or leakage of, for instance, online
banking details.

All participants expressed that they had needed to
share sensitive information at some point. Diverse means
were mentioned; two participants had shared sensitive
information via regular email, a further two via the tele-
phone, and three via messaging applications such as
WhatsApp or Facebook Messenger. Two participants
stressed that they, as users, have to trust the service
provider, or otherwise not use the service at all:

“I'mean. .. you basically have to put your trust
in it, otherwise you just don’t use the email
or you don’t use the messenger service, you
know?” (P5-M)

Participants spoke of unintended recipients who might
access their emails. All Mailvelope participants agreed
with P4-M’s sentiment: “Well, I think [...] Gmail,
it’s checked every time we use it and all of our data
is known to them.” Participant P3-M argued that their
emails would not be a target for malicious parties: “We
are not... important enough for somebody to hack my
personal email. .. we are not Hillary Clinton!”

4.2.2 Encryption

All participants had previously heard of “encryption”,
but did not report having used a dedicated email encryp-
tion tool. Participant P4-E had, however, previously tried
to install Mailvelope a few months prior to the study:

“I tried to install Mailvelope, yeah, but only
got half-way through ’cause I really couldn’t
understand how to do the rest of it...”

Participant P2-E noted having “seen people use PGP
and stuff ” without having used it personally, despite hav-
ing “technical friends” who encrypt their emails. In re-
sponse, P3-M explained the mechanism behind encryp-
tion as follows:

“It kind of converts the entire message into
some kind of codes and then you send to the re-
cipient in the form of code and then something
happens. .. I don’t know what happens...”

There was a consensus amongst participants that en-
cryption did something to the original message that pre-
vented an unintended person from reading the message.

Participants also commented on recent news, airing
concerns about anonymous browsing and government in-
volvement. P1-E commented: “Recently the government
was trying to block... something they were trying, they
didn’t want the encryption because obviously they want
access to your emails...” They further elaborated that
using encryption might draw attention: “If all our com-
munications are being monitored, wouldn’t having en-
cryption make you a suspect of some suspicious activity
instead?”

4.2.3 Installation and configuration

Participants from both groups agreed that the installation
of the extensions was straightforward (including Thun-
derbird for the Enigmail group). For P1-M, installing the
Mailvelope extension was perhaps too seamless:

“There was no way of knowing if we had done
it or not. It would have been good if there’d
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been a bar across the top saying or showing
how much of it was installed, or saying it was
installed because I wasn’t absolutely sure if it
was finished. ..”

All participants agreed that configuration of the exten-
sions was complicated. For Enigmail, the experimenter
had to intervene because there was a bug in the setup wiz-
ard. When the setup wizard tried to download the GnuPG
component required by Enigmail to do the cryptographic
work, a progress bar was shown with the progress of this
download. However, the download and installation did
not actually start, and no error message or warning mes-
sage was displayed.

The Mailvelope group complained that after installa-
tion, the steps required to configure the extension were
unclear. They found locating the button to open the op-
tions menu was frustrating since they did not know what
to look for. Participant P2-M commented: “If was a bit
complex, I had to ask many times, it was complicated. .. ”
Enigmail users similarly complained that the process was
convoluted, difficult to follow, and that it was hard to
completely understand all available options, and then de-
cide which one to choose. P4-E elaborated:

“«

. When you get all of the boxes I'm like
“Oh my god! Which one do I do — this one
or this one?” And that’s where I start to strug-
gle because I don’t understand the technical
language.”

All participants completed the steps up until key ex-
change without incident. Those in the Mailvelope group
were frustrated at being unable to share public keys. The
key-generation setup wizard had an option to automati-
cally upload a public key to Mailvelope’s key servers, but
this process did not work — even when the option was se-
lected, the keys were not uploaded. Participants instead
had to copy and paste the key or download it as a file to
manually share it with others.

Experimenter intervention was necessary to explain
the manual process needed to effectively exchange keys.
P4-M was evidently frustrated: “It’s too complicated, it’s
too much!” All participants agreed that this step was the
worst, as it was unclear what to do intuitively or from the
official guide. P5-M: “Finding the keys, importing them,
that was pretty difficult!”. Participants’ mental models
of encryption did not relate the use of two keys:

“I didn’t understand the need for keys, this is
all new to me... I can use email, but I don’t
know why we need a key... so I would have
given up, I think!” (P1-M)

4.2.4 Thunderbird and Enigmail

The Enigmail group generally did not like the encryp-
tion experience. When asked if any changes would make
the tool better, the focus was on the setup process. P3-E
saw too many steps in the installation and configuration
process:

“I'was thinking it should be built into Thunder-
bird, just using one piece of software, so just
basically the install is like: “Where [do] you
want to install it?” and then: “Do you need to
set up keys?” or whatever.”

P4-E made comparisons to the use of other applica-
tions:

“It needs to be literally as easy as installing
some of the other apps, you know, that you can
Jjust download and have encryption that way.”

When considering the design of the Thunderbird inter-
face, P1-E commented that:

“I didn’t really like the interface of Thunder-
bird, I thought it was a little bit more clunky,
umm, it had very old-school interface.”

Participant P4-E said that even though she liked the
idea of encryption, the whole process of getting it to
work was too complicated. She attributed it to her age,
after hearing about encryption, she had genuine privacy
concerns:

“Because it’s there I would use it, but It’s
too complicated, maybe because I'm 45 and
maybe it’s the younger generation of people
who put their whole lives on the Internet,
you know, and privacy, the idea of privacy is
changing. .. and l... even though I haven’t got
any sensitive information really, it’s just about
protecting my own privacy. It’s just like get-
ting letters in the post, you wouldn’t neces-
sarily just leave your letters laying around for
people to read. ..”

P4-E explained usability was necessary for adoption
by all users:

“If I say to some of my friends or even my
elderly parents: “Hey! That'’s encrypted e-
mail!”, it’s just not going to happen and it’s
not like I really understand it. It needs to be
literally as easy as installing some of the other
apps, you know, that you can just download
and have encryption that way. For me, it has
to get to that point really for general consump-
tion...”

USENIX Association

LASER 2017 ¢ Learning from Authoritative Security Experiment Results 53



Participants commented that once the applications had
been configured, the interface in fact simplified the use of
encrypted email as well as public key sharing. They all
noticed the warning messages when an email was going
to be sent unencrypted. They also said that sharing their
public key was easy and convenient because they only
had to click one button.

All those in the Enigmail group did, however, say that
they would likely remove it from their laptops after the
study. P3-E explained:

“I’ll reinstall it if I have specific reasons like
someone sends me an encoded message or
I need to send someone something, but it’s tak-
ing a lot of space.”

4.2.5 Mailvelope

Once through the process of exchanging keys, Mailve-
lope users felt that the rest was easy to do. P3-M and
P2-M commented, respectively, that “I think it was fairly
simple to use after that and yeah!. .. I can see myself us-
ing this with people that I email often...” and that “it
was kind of cool to learn that it was that easy, to be able
to encrypt an email. .. I didn’t realise that you could just
add something to your Gmail... you know, an add-on
and do it that easily. .. ”

All participants felt confident using the system after
a few days completing tasks, and wanted to share their
comments. P1-M: “I didn’t know that just adding an ex-
tension you could do all that... encrypting and decrypt-
ing...” P6-M struggled to complete tasks for the first
few days of home use, having forgotten the passphrase
for their private key. They were upset about missing the
tasks:

“So I tried all the password permutations, so
I was so confused. .. I still wonder why it is. ..
I used something easy to remember... After
several days, I said “Oh my goodness!” I had
to tell you I had forgotten...”

Once asked to repeat the process of generating new
keys, they were excited to exchange the new public key,
where “that was one thing that I managed to do and 1
feel quite proud about that!”

There were some comments as to how to improve
Mailvelope’s interface and the process of encrypting
emails. Three participants reported that the button to ac-
tivate encryption was not obvious, leaving them prone to
sending unencrypted email (see Figure 2 for a screenshot
depicting the encryption button). P3-M explained:

“Perhaps something more prominent than just
that tiny button, because I did it a couple of
times, I was writing the text until I realised.”

= Send [ Attach Discard  es¢ a
From ¥ study-test@outlook.com Cc Bec
To

W A B I U & A = = Z3EZ = v

B o b monh -

Figure 2: A screenshot of the user interface for Mailve-
lope displaying the encryption button on the right.

P6-M expressed a concern that the tool did not warn
them when they tried to send their public key, and instead
attached the private key:

“It’s just not safe, I mean, they should def-
initely send a warning message saying “Do
you really want to send your private key...?”
or something. Yeah... I sent my private key,
it should at least warn once. There are so
many times when you do something and it’s
like “Are you sure?” and for the private key
it just sends...”

All those in the group agreed that despite interface is-
sues, Mailvelope was easy to use once they were familiar
with the process. Some members of the group mentioned
that they would try to use the tool with friends and fam-
ily. P4-M explained:

“I’ll keep it but to be honest, I doubt I'll use
it... I just don’t email sensitive information
with people. .. that often...”

4.2.6 Interoperability: network effects

In the final session, in both groups when discussing their
possible future use of the tools, participants raised con-
cerns that their contacts would need to install these tools
as well. While it is true that their contacts would need to
install a PGP-based client, the participants in both groups
thought it would need to be the exact same one that they
had. They were surprised when we explained to them
that any PGP-client would be able to exchange encrypted
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messages with another PGP-client. It was an interesting
mental model that could have been influenced by mes-
saging applications for smartphones that generally do not
offer interoperability. Research has shown that the adop-
tion of such messaging apps may be influenced by net-
work effects [1].

5 Discussion and conclusions

Participants in both groups were familiar with using
email clients, both in the browser and as standalone ap-
plications. They were also aware of encryption, and had
a basic understanding of what it did to messages, where
learning about security technologies from popular news
is not uncommon [17]. Participants simply reported that
they would not use email to share sensitive information,
having found other ways to share such information that
were felt as being more secure, and voicing a lack of trust
in the medium (in line with studies of pairs of novices us-
ing encryption tools [19]). Both products integrate with
existing solutions. However, Mailvelope integrated with
a browser, permitting users to continue to use existing
email clients that they were familiar with. Where ex-
plicit/visible encryption is seen as necessary, the effort
may lie in paving a way for these features to be inte-
grated into existing popular platforms, and to emphasise
interoperability between tools [2].

Participants used the tools on their own laptops. Inte-
gration with existing applications was highlighted as an
advantage of Mailvelope, although encryption tools were
compared to email clients that participants were familiar
with, such as Gmail. If an encryption tool appears alien,
it compounds the challenge of learning how to operate it
effectively.

Both tools had bugs; downloading the GnuPG compo-
nent required by Enigmail and automatically uploading a
public key to Mailvelope’s key servers did not work. Par-
ticipants had to do both manually after being instructed
by the experimenter. Mailvelope’s option to encrypt
was not immediately obvious as previously shown by
Schochlow et al. [22], where prevention of errors is a fun-
damental precursor to providing usable interfaces [15].
Effective user interaction with encryption tools still lies
in following basic interface design principles, and there
were specific hurdles with each tool.

Ideally, the experimenter has an observatory role in a
study like this, but because of the shortcomings of the
technologies, they had to step out of this role and take
on a more active approach of responding to participants’
questions. Without an informed expert present, many
participants reported that they would not have contin-
ued trying to use the tool(s) in reality. One flaw can
be enough to dissuade potential users. However, with
guidance, the setup was completed for all participants in

both groups. Results suggest that guided habituation of
encryption tools can overcome hurdles in the compre-
hension of encryption. This may be a useful approach
for practical use of encrypted email. However, for secu-
rity user studies, employing researchers who act strictly
as experimenters and without domain knowledge has its
own advantages [14]. Having a knowledgeable expert
close by can be a natural way of learning how to use a
new technology [16], where this study has also been an
opportunity to observe how having a helper available to
provide assistance can overcome obstacles which have a
known — albeit complicated and demanding — solution.

Adoption barriers appeared across all three stages of
our study and for both tools. Practitioners and re-
searchers may continue to study emerging encrypted
email solutions to progressively identify isolated barriers
to adoption. However, security software developers con-
tinue to rely on an intuitive sense of what constitutes us-
ability [3]. If we want any chance of promoting adoption,
basic software quality and usability need to be delivered
first and foremost. Furthermore, developers also need to
draw on usability and design expertise: if the tools are
seen as “retro”, and do not meet user expectations, we
can hardly expect them to be adopted.
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Appendix
“There was no way of knowing if we had done it or not.

“I don't like the format of Mozilla Thunderbird. It It would have been good if there'd been a bar across the
looks too... | don't know, Hotmail is a bit better, top saying or showing how much of it was installed, or
and with Thunderbird, it looks like | don’t know, saying it was installed because | wasn't absolutely sure if
very retro...” (P2-E) it was finished...” (P1-M)

“It's too much text!” “It was a bit complex, | had to ask many

(P3-E) times, it was complicated...” (P2-M)

c =
.0 o
z D
3 5
+= +
X x
) o

22.8 min 4.5 min  5.3|min 3.7 min 18.5 min 17 min 1.2|min
“Oh, that was easy..."” “It's too complicated,
(P1-E) it's too much!” (P4-
M)

. But when you got all of the boxes “Oh my
god! Which one do | do — this one or this one?” “Finding the keys, importing them,
And that’s where | start to struggle because that was pretty difficult!” (P5-M)
| don't understand the technical language. If it
just says: “Do this. Press this." but once it starts “Yeah, very simple, it was kind of cool to learn that
giving me choices, I'm like: | don't understand the it was that easy, to be able to encrypt an email. ..
differences!” (P4-E) | didn’t realise that you could just add something to your

Gmail... you know, an add-on and do it that easily..."”

“If | say to some of my friends or even my elderly par- (P2-M)
ents: “Hey! That's encrypted e-mail!”, it's just not going
to happen and it's not like | really understand it. It needs Figure 4: The userjourney of setting up Mailvelope. The
to be literally as easy as installing some of the other graph shows timings for each step of the setup process
apps, you know, that you can just download and have with notable participant quotes.
encryption that way. For me, it has to get to that point
really for general consumption..." (P4-E)

Figure 3: The user journey of setting up Enigmail. The
graph shows timings for each step of the setup process
with notable participant quotes.
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Abstract

fMRI presents a new measurement tool for the measure-
ment of cognitive processing. fMRI analysis has been
used in neuroscience to determine where cognitive pro-
cessing takes place when people are exposed to environ-
mental stimuli and has been used to determine where stu-
dents and experts process basic mathematical functions.
This research sought to understand where cryptography
was processed in the brain, how representational transla-
tion impacts cognitive processing, and how instruction
focused on teaching representational fluency in cryptog-
raphy concepts impacts cognitive processing of cryptog-
raphy. Subjects were given a multiple-choice pretest, in-
structed during the semester in the concepts of interest to
this research, given a multiple-choice post-test, then sub-
jected to the fMRI scan while prompted to process these
concepts. Results of the study show that cryptography is
processed in areas indicative of the representational
forms in which they were presented, as well as engaging
the executive processing areas of the brain. For example,
cryptography presented visually was processed in the
brain in similar areas as other concepts presented visu-
ally, but also engaged the areas of the brain that organize
and process complex concepts. However, the research
team did not find significant results related to the cogni-
tive processing of translating among representations, nor
did we find significant changes in cognitive processing
of cryptography for topics in which the focus of instruc-
tion was teaching representational fluency. Pre and post
test results showed subject performed better on concepts
instructed using representational fluency against con-
cepts instructed without a focus on representational flu-
ency, but the difference was not significant at 0=.05.

1. Introduction

Cybersecurity is considered a top priority by the US
government to defend its virtual borders. A shortage of
qualified IT security professionals has long been a
problem nationally and internationally [13, 15, 17].
Furthermore, the workforce shortfall is widening.
According to a 2015 workforce study, 62% of
respondents stated that their organizations have too few
information security professionals compared to the 56%
in2013 [17].

Cybersecurity education has been and continues to be a
primary focus for fortifying the workforce. The
implications are many and include: the need for more
students to become aware of and interested in cyberse-
curity; the need for a higher proportion of the students
who are interested in cybersecurity to convert to a de-
clared cybersecurity major in college; and the need to re-
tain students in that major to boost graduation numbers
so that more enter the workforce. However, quantity is
not the only challenge in cybersecurity workforce devel-
opment. It is equally, if not more, important that the
workforce have the breadth and depth of skills needed to
perform in the workforce. Cybersecurity education
needs breadth that covers both technical and
nontechnical skills spanning computer science,
computer engineering, information systems, psychology,
business and management, and many other related
disciplines [3]. According to [7] we “have a shortage of
the highly technically skilled people required to operate
and support systems we have already deployed, we also
face an even more desperate shortage of people who can
design secure systems, write safe computer code, and
create the ever more sophisticated tools needed to
prevent, detect, mitigate, and reconstitute systems after
an attack” [7]. [9] and [16] also emphasize that
cybersecurity experts need deep technical skills coupled
with capabilities to recognize and respond to complex
and emergent behavior, mastery in using abstractions
and principles, assessing risk and handling uncertainty,
problem-solving, and reasoning; coupled with facility in
adversarial thinking.

It is a challenge to educate cybersecruity graduates to
assure that they: 1) have broad and deep technical skills,
2) are facile in abstraction, problem-solving, reasoning,
and adversarial thinking, and 3) able to learn and
perform in this complex and emergent domain. Teaching
cyberscurity requires the educator to present the abstract
concept to students in a crystal clear way, and to extend
the abstract concept to practice to let the students learn
the knowledge in context.

Given the newness of the field, cybersecurity’s
pedagogical “best practices” have not yet been
adequately investigated [19]. In the past 10-15 years,
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articles focused on teaching practice have increased. For
example, [4] discusses challenge based learning
methodology to improve learning via a multidisciplinary
approach which encourages students to collaborate with
their peers, ask questions, develop a deeper understand-
ing of the subject and take actions in

solving real-world challenges. [19] proposed a multi-
faceted hierarchical education framework to teach
cybersecurity with the desired level of breath and depth
[19]. [15] presents a unique teaching collaborative
among 13 universities that intends to teach students agile
research and development skills in cyberecurity. While
there has been considerable growth in the investigation
and reporting on cybersecurity teaching, we find that
there is little to no substantive work on cybersecurity
learning and thinking.

This work is grounded in cognitive theory and
investigates students’ mental models in one knowledge
area of cybersecurity, i.e., cryptography. We developed
Model-Eliciting  Activities (MEAs), investigated
students’ representational fluency and the relationship of
students’ development of schema and changes in their
cognitive processing and control when encountering
cryptography concepts. In this paper, we report on
students’mental models using functional magnetic
resonnance imaging (fMRI) analysis of student’s brain
activities while solving complex security problems, as
well as learning data from classroom tests.

The paper is organized as follows. Related work is re-
viewed in Section 2 and research methods are in Section
3. Results are presented and discussed in Section 4 and
5, respectively. Section 6 includes discussion and future
work.

2. Previous Work

2.1 The Importance of Conceptual Understanding of Cryp-
tography in Cybersecurity

Cryptography is an important subject in cybersecurity.
And while cryptography is important for everyone in the
field to understand, it can be an especially challenging
subject to learn. The domain includes several key con-
cepts, such as symmetric key cryptography, asymmetric
key cryptography, types of ciphers, cryptanalysis and at-
tacks, hashing, digital signatures, etc. Each of these con-
cepts is comprised of sub concepts, which build with
other sub concepts to form conceptual understanding of
a key concept. Furthermore, the conceptual understand-
ing of these concepts and sub concepts requires mathe-
matical, language, and analytic thinking. Both breadth
and depth of cryptography knowledge must be consid-
ered.

Conceptual understanding is defined as the abstract men-
tal representation of given phenomena. Conceptual un-
derstanding occurs in the mind and the mind continu-
ously (re)forms mental representations. The veracity of
learners’ conceptual understanding is the fidelity of the
conceptual understanding to the external world. If con-
ceptual understanding matters, then conceptual learning
is where we need to start.

2.2 Cognitive Theory, Conceptual Learning and Measure-
ment Thereof

Cognitive theories of conceptual learning are grounded
in Piaget’s work on logical mental frameworks (also
called schemas and mental models) as structures in the
brain that organize information and interactions among
information. Interacting with new information, accord-
ing to Piaget, modifies these schema, which is learning
[12]. Conceptual learning is the acquisition of infor-
mation about concepts and their interactions, and the on-
going modification about the body of conceptual
knowledge as new concepts and their interactions are en-
countered [10].

Correct categorization involves making links to prior
knowledge and so may require adjustment or correction
of prior knowledge. Assimilation theory presented in [1]
contrasts rote learning (temporary acquisition of disor-
ganized or poorly understood isolated or arbitrarily re-
lated concepts) with meaningful learning (long-term ac-
quisition of organized, interrelated concepts into existing
cognitive structures). Conceptual learning is the process
of identifying and correctly categorizing concepts such
that they can later be used to make predictions or deci-
sions [2, 11].

[10] has shown that providing learners with instruction
in representational fluency can build conceptual under-
standing. Representations are the different forms in
which a concept, principle, or phenomenon can be ex-
pressed and communicated. Common representations
include graphic, pictorial, verbal, mathematical, and
concrete. Each representation presents the phenomenon
it is intended to describe in a different mode. Deep(er)
understanding of the given concept requires understand-
ing of and among various representations. Beyond com-
prehending representations, even deeper understanding
means being fluent in shifting back and forth among the
variety of relevant representations.

The concept of fluency is often associated with the abil-
ity to express oneself in the spoken and written word, and
to move effortlessly (automatically) between the two
representations. A person who is fluent in a language has
this ability; they can translate from English to Chinese
and back, and from written to spoken word and back
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(where written may be in English and spoken in Chi-
nese).

The idea of fluency has been extended to other fields
such as physics, chemistry, engineering, and mathemat-
ics. For example, a study by [8] on experts and novices
found that physics problem solvers who are fluent in
their use of different representations can easily translate
between them, and can assess the usefulness of a partic-
ular representation in different situations. Similarly, [16]
found that when learners develop multiple representa-
tions they are better able to transfer knowledge to new
domains with increased cognitive flexibility.

Representational fluency in the STEM fields can in-
clude: a) visualizing and conceptualizing transformation
processes abstractly; b) understanding systems that do
not exhibit any physical manifestations of their func-
tions; c) transforming physical sensory data to symbolic
representations and vice versa; d) quantifying qualitative
data, e) qualifying quantitative data; f) working with pat-
terns; g) working with continuously changing qualities
and trends; and h) transferring principles appropriately
from one situation to the next [5]. Regardless what the
transformation, representational fluency connotes con-
tinuous adaptation and flexibility of the conceptual
model, and the ability to perform with facility, adeptness,
and expertise. Representational fluency is an important
aspect of deep conceptual understanding that has been
shown to promote transfer of learning and the develop-
ment of “expertise”.

[18] advocates for the role of neuroscience in the study
of mental models. The “mental frameworks” theorized
by Piaget in [10] would require activity in the brain [18].
As learners’ mental schema change to incorporate new
information derived from experiences, brain function in
the learners’ brains changes. That is, learning changes
the structures of the brain.

Advances in neuroscience offer researchers new tools,
such as fMRI, to measure brain activity. To date, fMRI
has been used in studies of cognitive processing of math-
ematics. [12] sought to understand what areas of the
brain are involved in mathematical computation while
[10] built on [12] by using fMRI to measure changes in
cognitive processing after instructing students in multi-
plication in one and two digit numbers. These studies
are examples of how neuroscience is being used to un-
derstand cognitive processing, so that later it can be ap-
plied to evaluate the impacts of instruction on learning.

Our study seeks to understand where cryptography is
processed in the brain as a basis for understanding what
instructional methods maximize cryptography learning
in students.

3. Methods

3.1 Research Questions

This exploratory study first investigated where in the
brain cryptography is processed. Second, we investi-
gated the impact of representational form on cognitive
processing. More specifically, we investigated whether
cognitive processing increased when students were
asked to translate cryptography concepts between repre-
sentational forms (language to math, math to graphical,
etc.) in comparison to cognitive processing of concepts
using the same representational form (language to lan-
guage, math to math, etc.). Third we investigated
whether teaching cryptography using multiple represen-
tations changed how and/or where cryptography con-
cepts were processed in the brain in comparison to in-
struction that was not focused on generating representa-
tional fluency.

The research team used fMRI scans of students to answer
the research questions. In order to investigate impact of
teaching using multiple representations, learners were
taught five cryptography topics using multiple represen-
tations, and four topics were taught using single repre-
sentations to convey concepts. Data gathered from
learners’ classroom performance were used in support of
the fMRI analysis, as discussed below.

3.2 fMRI Component
3.2.1 Variables and Operationalization
3.2.1.1 Independent Variables

As a descriptive question, determining where cryptog-
raphy concepts are processed in the brain did not have an
independent variable. When considering whether trans-
lation between representational forms in the context of
cryptography impacted cognitive processing, the re-
search team defined a binary variable, Representational
Translation. Either the students had to make a translation
between representations, or they did not. We imple-
mented this variable as questions that the students were
asked to answer while under fMRI scanning. Students
were required to make a Representational Translation
when, as shown in Figure 1, Representation 1 and Rep-
resentation 2 were presented in different representational
forms.

Questions asked of students during fMRI were generated
from material that was taught using both the representa-
tional fluency-focused instructional method, as well as
the method that did not focus on the use of multiple rep-
resentations in instruction. Instructional Method was de-
fined as the independent variable in terms of our third
research question regarding the impact of instruction fo-
cused on representational fluency on cognitive pro-
cessing of cryptography concepts.
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3.2.1.2 Dependent Variables

For our research questions, the dependent variable was
Cognitive Processing of Cryptography Concepts, which
illustrates where in the brain and with what intensity
cryptography is processed. The variable was analyzed in
different ways based on the question asked, but was im-
plemented by comparing different periods of activity in
the fMRI scan based on the question being considered
against brain activity measured as the subject observed
the crosshair pattern following each question as shown
in Figure 1.

3.2.2 Population and Sample

Nine out of the 12 students from a graduate-level, se-
mester-long network security course participated in
fMRI scans.

3.2.3 Setting

Scans were administrated at the University MRI Facility
using 3T GE Discovery MR750 and a 32-channel brain
array (Nova Medical). Scans consisted of a high-resolu-
tion (Imm isotropic) T1-weighted anatomical scan for
registration and tissue segmentation purposes and six
functional scans (TR/TE=1500/28msec; flip angle=72°;
35 slices at 3.5mm; field of view (FOV)= 24 cm and ma-
trix= 64x64). Each functional run focused on one topic
and consisted of nine yes/no matching questions (nine
blocks) using three different representational forms. The
functional runs were presented in random order. The
subjects were able to see the questions inside the scanner
through fiber optic goggles (NordicNeuroLab; Bergen,
Norway) and responded with their answers through a
four-button keypad. Subject’s responses were directly
transmitted to a computer for storage. Each block began
with 15 seconds of crosshair display during which sub-
jects were instructed to relax and focus on the display.
The subjects were then presented with a question in one
of the representational form for nine seconds, the ISI was
of 1.5 seconds and then they were presented with another
slide consisting of a question in the same or different rep-
resentation form for nine seconds. After the second rep-
resentation subjects then had nine seconds to decide if
both the representations (R1 and R2) presented the same
concept or not and answered yes or no by pressing one
of the designated buttons on the keypad.

+ Representation 1 Representation 2

R1: 9 sec 151
1.5 sec

Fixation: 15 Seconds R2: 9 sec Response Period: Fix

9 sec

Figure 1: The protocol of a block.

3.2.4 Data Analysis

fMRI scans were processed with an in-house MATLAB
code adapted from afii_proc.py, using AFNI and FSL.
The pipeline consisted of brain extraction, outlier detec-

tion, de-spiking, slice timing correction, motion correc-
tion, alignment to the T1-weighted anatomical scan, tis-
sue segmentation into gray matter, white matter and cer-
ebral spinal fluid (CSF), and spatial smoothing within
each tissue type (isotropic Gaussian filter with Full
Width Half Maximum (FWHM) of 4mm). Anatomical
and fMRI scans of all subjects were aligned to a standard
template (skull stripped 1mm?® ICBM152) so that brain
activation patterns from different subjects could be
grouped together for analysis. Data were motion cor-
rected using three motion parameters (three translational
and three rotational for each x-y-z axes) and their deriv-
atives as regressors in General Linear Model (GLM).
Block regressors were used for each of the nine transi-
tions and crosshairs in GLM.

Brain activations obtained from crosshair slides were
treated as Baseline activations. Brain activations for each
representation were obtained by comparing the
B Representation VCTSUS BBaseline obtained from
GLM of all subjects and all runs, using paired voxel-wise
3D t-tests followed by voxel-wise False Discovery Rate
(FDR) correction. Adjacent voxels with prpr<0.05 and
cluster size greater than 100 voxels were considered as
significant brain activations against the baseline and are
as shown in the figures.

fMRI data gathered was analyzed differently for depend-
ent variable, Cognitive Processing of Cryptography Con-
cepts, based on which question was being investigated.
When investigating where in the brain cryptography con-
cepts are processed, activation patterns were gathered
during the presentation of the first representation of each
question. Activation present during the resting period
following the question (noted as the second crosshair
pattern in Figure 1) was subtracted from activation pat-
terns noted during Representation 1. Data were sepa-
rated based on the representation presented in Represen-
tation 1 in Figure 1, then the data were aggregated for all
student participants (n=9) by representation n=18 per
student), for a total of 162 individual data points per rep-
resentation.

Evaluating whether translation between representations
within questions impacted cognitive processing of cryp-
tography, the period of time during the presentation of
Representation 2 and the Response Period (as shown in
Figure 1) was used to gather cognitive processing data
and activation noted during the second crosshair pattern
was subtracted from the gathered cognitive processing
data. Data were grouped by the independent variable
Representational Translation and aggregated for all stu-
dents. In this case, three questions per topic did not re-
quire Representational Translation. So, the total number
of data points for non-translation was n=18. Six per
topic did require translation for a total translation n=36.
Each student answered questions on the same six topics.
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Finally, cognitive processing data were gathered and an-
alyzed by the Instructional Method independent variable.
In this case, the same data gathering process was used as
for analysis of Representational Translation, except that
the data were grouped by the instructional method in
which the topic was taught. In terms of this comparison,
each student was given questions from three topics that
were taught using the treatment instructional method that
focused on representational fluency and three topics that
were taught with the control instructional methodology.
This analysis consisted of nine questions over three top-
ics aggregated for nine students, or n=243. However, the
research team delimited these comparisons by compar-
ing only questions with the same structure to each other.
For example, the fMRI results for all questions on a topic
that required the subject to translate a concept from lan-
guage to math (or vice versa) were aggregated to deter-
mine cognitive processing of cryptography concepts dur-
ing that translation process. Therefore, the effective
n=27 (three translations per topic, nine subjects in total)
treatment data points and n=54 control data points.

3.3. Classroom Component

3.3.1 Research Question

Classroom data were used only in support of analysis of
the fMRI results produced from this study; therefore, the
research questions are the same as those discussed as part
of the fMRI component earlier.

3.3.2 Variables and Operationalization
3.3.2.1 Independent Variable

The independent variable in this experiment was the
method of instruction. Instructional methods were as-
signed by the researchers to the following topics taught
in class: Zero-Knowledge Proof (ZKP), Pohlig-Hellman
Ciphers (PH), Rivest Shamir Adleman Cryptosystems
(RSA), Digital Cash (DC), and Public Key Infrastructure
(PKI). All other content taught during the semester was
taught using two representational forms not focused on
representational fluency.

3.3.2.2 Dependent Variable

The dependent variable was students’ pre to post-test
learning gain. Learning gain was determined by normal-
izing students’ points scored on the pre and post- tests
into a percentage interval variable, subtracting the pretest
score from the post-test score, and averaging the differ-
ences of the twelve students for each question. Pre to
post-test score differences were aggregated by instruc-
tional method and compared using a t-test.

3.3.3 Populations and Samples

Twelve of twelve students from a graduate-level, ad-
vanced network security course offered in the Spring
2017 semester at a large university in the Midwestern

United States consented to allow their pre and post-test
exam scores to be used in this research.

3.3.4 Setting

Data for this experiment were gathered in one section of
a graduate-level advanced networking course at a large
public university in the Midwestern United States. The
course was not a required course. The control topics
were taught using a combination of lectures delivered by
projecting slides containing individual representational
forms (language, graphics, or math) to deliver concepts
to learners. Instruction of the treatment topics taught:
Zero-Knowledge Proof (ZKP), Pohlig-Hellman Ciphers
(PH), Rivest Shamir Adleman Cryptosystems (RSA),
Digital Cash (DC), and Public Key Infrastructure (PKI)
using activities consisting of multiple representations
and focused on representational fluency. No other as-
pects of the instruction or scored evaluation of the stu-
dents in the classroom differed between the control and
treatment groups. Student performance was evaluated
using a pretest and post-test, which also served as the
students’ final exam.

3.3.2 Population

The population from which subjects were drawn for this
experiment consisted of all students enrolled in the Uni-
versity’s graduate advanced network security course of-
fered by the college of Technology in the Spring of 2017.
Enrolled students were predominantly 18-24-year-old.
Because the experiment required subjects to consent to
the use of their scores on course homework, projects, and
exams, those students who gave their signed consent to
release their scores to the research team comprised the
sample in each class section. All 12 students in the
course consented to allow use of their classroom scores
in this study.

4. Results

4.1 Brain Location: Cognitive Processing of Cryptography
In order to answer the question, “Where in the brain are
cryptography concepts processed?”, the research team
analyzed blood oxygen level data (BOLD) of partici-
pants, representing brain activity, taken during the fMRI
while the participants were processing cryptography
questions. Measurement of blood flow to the bran, the
measurement on which fMRI is based, serves as a proxy
for changes in brain activity. Increased blood flow to an
area of the brain indicates increased brain activity, cog-
nitive processing, where decreased activity is signaled by
reduced blood flow to areas of the brain. In this research,
questions were presented using graphical, language, and
mathematics representations as shown in Figure 1, which
generated distinct patterns of brain activation, so we ad-
dress the research question by representation.
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Bob tells Alice whether he picked the
secret or the random string.

Figure 1: Representations used in fMRI questions (clockwise top to
bottom): crosshair pattern, mathematic, language, graphical

This analysis used brain activation detected during the

presentation of the first of two slides in each question,
and the resting crosshair pattern following the question

as illustrated in Figure 2.
”
End of Run Only

Fixation: 15+ Seconds

Representation 2

+ Representation 1
Fixation: 15 Seconds — RITU76C (] R2:9 sec Response Periad
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Figure 2: Activation Comparisons by Representation

The research team aggregated the BOLD signal data for
all questions by the type of the first representation, that
is math, graphical, or language, across the nine student
participants. Cryptography concepts presented using a
mathematical representation with mathemtics produced
BOLD activation patterns shown in Figure 3.
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Figure 3: Brain Activation of Cryptography Concepts Presented using
Matematical Representations

Five clusters of activation were noted at a significance
level of 0=0.05. Corresponding Broadmann Areas and
usages are listed in Table 1 below.

Cluster |Broadmann Area Gyrus Usage
1 Left 39 Left Middle Temporal Accessing word meaning
2 Right 39 Right Middle Temporal |Accessing word meaning
3 Left9 Left Inferior Frontal Representation of numbers
4 Right 44 Right Inferior Frontal Executive processing
5 Left9 Left Medial Frontal Executive processing

Table 1: Math Processing Areas of Activation

Cryptography concepts presented using English lan-
guage stimuli activated five areas of the brain, which are
shown in Figure 4 and detailed in Table 2.

[ Cluster5
BLanguage > ﬂBaseline Cluster4
Cluster3
I; Cluster2

Cluster1

A
Coronal

Sagittal

Figure 4: Brain Activation of Cryptography Concepts Presented using
English Language Representations

Axial

Five clusters of activation were noted at a significance
level of a=0.05. Corresponding Broadmann Areas and
usages are listed in Table 2 below.

Cluster | Broadmann Area Gyrus Usage

1 Left 17 Left Inferior Occipital Visual Processing

2 Left 44 Left Inferior Frontal Executive Language Processing
3 Right 37 Right Lingual Gyrus Visual Processing
4

3

Left3 Left Inferior Parietal Somatosensory Processing
Right 1,2

Right Superior Parietal |Somatosensory Processing

Table 2: Language Processing Areas of Activation

Graphical representations of cryptography concepts
produced two areas of brain activation. These areas are
shown in Figure 5 and decribed in Table 3 below.

’ Cluster3

BGraph > BBaseline
Cluster2

Cluster1

Coronal

Sagittal
Figure 5: Brain Activation of Cryptography Concepts Presented
using Graphical Representations

Three clusters of activation were noted at a significance
level of =0.05. Corresponding Broadmann Areas and
usages are listed in Table 3 below.

Cluster |Broadmann Area Gyrus Usage
1 Left 30 Left Middle Occipital Visual Processing
2 Right 7 Right Superior Parietal  [Facial Stimuli
3 Right 37 Right Lingual Visual and Letter Processing

Table 3: Graphica Processing Areas of Activation
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4.2 Brain Activation in Cryptography Processing During
Translation of Representational Forms

The research team compared students’ cognitive pro-
cessing on cryptography questions in which they were
forced to make a translation between representational
forms in order to answer the question against cognitive
processing activity on questions in which no such trans-
lation was necessary. We had hypothesized, based on
Thomas, Wilson, Corballis, Lim, and Yoon (2010), that
questions requiring such a translation would produce
more intense cognitive activity in similar brain regions
than those that did not require representational transla-
tion. Our comparison of brain activation in this study did
not support this hypothesis. Only brain activation pat-
terns in the Language to Language questions, the Lan-
guage to Math, and the Math to Graphical analyses
showed significant activation beyond baseline. Figures
6, 7, and 8, respectively, show the brain areas of signifi-
cant activation in this comparison.

Cluster3

BLL > ﬁBaseline
Cluster2

Cluster1

Sagittal Coronal

Figure 6: Brain Activation for Language to Language Comparisons of
Cryptography Concepts

BLM > BBaseline

Cluster2

Cluster1

Coronal

Figure 7: Brain Activation for Language to Math Comparisons of
Cryptography Concepts

Sagittal

XI

BMG > ﬁBaseline
I Cluster2

I Cluster1

Corona

Sagittal
Figure 8: Brain Activation for Math to Graphical Comparisons of
Cryptography Concepts

AXId

4.3 Cryptography Learning by Instructional Method

In support of the fMRI brain activation data comparison
between topics instructed using MEA and focused on
representational fluency and those taught using tradi-
tional lecture-based instruction, the research team also
compared learning gains using the course pre-test and
post-test. We hypothesized that teaching cryptography
concepts using representational fluency would produce
different patterns of cognitive activation compared
against topics taught without a focus on representational
fluency. For this comparison, pre and post-test scores
were aggregated from the twelve students in the class,
and across all topics that were instructed using MEA and
compared to those that were instructed using the tradi-
tional method of instruction not focused on representa-
tional fluency. This analysis showed an average learning
gain of 10.83% on topics instructed using MEA and
3.56% on topics instructed using methods not focused on
representational fluency. These learning gains are not
significant at a=0.05 (t=1.19, p=0.24). Comparing pre-
test scores based on instructional method indicated a
similar level of knowledge, on average, of material that
would be instructed using MEA (u: 0.57, 6: 0.23) versus
topics that would be instructed using other methods (p:
0.57, 6: 0.25)

5. Discussion and Conclusion

The purpose of this work is to design and evaluate if and
how representational fluencies are related to cognitive
learning. The team specifically examined the following
research questions:

1) Where does the cryptography occur in the brain?

The fMRI scan analyses showed that cryptography con-
cepts, if represented using different formats, i.e. lan-
guage, graph, and math notations, activate different parts
of the brain. The results were statistically significant,
even when the sample size was merely 9. The activation
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maps also echo similar distributions as the previous
study on math and physics concepts. This may suggest
that from cognitive perspective, cryptography is funda-
mentally not very different from math and physics. Or
put it differently, brain activations are directly related to
the form of the representations rather than the underlying
complex cryptography concepts or algorithms.

2) Where do the transitions of different representations
occur in the brain?

Among nine possible representation fluencies, the re-
search team discovered that three of them are statistically
significant. They are from language to language, from
language to math, and from math to graph. This suggest
for the group of students that participated fMRI scans,
longer and stronger brain activities were recorded when
students were asked to translate the same concept from
language to language, from language to math, and from
math to graph. Interestingly, the translation from math to
language and the translation from graph to math were not
shown the same statistical significance. If the research
results are reliable, it can be inferred that representation
translations are uni-directional. That is the brain reacts
differently when translating language to math than trans-
lating math to language. If we further assume stronger or
longer brain activations are related to more difficult
tasks, then it may suggest the three transitions that
showed statistically significance might be the ones that
students having trouble with.

3) How does representational fluency impact the class-
room learning results?

The classroom learning results showed an average of
10.38% gains between pretests and posttests when the
instructional methods were delivered using MEAs that
were specifically designed to train students on the repre-
sentational fluencies. In contrast, the gains were merely
3.56% when conventional instructional methods were
adopted in the classroom. However, the p value of the
paired t-test was 0.26: too large for the research team to
declare the findings are statistically significant. There
were two major reasons accounted for this “non-signifi-
cance”. The first was due to small sample size of 12.
They second was the very high average pretest scores.
More specifically, students averaged 56.8% (c =23.4%)
on topics to be instructed using MEA and 57.2% (o =
25.3%) on topics to be taught not using MEA. Students
participated in this study were all graduate students and
may possess strong prior knowledge of cryptography. If
high levels of prior knowledge contributed to the rela-
tively high pretest scores, the large standard deviations
in both pre and posttest scores indicate that very different

levels of prior knowledge were present among the stu-
dents (posttest 6, MEA: 23.8%, non-MEA: 24.2%). Fur-
ther study is needed with a bigger sample size, and pref-
erably at undergraduate level to fully understand the im-
pact the representational fluencies on the classroom
learning results. Adding more questions to the pre and
posttests at each Bloom level of learning would add clar-
ity to how instruction impacted understanding of the
cryptography concepts being researched.

6. Future Work

The results of this study present several avenues for fu-
ture research. Given the limitations of this experiment,
future work could validate our findings regarding where
cryptography concepts are processed in the brain. Our
failure to find significant results relating to cognitive
processing activation during representational transla-
tions or cognitive processing related to representational
fluency leave these areas open for additional research. In
particular, it is possible that different types of classroom
instruction or classroom measures of that instruction
could also be performed in order to evaluate the effects
on cognitive processing and learning. With a cognitive
processing baseline set in this work for processing of
cryptography, many aspects of learning can be compared
against these baselines toward the goal of increasing
cryptography learning in information security students.
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Abstract

The proliferation of public WiFi networks in small
businesses, academic institutions, and municipalities allows
users to access the Internet from various public locations.
Unfortunately, the nature of these networks pose serious
risks to users’ security and privacy. As a result, public WiFi
users are encouraged to adopt a range of self-protective
behaviors to prevent their potential online victimization.
This paper explores the prevalence of one such behavior---
avoidance of sensitive websites---among public WiFi
network users. Moreover, we investigate whether computer
users’ adoption of an online avoidance strategy depends on
their level of uncertainty regarding the security practices of
the WiFi network they login to. To answer these questions,
we analyze data collected using two phases of field
observations: (1) baseline assessment and (2) introduction
of a private (honeypot) WiFi network. Phase one baseline
data were collected using packet-sniffing of 24 public WiFi
networks in the DC metropolitan area. Phase two data were
obtained through introducing a honeypot WiFi network to
109 locations around the DC Metropolitan area and an
implementation of a quasi-experimental one-group-post-
test-only research design. Findings reveal that although
most WiFi users avoid accessing banking websites using
established public WiFi networks, they still use these
networks to access social networks, email, and other
websites that handle sensitive information. Nevertheless,
when logged in to a WiFi network that has some uncertainty
regarding the legitimacy and security practices of its
operator, WiFi network users tend to avoid most websites
that handle sensitive information.

1. Introduction

The expansion of public WiFi networks in small business
(for instance coffee shops, restaurants), academic
institutions, and municipalities in the USA and around the
world [11,3] allows users to login to the Internet from
various public locations and at all times of day. In most
cases, these wireless networks are easily accessible to
customers and other users, and do not require any form of
user authentication or identification for using them [23].
Once logged in to these networks, public WiFi users tend to
check their email accounts, access social networks, shop
online, and even access their bank accounts [18].
Unfortunately, since many of the public WiFi networks are
unencrypted [23] and allow for an easy distribution of
malware [11], man-in-the-middle attacks [1], and hijacking

Jonathan Katz, University of Maryland

connection [20], they pose series risks to their users’
security and privacy.

Acknowledging these risks, the Federal Trade
Commission (FTC) encourages public WiFi users to take
specific precautions when using these networks. For
instance, users are instructed to use encrypted WiFi
networks, only enter personal identifying information on
secured websites (i.e. websites that their URL address
begins with https), use Virtual Private Network (VPN)
connections, and avoid sending emails containing personal
information (see https://www.consumer.ftc.gov). Few
experts even go further to suggest that since malicious WiFi
networks could be easily deployed by criminals in order to
trick people to log into them [23], users should completely
avoid online banking and accessing sensitive data when
using a public WiFi network (even if these websites are
encrypted). Unfortunately, despite the continued efforts that
are being made to improve public WiFi users’ awareness of
these hazards and the security measures that they need to
take [10], we still lack understanding of how common self-
protective behaviors are among public WiFi users.
Moreover, it is relatively unknown what could spark self-
protective behaviors among internet users who employ
WiFi hotspots.

Addressing these issues, this paper secks to answer two
key research questions; first, how established the self-
protective practice of avoidance from accessing websites
that handle sensitive information is among public WiFi
network users? And second, does the uncertainty regarding
the legitimacy of the WiFi network operator determine
computer users’ avoidance from accessing websites that
handle sensitive information? To answer these questions,
we analyze data collected using both survey and
experimental research designs. The integration of two
complimentary research designs allows a more thorough
investigation of public WiFi users’ online self-protective
behaviors, as well as the context in which these behaviors
are more likely to occur. We begin this paper with a brief
overview of the important role of self- protective behaviors
in preventing the completion of a criminal event, and situate
this discussion in the context of the online environment and
public WiFi users’ decision-making process when accessing
the network. We continue with a description of the survey
methodology (phase 1) and the experimental research
design (phase 2) we employed in our research. Followed by
that we discuss findings from statistical analyses we
performed. We conclude by considering the theoretical and
policy implications of these findings.
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2. Theoretical Framing

2.1 Victim Self-Protective Behaviors

Victim Self-Protective Behaviors (VSPB) occur when
individual attempts to protect himself from becoming the
victim of crime [2]. Broadly, criminologists differentiate
between two major types of VSPB: forceful and non-forceful
resistance. Forceful resistance refers to active aggressive
behaviors like pushing, biting, and kicking, that are introduced
by a victim directly against a perpetrator in order to prevent an
act of a criminal event [21]. Non-forceful resistance, on the
other hand, refers to passive resistance techniques that are used
by a victim to avoid offenders, and consequently, reduce the
probability of a criminal event [9]. Examples of behaviors that
could be classified as non-forceful strategies include avoiding
an offender, escaping, pleading and begging. Findings from
past criminological research suggest that both forceful and non-
forceful resistance can decrease the likelihood of sexual abuse
and rape [15], domestic violence [2] and robbery [24,9] from
occurring or escalating. These findings coincide with the
theoretical rationale extended by two key criminological
theories that aim to explain the probability of a successful
criminal event to be completed: The Routine Activities Theory
[5] and the Situational Crime Prevention perspective [4].

The Routine Activities Theory [5] focuses on identifying
behaviors, activities and situational contexts that put would-be
targets at risk for criminal victimization [19]. In their original
formulation of the theory, Cohen and Felson suggested that the
structure of aggregated daily routines determine the
convergence in time and space of motivated offenders, suitable
targets and capable guardians, and influence trends of predatory
crime. For the purposes of this study, capable guardianship, or
the presence of individuals capable of, and motivated to
intervene on behalf of potential victims, is notably absent in the
context of public WiFi. Reflecting on the relevance of VSPB in
the context this theory, one may suggest that greater use of
VSPB would complicate offenders’ attempts to complete a
criminal event and reduce its occurrence [9]. Moreover,
victims’ use of non-forceful resistance technique like evasion
and avoidance will remove the victim from the criminogenic
situation, and prevent the occurrence of a criminal event [24].
Simply put in the original context, the application of VSPBs
should reduce the suitability of potential targets.

The Situational Crime Prevention perspective [4] is
focused on the occurrence and development of criminal events.
The underlying premise of this perspective is that criminals are
rational, weighing the costs and benefits of their prospective
behaviors, so successful crime prevention efforts must involve
the design and manipulation of human environments to make
offenders’ decisions to get involved in crime less attractive [4].
Therefore, Clarke recommended the adoption of crime-specific
prevention strategies (for instance, strategies targeting theft,
robbery, burglary, vandalism, etc.) that fall into five categories:
increase offenders’ effort, increase offenders’ risks, reduce
offenders’ rewards, reduce provocations, and remove excuses
[7]. VSPB on its various forms are of utmost relevance in the

context of this perspective since victim’s resistance would
increase offenders’ effort to complete a criminal event and
offset offenders’ cost and benefit calculations [9].

Although past research has focused on the effect of VSPB
on preventing offline victimization, we suspect that non-
forceful resistance VSPBs are also relevant in preventing online
victimization. For example, like installing a security or alarm
system in someone’s home to prevent burglary, installing
antivirus software on one’s computer is considered an effective
practice for preventing malware attacks [16-17]. Similarly,
while avoiding a potential neighborhood or street segment is
proved to be an effective non-forceful strategy for reducing the
probability of robbery [24], spending less time on untrusted or
untrustworthy websites and downloading copyright protected
material illegally to a computer may reduce individual
likelihood to experience a wide range of cybercrimes [10].
Importantly, we believe that there is a need to differentiate
between offline and online non-forceful VSPB in order to
understand how these strategies reduce the probability of an
online criminal event. For instance, [14] report that public WiFi
users attempt to protect their privacy when working with the
network by tilting or dimming their computer screens, as well
as sitting with their computers angled toward the wall. These
behaviors could be classified as offline non-forceful resistance
strategies. In contrast, installing an antivirus package, using a
secure VPN connection, and avoiding accessing and handling
sensitive information while using public WiFi networks could
be classified as an online non-forceful resistance strategies that
reduce the probability of cybercrime from progressing.

2.2 The Current Research

Our focus in this paper is on internet users’ online avoidance
from accessing sensitive websites while using a public WiFi
network. Specifically, we seek to determine how common
avoidance from accessing websites that handle sensitive
information (banking, email, social networks and personal
cloud — e.g. google drive, dropbox, etc.) among WiFi networks
is. Indeed, previous research has already investigated public
WiFi users’ online routines. For example, findings reported by
the Identify Theft Resource Center [12] suggest that 57% of the
public WiFi users they sampled logged into a work-related
system like email or file sharing while using a public WiFi
network and that 24% of respondents made purchase using a
credit card while using the network. Similarly, [22] reports that
83% of public WiFi users use their emails, 68% use their social
media accounts, 43% access work specific information, 42%
shop online and 18% access banking websites while using
public WiFi networks. While these reports are informative and
suggest variation with respect to the type of websites that public
WiFi users tend to access while employing public WiFi
networks, these reports draw on problematic samples, employ
questionnaires for gathering data from subjects, and fail to take
into consideration the physical and temporal conditions which
may influence public WiFi users’ decisions to engage in these
online behaviors. We suspect that a more hands on approach to
assess public WiFi users’ online routines with the network is to
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see what people are actually doing on public WiFi network by
monitoring locations which host a public WiFi hotspot and
observing the traffic they generate.

In addition to exploring how likely public WiFi users are
to avoid accessing websites that handle sensitive information,
we also explore whether uncertainty regarding the owner of a
WiFinetwork shapes users’ avoidance from accessing websites
that handle sensitive information. To this end, prior
psychological theory and research indicates that decision
makers tend to be ambiguity-averse [8,13]. Accordingly, when
forming expectations about the consequence of their possible
behaviors, individuals opt for prospects with known risks as
opposed to unknown risks. In line with this rationale, we
believe that the introduction of ambiguous information (i.c.
missing information that prevents decision makers’ ability to
estimate the probability of an event) regarding a WiFi network
and its operator, will disrupt public WiFi users’ calculations of
their risks of becoming the victims of cybercrime, and will
induce more cautious online behaviors in contrast to when
using a network whose owner is known.

3. Data and Methods

To answer these two research questions, we collected data
across two phases: (1) a baseline assessment of user behavior
on extant WiFi networks, and (2) an evaluation of if, and how
individuals use an unknown network that was introduced.
Phase one baseline data was collected by packet-sniffing extant
public WiFi networks at 24 locations in the DC metropolitan
area. In phase two, we introduced our own WiFinetwork in 109
locations around the DC Metropolitan area and implemented a
quasi-experimental one-group-post-test-only research design.
Like in phase one, for the second phase, we deployed private
WiFi networks (honeypots) and packet-sniffed the internet
traffic on these private networks.

3.1 Public WiFi Baseline Assessment

To explore public WiFi users’ online behaviors we collected
public WiFi network data by launching 72 packet sniffing
sessions in 24 locations across Maryland and the DC
metropolitan area using the software “Wireshark”. Wireshark
is a network protocol analyzer that can monitor and capture
network packets that have not been addressed to the host. We
used “Wireshark™ to collect packet data in one hour sessions
at three times of day (morning, noon and evening'), recorded
the public WiFi speed, and counted the number of devices that
used the network. Since in six of the sniffing session no
computer users attend the location we report data from 66
sessions. These data from the public WiFi networks were used
for identifying how computer users are using public wireless
networks. Specifically, we examined unencrypted WiFi traffic
to determine websites visited by users and the activities with
which these websites are associated (e.g., checking email,
watching videos, using a P2P file-sharing service, etc.),
whether or not end-to-end encryption (e.g., SSL or a VPN) is
being used, and whether malware is detected on the host

1 Morning sessions were defined as entirely within the hours of 8:00am
and 11:00am, afternoon sessions were within the hours of 12:00pm and

and/or in the inspected traffic. Importantly, in order to protect
people’s privacy and maintain anonymity, the collected data
was aggregated across each data collection session and not
linked to specific users.

In addition to network data, we also collected data from the
physical environment in which the public WiFi hotspot operated.
Figure 1 presents an example of data collected from a location in
Washington, DC during a 1-hour sniffing session by one of our
research assistants. As may be observed in the figure, once
arriving at a research location our research assistants diagrammed
the physical layout of the space as well as recorded information
about the number of individuals who were present in each
research site, number of male, number of female, number of
customers, number of employees, number of observed
smartphone devices, number of laptops, percent of individuals
sharing a table, and percent of people sitting in adjacent tables.
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Figure 1. Observations Recorded During A One Hour
Sniffing Session in Sliver Spring MD (Afternoon)

Finally, information regarding neighborhood
demographic and social characteristics was downloaded from
the U.S. Census website (available at www.census.gov).
Specifically, we download neighborhood (census tract level)
information regarding the total population in the
neighborhood, percentage of residents that are below the
poverty line, percentage of residents in the community who
are unemployed, percentage of households in the community
that are headed by a female, percentage of residents living in
the same house in the last 5 years, and percentage of foreign-
born resident in the community.

3.2 WiFi Network Honeypots

Next, to understand public WiFi users’ behaviors on the network
we also explored computer users’ willingness to login to a WiFi
network they were not familiar with (and which we owned). To
do so, we introduced a new and unknown network to locations
similar to those selected in phase one. In this experimental design,
the characteristics and outcomes of interest were measured across
both phases and thus can be compared on observable attributes.

2:00pm, and evening sessions were between the hours of 5:00pm and
8:00pm on weekdays.
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Adopting this research design in our work, we selected 109
research sites with a wireless router of our own at three times of
day (morning, noon and evening)? for each location. The router
allowed users easy access to the Internet since it did not require
login credentials (i.e. password and user names). Traffic on this
network was closely monitored by a student who packet-sniffed
our network using the “Wireshark” software and tools native to
the router. Our goal in this was to determine the proportion of
public WiFi users who are likely to roam around and look for
WiFi networks to login to and use. We were also interested to
understand these users’ online behaviors while on the untrusted
network. All in all, we observed and analyzed internet traffic on
34 of the 109 locations we visited (i.e. 31% of the research sites).
Importantly, the current research does not seek to explain the
variation between locations in which computer users accessed and
did not access our networks. Instead the current work is focused
on the type of traffic we observed on the WiFi networks we
deployed. Thus, consistent with the data collected in the public
WiFi baseline assessment phase, we collected information on
online users’ online behaviors and susceptibility to cybercrime
victimization using “Wireshark”. We also collected relevant
information on the physical environment using observations.
Finally, we downloaded information regarding neighborhood
demographic and social characteristics from the U.S. Census
website.

3.3 Ethical and Privacy Considerations

We have applied for an IRB approval for this project and the
IRB team in the University of Maryland determined that our
project does not involve human subjects, and hence does not
require an IRB approval. Further, honeypot networks
deployed in phase 2 of this study were clearly labeled as
“private”, and thus potential users knowingly trespassed on an
unknown private network. In addition, we also consulted with
the legal team at the University of Maryland and verified that
the act of sniffing is legal in the state of Maryland. Indeed, the
use of a free and public program to sniff in unsecure public
networks has been ruled to be legal under the Wiretap Act
(see “In re INNOVATIO IP VENTURES, LLC PATENT
LITIGATION”, District Court, ND Illinois 2012) and has
been employed by [3] in their investigation of public WiFi
networks in 20 international airports (located in 4 countries).
However, in line with the University of Maryland Legal
Team’s recommendation, we did not initiate a sniffing session
in public WiFi locations in which this activity was specifically
prohibited by the network owner.

3.4 Dependent Variables

The data collected using Wireshark during our packet-sniffing
sessions indicated that WiFi users employed the network for
accessing wide range of websites. Indeed, we observed packet-
data of advertisement, E-commerce, education, news, sport and
video streaming websites. However, since our goal in this paper
is focused on WiFi users’ online self-protective behaviors, we
observe in this work the relative number (i.e. proportion) of

2 With the same criteria as in phase one.
3 These data were aggregated up from one to three hours of data
collection sessions dependent upon the hours of operation for each

sniffing sessions and WiFi networks on which users accessed
websites that handle sensitive information as a dependent
measure. Specifically, we calculated the proportion of packet
sniffing sessions and WiFi network hotspots on which packet-
data that is associated with banking, email, social network and
personal cloud websites was observed.

4. Results

4.1 How prevalent is avoidance from accessing sensitive
websites among public WiFi network users?

We begin by presenting findings regarding the prevalence of
packets originating from sensitive websites and observed over
public WiFi locations. In the following, the unit of analysis is
the location.? Figure 2 shows the proportion of sniffing sessions
(N=66) at which banking, social network, email, and personal
internet packets were observed. As indicated in the figure,
banking websites packets were observed at 38% of the sniffing
sessions we collected. In addition, packets originated in social
network websites were observed at 86% of the sniffing
sessions, packets from email accounts on 68% of the sniffing
sessions, and packets from a personal cloud on 73% of the
sniffing sessions.

100% 86%
80% 68% 73%
60%
38%
40%
0%
Banking Social Email Personal
Network Account Cloud

Figure 2. Internet Traffic Observed on Public WiFi
Hotspots in the DC Metropolitan Area (N=24 Unique
Locations).

Since we packet-sniffed the 24 locations during three
times of day (morning, afternoon, and evening), we further
explored whether the presence of packets from websites that
handle sensitive information varies by time of day. Findings
from this analysis are presented in Figure 3. As indicated in
the figure, with few exceptions, the presence of packet data
from banking, social network, email and personal cloud
websites on public WiFi hotspot tended to be consistent
throughout the day. Indeed, it appears that banking packets are
less common during evening sniffing sessions than during
morning and afternoon sessions, and that both email and
personal cloud packets are less common on public WiFi
hotspots during morning sniffing sessions than during
afternoon and evening sessions. However, analyses from a
chi-square test suggests that these differences are not
statistically significant.

location and most fairly represent the limitations of using DNS packet
queries as an indicator of network traffic rather than presuming to
measure the volume of said traffic.
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These findings also suggest that public WiFi users
generally do not avoid accessing websites that handle
sensitive information. In fact, evidence from our packet-
sniffing sessions suggests that public WiFi users access social
media, email, and personal cloud accounts while using public
WiFi hotspots. Still, the relatively low prevalence of locations
where banking packets were observed indicates that public
WiFi users may be taking steps to avoid accessing sensitive
banking information from these networks.

4.2 Does Computer Users’ Online Avoidance Depend on the
Level of Uncertainty Regarding the WiFi Network?

Next, we explore whether ambiguity regarding the WiFi
network and its owner determine users’ probability of accessing
sensitive websites. To answer this question, we compare the
proportions of extant public WiFi hotspots on which banking,
email, social media, and personal cloud website packets were
observed with the proportions of honeypot WiFi networks on
which similar packets were observed. Note that while the
analyses performed to answer our first research question were
focused on the presence of packet data on the sniffing session
(i.e each time we sniffed the network), we answer our second
research question by investigating the presence of packet data
on the WiFi network (i.e. aggregating the three sniffing
sessions we ran per each location ). Specifically, we employ
the data collected during our initial phase of public WiFi
network assessment (i.e. 24 locations) and compared it with
packet data collected on our honeypot WiFi networks (i.e. 34
locations).

96%
86% 82%
76% 729, 74% 72%
57% 62%
0
429% 41%
II 200

Banking

B Morning M Afternoon Evening

Figure 3. Internet Packets Observed During 66 Sniffing
Sessions on Public WiFi Hotspots in the DC Metropolitan
Area Across Three Times of Day

Before turning to answer our second research question, we first
compare both the location and neighborhood level
characteristics in which our research team either sniffed the
public WiFi network, or deployed and observed traffic on the
honeypot WiFi network that was deployed. These findings are
presented in Table 1 and Table 2. As indicated in Tables 1 and
2, both the physical and social landscape and census tract
characteristics of the locations we attended both in the

Social Network Email Account Personal Clouc

assessment and honeypot phases of our project are very similar.
In fact, the only significant difference between the contextual
characteristics of the extant public WiFi hotspots and the
contexts in which the honeypot WiFi networks were introduced
was with respect to the number of mobile devices observed.
Specifically, we observed a significantly higher number of
mobile devices during the assessment of extant public WiFi
network locations than in the locations where we deployed our
own WiFi network. At the neighborhood level, it appears that
the neighborhoods in which we deployed our WiFi networks
had a significantly higher percentage of foreign-born residents
than in the public locations with extant WiFi networks.
Moreover, residential stability (i.e. percent living in the same
house for more than 5 years) is significantly higher in the
neighborhoods in which we surveyed the extant public WiFi
networks than in the neighborhoods where we deployed our
honeypot network.

Location Physical and Extant Honeypot
Social Public WiFi WiFi
Characteristics Network Network
Mean Mean
(SD) (SD)
Number of people 23.47 21.16
(12.30) (17.39)
Number of males 11.25 10.66
(5.75) (9.75)
Number of females 10.97 10.50
(6.18) (8.42)
Number of customers 20.93 18.66
(11.49) (16.39)
Number of employees 2.53 2.49
(1.69) (2.14)
Number of mobile 8.22 2.77*
devices (observed) (6.64) (3.13)
Number of Laptops 4.31 2.70
(observed) (5.03) (6.05)
% people sharing a 61.88 69.77
table (23.94) (43.23)
% people sitting in 74.16 77.16
adjacent tables (25.98) (56.85)

* p<0.05 ** p<0.01

Table 1. Location Physical and Social Characteristics of
Public WiFi Hotspots and Locations in which WiFi
Networks Were Deployed

Next to investigation of significant differences between the
physical and social landscapes and neighborhood
characteristics across networks, we also test for significant
differences between the presence of traffic to websites that do
not require accessing sensitive information on the two types of
networks. Findings from that analysis are reported in Table 3.
As shown in Table 3, users of both extant public WiFi networks
and the honeypot WiFi networks used the Internet for accessing
educational, news, sport and video streaming websites.
Moreover, packets reflecting advertisement traffic were
observed on both type of networks. However, the proportion of
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extant public WiFi hotspot locations with packets in these five
website types is significantly higher than the proportion of
honeypot WiFi network locations with the same type of
packets.

Finally, to answer our second question we compared the
proportion of extant public WiFi locations and locations where
our own WiFi networks were deployed on user access to
websites that handle sensitive information. Findings from this
analysis are presented in Figure 4. As indicated in the figure,
banking website packets were observed on 54% of the extant
public WiFi hotspots that we surveyed. In addition, packets
indicative of social network website use were observed on
100% of the extant public WiFi hotspots, packets from email
sites on 83% of the hotspots, and packets from a personal cloud
on 87.50% of the public WiFi hotspots. In contrast, no banking,
email or personal cloud packets were observed on the honeypot
WiFi networks. However, in close to 68% of the locations with
WiFi networks we deployed we observed packets indicative of
social media website use. To test whether the proportion of
extent public WiFi locations and locations where our own WiFi
networks differ on the presence of packets of websites that
handle sensitive information we ran a T-test for determining
whether the difference between the two proportions is
significant. Findings from these t-tests reveal statistically
significant difference between public WiFi and honeypot WiFi
for each type of packet that is originated in website that handle
sensitive information. Thus, this finding suggests that internet
users are more likely to avoid accessing websites that transmit
sensitive data when employing WiFi networks that carry
uncertainty with respect to their owners.

Neighborhood Public Unfamiliar
Characteristics WiFi WiFi
Network
Mean Mean
(SD) (SD)
Total population 3405 4213
(1384.24) | (2781.90)
Percent poverty 14.97 13.92
(9.09) (13.26)
Percent unemployed 5.70 4.43
(4.00) (3.10)
Percent foreign born 13.62 21.34*
(10.42) (14.46)
Percent  female  headed 25.18 35.11
household (18.03) (61.17)
Percent living in the same 77.86 70.06**
house for more than 5 years (9.40) (11.07)

*p<0.05 ** p<0.01

Table 2. Census Tract Characteristics of Extant Public
WiFi Hotspots and Honeypot WiFi Deployment Locations

5. Discussion

As public WiFi use proliferates and the number and speed of
hotspots continues to grow, the commensurate risk of

cybercrime on these networks is likely to rise accordingly.
Drawing on the VSPB perspective, we designed and collected
two phases of data to assess first how individuals make use of
known, albeit often unsecured, wireless networks, and second,
if, and how individuals would utilize an unknown network of
uncertain management and origin. First, we asked how
established the VSPB of avoidance is on websites that handle
sensitive information among WiFi network users. Second, we
sought to consider if uncertainty regarding the provenance of
the WiFinetwork is associated with differential adoption of this
avoidance technique. Findings from our unique field study
provide several insights. First, we find some support for the
extension of the VSPB framework to cyber environments.
Insofar as self-protective behaviors may be concerned in the
physical world, it appears that when connected to a public WiFi
network, in more than half of the locations that we observed,
individuals did not access banking websites. This finding was
somewhat attenuated when considering the traffic to Social
Networks, Email, and Personal Cloud services. This suggests
that while there may be a salient risk associated with accessing
ones bank on public WiFi, either due to the ubiquity of, or
ambivalence toward disclosure of potentially less sensitive
details available on social media, in emails, and backed up on
personal cloud services, this traffic may not be conceived of as
concerning to users.

Packets type Proportion | Proportion
of extant of honeypot
Public WiFi
WiFi Locations
Locations with
with Packets
Packets Observed
Observed (n=31)
(n=24)
Advertisement .83 65%*
Education 41 21%*
News .70 27**
Sport 41 .09%*
Video streaming .67 23%*

*p<0.05 ** p<0.01

Table 3. Proportion of Extant Public WiFi and
Honeypot WiFi Network Locations in the DC
Metropolitan Area with Different Types of Packets

Second, we find support for the notion that the introduction
ofuncertainty to the source and management of WiFi networks
(as on our honeypots) could serve as a deterrent for sensitive
web traffic by users. Consistent with [8] and [13], individuals
who chose to login to honeypot networks appeared to be more
cautious in their sensitive web traffic, only accessing social
media in addition to less vulnerable sites. Again, the evidence
of social media traffic suggests that the inter-connected world
that we live in may habituate individuals to sharing such details
as are present on their public social media profiles. However,
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this is not to say that such ambivalence to disclosing these
details is without risk. As can be seen from cases of cyber-
stalking and cyber-bullying, access to an individual’s social
media account can be a very damaging in the wrong hands. In
sum, the application of avoidance as a VSPB online, when
incorporated with the use of appropriate antivirus software and
safe internet behavior when on unsecured networks retains an
important role in limiting victimization risk on public WiFi.

100%

83% 87.50%
7.65%
54%
I 0% 0% 0%
Banking Email Social Network Personal cloud
B Public WIFI ® Honeypot WIFI

Figure 4. Internet Packets Observed on 24 Public WiFi
Location and 34 Honeypot WiFi Networks

Finally, it behooves us to account for the limitations of this
project. Due to the abundance of public WiFi networks,
establishing a sampling frame from which to draw a
representative sample of locations or networks was beyond the
scope of this project. Thus, the findings presented herein are
descriptive in nature and should be qualified as such. Future
research should consider a means from which to obtain a census
of specific types of WiFi hotspots from which to draw a more
generalizable sample. Furthermore, additional characteristics
of WiFi traffic and network users should be considered and
controlled for in future analyses, including the base rate of
traffic to given types of websites, the number of devices on
networks, and duration of device network use. Additionally,
while the use of Wireshark for categorizing DNS packet queries
to servers represents an important first step in assessing
network traffic on extant public and honeypot WiFi networks,
future research should consider the use of HTTP and HTTPS
packets for greater granularity of traffic data.

6. Conclusions

Avoidance from accessing websites that handle sensitive
information is a type of online self-protective behavior that
could be easily employed by public WiFi users to prevent their

4+ We would like to thank our reviewers for their thoughtful comments in
improving the clarity of this and future work.

potential cybercrime victimization. While this avoidance
strategy is rare among public WiFi users’ in the context of
social media, email, and personal cloud services, it appears to
be quite common with respect to banking websites. Moreover,
increasing the level of uncertainty regarding the WiFi
network’s legal owner and operator is associated with an
increased likelihood of avoiding websites that handle sensitive
information.*
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Abstract

Background. We reflect on a methodology for de-
veloping scenario-based security behaviour surveys that
evolved through deployment in two large partner organ-
isations (A & B). In each organisation, scenarios are
grounded in workplace tensions between security and
employees’ productive tasks. These tensions are drawn
from prior interviews in the organisation, rather than us-
ing established but generic questionnaires. Survey re-
sponses allow clustering of participants according to pre-
defined groups.

Aim. We aim to establish the usefulness of framing sur-
vey questions around active security controls and prob-
lems experienced by employees, by assessing the validity
of the clustering. We introduce measures for the appro-
priateness of the survey scenarios for each organisation
and the quality of candidate answer options. We use
these scores to articulate the methodological improve-
ments between the two surveys.

Method. We develop a methodology to verify the
clustering of participants, where 516 (A) and 195 (B)
free-text responses are coded by two annotators. Inter-
annotator metrics are adopted to identify agreement. Fur-
ther, we analyse 5196 (A) and 1824 (B) appropriateness
and severity scores to measure the appropriateness and
quality of the questions.

Results. Participants rank questions in B as more appro-
priate than in A, although the variations in the severity
of the answer options available to participants is higher
in B than in A. We find that the scenarios presented in
B are more recognisable to the participants, suggesting
that the survey design has indeed improved. The anno-
tators mostly agree strongly on their codings with Krip-
pendorft’s ¢ > 0.7. A number of clusterings should be
questioned, although « improves for reliable questionsby
0.15 from A to B.

Conclusions. To be able to draw valid conclusions from
survey responses, the train of analysis needs to be verifi-
able. Our approach allows us to further validate the clus-

tering of responses by utilising free-text responses. Fur-
ther, we establish the relevance and appropriateness of
the scenarios for individual organisations. While much
prior research draws on survey instruments from research
before it, this is then often applied in a different con-
text; in these cases adding metrics of appropriateness and
severity to the survey design can ensure that results relate
to the security experiences of employees.

1 Introduction

Engaging users is important to develop meaningful, ef-
fective security behaviour surveys. If studies are con-
ducted out of context, reproduction of results is difficult
[24]. Yet much of security awareness research examines
individuals’ abilities to internalise and enact knowledge
of security risks and controls in an abstract setting. Ef-
forts to measure security behaviour frequently assess in-
dividuals’ competency in general security skills (see Sec-
tion 2). Much of this research ignores the bounded effort
of the individual [6, 16], and that employees in organisa-
tions have other responsibilities [3].

Here we run a validation exercise on scenario-based
surveys conducted in two large organisations each with
many thousands of staff. Scenarios are built on frictions
between security and regular business tasks derived from
prior exploratory interviews with a cross-section of em-
ployees. The core principles of the methodology under-
lying the two surveys are: determining attitudes toward
security provisions and policy in the organisation, and;
characterising how individuals act independently or with
others to enact security-related behaviours. The differ-
ences between the surveys represent an evolution in sur-
vey design as lessons have been learned, where we de-
velop measures which account for these differences and
allow cross-comparison between survey deployments.
We describe the framework for our scenario-based sur-
veys in Section 3.

Here we explore the capacity to utilise additional types

USENIX Association

LASER 2017 ¢ Learning from Authoritative Security Experiment Results 77



of questions to reflect on the survey design without fur-
ther effort by the researchers. If the participants are given
an opportunity to indicate the applicability of the scenar-
ios to their environment, we can tailor the results not just
to specific user groups, but also reflect on how a survey
engages with diverse groups and their security needs.

From the analysis we formulate further metrics for
measuring how aligned the security apparatus of an or-
ganisation is with the employees who are governed by
the policies and controls that are in place. This is
achieved through Likert-scale questions added to the ex-
isting questionnaire, as described in our methodology
(Section 4), which serve as internal validity measures.

The surveys conducted with our two partner organisa-
tions contain questions structured in this way, and we dis-
cuss the results of our research in Section 5. We find that
the appropriateness and applicability of the questions of
the survey have improved from A to B. Similarly, the
reliability of the clustering of the answer options has im-
proved. Yet participants judge the answer options in B to
be more severe and less balanced than in A.

This immediately available feedback allows re-
searchers to continuously evaluate their survey design
and discard unreliable questions from further analysis.
In broader terms, we reflect on this approach in the dis-
cussion that follows in Section 6, and in the conclusions
in Section 7.

2 Related Work

We consider scenario-based security behaviour survey
research from two perspectives: Initially we examine the
construction and motivation of these surveys, and in the
second stage we focus on the reliability of survey analy-
sis (given that surveys would be deployed in specific or-
ganisational contexts). Our review of related work high-
lights the need to situate scenarios in the participants’
environment to build a reliable picture of how security
provisions and workplace conditions interact.

Most of the works reviewed do not evaluate the exter-
nal validity of the questionnaires applied but instead rely
on additional prior work. Our methodology brings ob-
vious benefits to survey designs in research and practice
alike.

Egelman et al. [14] developed the Security Behavior
Intentions Scale (SeBIS) to predict security behaviours
for common controls (‘awareness’, ‘passwords’, ‘updat-
ing’, and ‘securement’). The SeBIS survey comprises
of 16 items on a 5-point Likert scale. SeBIS was de-
ployed on several occasions through Mechanical Turk
(and in one case, PhoneLab). The goal of the work was
to determine if self-reported, intended, behaviours trans-
lated into actual behaviour. To this end, tasks were set
relating to each behaviour category (such as identifying

fake login pages). The authors accepted that the designed
tasks were targeted and narrow in scope, but with a focus
on exploring SeBIS’ predictive capabilities in this lim-
ited setting. Here we use scenarios and options based
in real organisational settings to establish an individual’s
behaviour type and attitude toward the security apparatus
around them; the focus is not on predicting behaviour,
but rather to capture a snapshot of how effectively secu-
rity provisions are perceived to be supporting the busi-
ness.

Parsons et al. [26] sought to validate a survey tool
for measuring information security awareness and aware-
ness initiatives, the Human Aspects of Information Se-
curity Questionnaire (HAIS-Q).Two studies were con-
ducted: in one study, participants completed the HAIS-Q
and were tested for security skills (in this case, identi-
fying potential phishing links amongst a range of fabri-
cated emails); in the second study, engagement of par-
ticipants in the survey was examined by establishing the
level of non-responsivity. Here, we similarly seek to de-
termine whether the scenarios and response options in
our surveys resonated with participants, through exami-
nation of internal measures within our situated surveys.
By doing so we identify repeatable measures for measur-
ing engagement.

Rajivan et al. [27] propose a questionnaire for captur-
ing users’ level of security expertise, presented as being
a critical factor in how well an individual can assess risk
and use available security controls. The questionnaire
seeks to separate respondents across the dimensions of
skills, rules, and knowledge, toward understanding how
individuals apply these in different situations. Here we
discuss our survey methodology as a means to not only
determine how employees use the tools available to them
as individuals and groups, but also how they respond to
specific risks which can potentially arise in their working
environment. Rajivan et al. also included free-text ques-
tions to capture additional comments from participants,
where we use a similar internal mechanism in our sit-
uated scenarios so that participants can further describe
security experiences from their own perspective (further
informing the picture of security on the ground).

Karlsson et al. [20] posit that in organisations, infor-
mation security compliance must be evaluated relative to
employees’ work tasks (and with this, competing goals
and their related values such as productivity and effi-
ciency). The authors speak of there being “tensions and
dilemmas” where one option is preferable to others that
are available. While the argument is made that situational
context is critical to understanding how tensions are re-
solved, the authors’ questionnaire however is free from
any contextual settings. This does allow it to be applied
to any “white-collar individual”, but may limit how the
questionnaire captures the “tensions and dilemmas” that
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exist in a specific organisation. Here we are assessing
scenarios which are grounded in prior interviews with
employees, specifically to identify those regular tensions
and dilemmas which occur in the workplace.

We argue that surveys that are situated in scenarios
that the participants can relate to will engage them and
evoke genuine responses, which can inform efforts to im-
prove the effectiveness of security solutions in an organ-
isation. Some research has focused on basing scenario
design in literature, where Blythe [9] argues that scenar-
ios should “[avoid] unusual events and characters but
nonetheless resonate with the respondent in a way that
they are readily understood while presenting multiple so-
lutions.” Siponen and Vance argue that research needs to
be practically relevant by ensuring contextual relevance
[29]. Their five suggestions focus on studying informa-
tion system policy violations, but are equally transferable
to other behavioural research (and related to the princi-
ples derived by Krol et al. in [23] for studying usability
in security and privacy). Many examples of security be-
haviour research using questionnaire instruments do not
consider the role of task conflicts characterised by Karls-
son et al. [20]. These works instead draw on existing
questions from prior research [13, 19, 30, 31, 33]. The
importance of scenario-based surveys is underlined by
Wash et al.’s findings that individuals do not self-report
security accurately [32]: it undermines much of the tradi-
tional self-reported constructs used for inferring personal
security behaviour.

Sohrabi et al. for example argue that “the lack of infor-
mation security awareness, ignorance, negligence, apa-
thy, mischief, and resistance are the root of users’ mis-
takes” [30]. Their questionnaire uses nine information
security constructs from prior literature to model their
interactions. These questions and mappings are adopted
from four previous studies [13, 19, 31, 33]. However
each of these articles in turn is standing on the shoulders
of giants, citing a total of 29 prior works to support their
survey design, which, in turn, cite over 100 other unique
articles to support the quality of their survey design. The
sources span the fields of sociology, education, criminol-
ogy, information systems and medical research.

Of the literature referenced by Sohrabi et al. and their
references in turn, the vast majority source their con-
structs and survey questions from further literature. A
number of articles construct their own questions. The
most rigorous of those papers in the chain to do any pre-
testing validation of their question design is by Bulgurcu
et al. [11], who conduct two rounds of card sorting by 11
students followed by two rounds of pilot testing by 110
individuals. Huang [17] and Chang and Chuang [12] also
conduct some limited pre-testing.

While it is good scientific practice to rely on constructs
that have been rigorously tested in prior works, only one

of the papers ([19]) discussed above cites the primary
literature which validates the constructs in their original
setting ([11]). Further, as throughout the literature, the
questions are taken out of context of their original re-
search premise, where the validity of the original vali-
dation should be revisited in each new context. It is un-
derstandable that a full pre-study is infeasible for every
new questionnaire, yet augmenting the survey with addi-
tional questions (as described subsequently) to support
the measurement of validity post-hoc would be cheap
and desirable.

The data of our research is grounded in competing
goals in realistic scenarios, so that (i) security managers
can better understand how employees’ attitude and be-
haviour toward security policy and controls influence the
approach to problem resolution, and (ii) researchers can
gain further insight into the shape of tensions between se-
curity and productive tasks in an organisational setting.

3 Background

In this section we describe the two surveys that con-
tribute the primary data in this paper.

The first organisation to be studied we shall call
Company A!' (which has many thousands of employ-
ees). In this organisation 118 semi-structured interviews
were conducted, exploring conflicts between security
and business processes lasting on average 40 minutes.
These interviews were analysed with thematic analysis,
and form the basis of workplace-based scenarios and
possible solutions informed by approaches reported by
employees. Scenarios are combined to create a scenario-
based survey. A similar approach is described by Blythe
et al. [10] for conducting interviews around security be-
haviours within organisations, presenting dilemmas as
short stories with a central character in a specific context
(and informed by an organisation’s security policies). A
small proportion of Company A’s workforce was sam-
pled through interviews, where a wider survey would
attempt to capture the prevalence of the issues identi-
fied in interviews across the wider company. A total of
1486 participants provided complete responses. Further,
the respondents gave 516 additional comments at various
stages of the survey, through text-entry fields provided.

A second, similarly large organisation (which we call
Company B) was studied subsequently, where lessons
learned from the analysis of Company A improved the
organisation of the survey process. These lessons have
caused the progression in groupings as described in Ta-
ble 1 and discussed in Section 4. The initial attitude
and behaviour types [4] were derived from Adams [1].

Ifor brevity the companies will be referred to as ‘A’ and ‘B’ for the
remainder of this paper
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85 interviews were conducted in Company B of similar
lengths to the interviews in A, where again these were
used in a similar methodology as in A to develop a larger-
scale survey. A survey was conducted using scenarios
built upon themes emerging from the qualitative analy-
sis of the interviews. 641 employees responded to this
survey, including 195 free text responses. While the sur-
vey results have been analysed [4, 7] here we explore
how the free-text responses can indicate the success of
the survey in engaging with the organisation’s employ-
ees. Further analysis of the interviews that informed the
survey designs can be found in [22] for Company A, [21]
for Company B, and [8] for a combination of both organ-
isations.

3.1 Employee types

In each of the two surveys we attempt to position par-
ticipating employees on two dimensions. In A these are
Attitude and Behaviour types, whereas in B these have
evolved to Maturity levels and Behaviour types. For the
definitions of the types please see Table 1. Foremost,
these two dimensions can be examined individually and
in combination — across age groups, business divisions,
and physical locations — to target interventions which re-
duce friction between security and productivity in the
workplace.

The attitude types in A focus on individuals’ interac-
tion with security apparatus. In B, these have evolved
to a scale of Maturity Levels, which are ranked levels
of individuals’ interaction with the organisation’s policy
(such that interventions would act to improve employ-
ees’ working interactions with centralised security pol-
icy and security provisions). In both A and B, the partic-
ipants were also asked to assign an appropriateness score
for each answer option on a 5-point Likert scale, ranging
from not acceptable at all to very acceptable.

The behaviour types in A are a measure of the indi-
viduals’ likelihood to trade-off security for productivity.
This evolved to the more abstract concepts in B where
the answers are now mapped to four distinct behaviour
types as defined by Adams [1], to better represent the
role of teams and organisational culture in individual se-
curity behaviours. Additionally, participants were asked
to assign a severity score to each answer option of the
behaviour type questions, as well as give a general in-
dicator as to how acceptable to the business it would be
for the participant not to finish the task described in each
scenario.

3.2 Survey design

Figure 1 shows one of the scenarios in B (note
that participants did not see the Individual-

(a) Attitude Types for A

1 Discount suspicions, cause no bother, pas-
sive,

2 Report suspicions but take no direct action,

Take direct action through official channels,

4 Take direct personal action against the
threat.

W

(b) Behaviour Types for A

1 Prepared to perform insecure acts to max-
imise productivity,

2 Show a minor priority for work over security
when the two conflict,

3 Passive, expects others to take the initiative
to ensure security,

4 Tries to remain secure wherever possible.

(c) Maturity Levels for B

1 Is not engaged with security in any capacity,

2 Follows security policy only when forced to
do so by external controls,

3 Understands that a policy exists and follows
it by rote,

4 Has internalised the intent of the policy and
adopts good security practises even when
not specifically required to,

5 Champions security to others and challenges
breaches in their environment.

(d) Behaviour Types for B

Individualists rely on themselves for solu-
tions to problems,

Egalitarians rely on social or group solutions
to problems,

Hierarchists rely on existing systems or tech-
nologies for solutions to problems,

Fatalists take a ‘naive’ approach to solving
problems, feeling that their actions are not
significant in creating outcomes.

Table 1: The dimensions by which survey responses are
measured in Company A and Company B
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Question: File Storage (Behaviour-type)

Concerned about the safety of his current work,
Shamal decides to back up his data, some of
which is confidential. As he uses his own lap-
top under the ‘bring your own device’ scheme, he
usually stores all his work on his drive on the cen-
tral server but he wants to have a second copy just
in case something happens or he loses connectiv-
ity to the company network. He thought about
using one of the common drives but none of the
ones he regularly uses have sufficient space.

Individualist: Create a local copy on the hard
drive of your BYOD laptop, it is the only
machine you work on so you know it will be
safe and this ensures you will always have
access to it if needed.

Egalitarian: Use a common drive that you used
for an old project and still have access to,
as your credentials were never revoked. It
has enough space although you do not know
who manages it now.

Hierarchist: Use an online service, such as Drop-
box, to store the data as it is more under
your control.

Fatalist: Back your work up onto a USB stick
— you have ordered an encrypted one but
while you wait for it to arrive you use a per-
sonal stick you have to hand.

Figure 1: Scenario ‘File Storage’ (QFS) in B

ist/Egalitarian/Hierarchist/Fatalist labels, as defined
in Table 1). In each organisation, surveys were crafted
for participants based upon their department to improve
relevance, see [4, 7] for more details. For the example
scenario in Table 1, we found through the interviews that
data availability was a predominant issue in the organisa-
tions, where many interview participants mentioned the
use of security workarounds [5] to guarantee that they
reached their business goals. Question design attempted
to offer the participants a number of options which
would all be regarded as equally appropriate, based upon
the themes identified from the preceding interviews with
employees. The participants were asked to rank the
four options in order of their preferences. Additionally,
participants were allowed to offer additional comments,
which included the following example:

“Shamal needs to find out who manages the
common drive now, and whether the company
authorises use of Dropbox and personal USB
sticks, before using any of those options.”

As part of the work described here, two annotators
coded the volunteered comments for the types (without
reference to the alignment of responses to types already
defined for each question). For example, the quotation
above could be coded as a Hierarchist’s point of view, as
the individual falls back to existing structures for solu-
tions to the problem.

“This scenario could easily be avoided by pro-
viding sufficient space on the common drives.”

Conversely, this statement has been coded as a Fatalist.
The employee is frustrated that the natural solution to the
problem is outside their reach.

4 Methodology

The methodology laid out in this section establishes three
metrics to measure the quality of the survey design and
its external validity retrospectively. The quality of the
survey includes how engaged participants are in consid-
ering a scenario, and how relevant a scenario and its op-
tions are to their own experiences. If an organisation
is committed to measuring how well its security provi-
sions support the effective completion of business tasks
towards identifying and removing frictions, decision-
makers would have a natural interest in having a realistic
picture of the current experiences of employees.

4.1 Appropriateness and applicability

For each of the answer options to Attitude and Maturity
questions (see Tables 1a and 1c) participants were asked
to specify the acceptability of that answer on a 5-point
Likert scale ranging from “Not acceptable at all” to “Very
acceptable”. There are of course biases present here,
namely that given a participant’s type they may see some
options as more acceptable than others. Indeed there is a
statistically significant (at p < 0.001) correlation in our
survey response data between the ranking of options and
their associated behaviour types with Kendall’s 7 of 0.62.
Yet the ideal scenario design would leave the participants
with four objectively equally acceptable options, and al-
low the participant to freely rank the option.Hence a high
appropriateness score is desired.

Similarly, for each of the answer options to Behaviour
type questions (see Tables 1b and 1d) participants were
asked to specify the severity of each option as well as the
acceptability of failing to complete the task for each sce-
nario on a 5-point Likert scale. Again, the severity scores
are statistically significantly (at p < 0.001) correlated
with the ranking of the answers (Kendall’s T = —0.20),
with less severe answers being ranked as more prefer-
able. The severity scores of the different answers should
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be ranked equally by the participants (as questions are
designed with no one ‘right’ answer), resulting in a low
standard deviation throughout the questions. The ideal
mean of the standard deviation of severity of options is
0, which would imply that all options given to the partic-
ipants are perceived as equally severe.

The acceptability of failing to complete the task metric
would ideally be identically distributed for all questions
in order to allow for inter-question comparison. This is
a metric that is difficult to establish through prior anal-
ysis. If participants think that for a scenario it is more
acceptable for it not to be completed given the given con-
sequences as in the scenario and its options, the partici-
pants do not fully commit to their choices of behaviour
types, as in no scenario there is an option to do nothing
(and in turn avoid side effects from the chosen solution).

4.2 Validation of ranked types by free-text
responses

In the survey design for both A and B, participants are
asked to rank four answer options according to their pref-
erences. Participants are also invited to provide addi-
tional comments on the questions. We find that there
are two common types of responses: those that further
confirm a respondent’s answer, or elicit suggestions / so-
lutions that are not included in the question and the asso-
ciated options. We code these according to the applicable
mapping (Attitude or Behaviour) in each organisation as
listed in Table 1, e.g., for each free text response the an-
notators have to choose from one of four options. While
this is opportunistic (not all participants provided addi-
tional comments), we can validate the mappings by cal-
culating inter-annotator agreement metrics as described
in the following sections.

4.2.1 Inter-annotator agreement

Coder A
CoderB | TI T2 T3 T4
Tl 4 3 0 0
T2 0 36 2 15
T3 0 2 59 1
T4 0 0 1 32

Table 2: Confusion matrix for Question 1 in A between
the coders’ assignment of types to the free text responses

The calculation of the inter-annotator agreement be-
tween the two coders is straightforward. We first cal-
culate a confusion matrix for each question (an exam-
ple is shown in Table 2), and then calculate Krippen-

dorff’s chance corrected inter-annotator agreement met-
ric . Krippendorff’s o ranges from —1 to 41, where
0 corresponds to chance agreement and +1 to perfect
agreement. As the attitude types and maturity levels in
Tables la and lc are on a ranked scale, we weight the
disagreement linearly. For the other two types described
in Tables 1b and 1d the agreement is binary.

4.2.2 Validating the mapping

Coding type
Rank | T1 T2 T3 T4
1 2 6 8 3
2 5 26 22 10
3 2 19 12 34
4 2 43 6 34

Table 3: Confusion matrix for Question 1 in A between
participants assigned ranks to the potential answers and
the types assigned to the participants by the coders based
on the coding of the free text responses

We validate the mapping of the survey answer options
(an example is shown in Figure 1) by treating the par-
ticipants as another annotator and calculating the inter-
annotator metric . However, the participants rank their
options, but the coders annotate separate (but not inde-
pendent) text statements. For example, a participant may
provide a ranking of Type 3 > Type 2 > Type 4 > Type
1 for a specific question, and from the coders we may see
Coder X: Type 3, Coder Y: Type 2.

In this case the standard agreement table approach [15]
for > 2 annotators cannot be used. Yet Krippendorff’s o
naturally extends to non-square weight matrices. In our
case, this leads to a confusion matrix such as in Table 3.
Here we tabulate the frequency that a coder has annotated
a statement with a specific type with the rank that the par-
ticipant gave that type. Perfect validation would there-
fore imply that all types chosen by the coders have rank
4; i.e. the only non-zero entries are in the bottom row
of the confusion matrix. Given this matrix we can exe-
cute the calculation of Krippendorff’s o with a weights
matrix that treats numbers in the bottom row as perfect
agreement, and linearly increases disagreement for lower
ranked options.

4.2.3 Estimating confidence in o

In order to calculate the confidence in the calculated
value of o we rely on o’s standard deviation. As an an-
alytic expression is not available, we bootstrap the cal-
culation of ¢. In the following sections the confidence
intervals are calculated using 1000-fold bootstrapping.
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5 Results

In this section we present the application of the metrics
defined in Section 4 to the datasets described in Sec-
tion 3. There are four tables to consider in this section;
Tables 4 and 5 for the analysis of the secondary coding of
the free text responses, Table 6 for the analysis of appro-
priateness scores on attitude/maturity questions, and Ta-
ble 7 for the analysis of the severity metrics on behaviour
type questions.

5.1 Analysis of clustering

Table 3 is an example confusion matrix calculated based
on the methodology presented in Section 4.2.2. The col-
umn headers list the four possible types assigned to the
free-text responses by the coders. If a free-text response
by the coders was judged to be type 1, but the partici-
pant ranked the answer corresponding to type 1 as rank
2, this would increment the number in row 1, column 2.
Perfect agreement would be represented by the type as-
signed through coding of the free-text responses always
being ranked highest (rank 4) by the participants. This
would be a confusion matrix of non-zero entries in the
bottom row only.

The strong disagreement between the coders and the
assigned rank in question 1 can be identified by the
strong mismatch in type 3: of the 124 statements as-
signed to type 3 by the coders, 84 were ranked least likely
(rank 1) by the participants. This implies that the answer
option assigned to type 3 “Request that those with access
share their (main log-in) account details and passwords
with those without to allow them access to the informa-
tion”) does not match behaviour type 3 (as defined in
Table 1) (“Passive, expects others to take the initiative to
ensure security”).

Interestingly, this disagreement is not reflected in the
coding of the free-text responses themselves. Table 2
shows the confusion matrix for Question 1 for the two
coders. There is virtually no disagreement for types 1, 2
and 3; but some disagreement for type 4, where 15 state-
ments assigned to type 4 by coder A were considered to
be type 2 by coder B. The internal validity for the coding
of free text responses for Question la can be accepted
based on Krippendorff’s ¢ of 0.77 +0.00 as shown in
Table 4, but we are unable to validate the mapping of
answer options to types.

Tables 4 and 5 list the number of free-text responses
coded and Krippendorff’s o for both the validation of
the mapping as well as the coders agreement.

Question  # Mapping @ Coder’s
Q4 40 0.214+£0.02 0.29+0.02
Q5 34 0.354+0.02 0.02+0.03
Q6 2  —-033£0.76 0.00£0.67
Q8 29 0.30£0.04 0.94+0.02
Q10 37 0.234+0.03 0.73+£0.02
Q1 155 —0.03£0.01 0.774+0.00
Q2 137 0.43+0.01 0.914+0.00
Q3 12 0.33£0.08 0.38+0.10
Q7 25 0.24+£0.03 0.13+0.04
Q9 45 0.13£0.02 0.76+0.02

Table 4: Krippendorff’s @ measures for compA with
95% confidence intervals.

Question  # Mapping &«  Coder’s o
QID 33 0.27+0.02 0.85+0.02
QCDhP 53 0.31+0.01 0.38+0.02
QT 22 0.24+0.04 0.3440.05
QSD 27 0.53+0.02 0.47+0.04
QRM 12 0.27+0.07 0.42+0.07
QVPN 23 —-0.09£0.03 0.37+0.04
QFS 18 0.19+£0.05 0.46+0.05
QCC 7 0.38+0.13 0.75+£0.21

Table 5: Krippendorff’s o measures for compB with
95% confidence intervals.

5.1.1 Suitable values for o

Before discussing this data further we must delineate the
boundaries for which we consider Krippendorff’s o to be
reliable. From a statistical perspective we can conduct a
t-test where the null hypothesis is o = 0, i.e. the data
is equivalent to chance. This t-test is represented in our
tables through the use of 95% confidence intervals. In-
deed all rows that are statistically significant at the 95%
confidence interval are also significant at the 99% confi-
dence interval. However the literature [15] is clear that
primary data is only sufficiently reliable for further anal-
ysis at o0 > 0.667.

It is clear that most of the coder’s agreement values
in A satisfy this criteria. There are a number of ex-
ceptions: Q5, O3 and Q7. The inter-coder agreement
is not as strong in B, where only QID satisfies this cri-
teria. When focusing on the validation of the map-
ping/clustering however, none of the scenarios satisfies
this stringent criteria.

Considering the difficulty the coders have to establish
agreement on the free-text responses in B, the low map-
ping « values are not surprising: the coding is a difficult
task (given the brevity of comments and potential lack of
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contextual information). Yet rather than discarding the Failing Std of Severity
results at this stage, it may be more important to identify Question # | mean std  mean std
the scenarios which are indistinguishable from random
data: scenarios Q7 in A and QVPN in B. Apart from Company A
these two scenarios, our data allows the focus of further Q1 903 | 0.281 0.307 0.270 0.128
investigations and policy decisions to be guided by data Q2 893 | 0.270 0.296 0.239 0.123
with known uncertainty. Q3 137 | 0.394 0.340 0.271 0.122
Q7 291 | 0.458 0.393 0.296 0.144
5.2 Appropriateness Q9 374 | 0.668 0.449 0.274 0.123
Company B
Mean Ist choice QRM 152 | 0.196 0.312 0.377 0.101
Question 4 | mean  std  mean  std QVPN 152 | 0.439 0370 0.323 0.120
QFS 164 | 0.430 0.318 0.297 0.114
Company A QCcC 292 | 0.240 0.410 0.182 0.163
Q4 374 1 0.626 0.120 0.923 0.195
Q5 820 | 0.570 0.110 0925 0.161 Table 7: Acceptability of failing to complete the task
Q6 137 | 0427 0138 0.821 0.321 (higher more acceptable) and standard deviation of sever-
Q8 364 | 0.529 0.085 0983 0.084 ity of options for behaviour type scenarios in compA.
Q10 903 | 0.483 0.082 0917 0.185
Company B to be left undone, however the standard variations of the
QID 152 1 0488 0.122 0778 0316 severity scores across the different scenario options are
QCDP 456 | 0.508 0.108 0.893 0.220 higher. According to Table 7 the scenarios in B are there-
QT 164 | 0.499 0.095 0.873 0.252 fore believed by the participants to be more applicable to
QSD 202 | 0546 0.118 0.939 0.181 their environment (particularly QRM and QCC), but the

Table 6: Appropriateness scores for each attitude ques-
tion in compA, the higher, the more appropriate. As each
answer option is assigned an appropriateness score, the
mean represents the mean appropriateness score of all
answer options irrespective of that answer’s ranking. The
Ist choice only considers the appropriateness assigned
by the participants to their top choice.

Table 6 shows the appropriateness scores the partic-
ipants have given the answer options for specific ques-
tions. The scores vary from O (not appropriate) to 1 (very
appropriate). The mean appropriateness score is more
varied in A than in B, although it is close to 0.5 for all
questions, indicating that the average answer option is
balanced. This is desirable as it offers participants the
option to swing to both extremes as necessary. The ap-
propriateness score given by participants to their highest
ranked choice is very high, confirming the participant’s
stance that they view their preferred choice as most ap-
propriate.

5.3 Severity

Table 7 compares the distribution of severity scores and
acceptability of failing the task scores across the differ-
ent scenarios and organisations. There are a number of
variations: Scenarios in A are considered less acceptable

answer options are more balanced in severity in A, im-
plying that options represent potential solutions that may
be seen in everyday work in A compared to the more
contrived answer options in B.

6 Discussion

This research supports a process of continuous improve-
ment to organisational security, by providing measures
for (i) typical workaround to regular frictions with se-
curity in the workplace (by analysing the perceived suit-
ability of solutions derived from interviews), and (ii) how
the interactions employees have with security apparatus
can be designed to minimise the demand on their ‘com-
pliance budget’ [6]. Employee’s willingness to expend
effort for the security of not only themselves but those
around them can be explored by articulating embodied
security cultures which may arise in any number of situa-
tions in the workplace where security controls can be ap-
plied. Both the survey results and the free-text responses
can inform targeted interventions as part of incremen-
tal improvement, an approach advocated by Renaud and
Goucher [28]. Unfortunately in striving for internal va-
lidity for security behaviour constructs it is easy to over-
look the need to establish the applicability of the results
to the real world, that is, to measure the quality of en-
gagement with employees (where tensions can arise with
local demands on effort and capacity). The related works
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discussed in Section 2 demonstrate this well.

Security managers ought to identify the non-divisible
security behaviours in their own organisations, and
equally deploy information security surveys that shine
light on previously unseen workaround or compromise
behaviours by engaging employees. To do this, avail-
able options (and ideally, additional feedback from users)
must point to clear responses to security-related chal-
lenges that employees see as acceptable given the pres-
sures they perceive in a particular situation. Where re-
spondents imply confusion about what is being asked of
them in a scenario-based survey question — or indeed,
see two or more behaviours as one and the same — this
implies that more can be done to clearly separate candi-
date behaviours. In turn, this can be achieved if secu-
rity managers act to grow their understanding of how se-
curity manifests for employees who have other compet-
ing demands for their attention (see also Ashenden and
Lawrence [2], Herley [16] and Parkin et al. [25]).

Our proposed survey methodology and validity mea-
sures address these challenges. This is achieved both in-
ternally (by way of inter-annotator agreement), and ex-
ternally (by way of appropriateness and severity scores).
We are able to highlight strengths and shortcomings in
the survey design which not only inform the design of
realistic scenarios by researchers, but also inform the in-
vestment in security by policy managers when designing
interventions. Organisational environments are complex,
and researchers cannot assume that they have a full un-
derstanding of security behaviours prior to deploying a
survey. This research helps to identify these known un-
knowns. Security practitioners considering potential in-
vestments may do well to understand the quality of the
data they base their decisions upon [18].

7 Conclusions

In this paper we have described a methodology for post-
hoc assessment of the quality of situated security be-
haviour survey designs. We utilise free-text responses
and reflective metrics to measure the surveys’ external
validity. We have demonstrated this approach on two
surveys in two large organisations, drawing on 711 free
text responses and over 7000 reflective scores in the pro-
cess. This has allowed us to quantify the evolution of our
scenario-based surveys through clearly-defined and re-
peatable metrics, and partially validate the mapping from
survey responses to constructs. This knowledge will al-
low security managers to tailor future improvements to
their organisation’s security policy and behavioural inter-
ventions more accurately to the local working environ-
ment, relative to the demonstrable strengths and weak-
nesses of the survey design.

We strongly advice researchers designing surveys in

future to include open questions that can be answered by
the participant without being biased. Survey designers
should not assume they know everything about the re-
sponders even if the survey is grounded in qualitative re-
search, and continually look for ways to involve respon-
dents to gather more context-specific information, such
as by including the reflective questions described in this
research.

Dataset

The participant’s assigned categories and the two sets of
coding for both organisations as well as the analysis code
can be found at DOI 10.14324/000.ds.10038283.
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